]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
memcg: replace stats_flush_lock with an atomic
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
6a792697 66#include <linux/sched/isolation.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
014bb1de 71#include "swap.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
37d5985c
RG
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 85
f7e1cb6e 86/* Socket memory accounting disabled? */
0f0cace3 87static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 88
04823c83 89/* Kernel memory accounting disabled? */
17c17367 90static bool cgroup_memory_nokmem __ro_after_init;
04823c83 91
b6c1a8af
YS
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
b25806dc 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
510fc4e1 210 _KMEM,
d55f90bf 211 _TCP,
86ae53e1
GC
212};
213
a0db00fc
KS
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
a4ebf1b6 233static inline bool task_is_dying(void)
7775face
TH
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
9647875b 247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 248{
9647875b 249 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
0764db9b 253static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 254
4d5c8aed
RG
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
f1286fae
MS
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
c1a660de 262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
bf4f0599 294 if (nr_pages)
f1286fae 295 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 296
0764db9b 297 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 298 list_del(&objcg->list);
0764db9b 299 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
0764db9b 331 spin_lock_irq(&objcg_lock);
bf4f0599 332
9838354e
MS
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
0764db9b 341 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
272911a4 348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
f7a449f7
RG
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
b6c1a8af
YS
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852 359/**
75376c6f
MWO
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
ad7fa852
TH
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
75376c6f 364 * with @folio is returned. The returned css remains associated with @folio
ad7fa852
TH
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852 369 */
75376c6f 370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
ad7fa852 371{
75376c6f 372 struct mem_cgroup *memcg = folio_memcg(folio);
ad7fa852 373
9e10a130 374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
375 memcg = root_mem_cgroup;
376
ad7fa852
TH
377 return &memcg->css;
378}
379
2fc04524
VD
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
bcfe06bf 399 memcg = page_memcg_check(page);
286e04b8 400
2fc04524
VD
401 while (memcg && !(memcg->css.flags & CSS_ONLINE))
402 memcg = parent_mem_cgroup(memcg);
403 if (memcg)
404 ino = cgroup_ino(memcg->css.cgroup);
405 rcu_read_unlock();
406 return ino;
407}
408
ef8f2327
MG
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
410 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
ef8f2327 415 struct mem_cgroup_per_node *mz_node;
fa90b2fd 416 bool rightmost = true;
bb4cc1a8
AM
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
ef8f2327 426 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 427 tree_node);
fa90b2fd 428 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 429 p = &(*p)->rb_left;
fa90b2fd 430 rightmost = false;
378876b0 431 } else {
bb4cc1a8 432 p = &(*p)->rb_right;
378876b0 433 }
bb4cc1a8 434 }
fa90b2fd
DB
435
436 if (rightmost)
437 mctz->rb_rightmost = &mz->tree_node;
438
bb4cc1a8
AM
439 rb_link_node(&mz->tree_node, parent, p);
440 rb_insert_color(&mz->tree_node, &mctz->rb_root);
441 mz->on_tree = true;
442}
443
ef8f2327
MG
444static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
445 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
446{
447 if (!mz->on_tree)
448 return;
fa90b2fd
DB
449
450 if (&mz->tree_node == mctz->rb_rightmost)
451 mctz->rb_rightmost = rb_prev(&mz->tree_node);
452
bb4cc1a8
AM
453 rb_erase(&mz->tree_node, &mctz->rb_root);
454 mz->on_tree = false;
455}
456
ef8f2327
MG
457static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
458 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 459{
0a31bc97
JW
460 unsigned long flags;
461
462 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 463 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 464 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
465}
466
3e32cb2e
JW
467static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
468{
469 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 470 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
471 unsigned long excess = 0;
472
473 if (nr_pages > soft_limit)
474 excess = nr_pages - soft_limit;
475
476 return excess;
477}
bb4cc1a8 478
658b69c9 479static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 480{
3e32cb2e 481 unsigned long excess;
ef8f2327
MG
482 struct mem_cgroup_per_node *mz;
483 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 484
e4dde56c 485 if (lru_gen_enabled()) {
36c7b4db
A
486 if (soft_limit_excess(memcg))
487 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
e4dde56c
YZ
488 return;
489 }
490
2ab082ba 491 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
492 if (!mctz)
493 return;
bb4cc1a8
AM
494 /*
495 * Necessary to update all ancestors when hierarchy is used.
496 * because their event counter is not touched.
497 */
498 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 499 mz = memcg->nodeinfo[nid];
3e32cb2e 500 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
501 /*
502 * We have to update the tree if mz is on RB-tree or
503 * mem is over its softlimit.
504 */
505 if (excess || mz->on_tree) {
0a31bc97
JW
506 unsigned long flags;
507
508 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
509 /* if on-tree, remove it */
510 if (mz->on_tree)
cf2c8127 511 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
512 /*
513 * Insert again. mz->usage_in_excess will be updated.
514 * If excess is 0, no tree ops.
515 */
cf2c8127 516 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 517 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
518 }
519 }
520}
521
522static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
523{
ef8f2327
MG
524 struct mem_cgroup_tree_per_node *mctz;
525 struct mem_cgroup_per_node *mz;
526 int nid;
bb4cc1a8 527
e231875b 528 for_each_node(nid) {
a3747b53 529 mz = memcg->nodeinfo[nid];
2ab082ba 530 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
531 if (mctz)
532 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
533 }
534}
535
ef8f2327
MG
536static struct mem_cgroup_per_node *
537__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 538{
ef8f2327 539 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
540
541retry:
542 mz = NULL;
fa90b2fd 543 if (!mctz->rb_rightmost)
bb4cc1a8
AM
544 goto done; /* Nothing to reclaim from */
545
fa90b2fd
DB
546 mz = rb_entry(mctz->rb_rightmost,
547 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
548 /*
549 * Remove the node now but someone else can add it back,
550 * we will to add it back at the end of reclaim to its correct
551 * position in the tree.
552 */
cf2c8127 553 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 554 if (!soft_limit_excess(mz->memcg) ||
8965aa28 555 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
556 goto retry;
557done:
558 return mz;
559}
560
ef8f2327
MG
561static struct mem_cgroup_per_node *
562mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 563{
ef8f2327 564 struct mem_cgroup_per_node *mz;
bb4cc1a8 565
0a31bc97 566 spin_lock_irq(&mctz->lock);
bb4cc1a8 567 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 568 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
569 return mz;
570}
571
11192d9c
SB
572/*
573 * memcg and lruvec stats flushing
574 *
575 * Many codepaths leading to stats update or read are performance sensitive and
576 * adding stats flushing in such codepaths is not desirable. So, to optimize the
577 * flushing the kernel does:
578 *
579 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
580 * rstat update tree grow unbounded.
581 *
582 * 2) Flush the stats synchronously on reader side only when there are more than
583 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
584 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
585 * only for 2 seconds due to (1).
586 */
587static void flush_memcg_stats_dwork(struct work_struct *w);
588static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
11192d9c 589static DEFINE_PER_CPU(unsigned int, stats_updates);
3cd9992b 590static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
11192d9c 591static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
592static u64 flush_next_time;
593
594#define FLUSH_TIME (2UL*HZ)
11192d9c 595
be3e67b5
SAS
596/*
597 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
598 * not rely on this as part of an acquired spinlock_t lock. These functions are
599 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
600 * is sufficient.
601 */
602static void memcg_stats_lock(void)
603{
e575d401
TG
604 preempt_disable_nested();
605 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
606}
607
608static void __memcg_stats_lock(void)
609{
e575d401 610 preempt_disable_nested();
be3e67b5
SAS
611}
612
613static void memcg_stats_unlock(void)
614{
e575d401 615 preempt_enable_nested();
be3e67b5
SAS
616}
617
5b3be698 618static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 619{
5b3be698
SB
620 unsigned int x;
621
11192d9c 622 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
623
624 x = __this_cpu_add_return(stats_updates, abs(val));
625 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
626 /*
627 * If stats_flush_threshold exceeds the threshold
628 * (>num_online_cpus()), cgroup stats update will be triggered
629 * in __mem_cgroup_flush_stats(). Increasing this var further
630 * is redundant and simply adds overhead in atomic update.
631 */
632 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
633 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
634 __this_cpu_write(stats_updates, 0);
635 }
11192d9c
SB
636}
637
638static void __mem_cgroup_flush_stats(void)
639{
3cd9992b
YA
640 /*
641 * We always flush the entire tree, so concurrent flushers can just
642 * skip. This avoids a thundering herd problem on the rstat global lock
643 * from memcg flushers (e.g. reclaim, refault, etc).
644 */
645 if (atomic_read(&stats_flush_ongoing) ||
646 atomic_xchg(&stats_flush_ongoing, 1))
11192d9c
SB
647 return;
648
3cd9992b 649 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
8bff9a04 650 cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
11192d9c 651 atomic_set(&stats_flush_threshold, 0);
3cd9992b 652 atomic_set(&stats_flush_ongoing, 0);
11192d9c
SB
653}
654
655void mem_cgroup_flush_stats(void)
656{
657 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
658 __mem_cgroup_flush_stats();
659}
660
92fbbc72 661void mem_cgroup_flush_stats_ratelimited(void)
9b301615 662{
3cd9992b 663 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
9b301615
SB
664 mem_cgroup_flush_stats();
665}
666
11192d9c
SB
667static void flush_memcg_stats_dwork(struct work_struct *w)
668{
5b3be698 669 __mem_cgroup_flush_stats();
9b301615 670 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
671}
672
d396def5
SB
673/* Subset of vm_event_item to report for memcg event stats */
674static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
675 PGPGIN,
676 PGPGOUT,
d396def5
SB
677 PGSCAN_KSWAPD,
678 PGSCAN_DIRECT,
57e9cc50 679 PGSCAN_KHUGEPAGED,
d396def5
SB
680 PGSTEAL_KSWAPD,
681 PGSTEAL_DIRECT,
57e9cc50 682 PGSTEAL_KHUGEPAGED,
d396def5
SB
683 PGFAULT,
684 PGMAJFAULT,
685 PGREFILL,
686 PGACTIVATE,
687 PGDEACTIVATE,
688 PGLAZYFREE,
689 PGLAZYFREED,
690#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
691 ZSWPIN,
692 ZSWPOUT,
693#endif
694#ifdef CONFIG_TRANSPARENT_HUGEPAGE
695 THP_FAULT_ALLOC,
696 THP_COLLAPSE_ALLOC,
697#endif
698};
699
8278f1c7
SB
700#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
701static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
702
703static void init_memcg_events(void)
704{
705 int i;
706
707 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
708 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
709}
710
711static inline int memcg_events_index(enum vm_event_item idx)
712{
713 return mem_cgroup_events_index[idx] - 1;
714}
715
410f8e82
SB
716struct memcg_vmstats_percpu {
717 /* Local (CPU and cgroup) page state & events */
718 long state[MEMCG_NR_STAT];
8278f1c7 719 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
720
721 /* Delta calculation for lockless upward propagation */
722 long state_prev[MEMCG_NR_STAT];
8278f1c7 723 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
724
725 /* Cgroup1: threshold notifications & softlimit tree updates */
726 unsigned long nr_page_events;
727 unsigned long targets[MEM_CGROUP_NTARGETS];
728};
729
730struct memcg_vmstats {
731 /* Aggregated (CPU and subtree) page state & events */
732 long state[MEMCG_NR_STAT];
8278f1c7 733 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
734
735 /* Pending child counts during tree propagation */
736 long state_pending[MEMCG_NR_STAT];
8278f1c7 737 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
738};
739
740unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
741{
742 long x = READ_ONCE(memcg->vmstats->state[idx]);
743#ifdef CONFIG_SMP
744 if (x < 0)
745 x = 0;
746#endif
747 return x;
748}
749
db9adbcb
JW
750/**
751 * __mod_memcg_state - update cgroup memory statistics
752 * @memcg: the memory cgroup
753 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
754 * @val: delta to add to the counter, can be negative
755 */
756void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
757{
db9adbcb
JW
758 if (mem_cgroup_disabled())
759 return;
760
2d146aa3 761 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 762 memcg_rstat_updated(memcg, val);
db9adbcb
JW
763}
764
2d146aa3 765/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
766static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
767{
768 long x = 0;
769 int cpu;
770
771 for_each_possible_cpu(cpu)
2d146aa3 772 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
773#ifdef CONFIG_SMP
774 if (x < 0)
775 x = 0;
776#endif
777 return x;
778}
779
eedc4e5a
RG
780void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
781 int val)
db9adbcb
JW
782{
783 struct mem_cgroup_per_node *pn;
42a30035 784 struct mem_cgroup *memcg;
db9adbcb 785
db9adbcb 786 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 787 memcg = pn->memcg;
db9adbcb 788
be3e67b5
SAS
789 /*
790 * The caller from rmap relay on disabled preemption becase they never
791 * update their counter from in-interrupt context. For these two
792 * counters we check that the update is never performed from an
793 * interrupt context while other caller need to have disabled interrupt.
794 */
795 __memcg_stats_lock();
e575d401 796 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
797 switch (idx) {
798 case NR_ANON_MAPPED:
799 case NR_FILE_MAPPED:
800 case NR_ANON_THPS:
801 case NR_SHMEM_PMDMAPPED:
802 case NR_FILE_PMDMAPPED:
803 WARN_ON_ONCE(!in_task());
804 break;
805 default:
e575d401 806 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
807 }
808 }
809
db9adbcb 810 /* Update memcg */
11192d9c 811 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 812
b4c46484 813 /* Update lruvec */
7e1c0d6f 814 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 815
5b3be698 816 memcg_rstat_updated(memcg, val);
be3e67b5 817 memcg_stats_unlock();
db9adbcb
JW
818}
819
eedc4e5a
RG
820/**
821 * __mod_lruvec_state - update lruvec memory statistics
822 * @lruvec: the lruvec
823 * @idx: the stat item
824 * @val: delta to add to the counter, can be negative
825 *
826 * The lruvec is the intersection of the NUMA node and a cgroup. This
827 * function updates the all three counters that are affected by a
828 * change of state at this level: per-node, per-cgroup, per-lruvec.
829 */
830void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
831 int val)
832{
833 /* Update node */
834 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
835
836 /* Update memcg and lruvec */
837 if (!mem_cgroup_disabled())
838 __mod_memcg_lruvec_state(lruvec, idx, val);
839}
840
c47d5032
SB
841void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
842 int val)
843{
844 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 845 struct mem_cgroup *memcg;
c47d5032
SB
846 pg_data_t *pgdat = page_pgdat(page);
847 struct lruvec *lruvec;
848
b4e0b68f
MS
849 rcu_read_lock();
850 memcg = page_memcg(head);
c47d5032 851 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 852 if (!memcg) {
b4e0b68f 853 rcu_read_unlock();
c47d5032
SB
854 __mod_node_page_state(pgdat, idx, val);
855 return;
856 }
857
d635a69d 858 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 859 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 860 rcu_read_unlock();
c47d5032 861}
f0c0c115 862EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 863
da3ceeff 864void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 865{
4f103c63 866 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
867 struct mem_cgroup *memcg;
868 struct lruvec *lruvec;
869
870 rcu_read_lock();
fc4db90f 871 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 872
8faeb1ff
MS
873 /*
874 * Untracked pages have no memcg, no lruvec. Update only the
875 * node. If we reparent the slab objects to the root memcg,
876 * when we free the slab object, we need to update the per-memcg
877 * vmstats to keep it correct for the root memcg.
878 */
879 if (!memcg) {
ec9f0238
RG
880 __mod_node_page_state(pgdat, idx, val);
881 } else {
867e5e1d 882 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
883 __mod_lruvec_state(lruvec, idx, val);
884 }
885 rcu_read_unlock();
886}
887
db9adbcb
JW
888/**
889 * __count_memcg_events - account VM events in a cgroup
890 * @memcg: the memory cgroup
891 * @idx: the event item
f0953a1b 892 * @count: the number of events that occurred
db9adbcb
JW
893 */
894void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
895 unsigned long count)
896{
8278f1c7
SB
897 int index = memcg_events_index(idx);
898
899 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
900 return;
901
be3e67b5 902 memcg_stats_lock();
8278f1c7 903 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 904 memcg_rstat_updated(memcg, count);
be3e67b5 905 memcg_stats_unlock();
db9adbcb
JW
906}
907
42a30035 908static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 909{
8278f1c7
SB
910 int index = memcg_events_index(event);
911
912 if (index < 0)
913 return 0;
914 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
915}
916
42a30035
JW
917static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
918{
815744d7
JW
919 long x = 0;
920 int cpu;
8278f1c7
SB
921 int index = memcg_events_index(event);
922
923 if (index < 0)
924 return 0;
815744d7
JW
925
926 for_each_possible_cpu(cpu)
8278f1c7 927 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 928 return x;
42a30035
JW
929}
930
c0ff4b85 931static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 932 int nr_pages)
d52aa412 933{
e401f176
KH
934 /* pagein of a big page is an event. So, ignore page size */
935 if (nr_pages > 0)
c9019e9b 936 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 937 else {
c9019e9b 938 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
939 nr_pages = -nr_pages; /* for event */
940 }
e401f176 941
871789d4 942 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
943}
944
f53d7ce3
JW
945static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
946 enum mem_cgroup_events_target target)
7a159cc9
JW
947{
948 unsigned long val, next;
949
871789d4
CD
950 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
951 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 952 /* from time_after() in jiffies.h */
6a1a8b80 953 if ((long)(next - val) < 0) {
f53d7ce3
JW
954 switch (target) {
955 case MEM_CGROUP_TARGET_THRESH:
956 next = val + THRESHOLDS_EVENTS_TARGET;
957 break;
bb4cc1a8
AM
958 case MEM_CGROUP_TARGET_SOFTLIMIT:
959 next = val + SOFTLIMIT_EVENTS_TARGET;
960 break;
f53d7ce3
JW
961 default:
962 break;
963 }
871789d4 964 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 965 return true;
7a159cc9 966 }
f53d7ce3 967 return false;
d2265e6f
KH
968}
969
970/*
971 * Check events in order.
972 *
973 */
8e88bd2d 974static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 975{
2343e88d
SAS
976 if (IS_ENABLED(CONFIG_PREEMPT_RT))
977 return;
978
d2265e6f 979 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
980 if (unlikely(mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 982 bool do_softlimit;
f53d7ce3 983
bb4cc1a8
AM
984 do_softlimit = mem_cgroup_event_ratelimit(memcg,
985 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 986 mem_cgroup_threshold(memcg);
bb4cc1a8 987 if (unlikely(do_softlimit))
8e88bd2d 988 mem_cgroup_update_tree(memcg, nid);
0a31bc97 989 }
d2265e6f
KH
990}
991
cf475ad2 992struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 993{
31a78f23
BS
994 /*
995 * mm_update_next_owner() may clear mm->owner to NULL
996 * if it races with swapoff, page migration, etc.
997 * So this can be called with p == NULL.
998 */
999 if (unlikely(!p))
1000 return NULL;
1001
073219e9 1002 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1003}
33398cf2 1004EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1005
04f94e3f
DS
1006static __always_inline struct mem_cgroup *active_memcg(void)
1007{
55a68c82 1008 if (!in_task())
04f94e3f
DS
1009 return this_cpu_read(int_active_memcg);
1010 else
1011 return current->active_memcg;
1012}
1013
d46eb14b
SB
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
04f94e3f
DS
1018 * Obtain a reference on mm->memcg and returns it if successful. If mm
1019 * is NULL, then the memcg is chosen as follows:
1020 * 1) The active memcg, if set.
1021 * 2) current->mm->memcg, if available
1022 * 3) root memcg
1023 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1024 */
1025struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1026{
d46eb14b
SB
1027 struct mem_cgroup *memcg;
1028
1029 if (mem_cgroup_disabled())
1030 return NULL;
0b7f569e 1031
2884b6b7
MS
1032 /*
1033 * Page cache insertions can happen without an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 *
1037 * No need to css_get on root memcg as the reference
1038 * counting is disabled on the root level in the
1039 * cgroup core. See CSS_NO_REF.
1040 */
04f94e3f
DS
1041 if (unlikely(!mm)) {
1042 memcg = active_memcg();
1043 if (unlikely(memcg)) {
1044 /* remote memcg must hold a ref */
1045 css_get(&memcg->css);
1046 return memcg;
1047 }
1048 mm = current->mm;
1049 if (unlikely(!mm))
1050 return root_mem_cgroup;
1051 }
2884b6b7 1052
54595fe2
KH
1053 rcu_read_lock();
1054 do {
2884b6b7
MS
1055 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1056 if (unlikely(!memcg))
df381975 1057 memcg = root_mem_cgroup;
00d484f3 1058 } while (!css_tryget(&memcg->css));
54595fe2 1059 rcu_read_unlock();
c0ff4b85 1060 return memcg;
54595fe2 1061}
d46eb14b
SB
1062EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1063
4127c650
RG
1064static __always_inline bool memcg_kmem_bypass(void)
1065{
1066 /* Allow remote memcg charging from any context. */
1067 if (unlikely(active_memcg()))
1068 return false;
1069
1070 /* Memcg to charge can't be determined. */
6126891c 1071 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1072 return true;
1073
1074 return false;
1075}
1076
5660048c
JW
1077/**
1078 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1079 * @root: hierarchy root
1080 * @prev: previously returned memcg, NULL on first invocation
1081 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1082 *
1083 * Returns references to children of the hierarchy below @root, or
1084 * @root itself, or %NULL after a full round-trip.
1085 *
1086 * Caller must pass the return value in @prev on subsequent
1087 * invocations for reference counting, or use mem_cgroup_iter_break()
1088 * to cancel a hierarchy walk before the round-trip is complete.
1089 *
05bdc520
ML
1090 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1091 * in the hierarchy among all concurrent reclaimers operating on the
1092 * same node.
5660048c 1093 */
694fbc0f 1094struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1095 struct mem_cgroup *prev,
694fbc0f 1096 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1097{
3f649ab7 1098 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1099 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1100 struct mem_cgroup *memcg = NULL;
5ac8fb31 1101 struct mem_cgroup *pos = NULL;
711d3d2c 1102
694fbc0f
AM
1103 if (mem_cgroup_disabled())
1104 return NULL;
5660048c 1105
9f3a0d09
JW
1106 if (!root)
1107 root = root_mem_cgroup;
7d74b06f 1108
542f85f9 1109 rcu_read_lock();
5f578161 1110
5ac8fb31 1111 if (reclaim) {
ef8f2327 1112 struct mem_cgroup_per_node *mz;
5ac8fb31 1113
a3747b53 1114 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1115 iter = &mz->iter;
5ac8fb31 1116
a9320aae
WY
1117 /*
1118 * On start, join the current reclaim iteration cycle.
1119 * Exit when a concurrent walker completes it.
1120 */
1121 if (!prev)
1122 reclaim->generation = iter->generation;
1123 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1124 goto out_unlock;
1125
6df38689 1126 while (1) {
4db0c3c2 1127 pos = READ_ONCE(iter->position);
6df38689
VD
1128 if (!pos || css_tryget(&pos->css))
1129 break;
5ac8fb31 1130 /*
6df38689
VD
1131 * css reference reached zero, so iter->position will
1132 * be cleared by ->css_released. However, we should not
1133 * rely on this happening soon, because ->css_released
1134 * is called from a work queue, and by busy-waiting we
1135 * might block it. So we clear iter->position right
1136 * away.
5ac8fb31 1137 */
6df38689
VD
1138 (void)cmpxchg(&iter->position, pos, NULL);
1139 }
89d8330c
WY
1140 } else if (prev) {
1141 pos = prev;
5ac8fb31
JW
1142 }
1143
1144 if (pos)
1145 css = &pos->css;
1146
1147 for (;;) {
1148 css = css_next_descendant_pre(css, &root->css);
1149 if (!css) {
1150 /*
1151 * Reclaimers share the hierarchy walk, and a
1152 * new one might jump in right at the end of
1153 * the hierarchy - make sure they see at least
1154 * one group and restart from the beginning.
1155 */
1156 if (!prev)
1157 continue;
1158 break;
527a5ec9 1159 }
7d74b06f 1160
5ac8fb31
JW
1161 /*
1162 * Verify the css and acquire a reference. The root
1163 * is provided by the caller, so we know it's alive
1164 * and kicking, and don't take an extra reference.
1165 */
41555dad
WY
1166 if (css == &root->css || css_tryget(css)) {
1167 memcg = mem_cgroup_from_css(css);
0b8f73e1 1168 break;
41555dad 1169 }
9f3a0d09 1170 }
5ac8fb31
JW
1171
1172 if (reclaim) {
5ac8fb31 1173 /*
6df38689
VD
1174 * The position could have already been updated by a competing
1175 * thread, so check that the value hasn't changed since we read
1176 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1177 */
6df38689
VD
1178 (void)cmpxchg(&iter->position, pos, memcg);
1179
5ac8fb31
JW
1180 if (pos)
1181 css_put(&pos->css);
1182
1183 if (!memcg)
1184 iter->generation++;
9f3a0d09 1185 }
5ac8fb31 1186
542f85f9
MH
1187out_unlock:
1188 rcu_read_unlock();
c40046f3
MH
1189 if (prev && prev != root)
1190 css_put(&prev->css);
1191
9f3a0d09 1192 return memcg;
14067bb3 1193}
7d74b06f 1194
5660048c
JW
1195/**
1196 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1197 * @root: hierarchy root
1198 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1199 */
1200void mem_cgroup_iter_break(struct mem_cgroup *root,
1201 struct mem_cgroup *prev)
9f3a0d09
JW
1202{
1203 if (!root)
1204 root = root_mem_cgroup;
1205 if (prev && prev != root)
1206 css_put(&prev->css);
1207}
7d74b06f 1208
54a83d6b
MC
1209static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1210 struct mem_cgroup *dead_memcg)
6df38689 1211{
6df38689 1212 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1213 struct mem_cgroup_per_node *mz;
1214 int nid;
6df38689 1215
54a83d6b 1216 for_each_node(nid) {
a3747b53 1217 mz = from->nodeinfo[nid];
9da83f3f
YS
1218 iter = &mz->iter;
1219 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1220 }
1221}
1222
54a83d6b
MC
1223static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1224{
1225 struct mem_cgroup *memcg = dead_memcg;
1226 struct mem_cgroup *last;
1227
1228 do {
1229 __invalidate_reclaim_iterators(memcg, dead_memcg);
1230 last = memcg;
1231 } while ((memcg = parent_mem_cgroup(memcg)));
1232
1233 /*
b8dd3ee9 1234 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1235 * parent_mem_cgroup() does not walk all the way up to the
1236 * cgroup root (root_mem_cgroup). So we have to handle
1237 * dead_memcg from cgroup root separately.
1238 */
7848ed62 1239 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1240 __invalidate_reclaim_iterators(root_mem_cgroup,
1241 dead_memcg);
1242}
1243
7c5f64f8
VD
1244/**
1245 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1246 * @memcg: hierarchy root
1247 * @fn: function to call for each task
1248 * @arg: argument passed to @fn
1249 *
1250 * This function iterates over tasks attached to @memcg or to any of its
1251 * descendants and calls @fn for each task. If @fn returns a non-zero
1252 * value, the function breaks the iteration loop and returns the value.
1253 * Otherwise, it will iterate over all tasks and return 0.
1254 *
1255 * This function must not be called for the root memory cgroup.
1256 */
1257int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1258 int (*fn)(struct task_struct *, void *), void *arg)
1259{
1260 struct mem_cgroup *iter;
1261 int ret = 0;
1262
7848ed62 1263 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1264
1265 for_each_mem_cgroup_tree(iter, memcg) {
1266 struct css_task_iter it;
1267 struct task_struct *task;
1268
f168a9a5 1269 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1270 while (!ret && (task = css_task_iter_next(&it)))
1271 ret = fn(task, arg);
1272 css_task_iter_end(&it);
1273 if (ret) {
1274 mem_cgroup_iter_break(memcg, iter);
1275 break;
1276 }
1277 }
1278 return ret;
1279}
1280
6168d0da 1281#ifdef CONFIG_DEBUG_VM
e809c3fe 1282void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1283{
1284 struct mem_cgroup *memcg;
1285
1286 if (mem_cgroup_disabled())
1287 return;
1288
e809c3fe 1289 memcg = folio_memcg(folio);
6168d0da
AS
1290
1291 if (!memcg)
7848ed62 1292 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1293 else
e809c3fe 1294 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1295}
1296#endif
1297
6168d0da 1298/**
e809c3fe
MWO
1299 * folio_lruvec_lock - Lock the lruvec for a folio.
1300 * @folio: Pointer to the folio.
6168d0da 1301 *
d7e3aba5 1302 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1303 * - folio locked
1304 * - folio_test_lru false
1305 * - folio_memcg_lock()
1306 * - folio frozen (refcount of 0)
1307 *
1308 * Return: The lruvec this folio is on with its lock held.
6168d0da 1309 */
e809c3fe 1310struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1311{
e809c3fe 1312 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1313
6168d0da 1314 spin_lock(&lruvec->lru_lock);
e809c3fe 1315 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1316
1317 return lruvec;
1318}
1319
e809c3fe
MWO
1320/**
1321 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1322 * @folio: Pointer to the folio.
1323 *
1324 * These functions are safe to use under any of the following conditions:
1325 * - folio locked
1326 * - folio_test_lru false
1327 * - folio_memcg_lock()
1328 * - folio frozen (refcount of 0)
1329 *
1330 * Return: The lruvec this folio is on with its lock held and interrupts
1331 * disabled.
1332 */
1333struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1334{
e809c3fe 1335 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1336
6168d0da 1337 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1338 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1339
1340 return lruvec;
1341}
1342
e809c3fe
MWO
1343/**
1344 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1345 * @folio: Pointer to the folio.
1346 * @flags: Pointer to irqsave flags.
1347 *
1348 * These functions are safe to use under any of the following conditions:
1349 * - folio locked
1350 * - folio_test_lru false
1351 * - folio_memcg_lock()
1352 * - folio frozen (refcount of 0)
1353 *
1354 * Return: The lruvec this folio is on with its lock held and interrupts
1355 * disabled.
1356 */
1357struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1358 unsigned long *flags)
6168d0da 1359{
e809c3fe 1360 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1361
6168d0da 1362 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1363 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1364
1365 return lruvec;
1366}
1367
925b7673 1368/**
fa9add64
HD
1369 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1370 * @lruvec: mem_cgroup per zone lru vector
1371 * @lru: index of lru list the page is sitting on
b4536f0c 1372 * @zid: zone id of the accounted pages
fa9add64 1373 * @nr_pages: positive when adding or negative when removing
925b7673 1374 *
ca707239 1375 * This function must be called under lru_lock, just before a page is added
07ca7606 1376 * to or just after a page is removed from an lru list.
3f58a829 1377 */
fa9add64 1378void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1379 int zid, int nr_pages)
3f58a829 1380{
ef8f2327 1381 struct mem_cgroup_per_node *mz;
fa9add64 1382 unsigned long *lru_size;
ca707239 1383 long size;
3f58a829
MK
1384
1385 if (mem_cgroup_disabled())
1386 return;
1387
ef8f2327 1388 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1389 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1390
1391 if (nr_pages < 0)
1392 *lru_size += nr_pages;
1393
1394 size = *lru_size;
b4536f0c
MH
1395 if (WARN_ONCE(size < 0,
1396 "%s(%p, %d, %d): lru_size %ld\n",
1397 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1398 VM_BUG_ON(1);
1399 *lru_size = 0;
1400 }
1401
1402 if (nr_pages > 0)
1403 *lru_size += nr_pages;
08e552c6 1404}
544122e5 1405
19942822 1406/**
9d11ea9f 1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1408 * @memcg: the memory cgroup
19942822 1409 *
9d11ea9f 1410 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1411 * pages.
19942822 1412 */
c0ff4b85 1413static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1414{
3e32cb2e
JW
1415 unsigned long margin = 0;
1416 unsigned long count;
1417 unsigned long limit;
9d11ea9f 1418
3e32cb2e 1419 count = page_counter_read(&memcg->memory);
bbec2e15 1420 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1421 if (count < limit)
1422 margin = limit - count;
1423
7941d214 1424 if (do_memsw_account()) {
3e32cb2e 1425 count = page_counter_read(&memcg->memsw);
bbec2e15 1426 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1427 if (count < limit)
3e32cb2e 1428 margin = min(margin, limit - count);
cbedbac3
LR
1429 else
1430 margin = 0;
3e32cb2e
JW
1431 }
1432
1433 return margin;
19942822
JW
1434}
1435
32047e2a 1436/*
bdcbb659 1437 * A routine for checking "mem" is under move_account() or not.
32047e2a 1438 *
bdcbb659
QH
1439 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1440 * moving cgroups. This is for waiting at high-memory pressure
1441 * caused by "move".
32047e2a 1442 */
c0ff4b85 1443static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1444{
2bd9bb20
KH
1445 struct mem_cgroup *from;
1446 struct mem_cgroup *to;
4b534334 1447 bool ret = false;
2bd9bb20
KH
1448 /*
1449 * Unlike task_move routines, we access mc.to, mc.from not under
1450 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1451 */
1452 spin_lock(&mc.lock);
1453 from = mc.from;
1454 to = mc.to;
1455 if (!from)
1456 goto unlock;
3e92041d 1457
2314b42d
JW
1458 ret = mem_cgroup_is_descendant(from, memcg) ||
1459 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1460unlock:
1461 spin_unlock(&mc.lock);
4b534334
KH
1462 return ret;
1463}
1464
c0ff4b85 1465static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1466{
1467 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1468 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1469 DEFINE_WAIT(wait);
1470 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1471 /* moving charge context might have finished. */
1472 if (mc.moving_task)
1473 schedule();
1474 finish_wait(&mc.waitq, &wait);
1475 return true;
1476 }
1477 }
1478 return false;
1479}
1480
5f9a4f4a
MS
1481struct memory_stat {
1482 const char *name;
5f9a4f4a
MS
1483 unsigned int idx;
1484};
1485
57b2847d 1486static const struct memory_stat memory_stats[] = {
fff66b79
MS
1487 { "anon", NR_ANON_MAPPED },
1488 { "file", NR_FILE_PAGES },
a8c49af3 1489 { "kernel", MEMCG_KMEM },
fff66b79
MS
1490 { "kernel_stack", NR_KERNEL_STACK_KB },
1491 { "pagetables", NR_PAGETABLE },
ebc97a52 1492 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1493 { "percpu", MEMCG_PERCPU_B },
1494 { "sock", MEMCG_SOCK },
4e5aa1f4 1495 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1496 { "shmem", NR_SHMEM },
f4840ccf
JW
1497#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1498 { "zswap", MEMCG_ZSWAP_B },
1499 { "zswapped", MEMCG_ZSWAPPED },
1500#endif
fff66b79
MS
1501 { "file_mapped", NR_FILE_MAPPED },
1502 { "file_dirty", NR_FILE_DIRTY },
1503 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1504#ifdef CONFIG_SWAP
1505 { "swapcached", NR_SWAPCACHE },
1506#endif
5f9a4f4a 1507#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1508 { "anon_thp", NR_ANON_THPS },
1509 { "file_thp", NR_FILE_THPS },
1510 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1511#endif
fff66b79
MS
1512 { "inactive_anon", NR_INACTIVE_ANON },
1513 { "active_anon", NR_ACTIVE_ANON },
1514 { "inactive_file", NR_INACTIVE_FILE },
1515 { "active_file", NR_ACTIVE_FILE },
1516 { "unevictable", NR_UNEVICTABLE },
1517 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1518 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1519
1520 /* The memory events */
fff66b79
MS
1521 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1522 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1523 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1524 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1525 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1526 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1527 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1528};
1529
fff66b79
MS
1530/* Translate stat items to the correct unit for memory.stat output */
1531static int memcg_page_state_unit(int item)
1532{
1533 switch (item) {
1534 case MEMCG_PERCPU_B:
f4840ccf 1535 case MEMCG_ZSWAP_B:
fff66b79
MS
1536 case NR_SLAB_RECLAIMABLE_B:
1537 case NR_SLAB_UNRECLAIMABLE_B:
1538 case WORKINGSET_REFAULT_ANON:
1539 case WORKINGSET_REFAULT_FILE:
1540 case WORKINGSET_ACTIVATE_ANON:
1541 case WORKINGSET_ACTIVATE_FILE:
1542 case WORKINGSET_RESTORE_ANON:
1543 case WORKINGSET_RESTORE_FILE:
1544 case WORKINGSET_NODERECLAIM:
1545 return 1;
1546 case NR_KERNEL_STACK_KB:
1547 return SZ_1K;
1548 default:
1549 return PAGE_SIZE;
1550 }
1551}
1552
1553static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1554 int item)
1555{
1556 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1557}
1558
68aaee14 1559static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1560{
1561 struct seq_buf s;
1562 int i;
71cd3113 1563
68aaee14 1564 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1565
1566 /*
1567 * Provide statistics on the state of the memory subsystem as
1568 * well as cumulative event counters that show past behavior.
1569 *
1570 * This list is ordered following a combination of these gradients:
1571 * 1) generic big picture -> specifics and details
1572 * 2) reflecting userspace activity -> reflecting kernel heuristics
1573 *
1574 * Current memory state:
1575 */
fd25a9e0 1576 mem_cgroup_flush_stats();
c8713d0b 1577
5f9a4f4a
MS
1578 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1579 u64 size;
c8713d0b 1580
fff66b79 1581 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1582 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1583
5f9a4f4a 1584 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1585 size += memcg_page_state_output(memcg,
1586 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1587 seq_buf_printf(&s, "slab %llu\n", size);
1588 }
1589 }
c8713d0b
JW
1590
1591 /* Accumulated memory events */
c8713d0b
JW
1592 seq_buf_printf(&s, "pgscan %lu\n",
1593 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1594 memcg_events(memcg, PGSCAN_DIRECT) +
1595 memcg_events(memcg, PGSCAN_KHUGEPAGED));
c8713d0b
JW
1596 seq_buf_printf(&s, "pgsteal %lu\n",
1597 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1598 memcg_events(memcg, PGSTEAL_DIRECT) +
1599 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1600
8278f1c7
SB
1601 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1602 if (memcg_vm_event_stat[i] == PGPGIN ||
1603 memcg_vm_event_stat[i] == PGPGOUT)
1604 continue;
1605
673520f8
QZ
1606 seq_buf_printf(&s, "%s %lu\n",
1607 vm_event_name(memcg_vm_event_stat[i]),
1608 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1609 }
c8713d0b
JW
1610
1611 /* The above should easily fit into one page */
1612 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1613}
71cd3113 1614
58cf188e 1615#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1616/**
f0c867d9 1617 * mem_cgroup_print_oom_context: Print OOM information relevant to
1618 * memory controller.
e222432b
BS
1619 * @memcg: The memory cgroup that went over limit
1620 * @p: Task that is going to be killed
1621 *
1622 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1623 * enabled
1624 */
f0c867d9 1625void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1626{
e222432b
BS
1627 rcu_read_lock();
1628
f0c867d9 1629 if (memcg) {
1630 pr_cont(",oom_memcg=");
1631 pr_cont_cgroup_path(memcg->css.cgroup);
1632 } else
1633 pr_cont(",global_oom");
2415b9f5 1634 if (p) {
f0c867d9 1635 pr_cont(",task_memcg=");
2415b9f5 1636 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1637 }
e222432b 1638 rcu_read_unlock();
f0c867d9 1639}
1640
1641/**
1642 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1643 * memory controller.
1644 * @memcg: The memory cgroup that went over limit
1645 */
1646void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1647{
68aaee14
TH
1648 /* Use static buffer, for the caller is holding oom_lock. */
1649 static char buf[PAGE_SIZE];
1650
1651 lockdep_assert_held(&oom_lock);
e222432b 1652
3e32cb2e
JW
1653 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1654 K((u64)page_counter_read(&memcg->memory)),
15b42562 1655 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1656 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1657 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1658 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1659 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1660 else {
1661 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->memsw)),
1663 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1664 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1665 K((u64)page_counter_read(&memcg->kmem)),
1666 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1667 }
c8713d0b
JW
1668
1669 pr_info("Memory cgroup stats for ");
1670 pr_cont_cgroup_path(memcg->css.cgroup);
1671 pr_cont(":");
68aaee14 1672 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1673 pr_info("%s", buf);
e222432b
BS
1674}
1675
a63d83f4
DR
1676/*
1677 * Return the memory (and swap, if configured) limit for a memcg.
1678 */
bbec2e15 1679unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1680{
8d387a5f
WL
1681 unsigned long max = READ_ONCE(memcg->memory.max);
1682
b94c4e94 1683 if (do_memsw_account()) {
8d387a5f
WL
1684 if (mem_cgroup_swappiness(memcg)) {
1685 /* Calculate swap excess capacity from memsw limit */
1686 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1687
1688 max += min(swap, (unsigned long)total_swap_pages);
1689 }
b94c4e94
JW
1690 } else {
1691 if (mem_cgroup_swappiness(memcg))
1692 max += min(READ_ONCE(memcg->swap.max),
1693 (unsigned long)total_swap_pages);
9a5a8f19 1694 }
bbec2e15 1695 return max;
a63d83f4
DR
1696}
1697
9783aa99
CD
1698unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1699{
1700 return page_counter_read(&memcg->memory);
1701}
1702
b6e6edcf 1703static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1704 int order)
9cbb78bb 1705{
6e0fc46d
DR
1706 struct oom_control oc = {
1707 .zonelist = NULL,
1708 .nodemask = NULL,
2a966b77 1709 .memcg = memcg,
6e0fc46d
DR
1710 .gfp_mask = gfp_mask,
1711 .order = order,
6e0fc46d 1712 };
1378b37d 1713 bool ret = true;
9cbb78bb 1714
7775face
TH
1715 if (mutex_lock_killable(&oom_lock))
1716 return true;
1378b37d
YS
1717
1718 if (mem_cgroup_margin(memcg) >= (1 << order))
1719 goto unlock;
1720
7775face
TH
1721 /*
1722 * A few threads which were not waiting at mutex_lock_killable() can
1723 * fail to bail out. Therefore, check again after holding oom_lock.
1724 */
a4ebf1b6 1725 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1726
1727unlock:
dc56401f 1728 mutex_unlock(&oom_lock);
7c5f64f8 1729 return ret;
9cbb78bb
DR
1730}
1731
0608f43d 1732static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1733 pg_data_t *pgdat,
0608f43d
AM
1734 gfp_t gfp_mask,
1735 unsigned long *total_scanned)
1736{
1737 struct mem_cgroup *victim = NULL;
1738 int total = 0;
1739 int loop = 0;
1740 unsigned long excess;
1741 unsigned long nr_scanned;
1742 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1743 .pgdat = pgdat,
0608f43d
AM
1744 };
1745
3e32cb2e 1746 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1747
1748 while (1) {
1749 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1750 if (!victim) {
1751 loop++;
1752 if (loop >= 2) {
1753 /*
1754 * If we have not been able to reclaim
1755 * anything, it might because there are
1756 * no reclaimable pages under this hierarchy
1757 */
1758 if (!total)
1759 break;
1760 /*
1761 * We want to do more targeted reclaim.
1762 * excess >> 2 is not to excessive so as to
1763 * reclaim too much, nor too less that we keep
1764 * coming back to reclaim from this cgroup
1765 */
1766 if (total >= (excess >> 2) ||
1767 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1768 break;
1769 }
1770 continue;
1771 }
a9dd0a83 1772 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1773 pgdat, &nr_scanned);
0608f43d 1774 *total_scanned += nr_scanned;
3e32cb2e 1775 if (!soft_limit_excess(root_memcg))
0608f43d 1776 break;
6d61ef40 1777 }
0608f43d
AM
1778 mem_cgroup_iter_break(root_memcg, victim);
1779 return total;
6d61ef40
BS
1780}
1781
0056f4e6
JW
1782#ifdef CONFIG_LOCKDEP
1783static struct lockdep_map memcg_oom_lock_dep_map = {
1784 .name = "memcg_oom_lock",
1785};
1786#endif
1787
fb2a6fc5
JW
1788static DEFINE_SPINLOCK(memcg_oom_lock);
1789
867578cb
KH
1790/*
1791 * Check OOM-Killer is already running under our hierarchy.
1792 * If someone is running, return false.
1793 */
fb2a6fc5 1794static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1795{
79dfdacc 1796 struct mem_cgroup *iter, *failed = NULL;
a636b327 1797
fb2a6fc5
JW
1798 spin_lock(&memcg_oom_lock);
1799
9f3a0d09 1800 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1801 if (iter->oom_lock) {
79dfdacc
MH
1802 /*
1803 * this subtree of our hierarchy is already locked
1804 * so we cannot give a lock.
1805 */
79dfdacc 1806 failed = iter;
9f3a0d09
JW
1807 mem_cgroup_iter_break(memcg, iter);
1808 break;
23751be0
JW
1809 } else
1810 iter->oom_lock = true;
7d74b06f 1811 }
867578cb 1812
fb2a6fc5
JW
1813 if (failed) {
1814 /*
1815 * OK, we failed to lock the whole subtree so we have
1816 * to clean up what we set up to the failing subtree
1817 */
1818 for_each_mem_cgroup_tree(iter, memcg) {
1819 if (iter == failed) {
1820 mem_cgroup_iter_break(memcg, iter);
1821 break;
1822 }
1823 iter->oom_lock = false;
79dfdacc 1824 }
0056f4e6
JW
1825 } else
1826 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1827
1828 spin_unlock(&memcg_oom_lock);
1829
1830 return !failed;
a636b327 1831}
0b7f569e 1832
fb2a6fc5 1833static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1834{
7d74b06f
KH
1835 struct mem_cgroup *iter;
1836
fb2a6fc5 1837 spin_lock(&memcg_oom_lock);
5facae4f 1838 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1839 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1840 iter->oom_lock = false;
fb2a6fc5 1841 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1842}
1843
c0ff4b85 1844static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1845{
1846 struct mem_cgroup *iter;
1847
c2b42d3c 1848 spin_lock(&memcg_oom_lock);
c0ff4b85 1849 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1850 iter->under_oom++;
1851 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1852}
1853
c0ff4b85 1854static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1855{
1856 struct mem_cgroup *iter;
1857
867578cb 1858 /*
f0953a1b 1859 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1860 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1861 */
c2b42d3c 1862 spin_lock(&memcg_oom_lock);
c0ff4b85 1863 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1864 if (iter->under_oom > 0)
1865 iter->under_oom--;
1866 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1867}
1868
867578cb
KH
1869static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1870
dc98df5a 1871struct oom_wait_info {
d79154bb 1872 struct mem_cgroup *memcg;
ac6424b9 1873 wait_queue_entry_t wait;
dc98df5a
KH
1874};
1875
ac6424b9 1876static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1877 unsigned mode, int sync, void *arg)
1878{
d79154bb
HD
1879 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1880 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1881 struct oom_wait_info *oom_wait_info;
1882
1883 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1884 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1885
2314b42d
JW
1886 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1887 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1888 return 0;
dc98df5a
KH
1889 return autoremove_wake_function(wait, mode, sync, arg);
1890}
1891
c0ff4b85 1892static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1893{
c2b42d3c
TH
1894 /*
1895 * For the following lockless ->under_oom test, the only required
1896 * guarantee is that it must see the state asserted by an OOM when
1897 * this function is called as a result of userland actions
1898 * triggered by the notification of the OOM. This is trivially
1899 * achieved by invoking mem_cgroup_mark_under_oom() before
1900 * triggering notification.
1901 */
1902 if (memcg && memcg->under_oom)
f4b90b70 1903 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1904}
1905
becdf89d
SB
1906/*
1907 * Returns true if successfully killed one or more processes. Though in some
1908 * corner cases it can return true even without killing any process.
1909 */
1910static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1911{
becdf89d 1912 bool locked, ret;
7056d3a3 1913
29ef680a 1914 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1915 return false;
29ef680a 1916
7a1adfdd
RG
1917 memcg_memory_event(memcg, MEMCG_OOM);
1918
867578cb 1919 /*
49426420
JW
1920 * We are in the middle of the charge context here, so we
1921 * don't want to block when potentially sitting on a callstack
1922 * that holds all kinds of filesystem and mm locks.
1923 *
29ef680a
MH
1924 * cgroup1 allows disabling the OOM killer and waiting for outside
1925 * handling until the charge can succeed; remember the context and put
1926 * the task to sleep at the end of the page fault when all locks are
1927 * released.
49426420 1928 *
29ef680a
MH
1929 * On the other hand, in-kernel OOM killer allows for an async victim
1930 * memory reclaim (oom_reaper) and that means that we are not solely
1931 * relying on the oom victim to make a forward progress and we can
1932 * invoke the oom killer here.
1933 *
1934 * Please note that mem_cgroup_out_of_memory might fail to find a
1935 * victim and then we have to bail out from the charge path.
867578cb 1936 */
17c56de6 1937 if (READ_ONCE(memcg->oom_kill_disable)) {
becdf89d
SB
1938 if (current->in_user_fault) {
1939 css_get(&memcg->css);
1940 current->memcg_in_oom = memcg;
1941 current->memcg_oom_gfp_mask = mask;
1942 current->memcg_oom_order = order;
1943 }
1944 return false;
29ef680a
MH
1945 }
1946
7056d3a3
MH
1947 mem_cgroup_mark_under_oom(memcg);
1948
1949 locked = mem_cgroup_oom_trylock(memcg);
1950
1951 if (locked)
1952 mem_cgroup_oom_notify(memcg);
1953
1954 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1955 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1956
1957 if (locked)
1958 mem_cgroup_oom_unlock(memcg);
29ef680a 1959
7056d3a3 1960 return ret;
3812c8c8
JW
1961}
1962
1963/**
1964 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1965 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1966 *
49426420
JW
1967 * This has to be called at the end of a page fault if the memcg OOM
1968 * handler was enabled.
3812c8c8 1969 *
49426420 1970 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1971 * sleep on a waitqueue until the userspace task resolves the
1972 * situation. Sleeping directly in the charge context with all kinds
1973 * of locks held is not a good idea, instead we remember an OOM state
1974 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1975 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1976 *
1977 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1978 * completed, %false otherwise.
3812c8c8 1979 */
49426420 1980bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1981{
626ebc41 1982 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1983 struct oom_wait_info owait;
49426420 1984 bool locked;
3812c8c8
JW
1985
1986 /* OOM is global, do not handle */
3812c8c8 1987 if (!memcg)
49426420 1988 return false;
3812c8c8 1989
7c5f64f8 1990 if (!handle)
49426420 1991 goto cleanup;
3812c8c8
JW
1992
1993 owait.memcg = memcg;
1994 owait.wait.flags = 0;
1995 owait.wait.func = memcg_oom_wake_function;
1996 owait.wait.private = current;
2055da97 1997 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1998
3812c8c8 1999 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2000 mem_cgroup_mark_under_oom(memcg);
2001
2002 locked = mem_cgroup_oom_trylock(memcg);
2003
2004 if (locked)
2005 mem_cgroup_oom_notify(memcg);
2006
17c56de6 2007 if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
49426420
JW
2008 mem_cgroup_unmark_under_oom(memcg);
2009 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2010 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2011 current->memcg_oom_order);
49426420 2012 } else {
3812c8c8 2013 schedule();
49426420
JW
2014 mem_cgroup_unmark_under_oom(memcg);
2015 finish_wait(&memcg_oom_waitq, &owait.wait);
2016 }
2017
2018 if (locked) {
fb2a6fc5
JW
2019 mem_cgroup_oom_unlock(memcg);
2020 /*
2021 * There is no guarantee that an OOM-lock contender
2022 * sees the wakeups triggered by the OOM kill
f0953a1b 2023 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2024 */
2025 memcg_oom_recover(memcg);
2026 }
49426420 2027cleanup:
626ebc41 2028 current->memcg_in_oom = NULL;
3812c8c8 2029 css_put(&memcg->css);
867578cb 2030 return true;
0b7f569e
KH
2031}
2032
3d8b38eb
RG
2033/**
2034 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2035 * @victim: task to be killed by the OOM killer
2036 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2037 *
2038 * Returns a pointer to a memory cgroup, which has to be cleaned up
2039 * by killing all belonging OOM-killable tasks.
2040 *
2041 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2042 */
2043struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2044 struct mem_cgroup *oom_domain)
2045{
2046 struct mem_cgroup *oom_group = NULL;
2047 struct mem_cgroup *memcg;
2048
2049 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2050 return NULL;
2051
2052 if (!oom_domain)
2053 oom_domain = root_mem_cgroup;
2054
2055 rcu_read_lock();
2056
2057 memcg = mem_cgroup_from_task(victim);
7848ed62 2058 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2059 goto out;
2060
48fe267c
RG
2061 /*
2062 * If the victim task has been asynchronously moved to a different
2063 * memory cgroup, we might end up killing tasks outside oom_domain.
2064 * In this case it's better to ignore memory.group.oom.
2065 */
2066 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2067 goto out;
2068
3d8b38eb
RG
2069 /*
2070 * Traverse the memory cgroup hierarchy from the victim task's
2071 * cgroup up to the OOMing cgroup (or root) to find the
2072 * highest-level memory cgroup with oom.group set.
2073 */
2074 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
eaf7b66b 2075 if (READ_ONCE(memcg->oom_group))
3d8b38eb
RG
2076 oom_group = memcg;
2077
2078 if (memcg == oom_domain)
2079 break;
2080 }
2081
2082 if (oom_group)
2083 css_get(&oom_group->css);
2084out:
2085 rcu_read_unlock();
2086
2087 return oom_group;
2088}
2089
2090void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2091{
2092 pr_info("Tasks in ");
2093 pr_cont_cgroup_path(memcg->css.cgroup);
2094 pr_cont(" are going to be killed due to memory.oom.group set\n");
2095}
2096
d7365e78 2097/**
f70ad448
MWO
2098 * folio_memcg_lock - Bind a folio to its memcg.
2099 * @folio: The folio.
32047e2a 2100 *
f70ad448 2101 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2102 * another cgroup.
2103 *
f70ad448
MWO
2104 * It ensures lifetime of the bound memcg. The caller is responsible
2105 * for the lifetime of the folio.
d69b042f 2106 */
f70ad448 2107void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2108{
2109 struct mem_cgroup *memcg;
6de22619 2110 unsigned long flags;
89c06bd5 2111
6de22619
JW
2112 /*
2113 * The RCU lock is held throughout the transaction. The fast
2114 * path can get away without acquiring the memcg->move_lock
2115 * because page moving starts with an RCU grace period.
739f79fc 2116 */
d7365e78
JW
2117 rcu_read_lock();
2118
2119 if (mem_cgroup_disabled())
1c824a68 2120 return;
89c06bd5 2121again:
f70ad448 2122 memcg = folio_memcg(folio);
29833315 2123 if (unlikely(!memcg))
1c824a68 2124 return;
d7365e78 2125
20ad50d6
AS
2126#ifdef CONFIG_PROVE_LOCKING
2127 local_irq_save(flags);
2128 might_lock(&memcg->move_lock);
2129 local_irq_restore(flags);
2130#endif
2131
bdcbb659 2132 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2133 return;
89c06bd5 2134
6de22619 2135 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2136 if (memcg != folio_memcg(folio)) {
6de22619 2137 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2138 goto again;
2139 }
6de22619
JW
2140
2141 /*
1c824a68
JW
2142 * When charge migration first begins, we can have multiple
2143 * critical sections holding the fast-path RCU lock and one
2144 * holding the slowpath move_lock. Track the task who has the
2145 * move_lock for unlock_page_memcg().
6de22619
JW
2146 */
2147 memcg->move_lock_task = current;
2148 memcg->move_lock_flags = flags;
89c06bd5 2149}
f70ad448
MWO
2150
2151void lock_page_memcg(struct page *page)
2152{
2153 folio_memcg_lock(page_folio(page));
2154}
89c06bd5 2155
f70ad448 2156static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2157{
6de22619
JW
2158 if (memcg && memcg->move_lock_task == current) {
2159 unsigned long flags = memcg->move_lock_flags;
2160
2161 memcg->move_lock_task = NULL;
2162 memcg->move_lock_flags = 0;
2163
2164 spin_unlock_irqrestore(&memcg->move_lock, flags);
2165 }
89c06bd5 2166
d7365e78 2167 rcu_read_unlock();
89c06bd5 2168}
739f79fc
JW
2169
2170/**
f70ad448
MWO
2171 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2172 * @folio: The folio.
2173 *
2174 * This releases the binding created by folio_memcg_lock(). This does
2175 * not change the accounting of this folio to its memcg, but it does
2176 * permit others to change it.
739f79fc 2177 */
f70ad448 2178void folio_memcg_unlock(struct folio *folio)
739f79fc 2179{
f70ad448
MWO
2180 __folio_memcg_unlock(folio_memcg(folio));
2181}
9da7b521 2182
f70ad448
MWO
2183void unlock_page_memcg(struct page *page)
2184{
2185 folio_memcg_unlock(page_folio(page));
739f79fc 2186}
89c06bd5 2187
fead2b86 2188struct memcg_stock_pcp {
56751146 2189 local_lock_t stock_lock;
fead2b86
MH
2190 struct mem_cgroup *cached; /* this never be root cgroup */
2191 unsigned int nr_pages;
2192
bf4f0599
RG
2193#ifdef CONFIG_MEMCG_KMEM
2194 struct obj_cgroup *cached_objcg;
68ac5b3c 2195 struct pglist_data *cached_pgdat;
bf4f0599 2196 unsigned int nr_bytes;
68ac5b3c
WL
2197 int nr_slab_reclaimable_b;
2198 int nr_slab_unreclaimable_b;
bf4f0599
RG
2199#endif
2200
cdec2e42 2201 struct work_struct work;
26fe6168 2202 unsigned long flags;
a0db00fc 2203#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2204};
56751146
SAS
2205static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2206 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2207};
9f50fad6 2208static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2209
bf4f0599 2210#ifdef CONFIG_MEMCG_KMEM
56751146 2211static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2212static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 struct mem_cgroup *root_memcg);
a8c49af3 2214static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2215
2216#else
56751146 2217static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2218{
56751146 2219 return NULL;
bf4f0599
RG
2220}
2221static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2222 struct mem_cgroup *root_memcg)
2223{
2224 return false;
2225}
a8c49af3
YA
2226static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2227{
2228}
bf4f0599
RG
2229#endif
2230
a0956d54
SS
2231/**
2232 * consume_stock: Try to consume stocked charge on this cpu.
2233 * @memcg: memcg to consume from.
2234 * @nr_pages: how many pages to charge.
2235 *
2236 * The charges will only happen if @memcg matches the current cpu's memcg
2237 * stock, and at least @nr_pages are available in that stock. Failure to
2238 * service an allocation will refill the stock.
2239 *
2240 * returns true if successful, false otherwise.
cdec2e42 2241 */
a0956d54 2242static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2243{
2244 struct memcg_stock_pcp *stock;
db2ba40c 2245 unsigned long flags;
3e32cb2e 2246 bool ret = false;
cdec2e42 2247
a983b5eb 2248 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2249 return ret;
a0956d54 2250
56751146 2251 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2252
2253 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2254 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2255 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2256 ret = true;
2257 }
db2ba40c 2258
56751146 2259 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2260
cdec2e42
KH
2261 return ret;
2262}
2263
2264/*
3e32cb2e 2265 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2266 */
2267static void drain_stock(struct memcg_stock_pcp *stock)
2268{
2269 struct mem_cgroup *old = stock->cached;
2270
1a3e1f40
JW
2271 if (!old)
2272 return;
2273
11c9ea4e 2274 if (stock->nr_pages) {
3e32cb2e 2275 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2276 if (do_memsw_account())
3e32cb2e 2277 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2278 stock->nr_pages = 0;
cdec2e42 2279 }
1a3e1f40
JW
2280
2281 css_put(&old->css);
cdec2e42 2282 stock->cached = NULL;
cdec2e42
KH
2283}
2284
cdec2e42
KH
2285static void drain_local_stock(struct work_struct *dummy)
2286{
db2ba40c 2287 struct memcg_stock_pcp *stock;
56751146 2288 struct obj_cgroup *old = NULL;
db2ba40c
JW
2289 unsigned long flags;
2290
72f0184c 2291 /*
5c49cf9a
MH
2292 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2293 * drain_stock races is that we always operate on local CPU stock
2294 * here with IRQ disabled
72f0184c 2295 */
56751146 2296 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2297
2298 stock = this_cpu_ptr(&memcg_stock);
56751146 2299 old = drain_obj_stock(stock);
cdec2e42 2300 drain_stock(stock);
26fe6168 2301 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2302
56751146
SAS
2303 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2304 if (old)
2305 obj_cgroup_put(old);
cdec2e42
KH
2306}
2307
2308/*
3e32cb2e 2309 * Cache charges(val) to local per_cpu area.
320cc51d 2310 * This will be consumed by consume_stock() function, later.
cdec2e42 2311 */
af9a3b69 2312static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2313{
db2ba40c 2314 struct memcg_stock_pcp *stock;
cdec2e42 2315
db2ba40c 2316 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2317 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2318 drain_stock(stock);
1a3e1f40 2319 css_get(&memcg->css);
c0ff4b85 2320 stock->cached = memcg;
cdec2e42 2321 }
11c9ea4e 2322 stock->nr_pages += nr_pages;
db2ba40c 2323
a983b5eb 2324 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2325 drain_stock(stock);
af9a3b69
JW
2326}
2327
2328static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2329{
2330 unsigned long flags;
475d0487 2331
56751146 2332 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2333 __refill_stock(memcg, nr_pages);
56751146 2334 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2335}
2336
2337/*
c0ff4b85 2338 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2339 * of the hierarchy under it.
cdec2e42 2340 */
6d3d6aa2 2341static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2342{
26fe6168 2343 int cpu, curcpu;
d38144b7 2344
6d3d6aa2
JW
2345 /* If someone's already draining, avoid adding running more workers. */
2346 if (!mutex_trylock(&percpu_charge_mutex))
2347 return;
72f0184c
MH
2348 /*
2349 * Notify other cpus that system-wide "drain" is running
2350 * We do not care about races with the cpu hotplug because cpu down
2351 * as well as workers from this path always operate on the local
2352 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2353 */
0790ed62
SAS
2354 migrate_disable();
2355 curcpu = smp_processor_id();
cdec2e42
KH
2356 for_each_online_cpu(cpu) {
2357 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2358 struct mem_cgroup *memcg;
e1a366be 2359 bool flush = false;
26fe6168 2360
e1a366be 2361 rcu_read_lock();
c0ff4b85 2362 memcg = stock->cached;
e1a366be
RG
2363 if (memcg && stock->nr_pages &&
2364 mem_cgroup_is_descendant(memcg, root_memcg))
2365 flush = true;
27fb0956 2366 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2367 flush = true;
e1a366be
RG
2368 rcu_read_unlock();
2369
2370 if (flush &&
2371 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2372 if (cpu == curcpu)
2373 drain_local_stock(&stock->work);
6a792697 2374 else if (!cpu_is_isolated(cpu))
d1a05b69
MH
2375 schedule_work_on(cpu, &stock->work);
2376 }
cdec2e42 2377 }
0790ed62 2378 migrate_enable();
9f50fad6 2379 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2380}
2381
2cd21c89
JW
2382static int memcg_hotplug_cpu_dead(unsigned int cpu)
2383{
2384 struct memcg_stock_pcp *stock;
a3d4c05a 2385
2cd21c89
JW
2386 stock = &per_cpu(memcg_stock, cpu);
2387 drain_stock(stock);
a3d4c05a 2388
308167fc 2389 return 0;
cdec2e42
KH
2390}
2391
b3ff9291
CD
2392static unsigned long reclaim_high(struct mem_cgroup *memcg,
2393 unsigned int nr_pages,
2394 gfp_t gfp_mask)
f7e1cb6e 2395{
b3ff9291
CD
2396 unsigned long nr_reclaimed = 0;
2397
f7e1cb6e 2398 do {
e22c6ed9
JW
2399 unsigned long pflags;
2400
d1663a90
JK
2401 if (page_counter_read(&memcg->memory) <=
2402 READ_ONCE(memcg->memory.high))
f7e1cb6e 2403 continue;
e22c6ed9 2404
e27be240 2405 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2406
2407 psi_memstall_enter(&pflags);
b3ff9291 2408 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2409 gfp_mask,
55ab834a 2410 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2411 psi_memstall_leave(&pflags);
4bf17307
CD
2412 } while ((memcg = parent_mem_cgroup(memcg)) &&
2413 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2414
2415 return nr_reclaimed;
f7e1cb6e
JW
2416}
2417
2418static void high_work_func(struct work_struct *work)
2419{
2420 struct mem_cgroup *memcg;
2421
2422 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2423 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2424}
2425
0e4b01df
CD
2426/*
2427 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2428 * enough to still cause a significant slowdown in most cases, while still
2429 * allowing diagnostics and tracing to proceed without becoming stuck.
2430 */
2431#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2432
2433/*
2434 * When calculating the delay, we use these either side of the exponentiation to
2435 * maintain precision and scale to a reasonable number of jiffies (see the table
2436 * below.
2437 *
2438 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2439 * overage ratio to a delay.
ac5ddd0f 2440 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2441 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2442 * to produce a reasonable delay curve.
2443 *
2444 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2445 * reasonable delay curve compared to precision-adjusted overage, not
2446 * penalising heavily at first, but still making sure that growth beyond the
2447 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2448 * example, with a high of 100 megabytes:
2449 *
2450 * +-------+------------------------+
2451 * | usage | time to allocate in ms |
2452 * +-------+------------------------+
2453 * | 100M | 0 |
2454 * | 101M | 6 |
2455 * | 102M | 25 |
2456 * | 103M | 57 |
2457 * | 104M | 102 |
2458 * | 105M | 159 |
2459 * | 106M | 230 |
2460 * | 107M | 313 |
2461 * | 108M | 409 |
2462 * | 109M | 518 |
2463 * | 110M | 639 |
2464 * | 111M | 774 |
2465 * | 112M | 921 |
2466 * | 113M | 1081 |
2467 * | 114M | 1254 |
2468 * | 115M | 1439 |
2469 * | 116M | 1638 |
2470 * | 117M | 1849 |
2471 * | 118M | 2000 |
2472 * | 119M | 2000 |
2473 * | 120M | 2000 |
2474 * +-------+------------------------+
2475 */
2476 #define MEMCG_DELAY_PRECISION_SHIFT 20
2477 #define MEMCG_DELAY_SCALING_SHIFT 14
2478
8a5dbc65 2479static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2480{
8a5dbc65 2481 u64 overage;
b23afb93 2482
8a5dbc65
JK
2483 if (usage <= high)
2484 return 0;
e26733e0 2485
8a5dbc65
JK
2486 /*
2487 * Prevent division by 0 in overage calculation by acting as if
2488 * it was a threshold of 1 page
2489 */
2490 high = max(high, 1UL);
9b8b1754 2491
8a5dbc65
JK
2492 overage = usage - high;
2493 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2494 return div64_u64(overage, high);
2495}
e26733e0 2496
8a5dbc65
JK
2497static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2498{
2499 u64 overage, max_overage = 0;
e26733e0 2500
8a5dbc65
JK
2501 do {
2502 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2503 READ_ONCE(memcg->memory.high));
8a5dbc65 2504 max_overage = max(overage, max_overage);
e26733e0
CD
2505 } while ((memcg = parent_mem_cgroup(memcg)) &&
2506 !mem_cgroup_is_root(memcg));
2507
8a5dbc65
JK
2508 return max_overage;
2509}
2510
4b82ab4f
JK
2511static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2512{
2513 u64 overage, max_overage = 0;
2514
2515 do {
2516 overage = calculate_overage(page_counter_read(&memcg->swap),
2517 READ_ONCE(memcg->swap.high));
2518 if (overage)
2519 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2520 max_overage = max(overage, max_overage);
2521 } while ((memcg = parent_mem_cgroup(memcg)) &&
2522 !mem_cgroup_is_root(memcg));
2523
2524 return max_overage;
2525}
2526
8a5dbc65
JK
2527/*
2528 * Get the number of jiffies that we should penalise a mischievous cgroup which
2529 * is exceeding its memory.high by checking both it and its ancestors.
2530 */
2531static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2532 unsigned int nr_pages,
2533 u64 max_overage)
2534{
2535 unsigned long penalty_jiffies;
2536
e26733e0
CD
2537 if (!max_overage)
2538 return 0;
0e4b01df
CD
2539
2540 /*
0e4b01df
CD
2541 * We use overage compared to memory.high to calculate the number of
2542 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2543 * fairly lenient on small overages, and increasingly harsh when the
2544 * memcg in question makes it clear that it has no intention of stopping
2545 * its crazy behaviour, so we exponentially increase the delay based on
2546 * overage amount.
2547 */
e26733e0
CD
2548 penalty_jiffies = max_overage * max_overage * HZ;
2549 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2550 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2551
2552 /*
2553 * Factor in the task's own contribution to the overage, such that four
2554 * N-sized allocations are throttled approximately the same as one
2555 * 4N-sized allocation.
2556 *
2557 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2558 * larger the current charge patch is than that.
2559 */
ff144e69 2560 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2561}
2562
2563/*
2564 * Scheduled by try_charge() to be executed from the userland return path
2565 * and reclaims memory over the high limit.
2566 */
2567void mem_cgroup_handle_over_high(void)
2568{
2569 unsigned long penalty_jiffies;
2570 unsigned long pflags;
b3ff9291 2571 unsigned long nr_reclaimed;
e26733e0 2572 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2573 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2574 struct mem_cgroup *memcg;
b3ff9291 2575 bool in_retry = false;
e26733e0
CD
2576
2577 if (likely(!nr_pages))
2578 return;
2579
2580 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2581 current->memcg_nr_pages_over_high = 0;
2582
b3ff9291
CD
2583retry_reclaim:
2584 /*
2585 * The allocating task should reclaim at least the batch size, but for
2586 * subsequent retries we only want to do what's necessary to prevent oom
2587 * or breaching resource isolation.
2588 *
2589 * This is distinct from memory.max or page allocator behaviour because
2590 * memory.high is currently batched, whereas memory.max and the page
2591 * allocator run every time an allocation is made.
2592 */
2593 nr_reclaimed = reclaim_high(memcg,
2594 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2595 GFP_KERNEL);
2596
e26733e0
CD
2597 /*
2598 * memory.high is breached and reclaim is unable to keep up. Throttle
2599 * allocators proactively to slow down excessive growth.
2600 */
8a5dbc65
JK
2601 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2602 mem_find_max_overage(memcg));
0e4b01df 2603
4b82ab4f
JK
2604 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2605 swap_find_max_overage(memcg));
2606
ff144e69
JK
2607 /*
2608 * Clamp the max delay per usermode return so as to still keep the
2609 * application moving forwards and also permit diagnostics, albeit
2610 * extremely slowly.
2611 */
2612 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2613
0e4b01df
CD
2614 /*
2615 * Don't sleep if the amount of jiffies this memcg owes us is so low
2616 * that it's not even worth doing, in an attempt to be nice to those who
2617 * go only a small amount over their memory.high value and maybe haven't
2618 * been aggressively reclaimed enough yet.
2619 */
2620 if (penalty_jiffies <= HZ / 100)
2621 goto out;
2622
b3ff9291
CD
2623 /*
2624 * If reclaim is making forward progress but we're still over
2625 * memory.high, we want to encourage that rather than doing allocator
2626 * throttling.
2627 */
2628 if (nr_reclaimed || nr_retries--) {
2629 in_retry = true;
2630 goto retry_reclaim;
2631 }
2632
0e4b01df
CD
2633 /*
2634 * If we exit early, we're guaranteed to die (since
2635 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2636 * need to account for any ill-begotten jiffies to pay them off later.
2637 */
2638 psi_memstall_enter(&pflags);
2639 schedule_timeout_killable(penalty_jiffies);
2640 psi_memstall_leave(&pflags);
2641
2642out:
2643 css_put(&memcg->css);
b23afb93
TH
2644}
2645
c5c8b16b
MS
2646static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2647 unsigned int nr_pages)
8a9f3ccd 2648{
a983b5eb 2649 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2650 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2651 struct mem_cgroup *mem_over_limit;
3e32cb2e 2652 struct page_counter *counter;
6539cc05 2653 unsigned long nr_reclaimed;
a4ebf1b6 2654 bool passed_oom = false;
73b73bac 2655 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2656 bool drained = false;
d6e103a7 2657 bool raised_max_event = false;
e22c6ed9 2658 unsigned long pflags;
a636b327 2659
6539cc05 2660retry:
b6b6cc72 2661 if (consume_stock(memcg, nr_pages))
10d53c74 2662 return 0;
8a9f3ccd 2663
7941d214 2664 if (!do_memsw_account() ||
6071ca52
JW
2665 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2666 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2667 goto done_restock;
7941d214 2668 if (do_memsw_account())
3e32cb2e
JW
2669 page_counter_uncharge(&memcg->memsw, batch);
2670 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2671 } else {
3e32cb2e 2672 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2673 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2674 }
7a81b88c 2675
6539cc05
JW
2676 if (batch > nr_pages) {
2677 batch = nr_pages;
2678 goto retry;
2679 }
6d61ef40 2680
89a28483
JW
2681 /*
2682 * Prevent unbounded recursion when reclaim operations need to
2683 * allocate memory. This might exceed the limits temporarily,
2684 * but we prefer facilitating memory reclaim and getting back
2685 * under the limit over triggering OOM kills in these cases.
2686 */
2687 if (unlikely(current->flags & PF_MEMALLOC))
2688 goto force;
2689
06b078fc
JW
2690 if (unlikely(task_in_memcg_oom(current)))
2691 goto nomem;
2692
d0164adc 2693 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2694 goto nomem;
4b534334 2695
e27be240 2696 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2697 raised_max_event = true;
241994ed 2698
e22c6ed9 2699 psi_memstall_enter(&pflags);
b70a2a21 2700 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2701 gfp_mask, reclaim_options);
e22c6ed9 2702 psi_memstall_leave(&pflags);
6539cc05 2703
61e02c74 2704 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2705 goto retry;
28c34c29 2706
b70a2a21 2707 if (!drained) {
6d3d6aa2 2708 drain_all_stock(mem_over_limit);
b70a2a21
JW
2709 drained = true;
2710 goto retry;
2711 }
2712
28c34c29
JW
2713 if (gfp_mask & __GFP_NORETRY)
2714 goto nomem;
6539cc05
JW
2715 /*
2716 * Even though the limit is exceeded at this point, reclaim
2717 * may have been able to free some pages. Retry the charge
2718 * before killing the task.
2719 *
2720 * Only for regular pages, though: huge pages are rather
2721 * unlikely to succeed so close to the limit, and we fall back
2722 * to regular pages anyway in case of failure.
2723 */
61e02c74 2724 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2725 goto retry;
2726 /*
2727 * At task move, charge accounts can be doubly counted. So, it's
2728 * better to wait until the end of task_move if something is going on.
2729 */
2730 if (mem_cgroup_wait_acct_move(mem_over_limit))
2731 goto retry;
2732
9b130619
JW
2733 if (nr_retries--)
2734 goto retry;
2735
38d38493 2736 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2737 goto nomem;
2738
a4ebf1b6
VA
2739 /* Avoid endless loop for tasks bypassed by the oom killer */
2740 if (passed_oom && task_is_dying())
2741 goto nomem;
6539cc05 2742
29ef680a
MH
2743 /*
2744 * keep retrying as long as the memcg oom killer is able to make
2745 * a forward progress or bypass the charge if the oom killer
2746 * couldn't make any progress.
2747 */
becdf89d
SB
2748 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2749 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2750 passed_oom = true;
d977aa93 2751 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2752 goto retry;
29ef680a 2753 }
7a81b88c 2754nomem:
1461e8c2
SB
2755 /*
2756 * Memcg doesn't have a dedicated reserve for atomic
2757 * allocations. But like the global atomic pool, we need to
2758 * put the burden of reclaim on regular allocation requests
2759 * and let these go through as privileged allocations.
2760 */
2761 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2762 return -ENOMEM;
10d53c74 2763force:
d6e103a7
RG
2764 /*
2765 * If the allocation has to be enforced, don't forget to raise
2766 * a MEMCG_MAX event.
2767 */
2768 if (!raised_max_event)
2769 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2770
10d53c74
TH
2771 /*
2772 * The allocation either can't fail or will lead to more memory
2773 * being freed very soon. Allow memory usage go over the limit
2774 * temporarily by force charging it.
2775 */
2776 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2777 if (do_memsw_account())
10d53c74 2778 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2779
2780 return 0;
6539cc05
JW
2781
2782done_restock:
2783 if (batch > nr_pages)
2784 refill_stock(memcg, batch - nr_pages);
b23afb93 2785
241994ed 2786 /*
b23afb93
TH
2787 * If the hierarchy is above the normal consumption range, schedule
2788 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2789 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2790 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2791 * not recorded as it most likely matches current's and won't
2792 * change in the meantime. As high limit is checked again before
2793 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2794 */
2795 do {
4b82ab4f
JK
2796 bool mem_high, swap_high;
2797
2798 mem_high = page_counter_read(&memcg->memory) >
2799 READ_ONCE(memcg->memory.high);
2800 swap_high = page_counter_read(&memcg->swap) >
2801 READ_ONCE(memcg->swap.high);
2802
2803 /* Don't bother a random interrupted task */
086f694a 2804 if (!in_task()) {
4b82ab4f 2805 if (mem_high) {
f7e1cb6e
JW
2806 schedule_work(&memcg->high_work);
2807 break;
2808 }
4b82ab4f
JK
2809 continue;
2810 }
2811
2812 if (mem_high || swap_high) {
2813 /*
2814 * The allocating tasks in this cgroup will need to do
2815 * reclaim or be throttled to prevent further growth
2816 * of the memory or swap footprints.
2817 *
2818 * Target some best-effort fairness between the tasks,
2819 * and distribute reclaim work and delay penalties
2820 * based on how much each task is actually allocating.
2821 */
9516a18a 2822 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2823 set_notify_resume(current);
2824 break;
2825 }
241994ed 2826 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2827
c9afe31e
SB
2828 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2829 !(current->flags & PF_MEMALLOC) &&
2830 gfpflags_allow_blocking(gfp_mask)) {
2831 mem_cgroup_handle_over_high();
2832 }
10d53c74 2833 return 0;
7a81b88c 2834}
8a9f3ccd 2835
c5c8b16b
MS
2836static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2837 unsigned int nr_pages)
2838{
2839 if (mem_cgroup_is_root(memcg))
2840 return 0;
2841
2842 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2843}
2844
58056f77 2845static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2846{
ce00a967
JW
2847 if (mem_cgroup_is_root(memcg))
2848 return;
2849
3e32cb2e 2850 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2851 if (do_memsw_account())
3e32cb2e 2852 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2853}
2854
118f2875 2855static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2856{
118f2875 2857 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2858 /*
a5eb011a 2859 * Any of the following ensures page's memcg stability:
0a31bc97 2860 *
a0b5b414
JW
2861 * - the page lock
2862 * - LRU isolation
2863 * - lock_page_memcg()
2864 * - exclusive reference
018ee47f 2865 * - mem_cgroup_trylock_pages()
0a31bc97 2866 */
118f2875 2867 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2868}
66e1707b 2869
84c07d11 2870#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2871/*
2872 * The allocated objcg pointers array is not accounted directly.
2873 * Moreover, it should not come from DMA buffer and is not readily
2874 * reclaimable. So those GFP bits should be masked off.
2875 */
2876#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2877
a7ebf564
WL
2878/*
2879 * mod_objcg_mlstate() may be called with irq enabled, so
2880 * mod_memcg_lruvec_state() should be used.
2881 */
2882static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2883 struct pglist_data *pgdat,
2884 enum node_stat_item idx, int nr)
2885{
2886 struct mem_cgroup *memcg;
2887 struct lruvec *lruvec;
2888
2889 rcu_read_lock();
2890 memcg = obj_cgroup_memcg(objcg);
2891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2892 mod_memcg_lruvec_state(lruvec, idx, nr);
2893 rcu_read_unlock();
2894}
2895
4b5f8d9a
VB
2896int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2897 gfp_t gfp, bool new_slab)
10befea9 2898{
4b5f8d9a 2899 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2900 unsigned long memcg_data;
10befea9
RG
2901 void *vec;
2902
41eb5df1 2903 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2904 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2905 slab_nid(slab));
10befea9
RG
2906 if (!vec)
2907 return -ENOMEM;
2908
2e9bd483 2909 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2910 if (new_slab) {
2e9bd483 2911 /*
4b5f8d9a
VB
2912 * If the slab is brand new and nobody can yet access its
2913 * memcg_data, no synchronization is required and memcg_data can
2914 * be simply assigned.
2e9bd483 2915 */
4b5f8d9a
VB
2916 slab->memcg_data = memcg_data;
2917 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2918 /*
4b5f8d9a
VB
2919 * If the slab is already in use, somebody can allocate and
2920 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2921 * objcg vector should be reused.
2922 */
10befea9 2923 kfree(vec);
2e9bd483
RG
2924 return 0;
2925 }
10befea9 2926
2e9bd483 2927 kmemleak_not_leak(vec);
10befea9
RG
2928 return 0;
2929}
2930
fc4db90f
RG
2931static __always_inline
2932struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2933{
8380ce47 2934 /*
9855609b
RG
2935 * Slab objects are accounted individually, not per-page.
2936 * Memcg membership data for each individual object is saved in
4b5f8d9a 2937 * slab->memcg_data.
8380ce47 2938 */
4b5f8d9a
VB
2939 if (folio_test_slab(folio)) {
2940 struct obj_cgroup **objcgs;
2941 struct slab *slab;
9855609b
RG
2942 unsigned int off;
2943
4b5f8d9a
VB
2944 slab = folio_slab(folio);
2945 objcgs = slab_objcgs(slab);
2946 if (!objcgs)
2947 return NULL;
2948
2949 off = obj_to_index(slab->slab_cache, slab, p);
2950 if (objcgs[off])
2951 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2952
2953 return NULL;
9855609b 2954 }
8380ce47 2955
bcfe06bf 2956 /*
becacb04 2957 * folio_memcg_check() is used here, because in theory we can encounter
4b5f8d9a
VB
2958 * a folio where the slab flag has been cleared already, but
2959 * slab->memcg_data has not been freed yet
becacb04 2960 * folio_memcg_check() will guarantee that a proper memory
bcfe06bf
RG
2961 * cgroup pointer or NULL will be returned.
2962 */
becacb04 2963 return folio_memcg_check(folio);
8380ce47
RG
2964}
2965
fc4db90f
RG
2966/*
2967 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2968 *
2969 * A passed kernel object can be a slab object, vmalloc object or a generic
2970 * kernel page, so different mechanisms for getting the memory cgroup pointer
2971 * should be used.
2972 *
2973 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2974 * can not know for sure how the kernel object is implemented.
2975 * mem_cgroup_from_obj() can be safely used in such cases.
2976 *
2977 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2978 * cgroup_mutex, etc.
2979 */
2980struct mem_cgroup *mem_cgroup_from_obj(void *p)
2981{
2982 struct folio *folio;
2983
2984 if (mem_cgroup_disabled())
2985 return NULL;
2986
2987 if (unlikely(is_vmalloc_addr(p)))
2988 folio = page_folio(vmalloc_to_page(p));
2989 else
2990 folio = virt_to_folio(p);
2991
2992 return mem_cgroup_from_obj_folio(folio, p);
2993}
2994
2995/*
2996 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2997 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2998 * allocated using vmalloc().
2999 *
3000 * A passed kernel object must be a slab object or a generic kernel page.
3001 *
3002 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3003 * cgroup_mutex, etc.
3004 */
3005struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3006{
3007 if (mem_cgroup_disabled())
3008 return NULL;
3009
3010 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3011}
3012
f4840ccf
JW
3013static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3014{
3015 struct obj_cgroup *objcg = NULL;
3016
7848ed62 3017 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3018 objcg = rcu_dereference(memcg->objcg);
3019 if (objcg && obj_cgroup_tryget(objcg))
3020 break;
3021 objcg = NULL;
3022 }
3023 return objcg;
3024}
3025
bf4f0599
RG
3026__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3027{
3028 struct obj_cgroup *objcg = NULL;
3029 struct mem_cgroup *memcg;
3030
279c3393
RG
3031 if (memcg_kmem_bypass())
3032 return NULL;
3033
bf4f0599 3034 rcu_read_lock();
37d5985c
RG
3035 if (unlikely(active_memcg()))
3036 memcg = active_memcg();
bf4f0599
RG
3037 else
3038 memcg = mem_cgroup_from_task(current);
f4840ccf 3039 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3040 rcu_read_unlock();
f4840ccf
JW
3041 return objcg;
3042}
3043
3044struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3045{
3046 struct obj_cgroup *objcg;
3047
f7a449f7 3048 if (!memcg_kmem_online())
f4840ccf
JW
3049 return NULL;
3050
3051 if (PageMemcgKmem(page)) {
3052 objcg = __folio_objcg(page_folio(page));
3053 obj_cgroup_get(objcg);
3054 } else {
3055 struct mem_cgroup *memcg;
bf4f0599 3056
f4840ccf
JW
3057 rcu_read_lock();
3058 memcg = __folio_memcg(page_folio(page));
3059 if (memcg)
3060 objcg = __get_obj_cgroup_from_memcg(memcg);
3061 else
3062 objcg = NULL;
3063 rcu_read_unlock();
3064 }
bf4f0599
RG
3065 return objcg;
3066}
3067
a8c49af3
YA
3068static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3069{
3070 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3071 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3072 if (nr_pages > 0)
3073 page_counter_charge(&memcg->kmem, nr_pages);
3074 else
3075 page_counter_uncharge(&memcg->kmem, -nr_pages);
3076 }
3077}
3078
3079
f1286fae
MS
3080/*
3081 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3082 * @objcg: object cgroup to uncharge
3083 * @nr_pages: number of pages to uncharge
3084 */
e74d2259
MS
3085static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3086 unsigned int nr_pages)
3087{
3088 struct mem_cgroup *memcg;
3089
3090 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3091
a8c49af3 3092 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3093 refill_stock(memcg, nr_pages);
e74d2259 3094
e74d2259 3095 css_put(&memcg->css);
e74d2259
MS
3096}
3097
f1286fae
MS
3098/*
3099 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3100 * @objcg: object cgroup to charge
45264778 3101 * @gfp: reclaim mode
92d0510c 3102 * @nr_pages: number of pages to charge
45264778
VD
3103 *
3104 * Returns 0 on success, an error code on failure.
3105 */
f1286fae
MS
3106static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3107 unsigned int nr_pages)
7ae1e1d0 3108{
f1286fae 3109 struct mem_cgroup *memcg;
7ae1e1d0
GC
3110 int ret;
3111
f1286fae
MS
3112 memcg = get_mem_cgroup_from_objcg(objcg);
3113
c5c8b16b 3114 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3115 if (ret)
f1286fae 3116 goto out;
52c29b04 3117
a8c49af3 3118 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3119out:
3120 css_put(&memcg->css);
4b13f64d 3121
f1286fae 3122 return ret;
4b13f64d
RG
3123}
3124
45264778 3125/**
f4b00eab 3126 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3127 * @page: page to charge
3128 * @gfp: reclaim mode
3129 * @order: allocation order
3130 *
3131 * Returns 0 on success, an error code on failure.
3132 */
f4b00eab 3133int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3134{
b4e0b68f 3135 struct obj_cgroup *objcg;
fcff7d7e 3136 int ret = 0;
7ae1e1d0 3137
b4e0b68f
MS
3138 objcg = get_obj_cgroup_from_current();
3139 if (objcg) {
3140 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3141 if (!ret) {
b4e0b68f 3142 page->memcg_data = (unsigned long)objcg |
18b2db3b 3143 MEMCG_DATA_KMEM;
1a3e1f40 3144 return 0;
4d96ba35 3145 }
b4e0b68f 3146 obj_cgroup_put(objcg);
c4159a75 3147 }
d05e83a6 3148 return ret;
7ae1e1d0 3149}
49a18eae 3150
45264778 3151/**
f4b00eab 3152 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3153 * @page: page to uncharge
3154 * @order: allocation order
3155 */
f4b00eab 3156void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3157{
1b7e4464 3158 struct folio *folio = page_folio(page);
b4e0b68f 3159 struct obj_cgroup *objcg;
f3ccb2c4 3160 unsigned int nr_pages = 1 << order;
7ae1e1d0 3161
1b7e4464 3162 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3163 return;
3164
1b7e4464 3165 objcg = __folio_objcg(folio);
b4e0b68f 3166 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3167 folio->memcg_data = 0;
b4e0b68f 3168 obj_cgroup_put(objcg);
60d3fd32 3169}
bf4f0599 3170
68ac5b3c
WL
3171void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3172 enum node_stat_item idx, int nr)
3173{
fead2b86 3174 struct memcg_stock_pcp *stock;
56751146 3175 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3176 unsigned long flags;
3177 int *bytes;
3178
56751146 3179 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3180 stock = this_cpu_ptr(&memcg_stock);
3181
68ac5b3c
WL
3182 /*
3183 * Save vmstat data in stock and skip vmstat array update unless
3184 * accumulating over a page of vmstat data or when pgdat or idx
3185 * changes.
3186 */
3187 if (stock->cached_objcg != objcg) {
56751146 3188 old = drain_obj_stock(stock);
68ac5b3c
WL
3189 obj_cgroup_get(objcg);
3190 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3191 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3192 stock->cached_objcg = objcg;
3193 stock->cached_pgdat = pgdat;
3194 } else if (stock->cached_pgdat != pgdat) {
3195 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3196 struct pglist_data *oldpg = stock->cached_pgdat;
3197
68ac5b3c 3198 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3199 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3200 stock->nr_slab_reclaimable_b);
3201 stock->nr_slab_reclaimable_b = 0;
3202 }
3203 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3204 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3205 stock->nr_slab_unreclaimable_b);
3206 stock->nr_slab_unreclaimable_b = 0;
3207 }
3208 stock->cached_pgdat = pgdat;
3209 }
3210
3211 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3212 : &stock->nr_slab_unreclaimable_b;
3213 /*
3214 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3215 * cached locally at least once before pushing it out.
3216 */
3217 if (!*bytes) {
3218 *bytes = nr;
3219 nr = 0;
3220 } else {
3221 *bytes += nr;
3222 if (abs(*bytes) > PAGE_SIZE) {
3223 nr = *bytes;
3224 *bytes = 0;
3225 } else {
3226 nr = 0;
3227 }
3228 }
3229 if (nr)
3230 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3231
56751146
SAS
3232 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3233 if (old)
3234 obj_cgroup_put(old);
68ac5b3c
WL
3235}
3236
bf4f0599
RG
3237static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3238{
fead2b86 3239 struct memcg_stock_pcp *stock;
bf4f0599
RG
3240 unsigned long flags;
3241 bool ret = false;
3242
56751146 3243 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3244
3245 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3246 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3247 stock->nr_bytes -= nr_bytes;
3248 ret = true;
3249 }
3250
56751146 3251 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3252
3253 return ret;
3254}
3255
56751146 3256static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3257{
3258 struct obj_cgroup *old = stock->cached_objcg;
3259
3260 if (!old)
56751146 3261 return NULL;
bf4f0599
RG
3262
3263 if (stock->nr_bytes) {
3264 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3265 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3266
af9a3b69
JW
3267 if (nr_pages) {
3268 struct mem_cgroup *memcg;
3269
3270 memcg = get_mem_cgroup_from_objcg(old);
3271
3272 memcg_account_kmem(memcg, -nr_pages);
3273 __refill_stock(memcg, nr_pages);
3274
3275 css_put(&memcg->css);
3276 }
bf4f0599
RG
3277
3278 /*
3279 * The leftover is flushed to the centralized per-memcg value.
3280 * On the next attempt to refill obj stock it will be moved
3281 * to a per-cpu stock (probably, on an other CPU), see
3282 * refill_obj_stock().
3283 *
3284 * How often it's flushed is a trade-off between the memory
3285 * limit enforcement accuracy and potential CPU contention,
3286 * so it might be changed in the future.
3287 */
3288 atomic_add(nr_bytes, &old->nr_charged_bytes);
3289 stock->nr_bytes = 0;
3290 }
3291
68ac5b3c
WL
3292 /*
3293 * Flush the vmstat data in current stock
3294 */
3295 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3296 if (stock->nr_slab_reclaimable_b) {
3297 mod_objcg_mlstate(old, stock->cached_pgdat,
3298 NR_SLAB_RECLAIMABLE_B,
3299 stock->nr_slab_reclaimable_b);
3300 stock->nr_slab_reclaimable_b = 0;
3301 }
3302 if (stock->nr_slab_unreclaimable_b) {
3303 mod_objcg_mlstate(old, stock->cached_pgdat,
3304 NR_SLAB_UNRECLAIMABLE_B,
3305 stock->nr_slab_unreclaimable_b);
3306 stock->nr_slab_unreclaimable_b = 0;
3307 }
3308 stock->cached_pgdat = NULL;
3309 }
3310
bf4f0599 3311 stock->cached_objcg = NULL;
56751146
SAS
3312 /*
3313 * The `old' objects needs to be released by the caller via
3314 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3315 */
3316 return old;
bf4f0599
RG
3317}
3318
3319static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3320 struct mem_cgroup *root_memcg)
3321{
3322 struct mem_cgroup *memcg;
3323
fead2b86
MH
3324 if (stock->cached_objcg) {
3325 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3326 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3327 return true;
3328 }
3329
3330 return false;
3331}
3332
5387c904
WL
3333static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3334 bool allow_uncharge)
bf4f0599 3335{
fead2b86 3336 struct memcg_stock_pcp *stock;
56751146 3337 struct obj_cgroup *old = NULL;
bf4f0599 3338 unsigned long flags;
5387c904 3339 unsigned int nr_pages = 0;
bf4f0599 3340
56751146 3341 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3342
3343 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3344 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3345 old = drain_obj_stock(stock);
bf4f0599
RG
3346 obj_cgroup_get(objcg);
3347 stock->cached_objcg = objcg;
5387c904
WL
3348 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3349 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3350 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3351 }
3352 stock->nr_bytes += nr_bytes;
3353
5387c904
WL
3354 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3355 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3356 stock->nr_bytes &= (PAGE_SIZE - 1);
3357 }
bf4f0599 3358
56751146
SAS
3359 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3360 if (old)
3361 obj_cgroup_put(old);
5387c904
WL
3362
3363 if (nr_pages)
3364 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3365}
3366
3367int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3368{
bf4f0599
RG
3369 unsigned int nr_pages, nr_bytes;
3370 int ret;
3371
3372 if (consume_obj_stock(objcg, size))
3373 return 0;
3374
3375 /*
5387c904 3376 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3377 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3378 * flushing objcg->nr_charged_bytes requires two atomic
3379 * operations, and objcg->nr_charged_bytes can't be big.
3380 * The shared objcg->nr_charged_bytes can also become a
3381 * performance bottleneck if all tasks of the same memcg are
3382 * trying to update it. So it's better to ignore it and try
3383 * grab some new pages. The stock's nr_bytes will be flushed to
3384 * objcg->nr_charged_bytes later on when objcg changes.
3385 *
3386 * The stock's nr_bytes may contain enough pre-charged bytes
3387 * to allow one less page from being charged, but we can't rely
3388 * on the pre-charged bytes not being changed outside of
3389 * consume_obj_stock() or refill_obj_stock(). So ignore those
3390 * pre-charged bytes as well when charging pages. To avoid a
3391 * page uncharge right after a page charge, we set the
3392 * allow_uncharge flag to false when calling refill_obj_stock()
3393 * to temporarily allow the pre-charged bytes to exceed the page
3394 * size limit. The maximum reachable value of the pre-charged
3395 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3396 * race.
bf4f0599 3397 */
bf4f0599
RG
3398 nr_pages = size >> PAGE_SHIFT;
3399 nr_bytes = size & (PAGE_SIZE - 1);
3400
3401 if (nr_bytes)
3402 nr_pages += 1;
3403
e74d2259 3404 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3405 if (!ret && nr_bytes)
5387c904 3406 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3407
bf4f0599
RG
3408 return ret;
3409}
3410
3411void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3412{
5387c904 3413 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3414}
3415
84c07d11 3416#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3417
ca3e0214 3418/*
be6c8982 3419 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3420 */
be6c8982 3421void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3422{
1b7e4464
MWO
3423 struct folio *folio = page_folio(head);
3424 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3425 int i;
ca3e0214 3426
be6c8982 3427 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3428 return;
b070e65c 3429
be6c8982 3430 for (i = 1; i < nr; i++)
1b7e4464 3431 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3432
1b7e4464
MWO
3433 if (folio_memcg_kmem(folio))
3434 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3435 else
3436 css_get_many(&memcg->css, nr - 1);
ca3e0214 3437}
ca3e0214 3438
e55b9f96 3439#ifdef CONFIG_SWAP
02491447
DN
3440/**
3441 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3442 * @entry: swap entry to be moved
3443 * @from: mem_cgroup which the entry is moved from
3444 * @to: mem_cgroup which the entry is moved to
3445 *
3446 * It succeeds only when the swap_cgroup's record for this entry is the same
3447 * as the mem_cgroup's id of @from.
3448 *
3449 * Returns 0 on success, -EINVAL on failure.
3450 *
3e32cb2e 3451 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3452 * both res and memsw, and called css_get().
3453 */
3454static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3455 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3456{
3457 unsigned short old_id, new_id;
3458
34c00c31
LZ
3459 old_id = mem_cgroup_id(from);
3460 new_id = mem_cgroup_id(to);
02491447
DN
3461
3462 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3463 mod_memcg_state(from, MEMCG_SWAP, -1);
3464 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3465 return 0;
3466 }
3467 return -EINVAL;
3468}
3469#else
3470static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3471 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3472{
3473 return -EINVAL;
3474}
8c7c6e34 3475#endif
d13d1443 3476
bbec2e15 3477static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3478
bbec2e15
RG
3479static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3480 unsigned long max, bool memsw)
628f4235 3481{
3e32cb2e 3482 bool enlarge = false;
bb4a7ea2 3483 bool drained = false;
3e32cb2e 3484 int ret;
c054a78c
YZ
3485 bool limits_invariant;
3486 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3487
3e32cb2e 3488 do {
628f4235
KH
3489 if (signal_pending(current)) {
3490 ret = -EINTR;
3491 break;
3492 }
3e32cb2e 3493
bbec2e15 3494 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3495 /*
3496 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3497 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3498 */
15b42562 3499 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3500 max <= memcg->memsw.max;
c054a78c 3501 if (!limits_invariant) {
bbec2e15 3502 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3503 ret = -EINVAL;
8c7c6e34
KH
3504 break;
3505 }
bbec2e15 3506 if (max > counter->max)
3e32cb2e 3507 enlarge = true;
bbec2e15
RG
3508 ret = page_counter_set_max(counter, max);
3509 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3510
3511 if (!ret)
3512 break;
3513
bb4a7ea2
SB
3514 if (!drained) {
3515 drain_all_stock(memcg);
3516 drained = true;
3517 continue;
3518 }
3519
73b73bac 3520 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3521 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3522 ret = -EBUSY;
3523 break;
3524 }
3525 } while (true);
3e32cb2e 3526
3c11ecf4
KH
3527 if (!ret && enlarge)
3528 memcg_oom_recover(memcg);
3e32cb2e 3529
628f4235
KH
3530 return ret;
3531}
3532
ef8f2327 3533unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3534 gfp_t gfp_mask,
3535 unsigned long *total_scanned)
3536{
3537 unsigned long nr_reclaimed = 0;
ef8f2327 3538 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3539 unsigned long reclaimed;
3540 int loop = 0;
ef8f2327 3541 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3542 unsigned long excess;
0608f43d 3543
e4dde56c
YZ
3544 if (lru_gen_enabled())
3545 return 0;
3546
0608f43d
AM
3547 if (order > 0)
3548 return 0;
3549
2ab082ba 3550 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3551
3552 /*
3553 * Do not even bother to check the largest node if the root
3554 * is empty. Do it lockless to prevent lock bouncing. Races
3555 * are acceptable as soft limit is best effort anyway.
3556 */
bfc7228b 3557 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3558 return 0;
3559
0608f43d
AM
3560 /*
3561 * This loop can run a while, specially if mem_cgroup's continuously
3562 * keep exceeding their soft limit and putting the system under
3563 * pressure
3564 */
3565 do {
3566 if (next_mz)
3567 mz = next_mz;
3568 else
3569 mz = mem_cgroup_largest_soft_limit_node(mctz);
3570 if (!mz)
3571 break;
3572
ef8f2327 3573 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3574 gfp_mask, total_scanned);
0608f43d 3575 nr_reclaimed += reclaimed;
0a31bc97 3576 spin_lock_irq(&mctz->lock);
0608f43d
AM
3577
3578 /*
3579 * If we failed to reclaim anything from this memory cgroup
3580 * it is time to move on to the next cgroup
3581 */
3582 next_mz = NULL;
bc2f2e7f
VD
3583 if (!reclaimed)
3584 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3585
3e32cb2e 3586 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3587 /*
3588 * One school of thought says that we should not add
3589 * back the node to the tree if reclaim returns 0.
3590 * But our reclaim could return 0, simply because due
3591 * to priority we are exposing a smaller subset of
3592 * memory to reclaim from. Consider this as a longer
3593 * term TODO.
3594 */
3595 /* If excess == 0, no tree ops */
cf2c8127 3596 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3597 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3598 css_put(&mz->memcg->css);
3599 loop++;
3600 /*
3601 * Could not reclaim anything and there are no more
3602 * mem cgroups to try or we seem to be looping without
3603 * reclaiming anything.
3604 */
3605 if (!nr_reclaimed &&
3606 (next_mz == NULL ||
3607 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3608 break;
3609 } while (!nr_reclaimed);
3610 if (next_mz)
3611 css_put(&next_mz->memcg->css);
3612 return nr_reclaimed;
3613}
3614
c26251f9 3615/*
51038171 3616 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3617 *
3618 * Caller is responsible for holding css reference for memcg.
3619 */
3620static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3621{
d977aa93 3622 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3623
c1e862c1
KH
3624 /* we call try-to-free pages for make this cgroup empty */
3625 lru_add_drain_all();
d12c60f6
JS
3626
3627 drain_all_stock(memcg);
3628
f817ed48 3629 /* try to free all pages in this cgroup */
3e32cb2e 3630 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3631 if (signal_pending(current))
3632 return -EINTR;
3633
73b73bac 3634 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3635 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3636 nr_retries--;
f817ed48 3637 }
ab5196c2
MH
3638
3639 return 0;
cc847582
KH
3640}
3641
6770c64e
TH
3642static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3643 char *buf, size_t nbytes,
3644 loff_t off)
c1e862c1 3645{
6770c64e 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3647
d8423011
MH
3648 if (mem_cgroup_is_root(memcg))
3649 return -EINVAL;
6770c64e 3650 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3651}
3652
182446d0
TH
3653static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3654 struct cftype *cft)
18f59ea7 3655{
bef8620c 3656 return 1;
18f59ea7
BS
3657}
3658
182446d0
TH
3659static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3660 struct cftype *cft, u64 val)
18f59ea7 3661{
bef8620c 3662 if (val == 1)
0b8f73e1 3663 return 0;
567fb435 3664
bef8620c
RG
3665 pr_warn_once("Non-hierarchical mode is deprecated. "
3666 "Please report your usecase to linux-mm@kvack.org if you "
3667 "depend on this functionality.\n");
567fb435 3668
bef8620c 3669 return -EINVAL;
18f59ea7
BS
3670}
3671
6f646156 3672static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3673{
42a30035 3674 unsigned long val;
ce00a967 3675
3e32cb2e 3676 if (mem_cgroup_is_root(memcg)) {
a2174e95
YA
3677 /*
3678 * We can reach here from irq context through:
3679 * uncharge_batch()
3680 * |--memcg_check_events()
3681 * |--mem_cgroup_threshold()
3682 * |--__mem_cgroup_threshold()
3683 * |--mem_cgroup_usage
3684 *
3685 * rstat flushing is an expensive operation that should not be
3686 * done from irq context; use stale stats in this case.
3687 * Arguably, usage threshold events are not reliable on the root
3688 * memcg anyway since its usage is ill-defined.
3689 */
3690 if (in_task())
3691 mem_cgroup_flush_stats();
0d1c2072 3692 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3693 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3694 if (swap)
3695 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3696 } else {
ce00a967 3697 if (!swap)
3e32cb2e 3698 val = page_counter_read(&memcg->memory);
ce00a967 3699 else
3e32cb2e 3700 val = page_counter_read(&memcg->memsw);
ce00a967 3701 }
c12176d3 3702 return val;
ce00a967
JW
3703}
3704
3e32cb2e
JW
3705enum {
3706 RES_USAGE,
3707 RES_LIMIT,
3708 RES_MAX_USAGE,
3709 RES_FAILCNT,
3710 RES_SOFT_LIMIT,
3711};
ce00a967 3712
791badbd 3713static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3714 struct cftype *cft)
8cdea7c0 3715{
182446d0 3716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3717 struct page_counter *counter;
af36f906 3718
3e32cb2e 3719 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3720 case _MEM:
3e32cb2e
JW
3721 counter = &memcg->memory;
3722 break;
8c7c6e34 3723 case _MEMSWAP:
3e32cb2e
JW
3724 counter = &memcg->memsw;
3725 break;
510fc4e1 3726 case _KMEM:
3e32cb2e 3727 counter = &memcg->kmem;
510fc4e1 3728 break;
d55f90bf 3729 case _TCP:
0db15298 3730 counter = &memcg->tcpmem;
d55f90bf 3731 break;
8c7c6e34
KH
3732 default:
3733 BUG();
8c7c6e34 3734 }
3e32cb2e
JW
3735
3736 switch (MEMFILE_ATTR(cft->private)) {
3737 case RES_USAGE:
3738 if (counter == &memcg->memory)
c12176d3 3739 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3740 if (counter == &memcg->memsw)
c12176d3 3741 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3742 return (u64)page_counter_read(counter) * PAGE_SIZE;
3743 case RES_LIMIT:
bbec2e15 3744 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3745 case RES_MAX_USAGE:
3746 return (u64)counter->watermark * PAGE_SIZE;
3747 case RES_FAILCNT:
3748 return counter->failcnt;
3749 case RES_SOFT_LIMIT:
2178e20c 3750 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3e32cb2e
JW
3751 default:
3752 BUG();
3753 }
8cdea7c0 3754}
510fc4e1 3755
84c07d11 3756#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3757static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3758{
bf4f0599 3759 struct obj_cgroup *objcg;
d6441637 3760
9c94bef9 3761 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3762 return 0;
3763
da0efe30
MS
3764 if (unlikely(mem_cgroup_is_root(memcg)))
3765 return 0;
d6441637 3766
bf4f0599 3767 objcg = obj_cgroup_alloc();
f9c69d63 3768 if (!objcg)
bf4f0599 3769 return -ENOMEM;
f9c69d63 3770
bf4f0599
RG
3771 objcg->memcg = memcg;
3772 rcu_assign_pointer(memcg->objcg, objcg);
3773
f7a449f7 3774 static_branch_enable(&memcg_kmem_online_key);
d648bcc7 3775
f9c69d63 3776 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3777
3778 return 0;
d6441637
VD
3779}
3780
8e0a8912
JW
3781static void memcg_offline_kmem(struct mem_cgroup *memcg)
3782{
64268868 3783 struct mem_cgroup *parent;
8e0a8912 3784
9c94bef9 3785 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3786 return;
3787
3788 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3789 return;
9855609b 3790
8e0a8912
JW
3791 parent = parent_mem_cgroup(memcg);
3792 if (!parent)
3793 parent = root_mem_cgroup;
3794
bf4f0599 3795 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3796
8e0a8912 3797 /*
64268868
MS
3798 * After we have finished memcg_reparent_objcgs(), all list_lrus
3799 * corresponding to this cgroup are guaranteed to remain empty.
3800 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3801 * memcg_reparent_list_lrus().
8e0a8912 3802 */
1f391eb2 3803 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3804}
d6441637 3805#else
0b8f73e1 3806static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3807{
3808 return 0;
3809}
3810static void memcg_offline_kmem(struct mem_cgroup *memcg)
3811{
3812}
84c07d11 3813#endif /* CONFIG_MEMCG_KMEM */
127424c8 3814
bbec2e15 3815static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3816{
3817 int ret;
3818
bbec2e15 3819 mutex_lock(&memcg_max_mutex);
d55f90bf 3820
bbec2e15 3821 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3822 if (ret)
3823 goto out;
3824
0db15298 3825 if (!memcg->tcpmem_active) {
d55f90bf
VD
3826 /*
3827 * The active flag needs to be written after the static_key
3828 * update. This is what guarantees that the socket activation
2d758073
JW
3829 * function is the last one to run. See mem_cgroup_sk_alloc()
3830 * for details, and note that we don't mark any socket as
3831 * belonging to this memcg until that flag is up.
d55f90bf
VD
3832 *
3833 * We need to do this, because static_keys will span multiple
3834 * sites, but we can't control their order. If we mark a socket
3835 * as accounted, but the accounting functions are not patched in
3836 * yet, we'll lose accounting.
3837 *
2d758073 3838 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3839 * because when this value change, the code to process it is not
3840 * patched in yet.
3841 */
3842 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3843 memcg->tcpmem_active = true;
d55f90bf
VD
3844 }
3845out:
bbec2e15 3846 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3847 return ret;
3848}
d55f90bf 3849
628f4235
KH
3850/*
3851 * The user of this function is...
3852 * RES_LIMIT.
3853 */
451af504
TH
3854static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3855 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3856{
451af504 3857 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3858 unsigned long nr_pages;
628f4235
KH
3859 int ret;
3860
451af504 3861 buf = strstrip(buf);
650c5e56 3862 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3863 if (ret)
3864 return ret;
af36f906 3865
3e32cb2e 3866 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3867 case RES_LIMIT:
4b3bde4c
BS
3868 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3869 ret = -EINVAL;
3870 break;
3871 }
3e32cb2e
JW
3872 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3873 case _MEM:
bbec2e15 3874 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3875 break;
3e32cb2e 3876 case _MEMSWAP:
bbec2e15 3877 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3878 break;
3e32cb2e 3879 case _KMEM:
58056f77
SB
3880 /* kmem.limit_in_bytes is deprecated. */
3881 ret = -EOPNOTSUPP;
3e32cb2e 3882 break;
d55f90bf 3883 case _TCP:
bbec2e15 3884 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3885 break;
3e32cb2e 3886 }
296c81d8 3887 break;
3e32cb2e 3888 case RES_SOFT_LIMIT:
2343e88d
SAS
3889 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3890 ret = -EOPNOTSUPP;
3891 } else {
2178e20c 3892 WRITE_ONCE(memcg->soft_limit, nr_pages);
2343e88d
SAS
3893 ret = 0;
3894 }
628f4235
KH
3895 break;
3896 }
451af504 3897 return ret ?: nbytes;
8cdea7c0
BS
3898}
3899
6770c64e
TH
3900static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3901 size_t nbytes, loff_t off)
c84872e1 3902{
6770c64e 3903 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3904 struct page_counter *counter;
c84872e1 3905
3e32cb2e
JW
3906 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3907 case _MEM:
3908 counter = &memcg->memory;
3909 break;
3910 case _MEMSWAP:
3911 counter = &memcg->memsw;
3912 break;
3913 case _KMEM:
3914 counter = &memcg->kmem;
3915 break;
d55f90bf 3916 case _TCP:
0db15298 3917 counter = &memcg->tcpmem;
d55f90bf 3918 break;
3e32cb2e
JW
3919 default:
3920 BUG();
3921 }
af36f906 3922
3e32cb2e 3923 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3924 case RES_MAX_USAGE:
3e32cb2e 3925 page_counter_reset_watermark(counter);
29f2a4da
PE
3926 break;
3927 case RES_FAILCNT:
3e32cb2e 3928 counter->failcnt = 0;
29f2a4da 3929 break;
3e32cb2e
JW
3930 default:
3931 BUG();
29f2a4da 3932 }
f64c3f54 3933
6770c64e 3934 return nbytes;
c84872e1
PE
3935}
3936
182446d0 3937static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3938 struct cftype *cft)
3939{
182446d0 3940 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3941}
3942
02491447 3943#ifdef CONFIG_MMU
182446d0 3944static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3945 struct cftype *cft, u64 val)
3946{
182446d0 3947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3948
da34a848
JW
3949 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3950 "Please report your usecase to linux-mm@kvack.org if you "
3951 "depend on this functionality.\n");
3952
1dfab5ab 3953 if (val & ~MOVE_MASK)
7dc74be0 3954 return -EINVAL;
ee5e8472 3955
7dc74be0 3956 /*
ee5e8472
GC
3957 * No kind of locking is needed in here, because ->can_attach() will
3958 * check this value once in the beginning of the process, and then carry
3959 * on with stale data. This means that changes to this value will only
3960 * affect task migrations starting after the change.
7dc74be0 3961 */
c0ff4b85 3962 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3963 return 0;
3964}
02491447 3965#else
182446d0 3966static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3967 struct cftype *cft, u64 val)
3968{
3969 return -ENOSYS;
3970}
3971#endif
7dc74be0 3972
406eb0c9 3973#ifdef CONFIG_NUMA
113b7dfd
JW
3974
3975#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3976#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3977#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3978
3979static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3980 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3981{
867e5e1d 3982 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3983 unsigned long nr = 0;
3984 enum lru_list lru;
3985
3986 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3987
3988 for_each_lru(lru) {
3989 if (!(BIT(lru) & lru_mask))
3990 continue;
dd8657b6
SB
3991 if (tree)
3992 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3993 else
3994 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3995 }
3996 return nr;
3997}
3998
3999static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
4000 unsigned int lru_mask,
4001 bool tree)
113b7dfd
JW
4002{
4003 unsigned long nr = 0;
4004 enum lru_list lru;
4005
4006 for_each_lru(lru) {
4007 if (!(BIT(lru) & lru_mask))
4008 continue;
dd8657b6
SB
4009 if (tree)
4010 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4011 else
4012 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
4013 }
4014 return nr;
4015}
4016
2da8ca82 4017static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4018{
25485de6
GT
4019 struct numa_stat {
4020 const char *name;
4021 unsigned int lru_mask;
4022 };
4023
4024 static const struct numa_stat stats[] = {
4025 { "total", LRU_ALL },
4026 { "file", LRU_ALL_FILE },
4027 { "anon", LRU_ALL_ANON },
4028 { "unevictable", BIT(LRU_UNEVICTABLE) },
4029 };
4030 const struct numa_stat *stat;
406eb0c9 4031 int nid;
aa9694bb 4032 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4033
fd25a9e0 4034 mem_cgroup_flush_stats();
2d146aa3 4035
25485de6 4036 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4037 seq_printf(m, "%s=%lu", stat->name,
4038 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4039 false));
4040 for_each_node_state(nid, N_MEMORY)
4041 seq_printf(m, " N%d=%lu", nid,
4042 mem_cgroup_node_nr_lru_pages(memcg, nid,
4043 stat->lru_mask, false));
25485de6 4044 seq_putc(m, '\n');
406eb0c9 4045 }
406eb0c9 4046
071aee13 4047 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4048
4049 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4050 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4051 true));
4052 for_each_node_state(nid, N_MEMORY)
4053 seq_printf(m, " N%d=%lu", nid,
4054 mem_cgroup_node_nr_lru_pages(memcg, nid,
4055 stat->lru_mask, true));
071aee13 4056 seq_putc(m, '\n');
406eb0c9 4057 }
406eb0c9 4058
406eb0c9
YH
4059 return 0;
4060}
4061#endif /* CONFIG_NUMA */
4062
c8713d0b 4063static const unsigned int memcg1_stats[] = {
0d1c2072 4064 NR_FILE_PAGES,
be5d0a74 4065 NR_ANON_MAPPED,
468c3982
JW
4066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4067 NR_ANON_THPS,
4068#endif
c8713d0b
JW
4069 NR_SHMEM,
4070 NR_FILE_MAPPED,
4071 NR_FILE_DIRTY,
4072 NR_WRITEBACK,
e09b0b61
YS
4073 WORKINGSET_REFAULT_ANON,
4074 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4075 MEMCG_SWAP,
4076};
4077
4078static const char *const memcg1_stat_names[] = {
4079 "cache",
4080 "rss",
468c3982 4081#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4082 "rss_huge",
468c3982 4083#endif
c8713d0b
JW
4084 "shmem",
4085 "mapped_file",
4086 "dirty",
4087 "writeback",
e09b0b61
YS
4088 "workingset_refault_anon",
4089 "workingset_refault_file",
c8713d0b
JW
4090 "swap",
4091};
4092
df0e53d0 4093/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4094static const unsigned int memcg1_events[] = {
df0e53d0
JW
4095 PGPGIN,
4096 PGPGOUT,
4097 PGFAULT,
4098 PGMAJFAULT,
4099};
4100
2da8ca82 4101static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4102{
aa9694bb 4103 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4104 unsigned long memory, memsw;
af7c4b0e
JW
4105 struct mem_cgroup *mi;
4106 unsigned int i;
406eb0c9 4107
71cd3113 4108 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4109
fd25a9e0 4110 mem_cgroup_flush_stats();
2d146aa3 4111
71cd3113 4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4113 unsigned long nr;
4114
71cd3113 4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4116 continue;
468c3982 4117 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
e09b0b61
YS
4118 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4119 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4120 }
7b854121 4121
df0e53d0 4122 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4123 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4124 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4125
4126 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4127 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4128 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4129 PAGE_SIZE);
af7c4b0e 4130
14067bb3 4131 /* Hierarchical information */
3e32cb2e
JW
4132 memory = memsw = PAGE_COUNTER_MAX;
4133 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4134 memory = min(memory, READ_ONCE(mi->memory.max));
4135 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4136 }
3e32cb2e
JW
4137 seq_printf(m, "hierarchical_memory_limit %llu\n",
4138 (u64)memory * PAGE_SIZE);
7941d214 4139 if (do_memsw_account())
3e32cb2e
JW
4140 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4141 (u64)memsw * PAGE_SIZE);
7f016ee8 4142
8de7ecc6 4143 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4144 unsigned long nr;
4145
71cd3113 4146 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4147 continue;
7de2e9f1 4148 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4149 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4150 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4151 }
4152
8de7ecc6 4153 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4154 seq_printf(m, "total_%s %llu\n",
4155 vm_event_name(memcg1_events[i]),
dd923990 4156 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4157
8de7ecc6 4158 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4159 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4160 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4161 PAGE_SIZE);
14067bb3 4162
7f016ee8 4163#ifdef CONFIG_DEBUG_VM
7f016ee8 4164 {
ef8f2327
MG
4165 pg_data_t *pgdat;
4166 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4167 unsigned long anon_cost = 0;
4168 unsigned long file_cost = 0;
7f016ee8 4169
ef8f2327 4170 for_each_online_pgdat(pgdat) {
a3747b53 4171 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4172
1431d4d1
JW
4173 anon_cost += mz->lruvec.anon_cost;
4174 file_cost += mz->lruvec.file_cost;
ef8f2327 4175 }
1431d4d1
JW
4176 seq_printf(m, "anon_cost %lu\n", anon_cost);
4177 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4178 }
4179#endif
4180
d2ceb9b7
KH
4181 return 0;
4182}
4183
182446d0
TH
4184static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4185 struct cftype *cft)
a7885eb8 4186{
182446d0 4187 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4188
1f4c025b 4189 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4190}
4191
182446d0
TH
4192static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4193 struct cftype *cft, u64 val)
a7885eb8 4194{
182446d0 4195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4196
37bc3cb9 4197 if (val > 200)
a7885eb8
KM
4198 return -EINVAL;
4199
a4792030 4200 if (!mem_cgroup_is_root(memcg))
82b3aa26 4201 WRITE_ONCE(memcg->swappiness, val);
3dae7fec 4202 else
82b3aa26 4203 WRITE_ONCE(vm_swappiness, val);
068b38c1 4204
a7885eb8
KM
4205 return 0;
4206}
4207
2e72b634
KS
4208static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4209{
4210 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4211 unsigned long usage;
2e72b634
KS
4212 int i;
4213
4214 rcu_read_lock();
4215 if (!swap)
2c488db2 4216 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4217 else
2c488db2 4218 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4219
4220 if (!t)
4221 goto unlock;
4222
ce00a967 4223 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4224
4225 /*
748dad36 4226 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4227 * If it's not true, a threshold was crossed after last
4228 * call of __mem_cgroup_threshold().
4229 */
5407a562 4230 i = t->current_threshold;
2e72b634
KS
4231
4232 /*
4233 * Iterate backward over array of thresholds starting from
4234 * current_threshold and check if a threshold is crossed.
4235 * If none of thresholds below usage is crossed, we read
4236 * only one element of the array here.
4237 */
4238 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4239 eventfd_signal(t->entries[i].eventfd, 1);
4240
4241 /* i = current_threshold + 1 */
4242 i++;
4243
4244 /*
4245 * Iterate forward over array of thresholds starting from
4246 * current_threshold+1 and check if a threshold is crossed.
4247 * If none of thresholds above usage is crossed, we read
4248 * only one element of the array here.
4249 */
4250 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4251 eventfd_signal(t->entries[i].eventfd, 1);
4252
4253 /* Update current_threshold */
5407a562 4254 t->current_threshold = i - 1;
2e72b634
KS
4255unlock:
4256 rcu_read_unlock();
4257}
4258
4259static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4260{
ad4ca5f4
KS
4261 while (memcg) {
4262 __mem_cgroup_threshold(memcg, false);
7941d214 4263 if (do_memsw_account())
ad4ca5f4
KS
4264 __mem_cgroup_threshold(memcg, true);
4265
4266 memcg = parent_mem_cgroup(memcg);
4267 }
2e72b634
KS
4268}
4269
4270static int compare_thresholds(const void *a, const void *b)
4271{
4272 const struct mem_cgroup_threshold *_a = a;
4273 const struct mem_cgroup_threshold *_b = b;
4274
2bff24a3
GT
4275 if (_a->threshold > _b->threshold)
4276 return 1;
4277
4278 if (_a->threshold < _b->threshold)
4279 return -1;
4280
4281 return 0;
2e72b634
KS
4282}
4283
c0ff4b85 4284static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4285{
4286 struct mem_cgroup_eventfd_list *ev;
4287
2bcf2e92
MH
4288 spin_lock(&memcg_oom_lock);
4289
c0ff4b85 4290 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4291 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4292
4293 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4294 return 0;
4295}
4296
c0ff4b85 4297static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4298{
7d74b06f
KH
4299 struct mem_cgroup *iter;
4300
c0ff4b85 4301 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4302 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4303}
4304
59b6f873 4305static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4306 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4307{
2c488db2
KS
4308 struct mem_cgroup_thresholds *thresholds;
4309 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4310 unsigned long threshold;
4311 unsigned long usage;
2c488db2 4312 int i, size, ret;
2e72b634 4313
650c5e56 4314 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4315 if (ret)
4316 return ret;
4317
4318 mutex_lock(&memcg->thresholds_lock);
2c488db2 4319
05b84301 4320 if (type == _MEM) {
2c488db2 4321 thresholds = &memcg->thresholds;
ce00a967 4322 usage = mem_cgroup_usage(memcg, false);
05b84301 4323 } else if (type == _MEMSWAP) {
2c488db2 4324 thresholds = &memcg->memsw_thresholds;
ce00a967 4325 usage = mem_cgroup_usage(memcg, true);
05b84301 4326 } else
2e72b634
KS
4327 BUG();
4328
2e72b634 4329 /* Check if a threshold crossed before adding a new one */
2c488db2 4330 if (thresholds->primary)
2e72b634
KS
4331 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4332
2c488db2 4333 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4334
4335 /* Allocate memory for new array of thresholds */
67b8046f 4336 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4337 if (!new) {
2e72b634
KS
4338 ret = -ENOMEM;
4339 goto unlock;
4340 }
2c488db2 4341 new->size = size;
2e72b634
KS
4342
4343 /* Copy thresholds (if any) to new array */
e90342e6
GS
4344 if (thresholds->primary)
4345 memcpy(new->entries, thresholds->primary->entries,
4346 flex_array_size(new, entries, size - 1));
2c488db2 4347
2e72b634 4348 /* Add new threshold */
2c488db2
KS
4349 new->entries[size - 1].eventfd = eventfd;
4350 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4351
4352 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4353 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4354 compare_thresholds, NULL);
4355
4356 /* Find current threshold */
2c488db2 4357 new->current_threshold = -1;
2e72b634 4358 for (i = 0; i < size; i++) {
748dad36 4359 if (new->entries[i].threshold <= usage) {
2e72b634 4360 /*
2c488db2
KS
4361 * new->current_threshold will not be used until
4362 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4363 * it here.
4364 */
2c488db2 4365 ++new->current_threshold;
748dad36
SZ
4366 } else
4367 break;
2e72b634
KS
4368 }
4369
2c488db2
KS
4370 /* Free old spare buffer and save old primary buffer as spare */
4371 kfree(thresholds->spare);
4372 thresholds->spare = thresholds->primary;
4373
4374 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4375
907860ed 4376 /* To be sure that nobody uses thresholds */
2e72b634
KS
4377 synchronize_rcu();
4378
2e72b634
KS
4379unlock:
4380 mutex_unlock(&memcg->thresholds_lock);
4381
4382 return ret;
4383}
4384
59b6f873 4385static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4386 struct eventfd_ctx *eventfd, const char *args)
4387{
59b6f873 4388 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4389}
4390
59b6f873 4391static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4392 struct eventfd_ctx *eventfd, const char *args)
4393{
59b6f873 4394 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4395}
4396
59b6f873 4397static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4398 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4399{
2c488db2
KS
4400 struct mem_cgroup_thresholds *thresholds;
4401 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4402 unsigned long usage;
7d36665a 4403 int i, j, size, entries;
2e72b634
KS
4404
4405 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4406
4407 if (type == _MEM) {
2c488db2 4408 thresholds = &memcg->thresholds;
ce00a967 4409 usage = mem_cgroup_usage(memcg, false);
05b84301 4410 } else if (type == _MEMSWAP) {
2c488db2 4411 thresholds = &memcg->memsw_thresholds;
ce00a967 4412 usage = mem_cgroup_usage(memcg, true);
05b84301 4413 } else
2e72b634
KS
4414 BUG();
4415
371528ca
AV
4416 if (!thresholds->primary)
4417 goto unlock;
4418
2e72b634
KS
4419 /* Check if a threshold crossed before removing */
4420 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4421
4422 /* Calculate new number of threshold */
7d36665a 4423 size = entries = 0;
2c488db2
KS
4424 for (i = 0; i < thresholds->primary->size; i++) {
4425 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4426 size++;
7d36665a
CX
4427 else
4428 entries++;
2e72b634
KS
4429 }
4430
2c488db2 4431 new = thresholds->spare;
907860ed 4432
7d36665a
CX
4433 /* If no items related to eventfd have been cleared, nothing to do */
4434 if (!entries)
4435 goto unlock;
4436
2e72b634
KS
4437 /* Set thresholds array to NULL if we don't have thresholds */
4438 if (!size) {
2c488db2
KS
4439 kfree(new);
4440 new = NULL;
907860ed 4441 goto swap_buffers;
2e72b634
KS
4442 }
4443
2c488db2 4444 new->size = size;
2e72b634
KS
4445
4446 /* Copy thresholds and find current threshold */
2c488db2
KS
4447 new->current_threshold = -1;
4448 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4449 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4450 continue;
4451
2c488db2 4452 new->entries[j] = thresholds->primary->entries[i];
748dad36 4453 if (new->entries[j].threshold <= usage) {
2e72b634 4454 /*
2c488db2 4455 * new->current_threshold will not be used
2e72b634
KS
4456 * until rcu_assign_pointer(), so it's safe to increment
4457 * it here.
4458 */
2c488db2 4459 ++new->current_threshold;
2e72b634
KS
4460 }
4461 j++;
4462 }
4463
907860ed 4464swap_buffers:
2c488db2
KS
4465 /* Swap primary and spare array */
4466 thresholds->spare = thresholds->primary;
8c757763 4467
2c488db2 4468 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4469
907860ed 4470 /* To be sure that nobody uses thresholds */
2e72b634 4471 synchronize_rcu();
6611d8d7
MC
4472
4473 /* If all events are unregistered, free the spare array */
4474 if (!new) {
4475 kfree(thresholds->spare);
4476 thresholds->spare = NULL;
4477 }
371528ca 4478unlock:
2e72b634 4479 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4480}
c1e862c1 4481
59b6f873 4482static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4483 struct eventfd_ctx *eventfd)
4484{
59b6f873 4485 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4486}
4487
59b6f873 4488static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4489 struct eventfd_ctx *eventfd)
4490{
59b6f873 4491 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4492}
4493
59b6f873 4494static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4495 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4496{
9490ff27 4497 struct mem_cgroup_eventfd_list *event;
9490ff27 4498
9490ff27
KH
4499 event = kmalloc(sizeof(*event), GFP_KERNEL);
4500 if (!event)
4501 return -ENOMEM;
4502
1af8efe9 4503 spin_lock(&memcg_oom_lock);
9490ff27
KH
4504
4505 event->eventfd = eventfd;
4506 list_add(&event->list, &memcg->oom_notify);
4507
4508 /* already in OOM ? */
c2b42d3c 4509 if (memcg->under_oom)
9490ff27 4510 eventfd_signal(eventfd, 1);
1af8efe9 4511 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4512
4513 return 0;
4514}
4515
59b6f873 4516static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4517 struct eventfd_ctx *eventfd)
9490ff27 4518{
9490ff27 4519 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4520
1af8efe9 4521 spin_lock(&memcg_oom_lock);
9490ff27 4522
c0ff4b85 4523 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4524 if (ev->eventfd == eventfd) {
4525 list_del(&ev->list);
4526 kfree(ev);
4527 }
4528 }
4529
1af8efe9 4530 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4531}
4532
2da8ca82 4533static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4534{
aa9694bb 4535 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4536
17c56de6 4537 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
c2b42d3c 4538 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4539 seq_printf(sf, "oom_kill %lu\n",
4540 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4541 return 0;
4542}
4543
182446d0 4544static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4545 struct cftype *cft, u64 val)
4546{
182446d0 4547 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4548
4549 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4550 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4551 return -EINVAL;
4552
17c56de6 4553 WRITE_ONCE(memcg->oom_kill_disable, val);
4d845ebf 4554 if (!val)
c0ff4b85 4555 memcg_oom_recover(memcg);
3dae7fec 4556
3c11ecf4
KH
4557 return 0;
4558}
4559
52ebea74
TH
4560#ifdef CONFIG_CGROUP_WRITEBACK
4561
3a8e9ac8
TH
4562#include <trace/events/writeback.h>
4563
841710aa
TH
4564static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4565{
4566 return wb_domain_init(&memcg->cgwb_domain, gfp);
4567}
4568
4569static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4570{
4571 wb_domain_exit(&memcg->cgwb_domain);
4572}
4573
2529bb3a
TH
4574static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4575{
4576 wb_domain_size_changed(&memcg->cgwb_domain);
4577}
4578
841710aa
TH
4579struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4580{
4581 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4582
4583 if (!memcg->css.parent)
4584 return NULL;
4585
4586 return &memcg->cgwb_domain;
4587}
4588
c2aa723a
TH
4589/**
4590 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4591 * @wb: bdi_writeback in question
c5edf9cd
TH
4592 * @pfilepages: out parameter for number of file pages
4593 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4594 * @pdirty: out parameter for number of dirty pages
4595 * @pwriteback: out parameter for number of pages under writeback
4596 *
c5edf9cd
TH
4597 * Determine the numbers of file, headroom, dirty, and writeback pages in
4598 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4599 * is a bit more involved.
c2aa723a 4600 *
c5edf9cd
TH
4601 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4602 * headroom is calculated as the lowest headroom of itself and the
4603 * ancestors. Note that this doesn't consider the actual amount of
4604 * available memory in the system. The caller should further cap
4605 * *@pheadroom accordingly.
c2aa723a 4606 */
c5edf9cd
TH
4607void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4608 unsigned long *pheadroom, unsigned long *pdirty,
4609 unsigned long *pwriteback)
c2aa723a
TH
4610{
4611 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4612 struct mem_cgroup *parent;
c2aa723a 4613
fd25a9e0 4614 mem_cgroup_flush_stats();
c2aa723a 4615
2d146aa3
JW
4616 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4617 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4618 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4619 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4620
2d146aa3 4621 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4622 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4623 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4624 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4625 unsigned long used = page_counter_read(&memcg->memory);
4626
c5edf9cd 4627 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4628 memcg = parent;
4629 }
c2aa723a
TH
4630}
4631
97b27821
TH
4632/*
4633 * Foreign dirty flushing
4634 *
4635 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4636 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4637 * deliberate design decision because honoring per-page ownership in the
4638 * writeback path is complicated, may lead to higher CPU and IO overheads
4639 * and deemed unnecessary given that write-sharing an inode across
4640 * different cgroups isn't a common use-case.
4641 *
4642 * Combined with inode majority-writer ownership switching, this works well
4643 * enough in most cases but there are some pathological cases. For
4644 * example, let's say there are two cgroups A and B which keep writing to
4645 * different but confined parts of the same inode. B owns the inode and
4646 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4647 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4648 * triggering background writeback. A will be slowed down without a way to
4649 * make writeback of the dirty pages happen.
4650 *
f0953a1b 4651 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4652 * severely throttled after making some progress after each
f0953a1b 4653 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4654 * completely idle.
4655 *
4656 * Solving this problem completely requires matching the ownership tracking
4657 * granularities between memcg and writeback in either direction. However,
4658 * the more egregious behaviors can be avoided by simply remembering the
4659 * most recent foreign dirtying events and initiating remote flushes on
4660 * them when local writeback isn't enough to keep the memory clean enough.
4661 *
4662 * The following two functions implement such mechanism. When a foreign
4663 * page - a page whose memcg and writeback ownerships don't match - is
4664 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4665 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4666 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4667 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4668 * foreign bdi_writebacks which haven't expired. Both the numbers of
4669 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4670 * limited to MEMCG_CGWB_FRN_CNT.
4671 *
4672 * The mechanism only remembers IDs and doesn't hold any object references.
4673 * As being wrong occasionally doesn't matter, updates and accesses to the
4674 * records are lockless and racy.
4675 */
9d8053fc 4676void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4677 struct bdi_writeback *wb)
4678{
9d8053fc 4679 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4680 struct memcg_cgwb_frn *frn;
4681 u64 now = get_jiffies_64();
4682 u64 oldest_at = now;
4683 int oldest = -1;
4684 int i;
4685
9d8053fc 4686 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4687
97b27821
TH
4688 /*
4689 * Pick the slot to use. If there is already a slot for @wb, keep
4690 * using it. If not replace the oldest one which isn't being
4691 * written out.
4692 */
4693 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4694 frn = &memcg->cgwb_frn[i];
4695 if (frn->bdi_id == wb->bdi->id &&
4696 frn->memcg_id == wb->memcg_css->id)
4697 break;
4698 if (time_before64(frn->at, oldest_at) &&
4699 atomic_read(&frn->done.cnt) == 1) {
4700 oldest = i;
4701 oldest_at = frn->at;
4702 }
4703 }
4704
4705 if (i < MEMCG_CGWB_FRN_CNT) {
4706 /*
4707 * Re-using an existing one. Update timestamp lazily to
4708 * avoid making the cacheline hot. We want them to be
4709 * reasonably up-to-date and significantly shorter than
4710 * dirty_expire_interval as that's what expires the record.
4711 * Use the shorter of 1s and dirty_expire_interval / 8.
4712 */
4713 unsigned long update_intv =
4714 min_t(unsigned long, HZ,
4715 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4716
4717 if (time_before64(frn->at, now - update_intv))
4718 frn->at = now;
4719 } else if (oldest >= 0) {
4720 /* replace the oldest free one */
4721 frn = &memcg->cgwb_frn[oldest];
4722 frn->bdi_id = wb->bdi->id;
4723 frn->memcg_id = wb->memcg_css->id;
4724 frn->at = now;
4725 }
4726}
4727
4728/* issue foreign writeback flushes for recorded foreign dirtying events */
4729void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4730{
4731 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4732 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4733 u64 now = jiffies_64;
4734 int i;
4735
4736 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4737 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4738
4739 /*
4740 * If the record is older than dirty_expire_interval,
4741 * writeback on it has already started. No need to kick it
4742 * off again. Also, don't start a new one if there's
4743 * already one in flight.
4744 */
4745 if (time_after64(frn->at, now - intv) &&
4746 atomic_read(&frn->done.cnt) == 1) {
4747 frn->at = 0;
3a8e9ac8 4748 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4749 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4750 WB_REASON_FOREIGN_FLUSH,
4751 &frn->done);
4752 }
4753 }
4754}
4755
841710aa
TH
4756#else /* CONFIG_CGROUP_WRITEBACK */
4757
4758static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4759{
4760 return 0;
4761}
4762
4763static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4764{
4765}
4766
2529bb3a
TH
4767static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4768{
4769}
4770
52ebea74
TH
4771#endif /* CONFIG_CGROUP_WRITEBACK */
4772
3bc942f3
TH
4773/*
4774 * DO NOT USE IN NEW FILES.
4775 *
4776 * "cgroup.event_control" implementation.
4777 *
4778 * This is way over-engineered. It tries to support fully configurable
4779 * events for each user. Such level of flexibility is completely
4780 * unnecessary especially in the light of the planned unified hierarchy.
4781 *
4782 * Please deprecate this and replace with something simpler if at all
4783 * possible.
4784 */
4785
79bd9814
TH
4786/*
4787 * Unregister event and free resources.
4788 *
4789 * Gets called from workqueue.
4790 */
3bc942f3 4791static void memcg_event_remove(struct work_struct *work)
79bd9814 4792{
3bc942f3
TH
4793 struct mem_cgroup_event *event =
4794 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4795 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4796
4797 remove_wait_queue(event->wqh, &event->wait);
4798
59b6f873 4799 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4800
4801 /* Notify userspace the event is going away. */
4802 eventfd_signal(event->eventfd, 1);
4803
4804 eventfd_ctx_put(event->eventfd);
4805 kfree(event);
59b6f873 4806 css_put(&memcg->css);
79bd9814
TH
4807}
4808
4809/*
a9a08845 4810 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4811 *
4812 * Called with wqh->lock held and interrupts disabled.
4813 */
ac6424b9 4814static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4815 int sync, void *key)
79bd9814 4816{
3bc942f3
TH
4817 struct mem_cgroup_event *event =
4818 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4819 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4820 __poll_t flags = key_to_poll(key);
79bd9814 4821
a9a08845 4822 if (flags & EPOLLHUP) {
79bd9814
TH
4823 /*
4824 * If the event has been detached at cgroup removal, we
4825 * can simply return knowing the other side will cleanup
4826 * for us.
4827 *
4828 * We can't race against event freeing since the other
4829 * side will require wqh->lock via remove_wait_queue(),
4830 * which we hold.
4831 */
fba94807 4832 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4833 if (!list_empty(&event->list)) {
4834 list_del_init(&event->list);
4835 /*
4836 * We are in atomic context, but cgroup_event_remove()
4837 * may sleep, so we have to call it in workqueue.
4838 */
4839 schedule_work(&event->remove);
4840 }
fba94807 4841 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4842 }
4843
4844 return 0;
4845}
4846
3bc942f3 4847static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4848 wait_queue_head_t *wqh, poll_table *pt)
4849{
3bc942f3
TH
4850 struct mem_cgroup_event *event =
4851 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4852
4853 event->wqh = wqh;
4854 add_wait_queue(wqh, &event->wait);
4855}
4856
4857/*
3bc942f3
TH
4858 * DO NOT USE IN NEW FILES.
4859 *
79bd9814
TH
4860 * Parse input and register new cgroup event handler.
4861 *
4862 * Input must be in format '<event_fd> <control_fd> <args>'.
4863 * Interpretation of args is defined by control file implementation.
4864 */
451af504
TH
4865static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4866 char *buf, size_t nbytes, loff_t off)
79bd9814 4867{
451af504 4868 struct cgroup_subsys_state *css = of_css(of);
fba94807 4869 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4870 struct mem_cgroup_event *event;
79bd9814
TH
4871 struct cgroup_subsys_state *cfile_css;
4872 unsigned int efd, cfd;
4873 struct fd efile;
4874 struct fd cfile;
4a7ba45b 4875 struct dentry *cdentry;
fba94807 4876 const char *name;
79bd9814
TH
4877 char *endp;
4878 int ret;
4879
2343e88d
SAS
4880 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4881 return -EOPNOTSUPP;
4882
451af504
TH
4883 buf = strstrip(buf);
4884
4885 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4886 if (*endp != ' ')
4887 return -EINVAL;
451af504 4888 buf = endp + 1;
79bd9814 4889
451af504 4890 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4891 if ((*endp != ' ') && (*endp != '\0'))
4892 return -EINVAL;
451af504 4893 buf = endp + 1;
79bd9814
TH
4894
4895 event = kzalloc(sizeof(*event), GFP_KERNEL);
4896 if (!event)
4897 return -ENOMEM;
4898
59b6f873 4899 event->memcg = memcg;
79bd9814 4900 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4901 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4902 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4903 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4904
4905 efile = fdget(efd);
4906 if (!efile.file) {
4907 ret = -EBADF;
4908 goto out_kfree;
4909 }
4910
4911 event->eventfd = eventfd_ctx_fileget(efile.file);
4912 if (IS_ERR(event->eventfd)) {
4913 ret = PTR_ERR(event->eventfd);
4914 goto out_put_efile;
4915 }
4916
4917 cfile = fdget(cfd);
4918 if (!cfile.file) {
4919 ret = -EBADF;
4920 goto out_put_eventfd;
4921 }
4922
4923 /* the process need read permission on control file */
4924 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4925 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4926 if (ret < 0)
4927 goto out_put_cfile;
4928
4a7ba45b
TH
4929 /*
4930 * The control file must be a regular cgroup1 file. As a regular cgroup
4931 * file can't be renamed, it's safe to access its name afterwards.
4932 */
4933 cdentry = cfile.file->f_path.dentry;
4934 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4935 ret = -EINVAL;
4936 goto out_put_cfile;
4937 }
4938
fba94807
TH
4939 /*
4940 * Determine the event callbacks and set them in @event. This used
4941 * to be done via struct cftype but cgroup core no longer knows
4942 * about these events. The following is crude but the whole thing
4943 * is for compatibility anyway.
3bc942f3
TH
4944 *
4945 * DO NOT ADD NEW FILES.
fba94807 4946 */
4a7ba45b 4947 name = cdentry->d_name.name;
fba94807
TH
4948
4949 if (!strcmp(name, "memory.usage_in_bytes")) {
4950 event->register_event = mem_cgroup_usage_register_event;
4951 event->unregister_event = mem_cgroup_usage_unregister_event;
4952 } else if (!strcmp(name, "memory.oom_control")) {
4953 event->register_event = mem_cgroup_oom_register_event;
4954 event->unregister_event = mem_cgroup_oom_unregister_event;
4955 } else if (!strcmp(name, "memory.pressure_level")) {
4956 event->register_event = vmpressure_register_event;
4957 event->unregister_event = vmpressure_unregister_event;
4958 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4959 event->register_event = memsw_cgroup_usage_register_event;
4960 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4961 } else {
4962 ret = -EINVAL;
4963 goto out_put_cfile;
4964 }
4965
79bd9814 4966 /*
b5557c4c
TH
4967 * Verify @cfile should belong to @css. Also, remaining events are
4968 * automatically removed on cgroup destruction but the removal is
4969 * asynchronous, so take an extra ref on @css.
79bd9814 4970 */
4a7ba45b 4971 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4972 &memory_cgrp_subsys);
79bd9814 4973 ret = -EINVAL;
5a17f543 4974 if (IS_ERR(cfile_css))
79bd9814 4975 goto out_put_cfile;
5a17f543
TH
4976 if (cfile_css != css) {
4977 css_put(cfile_css);
79bd9814 4978 goto out_put_cfile;
5a17f543 4979 }
79bd9814 4980
451af504 4981 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4982 if (ret)
4983 goto out_put_css;
4984
9965ed17 4985 vfs_poll(efile.file, &event->pt);
79bd9814 4986
4ba9515d 4987 spin_lock_irq(&memcg->event_list_lock);
fba94807 4988 list_add(&event->list, &memcg->event_list);
4ba9515d 4989 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4990
4991 fdput(cfile);
4992 fdput(efile);
4993
451af504 4994 return nbytes;
79bd9814
TH
4995
4996out_put_css:
b5557c4c 4997 css_put(css);
79bd9814
TH
4998out_put_cfile:
4999 fdput(cfile);
5000out_put_eventfd:
5001 eventfd_ctx_put(event->eventfd);
5002out_put_efile:
5003 fdput(efile);
5004out_kfree:
5005 kfree(event);
5006
5007 return ret;
5008}
5009
c29b5b3d
MS
5010#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5011static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5012{
5013 /*
5014 * Deprecated.
df4ae285 5015 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
5016 */
5017 return 0;
5018}
5019#endif
5020
241994ed 5021static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 5022 {
0eea1030 5023 .name = "usage_in_bytes",
8c7c6e34 5024 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5025 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5026 },
c84872e1
PE
5027 {
5028 .name = "max_usage_in_bytes",
8c7c6e34 5029 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5030 .write = mem_cgroup_reset,
791badbd 5031 .read_u64 = mem_cgroup_read_u64,
c84872e1 5032 },
8cdea7c0 5033 {
0eea1030 5034 .name = "limit_in_bytes",
8c7c6e34 5035 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5036 .write = mem_cgroup_write,
791badbd 5037 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5038 },
296c81d8
BS
5039 {
5040 .name = "soft_limit_in_bytes",
5041 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5042 .write = mem_cgroup_write,
791badbd 5043 .read_u64 = mem_cgroup_read_u64,
296c81d8 5044 },
8cdea7c0
BS
5045 {
5046 .name = "failcnt",
8c7c6e34 5047 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5048 .write = mem_cgroup_reset,
791badbd 5049 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5050 },
d2ceb9b7
KH
5051 {
5052 .name = "stat",
2da8ca82 5053 .seq_show = memcg_stat_show,
d2ceb9b7 5054 },
c1e862c1
KH
5055 {
5056 .name = "force_empty",
6770c64e 5057 .write = mem_cgroup_force_empty_write,
c1e862c1 5058 },
18f59ea7
BS
5059 {
5060 .name = "use_hierarchy",
5061 .write_u64 = mem_cgroup_hierarchy_write,
5062 .read_u64 = mem_cgroup_hierarchy_read,
5063 },
79bd9814 5064 {
3bc942f3 5065 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5066 .write = memcg_write_event_control,
7dbdb199 5067 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5068 },
a7885eb8
KM
5069 {
5070 .name = "swappiness",
5071 .read_u64 = mem_cgroup_swappiness_read,
5072 .write_u64 = mem_cgroup_swappiness_write,
5073 },
7dc74be0
DN
5074 {
5075 .name = "move_charge_at_immigrate",
5076 .read_u64 = mem_cgroup_move_charge_read,
5077 .write_u64 = mem_cgroup_move_charge_write,
5078 },
9490ff27
KH
5079 {
5080 .name = "oom_control",
2da8ca82 5081 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5082 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5083 },
70ddf637
AV
5084 {
5085 .name = "pressure_level",
70ddf637 5086 },
406eb0c9
YH
5087#ifdef CONFIG_NUMA
5088 {
5089 .name = "numa_stat",
2da8ca82 5090 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5091 },
5092#endif
510fc4e1
GC
5093 {
5094 .name = "kmem.limit_in_bytes",
5095 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5096 .write = mem_cgroup_write,
791badbd 5097 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5098 },
5099 {
5100 .name = "kmem.usage_in_bytes",
5101 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5102 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5103 },
5104 {
5105 .name = "kmem.failcnt",
5106 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5107 .write = mem_cgroup_reset,
791badbd 5108 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5109 },
5110 {
5111 .name = "kmem.max_usage_in_bytes",
5112 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5113 .write = mem_cgroup_reset,
791badbd 5114 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5115 },
a87425a3
YS
5116#if defined(CONFIG_MEMCG_KMEM) && \
5117 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5118 {
5119 .name = "kmem.slabinfo",
c29b5b3d 5120 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5121 },
5122#endif
d55f90bf
VD
5123 {
5124 .name = "kmem.tcp.limit_in_bytes",
5125 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5126 .write = mem_cgroup_write,
5127 .read_u64 = mem_cgroup_read_u64,
5128 },
5129 {
5130 .name = "kmem.tcp.usage_in_bytes",
5131 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5132 .read_u64 = mem_cgroup_read_u64,
5133 },
5134 {
5135 .name = "kmem.tcp.failcnt",
5136 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5137 .write = mem_cgroup_reset,
5138 .read_u64 = mem_cgroup_read_u64,
5139 },
5140 {
5141 .name = "kmem.tcp.max_usage_in_bytes",
5142 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5143 .write = mem_cgroup_reset,
5144 .read_u64 = mem_cgroup_read_u64,
5145 },
6bc10349 5146 { }, /* terminate */
af36f906 5147};
8c7c6e34 5148
73f576c0
JW
5149/*
5150 * Private memory cgroup IDR
5151 *
5152 * Swap-out records and page cache shadow entries need to store memcg
5153 * references in constrained space, so we maintain an ID space that is
5154 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5155 * memory-controlled cgroups to 64k.
5156 *
b8f2935f 5157 * However, there usually are many references to the offline CSS after
73f576c0
JW
5158 * the cgroup has been destroyed, such as page cache or reclaimable
5159 * slab objects, that don't need to hang on to the ID. We want to keep
5160 * those dead CSS from occupying IDs, or we might quickly exhaust the
5161 * relatively small ID space and prevent the creation of new cgroups
5162 * even when there are much fewer than 64k cgroups - possibly none.
5163 *
5164 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5165 * be freed and recycled when it's no longer needed, which is usually
5166 * when the CSS is offlined.
5167 *
5168 * The only exception to that are records of swapped out tmpfs/shmem
5169 * pages that need to be attributed to live ancestors on swapin. But
5170 * those references are manageable from userspace.
5171 */
5172
5173static DEFINE_IDR(mem_cgroup_idr);
5174
7e97de0b
KT
5175static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5176{
5177 if (memcg->id.id > 0) {
5178 idr_remove(&mem_cgroup_idr, memcg->id.id);
5179 memcg->id.id = 0;
5180 }
5181}
5182
c1514c0a
VF
5183static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5184 unsigned int n)
73f576c0 5185{
1c2d479a 5186 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5187}
5188
615d66c3 5189static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5190{
1c2d479a 5191 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5192 mem_cgroup_id_remove(memcg);
73f576c0
JW
5193
5194 /* Memcg ID pins CSS */
5195 css_put(&memcg->css);
5196 }
5197}
5198
615d66c3
VD
5199static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5200{
5201 mem_cgroup_id_put_many(memcg, 1);
5202}
5203
73f576c0
JW
5204/**
5205 * mem_cgroup_from_id - look up a memcg from a memcg id
5206 * @id: the memcg id to look up
5207 *
5208 * Caller must hold rcu_read_lock().
5209 */
5210struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5211{
5212 WARN_ON_ONCE(!rcu_read_lock_held());
5213 return idr_find(&mem_cgroup_idr, id);
5214}
5215
c15187a4
RG
5216#ifdef CONFIG_SHRINKER_DEBUG
5217struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5218{
5219 struct cgroup *cgrp;
5220 struct cgroup_subsys_state *css;
5221 struct mem_cgroup *memcg;
5222
5223 cgrp = cgroup_get_from_id(ino);
fa7e439c 5224 if (IS_ERR(cgrp))
c0f2df49 5225 return ERR_CAST(cgrp);
c15187a4
RG
5226
5227 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5228 if (css)
5229 memcg = container_of(css, struct mem_cgroup, css);
5230 else
5231 memcg = ERR_PTR(-ENOENT);
5232
5233 cgroup_put(cgrp);
5234
5235 return memcg;
5236}
5237#endif
5238
ef8f2327 5239static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5240{
5241 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5242
5243 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5244 if (!pn)
5245 return 1;
1ecaab2b 5246
7e1c0d6f
SB
5247 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5248 GFP_KERNEL_ACCOUNT);
5249 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5250 kfree(pn);
5251 return 1;
5252 }
5253
ef8f2327 5254 lruvec_init(&pn->lruvec);
ef8f2327
MG
5255 pn->memcg = memcg;
5256
54f72fe0 5257 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5258 return 0;
5259}
5260
ef8f2327 5261static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5262{
00f3ca2c
JW
5263 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5264
4eaf431f
MH
5265 if (!pn)
5266 return;
5267
7e1c0d6f 5268 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5269 kfree(pn);
1ecaab2b
KH
5270}
5271
40e952f9 5272static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5273{
c8b2a36f 5274 int node;
59927fb9 5275
c8b2a36f 5276 for_each_node(node)
ef8f2327 5277 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5278 kfree(memcg->vmstats);
871789d4 5279 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5280 kfree(memcg);
59927fb9 5281}
3afe36b1 5282
40e952f9
TE
5283static void mem_cgroup_free(struct mem_cgroup *memcg)
5284{
ec1c86b2 5285 lru_gen_exit_memcg(memcg);
40e952f9
TE
5286 memcg_wb_domain_exit(memcg);
5287 __mem_cgroup_free(memcg);
5288}
5289
0b8f73e1 5290static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5291{
d142e3e6 5292 struct mem_cgroup *memcg;
6d12e2d8 5293 int node;
97b27821 5294 int __maybe_unused i;
11d67612 5295 long error = -ENOMEM;
8cdea7c0 5296
06b2c3b0 5297 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5298 if (!memcg)
11d67612 5299 return ERR_PTR(error);
0b8f73e1 5300
73f576c0 5301 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5302 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5303 if (memcg->id.id < 0) {
5304 error = memcg->id.id;
73f576c0 5305 goto fail;
11d67612 5306 }
73f576c0 5307
410f8e82
SB
5308 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5309 if (!memcg->vmstats)
5310 goto fail;
5311
3e38e0aa
RG
5312 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5313 GFP_KERNEL_ACCOUNT);
871789d4 5314 if (!memcg->vmstats_percpu)
0b8f73e1 5315 goto fail;
78fb7466 5316
3ed28fa1 5317 for_each_node(node)
ef8f2327 5318 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5319 goto fail;
f64c3f54 5320
0b8f73e1
JW
5321 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5322 goto fail;
28dbc4b6 5323
f7e1cb6e 5324 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5325 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5326 mutex_init(&memcg->thresholds_lock);
5327 spin_lock_init(&memcg->move_lock);
70ddf637 5328 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5329 INIT_LIST_HEAD(&memcg->event_list);
5330 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5331 memcg->socket_pressure = jiffies;
84c07d11 5332#ifdef CONFIG_MEMCG_KMEM
900a38f0 5333 memcg->kmemcg_id = -1;
bf4f0599 5334 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5335#endif
52ebea74
TH
5336#ifdef CONFIG_CGROUP_WRITEBACK
5337 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5338 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5339 memcg->cgwb_frn[i].done =
5340 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5341#endif
5342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5343 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5344 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5345 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5346#endif
73f576c0 5347 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5348 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5349 return memcg;
5350fail:
7e97de0b 5351 mem_cgroup_id_remove(memcg);
40e952f9 5352 __mem_cgroup_free(memcg);
11d67612 5353 return ERR_PTR(error);
d142e3e6
GC
5354}
5355
0b8f73e1
JW
5356static struct cgroup_subsys_state * __ref
5357mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5358{
0b8f73e1 5359 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5360 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5361
b87d8cef 5362 old_memcg = set_active_memcg(parent);
0b8f73e1 5363 memcg = mem_cgroup_alloc();
b87d8cef 5364 set_active_memcg(old_memcg);
11d67612
YS
5365 if (IS_ERR(memcg))
5366 return ERR_CAST(memcg);
d142e3e6 5367
d1663a90 5368 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5369 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
f4840ccf
JW
5370#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5371 memcg->zswap_max = PAGE_COUNTER_MAX;
5372#endif
4b82ab4f 5373 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1 5374 if (parent) {
82b3aa26 5375 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
17c56de6 5376 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
bef8620c 5377
3e32cb2e 5378 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5379 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5380 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5381 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5382 } else {
8278f1c7 5383 init_memcg_events();
bef8620c
RG
5384 page_counter_init(&memcg->memory, NULL);
5385 page_counter_init(&memcg->swap, NULL);
5386 page_counter_init(&memcg->kmem, NULL);
5387 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5388
0b8f73e1
JW
5389 root_mem_cgroup = memcg;
5390 return &memcg->css;
5391 }
5392
f7e1cb6e 5393 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5394 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5395
b6c1a8af
YS
5396#if defined(CONFIG_MEMCG_KMEM)
5397 if (!cgroup_memory_nobpf)
5398 static_branch_inc(&memcg_bpf_enabled_key);
5399#endif
5400
0b8f73e1 5401 return &memcg->css;
0b8f73e1
JW
5402}
5403
73f576c0 5404static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5405{
58fa2a55
VD
5406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5407
da0efe30
MS
5408 if (memcg_online_kmem(memcg))
5409 goto remove_id;
5410
0a4465d3 5411 /*
e4262c4f 5412 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5413 * by the time the maps are allocated. So, we allocate maps
5414 * here, when for_each_mem_cgroup() can't skip it.
5415 */
da0efe30
MS
5416 if (alloc_shrinker_info(memcg))
5417 goto offline_kmem;
0a4465d3 5418
73f576c0 5419 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5420 refcount_set(&memcg->id.ref, 1);
73f576c0 5421 css_get(css);
aa48e47e
SB
5422
5423 if (unlikely(mem_cgroup_is_root(memcg)))
5424 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5425 2UL*HZ);
e4dde56c 5426 lru_gen_online_memcg(memcg);
2f7dd7a4 5427 return 0;
da0efe30
MS
5428offline_kmem:
5429 memcg_offline_kmem(memcg);
5430remove_id:
5431 mem_cgroup_id_remove(memcg);
5432 return -ENOMEM;
8cdea7c0
BS
5433}
5434
eb95419b 5435static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5436{
eb95419b 5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5438 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5439
5440 /*
5441 * Unregister events and notify userspace.
5442 * Notify userspace about cgroup removing only after rmdir of cgroup
5443 * directory to avoid race between userspace and kernelspace.
5444 */
4ba9515d 5445 spin_lock_irq(&memcg->event_list_lock);
fba94807 5446 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5447 list_del_init(&event->list);
5448 schedule_work(&event->remove);
5449 }
4ba9515d 5450 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5451
bf8d5d52 5452 page_counter_set_min(&memcg->memory, 0);
23067153 5453 page_counter_set_low(&memcg->memory, 0);
63677c74 5454
567e9ab2 5455 memcg_offline_kmem(memcg);
a178015c 5456 reparent_shrinker_deferred(memcg);
52ebea74 5457 wb_memcg_offline(memcg);
e4dde56c 5458 lru_gen_offline_memcg(memcg);
73f576c0 5459
591edfb1
RG
5460 drain_all_stock(memcg);
5461
73f576c0 5462 mem_cgroup_id_put(memcg);
df878fb0
KH
5463}
5464
6df38689
VD
5465static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5466{
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5468
5469 invalidate_reclaim_iterators(memcg);
e4dde56c 5470 lru_gen_release_memcg(memcg);
6df38689
VD
5471}
5472
eb95419b 5473static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5474{
eb95419b 5475 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5476 int __maybe_unused i;
c268e994 5477
97b27821
TH
5478#ifdef CONFIG_CGROUP_WRITEBACK
5479 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5480 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5481#endif
f7e1cb6e 5482 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5483 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5484
0db15298 5485 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5486 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5487
b6c1a8af
YS
5488#if defined(CONFIG_MEMCG_KMEM)
5489 if (!cgroup_memory_nobpf)
5490 static_branch_dec(&memcg_bpf_enabled_key);
5491#endif
5492
0b8f73e1
JW
5493 vmpressure_cleanup(&memcg->vmpressure);
5494 cancel_work_sync(&memcg->high_work);
5495 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5496 free_shrinker_info(memcg);
0b8f73e1 5497 mem_cgroup_free(memcg);
8cdea7c0
BS
5498}
5499
1ced953b
TH
5500/**
5501 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5502 * @css: the target css
5503 *
5504 * Reset the states of the mem_cgroup associated with @css. This is
5505 * invoked when the userland requests disabling on the default hierarchy
5506 * but the memcg is pinned through dependency. The memcg should stop
5507 * applying policies and should revert to the vanilla state as it may be
5508 * made visible again.
5509 *
5510 * The current implementation only resets the essential configurations.
5511 * This needs to be expanded to cover all the visible parts.
5512 */
5513static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5514{
5515 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5516
bbec2e15
RG
5517 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5518 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5519 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5520 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5521 page_counter_set_min(&memcg->memory, 0);
23067153 5522 page_counter_set_low(&memcg->memory, 0);
d1663a90 5523 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
2178e20c 5524 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
4b82ab4f 5525 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5526 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5527}
5528
2d146aa3
JW
5529static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5530{
5531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5532 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5533 struct memcg_vmstats_percpu *statc;
5534 long delta, v;
7e1c0d6f 5535 int i, nid;
2d146aa3
JW
5536
5537 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5538
5539 for (i = 0; i < MEMCG_NR_STAT; i++) {
5540 /*
5541 * Collect the aggregated propagation counts of groups
5542 * below us. We're in a per-cpu loop here and this is
5543 * a global counter, so the first cycle will get them.
5544 */
410f8e82 5545 delta = memcg->vmstats->state_pending[i];
2d146aa3 5546 if (delta)
410f8e82 5547 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5548
5549 /* Add CPU changes on this level since the last flush */
5550 v = READ_ONCE(statc->state[i]);
5551 if (v != statc->state_prev[i]) {
5552 delta += v - statc->state_prev[i];
5553 statc->state_prev[i] = v;
5554 }
5555
5556 if (!delta)
5557 continue;
5558
5559 /* Aggregate counts on this level and propagate upwards */
410f8e82 5560 memcg->vmstats->state[i] += delta;
2d146aa3 5561 if (parent)
410f8e82 5562 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5563 }
5564
8278f1c7 5565 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5566 delta = memcg->vmstats->events_pending[i];
2d146aa3 5567 if (delta)
410f8e82 5568 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5569
5570 v = READ_ONCE(statc->events[i]);
5571 if (v != statc->events_prev[i]) {
5572 delta += v - statc->events_prev[i];
5573 statc->events_prev[i] = v;
5574 }
5575
5576 if (!delta)
5577 continue;
5578
410f8e82 5579 memcg->vmstats->events[i] += delta;
2d146aa3 5580 if (parent)
410f8e82 5581 parent->vmstats->events_pending[i] += delta;
2d146aa3 5582 }
7e1c0d6f
SB
5583
5584 for_each_node_state(nid, N_MEMORY) {
5585 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5586 struct mem_cgroup_per_node *ppn = NULL;
5587 struct lruvec_stats_percpu *lstatc;
5588
5589 if (parent)
5590 ppn = parent->nodeinfo[nid];
5591
5592 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5593
5594 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5595 delta = pn->lruvec_stats.state_pending[i];
5596 if (delta)
5597 pn->lruvec_stats.state_pending[i] = 0;
5598
5599 v = READ_ONCE(lstatc->state[i]);
5600 if (v != lstatc->state_prev[i]) {
5601 delta += v - lstatc->state_prev[i];
5602 lstatc->state_prev[i] = v;
5603 }
5604
5605 if (!delta)
5606 continue;
5607
5608 pn->lruvec_stats.state[i] += delta;
5609 if (ppn)
5610 ppn->lruvec_stats.state_pending[i] += delta;
5611 }
5612 }
2d146aa3
JW
5613}
5614
02491447 5615#ifdef CONFIG_MMU
7dc74be0 5616/* Handlers for move charge at task migration. */
854ffa8d 5617static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5618{
05b84301 5619 int ret;
9476db97 5620
d0164adc
MG
5621 /* Try a single bulk charge without reclaim first, kswapd may wake */
5622 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5623 if (!ret) {
854ffa8d 5624 mc.precharge += count;
854ffa8d
DN
5625 return ret;
5626 }
9476db97 5627
3674534b 5628 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5629 while (count--) {
3674534b 5630 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5631 if (ret)
38c5d72f 5632 return ret;
854ffa8d 5633 mc.precharge++;
9476db97 5634 cond_resched();
854ffa8d 5635 }
9476db97 5636 return 0;
4ffef5fe
DN
5637}
5638
4ffef5fe
DN
5639union mc_target {
5640 struct page *page;
02491447 5641 swp_entry_t ent;
4ffef5fe
DN
5642};
5643
4ffef5fe 5644enum mc_target_type {
8d32ff84 5645 MC_TARGET_NONE = 0,
4ffef5fe 5646 MC_TARGET_PAGE,
02491447 5647 MC_TARGET_SWAP,
c733a828 5648 MC_TARGET_DEVICE,
4ffef5fe
DN
5649};
5650
90254a65
DN
5651static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5652 unsigned long addr, pte_t ptent)
4ffef5fe 5653{
25b2995a 5654 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5655
90254a65
DN
5656 if (!page || !page_mapped(page))
5657 return NULL;
5658 if (PageAnon(page)) {
1dfab5ab 5659 if (!(mc.flags & MOVE_ANON))
90254a65 5660 return NULL;
1dfab5ab
JW
5661 } else {
5662 if (!(mc.flags & MOVE_FILE))
5663 return NULL;
5664 }
90254a65
DN
5665 if (!get_page_unless_zero(page))
5666 return NULL;
5667
5668 return page;
5669}
5670
c733a828 5671#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5672static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5673 pte_t ptent, swp_entry_t *entry)
90254a65 5674{
90254a65
DN
5675 struct page *page = NULL;
5676 swp_entry_t ent = pte_to_swp_entry(ptent);
5677
9a137153 5678 if (!(mc.flags & MOVE_ANON))
90254a65 5679 return NULL;
c733a828
JG
5680
5681 /*
27674ef6
CH
5682 * Handle device private pages that are not accessible by the CPU, but
5683 * stored as special swap entries in the page table.
c733a828
JG
5684 */
5685 if (is_device_private_entry(ent)) {
af5cdaf8 5686 page = pfn_swap_entry_to_page(ent);
27674ef6 5687 if (!get_page_unless_zero(page))
c733a828
JG
5688 return NULL;
5689 return page;
5690 }
5691
9a137153
RC
5692 if (non_swap_entry(ent))
5693 return NULL;
5694
4b91355e 5695 /*
cb691e2f 5696 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5697 * we call find_get_page() with swapper_space directly.
5698 */
f6ab1f7f 5699 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5700 entry->val = ent.val;
90254a65
DN
5701
5702 return page;
5703}
4b91355e
KH
5704#else
5705static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5706 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5707{
5708 return NULL;
5709}
5710#endif
90254a65 5711
87946a72 5712static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5713 unsigned long addr, pte_t ptent)
87946a72 5714{
524984ff
MWO
5715 unsigned long index;
5716 struct folio *folio;
5717
87946a72
DN
5718 if (!vma->vm_file) /* anonymous vma */
5719 return NULL;
1dfab5ab 5720 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5721 return NULL;
5722
524984ff 5723 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5724 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5725 index = linear_page_index(vma, addr);
5726 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
66dabbb6 5727 if (IS_ERR(folio))
524984ff
MWO
5728 return NULL;
5729 return folio_file_page(folio, index);
87946a72
DN
5730}
5731
b1b0deab
CG
5732/**
5733 * mem_cgroup_move_account - move account of the page
5734 * @page: the page
25843c2b 5735 * @compound: charge the page as compound or small page
b1b0deab
CG
5736 * @from: mem_cgroup which the page is moved from.
5737 * @to: mem_cgroup which the page is moved to. @from != @to.
5738 *
4e0cf05f 5739 * The page must be locked and not on the LRU.
b1b0deab
CG
5740 *
5741 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5742 * from old cgroup.
5743 */
5744static int mem_cgroup_move_account(struct page *page,
f627c2f5 5745 bool compound,
b1b0deab
CG
5746 struct mem_cgroup *from,
5747 struct mem_cgroup *to)
5748{
fcce4672 5749 struct folio *folio = page_folio(page);
ae8af438
KK
5750 struct lruvec *from_vec, *to_vec;
5751 struct pglist_data *pgdat;
fcce4672 5752 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5753 int nid, ret;
b1b0deab
CG
5754
5755 VM_BUG_ON(from == to);
4e0cf05f 5756 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fcce4672 5757 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5758 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab 5759
b1b0deab 5760 ret = -EINVAL;
fcce4672 5761 if (folio_memcg(folio) != from)
4e0cf05f 5762 goto out;
b1b0deab 5763
fcce4672 5764 pgdat = folio_pgdat(folio);
867e5e1d
JW
5765 from_vec = mem_cgroup_lruvec(from, pgdat);
5766 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5767
fcce4672 5768 folio_memcg_lock(folio);
b1b0deab 5769
fcce4672
MWO
5770 if (folio_test_anon(folio)) {
5771 if (folio_mapped(folio)) {
be5d0a74
JW
5772 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5774 if (folio_test_transhuge(folio)) {
69473e5d
MS
5775 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5776 -nr_pages);
5777 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5778 nr_pages);
468c3982 5779 }
be5d0a74
JW
5780 }
5781 } else {
0d1c2072
JW
5782 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5783 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5784
fcce4672 5785 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5786 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5787 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5788 }
5789
fcce4672 5790 if (folio_mapped(folio)) {
49e50d27
JW
5791 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5792 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5793 }
b1b0deab 5794
fcce4672
MWO
5795 if (folio_test_dirty(folio)) {
5796 struct address_space *mapping = folio_mapping(folio);
c4843a75 5797
f56753ac 5798 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5799 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5800 -nr_pages);
5801 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5802 nr_pages);
5803 }
c4843a75
GT
5804 }
5805 }
5806
c449deb2
HD
5807#ifdef CONFIG_SWAP
5808 if (folio_test_swapcache(folio)) {
5809 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5810 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5811 }
5812#endif
fcce4672 5813 if (folio_test_writeback(folio)) {
ae8af438
KK
5814 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5815 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5816 }
5817
5818 /*
abb242f5
JW
5819 * All state has been migrated, let's switch to the new memcg.
5820 *
bcfe06bf 5821 * It is safe to change page's memcg here because the page
abb242f5
JW
5822 * is referenced, charged, isolated, and locked: we can't race
5823 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5824 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5825 *
5826 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5827 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5828 * new memcg that isn't locked, the above state can change
5829 * concurrently again. Make sure we're truly done with it.
b1b0deab 5830 */
abb242f5 5831 smp_mb();
b1b0deab 5832
1a3e1f40
JW
5833 css_get(&to->css);
5834 css_put(&from->css);
5835
fcce4672 5836 folio->memcg_data = (unsigned long)to;
87eaceb3 5837
f70ad448 5838 __folio_memcg_unlock(from);
b1b0deab
CG
5839
5840 ret = 0;
fcce4672 5841 nid = folio_nid(folio);
b1b0deab
CG
5842
5843 local_irq_disable();
6e0110c2 5844 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5845 memcg_check_events(to, nid);
6e0110c2 5846 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5847 memcg_check_events(from, nid);
b1b0deab 5848 local_irq_enable();
b1b0deab
CG
5849out:
5850 return ret;
5851}
5852
7cf7806c
LR
5853/**
5854 * get_mctgt_type - get target type of moving charge
5855 * @vma: the vma the pte to be checked belongs
5856 * @addr: the address corresponding to the pte to be checked
5857 * @ptent: the pte to be checked
5858 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5859 *
5860 * Returns
5861 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5862 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5863 * move charge. if @target is not NULL, the page is stored in target->page
5864 * with extra refcnt got(Callers should handle it).
5865 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5866 * target for charge migration. if @target is not NULL, the entry is stored
5867 * in target->ent.
f25cbb7a
AS
5868 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5869 * thus not on the lru.
df6ad698
JG
5870 * For now we such page is charge like a regular page would be as for all
5871 * intent and purposes it is just special memory taking the place of a
5872 * regular page.
c733a828
JG
5873 *
5874 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5875 *
5876 * Called with pte lock held.
5877 */
5878
8d32ff84 5879static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5880 unsigned long addr, pte_t ptent, union mc_target *target)
5881{
5882 struct page *page = NULL;
8d32ff84 5883 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5884 swp_entry_t ent = { .val = 0 };
5885
5886 if (pte_present(ptent))
5887 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5888 else if (pte_none_mostly(ptent))
5889 /*
5890 * PTE markers should be treated as a none pte here, separated
5891 * from other swap handling below.
5892 */
5893 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5894 else if (is_swap_pte(ptent))
48406ef8 5895 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65 5896
4e0cf05f
JW
5897 if (target && page) {
5898 if (!trylock_page(page)) {
5899 put_page(page);
5900 return ret;
5901 }
5902 /*
5903 * page_mapped() must be stable during the move. This
5904 * pte is locked, so if it's present, the page cannot
5905 * become unmapped. If it isn't, we have only partial
5906 * control over the mapped state: the page lock will
5907 * prevent new faults against pagecache and swapcache,
5908 * so an unmapped page cannot become mapped. However,
5909 * if the page is already mapped elsewhere, it can
5910 * unmap, and there is nothing we can do about it.
5911 * Alas, skip moving the page in this case.
5912 */
5913 if (!pte_present(ptent) && page_mapped(page)) {
5914 unlock_page(page);
5915 put_page(page);
5916 return ret;
5917 }
5918 }
5919
90254a65 5920 if (!page && !ent.val)
8d32ff84 5921 return ret;
02491447 5922 if (page) {
02491447 5923 /*
0a31bc97 5924 * Do only loose check w/o serialization.
1306a85a 5925 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5926 * not under LRU exclusion.
02491447 5927 */
bcfe06bf 5928 if (page_memcg(page) == mc.from) {
02491447 5929 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5930 if (is_device_private_page(page) ||
5931 is_device_coherent_page(page))
c733a828 5932 ret = MC_TARGET_DEVICE;
02491447
DN
5933 if (target)
5934 target->page = page;
5935 }
4e0cf05f
JW
5936 if (!ret || !target) {
5937 if (target)
5938 unlock_page(page);
02491447 5939 put_page(page);
4e0cf05f 5940 }
02491447 5941 }
3e14a57b
HY
5942 /*
5943 * There is a swap entry and a page doesn't exist or isn't charged.
5944 * But we cannot move a tail-page in a THP.
5945 */
5946 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5947 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5948 ret = MC_TARGET_SWAP;
5949 if (target)
5950 target->ent = ent;
4ffef5fe 5951 }
4ffef5fe
DN
5952 return ret;
5953}
5954
12724850
NH
5955#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5956/*
d6810d73
HY
5957 * We don't consider PMD mapped swapping or file mapped pages because THP does
5958 * not support them for now.
12724850
NH
5959 * Caller should make sure that pmd_trans_huge(pmd) is true.
5960 */
5961static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5962 unsigned long addr, pmd_t pmd, union mc_target *target)
5963{
5964 struct page *page = NULL;
12724850
NH
5965 enum mc_target_type ret = MC_TARGET_NONE;
5966
84c3fc4e
ZY
5967 if (unlikely(is_swap_pmd(pmd))) {
5968 VM_BUG_ON(thp_migration_supported() &&
5969 !is_pmd_migration_entry(pmd));
5970 return ret;
5971 }
12724850 5972 page = pmd_page(pmd);
309381fe 5973 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5974 if (!(mc.flags & MOVE_ANON))
12724850 5975 return ret;
bcfe06bf 5976 if (page_memcg(page) == mc.from) {
12724850
NH
5977 ret = MC_TARGET_PAGE;
5978 if (target) {
5979 get_page(page);
4e0cf05f
JW
5980 if (!trylock_page(page)) {
5981 put_page(page);
5982 return MC_TARGET_NONE;
5983 }
12724850
NH
5984 target->page = page;
5985 }
5986 }
5987 return ret;
5988}
5989#else
5990static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5991 unsigned long addr, pmd_t pmd, union mc_target *target)
5992{
5993 return MC_TARGET_NONE;
5994}
5995#endif
5996
4ffef5fe
DN
5997static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5998 unsigned long addr, unsigned long end,
5999 struct mm_walk *walk)
6000{
26bcd64a 6001 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6002 pte_t *pte;
6003 spinlock_t *ptl;
6004
b6ec57f4
KS
6005 ptl = pmd_trans_huge_lock(pmd, vma);
6006 if (ptl) {
c733a828
JG
6007 /*
6008 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
6009 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6010 * this might change.
c733a828 6011 */
12724850
NH
6012 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6013 mc.precharge += HPAGE_PMD_NR;
bf929152 6014 spin_unlock(ptl);
1a5a9906 6015 return 0;
12724850 6016 }
03319327 6017
45f83cef
AA
6018 if (pmd_trans_unstable(pmd))
6019 return 0;
4ffef5fe
DN
6020 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6021 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6022 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6023 mc.precharge++; /* increment precharge temporarily */
6024 pte_unmap_unlock(pte - 1, ptl);
6025 cond_resched();
6026
7dc74be0
DN
6027 return 0;
6028}
6029
7b86ac33
CH
6030static const struct mm_walk_ops precharge_walk_ops = {
6031 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6032};
6033
4ffef5fe
DN
6034static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6035{
6036 unsigned long precharge;
4ffef5fe 6037
d8ed45c5 6038 mmap_read_lock(mm);
ba0aff8e 6039 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 6040 mmap_read_unlock(mm);
4ffef5fe
DN
6041
6042 precharge = mc.precharge;
6043 mc.precharge = 0;
6044
6045 return precharge;
6046}
6047
4ffef5fe
DN
6048static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6049{
dfe076b0
DN
6050 unsigned long precharge = mem_cgroup_count_precharge(mm);
6051
6052 VM_BUG_ON(mc.moving_task);
6053 mc.moving_task = current;
6054 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6055}
6056
dfe076b0
DN
6057/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6058static void __mem_cgroup_clear_mc(void)
4ffef5fe 6059{
2bd9bb20
KH
6060 struct mem_cgroup *from = mc.from;
6061 struct mem_cgroup *to = mc.to;
6062
4ffef5fe 6063 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 6064 if (mc.precharge) {
00501b53 6065 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
6066 mc.precharge = 0;
6067 }
6068 /*
6069 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6070 * we must uncharge here.
6071 */
6072 if (mc.moved_charge) {
00501b53 6073 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6074 mc.moved_charge = 0;
4ffef5fe 6075 }
483c30b5
DN
6076 /* we must fixup refcnts and charges */
6077 if (mc.moved_swap) {
483c30b5 6078 /* uncharge swap account from the old cgroup */
ce00a967 6079 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6080 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6081
615d66c3
VD
6082 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6083
05b84301 6084 /*
3e32cb2e
JW
6085 * we charged both to->memory and to->memsw, so we
6086 * should uncharge to->memory.
05b84301 6087 */
ce00a967 6088 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6089 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6090
483c30b5
DN
6091 mc.moved_swap = 0;
6092 }
dfe076b0
DN
6093 memcg_oom_recover(from);
6094 memcg_oom_recover(to);
6095 wake_up_all(&mc.waitq);
6096}
6097
6098static void mem_cgroup_clear_mc(void)
6099{
264a0ae1
TH
6100 struct mm_struct *mm = mc.mm;
6101
dfe076b0
DN
6102 /*
6103 * we must clear moving_task before waking up waiters at the end of
6104 * task migration.
6105 */
6106 mc.moving_task = NULL;
6107 __mem_cgroup_clear_mc();
2bd9bb20 6108 spin_lock(&mc.lock);
4ffef5fe
DN
6109 mc.from = NULL;
6110 mc.to = NULL;
264a0ae1 6111 mc.mm = NULL;
2bd9bb20 6112 spin_unlock(&mc.lock);
264a0ae1
TH
6113
6114 mmput(mm);
4ffef5fe
DN
6115}
6116
1f7dd3e5 6117static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6118{
1f7dd3e5 6119 struct cgroup_subsys_state *css;
eed67d75 6120 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6121 struct mem_cgroup *from;
4530eddb 6122 struct task_struct *leader, *p;
9f2115f9 6123 struct mm_struct *mm;
1dfab5ab 6124 unsigned long move_flags;
9f2115f9 6125 int ret = 0;
7dc74be0 6126
1f7dd3e5
TH
6127 /* charge immigration isn't supported on the default hierarchy */
6128 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6129 return 0;
6130
4530eddb
TH
6131 /*
6132 * Multi-process migrations only happen on the default hierarchy
6133 * where charge immigration is not used. Perform charge
6134 * immigration if @tset contains a leader and whine if there are
6135 * multiple.
6136 */
6137 p = NULL;
1f7dd3e5 6138 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6139 WARN_ON_ONCE(p);
6140 p = leader;
1f7dd3e5 6141 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6142 }
6143 if (!p)
6144 return 0;
6145
1f7dd3e5 6146 /*
f0953a1b 6147 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6148 * tunable will only affect upcoming migrations, not the current one.
6149 * So we need to save it, and keep it going.
6150 */
6151 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6152 if (!move_flags)
6153 return 0;
6154
9f2115f9
TH
6155 from = mem_cgroup_from_task(p);
6156
6157 VM_BUG_ON(from == memcg);
6158
6159 mm = get_task_mm(p);
6160 if (!mm)
6161 return 0;
6162 /* We move charges only when we move a owner of the mm */
6163 if (mm->owner == p) {
6164 VM_BUG_ON(mc.from);
6165 VM_BUG_ON(mc.to);
6166 VM_BUG_ON(mc.precharge);
6167 VM_BUG_ON(mc.moved_charge);
6168 VM_BUG_ON(mc.moved_swap);
6169
6170 spin_lock(&mc.lock);
264a0ae1 6171 mc.mm = mm;
9f2115f9
TH
6172 mc.from = from;
6173 mc.to = memcg;
6174 mc.flags = move_flags;
6175 spin_unlock(&mc.lock);
6176 /* We set mc.moving_task later */
6177
6178 ret = mem_cgroup_precharge_mc(mm);
6179 if (ret)
6180 mem_cgroup_clear_mc();
264a0ae1
TH
6181 } else {
6182 mmput(mm);
7dc74be0
DN
6183 }
6184 return ret;
6185}
6186
1f7dd3e5 6187static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6188{
4e2f245d
JW
6189 if (mc.to)
6190 mem_cgroup_clear_mc();
7dc74be0
DN
6191}
6192
4ffef5fe
DN
6193static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6194 unsigned long addr, unsigned long end,
6195 struct mm_walk *walk)
7dc74be0 6196{
4ffef5fe 6197 int ret = 0;
26bcd64a 6198 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6199 pte_t *pte;
6200 spinlock_t *ptl;
12724850
NH
6201 enum mc_target_type target_type;
6202 union mc_target target;
6203 struct page *page;
4ffef5fe 6204
b6ec57f4
KS
6205 ptl = pmd_trans_huge_lock(pmd, vma);
6206 if (ptl) {
62ade86a 6207 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6208 spin_unlock(ptl);
12724850
NH
6209 return 0;
6210 }
6211 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6212 if (target_type == MC_TARGET_PAGE) {
6213 page = target.page;
f7f9c00d 6214 if (isolate_lru_page(page)) {
f627c2f5 6215 if (!mem_cgroup_move_account(page, true,
1306a85a 6216 mc.from, mc.to)) {
12724850
NH
6217 mc.precharge -= HPAGE_PMD_NR;
6218 mc.moved_charge += HPAGE_PMD_NR;
6219 }
6220 putback_lru_page(page);
6221 }
4e0cf05f 6222 unlock_page(page);
12724850 6223 put_page(page);
c733a828
JG
6224 } else if (target_type == MC_TARGET_DEVICE) {
6225 page = target.page;
6226 if (!mem_cgroup_move_account(page, true,
6227 mc.from, mc.to)) {
6228 mc.precharge -= HPAGE_PMD_NR;
6229 mc.moved_charge += HPAGE_PMD_NR;
6230 }
4e0cf05f 6231 unlock_page(page);
c733a828 6232 put_page(page);
12724850 6233 }
bf929152 6234 spin_unlock(ptl);
1a5a9906 6235 return 0;
12724850
NH
6236 }
6237
45f83cef
AA
6238 if (pmd_trans_unstable(pmd))
6239 return 0;
4ffef5fe
DN
6240retry:
6241 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6242 for (; addr != end; addr += PAGE_SIZE) {
6243 pte_t ptent = *(pte++);
c733a828 6244 bool device = false;
02491447 6245 swp_entry_t ent;
4ffef5fe
DN
6246
6247 if (!mc.precharge)
6248 break;
6249
8d32ff84 6250 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6251 case MC_TARGET_DEVICE:
6252 device = true;
e4a9bc58 6253 fallthrough;
4ffef5fe
DN
6254 case MC_TARGET_PAGE:
6255 page = target.page;
53f9263b
KS
6256 /*
6257 * We can have a part of the split pmd here. Moving it
6258 * can be done but it would be too convoluted so simply
6259 * ignore such a partial THP and keep it in original
6260 * memcg. There should be somebody mapping the head.
6261 */
6262 if (PageTransCompound(page))
6263 goto put;
f7f9c00d 6264 if (!device && !isolate_lru_page(page))
4ffef5fe 6265 goto put;
f627c2f5
KS
6266 if (!mem_cgroup_move_account(page, false,
6267 mc.from, mc.to)) {
4ffef5fe 6268 mc.precharge--;
854ffa8d
DN
6269 /* we uncharge from mc.from later. */
6270 mc.moved_charge++;
4ffef5fe 6271 }
c733a828
JG
6272 if (!device)
6273 putback_lru_page(page);
4e0cf05f
JW
6274put: /* get_mctgt_type() gets & locks the page */
6275 unlock_page(page);
4ffef5fe
DN
6276 put_page(page);
6277 break;
02491447
DN
6278 case MC_TARGET_SWAP:
6279 ent = target.ent;
e91cbb42 6280 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6281 mc.precharge--;
8d22a935
HD
6282 mem_cgroup_id_get_many(mc.to, 1);
6283 /* we fixup other refcnts and charges later. */
483c30b5
DN
6284 mc.moved_swap++;
6285 }
02491447 6286 break;
4ffef5fe
DN
6287 default:
6288 break;
6289 }
6290 }
6291 pte_unmap_unlock(pte - 1, ptl);
6292 cond_resched();
6293
6294 if (addr != end) {
6295 /*
6296 * We have consumed all precharges we got in can_attach().
6297 * We try charge one by one, but don't do any additional
6298 * charges to mc.to if we have failed in charge once in attach()
6299 * phase.
6300 */
854ffa8d 6301 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6302 if (!ret)
6303 goto retry;
6304 }
6305
6306 return ret;
6307}
6308
7b86ac33
CH
6309static const struct mm_walk_ops charge_walk_ops = {
6310 .pmd_entry = mem_cgroup_move_charge_pte_range,
6311};
6312
264a0ae1 6313static void mem_cgroup_move_charge(void)
4ffef5fe 6314{
4ffef5fe 6315 lru_add_drain_all();
312722cb 6316 /*
81f8c3a4
JW
6317 * Signal lock_page_memcg() to take the memcg's move_lock
6318 * while we're moving its pages to another memcg. Then wait
6319 * for already started RCU-only updates to finish.
312722cb
JW
6320 */
6321 atomic_inc(&mc.from->moving_account);
6322 synchronize_rcu();
dfe076b0 6323retry:
d8ed45c5 6324 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6325 /*
c1e8d7c6 6326 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6327 * waitq. So we cancel all extra charges, wake up all waiters,
6328 * and retry. Because we cancel precharges, we might not be able
6329 * to move enough charges, but moving charge is a best-effort
6330 * feature anyway, so it wouldn't be a big problem.
6331 */
6332 __mem_cgroup_clear_mc();
6333 cond_resched();
6334 goto retry;
6335 }
26bcd64a
NH
6336 /*
6337 * When we have consumed all precharges and failed in doing
6338 * additional charge, the page walk just aborts.
6339 */
ba0aff8e 6340 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6341 mmap_read_unlock(mc.mm);
312722cb 6342 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6343}
6344
264a0ae1 6345static void mem_cgroup_move_task(void)
67e465a7 6346{
264a0ae1
TH
6347 if (mc.to) {
6348 mem_cgroup_move_charge();
a433658c 6349 mem_cgroup_clear_mc();
264a0ae1 6350 }
67e465a7 6351}
5cfb80a7 6352#else /* !CONFIG_MMU */
1f7dd3e5 6353static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6354{
6355 return 0;
6356}
1f7dd3e5 6357static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6358{
6359}
264a0ae1 6360static void mem_cgroup_move_task(void)
5cfb80a7
DN
6361{
6362}
6363#endif
67e465a7 6364
bd74fdae
YZ
6365#ifdef CONFIG_LRU_GEN
6366static void mem_cgroup_attach(struct cgroup_taskset *tset)
6367{
6368 struct task_struct *task;
6369 struct cgroup_subsys_state *css;
6370
6371 /* find the first leader if there is any */
6372 cgroup_taskset_for_each_leader(task, css, tset)
6373 break;
6374
6375 if (!task)
6376 return;
6377
6378 task_lock(task);
6379 if (task->mm && READ_ONCE(task->mm->owner) == task)
6380 lru_gen_migrate_mm(task->mm);
6381 task_unlock(task);
6382}
6383#else
6384static void mem_cgroup_attach(struct cgroup_taskset *tset)
6385{
6386}
6387#endif /* CONFIG_LRU_GEN */
6388
677dc973
CD
6389static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6390{
6391 if (value == PAGE_COUNTER_MAX)
6392 seq_puts(m, "max\n");
6393 else
6394 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6395
6396 return 0;
6397}
6398
241994ed
JW
6399static u64 memory_current_read(struct cgroup_subsys_state *css,
6400 struct cftype *cft)
6401{
f5fc3c5d
JW
6402 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6403
6404 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6405}
6406
8e20d4b3
GR
6407static u64 memory_peak_read(struct cgroup_subsys_state *css,
6408 struct cftype *cft)
6409{
6410 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6411
6412 return (u64)memcg->memory.watermark * PAGE_SIZE;
6413}
6414
bf8d5d52
RG
6415static int memory_min_show(struct seq_file *m, void *v)
6416{
677dc973
CD
6417 return seq_puts_memcg_tunable(m,
6418 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6419}
6420
6421static ssize_t memory_min_write(struct kernfs_open_file *of,
6422 char *buf, size_t nbytes, loff_t off)
6423{
6424 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6425 unsigned long min;
6426 int err;
6427
6428 buf = strstrip(buf);
6429 err = page_counter_memparse(buf, "max", &min);
6430 if (err)
6431 return err;
6432
6433 page_counter_set_min(&memcg->memory, min);
6434
6435 return nbytes;
6436}
6437
241994ed
JW
6438static int memory_low_show(struct seq_file *m, void *v)
6439{
677dc973
CD
6440 return seq_puts_memcg_tunable(m,
6441 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6442}
6443
6444static ssize_t memory_low_write(struct kernfs_open_file *of,
6445 char *buf, size_t nbytes, loff_t off)
6446{
6447 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6448 unsigned long low;
6449 int err;
6450
6451 buf = strstrip(buf);
d2973697 6452 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6453 if (err)
6454 return err;
6455
23067153 6456 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6457
6458 return nbytes;
6459}
6460
6461static int memory_high_show(struct seq_file *m, void *v)
6462{
d1663a90
JK
6463 return seq_puts_memcg_tunable(m,
6464 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6465}
6466
6467static ssize_t memory_high_write(struct kernfs_open_file *of,
6468 char *buf, size_t nbytes, loff_t off)
6469{
6470 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6471 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6472 bool drained = false;
241994ed
JW
6473 unsigned long high;
6474 int err;
6475
6476 buf = strstrip(buf);
d2973697 6477 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6478 if (err)
6479 return err;
6480
e82553c1
JW
6481 page_counter_set_high(&memcg->memory, high);
6482
8c8c383c
JW
6483 for (;;) {
6484 unsigned long nr_pages = page_counter_read(&memcg->memory);
6485 unsigned long reclaimed;
6486
6487 if (nr_pages <= high)
6488 break;
6489
6490 if (signal_pending(current))
6491 break;
6492
6493 if (!drained) {
6494 drain_all_stock(memcg);
6495 drained = true;
6496 continue;
6497 }
6498
6499 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6500 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6501
6502 if (!reclaimed && !nr_retries--)
6503 break;
6504 }
588083bb 6505
19ce33ac 6506 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6507 return nbytes;
6508}
6509
6510static int memory_max_show(struct seq_file *m, void *v)
6511{
677dc973
CD
6512 return seq_puts_memcg_tunable(m,
6513 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6514}
6515
6516static ssize_t memory_max_write(struct kernfs_open_file *of,
6517 char *buf, size_t nbytes, loff_t off)
6518{
6519 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6520 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6521 bool drained = false;
241994ed
JW
6522 unsigned long max;
6523 int err;
6524
6525 buf = strstrip(buf);
d2973697 6526 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6527 if (err)
6528 return err;
6529
bbec2e15 6530 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6531
6532 for (;;) {
6533 unsigned long nr_pages = page_counter_read(&memcg->memory);
6534
6535 if (nr_pages <= max)
6536 break;
6537
7249c9f0 6538 if (signal_pending(current))
b6e6edcf 6539 break;
b6e6edcf
JW
6540
6541 if (!drained) {
6542 drain_all_stock(memcg);
6543 drained = true;
6544 continue;
6545 }
6546
6547 if (nr_reclaims) {
6548 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6549 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6550 nr_reclaims--;
6551 continue;
6552 }
6553
e27be240 6554 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6555 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6556 break;
6557 }
241994ed 6558
2529bb3a 6559 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6560 return nbytes;
6561}
6562
1e577f97
SB
6563static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6564{
6565 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6566 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6567 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6568 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6569 seq_printf(m, "oom_kill %lu\n",
6570 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6571 seq_printf(m, "oom_group_kill %lu\n",
6572 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6573}
6574
241994ed
JW
6575static int memory_events_show(struct seq_file *m, void *v)
6576{
aa9694bb 6577 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6578
1e577f97
SB
6579 __memory_events_show(m, memcg->memory_events);
6580 return 0;
6581}
6582
6583static int memory_events_local_show(struct seq_file *m, void *v)
6584{
6585 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6586
1e577f97 6587 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6588 return 0;
6589}
6590
587d9f72
JW
6591static int memory_stat_show(struct seq_file *m, void *v)
6592{
aa9694bb 6593 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6594 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6595
c8713d0b
JW
6596 if (!buf)
6597 return -ENOMEM;
68aaee14 6598 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6599 seq_puts(m, buf);
6600 kfree(buf);
587d9f72
JW
6601 return 0;
6602}
6603
5f9a4f4a 6604#ifdef CONFIG_NUMA
fff66b79
MS
6605static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6606 int item)
6607{
6608 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6609}
6610
5f9a4f4a
MS
6611static int memory_numa_stat_show(struct seq_file *m, void *v)
6612{
6613 int i;
6614 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6615
fd25a9e0 6616 mem_cgroup_flush_stats();
7e1c0d6f 6617
5f9a4f4a
MS
6618 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6619 int nid;
6620
6621 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6622 continue;
6623
6624 seq_printf(m, "%s", memory_stats[i].name);
6625 for_each_node_state(nid, N_MEMORY) {
6626 u64 size;
6627 struct lruvec *lruvec;
6628
6629 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6630 size = lruvec_page_state_output(lruvec,
6631 memory_stats[i].idx);
5f9a4f4a
MS
6632 seq_printf(m, " N%d=%llu", nid, size);
6633 }
6634 seq_putc(m, '\n');
6635 }
6636
6637 return 0;
6638}
6639#endif
6640
3d8b38eb
RG
6641static int memory_oom_group_show(struct seq_file *m, void *v)
6642{
aa9694bb 6643 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb 6644
eaf7b66b 6645 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
3d8b38eb
RG
6646
6647 return 0;
6648}
6649
6650static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6651 char *buf, size_t nbytes, loff_t off)
6652{
6653 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6654 int ret, oom_group;
6655
6656 buf = strstrip(buf);
6657 if (!buf)
6658 return -EINVAL;
6659
6660 ret = kstrtoint(buf, 0, &oom_group);
6661 if (ret)
6662 return ret;
6663
6664 if (oom_group != 0 && oom_group != 1)
6665 return -EINVAL;
6666
eaf7b66b 6667 WRITE_ONCE(memcg->oom_group, oom_group);
3d8b38eb
RG
6668
6669 return nbytes;
6670}
6671
94968384
SB
6672static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6673 size_t nbytes, loff_t off)
6674{
6675 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6676 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6677 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6678 unsigned int reclaim_options;
6679 int err;
12a5d395
MA
6680
6681 buf = strstrip(buf);
55ab834a
MH
6682 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6683 if (err)
6684 return err;
12a5d395 6685
55ab834a 6686 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6687 while (nr_reclaimed < nr_to_reclaim) {
6688 unsigned long reclaimed;
6689
6690 if (signal_pending(current))
6691 return -EINTR;
6692
6693 /*
6694 * This is the final attempt, drain percpu lru caches in the
6695 * hope of introducing more evictable pages for
6696 * try_to_free_mem_cgroup_pages().
6697 */
6698 if (!nr_retries)
6699 lru_add_drain_all();
6700
6701 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6702 nr_to_reclaim - nr_reclaimed,
55ab834a 6703 GFP_KERNEL, reclaim_options);
94968384
SB
6704
6705 if (!reclaimed && !nr_retries--)
6706 return -EAGAIN;
6707
6708 nr_reclaimed += reclaimed;
6709 }
6710
6711 return nbytes;
6712}
6713
241994ed
JW
6714static struct cftype memory_files[] = {
6715 {
6716 .name = "current",
f5fc3c5d 6717 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6718 .read_u64 = memory_current_read,
6719 },
8e20d4b3
GR
6720 {
6721 .name = "peak",
6722 .flags = CFTYPE_NOT_ON_ROOT,
6723 .read_u64 = memory_peak_read,
6724 },
bf8d5d52
RG
6725 {
6726 .name = "min",
6727 .flags = CFTYPE_NOT_ON_ROOT,
6728 .seq_show = memory_min_show,
6729 .write = memory_min_write,
6730 },
241994ed
JW
6731 {
6732 .name = "low",
6733 .flags = CFTYPE_NOT_ON_ROOT,
6734 .seq_show = memory_low_show,
6735 .write = memory_low_write,
6736 },
6737 {
6738 .name = "high",
6739 .flags = CFTYPE_NOT_ON_ROOT,
6740 .seq_show = memory_high_show,
6741 .write = memory_high_write,
6742 },
6743 {
6744 .name = "max",
6745 .flags = CFTYPE_NOT_ON_ROOT,
6746 .seq_show = memory_max_show,
6747 .write = memory_max_write,
6748 },
6749 {
6750 .name = "events",
6751 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6752 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6753 .seq_show = memory_events_show,
6754 },
1e577f97
SB
6755 {
6756 .name = "events.local",
6757 .flags = CFTYPE_NOT_ON_ROOT,
6758 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6759 .seq_show = memory_events_local_show,
6760 },
587d9f72
JW
6761 {
6762 .name = "stat",
587d9f72
JW
6763 .seq_show = memory_stat_show,
6764 },
5f9a4f4a
MS
6765#ifdef CONFIG_NUMA
6766 {
6767 .name = "numa_stat",
6768 .seq_show = memory_numa_stat_show,
6769 },
6770#endif
3d8b38eb
RG
6771 {
6772 .name = "oom.group",
6773 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6774 .seq_show = memory_oom_group_show,
6775 .write = memory_oom_group_write,
6776 },
94968384
SB
6777 {
6778 .name = "reclaim",
6779 .flags = CFTYPE_NS_DELEGATABLE,
6780 .write = memory_reclaim,
6781 },
241994ed
JW
6782 { } /* terminate */
6783};
6784
073219e9 6785struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6786 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6787 .css_online = mem_cgroup_css_online,
92fb9748 6788 .css_offline = mem_cgroup_css_offline,
6df38689 6789 .css_released = mem_cgroup_css_released,
92fb9748 6790 .css_free = mem_cgroup_css_free,
1ced953b 6791 .css_reset = mem_cgroup_css_reset,
2d146aa3 6792 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6793 .can_attach = mem_cgroup_can_attach,
bd74fdae 6794 .attach = mem_cgroup_attach,
7dc74be0 6795 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6796 .post_attach = mem_cgroup_move_task,
241994ed
JW
6797 .dfl_cftypes = memory_files,
6798 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6799 .early_init = 0,
8cdea7c0 6800};
c077719b 6801
bc50bcc6
JW
6802/*
6803 * This function calculates an individual cgroup's effective
6804 * protection which is derived from its own memory.min/low, its
6805 * parent's and siblings' settings, as well as the actual memory
6806 * distribution in the tree.
6807 *
6808 * The following rules apply to the effective protection values:
6809 *
6810 * 1. At the first level of reclaim, effective protection is equal to
6811 * the declared protection in memory.min and memory.low.
6812 *
6813 * 2. To enable safe delegation of the protection configuration, at
6814 * subsequent levels the effective protection is capped to the
6815 * parent's effective protection.
6816 *
6817 * 3. To make complex and dynamic subtrees easier to configure, the
6818 * user is allowed to overcommit the declared protection at a given
6819 * level. If that is the case, the parent's effective protection is
6820 * distributed to the children in proportion to how much protection
6821 * they have declared and how much of it they are utilizing.
6822 *
6823 * This makes distribution proportional, but also work-conserving:
6824 * if one cgroup claims much more protection than it uses memory,
6825 * the unused remainder is available to its siblings.
6826 *
6827 * 4. Conversely, when the declared protection is undercommitted at a
6828 * given level, the distribution of the larger parental protection
6829 * budget is NOT proportional. A cgroup's protection from a sibling
6830 * is capped to its own memory.min/low setting.
6831 *
8a931f80
JW
6832 * 5. However, to allow protecting recursive subtrees from each other
6833 * without having to declare each individual cgroup's fixed share
6834 * of the ancestor's claim to protection, any unutilized -
6835 * "floating" - protection from up the tree is distributed in
6836 * proportion to each cgroup's *usage*. This makes the protection
6837 * neutral wrt sibling cgroups and lets them compete freely over
6838 * the shared parental protection budget, but it protects the
6839 * subtree as a whole from neighboring subtrees.
6840 *
6841 * Note that 4. and 5. are not in conflict: 4. is about protecting
6842 * against immediate siblings whereas 5. is about protecting against
6843 * neighboring subtrees.
bc50bcc6
JW
6844 */
6845static unsigned long effective_protection(unsigned long usage,
8a931f80 6846 unsigned long parent_usage,
bc50bcc6
JW
6847 unsigned long setting,
6848 unsigned long parent_effective,
6849 unsigned long siblings_protected)
6850{
6851 unsigned long protected;
8a931f80 6852 unsigned long ep;
bc50bcc6
JW
6853
6854 protected = min(usage, setting);
6855 /*
6856 * If all cgroups at this level combined claim and use more
6857 * protection then what the parent affords them, distribute
6858 * shares in proportion to utilization.
6859 *
6860 * We are using actual utilization rather than the statically
6861 * claimed protection in order to be work-conserving: claimed
6862 * but unused protection is available to siblings that would
6863 * otherwise get a smaller chunk than what they claimed.
6864 */
6865 if (siblings_protected > parent_effective)
6866 return protected * parent_effective / siblings_protected;
6867
6868 /*
6869 * Ok, utilized protection of all children is within what the
6870 * parent affords them, so we know whatever this child claims
6871 * and utilizes is effectively protected.
6872 *
6873 * If there is unprotected usage beyond this value, reclaim
6874 * will apply pressure in proportion to that amount.
6875 *
6876 * If there is unutilized protection, the cgroup will be fully
6877 * shielded from reclaim, but we do return a smaller value for
6878 * protection than what the group could enjoy in theory. This
6879 * is okay. With the overcommit distribution above, effective
6880 * protection is always dependent on how memory is actually
6881 * consumed among the siblings anyway.
6882 */
8a931f80
JW
6883 ep = protected;
6884
6885 /*
6886 * If the children aren't claiming (all of) the protection
6887 * afforded to them by the parent, distribute the remainder in
6888 * proportion to the (unprotected) memory of each cgroup. That
6889 * way, cgroups that aren't explicitly prioritized wrt each
6890 * other compete freely over the allowance, but they are
6891 * collectively protected from neighboring trees.
6892 *
6893 * We're using unprotected memory for the weight so that if
6894 * some cgroups DO claim explicit protection, we don't protect
6895 * the same bytes twice.
cd324edc
JW
6896 *
6897 * Check both usage and parent_usage against the respective
6898 * protected values. One should imply the other, but they
6899 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6900 */
6901 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6902 return ep;
cd324edc
JW
6903 if (parent_effective > siblings_protected &&
6904 parent_usage > siblings_protected &&
6905 usage > protected) {
8a931f80
JW
6906 unsigned long unclaimed;
6907
6908 unclaimed = parent_effective - siblings_protected;
6909 unclaimed *= usage - protected;
6910 unclaimed /= parent_usage - siblings_protected;
6911
6912 ep += unclaimed;
6913 }
6914
6915 return ep;
bc50bcc6
JW
6916}
6917
241994ed 6918/**
05395718 6919 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6920 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6921 * @memcg: the memory cgroup to check
6922 *
23067153
RG
6923 * WARNING: This function is not stateless! It can only be used as part
6924 * of a top-down tree iteration, not for isolated queries.
241994ed 6925 */
45c7f7e1
CD
6926void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6927 struct mem_cgroup *memcg)
241994ed 6928{
8a931f80 6929 unsigned long usage, parent_usage;
23067153
RG
6930 struct mem_cgroup *parent;
6931
241994ed 6932 if (mem_cgroup_disabled())
45c7f7e1 6933 return;
241994ed 6934
34c81057
SC
6935 if (!root)
6936 root = root_mem_cgroup;
22f7496f
YS
6937
6938 /*
6939 * Effective values of the reclaim targets are ignored so they
6940 * can be stale. Have a look at mem_cgroup_protection for more
6941 * details.
6942 * TODO: calculation should be more robust so that we do not need
6943 * that special casing.
6944 */
34c81057 6945 if (memcg == root)
45c7f7e1 6946 return;
241994ed 6947
23067153 6948 usage = page_counter_read(&memcg->memory);
bf8d5d52 6949 if (!usage)
45c7f7e1 6950 return;
bf8d5d52 6951
bf8d5d52 6952 parent = parent_mem_cgroup(memcg);
df2a4196 6953
bc50bcc6 6954 if (parent == root) {
c3d53200 6955 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6956 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6957 return;
bf8d5d52
RG
6958 }
6959
8a931f80
JW
6960 parent_usage = page_counter_read(&parent->memory);
6961
b3a7822e 6962 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6963 READ_ONCE(memcg->memory.min),
6964 READ_ONCE(parent->memory.emin),
b3a7822e 6965 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6966
b3a7822e 6967 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6968 READ_ONCE(memcg->memory.low),
6969 READ_ONCE(parent->memory.elow),
b3a7822e 6970 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6971}
6972
8f425e4e
MWO
6973static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6974 gfp_t gfp)
0add0c77 6975{
118f2875 6976 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6977 int ret;
6978
6979 ret = try_charge(memcg, gfp, nr_pages);
6980 if (ret)
6981 goto out;
6982
6983 css_get(&memcg->css);
118f2875 6984 commit_charge(folio, memcg);
0add0c77
SB
6985
6986 local_irq_disable();
6e0110c2 6987 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6988 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6989 local_irq_enable();
6990out:
6991 return ret;
6992}
6993
8f425e4e 6994int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6995{
0add0c77
SB
6996 struct mem_cgroup *memcg;
6997 int ret;
00501b53 6998
0add0c77 6999 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 7000 ret = charge_memcg(folio, memcg, gfp);
0add0c77 7001 css_put(&memcg->css);
2d1c4980 7002
0add0c77
SB
7003 return ret;
7004}
e993d905 7005
0add0c77 7006/**
65995918
MWO
7007 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7008 * @folio: folio to charge.
0add0c77
SB
7009 * @mm: mm context of the victim
7010 * @gfp: reclaim mode
65995918 7011 * @entry: swap entry for which the folio is allocated
0add0c77 7012 *
65995918
MWO
7013 * This function charges a folio allocated for swapin. Please call this before
7014 * adding the folio to the swapcache.
0add0c77
SB
7015 *
7016 * Returns 0 on success. Otherwise, an error code is returned.
7017 */
65995918 7018int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
7019 gfp_t gfp, swp_entry_t entry)
7020{
7021 struct mem_cgroup *memcg;
7022 unsigned short id;
7023 int ret;
00501b53 7024
0add0c77
SB
7025 if (mem_cgroup_disabled())
7026 return 0;
00501b53 7027
0add0c77
SB
7028 id = lookup_swap_cgroup_id(entry);
7029 rcu_read_lock();
7030 memcg = mem_cgroup_from_id(id);
7031 if (!memcg || !css_tryget_online(&memcg->css))
7032 memcg = get_mem_cgroup_from_mm(mm);
7033 rcu_read_unlock();
00501b53 7034
8f425e4e 7035 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 7036
0add0c77
SB
7037 css_put(&memcg->css);
7038 return ret;
7039}
00501b53 7040
0add0c77
SB
7041/*
7042 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7043 * @entry: swap entry for which the page is charged
7044 *
7045 * Call this function after successfully adding the charged page to swapcache.
7046 *
7047 * Note: This function assumes the page for which swap slot is being uncharged
7048 * is order 0 page.
7049 */
7050void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7051{
cae3af62
MS
7052 /*
7053 * Cgroup1's unified memory+swap counter has been charged with the
7054 * new swapcache page, finish the transfer by uncharging the swap
7055 * slot. The swap slot would also get uncharged when it dies, but
7056 * it can stick around indefinitely and we'd count the page twice
7057 * the entire time.
7058 *
7059 * Cgroup2 has separate resource counters for memory and swap,
7060 * so this is a non-issue here. Memory and swap charge lifetimes
7061 * correspond 1:1 to page and swap slot lifetimes: we charge the
7062 * page to memory here, and uncharge swap when the slot is freed.
7063 */
0add0c77 7064 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
7065 /*
7066 * The swap entry might not get freed for a long time,
7067 * let's not wait for it. The page already received a
7068 * memory+swap charge, drop the swap entry duplicate.
7069 */
0add0c77 7070 mem_cgroup_uncharge_swap(entry, 1);
00501b53 7071 }
3fea5a49
JW
7072}
7073
a9d5adee
JG
7074struct uncharge_gather {
7075 struct mem_cgroup *memcg;
b4e0b68f 7076 unsigned long nr_memory;
a9d5adee 7077 unsigned long pgpgout;
a9d5adee 7078 unsigned long nr_kmem;
8e88bd2d 7079 int nid;
a9d5adee
JG
7080};
7081
7082static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7083{
a9d5adee
JG
7084 memset(ug, 0, sizeof(*ug));
7085}
7086
7087static void uncharge_batch(const struct uncharge_gather *ug)
7088{
747db954
JW
7089 unsigned long flags;
7090
b4e0b68f
MS
7091 if (ug->nr_memory) {
7092 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7093 if (do_memsw_account())
b4e0b68f 7094 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7095 if (ug->nr_kmem)
7096 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7097 memcg_oom_recover(ug->memcg);
ce00a967 7098 }
747db954
JW
7099
7100 local_irq_save(flags);
c9019e9b 7101 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7102 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7103 memcg_check_events(ug->memcg, ug->nid);
747db954 7104 local_irq_restore(flags);
f1796544 7105
c4ed6ebf 7106 /* drop reference from uncharge_folio */
f1796544 7107 css_put(&ug->memcg->css);
a9d5adee
JG
7108}
7109
c4ed6ebf 7110static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7111{
c4ed6ebf 7112 long nr_pages;
b4e0b68f
MS
7113 struct mem_cgroup *memcg;
7114 struct obj_cgroup *objcg;
9f762dbe 7115
c4ed6ebf 7116 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7117
a9d5adee
JG
7118 /*
7119 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7120 * folio memcg or objcg at this point, we have fully
7121 * exclusive access to the folio.
a9d5adee 7122 */
fead2b86 7123 if (folio_memcg_kmem(folio)) {
1b7e4464 7124 objcg = __folio_objcg(folio);
b4e0b68f
MS
7125 /*
7126 * This get matches the put at the end of the function and
7127 * kmem pages do not hold memcg references anymore.
7128 */
7129 memcg = get_mem_cgroup_from_objcg(objcg);
7130 } else {
1b7e4464 7131 memcg = __folio_memcg(folio);
b4e0b68f 7132 }
a9d5adee 7133
b4e0b68f
MS
7134 if (!memcg)
7135 return;
7136
7137 if (ug->memcg != memcg) {
a9d5adee
JG
7138 if (ug->memcg) {
7139 uncharge_batch(ug);
7140 uncharge_gather_clear(ug);
7141 }
b4e0b68f 7142 ug->memcg = memcg;
c4ed6ebf 7143 ug->nid = folio_nid(folio);
f1796544
MH
7144
7145 /* pairs with css_put in uncharge_batch */
b4e0b68f 7146 css_get(&memcg->css);
a9d5adee
JG
7147 }
7148
c4ed6ebf 7149 nr_pages = folio_nr_pages(folio);
a9d5adee 7150
fead2b86 7151 if (folio_memcg_kmem(folio)) {
b4e0b68f 7152 ug->nr_memory += nr_pages;
9f762dbe 7153 ug->nr_kmem += nr_pages;
b4e0b68f 7154
c4ed6ebf 7155 folio->memcg_data = 0;
b4e0b68f
MS
7156 obj_cgroup_put(objcg);
7157 } else {
7158 /* LRU pages aren't accounted at the root level */
7159 if (!mem_cgroup_is_root(memcg))
7160 ug->nr_memory += nr_pages;
18b2db3b 7161 ug->pgpgout++;
a9d5adee 7162
c4ed6ebf 7163 folio->memcg_data = 0;
b4e0b68f
MS
7164 }
7165
7166 css_put(&memcg->css);
747db954
JW
7167}
7168
bbc6b703 7169void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7170{
a9d5adee
JG
7171 struct uncharge_gather ug;
7172
bbc6b703
MWO
7173 /* Don't touch folio->lru of any random page, pre-check: */
7174 if (!folio_memcg(folio))
0a31bc97
JW
7175 return;
7176
a9d5adee 7177 uncharge_gather_clear(&ug);
bbc6b703 7178 uncharge_folio(folio, &ug);
a9d5adee 7179 uncharge_batch(&ug);
747db954 7180}
0a31bc97 7181
747db954 7182/**
2c8d8f97 7183 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7184 * @page_list: list of pages to uncharge
7185 *
7186 * Uncharge a list of pages previously charged with
2c8d8f97 7187 * __mem_cgroup_charge().
747db954 7188 */
2c8d8f97 7189void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7190{
c41a40b6 7191 struct uncharge_gather ug;
c4ed6ebf 7192 struct folio *folio;
c41a40b6 7193
c41a40b6 7194 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7195 list_for_each_entry(folio, page_list, lru)
7196 uncharge_folio(folio, &ug);
c41a40b6
MS
7197 if (ug.memcg)
7198 uncharge_batch(&ug);
0a31bc97
JW
7199}
7200
7201/**
d21bba2b
MWO
7202 * mem_cgroup_migrate - Charge a folio's replacement.
7203 * @old: Currently circulating folio.
7204 * @new: Replacement folio.
0a31bc97 7205 *
d21bba2b 7206 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7207 * be uncharged upon free.
0a31bc97 7208 *
d21bba2b 7209 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7210 */
d21bba2b 7211void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7212{
29833315 7213 struct mem_cgroup *memcg;
d21bba2b 7214 long nr_pages = folio_nr_pages(new);
d93c4130 7215 unsigned long flags;
0a31bc97 7216
d21bba2b
MWO
7217 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7218 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7219 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7220 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7221
7222 if (mem_cgroup_disabled())
7223 return;
7224
d21bba2b
MWO
7225 /* Page cache replacement: new folio already charged? */
7226 if (folio_memcg(new))
0a31bc97
JW
7227 return;
7228
d21bba2b
MWO
7229 memcg = folio_memcg(old);
7230 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7231 if (!memcg)
0a31bc97
JW
7232 return;
7233
44b7a8d3 7234 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7235 if (!mem_cgroup_is_root(memcg)) {
7236 page_counter_charge(&memcg->memory, nr_pages);
7237 if (do_memsw_account())
7238 page_counter_charge(&memcg->memsw, nr_pages);
7239 }
0a31bc97 7240
1a3e1f40 7241 css_get(&memcg->css);
d21bba2b 7242 commit_charge(new, memcg);
44b7a8d3 7243
d93c4130 7244 local_irq_save(flags);
6e0110c2 7245 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7246 memcg_check_events(memcg, folio_nid(new));
d93c4130 7247 local_irq_restore(flags);
0a31bc97
JW
7248}
7249
ef12947c 7250DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7251EXPORT_SYMBOL(memcg_sockets_enabled_key);
7252
2d758073 7253void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7254{
7255 struct mem_cgroup *memcg;
7256
2d758073
JW
7257 if (!mem_cgroup_sockets_enabled)
7258 return;
7259
e876ecc6 7260 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7261 if (!in_task())
e876ecc6
SB
7262 return;
7263
11092087
JW
7264 rcu_read_lock();
7265 memcg = mem_cgroup_from_task(current);
7848ed62 7266 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7267 goto out;
0db15298 7268 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7269 goto out;
8965aa28 7270 if (css_tryget(&memcg->css))
11092087 7271 sk->sk_memcg = memcg;
f7e1cb6e 7272out:
11092087
JW
7273 rcu_read_unlock();
7274}
11092087 7275
2d758073 7276void mem_cgroup_sk_free(struct sock *sk)
11092087 7277{
2d758073
JW
7278 if (sk->sk_memcg)
7279 css_put(&sk->sk_memcg->css);
11092087
JW
7280}
7281
7282/**
7283 * mem_cgroup_charge_skmem - charge socket memory
7284 * @memcg: memcg to charge
7285 * @nr_pages: number of pages to charge
4b1327be 7286 * @gfp_mask: reclaim mode
11092087
JW
7287 *
7288 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7289 * @memcg's configured limit, %false if it doesn't.
11092087 7290 */
4b1327be
WW
7291bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7292 gfp_t gfp_mask)
11092087 7293{
f7e1cb6e 7294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7295 struct page_counter *fail;
f7e1cb6e 7296
0db15298
JW
7297 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7298 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7299 return true;
7300 }
0db15298 7301 memcg->tcpmem_pressure = 1;
4b1327be
WW
7302 if (gfp_mask & __GFP_NOFAIL) {
7303 page_counter_charge(&memcg->tcpmem, nr_pages);
7304 return true;
7305 }
f7e1cb6e 7306 return false;
11092087 7307 }
d886f4e4 7308
4b1327be
WW
7309 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7310 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7311 return true;
4b1327be 7312 }
f7e1cb6e 7313
11092087
JW
7314 return false;
7315}
7316
7317/**
7318 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7319 * @memcg: memcg to uncharge
7320 * @nr_pages: number of pages to uncharge
11092087
JW
7321 */
7322void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7323{
f7e1cb6e 7324 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7325 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7326 return;
7327 }
d886f4e4 7328
c9019e9b 7329 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7330
475d0487 7331 refill_stock(memcg, nr_pages);
11092087
JW
7332}
7333
f7e1cb6e
JW
7334static int __init cgroup_memory(char *s)
7335{
7336 char *token;
7337
7338 while ((token = strsep(&s, ",")) != NULL) {
7339 if (!*token)
7340 continue;
7341 if (!strcmp(token, "nosocket"))
7342 cgroup_memory_nosocket = true;
04823c83
VD
7343 if (!strcmp(token, "nokmem"))
7344 cgroup_memory_nokmem = true;
b6c1a8af
YS
7345 if (!strcmp(token, "nobpf"))
7346 cgroup_memory_nobpf = true;
f7e1cb6e 7347 }
460a79e1 7348 return 1;
f7e1cb6e
JW
7349}
7350__setup("cgroup.memory=", cgroup_memory);
11092087 7351
2d11085e 7352/*
1081312f
MH
7353 * subsys_initcall() for memory controller.
7354 *
308167fc
SAS
7355 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7356 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7357 * basically everything that doesn't depend on a specific mem_cgroup structure
7358 * should be initialized from here.
2d11085e
MH
7359 */
7360static int __init mem_cgroup_init(void)
7361{
95a045f6
JW
7362 int cpu, node;
7363
f3344adf
MS
7364 /*
7365 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7366 * used for per-memcg-per-cpu caching of per-node statistics. In order
7367 * to work fine, we should make sure that the overfill threshold can't
7368 * exceed S32_MAX / PAGE_SIZE.
7369 */
7370 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7371
308167fc
SAS
7372 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7373 memcg_hotplug_cpu_dead);
95a045f6
JW
7374
7375 for_each_possible_cpu(cpu)
7376 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7377 drain_local_stock);
7378
7379 for_each_node(node) {
7380 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7381
7382 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7383 node_online(node) ? node : NUMA_NO_NODE);
7384
ef8f2327 7385 rtpn->rb_root = RB_ROOT;
fa90b2fd 7386 rtpn->rb_rightmost = NULL;
ef8f2327 7387 spin_lock_init(&rtpn->lock);
95a045f6
JW
7388 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7389 }
7390
2d11085e
MH
7391 return 0;
7392}
7393subsys_initcall(mem_cgroup_init);
21afa38e 7394
e55b9f96 7395#ifdef CONFIG_SWAP
358c07fc
AB
7396static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7397{
1c2d479a 7398 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7399 /*
7400 * The root cgroup cannot be destroyed, so it's refcount must
7401 * always be >= 1.
7402 */
7848ed62 7403 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7404 VM_BUG_ON(1);
7405 break;
7406 }
7407 memcg = parent_mem_cgroup(memcg);
7408 if (!memcg)
7409 memcg = root_mem_cgroup;
7410 }
7411 return memcg;
7412}
7413
21afa38e
JW
7414/**
7415 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7416 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7417 * @entry: swap entry to move the charge to
7418 *
3ecb0087 7419 * Transfer the memsw charge of @folio to @entry.
21afa38e 7420 */
3ecb0087 7421void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7422{
1f47b61f 7423 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7424 unsigned int nr_entries;
21afa38e
JW
7425 unsigned short oldid;
7426
3ecb0087
MWO
7427 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7428 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7429
76358ab5
AS
7430 if (mem_cgroup_disabled())
7431 return;
7432
b94c4e94 7433 if (!do_memsw_account())
21afa38e
JW
7434 return;
7435
3ecb0087 7436 memcg = folio_memcg(folio);
21afa38e 7437
3ecb0087 7438 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7439 if (!memcg)
7440 return;
7441
1f47b61f
VD
7442 /*
7443 * In case the memcg owning these pages has been offlined and doesn't
7444 * have an ID allocated to it anymore, charge the closest online
7445 * ancestor for the swap instead and transfer the memory+swap charge.
7446 */
7447 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7448 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7449 /* Get references for the tail pages, too */
7450 if (nr_entries > 1)
7451 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7452 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7453 nr_entries);
3ecb0087 7454 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7455 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7456
3ecb0087 7457 folio->memcg_data = 0;
21afa38e
JW
7458
7459 if (!mem_cgroup_is_root(memcg))
d6810d73 7460 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7461
b25806dc 7462 if (memcg != swap_memcg) {
1f47b61f 7463 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7464 page_counter_charge(&swap_memcg->memsw, nr_entries);
7465 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7466 }
7467
ce9ce665
SAS
7468 /*
7469 * Interrupts should be disabled here because the caller holds the
b93b0163 7470 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7471 * important here to have the interrupts disabled because it is the
b93b0163 7472 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7473 */
be3e67b5 7474 memcg_stats_lock();
6e0110c2 7475 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7476 memcg_stats_unlock();
3ecb0087 7477 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7478
1a3e1f40 7479 css_put(&memcg->css);
21afa38e
JW
7480}
7481
38d8b4e6 7482/**
e2e3fdc7
MWO
7483 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7484 * @folio: folio being added to swap
37e84351
VD
7485 * @entry: swap entry to charge
7486 *
e2e3fdc7 7487 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7488 *
7489 * Returns 0 on success, -ENOMEM on failure.
7490 */
e2e3fdc7 7491int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7492{
e2e3fdc7 7493 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7494 struct page_counter *counter;
38d8b4e6 7495 struct mem_cgroup *memcg;
37e84351
VD
7496 unsigned short oldid;
7497
b94c4e94 7498 if (do_memsw_account())
37e84351
VD
7499 return 0;
7500
e2e3fdc7 7501 memcg = folio_memcg(folio);
37e84351 7502
e2e3fdc7 7503 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7504 if (!memcg)
7505 return 0;
7506
f3a53a3a
TH
7507 if (!entry.val) {
7508 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7509 return 0;
f3a53a3a 7510 }
bb98f2c5 7511
1f47b61f
VD
7512 memcg = mem_cgroup_id_get_online(memcg);
7513
b25806dc 7514 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7515 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7516 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7517 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7518 mem_cgroup_id_put(memcg);
37e84351 7519 return -ENOMEM;
1f47b61f 7520 }
37e84351 7521
38d8b4e6
HY
7522 /* Get references for the tail pages, too */
7523 if (nr_pages > 1)
7524 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7525 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7526 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7527 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7528
37e84351
VD
7529 return 0;
7530}
7531
21afa38e 7532/**
01c4b28c 7533 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7534 * @entry: swap entry to uncharge
38d8b4e6 7535 * @nr_pages: the amount of swap space to uncharge
21afa38e 7536 */
01c4b28c 7537void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7538{
7539 struct mem_cgroup *memcg;
7540 unsigned short id;
7541
c91bdc93
JW
7542 if (mem_cgroup_disabled())
7543 return;
7544
38d8b4e6 7545 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7546 rcu_read_lock();
adbe427b 7547 memcg = mem_cgroup_from_id(id);
21afa38e 7548 if (memcg) {
b25806dc 7549 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7550 if (do_memsw_account())
38d8b4e6 7551 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7552 else
7553 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7554 }
c9019e9b 7555 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7556 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7557 }
7558 rcu_read_unlock();
7559}
7560
d8b38438
VD
7561long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7562{
7563 long nr_swap_pages = get_nr_swap_pages();
7564
b25806dc 7565 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7566 return nr_swap_pages;
7848ed62 7567 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7568 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7569 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7570 page_counter_read(&memcg->swap));
7571 return nr_swap_pages;
7572}
7573
9202d527 7574bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7575{
7576 struct mem_cgroup *memcg;
7577
9202d527 7578 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7579
7580 if (vm_swap_full())
7581 return true;
b25806dc 7582 if (do_memsw_account())
5ccc5aba
VD
7583 return false;
7584
9202d527 7585 memcg = folio_memcg(folio);
5ccc5aba
VD
7586 if (!memcg)
7587 return false;
7588
7848ed62 7589 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7590 unsigned long usage = page_counter_read(&memcg->swap);
7591
7592 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7593 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7594 return true;
4b82ab4f 7595 }
5ccc5aba
VD
7596
7597 return false;
7598}
7599
eccb52e7 7600static int __init setup_swap_account(char *s)
21afa38e 7601{
b25806dc
JW
7602 pr_warn_once("The swapaccount= commandline option is deprecated. "
7603 "Please report your usecase to linux-mm@kvack.org if you "
7604 "depend on this functionality.\n");
21afa38e
JW
7605 return 1;
7606}
eccb52e7 7607__setup("swapaccount=", setup_swap_account);
21afa38e 7608
37e84351
VD
7609static u64 swap_current_read(struct cgroup_subsys_state *css,
7610 struct cftype *cft)
7611{
7612 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7613
7614 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7615}
7616
4b82ab4f
JK
7617static int swap_high_show(struct seq_file *m, void *v)
7618{
7619 return seq_puts_memcg_tunable(m,
7620 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7621}
7622
7623static ssize_t swap_high_write(struct kernfs_open_file *of,
7624 char *buf, size_t nbytes, loff_t off)
7625{
7626 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7627 unsigned long high;
7628 int err;
7629
7630 buf = strstrip(buf);
7631 err = page_counter_memparse(buf, "max", &high);
7632 if (err)
7633 return err;
7634
7635 page_counter_set_high(&memcg->swap, high);
7636
7637 return nbytes;
7638}
7639
37e84351
VD
7640static int swap_max_show(struct seq_file *m, void *v)
7641{
677dc973
CD
7642 return seq_puts_memcg_tunable(m,
7643 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7644}
7645
7646static ssize_t swap_max_write(struct kernfs_open_file *of,
7647 char *buf, size_t nbytes, loff_t off)
7648{
7649 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7650 unsigned long max;
7651 int err;
7652
7653 buf = strstrip(buf);
7654 err = page_counter_memparse(buf, "max", &max);
7655 if (err)
7656 return err;
7657
be09102b 7658 xchg(&memcg->swap.max, max);
37e84351
VD
7659
7660 return nbytes;
7661}
7662
f3a53a3a
TH
7663static int swap_events_show(struct seq_file *m, void *v)
7664{
aa9694bb 7665 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7666
4b82ab4f
JK
7667 seq_printf(m, "high %lu\n",
7668 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7669 seq_printf(m, "max %lu\n",
7670 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7671 seq_printf(m, "fail %lu\n",
7672 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7673
7674 return 0;
7675}
7676
37e84351
VD
7677static struct cftype swap_files[] = {
7678 {
7679 .name = "swap.current",
7680 .flags = CFTYPE_NOT_ON_ROOT,
7681 .read_u64 = swap_current_read,
7682 },
4b82ab4f
JK
7683 {
7684 .name = "swap.high",
7685 .flags = CFTYPE_NOT_ON_ROOT,
7686 .seq_show = swap_high_show,
7687 .write = swap_high_write,
7688 },
37e84351
VD
7689 {
7690 .name = "swap.max",
7691 .flags = CFTYPE_NOT_ON_ROOT,
7692 .seq_show = swap_max_show,
7693 .write = swap_max_write,
7694 },
f3a53a3a
TH
7695 {
7696 .name = "swap.events",
7697 .flags = CFTYPE_NOT_ON_ROOT,
7698 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7699 .seq_show = swap_events_show,
7700 },
37e84351
VD
7701 { } /* terminate */
7702};
7703
eccb52e7 7704static struct cftype memsw_files[] = {
21afa38e
JW
7705 {
7706 .name = "memsw.usage_in_bytes",
7707 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7708 .read_u64 = mem_cgroup_read_u64,
7709 },
7710 {
7711 .name = "memsw.max_usage_in_bytes",
7712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7713 .write = mem_cgroup_reset,
7714 .read_u64 = mem_cgroup_read_u64,
7715 },
7716 {
7717 .name = "memsw.limit_in_bytes",
7718 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7719 .write = mem_cgroup_write,
7720 .read_u64 = mem_cgroup_read_u64,
7721 },
7722 {
7723 .name = "memsw.failcnt",
7724 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7725 .write = mem_cgroup_reset,
7726 .read_u64 = mem_cgroup_read_u64,
7727 },
7728 { }, /* terminate */
7729};
7730
f4840ccf
JW
7731#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7732/**
7733 * obj_cgroup_may_zswap - check if this cgroup can zswap
7734 * @objcg: the object cgroup
7735 *
7736 * Check if the hierarchical zswap limit has been reached.
7737 *
7738 * This doesn't check for specific headroom, and it is not atomic
7739 * either. But with zswap, the size of the allocation is only known
7740 * once compression has occured, and this optimistic pre-check avoids
7741 * spending cycles on compression when there is already no room left
7742 * or zswap is disabled altogether somewhere in the hierarchy.
7743 */
7744bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7745{
7746 struct mem_cgroup *memcg, *original_memcg;
7747 bool ret = true;
7748
7749 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7750 return true;
7751
7752 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7753 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7754 memcg = parent_mem_cgroup(memcg)) {
7755 unsigned long max = READ_ONCE(memcg->zswap_max);
7756 unsigned long pages;
7757
7758 if (max == PAGE_COUNTER_MAX)
7759 continue;
7760 if (max == 0) {
7761 ret = false;
7762 break;
7763 }
7764
7765 cgroup_rstat_flush(memcg->css.cgroup);
7766 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7767 if (pages < max)
7768 continue;
7769 ret = false;
7770 break;
7771 }
7772 mem_cgroup_put(original_memcg);
7773 return ret;
7774}
7775
7776/**
7777 * obj_cgroup_charge_zswap - charge compression backend memory
7778 * @objcg: the object cgroup
7779 * @size: size of compressed object
7780 *
7781 * This forces the charge after obj_cgroup_may_swap() allowed
7782 * compression and storage in zwap for this cgroup to go ahead.
7783 */
7784void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7785{
7786 struct mem_cgroup *memcg;
7787
7788 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7789 return;
7790
7791 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7792
7793 /* PF_MEMALLOC context, charging must succeed */
7794 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7795 VM_WARN_ON_ONCE(1);
7796
7797 rcu_read_lock();
7798 memcg = obj_cgroup_memcg(objcg);
7799 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7800 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7801 rcu_read_unlock();
7802}
7803
7804/**
7805 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7806 * @objcg: the object cgroup
7807 * @size: size of compressed object
7808 *
7809 * Uncharges zswap memory on page in.
7810 */
7811void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7812{
7813 struct mem_cgroup *memcg;
7814
7815 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7816 return;
7817
7818 obj_cgroup_uncharge(objcg, size);
7819
7820 rcu_read_lock();
7821 memcg = obj_cgroup_memcg(objcg);
7822 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7823 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7824 rcu_read_unlock();
7825}
7826
7827static u64 zswap_current_read(struct cgroup_subsys_state *css,
7828 struct cftype *cft)
7829{
7830 cgroup_rstat_flush(css->cgroup);
7831 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7832}
7833
7834static int zswap_max_show(struct seq_file *m, void *v)
7835{
7836 return seq_puts_memcg_tunable(m,
7837 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7838}
7839
7840static ssize_t zswap_max_write(struct kernfs_open_file *of,
7841 char *buf, size_t nbytes, loff_t off)
7842{
7843 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7844 unsigned long max;
7845 int err;
7846
7847 buf = strstrip(buf);
7848 err = page_counter_memparse(buf, "max", &max);
7849 if (err)
7850 return err;
7851
7852 xchg(&memcg->zswap_max, max);
7853
7854 return nbytes;
7855}
7856
7857static struct cftype zswap_files[] = {
7858 {
7859 .name = "zswap.current",
7860 .flags = CFTYPE_NOT_ON_ROOT,
7861 .read_u64 = zswap_current_read,
7862 },
7863 {
7864 .name = "zswap.max",
7865 .flags = CFTYPE_NOT_ON_ROOT,
7866 .seq_show = zswap_max_show,
7867 .write = zswap_max_write,
7868 },
7869 { } /* terminate */
7870};
7871#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7872
21afa38e
JW
7873static int __init mem_cgroup_swap_init(void)
7874{
2d1c4980 7875 if (mem_cgroup_disabled())
eccb52e7
JW
7876 return 0;
7877
7878 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7879 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7880#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7881 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7882#endif
21afa38e
JW
7883 return 0;
7884}
b25806dc 7885subsys_initcall(mem_cgroup_swap_init);
21afa38e 7886
e55b9f96 7887#endif /* CONFIG_SWAP */