]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
thp: move preallocated PTE page table on move_huge_pmd()
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
08e552c6 58#include "internal.h"
d1a4c0b3 59#include <net/sock.h>
4bd2c1ee 60#include <net/ip.h>
d1a4c0b3 61#include <net/tcp_memcontrol.h>
f35c3a8e 62#include "slab.h"
8cdea7c0 63
8697d331
BS
64#include <asm/uaccess.h>
65
cc8e970c
KM
66#include <trace/events/vmscan.h>
67
a181b0e8 68struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
69EXPORT_SYMBOL(mem_cgroup_subsys);
70
a181b0e8 71#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 72static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 73
c255a458 74#ifdef CONFIG_MEMCG_SWAP
338c8431 75/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 76int do_swap_account __read_mostly;
a42c390c
MH
77
78/* for remember boot option*/
c255a458 79#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
80static int really_do_swap_account __initdata = 1;
81#else
82static int really_do_swap_account __initdata = 0;
83#endif
84
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
89
af7c4b0e
JW
90static const char * const mem_cgroup_stat_names[] = {
91 "cache",
92 "rss",
b070e65c 93 "rss_huge",
af7c4b0e 94 "mapped_file",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
e9f8974f
JW
99enum mem_cgroup_events_index {
100 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
101 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
102 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
103 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
104 MEM_CGROUP_EVENTS_NSTATS,
105};
af7c4b0e
JW
106
107static const char * const mem_cgroup_events_names[] = {
108 "pgpgin",
109 "pgpgout",
110 "pgfault",
111 "pgmajfault",
112};
113
58cf188e
SZ
114static const char * const mem_cgroup_lru_names[] = {
115 "inactive_anon",
116 "active_anon",
117 "inactive_file",
118 "active_file",
119 "unevictable",
120};
121
7a159cc9
JW
122/*
123 * Per memcg event counter is incremented at every pagein/pageout. With THP,
124 * it will be incremated by the number of pages. This counter is used for
125 * for trigger some periodic events. This is straightforward and better
126 * than using jiffies etc. to handle periodic memcg event.
127 */
128enum mem_cgroup_events_target {
129 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 130 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 131 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
132 MEM_CGROUP_NTARGETS,
133};
a0db00fc
KS
134#define THRESHOLDS_EVENTS_TARGET 128
135#define SOFTLIMIT_EVENTS_TARGET 1024
136#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 137
d52aa412 138struct mem_cgroup_stat_cpu {
7a159cc9 139 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 140 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 141 unsigned long nr_page_events;
7a159cc9 142 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
143};
144
527a5ec9 145struct mem_cgroup_reclaim_iter {
5f578161
MH
146 /*
147 * last scanned hierarchy member. Valid only if last_dead_count
148 * matches memcg->dead_count of the hierarchy root group.
149 */
542f85f9 150 struct mem_cgroup *last_visited;
5f578161
MH
151 unsigned long last_dead_count;
152
527a5ec9
JW
153 /* scan generation, increased every round-trip */
154 unsigned int generation;
155};
156
6d12e2d8
KH
157/*
158 * per-zone information in memory controller.
159 */
6d12e2d8 160struct mem_cgroup_per_zone {
6290df54 161 struct lruvec lruvec;
1eb49272 162 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 163
527a5ec9
JW
164 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
165
bb4cc1a8
AM
166 struct rb_node tree_node; /* RB tree node */
167 unsigned long long usage_in_excess;/* Set to the value by which */
168 /* the soft limit is exceeded*/
169 bool on_tree;
d79154bb 170 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 171 /* use container_of */
6d12e2d8 172};
6d12e2d8
KH
173
174struct mem_cgroup_per_node {
175 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
176};
177
bb4cc1a8
AM
178/*
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
181 */
182
183struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
186};
187
188struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190};
191
192struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194};
195
196static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197
2e72b634
KS
198struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
201};
202
9490ff27 203/* For threshold */
2e72b634 204struct mem_cgroup_threshold_ary {
748dad36 205 /* An array index points to threshold just below or equal to usage. */
5407a562 206 int current_threshold;
2e72b634
KS
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
211};
2c488db2
KS
212
213struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
216 /*
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
220 */
221 struct mem_cgroup_threshold_ary *spare;
222};
223
9490ff27
KH
224/* for OOM */
225struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
228};
2e72b634 229
c0ff4b85
R
230static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 232
8cdea7c0
BS
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 *
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
8cdea7c0
BS
243 */
244struct mem_cgroup {
245 struct cgroup_subsys_state css;
246 /*
247 * the counter to account for memory usage
248 */
249 struct res_counter res;
59927fb9 250
70ddf637
AV
251 /* vmpressure notifications */
252 struct vmpressure vmpressure;
253
465939a1
LZ
254 /*
255 * the counter to account for mem+swap usage.
256 */
257 struct res_counter memsw;
59927fb9 258
510fc4e1
GC
259 /*
260 * the counter to account for kernel memory usage.
261 */
262 struct res_counter kmem;
18f59ea7
BS
263 /*
264 * Should the accounting and control be hierarchical, per subtree?
265 */
266 bool use_hierarchy;
510fc4e1 267 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
268
269 bool oom_lock;
270 atomic_t under_oom;
3812c8c8 271 atomic_t oom_wakeups;
79dfdacc 272
1f4c025b 273 int swappiness;
3c11ecf4
KH
274 /* OOM-Killer disable */
275 int oom_kill_disable;
a7885eb8 276
22a668d7
KH
277 /* set when res.limit == memsw.limit */
278 bool memsw_is_minimum;
279
2e72b634
KS
280 /* protect arrays of thresholds */
281 struct mutex thresholds_lock;
282
283 /* thresholds for memory usage. RCU-protected */
2c488db2 284 struct mem_cgroup_thresholds thresholds;
907860ed 285
2e72b634 286 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 287 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 288
9490ff27
KH
289 /* For oom notifier event fd */
290 struct list_head oom_notify;
185efc0f 291
7dc74be0
DN
292 /*
293 * Should we move charges of a task when a task is moved into this
294 * mem_cgroup ? And what type of charges should we move ?
295 */
f894ffa8 296 unsigned long move_charge_at_immigrate;
619d094b
KH
297 /*
298 * set > 0 if pages under this cgroup are moving to other cgroup.
299 */
300 atomic_t moving_account;
312734c0
KH
301 /* taken only while moving_account > 0 */
302 spinlock_t move_lock;
d52aa412 303 /*
c62b1a3b 304 * percpu counter.
d52aa412 305 */
3a7951b4 306 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
307 /*
308 * used when a cpu is offlined or other synchronizations
309 * See mem_cgroup_read_stat().
310 */
311 struct mem_cgroup_stat_cpu nocpu_base;
312 spinlock_t pcp_counter_lock;
d1a4c0b3 313
5f578161 314 atomic_t dead_count;
4bd2c1ee 315#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 316 struct cg_proto tcp_mem;
d1a4c0b3 317#endif
2633d7a0
GC
318#if defined(CONFIG_MEMCG_KMEM)
319 /* analogous to slab_common's slab_caches list. per-memcg */
320 struct list_head memcg_slab_caches;
321 /* Not a spinlock, we can take a lot of time walking the list */
322 struct mutex slab_caches_mutex;
323 /* Index in the kmem_cache->memcg_params->memcg_caches array */
324 int kmemcg_id;
325#endif
45cf7ebd
GC
326
327 int last_scanned_node;
328#if MAX_NUMNODES > 1
329 nodemask_t scan_nodes;
330 atomic_t numainfo_events;
331 atomic_t numainfo_updating;
332#endif
70ddf637 333
54f72fe0
JW
334 struct mem_cgroup_per_node *nodeinfo[0];
335 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
336};
337
45cf7ebd
GC
338static size_t memcg_size(void)
339{
340 return sizeof(struct mem_cgroup) +
341 nr_node_ids * sizeof(struct mem_cgroup_per_node);
342}
343
510fc4e1
GC
344/* internal only representation about the status of kmem accounting. */
345enum {
346 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 347 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 348 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
349};
350
a8964b9b
GC
351/* We account when limit is on, but only after call sites are patched */
352#define KMEM_ACCOUNTED_MASK \
353 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
354
355#ifdef CONFIG_MEMCG_KMEM
356static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
357{
358 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
359}
7de37682
GC
360
361static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
362{
363 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
364}
365
a8964b9b
GC
366static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
367{
368 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
369}
370
55007d84
GC
371static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
372{
373 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
374}
375
7de37682
GC
376static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
377{
10d5ebf4
LZ
378 /*
379 * Our caller must use css_get() first, because memcg_uncharge_kmem()
380 * will call css_put() if it sees the memcg is dead.
381 */
382 smp_wmb();
7de37682
GC
383 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
384 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
385}
386
387static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
388{
389 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
390 &memcg->kmem_account_flags);
391}
510fc4e1
GC
392#endif
393
7dc74be0
DN
394/* Stuffs for move charges at task migration. */
395/*
ee5e8472
GC
396 * Types of charges to be moved. "move_charge_at_immitgrate" and
397 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
398 */
399enum move_type {
4ffef5fe 400 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 401 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
402 NR_MOVE_TYPE,
403};
404
4ffef5fe
DN
405/* "mc" and its members are protected by cgroup_mutex */
406static struct move_charge_struct {
b1dd693e 407 spinlock_t lock; /* for from, to */
4ffef5fe
DN
408 struct mem_cgroup *from;
409 struct mem_cgroup *to;
ee5e8472 410 unsigned long immigrate_flags;
4ffef5fe 411 unsigned long precharge;
854ffa8d 412 unsigned long moved_charge;
483c30b5 413 unsigned long moved_swap;
8033b97c
DN
414 struct task_struct *moving_task; /* a task moving charges */
415 wait_queue_head_t waitq; /* a waitq for other context */
416} mc = {
2bd9bb20 417 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
418 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
419};
4ffef5fe 420
90254a65
DN
421static bool move_anon(void)
422{
ee5e8472 423 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
424}
425
87946a72
DN
426static bool move_file(void)
427{
ee5e8472 428 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
429}
430
4e416953
BS
431/*
432 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
433 * limit reclaim to prevent infinite loops, if they ever occur.
434 */
a0db00fc 435#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 436#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 437
217bc319
KH
438enum charge_type {
439 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 440 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 441 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 442 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
443 NR_CHARGE_TYPE,
444};
445
8c7c6e34 446/* for encoding cft->private value on file */
86ae53e1
GC
447enum res_type {
448 _MEM,
449 _MEMSWAP,
450 _OOM_TYPE,
510fc4e1 451 _KMEM,
86ae53e1
GC
452};
453
a0db00fc
KS
454#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
455#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 456#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
457/* Used for OOM nofiier */
458#define OOM_CONTROL (0)
8c7c6e34 459
75822b44
BS
460/*
461 * Reclaim flags for mem_cgroup_hierarchical_reclaim
462 */
463#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
464#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
465#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
466#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
467
0999821b
GC
468/*
469 * The memcg_create_mutex will be held whenever a new cgroup is created.
470 * As a consequence, any change that needs to protect against new child cgroups
471 * appearing has to hold it as well.
472 */
473static DEFINE_MUTEX(memcg_create_mutex);
474
b2145145
WL
475struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
476{
a7c6d554 477 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
478}
479
70ddf637
AV
480/* Some nice accessors for the vmpressure. */
481struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
482{
483 if (!memcg)
484 memcg = root_mem_cgroup;
485 return &memcg->vmpressure;
486}
487
488struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
489{
490 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
491}
492
493struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
494{
495 return &mem_cgroup_from_css(css)->vmpressure;
496}
497
7ffc0edc
MH
498static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
499{
500 return (memcg == root_mem_cgroup);
501}
502
4219b2da
LZ
503/*
504 * We restrict the id in the range of [1, 65535], so it can fit into
505 * an unsigned short.
506 */
507#define MEM_CGROUP_ID_MAX USHRT_MAX
508
34c00c31
LZ
509static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
510{
511 /*
512 * The ID of the root cgroup is 0, but memcg treat 0 as an
513 * invalid ID, so we return (cgroup_id + 1).
514 */
515 return memcg->css.cgroup->id + 1;
516}
517
518static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
519{
520 struct cgroup_subsys_state *css;
521
522 css = css_from_id(id - 1, &mem_cgroup_subsys);
523 return mem_cgroup_from_css(css);
524}
525
e1aab161 526/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 527#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 528
e1aab161
GC
529void sock_update_memcg(struct sock *sk)
530{
376be5ff 531 if (mem_cgroup_sockets_enabled) {
e1aab161 532 struct mem_cgroup *memcg;
3f134619 533 struct cg_proto *cg_proto;
e1aab161
GC
534
535 BUG_ON(!sk->sk_prot->proto_cgroup);
536
f3f511e1
GC
537 /* Socket cloning can throw us here with sk_cgrp already
538 * filled. It won't however, necessarily happen from
539 * process context. So the test for root memcg given
540 * the current task's memcg won't help us in this case.
541 *
542 * Respecting the original socket's memcg is a better
543 * decision in this case.
544 */
545 if (sk->sk_cgrp) {
546 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 547 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
548 return;
549 }
550
e1aab161
GC
551 rcu_read_lock();
552 memcg = mem_cgroup_from_task(current);
3f134619 553 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
554 if (!mem_cgroup_is_root(memcg) &&
555 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 556 sk->sk_cgrp = cg_proto;
e1aab161
GC
557 }
558 rcu_read_unlock();
559 }
560}
561EXPORT_SYMBOL(sock_update_memcg);
562
563void sock_release_memcg(struct sock *sk)
564{
376be5ff 565 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
566 struct mem_cgroup *memcg;
567 WARN_ON(!sk->sk_cgrp->memcg);
568 memcg = sk->sk_cgrp->memcg;
5347e5ae 569 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
570 }
571}
d1a4c0b3
GC
572
573struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
574{
575 if (!memcg || mem_cgroup_is_root(memcg))
576 return NULL;
577
2e685cad 578 return &memcg->tcp_mem;
d1a4c0b3
GC
579}
580EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 581
3f134619
GC
582static void disarm_sock_keys(struct mem_cgroup *memcg)
583{
2e685cad 584 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
585 return;
586 static_key_slow_dec(&memcg_socket_limit_enabled);
587}
588#else
589static void disarm_sock_keys(struct mem_cgroup *memcg)
590{
591}
592#endif
593
a8964b9b 594#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
595/*
596 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
597 * The main reason for not using cgroup id for this:
598 * this works better in sparse environments, where we have a lot of memcgs,
599 * but only a few kmem-limited. Or also, if we have, for instance, 200
600 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
601 * 200 entry array for that.
55007d84
GC
602 *
603 * The current size of the caches array is stored in
604 * memcg_limited_groups_array_size. It will double each time we have to
605 * increase it.
606 */
607static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
608int memcg_limited_groups_array_size;
609
55007d84
GC
610/*
611 * MIN_SIZE is different than 1, because we would like to avoid going through
612 * the alloc/free process all the time. In a small machine, 4 kmem-limited
613 * cgroups is a reasonable guess. In the future, it could be a parameter or
614 * tunable, but that is strictly not necessary.
615 *
b8627835 616 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
617 * this constant directly from cgroup, but it is understandable that this is
618 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 619 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
620 * increase ours as well if it increases.
621 */
622#define MEMCG_CACHES_MIN_SIZE 4
b8627835 623#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 624
d7f25f8a
GC
625/*
626 * A lot of the calls to the cache allocation functions are expected to be
627 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
628 * conditional to this static branch, we'll have to allow modules that does
629 * kmem_cache_alloc and the such to see this symbol as well
630 */
a8964b9b 631struct static_key memcg_kmem_enabled_key;
d7f25f8a 632EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
633
634static void disarm_kmem_keys(struct mem_cgroup *memcg)
635{
55007d84 636 if (memcg_kmem_is_active(memcg)) {
a8964b9b 637 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
638 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
639 }
bea207c8
GC
640 /*
641 * This check can't live in kmem destruction function,
642 * since the charges will outlive the cgroup
643 */
644 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
645}
646#else
647static void disarm_kmem_keys(struct mem_cgroup *memcg)
648{
649}
650#endif /* CONFIG_MEMCG_KMEM */
651
652static void disarm_static_keys(struct mem_cgroup *memcg)
653{
654 disarm_sock_keys(memcg);
655 disarm_kmem_keys(memcg);
656}
657
c0ff4b85 658static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 659
f64c3f54 660static struct mem_cgroup_per_zone *
c0ff4b85 661mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 662{
45cf7ebd 663 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 664 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
665}
666
c0ff4b85 667struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 668{
c0ff4b85 669 return &memcg->css;
d324236b
WF
670}
671
f64c3f54 672static struct mem_cgroup_per_zone *
c0ff4b85 673page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 674{
97a6c37b
JW
675 int nid = page_to_nid(page);
676 int zid = page_zonenum(page);
f64c3f54 677
c0ff4b85 678 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
679}
680
bb4cc1a8
AM
681static struct mem_cgroup_tree_per_zone *
682soft_limit_tree_node_zone(int nid, int zid)
683{
684 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
685}
686
687static struct mem_cgroup_tree_per_zone *
688soft_limit_tree_from_page(struct page *page)
689{
690 int nid = page_to_nid(page);
691 int zid = page_zonenum(page);
692
693 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
694}
695
696static void
697__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
698 struct mem_cgroup_per_zone *mz,
699 struct mem_cgroup_tree_per_zone *mctz,
700 unsigned long long new_usage_in_excess)
701{
702 struct rb_node **p = &mctz->rb_root.rb_node;
703 struct rb_node *parent = NULL;
704 struct mem_cgroup_per_zone *mz_node;
705
706 if (mz->on_tree)
707 return;
708
709 mz->usage_in_excess = new_usage_in_excess;
710 if (!mz->usage_in_excess)
711 return;
712 while (*p) {
713 parent = *p;
714 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
715 tree_node);
716 if (mz->usage_in_excess < mz_node->usage_in_excess)
717 p = &(*p)->rb_left;
718 /*
719 * We can't avoid mem cgroups that are over their soft
720 * limit by the same amount
721 */
722 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
723 p = &(*p)->rb_right;
724 }
725 rb_link_node(&mz->tree_node, parent, p);
726 rb_insert_color(&mz->tree_node, &mctz->rb_root);
727 mz->on_tree = true;
728}
729
730static void
731__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
732 struct mem_cgroup_per_zone *mz,
733 struct mem_cgroup_tree_per_zone *mctz)
734{
735 if (!mz->on_tree)
736 return;
737 rb_erase(&mz->tree_node, &mctz->rb_root);
738 mz->on_tree = false;
739}
740
741static void
742mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
743 struct mem_cgroup_per_zone *mz,
744 struct mem_cgroup_tree_per_zone *mctz)
745{
746 spin_lock(&mctz->lock);
747 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
748 spin_unlock(&mctz->lock);
749}
750
751
752static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
753{
754 unsigned long long excess;
755 struct mem_cgroup_per_zone *mz;
756 struct mem_cgroup_tree_per_zone *mctz;
757 int nid = page_to_nid(page);
758 int zid = page_zonenum(page);
759 mctz = soft_limit_tree_from_page(page);
760
761 /*
762 * Necessary to update all ancestors when hierarchy is used.
763 * because their event counter is not touched.
764 */
765 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
766 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
767 excess = res_counter_soft_limit_excess(&memcg->res);
768 /*
769 * We have to update the tree if mz is on RB-tree or
770 * mem is over its softlimit.
771 */
772 if (excess || mz->on_tree) {
773 spin_lock(&mctz->lock);
774 /* if on-tree, remove it */
775 if (mz->on_tree)
776 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
777 /*
778 * Insert again. mz->usage_in_excess will be updated.
779 * If excess is 0, no tree ops.
780 */
781 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
782 spin_unlock(&mctz->lock);
783 }
784 }
785}
786
787static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
788{
789 int node, zone;
790 struct mem_cgroup_per_zone *mz;
791 struct mem_cgroup_tree_per_zone *mctz;
792
793 for_each_node(node) {
794 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
795 mz = mem_cgroup_zoneinfo(memcg, node, zone);
796 mctz = soft_limit_tree_node_zone(node, zone);
797 mem_cgroup_remove_exceeded(memcg, mz, mctz);
798 }
799 }
800}
801
802static struct mem_cgroup_per_zone *
803__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804{
805 struct rb_node *rightmost = NULL;
806 struct mem_cgroup_per_zone *mz;
807
808retry:
809 mz = NULL;
810 rightmost = rb_last(&mctz->rb_root);
811 if (!rightmost)
812 goto done; /* Nothing to reclaim from */
813
814 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
815 /*
816 * Remove the node now but someone else can add it back,
817 * we will to add it back at the end of reclaim to its correct
818 * position in the tree.
819 */
820 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
821 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
822 !css_tryget(&mz->memcg->css))
823 goto retry;
824done:
825 return mz;
826}
827
828static struct mem_cgroup_per_zone *
829mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
830{
831 struct mem_cgroup_per_zone *mz;
832
833 spin_lock(&mctz->lock);
834 mz = __mem_cgroup_largest_soft_limit_node(mctz);
835 spin_unlock(&mctz->lock);
836 return mz;
837}
838
711d3d2c
KH
839/*
840 * Implementation Note: reading percpu statistics for memcg.
841 *
842 * Both of vmstat[] and percpu_counter has threshold and do periodic
843 * synchronization to implement "quick" read. There are trade-off between
844 * reading cost and precision of value. Then, we may have a chance to implement
845 * a periodic synchronizion of counter in memcg's counter.
846 *
847 * But this _read() function is used for user interface now. The user accounts
848 * memory usage by memory cgroup and he _always_ requires exact value because
849 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
850 * have to visit all online cpus and make sum. So, for now, unnecessary
851 * synchronization is not implemented. (just implemented for cpu hotplug)
852 *
853 * If there are kernel internal actions which can make use of some not-exact
854 * value, and reading all cpu value can be performance bottleneck in some
855 * common workload, threashold and synchonization as vmstat[] should be
856 * implemented.
857 */
c0ff4b85 858static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 859 enum mem_cgroup_stat_index idx)
c62b1a3b 860{
7a159cc9 861 long val = 0;
c62b1a3b 862 int cpu;
c62b1a3b 863
711d3d2c
KH
864 get_online_cpus();
865 for_each_online_cpu(cpu)
c0ff4b85 866 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 867#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
868 spin_lock(&memcg->pcp_counter_lock);
869 val += memcg->nocpu_base.count[idx];
870 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
871#endif
872 put_online_cpus();
c62b1a3b
KH
873 return val;
874}
875
c0ff4b85 876static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
877 bool charge)
878{
879 int val = (charge) ? 1 : -1;
bff6bb83 880 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
881}
882
c0ff4b85 883static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
884 enum mem_cgroup_events_index idx)
885{
886 unsigned long val = 0;
887 int cpu;
888
9c567512 889 get_online_cpus();
e9f8974f 890 for_each_online_cpu(cpu)
c0ff4b85 891 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 892#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
893 spin_lock(&memcg->pcp_counter_lock);
894 val += memcg->nocpu_base.events[idx];
895 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 896#endif
9c567512 897 put_online_cpus();
e9f8974f
JW
898 return val;
899}
900
c0ff4b85 901static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 902 struct page *page,
b2402857 903 bool anon, int nr_pages)
d52aa412 904{
c62b1a3b
KH
905 preempt_disable();
906
b2402857
KH
907 /*
908 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
909 * counted as CACHE even if it's on ANON LRU.
910 */
911 if (anon)
912 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 913 nr_pages);
d52aa412 914 else
b2402857 915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 916 nr_pages);
55e462b0 917
b070e65c
DR
918 if (PageTransHuge(page))
919 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
920 nr_pages);
921
e401f176
KH
922 /* pagein of a big page is an event. So, ignore page size */
923 if (nr_pages > 0)
c0ff4b85 924 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 925 else {
c0ff4b85 926 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
927 nr_pages = -nr_pages; /* for event */
928 }
e401f176 929
13114716 930 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 931
c62b1a3b 932 preempt_enable();
6d12e2d8
KH
933}
934
bb2a0de9 935unsigned long
4d7dcca2 936mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
937{
938 struct mem_cgroup_per_zone *mz;
939
940 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
941 return mz->lru_size[lru];
942}
943
944static unsigned long
c0ff4b85 945mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 946 unsigned int lru_mask)
889976db
YH
947{
948 struct mem_cgroup_per_zone *mz;
f156ab93 949 enum lru_list lru;
bb2a0de9
KH
950 unsigned long ret = 0;
951
c0ff4b85 952 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 953
f156ab93
HD
954 for_each_lru(lru) {
955 if (BIT(lru) & lru_mask)
956 ret += mz->lru_size[lru];
bb2a0de9
KH
957 }
958 return ret;
959}
960
961static unsigned long
c0ff4b85 962mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
963 int nid, unsigned int lru_mask)
964{
889976db
YH
965 u64 total = 0;
966 int zid;
967
bb2a0de9 968 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
969 total += mem_cgroup_zone_nr_lru_pages(memcg,
970 nid, zid, lru_mask);
bb2a0de9 971
889976db
YH
972 return total;
973}
bb2a0de9 974
c0ff4b85 975static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 976 unsigned int lru_mask)
6d12e2d8 977{
889976db 978 int nid;
6d12e2d8
KH
979 u64 total = 0;
980
31aaea4a 981 for_each_node_state(nid, N_MEMORY)
c0ff4b85 982 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 983 return total;
d52aa412
KH
984}
985
f53d7ce3
JW
986static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
987 enum mem_cgroup_events_target target)
7a159cc9
JW
988{
989 unsigned long val, next;
990
13114716 991 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 992 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 993 /* from time_after() in jiffies.h */
f53d7ce3
JW
994 if ((long)next - (long)val < 0) {
995 switch (target) {
996 case MEM_CGROUP_TARGET_THRESH:
997 next = val + THRESHOLDS_EVENTS_TARGET;
998 break;
bb4cc1a8
AM
999 case MEM_CGROUP_TARGET_SOFTLIMIT:
1000 next = val + SOFTLIMIT_EVENTS_TARGET;
1001 break;
f53d7ce3
JW
1002 case MEM_CGROUP_TARGET_NUMAINFO:
1003 next = val + NUMAINFO_EVENTS_TARGET;
1004 break;
1005 default:
1006 break;
1007 }
1008 __this_cpu_write(memcg->stat->targets[target], next);
1009 return true;
7a159cc9 1010 }
f53d7ce3 1011 return false;
d2265e6f
KH
1012}
1013
1014/*
1015 * Check events in order.
1016 *
1017 */
c0ff4b85 1018static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1019{
4799401f 1020 preempt_disable();
d2265e6f 1021 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1022 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1023 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1024 bool do_softlimit;
82b3f2a7 1025 bool do_numainfo __maybe_unused;
f53d7ce3 1026
bb4cc1a8
AM
1027 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1028 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1029#if MAX_NUMNODES > 1
1030 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1031 MEM_CGROUP_TARGET_NUMAINFO);
1032#endif
1033 preempt_enable();
1034
c0ff4b85 1035 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1036 if (unlikely(do_softlimit))
1037 mem_cgroup_update_tree(memcg, page);
453a9bf3 1038#if MAX_NUMNODES > 1
f53d7ce3 1039 if (unlikely(do_numainfo))
c0ff4b85 1040 atomic_inc(&memcg->numainfo_events);
453a9bf3 1041#endif
f53d7ce3
JW
1042 } else
1043 preempt_enable();
d2265e6f
KH
1044}
1045
cf475ad2 1046struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1047{
31a78f23
BS
1048 /*
1049 * mm_update_next_owner() may clear mm->owner to NULL
1050 * if it races with swapoff, page migration, etc.
1051 * So this can be called with p == NULL.
1052 */
1053 if (unlikely(!p))
1054 return NULL;
1055
8af01f56 1056 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1057}
1058
a433658c 1059struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1060{
c0ff4b85 1061 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1062
1063 if (!mm)
1064 return NULL;
54595fe2
KH
1065 /*
1066 * Because we have no locks, mm->owner's may be being moved to other
1067 * cgroup. We use css_tryget() here even if this looks
1068 * pessimistic (rather than adding locks here).
1069 */
1070 rcu_read_lock();
1071 do {
c0ff4b85
R
1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 if (unlikely(!memcg))
54595fe2 1074 break;
c0ff4b85 1075 } while (!css_tryget(&memcg->css));
54595fe2 1076 rcu_read_unlock();
c0ff4b85 1077 return memcg;
54595fe2
KH
1078}
1079
16248d8f
MH
1080/*
1081 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1082 * ref. count) or NULL if the whole root's subtree has been visited.
1083 *
1084 * helper function to be used by mem_cgroup_iter
1085 */
1086static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1087 struct mem_cgroup *last_visited)
16248d8f 1088{
492eb21b 1089 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1090
bd8815a6 1091 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1092skip_node:
492eb21b 1093 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1094
1095 /*
1096 * Even if we found a group we have to make sure it is
1097 * alive. css && !memcg means that the groups should be
1098 * skipped and we should continue the tree walk.
1099 * last_visited css is safe to use because it is
1100 * protected by css_get and the tree walk is rcu safe.
1101 */
492eb21b
TH
1102 if (next_css) {
1103 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1104
694fbc0f
AM
1105 if (css_tryget(&mem->css))
1106 return mem;
1107 else {
492eb21b 1108 prev_css = next_css;
16248d8f
MH
1109 goto skip_node;
1110 }
1111 }
1112
1113 return NULL;
1114}
1115
519ebea3
JW
1116static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1117{
1118 /*
1119 * When a group in the hierarchy below root is destroyed, the
1120 * hierarchy iterator can no longer be trusted since it might
1121 * have pointed to the destroyed group. Invalidate it.
1122 */
1123 atomic_inc(&root->dead_count);
1124}
1125
1126static struct mem_cgroup *
1127mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1128 struct mem_cgroup *root,
1129 int *sequence)
1130{
1131 struct mem_cgroup *position = NULL;
1132 /*
1133 * A cgroup destruction happens in two stages: offlining and
1134 * release. They are separated by a RCU grace period.
1135 *
1136 * If the iterator is valid, we may still race with an
1137 * offlining. The RCU lock ensures the object won't be
1138 * released, tryget will fail if we lost the race.
1139 */
1140 *sequence = atomic_read(&root->dead_count);
1141 if (iter->last_dead_count == *sequence) {
1142 smp_rmb();
1143 position = iter->last_visited;
1144 if (position && !css_tryget(&position->css))
1145 position = NULL;
1146 }
1147 return position;
1148}
1149
1150static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1151 struct mem_cgroup *last_visited,
1152 struct mem_cgroup *new_position,
1153 int sequence)
1154{
1155 if (last_visited)
1156 css_put(&last_visited->css);
1157 /*
1158 * We store the sequence count from the time @last_visited was
1159 * loaded successfully instead of rereading it here so that we
1160 * don't lose destruction events in between. We could have
1161 * raced with the destruction of @new_position after all.
1162 */
1163 iter->last_visited = new_position;
1164 smp_wmb();
1165 iter->last_dead_count = sequence;
1166}
1167
5660048c
JW
1168/**
1169 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1170 * @root: hierarchy root
1171 * @prev: previously returned memcg, NULL on first invocation
1172 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1173 *
1174 * Returns references to children of the hierarchy below @root, or
1175 * @root itself, or %NULL after a full round-trip.
1176 *
1177 * Caller must pass the return value in @prev on subsequent
1178 * invocations for reference counting, or use mem_cgroup_iter_break()
1179 * to cancel a hierarchy walk before the round-trip is complete.
1180 *
1181 * Reclaimers can specify a zone and a priority level in @reclaim to
1182 * divide up the memcgs in the hierarchy among all concurrent
1183 * reclaimers operating on the same zone and priority.
1184 */
694fbc0f 1185struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1186 struct mem_cgroup *prev,
694fbc0f 1187 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1188{
9f3a0d09 1189 struct mem_cgroup *memcg = NULL;
542f85f9 1190 struct mem_cgroup *last_visited = NULL;
711d3d2c 1191
694fbc0f
AM
1192 if (mem_cgroup_disabled())
1193 return NULL;
5660048c 1194
9f3a0d09
JW
1195 if (!root)
1196 root = root_mem_cgroup;
7d74b06f 1197
9f3a0d09 1198 if (prev && !reclaim)
542f85f9 1199 last_visited = prev;
14067bb3 1200
9f3a0d09
JW
1201 if (!root->use_hierarchy && root != root_mem_cgroup) {
1202 if (prev)
c40046f3 1203 goto out_css_put;
694fbc0f 1204 return root;
9f3a0d09 1205 }
14067bb3 1206
542f85f9 1207 rcu_read_lock();
9f3a0d09 1208 while (!memcg) {
527a5ec9 1209 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1210 int uninitialized_var(seq);
711d3d2c 1211
527a5ec9
JW
1212 if (reclaim) {
1213 int nid = zone_to_nid(reclaim->zone);
1214 int zid = zone_idx(reclaim->zone);
1215 struct mem_cgroup_per_zone *mz;
1216
1217 mz = mem_cgroup_zoneinfo(root, nid, zid);
1218 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1219 if (prev && reclaim->generation != iter->generation) {
5f578161 1220 iter->last_visited = NULL;
542f85f9
MH
1221 goto out_unlock;
1222 }
5f578161 1223
519ebea3 1224 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1225 }
7d74b06f 1226
694fbc0f 1227 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1228
527a5ec9 1229 if (reclaim) {
519ebea3 1230 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1231
19f39402 1232 if (!memcg)
527a5ec9
JW
1233 iter->generation++;
1234 else if (!prev && memcg)
1235 reclaim->generation = iter->generation;
1236 }
9f3a0d09 1237
694fbc0f 1238 if (prev && !memcg)
542f85f9 1239 goto out_unlock;
9f3a0d09 1240 }
542f85f9
MH
1241out_unlock:
1242 rcu_read_unlock();
c40046f3
MH
1243out_css_put:
1244 if (prev && prev != root)
1245 css_put(&prev->css);
1246
9f3a0d09 1247 return memcg;
14067bb3 1248}
7d74b06f 1249
5660048c
JW
1250/**
1251 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1252 * @root: hierarchy root
1253 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1254 */
1255void mem_cgroup_iter_break(struct mem_cgroup *root,
1256 struct mem_cgroup *prev)
9f3a0d09
JW
1257{
1258 if (!root)
1259 root = root_mem_cgroup;
1260 if (prev && prev != root)
1261 css_put(&prev->css);
1262}
7d74b06f 1263
9f3a0d09
JW
1264/*
1265 * Iteration constructs for visiting all cgroups (under a tree). If
1266 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1267 * be used for reference counting.
1268 */
1269#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1270 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1271 iter != NULL; \
527a5ec9 1272 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1273
9f3a0d09 1274#define for_each_mem_cgroup(iter) \
527a5ec9 1275 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1276 iter != NULL; \
527a5ec9 1277 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1278
68ae564b 1279void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1280{
c0ff4b85 1281 struct mem_cgroup *memcg;
456f998e 1282
456f998e 1283 rcu_read_lock();
c0ff4b85
R
1284 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1285 if (unlikely(!memcg))
456f998e
YH
1286 goto out;
1287
1288 switch (idx) {
456f998e 1289 case PGFAULT:
0e574a93
JW
1290 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1291 break;
1292 case PGMAJFAULT:
1293 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1294 break;
1295 default:
1296 BUG();
1297 }
1298out:
1299 rcu_read_unlock();
1300}
68ae564b 1301EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1302
925b7673
JW
1303/**
1304 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1305 * @zone: zone of the wanted lruvec
fa9add64 1306 * @memcg: memcg of the wanted lruvec
925b7673
JW
1307 *
1308 * Returns the lru list vector holding pages for the given @zone and
1309 * @mem. This can be the global zone lruvec, if the memory controller
1310 * is disabled.
1311 */
1312struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1313 struct mem_cgroup *memcg)
1314{
1315 struct mem_cgroup_per_zone *mz;
bea8c150 1316 struct lruvec *lruvec;
925b7673 1317
bea8c150
HD
1318 if (mem_cgroup_disabled()) {
1319 lruvec = &zone->lruvec;
1320 goto out;
1321 }
925b7673
JW
1322
1323 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1324 lruvec = &mz->lruvec;
1325out:
1326 /*
1327 * Since a node can be onlined after the mem_cgroup was created,
1328 * we have to be prepared to initialize lruvec->zone here;
1329 * and if offlined then reonlined, we need to reinitialize it.
1330 */
1331 if (unlikely(lruvec->zone != zone))
1332 lruvec->zone = zone;
1333 return lruvec;
925b7673
JW
1334}
1335
08e552c6
KH
1336/*
1337 * Following LRU functions are allowed to be used without PCG_LOCK.
1338 * Operations are called by routine of global LRU independently from memcg.
1339 * What we have to take care of here is validness of pc->mem_cgroup.
1340 *
1341 * Changes to pc->mem_cgroup happens when
1342 * 1. charge
1343 * 2. moving account
1344 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1345 * It is added to LRU before charge.
1346 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1347 * When moving account, the page is not on LRU. It's isolated.
1348 */
4f98a2fe 1349
925b7673 1350/**
fa9add64 1351 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1352 * @page: the page
fa9add64 1353 * @zone: zone of the page
925b7673 1354 */
fa9add64 1355struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1356{
08e552c6 1357 struct mem_cgroup_per_zone *mz;
925b7673
JW
1358 struct mem_cgroup *memcg;
1359 struct page_cgroup *pc;
bea8c150 1360 struct lruvec *lruvec;
6d12e2d8 1361
bea8c150
HD
1362 if (mem_cgroup_disabled()) {
1363 lruvec = &zone->lruvec;
1364 goto out;
1365 }
925b7673 1366
08e552c6 1367 pc = lookup_page_cgroup(page);
38c5d72f 1368 memcg = pc->mem_cgroup;
7512102c
HD
1369
1370 /*
fa9add64 1371 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1372 * an uncharged page off lru does nothing to secure
1373 * its former mem_cgroup from sudden removal.
1374 *
1375 * Our caller holds lru_lock, and PageCgroupUsed is updated
1376 * under page_cgroup lock: between them, they make all uses
1377 * of pc->mem_cgroup safe.
1378 */
fa9add64 1379 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1380 pc->mem_cgroup = memcg = root_mem_cgroup;
1381
925b7673 1382 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1383 lruvec = &mz->lruvec;
1384out:
1385 /*
1386 * Since a node can be onlined after the mem_cgroup was created,
1387 * we have to be prepared to initialize lruvec->zone here;
1388 * and if offlined then reonlined, we need to reinitialize it.
1389 */
1390 if (unlikely(lruvec->zone != zone))
1391 lruvec->zone = zone;
1392 return lruvec;
08e552c6 1393}
b69408e8 1394
925b7673 1395/**
fa9add64
HD
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
1399 * @nr_pages: positive when adding or negative when removing
925b7673 1400 *
fa9add64
HD
1401 * This function must be called when a page is added to or removed from an
1402 * lru list.
3f58a829 1403 */
fa9add64
HD
1404void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1405 int nr_pages)
3f58a829
MK
1406{
1407 struct mem_cgroup_per_zone *mz;
fa9add64 1408 unsigned long *lru_size;
3f58a829
MK
1409
1410 if (mem_cgroup_disabled())
1411 return;
1412
fa9add64
HD
1413 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1414 lru_size = mz->lru_size + lru;
1415 *lru_size += nr_pages;
1416 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1417}
544122e5 1418
3e92041d 1419/*
c0ff4b85 1420 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1421 * hierarchy subtree
1422 */
c3ac9a8a
JW
1423bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1424 struct mem_cgroup *memcg)
3e92041d 1425{
91c63734
JW
1426 if (root_memcg == memcg)
1427 return true;
3a981f48 1428 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1429 return false;
b47f77b5 1430 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1431}
1432
1433static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1434 struct mem_cgroup *memcg)
1435{
1436 bool ret;
1437
91c63734 1438 rcu_read_lock();
c3ac9a8a 1439 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1440 rcu_read_unlock();
1441 return ret;
3e92041d
MH
1442}
1443
ffbdccf5
DR
1444bool task_in_mem_cgroup(struct task_struct *task,
1445 const struct mem_cgroup *memcg)
4c4a2214 1446{
0b7f569e 1447 struct mem_cgroup *curr = NULL;
158e0a2d 1448 struct task_struct *p;
ffbdccf5 1449 bool ret;
4c4a2214 1450
158e0a2d 1451 p = find_lock_task_mm(task);
de077d22
DR
1452 if (p) {
1453 curr = try_get_mem_cgroup_from_mm(p->mm);
1454 task_unlock(p);
1455 } else {
1456 /*
1457 * All threads may have already detached their mm's, but the oom
1458 * killer still needs to detect if they have already been oom
1459 * killed to prevent needlessly killing additional tasks.
1460 */
ffbdccf5 1461 rcu_read_lock();
de077d22
DR
1462 curr = mem_cgroup_from_task(task);
1463 if (curr)
1464 css_get(&curr->css);
ffbdccf5 1465 rcu_read_unlock();
de077d22 1466 }
0b7f569e 1467 if (!curr)
ffbdccf5 1468 return false;
d31f56db 1469 /*
c0ff4b85 1470 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1471 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1472 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1473 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1474 */
c0ff4b85 1475 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1476 css_put(&curr->css);
4c4a2214
DR
1477 return ret;
1478}
1479
c56d5c7d 1480int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1481{
9b272977 1482 unsigned long inactive_ratio;
14797e23 1483 unsigned long inactive;
9b272977 1484 unsigned long active;
c772be93 1485 unsigned long gb;
14797e23 1486
4d7dcca2
HD
1487 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1488 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1489
c772be93
KM
1490 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1491 if (gb)
1492 inactive_ratio = int_sqrt(10 * gb);
1493 else
1494 inactive_ratio = 1;
1495
9b272977 1496 return inactive * inactive_ratio < active;
14797e23
KM
1497}
1498
6d61ef40
BS
1499#define mem_cgroup_from_res_counter(counter, member) \
1500 container_of(counter, struct mem_cgroup, member)
1501
19942822 1502/**
9d11ea9f 1503 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1504 * @memcg: the memory cgroup
19942822 1505 *
9d11ea9f 1506 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1507 * pages.
19942822 1508 */
c0ff4b85 1509static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1510{
9d11ea9f
JW
1511 unsigned long long margin;
1512
c0ff4b85 1513 margin = res_counter_margin(&memcg->res);
9d11ea9f 1514 if (do_swap_account)
c0ff4b85 1515 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1516 return margin >> PAGE_SHIFT;
19942822
JW
1517}
1518
1f4c025b 1519int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1520{
a7885eb8 1521 /* root ? */
63876986 1522 if (!css_parent(&memcg->css))
a7885eb8
KM
1523 return vm_swappiness;
1524
bf1ff263 1525 return memcg->swappiness;
a7885eb8
KM
1526}
1527
619d094b
KH
1528/*
1529 * memcg->moving_account is used for checking possibility that some thread is
1530 * calling move_account(). When a thread on CPU-A starts moving pages under
1531 * a memcg, other threads should check memcg->moving_account under
1532 * rcu_read_lock(), like this:
1533 *
1534 * CPU-A CPU-B
1535 * rcu_read_lock()
1536 * memcg->moving_account+1 if (memcg->mocing_account)
1537 * take heavy locks.
1538 * synchronize_rcu() update something.
1539 * rcu_read_unlock()
1540 * start move here.
1541 */
4331f7d3
KH
1542
1543/* for quick checking without looking up memcg */
1544atomic_t memcg_moving __read_mostly;
1545
c0ff4b85 1546static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1547{
4331f7d3 1548 atomic_inc(&memcg_moving);
619d094b 1549 atomic_inc(&memcg->moving_account);
32047e2a
KH
1550 synchronize_rcu();
1551}
1552
c0ff4b85 1553static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1554{
619d094b
KH
1555 /*
1556 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1557 * We check NULL in callee rather than caller.
1558 */
4331f7d3
KH
1559 if (memcg) {
1560 atomic_dec(&memcg_moving);
619d094b 1561 atomic_dec(&memcg->moving_account);
4331f7d3 1562 }
32047e2a 1563}
619d094b 1564
32047e2a
KH
1565/*
1566 * 2 routines for checking "mem" is under move_account() or not.
1567 *
13fd1dd9
AM
1568 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1569 * is used for avoiding races in accounting. If true,
32047e2a
KH
1570 * pc->mem_cgroup may be overwritten.
1571 *
1572 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1573 * under hierarchy of moving cgroups. This is for
1574 * waiting at hith-memory prressure caused by "move".
1575 */
1576
13fd1dd9 1577static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1578{
1579 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1580 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1581}
4b534334 1582
c0ff4b85 1583static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1584{
2bd9bb20
KH
1585 struct mem_cgroup *from;
1586 struct mem_cgroup *to;
4b534334 1587 bool ret = false;
2bd9bb20
KH
1588 /*
1589 * Unlike task_move routines, we access mc.to, mc.from not under
1590 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1591 */
1592 spin_lock(&mc.lock);
1593 from = mc.from;
1594 to = mc.to;
1595 if (!from)
1596 goto unlock;
3e92041d 1597
c0ff4b85
R
1598 ret = mem_cgroup_same_or_subtree(memcg, from)
1599 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1600unlock:
1601 spin_unlock(&mc.lock);
4b534334
KH
1602 return ret;
1603}
1604
c0ff4b85 1605static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1606{
1607 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1608 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1609 DEFINE_WAIT(wait);
1610 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1611 /* moving charge context might have finished. */
1612 if (mc.moving_task)
1613 schedule();
1614 finish_wait(&mc.waitq, &wait);
1615 return true;
1616 }
1617 }
1618 return false;
1619}
1620
312734c0
KH
1621/*
1622 * Take this lock when
1623 * - a code tries to modify page's memcg while it's USED.
1624 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1625 * see mem_cgroup_stolen(), too.
312734c0
KH
1626 */
1627static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629{
1630 spin_lock_irqsave(&memcg->move_lock, *flags);
1631}
1632
1633static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1634 unsigned long *flags)
1635{
1636 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1637}
1638
58cf188e 1639#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1640/**
58cf188e 1641 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1642 * @memcg: The memory cgroup that went over limit
1643 * @p: Task that is going to be killed
1644 *
1645 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1646 * enabled
1647 */
1648void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1649{
1650 struct cgroup *task_cgrp;
1651 struct cgroup *mem_cgrp;
1652 /*
1653 * Need a buffer in BSS, can't rely on allocations. The code relies
1654 * on the assumption that OOM is serialized for memory controller.
1655 * If this assumption is broken, revisit this code.
1656 */
1657 static char memcg_name[PATH_MAX];
1658 int ret;
58cf188e
SZ
1659 struct mem_cgroup *iter;
1660 unsigned int i;
e222432b 1661
58cf188e 1662 if (!p)
e222432b
BS
1663 return;
1664
e222432b
BS
1665 rcu_read_lock();
1666
1667 mem_cgrp = memcg->css.cgroup;
1668 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1669
1670 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1671 if (ret < 0) {
1672 /*
1673 * Unfortunately, we are unable to convert to a useful name
1674 * But we'll still print out the usage information
1675 */
1676 rcu_read_unlock();
1677 goto done;
1678 }
1679 rcu_read_unlock();
1680
d045197f 1681 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1682
1683 rcu_read_lock();
1684 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1685 if (ret < 0) {
1686 rcu_read_unlock();
1687 goto done;
1688 }
1689 rcu_read_unlock();
1690
1691 /*
1692 * Continues from above, so we don't need an KERN_ level
1693 */
d045197f 1694 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1695done:
1696
d045197f 1697 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1698 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1699 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1700 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1701 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1702 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1705 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1706 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1709
1710 for_each_mem_cgroup_tree(iter, memcg) {
1711 pr_info("Memory cgroup stats");
1712
1713 rcu_read_lock();
1714 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1715 if (!ret)
1716 pr_cont(" for %s", memcg_name);
1717 rcu_read_unlock();
1718 pr_cont(":");
1719
1720 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1721 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1722 continue;
1723 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1724 K(mem_cgroup_read_stat(iter, i)));
1725 }
1726
1727 for (i = 0; i < NR_LRU_LISTS; i++)
1728 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1729 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1730
1731 pr_cont("\n");
1732 }
e222432b
BS
1733}
1734
81d39c20
KH
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
c0ff4b85 1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1740{
1741 int num = 0;
7d74b06f
KH
1742 struct mem_cgroup *iter;
1743
c0ff4b85 1744 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1745 num++;
81d39c20
KH
1746 return num;
1747}
1748
a63d83f4
DR
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
9cbb78bb 1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1753{
1754 u64 limit;
a63d83f4 1755
f3e8eb70 1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1757
a63d83f4 1758 /*
9a5a8f19 1759 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1760 */
9a5a8f19
MH
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
a63d83f4
DR
1775}
1776
19965460
DR
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
9cbb78bb
DR
1779{
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
876aafbf 1786 /*
465adcf1
DR
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
876aafbf 1790 */
465adcf1 1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1799 struct css_task_iter it;
9cbb78bb
DR
1800 struct task_struct *task;
1801
72ec7029
TH
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
72ec7029 1816 css_task_iter_end(&it);
9cbb78bb
DR
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
1825 if (points > chosen_points) {
1826 if (chosen)
1827 put_task_struct(chosen);
1828 chosen = task;
1829 chosen_points = points;
1830 get_task_struct(chosen);
1831 }
1832 }
72ec7029 1833 css_task_iter_end(&it);
9cbb78bb
DR
1834 }
1835
1836 if (!chosen)
1837 return;
1838 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1839 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1840 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1841}
1842
5660048c
JW
1843static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1844 gfp_t gfp_mask,
1845 unsigned long flags)
1846{
1847 unsigned long total = 0;
1848 bool noswap = false;
1849 int loop;
1850
1851 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1852 noswap = true;
1853 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1854 noswap = true;
1855
1856 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1857 if (loop)
1858 drain_all_stock_async(memcg);
1859 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1860 /*
1861 * Allow limit shrinkers, which are triggered directly
1862 * by userspace, to catch signals and stop reclaim
1863 * after minimal progress, regardless of the margin.
1864 */
1865 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1866 break;
1867 if (mem_cgroup_margin(memcg))
1868 break;
1869 /*
1870 * If nothing was reclaimed after two attempts, there
1871 * may be no reclaimable pages in this hierarchy.
1872 */
1873 if (loop && !total)
1874 break;
1875 }
1876 return total;
1877}
1878
4d0c066d
KH
1879/**
1880 * test_mem_cgroup_node_reclaimable
dad7557e 1881 * @memcg: the target memcg
4d0c066d
KH
1882 * @nid: the node ID to be checked.
1883 * @noswap : specify true here if the user wants flle only information.
1884 *
1885 * This function returns whether the specified memcg contains any
1886 * reclaimable pages on a node. Returns true if there are any reclaimable
1887 * pages in the node.
1888 */
c0ff4b85 1889static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1890 int nid, bool noswap)
1891{
c0ff4b85 1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1893 return true;
1894 if (noswap || !total_swap_pages)
1895 return false;
c0ff4b85 1896 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1897 return true;
1898 return false;
1899
1900}
bb4cc1a8 1901#if MAX_NUMNODES > 1
889976db
YH
1902
1903/*
1904 * Always updating the nodemask is not very good - even if we have an empty
1905 * list or the wrong list here, we can start from some node and traverse all
1906 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1907 *
1908 */
c0ff4b85 1909static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1910{
1911 int nid;
453a9bf3
KH
1912 /*
1913 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1914 * pagein/pageout changes since the last update.
1915 */
c0ff4b85 1916 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1917 return;
c0ff4b85 1918 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1919 return;
1920
889976db 1921 /* make a nodemask where this memcg uses memory from */
31aaea4a 1922 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1923
31aaea4a 1924 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1925
c0ff4b85
R
1926 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1927 node_clear(nid, memcg->scan_nodes);
889976db 1928 }
453a9bf3 1929
c0ff4b85
R
1930 atomic_set(&memcg->numainfo_events, 0);
1931 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1932}
1933
1934/*
1935 * Selecting a node where we start reclaim from. Because what we need is just
1936 * reducing usage counter, start from anywhere is O,K. Considering
1937 * memory reclaim from current node, there are pros. and cons.
1938 *
1939 * Freeing memory from current node means freeing memory from a node which
1940 * we'll use or we've used. So, it may make LRU bad. And if several threads
1941 * hit limits, it will see a contention on a node. But freeing from remote
1942 * node means more costs for memory reclaim because of memory latency.
1943 *
1944 * Now, we use round-robin. Better algorithm is welcomed.
1945 */
c0ff4b85 1946int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1947{
1948 int node;
1949
c0ff4b85
R
1950 mem_cgroup_may_update_nodemask(memcg);
1951 node = memcg->last_scanned_node;
889976db 1952
c0ff4b85 1953 node = next_node(node, memcg->scan_nodes);
889976db 1954 if (node == MAX_NUMNODES)
c0ff4b85 1955 node = first_node(memcg->scan_nodes);
889976db
YH
1956 /*
1957 * We call this when we hit limit, not when pages are added to LRU.
1958 * No LRU may hold pages because all pages are UNEVICTABLE or
1959 * memcg is too small and all pages are not on LRU. In that case,
1960 * we use curret node.
1961 */
1962 if (unlikely(node == MAX_NUMNODES))
1963 node = numa_node_id();
1964
c0ff4b85 1965 memcg->last_scanned_node = node;
889976db
YH
1966 return node;
1967}
1968
bb4cc1a8
AM
1969/*
1970 * Check all nodes whether it contains reclaimable pages or not.
1971 * For quick scan, we make use of scan_nodes. This will allow us to skip
1972 * unused nodes. But scan_nodes is lazily updated and may not cotain
1973 * enough new information. We need to do double check.
1974 */
1975static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1976{
1977 int nid;
1978
1979 /*
1980 * quick check...making use of scan_node.
1981 * We can skip unused nodes.
1982 */
1983 if (!nodes_empty(memcg->scan_nodes)) {
1984 for (nid = first_node(memcg->scan_nodes);
1985 nid < MAX_NUMNODES;
1986 nid = next_node(nid, memcg->scan_nodes)) {
1987
1988 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1989 return true;
1990 }
1991 }
1992 /*
1993 * Check rest of nodes.
1994 */
1995 for_each_node_state(nid, N_MEMORY) {
1996 if (node_isset(nid, memcg->scan_nodes))
1997 continue;
1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1999 return true;
2000 }
2001 return false;
2002}
2003
889976db 2004#else
c0ff4b85 2005int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2006{
2007 return 0;
2008}
4d0c066d 2009
bb4cc1a8
AM
2010static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2011{
2012 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2013}
889976db
YH
2014#endif
2015
0608f43d
AM
2016static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2017 struct zone *zone,
2018 gfp_t gfp_mask,
2019 unsigned long *total_scanned)
2020{
2021 struct mem_cgroup *victim = NULL;
2022 int total = 0;
2023 int loop = 0;
2024 unsigned long excess;
2025 unsigned long nr_scanned;
2026 struct mem_cgroup_reclaim_cookie reclaim = {
2027 .zone = zone,
2028 .priority = 0,
2029 };
2030
2031 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2032
2033 while (1) {
2034 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2035 if (!victim) {
2036 loop++;
2037 if (loop >= 2) {
2038 /*
2039 * If we have not been able to reclaim
2040 * anything, it might because there are
2041 * no reclaimable pages under this hierarchy
2042 */
2043 if (!total)
2044 break;
2045 /*
2046 * We want to do more targeted reclaim.
2047 * excess >> 2 is not to excessive so as to
2048 * reclaim too much, nor too less that we keep
2049 * coming back to reclaim from this cgroup
2050 */
2051 if (total >= (excess >> 2) ||
2052 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2053 break;
2054 }
2055 continue;
2056 }
2057 if (!mem_cgroup_reclaimable(victim, false))
2058 continue;
2059 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2060 zone, &nr_scanned);
2061 *total_scanned += nr_scanned;
2062 if (!res_counter_soft_limit_excess(&root_memcg->res))
2063 break;
6d61ef40 2064 }
0608f43d
AM
2065 mem_cgroup_iter_break(root_memcg, victim);
2066 return total;
6d61ef40
BS
2067}
2068
0056f4e6
JW
2069#ifdef CONFIG_LOCKDEP
2070static struct lockdep_map memcg_oom_lock_dep_map = {
2071 .name = "memcg_oom_lock",
2072};
2073#endif
2074
fb2a6fc5
JW
2075static DEFINE_SPINLOCK(memcg_oom_lock);
2076
867578cb
KH
2077/*
2078 * Check OOM-Killer is already running under our hierarchy.
2079 * If someone is running, return false.
2080 */
fb2a6fc5 2081static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2082{
79dfdacc 2083 struct mem_cgroup *iter, *failed = NULL;
a636b327 2084
fb2a6fc5
JW
2085 spin_lock(&memcg_oom_lock);
2086
9f3a0d09 2087 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2088 if (iter->oom_lock) {
79dfdacc
MH
2089 /*
2090 * this subtree of our hierarchy is already locked
2091 * so we cannot give a lock.
2092 */
79dfdacc 2093 failed = iter;
9f3a0d09
JW
2094 mem_cgroup_iter_break(memcg, iter);
2095 break;
23751be0
JW
2096 } else
2097 iter->oom_lock = true;
7d74b06f 2098 }
867578cb 2099
fb2a6fc5
JW
2100 if (failed) {
2101 /*
2102 * OK, we failed to lock the whole subtree so we have
2103 * to clean up what we set up to the failing subtree
2104 */
2105 for_each_mem_cgroup_tree(iter, memcg) {
2106 if (iter == failed) {
2107 mem_cgroup_iter_break(memcg, iter);
2108 break;
2109 }
2110 iter->oom_lock = false;
79dfdacc 2111 }
0056f4e6
JW
2112 } else
2113 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2114
2115 spin_unlock(&memcg_oom_lock);
2116
2117 return !failed;
a636b327 2118}
0b7f569e 2119
fb2a6fc5 2120static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2121{
7d74b06f
KH
2122 struct mem_cgroup *iter;
2123
fb2a6fc5 2124 spin_lock(&memcg_oom_lock);
0056f4e6 2125 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2126 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2127 iter->oom_lock = false;
fb2a6fc5 2128 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2129}
2130
c0ff4b85 2131static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2132{
2133 struct mem_cgroup *iter;
2134
c0ff4b85 2135 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2136 atomic_inc(&iter->under_oom);
2137}
2138
c0ff4b85 2139static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2140{
2141 struct mem_cgroup *iter;
2142
867578cb
KH
2143 /*
2144 * When a new child is created while the hierarchy is under oom,
2145 * mem_cgroup_oom_lock() may not be called. We have to use
2146 * atomic_add_unless() here.
2147 */
c0ff4b85 2148 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2149 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2150}
2151
867578cb
KH
2152static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153
dc98df5a 2154struct oom_wait_info {
d79154bb 2155 struct mem_cgroup *memcg;
dc98df5a
KH
2156 wait_queue_t wait;
2157};
2158
2159static int memcg_oom_wake_function(wait_queue_t *wait,
2160 unsigned mode, int sync, void *arg)
2161{
d79154bb
HD
2162 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2164 struct oom_wait_info *oom_wait_info;
2165
2166 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2167 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2168
dc98df5a 2169 /*
d79154bb 2170 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2171 * Then we can use css_is_ancestor without taking care of RCU.
2172 */
c0ff4b85
R
2173 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2175 return 0;
dc98df5a
KH
2176 return autoremove_wake_function(wait, mode, sync, arg);
2177}
2178
c0ff4b85 2179static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2180{
3812c8c8 2181 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2182 /* for filtering, pass "memcg" as argument. */
2183 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2184}
2185
c0ff4b85 2186static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2187{
c0ff4b85
R
2188 if (memcg && atomic_read(&memcg->under_oom))
2189 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2190}
2191
3812c8c8 2192static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2193{
3812c8c8
JW
2194 if (!current->memcg_oom.may_oom)
2195 return;
867578cb 2196 /*
49426420
JW
2197 * We are in the middle of the charge context here, so we
2198 * don't want to block when potentially sitting on a callstack
2199 * that holds all kinds of filesystem and mm locks.
2200 *
2201 * Also, the caller may handle a failed allocation gracefully
2202 * (like optional page cache readahead) and so an OOM killer
2203 * invocation might not even be necessary.
2204 *
2205 * That's why we don't do anything here except remember the
2206 * OOM context and then deal with it at the end of the page
2207 * fault when the stack is unwound, the locks are released,
2208 * and when we know whether the fault was overall successful.
867578cb 2209 */
49426420
JW
2210 css_get(&memcg->css);
2211 current->memcg_oom.memcg = memcg;
2212 current->memcg_oom.gfp_mask = mask;
2213 current->memcg_oom.order = order;
3812c8c8
JW
2214}
2215
2216/**
2217 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2218 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2219 *
49426420
JW
2220 * This has to be called at the end of a page fault if the memcg OOM
2221 * handler was enabled.
3812c8c8 2222 *
49426420 2223 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2224 * sleep on a waitqueue until the userspace task resolves the
2225 * situation. Sleeping directly in the charge context with all kinds
2226 * of locks held is not a good idea, instead we remember an OOM state
2227 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2228 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2229 *
2230 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2231 * completed, %false otherwise.
3812c8c8 2232 */
49426420 2233bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2234{
49426420 2235 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2236 struct oom_wait_info owait;
49426420 2237 bool locked;
3812c8c8
JW
2238
2239 /* OOM is global, do not handle */
3812c8c8 2240 if (!memcg)
49426420 2241 return false;
3812c8c8 2242
49426420
JW
2243 if (!handle)
2244 goto cleanup;
3812c8c8
JW
2245
2246 owait.memcg = memcg;
2247 owait.wait.flags = 0;
2248 owait.wait.func = memcg_oom_wake_function;
2249 owait.wait.private = current;
2250 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2251
3812c8c8 2252 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2253 mem_cgroup_mark_under_oom(memcg);
2254
2255 locked = mem_cgroup_oom_trylock(memcg);
2256
2257 if (locked)
2258 mem_cgroup_oom_notify(memcg);
2259
2260 if (locked && !memcg->oom_kill_disable) {
2261 mem_cgroup_unmark_under_oom(memcg);
2262 finish_wait(&memcg_oom_waitq, &owait.wait);
2263 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2264 current->memcg_oom.order);
2265 } else {
3812c8c8 2266 schedule();
49426420
JW
2267 mem_cgroup_unmark_under_oom(memcg);
2268 finish_wait(&memcg_oom_waitq, &owait.wait);
2269 }
2270
2271 if (locked) {
fb2a6fc5
JW
2272 mem_cgroup_oom_unlock(memcg);
2273 /*
2274 * There is no guarantee that an OOM-lock contender
2275 * sees the wakeups triggered by the OOM kill
2276 * uncharges. Wake any sleepers explicitely.
2277 */
2278 memcg_oom_recover(memcg);
2279 }
49426420
JW
2280cleanup:
2281 current->memcg_oom.memcg = NULL;
3812c8c8 2282 css_put(&memcg->css);
867578cb 2283 return true;
0b7f569e
KH
2284}
2285
d69b042f
BS
2286/*
2287 * Currently used to update mapped file statistics, but the routine can be
2288 * generalized to update other statistics as well.
32047e2a
KH
2289 *
2290 * Notes: Race condition
2291 *
2292 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2293 * it tends to be costly. But considering some conditions, we doesn't need
2294 * to do so _always_.
2295 *
2296 * Considering "charge", lock_page_cgroup() is not required because all
2297 * file-stat operations happen after a page is attached to radix-tree. There
2298 * are no race with "charge".
2299 *
2300 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2301 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2302 * if there are race with "uncharge". Statistics itself is properly handled
2303 * by flags.
2304 *
2305 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2306 * small, we check mm->moving_account and detect there are possibility of race
2307 * If there is, we take a lock.
d69b042f 2308 */
26174efd 2309
89c06bd5
KH
2310void __mem_cgroup_begin_update_page_stat(struct page *page,
2311 bool *locked, unsigned long *flags)
2312{
2313 struct mem_cgroup *memcg;
2314 struct page_cgroup *pc;
2315
2316 pc = lookup_page_cgroup(page);
2317again:
2318 memcg = pc->mem_cgroup;
2319 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2320 return;
2321 /*
2322 * If this memory cgroup is not under account moving, we don't
da92c47d 2323 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2324 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2325 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2326 */
13fd1dd9 2327 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2328 return;
2329
2330 move_lock_mem_cgroup(memcg, flags);
2331 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2332 move_unlock_mem_cgroup(memcg, flags);
2333 goto again;
2334 }
2335 *locked = true;
2336}
2337
2338void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2339{
2340 struct page_cgroup *pc = lookup_page_cgroup(page);
2341
2342 /*
2343 * It's guaranteed that pc->mem_cgroup never changes while
2344 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2345 * should take move_lock_mem_cgroup().
89c06bd5
KH
2346 */
2347 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2348}
2349
2a7106f2 2350void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2351 enum mem_cgroup_stat_index idx, int val)
d69b042f 2352{
c0ff4b85 2353 struct mem_cgroup *memcg;
32047e2a 2354 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2355 unsigned long uninitialized_var(flags);
d69b042f 2356
cfa44946 2357 if (mem_cgroup_disabled())
d69b042f 2358 return;
89c06bd5 2359
658b72c5 2360 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2361 memcg = pc->mem_cgroup;
2362 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2363 return;
26174efd 2364
c0ff4b85 2365 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2366}
26174efd 2367
cdec2e42
KH
2368/*
2369 * size of first charge trial. "32" comes from vmscan.c's magic value.
2370 * TODO: maybe necessary to use big numbers in big irons.
2371 */
7ec99d62 2372#define CHARGE_BATCH 32U
cdec2e42
KH
2373struct memcg_stock_pcp {
2374 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2375 unsigned int nr_pages;
cdec2e42 2376 struct work_struct work;
26fe6168 2377 unsigned long flags;
a0db00fc 2378#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2379};
2380static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2381static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2382
a0956d54
SS
2383/**
2384 * consume_stock: Try to consume stocked charge on this cpu.
2385 * @memcg: memcg to consume from.
2386 * @nr_pages: how many pages to charge.
2387 *
2388 * The charges will only happen if @memcg matches the current cpu's memcg
2389 * stock, and at least @nr_pages are available in that stock. Failure to
2390 * service an allocation will refill the stock.
2391 *
2392 * returns true if successful, false otherwise.
cdec2e42 2393 */
a0956d54 2394static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2395{
2396 struct memcg_stock_pcp *stock;
2397 bool ret = true;
2398
a0956d54
SS
2399 if (nr_pages > CHARGE_BATCH)
2400 return false;
2401
cdec2e42 2402 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2403 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2404 stock->nr_pages -= nr_pages;
cdec2e42
KH
2405 else /* need to call res_counter_charge */
2406 ret = false;
2407 put_cpu_var(memcg_stock);
2408 return ret;
2409}
2410
2411/*
2412 * Returns stocks cached in percpu to res_counter and reset cached information.
2413 */
2414static void drain_stock(struct memcg_stock_pcp *stock)
2415{
2416 struct mem_cgroup *old = stock->cached;
2417
11c9ea4e
JW
2418 if (stock->nr_pages) {
2419 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2420
2421 res_counter_uncharge(&old->res, bytes);
cdec2e42 2422 if (do_swap_account)
11c9ea4e
JW
2423 res_counter_uncharge(&old->memsw, bytes);
2424 stock->nr_pages = 0;
cdec2e42
KH
2425 }
2426 stock->cached = NULL;
cdec2e42
KH
2427}
2428
2429/*
2430 * This must be called under preempt disabled or must be called by
2431 * a thread which is pinned to local cpu.
2432 */
2433static void drain_local_stock(struct work_struct *dummy)
2434{
2435 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2436 drain_stock(stock);
26fe6168 2437 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2438}
2439
e4777496
MH
2440static void __init memcg_stock_init(void)
2441{
2442 int cpu;
2443
2444 for_each_possible_cpu(cpu) {
2445 struct memcg_stock_pcp *stock =
2446 &per_cpu(memcg_stock, cpu);
2447 INIT_WORK(&stock->work, drain_local_stock);
2448 }
2449}
2450
cdec2e42
KH
2451/*
2452 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2453 * This will be consumed by consume_stock() function, later.
cdec2e42 2454 */
c0ff4b85 2455static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2456{
2457 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2458
c0ff4b85 2459 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2460 drain_stock(stock);
c0ff4b85 2461 stock->cached = memcg;
cdec2e42 2462 }
11c9ea4e 2463 stock->nr_pages += nr_pages;
cdec2e42
KH
2464 put_cpu_var(memcg_stock);
2465}
2466
2467/*
c0ff4b85 2468 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2469 * of the hierarchy under it. sync flag says whether we should block
2470 * until the work is done.
cdec2e42 2471 */
c0ff4b85 2472static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2473{
26fe6168 2474 int cpu, curcpu;
d38144b7 2475
cdec2e42 2476 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2477 get_online_cpus();
5af12d0e 2478 curcpu = get_cpu();
cdec2e42
KH
2479 for_each_online_cpu(cpu) {
2480 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2481 struct mem_cgroup *memcg;
26fe6168 2482
c0ff4b85
R
2483 memcg = stock->cached;
2484 if (!memcg || !stock->nr_pages)
26fe6168 2485 continue;
c0ff4b85 2486 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2487 continue;
d1a05b69
MH
2488 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2489 if (cpu == curcpu)
2490 drain_local_stock(&stock->work);
2491 else
2492 schedule_work_on(cpu, &stock->work);
2493 }
cdec2e42 2494 }
5af12d0e 2495 put_cpu();
d38144b7
MH
2496
2497 if (!sync)
2498 goto out;
2499
2500 for_each_online_cpu(cpu) {
2501 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2502 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2503 flush_work(&stock->work);
2504 }
2505out:
f894ffa8 2506 put_online_cpus();
d38144b7
MH
2507}
2508
2509/*
2510 * Tries to drain stocked charges in other cpus. This function is asynchronous
2511 * and just put a work per cpu for draining localy on each cpu. Caller can
2512 * expects some charges will be back to res_counter later but cannot wait for
2513 * it.
2514 */
c0ff4b85 2515static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2516{
9f50fad6
MH
2517 /*
2518 * If someone calls draining, avoid adding more kworker runs.
2519 */
2520 if (!mutex_trylock(&percpu_charge_mutex))
2521 return;
c0ff4b85 2522 drain_all_stock(root_memcg, false);
9f50fad6 2523 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2524}
2525
2526/* This is a synchronous drain interface. */
c0ff4b85 2527static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2528{
2529 /* called when force_empty is called */
9f50fad6 2530 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2531 drain_all_stock(root_memcg, true);
9f50fad6 2532 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2533}
2534
711d3d2c
KH
2535/*
2536 * This function drains percpu counter value from DEAD cpu and
2537 * move it to local cpu. Note that this function can be preempted.
2538 */
c0ff4b85 2539static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2540{
2541 int i;
2542
c0ff4b85 2543 spin_lock(&memcg->pcp_counter_lock);
6104621d 2544 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2545 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2546
c0ff4b85
R
2547 per_cpu(memcg->stat->count[i], cpu) = 0;
2548 memcg->nocpu_base.count[i] += x;
711d3d2c 2549 }
e9f8974f 2550 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2551 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2552
c0ff4b85
R
2553 per_cpu(memcg->stat->events[i], cpu) = 0;
2554 memcg->nocpu_base.events[i] += x;
e9f8974f 2555 }
c0ff4b85 2556 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2557}
2558
0db0628d 2559static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2560 unsigned long action,
2561 void *hcpu)
2562{
2563 int cpu = (unsigned long)hcpu;
2564 struct memcg_stock_pcp *stock;
711d3d2c 2565 struct mem_cgroup *iter;
cdec2e42 2566
619d094b 2567 if (action == CPU_ONLINE)
1489ebad 2568 return NOTIFY_OK;
1489ebad 2569
d833049b 2570 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2571 return NOTIFY_OK;
711d3d2c 2572
9f3a0d09 2573 for_each_mem_cgroup(iter)
711d3d2c
KH
2574 mem_cgroup_drain_pcp_counter(iter, cpu);
2575
cdec2e42
KH
2576 stock = &per_cpu(memcg_stock, cpu);
2577 drain_stock(stock);
2578 return NOTIFY_OK;
2579}
2580
4b534334
KH
2581
2582/* See __mem_cgroup_try_charge() for details */
2583enum {
2584 CHARGE_OK, /* success */
2585 CHARGE_RETRY, /* need to retry but retry is not bad */
2586 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2587 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2588};
2589
c0ff4b85 2590static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2591 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2592 bool invoke_oom)
4b534334 2593{
7ec99d62 2594 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2595 struct mem_cgroup *mem_over_limit;
2596 struct res_counter *fail_res;
2597 unsigned long flags = 0;
2598 int ret;
2599
c0ff4b85 2600 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2601
2602 if (likely(!ret)) {
2603 if (!do_swap_account)
2604 return CHARGE_OK;
c0ff4b85 2605 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2606 if (likely(!ret))
2607 return CHARGE_OK;
2608
c0ff4b85 2609 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2610 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2611 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2612 } else
2613 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2614 /*
9221edb7
JW
2615 * Never reclaim on behalf of optional batching, retry with a
2616 * single page instead.
2617 */
4c9c5359 2618 if (nr_pages > min_pages)
4b534334
KH
2619 return CHARGE_RETRY;
2620
2621 if (!(gfp_mask & __GFP_WAIT))
2622 return CHARGE_WOULDBLOCK;
2623
4c9c5359
SS
2624 if (gfp_mask & __GFP_NORETRY)
2625 return CHARGE_NOMEM;
2626
5660048c 2627 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2628 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2629 return CHARGE_RETRY;
4b534334 2630 /*
19942822
JW
2631 * Even though the limit is exceeded at this point, reclaim
2632 * may have been able to free some pages. Retry the charge
2633 * before killing the task.
2634 *
2635 * Only for regular pages, though: huge pages are rather
2636 * unlikely to succeed so close to the limit, and we fall back
2637 * to regular pages anyway in case of failure.
4b534334 2638 */
4c9c5359 2639 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2640 return CHARGE_RETRY;
2641
2642 /*
2643 * At task move, charge accounts can be doubly counted. So, it's
2644 * better to wait until the end of task_move if something is going on.
2645 */
2646 if (mem_cgroup_wait_acct_move(mem_over_limit))
2647 return CHARGE_RETRY;
2648
3812c8c8
JW
2649 if (invoke_oom)
2650 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2651
3812c8c8 2652 return CHARGE_NOMEM;
4b534334
KH
2653}
2654
f817ed48 2655/*
38c5d72f
KH
2656 * __mem_cgroup_try_charge() does
2657 * 1. detect memcg to be charged against from passed *mm and *ptr,
2658 * 2. update res_counter
2659 * 3. call memory reclaim if necessary.
2660 *
2661 * In some special case, if the task is fatal, fatal_signal_pending() or
2662 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2663 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2664 * as possible without any hazards. 2: all pages should have a valid
2665 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2666 * pointer, that is treated as a charge to root_mem_cgroup.
2667 *
2668 * So __mem_cgroup_try_charge() will return
2669 * 0 ... on success, filling *ptr with a valid memcg pointer.
2670 * -ENOMEM ... charge failure because of resource limits.
2671 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2672 *
2673 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2674 * the oom-killer can be invoked.
8a9f3ccd 2675 */
f817ed48 2676static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2677 gfp_t gfp_mask,
7ec99d62 2678 unsigned int nr_pages,
c0ff4b85 2679 struct mem_cgroup **ptr,
7ec99d62 2680 bool oom)
8a9f3ccd 2681{
7ec99d62 2682 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2683 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2684 struct mem_cgroup *memcg = NULL;
4b534334 2685 int ret;
a636b327 2686
867578cb
KH
2687 /*
2688 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2689 * in system level. So, allow to go ahead dying process in addition to
2690 * MEMDIE process.
2691 */
2692 if (unlikely(test_thread_flag(TIF_MEMDIE)
2693 || fatal_signal_pending(current)))
2694 goto bypass;
a636b327 2695
49426420
JW
2696 if (unlikely(task_in_memcg_oom(current)))
2697 goto bypass;
2698
a0d8b00a
JW
2699 if (gfp_mask & __GFP_NOFAIL)
2700 oom = false;
2701
8a9f3ccd 2702 /*
3be91277
HD
2703 * We always charge the cgroup the mm_struct belongs to.
2704 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2705 * thread group leader migrates. It's possible that mm is not
24467cac 2706 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2707 */
c0ff4b85 2708 if (!*ptr && !mm)
38c5d72f 2709 *ptr = root_mem_cgroup;
f75ca962 2710again:
c0ff4b85
R
2711 if (*ptr) { /* css should be a valid one */
2712 memcg = *ptr;
c0ff4b85 2713 if (mem_cgroup_is_root(memcg))
f75ca962 2714 goto done;
a0956d54 2715 if (consume_stock(memcg, nr_pages))
f75ca962 2716 goto done;
c0ff4b85 2717 css_get(&memcg->css);
4b534334 2718 } else {
f75ca962 2719 struct task_struct *p;
54595fe2 2720
f75ca962
KH
2721 rcu_read_lock();
2722 p = rcu_dereference(mm->owner);
f75ca962 2723 /*
ebb76ce1 2724 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2725 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2726 * race with swapoff. Then, we have small risk of mis-accouning.
2727 * But such kind of mis-account by race always happens because
2728 * we don't have cgroup_mutex(). It's overkill and we allo that
2729 * small race, here.
2730 * (*) swapoff at el will charge against mm-struct not against
2731 * task-struct. So, mm->owner can be NULL.
f75ca962 2732 */
c0ff4b85 2733 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2734 if (!memcg)
2735 memcg = root_mem_cgroup;
2736 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2737 rcu_read_unlock();
2738 goto done;
2739 }
a0956d54 2740 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2741 /*
2742 * It seems dagerous to access memcg without css_get().
2743 * But considering how consume_stok works, it's not
2744 * necessary. If consume_stock success, some charges
2745 * from this memcg are cached on this cpu. So, we
2746 * don't need to call css_get()/css_tryget() before
2747 * calling consume_stock().
2748 */
2749 rcu_read_unlock();
2750 goto done;
2751 }
2752 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2753 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2754 rcu_read_unlock();
2755 goto again;
2756 }
2757 rcu_read_unlock();
2758 }
8a9f3ccd 2759
4b534334 2760 do {
3812c8c8 2761 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2762
4b534334 2763 /* If killed, bypass charge */
f75ca962 2764 if (fatal_signal_pending(current)) {
c0ff4b85 2765 css_put(&memcg->css);
4b534334 2766 goto bypass;
f75ca962 2767 }
6d61ef40 2768
3812c8c8
JW
2769 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2770 nr_pages, invoke_oom);
4b534334
KH
2771 switch (ret) {
2772 case CHARGE_OK:
2773 break;
2774 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2775 batch = nr_pages;
c0ff4b85
R
2776 css_put(&memcg->css);
2777 memcg = NULL;
f75ca962 2778 goto again;
4b534334 2779 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2780 css_put(&memcg->css);
4b534334
KH
2781 goto nomem;
2782 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2783 if (!oom || invoke_oom) {
c0ff4b85 2784 css_put(&memcg->css);
867578cb 2785 goto nomem;
f75ca962 2786 }
4b534334
KH
2787 nr_oom_retries--;
2788 break;
66e1707b 2789 }
4b534334
KH
2790 } while (ret != CHARGE_OK);
2791
7ec99d62 2792 if (batch > nr_pages)
c0ff4b85
R
2793 refill_stock(memcg, batch - nr_pages);
2794 css_put(&memcg->css);
0c3e73e8 2795done:
c0ff4b85 2796 *ptr = memcg;
7a81b88c
KH
2797 return 0;
2798nomem:
3168ecbe
JW
2799 if (!(gfp_mask & __GFP_NOFAIL)) {
2800 *ptr = NULL;
2801 return -ENOMEM;
2802 }
867578cb 2803bypass:
38c5d72f
KH
2804 *ptr = root_mem_cgroup;
2805 return -EINTR;
7a81b88c 2806}
8a9f3ccd 2807
a3032a2c
DN
2808/*
2809 * Somemtimes we have to undo a charge we got by try_charge().
2810 * This function is for that and do uncharge, put css's refcnt.
2811 * gotten by try_charge().
2812 */
c0ff4b85 2813static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2814 unsigned int nr_pages)
a3032a2c 2815{
c0ff4b85 2816 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2817 unsigned long bytes = nr_pages * PAGE_SIZE;
2818
c0ff4b85 2819 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2820 if (do_swap_account)
c0ff4b85 2821 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2822 }
854ffa8d
DN
2823}
2824
d01dd17f
KH
2825/*
2826 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2827 * This is useful when moving usage to parent cgroup.
2828 */
2829static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2830 unsigned int nr_pages)
2831{
2832 unsigned long bytes = nr_pages * PAGE_SIZE;
2833
2834 if (mem_cgroup_is_root(memcg))
2835 return;
2836
2837 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2838 if (do_swap_account)
2839 res_counter_uncharge_until(&memcg->memsw,
2840 memcg->memsw.parent, bytes);
2841}
2842
a3b2d692
KH
2843/*
2844 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2845 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2846 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2847 * called against removed memcg.)
a3b2d692
KH
2848 */
2849static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2850{
a3b2d692
KH
2851 /* ID 0 is unused ID */
2852 if (!id)
2853 return NULL;
34c00c31 2854 return mem_cgroup_from_id(id);
a3b2d692
KH
2855}
2856
e42d9d5d 2857struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2858{
c0ff4b85 2859 struct mem_cgroup *memcg = NULL;
3c776e64 2860 struct page_cgroup *pc;
a3b2d692 2861 unsigned short id;
b5a84319
KH
2862 swp_entry_t ent;
2863
3c776e64
DN
2864 VM_BUG_ON(!PageLocked(page));
2865
3c776e64 2866 pc = lookup_page_cgroup(page);
c0bd3f63 2867 lock_page_cgroup(pc);
a3b2d692 2868 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2869 memcg = pc->mem_cgroup;
2870 if (memcg && !css_tryget(&memcg->css))
2871 memcg = NULL;
e42d9d5d 2872 } else if (PageSwapCache(page)) {
3c776e64 2873 ent.val = page_private(page);
9fb4b7cc 2874 id = lookup_swap_cgroup_id(ent);
a3b2d692 2875 rcu_read_lock();
c0ff4b85
R
2876 memcg = mem_cgroup_lookup(id);
2877 if (memcg && !css_tryget(&memcg->css))
2878 memcg = NULL;
a3b2d692 2879 rcu_read_unlock();
3c776e64 2880 }
c0bd3f63 2881 unlock_page_cgroup(pc);
c0ff4b85 2882 return memcg;
b5a84319
KH
2883}
2884
c0ff4b85 2885static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2886 struct page *page,
7ec99d62 2887 unsigned int nr_pages,
9ce70c02
HD
2888 enum charge_type ctype,
2889 bool lrucare)
7a81b88c 2890{
ce587e65 2891 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2892 struct zone *uninitialized_var(zone);
fa9add64 2893 struct lruvec *lruvec;
9ce70c02 2894 bool was_on_lru = false;
b2402857 2895 bool anon;
9ce70c02 2896
ca3e0214 2897 lock_page_cgroup(pc);
90deb788 2898 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2899 /*
2900 * we don't need page_cgroup_lock about tail pages, becase they are not
2901 * accessed by any other context at this point.
2902 */
9ce70c02
HD
2903
2904 /*
2905 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2906 * may already be on some other mem_cgroup's LRU. Take care of it.
2907 */
2908 if (lrucare) {
2909 zone = page_zone(page);
2910 spin_lock_irq(&zone->lru_lock);
2911 if (PageLRU(page)) {
fa9add64 2912 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2913 ClearPageLRU(page);
fa9add64 2914 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2915 was_on_lru = true;
2916 }
2917 }
2918
c0ff4b85 2919 pc->mem_cgroup = memcg;
261fb61a
KH
2920 /*
2921 * We access a page_cgroup asynchronously without lock_page_cgroup().
2922 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2923 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2924 * before USED bit, we need memory barrier here.
2925 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2926 */
08e552c6 2927 smp_wmb();
b2402857 2928 SetPageCgroupUsed(pc);
3be91277 2929
9ce70c02
HD
2930 if (lrucare) {
2931 if (was_on_lru) {
fa9add64 2932 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2933 VM_BUG_ON(PageLRU(page));
2934 SetPageLRU(page);
fa9add64 2935 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2936 }
2937 spin_unlock_irq(&zone->lru_lock);
2938 }
2939
41326c17 2940 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2941 anon = true;
2942 else
2943 anon = false;
2944
b070e65c 2945 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2946 unlock_page_cgroup(pc);
9ce70c02 2947
430e4863 2948 /*
bb4cc1a8
AM
2949 * "charge_statistics" updated event counter. Then, check it.
2950 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2951 * if they exceeds softlimit.
430e4863 2952 */
c0ff4b85 2953 memcg_check_events(memcg, page);
7a81b88c 2954}
66e1707b 2955
7cf27982
GC
2956static DEFINE_MUTEX(set_limit_mutex);
2957
7ae1e1d0
GC
2958#ifdef CONFIG_MEMCG_KMEM
2959static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2960{
2961 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2962 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2963}
2964
1f458cbf
GC
2965/*
2966 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2967 * in the memcg_cache_params struct.
2968 */
2969static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2970{
2971 struct kmem_cache *cachep;
2972
2973 VM_BUG_ON(p->is_root_cache);
2974 cachep = p->root_cache;
7a67d7ab 2975 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2976}
2977
749c5415 2978#ifdef CONFIG_SLABINFO
182446d0
TH
2979static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2980 struct cftype *cft, struct seq_file *m)
749c5415 2981{
182446d0 2982 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2983 struct memcg_cache_params *params;
2984
2985 if (!memcg_can_account_kmem(memcg))
2986 return -EIO;
2987
2988 print_slabinfo_header(m);
2989
2990 mutex_lock(&memcg->slab_caches_mutex);
2991 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2992 cache_show(memcg_params_to_cache(params), m);
2993 mutex_unlock(&memcg->slab_caches_mutex);
2994
2995 return 0;
2996}
2997#endif
2998
7ae1e1d0
GC
2999static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3000{
3001 struct res_counter *fail_res;
3002 struct mem_cgroup *_memcg;
3003 int ret = 0;
7ae1e1d0
GC
3004
3005 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3006 if (ret)
3007 return ret;
3008
7ae1e1d0
GC
3009 _memcg = memcg;
3010 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
b9921ecd 3011 &_memcg, oom_gfp_allowed(gfp));
7ae1e1d0
GC
3012
3013 if (ret == -EINTR) {
3014 /*
3015 * __mem_cgroup_try_charge() chosed to bypass to root due to
3016 * OOM kill or fatal signal. Since our only options are to
3017 * either fail the allocation or charge it to this cgroup, do
3018 * it as a temporary condition. But we can't fail. From a
3019 * kmem/slab perspective, the cache has already been selected,
3020 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3021 * our minds.
3022 *
3023 * This condition will only trigger if the task entered
3024 * memcg_charge_kmem in a sane state, but was OOM-killed during
3025 * __mem_cgroup_try_charge() above. Tasks that were already
3026 * dying when the allocation triggers should have been already
3027 * directed to the root cgroup in memcontrol.h
3028 */
3029 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3030 if (do_swap_account)
3031 res_counter_charge_nofail(&memcg->memsw, size,
3032 &fail_res);
3033 ret = 0;
3034 } else if (ret)
3035 res_counter_uncharge(&memcg->kmem, size);
3036
3037 return ret;
3038}
3039
3040static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3041{
7ae1e1d0
GC
3042 res_counter_uncharge(&memcg->res, size);
3043 if (do_swap_account)
3044 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3045
3046 /* Not down to 0 */
3047 if (res_counter_uncharge(&memcg->kmem, size))
3048 return;
3049
10d5ebf4
LZ
3050 /*
3051 * Releases a reference taken in kmem_cgroup_css_offline in case
3052 * this last uncharge is racing with the offlining code or it is
3053 * outliving the memcg existence.
3054 *
3055 * The memory barrier imposed by test&clear is paired with the
3056 * explicit one in memcg_kmem_mark_dead().
3057 */
7de37682 3058 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3059 css_put(&memcg->css);
7ae1e1d0
GC
3060}
3061
2633d7a0
GC
3062void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3063{
3064 if (!memcg)
3065 return;
3066
3067 mutex_lock(&memcg->slab_caches_mutex);
3068 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3069 mutex_unlock(&memcg->slab_caches_mutex);
3070}
3071
3072/*
3073 * helper for acessing a memcg's index. It will be used as an index in the
3074 * child cache array in kmem_cache, and also to derive its name. This function
3075 * will return -1 when this is not a kmem-limited memcg.
3076 */
3077int memcg_cache_id(struct mem_cgroup *memcg)
3078{
3079 return memcg ? memcg->kmemcg_id : -1;
3080}
3081
55007d84
GC
3082/*
3083 * This ends up being protected by the set_limit mutex, during normal
3084 * operation, because that is its main call site.
3085 *
3086 * But when we create a new cache, we can call this as well if its parent
3087 * is kmem-limited. That will have to hold set_limit_mutex as well.
3088 */
3089int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3090{
3091 int num, ret;
3092
3093 num = ida_simple_get(&kmem_limited_groups,
3094 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3095 if (num < 0)
3096 return num;
3097 /*
3098 * After this point, kmem_accounted (that we test atomically in
3099 * the beginning of this conditional), is no longer 0. This
3100 * guarantees only one process will set the following boolean
3101 * to true. We don't need test_and_set because we're protected
3102 * by the set_limit_mutex anyway.
3103 */
3104 memcg_kmem_set_activated(memcg);
3105
3106 ret = memcg_update_all_caches(num+1);
3107 if (ret) {
3108 ida_simple_remove(&kmem_limited_groups, num);
3109 memcg_kmem_clear_activated(memcg);
3110 return ret;
3111 }
3112
3113 memcg->kmemcg_id = num;
3114 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3115 mutex_init(&memcg->slab_caches_mutex);
3116 return 0;
3117}
3118
3119static size_t memcg_caches_array_size(int num_groups)
3120{
3121 ssize_t size;
3122 if (num_groups <= 0)
3123 return 0;
3124
3125 size = 2 * num_groups;
3126 if (size < MEMCG_CACHES_MIN_SIZE)
3127 size = MEMCG_CACHES_MIN_SIZE;
3128 else if (size > MEMCG_CACHES_MAX_SIZE)
3129 size = MEMCG_CACHES_MAX_SIZE;
3130
3131 return size;
3132}
3133
3134/*
3135 * We should update the current array size iff all caches updates succeed. This
3136 * can only be done from the slab side. The slab mutex needs to be held when
3137 * calling this.
3138 */
3139void memcg_update_array_size(int num)
3140{
3141 if (num > memcg_limited_groups_array_size)
3142 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3143}
3144
15cf17d2
KK
3145static void kmem_cache_destroy_work_func(struct work_struct *w);
3146
55007d84
GC
3147int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3148{
3149 struct memcg_cache_params *cur_params = s->memcg_params;
3150
f35c3a8e 3151 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3152
3153 if (num_groups > memcg_limited_groups_array_size) {
3154 int i;
3155 ssize_t size = memcg_caches_array_size(num_groups);
3156
3157 size *= sizeof(void *);
90c7a79c 3158 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3159
3160 s->memcg_params = kzalloc(size, GFP_KERNEL);
3161 if (!s->memcg_params) {
3162 s->memcg_params = cur_params;
3163 return -ENOMEM;
3164 }
3165
3166 s->memcg_params->is_root_cache = true;
3167
3168 /*
3169 * There is the chance it will be bigger than
3170 * memcg_limited_groups_array_size, if we failed an allocation
3171 * in a cache, in which case all caches updated before it, will
3172 * have a bigger array.
3173 *
3174 * But if that is the case, the data after
3175 * memcg_limited_groups_array_size is certainly unused
3176 */
3177 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3178 if (!cur_params->memcg_caches[i])
3179 continue;
3180 s->memcg_params->memcg_caches[i] =
3181 cur_params->memcg_caches[i];
3182 }
3183
3184 /*
3185 * Ideally, we would wait until all caches succeed, and only
3186 * then free the old one. But this is not worth the extra
3187 * pointer per-cache we'd have to have for this.
3188 *
3189 * It is not a big deal if some caches are left with a size
3190 * bigger than the others. And all updates will reset this
3191 * anyway.
3192 */
3193 kfree(cur_params);
3194 }
3195 return 0;
3196}
3197
943a451a
GC
3198int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3199 struct kmem_cache *root_cache)
2633d7a0 3200{
90c7a79c 3201 size_t size;
2633d7a0
GC
3202
3203 if (!memcg_kmem_enabled())
3204 return 0;
3205
90c7a79c
AV
3206 if (!memcg) {
3207 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3208 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3209 } else
3210 size = sizeof(struct memcg_cache_params);
55007d84 3211
2633d7a0
GC
3212 s->memcg_params = kzalloc(size, GFP_KERNEL);
3213 if (!s->memcg_params)
3214 return -ENOMEM;
3215
943a451a 3216 if (memcg) {
2633d7a0 3217 s->memcg_params->memcg = memcg;
943a451a 3218 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3219 INIT_WORK(&s->memcg_params->destroy,
3220 kmem_cache_destroy_work_func);
4ba902b5
GC
3221 } else
3222 s->memcg_params->is_root_cache = true;
3223
2633d7a0
GC
3224 return 0;
3225}
3226
3227void memcg_release_cache(struct kmem_cache *s)
3228{
d7f25f8a
GC
3229 struct kmem_cache *root;
3230 struct mem_cgroup *memcg;
3231 int id;
3232
3233 /*
3234 * This happens, for instance, when a root cache goes away before we
3235 * add any memcg.
3236 */
3237 if (!s->memcg_params)
3238 return;
3239
3240 if (s->memcg_params->is_root_cache)
3241 goto out;
3242
3243 memcg = s->memcg_params->memcg;
3244 id = memcg_cache_id(memcg);
3245
3246 root = s->memcg_params->root_cache;
3247 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3248
3249 mutex_lock(&memcg->slab_caches_mutex);
3250 list_del(&s->memcg_params->list);
3251 mutex_unlock(&memcg->slab_caches_mutex);
3252
20f05310 3253 css_put(&memcg->css);
d7f25f8a 3254out:
2633d7a0
GC
3255 kfree(s->memcg_params);
3256}
3257
0e9d92f2
GC
3258/*
3259 * During the creation a new cache, we need to disable our accounting mechanism
3260 * altogether. This is true even if we are not creating, but rather just
3261 * enqueing new caches to be created.
3262 *
3263 * This is because that process will trigger allocations; some visible, like
3264 * explicit kmallocs to auxiliary data structures, name strings and internal
3265 * cache structures; some well concealed, like INIT_WORK() that can allocate
3266 * objects during debug.
3267 *
3268 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3269 * to it. This may not be a bounded recursion: since the first cache creation
3270 * failed to complete (waiting on the allocation), we'll just try to create the
3271 * cache again, failing at the same point.
3272 *
3273 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3274 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3275 * inside the following two functions.
3276 */
3277static inline void memcg_stop_kmem_account(void)
3278{
3279 VM_BUG_ON(!current->mm);
3280 current->memcg_kmem_skip_account++;
3281}
3282
3283static inline void memcg_resume_kmem_account(void)
3284{
3285 VM_BUG_ON(!current->mm);
3286 current->memcg_kmem_skip_account--;
3287}
3288
1f458cbf
GC
3289static void kmem_cache_destroy_work_func(struct work_struct *w)
3290{
3291 struct kmem_cache *cachep;
3292 struct memcg_cache_params *p;
3293
3294 p = container_of(w, struct memcg_cache_params, destroy);
3295
3296 cachep = memcg_params_to_cache(p);
3297
22933152
GC
3298 /*
3299 * If we get down to 0 after shrink, we could delete right away.
3300 * However, memcg_release_pages() already puts us back in the workqueue
3301 * in that case. If we proceed deleting, we'll get a dangling
3302 * reference, and removing the object from the workqueue in that case
3303 * is unnecessary complication. We are not a fast path.
3304 *
3305 * Note that this case is fundamentally different from racing with
3306 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3307 * kmem_cache_shrink, not only we would be reinserting a dead cache
3308 * into the queue, but doing so from inside the worker racing to
3309 * destroy it.
3310 *
3311 * So if we aren't down to zero, we'll just schedule a worker and try
3312 * again
3313 */
3314 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3315 kmem_cache_shrink(cachep);
3316 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3317 return;
3318 } else
1f458cbf
GC
3319 kmem_cache_destroy(cachep);
3320}
3321
3322void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3323{
3324 if (!cachep->memcg_params->dead)
3325 return;
3326
22933152
GC
3327 /*
3328 * There are many ways in which we can get here.
3329 *
3330 * We can get to a memory-pressure situation while the delayed work is
3331 * still pending to run. The vmscan shrinkers can then release all
3332 * cache memory and get us to destruction. If this is the case, we'll
3333 * be executed twice, which is a bug (the second time will execute over
3334 * bogus data). In this case, cancelling the work should be fine.
3335 *
3336 * But we can also get here from the worker itself, if
3337 * kmem_cache_shrink is enough to shake all the remaining objects and
3338 * get the page count to 0. In this case, we'll deadlock if we try to
3339 * cancel the work (the worker runs with an internal lock held, which
3340 * is the same lock we would hold for cancel_work_sync().)
3341 *
3342 * Since we can't possibly know who got us here, just refrain from
3343 * running if there is already work pending
3344 */
3345 if (work_pending(&cachep->memcg_params->destroy))
3346 return;
1f458cbf
GC
3347 /*
3348 * We have to defer the actual destroying to a workqueue, because
3349 * we might currently be in a context that cannot sleep.
3350 */
3351 schedule_work(&cachep->memcg_params->destroy);
3352}
3353
d9c10ddd
MH
3354/*
3355 * This lock protects updaters, not readers. We want readers to be as fast as
3356 * they can, and they will either see NULL or a valid cache value. Our model
3357 * allow them to see NULL, in which case the root memcg will be selected.
3358 *
3359 * We need this lock because multiple allocations to the same cache from a non
3360 * will span more than one worker. Only one of them can create the cache.
3361 */
3362static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3363
d9c10ddd
MH
3364/*
3365 * Called with memcg_cache_mutex held
3366 */
d7f25f8a
GC
3367static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3368 struct kmem_cache *s)
3369{
d7f25f8a 3370 struct kmem_cache *new;
d9c10ddd 3371 static char *tmp_name = NULL;
d7f25f8a 3372
d9c10ddd
MH
3373 lockdep_assert_held(&memcg_cache_mutex);
3374
3375 /*
3376 * kmem_cache_create_memcg duplicates the given name and
3377 * cgroup_name for this name requires RCU context.
3378 * This static temporary buffer is used to prevent from
3379 * pointless shortliving allocation.
3380 */
3381 if (!tmp_name) {
3382 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3383 if (!tmp_name)
3384 return NULL;
3385 }
3386
3387 rcu_read_lock();
3388 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3389 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3390 rcu_read_unlock();
d7f25f8a 3391
d9c10ddd 3392 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3393 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3394
d79923fa
GC
3395 if (new)
3396 new->allocflags |= __GFP_KMEMCG;
3397
d7f25f8a
GC
3398 return new;
3399}
3400
d7f25f8a
GC
3401static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3402 struct kmem_cache *cachep)
3403{
3404 struct kmem_cache *new_cachep;
3405 int idx;
3406
3407 BUG_ON(!memcg_can_account_kmem(memcg));
3408
3409 idx = memcg_cache_id(memcg);
3410
3411 mutex_lock(&memcg_cache_mutex);
7a67d7ab 3412 new_cachep = cache_from_memcg_idx(cachep, idx);
20f05310
LZ
3413 if (new_cachep) {
3414 css_put(&memcg->css);
d7f25f8a 3415 goto out;
20f05310 3416 }
d7f25f8a
GC
3417
3418 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3419 if (new_cachep == NULL) {
3420 new_cachep = cachep;
20f05310 3421 css_put(&memcg->css);
d7f25f8a
GC
3422 goto out;
3423 }
3424
1f458cbf 3425 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3426
3427 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3428 /*
3429 * the readers won't lock, make sure everybody sees the updated value,
3430 * so they won't put stuff in the queue again for no reason
3431 */
3432 wmb();
3433out:
3434 mutex_unlock(&memcg_cache_mutex);
3435 return new_cachep;
3436}
3437
7cf27982
GC
3438void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3439{
3440 struct kmem_cache *c;
3441 int i;
3442
3443 if (!s->memcg_params)
3444 return;
3445 if (!s->memcg_params->is_root_cache)
3446 return;
3447
3448 /*
3449 * If the cache is being destroyed, we trust that there is no one else
3450 * requesting objects from it. Even if there are, the sanity checks in
3451 * kmem_cache_destroy should caught this ill-case.
3452 *
3453 * Still, we don't want anyone else freeing memcg_caches under our
3454 * noses, which can happen if a new memcg comes to life. As usual,
3455 * we'll take the set_limit_mutex to protect ourselves against this.
3456 */
3457 mutex_lock(&set_limit_mutex);
7a67d7ab
QH
3458 for_each_memcg_cache_index(i) {
3459 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3460 if (!c)
3461 continue;
3462
3463 /*
3464 * We will now manually delete the caches, so to avoid races
3465 * we need to cancel all pending destruction workers and
3466 * proceed with destruction ourselves.
3467 *
3468 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3469 * and that could spawn the workers again: it is likely that
3470 * the cache still have active pages until this very moment.
3471 * This would lead us back to mem_cgroup_destroy_cache.
3472 *
3473 * But that will not execute at all if the "dead" flag is not
3474 * set, so flip it down to guarantee we are in control.
3475 */
3476 c->memcg_params->dead = false;
22933152 3477 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3478 kmem_cache_destroy(c);
3479 }
3480 mutex_unlock(&set_limit_mutex);
3481}
3482
d7f25f8a
GC
3483struct create_work {
3484 struct mem_cgroup *memcg;
3485 struct kmem_cache *cachep;
3486 struct work_struct work;
3487};
3488
1f458cbf
GC
3489static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3490{
3491 struct kmem_cache *cachep;
3492 struct memcg_cache_params *params;
3493
3494 if (!memcg_kmem_is_active(memcg))
3495 return;
3496
3497 mutex_lock(&memcg->slab_caches_mutex);
3498 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3499 cachep = memcg_params_to_cache(params);
3500 cachep->memcg_params->dead = true;
1f458cbf
GC
3501 schedule_work(&cachep->memcg_params->destroy);
3502 }
3503 mutex_unlock(&memcg->slab_caches_mutex);
3504}
3505
d7f25f8a
GC
3506static void memcg_create_cache_work_func(struct work_struct *w)
3507{
3508 struct create_work *cw;
3509
3510 cw = container_of(w, struct create_work, work);
3511 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3512 kfree(cw);
3513}
3514
3515/*
3516 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3517 */
0e9d92f2
GC
3518static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3519 struct kmem_cache *cachep)
d7f25f8a
GC
3520{
3521 struct create_work *cw;
3522
3523 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3524 if (cw == NULL) {
3525 css_put(&memcg->css);
d7f25f8a
GC
3526 return;
3527 }
3528
3529 cw->memcg = memcg;
3530 cw->cachep = cachep;
3531
3532 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3533 schedule_work(&cw->work);
3534}
3535
0e9d92f2
GC
3536static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3537 struct kmem_cache *cachep)
3538{
3539 /*
3540 * We need to stop accounting when we kmalloc, because if the
3541 * corresponding kmalloc cache is not yet created, the first allocation
3542 * in __memcg_create_cache_enqueue will recurse.
3543 *
3544 * However, it is better to enclose the whole function. Depending on
3545 * the debugging options enabled, INIT_WORK(), for instance, can
3546 * trigger an allocation. This too, will make us recurse. Because at
3547 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3548 * the safest choice is to do it like this, wrapping the whole function.
3549 */
3550 memcg_stop_kmem_account();
3551 __memcg_create_cache_enqueue(memcg, cachep);
3552 memcg_resume_kmem_account();
3553}
d7f25f8a
GC
3554/*
3555 * Return the kmem_cache we're supposed to use for a slab allocation.
3556 * We try to use the current memcg's version of the cache.
3557 *
3558 * If the cache does not exist yet, if we are the first user of it,
3559 * we either create it immediately, if possible, or create it asynchronously
3560 * in a workqueue.
3561 * In the latter case, we will let the current allocation go through with
3562 * the original cache.
3563 *
3564 * Can't be called in interrupt context or from kernel threads.
3565 * This function needs to be called with rcu_read_lock() held.
3566 */
3567struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3568 gfp_t gfp)
3569{
3570 struct mem_cgroup *memcg;
3571 int idx;
3572
3573 VM_BUG_ON(!cachep->memcg_params);
3574 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3575
0e9d92f2
GC
3576 if (!current->mm || current->memcg_kmem_skip_account)
3577 return cachep;
3578
d7f25f8a
GC
3579 rcu_read_lock();
3580 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3581
3582 if (!memcg_can_account_kmem(memcg))
ca0dde97 3583 goto out;
d7f25f8a
GC
3584
3585 idx = memcg_cache_id(memcg);
3586
3587 /*
3588 * barrier to mare sure we're always seeing the up to date value. The
3589 * code updating memcg_caches will issue a write barrier to match this.
3590 */
3591 read_barrier_depends();
7a67d7ab
QH
3592 if (likely(cache_from_memcg_idx(cachep, idx))) {
3593 cachep = cache_from_memcg_idx(cachep, idx);
ca0dde97 3594 goto out;
d7f25f8a
GC
3595 }
3596
ca0dde97
LZ
3597 /* The corresponding put will be done in the workqueue. */
3598 if (!css_tryget(&memcg->css))
3599 goto out;
3600 rcu_read_unlock();
3601
3602 /*
3603 * If we are in a safe context (can wait, and not in interrupt
3604 * context), we could be be predictable and return right away.
3605 * This would guarantee that the allocation being performed
3606 * already belongs in the new cache.
3607 *
3608 * However, there are some clashes that can arrive from locking.
3609 * For instance, because we acquire the slab_mutex while doing
3610 * kmem_cache_dup, this means no further allocation could happen
3611 * with the slab_mutex held.
3612 *
3613 * Also, because cache creation issue get_online_cpus(), this
3614 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3615 * that ends up reversed during cpu hotplug. (cpuset allocates
3616 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3617 * better to defer everything.
3618 */
3619 memcg_create_cache_enqueue(memcg, cachep);
3620 return cachep;
3621out:
3622 rcu_read_unlock();
3623 return cachep;
d7f25f8a
GC
3624}
3625EXPORT_SYMBOL(__memcg_kmem_get_cache);
3626
7ae1e1d0
GC
3627/*
3628 * We need to verify if the allocation against current->mm->owner's memcg is
3629 * possible for the given order. But the page is not allocated yet, so we'll
3630 * need a further commit step to do the final arrangements.
3631 *
3632 * It is possible for the task to switch cgroups in this mean time, so at
3633 * commit time, we can't rely on task conversion any longer. We'll then use
3634 * the handle argument to return to the caller which cgroup we should commit
3635 * against. We could also return the memcg directly and avoid the pointer
3636 * passing, but a boolean return value gives better semantics considering
3637 * the compiled-out case as well.
3638 *
3639 * Returning true means the allocation is possible.
3640 */
3641bool
3642__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3643{
3644 struct mem_cgroup *memcg;
3645 int ret;
3646
3647 *_memcg = NULL;
6d42c232
GC
3648
3649 /*
3650 * Disabling accounting is only relevant for some specific memcg
3651 * internal allocations. Therefore we would initially not have such
3652 * check here, since direct calls to the page allocator that are marked
3653 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3654 * concerned with cache allocations, and by having this test at
3655 * memcg_kmem_get_cache, we are already able to relay the allocation to
3656 * the root cache and bypass the memcg cache altogether.
3657 *
3658 * There is one exception, though: the SLUB allocator does not create
3659 * large order caches, but rather service large kmallocs directly from
3660 * the page allocator. Therefore, the following sequence when backed by
3661 * the SLUB allocator:
3662 *
f894ffa8
AM
3663 * memcg_stop_kmem_account();
3664 * kmalloc(<large_number>)
3665 * memcg_resume_kmem_account();
6d42c232
GC
3666 *
3667 * would effectively ignore the fact that we should skip accounting,
3668 * since it will drive us directly to this function without passing
3669 * through the cache selector memcg_kmem_get_cache. Such large
3670 * allocations are extremely rare but can happen, for instance, for the
3671 * cache arrays. We bring this test here.
3672 */
3673 if (!current->mm || current->memcg_kmem_skip_account)
3674 return true;
3675
7ae1e1d0
GC
3676 memcg = try_get_mem_cgroup_from_mm(current->mm);
3677
3678 /*
3679 * very rare case described in mem_cgroup_from_task. Unfortunately there
3680 * isn't much we can do without complicating this too much, and it would
3681 * be gfp-dependent anyway. Just let it go
3682 */
3683 if (unlikely(!memcg))
3684 return true;
3685
3686 if (!memcg_can_account_kmem(memcg)) {
3687 css_put(&memcg->css);
3688 return true;
3689 }
3690
7ae1e1d0
GC
3691 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3692 if (!ret)
3693 *_memcg = memcg;
7ae1e1d0
GC
3694
3695 css_put(&memcg->css);
3696 return (ret == 0);
3697}
3698
3699void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3700 int order)
3701{
3702 struct page_cgroup *pc;
3703
3704 VM_BUG_ON(mem_cgroup_is_root(memcg));
3705
3706 /* The page allocation failed. Revert */
3707 if (!page) {
3708 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3709 return;
3710 }
3711
3712 pc = lookup_page_cgroup(page);
3713 lock_page_cgroup(pc);
3714 pc->mem_cgroup = memcg;
3715 SetPageCgroupUsed(pc);
3716 unlock_page_cgroup(pc);
3717}
3718
3719void __memcg_kmem_uncharge_pages(struct page *page, int order)
3720{
3721 struct mem_cgroup *memcg = NULL;
3722 struct page_cgroup *pc;
3723
3724
3725 pc = lookup_page_cgroup(page);
3726 /*
3727 * Fast unlocked return. Theoretically might have changed, have to
3728 * check again after locking.
3729 */
3730 if (!PageCgroupUsed(pc))
3731 return;
3732
3733 lock_page_cgroup(pc);
3734 if (PageCgroupUsed(pc)) {
3735 memcg = pc->mem_cgroup;
3736 ClearPageCgroupUsed(pc);
3737 }
3738 unlock_page_cgroup(pc);
3739
3740 /*
3741 * We trust that only if there is a memcg associated with the page, it
3742 * is a valid allocation
3743 */
3744 if (!memcg)
3745 return;
3746
3747 VM_BUG_ON(mem_cgroup_is_root(memcg));
3748 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3749}
1f458cbf
GC
3750#else
3751static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3752{
3753}
7ae1e1d0
GC
3754#endif /* CONFIG_MEMCG_KMEM */
3755
ca3e0214
KH
3756#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3757
a0db00fc 3758#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3759/*
3760 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3761 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3762 * charge/uncharge will be never happen and move_account() is done under
3763 * compound_lock(), so we don't have to take care of races.
ca3e0214 3764 */
e94c8a9c 3765void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3766{
3767 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3768 struct page_cgroup *pc;
b070e65c 3769 struct mem_cgroup *memcg;
e94c8a9c 3770 int i;
ca3e0214 3771
3d37c4a9
KH
3772 if (mem_cgroup_disabled())
3773 return;
b070e65c
DR
3774
3775 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3776 for (i = 1; i < HPAGE_PMD_NR; i++) {
3777 pc = head_pc + i;
b070e65c 3778 pc->mem_cgroup = memcg;
e94c8a9c 3779 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3780 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3781 }
b070e65c
DR
3782 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3783 HPAGE_PMD_NR);
ca3e0214 3784}
12d27107 3785#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3786
3ea67d06
SZ
3787static inline
3788void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3789 struct mem_cgroup *to,
3790 unsigned int nr_pages,
3791 enum mem_cgroup_stat_index idx)
3792{
3793 /* Update stat data for mem_cgroup */
3794 preempt_disable();
5e8cfc3c 3795 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3796 __this_cpu_add(to->stat->count[idx], nr_pages);
3797 preempt_enable();
3798}
3799
f817ed48 3800/**
de3638d9 3801 * mem_cgroup_move_account - move account of the page
5564e88b 3802 * @page: the page
7ec99d62 3803 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3804 * @pc: page_cgroup of the page.
3805 * @from: mem_cgroup which the page is moved from.
3806 * @to: mem_cgroup which the page is moved to. @from != @to.
3807 *
3808 * The caller must confirm following.
08e552c6 3809 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3810 * - compound_lock is held when nr_pages > 1
f817ed48 3811 *
2f3479b1
KH
3812 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3813 * from old cgroup.
f817ed48 3814 */
7ec99d62
JW
3815static int mem_cgroup_move_account(struct page *page,
3816 unsigned int nr_pages,
3817 struct page_cgroup *pc,
3818 struct mem_cgroup *from,
2f3479b1 3819 struct mem_cgroup *to)
f817ed48 3820{
de3638d9
JW
3821 unsigned long flags;
3822 int ret;
b2402857 3823 bool anon = PageAnon(page);
987eba66 3824
f817ed48 3825 VM_BUG_ON(from == to);
5564e88b 3826 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3827 /*
3828 * The page is isolated from LRU. So, collapse function
3829 * will not handle this page. But page splitting can happen.
3830 * Do this check under compound_page_lock(). The caller should
3831 * hold it.
3832 */
3833 ret = -EBUSY;
7ec99d62 3834 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3835 goto out;
3836
3837 lock_page_cgroup(pc);
3838
3839 ret = -EINVAL;
3840 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3841 goto unlock;
3842
312734c0 3843 move_lock_mem_cgroup(from, &flags);
f817ed48 3844
3ea67d06
SZ
3845 if (!anon && page_mapped(page))
3846 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3847 MEM_CGROUP_STAT_FILE_MAPPED);
3848
3849 if (PageWriteback(page))
3850 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3851 MEM_CGROUP_STAT_WRITEBACK);
3852
b070e65c 3853 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3854
854ffa8d 3855 /* caller should have done css_get */
08e552c6 3856 pc->mem_cgroup = to;
b070e65c 3857 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3858 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3859 ret = 0;
3860unlock:
57f9fd7d 3861 unlock_page_cgroup(pc);
d2265e6f
KH
3862 /*
3863 * check events
3864 */
5564e88b
JW
3865 memcg_check_events(to, page);
3866 memcg_check_events(from, page);
de3638d9 3867out:
f817ed48
KH
3868 return ret;
3869}
3870
2ef37d3f
MH
3871/**
3872 * mem_cgroup_move_parent - moves page to the parent group
3873 * @page: the page to move
3874 * @pc: page_cgroup of the page
3875 * @child: page's cgroup
3876 *
3877 * move charges to its parent or the root cgroup if the group has no
3878 * parent (aka use_hierarchy==0).
3879 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3880 * mem_cgroup_move_account fails) the failure is always temporary and
3881 * it signals a race with a page removal/uncharge or migration. In the
3882 * first case the page is on the way out and it will vanish from the LRU
3883 * on the next attempt and the call should be retried later.
3884 * Isolation from the LRU fails only if page has been isolated from
3885 * the LRU since we looked at it and that usually means either global
3886 * reclaim or migration going on. The page will either get back to the
3887 * LRU or vanish.
3888 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3889 * (!PageCgroupUsed) or moved to a different group. The page will
3890 * disappear in the next attempt.
f817ed48 3891 */
5564e88b
JW
3892static int mem_cgroup_move_parent(struct page *page,
3893 struct page_cgroup *pc,
6068bf01 3894 struct mem_cgroup *child)
f817ed48 3895{
f817ed48 3896 struct mem_cgroup *parent;
7ec99d62 3897 unsigned int nr_pages;
4be4489f 3898 unsigned long uninitialized_var(flags);
f817ed48
KH
3899 int ret;
3900
d8423011 3901 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3902
57f9fd7d
DN
3903 ret = -EBUSY;
3904 if (!get_page_unless_zero(page))
3905 goto out;
3906 if (isolate_lru_page(page))
3907 goto put;
52dbb905 3908
7ec99d62 3909 nr_pages = hpage_nr_pages(page);
08e552c6 3910
cc926f78
KH
3911 parent = parent_mem_cgroup(child);
3912 /*
3913 * If no parent, move charges to root cgroup.
3914 */
3915 if (!parent)
3916 parent = root_mem_cgroup;
f817ed48 3917
2ef37d3f
MH
3918 if (nr_pages > 1) {
3919 VM_BUG_ON(!PageTransHuge(page));
987eba66 3920 flags = compound_lock_irqsave(page);
2ef37d3f 3921 }
987eba66 3922
cc926f78 3923 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3924 pc, child, parent);
cc926f78
KH
3925 if (!ret)
3926 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3927
7ec99d62 3928 if (nr_pages > 1)
987eba66 3929 compound_unlock_irqrestore(page, flags);
08e552c6 3930 putback_lru_page(page);
57f9fd7d 3931put:
40d58138 3932 put_page(page);
57f9fd7d 3933out:
f817ed48
KH
3934 return ret;
3935}
3936
7a81b88c
KH
3937/*
3938 * Charge the memory controller for page usage.
3939 * Return
3940 * 0 if the charge was successful
3941 * < 0 if the cgroup is over its limit
3942 */
3943static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3944 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3945{
c0ff4b85 3946 struct mem_cgroup *memcg = NULL;
7ec99d62 3947 unsigned int nr_pages = 1;
8493ae43 3948 bool oom = true;
7a81b88c 3949 int ret;
ec168510 3950
37c2ac78 3951 if (PageTransHuge(page)) {
7ec99d62 3952 nr_pages <<= compound_order(page);
37c2ac78 3953 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3954 /*
3955 * Never OOM-kill a process for a huge page. The
3956 * fault handler will fall back to regular pages.
3957 */
3958 oom = false;
37c2ac78 3959 }
7a81b88c 3960
c0ff4b85 3961 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3962 if (ret == -ENOMEM)
7a81b88c 3963 return ret;
ce587e65 3964 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3965 return 0;
8a9f3ccd
BS
3966}
3967
7a81b88c
KH
3968int mem_cgroup_newpage_charge(struct page *page,
3969 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3970{
f8d66542 3971 if (mem_cgroup_disabled())
cede86ac 3972 return 0;
7a0524cf
JW
3973 VM_BUG_ON(page_mapped(page));
3974 VM_BUG_ON(page->mapping && !PageAnon(page));
3975 VM_BUG_ON(!mm);
217bc319 3976 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3977 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3978}
3979
54595fe2
KH
3980/*
3981 * While swap-in, try_charge -> commit or cancel, the page is locked.
3982 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3983 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3984 * "commit()" or removed by "cancel()"
3985 */
0435a2fd
JW
3986static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3987 struct page *page,
3988 gfp_t mask,
3989 struct mem_cgroup **memcgp)
8c7c6e34 3990{
c0ff4b85 3991 struct mem_cgroup *memcg;
90deb788 3992 struct page_cgroup *pc;
54595fe2 3993 int ret;
8c7c6e34 3994
90deb788
JW
3995 pc = lookup_page_cgroup(page);
3996 /*
3997 * Every swap fault against a single page tries to charge the
3998 * page, bail as early as possible. shmem_unuse() encounters
3999 * already charged pages, too. The USED bit is protected by
4000 * the page lock, which serializes swap cache removal, which
4001 * in turn serializes uncharging.
4002 */
4003 if (PageCgroupUsed(pc))
4004 return 0;
8c7c6e34
KH
4005 if (!do_swap_account)
4006 goto charge_cur_mm;
c0ff4b85
R
4007 memcg = try_get_mem_cgroup_from_page(page);
4008 if (!memcg)
54595fe2 4009 goto charge_cur_mm;
72835c86
JW
4010 *memcgp = memcg;
4011 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4012 css_put(&memcg->css);
38c5d72f
KH
4013 if (ret == -EINTR)
4014 ret = 0;
54595fe2 4015 return ret;
8c7c6e34 4016charge_cur_mm:
38c5d72f
KH
4017 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4018 if (ret == -EINTR)
4019 ret = 0;
4020 return ret;
8c7c6e34
KH
4021}
4022
0435a2fd
JW
4023int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4024 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4025{
4026 *memcgp = NULL;
4027 if (mem_cgroup_disabled())
4028 return 0;
bdf4f4d2
JW
4029 /*
4030 * A racing thread's fault, or swapoff, may have already
4031 * updated the pte, and even removed page from swap cache: in
4032 * those cases unuse_pte()'s pte_same() test will fail; but
4033 * there's also a KSM case which does need to charge the page.
4034 */
4035 if (!PageSwapCache(page)) {
4036 int ret;
4037
4038 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4039 if (ret == -EINTR)
4040 ret = 0;
4041 return ret;
4042 }
0435a2fd
JW
4043 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4044}
4045
827a03d2
JW
4046void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4047{
4048 if (mem_cgroup_disabled())
4049 return;
4050 if (!memcg)
4051 return;
4052 __mem_cgroup_cancel_charge(memcg, 1);
4053}
4054
83aae4c7 4055static void
72835c86 4056__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4057 enum charge_type ctype)
7a81b88c 4058{
f8d66542 4059 if (mem_cgroup_disabled())
7a81b88c 4060 return;
72835c86 4061 if (!memcg)
7a81b88c 4062 return;
5a6475a4 4063
ce587e65 4064 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4065 /*
4066 * Now swap is on-memory. This means this page may be
4067 * counted both as mem and swap....double count.
03f3c433
KH
4068 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4069 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4070 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4071 */
03f3c433 4072 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4073 swp_entry_t ent = {.val = page_private(page)};
86493009 4074 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4075 }
7a81b88c
KH
4076}
4077
72835c86
JW
4078void mem_cgroup_commit_charge_swapin(struct page *page,
4079 struct mem_cgroup *memcg)
83aae4c7 4080{
72835c86 4081 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4082 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4083}
4084
827a03d2
JW
4085int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4086 gfp_t gfp_mask)
7a81b88c 4087{
827a03d2
JW
4088 struct mem_cgroup *memcg = NULL;
4089 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4090 int ret;
4091
f8d66542 4092 if (mem_cgroup_disabled())
827a03d2
JW
4093 return 0;
4094 if (PageCompound(page))
4095 return 0;
4096
827a03d2
JW
4097 if (!PageSwapCache(page))
4098 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4099 else { /* page is swapcache/shmem */
0435a2fd
JW
4100 ret = __mem_cgroup_try_charge_swapin(mm, page,
4101 gfp_mask, &memcg);
827a03d2
JW
4102 if (!ret)
4103 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4104 }
4105 return ret;
7a81b88c
KH
4106}
4107
c0ff4b85 4108static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4109 unsigned int nr_pages,
4110 const enum charge_type ctype)
569b846d
KH
4111{
4112 struct memcg_batch_info *batch = NULL;
4113 bool uncharge_memsw = true;
7ec99d62 4114
569b846d
KH
4115 /* If swapout, usage of swap doesn't decrease */
4116 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4117 uncharge_memsw = false;
569b846d
KH
4118
4119 batch = &current->memcg_batch;
4120 /*
4121 * In usual, we do css_get() when we remember memcg pointer.
4122 * But in this case, we keep res->usage until end of a series of
4123 * uncharges. Then, it's ok to ignore memcg's refcnt.
4124 */
4125 if (!batch->memcg)
c0ff4b85 4126 batch->memcg = memcg;
3c11ecf4
KH
4127 /*
4128 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4129 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4130 * the same cgroup and we have chance to coalesce uncharges.
4131 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4132 * because we want to do uncharge as soon as possible.
4133 */
4134
4135 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4136 goto direct_uncharge;
4137
7ec99d62 4138 if (nr_pages > 1)
ec168510
AA
4139 goto direct_uncharge;
4140
569b846d
KH
4141 /*
4142 * In typical case, batch->memcg == mem. This means we can
4143 * merge a series of uncharges to an uncharge of res_counter.
4144 * If not, we uncharge res_counter ony by one.
4145 */
c0ff4b85 4146 if (batch->memcg != memcg)
569b846d
KH
4147 goto direct_uncharge;
4148 /* remember freed charge and uncharge it later */
7ffd4ca7 4149 batch->nr_pages++;
569b846d 4150 if (uncharge_memsw)
7ffd4ca7 4151 batch->memsw_nr_pages++;
569b846d
KH
4152 return;
4153direct_uncharge:
c0ff4b85 4154 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4155 if (uncharge_memsw)
c0ff4b85
R
4156 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4157 if (unlikely(batch->memcg != memcg))
4158 memcg_oom_recover(memcg);
569b846d 4159}
7a81b88c 4160
8a9f3ccd 4161/*
69029cd5 4162 * uncharge if !page_mapped(page)
8a9f3ccd 4163 */
8c7c6e34 4164static struct mem_cgroup *
0030f535
JW
4165__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4166 bool end_migration)
8a9f3ccd 4167{
c0ff4b85 4168 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4169 unsigned int nr_pages = 1;
4170 struct page_cgroup *pc;
b2402857 4171 bool anon;
8a9f3ccd 4172
f8d66542 4173 if (mem_cgroup_disabled())
8c7c6e34 4174 return NULL;
4077960e 4175
37c2ac78 4176 if (PageTransHuge(page)) {
7ec99d62 4177 nr_pages <<= compound_order(page);
37c2ac78
AA
4178 VM_BUG_ON(!PageTransHuge(page));
4179 }
8697d331 4180 /*
3c541e14 4181 * Check if our page_cgroup is valid
8697d331 4182 */
52d4b9ac 4183 pc = lookup_page_cgroup(page);
cfa44946 4184 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4185 return NULL;
b9c565d5 4186
52d4b9ac 4187 lock_page_cgroup(pc);
d13d1443 4188
c0ff4b85 4189 memcg = pc->mem_cgroup;
8c7c6e34 4190
d13d1443
KH
4191 if (!PageCgroupUsed(pc))
4192 goto unlock_out;
4193
b2402857
KH
4194 anon = PageAnon(page);
4195
d13d1443 4196 switch (ctype) {
41326c17 4197 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4198 /*
4199 * Generally PageAnon tells if it's the anon statistics to be
4200 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4201 * used before page reached the stage of being marked PageAnon.
4202 */
b2402857
KH
4203 anon = true;
4204 /* fallthrough */
8a9478ca 4205 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4206 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4207 if (page_mapped(page))
4208 goto unlock_out;
4209 /*
4210 * Pages under migration may not be uncharged. But
4211 * end_migration() /must/ be the one uncharging the
4212 * unused post-migration page and so it has to call
4213 * here with the migration bit still set. See the
4214 * res_counter handling below.
4215 */
4216 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4217 goto unlock_out;
4218 break;
4219 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4220 if (!PageAnon(page)) { /* Shared memory */
4221 if (page->mapping && !page_is_file_cache(page))
4222 goto unlock_out;
4223 } else if (page_mapped(page)) /* Anon */
4224 goto unlock_out;
4225 break;
4226 default:
4227 break;
52d4b9ac 4228 }
d13d1443 4229
b070e65c 4230 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4231
52d4b9ac 4232 ClearPageCgroupUsed(pc);
544122e5
KH
4233 /*
4234 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4235 * freed from LRU. This is safe because uncharged page is expected not
4236 * to be reused (freed soon). Exception is SwapCache, it's handled by
4237 * special functions.
4238 */
b9c565d5 4239
52d4b9ac 4240 unlock_page_cgroup(pc);
f75ca962 4241 /*
c0ff4b85 4242 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4243 * will never be freed, so it's safe to call css_get().
f75ca962 4244 */
c0ff4b85 4245 memcg_check_events(memcg, page);
f75ca962 4246 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4247 mem_cgroup_swap_statistics(memcg, true);
4050377b 4248 css_get(&memcg->css);
f75ca962 4249 }
0030f535
JW
4250 /*
4251 * Migration does not charge the res_counter for the
4252 * replacement page, so leave it alone when phasing out the
4253 * page that is unused after the migration.
4254 */
4255 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4256 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4257
c0ff4b85 4258 return memcg;
d13d1443
KH
4259
4260unlock_out:
4261 unlock_page_cgroup(pc);
8c7c6e34 4262 return NULL;
3c541e14
BS
4263}
4264
69029cd5
KH
4265void mem_cgroup_uncharge_page(struct page *page)
4266{
52d4b9ac
KH
4267 /* early check. */
4268 if (page_mapped(page))
4269 return;
40f23a21 4270 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4271 /*
4272 * If the page is in swap cache, uncharge should be deferred
4273 * to the swap path, which also properly accounts swap usage
4274 * and handles memcg lifetime.
4275 *
4276 * Note that this check is not stable and reclaim may add the
4277 * page to swap cache at any time after this. However, if the
4278 * page is not in swap cache by the time page->mapcount hits
4279 * 0, there won't be any page table references to the swap
4280 * slot, and reclaim will free it and not actually write the
4281 * page to disk.
4282 */
0c59b89c
JW
4283 if (PageSwapCache(page))
4284 return;
0030f535 4285 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4286}
4287
4288void mem_cgroup_uncharge_cache_page(struct page *page)
4289{
4290 VM_BUG_ON(page_mapped(page));
b7abea96 4291 VM_BUG_ON(page->mapping);
0030f535 4292 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4293}
4294
569b846d
KH
4295/*
4296 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4297 * In that cases, pages are freed continuously and we can expect pages
4298 * are in the same memcg. All these calls itself limits the number of
4299 * pages freed at once, then uncharge_start/end() is called properly.
4300 * This may be called prural(2) times in a context,
4301 */
4302
4303void mem_cgroup_uncharge_start(void)
4304{
4305 current->memcg_batch.do_batch++;
4306 /* We can do nest. */
4307 if (current->memcg_batch.do_batch == 1) {
4308 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4309 current->memcg_batch.nr_pages = 0;
4310 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4311 }
4312}
4313
4314void mem_cgroup_uncharge_end(void)
4315{
4316 struct memcg_batch_info *batch = &current->memcg_batch;
4317
4318 if (!batch->do_batch)
4319 return;
4320
4321 batch->do_batch--;
4322 if (batch->do_batch) /* If stacked, do nothing. */
4323 return;
4324
4325 if (!batch->memcg)
4326 return;
4327 /*
4328 * This "batch->memcg" is valid without any css_get/put etc...
4329 * bacause we hide charges behind us.
4330 */
7ffd4ca7
JW
4331 if (batch->nr_pages)
4332 res_counter_uncharge(&batch->memcg->res,
4333 batch->nr_pages * PAGE_SIZE);
4334 if (batch->memsw_nr_pages)
4335 res_counter_uncharge(&batch->memcg->memsw,
4336 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4337 memcg_oom_recover(batch->memcg);
569b846d
KH
4338 /* forget this pointer (for sanity check) */
4339 batch->memcg = NULL;
4340}
4341
e767e056 4342#ifdef CONFIG_SWAP
8c7c6e34 4343/*
e767e056 4344 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4345 * memcg information is recorded to swap_cgroup of "ent"
4346 */
8a9478ca
KH
4347void
4348mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4349{
4350 struct mem_cgroup *memcg;
8a9478ca
KH
4351 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4352
4353 if (!swapout) /* this was a swap cache but the swap is unused ! */
4354 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4355
0030f535 4356 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4357
f75ca962
KH
4358 /*
4359 * record memcg information, if swapout && memcg != NULL,
4050377b 4360 * css_get() was called in uncharge().
f75ca962
KH
4361 */
4362 if (do_swap_account && swapout && memcg)
34c00c31 4363 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4364}
e767e056 4365#endif
8c7c6e34 4366
c255a458 4367#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4368/*
4369 * called from swap_entry_free(). remove record in swap_cgroup and
4370 * uncharge "memsw" account.
4371 */
4372void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4373{
8c7c6e34 4374 struct mem_cgroup *memcg;
a3b2d692 4375 unsigned short id;
8c7c6e34
KH
4376
4377 if (!do_swap_account)
4378 return;
4379
a3b2d692
KH
4380 id = swap_cgroup_record(ent, 0);
4381 rcu_read_lock();
4382 memcg = mem_cgroup_lookup(id);
8c7c6e34 4383 if (memcg) {
a3b2d692
KH
4384 /*
4385 * We uncharge this because swap is freed.
4386 * This memcg can be obsolete one. We avoid calling css_tryget
4387 */
0c3e73e8 4388 if (!mem_cgroup_is_root(memcg))
4e649152 4389 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4390 mem_cgroup_swap_statistics(memcg, false);
4050377b 4391 css_put(&memcg->css);
8c7c6e34 4392 }
a3b2d692 4393 rcu_read_unlock();
d13d1443 4394}
02491447
DN
4395
4396/**
4397 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4398 * @entry: swap entry to be moved
4399 * @from: mem_cgroup which the entry is moved from
4400 * @to: mem_cgroup which the entry is moved to
4401 *
4402 * It succeeds only when the swap_cgroup's record for this entry is the same
4403 * as the mem_cgroup's id of @from.
4404 *
4405 * Returns 0 on success, -EINVAL on failure.
4406 *
4407 * The caller must have charged to @to, IOW, called res_counter_charge() about
4408 * both res and memsw, and called css_get().
4409 */
4410static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4411 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4412{
4413 unsigned short old_id, new_id;
4414
34c00c31
LZ
4415 old_id = mem_cgroup_id(from);
4416 new_id = mem_cgroup_id(to);
02491447
DN
4417
4418 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4419 mem_cgroup_swap_statistics(from, false);
483c30b5 4420 mem_cgroup_swap_statistics(to, true);
02491447 4421 /*
483c30b5
DN
4422 * This function is only called from task migration context now.
4423 * It postpones res_counter and refcount handling till the end
4424 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4425 * improvement. But we cannot postpone css_get(to) because if
4426 * the process that has been moved to @to does swap-in, the
4427 * refcount of @to might be decreased to 0.
4428 *
4429 * We are in attach() phase, so the cgroup is guaranteed to be
4430 * alive, so we can just call css_get().
02491447 4431 */
4050377b 4432 css_get(&to->css);
02491447
DN
4433 return 0;
4434 }
4435 return -EINVAL;
4436}
4437#else
4438static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4439 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4440{
4441 return -EINVAL;
4442}
8c7c6e34 4443#endif
d13d1443 4444
ae41be37 4445/*
01b1ae63
KH
4446 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4447 * page belongs to.
ae41be37 4448 */
0030f535
JW
4449void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4450 struct mem_cgroup **memcgp)
ae41be37 4451{
c0ff4b85 4452 struct mem_cgroup *memcg = NULL;
b32967ff 4453 unsigned int nr_pages = 1;
7ec99d62 4454 struct page_cgroup *pc;
ac39cf8c 4455 enum charge_type ctype;
8869b8f6 4456
72835c86 4457 *memcgp = NULL;
56039efa 4458
f8d66542 4459 if (mem_cgroup_disabled())
0030f535 4460 return;
4077960e 4461
b32967ff
MG
4462 if (PageTransHuge(page))
4463 nr_pages <<= compound_order(page);
4464
52d4b9ac
KH
4465 pc = lookup_page_cgroup(page);
4466 lock_page_cgroup(pc);
4467 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4468 memcg = pc->mem_cgroup;
4469 css_get(&memcg->css);
ac39cf8c
AM
4470 /*
4471 * At migrating an anonymous page, its mapcount goes down
4472 * to 0 and uncharge() will be called. But, even if it's fully
4473 * unmapped, migration may fail and this page has to be
4474 * charged again. We set MIGRATION flag here and delay uncharge
4475 * until end_migration() is called
4476 *
4477 * Corner Case Thinking
4478 * A)
4479 * When the old page was mapped as Anon and it's unmap-and-freed
4480 * while migration was ongoing.
4481 * If unmap finds the old page, uncharge() of it will be delayed
4482 * until end_migration(). If unmap finds a new page, it's
4483 * uncharged when it make mapcount to be 1->0. If unmap code
4484 * finds swap_migration_entry, the new page will not be mapped
4485 * and end_migration() will find it(mapcount==0).
4486 *
4487 * B)
4488 * When the old page was mapped but migraion fails, the kernel
4489 * remaps it. A charge for it is kept by MIGRATION flag even
4490 * if mapcount goes down to 0. We can do remap successfully
4491 * without charging it again.
4492 *
4493 * C)
4494 * The "old" page is under lock_page() until the end of
4495 * migration, so, the old page itself will not be swapped-out.
4496 * If the new page is swapped out before end_migraton, our
4497 * hook to usual swap-out path will catch the event.
4498 */
4499 if (PageAnon(page))
4500 SetPageCgroupMigration(pc);
e8589cc1 4501 }
52d4b9ac 4502 unlock_page_cgroup(pc);
ac39cf8c
AM
4503 /*
4504 * If the page is not charged at this point,
4505 * we return here.
4506 */
c0ff4b85 4507 if (!memcg)
0030f535 4508 return;
01b1ae63 4509
72835c86 4510 *memcgp = memcg;
ac39cf8c
AM
4511 /*
4512 * We charge new page before it's used/mapped. So, even if unlock_page()
4513 * is called before end_migration, we can catch all events on this new
4514 * page. In the case new page is migrated but not remapped, new page's
4515 * mapcount will be finally 0 and we call uncharge in end_migration().
4516 */
ac39cf8c 4517 if (PageAnon(page))
41326c17 4518 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4519 else
62ba7442 4520 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4521 /*
4522 * The page is committed to the memcg, but it's not actually
4523 * charged to the res_counter since we plan on replacing the
4524 * old one and only one page is going to be left afterwards.
4525 */
b32967ff 4526 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4527}
8869b8f6 4528
69029cd5 4529/* remove redundant charge if migration failed*/
c0ff4b85 4530void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4531 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4532{
ac39cf8c 4533 struct page *used, *unused;
01b1ae63 4534 struct page_cgroup *pc;
b2402857 4535 bool anon;
01b1ae63 4536
c0ff4b85 4537 if (!memcg)
01b1ae63 4538 return;
b25ed609 4539
50de1dd9 4540 if (!migration_ok) {
ac39cf8c
AM
4541 used = oldpage;
4542 unused = newpage;
01b1ae63 4543 } else {
ac39cf8c 4544 used = newpage;
01b1ae63
KH
4545 unused = oldpage;
4546 }
0030f535 4547 anon = PageAnon(used);
7d188958
JW
4548 __mem_cgroup_uncharge_common(unused,
4549 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4550 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4551 true);
0030f535 4552 css_put(&memcg->css);
69029cd5 4553 /*
ac39cf8c
AM
4554 * We disallowed uncharge of pages under migration because mapcount
4555 * of the page goes down to zero, temporarly.
4556 * Clear the flag and check the page should be charged.
01b1ae63 4557 */
ac39cf8c
AM
4558 pc = lookup_page_cgroup(oldpage);
4559 lock_page_cgroup(pc);
4560 ClearPageCgroupMigration(pc);
4561 unlock_page_cgroup(pc);
ac39cf8c 4562
01b1ae63 4563 /*
ac39cf8c
AM
4564 * If a page is a file cache, radix-tree replacement is very atomic
4565 * and we can skip this check. When it was an Anon page, its mapcount
4566 * goes down to 0. But because we added MIGRATION flage, it's not
4567 * uncharged yet. There are several case but page->mapcount check
4568 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4569 * check. (see prepare_charge() also)
69029cd5 4570 */
b2402857 4571 if (anon)
ac39cf8c 4572 mem_cgroup_uncharge_page(used);
ae41be37 4573}
78fb7466 4574
ab936cbc
KH
4575/*
4576 * At replace page cache, newpage is not under any memcg but it's on
4577 * LRU. So, this function doesn't touch res_counter but handles LRU
4578 * in correct way. Both pages are locked so we cannot race with uncharge.
4579 */
4580void mem_cgroup_replace_page_cache(struct page *oldpage,
4581 struct page *newpage)
4582{
bde05d1c 4583 struct mem_cgroup *memcg = NULL;
ab936cbc 4584 struct page_cgroup *pc;
ab936cbc 4585 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4586
4587 if (mem_cgroup_disabled())
4588 return;
4589
4590 pc = lookup_page_cgroup(oldpage);
4591 /* fix accounting on old pages */
4592 lock_page_cgroup(pc);
bde05d1c
HD
4593 if (PageCgroupUsed(pc)) {
4594 memcg = pc->mem_cgroup;
b070e65c 4595 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4596 ClearPageCgroupUsed(pc);
4597 }
ab936cbc
KH
4598 unlock_page_cgroup(pc);
4599
bde05d1c
HD
4600 /*
4601 * When called from shmem_replace_page(), in some cases the
4602 * oldpage has already been charged, and in some cases not.
4603 */
4604 if (!memcg)
4605 return;
ab936cbc
KH
4606 /*
4607 * Even if newpage->mapping was NULL before starting replacement,
4608 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4609 * LRU while we overwrite pc->mem_cgroup.
4610 */
ce587e65 4611 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4612}
4613
f212ad7c
DN
4614#ifdef CONFIG_DEBUG_VM
4615static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4616{
4617 struct page_cgroup *pc;
4618
4619 pc = lookup_page_cgroup(page);
cfa44946
JW
4620 /*
4621 * Can be NULL while feeding pages into the page allocator for
4622 * the first time, i.e. during boot or memory hotplug;
4623 * or when mem_cgroup_disabled().
4624 */
f212ad7c
DN
4625 if (likely(pc) && PageCgroupUsed(pc))
4626 return pc;
4627 return NULL;
4628}
4629
4630bool mem_cgroup_bad_page_check(struct page *page)
4631{
4632 if (mem_cgroup_disabled())
4633 return false;
4634
4635 return lookup_page_cgroup_used(page) != NULL;
4636}
4637
4638void mem_cgroup_print_bad_page(struct page *page)
4639{
4640 struct page_cgroup *pc;
4641
4642 pc = lookup_page_cgroup_used(page);
4643 if (pc) {
d045197f
AM
4644 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4645 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4646 }
4647}
4648#endif
4649
d38d2a75 4650static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4651 unsigned long long val)
628f4235 4652{
81d39c20 4653 int retry_count;
3c11ecf4 4654 u64 memswlimit, memlimit;
628f4235 4655 int ret = 0;
81d39c20
KH
4656 int children = mem_cgroup_count_children(memcg);
4657 u64 curusage, oldusage;
3c11ecf4 4658 int enlarge;
81d39c20
KH
4659
4660 /*
4661 * For keeping hierarchical_reclaim simple, how long we should retry
4662 * is depends on callers. We set our retry-count to be function
4663 * of # of children which we should visit in this loop.
4664 */
4665 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4666
4667 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4668
3c11ecf4 4669 enlarge = 0;
8c7c6e34 4670 while (retry_count) {
628f4235
KH
4671 if (signal_pending(current)) {
4672 ret = -EINTR;
4673 break;
4674 }
8c7c6e34
KH
4675 /*
4676 * Rather than hide all in some function, I do this in
4677 * open coded manner. You see what this really does.
aaad153e 4678 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4679 */
4680 mutex_lock(&set_limit_mutex);
4681 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4682 if (memswlimit < val) {
4683 ret = -EINVAL;
4684 mutex_unlock(&set_limit_mutex);
628f4235
KH
4685 break;
4686 }
3c11ecf4
KH
4687
4688 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4689 if (memlimit < val)
4690 enlarge = 1;
4691
8c7c6e34 4692 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4693 if (!ret) {
4694 if (memswlimit == val)
4695 memcg->memsw_is_minimum = true;
4696 else
4697 memcg->memsw_is_minimum = false;
4698 }
8c7c6e34
KH
4699 mutex_unlock(&set_limit_mutex);
4700
4701 if (!ret)
4702 break;
4703
5660048c
JW
4704 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4705 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4706 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4707 /* Usage is reduced ? */
f894ffa8 4708 if (curusage >= oldusage)
81d39c20
KH
4709 retry_count--;
4710 else
4711 oldusage = curusage;
8c7c6e34 4712 }
3c11ecf4
KH
4713 if (!ret && enlarge)
4714 memcg_oom_recover(memcg);
14797e23 4715
8c7c6e34
KH
4716 return ret;
4717}
4718
338c8431
LZ
4719static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4720 unsigned long long val)
8c7c6e34 4721{
81d39c20 4722 int retry_count;
3c11ecf4 4723 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4724 int children = mem_cgroup_count_children(memcg);
4725 int ret = -EBUSY;
3c11ecf4 4726 int enlarge = 0;
8c7c6e34 4727
81d39c20 4728 /* see mem_cgroup_resize_res_limit */
f894ffa8 4729 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4730 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4731 while (retry_count) {
4732 if (signal_pending(current)) {
4733 ret = -EINTR;
4734 break;
4735 }
4736 /*
4737 * Rather than hide all in some function, I do this in
4738 * open coded manner. You see what this really does.
aaad153e 4739 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4740 */
4741 mutex_lock(&set_limit_mutex);
4742 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4743 if (memlimit > val) {
4744 ret = -EINVAL;
4745 mutex_unlock(&set_limit_mutex);
4746 break;
4747 }
3c11ecf4
KH
4748 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4749 if (memswlimit < val)
4750 enlarge = 1;
8c7c6e34 4751 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4752 if (!ret) {
4753 if (memlimit == val)
4754 memcg->memsw_is_minimum = true;
4755 else
4756 memcg->memsw_is_minimum = false;
4757 }
8c7c6e34
KH
4758 mutex_unlock(&set_limit_mutex);
4759
4760 if (!ret)
4761 break;
4762
5660048c
JW
4763 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4764 MEM_CGROUP_RECLAIM_NOSWAP |
4765 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4766 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4767 /* Usage is reduced ? */
8c7c6e34 4768 if (curusage >= oldusage)
628f4235 4769 retry_count--;
81d39c20
KH
4770 else
4771 oldusage = curusage;
628f4235 4772 }
3c11ecf4
KH
4773 if (!ret && enlarge)
4774 memcg_oom_recover(memcg);
628f4235
KH
4775 return ret;
4776}
4777
0608f43d
AM
4778unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4779 gfp_t gfp_mask,
4780 unsigned long *total_scanned)
4781{
4782 unsigned long nr_reclaimed = 0;
4783 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4784 unsigned long reclaimed;
4785 int loop = 0;
4786 struct mem_cgroup_tree_per_zone *mctz;
4787 unsigned long long excess;
4788 unsigned long nr_scanned;
4789
4790 if (order > 0)
4791 return 0;
4792
4793 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4794 /*
4795 * This loop can run a while, specially if mem_cgroup's continuously
4796 * keep exceeding their soft limit and putting the system under
4797 * pressure
4798 */
4799 do {
4800 if (next_mz)
4801 mz = next_mz;
4802 else
4803 mz = mem_cgroup_largest_soft_limit_node(mctz);
4804 if (!mz)
4805 break;
4806
4807 nr_scanned = 0;
4808 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4809 gfp_mask, &nr_scanned);
4810 nr_reclaimed += reclaimed;
4811 *total_scanned += nr_scanned;
4812 spin_lock(&mctz->lock);
4813
4814 /*
4815 * If we failed to reclaim anything from this memory cgroup
4816 * it is time to move on to the next cgroup
4817 */
4818 next_mz = NULL;
4819 if (!reclaimed) {
4820 do {
4821 /*
4822 * Loop until we find yet another one.
4823 *
4824 * By the time we get the soft_limit lock
4825 * again, someone might have aded the
4826 * group back on the RB tree. Iterate to
4827 * make sure we get a different mem.
4828 * mem_cgroup_largest_soft_limit_node returns
4829 * NULL if no other cgroup is present on
4830 * the tree
4831 */
4832 next_mz =
4833 __mem_cgroup_largest_soft_limit_node(mctz);
4834 if (next_mz == mz)
4835 css_put(&next_mz->memcg->css);
4836 else /* next_mz == NULL or other memcg */
4837 break;
4838 } while (1);
4839 }
4840 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4841 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4842 /*
4843 * One school of thought says that we should not add
4844 * back the node to the tree if reclaim returns 0.
4845 * But our reclaim could return 0, simply because due
4846 * to priority we are exposing a smaller subset of
4847 * memory to reclaim from. Consider this as a longer
4848 * term TODO.
4849 */
4850 /* If excess == 0, no tree ops */
4851 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4852 spin_unlock(&mctz->lock);
4853 css_put(&mz->memcg->css);
4854 loop++;
4855 /*
4856 * Could not reclaim anything and there are no more
4857 * mem cgroups to try or we seem to be looping without
4858 * reclaiming anything.
4859 */
4860 if (!nr_reclaimed &&
4861 (next_mz == NULL ||
4862 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4863 break;
4864 } while (!nr_reclaimed);
4865 if (next_mz)
4866 css_put(&next_mz->memcg->css);
4867 return nr_reclaimed;
4868}
4869
2ef37d3f
MH
4870/**
4871 * mem_cgroup_force_empty_list - clears LRU of a group
4872 * @memcg: group to clear
4873 * @node: NUMA node
4874 * @zid: zone id
4875 * @lru: lru to to clear
4876 *
3c935d18 4877 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4878 * reclaim the pages page themselves - pages are moved to the parent (or root)
4879 * group.
cc847582 4880 */
2ef37d3f 4881static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4882 int node, int zid, enum lru_list lru)
cc847582 4883{
bea8c150 4884 struct lruvec *lruvec;
2ef37d3f 4885 unsigned long flags;
072c56c1 4886 struct list_head *list;
925b7673
JW
4887 struct page *busy;
4888 struct zone *zone;
072c56c1 4889
08e552c6 4890 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4891 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4892 list = &lruvec->lists[lru];
cc847582 4893
f817ed48 4894 busy = NULL;
2ef37d3f 4895 do {
925b7673 4896 struct page_cgroup *pc;
5564e88b
JW
4897 struct page *page;
4898
08e552c6 4899 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4900 if (list_empty(list)) {
08e552c6 4901 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4902 break;
f817ed48 4903 }
925b7673
JW
4904 page = list_entry(list->prev, struct page, lru);
4905 if (busy == page) {
4906 list_move(&page->lru, list);
648bcc77 4907 busy = NULL;
08e552c6 4908 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4909 continue;
4910 }
08e552c6 4911 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4912
925b7673 4913 pc = lookup_page_cgroup(page);
5564e88b 4914
3c935d18 4915 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4916 /* found lock contention or "pc" is obsolete. */
925b7673 4917 busy = page;
f817ed48
KH
4918 cond_resched();
4919 } else
4920 busy = NULL;
2ef37d3f 4921 } while (!list_empty(list));
cc847582
KH
4922}
4923
4924/*
c26251f9
MH
4925 * make mem_cgroup's charge to be 0 if there is no task by moving
4926 * all the charges and pages to the parent.
cc847582 4927 * This enables deleting this mem_cgroup.
c26251f9
MH
4928 *
4929 * Caller is responsible for holding css reference on the memcg.
cc847582 4930 */
ab5196c2 4931static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4932{
c26251f9 4933 int node, zid;
bea207c8 4934 u64 usage;
f817ed48 4935
fce66477 4936 do {
52d4b9ac
KH
4937 /* This is for making all *used* pages to be on LRU. */
4938 lru_add_drain_all();
c0ff4b85 4939 drain_all_stock_sync(memcg);
c0ff4b85 4940 mem_cgroup_start_move(memcg);
31aaea4a 4941 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4942 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4943 enum lru_list lru;
4944 for_each_lru(lru) {
2ef37d3f 4945 mem_cgroup_force_empty_list(memcg,
f156ab93 4946 node, zid, lru);
f817ed48 4947 }
1ecaab2b 4948 }
f817ed48 4949 }
c0ff4b85
R
4950 mem_cgroup_end_move(memcg);
4951 memcg_oom_recover(memcg);
52d4b9ac 4952 cond_resched();
f817ed48 4953
2ef37d3f 4954 /*
bea207c8
GC
4955 * Kernel memory may not necessarily be trackable to a specific
4956 * process. So they are not migrated, and therefore we can't
4957 * expect their value to drop to 0 here.
4958 * Having res filled up with kmem only is enough.
4959 *
2ef37d3f
MH
4960 * This is a safety check because mem_cgroup_force_empty_list
4961 * could have raced with mem_cgroup_replace_page_cache callers
4962 * so the lru seemed empty but the page could have been added
4963 * right after the check. RES_USAGE should be safe as we always
4964 * charge before adding to the LRU.
4965 */
bea207c8
GC
4966 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4967 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4968 } while (usage > 0);
c26251f9
MH
4969}
4970
b5f99b53
GC
4971static inline bool memcg_has_children(struct mem_cgroup *memcg)
4972{
696ac172
JW
4973 lockdep_assert_held(&memcg_create_mutex);
4974 /*
4975 * The lock does not prevent addition or deletion to the list
4976 * of children, but it prevents a new child from being
4977 * initialized based on this parent in css_online(), so it's
4978 * enough to decide whether hierarchically inherited
4979 * attributes can still be changed or not.
4980 */
4981 return memcg->use_hierarchy &&
4982 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4983}
4984
c26251f9
MH
4985/*
4986 * Reclaims as many pages from the given memcg as possible and moves
4987 * the rest to the parent.
4988 *
4989 * Caller is responsible for holding css reference for memcg.
4990 */
4991static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4992{
4993 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4994 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4995
c1e862c1 4996 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4997 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4998 return -EBUSY;
4999
c1e862c1
KH
5000 /* we call try-to-free pages for make this cgroup empty */
5001 lru_add_drain_all();
f817ed48 5002 /* try to free all pages in this cgroup */
569530fb 5003 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5004 int progress;
c1e862c1 5005
c26251f9
MH
5006 if (signal_pending(current))
5007 return -EINTR;
5008
c0ff4b85 5009 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5010 false);
c1e862c1 5011 if (!progress) {
f817ed48 5012 nr_retries--;
c1e862c1 5013 /* maybe some writeback is necessary */
8aa7e847 5014 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5015 }
f817ed48
KH
5016
5017 }
08e552c6 5018 lru_add_drain();
ab5196c2
MH
5019 mem_cgroup_reparent_charges(memcg);
5020
5021 return 0;
cc847582
KH
5022}
5023
182446d0
TH
5024static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5025 unsigned int event)
c1e862c1 5026{
182446d0 5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5028
d8423011
MH
5029 if (mem_cgroup_is_root(memcg))
5030 return -EINVAL;
c33bd835 5031 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5032}
5033
182446d0
TH
5034static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5035 struct cftype *cft)
18f59ea7 5036{
182446d0 5037 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5038}
5039
182446d0
TH
5040static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5041 struct cftype *cft, u64 val)
18f59ea7
BS
5042{
5043 int retval = 0;
182446d0 5044 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5045 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5046
0999821b 5047 mutex_lock(&memcg_create_mutex);
567fb435
GC
5048
5049 if (memcg->use_hierarchy == val)
5050 goto out;
5051
18f59ea7 5052 /*
af901ca1 5053 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5054 * in the child subtrees. If it is unset, then the change can
5055 * occur, provided the current cgroup has no children.
5056 *
5057 * For the root cgroup, parent_mem is NULL, we allow value to be
5058 * set if there are no children.
5059 */
c0ff4b85 5060 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5061 (val == 1 || val == 0)) {
696ac172 5062 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5063 memcg->use_hierarchy = val;
18f59ea7
BS
5064 else
5065 retval = -EBUSY;
5066 } else
5067 retval = -EINVAL;
567fb435
GC
5068
5069out:
0999821b 5070 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5071
5072 return retval;
5073}
5074
0c3e73e8 5075
c0ff4b85 5076static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5077 enum mem_cgroup_stat_index idx)
0c3e73e8 5078{
7d74b06f 5079 struct mem_cgroup *iter;
7a159cc9 5080 long val = 0;
0c3e73e8 5081
7a159cc9 5082 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5083 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5084 val += mem_cgroup_read_stat(iter, idx);
5085
5086 if (val < 0) /* race ? */
5087 val = 0;
5088 return val;
0c3e73e8
BS
5089}
5090
c0ff4b85 5091static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5092{
7d74b06f 5093 u64 val;
104f3928 5094
c0ff4b85 5095 if (!mem_cgroup_is_root(memcg)) {
104f3928 5096 if (!swap)
65c64ce8 5097 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5098 else
65c64ce8 5099 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5100 }
5101
b070e65c
DR
5102 /*
5103 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5104 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5105 */
c0ff4b85
R
5106 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5107 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5108
7d74b06f 5109 if (swap)
bff6bb83 5110 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5111
5112 return val << PAGE_SHIFT;
5113}
5114
182446d0
TH
5115static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5116 struct cftype *cft, struct file *file,
5117 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5118{
182446d0 5119 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5120 char str[64];
104f3928 5121 u64 val;
86ae53e1
GC
5122 int name, len;
5123 enum res_type type;
8c7c6e34
KH
5124
5125 type = MEMFILE_TYPE(cft->private);
5126 name = MEMFILE_ATTR(cft->private);
af36f906 5127
8c7c6e34
KH
5128 switch (type) {
5129 case _MEM:
104f3928 5130 if (name == RES_USAGE)
c0ff4b85 5131 val = mem_cgroup_usage(memcg, false);
104f3928 5132 else
c0ff4b85 5133 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5134 break;
5135 case _MEMSWAP:
104f3928 5136 if (name == RES_USAGE)
c0ff4b85 5137 val = mem_cgroup_usage(memcg, true);
104f3928 5138 else
c0ff4b85 5139 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5140 break;
510fc4e1
GC
5141 case _KMEM:
5142 val = res_counter_read_u64(&memcg->kmem, name);
5143 break;
8c7c6e34
KH
5144 default:
5145 BUG();
8c7c6e34 5146 }
af36f906
TH
5147
5148 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5149 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5150}
510fc4e1 5151
182446d0 5152static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5153{
5154 int ret = -EINVAL;
5155#ifdef CONFIG_MEMCG_KMEM
182446d0 5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5157 /*
5158 * For simplicity, we won't allow this to be disabled. It also can't
5159 * be changed if the cgroup has children already, or if tasks had
5160 * already joined.
5161 *
5162 * If tasks join before we set the limit, a person looking at
5163 * kmem.usage_in_bytes will have no way to determine when it took
5164 * place, which makes the value quite meaningless.
5165 *
5166 * After it first became limited, changes in the value of the limit are
5167 * of course permitted.
510fc4e1 5168 */
0999821b 5169 mutex_lock(&memcg_create_mutex);
510fc4e1 5170 mutex_lock(&set_limit_mutex);
6de5a8bf 5171 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5172 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5173 ret = -EBUSY;
5174 goto out;
5175 }
5176 ret = res_counter_set_limit(&memcg->kmem, val);
5177 VM_BUG_ON(ret);
5178
55007d84
GC
5179 ret = memcg_update_cache_sizes(memcg);
5180 if (ret) {
6de5a8bf 5181 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5182 goto out;
5183 }
692e89ab
GC
5184 static_key_slow_inc(&memcg_kmem_enabled_key);
5185 /*
5186 * setting the active bit after the inc will guarantee no one
5187 * starts accounting before all call sites are patched
5188 */
5189 memcg_kmem_set_active(memcg);
510fc4e1
GC
5190 } else
5191 ret = res_counter_set_limit(&memcg->kmem, val);
5192out:
5193 mutex_unlock(&set_limit_mutex);
0999821b 5194 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5195#endif
5196 return ret;
5197}
5198
6d043990 5199#ifdef CONFIG_MEMCG_KMEM
55007d84 5200static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5201{
55007d84 5202 int ret = 0;
510fc4e1
GC
5203 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5204 if (!parent)
55007d84
GC
5205 goto out;
5206
510fc4e1 5207 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5208 /*
5209 * When that happen, we need to disable the static branch only on those
5210 * memcgs that enabled it. To achieve this, we would be forced to
5211 * complicate the code by keeping track of which memcgs were the ones
5212 * that actually enabled limits, and which ones got it from its
5213 * parents.
5214 *
5215 * It is a lot simpler just to do static_key_slow_inc() on every child
5216 * that is accounted.
5217 */
55007d84
GC
5218 if (!memcg_kmem_is_active(memcg))
5219 goto out;
5220
5221 /*
10d5ebf4
LZ
5222 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5223 * memcg is active already. If the later initialization fails then the
5224 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5225 */
55007d84
GC
5226 static_key_slow_inc(&memcg_kmem_enabled_key);
5227
5228 mutex_lock(&set_limit_mutex);
425c598d 5229 memcg_stop_kmem_account();
55007d84 5230 ret = memcg_update_cache_sizes(memcg);
425c598d 5231 memcg_resume_kmem_account();
55007d84 5232 mutex_unlock(&set_limit_mutex);
55007d84
GC
5233out:
5234 return ret;
510fc4e1 5235}
6d043990 5236#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5237
628f4235
KH
5238/*
5239 * The user of this function is...
5240 * RES_LIMIT.
5241 */
182446d0 5242static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5243 const char *buffer)
8cdea7c0 5244{
182446d0 5245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5246 enum res_type type;
5247 int name;
628f4235
KH
5248 unsigned long long val;
5249 int ret;
5250
8c7c6e34
KH
5251 type = MEMFILE_TYPE(cft->private);
5252 name = MEMFILE_ATTR(cft->private);
af36f906 5253
8c7c6e34 5254 switch (name) {
628f4235 5255 case RES_LIMIT:
4b3bde4c
BS
5256 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5257 ret = -EINVAL;
5258 break;
5259 }
628f4235
KH
5260 /* This function does all necessary parse...reuse it */
5261 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5262 if (ret)
5263 break;
5264 if (type == _MEM)
628f4235 5265 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5266 else if (type == _MEMSWAP)
8c7c6e34 5267 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5268 else if (type == _KMEM)
182446d0 5269 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5270 else
5271 return -EINVAL;
628f4235 5272 break;
296c81d8
BS
5273 case RES_SOFT_LIMIT:
5274 ret = res_counter_memparse_write_strategy(buffer, &val);
5275 if (ret)
5276 break;
5277 /*
5278 * For memsw, soft limits are hard to implement in terms
5279 * of semantics, for now, we support soft limits for
5280 * control without swap
5281 */
5282 if (type == _MEM)
5283 ret = res_counter_set_soft_limit(&memcg->res, val);
5284 else
5285 ret = -EINVAL;
5286 break;
628f4235
KH
5287 default:
5288 ret = -EINVAL; /* should be BUG() ? */
5289 break;
5290 }
5291 return ret;
8cdea7c0
BS
5292}
5293
fee7b548
KH
5294static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5295 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5296{
fee7b548
KH
5297 unsigned long long min_limit, min_memsw_limit, tmp;
5298
5299 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5300 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5301 if (!memcg->use_hierarchy)
5302 goto out;
5303
63876986
TH
5304 while (css_parent(&memcg->css)) {
5305 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5306 if (!memcg->use_hierarchy)
5307 break;
5308 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5309 min_limit = min(min_limit, tmp);
5310 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5311 min_memsw_limit = min(min_memsw_limit, tmp);
5312 }
5313out:
5314 *mem_limit = min_limit;
5315 *memsw_limit = min_memsw_limit;
fee7b548
KH
5316}
5317
182446d0 5318static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5319{
182446d0 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5321 int name;
5322 enum res_type type;
c84872e1 5323
8c7c6e34
KH
5324 type = MEMFILE_TYPE(event);
5325 name = MEMFILE_ATTR(event);
af36f906 5326
8c7c6e34 5327 switch (name) {
29f2a4da 5328 case RES_MAX_USAGE:
8c7c6e34 5329 if (type == _MEM)
c0ff4b85 5330 res_counter_reset_max(&memcg->res);
510fc4e1 5331 else if (type == _MEMSWAP)
c0ff4b85 5332 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5333 else if (type == _KMEM)
5334 res_counter_reset_max(&memcg->kmem);
5335 else
5336 return -EINVAL;
29f2a4da
PE
5337 break;
5338 case RES_FAILCNT:
8c7c6e34 5339 if (type == _MEM)
c0ff4b85 5340 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5341 else if (type == _MEMSWAP)
c0ff4b85 5342 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5343 else if (type == _KMEM)
5344 res_counter_reset_failcnt(&memcg->kmem);
5345 else
5346 return -EINVAL;
29f2a4da
PE
5347 break;
5348 }
f64c3f54 5349
85cc59db 5350 return 0;
c84872e1
PE
5351}
5352
182446d0 5353static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5354 struct cftype *cft)
5355{
182446d0 5356 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5357}
5358
02491447 5359#ifdef CONFIG_MMU
182446d0 5360static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5361 struct cftype *cft, u64 val)
5362{
182446d0 5363 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5364
5365 if (val >= (1 << NR_MOVE_TYPE))
5366 return -EINVAL;
ee5e8472 5367
7dc74be0 5368 /*
ee5e8472
GC
5369 * No kind of locking is needed in here, because ->can_attach() will
5370 * check this value once in the beginning of the process, and then carry
5371 * on with stale data. This means that changes to this value will only
5372 * affect task migrations starting after the change.
7dc74be0 5373 */
c0ff4b85 5374 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5375 return 0;
5376}
02491447 5377#else
182446d0 5378static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5379 struct cftype *cft, u64 val)
5380{
5381 return -ENOSYS;
5382}
5383#endif
7dc74be0 5384
406eb0c9 5385#ifdef CONFIG_NUMA
182446d0
TH
5386static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5387 struct cftype *cft, struct seq_file *m)
406eb0c9 5388{
25485de6
GT
5389 struct numa_stat {
5390 const char *name;
5391 unsigned int lru_mask;
5392 };
5393
5394 static const struct numa_stat stats[] = {
5395 { "total", LRU_ALL },
5396 { "file", LRU_ALL_FILE },
5397 { "anon", LRU_ALL_ANON },
5398 { "unevictable", BIT(LRU_UNEVICTABLE) },
5399 };
5400 const struct numa_stat *stat;
406eb0c9 5401 int nid;
25485de6 5402 unsigned long nr;
182446d0 5403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5404
25485de6
GT
5405 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5406 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5407 seq_printf(m, "%s=%lu", stat->name, nr);
5408 for_each_node_state(nid, N_MEMORY) {
5409 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5410 stat->lru_mask);
5411 seq_printf(m, " N%d=%lu", nid, nr);
5412 }
5413 seq_putc(m, '\n');
406eb0c9 5414 }
406eb0c9 5415
071aee13
YH
5416 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5417 struct mem_cgroup *iter;
5418
5419 nr = 0;
5420 for_each_mem_cgroup_tree(iter, memcg)
5421 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5422 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5423 for_each_node_state(nid, N_MEMORY) {
5424 nr = 0;
5425 for_each_mem_cgroup_tree(iter, memcg)
5426 nr += mem_cgroup_node_nr_lru_pages(
5427 iter, nid, stat->lru_mask);
5428 seq_printf(m, " N%d=%lu", nid, nr);
5429 }
5430 seq_putc(m, '\n');
406eb0c9 5431 }
406eb0c9 5432
406eb0c9
YH
5433 return 0;
5434}
5435#endif /* CONFIG_NUMA */
5436
af7c4b0e
JW
5437static inline void mem_cgroup_lru_names_not_uptodate(void)
5438{
5439 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5440}
5441
182446d0 5442static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5443 struct seq_file *m)
d2ceb9b7 5444{
182446d0 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5446 struct mem_cgroup *mi;
5447 unsigned int i;
406eb0c9 5448
af7c4b0e 5449 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5450 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5451 continue;
af7c4b0e
JW
5452 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5453 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5454 }
7b854121 5455
af7c4b0e
JW
5456 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5457 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5458 mem_cgroup_read_events(memcg, i));
5459
5460 for (i = 0; i < NR_LRU_LISTS; i++)
5461 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5462 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5463
14067bb3 5464 /* Hierarchical information */
fee7b548
KH
5465 {
5466 unsigned long long limit, memsw_limit;
d79154bb 5467 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5468 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5469 if (do_swap_account)
78ccf5b5
JW
5470 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5471 memsw_limit);
fee7b548 5472 }
7f016ee8 5473
af7c4b0e
JW
5474 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5475 long long val = 0;
5476
bff6bb83 5477 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5478 continue;
af7c4b0e
JW
5479 for_each_mem_cgroup_tree(mi, memcg)
5480 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5481 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5482 }
5483
5484 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5485 unsigned long long val = 0;
5486
5487 for_each_mem_cgroup_tree(mi, memcg)
5488 val += mem_cgroup_read_events(mi, i);
5489 seq_printf(m, "total_%s %llu\n",
5490 mem_cgroup_events_names[i], val);
5491 }
5492
5493 for (i = 0; i < NR_LRU_LISTS; i++) {
5494 unsigned long long val = 0;
5495
5496 for_each_mem_cgroup_tree(mi, memcg)
5497 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5498 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5499 }
14067bb3 5500
7f016ee8 5501#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5502 {
5503 int nid, zid;
5504 struct mem_cgroup_per_zone *mz;
89abfab1 5505 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5506 unsigned long recent_rotated[2] = {0, 0};
5507 unsigned long recent_scanned[2] = {0, 0};
5508
5509 for_each_online_node(nid)
5510 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5511 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5512 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5513
89abfab1
HD
5514 recent_rotated[0] += rstat->recent_rotated[0];
5515 recent_rotated[1] += rstat->recent_rotated[1];
5516 recent_scanned[0] += rstat->recent_scanned[0];
5517 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5518 }
78ccf5b5
JW
5519 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5520 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5521 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5522 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5523 }
5524#endif
5525
d2ceb9b7
KH
5526 return 0;
5527}
5528
182446d0
TH
5529static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5530 struct cftype *cft)
a7885eb8 5531{
182446d0 5532 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5533
1f4c025b 5534 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5535}
5536
182446d0
TH
5537static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5538 struct cftype *cft, u64 val)
a7885eb8 5539{
182446d0 5540 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5541 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5542
63876986 5543 if (val > 100 || !parent)
a7885eb8
KM
5544 return -EINVAL;
5545
0999821b 5546 mutex_lock(&memcg_create_mutex);
068b38c1 5547
a7885eb8 5548 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5549 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5550 mutex_unlock(&memcg_create_mutex);
a7885eb8 5551 return -EINVAL;
068b38c1 5552 }
a7885eb8 5553
a7885eb8 5554 memcg->swappiness = val;
a7885eb8 5555
0999821b 5556 mutex_unlock(&memcg_create_mutex);
068b38c1 5557
a7885eb8
KM
5558 return 0;
5559}
5560
2e72b634
KS
5561static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5562{
5563 struct mem_cgroup_threshold_ary *t;
5564 u64 usage;
5565 int i;
5566
5567 rcu_read_lock();
5568 if (!swap)
2c488db2 5569 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5570 else
2c488db2 5571 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5572
5573 if (!t)
5574 goto unlock;
5575
5576 usage = mem_cgroup_usage(memcg, swap);
5577
5578 /*
748dad36 5579 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5580 * If it's not true, a threshold was crossed after last
5581 * call of __mem_cgroup_threshold().
5582 */
5407a562 5583 i = t->current_threshold;
2e72b634
KS
5584
5585 /*
5586 * Iterate backward over array of thresholds starting from
5587 * current_threshold and check if a threshold is crossed.
5588 * If none of thresholds below usage is crossed, we read
5589 * only one element of the array here.
5590 */
5591 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5592 eventfd_signal(t->entries[i].eventfd, 1);
5593
5594 /* i = current_threshold + 1 */
5595 i++;
5596
5597 /*
5598 * Iterate forward over array of thresholds starting from
5599 * current_threshold+1 and check if a threshold is crossed.
5600 * If none of thresholds above usage is crossed, we read
5601 * only one element of the array here.
5602 */
5603 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5604 eventfd_signal(t->entries[i].eventfd, 1);
5605
5606 /* Update current_threshold */
5407a562 5607 t->current_threshold = i - 1;
2e72b634
KS
5608unlock:
5609 rcu_read_unlock();
5610}
5611
5612static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5613{
ad4ca5f4
KS
5614 while (memcg) {
5615 __mem_cgroup_threshold(memcg, false);
5616 if (do_swap_account)
5617 __mem_cgroup_threshold(memcg, true);
5618
5619 memcg = parent_mem_cgroup(memcg);
5620 }
2e72b634
KS
5621}
5622
5623static int compare_thresholds(const void *a, const void *b)
5624{
5625 const struct mem_cgroup_threshold *_a = a;
5626 const struct mem_cgroup_threshold *_b = b;
5627
2bff24a3
GT
5628 if (_a->threshold > _b->threshold)
5629 return 1;
5630
5631 if (_a->threshold < _b->threshold)
5632 return -1;
5633
5634 return 0;
2e72b634
KS
5635}
5636
c0ff4b85 5637static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5638{
5639 struct mem_cgroup_eventfd_list *ev;
5640
c0ff4b85 5641 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5642 eventfd_signal(ev->eventfd, 1);
5643 return 0;
5644}
5645
c0ff4b85 5646static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5647{
7d74b06f
KH
5648 struct mem_cgroup *iter;
5649
c0ff4b85 5650 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5651 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5652}
5653
81eeaf04 5654static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5655 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5656{
81eeaf04 5657 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5658 struct mem_cgroup_thresholds *thresholds;
5659 struct mem_cgroup_threshold_ary *new;
86ae53e1 5660 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5661 u64 threshold, usage;
2c488db2 5662 int i, size, ret;
2e72b634
KS
5663
5664 ret = res_counter_memparse_write_strategy(args, &threshold);
5665 if (ret)
5666 return ret;
5667
5668 mutex_lock(&memcg->thresholds_lock);
2c488db2 5669
2e72b634 5670 if (type == _MEM)
2c488db2 5671 thresholds = &memcg->thresholds;
2e72b634 5672 else if (type == _MEMSWAP)
2c488db2 5673 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5674 else
5675 BUG();
5676
5677 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5678
5679 /* Check if a threshold crossed before adding a new one */
2c488db2 5680 if (thresholds->primary)
2e72b634
KS
5681 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5682
2c488db2 5683 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5684
5685 /* Allocate memory for new array of thresholds */
2c488db2 5686 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5687 GFP_KERNEL);
2c488db2 5688 if (!new) {
2e72b634
KS
5689 ret = -ENOMEM;
5690 goto unlock;
5691 }
2c488db2 5692 new->size = size;
2e72b634
KS
5693
5694 /* Copy thresholds (if any) to new array */
2c488db2
KS
5695 if (thresholds->primary) {
5696 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5697 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5698 }
5699
2e72b634 5700 /* Add new threshold */
2c488db2
KS
5701 new->entries[size - 1].eventfd = eventfd;
5702 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5703
5704 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5705 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5706 compare_thresholds, NULL);
5707
5708 /* Find current threshold */
2c488db2 5709 new->current_threshold = -1;
2e72b634 5710 for (i = 0; i < size; i++) {
748dad36 5711 if (new->entries[i].threshold <= usage) {
2e72b634 5712 /*
2c488db2
KS
5713 * new->current_threshold will not be used until
5714 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5715 * it here.
5716 */
2c488db2 5717 ++new->current_threshold;
748dad36
SZ
5718 } else
5719 break;
2e72b634
KS
5720 }
5721
2c488db2
KS
5722 /* Free old spare buffer and save old primary buffer as spare */
5723 kfree(thresholds->spare);
5724 thresholds->spare = thresholds->primary;
5725
5726 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5727
907860ed 5728 /* To be sure that nobody uses thresholds */
2e72b634
KS
5729 synchronize_rcu();
5730
2e72b634
KS
5731unlock:
5732 mutex_unlock(&memcg->thresholds_lock);
5733
5734 return ret;
5735}
5736
81eeaf04 5737static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5738 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5739{
81eeaf04 5740 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5741 struct mem_cgroup_thresholds *thresholds;
5742 struct mem_cgroup_threshold_ary *new;
86ae53e1 5743 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5744 u64 usage;
2c488db2 5745 int i, j, size;
2e72b634
KS
5746
5747 mutex_lock(&memcg->thresholds_lock);
5748 if (type == _MEM)
2c488db2 5749 thresholds = &memcg->thresholds;
2e72b634 5750 else if (type == _MEMSWAP)
2c488db2 5751 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5752 else
5753 BUG();
5754
371528ca
AV
5755 if (!thresholds->primary)
5756 goto unlock;
5757
2e72b634
KS
5758 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5759
5760 /* Check if a threshold crossed before removing */
5761 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5762
5763 /* Calculate new number of threshold */
2c488db2
KS
5764 size = 0;
5765 for (i = 0; i < thresholds->primary->size; i++) {
5766 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5767 size++;
5768 }
5769
2c488db2 5770 new = thresholds->spare;
907860ed 5771
2e72b634
KS
5772 /* Set thresholds array to NULL if we don't have thresholds */
5773 if (!size) {
2c488db2
KS
5774 kfree(new);
5775 new = NULL;
907860ed 5776 goto swap_buffers;
2e72b634
KS
5777 }
5778
2c488db2 5779 new->size = size;
2e72b634
KS
5780
5781 /* Copy thresholds and find current threshold */
2c488db2
KS
5782 new->current_threshold = -1;
5783 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5784 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5785 continue;
5786
2c488db2 5787 new->entries[j] = thresholds->primary->entries[i];
748dad36 5788 if (new->entries[j].threshold <= usage) {
2e72b634 5789 /*
2c488db2 5790 * new->current_threshold will not be used
2e72b634
KS
5791 * until rcu_assign_pointer(), so it's safe to increment
5792 * it here.
5793 */
2c488db2 5794 ++new->current_threshold;
2e72b634
KS
5795 }
5796 j++;
5797 }
5798
907860ed 5799swap_buffers:
2c488db2
KS
5800 /* Swap primary and spare array */
5801 thresholds->spare = thresholds->primary;
8c757763
SZ
5802 /* If all events are unregistered, free the spare array */
5803 if (!new) {
5804 kfree(thresholds->spare);
5805 thresholds->spare = NULL;
5806 }
5807
2c488db2 5808 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5809
907860ed 5810 /* To be sure that nobody uses thresholds */
2e72b634 5811 synchronize_rcu();
371528ca 5812unlock:
2e72b634 5813 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5814}
c1e862c1 5815
81eeaf04 5816static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5817 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5818{
81eeaf04 5819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5820 struct mem_cgroup_eventfd_list *event;
86ae53e1 5821 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5822
5823 BUG_ON(type != _OOM_TYPE);
5824 event = kmalloc(sizeof(*event), GFP_KERNEL);
5825 if (!event)
5826 return -ENOMEM;
5827
1af8efe9 5828 spin_lock(&memcg_oom_lock);
9490ff27
KH
5829
5830 event->eventfd = eventfd;
5831 list_add(&event->list, &memcg->oom_notify);
5832
5833 /* already in OOM ? */
79dfdacc 5834 if (atomic_read(&memcg->under_oom))
9490ff27 5835 eventfd_signal(eventfd, 1);
1af8efe9 5836 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5837
5838 return 0;
5839}
5840
81eeaf04 5841static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5842 struct cftype *cft, struct eventfd_ctx *eventfd)
5843{
81eeaf04 5844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5845 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5846 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5847
5848 BUG_ON(type != _OOM_TYPE);
5849
1af8efe9 5850 spin_lock(&memcg_oom_lock);
9490ff27 5851
c0ff4b85 5852 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5853 if (ev->eventfd == eventfd) {
5854 list_del(&ev->list);
5855 kfree(ev);
5856 }
5857 }
5858
1af8efe9 5859 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5860}
5861
182446d0 5862static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5863 struct cftype *cft, struct cgroup_map_cb *cb)
5864{
182446d0 5865 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5866
c0ff4b85 5867 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5868
c0ff4b85 5869 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5870 cb->fill(cb, "under_oom", 1);
5871 else
5872 cb->fill(cb, "under_oom", 0);
5873 return 0;
5874}
5875
182446d0 5876static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5877 struct cftype *cft, u64 val)
5878{
182446d0 5879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5880 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5881
5882 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5883 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5884 return -EINVAL;
5885
0999821b 5886 mutex_lock(&memcg_create_mutex);
3c11ecf4 5887 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5888 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5889 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5890 return -EINVAL;
5891 }
c0ff4b85 5892 memcg->oom_kill_disable = val;
4d845ebf 5893 if (!val)
c0ff4b85 5894 memcg_oom_recover(memcg);
0999821b 5895 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5896 return 0;
5897}
5898
c255a458 5899#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5900static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5901{
55007d84
GC
5902 int ret;
5903
2633d7a0 5904 memcg->kmemcg_id = -1;
55007d84
GC
5905 ret = memcg_propagate_kmem(memcg);
5906 if (ret)
5907 return ret;
2633d7a0 5908
1d62e436 5909 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5910}
e5671dfa 5911
10d5ebf4 5912static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5913{
1d62e436 5914 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5915}
5916
5917static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5918{
5919 if (!memcg_kmem_is_active(memcg))
5920 return;
5921
5922 /*
5923 * kmem charges can outlive the cgroup. In the case of slab
5924 * pages, for instance, a page contain objects from various
5925 * processes. As we prevent from taking a reference for every
5926 * such allocation we have to be careful when doing uncharge
5927 * (see memcg_uncharge_kmem) and here during offlining.
5928 *
5929 * The idea is that that only the _last_ uncharge which sees
5930 * the dead memcg will drop the last reference. An additional
5931 * reference is taken here before the group is marked dead
5932 * which is then paired with css_put during uncharge resp. here.
5933 *
5934 * Although this might sound strange as this path is called from
5935 * css_offline() when the referencemight have dropped down to 0
5936 * and shouldn't be incremented anymore (css_tryget would fail)
5937 * we do not have other options because of the kmem allocations
5938 * lifetime.
5939 */
5940 css_get(&memcg->css);
7de37682
GC
5941
5942 memcg_kmem_mark_dead(memcg);
5943
5944 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5945 return;
5946
7de37682 5947 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5948 css_put(&memcg->css);
d1a4c0b3 5949}
e5671dfa 5950#else
cbe128e3 5951static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5952{
5953 return 0;
5954}
d1a4c0b3 5955
10d5ebf4
LZ
5956static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5957{
5958}
5959
5960static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5961{
5962}
e5671dfa
GC
5963#endif
5964
8cdea7c0
BS
5965static struct cftype mem_cgroup_files[] = {
5966 {
0eea1030 5967 .name = "usage_in_bytes",
8c7c6e34 5968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5969 .read = mem_cgroup_read,
9490ff27
KH
5970 .register_event = mem_cgroup_usage_register_event,
5971 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5972 },
c84872e1
PE
5973 {
5974 .name = "max_usage_in_bytes",
8c7c6e34 5975 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5976 .trigger = mem_cgroup_reset,
af36f906 5977 .read = mem_cgroup_read,
c84872e1 5978 },
8cdea7c0 5979 {
0eea1030 5980 .name = "limit_in_bytes",
8c7c6e34 5981 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5982 .write_string = mem_cgroup_write,
af36f906 5983 .read = mem_cgroup_read,
8cdea7c0 5984 },
296c81d8
BS
5985 {
5986 .name = "soft_limit_in_bytes",
5987 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5988 .write_string = mem_cgroup_write,
af36f906 5989 .read = mem_cgroup_read,
296c81d8 5990 },
8cdea7c0
BS
5991 {
5992 .name = "failcnt",
8c7c6e34 5993 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5994 .trigger = mem_cgroup_reset,
af36f906 5995 .read = mem_cgroup_read,
8cdea7c0 5996 },
d2ceb9b7
KH
5997 {
5998 .name = "stat",
ab215884 5999 .read_seq_string = memcg_stat_show,
d2ceb9b7 6000 },
c1e862c1
KH
6001 {
6002 .name = "force_empty",
6003 .trigger = mem_cgroup_force_empty_write,
6004 },
18f59ea7
BS
6005 {
6006 .name = "use_hierarchy",
f00baae7 6007 .flags = CFTYPE_INSANE,
18f59ea7
BS
6008 .write_u64 = mem_cgroup_hierarchy_write,
6009 .read_u64 = mem_cgroup_hierarchy_read,
6010 },
a7885eb8
KM
6011 {
6012 .name = "swappiness",
6013 .read_u64 = mem_cgroup_swappiness_read,
6014 .write_u64 = mem_cgroup_swappiness_write,
6015 },
7dc74be0
DN
6016 {
6017 .name = "move_charge_at_immigrate",
6018 .read_u64 = mem_cgroup_move_charge_read,
6019 .write_u64 = mem_cgroup_move_charge_write,
6020 },
9490ff27
KH
6021 {
6022 .name = "oom_control",
3c11ecf4
KH
6023 .read_map = mem_cgroup_oom_control_read,
6024 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6025 .register_event = mem_cgroup_oom_register_event,
6026 .unregister_event = mem_cgroup_oom_unregister_event,
6027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6028 },
70ddf637
AV
6029 {
6030 .name = "pressure_level",
6031 .register_event = vmpressure_register_event,
6032 .unregister_event = vmpressure_unregister_event,
6033 },
406eb0c9
YH
6034#ifdef CONFIG_NUMA
6035 {
6036 .name = "numa_stat",
ab215884 6037 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6038 },
6039#endif
510fc4e1
GC
6040#ifdef CONFIG_MEMCG_KMEM
6041 {
6042 .name = "kmem.limit_in_bytes",
6043 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6044 .write_string = mem_cgroup_write,
6045 .read = mem_cgroup_read,
6046 },
6047 {
6048 .name = "kmem.usage_in_bytes",
6049 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6050 .read = mem_cgroup_read,
6051 },
6052 {
6053 .name = "kmem.failcnt",
6054 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6055 .trigger = mem_cgroup_reset,
6056 .read = mem_cgroup_read,
6057 },
6058 {
6059 .name = "kmem.max_usage_in_bytes",
6060 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6061 .trigger = mem_cgroup_reset,
6062 .read = mem_cgroup_read,
6063 },
749c5415
GC
6064#ifdef CONFIG_SLABINFO
6065 {
6066 .name = "kmem.slabinfo",
6067 .read_seq_string = mem_cgroup_slabinfo_read,
6068 },
6069#endif
8c7c6e34 6070#endif
6bc10349 6071 { }, /* terminate */
af36f906 6072};
8c7c6e34 6073
2d11085e
MH
6074#ifdef CONFIG_MEMCG_SWAP
6075static struct cftype memsw_cgroup_files[] = {
6076 {
6077 .name = "memsw.usage_in_bytes",
6078 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6079 .read = mem_cgroup_read,
6080 .register_event = mem_cgroup_usage_register_event,
6081 .unregister_event = mem_cgroup_usage_unregister_event,
6082 },
6083 {
6084 .name = "memsw.max_usage_in_bytes",
6085 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6086 .trigger = mem_cgroup_reset,
6087 .read = mem_cgroup_read,
6088 },
6089 {
6090 .name = "memsw.limit_in_bytes",
6091 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6092 .write_string = mem_cgroup_write,
6093 .read = mem_cgroup_read,
6094 },
6095 {
6096 .name = "memsw.failcnt",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6098 .trigger = mem_cgroup_reset,
6099 .read = mem_cgroup_read,
6100 },
6101 { }, /* terminate */
6102};
6103#endif
c0ff4b85 6104static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6105{
6106 struct mem_cgroup_per_node *pn;
1ecaab2b 6107 struct mem_cgroup_per_zone *mz;
41e3355d 6108 int zone, tmp = node;
1ecaab2b
KH
6109 /*
6110 * This routine is called against possible nodes.
6111 * But it's BUG to call kmalloc() against offline node.
6112 *
6113 * TODO: this routine can waste much memory for nodes which will
6114 * never be onlined. It's better to use memory hotplug callback
6115 * function.
6116 */
41e3355d
KH
6117 if (!node_state(node, N_NORMAL_MEMORY))
6118 tmp = -1;
17295c88 6119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6120 if (!pn)
6121 return 1;
1ecaab2b 6122
1ecaab2b
KH
6123 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6124 mz = &pn->zoneinfo[zone];
bea8c150 6125 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6126 mz->usage_in_excess = 0;
6127 mz->on_tree = false;
d79154bb 6128 mz->memcg = memcg;
1ecaab2b 6129 }
54f72fe0 6130 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6131 return 0;
6132}
6133
c0ff4b85 6134static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6135{
54f72fe0 6136 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6137}
6138
33327948
KH
6139static struct mem_cgroup *mem_cgroup_alloc(void)
6140{
d79154bb 6141 struct mem_cgroup *memcg;
45cf7ebd 6142 size_t size = memcg_size();
33327948 6143
45cf7ebd 6144 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6145 if (size < PAGE_SIZE)
d79154bb 6146 memcg = kzalloc(size, GFP_KERNEL);
33327948 6147 else
d79154bb 6148 memcg = vzalloc(size);
33327948 6149
d79154bb 6150 if (!memcg)
e7bbcdf3
DC
6151 return NULL;
6152
d79154bb
HD
6153 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6154 if (!memcg->stat)
d2e61b8d 6155 goto out_free;
d79154bb
HD
6156 spin_lock_init(&memcg->pcp_counter_lock);
6157 return memcg;
d2e61b8d
DC
6158
6159out_free:
6160 if (size < PAGE_SIZE)
d79154bb 6161 kfree(memcg);
d2e61b8d 6162 else
d79154bb 6163 vfree(memcg);
d2e61b8d 6164 return NULL;
33327948
KH
6165}
6166
59927fb9 6167/*
c8b2a36f
GC
6168 * At destroying mem_cgroup, references from swap_cgroup can remain.
6169 * (scanning all at force_empty is too costly...)
6170 *
6171 * Instead of clearing all references at force_empty, we remember
6172 * the number of reference from swap_cgroup and free mem_cgroup when
6173 * it goes down to 0.
6174 *
6175 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6176 */
c8b2a36f
GC
6177
6178static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6179{
c8b2a36f 6180 int node;
45cf7ebd 6181 size_t size = memcg_size();
59927fb9 6182
bb4cc1a8 6183 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6184
6185 for_each_node(node)
6186 free_mem_cgroup_per_zone_info(memcg, node);
6187
6188 free_percpu(memcg->stat);
6189
3f134619
GC
6190 /*
6191 * We need to make sure that (at least for now), the jump label
6192 * destruction code runs outside of the cgroup lock. This is because
6193 * get_online_cpus(), which is called from the static_branch update,
6194 * can't be called inside the cgroup_lock. cpusets are the ones
6195 * enforcing this dependency, so if they ever change, we might as well.
6196 *
6197 * schedule_work() will guarantee this happens. Be careful if you need
6198 * to move this code around, and make sure it is outside
6199 * the cgroup_lock.
6200 */
a8964b9b 6201 disarm_static_keys(memcg);
3afe36b1
GC
6202 if (size < PAGE_SIZE)
6203 kfree(memcg);
6204 else
6205 vfree(memcg);
59927fb9 6206}
3afe36b1 6207
7bcc1bb1
DN
6208/*
6209 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6210 */
e1aab161 6211struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6212{
c0ff4b85 6213 if (!memcg->res.parent)
7bcc1bb1 6214 return NULL;
c0ff4b85 6215 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6216}
e1aab161 6217EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6218
bb4cc1a8
AM
6219static void __init mem_cgroup_soft_limit_tree_init(void)
6220{
6221 struct mem_cgroup_tree_per_node *rtpn;
6222 struct mem_cgroup_tree_per_zone *rtpz;
6223 int tmp, node, zone;
6224
6225 for_each_node(node) {
6226 tmp = node;
6227 if (!node_state(node, N_NORMAL_MEMORY))
6228 tmp = -1;
6229 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6230 BUG_ON(!rtpn);
6231
6232 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6233
6234 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6235 rtpz = &rtpn->rb_tree_per_zone[zone];
6236 rtpz->rb_root = RB_ROOT;
6237 spin_lock_init(&rtpz->lock);
6238 }
6239 }
6240}
6241
0eb253e2 6242static struct cgroup_subsys_state * __ref
eb95419b 6243mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6244{
d142e3e6 6245 struct mem_cgroup *memcg;
04046e1a 6246 long error = -ENOMEM;
6d12e2d8 6247 int node;
8cdea7c0 6248
c0ff4b85
R
6249 memcg = mem_cgroup_alloc();
6250 if (!memcg)
04046e1a 6251 return ERR_PTR(error);
78fb7466 6252
3ed28fa1 6253 for_each_node(node)
c0ff4b85 6254 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6255 goto free_out;
f64c3f54 6256
c077719b 6257 /* root ? */
eb95419b 6258 if (parent_css == NULL) {
a41c58a6 6259 root_mem_cgroup = memcg;
d142e3e6
GC
6260 res_counter_init(&memcg->res, NULL);
6261 res_counter_init(&memcg->memsw, NULL);
6262 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6263 }
28dbc4b6 6264
d142e3e6
GC
6265 memcg->last_scanned_node = MAX_NUMNODES;
6266 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6267 memcg->move_charge_at_immigrate = 0;
6268 mutex_init(&memcg->thresholds_lock);
6269 spin_lock_init(&memcg->move_lock);
70ddf637 6270 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6271
6272 return &memcg->css;
6273
6274free_out:
6275 __mem_cgroup_free(memcg);
6276 return ERR_PTR(error);
6277}
6278
6279static int
eb95419b 6280mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6281{
eb95419b
TH
6282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6283 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6284 int error = 0;
6285
4219b2da
LZ
6286 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6287 return -ENOSPC;
6288
63876986 6289 if (!parent)
d142e3e6
GC
6290 return 0;
6291
0999821b 6292 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6293
6294 memcg->use_hierarchy = parent->use_hierarchy;
6295 memcg->oom_kill_disable = parent->oom_kill_disable;
6296 memcg->swappiness = mem_cgroup_swappiness(parent);
6297
6298 if (parent->use_hierarchy) {
c0ff4b85
R
6299 res_counter_init(&memcg->res, &parent->res);
6300 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6301 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6302
7bcc1bb1 6303 /*
8d76a979
LZ
6304 * No need to take a reference to the parent because cgroup
6305 * core guarantees its existence.
7bcc1bb1 6306 */
18f59ea7 6307 } else {
c0ff4b85
R
6308 res_counter_init(&memcg->res, NULL);
6309 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6310 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6311 /*
6312 * Deeper hierachy with use_hierarchy == false doesn't make
6313 * much sense so let cgroup subsystem know about this
6314 * unfortunate state in our controller.
6315 */
d142e3e6 6316 if (parent != root_mem_cgroup)
8c7f6edb 6317 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6318 }
cbe128e3
GC
6319
6320 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6321 mutex_unlock(&memcg_create_mutex);
d142e3e6 6322 return error;
8cdea7c0
BS
6323}
6324
5f578161
MH
6325/*
6326 * Announce all parents that a group from their hierarchy is gone.
6327 */
6328static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6329{
6330 struct mem_cgroup *parent = memcg;
6331
6332 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6333 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6334
6335 /*
6336 * if the root memcg is not hierarchical we have to check it
6337 * explicitely.
6338 */
6339 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6340 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6341}
6342
eb95419b 6343static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6344{
eb95419b 6345 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6346
10d5ebf4
LZ
6347 kmem_cgroup_css_offline(memcg);
6348
5f578161 6349 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6350 mem_cgroup_reparent_charges(memcg);
1f458cbf 6351 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6352 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6353}
6354
eb95419b 6355static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6356{
eb95419b 6357 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6358
10d5ebf4 6359 memcg_destroy_kmem(memcg);
465939a1 6360 __mem_cgroup_free(memcg);
8cdea7c0
BS
6361}
6362
02491447 6363#ifdef CONFIG_MMU
7dc74be0 6364/* Handlers for move charge at task migration. */
854ffa8d
DN
6365#define PRECHARGE_COUNT_AT_ONCE 256
6366static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6367{
854ffa8d
DN
6368 int ret = 0;
6369 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6370 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6371
c0ff4b85 6372 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6373 mc.precharge += count;
6374 /* we don't need css_get for root */
6375 return ret;
6376 }
6377 /* try to charge at once */
6378 if (count > 1) {
6379 struct res_counter *dummy;
6380 /*
c0ff4b85 6381 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6382 * by cgroup_lock_live_cgroup() that it is not removed and we
6383 * are still under the same cgroup_mutex. So we can postpone
6384 * css_get().
6385 */
c0ff4b85 6386 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6387 goto one_by_one;
c0ff4b85 6388 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6389 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6390 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6391 goto one_by_one;
6392 }
6393 mc.precharge += count;
854ffa8d
DN
6394 return ret;
6395 }
6396one_by_one:
6397 /* fall back to one by one charge */
6398 while (count--) {
6399 if (signal_pending(current)) {
6400 ret = -EINTR;
6401 break;
6402 }
6403 if (!batch_count--) {
6404 batch_count = PRECHARGE_COUNT_AT_ONCE;
6405 cond_resched();
6406 }
c0ff4b85
R
6407 ret = __mem_cgroup_try_charge(NULL,
6408 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6409 if (ret)
854ffa8d 6410 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6411 return ret;
854ffa8d
DN
6412 mc.precharge++;
6413 }
4ffef5fe
DN
6414 return ret;
6415}
6416
6417/**
8d32ff84 6418 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6419 * @vma: the vma the pte to be checked belongs
6420 * @addr: the address corresponding to the pte to be checked
6421 * @ptent: the pte to be checked
02491447 6422 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6423 *
6424 * Returns
6425 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6426 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6427 * move charge. if @target is not NULL, the page is stored in target->page
6428 * with extra refcnt got(Callers should handle it).
02491447
DN
6429 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6430 * target for charge migration. if @target is not NULL, the entry is stored
6431 * in target->ent.
4ffef5fe
DN
6432 *
6433 * Called with pte lock held.
6434 */
4ffef5fe
DN
6435union mc_target {
6436 struct page *page;
02491447 6437 swp_entry_t ent;
4ffef5fe
DN
6438};
6439
4ffef5fe 6440enum mc_target_type {
8d32ff84 6441 MC_TARGET_NONE = 0,
4ffef5fe 6442 MC_TARGET_PAGE,
02491447 6443 MC_TARGET_SWAP,
4ffef5fe
DN
6444};
6445
90254a65
DN
6446static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6447 unsigned long addr, pte_t ptent)
4ffef5fe 6448{
90254a65 6449 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6450
90254a65
DN
6451 if (!page || !page_mapped(page))
6452 return NULL;
6453 if (PageAnon(page)) {
6454 /* we don't move shared anon */
4b91355e 6455 if (!move_anon())
90254a65 6456 return NULL;
87946a72
DN
6457 } else if (!move_file())
6458 /* we ignore mapcount for file pages */
90254a65
DN
6459 return NULL;
6460 if (!get_page_unless_zero(page))
6461 return NULL;
6462
6463 return page;
6464}
6465
4b91355e 6466#ifdef CONFIG_SWAP
90254a65
DN
6467static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6468 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6469{
90254a65
DN
6470 struct page *page = NULL;
6471 swp_entry_t ent = pte_to_swp_entry(ptent);
6472
6473 if (!move_anon() || non_swap_entry(ent))
6474 return NULL;
4b91355e
KH
6475 /*
6476 * Because lookup_swap_cache() updates some statistics counter,
6477 * we call find_get_page() with swapper_space directly.
6478 */
33806f06 6479 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6480 if (do_swap_account)
6481 entry->val = ent.val;
6482
6483 return page;
6484}
4b91355e
KH
6485#else
6486static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6487 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6488{
6489 return NULL;
6490}
6491#endif
90254a65 6492
87946a72
DN
6493static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6494 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6495{
6496 struct page *page = NULL;
87946a72
DN
6497 struct address_space *mapping;
6498 pgoff_t pgoff;
6499
6500 if (!vma->vm_file) /* anonymous vma */
6501 return NULL;
6502 if (!move_file())
6503 return NULL;
6504
87946a72
DN
6505 mapping = vma->vm_file->f_mapping;
6506 if (pte_none(ptent))
6507 pgoff = linear_page_index(vma, addr);
6508 else /* pte_file(ptent) is true */
6509 pgoff = pte_to_pgoff(ptent);
6510
6511 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6512 page = find_get_page(mapping, pgoff);
6513
6514#ifdef CONFIG_SWAP
6515 /* shmem/tmpfs may report page out on swap: account for that too. */
6516 if (radix_tree_exceptional_entry(page)) {
6517 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6518 if (do_swap_account)
aa3b1895 6519 *entry = swap;
33806f06 6520 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6521 }
aa3b1895 6522#endif
87946a72
DN
6523 return page;
6524}
6525
8d32ff84 6526static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6527 unsigned long addr, pte_t ptent, union mc_target *target)
6528{
6529 struct page *page = NULL;
6530 struct page_cgroup *pc;
8d32ff84 6531 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6532 swp_entry_t ent = { .val = 0 };
6533
6534 if (pte_present(ptent))
6535 page = mc_handle_present_pte(vma, addr, ptent);
6536 else if (is_swap_pte(ptent))
6537 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6538 else if (pte_none(ptent) || pte_file(ptent))
6539 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6540
6541 if (!page && !ent.val)
8d32ff84 6542 return ret;
02491447
DN
6543 if (page) {
6544 pc = lookup_page_cgroup(page);
6545 /*
6546 * Do only loose check w/o page_cgroup lock.
6547 * mem_cgroup_move_account() checks the pc is valid or not under
6548 * the lock.
6549 */
6550 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6551 ret = MC_TARGET_PAGE;
6552 if (target)
6553 target->page = page;
6554 }
6555 if (!ret || !target)
6556 put_page(page);
6557 }
90254a65
DN
6558 /* There is a swap entry and a page doesn't exist or isn't charged */
6559 if (ent.val && !ret &&
34c00c31 6560 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6561 ret = MC_TARGET_SWAP;
6562 if (target)
6563 target->ent = ent;
4ffef5fe 6564 }
4ffef5fe
DN
6565 return ret;
6566}
6567
12724850
NH
6568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6569/*
6570 * We don't consider swapping or file mapped pages because THP does not
6571 * support them for now.
6572 * Caller should make sure that pmd_trans_huge(pmd) is true.
6573 */
6574static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6575 unsigned long addr, pmd_t pmd, union mc_target *target)
6576{
6577 struct page *page = NULL;
6578 struct page_cgroup *pc;
6579 enum mc_target_type ret = MC_TARGET_NONE;
6580
6581 page = pmd_page(pmd);
6582 VM_BUG_ON(!page || !PageHead(page));
6583 if (!move_anon())
6584 return ret;
6585 pc = lookup_page_cgroup(page);
6586 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6587 ret = MC_TARGET_PAGE;
6588 if (target) {
6589 get_page(page);
6590 target->page = page;
6591 }
6592 }
6593 return ret;
6594}
6595#else
6596static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6597 unsigned long addr, pmd_t pmd, union mc_target *target)
6598{
6599 return MC_TARGET_NONE;
6600}
6601#endif
6602
4ffef5fe
DN
6603static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6604 unsigned long addr, unsigned long end,
6605 struct mm_walk *walk)
6606{
6607 struct vm_area_struct *vma = walk->private;
6608 pte_t *pte;
6609 spinlock_t *ptl;
6610
bf929152 6611 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6612 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6613 mc.precharge += HPAGE_PMD_NR;
bf929152 6614 spin_unlock(ptl);
1a5a9906 6615 return 0;
12724850 6616 }
03319327 6617
45f83cef
AA
6618 if (pmd_trans_unstable(pmd))
6619 return 0;
4ffef5fe
DN
6620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6621 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6622 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6623 mc.precharge++; /* increment precharge temporarily */
6624 pte_unmap_unlock(pte - 1, ptl);
6625 cond_resched();
6626
7dc74be0
DN
6627 return 0;
6628}
6629
4ffef5fe
DN
6630static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6631{
6632 unsigned long precharge;
6633 struct vm_area_struct *vma;
6634
dfe076b0 6635 down_read(&mm->mmap_sem);
4ffef5fe
DN
6636 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6637 struct mm_walk mem_cgroup_count_precharge_walk = {
6638 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6639 .mm = mm,
6640 .private = vma,
6641 };
6642 if (is_vm_hugetlb_page(vma))
6643 continue;
4ffef5fe
DN
6644 walk_page_range(vma->vm_start, vma->vm_end,
6645 &mem_cgroup_count_precharge_walk);
6646 }
dfe076b0 6647 up_read(&mm->mmap_sem);
4ffef5fe
DN
6648
6649 precharge = mc.precharge;
6650 mc.precharge = 0;
6651
6652 return precharge;
6653}
6654
4ffef5fe
DN
6655static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6656{
dfe076b0
DN
6657 unsigned long precharge = mem_cgroup_count_precharge(mm);
6658
6659 VM_BUG_ON(mc.moving_task);
6660 mc.moving_task = current;
6661 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6662}
6663
dfe076b0
DN
6664/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6665static void __mem_cgroup_clear_mc(void)
4ffef5fe 6666{
2bd9bb20
KH
6667 struct mem_cgroup *from = mc.from;
6668 struct mem_cgroup *to = mc.to;
4050377b 6669 int i;
2bd9bb20 6670
4ffef5fe 6671 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6672 if (mc.precharge) {
6673 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6674 mc.precharge = 0;
6675 }
6676 /*
6677 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6678 * we must uncharge here.
6679 */
6680 if (mc.moved_charge) {
6681 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6682 mc.moved_charge = 0;
4ffef5fe 6683 }
483c30b5
DN
6684 /* we must fixup refcnts and charges */
6685 if (mc.moved_swap) {
483c30b5
DN
6686 /* uncharge swap account from the old cgroup */
6687 if (!mem_cgroup_is_root(mc.from))
6688 res_counter_uncharge(&mc.from->memsw,
6689 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6690
6691 for (i = 0; i < mc.moved_swap; i++)
6692 css_put(&mc.from->css);
483c30b5
DN
6693
6694 if (!mem_cgroup_is_root(mc.to)) {
6695 /*
6696 * we charged both to->res and to->memsw, so we should
6697 * uncharge to->res.
6698 */
6699 res_counter_uncharge(&mc.to->res,
6700 PAGE_SIZE * mc.moved_swap);
483c30b5 6701 }
4050377b 6702 /* we've already done css_get(mc.to) */
483c30b5
DN
6703 mc.moved_swap = 0;
6704 }
dfe076b0
DN
6705 memcg_oom_recover(from);
6706 memcg_oom_recover(to);
6707 wake_up_all(&mc.waitq);
6708}
6709
6710static void mem_cgroup_clear_mc(void)
6711{
6712 struct mem_cgroup *from = mc.from;
6713
6714 /*
6715 * we must clear moving_task before waking up waiters at the end of
6716 * task migration.
6717 */
6718 mc.moving_task = NULL;
6719 __mem_cgroup_clear_mc();
2bd9bb20 6720 spin_lock(&mc.lock);
4ffef5fe
DN
6721 mc.from = NULL;
6722 mc.to = NULL;
2bd9bb20 6723 spin_unlock(&mc.lock);
32047e2a 6724 mem_cgroup_end_move(from);
4ffef5fe
DN
6725}
6726
eb95419b 6727static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6728 struct cgroup_taskset *tset)
7dc74be0 6729{
2f7ee569 6730 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6731 int ret = 0;
eb95419b 6732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6733 unsigned long move_charge_at_immigrate;
7dc74be0 6734
ee5e8472
GC
6735 /*
6736 * We are now commited to this value whatever it is. Changes in this
6737 * tunable will only affect upcoming migrations, not the current one.
6738 * So we need to save it, and keep it going.
6739 */
6740 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6741 if (move_charge_at_immigrate) {
7dc74be0
DN
6742 struct mm_struct *mm;
6743 struct mem_cgroup *from = mem_cgroup_from_task(p);
6744
c0ff4b85 6745 VM_BUG_ON(from == memcg);
7dc74be0
DN
6746
6747 mm = get_task_mm(p);
6748 if (!mm)
6749 return 0;
7dc74be0 6750 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6751 if (mm->owner == p) {
6752 VM_BUG_ON(mc.from);
6753 VM_BUG_ON(mc.to);
6754 VM_BUG_ON(mc.precharge);
854ffa8d 6755 VM_BUG_ON(mc.moved_charge);
483c30b5 6756 VM_BUG_ON(mc.moved_swap);
32047e2a 6757 mem_cgroup_start_move(from);
2bd9bb20 6758 spin_lock(&mc.lock);
4ffef5fe 6759 mc.from = from;
c0ff4b85 6760 mc.to = memcg;
ee5e8472 6761 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6762 spin_unlock(&mc.lock);
dfe076b0 6763 /* We set mc.moving_task later */
4ffef5fe
DN
6764
6765 ret = mem_cgroup_precharge_mc(mm);
6766 if (ret)
6767 mem_cgroup_clear_mc();
dfe076b0
DN
6768 }
6769 mmput(mm);
7dc74be0
DN
6770 }
6771 return ret;
6772}
6773
eb95419b 6774static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6775 struct cgroup_taskset *tset)
7dc74be0 6776{
4ffef5fe 6777 mem_cgroup_clear_mc();
7dc74be0
DN
6778}
6779
4ffef5fe
DN
6780static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6781 unsigned long addr, unsigned long end,
6782 struct mm_walk *walk)
7dc74be0 6783{
4ffef5fe
DN
6784 int ret = 0;
6785 struct vm_area_struct *vma = walk->private;
6786 pte_t *pte;
6787 spinlock_t *ptl;
12724850
NH
6788 enum mc_target_type target_type;
6789 union mc_target target;
6790 struct page *page;
6791 struct page_cgroup *pc;
4ffef5fe 6792
12724850
NH
6793 /*
6794 * We don't take compound_lock() here but no race with splitting thp
6795 * happens because:
6796 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6797 * under splitting, which means there's no concurrent thp split,
6798 * - if another thread runs into split_huge_page() just after we
6799 * entered this if-block, the thread must wait for page table lock
6800 * to be unlocked in __split_huge_page_splitting(), where the main
6801 * part of thp split is not executed yet.
6802 */
bf929152 6803 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6804 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6805 spin_unlock(ptl);
12724850
NH
6806 return 0;
6807 }
6808 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6809 if (target_type == MC_TARGET_PAGE) {
6810 page = target.page;
6811 if (!isolate_lru_page(page)) {
6812 pc = lookup_page_cgroup(page);
6813 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6814 pc, mc.from, mc.to)) {
12724850
NH
6815 mc.precharge -= HPAGE_PMD_NR;
6816 mc.moved_charge += HPAGE_PMD_NR;
6817 }
6818 putback_lru_page(page);
6819 }
6820 put_page(page);
6821 }
bf929152 6822 spin_unlock(ptl);
1a5a9906 6823 return 0;
12724850
NH
6824 }
6825
45f83cef
AA
6826 if (pmd_trans_unstable(pmd))
6827 return 0;
4ffef5fe
DN
6828retry:
6829 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6830 for (; addr != end; addr += PAGE_SIZE) {
6831 pte_t ptent = *(pte++);
02491447 6832 swp_entry_t ent;
4ffef5fe
DN
6833
6834 if (!mc.precharge)
6835 break;
6836
8d32ff84 6837 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6838 case MC_TARGET_PAGE:
6839 page = target.page;
6840 if (isolate_lru_page(page))
6841 goto put;
6842 pc = lookup_page_cgroup(page);
7ec99d62 6843 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6844 mc.from, mc.to)) {
4ffef5fe 6845 mc.precharge--;
854ffa8d
DN
6846 /* we uncharge from mc.from later. */
6847 mc.moved_charge++;
4ffef5fe
DN
6848 }
6849 putback_lru_page(page);
8d32ff84 6850put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6851 put_page(page);
6852 break;
02491447
DN
6853 case MC_TARGET_SWAP:
6854 ent = target.ent;
e91cbb42 6855 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6856 mc.precharge--;
483c30b5
DN
6857 /* we fixup refcnts and charges later. */
6858 mc.moved_swap++;
6859 }
02491447 6860 break;
4ffef5fe
DN
6861 default:
6862 break;
6863 }
6864 }
6865 pte_unmap_unlock(pte - 1, ptl);
6866 cond_resched();
6867
6868 if (addr != end) {
6869 /*
6870 * We have consumed all precharges we got in can_attach().
6871 * We try charge one by one, but don't do any additional
6872 * charges to mc.to if we have failed in charge once in attach()
6873 * phase.
6874 */
854ffa8d 6875 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6876 if (!ret)
6877 goto retry;
6878 }
6879
6880 return ret;
6881}
6882
6883static void mem_cgroup_move_charge(struct mm_struct *mm)
6884{
6885 struct vm_area_struct *vma;
6886
6887 lru_add_drain_all();
dfe076b0
DN
6888retry:
6889 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6890 /*
6891 * Someone who are holding the mmap_sem might be waiting in
6892 * waitq. So we cancel all extra charges, wake up all waiters,
6893 * and retry. Because we cancel precharges, we might not be able
6894 * to move enough charges, but moving charge is a best-effort
6895 * feature anyway, so it wouldn't be a big problem.
6896 */
6897 __mem_cgroup_clear_mc();
6898 cond_resched();
6899 goto retry;
6900 }
4ffef5fe
DN
6901 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6902 int ret;
6903 struct mm_walk mem_cgroup_move_charge_walk = {
6904 .pmd_entry = mem_cgroup_move_charge_pte_range,
6905 .mm = mm,
6906 .private = vma,
6907 };
6908 if (is_vm_hugetlb_page(vma))
6909 continue;
4ffef5fe
DN
6910 ret = walk_page_range(vma->vm_start, vma->vm_end,
6911 &mem_cgroup_move_charge_walk);
6912 if (ret)
6913 /*
6914 * means we have consumed all precharges and failed in
6915 * doing additional charge. Just abandon here.
6916 */
6917 break;
6918 }
dfe076b0 6919 up_read(&mm->mmap_sem);
7dc74be0
DN
6920}
6921
eb95419b 6922static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6923 struct cgroup_taskset *tset)
67e465a7 6924{
2f7ee569 6925 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6926 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6927
dfe076b0 6928 if (mm) {
a433658c
KM
6929 if (mc.to)
6930 mem_cgroup_move_charge(mm);
dfe076b0
DN
6931 mmput(mm);
6932 }
a433658c
KM
6933 if (mc.to)
6934 mem_cgroup_clear_mc();
67e465a7 6935}
5cfb80a7 6936#else /* !CONFIG_MMU */
eb95419b 6937static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6938 struct cgroup_taskset *tset)
5cfb80a7
DN
6939{
6940 return 0;
6941}
eb95419b 6942static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6943 struct cgroup_taskset *tset)
5cfb80a7
DN
6944{
6945}
eb95419b 6946static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6947 struct cgroup_taskset *tset)
5cfb80a7
DN
6948{
6949}
6950#endif
67e465a7 6951
f00baae7
TH
6952/*
6953 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6954 * to verify sane_behavior flag on each mount attempt.
6955 */
eb95419b 6956static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6957{
6958 /*
6959 * use_hierarchy is forced with sane_behavior. cgroup core
6960 * guarantees that @root doesn't have any children, so turning it
6961 * on for the root memcg is enough.
6962 */
eb95419b
TH
6963 if (cgroup_sane_behavior(root_css->cgroup))
6964 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6965}
6966
8cdea7c0
BS
6967struct cgroup_subsys mem_cgroup_subsys = {
6968 .name = "memory",
6969 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6970 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6971 .css_online = mem_cgroup_css_online,
92fb9748
TH
6972 .css_offline = mem_cgroup_css_offline,
6973 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6974 .can_attach = mem_cgroup_can_attach,
6975 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6976 .attach = mem_cgroup_move_task,
f00baae7 6977 .bind = mem_cgroup_bind,
6bc10349 6978 .base_cftypes = mem_cgroup_files,
6d12e2d8 6979 .early_init = 0,
8cdea7c0 6980};
c077719b 6981
c255a458 6982#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6983static int __init enable_swap_account(char *s)
6984{
a2c8990a 6985 if (!strcmp(s, "1"))
a42c390c 6986 really_do_swap_account = 1;
a2c8990a 6987 else if (!strcmp(s, "0"))
a42c390c
MH
6988 really_do_swap_account = 0;
6989 return 1;
6990}
a2c8990a 6991__setup("swapaccount=", enable_swap_account);
c077719b 6992
2d11085e
MH
6993static void __init memsw_file_init(void)
6994{
6acc8b02
MH
6995 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6996}
6997
6998static void __init enable_swap_cgroup(void)
6999{
7000 if (!mem_cgroup_disabled() && really_do_swap_account) {
7001 do_swap_account = 1;
7002 memsw_file_init();
7003 }
2d11085e 7004}
6acc8b02 7005
2d11085e 7006#else
6acc8b02 7007static void __init enable_swap_cgroup(void)
2d11085e
MH
7008{
7009}
c077719b 7010#endif
2d11085e
MH
7011
7012/*
1081312f
MH
7013 * subsys_initcall() for memory controller.
7014 *
7015 * Some parts like hotcpu_notifier() have to be initialized from this context
7016 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7017 * everything that doesn't depend on a specific mem_cgroup structure should
7018 * be initialized from here.
2d11085e
MH
7019 */
7020static int __init mem_cgroup_init(void)
7021{
7022 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7023 enable_swap_cgroup();
bb4cc1a8 7024 mem_cgroup_soft_limit_tree_init();
e4777496 7025 memcg_stock_init();
2d11085e
MH
7026 return 0;
7027}
7028subsys_initcall(mem_cgroup_init);