]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
memcg: remove PCG_FILE_MAPPED
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
3e2f41f1 141 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
d79154bb 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 147 /* use container_of */
6d12e2d8 148};
6d12e2d8
KH
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
2e72b634
KS
178struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181};
182
9490ff27 183/* For threshold */
2e72b634
KS
184struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
5407a562 186 int current_threshold;
2e72b634
KS
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191};
2c488db2
KS
192
193struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202};
203
9490ff27
KH
204/* for OOM */
205struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208};
2e72b634 209
c0ff4b85
R
210static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 212
8cdea7c0
BS
213/*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
8cdea7c0
BS
223 */
224struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
59927fb9
HD
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
78fb7466
PE
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
78fb7466 257 */
6d12e2d8 258 struct mem_cgroup_lru_info info;
889976db
YH
259 int last_scanned_node;
260#if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
453a9bf3
KH
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
889976db 264#endif
18f59ea7
BS
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
79dfdacc
MH
269
270 bool oom_lock;
271 atomic_t under_oom;
272
8c7c6e34 273 atomic_t refcnt;
14797e23 274
1f4c025b 275 int swappiness;
3c11ecf4
KH
276 /* OOM-Killer disable */
277 int oom_kill_disable;
a7885eb8 278
22a668d7
KH
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
2e72b634
KS
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
2c488db2 286 struct mem_cgroup_thresholds thresholds;
907860ed 287
2e72b634 288 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 289 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 290
9490ff27
KH
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
185efc0f 293
7dc74be0
DN
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
619d094b
KH
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
312734c0
KH
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
d52aa412 305 /*
c62b1a3b 306 * percpu counter.
d52aa412 307 */
c62b1a3b 308 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
315
316#ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318#endif
8cdea7c0
BS
319};
320
7dc74be0
DN
321/* Stuffs for move charges at task migration. */
322/*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326enum move_type {
4ffef5fe 327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
329 NR_MOVE_TYPE,
330};
331
4ffef5fe
DN
332/* "mc" and its members are protected by cgroup_mutex */
333static struct move_charge_struct {
b1dd693e 334 spinlock_t lock; /* for from, to */
4ffef5fe
DN
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
854ffa8d 338 unsigned long moved_charge;
483c30b5 339 unsigned long moved_swap;
8033b97c
DN
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342} mc = {
2bd9bb20 343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345};
4ffef5fe 346
90254a65
DN
347static bool move_anon(void)
348{
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351}
352
87946a72
DN
353static bool move_file(void)
354{
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357}
358
4e416953
BS
359/*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
217bc319
KH
366enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
373 NR_CHARGE_TYPE,
374};
375
8c7c6e34 376/* for encoding cft->private value on file */
65c64ce8
GC
377#define _MEM (0)
378#define _MEMSWAP (1)
379#define _OOM_TYPE (2)
8c7c6e34
KH
380#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
383/* Used for OOM nofiier */
384#define OOM_CONTROL (0)
8c7c6e34 385
75822b44
BS
386/*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
c0ff4b85
R
394static void mem_cgroup_get(struct mem_cgroup *memcg);
395static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
396
397/* Writing them here to avoid exposing memcg's inner layout */
398#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 399#include <net/sock.h>
d1a4c0b3 400#include <net/ip.h>
e1aab161
GC
401
402static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403void sock_update_memcg(struct sock *sk)
404{
376be5ff 405 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
f3f511e1
GC
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
e1aab161
GC
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432}
433EXPORT_SYMBOL(sock_update_memcg);
434
435void sock_release_memcg(struct sock *sk)
436{
376be5ff 437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443}
d1a4c0b3 444
319d3b9c 445#ifdef CONFIG_INET
d1a4c0b3
GC
446struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447{
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452}
453EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
454#endif /* CONFIG_INET */
455#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
c0ff4b85 457static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 458
f64c3f54 459static struct mem_cgroup_per_zone *
c0ff4b85 460mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 461{
c0ff4b85 462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
463}
464
c0ff4b85 465struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 466{
c0ff4b85 467 return &memcg->css;
d324236b
WF
468}
469
f64c3f54 470static struct mem_cgroup_per_zone *
c0ff4b85 471page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 472{
97a6c37b
JW
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
f64c3f54 475
c0ff4b85 476 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
477}
478
479static struct mem_cgroup_tree_per_zone *
480soft_limit_tree_node_zone(int nid, int zid)
481{
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483}
484
485static struct mem_cgroup_tree_per_zone *
486soft_limit_tree_from_page(struct page *page)
487{
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492}
493
494static void
c0ff4b85 495__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 496 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
f64c3f54
BS
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
ef8745c1
KH
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
f64c3f54
BS
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
4e416953
BS
526}
527
528static void
c0ff4b85 529__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532{
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537}
538
f64c3f54 539static void
c0ff4b85 540mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543{
544 spin_lock(&mctz->lock);
c0ff4b85 545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
546 spin_unlock(&mctz->lock);
547}
548
f64c3f54 549
c0ff4b85 550static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 551{
ef8745c1 552 unsigned long long excess;
f64c3f54
BS
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
f64c3f54
BS
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
4e649152
KH
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
f64c3f54 562 */
c0ff4b85
R
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
ef8745c1 570 if (excess || mz->on_tree) {
4e649152
KH
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
c0ff4b85 574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 575 /*
ef8745c1
KH
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
4e649152 578 */
c0ff4b85 579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
580 spin_unlock(&mctz->lock);
581 }
f64c3f54
BS
582 }
583}
584
c0ff4b85 585static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
586{
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
3ed28fa1 591 for_each_node(node) {
f64c3f54 592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 594 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
596 }
597 }
598}
599
4e416953
BS
600static struct mem_cgroup_per_zone *
601__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602{
603 struct rb_node *rightmost = NULL;
26251eaf 604 struct mem_cgroup_per_zone *mz;
4e416953
BS
605
606retry:
26251eaf 607 mz = NULL;
4e416953
BS
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
d79154bb
HD
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
4e416953
BS
621 goto retry;
622done:
623 return mz;
624}
625
626static struct mem_cgroup_per_zone *
627mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635}
636
711d3d2c
KH
637/*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
c0ff4b85 656static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 657 enum mem_cgroup_stat_index idx)
c62b1a3b 658{
7a159cc9 659 long val = 0;
c62b1a3b 660 int cpu;
c62b1a3b 661
711d3d2c
KH
662 get_online_cpus();
663 for_each_online_cpu(cpu)
c0ff4b85 664 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 665#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
669#endif
670 put_online_cpus();
c62b1a3b
KH
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
675 bool charge)
676{
677 int val = (charge) ? 1 : -1;
c0ff4b85 678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
679}
680
c0ff4b85 681static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
682 enum mem_cgroup_events_index idx)
683{
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
c0ff4b85 688 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 689#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
693#endif
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 698 bool anon, int nr_pages)
d52aa412 699{
c62b1a3b
KH
700 preempt_disable();
701
b2402857
KH
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 708 nr_pages);
d52aa412 709 else
b2402857 710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 711 nr_pages);
55e462b0 712
e401f176
KH
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
c0ff4b85 715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 716 else {
c0ff4b85 717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
718 nr_pages = -nr_pages; /* for event */
719 }
e401f176 720
c0ff4b85 721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 722
c62b1a3b 723 preempt_enable();
6d12e2d8
KH
724}
725
bb2a0de9 726unsigned long
c0ff4b85 727mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 728 unsigned int lru_mask)
889976db
YH
729{
730 struct mem_cgroup_per_zone *mz;
f156ab93 731 enum lru_list lru;
bb2a0de9
KH
732 unsigned long ret = 0;
733
c0ff4b85 734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 735
f156ab93
HD
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
bb2a0de9
KH
739 }
740 return ret;
741}
742
743static unsigned long
c0ff4b85 744mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
745 int nid, unsigned int lru_mask)
746{
889976db
YH
747 u64 total = 0;
748 int zid;
749
bb2a0de9 750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
bb2a0de9 753
889976db
YH
754 return total;
755}
bb2a0de9 756
c0ff4b85 757static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 758 unsigned int lru_mask)
6d12e2d8 759{
889976db 760 int nid;
6d12e2d8
KH
761 u64 total = 0;
762
bb2a0de9 763 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 765 return total;
d52aa412
KH
766}
767
f53d7ce3
JW
768static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
7a159cc9
JW
770{
771 unsigned long val, next;
772
4799401f
SR
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 775 /* from time_after() in jiffies.h */
f53d7ce3
JW
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
7a159cc9 792 }
f53d7ce3 793 return false;
d2265e6f
KH
794}
795
796/*
797 * Check events in order.
798 *
799 */
c0ff4b85 800static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 801{
4799401f 802 preempt_disable();
d2265e6f 803 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
f53d7ce3
JW
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811#if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814#endif
815 preempt_enable();
816
c0ff4b85 817 mem_cgroup_threshold(memcg);
f53d7ce3 818 if (unlikely(do_softlimit))
c0ff4b85 819 mem_cgroup_update_tree(memcg, page);
453a9bf3 820#if MAX_NUMNODES > 1
f53d7ce3 821 if (unlikely(do_numainfo))
c0ff4b85 822 atomic_inc(&memcg->numainfo_events);
453a9bf3 823#endif
f53d7ce3
JW
824 } else
825 preempt_enable();
d2265e6f
KH
826}
827
d1a4c0b3 828struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
829{
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833}
834
cf475ad2 835struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 836{
31a78f23
BS
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
78fb7466
PE
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847}
848
a433658c 849struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 850{
c0ff4b85 851 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
852
853 if (!mm)
854 return NULL;
54595fe2
KH
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
c0ff4b85
R
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
54595fe2 864 break;
c0ff4b85 865 } while (!css_tryget(&memcg->css));
54595fe2 866 rcu_read_unlock();
c0ff4b85 867 return memcg;
54595fe2
KH
868}
869
5660048c
JW
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 890{
9f3a0d09
JW
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
711d3d2c 893
5660048c
JW
894 if (mem_cgroup_disabled())
895 return NULL;
896
9f3a0d09
JW
897 if (!root)
898 root = root_mem_cgroup;
7d74b06f 899
9f3a0d09
JW
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
14067bb3 902
9f3a0d09
JW
903 if (prev && prev != root)
904 css_put(&prev->css);
14067bb3 905
9f3a0d09
JW
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
14067bb3 911
9f3a0d09 912 while (!memcg) {
527a5ec9 913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 914 struct cgroup_subsys_state *css;
711d3d2c 915
527a5ec9
JW
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
7d74b06f 927
9f3a0d09
JW
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
14067bb3 936 rcu_read_unlock();
14067bb3 937
527a5ec9
JW
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
9f3a0d09
JW
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
14067bb3 950}
7d74b06f 951
5660048c
JW
952/**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
9f3a0d09
JW
959{
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964}
7d74b06f 965
9f3a0d09
JW
966/*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 973 iter != NULL; \
527a5ec9 974 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 975
9f3a0d09 976#define for_each_mem_cgroup(iter) \
527a5ec9 977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 978 iter != NULL; \
527a5ec9 979 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 980
c0ff4b85 981static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 982{
c0ff4b85 983 return (memcg == root_mem_cgroup);
4b3bde4c
BS
984}
985
456f998e
YH
986void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987{
c0ff4b85 988 struct mem_cgroup *memcg;
456f998e
YH
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
c0ff4b85
R
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
456f998e
YH
996 goto out;
997
998 switch (idx) {
456f998e 999 case PGFAULT:
0e574a93
JW
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1004 break;
1005 default:
1006 BUG();
1007 }
1008out:
1009 rcu_read_unlock();
1010}
1011EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
925b7673
JW
1013/**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032}
1033
08e552c6
KH
1034/*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
4f98a2fe 1047
925b7673
JW
1048/**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
08e552c6 1062{
08e552c6 1063 struct mem_cgroup_per_zone *mz;
925b7673
JW
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
6d12e2d8 1066
f8d66542 1067 if (mem_cgroup_disabled())
925b7673
JW
1068 return &zone->lruvec;
1069
08e552c6 1070 pc = lookup_page_cgroup(page);
38c5d72f 1071 memcg = pc->mem_cgroup;
7512102c
HD
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
925b7673
JW
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1eb49272 1087 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1088 return &mz->lruvec;
08e552c6 1089}
b69408e8 1090
925b7673
JW
1091/**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
3f58a829 1100 */
925b7673 1101void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
925b7673 1104 struct mem_cgroup *memcg;
3f58a829 1105 struct page_cgroup *pc;
3f58a829
MK
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
38c5d72f
KH
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
925b7673
JW
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1117}
1118
925b7673 1119void mem_cgroup_lru_del(struct page *page)
08e552c6 1120{
925b7673 1121 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1122}
1123
925b7673
JW
1124/**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
66e1707b 1142{
925b7673
JW
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1146}
544122e5 1147
3e92041d 1148/*
c0ff4b85 1149 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1150 * hierarchy subtree
1151 */
c0ff4b85
R
1152static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
3e92041d 1154{
c0ff4b85
R
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1158 }
1159
1160 return true;
1161}
1162
c0ff4b85 1163int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1164{
1165 int ret;
0b7f569e 1166 struct mem_cgroup *curr = NULL;
158e0a2d 1167 struct task_struct *p;
4c4a2214 1168
158e0a2d 1169 p = find_lock_task_mm(task);
de077d22
DR
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
0b7f569e
KH
1185 if (!curr)
1186 return 0;
d31f56db 1187 /*
c0ff4b85 1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1189 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1192 */
c0ff4b85 1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1194 css_put(&curr->css);
4c4a2214
DR
1195 return ret;
1196}
1197
9b272977 1198int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1199{
9b272977
JW
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
14797e23 1203 unsigned long inactive;
9b272977 1204 unsigned long active;
c772be93 1205 unsigned long gb;
14797e23 1206
9b272977
JW
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
14797e23 1211
c772be93
KM
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
9b272977 1218 return inactive * inactive_ratio < active;
14797e23
KM
1219}
1220
9b272977 1221int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1222{
1223 unsigned long active;
1224 unsigned long inactive;
9b272977
JW
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
56e49d21 1227
9b272977
JW
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1232
1233 return (active > inactive);
1234}
1235
3e2f41f1
KM
1236struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238{
13d7e3a2 1239 int nid = zone_to_nid(zone);
3e2f41f1
KM
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244}
1245
1246struct zone_reclaim_stat *
1247mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248{
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
bd112db8
DN
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
713735b4
JW
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
97a6c37b 1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1261 return &mz->reclaim_stat;
1262}
1263
6d61ef40
BS
1264#define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
19942822 1267/**
9d11ea9f
JW
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
19942822 1270 *
9d11ea9f 1271 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1272 * pages.
19942822 1273 */
c0ff4b85 1274static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1275{
9d11ea9f
JW
1276 unsigned long long margin;
1277
c0ff4b85 1278 margin = res_counter_margin(&memcg->res);
9d11ea9f 1279 if (do_swap_account)
c0ff4b85 1280 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1281 return margin >> PAGE_SHIFT;
19942822
JW
1282}
1283
1f4c025b 1284int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1285{
1286 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
bf1ff263 1292 return memcg->swappiness;
a7885eb8
KM
1293}
1294
619d094b
KH
1295/*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
c0ff4b85 1309static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1310{
619d094b 1311 atomic_inc(&memcg->moving_account);
32047e2a
KH
1312 synchronize_rcu();
1313}
1314
c0ff4b85 1315static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1316{
619d094b
KH
1317 /*
1318 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1319 * We check NULL in callee rather than caller.
1320 */
1321 if (memcg)
1322 atomic_dec(&memcg->moving_account);
32047e2a 1323}
619d094b 1324
32047e2a
KH
1325/*
1326 * 2 routines for checking "mem" is under move_account() or not.
1327 *
1328 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1329 * for avoiding race in accounting. If true,
1330 * pc->mem_cgroup may be overwritten.
1331 *
1332 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1333 * under hierarchy of moving cgroups. This is for
1334 * waiting at hith-memory prressure caused by "move".
1335 */
1336
c0ff4b85 1337static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1338{
1339 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1340 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1341}
4b534334 1342
c0ff4b85 1343static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1344{
2bd9bb20
KH
1345 struct mem_cgroup *from;
1346 struct mem_cgroup *to;
4b534334 1347 bool ret = false;
2bd9bb20
KH
1348 /*
1349 * Unlike task_move routines, we access mc.to, mc.from not under
1350 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1351 */
1352 spin_lock(&mc.lock);
1353 from = mc.from;
1354 to = mc.to;
1355 if (!from)
1356 goto unlock;
3e92041d 1357
c0ff4b85
R
1358 ret = mem_cgroup_same_or_subtree(memcg, from)
1359 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1360unlock:
1361 spin_unlock(&mc.lock);
4b534334
KH
1362 return ret;
1363}
1364
c0ff4b85 1365static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1366{
1367 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1368 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1369 DEFINE_WAIT(wait);
1370 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1371 /* moving charge context might have finished. */
1372 if (mc.moving_task)
1373 schedule();
1374 finish_wait(&mc.waitq, &wait);
1375 return true;
1376 }
1377 }
1378 return false;
1379}
1380
312734c0
KH
1381/*
1382 * Take this lock when
1383 * - a code tries to modify page's memcg while it's USED.
1384 * - a code tries to modify page state accounting in a memcg.
1385 * see mem_cgroup_stealed(), too.
1386 */
1387static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1388 unsigned long *flags)
1389{
1390 spin_lock_irqsave(&memcg->move_lock, *flags);
1391}
1392
1393static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1394 unsigned long *flags)
1395{
1396 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1397}
1398
e222432b 1399/**
6a6135b6 1400 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1401 * @memcg: The memory cgroup that went over limit
1402 * @p: Task that is going to be killed
1403 *
1404 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1405 * enabled
1406 */
1407void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1408{
1409 struct cgroup *task_cgrp;
1410 struct cgroup *mem_cgrp;
1411 /*
1412 * Need a buffer in BSS, can't rely on allocations. The code relies
1413 * on the assumption that OOM is serialized for memory controller.
1414 * If this assumption is broken, revisit this code.
1415 */
1416 static char memcg_name[PATH_MAX];
1417 int ret;
1418
d31f56db 1419 if (!memcg || !p)
e222432b
BS
1420 return;
1421
e222432b
BS
1422 rcu_read_lock();
1423
1424 mem_cgrp = memcg->css.cgroup;
1425 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1426
1427 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1428 if (ret < 0) {
1429 /*
1430 * Unfortunately, we are unable to convert to a useful name
1431 * But we'll still print out the usage information
1432 */
1433 rcu_read_unlock();
1434 goto done;
1435 }
1436 rcu_read_unlock();
1437
1438 printk(KERN_INFO "Task in %s killed", memcg_name);
1439
1440 rcu_read_lock();
1441 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1442 if (ret < 0) {
1443 rcu_read_unlock();
1444 goto done;
1445 }
1446 rcu_read_unlock();
1447
1448 /*
1449 * Continues from above, so we don't need an KERN_ level
1450 */
1451 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1452done:
1453
1454 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1455 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1456 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1457 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1458 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1459 "failcnt %llu\n",
1460 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1461 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1462 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1463}
1464
81d39c20
KH
1465/*
1466 * This function returns the number of memcg under hierarchy tree. Returns
1467 * 1(self count) if no children.
1468 */
c0ff4b85 1469static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1470{
1471 int num = 0;
7d74b06f
KH
1472 struct mem_cgroup *iter;
1473
c0ff4b85 1474 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1475 num++;
81d39c20
KH
1476 return num;
1477}
1478
a63d83f4
DR
1479/*
1480 * Return the memory (and swap, if configured) limit for a memcg.
1481 */
1482u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1483{
1484 u64 limit;
1485 u64 memsw;
1486
f3e8eb70
JW
1487 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1488 limit += total_swap_pages << PAGE_SHIFT;
1489
a63d83f4
DR
1490 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1491 /*
1492 * If memsw is finite and limits the amount of swap space available
1493 * to this memcg, return that limit.
1494 */
1495 return min(limit, memsw);
1496}
1497
5660048c
JW
1498static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1499 gfp_t gfp_mask,
1500 unsigned long flags)
1501{
1502 unsigned long total = 0;
1503 bool noswap = false;
1504 int loop;
1505
1506 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1507 noswap = true;
1508 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1509 noswap = true;
1510
1511 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1512 if (loop)
1513 drain_all_stock_async(memcg);
1514 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1515 /*
1516 * Allow limit shrinkers, which are triggered directly
1517 * by userspace, to catch signals and stop reclaim
1518 * after minimal progress, regardless of the margin.
1519 */
1520 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1521 break;
1522 if (mem_cgroup_margin(memcg))
1523 break;
1524 /*
1525 * If nothing was reclaimed after two attempts, there
1526 * may be no reclaimable pages in this hierarchy.
1527 */
1528 if (loop && !total)
1529 break;
1530 }
1531 return total;
1532}
1533
4d0c066d
KH
1534/**
1535 * test_mem_cgroup_node_reclaimable
1536 * @mem: the target memcg
1537 * @nid: the node ID to be checked.
1538 * @noswap : specify true here if the user wants flle only information.
1539 *
1540 * This function returns whether the specified memcg contains any
1541 * reclaimable pages on a node. Returns true if there are any reclaimable
1542 * pages in the node.
1543 */
c0ff4b85 1544static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1545 int nid, bool noswap)
1546{
c0ff4b85 1547 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1548 return true;
1549 if (noswap || !total_swap_pages)
1550 return false;
c0ff4b85 1551 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1552 return true;
1553 return false;
1554
1555}
889976db
YH
1556#if MAX_NUMNODES > 1
1557
1558/*
1559 * Always updating the nodemask is not very good - even if we have an empty
1560 * list or the wrong list here, we can start from some node and traverse all
1561 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1562 *
1563 */
c0ff4b85 1564static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1565{
1566 int nid;
453a9bf3
KH
1567 /*
1568 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1569 * pagein/pageout changes since the last update.
1570 */
c0ff4b85 1571 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1572 return;
c0ff4b85 1573 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1574 return;
1575
889976db 1576 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1577 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1578
1579 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1580
c0ff4b85
R
1581 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1582 node_clear(nid, memcg->scan_nodes);
889976db 1583 }
453a9bf3 1584
c0ff4b85
R
1585 atomic_set(&memcg->numainfo_events, 0);
1586 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1587}
1588
1589/*
1590 * Selecting a node where we start reclaim from. Because what we need is just
1591 * reducing usage counter, start from anywhere is O,K. Considering
1592 * memory reclaim from current node, there are pros. and cons.
1593 *
1594 * Freeing memory from current node means freeing memory from a node which
1595 * we'll use or we've used. So, it may make LRU bad. And if several threads
1596 * hit limits, it will see a contention on a node. But freeing from remote
1597 * node means more costs for memory reclaim because of memory latency.
1598 *
1599 * Now, we use round-robin. Better algorithm is welcomed.
1600 */
c0ff4b85 1601int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1602{
1603 int node;
1604
c0ff4b85
R
1605 mem_cgroup_may_update_nodemask(memcg);
1606 node = memcg->last_scanned_node;
889976db 1607
c0ff4b85 1608 node = next_node(node, memcg->scan_nodes);
889976db 1609 if (node == MAX_NUMNODES)
c0ff4b85 1610 node = first_node(memcg->scan_nodes);
889976db
YH
1611 /*
1612 * We call this when we hit limit, not when pages are added to LRU.
1613 * No LRU may hold pages because all pages are UNEVICTABLE or
1614 * memcg is too small and all pages are not on LRU. In that case,
1615 * we use curret node.
1616 */
1617 if (unlikely(node == MAX_NUMNODES))
1618 node = numa_node_id();
1619
c0ff4b85 1620 memcg->last_scanned_node = node;
889976db
YH
1621 return node;
1622}
1623
4d0c066d
KH
1624/*
1625 * Check all nodes whether it contains reclaimable pages or not.
1626 * For quick scan, we make use of scan_nodes. This will allow us to skip
1627 * unused nodes. But scan_nodes is lazily updated and may not cotain
1628 * enough new information. We need to do double check.
1629 */
c0ff4b85 1630bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1631{
1632 int nid;
1633
1634 /*
1635 * quick check...making use of scan_node.
1636 * We can skip unused nodes.
1637 */
c0ff4b85
R
1638 if (!nodes_empty(memcg->scan_nodes)) {
1639 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1640 nid < MAX_NUMNODES;
c0ff4b85 1641 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1642
c0ff4b85 1643 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1644 return true;
1645 }
1646 }
1647 /*
1648 * Check rest of nodes.
1649 */
1650 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1651 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1652 continue;
c0ff4b85 1653 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1654 return true;
1655 }
1656 return false;
1657}
1658
889976db 1659#else
c0ff4b85 1660int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1661{
1662 return 0;
1663}
4d0c066d 1664
c0ff4b85 1665bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1666{
c0ff4b85 1667 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1668}
889976db
YH
1669#endif
1670
5660048c
JW
1671static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1672 struct zone *zone,
1673 gfp_t gfp_mask,
1674 unsigned long *total_scanned)
6d61ef40 1675{
9f3a0d09 1676 struct mem_cgroup *victim = NULL;
5660048c 1677 int total = 0;
04046e1a 1678 int loop = 0;
9d11ea9f 1679 unsigned long excess;
185efc0f 1680 unsigned long nr_scanned;
527a5ec9
JW
1681 struct mem_cgroup_reclaim_cookie reclaim = {
1682 .zone = zone,
1683 .priority = 0,
1684 };
9d11ea9f 1685
c0ff4b85 1686 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1687
4e416953 1688 while (1) {
527a5ec9 1689 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1690 if (!victim) {
04046e1a 1691 loop++;
4e416953
BS
1692 if (loop >= 2) {
1693 /*
1694 * If we have not been able to reclaim
1695 * anything, it might because there are
1696 * no reclaimable pages under this hierarchy
1697 */
5660048c 1698 if (!total)
4e416953 1699 break;
4e416953 1700 /*
25985edc 1701 * We want to do more targeted reclaim.
4e416953
BS
1702 * excess >> 2 is not to excessive so as to
1703 * reclaim too much, nor too less that we keep
1704 * coming back to reclaim from this cgroup
1705 */
1706 if (total >= (excess >> 2) ||
9f3a0d09 1707 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1708 break;
4e416953 1709 }
9f3a0d09 1710 continue;
4e416953 1711 }
5660048c 1712 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1713 continue;
5660048c
JW
1714 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1715 zone, &nr_scanned);
1716 *total_scanned += nr_scanned;
1717 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1718 break;
6d61ef40 1719 }
9f3a0d09 1720 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1721 return total;
6d61ef40
BS
1722}
1723
867578cb
KH
1724/*
1725 * Check OOM-Killer is already running under our hierarchy.
1726 * If someone is running, return false.
1af8efe9 1727 * Has to be called with memcg_oom_lock
867578cb 1728 */
c0ff4b85 1729static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1730{
79dfdacc 1731 struct mem_cgroup *iter, *failed = NULL;
a636b327 1732
9f3a0d09 1733 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1734 if (iter->oom_lock) {
79dfdacc
MH
1735 /*
1736 * this subtree of our hierarchy is already locked
1737 * so we cannot give a lock.
1738 */
79dfdacc 1739 failed = iter;
9f3a0d09
JW
1740 mem_cgroup_iter_break(memcg, iter);
1741 break;
23751be0
JW
1742 } else
1743 iter->oom_lock = true;
7d74b06f 1744 }
867578cb 1745
79dfdacc 1746 if (!failed)
23751be0 1747 return true;
79dfdacc
MH
1748
1749 /*
1750 * OK, we failed to lock the whole subtree so we have to clean up
1751 * what we set up to the failing subtree
1752 */
9f3a0d09 1753 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1754 if (iter == failed) {
9f3a0d09
JW
1755 mem_cgroup_iter_break(memcg, iter);
1756 break;
79dfdacc
MH
1757 }
1758 iter->oom_lock = false;
1759 }
23751be0 1760 return false;
a636b327 1761}
0b7f569e 1762
79dfdacc 1763/*
1af8efe9 1764 * Has to be called with memcg_oom_lock
79dfdacc 1765 */
c0ff4b85 1766static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1767{
7d74b06f
KH
1768 struct mem_cgroup *iter;
1769
c0ff4b85 1770 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1771 iter->oom_lock = false;
1772 return 0;
1773}
1774
c0ff4b85 1775static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1776{
1777 struct mem_cgroup *iter;
1778
c0ff4b85 1779 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1780 atomic_inc(&iter->under_oom);
1781}
1782
c0ff4b85 1783static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1784{
1785 struct mem_cgroup *iter;
1786
867578cb
KH
1787 /*
1788 * When a new child is created while the hierarchy is under oom,
1789 * mem_cgroup_oom_lock() may not be called. We have to use
1790 * atomic_add_unless() here.
1791 */
c0ff4b85 1792 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1793 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1794}
1795
1af8efe9 1796static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1797static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1798
dc98df5a 1799struct oom_wait_info {
d79154bb 1800 struct mem_cgroup *memcg;
dc98df5a
KH
1801 wait_queue_t wait;
1802};
1803
1804static int memcg_oom_wake_function(wait_queue_t *wait,
1805 unsigned mode, int sync, void *arg)
1806{
d79154bb
HD
1807 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1808 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1809 struct oom_wait_info *oom_wait_info;
1810
1811 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1812 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1813
dc98df5a 1814 /*
d79154bb 1815 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1816 * Then we can use css_is_ancestor without taking care of RCU.
1817 */
c0ff4b85
R
1818 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1819 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1820 return 0;
dc98df5a
KH
1821 return autoremove_wake_function(wait, mode, sync, arg);
1822}
1823
c0ff4b85 1824static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1825{
c0ff4b85
R
1826 /* for filtering, pass "memcg" as argument. */
1827 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1828}
1829
c0ff4b85 1830static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1831{
c0ff4b85
R
1832 if (memcg && atomic_read(&memcg->under_oom))
1833 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1834}
1835
867578cb
KH
1836/*
1837 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1838 */
e845e199 1839bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1840{
dc98df5a 1841 struct oom_wait_info owait;
3c11ecf4 1842 bool locked, need_to_kill;
867578cb 1843
d79154bb 1844 owait.memcg = memcg;
dc98df5a
KH
1845 owait.wait.flags = 0;
1846 owait.wait.func = memcg_oom_wake_function;
1847 owait.wait.private = current;
1848 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1849 need_to_kill = true;
c0ff4b85 1850 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1851
c0ff4b85 1852 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1853 spin_lock(&memcg_oom_lock);
c0ff4b85 1854 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1855 /*
1856 * Even if signal_pending(), we can't quit charge() loop without
1857 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1858 * under OOM is always welcomed, use TASK_KILLABLE here.
1859 */
3c11ecf4 1860 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1861 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1862 need_to_kill = false;
1863 if (locked)
c0ff4b85 1864 mem_cgroup_oom_notify(memcg);
1af8efe9 1865 spin_unlock(&memcg_oom_lock);
867578cb 1866
3c11ecf4
KH
1867 if (need_to_kill) {
1868 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1869 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1870 } else {
867578cb 1871 schedule();
dc98df5a 1872 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1873 }
1af8efe9 1874 spin_lock(&memcg_oom_lock);
79dfdacc 1875 if (locked)
c0ff4b85
R
1876 mem_cgroup_oom_unlock(memcg);
1877 memcg_wakeup_oom(memcg);
1af8efe9 1878 spin_unlock(&memcg_oom_lock);
867578cb 1879
c0ff4b85 1880 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1881
867578cb
KH
1882 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1883 return false;
1884 /* Give chance to dying process */
715a5ee8 1885 schedule_timeout_uninterruptible(1);
867578cb 1886 return true;
0b7f569e
KH
1887}
1888
d69b042f
BS
1889/*
1890 * Currently used to update mapped file statistics, but the routine can be
1891 * generalized to update other statistics as well.
32047e2a
KH
1892 *
1893 * Notes: Race condition
1894 *
1895 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1896 * it tends to be costly. But considering some conditions, we doesn't need
1897 * to do so _always_.
1898 *
1899 * Considering "charge", lock_page_cgroup() is not required because all
1900 * file-stat operations happen after a page is attached to radix-tree. There
1901 * are no race with "charge".
1902 *
1903 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1904 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1905 * if there are race with "uncharge". Statistics itself is properly handled
1906 * by flags.
1907 *
1908 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1909 * small, we check mm->moving_account and detect there are possibility of race
1910 * If there is, we take a lock.
d69b042f 1911 */
26174efd 1912
89c06bd5
KH
1913void __mem_cgroup_begin_update_page_stat(struct page *page,
1914 bool *locked, unsigned long *flags)
1915{
1916 struct mem_cgroup *memcg;
1917 struct page_cgroup *pc;
1918
1919 pc = lookup_page_cgroup(page);
1920again:
1921 memcg = pc->mem_cgroup;
1922 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1923 return;
1924 /*
1925 * If this memory cgroup is not under account moving, we don't
1926 * need to take move_lock_page_cgroup(). Because we already hold
1927 * rcu_read_lock(), any calls to move_account will be delayed until
1928 * rcu_read_unlock() if mem_cgroup_stealed() == true.
1929 */
1930 if (!mem_cgroup_stealed(memcg))
1931 return;
1932
1933 move_lock_mem_cgroup(memcg, flags);
1934 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1935 move_unlock_mem_cgroup(memcg, flags);
1936 goto again;
1937 }
1938 *locked = true;
1939}
1940
1941void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1942{
1943 struct page_cgroup *pc = lookup_page_cgroup(page);
1944
1945 /*
1946 * It's guaranteed that pc->mem_cgroup never changes while
1947 * lock is held because a routine modifies pc->mem_cgroup
1948 * should take move_lock_page_cgroup().
1949 */
1950 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1951}
1952
2a7106f2
GT
1953void mem_cgroup_update_page_stat(struct page *page,
1954 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1955{
c0ff4b85 1956 struct mem_cgroup *memcg;
32047e2a 1957 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1958 unsigned long uninitialized_var(flags);
d69b042f 1959
cfa44946 1960 if (mem_cgroup_disabled())
d69b042f 1961 return;
89c06bd5 1962
c0ff4b85
R
1963 memcg = pc->mem_cgroup;
1964 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1965 return;
26174efd 1966
26174efd 1967 switch (idx) {
2a7106f2 1968 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1969 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1970 break;
1971 default:
1972 BUG();
8725d541 1973 }
d69b042f 1974
c0ff4b85 1975 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1976}
26174efd 1977
cdec2e42
KH
1978/*
1979 * size of first charge trial. "32" comes from vmscan.c's magic value.
1980 * TODO: maybe necessary to use big numbers in big irons.
1981 */
7ec99d62 1982#define CHARGE_BATCH 32U
cdec2e42
KH
1983struct memcg_stock_pcp {
1984 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1985 unsigned int nr_pages;
cdec2e42 1986 struct work_struct work;
26fe6168
KH
1987 unsigned long flags;
1988#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1989};
1990static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1991static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1992
1993/*
11c9ea4e 1994 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1995 * from local stock and true is returned. If the stock is 0 or charges from a
1996 * cgroup which is not current target, returns false. This stock will be
1997 * refilled.
1998 */
c0ff4b85 1999static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2000{
2001 struct memcg_stock_pcp *stock;
2002 bool ret = true;
2003
2004 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2005 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2006 stock->nr_pages--;
cdec2e42
KH
2007 else /* need to call res_counter_charge */
2008 ret = false;
2009 put_cpu_var(memcg_stock);
2010 return ret;
2011}
2012
2013/*
2014 * Returns stocks cached in percpu to res_counter and reset cached information.
2015 */
2016static void drain_stock(struct memcg_stock_pcp *stock)
2017{
2018 struct mem_cgroup *old = stock->cached;
2019
11c9ea4e
JW
2020 if (stock->nr_pages) {
2021 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2022
2023 res_counter_uncharge(&old->res, bytes);
cdec2e42 2024 if (do_swap_account)
11c9ea4e
JW
2025 res_counter_uncharge(&old->memsw, bytes);
2026 stock->nr_pages = 0;
cdec2e42
KH
2027 }
2028 stock->cached = NULL;
cdec2e42
KH
2029}
2030
2031/*
2032 * This must be called under preempt disabled or must be called by
2033 * a thread which is pinned to local cpu.
2034 */
2035static void drain_local_stock(struct work_struct *dummy)
2036{
2037 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2038 drain_stock(stock);
26fe6168 2039 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2040}
2041
2042/*
2043 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2044 * This will be consumed by consume_stock() function, later.
cdec2e42 2045 */
c0ff4b85 2046static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2047{
2048 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2049
c0ff4b85 2050 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2051 drain_stock(stock);
c0ff4b85 2052 stock->cached = memcg;
cdec2e42 2053 }
11c9ea4e 2054 stock->nr_pages += nr_pages;
cdec2e42
KH
2055 put_cpu_var(memcg_stock);
2056}
2057
2058/*
c0ff4b85 2059 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2060 * of the hierarchy under it. sync flag says whether we should block
2061 * until the work is done.
cdec2e42 2062 */
c0ff4b85 2063static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2064{
26fe6168 2065 int cpu, curcpu;
d38144b7 2066
cdec2e42 2067 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2068 get_online_cpus();
5af12d0e 2069 curcpu = get_cpu();
cdec2e42
KH
2070 for_each_online_cpu(cpu) {
2071 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2072 struct mem_cgroup *memcg;
26fe6168 2073
c0ff4b85
R
2074 memcg = stock->cached;
2075 if (!memcg || !stock->nr_pages)
26fe6168 2076 continue;
c0ff4b85 2077 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2078 continue;
d1a05b69
MH
2079 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2080 if (cpu == curcpu)
2081 drain_local_stock(&stock->work);
2082 else
2083 schedule_work_on(cpu, &stock->work);
2084 }
cdec2e42 2085 }
5af12d0e 2086 put_cpu();
d38144b7
MH
2087
2088 if (!sync)
2089 goto out;
2090
2091 for_each_online_cpu(cpu) {
2092 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2093 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2094 flush_work(&stock->work);
2095 }
2096out:
cdec2e42 2097 put_online_cpus();
d38144b7
MH
2098}
2099
2100/*
2101 * Tries to drain stocked charges in other cpus. This function is asynchronous
2102 * and just put a work per cpu for draining localy on each cpu. Caller can
2103 * expects some charges will be back to res_counter later but cannot wait for
2104 * it.
2105 */
c0ff4b85 2106static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2107{
9f50fad6
MH
2108 /*
2109 * If someone calls draining, avoid adding more kworker runs.
2110 */
2111 if (!mutex_trylock(&percpu_charge_mutex))
2112 return;
c0ff4b85 2113 drain_all_stock(root_memcg, false);
9f50fad6 2114 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2115}
2116
2117/* This is a synchronous drain interface. */
c0ff4b85 2118static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2119{
2120 /* called when force_empty is called */
9f50fad6 2121 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2122 drain_all_stock(root_memcg, true);
9f50fad6 2123 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2124}
2125
711d3d2c
KH
2126/*
2127 * This function drains percpu counter value from DEAD cpu and
2128 * move it to local cpu. Note that this function can be preempted.
2129 */
c0ff4b85 2130static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2131{
2132 int i;
2133
c0ff4b85 2134 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2135 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2136 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2137
c0ff4b85
R
2138 per_cpu(memcg->stat->count[i], cpu) = 0;
2139 memcg->nocpu_base.count[i] += x;
711d3d2c 2140 }
e9f8974f 2141 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2142 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2143
c0ff4b85
R
2144 per_cpu(memcg->stat->events[i], cpu) = 0;
2145 memcg->nocpu_base.events[i] += x;
e9f8974f 2146 }
c0ff4b85 2147 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2148}
2149
2150static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2151 unsigned long action,
2152 void *hcpu)
2153{
2154 int cpu = (unsigned long)hcpu;
2155 struct memcg_stock_pcp *stock;
711d3d2c 2156 struct mem_cgroup *iter;
cdec2e42 2157
619d094b 2158 if (action == CPU_ONLINE)
1489ebad 2159 return NOTIFY_OK;
1489ebad 2160
711d3d2c 2161 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2162 return NOTIFY_OK;
711d3d2c 2163
9f3a0d09 2164 for_each_mem_cgroup(iter)
711d3d2c
KH
2165 mem_cgroup_drain_pcp_counter(iter, cpu);
2166
cdec2e42
KH
2167 stock = &per_cpu(memcg_stock, cpu);
2168 drain_stock(stock);
2169 return NOTIFY_OK;
2170}
2171
4b534334
KH
2172
2173/* See __mem_cgroup_try_charge() for details */
2174enum {
2175 CHARGE_OK, /* success */
2176 CHARGE_RETRY, /* need to retry but retry is not bad */
2177 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2178 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2179 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2180};
2181
c0ff4b85 2182static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2183 unsigned int nr_pages, bool oom_check)
4b534334 2184{
7ec99d62 2185 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2186 struct mem_cgroup *mem_over_limit;
2187 struct res_counter *fail_res;
2188 unsigned long flags = 0;
2189 int ret;
2190
c0ff4b85 2191 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2192
2193 if (likely(!ret)) {
2194 if (!do_swap_account)
2195 return CHARGE_OK;
c0ff4b85 2196 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2197 if (likely(!ret))
2198 return CHARGE_OK;
2199
c0ff4b85 2200 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2201 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2202 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2203 } else
2204 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2205 /*
7ec99d62
JW
2206 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2207 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2208 *
2209 * Never reclaim on behalf of optional batching, retry with a
2210 * single page instead.
2211 */
7ec99d62 2212 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2213 return CHARGE_RETRY;
2214
2215 if (!(gfp_mask & __GFP_WAIT))
2216 return CHARGE_WOULDBLOCK;
2217
5660048c 2218 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2219 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2220 return CHARGE_RETRY;
4b534334 2221 /*
19942822
JW
2222 * Even though the limit is exceeded at this point, reclaim
2223 * may have been able to free some pages. Retry the charge
2224 * before killing the task.
2225 *
2226 * Only for regular pages, though: huge pages are rather
2227 * unlikely to succeed so close to the limit, and we fall back
2228 * to regular pages anyway in case of failure.
4b534334 2229 */
7ec99d62 2230 if (nr_pages == 1 && ret)
4b534334
KH
2231 return CHARGE_RETRY;
2232
2233 /*
2234 * At task move, charge accounts can be doubly counted. So, it's
2235 * better to wait until the end of task_move if something is going on.
2236 */
2237 if (mem_cgroup_wait_acct_move(mem_over_limit))
2238 return CHARGE_RETRY;
2239
2240 /* If we don't need to call oom-killer at el, return immediately */
2241 if (!oom_check)
2242 return CHARGE_NOMEM;
2243 /* check OOM */
e845e199 2244 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2245 return CHARGE_OOM_DIE;
2246
2247 return CHARGE_RETRY;
2248}
2249
f817ed48 2250/*
38c5d72f
KH
2251 * __mem_cgroup_try_charge() does
2252 * 1. detect memcg to be charged against from passed *mm and *ptr,
2253 * 2. update res_counter
2254 * 3. call memory reclaim if necessary.
2255 *
2256 * In some special case, if the task is fatal, fatal_signal_pending() or
2257 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2258 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2259 * as possible without any hazards. 2: all pages should have a valid
2260 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2261 * pointer, that is treated as a charge to root_mem_cgroup.
2262 *
2263 * So __mem_cgroup_try_charge() will return
2264 * 0 ... on success, filling *ptr with a valid memcg pointer.
2265 * -ENOMEM ... charge failure because of resource limits.
2266 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2267 *
2268 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2269 * the oom-killer can be invoked.
8a9f3ccd 2270 */
f817ed48 2271static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2272 gfp_t gfp_mask,
7ec99d62 2273 unsigned int nr_pages,
c0ff4b85 2274 struct mem_cgroup **ptr,
7ec99d62 2275 bool oom)
8a9f3ccd 2276{
7ec99d62 2277 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2278 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2279 struct mem_cgroup *memcg = NULL;
4b534334 2280 int ret;
a636b327 2281
867578cb
KH
2282 /*
2283 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2284 * in system level. So, allow to go ahead dying process in addition to
2285 * MEMDIE process.
2286 */
2287 if (unlikely(test_thread_flag(TIF_MEMDIE)
2288 || fatal_signal_pending(current)))
2289 goto bypass;
a636b327 2290
8a9f3ccd 2291 /*
3be91277
HD
2292 * We always charge the cgroup the mm_struct belongs to.
2293 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2294 * thread group leader migrates. It's possible that mm is not
2295 * set, if so charge the init_mm (happens for pagecache usage).
2296 */
c0ff4b85 2297 if (!*ptr && !mm)
38c5d72f 2298 *ptr = root_mem_cgroup;
f75ca962 2299again:
c0ff4b85
R
2300 if (*ptr) { /* css should be a valid one */
2301 memcg = *ptr;
2302 VM_BUG_ON(css_is_removed(&memcg->css));
2303 if (mem_cgroup_is_root(memcg))
f75ca962 2304 goto done;
c0ff4b85 2305 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2306 goto done;
c0ff4b85 2307 css_get(&memcg->css);
4b534334 2308 } else {
f75ca962 2309 struct task_struct *p;
54595fe2 2310
f75ca962
KH
2311 rcu_read_lock();
2312 p = rcu_dereference(mm->owner);
f75ca962 2313 /*
ebb76ce1 2314 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2315 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2316 * race with swapoff. Then, we have small risk of mis-accouning.
2317 * But such kind of mis-account by race always happens because
2318 * we don't have cgroup_mutex(). It's overkill and we allo that
2319 * small race, here.
2320 * (*) swapoff at el will charge against mm-struct not against
2321 * task-struct. So, mm->owner can be NULL.
f75ca962 2322 */
c0ff4b85 2323 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2324 if (!memcg)
2325 memcg = root_mem_cgroup;
2326 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2327 rcu_read_unlock();
2328 goto done;
2329 }
c0ff4b85 2330 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2331 /*
2332 * It seems dagerous to access memcg without css_get().
2333 * But considering how consume_stok works, it's not
2334 * necessary. If consume_stock success, some charges
2335 * from this memcg are cached on this cpu. So, we
2336 * don't need to call css_get()/css_tryget() before
2337 * calling consume_stock().
2338 */
2339 rcu_read_unlock();
2340 goto done;
2341 }
2342 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2343 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2344 rcu_read_unlock();
2345 goto again;
2346 }
2347 rcu_read_unlock();
2348 }
8a9f3ccd 2349
4b534334
KH
2350 do {
2351 bool oom_check;
7a81b88c 2352
4b534334 2353 /* If killed, bypass charge */
f75ca962 2354 if (fatal_signal_pending(current)) {
c0ff4b85 2355 css_put(&memcg->css);
4b534334 2356 goto bypass;
f75ca962 2357 }
6d61ef40 2358
4b534334
KH
2359 oom_check = false;
2360 if (oom && !nr_oom_retries) {
2361 oom_check = true;
2362 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2363 }
66e1707b 2364
c0ff4b85 2365 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2366 switch (ret) {
2367 case CHARGE_OK:
2368 break;
2369 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2370 batch = nr_pages;
c0ff4b85
R
2371 css_put(&memcg->css);
2372 memcg = NULL;
f75ca962 2373 goto again;
4b534334 2374 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2375 css_put(&memcg->css);
4b534334
KH
2376 goto nomem;
2377 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2378 if (!oom) {
c0ff4b85 2379 css_put(&memcg->css);
867578cb 2380 goto nomem;
f75ca962 2381 }
4b534334
KH
2382 /* If oom, we never return -ENOMEM */
2383 nr_oom_retries--;
2384 break;
2385 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2386 css_put(&memcg->css);
867578cb 2387 goto bypass;
66e1707b 2388 }
4b534334
KH
2389 } while (ret != CHARGE_OK);
2390
7ec99d62 2391 if (batch > nr_pages)
c0ff4b85
R
2392 refill_stock(memcg, batch - nr_pages);
2393 css_put(&memcg->css);
0c3e73e8 2394done:
c0ff4b85 2395 *ptr = memcg;
7a81b88c
KH
2396 return 0;
2397nomem:
c0ff4b85 2398 *ptr = NULL;
7a81b88c 2399 return -ENOMEM;
867578cb 2400bypass:
38c5d72f
KH
2401 *ptr = root_mem_cgroup;
2402 return -EINTR;
7a81b88c 2403}
8a9f3ccd 2404
a3032a2c
DN
2405/*
2406 * Somemtimes we have to undo a charge we got by try_charge().
2407 * This function is for that and do uncharge, put css's refcnt.
2408 * gotten by try_charge().
2409 */
c0ff4b85 2410static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2411 unsigned int nr_pages)
a3032a2c 2412{
c0ff4b85 2413 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2414 unsigned long bytes = nr_pages * PAGE_SIZE;
2415
c0ff4b85 2416 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2417 if (do_swap_account)
c0ff4b85 2418 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2419 }
854ffa8d
DN
2420}
2421
a3b2d692
KH
2422/*
2423 * A helper function to get mem_cgroup from ID. must be called under
2424 * rcu_read_lock(). The caller must check css_is_removed() or some if
2425 * it's concern. (dropping refcnt from swap can be called against removed
2426 * memcg.)
2427 */
2428static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2429{
2430 struct cgroup_subsys_state *css;
2431
2432 /* ID 0 is unused ID */
2433 if (!id)
2434 return NULL;
2435 css = css_lookup(&mem_cgroup_subsys, id);
2436 if (!css)
2437 return NULL;
2438 return container_of(css, struct mem_cgroup, css);
2439}
2440
e42d9d5d 2441struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2442{
c0ff4b85 2443 struct mem_cgroup *memcg = NULL;
3c776e64 2444 struct page_cgroup *pc;
a3b2d692 2445 unsigned short id;
b5a84319
KH
2446 swp_entry_t ent;
2447
3c776e64
DN
2448 VM_BUG_ON(!PageLocked(page));
2449
3c776e64 2450 pc = lookup_page_cgroup(page);
c0bd3f63 2451 lock_page_cgroup(pc);
a3b2d692 2452 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2453 memcg = pc->mem_cgroup;
2454 if (memcg && !css_tryget(&memcg->css))
2455 memcg = NULL;
e42d9d5d 2456 } else if (PageSwapCache(page)) {
3c776e64 2457 ent.val = page_private(page);
9fb4b7cc 2458 id = lookup_swap_cgroup_id(ent);
a3b2d692 2459 rcu_read_lock();
c0ff4b85
R
2460 memcg = mem_cgroup_lookup(id);
2461 if (memcg && !css_tryget(&memcg->css))
2462 memcg = NULL;
a3b2d692 2463 rcu_read_unlock();
3c776e64 2464 }
c0bd3f63 2465 unlock_page_cgroup(pc);
c0ff4b85 2466 return memcg;
b5a84319
KH
2467}
2468
c0ff4b85 2469static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2470 struct page *page,
7ec99d62 2471 unsigned int nr_pages,
ca3e0214 2472 struct page_cgroup *pc,
9ce70c02
HD
2473 enum charge_type ctype,
2474 bool lrucare)
7a81b88c 2475{
9ce70c02
HD
2476 struct zone *uninitialized_var(zone);
2477 bool was_on_lru = false;
b2402857 2478 bool anon;
9ce70c02 2479
ca3e0214
KH
2480 lock_page_cgroup(pc);
2481 if (unlikely(PageCgroupUsed(pc))) {
2482 unlock_page_cgroup(pc);
c0ff4b85 2483 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2484 return;
2485 }
2486 /*
2487 * we don't need page_cgroup_lock about tail pages, becase they are not
2488 * accessed by any other context at this point.
2489 */
9ce70c02
HD
2490
2491 /*
2492 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2493 * may already be on some other mem_cgroup's LRU. Take care of it.
2494 */
2495 if (lrucare) {
2496 zone = page_zone(page);
2497 spin_lock_irq(&zone->lru_lock);
2498 if (PageLRU(page)) {
2499 ClearPageLRU(page);
2500 del_page_from_lru_list(zone, page, page_lru(page));
2501 was_on_lru = true;
2502 }
2503 }
2504
c0ff4b85 2505 pc->mem_cgroup = memcg;
261fb61a
KH
2506 /*
2507 * We access a page_cgroup asynchronously without lock_page_cgroup().
2508 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2509 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2510 * before USED bit, we need memory barrier here.
2511 * See mem_cgroup_add_lru_list(), etc.
2512 */
08e552c6 2513 smp_wmb();
b2402857 2514 SetPageCgroupUsed(pc);
3be91277 2515
9ce70c02
HD
2516 if (lrucare) {
2517 if (was_on_lru) {
2518 VM_BUG_ON(PageLRU(page));
2519 SetPageLRU(page);
2520 add_page_to_lru_list(zone, page, page_lru(page));
2521 }
2522 spin_unlock_irq(&zone->lru_lock);
2523 }
2524
b2402857
KH
2525 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2526 anon = true;
2527 else
2528 anon = false;
2529
2530 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2531 unlock_page_cgroup(pc);
9ce70c02 2532
430e4863
KH
2533 /*
2534 * "charge_statistics" updated event counter. Then, check it.
2535 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2536 * if they exceeds softlimit.
2537 */
c0ff4b85 2538 memcg_check_events(memcg, page);
7a81b88c 2539}
66e1707b 2540
ca3e0214
KH
2541#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2542
312734c0 2543#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2544/*
2545 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2546 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2547 * charge/uncharge will be never happen and move_account() is done under
2548 * compound_lock(), so we don't have to take care of races.
ca3e0214 2549 */
e94c8a9c 2550void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2551{
2552 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2553 struct page_cgroup *pc;
2554 int i;
ca3e0214 2555
3d37c4a9
KH
2556 if (mem_cgroup_disabled())
2557 return;
e94c8a9c
KH
2558 for (i = 1; i < HPAGE_PMD_NR; i++) {
2559 pc = head_pc + i;
2560 pc->mem_cgroup = head_pc->mem_cgroup;
2561 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2562 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2563 }
ca3e0214 2564}
12d27107 2565#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2566
f817ed48 2567/**
de3638d9 2568 * mem_cgroup_move_account - move account of the page
5564e88b 2569 * @page: the page
7ec99d62 2570 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2571 * @pc: page_cgroup of the page.
2572 * @from: mem_cgroup which the page is moved from.
2573 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2574 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2575 *
2576 * The caller must confirm following.
08e552c6 2577 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2578 * - compound_lock is held when nr_pages > 1
f817ed48 2579 *
854ffa8d 2580 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2581 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2582 * true, this function does "uncharge" from old cgroup, but it doesn't if
2583 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2584 */
7ec99d62
JW
2585static int mem_cgroup_move_account(struct page *page,
2586 unsigned int nr_pages,
2587 struct page_cgroup *pc,
2588 struct mem_cgroup *from,
2589 struct mem_cgroup *to,
2590 bool uncharge)
f817ed48 2591{
de3638d9
JW
2592 unsigned long flags;
2593 int ret;
b2402857 2594 bool anon = PageAnon(page);
987eba66 2595
f817ed48 2596 VM_BUG_ON(from == to);
5564e88b 2597 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2598 /*
2599 * The page is isolated from LRU. So, collapse function
2600 * will not handle this page. But page splitting can happen.
2601 * Do this check under compound_page_lock(). The caller should
2602 * hold it.
2603 */
2604 ret = -EBUSY;
7ec99d62 2605 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2606 goto out;
2607
2608 lock_page_cgroup(pc);
2609
2610 ret = -EINVAL;
2611 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2612 goto unlock;
2613
312734c0 2614 move_lock_mem_cgroup(from, &flags);
f817ed48 2615
2ff76f11 2616 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2617 /* Update mapped_file data for mem_cgroup */
2618 preempt_disable();
2619 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2620 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2621 preempt_enable();
d69b042f 2622 }
b2402857 2623 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2624 if (uncharge)
2625 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2626 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2627
854ffa8d 2628 /* caller should have done css_get */
08e552c6 2629 pc->mem_cgroup = to;
b2402857 2630 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2631 /*
2632 * We charges against "to" which may not have any tasks. Then, "to"
2633 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2634 * this function is just force_empty() and move charge, so it's
25985edc 2635 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2636 * status here.
88703267 2637 */
312734c0 2638 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2639 ret = 0;
2640unlock:
57f9fd7d 2641 unlock_page_cgroup(pc);
d2265e6f
KH
2642 /*
2643 * check events
2644 */
5564e88b
JW
2645 memcg_check_events(to, page);
2646 memcg_check_events(from, page);
de3638d9 2647out:
f817ed48
KH
2648 return ret;
2649}
2650
2651/*
2652 * move charges to its parent.
2653 */
2654
5564e88b
JW
2655static int mem_cgroup_move_parent(struct page *page,
2656 struct page_cgroup *pc,
f817ed48
KH
2657 struct mem_cgroup *child,
2658 gfp_t gfp_mask)
2659{
2660 struct cgroup *cg = child->css.cgroup;
2661 struct cgroup *pcg = cg->parent;
2662 struct mem_cgroup *parent;
7ec99d62 2663 unsigned int nr_pages;
4be4489f 2664 unsigned long uninitialized_var(flags);
f817ed48
KH
2665 int ret;
2666
2667 /* Is ROOT ? */
2668 if (!pcg)
2669 return -EINVAL;
2670
57f9fd7d
DN
2671 ret = -EBUSY;
2672 if (!get_page_unless_zero(page))
2673 goto out;
2674 if (isolate_lru_page(page))
2675 goto put;
52dbb905 2676
7ec99d62 2677 nr_pages = hpage_nr_pages(page);
08e552c6 2678
f817ed48 2679 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2680 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2681 if (ret)
57f9fd7d 2682 goto put_back;
f817ed48 2683
7ec99d62 2684 if (nr_pages > 1)
987eba66
KH
2685 flags = compound_lock_irqsave(page);
2686
7ec99d62 2687 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2688 if (ret)
7ec99d62 2689 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2690
7ec99d62 2691 if (nr_pages > 1)
987eba66 2692 compound_unlock_irqrestore(page, flags);
8dba474f 2693put_back:
08e552c6 2694 putback_lru_page(page);
57f9fd7d 2695put:
40d58138 2696 put_page(page);
57f9fd7d 2697out:
f817ed48
KH
2698 return ret;
2699}
2700
7a81b88c
KH
2701/*
2702 * Charge the memory controller for page usage.
2703 * Return
2704 * 0 if the charge was successful
2705 * < 0 if the cgroup is over its limit
2706 */
2707static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2708 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2709{
c0ff4b85 2710 struct mem_cgroup *memcg = NULL;
7ec99d62 2711 unsigned int nr_pages = 1;
7a81b88c 2712 struct page_cgroup *pc;
8493ae43 2713 bool oom = true;
7a81b88c 2714 int ret;
ec168510 2715
37c2ac78 2716 if (PageTransHuge(page)) {
7ec99d62 2717 nr_pages <<= compound_order(page);
37c2ac78 2718 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2719 /*
2720 * Never OOM-kill a process for a huge page. The
2721 * fault handler will fall back to regular pages.
2722 */
2723 oom = false;
37c2ac78 2724 }
7a81b88c
KH
2725
2726 pc = lookup_page_cgroup(page);
c0ff4b85 2727 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2728 if (ret == -ENOMEM)
7a81b88c 2729 return ret;
9ce70c02 2730 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype, false);
8a9f3ccd 2731 return 0;
8a9f3ccd
BS
2732}
2733
7a81b88c
KH
2734int mem_cgroup_newpage_charge(struct page *page,
2735 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2736{
f8d66542 2737 if (mem_cgroup_disabled())
cede86ac 2738 return 0;
7a0524cf
JW
2739 VM_BUG_ON(page_mapped(page));
2740 VM_BUG_ON(page->mapping && !PageAnon(page));
2741 VM_BUG_ON(!mm);
217bc319 2742 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2743 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2744}
2745
83aae4c7
DN
2746static void
2747__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2748 enum charge_type ctype);
2749
e1a1cd59
BS
2750int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2751 gfp_t gfp_mask)
8697d331 2752{
c0ff4b85 2753 struct mem_cgroup *memcg = NULL;
dc67d504 2754 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2755 int ret;
2756
f8d66542 2757 if (mem_cgroup_disabled())
cede86ac 2758 return 0;
52d4b9ac
KH
2759 if (PageCompound(page))
2760 return 0;
accf163e 2761
73045c47 2762 if (unlikely(!mm))
8697d331 2763 mm = &init_mm;
dc67d504
KH
2764 if (!page_is_file_cache(page))
2765 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2766
38c5d72f 2767 if (!PageSwapCache(page))
dc67d504 2768 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2769 else { /* page is swapcache/shmem */
c0ff4b85 2770 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2771 if (!ret)
dc67d504
KH
2772 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2773 }
b5a84319 2774 return ret;
e8589cc1
KH
2775}
2776
54595fe2
KH
2777/*
2778 * While swap-in, try_charge -> commit or cancel, the page is locked.
2779 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2780 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2781 * "commit()" or removed by "cancel()"
2782 */
8c7c6e34
KH
2783int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2784 struct page *page,
72835c86 2785 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2786{
c0ff4b85 2787 struct mem_cgroup *memcg;
54595fe2 2788 int ret;
8c7c6e34 2789
72835c86 2790 *memcgp = NULL;
56039efa 2791
f8d66542 2792 if (mem_cgroup_disabled())
8c7c6e34
KH
2793 return 0;
2794
2795 if (!do_swap_account)
2796 goto charge_cur_mm;
8c7c6e34
KH
2797 /*
2798 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2799 * the pte, and even removed page from swap cache: in those cases
2800 * do_swap_page()'s pte_same() test will fail; but there's also a
2801 * KSM case which does need to charge the page.
8c7c6e34
KH
2802 */
2803 if (!PageSwapCache(page))
407f9c8b 2804 goto charge_cur_mm;
c0ff4b85
R
2805 memcg = try_get_mem_cgroup_from_page(page);
2806 if (!memcg)
54595fe2 2807 goto charge_cur_mm;
72835c86
JW
2808 *memcgp = memcg;
2809 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2810 css_put(&memcg->css);
38c5d72f
KH
2811 if (ret == -EINTR)
2812 ret = 0;
54595fe2 2813 return ret;
8c7c6e34
KH
2814charge_cur_mm:
2815 if (unlikely(!mm))
2816 mm = &init_mm;
38c5d72f
KH
2817 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2818 if (ret == -EINTR)
2819 ret = 0;
2820 return ret;
8c7c6e34
KH
2821}
2822
83aae4c7 2823static void
72835c86 2824__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2825 enum charge_type ctype)
7a81b88c 2826{
9ce70c02
HD
2827 struct page_cgroup *pc;
2828
f8d66542 2829 if (mem_cgroup_disabled())
7a81b88c 2830 return;
72835c86 2831 if (!memcg)
7a81b88c 2832 return;
72835c86 2833 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2834
9ce70c02
HD
2835 pc = lookup_page_cgroup(page);
2836 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype, true);
8c7c6e34
KH
2837 /*
2838 * Now swap is on-memory. This means this page may be
2839 * counted both as mem and swap....double count.
03f3c433
KH
2840 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2841 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2842 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2843 */
03f3c433 2844 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2845 swp_entry_t ent = {.val = page_private(page)};
72835c86 2846 struct mem_cgroup *swap_memcg;
a3b2d692 2847 unsigned short id;
a3b2d692
KH
2848
2849 id = swap_cgroup_record(ent, 0);
2850 rcu_read_lock();
72835c86
JW
2851 swap_memcg = mem_cgroup_lookup(id);
2852 if (swap_memcg) {
a3b2d692
KH
2853 /*
2854 * This recorded memcg can be obsolete one. So, avoid
2855 * calling css_tryget
2856 */
72835c86
JW
2857 if (!mem_cgroup_is_root(swap_memcg))
2858 res_counter_uncharge(&swap_memcg->memsw,
2859 PAGE_SIZE);
2860 mem_cgroup_swap_statistics(swap_memcg, false);
2861 mem_cgroup_put(swap_memcg);
8c7c6e34 2862 }
a3b2d692 2863 rcu_read_unlock();
8c7c6e34 2864 }
88703267
KH
2865 /*
2866 * At swapin, we may charge account against cgroup which has no tasks.
2867 * So, rmdir()->pre_destroy() can be called while we do this charge.
2868 * In that case, we need to call pre_destroy() again. check it here.
2869 */
72835c86 2870 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2871}
2872
72835c86
JW
2873void mem_cgroup_commit_charge_swapin(struct page *page,
2874 struct mem_cgroup *memcg)
83aae4c7 2875{
72835c86
JW
2876 __mem_cgroup_commit_charge_swapin(page, memcg,
2877 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2878}
2879
c0ff4b85 2880void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2881{
f8d66542 2882 if (mem_cgroup_disabled())
7a81b88c 2883 return;
c0ff4b85 2884 if (!memcg)
7a81b88c 2885 return;
c0ff4b85 2886 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2887}
2888
c0ff4b85 2889static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2890 unsigned int nr_pages,
2891 const enum charge_type ctype)
569b846d
KH
2892{
2893 struct memcg_batch_info *batch = NULL;
2894 bool uncharge_memsw = true;
7ec99d62 2895
569b846d
KH
2896 /* If swapout, usage of swap doesn't decrease */
2897 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2898 uncharge_memsw = false;
569b846d
KH
2899
2900 batch = &current->memcg_batch;
2901 /*
2902 * In usual, we do css_get() when we remember memcg pointer.
2903 * But in this case, we keep res->usage until end of a series of
2904 * uncharges. Then, it's ok to ignore memcg's refcnt.
2905 */
2906 if (!batch->memcg)
c0ff4b85 2907 batch->memcg = memcg;
3c11ecf4
KH
2908 /*
2909 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2910 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2911 * the same cgroup and we have chance to coalesce uncharges.
2912 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2913 * because we want to do uncharge as soon as possible.
2914 */
2915
2916 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2917 goto direct_uncharge;
2918
7ec99d62 2919 if (nr_pages > 1)
ec168510
AA
2920 goto direct_uncharge;
2921
569b846d
KH
2922 /*
2923 * In typical case, batch->memcg == mem. This means we can
2924 * merge a series of uncharges to an uncharge of res_counter.
2925 * If not, we uncharge res_counter ony by one.
2926 */
c0ff4b85 2927 if (batch->memcg != memcg)
569b846d
KH
2928 goto direct_uncharge;
2929 /* remember freed charge and uncharge it later */
7ffd4ca7 2930 batch->nr_pages++;
569b846d 2931 if (uncharge_memsw)
7ffd4ca7 2932 batch->memsw_nr_pages++;
569b846d
KH
2933 return;
2934direct_uncharge:
c0ff4b85 2935 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2936 if (uncharge_memsw)
c0ff4b85
R
2937 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2938 if (unlikely(batch->memcg != memcg))
2939 memcg_oom_recover(memcg);
569b846d 2940}
7a81b88c 2941
8a9f3ccd 2942/*
69029cd5 2943 * uncharge if !page_mapped(page)
8a9f3ccd 2944 */
8c7c6e34 2945static struct mem_cgroup *
69029cd5 2946__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2947{
c0ff4b85 2948 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2949 unsigned int nr_pages = 1;
2950 struct page_cgroup *pc;
b2402857 2951 bool anon;
8a9f3ccd 2952
f8d66542 2953 if (mem_cgroup_disabled())
8c7c6e34 2954 return NULL;
4077960e 2955
d13d1443 2956 if (PageSwapCache(page))
8c7c6e34 2957 return NULL;
d13d1443 2958
37c2ac78 2959 if (PageTransHuge(page)) {
7ec99d62 2960 nr_pages <<= compound_order(page);
37c2ac78
AA
2961 VM_BUG_ON(!PageTransHuge(page));
2962 }
8697d331 2963 /*
3c541e14 2964 * Check if our page_cgroup is valid
8697d331 2965 */
52d4b9ac 2966 pc = lookup_page_cgroup(page);
cfa44946 2967 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2968 return NULL;
b9c565d5 2969
52d4b9ac 2970 lock_page_cgroup(pc);
d13d1443 2971
c0ff4b85 2972 memcg = pc->mem_cgroup;
8c7c6e34 2973
d13d1443
KH
2974 if (!PageCgroupUsed(pc))
2975 goto unlock_out;
2976
b2402857
KH
2977 anon = PageAnon(page);
2978
d13d1443
KH
2979 switch (ctype) {
2980 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2981 /*
2982 * Generally PageAnon tells if it's the anon statistics to be
2983 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2984 * used before page reached the stage of being marked PageAnon.
2985 */
b2402857
KH
2986 anon = true;
2987 /* fallthrough */
8a9478ca 2988 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2989 /* See mem_cgroup_prepare_migration() */
2990 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2991 goto unlock_out;
2992 break;
2993 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2994 if (!PageAnon(page)) { /* Shared memory */
2995 if (page->mapping && !page_is_file_cache(page))
2996 goto unlock_out;
2997 } else if (page_mapped(page)) /* Anon */
2998 goto unlock_out;
2999 break;
3000 default:
3001 break;
52d4b9ac 3002 }
d13d1443 3003
b2402857 3004 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3005
52d4b9ac 3006 ClearPageCgroupUsed(pc);
544122e5
KH
3007 /*
3008 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3009 * freed from LRU. This is safe because uncharged page is expected not
3010 * to be reused (freed soon). Exception is SwapCache, it's handled by
3011 * special functions.
3012 */
b9c565d5 3013
52d4b9ac 3014 unlock_page_cgroup(pc);
f75ca962 3015 /*
c0ff4b85 3016 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3017 * will never be freed.
3018 */
c0ff4b85 3019 memcg_check_events(memcg, page);
f75ca962 3020 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3021 mem_cgroup_swap_statistics(memcg, true);
3022 mem_cgroup_get(memcg);
f75ca962 3023 }
c0ff4b85
R
3024 if (!mem_cgroup_is_root(memcg))
3025 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3026
c0ff4b85 3027 return memcg;
d13d1443
KH
3028
3029unlock_out:
3030 unlock_page_cgroup(pc);
8c7c6e34 3031 return NULL;
3c541e14
BS
3032}
3033
69029cd5
KH
3034void mem_cgroup_uncharge_page(struct page *page)
3035{
52d4b9ac
KH
3036 /* early check. */
3037 if (page_mapped(page))
3038 return;
40f23a21 3039 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3040 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3041}
3042
3043void mem_cgroup_uncharge_cache_page(struct page *page)
3044{
3045 VM_BUG_ON(page_mapped(page));
b7abea96 3046 VM_BUG_ON(page->mapping);
69029cd5
KH
3047 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3048}
3049
569b846d
KH
3050/*
3051 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3052 * In that cases, pages are freed continuously and we can expect pages
3053 * are in the same memcg. All these calls itself limits the number of
3054 * pages freed at once, then uncharge_start/end() is called properly.
3055 * This may be called prural(2) times in a context,
3056 */
3057
3058void mem_cgroup_uncharge_start(void)
3059{
3060 current->memcg_batch.do_batch++;
3061 /* We can do nest. */
3062 if (current->memcg_batch.do_batch == 1) {
3063 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3064 current->memcg_batch.nr_pages = 0;
3065 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3066 }
3067}
3068
3069void mem_cgroup_uncharge_end(void)
3070{
3071 struct memcg_batch_info *batch = &current->memcg_batch;
3072
3073 if (!batch->do_batch)
3074 return;
3075
3076 batch->do_batch--;
3077 if (batch->do_batch) /* If stacked, do nothing. */
3078 return;
3079
3080 if (!batch->memcg)
3081 return;
3082 /*
3083 * This "batch->memcg" is valid without any css_get/put etc...
3084 * bacause we hide charges behind us.
3085 */
7ffd4ca7
JW
3086 if (batch->nr_pages)
3087 res_counter_uncharge(&batch->memcg->res,
3088 batch->nr_pages * PAGE_SIZE);
3089 if (batch->memsw_nr_pages)
3090 res_counter_uncharge(&batch->memcg->memsw,
3091 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3092 memcg_oom_recover(batch->memcg);
569b846d
KH
3093 /* forget this pointer (for sanity check) */
3094 batch->memcg = NULL;
3095}
3096
e767e056 3097#ifdef CONFIG_SWAP
8c7c6e34 3098/*
e767e056 3099 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3100 * memcg information is recorded to swap_cgroup of "ent"
3101 */
8a9478ca
KH
3102void
3103mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3104{
3105 struct mem_cgroup *memcg;
8a9478ca
KH
3106 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3107
3108 if (!swapout) /* this was a swap cache but the swap is unused ! */
3109 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3110
3111 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3112
f75ca962
KH
3113 /*
3114 * record memcg information, if swapout && memcg != NULL,
3115 * mem_cgroup_get() was called in uncharge().
3116 */
3117 if (do_swap_account && swapout && memcg)
a3b2d692 3118 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3119}
e767e056 3120#endif
8c7c6e34
KH
3121
3122#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3123/*
3124 * called from swap_entry_free(). remove record in swap_cgroup and
3125 * uncharge "memsw" account.
3126 */
3127void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3128{
8c7c6e34 3129 struct mem_cgroup *memcg;
a3b2d692 3130 unsigned short id;
8c7c6e34
KH
3131
3132 if (!do_swap_account)
3133 return;
3134
a3b2d692
KH
3135 id = swap_cgroup_record(ent, 0);
3136 rcu_read_lock();
3137 memcg = mem_cgroup_lookup(id);
8c7c6e34 3138 if (memcg) {
a3b2d692
KH
3139 /*
3140 * We uncharge this because swap is freed.
3141 * This memcg can be obsolete one. We avoid calling css_tryget
3142 */
0c3e73e8 3143 if (!mem_cgroup_is_root(memcg))
4e649152 3144 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3145 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3146 mem_cgroup_put(memcg);
3147 }
a3b2d692 3148 rcu_read_unlock();
d13d1443 3149}
02491447
DN
3150
3151/**
3152 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3153 * @entry: swap entry to be moved
3154 * @from: mem_cgroup which the entry is moved from
3155 * @to: mem_cgroup which the entry is moved to
483c30b5 3156 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3157 *
3158 * It succeeds only when the swap_cgroup's record for this entry is the same
3159 * as the mem_cgroup's id of @from.
3160 *
3161 * Returns 0 on success, -EINVAL on failure.
3162 *
3163 * The caller must have charged to @to, IOW, called res_counter_charge() about
3164 * both res and memsw, and called css_get().
3165 */
3166static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3167 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3168{
3169 unsigned short old_id, new_id;
3170
3171 old_id = css_id(&from->css);
3172 new_id = css_id(&to->css);
3173
3174 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3175 mem_cgroup_swap_statistics(from, false);
483c30b5 3176 mem_cgroup_swap_statistics(to, true);
02491447 3177 /*
483c30b5
DN
3178 * This function is only called from task migration context now.
3179 * It postpones res_counter and refcount handling till the end
3180 * of task migration(mem_cgroup_clear_mc()) for performance
3181 * improvement. But we cannot postpone mem_cgroup_get(to)
3182 * because if the process that has been moved to @to does
3183 * swap-in, the refcount of @to might be decreased to 0.
02491447 3184 */
02491447 3185 mem_cgroup_get(to);
483c30b5
DN
3186 if (need_fixup) {
3187 if (!mem_cgroup_is_root(from))
3188 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3189 mem_cgroup_put(from);
3190 /*
3191 * we charged both to->res and to->memsw, so we should
3192 * uncharge to->res.
3193 */
3194 if (!mem_cgroup_is_root(to))
3195 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3196 }
02491447
DN
3197 return 0;
3198 }
3199 return -EINVAL;
3200}
3201#else
3202static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3203 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3204{
3205 return -EINVAL;
3206}
8c7c6e34 3207#endif
d13d1443 3208
ae41be37 3209/*
01b1ae63
KH
3210 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3211 * page belongs to.
ae41be37 3212 */
ac39cf8c 3213int mem_cgroup_prepare_migration(struct page *page,
72835c86 3214 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3215{
c0ff4b85 3216 struct mem_cgroup *memcg = NULL;
7ec99d62 3217 struct page_cgroup *pc;
ac39cf8c 3218 enum charge_type ctype;
e8589cc1 3219 int ret = 0;
8869b8f6 3220
72835c86 3221 *memcgp = NULL;
56039efa 3222
ec168510 3223 VM_BUG_ON(PageTransHuge(page));
f8d66542 3224 if (mem_cgroup_disabled())
4077960e
BS
3225 return 0;
3226
52d4b9ac
KH
3227 pc = lookup_page_cgroup(page);
3228 lock_page_cgroup(pc);
3229 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3230 memcg = pc->mem_cgroup;
3231 css_get(&memcg->css);
ac39cf8c
AM
3232 /*
3233 * At migrating an anonymous page, its mapcount goes down
3234 * to 0 and uncharge() will be called. But, even if it's fully
3235 * unmapped, migration may fail and this page has to be
3236 * charged again. We set MIGRATION flag here and delay uncharge
3237 * until end_migration() is called
3238 *
3239 * Corner Case Thinking
3240 * A)
3241 * When the old page was mapped as Anon and it's unmap-and-freed
3242 * while migration was ongoing.
3243 * If unmap finds the old page, uncharge() of it will be delayed
3244 * until end_migration(). If unmap finds a new page, it's
3245 * uncharged when it make mapcount to be 1->0. If unmap code
3246 * finds swap_migration_entry, the new page will not be mapped
3247 * and end_migration() will find it(mapcount==0).
3248 *
3249 * B)
3250 * When the old page was mapped but migraion fails, the kernel
3251 * remaps it. A charge for it is kept by MIGRATION flag even
3252 * if mapcount goes down to 0. We can do remap successfully
3253 * without charging it again.
3254 *
3255 * C)
3256 * The "old" page is under lock_page() until the end of
3257 * migration, so, the old page itself will not be swapped-out.
3258 * If the new page is swapped out before end_migraton, our
3259 * hook to usual swap-out path will catch the event.
3260 */
3261 if (PageAnon(page))
3262 SetPageCgroupMigration(pc);
e8589cc1 3263 }
52d4b9ac 3264 unlock_page_cgroup(pc);
ac39cf8c
AM
3265 /*
3266 * If the page is not charged at this point,
3267 * we return here.
3268 */
c0ff4b85 3269 if (!memcg)
ac39cf8c 3270 return 0;
01b1ae63 3271
72835c86
JW
3272 *memcgp = memcg;
3273 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3274 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3275 if (ret) {
ac39cf8c
AM
3276 if (PageAnon(page)) {
3277 lock_page_cgroup(pc);
3278 ClearPageCgroupMigration(pc);
3279 unlock_page_cgroup(pc);
3280 /*
3281 * The old page may be fully unmapped while we kept it.
3282 */
3283 mem_cgroup_uncharge_page(page);
3284 }
38c5d72f 3285 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3286 return -ENOMEM;
e8589cc1 3287 }
ac39cf8c
AM
3288 /*
3289 * We charge new page before it's used/mapped. So, even if unlock_page()
3290 * is called before end_migration, we can catch all events on this new
3291 * page. In the case new page is migrated but not remapped, new page's
3292 * mapcount will be finally 0 and we call uncharge in end_migration().
3293 */
3294 pc = lookup_page_cgroup(newpage);
3295 if (PageAnon(page))
3296 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3297 else if (page_is_file_cache(page))
3298 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3299 else
3300 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
9ce70c02 3301 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, ctype, false);
e8589cc1 3302 return ret;
ae41be37 3303}
8869b8f6 3304
69029cd5 3305/* remove redundant charge if migration failed*/
c0ff4b85 3306void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3307 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3308{
ac39cf8c 3309 struct page *used, *unused;
01b1ae63 3310 struct page_cgroup *pc;
b2402857 3311 bool anon;
01b1ae63 3312
c0ff4b85 3313 if (!memcg)
01b1ae63 3314 return;
ac39cf8c 3315 /* blocks rmdir() */
c0ff4b85 3316 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3317 if (!migration_ok) {
ac39cf8c
AM
3318 used = oldpage;
3319 unused = newpage;
01b1ae63 3320 } else {
ac39cf8c 3321 used = newpage;
01b1ae63
KH
3322 unused = oldpage;
3323 }
69029cd5 3324 /*
ac39cf8c
AM
3325 * We disallowed uncharge of pages under migration because mapcount
3326 * of the page goes down to zero, temporarly.
3327 * Clear the flag and check the page should be charged.
01b1ae63 3328 */
ac39cf8c
AM
3329 pc = lookup_page_cgroup(oldpage);
3330 lock_page_cgroup(pc);
3331 ClearPageCgroupMigration(pc);
3332 unlock_page_cgroup(pc);
b2402857
KH
3333 anon = PageAnon(used);
3334 __mem_cgroup_uncharge_common(unused,
3335 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3336 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3337
01b1ae63 3338 /*
ac39cf8c
AM
3339 * If a page is a file cache, radix-tree replacement is very atomic
3340 * and we can skip this check. When it was an Anon page, its mapcount
3341 * goes down to 0. But because we added MIGRATION flage, it's not
3342 * uncharged yet. There are several case but page->mapcount check
3343 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3344 * check. (see prepare_charge() also)
69029cd5 3345 */
b2402857 3346 if (anon)
ac39cf8c 3347 mem_cgroup_uncharge_page(used);
88703267 3348 /*
ac39cf8c
AM
3349 * At migration, we may charge account against cgroup which has no
3350 * tasks.
88703267
KH
3351 * So, rmdir()->pre_destroy() can be called while we do this charge.
3352 * In that case, we need to call pre_destroy() again. check it here.
3353 */
c0ff4b85 3354 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3355}
78fb7466 3356
ab936cbc
KH
3357/*
3358 * At replace page cache, newpage is not under any memcg but it's on
3359 * LRU. So, this function doesn't touch res_counter but handles LRU
3360 * in correct way. Both pages are locked so we cannot race with uncharge.
3361 */
3362void mem_cgroup_replace_page_cache(struct page *oldpage,
3363 struct page *newpage)
3364{
3365 struct mem_cgroup *memcg;
3366 struct page_cgroup *pc;
ab936cbc 3367 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3368
3369 if (mem_cgroup_disabled())
3370 return;
3371
3372 pc = lookup_page_cgroup(oldpage);
3373 /* fix accounting on old pages */
3374 lock_page_cgroup(pc);
3375 memcg = pc->mem_cgroup;
b2402857 3376 mem_cgroup_charge_statistics(memcg, false, -1);
ab936cbc
KH
3377 ClearPageCgroupUsed(pc);
3378 unlock_page_cgroup(pc);
3379
3380 if (PageSwapBacked(oldpage))
3381 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3382
ab936cbc
KH
3383 /*
3384 * Even if newpage->mapping was NULL before starting replacement,
3385 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3386 * LRU while we overwrite pc->mem_cgroup.
3387 */
9ce70c02 3388 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type, true);
ab936cbc
KH
3389}
3390
f212ad7c
DN
3391#ifdef CONFIG_DEBUG_VM
3392static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3393{
3394 struct page_cgroup *pc;
3395
3396 pc = lookup_page_cgroup(page);
cfa44946
JW
3397 /*
3398 * Can be NULL while feeding pages into the page allocator for
3399 * the first time, i.e. during boot or memory hotplug;
3400 * or when mem_cgroup_disabled().
3401 */
f212ad7c
DN
3402 if (likely(pc) && PageCgroupUsed(pc))
3403 return pc;
3404 return NULL;
3405}
3406
3407bool mem_cgroup_bad_page_check(struct page *page)
3408{
3409 if (mem_cgroup_disabled())
3410 return false;
3411
3412 return lookup_page_cgroup_used(page) != NULL;
3413}
3414
3415void mem_cgroup_print_bad_page(struct page *page)
3416{
3417 struct page_cgroup *pc;
3418
3419 pc = lookup_page_cgroup_used(page);
3420 if (pc) {
90b3feae 3421 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3422 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3423 }
3424}
3425#endif
3426
8c7c6e34
KH
3427static DEFINE_MUTEX(set_limit_mutex);
3428
d38d2a75 3429static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3430 unsigned long long val)
628f4235 3431{
81d39c20 3432 int retry_count;
3c11ecf4 3433 u64 memswlimit, memlimit;
628f4235 3434 int ret = 0;
81d39c20
KH
3435 int children = mem_cgroup_count_children(memcg);
3436 u64 curusage, oldusage;
3c11ecf4 3437 int enlarge;
81d39c20
KH
3438
3439 /*
3440 * For keeping hierarchical_reclaim simple, how long we should retry
3441 * is depends on callers. We set our retry-count to be function
3442 * of # of children which we should visit in this loop.
3443 */
3444 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3445
3446 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3447
3c11ecf4 3448 enlarge = 0;
8c7c6e34 3449 while (retry_count) {
628f4235
KH
3450 if (signal_pending(current)) {
3451 ret = -EINTR;
3452 break;
3453 }
8c7c6e34
KH
3454 /*
3455 * Rather than hide all in some function, I do this in
3456 * open coded manner. You see what this really does.
c0ff4b85 3457 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3458 */
3459 mutex_lock(&set_limit_mutex);
3460 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3461 if (memswlimit < val) {
3462 ret = -EINVAL;
3463 mutex_unlock(&set_limit_mutex);
628f4235
KH
3464 break;
3465 }
3c11ecf4
KH
3466
3467 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3468 if (memlimit < val)
3469 enlarge = 1;
3470
8c7c6e34 3471 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3472 if (!ret) {
3473 if (memswlimit == val)
3474 memcg->memsw_is_minimum = true;
3475 else
3476 memcg->memsw_is_minimum = false;
3477 }
8c7c6e34
KH
3478 mutex_unlock(&set_limit_mutex);
3479
3480 if (!ret)
3481 break;
3482
5660048c
JW
3483 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3484 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3485 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3486 /* Usage is reduced ? */
3487 if (curusage >= oldusage)
3488 retry_count--;
3489 else
3490 oldusage = curusage;
8c7c6e34 3491 }
3c11ecf4
KH
3492 if (!ret && enlarge)
3493 memcg_oom_recover(memcg);
14797e23 3494
8c7c6e34
KH
3495 return ret;
3496}
3497
338c8431
LZ
3498static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3499 unsigned long long val)
8c7c6e34 3500{
81d39c20 3501 int retry_count;
3c11ecf4 3502 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3503 int children = mem_cgroup_count_children(memcg);
3504 int ret = -EBUSY;
3c11ecf4 3505 int enlarge = 0;
8c7c6e34 3506
81d39c20
KH
3507 /* see mem_cgroup_resize_res_limit */
3508 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3509 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3510 while (retry_count) {
3511 if (signal_pending(current)) {
3512 ret = -EINTR;
3513 break;
3514 }
3515 /*
3516 * Rather than hide all in some function, I do this in
3517 * open coded manner. You see what this really does.
c0ff4b85 3518 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3519 */
3520 mutex_lock(&set_limit_mutex);
3521 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3522 if (memlimit > val) {
3523 ret = -EINVAL;
3524 mutex_unlock(&set_limit_mutex);
3525 break;
3526 }
3c11ecf4
KH
3527 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3528 if (memswlimit < val)
3529 enlarge = 1;
8c7c6e34 3530 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3531 if (!ret) {
3532 if (memlimit == val)
3533 memcg->memsw_is_minimum = true;
3534 else
3535 memcg->memsw_is_minimum = false;
3536 }
8c7c6e34
KH
3537 mutex_unlock(&set_limit_mutex);
3538
3539 if (!ret)
3540 break;
3541
5660048c
JW
3542 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3543 MEM_CGROUP_RECLAIM_NOSWAP |
3544 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3545 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3546 /* Usage is reduced ? */
8c7c6e34 3547 if (curusage >= oldusage)
628f4235 3548 retry_count--;
81d39c20
KH
3549 else
3550 oldusage = curusage;
628f4235 3551 }
3c11ecf4
KH
3552 if (!ret && enlarge)
3553 memcg_oom_recover(memcg);
628f4235
KH
3554 return ret;
3555}
3556
4e416953 3557unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3558 gfp_t gfp_mask,
3559 unsigned long *total_scanned)
4e416953
BS
3560{
3561 unsigned long nr_reclaimed = 0;
3562 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3563 unsigned long reclaimed;
3564 int loop = 0;
3565 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3566 unsigned long long excess;
0ae5e89c 3567 unsigned long nr_scanned;
4e416953
BS
3568
3569 if (order > 0)
3570 return 0;
3571
00918b6a 3572 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3573 /*
3574 * This loop can run a while, specially if mem_cgroup's continuously
3575 * keep exceeding their soft limit and putting the system under
3576 * pressure
3577 */
3578 do {
3579 if (next_mz)
3580 mz = next_mz;
3581 else
3582 mz = mem_cgroup_largest_soft_limit_node(mctz);
3583 if (!mz)
3584 break;
3585
0ae5e89c 3586 nr_scanned = 0;
d79154bb 3587 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3588 gfp_mask, &nr_scanned);
4e416953 3589 nr_reclaimed += reclaimed;
0ae5e89c 3590 *total_scanned += nr_scanned;
4e416953
BS
3591 spin_lock(&mctz->lock);
3592
3593 /*
3594 * If we failed to reclaim anything from this memory cgroup
3595 * it is time to move on to the next cgroup
3596 */
3597 next_mz = NULL;
3598 if (!reclaimed) {
3599 do {
3600 /*
3601 * Loop until we find yet another one.
3602 *
3603 * By the time we get the soft_limit lock
3604 * again, someone might have aded the
3605 * group back on the RB tree. Iterate to
3606 * make sure we get a different mem.
3607 * mem_cgroup_largest_soft_limit_node returns
3608 * NULL if no other cgroup is present on
3609 * the tree
3610 */
3611 next_mz =
3612 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3613 if (next_mz == mz)
d79154bb 3614 css_put(&next_mz->memcg->css);
39cc98f1 3615 else /* next_mz == NULL or other memcg */
4e416953
BS
3616 break;
3617 } while (1);
3618 }
d79154bb
HD
3619 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3620 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3621 /*
3622 * One school of thought says that we should not add
3623 * back the node to the tree if reclaim returns 0.
3624 * But our reclaim could return 0, simply because due
3625 * to priority we are exposing a smaller subset of
3626 * memory to reclaim from. Consider this as a longer
3627 * term TODO.
3628 */
ef8745c1 3629 /* If excess == 0, no tree ops */
d79154bb 3630 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3631 spin_unlock(&mctz->lock);
d79154bb 3632 css_put(&mz->memcg->css);
4e416953
BS
3633 loop++;
3634 /*
3635 * Could not reclaim anything and there are no more
3636 * mem cgroups to try or we seem to be looping without
3637 * reclaiming anything.
3638 */
3639 if (!nr_reclaimed &&
3640 (next_mz == NULL ||
3641 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3642 break;
3643 } while (!nr_reclaimed);
3644 if (next_mz)
d79154bb 3645 css_put(&next_mz->memcg->css);
4e416953
BS
3646 return nr_reclaimed;
3647}
3648
cc847582
KH
3649/*
3650 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3651 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3652 */
c0ff4b85 3653static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3654 int node, int zid, enum lru_list lru)
cc847582 3655{
08e552c6 3656 struct mem_cgroup_per_zone *mz;
08e552c6 3657 unsigned long flags, loop;
072c56c1 3658 struct list_head *list;
925b7673
JW
3659 struct page *busy;
3660 struct zone *zone;
f817ed48 3661 int ret = 0;
072c56c1 3662
08e552c6 3663 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3664 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3665 list = &mz->lruvec.lists[lru];
cc847582 3666
1eb49272 3667 loop = mz->lru_size[lru];
f817ed48
KH
3668 /* give some margin against EBUSY etc...*/
3669 loop += 256;
3670 busy = NULL;
3671 while (loop--) {
925b7673 3672 struct page_cgroup *pc;
5564e88b
JW
3673 struct page *page;
3674
f817ed48 3675 ret = 0;
08e552c6 3676 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3677 if (list_empty(list)) {
08e552c6 3678 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3679 break;
f817ed48 3680 }
925b7673
JW
3681 page = list_entry(list->prev, struct page, lru);
3682 if (busy == page) {
3683 list_move(&page->lru, list);
648bcc77 3684 busy = NULL;
08e552c6 3685 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3686 continue;
3687 }
08e552c6 3688 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3689
925b7673 3690 pc = lookup_page_cgroup(page);
5564e88b 3691
c0ff4b85 3692 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3693 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3694 break;
f817ed48
KH
3695
3696 if (ret == -EBUSY || ret == -EINVAL) {
3697 /* found lock contention or "pc" is obsolete. */
925b7673 3698 busy = page;
f817ed48
KH
3699 cond_resched();
3700 } else
3701 busy = NULL;
cc847582 3702 }
08e552c6 3703
f817ed48
KH
3704 if (!ret && !list_empty(list))
3705 return -EBUSY;
3706 return ret;
cc847582
KH
3707}
3708
3709/*
3710 * make mem_cgroup's charge to be 0 if there is no task.
3711 * This enables deleting this mem_cgroup.
3712 */
c0ff4b85 3713static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3714{
f817ed48
KH
3715 int ret;
3716 int node, zid, shrink;
3717 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3718 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3719
c0ff4b85 3720 css_get(&memcg->css);
f817ed48
KH
3721
3722 shrink = 0;
c1e862c1
KH
3723 /* should free all ? */
3724 if (free_all)
3725 goto try_to_free;
f817ed48 3726move_account:
fce66477 3727 do {
f817ed48 3728 ret = -EBUSY;
c1e862c1
KH
3729 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3730 goto out;
3731 ret = -EINTR;
3732 if (signal_pending(current))
cc847582 3733 goto out;
52d4b9ac
KH
3734 /* This is for making all *used* pages to be on LRU. */
3735 lru_add_drain_all();
c0ff4b85 3736 drain_all_stock_sync(memcg);
f817ed48 3737 ret = 0;
c0ff4b85 3738 mem_cgroup_start_move(memcg);
299b4eaa 3739 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3740 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3741 enum lru_list lru;
3742 for_each_lru(lru) {
c0ff4b85 3743 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3744 node, zid, lru);
f817ed48
KH
3745 if (ret)
3746 break;
3747 }
1ecaab2b 3748 }
f817ed48
KH
3749 if (ret)
3750 break;
3751 }
c0ff4b85
R
3752 mem_cgroup_end_move(memcg);
3753 memcg_oom_recover(memcg);
f817ed48
KH
3754 /* it seems parent cgroup doesn't have enough mem */
3755 if (ret == -ENOMEM)
3756 goto try_to_free;
52d4b9ac 3757 cond_resched();
fce66477 3758 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3759 } while (memcg->res.usage > 0 || ret);
cc847582 3760out:
c0ff4b85 3761 css_put(&memcg->css);
cc847582 3762 return ret;
f817ed48
KH
3763
3764try_to_free:
c1e862c1
KH
3765 /* returns EBUSY if there is a task or if we come here twice. */
3766 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3767 ret = -EBUSY;
3768 goto out;
3769 }
c1e862c1
KH
3770 /* we call try-to-free pages for make this cgroup empty */
3771 lru_add_drain_all();
f817ed48
KH
3772 /* try to free all pages in this cgroup */
3773 shrink = 1;
c0ff4b85 3774 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3775 int progress;
c1e862c1
KH
3776
3777 if (signal_pending(current)) {
3778 ret = -EINTR;
3779 goto out;
3780 }
c0ff4b85 3781 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3782 false);
c1e862c1 3783 if (!progress) {
f817ed48 3784 nr_retries--;
c1e862c1 3785 /* maybe some writeback is necessary */
8aa7e847 3786 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3787 }
f817ed48
KH
3788
3789 }
08e552c6 3790 lru_add_drain();
f817ed48 3791 /* try move_account...there may be some *locked* pages. */
fce66477 3792 goto move_account;
cc847582
KH
3793}
3794
c1e862c1
KH
3795int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3796{
3797 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3798}
3799
3800
18f59ea7
BS
3801static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3802{
3803 return mem_cgroup_from_cont(cont)->use_hierarchy;
3804}
3805
3806static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3807 u64 val)
3808{
3809 int retval = 0;
c0ff4b85 3810 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3811 struct cgroup *parent = cont->parent;
c0ff4b85 3812 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3813
3814 if (parent)
c0ff4b85 3815 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3816
3817 cgroup_lock();
3818 /*
af901ca1 3819 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3820 * in the child subtrees. If it is unset, then the change can
3821 * occur, provided the current cgroup has no children.
3822 *
3823 * For the root cgroup, parent_mem is NULL, we allow value to be
3824 * set if there are no children.
3825 */
c0ff4b85 3826 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3827 (val == 1 || val == 0)) {
3828 if (list_empty(&cont->children))
c0ff4b85 3829 memcg->use_hierarchy = val;
18f59ea7
BS
3830 else
3831 retval = -EBUSY;
3832 } else
3833 retval = -EINVAL;
3834 cgroup_unlock();
3835
3836 return retval;
3837}
3838
0c3e73e8 3839
c0ff4b85 3840static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3841 enum mem_cgroup_stat_index idx)
0c3e73e8 3842{
7d74b06f 3843 struct mem_cgroup *iter;
7a159cc9 3844 long val = 0;
0c3e73e8 3845
7a159cc9 3846 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3847 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3848 val += mem_cgroup_read_stat(iter, idx);
3849
3850 if (val < 0) /* race ? */
3851 val = 0;
3852 return val;
0c3e73e8
BS
3853}
3854
c0ff4b85 3855static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3856{
7d74b06f 3857 u64 val;
104f3928 3858
c0ff4b85 3859 if (!mem_cgroup_is_root(memcg)) {
104f3928 3860 if (!swap)
65c64ce8 3861 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3862 else
65c64ce8 3863 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3864 }
3865
c0ff4b85
R
3866 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3867 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3868
7d74b06f 3869 if (swap)
c0ff4b85 3870 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3871
3872 return val << PAGE_SHIFT;
3873}
3874
2c3daa72 3875static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3876{
c0ff4b85 3877 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3878 u64 val;
8c7c6e34
KH
3879 int type, name;
3880
3881 type = MEMFILE_TYPE(cft->private);
3882 name = MEMFILE_ATTR(cft->private);
3883 switch (type) {
3884 case _MEM:
104f3928 3885 if (name == RES_USAGE)
c0ff4b85 3886 val = mem_cgroup_usage(memcg, false);
104f3928 3887 else
c0ff4b85 3888 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3889 break;
3890 case _MEMSWAP:
104f3928 3891 if (name == RES_USAGE)
c0ff4b85 3892 val = mem_cgroup_usage(memcg, true);
104f3928 3893 else
c0ff4b85 3894 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3895 break;
3896 default:
3897 BUG();
3898 break;
3899 }
3900 return val;
8cdea7c0 3901}
628f4235
KH
3902/*
3903 * The user of this function is...
3904 * RES_LIMIT.
3905 */
856c13aa
PM
3906static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3907 const char *buffer)
8cdea7c0 3908{
628f4235 3909 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3910 int type, name;
628f4235
KH
3911 unsigned long long val;
3912 int ret;
3913
8c7c6e34
KH
3914 type = MEMFILE_TYPE(cft->private);
3915 name = MEMFILE_ATTR(cft->private);
3916 switch (name) {
628f4235 3917 case RES_LIMIT:
4b3bde4c
BS
3918 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3919 ret = -EINVAL;
3920 break;
3921 }
628f4235
KH
3922 /* This function does all necessary parse...reuse it */
3923 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3924 if (ret)
3925 break;
3926 if (type == _MEM)
628f4235 3927 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3928 else
3929 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3930 break;
296c81d8
BS
3931 case RES_SOFT_LIMIT:
3932 ret = res_counter_memparse_write_strategy(buffer, &val);
3933 if (ret)
3934 break;
3935 /*
3936 * For memsw, soft limits are hard to implement in terms
3937 * of semantics, for now, we support soft limits for
3938 * control without swap
3939 */
3940 if (type == _MEM)
3941 ret = res_counter_set_soft_limit(&memcg->res, val);
3942 else
3943 ret = -EINVAL;
3944 break;
628f4235
KH
3945 default:
3946 ret = -EINVAL; /* should be BUG() ? */
3947 break;
3948 }
3949 return ret;
8cdea7c0
BS
3950}
3951
fee7b548
KH
3952static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3953 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3954{
3955 struct cgroup *cgroup;
3956 unsigned long long min_limit, min_memsw_limit, tmp;
3957
3958 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3959 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3960 cgroup = memcg->css.cgroup;
3961 if (!memcg->use_hierarchy)
3962 goto out;
3963
3964 while (cgroup->parent) {
3965 cgroup = cgroup->parent;
3966 memcg = mem_cgroup_from_cont(cgroup);
3967 if (!memcg->use_hierarchy)
3968 break;
3969 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3970 min_limit = min(min_limit, tmp);
3971 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3972 min_memsw_limit = min(min_memsw_limit, tmp);
3973 }
3974out:
3975 *mem_limit = min_limit;
3976 *memsw_limit = min_memsw_limit;
fee7b548
KH
3977}
3978
29f2a4da 3979static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3980{
c0ff4b85 3981 struct mem_cgroup *memcg;
8c7c6e34 3982 int type, name;
c84872e1 3983
c0ff4b85 3984 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3985 type = MEMFILE_TYPE(event);
3986 name = MEMFILE_ATTR(event);
3987 switch (name) {
29f2a4da 3988 case RES_MAX_USAGE:
8c7c6e34 3989 if (type == _MEM)
c0ff4b85 3990 res_counter_reset_max(&memcg->res);
8c7c6e34 3991 else
c0ff4b85 3992 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3993 break;
3994 case RES_FAILCNT:
8c7c6e34 3995 if (type == _MEM)
c0ff4b85 3996 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3997 else
c0ff4b85 3998 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3999 break;
4000 }
f64c3f54 4001
85cc59db 4002 return 0;
c84872e1
PE
4003}
4004
7dc74be0
DN
4005static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4006 struct cftype *cft)
4007{
4008 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4009}
4010
02491447 4011#ifdef CONFIG_MMU
7dc74be0
DN
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4014{
c0ff4b85 4015 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4016
4017 if (val >= (1 << NR_MOVE_TYPE))
4018 return -EINVAL;
4019 /*
4020 * We check this value several times in both in can_attach() and
4021 * attach(), so we need cgroup lock to prevent this value from being
4022 * inconsistent.
4023 */
4024 cgroup_lock();
c0ff4b85 4025 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4026 cgroup_unlock();
4027
4028 return 0;
4029}
02491447
DN
4030#else
4031static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4032 struct cftype *cft, u64 val)
4033{
4034 return -ENOSYS;
4035}
4036#endif
7dc74be0 4037
14067bb3
KH
4038
4039/* For read statistics */
4040enum {
4041 MCS_CACHE,
4042 MCS_RSS,
d8046582 4043 MCS_FILE_MAPPED,
14067bb3
KH
4044 MCS_PGPGIN,
4045 MCS_PGPGOUT,
1dd3a273 4046 MCS_SWAP,
456f998e
YH
4047 MCS_PGFAULT,
4048 MCS_PGMAJFAULT,
14067bb3
KH
4049 MCS_INACTIVE_ANON,
4050 MCS_ACTIVE_ANON,
4051 MCS_INACTIVE_FILE,
4052 MCS_ACTIVE_FILE,
4053 MCS_UNEVICTABLE,
4054 NR_MCS_STAT,
4055};
4056
4057struct mcs_total_stat {
4058 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4059};
4060
14067bb3
KH
4061struct {
4062 char *local_name;
4063 char *total_name;
4064} memcg_stat_strings[NR_MCS_STAT] = {
4065 {"cache", "total_cache"},
4066 {"rss", "total_rss"},
d69b042f 4067 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4068 {"pgpgin", "total_pgpgin"},
4069 {"pgpgout", "total_pgpgout"},
1dd3a273 4070 {"swap", "total_swap"},
456f998e
YH
4071 {"pgfault", "total_pgfault"},
4072 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4073 {"inactive_anon", "total_inactive_anon"},
4074 {"active_anon", "total_active_anon"},
4075 {"inactive_file", "total_inactive_file"},
4076 {"active_file", "total_active_file"},
4077 {"unevictable", "total_unevictable"}
4078};
4079
4080
7d74b06f 4081static void
c0ff4b85 4082mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4083{
14067bb3
KH
4084 s64 val;
4085
4086 /* per cpu stat */
c0ff4b85 4087 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4088 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4089 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4090 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4091 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4092 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4093 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4094 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4095 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4096 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4097 if (do_swap_account) {
c0ff4b85 4098 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4099 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4100 }
c0ff4b85 4101 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4102 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4103 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4104 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4105
4106 /* per zone stat */
c0ff4b85 4107 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4108 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4109 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4110 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4111 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4112 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4114 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4115 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4116 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4117}
4118
4119static void
c0ff4b85 4120mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4121{
7d74b06f
KH
4122 struct mem_cgroup *iter;
4123
c0ff4b85 4124 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4125 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4126}
4127
406eb0c9
YH
4128#ifdef CONFIG_NUMA
4129static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4130{
4131 int nid;
4132 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4133 unsigned long node_nr;
4134 struct cgroup *cont = m->private;
d79154bb 4135 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4136
d79154bb 4137 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4138 seq_printf(m, "total=%lu", total_nr);
4139 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4140 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4141 seq_printf(m, " N%d=%lu", nid, node_nr);
4142 }
4143 seq_putc(m, '\n');
4144
d79154bb 4145 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4146 seq_printf(m, "file=%lu", file_nr);
4147 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4148 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4149 LRU_ALL_FILE);
406eb0c9
YH
4150 seq_printf(m, " N%d=%lu", nid, node_nr);
4151 }
4152 seq_putc(m, '\n');
4153
d79154bb 4154 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4155 seq_printf(m, "anon=%lu", anon_nr);
4156 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4157 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4158 LRU_ALL_ANON);
406eb0c9
YH
4159 seq_printf(m, " N%d=%lu", nid, node_nr);
4160 }
4161 seq_putc(m, '\n');
4162
d79154bb 4163 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4164 seq_printf(m, "unevictable=%lu", unevictable_nr);
4165 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4166 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4167 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4168 seq_printf(m, " N%d=%lu", nid, node_nr);
4169 }
4170 seq_putc(m, '\n');
4171 return 0;
4172}
4173#endif /* CONFIG_NUMA */
4174
c64745cf
PM
4175static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4176 struct cgroup_map_cb *cb)
d2ceb9b7 4177{
d79154bb 4178 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4179 struct mcs_total_stat mystat;
d2ceb9b7
KH
4180 int i;
4181
14067bb3 4182 memset(&mystat, 0, sizeof(mystat));
d79154bb 4183 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4184
406eb0c9 4185
1dd3a273
DN
4186 for (i = 0; i < NR_MCS_STAT; i++) {
4187 if (i == MCS_SWAP && !do_swap_account)
4188 continue;
14067bb3 4189 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4190 }
7b854121 4191
14067bb3 4192 /* Hierarchical information */
fee7b548
KH
4193 {
4194 unsigned long long limit, memsw_limit;
d79154bb 4195 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4196 cb->fill(cb, "hierarchical_memory_limit", limit);
4197 if (do_swap_account)
4198 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4199 }
7f016ee8 4200
14067bb3 4201 memset(&mystat, 0, sizeof(mystat));
d79154bb 4202 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4203 for (i = 0; i < NR_MCS_STAT; i++) {
4204 if (i == MCS_SWAP && !do_swap_account)
4205 continue;
14067bb3 4206 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4207 }
14067bb3 4208
7f016ee8 4209#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4210 {
4211 int nid, zid;
4212 struct mem_cgroup_per_zone *mz;
4213 unsigned long recent_rotated[2] = {0, 0};
4214 unsigned long recent_scanned[2] = {0, 0};
4215
4216 for_each_online_node(nid)
4217 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4218 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
7f016ee8
KM
4219
4220 recent_rotated[0] +=
4221 mz->reclaim_stat.recent_rotated[0];
4222 recent_rotated[1] +=
4223 mz->reclaim_stat.recent_rotated[1];
4224 recent_scanned[0] +=
4225 mz->reclaim_stat.recent_scanned[0];
4226 recent_scanned[1] +=
4227 mz->reclaim_stat.recent_scanned[1];
4228 }
4229 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4230 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4231 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4232 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4233 }
4234#endif
4235
d2ceb9b7
KH
4236 return 0;
4237}
4238
a7885eb8
KM
4239static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4240{
4241 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4242
1f4c025b 4243 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4244}
4245
4246static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4247 u64 val)
4248{
4249 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4250 struct mem_cgroup *parent;
068b38c1 4251
a7885eb8
KM
4252 if (val > 100)
4253 return -EINVAL;
4254
4255 if (cgrp->parent == NULL)
4256 return -EINVAL;
4257
4258 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4259
4260 cgroup_lock();
4261
a7885eb8
KM
4262 /* If under hierarchy, only empty-root can set this value */
4263 if ((parent->use_hierarchy) ||
068b38c1
LZ
4264 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4265 cgroup_unlock();
a7885eb8 4266 return -EINVAL;
068b38c1 4267 }
a7885eb8 4268
a7885eb8 4269 memcg->swappiness = val;
a7885eb8 4270
068b38c1
LZ
4271 cgroup_unlock();
4272
a7885eb8
KM
4273 return 0;
4274}
4275
2e72b634
KS
4276static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4277{
4278 struct mem_cgroup_threshold_ary *t;
4279 u64 usage;
4280 int i;
4281
4282 rcu_read_lock();
4283 if (!swap)
2c488db2 4284 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4285 else
2c488db2 4286 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4287
4288 if (!t)
4289 goto unlock;
4290
4291 usage = mem_cgroup_usage(memcg, swap);
4292
4293 /*
4294 * current_threshold points to threshold just below usage.
4295 * If it's not true, a threshold was crossed after last
4296 * call of __mem_cgroup_threshold().
4297 */
5407a562 4298 i = t->current_threshold;
2e72b634
KS
4299
4300 /*
4301 * Iterate backward over array of thresholds starting from
4302 * current_threshold and check if a threshold is crossed.
4303 * If none of thresholds below usage is crossed, we read
4304 * only one element of the array here.
4305 */
4306 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4307 eventfd_signal(t->entries[i].eventfd, 1);
4308
4309 /* i = current_threshold + 1 */
4310 i++;
4311
4312 /*
4313 * Iterate forward over array of thresholds starting from
4314 * current_threshold+1 and check if a threshold is crossed.
4315 * If none of thresholds above usage is crossed, we read
4316 * only one element of the array here.
4317 */
4318 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4319 eventfd_signal(t->entries[i].eventfd, 1);
4320
4321 /* Update current_threshold */
5407a562 4322 t->current_threshold = i - 1;
2e72b634
KS
4323unlock:
4324 rcu_read_unlock();
4325}
4326
4327static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4328{
ad4ca5f4
KS
4329 while (memcg) {
4330 __mem_cgroup_threshold(memcg, false);
4331 if (do_swap_account)
4332 __mem_cgroup_threshold(memcg, true);
4333
4334 memcg = parent_mem_cgroup(memcg);
4335 }
2e72b634
KS
4336}
4337
4338static int compare_thresholds(const void *a, const void *b)
4339{
4340 const struct mem_cgroup_threshold *_a = a;
4341 const struct mem_cgroup_threshold *_b = b;
4342
4343 return _a->threshold - _b->threshold;
4344}
4345
c0ff4b85 4346static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4347{
4348 struct mem_cgroup_eventfd_list *ev;
4349
c0ff4b85 4350 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4351 eventfd_signal(ev->eventfd, 1);
4352 return 0;
4353}
4354
c0ff4b85 4355static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4356{
7d74b06f
KH
4357 struct mem_cgroup *iter;
4358
c0ff4b85 4359 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4360 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4361}
4362
4363static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4364 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4365{
4366 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4367 struct mem_cgroup_thresholds *thresholds;
4368 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4369 int type = MEMFILE_TYPE(cft->private);
4370 u64 threshold, usage;
2c488db2 4371 int i, size, ret;
2e72b634
KS
4372
4373 ret = res_counter_memparse_write_strategy(args, &threshold);
4374 if (ret)
4375 return ret;
4376
4377 mutex_lock(&memcg->thresholds_lock);
2c488db2 4378
2e72b634 4379 if (type == _MEM)
2c488db2 4380 thresholds = &memcg->thresholds;
2e72b634 4381 else if (type == _MEMSWAP)
2c488db2 4382 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4383 else
4384 BUG();
4385
4386 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4387
4388 /* Check if a threshold crossed before adding a new one */
2c488db2 4389 if (thresholds->primary)
2e72b634
KS
4390 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4391
2c488db2 4392 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4393
4394 /* Allocate memory for new array of thresholds */
2c488db2 4395 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4396 GFP_KERNEL);
2c488db2 4397 if (!new) {
2e72b634
KS
4398 ret = -ENOMEM;
4399 goto unlock;
4400 }
2c488db2 4401 new->size = size;
2e72b634
KS
4402
4403 /* Copy thresholds (if any) to new array */
2c488db2
KS
4404 if (thresholds->primary) {
4405 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4406 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4407 }
4408
2e72b634 4409 /* Add new threshold */
2c488db2
KS
4410 new->entries[size - 1].eventfd = eventfd;
4411 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4412
4413 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4414 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4415 compare_thresholds, NULL);
4416
4417 /* Find current threshold */
2c488db2 4418 new->current_threshold = -1;
2e72b634 4419 for (i = 0; i < size; i++) {
2c488db2 4420 if (new->entries[i].threshold < usage) {
2e72b634 4421 /*
2c488db2
KS
4422 * new->current_threshold will not be used until
4423 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4424 * it here.
4425 */
2c488db2 4426 ++new->current_threshold;
2e72b634
KS
4427 }
4428 }
4429
2c488db2
KS
4430 /* Free old spare buffer and save old primary buffer as spare */
4431 kfree(thresholds->spare);
4432 thresholds->spare = thresholds->primary;
4433
4434 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4435
907860ed 4436 /* To be sure that nobody uses thresholds */
2e72b634
KS
4437 synchronize_rcu();
4438
2e72b634
KS
4439unlock:
4440 mutex_unlock(&memcg->thresholds_lock);
4441
4442 return ret;
4443}
4444
907860ed 4445static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4446 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4447{
4448 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4449 struct mem_cgroup_thresholds *thresholds;
4450 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4451 int type = MEMFILE_TYPE(cft->private);
4452 u64 usage;
2c488db2 4453 int i, j, size;
2e72b634
KS
4454
4455 mutex_lock(&memcg->thresholds_lock);
4456 if (type == _MEM)
2c488db2 4457 thresholds = &memcg->thresholds;
2e72b634 4458 else if (type == _MEMSWAP)
2c488db2 4459 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4460 else
4461 BUG();
4462
4463 /*
4464 * Something went wrong if we trying to unregister a threshold
4465 * if we don't have thresholds
4466 */
4467 BUG_ON(!thresholds);
4468
371528ca
AV
4469 if (!thresholds->primary)
4470 goto unlock;
4471
2e72b634
KS
4472 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4473
4474 /* Check if a threshold crossed before removing */
4475 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4476
4477 /* Calculate new number of threshold */
2c488db2
KS
4478 size = 0;
4479 for (i = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4481 size++;
4482 }
4483
2c488db2 4484 new = thresholds->spare;
907860ed 4485
2e72b634
KS
4486 /* Set thresholds array to NULL if we don't have thresholds */
4487 if (!size) {
2c488db2
KS
4488 kfree(new);
4489 new = NULL;
907860ed 4490 goto swap_buffers;
2e72b634
KS
4491 }
4492
2c488db2 4493 new->size = size;
2e72b634
KS
4494
4495 /* Copy thresholds and find current threshold */
2c488db2
KS
4496 new->current_threshold = -1;
4497 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4498 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4499 continue;
4500
2c488db2
KS
4501 new->entries[j] = thresholds->primary->entries[i];
4502 if (new->entries[j].threshold < usage) {
2e72b634 4503 /*
2c488db2 4504 * new->current_threshold will not be used
2e72b634
KS
4505 * until rcu_assign_pointer(), so it's safe to increment
4506 * it here.
4507 */
2c488db2 4508 ++new->current_threshold;
2e72b634
KS
4509 }
4510 j++;
4511 }
4512
907860ed 4513swap_buffers:
2c488db2
KS
4514 /* Swap primary and spare array */
4515 thresholds->spare = thresholds->primary;
4516 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4517
907860ed 4518 /* To be sure that nobody uses thresholds */
2e72b634 4519 synchronize_rcu();
371528ca 4520unlock:
2e72b634 4521 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4522}
c1e862c1 4523
9490ff27
KH
4524static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4525 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4526{
4527 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4528 struct mem_cgroup_eventfd_list *event;
4529 int type = MEMFILE_TYPE(cft->private);
4530
4531 BUG_ON(type != _OOM_TYPE);
4532 event = kmalloc(sizeof(*event), GFP_KERNEL);
4533 if (!event)
4534 return -ENOMEM;
4535
1af8efe9 4536 spin_lock(&memcg_oom_lock);
9490ff27
KH
4537
4538 event->eventfd = eventfd;
4539 list_add(&event->list, &memcg->oom_notify);
4540
4541 /* already in OOM ? */
79dfdacc 4542 if (atomic_read(&memcg->under_oom))
9490ff27 4543 eventfd_signal(eventfd, 1);
1af8efe9 4544 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4545
4546 return 0;
4547}
4548
907860ed 4549static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4550 struct cftype *cft, struct eventfd_ctx *eventfd)
4551{
c0ff4b85 4552 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4553 struct mem_cgroup_eventfd_list *ev, *tmp;
4554 int type = MEMFILE_TYPE(cft->private);
4555
4556 BUG_ON(type != _OOM_TYPE);
4557
1af8efe9 4558 spin_lock(&memcg_oom_lock);
9490ff27 4559
c0ff4b85 4560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4561 if (ev->eventfd == eventfd) {
4562 list_del(&ev->list);
4563 kfree(ev);
4564 }
4565 }
4566
1af8efe9 4567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4568}
4569
3c11ecf4
KH
4570static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4571 struct cftype *cft, struct cgroup_map_cb *cb)
4572{
c0ff4b85 4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4574
c0ff4b85 4575 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4576
c0ff4b85 4577 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4578 cb->fill(cb, "under_oom", 1);
4579 else
4580 cb->fill(cb, "under_oom", 0);
4581 return 0;
4582}
4583
3c11ecf4
KH
4584static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4585 struct cftype *cft, u64 val)
4586{
c0ff4b85 4587 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4588 struct mem_cgroup *parent;
4589
4590 /* cannot set to root cgroup and only 0 and 1 are allowed */
4591 if (!cgrp->parent || !((val == 0) || (val == 1)))
4592 return -EINVAL;
4593
4594 parent = mem_cgroup_from_cont(cgrp->parent);
4595
4596 cgroup_lock();
4597 /* oom-kill-disable is a flag for subhierarchy. */
4598 if ((parent->use_hierarchy) ||
c0ff4b85 4599 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4600 cgroup_unlock();
4601 return -EINVAL;
4602 }
c0ff4b85 4603 memcg->oom_kill_disable = val;
4d845ebf 4604 if (!val)
c0ff4b85 4605 memcg_oom_recover(memcg);
3c11ecf4
KH
4606 cgroup_unlock();
4607 return 0;
4608}
4609
406eb0c9
YH
4610#ifdef CONFIG_NUMA
4611static const struct file_operations mem_control_numa_stat_file_operations = {
4612 .read = seq_read,
4613 .llseek = seq_lseek,
4614 .release = single_release,
4615};
4616
4617static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4618{
4619 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4620
4621 file->f_op = &mem_control_numa_stat_file_operations;
4622 return single_open(file, mem_control_numa_stat_show, cont);
4623}
4624#endif /* CONFIG_NUMA */
4625
e5671dfa 4626#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4627static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4628{
d1a4c0b3
GC
4629 /*
4630 * Part of this would be better living in a separate allocation
4631 * function, leaving us with just the cgroup tree population work.
4632 * We, however, depend on state such as network's proto_list that
4633 * is only initialized after cgroup creation. I found the less
4634 * cumbersome way to deal with it to defer it all to populate time
4635 */
65c64ce8 4636 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4637};
4638
761b3ef5 4639static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3 4640{
761b3ef5 4641 mem_cgroup_sockets_destroy(cont);
d1a4c0b3 4642}
e5671dfa
GC
4643#else
4644static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4645{
4646 return 0;
4647}
d1a4c0b3 4648
761b3ef5 4649static void kmem_cgroup_destroy(struct cgroup *cont)
d1a4c0b3
GC
4650{
4651}
e5671dfa
GC
4652#endif
4653
8cdea7c0
BS
4654static struct cftype mem_cgroup_files[] = {
4655 {
0eea1030 4656 .name = "usage_in_bytes",
8c7c6e34 4657 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4658 .read_u64 = mem_cgroup_read,
9490ff27
KH
4659 .register_event = mem_cgroup_usage_register_event,
4660 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4661 },
c84872e1
PE
4662 {
4663 .name = "max_usage_in_bytes",
8c7c6e34 4664 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4665 .trigger = mem_cgroup_reset,
c84872e1
PE
4666 .read_u64 = mem_cgroup_read,
4667 },
8cdea7c0 4668 {
0eea1030 4669 .name = "limit_in_bytes",
8c7c6e34 4670 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4671 .write_string = mem_cgroup_write,
2c3daa72 4672 .read_u64 = mem_cgroup_read,
8cdea7c0 4673 },
296c81d8
BS
4674 {
4675 .name = "soft_limit_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4677 .write_string = mem_cgroup_write,
4678 .read_u64 = mem_cgroup_read,
4679 },
8cdea7c0
BS
4680 {
4681 .name = "failcnt",
8c7c6e34 4682 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4683 .trigger = mem_cgroup_reset,
2c3daa72 4684 .read_u64 = mem_cgroup_read,
8cdea7c0 4685 },
d2ceb9b7
KH
4686 {
4687 .name = "stat",
c64745cf 4688 .read_map = mem_control_stat_show,
d2ceb9b7 4689 },
c1e862c1
KH
4690 {
4691 .name = "force_empty",
4692 .trigger = mem_cgroup_force_empty_write,
4693 },
18f59ea7
BS
4694 {
4695 .name = "use_hierarchy",
4696 .write_u64 = mem_cgroup_hierarchy_write,
4697 .read_u64 = mem_cgroup_hierarchy_read,
4698 },
a7885eb8
KM
4699 {
4700 .name = "swappiness",
4701 .read_u64 = mem_cgroup_swappiness_read,
4702 .write_u64 = mem_cgroup_swappiness_write,
4703 },
7dc74be0
DN
4704 {
4705 .name = "move_charge_at_immigrate",
4706 .read_u64 = mem_cgroup_move_charge_read,
4707 .write_u64 = mem_cgroup_move_charge_write,
4708 },
9490ff27
KH
4709 {
4710 .name = "oom_control",
3c11ecf4
KH
4711 .read_map = mem_cgroup_oom_control_read,
4712 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4713 .register_event = mem_cgroup_oom_register_event,
4714 .unregister_event = mem_cgroup_oom_unregister_event,
4715 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4716 },
406eb0c9
YH
4717#ifdef CONFIG_NUMA
4718 {
4719 .name = "numa_stat",
4720 .open = mem_control_numa_stat_open,
89577127 4721 .mode = S_IRUGO,
406eb0c9
YH
4722 },
4723#endif
8cdea7c0
BS
4724};
4725
8c7c6e34
KH
4726#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4727static struct cftype memsw_cgroup_files[] = {
4728 {
4729 .name = "memsw.usage_in_bytes",
4730 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4731 .read_u64 = mem_cgroup_read,
9490ff27
KH
4732 .register_event = mem_cgroup_usage_register_event,
4733 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4734 },
4735 {
4736 .name = "memsw.max_usage_in_bytes",
4737 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4738 .trigger = mem_cgroup_reset,
4739 .read_u64 = mem_cgroup_read,
4740 },
4741 {
4742 .name = "memsw.limit_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4744 .write_string = mem_cgroup_write,
4745 .read_u64 = mem_cgroup_read,
4746 },
4747 {
4748 .name = "memsw.failcnt",
4749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4750 .trigger = mem_cgroup_reset,
4751 .read_u64 = mem_cgroup_read,
4752 },
4753};
4754
4755static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4756{
4757 if (!do_swap_account)
4758 return 0;
4759 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4760 ARRAY_SIZE(memsw_cgroup_files));
4761};
4762#else
4763static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4764{
4765 return 0;
4766}
4767#endif
4768
c0ff4b85 4769static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4770{
4771 struct mem_cgroup_per_node *pn;
1ecaab2b 4772 struct mem_cgroup_per_zone *mz;
f156ab93 4773 enum lru_list lru;
41e3355d 4774 int zone, tmp = node;
1ecaab2b
KH
4775 /*
4776 * This routine is called against possible nodes.
4777 * But it's BUG to call kmalloc() against offline node.
4778 *
4779 * TODO: this routine can waste much memory for nodes which will
4780 * never be onlined. It's better to use memory hotplug callback
4781 * function.
4782 */
41e3355d
KH
4783 if (!node_state(node, N_NORMAL_MEMORY))
4784 tmp = -1;
17295c88 4785 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4786 if (!pn)
4787 return 1;
1ecaab2b 4788
1ecaab2b
KH
4789 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4790 mz = &pn->zoneinfo[zone];
f156ab93
HD
4791 for_each_lru(lru)
4792 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4793 mz->usage_in_excess = 0;
4e416953 4794 mz->on_tree = false;
d79154bb 4795 mz->memcg = memcg;
1ecaab2b 4796 }
0a619e58 4797 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4798 return 0;
4799}
4800
c0ff4b85 4801static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4802{
c0ff4b85 4803 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4804}
4805
33327948
KH
4806static struct mem_cgroup *mem_cgroup_alloc(void)
4807{
d79154bb 4808 struct mem_cgroup *memcg;
c62b1a3b 4809 int size = sizeof(struct mem_cgroup);
33327948 4810
c62b1a3b 4811 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4812 if (size < PAGE_SIZE)
d79154bb 4813 memcg = kzalloc(size, GFP_KERNEL);
33327948 4814 else
d79154bb 4815 memcg = vzalloc(size);
33327948 4816
d79154bb 4817 if (!memcg)
e7bbcdf3
DC
4818 return NULL;
4819
d79154bb
HD
4820 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4821 if (!memcg->stat)
d2e61b8d 4822 goto out_free;
d79154bb
HD
4823 spin_lock_init(&memcg->pcp_counter_lock);
4824 return memcg;
d2e61b8d
DC
4825
4826out_free:
4827 if (size < PAGE_SIZE)
d79154bb 4828 kfree(memcg);
d2e61b8d 4829 else
d79154bb 4830 vfree(memcg);
d2e61b8d 4831 return NULL;
33327948
KH
4832}
4833
59927fb9
HD
4834/*
4835 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4836 * but in process context. The work_freeing structure is overlaid
4837 * on the rcu_freeing structure, which itself is overlaid on memsw.
4838 */
4839static void vfree_work(struct work_struct *work)
4840{
4841 struct mem_cgroup *memcg;
4842
4843 memcg = container_of(work, struct mem_cgroup, work_freeing);
4844 vfree(memcg);
4845}
4846static void vfree_rcu(struct rcu_head *rcu_head)
4847{
4848 struct mem_cgroup *memcg;
4849
4850 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4851 INIT_WORK(&memcg->work_freeing, vfree_work);
4852 schedule_work(&memcg->work_freeing);
4853}
4854
8c7c6e34
KH
4855/*
4856 * At destroying mem_cgroup, references from swap_cgroup can remain.
4857 * (scanning all at force_empty is too costly...)
4858 *
4859 * Instead of clearing all references at force_empty, we remember
4860 * the number of reference from swap_cgroup and free mem_cgroup when
4861 * it goes down to 0.
4862 *
8c7c6e34
KH
4863 * Removal of cgroup itself succeeds regardless of refs from swap.
4864 */
4865
c0ff4b85 4866static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4867{
08e552c6
KH
4868 int node;
4869
c0ff4b85
R
4870 mem_cgroup_remove_from_trees(memcg);
4871 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4872
3ed28fa1 4873 for_each_node(node)
c0ff4b85 4874 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4875
c0ff4b85 4876 free_percpu(memcg->stat);
c62b1a3b 4877 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4878 kfree_rcu(memcg, rcu_freeing);
33327948 4879 else
59927fb9 4880 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4881}
4882
c0ff4b85 4883static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4884{
c0ff4b85 4885 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4886}
4887
c0ff4b85 4888static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4889{
c0ff4b85
R
4890 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4891 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4892 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4893 if (parent)
4894 mem_cgroup_put(parent);
4895 }
8c7c6e34
KH
4896}
4897
c0ff4b85 4898static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4899{
c0ff4b85 4900 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4901}
4902
7bcc1bb1
DN
4903/*
4904 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4905 */
e1aab161 4906struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4907{
c0ff4b85 4908 if (!memcg->res.parent)
7bcc1bb1 4909 return NULL;
c0ff4b85 4910 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4911}
e1aab161 4912EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4913
c077719b
KH
4914#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4915static void __init enable_swap_cgroup(void)
4916{
f8d66542 4917 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4918 do_swap_account = 1;
4919}
4920#else
4921static void __init enable_swap_cgroup(void)
4922{
4923}
4924#endif
4925
f64c3f54
BS
4926static int mem_cgroup_soft_limit_tree_init(void)
4927{
4928 struct mem_cgroup_tree_per_node *rtpn;
4929 struct mem_cgroup_tree_per_zone *rtpz;
4930 int tmp, node, zone;
4931
3ed28fa1 4932 for_each_node(node) {
f64c3f54
BS
4933 tmp = node;
4934 if (!node_state(node, N_NORMAL_MEMORY))
4935 tmp = -1;
4936 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4937 if (!rtpn)
c3cecc68 4938 goto err_cleanup;
f64c3f54
BS
4939
4940 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4941
4942 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4943 rtpz = &rtpn->rb_tree_per_zone[zone];
4944 rtpz->rb_root = RB_ROOT;
4945 spin_lock_init(&rtpz->lock);
4946 }
4947 }
4948 return 0;
c3cecc68
MH
4949
4950err_cleanup:
3ed28fa1 4951 for_each_node(node) {
c3cecc68
MH
4952 if (!soft_limit_tree.rb_tree_per_node[node])
4953 break;
4954 kfree(soft_limit_tree.rb_tree_per_node[node]);
4955 soft_limit_tree.rb_tree_per_node[node] = NULL;
4956 }
4957 return 1;
4958
f64c3f54
BS
4959}
4960
0eb253e2 4961static struct cgroup_subsys_state * __ref
761b3ef5 4962mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4963{
c0ff4b85 4964 struct mem_cgroup *memcg, *parent;
04046e1a 4965 long error = -ENOMEM;
6d12e2d8 4966 int node;
8cdea7c0 4967
c0ff4b85
R
4968 memcg = mem_cgroup_alloc();
4969 if (!memcg)
04046e1a 4970 return ERR_PTR(error);
78fb7466 4971
3ed28fa1 4972 for_each_node(node)
c0ff4b85 4973 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4974 goto free_out;
f64c3f54 4975
c077719b 4976 /* root ? */
28dbc4b6 4977 if (cont->parent == NULL) {
cdec2e42 4978 int cpu;
c077719b 4979 enable_swap_cgroup();
28dbc4b6 4980 parent = NULL;
f64c3f54
BS
4981 if (mem_cgroup_soft_limit_tree_init())
4982 goto free_out;
a41c58a6 4983 root_mem_cgroup = memcg;
cdec2e42
KH
4984 for_each_possible_cpu(cpu) {
4985 struct memcg_stock_pcp *stock =
4986 &per_cpu(memcg_stock, cpu);
4987 INIT_WORK(&stock->work, drain_local_stock);
4988 }
711d3d2c 4989 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4990 } else {
28dbc4b6 4991 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4992 memcg->use_hierarchy = parent->use_hierarchy;
4993 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4994 }
28dbc4b6 4995
18f59ea7 4996 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4997 res_counter_init(&memcg->res, &parent->res);
4998 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4999 /*
5000 * We increment refcnt of the parent to ensure that we can
5001 * safely access it on res_counter_charge/uncharge.
5002 * This refcnt will be decremented when freeing this
5003 * mem_cgroup(see mem_cgroup_put).
5004 */
5005 mem_cgroup_get(parent);
18f59ea7 5006 } else {
c0ff4b85
R
5007 res_counter_init(&memcg->res, NULL);
5008 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5009 }
c0ff4b85
R
5010 memcg->last_scanned_node = MAX_NUMNODES;
5011 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5012
a7885eb8 5013 if (parent)
c0ff4b85
R
5014 memcg->swappiness = mem_cgroup_swappiness(parent);
5015 atomic_set(&memcg->refcnt, 1);
5016 memcg->move_charge_at_immigrate = 0;
5017 mutex_init(&memcg->thresholds_lock);
312734c0 5018 spin_lock_init(&memcg->move_lock);
c0ff4b85 5019 return &memcg->css;
6d12e2d8 5020free_out:
c0ff4b85 5021 __mem_cgroup_free(memcg);
04046e1a 5022 return ERR_PTR(error);
8cdea7c0
BS
5023}
5024
761b3ef5 5025static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5026{
c0ff4b85 5027 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5028
c0ff4b85 5029 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5030}
5031
761b3ef5 5032static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5033{
c0ff4b85 5034 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5035
761b3ef5 5036 kmem_cgroup_destroy(cont);
d1a4c0b3 5037
c0ff4b85 5038 mem_cgroup_put(memcg);
8cdea7c0
BS
5039}
5040
5041static int mem_cgroup_populate(struct cgroup_subsys *ss,
5042 struct cgroup *cont)
5043{
8c7c6e34
KH
5044 int ret;
5045
5046 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5047 ARRAY_SIZE(mem_cgroup_files));
5048
5049 if (!ret)
5050 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5051
5052 if (!ret)
5053 ret = register_kmem_files(cont, ss);
5054
8c7c6e34 5055 return ret;
8cdea7c0
BS
5056}
5057
02491447 5058#ifdef CONFIG_MMU
7dc74be0 5059/* Handlers for move charge at task migration. */
854ffa8d
DN
5060#define PRECHARGE_COUNT_AT_ONCE 256
5061static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5062{
854ffa8d
DN
5063 int ret = 0;
5064 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5065 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5066
c0ff4b85 5067 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5068 mc.precharge += count;
5069 /* we don't need css_get for root */
5070 return ret;
5071 }
5072 /* try to charge at once */
5073 if (count > 1) {
5074 struct res_counter *dummy;
5075 /*
c0ff4b85 5076 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5077 * by cgroup_lock_live_cgroup() that it is not removed and we
5078 * are still under the same cgroup_mutex. So we can postpone
5079 * css_get().
5080 */
c0ff4b85 5081 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5082 goto one_by_one;
c0ff4b85 5083 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5084 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5085 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5086 goto one_by_one;
5087 }
5088 mc.precharge += count;
854ffa8d
DN
5089 return ret;
5090 }
5091one_by_one:
5092 /* fall back to one by one charge */
5093 while (count--) {
5094 if (signal_pending(current)) {
5095 ret = -EINTR;
5096 break;
5097 }
5098 if (!batch_count--) {
5099 batch_count = PRECHARGE_COUNT_AT_ONCE;
5100 cond_resched();
5101 }
c0ff4b85
R
5102 ret = __mem_cgroup_try_charge(NULL,
5103 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5104 if (ret)
854ffa8d 5105 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5106 return ret;
854ffa8d
DN
5107 mc.precharge++;
5108 }
4ffef5fe
DN
5109 return ret;
5110}
5111
5112/**
5113 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5114 * @vma: the vma the pte to be checked belongs
5115 * @addr: the address corresponding to the pte to be checked
5116 * @ptent: the pte to be checked
02491447 5117 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5118 *
5119 * Returns
5120 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5121 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5122 * move charge. if @target is not NULL, the page is stored in target->page
5123 * with extra refcnt got(Callers should handle it).
02491447
DN
5124 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5125 * target for charge migration. if @target is not NULL, the entry is stored
5126 * in target->ent.
4ffef5fe
DN
5127 *
5128 * Called with pte lock held.
5129 */
4ffef5fe
DN
5130union mc_target {
5131 struct page *page;
02491447 5132 swp_entry_t ent;
4ffef5fe
DN
5133};
5134
4ffef5fe
DN
5135enum mc_target_type {
5136 MC_TARGET_NONE, /* not used */
5137 MC_TARGET_PAGE,
02491447 5138 MC_TARGET_SWAP,
4ffef5fe
DN
5139};
5140
90254a65
DN
5141static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5142 unsigned long addr, pte_t ptent)
4ffef5fe 5143{
90254a65 5144 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5145
90254a65
DN
5146 if (!page || !page_mapped(page))
5147 return NULL;
5148 if (PageAnon(page)) {
5149 /* we don't move shared anon */
be22aece 5150 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5151 return NULL;
87946a72
DN
5152 } else if (!move_file())
5153 /* we ignore mapcount for file pages */
90254a65
DN
5154 return NULL;
5155 if (!get_page_unless_zero(page))
5156 return NULL;
5157
5158 return page;
5159}
5160
5161static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5162 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5163{
5164 int usage_count;
5165 struct page *page = NULL;
5166 swp_entry_t ent = pte_to_swp_entry(ptent);
5167
5168 if (!move_anon() || non_swap_entry(ent))
5169 return NULL;
5170 usage_count = mem_cgroup_count_swap_user(ent, &page);
5171 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5172 if (page)
5173 put_page(page);
90254a65 5174 return NULL;
02491447 5175 }
90254a65
DN
5176 if (do_swap_account)
5177 entry->val = ent.val;
5178
5179 return page;
5180}
5181
87946a72
DN
5182static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5183 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5184{
5185 struct page *page = NULL;
5186 struct inode *inode;
5187 struct address_space *mapping;
5188 pgoff_t pgoff;
5189
5190 if (!vma->vm_file) /* anonymous vma */
5191 return NULL;
5192 if (!move_file())
5193 return NULL;
5194
5195 inode = vma->vm_file->f_path.dentry->d_inode;
5196 mapping = vma->vm_file->f_mapping;
5197 if (pte_none(ptent))
5198 pgoff = linear_page_index(vma, addr);
5199 else /* pte_file(ptent) is true */
5200 pgoff = pte_to_pgoff(ptent);
5201
5202 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5203 page = find_get_page(mapping, pgoff);
5204
5205#ifdef CONFIG_SWAP
5206 /* shmem/tmpfs may report page out on swap: account for that too. */
5207 if (radix_tree_exceptional_entry(page)) {
5208 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5209 if (do_swap_account)
aa3b1895
HD
5210 *entry = swap;
5211 page = find_get_page(&swapper_space, swap.val);
87946a72 5212 }
aa3b1895 5213#endif
87946a72
DN
5214 return page;
5215}
5216
90254a65
DN
5217static int is_target_pte_for_mc(struct vm_area_struct *vma,
5218 unsigned long addr, pte_t ptent, union mc_target *target)
5219{
5220 struct page *page = NULL;
5221 struct page_cgroup *pc;
5222 int ret = 0;
5223 swp_entry_t ent = { .val = 0 };
5224
5225 if (pte_present(ptent))
5226 page = mc_handle_present_pte(vma, addr, ptent);
5227 else if (is_swap_pte(ptent))
5228 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5229 else if (pte_none(ptent) || pte_file(ptent))
5230 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5231
5232 if (!page && !ent.val)
5233 return 0;
02491447
DN
5234 if (page) {
5235 pc = lookup_page_cgroup(page);
5236 /*
5237 * Do only loose check w/o page_cgroup lock.
5238 * mem_cgroup_move_account() checks the pc is valid or not under
5239 * the lock.
5240 */
5241 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5242 ret = MC_TARGET_PAGE;
5243 if (target)
5244 target->page = page;
5245 }
5246 if (!ret || !target)
5247 put_page(page);
5248 }
90254a65
DN
5249 /* There is a swap entry and a page doesn't exist or isn't charged */
5250 if (ent.val && !ret &&
9fb4b7cc 5251 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5252 ret = MC_TARGET_SWAP;
5253 if (target)
5254 target->ent = ent;
4ffef5fe 5255 }
4ffef5fe
DN
5256 return ret;
5257}
5258
5259static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5260 unsigned long addr, unsigned long end,
5261 struct mm_walk *walk)
5262{
5263 struct vm_area_struct *vma = walk->private;
5264 pte_t *pte;
5265 spinlock_t *ptl;
5266
03319327 5267 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5268 if (pmd_trans_unstable(pmd))
5269 return 0;
03319327 5270
4ffef5fe
DN
5271 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5272 for (; addr != end; pte++, addr += PAGE_SIZE)
5273 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5274 mc.precharge++; /* increment precharge temporarily */
5275 pte_unmap_unlock(pte - 1, ptl);
5276 cond_resched();
5277
7dc74be0
DN
5278 return 0;
5279}
5280
4ffef5fe
DN
5281static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5282{
5283 unsigned long precharge;
5284 struct vm_area_struct *vma;
5285
dfe076b0 5286 down_read(&mm->mmap_sem);
4ffef5fe
DN
5287 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5288 struct mm_walk mem_cgroup_count_precharge_walk = {
5289 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5290 .mm = mm,
5291 .private = vma,
5292 };
5293 if (is_vm_hugetlb_page(vma))
5294 continue;
4ffef5fe
DN
5295 walk_page_range(vma->vm_start, vma->vm_end,
5296 &mem_cgroup_count_precharge_walk);
5297 }
dfe076b0 5298 up_read(&mm->mmap_sem);
4ffef5fe
DN
5299
5300 precharge = mc.precharge;
5301 mc.precharge = 0;
5302
5303 return precharge;
5304}
5305
4ffef5fe
DN
5306static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5307{
dfe076b0
DN
5308 unsigned long precharge = mem_cgroup_count_precharge(mm);
5309
5310 VM_BUG_ON(mc.moving_task);
5311 mc.moving_task = current;
5312 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5313}
5314
dfe076b0
DN
5315/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5316static void __mem_cgroup_clear_mc(void)
4ffef5fe 5317{
2bd9bb20
KH
5318 struct mem_cgroup *from = mc.from;
5319 struct mem_cgroup *to = mc.to;
5320
4ffef5fe 5321 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5322 if (mc.precharge) {
5323 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5324 mc.precharge = 0;
5325 }
5326 /*
5327 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5328 * we must uncharge here.
5329 */
5330 if (mc.moved_charge) {
5331 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5332 mc.moved_charge = 0;
4ffef5fe 5333 }
483c30b5
DN
5334 /* we must fixup refcnts and charges */
5335 if (mc.moved_swap) {
483c30b5
DN
5336 /* uncharge swap account from the old cgroup */
5337 if (!mem_cgroup_is_root(mc.from))
5338 res_counter_uncharge(&mc.from->memsw,
5339 PAGE_SIZE * mc.moved_swap);
5340 __mem_cgroup_put(mc.from, mc.moved_swap);
5341
5342 if (!mem_cgroup_is_root(mc.to)) {
5343 /*
5344 * we charged both to->res and to->memsw, so we should
5345 * uncharge to->res.
5346 */
5347 res_counter_uncharge(&mc.to->res,
5348 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5349 }
5350 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5351 mc.moved_swap = 0;
5352 }
dfe076b0
DN
5353 memcg_oom_recover(from);
5354 memcg_oom_recover(to);
5355 wake_up_all(&mc.waitq);
5356}
5357
5358static void mem_cgroup_clear_mc(void)
5359{
5360 struct mem_cgroup *from = mc.from;
5361
5362 /*
5363 * we must clear moving_task before waking up waiters at the end of
5364 * task migration.
5365 */
5366 mc.moving_task = NULL;
5367 __mem_cgroup_clear_mc();
2bd9bb20 5368 spin_lock(&mc.lock);
4ffef5fe
DN
5369 mc.from = NULL;
5370 mc.to = NULL;
2bd9bb20 5371 spin_unlock(&mc.lock);
32047e2a 5372 mem_cgroup_end_move(from);
4ffef5fe
DN
5373}
5374
761b3ef5
LZ
5375static int mem_cgroup_can_attach(struct cgroup *cgroup,
5376 struct cgroup_taskset *tset)
7dc74be0 5377{
2f7ee569 5378 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5379 int ret = 0;
c0ff4b85 5380 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5381
c0ff4b85 5382 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5383 struct mm_struct *mm;
5384 struct mem_cgroup *from = mem_cgroup_from_task(p);
5385
c0ff4b85 5386 VM_BUG_ON(from == memcg);
7dc74be0
DN
5387
5388 mm = get_task_mm(p);
5389 if (!mm)
5390 return 0;
7dc74be0 5391 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5392 if (mm->owner == p) {
5393 VM_BUG_ON(mc.from);
5394 VM_BUG_ON(mc.to);
5395 VM_BUG_ON(mc.precharge);
854ffa8d 5396 VM_BUG_ON(mc.moved_charge);
483c30b5 5397 VM_BUG_ON(mc.moved_swap);
32047e2a 5398 mem_cgroup_start_move(from);
2bd9bb20 5399 spin_lock(&mc.lock);
4ffef5fe 5400 mc.from = from;
c0ff4b85 5401 mc.to = memcg;
2bd9bb20 5402 spin_unlock(&mc.lock);
dfe076b0 5403 /* We set mc.moving_task later */
4ffef5fe
DN
5404
5405 ret = mem_cgroup_precharge_mc(mm);
5406 if (ret)
5407 mem_cgroup_clear_mc();
dfe076b0
DN
5408 }
5409 mmput(mm);
7dc74be0
DN
5410 }
5411 return ret;
5412}
5413
761b3ef5
LZ
5414static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5415 struct cgroup_taskset *tset)
7dc74be0 5416{
4ffef5fe 5417 mem_cgroup_clear_mc();
7dc74be0
DN
5418}
5419
4ffef5fe
DN
5420static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5421 unsigned long addr, unsigned long end,
5422 struct mm_walk *walk)
7dc74be0 5423{
4ffef5fe
DN
5424 int ret = 0;
5425 struct vm_area_struct *vma = walk->private;
5426 pte_t *pte;
5427 spinlock_t *ptl;
5428
03319327 5429 split_huge_page_pmd(walk->mm, pmd);
1a5a9906
AA
5430 if (pmd_trans_unstable(pmd))
5431 return 0;
4ffef5fe
DN
5432retry:
5433 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5434 for (; addr != end; addr += PAGE_SIZE) {
5435 pte_t ptent = *(pte++);
5436 union mc_target target;
5437 int type;
5438 struct page *page;
5439 struct page_cgroup *pc;
02491447 5440 swp_entry_t ent;
4ffef5fe
DN
5441
5442 if (!mc.precharge)
5443 break;
5444
5445 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5446 switch (type) {
5447 case MC_TARGET_PAGE:
5448 page = target.page;
5449 if (isolate_lru_page(page))
5450 goto put;
5451 pc = lookup_page_cgroup(page);
7ec99d62
JW
5452 if (!mem_cgroup_move_account(page, 1, pc,
5453 mc.from, mc.to, false)) {
4ffef5fe 5454 mc.precharge--;
854ffa8d
DN
5455 /* we uncharge from mc.from later. */
5456 mc.moved_charge++;
4ffef5fe
DN
5457 }
5458 putback_lru_page(page);
5459put: /* is_target_pte_for_mc() gets the page */
5460 put_page(page);
5461 break;
02491447
DN
5462 case MC_TARGET_SWAP:
5463 ent = target.ent;
483c30b5
DN
5464 if (!mem_cgroup_move_swap_account(ent,
5465 mc.from, mc.to, false)) {
02491447 5466 mc.precharge--;
483c30b5
DN
5467 /* we fixup refcnts and charges later. */
5468 mc.moved_swap++;
5469 }
02491447 5470 break;
4ffef5fe
DN
5471 default:
5472 break;
5473 }
5474 }
5475 pte_unmap_unlock(pte - 1, ptl);
5476 cond_resched();
5477
5478 if (addr != end) {
5479 /*
5480 * We have consumed all precharges we got in can_attach().
5481 * We try charge one by one, but don't do any additional
5482 * charges to mc.to if we have failed in charge once in attach()
5483 * phase.
5484 */
854ffa8d 5485 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5486 if (!ret)
5487 goto retry;
5488 }
5489
5490 return ret;
5491}
5492
5493static void mem_cgroup_move_charge(struct mm_struct *mm)
5494{
5495 struct vm_area_struct *vma;
5496
5497 lru_add_drain_all();
dfe076b0
DN
5498retry:
5499 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5500 /*
5501 * Someone who are holding the mmap_sem might be waiting in
5502 * waitq. So we cancel all extra charges, wake up all waiters,
5503 * and retry. Because we cancel precharges, we might not be able
5504 * to move enough charges, but moving charge is a best-effort
5505 * feature anyway, so it wouldn't be a big problem.
5506 */
5507 __mem_cgroup_clear_mc();
5508 cond_resched();
5509 goto retry;
5510 }
4ffef5fe
DN
5511 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5512 int ret;
5513 struct mm_walk mem_cgroup_move_charge_walk = {
5514 .pmd_entry = mem_cgroup_move_charge_pte_range,
5515 .mm = mm,
5516 .private = vma,
5517 };
5518 if (is_vm_hugetlb_page(vma))
5519 continue;
4ffef5fe
DN
5520 ret = walk_page_range(vma->vm_start, vma->vm_end,
5521 &mem_cgroup_move_charge_walk);
5522 if (ret)
5523 /*
5524 * means we have consumed all precharges and failed in
5525 * doing additional charge. Just abandon here.
5526 */
5527 break;
5528 }
dfe076b0 5529 up_read(&mm->mmap_sem);
7dc74be0
DN
5530}
5531
761b3ef5
LZ
5532static void mem_cgroup_move_task(struct cgroup *cont,
5533 struct cgroup_taskset *tset)
67e465a7 5534{
2f7ee569 5535 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5536 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5537
dfe076b0 5538 if (mm) {
a433658c
KM
5539 if (mc.to)
5540 mem_cgroup_move_charge(mm);
5541 put_swap_token(mm);
dfe076b0
DN
5542 mmput(mm);
5543 }
a433658c
KM
5544 if (mc.to)
5545 mem_cgroup_clear_mc();
67e465a7 5546}
5cfb80a7 5547#else /* !CONFIG_MMU */
761b3ef5
LZ
5548static int mem_cgroup_can_attach(struct cgroup *cgroup,
5549 struct cgroup_taskset *tset)
5cfb80a7
DN
5550{
5551 return 0;
5552}
761b3ef5
LZ
5553static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5554 struct cgroup_taskset *tset)
5cfb80a7
DN
5555{
5556}
761b3ef5
LZ
5557static void mem_cgroup_move_task(struct cgroup *cont,
5558 struct cgroup_taskset *tset)
5cfb80a7
DN
5559{
5560}
5561#endif
67e465a7 5562
8cdea7c0
BS
5563struct cgroup_subsys mem_cgroup_subsys = {
5564 .name = "memory",
5565 .subsys_id = mem_cgroup_subsys_id,
5566 .create = mem_cgroup_create,
df878fb0 5567 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5568 .destroy = mem_cgroup_destroy,
5569 .populate = mem_cgroup_populate,
7dc74be0
DN
5570 .can_attach = mem_cgroup_can_attach,
5571 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5572 .attach = mem_cgroup_move_task,
6d12e2d8 5573 .early_init = 0,
04046e1a 5574 .use_id = 1,
8cdea7c0 5575};
c077719b
KH
5576
5577#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5578static int __init enable_swap_account(char *s)
5579{
5580 /* consider enabled if no parameter or 1 is given */
a2c8990a 5581 if (!strcmp(s, "1"))
a42c390c 5582 really_do_swap_account = 1;
a2c8990a 5583 else if (!strcmp(s, "0"))
a42c390c
MH
5584 really_do_swap_account = 0;
5585 return 1;
5586}
a2c8990a 5587__setup("swapaccount=", enable_swap_account);
c077719b 5588
c077719b 5589#endif