]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: pull the NULL check from __mem_cgroup_same_or_subtree()
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c 1287 /*
dfe0e773 1288 * Swapcache readahead pages are added to the LRU - and
29833315 1289 * possibly migrated - before they are charged.
7512102c 1290 */
29833315
JW
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
7512102c 1293
e231875b 1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1295 lruvec = &mz->lruvec;
1296out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
08e552c6 1305}
b69408e8 1306
925b7673 1307/**
fa9add64
HD
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
925b7673 1312 *
fa9add64
HD
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
3f58a829 1315 */
fa9add64
HD
1316void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
3f58a829
MK
1318{
1319 struct mem_cgroup_per_zone *mz;
fa9add64 1320 unsigned long *lru_size;
3f58a829
MK
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
fa9add64
HD
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1329}
544122e5 1330
3e92041d 1331/*
c0ff4b85 1332 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1333 * hierarchy subtree
1334 */
c3ac9a8a
JW
1335bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
3e92041d 1337{
91c63734
JW
1338 if (root_memcg == memcg)
1339 return true;
413918bb 1340 if (!root_memcg->use_hierarchy)
91c63734 1341 return false;
b47f77b5 1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1343}
1344
1345static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347{
1348 bool ret;
1349
91c63734 1350 rcu_read_lock();
c3ac9a8a 1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1352 rcu_read_unlock();
1353 return ret;
3e92041d
MH
1354}
1355
ffbdccf5
DR
1356bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
4c4a2214 1358{
c01f46c7 1359 struct mem_cgroup *curr;
158e0a2d 1360 struct task_struct *p;
ffbdccf5 1361 bool ret;
4c4a2214 1362
158e0a2d 1363 p = find_lock_task_mm(task);
de077d22 1364 if (p) {
df381975 1365 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
ffbdccf5 1373 rcu_read_lock();
de077d22 1374 curr = mem_cgroup_from_task(task);
c01f46c7 1375 css_get(&curr->css);
ffbdccf5 1376 rcu_read_unlock();
de077d22 1377 }
d31f56db 1378 /*
c0ff4b85 1379 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1380 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1381 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1382 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1383 */
c0ff4b85 1384 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1385 css_put(&curr->css);
4c4a2214
DR
1386 return ret;
1387}
1388
c56d5c7d 1389int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1390{
9b272977 1391 unsigned long inactive_ratio;
14797e23 1392 unsigned long inactive;
9b272977 1393 unsigned long active;
c772be93 1394 unsigned long gb;
14797e23 1395
4d7dcca2
HD
1396 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1397 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1398
c772be93
KM
1399 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1400 if (gb)
1401 inactive_ratio = int_sqrt(10 * gb);
1402 else
1403 inactive_ratio = 1;
1404
9b272977 1405 return inactive * inactive_ratio < active;
14797e23
KM
1406}
1407
3e32cb2e 1408#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1409 container_of(counter, struct mem_cgroup, member)
1410
19942822 1411/**
9d11ea9f 1412 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1413 * @memcg: the memory cgroup
19942822 1414 *
9d11ea9f 1415 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1416 * pages.
19942822 1417 */
c0ff4b85 1418static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1419{
3e32cb2e
JW
1420 unsigned long margin = 0;
1421 unsigned long count;
1422 unsigned long limit;
9d11ea9f 1423
3e32cb2e
JW
1424 count = page_counter_read(&memcg->memory);
1425 limit = ACCESS_ONCE(memcg->memory.limit);
1426 if (count < limit)
1427 margin = limit - count;
1428
1429 if (do_swap_account) {
1430 count = page_counter_read(&memcg->memsw);
1431 limit = ACCESS_ONCE(memcg->memsw.limit);
1432 if (count <= limit)
1433 margin = min(margin, limit - count);
1434 }
1435
1436 return margin;
19942822
JW
1437}
1438
1f4c025b 1439int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1440{
a7885eb8 1441 /* root ? */
14208b0e 1442 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1443 return vm_swappiness;
1444
bf1ff263 1445 return memcg->swappiness;
a7885eb8
KM
1446}
1447
32047e2a 1448/*
bdcbb659 1449 * A routine for checking "mem" is under move_account() or not.
32047e2a 1450 *
bdcbb659
QH
1451 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1452 * moving cgroups. This is for waiting at high-memory pressure
1453 * caused by "move".
32047e2a 1454 */
c0ff4b85 1455static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1456{
2bd9bb20
KH
1457 struct mem_cgroup *from;
1458 struct mem_cgroup *to;
4b534334 1459 bool ret = false;
2bd9bb20
KH
1460 /*
1461 * Unlike task_move routines, we access mc.to, mc.from not under
1462 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1463 */
1464 spin_lock(&mc.lock);
1465 from = mc.from;
1466 to = mc.to;
1467 if (!from)
1468 goto unlock;
3e92041d 1469
c0ff4b85
R
1470 ret = mem_cgroup_same_or_subtree(memcg, from)
1471 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1472unlock:
1473 spin_unlock(&mc.lock);
4b534334
KH
1474 return ret;
1475}
1476
c0ff4b85 1477static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1478{
1479 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1480 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1481 DEFINE_WAIT(wait);
1482 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1483 /* moving charge context might have finished. */
1484 if (mc.moving_task)
1485 schedule();
1486 finish_wait(&mc.waitq, &wait);
1487 return true;
1488 }
1489 }
1490 return false;
1491}
1492
58cf188e 1493#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1494/**
58cf188e 1495 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1496 * @memcg: The memory cgroup that went over limit
1497 * @p: Task that is going to be killed
1498 *
1499 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1500 * enabled
1501 */
1502void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1503{
e61734c5 1504 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1505 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1506 struct mem_cgroup *iter;
1507 unsigned int i;
e222432b 1508
58cf188e 1509 if (!p)
e222432b
BS
1510 return;
1511
08088cb9 1512 mutex_lock(&oom_info_lock);
e222432b
BS
1513 rcu_read_lock();
1514
e61734c5
TH
1515 pr_info("Task in ");
1516 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1517 pr_info(" killed as a result of limit of ");
1518 pr_cont_cgroup_path(memcg->css.cgroup);
1519 pr_info("\n");
e222432b 1520
e222432b
BS
1521 rcu_read_unlock();
1522
3e32cb2e
JW
1523 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1524 K((u64)page_counter_read(&memcg->memory)),
1525 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1526 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->memsw)),
1528 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1529 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1530 K((u64)page_counter_read(&memcg->kmem)),
1531 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1532
1533 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1534 pr_info("Memory cgroup stats for ");
1535 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1536 pr_cont(":");
1537
1538 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1539 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1540 continue;
1541 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1542 K(mem_cgroup_read_stat(iter, i)));
1543 }
1544
1545 for (i = 0; i < NR_LRU_LISTS; i++)
1546 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1547 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1548
1549 pr_cont("\n");
1550 }
08088cb9 1551 mutex_unlock(&oom_info_lock);
e222432b
BS
1552}
1553
81d39c20
KH
1554/*
1555 * This function returns the number of memcg under hierarchy tree. Returns
1556 * 1(self count) if no children.
1557 */
c0ff4b85 1558static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1559{
1560 int num = 0;
7d74b06f
KH
1561 struct mem_cgroup *iter;
1562
c0ff4b85 1563 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1564 num++;
81d39c20
KH
1565 return num;
1566}
1567
a63d83f4
DR
1568/*
1569 * Return the memory (and swap, if configured) limit for a memcg.
1570 */
3e32cb2e 1571static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1572{
3e32cb2e 1573 unsigned long limit;
a63d83f4 1574
3e32cb2e 1575 limit = memcg->memory.limit;
9a5a8f19 1576 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1577 unsigned long memsw_limit;
9a5a8f19 1578
3e32cb2e
JW
1579 memsw_limit = memcg->memsw.limit;
1580 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1581 }
9a5a8f19 1582 return limit;
a63d83f4
DR
1583}
1584
19965460
DR
1585static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1586 int order)
9cbb78bb
DR
1587{
1588 struct mem_cgroup *iter;
1589 unsigned long chosen_points = 0;
1590 unsigned long totalpages;
1591 unsigned int points = 0;
1592 struct task_struct *chosen = NULL;
1593
876aafbf 1594 /*
465adcf1
DR
1595 * If current has a pending SIGKILL or is exiting, then automatically
1596 * select it. The goal is to allow it to allocate so that it may
1597 * quickly exit and free its memory.
876aafbf 1598 */
465adcf1 1599 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1600 set_thread_flag(TIF_MEMDIE);
1601 return;
1602 }
1603
1604 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1605 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1606 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1607 struct css_task_iter it;
9cbb78bb
DR
1608 struct task_struct *task;
1609
72ec7029
TH
1610 css_task_iter_start(&iter->css, &it);
1611 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1612 switch (oom_scan_process_thread(task, totalpages, NULL,
1613 false)) {
1614 case OOM_SCAN_SELECT:
1615 if (chosen)
1616 put_task_struct(chosen);
1617 chosen = task;
1618 chosen_points = ULONG_MAX;
1619 get_task_struct(chosen);
1620 /* fall through */
1621 case OOM_SCAN_CONTINUE:
1622 continue;
1623 case OOM_SCAN_ABORT:
72ec7029 1624 css_task_iter_end(&it);
9cbb78bb
DR
1625 mem_cgroup_iter_break(memcg, iter);
1626 if (chosen)
1627 put_task_struct(chosen);
1628 return;
1629 case OOM_SCAN_OK:
1630 break;
1631 };
1632 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1633 if (!points || points < chosen_points)
1634 continue;
1635 /* Prefer thread group leaders for display purposes */
1636 if (points == chosen_points &&
1637 thread_group_leader(chosen))
1638 continue;
1639
1640 if (chosen)
1641 put_task_struct(chosen);
1642 chosen = task;
1643 chosen_points = points;
1644 get_task_struct(chosen);
9cbb78bb 1645 }
72ec7029 1646 css_task_iter_end(&it);
9cbb78bb
DR
1647 }
1648
1649 if (!chosen)
1650 return;
1651 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1652 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1653 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1654}
1655
4d0c066d
KH
1656/**
1657 * test_mem_cgroup_node_reclaimable
dad7557e 1658 * @memcg: the target memcg
4d0c066d
KH
1659 * @nid: the node ID to be checked.
1660 * @noswap : specify true here if the user wants flle only information.
1661 *
1662 * This function returns whether the specified memcg contains any
1663 * reclaimable pages on a node. Returns true if there are any reclaimable
1664 * pages in the node.
1665 */
c0ff4b85 1666static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1667 int nid, bool noswap)
1668{
c0ff4b85 1669 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1670 return true;
1671 if (noswap || !total_swap_pages)
1672 return false;
c0ff4b85 1673 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1674 return true;
1675 return false;
1676
1677}
bb4cc1a8 1678#if MAX_NUMNODES > 1
889976db
YH
1679
1680/*
1681 * Always updating the nodemask is not very good - even if we have an empty
1682 * list or the wrong list here, we can start from some node and traverse all
1683 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1684 *
1685 */
c0ff4b85 1686static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1687{
1688 int nid;
453a9bf3
KH
1689 /*
1690 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1691 * pagein/pageout changes since the last update.
1692 */
c0ff4b85 1693 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1694 return;
c0ff4b85 1695 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1696 return;
1697
889976db 1698 /* make a nodemask where this memcg uses memory from */
31aaea4a 1699 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1700
31aaea4a 1701 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1702
c0ff4b85
R
1703 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1704 node_clear(nid, memcg->scan_nodes);
889976db 1705 }
453a9bf3 1706
c0ff4b85
R
1707 atomic_set(&memcg->numainfo_events, 0);
1708 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1709}
1710
1711/*
1712 * Selecting a node where we start reclaim from. Because what we need is just
1713 * reducing usage counter, start from anywhere is O,K. Considering
1714 * memory reclaim from current node, there are pros. and cons.
1715 *
1716 * Freeing memory from current node means freeing memory from a node which
1717 * we'll use or we've used. So, it may make LRU bad. And if several threads
1718 * hit limits, it will see a contention on a node. But freeing from remote
1719 * node means more costs for memory reclaim because of memory latency.
1720 *
1721 * Now, we use round-robin. Better algorithm is welcomed.
1722 */
c0ff4b85 1723int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1724{
1725 int node;
1726
c0ff4b85
R
1727 mem_cgroup_may_update_nodemask(memcg);
1728 node = memcg->last_scanned_node;
889976db 1729
c0ff4b85 1730 node = next_node(node, memcg->scan_nodes);
889976db 1731 if (node == MAX_NUMNODES)
c0ff4b85 1732 node = first_node(memcg->scan_nodes);
889976db
YH
1733 /*
1734 * We call this when we hit limit, not when pages are added to LRU.
1735 * No LRU may hold pages because all pages are UNEVICTABLE or
1736 * memcg is too small and all pages are not on LRU. In that case,
1737 * we use curret node.
1738 */
1739 if (unlikely(node == MAX_NUMNODES))
1740 node = numa_node_id();
1741
c0ff4b85 1742 memcg->last_scanned_node = node;
889976db
YH
1743 return node;
1744}
889976db 1745#else
c0ff4b85 1746int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1747{
1748 return 0;
1749}
1750#endif
1751
0608f43d
AM
1752static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1753 struct zone *zone,
1754 gfp_t gfp_mask,
1755 unsigned long *total_scanned)
1756{
1757 struct mem_cgroup *victim = NULL;
1758 int total = 0;
1759 int loop = 0;
1760 unsigned long excess;
1761 unsigned long nr_scanned;
1762 struct mem_cgroup_reclaim_cookie reclaim = {
1763 .zone = zone,
1764 .priority = 0,
1765 };
1766
3e32cb2e 1767 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1768
1769 while (1) {
1770 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1771 if (!victim) {
1772 loop++;
1773 if (loop >= 2) {
1774 /*
1775 * If we have not been able to reclaim
1776 * anything, it might because there are
1777 * no reclaimable pages under this hierarchy
1778 */
1779 if (!total)
1780 break;
1781 /*
1782 * We want to do more targeted reclaim.
1783 * excess >> 2 is not to excessive so as to
1784 * reclaim too much, nor too less that we keep
1785 * coming back to reclaim from this cgroup
1786 */
1787 if (total >= (excess >> 2) ||
1788 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1789 break;
1790 }
1791 continue;
1792 }
0608f43d
AM
1793 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1794 zone, &nr_scanned);
1795 *total_scanned += nr_scanned;
3e32cb2e 1796 if (!soft_limit_excess(root_memcg))
0608f43d 1797 break;
6d61ef40 1798 }
0608f43d
AM
1799 mem_cgroup_iter_break(root_memcg, victim);
1800 return total;
6d61ef40
BS
1801}
1802
0056f4e6
JW
1803#ifdef CONFIG_LOCKDEP
1804static struct lockdep_map memcg_oom_lock_dep_map = {
1805 .name = "memcg_oom_lock",
1806};
1807#endif
1808
fb2a6fc5
JW
1809static DEFINE_SPINLOCK(memcg_oom_lock);
1810
867578cb
KH
1811/*
1812 * Check OOM-Killer is already running under our hierarchy.
1813 * If someone is running, return false.
1814 */
fb2a6fc5 1815static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1816{
79dfdacc 1817 struct mem_cgroup *iter, *failed = NULL;
a636b327 1818
fb2a6fc5
JW
1819 spin_lock(&memcg_oom_lock);
1820
9f3a0d09 1821 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1822 if (iter->oom_lock) {
79dfdacc
MH
1823 /*
1824 * this subtree of our hierarchy is already locked
1825 * so we cannot give a lock.
1826 */
79dfdacc 1827 failed = iter;
9f3a0d09
JW
1828 mem_cgroup_iter_break(memcg, iter);
1829 break;
23751be0
JW
1830 } else
1831 iter->oom_lock = true;
7d74b06f 1832 }
867578cb 1833
fb2a6fc5
JW
1834 if (failed) {
1835 /*
1836 * OK, we failed to lock the whole subtree so we have
1837 * to clean up what we set up to the failing subtree
1838 */
1839 for_each_mem_cgroup_tree(iter, memcg) {
1840 if (iter == failed) {
1841 mem_cgroup_iter_break(memcg, iter);
1842 break;
1843 }
1844 iter->oom_lock = false;
79dfdacc 1845 }
0056f4e6
JW
1846 } else
1847 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1848
1849 spin_unlock(&memcg_oom_lock);
1850
1851 return !failed;
a636b327 1852}
0b7f569e 1853
fb2a6fc5 1854static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1855{
7d74b06f
KH
1856 struct mem_cgroup *iter;
1857
fb2a6fc5 1858 spin_lock(&memcg_oom_lock);
0056f4e6 1859 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1860 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1861 iter->oom_lock = false;
fb2a6fc5 1862 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1863}
1864
c0ff4b85 1865static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1866{
1867 struct mem_cgroup *iter;
1868
c0ff4b85 1869 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1870 atomic_inc(&iter->under_oom);
1871}
1872
c0ff4b85 1873static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1874{
1875 struct mem_cgroup *iter;
1876
867578cb
KH
1877 /*
1878 * When a new child is created while the hierarchy is under oom,
1879 * mem_cgroup_oom_lock() may not be called. We have to use
1880 * atomic_add_unless() here.
1881 */
c0ff4b85 1882 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1883 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1884}
1885
867578cb
KH
1886static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1887
dc98df5a 1888struct oom_wait_info {
d79154bb 1889 struct mem_cgroup *memcg;
dc98df5a
KH
1890 wait_queue_t wait;
1891};
1892
1893static int memcg_oom_wake_function(wait_queue_t *wait,
1894 unsigned mode, int sync, void *arg)
1895{
d79154bb
HD
1896 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1897 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1898 struct oom_wait_info *oom_wait_info;
1899
1900 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1901 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1902
dc98df5a 1903 /*
d79154bb 1904 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1905 * Then we can use css_is_ancestor without taking care of RCU.
1906 */
c0ff4b85
R
1907 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1908 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1909 return 0;
dc98df5a
KH
1910 return autoremove_wake_function(wait, mode, sync, arg);
1911}
1912
c0ff4b85 1913static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1914{
3812c8c8 1915 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1916 /* for filtering, pass "memcg" as argument. */
1917 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1918}
1919
c0ff4b85 1920static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1921{
c0ff4b85
R
1922 if (memcg && atomic_read(&memcg->under_oom))
1923 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1924}
1925
3812c8c8 1926static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1927{
3812c8c8
JW
1928 if (!current->memcg_oom.may_oom)
1929 return;
867578cb 1930 /*
49426420
JW
1931 * We are in the middle of the charge context here, so we
1932 * don't want to block when potentially sitting on a callstack
1933 * that holds all kinds of filesystem and mm locks.
1934 *
1935 * Also, the caller may handle a failed allocation gracefully
1936 * (like optional page cache readahead) and so an OOM killer
1937 * invocation might not even be necessary.
1938 *
1939 * That's why we don't do anything here except remember the
1940 * OOM context and then deal with it at the end of the page
1941 * fault when the stack is unwound, the locks are released,
1942 * and when we know whether the fault was overall successful.
867578cb 1943 */
49426420
JW
1944 css_get(&memcg->css);
1945 current->memcg_oom.memcg = memcg;
1946 current->memcg_oom.gfp_mask = mask;
1947 current->memcg_oom.order = order;
3812c8c8
JW
1948}
1949
1950/**
1951 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1952 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1953 *
49426420
JW
1954 * This has to be called at the end of a page fault if the memcg OOM
1955 * handler was enabled.
3812c8c8 1956 *
49426420 1957 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1958 * sleep on a waitqueue until the userspace task resolves the
1959 * situation. Sleeping directly in the charge context with all kinds
1960 * of locks held is not a good idea, instead we remember an OOM state
1961 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1962 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1963 *
1964 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1965 * completed, %false otherwise.
3812c8c8 1966 */
49426420 1967bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1968{
49426420 1969 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1970 struct oom_wait_info owait;
49426420 1971 bool locked;
3812c8c8
JW
1972
1973 /* OOM is global, do not handle */
3812c8c8 1974 if (!memcg)
49426420 1975 return false;
3812c8c8 1976
49426420
JW
1977 if (!handle)
1978 goto cleanup;
3812c8c8
JW
1979
1980 owait.memcg = memcg;
1981 owait.wait.flags = 0;
1982 owait.wait.func = memcg_oom_wake_function;
1983 owait.wait.private = current;
1984 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1985
3812c8c8 1986 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1987 mem_cgroup_mark_under_oom(memcg);
1988
1989 locked = mem_cgroup_oom_trylock(memcg);
1990
1991 if (locked)
1992 mem_cgroup_oom_notify(memcg);
1993
1994 if (locked && !memcg->oom_kill_disable) {
1995 mem_cgroup_unmark_under_oom(memcg);
1996 finish_wait(&memcg_oom_waitq, &owait.wait);
1997 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1998 current->memcg_oom.order);
1999 } else {
3812c8c8 2000 schedule();
49426420
JW
2001 mem_cgroup_unmark_under_oom(memcg);
2002 finish_wait(&memcg_oom_waitq, &owait.wait);
2003 }
2004
2005 if (locked) {
fb2a6fc5
JW
2006 mem_cgroup_oom_unlock(memcg);
2007 /*
2008 * There is no guarantee that an OOM-lock contender
2009 * sees the wakeups triggered by the OOM kill
2010 * uncharges. Wake any sleepers explicitely.
2011 */
2012 memcg_oom_recover(memcg);
2013 }
49426420
JW
2014cleanup:
2015 current->memcg_oom.memcg = NULL;
3812c8c8 2016 css_put(&memcg->css);
867578cb 2017 return true;
0b7f569e
KH
2018}
2019
d7365e78
JW
2020/**
2021 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2022 * @page: page that is going to change accounted state
2023 * @locked: &memcg->move_lock slowpath was taken
2024 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2025 *
d7365e78
JW
2026 * This function must mark the beginning of an accounted page state
2027 * change to prevent double accounting when the page is concurrently
2028 * being moved to another memcg:
32047e2a 2029 *
d7365e78
JW
2030 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2031 * if (TestClearPageState(page))
2032 * mem_cgroup_update_page_stat(memcg, state, -1);
2033 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2034 *
d7365e78
JW
2035 * The RCU lock is held throughout the transaction. The fast path can
2036 * get away without acquiring the memcg->move_lock (@locked is false)
2037 * because page moving starts with an RCU grace period.
32047e2a 2038 *
d7365e78
JW
2039 * The RCU lock also protects the memcg from being freed when the page
2040 * state that is going to change is the only thing preventing the page
2041 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2042 * which allows migration to go ahead and uncharge the page before the
2043 * account transaction might be complete.
d69b042f 2044 */
d7365e78
JW
2045struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2046 bool *locked,
2047 unsigned long *flags)
89c06bd5
KH
2048{
2049 struct mem_cgroup *memcg;
2050 struct page_cgroup *pc;
2051
d7365e78
JW
2052 rcu_read_lock();
2053
2054 if (mem_cgroup_disabled())
2055 return NULL;
2056
89c06bd5
KH
2057 pc = lookup_page_cgroup(page);
2058again:
2059 memcg = pc->mem_cgroup;
29833315 2060 if (unlikely(!memcg))
d7365e78
JW
2061 return NULL;
2062
2063 *locked = false;
bdcbb659 2064 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2065 return memcg;
89c06bd5 2066
354a4783 2067 spin_lock_irqsave(&memcg->move_lock, *flags);
29833315 2068 if (memcg != pc->mem_cgroup) {
354a4783 2069 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2070 goto again;
2071 }
2072 *locked = true;
d7365e78
JW
2073
2074 return memcg;
89c06bd5
KH
2075}
2076
d7365e78
JW
2077/**
2078 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2079 * @memcg: the memcg that was accounted against
2080 * @locked: value received from mem_cgroup_begin_page_stat()
2081 * @flags: value received from mem_cgroup_begin_page_stat()
2082 */
2083void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2084 unsigned long flags)
89c06bd5 2085{
d7365e78 2086 if (memcg && locked)
354a4783 2087 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5 2088
d7365e78 2089 rcu_read_unlock();
89c06bd5
KH
2090}
2091
d7365e78
JW
2092/**
2093 * mem_cgroup_update_page_stat - update page state statistics
2094 * @memcg: memcg to account against
2095 * @idx: page state item to account
2096 * @val: number of pages (positive or negative)
2097 *
2098 * See mem_cgroup_begin_page_stat() for locking requirements.
2099 */
2100void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2101 enum mem_cgroup_stat_index idx, int val)
d69b042f 2102{
658b72c5 2103 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2104
d7365e78
JW
2105 if (memcg)
2106 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2107}
26174efd 2108
cdec2e42
KH
2109/*
2110 * size of first charge trial. "32" comes from vmscan.c's magic value.
2111 * TODO: maybe necessary to use big numbers in big irons.
2112 */
7ec99d62 2113#define CHARGE_BATCH 32U
cdec2e42
KH
2114struct memcg_stock_pcp {
2115 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2116 unsigned int nr_pages;
cdec2e42 2117 struct work_struct work;
26fe6168 2118 unsigned long flags;
a0db00fc 2119#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2120};
2121static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2122static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2123
a0956d54
SS
2124/**
2125 * consume_stock: Try to consume stocked charge on this cpu.
2126 * @memcg: memcg to consume from.
2127 * @nr_pages: how many pages to charge.
2128 *
2129 * The charges will only happen if @memcg matches the current cpu's memcg
2130 * stock, and at least @nr_pages are available in that stock. Failure to
2131 * service an allocation will refill the stock.
2132 *
2133 * returns true if successful, false otherwise.
cdec2e42 2134 */
a0956d54 2135static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2136{
2137 struct memcg_stock_pcp *stock;
3e32cb2e 2138 bool ret = false;
cdec2e42 2139
a0956d54 2140 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2141 return ret;
a0956d54 2142
cdec2e42 2143 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2144 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2145 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2146 ret = true;
2147 }
cdec2e42
KH
2148 put_cpu_var(memcg_stock);
2149 return ret;
2150}
2151
2152/*
3e32cb2e 2153 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2154 */
2155static void drain_stock(struct memcg_stock_pcp *stock)
2156{
2157 struct mem_cgroup *old = stock->cached;
2158
11c9ea4e 2159 if (stock->nr_pages) {
3e32cb2e 2160 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2161 if (do_swap_account)
3e32cb2e 2162 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2163 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2164 stock->nr_pages = 0;
cdec2e42
KH
2165 }
2166 stock->cached = NULL;
cdec2e42
KH
2167}
2168
2169/*
2170 * This must be called under preempt disabled or must be called by
2171 * a thread which is pinned to local cpu.
2172 */
2173static void drain_local_stock(struct work_struct *dummy)
2174{
7c8e0181 2175 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2176 drain_stock(stock);
26fe6168 2177 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2178}
2179
e4777496
MH
2180static void __init memcg_stock_init(void)
2181{
2182 int cpu;
2183
2184 for_each_possible_cpu(cpu) {
2185 struct memcg_stock_pcp *stock =
2186 &per_cpu(memcg_stock, cpu);
2187 INIT_WORK(&stock->work, drain_local_stock);
2188 }
2189}
2190
cdec2e42 2191/*
3e32cb2e 2192 * Cache charges(val) to local per_cpu area.
320cc51d 2193 * This will be consumed by consume_stock() function, later.
cdec2e42 2194 */
c0ff4b85 2195static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2196{
2197 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2198
c0ff4b85 2199 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2200 drain_stock(stock);
c0ff4b85 2201 stock->cached = memcg;
cdec2e42 2202 }
11c9ea4e 2203 stock->nr_pages += nr_pages;
cdec2e42
KH
2204 put_cpu_var(memcg_stock);
2205}
2206
2207/*
c0ff4b85 2208 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2209 * of the hierarchy under it.
cdec2e42 2210 */
6d3d6aa2 2211static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2212{
26fe6168 2213 int cpu, curcpu;
d38144b7 2214
6d3d6aa2
JW
2215 /* If someone's already draining, avoid adding running more workers. */
2216 if (!mutex_trylock(&percpu_charge_mutex))
2217 return;
cdec2e42 2218 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2219 get_online_cpus();
5af12d0e 2220 curcpu = get_cpu();
cdec2e42
KH
2221 for_each_online_cpu(cpu) {
2222 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2223 struct mem_cgroup *memcg;
26fe6168 2224
c0ff4b85
R
2225 memcg = stock->cached;
2226 if (!memcg || !stock->nr_pages)
26fe6168 2227 continue;
c0ff4b85 2228 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2229 continue;
d1a05b69
MH
2230 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2231 if (cpu == curcpu)
2232 drain_local_stock(&stock->work);
2233 else
2234 schedule_work_on(cpu, &stock->work);
2235 }
cdec2e42 2236 }
5af12d0e 2237 put_cpu();
f894ffa8 2238 put_online_cpus();
9f50fad6 2239 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2240}
2241
711d3d2c
KH
2242/*
2243 * This function drains percpu counter value from DEAD cpu and
2244 * move it to local cpu. Note that this function can be preempted.
2245 */
c0ff4b85 2246static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2247{
2248 int i;
2249
c0ff4b85 2250 spin_lock(&memcg->pcp_counter_lock);
6104621d 2251 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2252 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2253
c0ff4b85
R
2254 per_cpu(memcg->stat->count[i], cpu) = 0;
2255 memcg->nocpu_base.count[i] += x;
711d3d2c 2256 }
e9f8974f 2257 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2258 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2259
c0ff4b85
R
2260 per_cpu(memcg->stat->events[i], cpu) = 0;
2261 memcg->nocpu_base.events[i] += x;
e9f8974f 2262 }
c0ff4b85 2263 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2264}
2265
0db0628d 2266static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2267 unsigned long action,
2268 void *hcpu)
2269{
2270 int cpu = (unsigned long)hcpu;
2271 struct memcg_stock_pcp *stock;
711d3d2c 2272 struct mem_cgroup *iter;
cdec2e42 2273
619d094b 2274 if (action == CPU_ONLINE)
1489ebad 2275 return NOTIFY_OK;
1489ebad 2276
d833049b 2277 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2278 return NOTIFY_OK;
711d3d2c 2279
9f3a0d09 2280 for_each_mem_cgroup(iter)
711d3d2c
KH
2281 mem_cgroup_drain_pcp_counter(iter, cpu);
2282
cdec2e42
KH
2283 stock = &per_cpu(memcg_stock, cpu);
2284 drain_stock(stock);
2285 return NOTIFY_OK;
2286}
2287
00501b53
JW
2288static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2289 unsigned int nr_pages)
8a9f3ccd 2290{
7ec99d62 2291 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2292 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2293 struct mem_cgroup *mem_over_limit;
3e32cb2e 2294 struct page_counter *counter;
6539cc05 2295 unsigned long nr_reclaimed;
b70a2a21
JW
2296 bool may_swap = true;
2297 bool drained = false;
05b84301 2298 int ret = 0;
a636b327 2299
ce00a967
JW
2300 if (mem_cgroup_is_root(memcg))
2301 goto done;
6539cc05 2302retry:
b6b6cc72
MH
2303 if (consume_stock(memcg, nr_pages))
2304 goto done;
8a9f3ccd 2305
3fbe7244 2306 if (!do_swap_account ||
3e32cb2e
JW
2307 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2308 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2309 goto done_restock;
3fbe7244 2310 if (do_swap_account)
3e32cb2e
JW
2311 page_counter_uncharge(&memcg->memsw, batch);
2312 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2313 } else {
3e32cb2e 2314 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2315 may_swap = false;
3fbe7244 2316 }
7a81b88c 2317
6539cc05
JW
2318 if (batch > nr_pages) {
2319 batch = nr_pages;
2320 goto retry;
2321 }
6d61ef40 2322
06b078fc
JW
2323 /*
2324 * Unlike in global OOM situations, memcg is not in a physical
2325 * memory shortage. Allow dying and OOM-killed tasks to
2326 * bypass the last charges so that they can exit quickly and
2327 * free their memory.
2328 */
2329 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2330 fatal_signal_pending(current) ||
2331 current->flags & PF_EXITING))
2332 goto bypass;
2333
2334 if (unlikely(task_in_memcg_oom(current)))
2335 goto nomem;
2336
6539cc05
JW
2337 if (!(gfp_mask & __GFP_WAIT))
2338 goto nomem;
4b534334 2339
b70a2a21
JW
2340 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2341 gfp_mask, may_swap);
6539cc05 2342
61e02c74 2343 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2344 goto retry;
28c34c29 2345
b70a2a21 2346 if (!drained) {
6d3d6aa2 2347 drain_all_stock(mem_over_limit);
b70a2a21
JW
2348 drained = true;
2349 goto retry;
2350 }
2351
28c34c29
JW
2352 if (gfp_mask & __GFP_NORETRY)
2353 goto nomem;
6539cc05
JW
2354 /*
2355 * Even though the limit is exceeded at this point, reclaim
2356 * may have been able to free some pages. Retry the charge
2357 * before killing the task.
2358 *
2359 * Only for regular pages, though: huge pages are rather
2360 * unlikely to succeed so close to the limit, and we fall back
2361 * to regular pages anyway in case of failure.
2362 */
61e02c74 2363 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2364 goto retry;
2365 /*
2366 * At task move, charge accounts can be doubly counted. So, it's
2367 * better to wait until the end of task_move if something is going on.
2368 */
2369 if (mem_cgroup_wait_acct_move(mem_over_limit))
2370 goto retry;
2371
9b130619
JW
2372 if (nr_retries--)
2373 goto retry;
2374
06b078fc
JW
2375 if (gfp_mask & __GFP_NOFAIL)
2376 goto bypass;
2377
6539cc05
JW
2378 if (fatal_signal_pending(current))
2379 goto bypass;
2380
61e02c74 2381 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2382nomem:
6d1fdc48 2383 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2384 return -ENOMEM;
867578cb 2385bypass:
ce00a967 2386 return -EINTR;
6539cc05
JW
2387
2388done_restock:
e8ea14cc 2389 css_get_many(&memcg->css, batch);
6539cc05
JW
2390 if (batch > nr_pages)
2391 refill_stock(memcg, batch - nr_pages);
2392done:
05b84301 2393 return ret;
7a81b88c 2394}
8a9f3ccd 2395
00501b53 2396static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2397{
ce00a967
JW
2398 if (mem_cgroup_is_root(memcg))
2399 return;
2400
3e32cb2e 2401 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2402 if (do_swap_account)
3e32cb2e 2403 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2404
2405 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2406}
2407
a3b2d692
KH
2408/*
2409 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2410 * rcu_read_lock(). The caller is responsible for calling
2411 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2412 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2413 */
2414static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2415{
a3b2d692
KH
2416 /* ID 0 is unused ID */
2417 if (!id)
2418 return NULL;
34c00c31 2419 return mem_cgroup_from_id(id);
a3b2d692
KH
2420}
2421
0a31bc97
JW
2422/*
2423 * try_get_mem_cgroup_from_page - look up page's memcg association
2424 * @page: the page
2425 *
2426 * Look up, get a css reference, and return the memcg that owns @page.
2427 *
2428 * The page must be locked to prevent racing with swap-in and page
2429 * cache charges. If coming from an unlocked page table, the caller
2430 * must ensure the page is on the LRU or this can race with charging.
2431 */
e42d9d5d 2432struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2433{
29833315 2434 struct mem_cgroup *memcg;
3c776e64 2435 struct page_cgroup *pc;
a3b2d692 2436 unsigned short id;
b5a84319
KH
2437 swp_entry_t ent;
2438
309381fe 2439 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2440
3c776e64 2441 pc = lookup_page_cgroup(page);
29833315
JW
2442 memcg = pc->mem_cgroup;
2443
2444 if (memcg) {
2445 if (!css_tryget_online(&memcg->css))
c0ff4b85 2446 memcg = NULL;
e42d9d5d 2447 } else if (PageSwapCache(page)) {
3c776e64 2448 ent.val = page_private(page);
9fb4b7cc 2449 id = lookup_swap_cgroup_id(ent);
a3b2d692 2450 rcu_read_lock();
c0ff4b85 2451 memcg = mem_cgroup_lookup(id);
ec903c0c 2452 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2453 memcg = NULL;
a3b2d692 2454 rcu_read_unlock();
3c776e64 2455 }
c0ff4b85 2456 return memcg;
b5a84319
KH
2457}
2458
0a31bc97
JW
2459static void lock_page_lru(struct page *page, int *isolated)
2460{
2461 struct zone *zone = page_zone(page);
2462
2463 spin_lock_irq(&zone->lru_lock);
2464 if (PageLRU(page)) {
2465 struct lruvec *lruvec;
2466
2467 lruvec = mem_cgroup_page_lruvec(page, zone);
2468 ClearPageLRU(page);
2469 del_page_from_lru_list(page, lruvec, page_lru(page));
2470 *isolated = 1;
2471 } else
2472 *isolated = 0;
2473}
2474
2475static void unlock_page_lru(struct page *page, int isolated)
2476{
2477 struct zone *zone = page_zone(page);
2478
2479 if (isolated) {
2480 struct lruvec *lruvec;
2481
2482 lruvec = mem_cgroup_page_lruvec(page, zone);
2483 VM_BUG_ON_PAGE(PageLRU(page), page);
2484 SetPageLRU(page);
2485 add_page_to_lru_list(page, lruvec, page_lru(page));
2486 }
2487 spin_unlock_irq(&zone->lru_lock);
2488}
2489
00501b53 2490static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2491 bool lrucare)
7a81b88c 2492{
ce587e65 2493 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2494 int isolated;
9ce70c02 2495
29833315 2496 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
ca3e0214
KH
2497 /*
2498 * we don't need page_cgroup_lock about tail pages, becase they are not
2499 * accessed by any other context at this point.
2500 */
9ce70c02
HD
2501
2502 /*
2503 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2504 * may already be on some other mem_cgroup's LRU. Take care of it.
2505 */
0a31bc97
JW
2506 if (lrucare)
2507 lock_page_lru(page, &isolated);
9ce70c02 2508
0a31bc97
JW
2509 /*
2510 * Nobody should be changing or seriously looking at
29833315 2511 * pc->mem_cgroup at this point:
0a31bc97
JW
2512 *
2513 * - the page is uncharged
2514 *
2515 * - the page is off-LRU
2516 *
2517 * - an anonymous fault has exclusive page access, except for
2518 * a locked page table
2519 *
2520 * - a page cache insertion, a swapin fault, or a migration
2521 * have the page locked
2522 */
c0ff4b85 2523 pc->mem_cgroup = memcg;
9ce70c02 2524
0a31bc97
JW
2525 if (lrucare)
2526 unlock_page_lru(page, isolated);
7a81b88c 2527}
66e1707b 2528
7ae1e1d0 2529#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2530/*
2531 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2532 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2533 */
2534static DEFINE_MUTEX(memcg_slab_mutex);
2535
1f458cbf
GC
2536/*
2537 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2538 * in the memcg_cache_params struct.
2539 */
2540static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2541{
2542 struct kmem_cache *cachep;
2543
2544 VM_BUG_ON(p->is_root_cache);
2545 cachep = p->root_cache;
7a67d7ab 2546 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2547}
2548
3e32cb2e
JW
2549static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2550 unsigned long nr_pages)
7ae1e1d0 2551{
3e32cb2e 2552 struct page_counter *counter;
7ae1e1d0 2553 int ret = 0;
7ae1e1d0 2554
3e32cb2e
JW
2555 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2556 if (ret < 0)
7ae1e1d0
GC
2557 return ret;
2558
3e32cb2e 2559 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2560 if (ret == -EINTR) {
2561 /*
00501b53
JW
2562 * try_charge() chose to bypass to root due to OOM kill or
2563 * fatal signal. Since our only options are to either fail
2564 * the allocation or charge it to this cgroup, do it as a
2565 * temporary condition. But we can't fail. From a kmem/slab
2566 * perspective, the cache has already been selected, by
2567 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2568 * our minds.
2569 *
2570 * This condition will only trigger if the task entered
00501b53
JW
2571 * memcg_charge_kmem in a sane state, but was OOM-killed
2572 * during try_charge() above. Tasks that were already dying
2573 * when the allocation triggers should have been already
7ae1e1d0
GC
2574 * directed to the root cgroup in memcontrol.h
2575 */
3e32cb2e 2576 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2577 if (do_swap_account)
3e32cb2e 2578 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2579 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2580 ret = 0;
2581 } else if (ret)
3e32cb2e 2582 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2583
2584 return ret;
2585}
2586
3e32cb2e
JW
2587static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2588 unsigned long nr_pages)
7ae1e1d0 2589{
3e32cb2e 2590 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2591 if (do_swap_account)
3e32cb2e 2592 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2593
64f21993 2594 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2595
2596 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2597}
2598
2633d7a0
GC
2599/*
2600 * helper for acessing a memcg's index. It will be used as an index in the
2601 * child cache array in kmem_cache, and also to derive its name. This function
2602 * will return -1 when this is not a kmem-limited memcg.
2603 */
2604int memcg_cache_id(struct mem_cgroup *memcg)
2605{
2606 return memcg ? memcg->kmemcg_id : -1;
2607}
2608
f3bb3043 2609static int memcg_alloc_cache_id(void)
55007d84 2610{
f3bb3043
VD
2611 int id, size;
2612 int err;
2613
2614 id = ida_simple_get(&kmem_limited_groups,
2615 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2616 if (id < 0)
2617 return id;
55007d84 2618
f3bb3043
VD
2619 if (id < memcg_limited_groups_array_size)
2620 return id;
2621
2622 /*
2623 * There's no space for the new id in memcg_caches arrays,
2624 * so we have to grow them.
2625 */
2626
2627 size = 2 * (id + 1);
55007d84
GC
2628 if (size < MEMCG_CACHES_MIN_SIZE)
2629 size = MEMCG_CACHES_MIN_SIZE;
2630 else if (size > MEMCG_CACHES_MAX_SIZE)
2631 size = MEMCG_CACHES_MAX_SIZE;
2632
f3bb3043
VD
2633 mutex_lock(&memcg_slab_mutex);
2634 err = memcg_update_all_caches(size);
2635 mutex_unlock(&memcg_slab_mutex);
2636
2637 if (err) {
2638 ida_simple_remove(&kmem_limited_groups, id);
2639 return err;
2640 }
2641 return id;
2642}
2643
2644static void memcg_free_cache_id(int id)
2645{
2646 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2647}
2648
2649/*
2650 * We should update the current array size iff all caches updates succeed. This
2651 * can only be done from the slab side. The slab mutex needs to be held when
2652 * calling this.
2653 */
2654void memcg_update_array_size(int num)
2655{
f3bb3043 2656 memcg_limited_groups_array_size = num;
55007d84
GC
2657}
2658
776ed0f0
VD
2659static void memcg_register_cache(struct mem_cgroup *memcg,
2660 struct kmem_cache *root_cache)
2633d7a0 2661{
93f39eea
VD
2662 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2663 memcg_slab_mutex */
bd673145 2664 struct kmem_cache *cachep;
d7f25f8a
GC
2665 int id;
2666
bd673145
VD
2667 lockdep_assert_held(&memcg_slab_mutex);
2668
2669 id = memcg_cache_id(memcg);
2670
2671 /*
2672 * Since per-memcg caches are created asynchronously on first
2673 * allocation (see memcg_kmem_get_cache()), several threads can try to
2674 * create the same cache, but only one of them may succeed.
2675 */
2676 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2677 return;
2678
073ee1c6 2679 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2680 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2681 /*
bd673145
VD
2682 * If we could not create a memcg cache, do not complain, because
2683 * that's not critical at all as we can always proceed with the root
2684 * cache.
2edefe11 2685 */
bd673145
VD
2686 if (!cachep)
2687 return;
2edefe11 2688
33a690c4 2689 css_get(&memcg->css);
bd673145 2690 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2691
d7f25f8a 2692 /*
959c8963
VD
2693 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2694 * barrier here to ensure nobody will see the kmem_cache partially
2695 * initialized.
d7f25f8a 2696 */
959c8963
VD
2697 smp_wmb();
2698
bd673145
VD
2699 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2700 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2701}
d7f25f8a 2702
776ed0f0 2703static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2704{
bd673145 2705 struct kmem_cache *root_cache;
1aa13254
VD
2706 struct mem_cgroup *memcg;
2707 int id;
2708
bd673145 2709 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2710
bd673145 2711 BUG_ON(is_root_cache(cachep));
2edefe11 2712
bd673145
VD
2713 root_cache = cachep->memcg_params->root_cache;
2714 memcg = cachep->memcg_params->memcg;
96403da2 2715 id = memcg_cache_id(memcg);
d7f25f8a 2716
bd673145
VD
2717 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2718 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2719
bd673145
VD
2720 list_del(&cachep->memcg_params->list);
2721
2722 kmem_cache_destroy(cachep);
33a690c4
VD
2723
2724 /* drop the reference taken in memcg_register_cache */
2725 css_put(&memcg->css);
2633d7a0
GC
2726}
2727
0e9d92f2
GC
2728/*
2729 * During the creation a new cache, we need to disable our accounting mechanism
2730 * altogether. This is true even if we are not creating, but rather just
2731 * enqueing new caches to be created.
2732 *
2733 * This is because that process will trigger allocations; some visible, like
2734 * explicit kmallocs to auxiliary data structures, name strings and internal
2735 * cache structures; some well concealed, like INIT_WORK() that can allocate
2736 * objects during debug.
2737 *
2738 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2739 * to it. This may not be a bounded recursion: since the first cache creation
2740 * failed to complete (waiting on the allocation), we'll just try to create the
2741 * cache again, failing at the same point.
2742 *
2743 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2744 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2745 * inside the following two functions.
2746 */
2747static inline void memcg_stop_kmem_account(void)
2748{
2749 VM_BUG_ON(!current->mm);
2750 current->memcg_kmem_skip_account++;
2751}
2752
2753static inline void memcg_resume_kmem_account(void)
2754{
2755 VM_BUG_ON(!current->mm);
2756 current->memcg_kmem_skip_account--;
2757}
2758
776ed0f0 2759int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2760{
2761 struct kmem_cache *c;
b8529907 2762 int i, failed = 0;
7cf27982 2763
bd673145 2764 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2765 for_each_memcg_cache_index(i) {
2766 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2767 if (!c)
2768 continue;
2769
776ed0f0 2770 memcg_unregister_cache(c);
b8529907
VD
2771
2772 if (cache_from_memcg_idx(s, i))
2773 failed++;
7cf27982 2774 }
bd673145 2775 mutex_unlock(&memcg_slab_mutex);
b8529907 2776 return failed;
7cf27982
GC
2777}
2778
776ed0f0 2779static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2780{
2781 struct kmem_cache *cachep;
bd673145 2782 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2783
2784 if (!memcg_kmem_is_active(memcg))
2785 return;
2786
bd673145
VD
2787 mutex_lock(&memcg_slab_mutex);
2788 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2789 cachep = memcg_params_to_cache(params);
bd673145
VD
2790 kmem_cache_shrink(cachep);
2791 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2792 memcg_unregister_cache(cachep);
1f458cbf 2793 }
bd673145 2794 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2795}
2796
776ed0f0 2797struct memcg_register_cache_work {
5722d094
VD
2798 struct mem_cgroup *memcg;
2799 struct kmem_cache *cachep;
2800 struct work_struct work;
2801};
2802
776ed0f0 2803static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2804{
776ed0f0
VD
2805 struct memcg_register_cache_work *cw =
2806 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2807 struct mem_cgroup *memcg = cw->memcg;
2808 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2809
bd673145 2810 mutex_lock(&memcg_slab_mutex);
776ed0f0 2811 memcg_register_cache(memcg, cachep);
bd673145
VD
2812 mutex_unlock(&memcg_slab_mutex);
2813
5722d094 2814 css_put(&memcg->css);
d7f25f8a
GC
2815 kfree(cw);
2816}
2817
2818/*
2819 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2820 */
776ed0f0
VD
2821static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2822 struct kmem_cache *cachep)
d7f25f8a 2823{
776ed0f0 2824 struct memcg_register_cache_work *cw;
d7f25f8a 2825
776ed0f0 2826 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2827 if (cw == NULL) {
2828 css_put(&memcg->css);
d7f25f8a
GC
2829 return;
2830 }
2831
2832 cw->memcg = memcg;
2833 cw->cachep = cachep;
2834
776ed0f0 2835 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2836 schedule_work(&cw->work);
2837}
2838
776ed0f0
VD
2839static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2840 struct kmem_cache *cachep)
0e9d92f2
GC
2841{
2842 /*
2843 * We need to stop accounting when we kmalloc, because if the
2844 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2845 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2846 *
2847 * However, it is better to enclose the whole function. Depending on
2848 * the debugging options enabled, INIT_WORK(), for instance, can
2849 * trigger an allocation. This too, will make us recurse. Because at
2850 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2851 * the safest choice is to do it like this, wrapping the whole function.
2852 */
2853 memcg_stop_kmem_account();
776ed0f0 2854 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2855 memcg_resume_kmem_account();
2856}
c67a8a68
VD
2857
2858int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2859{
3e32cb2e 2860 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2861 int res;
2862
3e32cb2e 2863 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2864 if (!res)
3e32cb2e 2865 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2866 return res;
2867}
2868
2869void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2870{
3e32cb2e
JW
2871 unsigned int nr_pages = 1 << order;
2872
2873 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2874 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2875}
2876
d7f25f8a
GC
2877/*
2878 * Return the kmem_cache we're supposed to use for a slab allocation.
2879 * We try to use the current memcg's version of the cache.
2880 *
2881 * If the cache does not exist yet, if we are the first user of it,
2882 * we either create it immediately, if possible, or create it asynchronously
2883 * in a workqueue.
2884 * In the latter case, we will let the current allocation go through with
2885 * the original cache.
2886 *
2887 * Can't be called in interrupt context or from kernel threads.
2888 * This function needs to be called with rcu_read_lock() held.
2889 */
2890struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2891 gfp_t gfp)
2892{
2893 struct mem_cgroup *memcg;
959c8963 2894 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2895
2896 VM_BUG_ON(!cachep->memcg_params);
2897 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2898
0e9d92f2
GC
2899 if (!current->mm || current->memcg_kmem_skip_account)
2900 return cachep;
2901
d7f25f8a
GC
2902 rcu_read_lock();
2903 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2904
cf2b8fbf 2905 if (!memcg_kmem_is_active(memcg))
ca0dde97 2906 goto out;
d7f25f8a 2907
959c8963
VD
2908 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2909 if (likely(memcg_cachep)) {
2910 cachep = memcg_cachep;
ca0dde97 2911 goto out;
d7f25f8a
GC
2912 }
2913
ca0dde97 2914 /* The corresponding put will be done in the workqueue. */
ec903c0c 2915 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
2916 goto out;
2917 rcu_read_unlock();
2918
2919 /*
2920 * If we are in a safe context (can wait, and not in interrupt
2921 * context), we could be be predictable and return right away.
2922 * This would guarantee that the allocation being performed
2923 * already belongs in the new cache.
2924 *
2925 * However, there are some clashes that can arrive from locking.
2926 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2927 * memcg_create_kmem_cache, this means no further allocation
2928 * could happen with the slab_mutex held. So it's better to
2929 * defer everything.
ca0dde97 2930 */
776ed0f0 2931 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
2932 return cachep;
2933out:
2934 rcu_read_unlock();
2935 return cachep;
d7f25f8a 2936}
d7f25f8a 2937
7ae1e1d0
GC
2938/*
2939 * We need to verify if the allocation against current->mm->owner's memcg is
2940 * possible for the given order. But the page is not allocated yet, so we'll
2941 * need a further commit step to do the final arrangements.
2942 *
2943 * It is possible for the task to switch cgroups in this mean time, so at
2944 * commit time, we can't rely on task conversion any longer. We'll then use
2945 * the handle argument to return to the caller which cgroup we should commit
2946 * against. We could also return the memcg directly and avoid the pointer
2947 * passing, but a boolean return value gives better semantics considering
2948 * the compiled-out case as well.
2949 *
2950 * Returning true means the allocation is possible.
2951 */
2952bool
2953__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2954{
2955 struct mem_cgroup *memcg;
2956 int ret;
2957
2958 *_memcg = NULL;
6d42c232
GC
2959
2960 /*
2961 * Disabling accounting is only relevant for some specific memcg
2962 * internal allocations. Therefore we would initially not have such
52383431
VD
2963 * check here, since direct calls to the page allocator that are
2964 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
2965 * outside memcg core. We are mostly concerned with cache allocations,
2966 * and by having this test at memcg_kmem_get_cache, we are already able
2967 * to relay the allocation to the root cache and bypass the memcg cache
2968 * altogether.
6d42c232
GC
2969 *
2970 * There is one exception, though: the SLUB allocator does not create
2971 * large order caches, but rather service large kmallocs directly from
2972 * the page allocator. Therefore, the following sequence when backed by
2973 * the SLUB allocator:
2974 *
f894ffa8
AM
2975 * memcg_stop_kmem_account();
2976 * kmalloc(<large_number>)
2977 * memcg_resume_kmem_account();
6d42c232
GC
2978 *
2979 * would effectively ignore the fact that we should skip accounting,
2980 * since it will drive us directly to this function without passing
2981 * through the cache selector memcg_kmem_get_cache. Such large
2982 * allocations are extremely rare but can happen, for instance, for the
2983 * cache arrays. We bring this test here.
2984 */
2985 if (!current->mm || current->memcg_kmem_skip_account)
2986 return true;
2987
df381975 2988 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2989
cf2b8fbf 2990 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2991 css_put(&memcg->css);
2992 return true;
2993 }
2994
3e32cb2e 2995 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2996 if (!ret)
2997 *_memcg = memcg;
7ae1e1d0
GC
2998
2999 css_put(&memcg->css);
3000 return (ret == 0);
3001}
3002
3003void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3004 int order)
3005{
3006 struct page_cgroup *pc;
3007
3008 VM_BUG_ON(mem_cgroup_is_root(memcg));
3009
3010 /* The page allocation failed. Revert */
3011 if (!page) {
3e32cb2e 3012 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3013 return;
3014 }
7ae1e1d0 3015 pc = lookup_page_cgroup(page);
7ae1e1d0 3016 pc->mem_cgroup = memcg;
7ae1e1d0
GC
3017}
3018
3019void __memcg_kmem_uncharge_pages(struct page *page, int order)
3020{
29833315
JW
3021 struct page_cgroup *pc = lookup_page_cgroup(page);
3022 struct mem_cgroup *memcg = pc->mem_cgroup;
7ae1e1d0 3023
7ae1e1d0
GC
3024 if (!memcg)
3025 return;
3026
309381fe 3027 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 3028
3e32cb2e 3029 memcg_uncharge_kmem(memcg, 1 << order);
29833315 3030 pc->mem_cgroup = NULL;
7ae1e1d0 3031}
1f458cbf 3032#else
776ed0f0 3033static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3034{
3035}
7ae1e1d0
GC
3036#endif /* CONFIG_MEMCG_KMEM */
3037
ca3e0214
KH
3038#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3039
ca3e0214
KH
3040/*
3041 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3042 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3043 * charge/uncharge will be never happen and move_account() is done under
3044 * compound_lock(), so we don't have to take care of races.
ca3e0214 3045 */
e94c8a9c 3046void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3047{
29833315 3048 struct page_cgroup *pc = lookup_page_cgroup(head);
e94c8a9c 3049 int i;
ca3e0214 3050
3d37c4a9
KH
3051 if (mem_cgroup_disabled())
3052 return;
b070e65c 3053
29833315
JW
3054 for (i = 1; i < HPAGE_PMD_NR; i++)
3055 pc[i].mem_cgroup = pc[0].mem_cgroup;
b9982f8d 3056
29833315 3057 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3058 HPAGE_PMD_NR);
ca3e0214 3059}
12d27107 3060#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3061
f817ed48 3062/**
de3638d9 3063 * mem_cgroup_move_account - move account of the page
5564e88b 3064 * @page: the page
7ec99d62 3065 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3066 * @pc: page_cgroup of the page.
3067 * @from: mem_cgroup which the page is moved from.
3068 * @to: mem_cgroup which the page is moved to. @from != @to.
3069 *
3070 * The caller must confirm following.
08e552c6 3071 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3072 * - compound_lock is held when nr_pages > 1
f817ed48 3073 *
2f3479b1
KH
3074 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3075 * from old cgroup.
f817ed48 3076 */
7ec99d62
JW
3077static int mem_cgroup_move_account(struct page *page,
3078 unsigned int nr_pages,
3079 struct page_cgroup *pc,
3080 struct mem_cgroup *from,
2f3479b1 3081 struct mem_cgroup *to)
f817ed48 3082{
de3638d9
JW
3083 unsigned long flags;
3084 int ret;
987eba66 3085
f817ed48 3086 VM_BUG_ON(from == to);
309381fe 3087 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3088 /*
3089 * The page is isolated from LRU. So, collapse function
3090 * will not handle this page. But page splitting can happen.
3091 * Do this check under compound_page_lock(). The caller should
3092 * hold it.
3093 */
3094 ret = -EBUSY;
7ec99d62 3095 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3096 goto out;
3097
0a31bc97
JW
3098 /*
3099 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3100 * of its source page while we change it: page migration takes
3101 * both pages off the LRU, but page cache replacement doesn't.
3102 */
3103 if (!trylock_page(page))
3104 goto out;
de3638d9
JW
3105
3106 ret = -EINVAL;
29833315 3107 if (pc->mem_cgroup != from)
0a31bc97 3108 goto out_unlock;
de3638d9 3109
354a4783 3110 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3111
0a31bc97 3112 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3113 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3114 nr_pages);
3115 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3116 nr_pages);
3117 }
3ea67d06 3118
59d1d256
JW
3119 if (PageWriteback(page)) {
3120 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3121 nr_pages);
3122 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3123 nr_pages);
3124 }
3ea67d06 3125
0a31bc97
JW
3126 /*
3127 * It is safe to change pc->mem_cgroup here because the page
3128 * is referenced, charged, and isolated - we can't race with
3129 * uncharging, charging, migration, or LRU putback.
3130 */
d69b042f 3131
854ffa8d 3132 /* caller should have done css_get */
08e552c6 3133 pc->mem_cgroup = to;
354a4783
JW
3134 spin_unlock_irqrestore(&from->move_lock, flags);
3135
de3638d9 3136 ret = 0;
0a31bc97
JW
3137
3138 local_irq_disable();
3139 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3140 memcg_check_events(to, page);
0a31bc97 3141 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3142 memcg_check_events(from, page);
0a31bc97
JW
3143 local_irq_enable();
3144out_unlock:
3145 unlock_page(page);
de3638d9 3146out:
f817ed48
KH
3147 return ret;
3148}
3149
c255a458 3150#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3151static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3152 bool charge)
d13d1443 3153{
0a31bc97
JW
3154 int val = (charge) ? 1 : -1;
3155 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3156}
02491447
DN
3157
3158/**
3159 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3160 * @entry: swap entry to be moved
3161 * @from: mem_cgroup which the entry is moved from
3162 * @to: mem_cgroup which the entry is moved to
3163 *
3164 * It succeeds only when the swap_cgroup's record for this entry is the same
3165 * as the mem_cgroup's id of @from.
3166 *
3167 * Returns 0 on success, -EINVAL on failure.
3168 *
3e32cb2e 3169 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3170 * both res and memsw, and called css_get().
3171 */
3172static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3173 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3174{
3175 unsigned short old_id, new_id;
3176
34c00c31
LZ
3177 old_id = mem_cgroup_id(from);
3178 new_id = mem_cgroup_id(to);
02491447
DN
3179
3180 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3181 mem_cgroup_swap_statistics(from, false);
483c30b5 3182 mem_cgroup_swap_statistics(to, true);
02491447 3183 /*
483c30b5 3184 * This function is only called from task migration context now.
3e32cb2e 3185 * It postpones page_counter and refcount handling till the end
483c30b5 3186 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3187 * improvement. But we cannot postpone css_get(to) because if
3188 * the process that has been moved to @to does swap-in, the
3189 * refcount of @to might be decreased to 0.
3190 *
3191 * We are in attach() phase, so the cgroup is guaranteed to be
3192 * alive, so we can just call css_get().
02491447 3193 */
4050377b 3194 css_get(&to->css);
02491447
DN
3195 return 0;
3196 }
3197 return -EINVAL;
3198}
3199#else
3200static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3201 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3202{
3203 return -EINVAL;
3204}
8c7c6e34 3205#endif
d13d1443 3206
f212ad7c
DN
3207#ifdef CONFIG_DEBUG_VM
3208static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3209{
3210 struct page_cgroup *pc;
3211
3212 pc = lookup_page_cgroup(page);
cfa44946
JW
3213 /*
3214 * Can be NULL while feeding pages into the page allocator for
3215 * the first time, i.e. during boot or memory hotplug;
3216 * or when mem_cgroup_disabled().
3217 */
29833315 3218 if (likely(pc) && pc->mem_cgroup)
f212ad7c
DN
3219 return pc;
3220 return NULL;
3221}
3222
3223bool mem_cgroup_bad_page_check(struct page *page)
3224{
3225 if (mem_cgroup_disabled())
3226 return false;
3227
3228 return lookup_page_cgroup_used(page) != NULL;
3229}
3230
3231void mem_cgroup_print_bad_page(struct page *page)
3232{
3233 struct page_cgroup *pc;
3234
3235 pc = lookup_page_cgroup_used(page);
29833315
JW
3236 if (pc)
3237 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
f212ad7c
DN
3238}
3239#endif
3240
3e32cb2e
JW
3241static DEFINE_MUTEX(memcg_limit_mutex);
3242
d38d2a75 3243static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3244 unsigned long limit)
628f4235 3245{
3e32cb2e
JW
3246 unsigned long curusage;
3247 unsigned long oldusage;
3248 bool enlarge = false;
81d39c20 3249 int retry_count;
3e32cb2e 3250 int ret;
81d39c20
KH
3251
3252 /*
3253 * For keeping hierarchical_reclaim simple, how long we should retry
3254 * is depends on callers. We set our retry-count to be function
3255 * of # of children which we should visit in this loop.
3256 */
3e32cb2e
JW
3257 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3258 mem_cgroup_count_children(memcg);
81d39c20 3259
3e32cb2e 3260 oldusage = page_counter_read(&memcg->memory);
628f4235 3261
3e32cb2e 3262 do {
628f4235
KH
3263 if (signal_pending(current)) {
3264 ret = -EINTR;
3265 break;
3266 }
3e32cb2e
JW
3267
3268 mutex_lock(&memcg_limit_mutex);
3269 if (limit > memcg->memsw.limit) {
3270 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3271 ret = -EINVAL;
628f4235
KH
3272 break;
3273 }
3e32cb2e
JW
3274 if (limit > memcg->memory.limit)
3275 enlarge = true;
3276 ret = page_counter_limit(&memcg->memory, limit);
3277 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3278
3279 if (!ret)
3280 break;
3281
b70a2a21
JW
3282 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3283
3e32cb2e 3284 curusage = page_counter_read(&memcg->memory);
81d39c20 3285 /* Usage is reduced ? */
f894ffa8 3286 if (curusage >= oldusage)
81d39c20
KH
3287 retry_count--;
3288 else
3289 oldusage = curusage;
3e32cb2e
JW
3290 } while (retry_count);
3291
3c11ecf4
KH
3292 if (!ret && enlarge)
3293 memcg_oom_recover(memcg);
14797e23 3294
8c7c6e34
KH
3295 return ret;
3296}
3297
338c8431 3298static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3299 unsigned long limit)
8c7c6e34 3300{
3e32cb2e
JW
3301 unsigned long curusage;
3302 unsigned long oldusage;
3303 bool enlarge = false;
81d39c20 3304 int retry_count;
3e32cb2e 3305 int ret;
8c7c6e34 3306
81d39c20 3307 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3308 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3309 mem_cgroup_count_children(memcg);
3310
3311 oldusage = page_counter_read(&memcg->memsw);
3312
3313 do {
8c7c6e34
KH
3314 if (signal_pending(current)) {
3315 ret = -EINTR;
3316 break;
3317 }
3e32cb2e
JW
3318
3319 mutex_lock(&memcg_limit_mutex);
3320 if (limit < memcg->memory.limit) {
3321 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3322 ret = -EINVAL;
8c7c6e34
KH
3323 break;
3324 }
3e32cb2e
JW
3325 if (limit > memcg->memsw.limit)
3326 enlarge = true;
3327 ret = page_counter_limit(&memcg->memsw, limit);
3328 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3329
3330 if (!ret)
3331 break;
3332
b70a2a21
JW
3333 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3334
3e32cb2e 3335 curusage = page_counter_read(&memcg->memsw);
81d39c20 3336 /* Usage is reduced ? */
8c7c6e34 3337 if (curusage >= oldusage)
628f4235 3338 retry_count--;
81d39c20
KH
3339 else
3340 oldusage = curusage;
3e32cb2e
JW
3341 } while (retry_count);
3342
3c11ecf4
KH
3343 if (!ret && enlarge)
3344 memcg_oom_recover(memcg);
3e32cb2e 3345
628f4235
KH
3346 return ret;
3347}
3348
0608f43d
AM
3349unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3350 gfp_t gfp_mask,
3351 unsigned long *total_scanned)
3352{
3353 unsigned long nr_reclaimed = 0;
3354 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3355 unsigned long reclaimed;
3356 int loop = 0;
3357 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3358 unsigned long excess;
0608f43d
AM
3359 unsigned long nr_scanned;
3360
3361 if (order > 0)
3362 return 0;
3363
3364 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3365 /*
3366 * This loop can run a while, specially if mem_cgroup's continuously
3367 * keep exceeding their soft limit and putting the system under
3368 * pressure
3369 */
3370 do {
3371 if (next_mz)
3372 mz = next_mz;
3373 else
3374 mz = mem_cgroup_largest_soft_limit_node(mctz);
3375 if (!mz)
3376 break;
3377
3378 nr_scanned = 0;
3379 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3380 gfp_mask, &nr_scanned);
3381 nr_reclaimed += reclaimed;
3382 *total_scanned += nr_scanned;
0a31bc97 3383 spin_lock_irq(&mctz->lock);
bc2f2e7f 3384 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3385
3386 /*
3387 * If we failed to reclaim anything from this memory cgroup
3388 * it is time to move on to the next cgroup
3389 */
3390 next_mz = NULL;
bc2f2e7f
VD
3391 if (!reclaimed)
3392 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3393
3e32cb2e 3394 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3395 /*
3396 * One school of thought says that we should not add
3397 * back the node to the tree if reclaim returns 0.
3398 * But our reclaim could return 0, simply because due
3399 * to priority we are exposing a smaller subset of
3400 * memory to reclaim from. Consider this as a longer
3401 * term TODO.
3402 */
3403 /* If excess == 0, no tree ops */
cf2c8127 3404 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3405 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3406 css_put(&mz->memcg->css);
3407 loop++;
3408 /*
3409 * Could not reclaim anything and there are no more
3410 * mem cgroups to try or we seem to be looping without
3411 * reclaiming anything.
3412 */
3413 if (!nr_reclaimed &&
3414 (next_mz == NULL ||
3415 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3416 break;
3417 } while (!nr_reclaimed);
3418 if (next_mz)
3419 css_put(&next_mz->memcg->css);
3420 return nr_reclaimed;
3421}
3422
ea280e7b
TH
3423/*
3424 * Test whether @memcg has children, dead or alive. Note that this
3425 * function doesn't care whether @memcg has use_hierarchy enabled and
3426 * returns %true if there are child csses according to the cgroup
3427 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3428 */
b5f99b53
GC
3429static inline bool memcg_has_children(struct mem_cgroup *memcg)
3430{
ea280e7b
TH
3431 bool ret;
3432
696ac172 3433 /*
ea280e7b
TH
3434 * The lock does not prevent addition or deletion of children, but
3435 * it prevents a new child from being initialized based on this
3436 * parent in css_online(), so it's enough to decide whether
3437 * hierarchically inherited attributes can still be changed or not.
696ac172 3438 */
ea280e7b
TH
3439 lockdep_assert_held(&memcg_create_mutex);
3440
3441 rcu_read_lock();
3442 ret = css_next_child(NULL, &memcg->css);
3443 rcu_read_unlock();
3444 return ret;
b5f99b53
GC
3445}
3446
c26251f9
MH
3447/*
3448 * Reclaims as many pages from the given memcg as possible and moves
3449 * the rest to the parent.
3450 *
3451 * Caller is responsible for holding css reference for memcg.
3452 */
3453static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3454{
3455 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3456
c1e862c1
KH
3457 /* we call try-to-free pages for make this cgroup empty */
3458 lru_add_drain_all();
f817ed48 3459 /* try to free all pages in this cgroup */
3e32cb2e 3460 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3461 int progress;
c1e862c1 3462
c26251f9
MH
3463 if (signal_pending(current))
3464 return -EINTR;
3465
b70a2a21
JW
3466 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3467 GFP_KERNEL, true);
c1e862c1 3468 if (!progress) {
f817ed48 3469 nr_retries--;
c1e862c1 3470 /* maybe some writeback is necessary */
8aa7e847 3471 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3472 }
f817ed48
KH
3473
3474 }
ab5196c2
MH
3475
3476 return 0;
cc847582
KH
3477}
3478
6770c64e
TH
3479static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3480 char *buf, size_t nbytes,
3481 loff_t off)
c1e862c1 3482{
6770c64e 3483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3484
d8423011
MH
3485 if (mem_cgroup_is_root(memcg))
3486 return -EINVAL;
6770c64e 3487 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3488}
3489
182446d0
TH
3490static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3491 struct cftype *cft)
18f59ea7 3492{
182446d0 3493 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3494}
3495
182446d0
TH
3496static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3497 struct cftype *cft, u64 val)
18f59ea7
BS
3498{
3499 int retval = 0;
182446d0 3500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3501 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3502
0999821b 3503 mutex_lock(&memcg_create_mutex);
567fb435
GC
3504
3505 if (memcg->use_hierarchy == val)
3506 goto out;
3507
18f59ea7 3508 /*
af901ca1 3509 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3510 * in the child subtrees. If it is unset, then the change can
3511 * occur, provided the current cgroup has no children.
3512 *
3513 * For the root cgroup, parent_mem is NULL, we allow value to be
3514 * set if there are no children.
3515 */
c0ff4b85 3516 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3517 (val == 1 || val == 0)) {
ea280e7b 3518 if (!memcg_has_children(memcg))
c0ff4b85 3519 memcg->use_hierarchy = val;
18f59ea7
BS
3520 else
3521 retval = -EBUSY;
3522 } else
3523 retval = -EINVAL;
567fb435
GC
3524
3525out:
0999821b 3526 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3527
3528 return retval;
3529}
3530
3e32cb2e
JW
3531static unsigned long tree_stat(struct mem_cgroup *memcg,
3532 enum mem_cgroup_stat_index idx)
ce00a967
JW
3533{
3534 struct mem_cgroup *iter;
3535 long val = 0;
3536
3537 /* Per-cpu values can be negative, use a signed accumulator */
3538 for_each_mem_cgroup_tree(iter, memcg)
3539 val += mem_cgroup_read_stat(iter, idx);
3540
3541 if (val < 0) /* race ? */
3542 val = 0;
3543 return val;
3544}
3545
3546static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3547{
3548 u64 val;
3549
3e32cb2e
JW
3550 if (mem_cgroup_is_root(memcg)) {
3551 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3552 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3553 if (swap)
3554 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3555 } else {
ce00a967 3556 if (!swap)
3e32cb2e 3557 val = page_counter_read(&memcg->memory);
ce00a967 3558 else
3e32cb2e 3559 val = page_counter_read(&memcg->memsw);
ce00a967 3560 }
ce00a967
JW
3561 return val << PAGE_SHIFT;
3562}
3563
3e32cb2e
JW
3564enum {
3565 RES_USAGE,
3566 RES_LIMIT,
3567 RES_MAX_USAGE,
3568 RES_FAILCNT,
3569 RES_SOFT_LIMIT,
3570};
ce00a967 3571
791badbd 3572static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3573 struct cftype *cft)
8cdea7c0 3574{
182446d0 3575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3576 struct page_counter *counter;
af36f906 3577
3e32cb2e 3578 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3579 case _MEM:
3e32cb2e
JW
3580 counter = &memcg->memory;
3581 break;
8c7c6e34 3582 case _MEMSWAP:
3e32cb2e
JW
3583 counter = &memcg->memsw;
3584 break;
510fc4e1 3585 case _KMEM:
3e32cb2e 3586 counter = &memcg->kmem;
510fc4e1 3587 break;
8c7c6e34
KH
3588 default:
3589 BUG();
8c7c6e34 3590 }
3e32cb2e
JW
3591
3592 switch (MEMFILE_ATTR(cft->private)) {
3593 case RES_USAGE:
3594 if (counter == &memcg->memory)
3595 return mem_cgroup_usage(memcg, false);
3596 if (counter == &memcg->memsw)
3597 return mem_cgroup_usage(memcg, true);
3598 return (u64)page_counter_read(counter) * PAGE_SIZE;
3599 case RES_LIMIT:
3600 return (u64)counter->limit * PAGE_SIZE;
3601 case RES_MAX_USAGE:
3602 return (u64)counter->watermark * PAGE_SIZE;
3603 case RES_FAILCNT:
3604 return counter->failcnt;
3605 case RES_SOFT_LIMIT:
3606 return (u64)memcg->soft_limit * PAGE_SIZE;
3607 default:
3608 BUG();
3609 }
8cdea7c0 3610}
510fc4e1 3611
510fc4e1 3612#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3613static int memcg_activate_kmem(struct mem_cgroup *memcg,
3614 unsigned long nr_pages)
d6441637
VD
3615{
3616 int err = 0;
3617 int memcg_id;
3618
3619 if (memcg_kmem_is_active(memcg))
3620 return 0;
3621
3622 /*
3623 * We are going to allocate memory for data shared by all memory
3624 * cgroups so let's stop accounting here.
3625 */
3626 memcg_stop_kmem_account();
3627
510fc4e1
GC
3628 /*
3629 * For simplicity, we won't allow this to be disabled. It also can't
3630 * be changed if the cgroup has children already, or if tasks had
3631 * already joined.
3632 *
3633 * If tasks join before we set the limit, a person looking at
3634 * kmem.usage_in_bytes will have no way to determine when it took
3635 * place, which makes the value quite meaningless.
3636 *
3637 * After it first became limited, changes in the value of the limit are
3638 * of course permitted.
510fc4e1 3639 */
0999821b 3640 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3641 if (cgroup_has_tasks(memcg->css.cgroup) ||
3642 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3643 err = -EBUSY;
3644 mutex_unlock(&memcg_create_mutex);
3645 if (err)
3646 goto out;
510fc4e1 3647
f3bb3043 3648 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3649 if (memcg_id < 0) {
3650 err = memcg_id;
3651 goto out;
3652 }
3653
d6441637
VD
3654 memcg->kmemcg_id = memcg_id;
3655 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3656
3657 /*
3658 * We couldn't have accounted to this cgroup, because it hasn't got the
3659 * active bit set yet, so this should succeed.
3660 */
3e32cb2e 3661 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3662 VM_BUG_ON(err);
3663
3664 static_key_slow_inc(&memcg_kmem_enabled_key);
3665 /*
3666 * Setting the active bit after enabling static branching will
3667 * guarantee no one starts accounting before all call sites are
3668 * patched.
3669 */
3670 memcg_kmem_set_active(memcg);
510fc4e1 3671out:
d6441637
VD
3672 memcg_resume_kmem_account();
3673 return err;
d6441637
VD
3674}
3675
d6441637 3676static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3677 unsigned long limit)
d6441637
VD
3678{
3679 int ret;
3680
3e32cb2e 3681 mutex_lock(&memcg_limit_mutex);
d6441637 3682 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3683 ret = memcg_activate_kmem(memcg, limit);
d6441637 3684 else
3e32cb2e
JW
3685 ret = page_counter_limit(&memcg->kmem, limit);
3686 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3687 return ret;
3688}
3689
55007d84 3690static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3691{
55007d84 3692 int ret = 0;
510fc4e1 3693 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3694
d6441637
VD
3695 if (!parent)
3696 return 0;
55007d84 3697
8c0145b6 3698 mutex_lock(&memcg_limit_mutex);
55007d84 3699 /*
d6441637
VD
3700 * If the parent cgroup is not kmem-active now, it cannot be activated
3701 * after this point, because it has at least one child already.
55007d84 3702 */
d6441637 3703 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3704 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3705 mutex_unlock(&memcg_limit_mutex);
55007d84 3706 return ret;
510fc4e1 3707}
d6441637
VD
3708#else
3709static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3710 unsigned long limit)
d6441637
VD
3711{
3712 return -EINVAL;
3713}
6d043990 3714#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3715
628f4235
KH
3716/*
3717 * The user of this function is...
3718 * RES_LIMIT.
3719 */
451af504
TH
3720static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3721 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3722{
451af504 3723 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3724 unsigned long nr_pages;
628f4235
KH
3725 int ret;
3726
451af504 3727 buf = strstrip(buf);
3e32cb2e
JW
3728 ret = page_counter_memparse(buf, &nr_pages);
3729 if (ret)
3730 return ret;
af36f906 3731
3e32cb2e 3732 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3733 case RES_LIMIT:
4b3bde4c
BS
3734 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3735 ret = -EINVAL;
3736 break;
3737 }
3e32cb2e
JW
3738 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3739 case _MEM:
3740 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3741 break;
3e32cb2e
JW
3742 case _MEMSWAP:
3743 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3744 break;
3e32cb2e
JW
3745 case _KMEM:
3746 ret = memcg_update_kmem_limit(memcg, nr_pages);
3747 break;
3748 }
296c81d8 3749 break;
3e32cb2e
JW
3750 case RES_SOFT_LIMIT:
3751 memcg->soft_limit = nr_pages;
3752 ret = 0;
628f4235
KH
3753 break;
3754 }
451af504 3755 return ret ?: nbytes;
8cdea7c0
BS
3756}
3757
6770c64e
TH
3758static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3759 size_t nbytes, loff_t off)
c84872e1 3760{
6770c64e 3761 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3762 struct page_counter *counter;
c84872e1 3763
3e32cb2e
JW
3764 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3765 case _MEM:
3766 counter = &memcg->memory;
3767 break;
3768 case _MEMSWAP:
3769 counter = &memcg->memsw;
3770 break;
3771 case _KMEM:
3772 counter = &memcg->kmem;
3773 break;
3774 default:
3775 BUG();
3776 }
af36f906 3777
3e32cb2e 3778 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3779 case RES_MAX_USAGE:
3e32cb2e 3780 page_counter_reset_watermark(counter);
29f2a4da
PE
3781 break;
3782 case RES_FAILCNT:
3e32cb2e 3783 counter->failcnt = 0;
29f2a4da 3784 break;
3e32cb2e
JW
3785 default:
3786 BUG();
29f2a4da 3787 }
f64c3f54 3788
6770c64e 3789 return nbytes;
c84872e1
PE
3790}
3791
182446d0 3792static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3793 struct cftype *cft)
3794{
182446d0 3795 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3796}
3797
02491447 3798#ifdef CONFIG_MMU
182446d0 3799static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3800 struct cftype *cft, u64 val)
3801{
182446d0 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3803
3804 if (val >= (1 << NR_MOVE_TYPE))
3805 return -EINVAL;
ee5e8472 3806
7dc74be0 3807 /*
ee5e8472
GC
3808 * No kind of locking is needed in here, because ->can_attach() will
3809 * check this value once in the beginning of the process, and then carry
3810 * on with stale data. This means that changes to this value will only
3811 * affect task migrations starting after the change.
7dc74be0 3812 */
c0ff4b85 3813 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3814 return 0;
3815}
02491447 3816#else
182446d0 3817static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3818 struct cftype *cft, u64 val)
3819{
3820 return -ENOSYS;
3821}
3822#endif
7dc74be0 3823
406eb0c9 3824#ifdef CONFIG_NUMA
2da8ca82 3825static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3826{
25485de6
GT
3827 struct numa_stat {
3828 const char *name;
3829 unsigned int lru_mask;
3830 };
3831
3832 static const struct numa_stat stats[] = {
3833 { "total", LRU_ALL },
3834 { "file", LRU_ALL_FILE },
3835 { "anon", LRU_ALL_ANON },
3836 { "unevictable", BIT(LRU_UNEVICTABLE) },
3837 };
3838 const struct numa_stat *stat;
406eb0c9 3839 int nid;
25485de6 3840 unsigned long nr;
2da8ca82 3841 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3842
25485de6
GT
3843 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3844 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3845 seq_printf(m, "%s=%lu", stat->name, nr);
3846 for_each_node_state(nid, N_MEMORY) {
3847 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3848 stat->lru_mask);
3849 seq_printf(m, " N%d=%lu", nid, nr);
3850 }
3851 seq_putc(m, '\n');
406eb0c9 3852 }
406eb0c9 3853
071aee13
YH
3854 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3855 struct mem_cgroup *iter;
3856
3857 nr = 0;
3858 for_each_mem_cgroup_tree(iter, memcg)
3859 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3860 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3861 for_each_node_state(nid, N_MEMORY) {
3862 nr = 0;
3863 for_each_mem_cgroup_tree(iter, memcg)
3864 nr += mem_cgroup_node_nr_lru_pages(
3865 iter, nid, stat->lru_mask);
3866 seq_printf(m, " N%d=%lu", nid, nr);
3867 }
3868 seq_putc(m, '\n');
406eb0c9 3869 }
406eb0c9 3870
406eb0c9
YH
3871 return 0;
3872}
3873#endif /* CONFIG_NUMA */
3874
af7c4b0e
JW
3875static inline void mem_cgroup_lru_names_not_uptodate(void)
3876{
3877 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3878}
3879
2da8ca82 3880static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3881{
2da8ca82 3882 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3883 unsigned long memory, memsw;
af7c4b0e
JW
3884 struct mem_cgroup *mi;
3885 unsigned int i;
406eb0c9 3886
af7c4b0e 3887 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3888 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3889 continue;
af7c4b0e
JW
3890 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3891 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3892 }
7b854121 3893
af7c4b0e
JW
3894 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3895 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3896 mem_cgroup_read_events(memcg, i));
3897
3898 for (i = 0; i < NR_LRU_LISTS; i++)
3899 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3900 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3901
14067bb3 3902 /* Hierarchical information */
3e32cb2e
JW
3903 memory = memsw = PAGE_COUNTER_MAX;
3904 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3905 memory = min(memory, mi->memory.limit);
3906 memsw = min(memsw, mi->memsw.limit);
fee7b548 3907 }
3e32cb2e
JW
3908 seq_printf(m, "hierarchical_memory_limit %llu\n",
3909 (u64)memory * PAGE_SIZE);
3910 if (do_swap_account)
3911 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3912 (u64)memsw * PAGE_SIZE);
7f016ee8 3913
af7c4b0e
JW
3914 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3915 long long val = 0;
3916
bff6bb83 3917 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3918 continue;
af7c4b0e
JW
3919 for_each_mem_cgroup_tree(mi, memcg)
3920 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3921 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3922 }
3923
3924 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3925 unsigned long long val = 0;
3926
3927 for_each_mem_cgroup_tree(mi, memcg)
3928 val += mem_cgroup_read_events(mi, i);
3929 seq_printf(m, "total_%s %llu\n",
3930 mem_cgroup_events_names[i], val);
3931 }
3932
3933 for (i = 0; i < NR_LRU_LISTS; i++) {
3934 unsigned long long val = 0;
3935
3936 for_each_mem_cgroup_tree(mi, memcg)
3937 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3938 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3939 }
14067bb3 3940
7f016ee8 3941#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3942 {
3943 int nid, zid;
3944 struct mem_cgroup_per_zone *mz;
89abfab1 3945 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3946 unsigned long recent_rotated[2] = {0, 0};
3947 unsigned long recent_scanned[2] = {0, 0};
3948
3949 for_each_online_node(nid)
3950 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3951 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3952 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3953
89abfab1
HD
3954 recent_rotated[0] += rstat->recent_rotated[0];
3955 recent_rotated[1] += rstat->recent_rotated[1];
3956 recent_scanned[0] += rstat->recent_scanned[0];
3957 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3958 }
78ccf5b5
JW
3959 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3960 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3961 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3962 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3963 }
3964#endif
3965
d2ceb9b7
KH
3966 return 0;
3967}
3968
182446d0
TH
3969static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3970 struct cftype *cft)
a7885eb8 3971{
182446d0 3972 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3973
1f4c025b 3974 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3975}
3976
182446d0
TH
3977static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3978 struct cftype *cft, u64 val)
a7885eb8 3979{
182446d0 3980 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3981
3dae7fec 3982 if (val > 100)
a7885eb8
KM
3983 return -EINVAL;
3984
14208b0e 3985 if (css->parent)
3dae7fec
JW
3986 memcg->swappiness = val;
3987 else
3988 vm_swappiness = val;
068b38c1 3989
a7885eb8
KM
3990 return 0;
3991}
3992
2e72b634
KS
3993static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3994{
3995 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3996 unsigned long usage;
2e72b634
KS
3997 int i;
3998
3999 rcu_read_lock();
4000 if (!swap)
2c488db2 4001 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4002 else
2c488db2 4003 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4004
4005 if (!t)
4006 goto unlock;
4007
ce00a967 4008 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4009
4010 /*
748dad36 4011 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4012 * If it's not true, a threshold was crossed after last
4013 * call of __mem_cgroup_threshold().
4014 */
5407a562 4015 i = t->current_threshold;
2e72b634
KS
4016
4017 /*
4018 * Iterate backward over array of thresholds starting from
4019 * current_threshold and check if a threshold is crossed.
4020 * If none of thresholds below usage is crossed, we read
4021 * only one element of the array here.
4022 */
4023 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4024 eventfd_signal(t->entries[i].eventfd, 1);
4025
4026 /* i = current_threshold + 1 */
4027 i++;
4028
4029 /*
4030 * Iterate forward over array of thresholds starting from
4031 * current_threshold+1 and check if a threshold is crossed.
4032 * If none of thresholds above usage is crossed, we read
4033 * only one element of the array here.
4034 */
4035 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4036 eventfd_signal(t->entries[i].eventfd, 1);
4037
4038 /* Update current_threshold */
5407a562 4039 t->current_threshold = i - 1;
2e72b634
KS
4040unlock:
4041 rcu_read_unlock();
4042}
4043
4044static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4045{
ad4ca5f4
KS
4046 while (memcg) {
4047 __mem_cgroup_threshold(memcg, false);
4048 if (do_swap_account)
4049 __mem_cgroup_threshold(memcg, true);
4050
4051 memcg = parent_mem_cgroup(memcg);
4052 }
2e72b634
KS
4053}
4054
4055static int compare_thresholds(const void *a, const void *b)
4056{
4057 const struct mem_cgroup_threshold *_a = a;
4058 const struct mem_cgroup_threshold *_b = b;
4059
2bff24a3
GT
4060 if (_a->threshold > _b->threshold)
4061 return 1;
4062
4063 if (_a->threshold < _b->threshold)
4064 return -1;
4065
4066 return 0;
2e72b634
KS
4067}
4068
c0ff4b85 4069static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4070{
4071 struct mem_cgroup_eventfd_list *ev;
4072
2bcf2e92
MH
4073 spin_lock(&memcg_oom_lock);
4074
c0ff4b85 4075 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4076 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4077
4078 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4079 return 0;
4080}
4081
c0ff4b85 4082static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4083{
7d74b06f
KH
4084 struct mem_cgroup *iter;
4085
c0ff4b85 4086 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4087 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4088}
4089
59b6f873 4090static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4091 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4092{
2c488db2
KS
4093 struct mem_cgroup_thresholds *thresholds;
4094 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4095 unsigned long threshold;
4096 unsigned long usage;
2c488db2 4097 int i, size, ret;
2e72b634 4098
3e32cb2e 4099 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4100 if (ret)
4101 return ret;
4102
4103 mutex_lock(&memcg->thresholds_lock);
2c488db2 4104
05b84301 4105 if (type == _MEM) {
2c488db2 4106 thresholds = &memcg->thresholds;
ce00a967 4107 usage = mem_cgroup_usage(memcg, false);
05b84301 4108 } else if (type == _MEMSWAP) {
2c488db2 4109 thresholds = &memcg->memsw_thresholds;
ce00a967 4110 usage = mem_cgroup_usage(memcg, true);
05b84301 4111 } else
2e72b634
KS
4112 BUG();
4113
2e72b634 4114 /* Check if a threshold crossed before adding a new one */
2c488db2 4115 if (thresholds->primary)
2e72b634
KS
4116 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4117
2c488db2 4118 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4119
4120 /* Allocate memory for new array of thresholds */
2c488db2 4121 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4122 GFP_KERNEL);
2c488db2 4123 if (!new) {
2e72b634
KS
4124 ret = -ENOMEM;
4125 goto unlock;
4126 }
2c488db2 4127 new->size = size;
2e72b634
KS
4128
4129 /* Copy thresholds (if any) to new array */
2c488db2
KS
4130 if (thresholds->primary) {
4131 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4132 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4133 }
4134
2e72b634 4135 /* Add new threshold */
2c488db2
KS
4136 new->entries[size - 1].eventfd = eventfd;
4137 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4138
4139 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4140 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4141 compare_thresholds, NULL);
4142
4143 /* Find current threshold */
2c488db2 4144 new->current_threshold = -1;
2e72b634 4145 for (i = 0; i < size; i++) {
748dad36 4146 if (new->entries[i].threshold <= usage) {
2e72b634 4147 /*
2c488db2
KS
4148 * new->current_threshold will not be used until
4149 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4150 * it here.
4151 */
2c488db2 4152 ++new->current_threshold;
748dad36
SZ
4153 } else
4154 break;
2e72b634
KS
4155 }
4156
2c488db2
KS
4157 /* Free old spare buffer and save old primary buffer as spare */
4158 kfree(thresholds->spare);
4159 thresholds->spare = thresholds->primary;
4160
4161 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4162
907860ed 4163 /* To be sure that nobody uses thresholds */
2e72b634
KS
4164 synchronize_rcu();
4165
2e72b634
KS
4166unlock:
4167 mutex_unlock(&memcg->thresholds_lock);
4168
4169 return ret;
4170}
4171
59b6f873 4172static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4173 struct eventfd_ctx *eventfd, const char *args)
4174{
59b6f873 4175 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4176}
4177
59b6f873 4178static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4179 struct eventfd_ctx *eventfd, const char *args)
4180{
59b6f873 4181 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4182}
4183
59b6f873 4184static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4185 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4186{
2c488db2
KS
4187 struct mem_cgroup_thresholds *thresholds;
4188 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4189 unsigned long usage;
2c488db2 4190 int i, j, size;
2e72b634
KS
4191
4192 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4193
4194 if (type == _MEM) {
2c488db2 4195 thresholds = &memcg->thresholds;
ce00a967 4196 usage = mem_cgroup_usage(memcg, false);
05b84301 4197 } else if (type == _MEMSWAP) {
2c488db2 4198 thresholds = &memcg->memsw_thresholds;
ce00a967 4199 usage = mem_cgroup_usage(memcg, true);
05b84301 4200 } else
2e72b634
KS
4201 BUG();
4202
371528ca
AV
4203 if (!thresholds->primary)
4204 goto unlock;
4205
2e72b634
KS
4206 /* Check if a threshold crossed before removing */
4207 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4208
4209 /* Calculate new number of threshold */
2c488db2
KS
4210 size = 0;
4211 for (i = 0; i < thresholds->primary->size; i++) {
4212 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4213 size++;
4214 }
4215
2c488db2 4216 new = thresholds->spare;
907860ed 4217
2e72b634
KS
4218 /* Set thresholds array to NULL if we don't have thresholds */
4219 if (!size) {
2c488db2
KS
4220 kfree(new);
4221 new = NULL;
907860ed 4222 goto swap_buffers;
2e72b634
KS
4223 }
4224
2c488db2 4225 new->size = size;
2e72b634
KS
4226
4227 /* Copy thresholds and find current threshold */
2c488db2
KS
4228 new->current_threshold = -1;
4229 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4230 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4231 continue;
4232
2c488db2 4233 new->entries[j] = thresholds->primary->entries[i];
748dad36 4234 if (new->entries[j].threshold <= usage) {
2e72b634 4235 /*
2c488db2 4236 * new->current_threshold will not be used
2e72b634
KS
4237 * until rcu_assign_pointer(), so it's safe to increment
4238 * it here.
4239 */
2c488db2 4240 ++new->current_threshold;
2e72b634
KS
4241 }
4242 j++;
4243 }
4244
907860ed 4245swap_buffers:
2c488db2
KS
4246 /* Swap primary and spare array */
4247 thresholds->spare = thresholds->primary;
8c757763
SZ
4248 /* If all events are unregistered, free the spare array */
4249 if (!new) {
4250 kfree(thresholds->spare);
4251 thresholds->spare = NULL;
4252 }
4253
2c488db2 4254 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4255
907860ed 4256 /* To be sure that nobody uses thresholds */
2e72b634 4257 synchronize_rcu();
371528ca 4258unlock:
2e72b634 4259 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4260}
c1e862c1 4261
59b6f873 4262static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4263 struct eventfd_ctx *eventfd)
4264{
59b6f873 4265 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4266}
4267
59b6f873 4268static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4269 struct eventfd_ctx *eventfd)
4270{
59b6f873 4271 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4272}
4273
59b6f873 4274static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4275 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4276{
9490ff27 4277 struct mem_cgroup_eventfd_list *event;
9490ff27 4278
9490ff27
KH
4279 event = kmalloc(sizeof(*event), GFP_KERNEL);
4280 if (!event)
4281 return -ENOMEM;
4282
1af8efe9 4283 spin_lock(&memcg_oom_lock);
9490ff27
KH
4284
4285 event->eventfd = eventfd;
4286 list_add(&event->list, &memcg->oom_notify);
4287
4288 /* already in OOM ? */
79dfdacc 4289 if (atomic_read(&memcg->under_oom))
9490ff27 4290 eventfd_signal(eventfd, 1);
1af8efe9 4291 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4292
4293 return 0;
4294}
4295
59b6f873 4296static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4297 struct eventfd_ctx *eventfd)
9490ff27 4298{
9490ff27 4299 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4300
1af8efe9 4301 spin_lock(&memcg_oom_lock);
9490ff27 4302
c0ff4b85 4303 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4304 if (ev->eventfd == eventfd) {
4305 list_del(&ev->list);
4306 kfree(ev);
4307 }
4308 }
4309
1af8efe9 4310 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4311}
4312
2da8ca82 4313static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4314{
2da8ca82 4315 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4316
791badbd
TH
4317 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4318 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4319 return 0;
4320}
4321
182446d0 4322static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4323 struct cftype *cft, u64 val)
4324{
182446d0 4325 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4326
4327 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4328 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4329 return -EINVAL;
4330
c0ff4b85 4331 memcg->oom_kill_disable = val;
4d845ebf 4332 if (!val)
c0ff4b85 4333 memcg_oom_recover(memcg);
3dae7fec 4334
3c11ecf4
KH
4335 return 0;
4336}
4337
c255a458 4338#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4339static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4340{
55007d84
GC
4341 int ret;
4342
2633d7a0 4343 memcg->kmemcg_id = -1;
55007d84
GC
4344 ret = memcg_propagate_kmem(memcg);
4345 if (ret)
4346 return ret;
2633d7a0 4347
1d62e436 4348 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4349}
e5671dfa 4350
10d5ebf4 4351static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4352{
1d62e436 4353 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4354}
e5671dfa 4355#else
cbe128e3 4356static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4357{
4358 return 0;
4359}
d1a4c0b3 4360
10d5ebf4
LZ
4361static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4362{
4363}
e5671dfa
GC
4364#endif
4365
3bc942f3
TH
4366/*
4367 * DO NOT USE IN NEW FILES.
4368 *
4369 * "cgroup.event_control" implementation.
4370 *
4371 * This is way over-engineered. It tries to support fully configurable
4372 * events for each user. Such level of flexibility is completely
4373 * unnecessary especially in the light of the planned unified hierarchy.
4374 *
4375 * Please deprecate this and replace with something simpler if at all
4376 * possible.
4377 */
4378
79bd9814
TH
4379/*
4380 * Unregister event and free resources.
4381 *
4382 * Gets called from workqueue.
4383 */
3bc942f3 4384static void memcg_event_remove(struct work_struct *work)
79bd9814 4385{
3bc942f3
TH
4386 struct mem_cgroup_event *event =
4387 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4388 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4389
4390 remove_wait_queue(event->wqh, &event->wait);
4391
59b6f873 4392 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4393
4394 /* Notify userspace the event is going away. */
4395 eventfd_signal(event->eventfd, 1);
4396
4397 eventfd_ctx_put(event->eventfd);
4398 kfree(event);
59b6f873 4399 css_put(&memcg->css);
79bd9814
TH
4400}
4401
4402/*
4403 * Gets called on POLLHUP on eventfd when user closes it.
4404 *
4405 * Called with wqh->lock held and interrupts disabled.
4406 */
3bc942f3
TH
4407static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4408 int sync, void *key)
79bd9814 4409{
3bc942f3
TH
4410 struct mem_cgroup_event *event =
4411 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4412 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4413 unsigned long flags = (unsigned long)key;
4414
4415 if (flags & POLLHUP) {
4416 /*
4417 * If the event has been detached at cgroup removal, we
4418 * can simply return knowing the other side will cleanup
4419 * for us.
4420 *
4421 * We can't race against event freeing since the other
4422 * side will require wqh->lock via remove_wait_queue(),
4423 * which we hold.
4424 */
fba94807 4425 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4426 if (!list_empty(&event->list)) {
4427 list_del_init(&event->list);
4428 /*
4429 * We are in atomic context, but cgroup_event_remove()
4430 * may sleep, so we have to call it in workqueue.
4431 */
4432 schedule_work(&event->remove);
4433 }
fba94807 4434 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4435 }
4436
4437 return 0;
4438}
4439
3bc942f3 4440static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4441 wait_queue_head_t *wqh, poll_table *pt)
4442{
3bc942f3
TH
4443 struct mem_cgroup_event *event =
4444 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4445
4446 event->wqh = wqh;
4447 add_wait_queue(wqh, &event->wait);
4448}
4449
4450/*
3bc942f3
TH
4451 * DO NOT USE IN NEW FILES.
4452 *
79bd9814
TH
4453 * Parse input and register new cgroup event handler.
4454 *
4455 * Input must be in format '<event_fd> <control_fd> <args>'.
4456 * Interpretation of args is defined by control file implementation.
4457 */
451af504
TH
4458static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4459 char *buf, size_t nbytes, loff_t off)
79bd9814 4460{
451af504 4461 struct cgroup_subsys_state *css = of_css(of);
fba94807 4462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4463 struct mem_cgroup_event *event;
79bd9814
TH
4464 struct cgroup_subsys_state *cfile_css;
4465 unsigned int efd, cfd;
4466 struct fd efile;
4467 struct fd cfile;
fba94807 4468 const char *name;
79bd9814
TH
4469 char *endp;
4470 int ret;
4471
451af504
TH
4472 buf = strstrip(buf);
4473
4474 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4475 if (*endp != ' ')
4476 return -EINVAL;
451af504 4477 buf = endp + 1;
79bd9814 4478
451af504 4479 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4480 if ((*endp != ' ') && (*endp != '\0'))
4481 return -EINVAL;
451af504 4482 buf = endp + 1;
79bd9814
TH
4483
4484 event = kzalloc(sizeof(*event), GFP_KERNEL);
4485 if (!event)
4486 return -ENOMEM;
4487
59b6f873 4488 event->memcg = memcg;
79bd9814 4489 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4490 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4491 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4492 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4493
4494 efile = fdget(efd);
4495 if (!efile.file) {
4496 ret = -EBADF;
4497 goto out_kfree;
4498 }
4499
4500 event->eventfd = eventfd_ctx_fileget(efile.file);
4501 if (IS_ERR(event->eventfd)) {
4502 ret = PTR_ERR(event->eventfd);
4503 goto out_put_efile;
4504 }
4505
4506 cfile = fdget(cfd);
4507 if (!cfile.file) {
4508 ret = -EBADF;
4509 goto out_put_eventfd;
4510 }
4511
4512 /* the process need read permission on control file */
4513 /* AV: shouldn't we check that it's been opened for read instead? */
4514 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4515 if (ret < 0)
4516 goto out_put_cfile;
4517
fba94807
TH
4518 /*
4519 * Determine the event callbacks and set them in @event. This used
4520 * to be done via struct cftype but cgroup core no longer knows
4521 * about these events. The following is crude but the whole thing
4522 * is for compatibility anyway.
3bc942f3
TH
4523 *
4524 * DO NOT ADD NEW FILES.
fba94807
TH
4525 */
4526 name = cfile.file->f_dentry->d_name.name;
4527
4528 if (!strcmp(name, "memory.usage_in_bytes")) {
4529 event->register_event = mem_cgroup_usage_register_event;
4530 event->unregister_event = mem_cgroup_usage_unregister_event;
4531 } else if (!strcmp(name, "memory.oom_control")) {
4532 event->register_event = mem_cgroup_oom_register_event;
4533 event->unregister_event = mem_cgroup_oom_unregister_event;
4534 } else if (!strcmp(name, "memory.pressure_level")) {
4535 event->register_event = vmpressure_register_event;
4536 event->unregister_event = vmpressure_unregister_event;
4537 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4538 event->register_event = memsw_cgroup_usage_register_event;
4539 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4540 } else {
4541 ret = -EINVAL;
4542 goto out_put_cfile;
4543 }
4544
79bd9814 4545 /*
b5557c4c
TH
4546 * Verify @cfile should belong to @css. Also, remaining events are
4547 * automatically removed on cgroup destruction but the removal is
4548 * asynchronous, so take an extra ref on @css.
79bd9814 4549 */
ec903c0c
TH
4550 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4551 &memory_cgrp_subsys);
79bd9814 4552 ret = -EINVAL;
5a17f543 4553 if (IS_ERR(cfile_css))
79bd9814 4554 goto out_put_cfile;
5a17f543
TH
4555 if (cfile_css != css) {
4556 css_put(cfile_css);
79bd9814 4557 goto out_put_cfile;
5a17f543 4558 }
79bd9814 4559
451af504 4560 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4561 if (ret)
4562 goto out_put_css;
4563
4564 efile.file->f_op->poll(efile.file, &event->pt);
4565
fba94807
TH
4566 spin_lock(&memcg->event_list_lock);
4567 list_add(&event->list, &memcg->event_list);
4568 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4569
4570 fdput(cfile);
4571 fdput(efile);
4572
451af504 4573 return nbytes;
79bd9814
TH
4574
4575out_put_css:
b5557c4c 4576 css_put(css);
79bd9814
TH
4577out_put_cfile:
4578 fdput(cfile);
4579out_put_eventfd:
4580 eventfd_ctx_put(event->eventfd);
4581out_put_efile:
4582 fdput(efile);
4583out_kfree:
4584 kfree(event);
4585
4586 return ret;
4587}
4588
8cdea7c0
BS
4589static struct cftype mem_cgroup_files[] = {
4590 {
0eea1030 4591 .name = "usage_in_bytes",
8c7c6e34 4592 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4593 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4594 },
c84872e1
PE
4595 {
4596 .name = "max_usage_in_bytes",
8c7c6e34 4597 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4598 .write = mem_cgroup_reset,
791badbd 4599 .read_u64 = mem_cgroup_read_u64,
c84872e1 4600 },
8cdea7c0 4601 {
0eea1030 4602 .name = "limit_in_bytes",
8c7c6e34 4603 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4604 .write = mem_cgroup_write,
791badbd 4605 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4606 },
296c81d8
BS
4607 {
4608 .name = "soft_limit_in_bytes",
4609 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4610 .write = mem_cgroup_write,
791badbd 4611 .read_u64 = mem_cgroup_read_u64,
296c81d8 4612 },
8cdea7c0
BS
4613 {
4614 .name = "failcnt",
8c7c6e34 4615 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4616 .write = mem_cgroup_reset,
791badbd 4617 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4618 },
d2ceb9b7
KH
4619 {
4620 .name = "stat",
2da8ca82 4621 .seq_show = memcg_stat_show,
d2ceb9b7 4622 },
c1e862c1
KH
4623 {
4624 .name = "force_empty",
6770c64e 4625 .write = mem_cgroup_force_empty_write,
c1e862c1 4626 },
18f59ea7
BS
4627 {
4628 .name = "use_hierarchy",
4629 .write_u64 = mem_cgroup_hierarchy_write,
4630 .read_u64 = mem_cgroup_hierarchy_read,
4631 },
79bd9814 4632 {
3bc942f3 4633 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4634 .write = memcg_write_event_control,
79bd9814
TH
4635 .flags = CFTYPE_NO_PREFIX,
4636 .mode = S_IWUGO,
4637 },
a7885eb8
KM
4638 {
4639 .name = "swappiness",
4640 .read_u64 = mem_cgroup_swappiness_read,
4641 .write_u64 = mem_cgroup_swappiness_write,
4642 },
7dc74be0
DN
4643 {
4644 .name = "move_charge_at_immigrate",
4645 .read_u64 = mem_cgroup_move_charge_read,
4646 .write_u64 = mem_cgroup_move_charge_write,
4647 },
9490ff27
KH
4648 {
4649 .name = "oom_control",
2da8ca82 4650 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4651 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4652 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4653 },
70ddf637
AV
4654 {
4655 .name = "pressure_level",
70ddf637 4656 },
406eb0c9
YH
4657#ifdef CONFIG_NUMA
4658 {
4659 .name = "numa_stat",
2da8ca82 4660 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4661 },
4662#endif
510fc4e1
GC
4663#ifdef CONFIG_MEMCG_KMEM
4664 {
4665 .name = "kmem.limit_in_bytes",
4666 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4667 .write = mem_cgroup_write,
791badbd 4668 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4669 },
4670 {
4671 .name = "kmem.usage_in_bytes",
4672 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4673 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4674 },
4675 {
4676 .name = "kmem.failcnt",
4677 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4678 .write = mem_cgroup_reset,
791badbd 4679 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4680 },
4681 {
4682 .name = "kmem.max_usage_in_bytes",
4683 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4684 .write = mem_cgroup_reset,
791badbd 4685 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4686 },
749c5415
GC
4687#ifdef CONFIG_SLABINFO
4688 {
4689 .name = "kmem.slabinfo",
b047501c
VD
4690 .seq_start = slab_start,
4691 .seq_next = slab_next,
4692 .seq_stop = slab_stop,
4693 .seq_show = memcg_slab_show,
749c5415
GC
4694 },
4695#endif
8c7c6e34 4696#endif
6bc10349 4697 { }, /* terminate */
af36f906 4698};
8c7c6e34 4699
2d11085e
MH
4700#ifdef CONFIG_MEMCG_SWAP
4701static struct cftype memsw_cgroup_files[] = {
4702 {
4703 .name = "memsw.usage_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4705 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4706 },
4707 {
4708 .name = "memsw.max_usage_in_bytes",
4709 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4710 .write = mem_cgroup_reset,
791badbd 4711 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4712 },
4713 {
4714 .name = "memsw.limit_in_bytes",
4715 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4716 .write = mem_cgroup_write,
791badbd 4717 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4718 },
4719 {
4720 .name = "memsw.failcnt",
4721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4722 .write = mem_cgroup_reset,
791badbd 4723 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4724 },
4725 { }, /* terminate */
4726};
4727#endif
c0ff4b85 4728static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4729{
4730 struct mem_cgroup_per_node *pn;
1ecaab2b 4731 struct mem_cgroup_per_zone *mz;
41e3355d 4732 int zone, tmp = node;
1ecaab2b
KH
4733 /*
4734 * This routine is called against possible nodes.
4735 * But it's BUG to call kmalloc() against offline node.
4736 *
4737 * TODO: this routine can waste much memory for nodes which will
4738 * never be onlined. It's better to use memory hotplug callback
4739 * function.
4740 */
41e3355d
KH
4741 if (!node_state(node, N_NORMAL_MEMORY))
4742 tmp = -1;
17295c88 4743 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4744 if (!pn)
4745 return 1;
1ecaab2b 4746
1ecaab2b
KH
4747 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4748 mz = &pn->zoneinfo[zone];
bea8c150 4749 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4750 mz->usage_in_excess = 0;
4751 mz->on_tree = false;
d79154bb 4752 mz->memcg = memcg;
1ecaab2b 4753 }
54f72fe0 4754 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4755 return 0;
4756}
4757
c0ff4b85 4758static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4759{
54f72fe0 4760 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4761}
4762
33327948
KH
4763static struct mem_cgroup *mem_cgroup_alloc(void)
4764{
d79154bb 4765 struct mem_cgroup *memcg;
8ff69e2c 4766 size_t size;
33327948 4767
8ff69e2c
VD
4768 size = sizeof(struct mem_cgroup);
4769 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4770
8ff69e2c 4771 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4772 if (!memcg)
e7bbcdf3
DC
4773 return NULL;
4774
d79154bb
HD
4775 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4776 if (!memcg->stat)
d2e61b8d 4777 goto out_free;
d79154bb
HD
4778 spin_lock_init(&memcg->pcp_counter_lock);
4779 return memcg;
d2e61b8d
DC
4780
4781out_free:
8ff69e2c 4782 kfree(memcg);
d2e61b8d 4783 return NULL;
33327948
KH
4784}
4785
59927fb9 4786/*
c8b2a36f
GC
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4795 */
c8b2a36f
GC
4796
4797static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4798{
c8b2a36f 4799 int node;
59927fb9 4800
bb4cc1a8 4801 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4802
4803 for_each_node(node)
4804 free_mem_cgroup_per_zone_info(memcg, node);
4805
4806 free_percpu(memcg->stat);
4807
3f134619
GC
4808 /*
4809 * We need to make sure that (at least for now), the jump label
4810 * destruction code runs outside of the cgroup lock. This is because
4811 * get_online_cpus(), which is called from the static_branch update,
4812 * can't be called inside the cgroup_lock. cpusets are the ones
4813 * enforcing this dependency, so if they ever change, we might as well.
4814 *
4815 * schedule_work() will guarantee this happens. Be careful if you need
4816 * to move this code around, and make sure it is outside
4817 * the cgroup_lock.
4818 */
a8964b9b 4819 disarm_static_keys(memcg);
8ff69e2c 4820 kfree(memcg);
59927fb9 4821}
3afe36b1 4822
7bcc1bb1
DN
4823/*
4824 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4825 */
e1aab161 4826struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4827{
3e32cb2e 4828 if (!memcg->memory.parent)
7bcc1bb1 4829 return NULL;
3e32cb2e 4830 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4831}
e1aab161 4832EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4833
bb4cc1a8
AM
4834static void __init mem_cgroup_soft_limit_tree_init(void)
4835{
4836 struct mem_cgroup_tree_per_node *rtpn;
4837 struct mem_cgroup_tree_per_zone *rtpz;
4838 int tmp, node, zone;
4839
4840 for_each_node(node) {
4841 tmp = node;
4842 if (!node_state(node, N_NORMAL_MEMORY))
4843 tmp = -1;
4844 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4845 BUG_ON(!rtpn);
4846
4847 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4848
4849 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4850 rtpz = &rtpn->rb_tree_per_zone[zone];
4851 rtpz->rb_root = RB_ROOT;
4852 spin_lock_init(&rtpz->lock);
4853 }
4854 }
4855}
4856
0eb253e2 4857static struct cgroup_subsys_state * __ref
eb95419b 4858mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4859{
d142e3e6 4860 struct mem_cgroup *memcg;
04046e1a 4861 long error = -ENOMEM;
6d12e2d8 4862 int node;
8cdea7c0 4863
c0ff4b85
R
4864 memcg = mem_cgroup_alloc();
4865 if (!memcg)
04046e1a 4866 return ERR_PTR(error);
78fb7466 4867
3ed28fa1 4868 for_each_node(node)
c0ff4b85 4869 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4870 goto free_out;
f64c3f54 4871
c077719b 4872 /* root ? */
eb95419b 4873 if (parent_css == NULL) {
a41c58a6 4874 root_mem_cgroup = memcg;
3e32cb2e
JW
4875 page_counter_init(&memcg->memory, NULL);
4876 page_counter_init(&memcg->memsw, NULL);
4877 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4878 }
28dbc4b6 4879
d142e3e6
GC
4880 memcg->last_scanned_node = MAX_NUMNODES;
4881 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4882 memcg->move_charge_at_immigrate = 0;
4883 mutex_init(&memcg->thresholds_lock);
4884 spin_lock_init(&memcg->move_lock);
70ddf637 4885 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4886 INIT_LIST_HEAD(&memcg->event_list);
4887 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4888
4889 return &memcg->css;
4890
4891free_out:
4892 __mem_cgroup_free(memcg);
4893 return ERR_PTR(error);
4894}
4895
4896static int
eb95419b 4897mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4898{
eb95419b 4899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4900 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4901 int ret;
d142e3e6 4902
15a4c835 4903 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4904 return -ENOSPC;
4905
63876986 4906 if (!parent)
d142e3e6
GC
4907 return 0;
4908
0999821b 4909 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4910
4911 memcg->use_hierarchy = parent->use_hierarchy;
4912 memcg->oom_kill_disable = parent->oom_kill_disable;
4913 memcg->swappiness = mem_cgroup_swappiness(parent);
4914
4915 if (parent->use_hierarchy) {
3e32cb2e
JW
4916 page_counter_init(&memcg->memory, &parent->memory);
4917 page_counter_init(&memcg->memsw, &parent->memsw);
4918 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4919
7bcc1bb1 4920 /*
8d76a979
LZ
4921 * No need to take a reference to the parent because cgroup
4922 * core guarantees its existence.
7bcc1bb1 4923 */
18f59ea7 4924 } else {
3e32cb2e
JW
4925 page_counter_init(&memcg->memory, NULL);
4926 page_counter_init(&memcg->memsw, NULL);
4927 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4928 /*
4929 * Deeper hierachy with use_hierarchy == false doesn't make
4930 * much sense so let cgroup subsystem know about this
4931 * unfortunate state in our controller.
4932 */
d142e3e6 4933 if (parent != root_mem_cgroup)
073219e9 4934 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4935 }
0999821b 4936 mutex_unlock(&memcg_create_mutex);
d6441637 4937
2f7dd7a4
JW
4938 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4939 if (ret)
4940 return ret;
4941
4942 /*
4943 * Make sure the memcg is initialized: mem_cgroup_iter()
4944 * orders reading memcg->initialized against its callers
4945 * reading the memcg members.
4946 */
4947 smp_store_release(&memcg->initialized, 1);
4948
4949 return 0;
8cdea7c0
BS
4950}
4951
eb95419b 4952static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4953{
eb95419b 4954 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4955 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4956
4957 /*
4958 * Unregister events and notify userspace.
4959 * Notify userspace about cgroup removing only after rmdir of cgroup
4960 * directory to avoid race between userspace and kernelspace.
4961 */
fba94807
TH
4962 spin_lock(&memcg->event_list_lock);
4963 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4964 list_del_init(&event->list);
4965 schedule_work(&event->remove);
4966 }
fba94807 4967 spin_unlock(&memcg->event_list_lock);
ec64f515 4968
776ed0f0 4969 memcg_unregister_all_caches(memcg);
33cb876e 4970 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4971}
4972
eb95419b 4973static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4974{
eb95419b 4975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4976
10d5ebf4 4977 memcg_destroy_kmem(memcg);
465939a1 4978 __mem_cgroup_free(memcg);
8cdea7c0
BS
4979}
4980
1ced953b
TH
4981/**
4982 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4983 * @css: the target css
4984 *
4985 * Reset the states of the mem_cgroup associated with @css. This is
4986 * invoked when the userland requests disabling on the default hierarchy
4987 * but the memcg is pinned through dependency. The memcg should stop
4988 * applying policies and should revert to the vanilla state as it may be
4989 * made visible again.
4990 *
4991 * The current implementation only resets the essential configurations.
4992 * This needs to be expanded to cover all the visible parts.
4993 */
4994static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4995{
4996 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4997
3e32cb2e
JW
4998 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4999 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5000 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5001 memcg->soft_limit = 0;
1ced953b
TH
5002}
5003
02491447 5004#ifdef CONFIG_MMU
7dc74be0 5005/* Handlers for move charge at task migration. */
854ffa8d 5006static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5007{
05b84301 5008 int ret;
9476db97
JW
5009
5010 /* Try a single bulk charge without reclaim first */
00501b53 5011 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5012 if (!ret) {
854ffa8d 5013 mc.precharge += count;
854ffa8d
DN
5014 return ret;
5015 }
692e7c45 5016 if (ret == -EINTR) {
00501b53 5017 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5018 return ret;
5019 }
9476db97
JW
5020
5021 /* Try charges one by one with reclaim */
854ffa8d 5022 while (count--) {
00501b53 5023 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5024 /*
5025 * In case of failure, any residual charges against
5026 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5027 * later on. However, cancel any charges that are
5028 * bypassed to root right away or they'll be lost.
9476db97 5029 */
692e7c45 5030 if (ret == -EINTR)
00501b53 5031 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5032 if (ret)
38c5d72f 5033 return ret;
854ffa8d 5034 mc.precharge++;
9476db97 5035 cond_resched();
854ffa8d 5036 }
9476db97 5037 return 0;
4ffef5fe
DN
5038}
5039
5040/**
8d32ff84 5041 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5042 * @vma: the vma the pte to be checked belongs
5043 * @addr: the address corresponding to the pte to be checked
5044 * @ptent: the pte to be checked
02491447 5045 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5046 *
5047 * Returns
5048 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5049 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5050 * move charge. if @target is not NULL, the page is stored in target->page
5051 * with extra refcnt got(Callers should handle it).
02491447
DN
5052 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5053 * target for charge migration. if @target is not NULL, the entry is stored
5054 * in target->ent.
4ffef5fe
DN
5055 *
5056 * Called with pte lock held.
5057 */
4ffef5fe
DN
5058union mc_target {
5059 struct page *page;
02491447 5060 swp_entry_t ent;
4ffef5fe
DN
5061};
5062
4ffef5fe 5063enum mc_target_type {
8d32ff84 5064 MC_TARGET_NONE = 0,
4ffef5fe 5065 MC_TARGET_PAGE,
02491447 5066 MC_TARGET_SWAP,
4ffef5fe
DN
5067};
5068
90254a65
DN
5069static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5070 unsigned long addr, pte_t ptent)
4ffef5fe 5071{
90254a65 5072 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5073
90254a65
DN
5074 if (!page || !page_mapped(page))
5075 return NULL;
5076 if (PageAnon(page)) {
5077 /* we don't move shared anon */
4b91355e 5078 if (!move_anon())
90254a65 5079 return NULL;
87946a72
DN
5080 } else if (!move_file())
5081 /* we ignore mapcount for file pages */
90254a65
DN
5082 return NULL;
5083 if (!get_page_unless_zero(page))
5084 return NULL;
5085
5086 return page;
5087}
5088
4b91355e 5089#ifdef CONFIG_SWAP
90254a65
DN
5090static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5091 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5092{
90254a65
DN
5093 struct page *page = NULL;
5094 swp_entry_t ent = pte_to_swp_entry(ptent);
5095
5096 if (!move_anon() || non_swap_entry(ent))
5097 return NULL;
4b91355e
KH
5098 /*
5099 * Because lookup_swap_cache() updates some statistics counter,
5100 * we call find_get_page() with swapper_space directly.
5101 */
33806f06 5102 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5103 if (do_swap_account)
5104 entry->val = ent.val;
5105
5106 return page;
5107}
4b91355e
KH
5108#else
5109static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5110 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5111{
5112 return NULL;
5113}
5114#endif
90254a65 5115
87946a72
DN
5116static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5117 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5118{
5119 struct page *page = NULL;
87946a72
DN
5120 struct address_space *mapping;
5121 pgoff_t pgoff;
5122
5123 if (!vma->vm_file) /* anonymous vma */
5124 return NULL;
5125 if (!move_file())
5126 return NULL;
5127
87946a72
DN
5128 mapping = vma->vm_file->f_mapping;
5129 if (pte_none(ptent))
5130 pgoff = linear_page_index(vma, addr);
5131 else /* pte_file(ptent) is true */
5132 pgoff = pte_to_pgoff(ptent);
5133
5134 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5135#ifdef CONFIG_SWAP
5136 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5137 if (shmem_mapping(mapping)) {
5138 page = find_get_entry(mapping, pgoff);
5139 if (radix_tree_exceptional_entry(page)) {
5140 swp_entry_t swp = radix_to_swp_entry(page);
5141 if (do_swap_account)
5142 *entry = swp;
5143 page = find_get_page(swap_address_space(swp), swp.val);
5144 }
5145 } else
5146 page = find_get_page(mapping, pgoff);
5147#else
5148 page = find_get_page(mapping, pgoff);
aa3b1895 5149#endif
87946a72
DN
5150 return page;
5151}
5152
8d32ff84 5153static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5154 unsigned long addr, pte_t ptent, union mc_target *target)
5155{
5156 struct page *page = NULL;
5157 struct page_cgroup *pc;
8d32ff84 5158 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5159 swp_entry_t ent = { .val = 0 };
5160
5161 if (pte_present(ptent))
5162 page = mc_handle_present_pte(vma, addr, ptent);
5163 else if (is_swap_pte(ptent))
5164 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5165 else if (pte_none(ptent) || pte_file(ptent))
5166 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5167
5168 if (!page && !ent.val)
8d32ff84 5169 return ret;
02491447
DN
5170 if (page) {
5171 pc = lookup_page_cgroup(page);
5172 /*
0a31bc97
JW
5173 * Do only loose check w/o serialization.
5174 * mem_cgroup_move_account() checks the pc is valid or
5175 * not under LRU exclusion.
02491447 5176 */
29833315 5177 if (pc->mem_cgroup == mc.from) {
02491447
DN
5178 ret = MC_TARGET_PAGE;
5179 if (target)
5180 target->page = page;
5181 }
5182 if (!ret || !target)
5183 put_page(page);
5184 }
90254a65
DN
5185 /* There is a swap entry and a page doesn't exist or isn't charged */
5186 if (ent.val && !ret &&
34c00c31 5187 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5188 ret = MC_TARGET_SWAP;
5189 if (target)
5190 target->ent = ent;
4ffef5fe 5191 }
4ffef5fe
DN
5192 return ret;
5193}
5194
12724850
NH
5195#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5196/*
5197 * We don't consider swapping or file mapped pages because THP does not
5198 * support them for now.
5199 * Caller should make sure that pmd_trans_huge(pmd) is true.
5200 */
5201static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5202 unsigned long addr, pmd_t pmd, union mc_target *target)
5203{
5204 struct page *page = NULL;
5205 struct page_cgroup *pc;
5206 enum mc_target_type ret = MC_TARGET_NONE;
5207
5208 page = pmd_page(pmd);
309381fe 5209 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5210 if (!move_anon())
5211 return ret;
5212 pc = lookup_page_cgroup(page);
29833315 5213 if (pc->mem_cgroup == mc.from) {
12724850
NH
5214 ret = MC_TARGET_PAGE;
5215 if (target) {
5216 get_page(page);
5217 target->page = page;
5218 }
5219 }
5220 return ret;
5221}
5222#else
5223static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5224 unsigned long addr, pmd_t pmd, union mc_target *target)
5225{
5226 return MC_TARGET_NONE;
5227}
5228#endif
5229
4ffef5fe
DN
5230static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5231 unsigned long addr, unsigned long end,
5232 struct mm_walk *walk)
5233{
5234 struct vm_area_struct *vma = walk->private;
5235 pte_t *pte;
5236 spinlock_t *ptl;
5237
bf929152 5238 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5239 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5240 mc.precharge += HPAGE_PMD_NR;
bf929152 5241 spin_unlock(ptl);
1a5a9906 5242 return 0;
12724850 5243 }
03319327 5244
45f83cef
AA
5245 if (pmd_trans_unstable(pmd))
5246 return 0;
4ffef5fe
DN
5247 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5248 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5249 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5250 mc.precharge++; /* increment precharge temporarily */
5251 pte_unmap_unlock(pte - 1, ptl);
5252 cond_resched();
5253
7dc74be0
DN
5254 return 0;
5255}
5256
4ffef5fe
DN
5257static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5258{
5259 unsigned long precharge;
5260 struct vm_area_struct *vma;
5261
dfe076b0 5262 down_read(&mm->mmap_sem);
4ffef5fe
DN
5263 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5264 struct mm_walk mem_cgroup_count_precharge_walk = {
5265 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5266 .mm = mm,
5267 .private = vma,
5268 };
5269 if (is_vm_hugetlb_page(vma))
5270 continue;
4ffef5fe
DN
5271 walk_page_range(vma->vm_start, vma->vm_end,
5272 &mem_cgroup_count_precharge_walk);
5273 }
dfe076b0 5274 up_read(&mm->mmap_sem);
4ffef5fe
DN
5275
5276 precharge = mc.precharge;
5277 mc.precharge = 0;
5278
5279 return precharge;
5280}
5281
4ffef5fe
DN
5282static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5283{
dfe076b0
DN
5284 unsigned long precharge = mem_cgroup_count_precharge(mm);
5285
5286 VM_BUG_ON(mc.moving_task);
5287 mc.moving_task = current;
5288 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5289}
5290
dfe076b0
DN
5291/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5292static void __mem_cgroup_clear_mc(void)
4ffef5fe 5293{
2bd9bb20
KH
5294 struct mem_cgroup *from = mc.from;
5295 struct mem_cgroup *to = mc.to;
5296
4ffef5fe 5297 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5298 if (mc.precharge) {
00501b53 5299 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5300 mc.precharge = 0;
5301 }
5302 /*
5303 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5304 * we must uncharge here.
5305 */
5306 if (mc.moved_charge) {
00501b53 5307 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5308 mc.moved_charge = 0;
4ffef5fe 5309 }
483c30b5
DN
5310 /* we must fixup refcnts and charges */
5311 if (mc.moved_swap) {
483c30b5 5312 /* uncharge swap account from the old cgroup */
ce00a967 5313 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5314 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5315
05b84301 5316 /*
3e32cb2e
JW
5317 * we charged both to->memory and to->memsw, so we
5318 * should uncharge to->memory.
05b84301 5319 */
ce00a967 5320 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5321 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5322
e8ea14cc 5323 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5324
4050377b 5325 /* we've already done css_get(mc.to) */
483c30b5
DN
5326 mc.moved_swap = 0;
5327 }
dfe076b0
DN
5328 memcg_oom_recover(from);
5329 memcg_oom_recover(to);
5330 wake_up_all(&mc.waitq);
5331}
5332
5333static void mem_cgroup_clear_mc(void)
5334{
dfe076b0
DN
5335 /*
5336 * we must clear moving_task before waking up waiters at the end of
5337 * task migration.
5338 */
5339 mc.moving_task = NULL;
5340 __mem_cgroup_clear_mc();
2bd9bb20 5341 spin_lock(&mc.lock);
4ffef5fe
DN
5342 mc.from = NULL;
5343 mc.to = NULL;
2bd9bb20 5344 spin_unlock(&mc.lock);
4ffef5fe
DN
5345}
5346
eb95419b 5347static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5348 struct cgroup_taskset *tset)
7dc74be0 5349{
2f7ee569 5350 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5351 int ret = 0;
eb95419b 5352 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5353 unsigned long move_charge_at_immigrate;
7dc74be0 5354
ee5e8472
GC
5355 /*
5356 * We are now commited to this value whatever it is. Changes in this
5357 * tunable will only affect upcoming migrations, not the current one.
5358 * So we need to save it, and keep it going.
5359 */
5360 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5361 if (move_charge_at_immigrate) {
7dc74be0
DN
5362 struct mm_struct *mm;
5363 struct mem_cgroup *from = mem_cgroup_from_task(p);
5364
c0ff4b85 5365 VM_BUG_ON(from == memcg);
7dc74be0
DN
5366
5367 mm = get_task_mm(p);
5368 if (!mm)
5369 return 0;
7dc74be0 5370 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5371 if (mm->owner == p) {
5372 VM_BUG_ON(mc.from);
5373 VM_BUG_ON(mc.to);
5374 VM_BUG_ON(mc.precharge);
854ffa8d 5375 VM_BUG_ON(mc.moved_charge);
483c30b5 5376 VM_BUG_ON(mc.moved_swap);
247b1447 5377
2bd9bb20 5378 spin_lock(&mc.lock);
4ffef5fe 5379 mc.from = from;
c0ff4b85 5380 mc.to = memcg;
ee5e8472 5381 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5382 spin_unlock(&mc.lock);
dfe076b0 5383 /* We set mc.moving_task later */
4ffef5fe
DN
5384
5385 ret = mem_cgroup_precharge_mc(mm);
5386 if (ret)
5387 mem_cgroup_clear_mc();
dfe076b0
DN
5388 }
5389 mmput(mm);
7dc74be0
DN
5390 }
5391 return ret;
5392}
5393
eb95419b 5394static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5395 struct cgroup_taskset *tset)
7dc74be0 5396{
4e2f245d
JW
5397 if (mc.to)
5398 mem_cgroup_clear_mc();
7dc74be0
DN
5399}
5400
4ffef5fe
DN
5401static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5402 unsigned long addr, unsigned long end,
5403 struct mm_walk *walk)
7dc74be0 5404{
4ffef5fe
DN
5405 int ret = 0;
5406 struct vm_area_struct *vma = walk->private;
5407 pte_t *pte;
5408 spinlock_t *ptl;
12724850
NH
5409 enum mc_target_type target_type;
5410 union mc_target target;
5411 struct page *page;
5412 struct page_cgroup *pc;
4ffef5fe 5413
12724850
NH
5414 /*
5415 * We don't take compound_lock() here but no race with splitting thp
5416 * happens because:
5417 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5418 * under splitting, which means there's no concurrent thp split,
5419 * - if another thread runs into split_huge_page() just after we
5420 * entered this if-block, the thread must wait for page table lock
5421 * to be unlocked in __split_huge_page_splitting(), where the main
5422 * part of thp split is not executed yet.
5423 */
bf929152 5424 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5425 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5426 spin_unlock(ptl);
12724850
NH
5427 return 0;
5428 }
5429 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5430 if (target_type == MC_TARGET_PAGE) {
5431 page = target.page;
5432 if (!isolate_lru_page(page)) {
5433 pc = lookup_page_cgroup(page);
5434 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5435 pc, mc.from, mc.to)) {
12724850
NH
5436 mc.precharge -= HPAGE_PMD_NR;
5437 mc.moved_charge += HPAGE_PMD_NR;
5438 }
5439 putback_lru_page(page);
5440 }
5441 put_page(page);
5442 }
bf929152 5443 spin_unlock(ptl);
1a5a9906 5444 return 0;
12724850
NH
5445 }
5446
45f83cef
AA
5447 if (pmd_trans_unstable(pmd))
5448 return 0;
4ffef5fe
DN
5449retry:
5450 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5451 for (; addr != end; addr += PAGE_SIZE) {
5452 pte_t ptent = *(pte++);
02491447 5453 swp_entry_t ent;
4ffef5fe
DN
5454
5455 if (!mc.precharge)
5456 break;
5457
8d32ff84 5458 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5459 case MC_TARGET_PAGE:
5460 page = target.page;
5461 if (isolate_lru_page(page))
5462 goto put;
5463 pc = lookup_page_cgroup(page);
7ec99d62 5464 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5465 mc.from, mc.to)) {
4ffef5fe 5466 mc.precharge--;
854ffa8d
DN
5467 /* we uncharge from mc.from later. */
5468 mc.moved_charge++;
4ffef5fe
DN
5469 }
5470 putback_lru_page(page);
8d32ff84 5471put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5472 put_page(page);
5473 break;
02491447
DN
5474 case MC_TARGET_SWAP:
5475 ent = target.ent;
e91cbb42 5476 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5477 mc.precharge--;
483c30b5
DN
5478 /* we fixup refcnts and charges later. */
5479 mc.moved_swap++;
5480 }
02491447 5481 break;
4ffef5fe
DN
5482 default:
5483 break;
5484 }
5485 }
5486 pte_unmap_unlock(pte - 1, ptl);
5487 cond_resched();
5488
5489 if (addr != end) {
5490 /*
5491 * We have consumed all precharges we got in can_attach().
5492 * We try charge one by one, but don't do any additional
5493 * charges to mc.to if we have failed in charge once in attach()
5494 * phase.
5495 */
854ffa8d 5496 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5497 if (!ret)
5498 goto retry;
5499 }
5500
5501 return ret;
5502}
5503
5504static void mem_cgroup_move_charge(struct mm_struct *mm)
5505{
5506 struct vm_area_struct *vma;
5507
5508 lru_add_drain_all();
312722cb
JW
5509 /*
5510 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5511 * move_lock while we're moving its pages to another memcg.
5512 * Then wait for already started RCU-only updates to finish.
5513 */
5514 atomic_inc(&mc.from->moving_account);
5515 synchronize_rcu();
dfe076b0
DN
5516retry:
5517 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5518 /*
5519 * Someone who are holding the mmap_sem might be waiting in
5520 * waitq. So we cancel all extra charges, wake up all waiters,
5521 * and retry. Because we cancel precharges, we might not be able
5522 * to move enough charges, but moving charge is a best-effort
5523 * feature anyway, so it wouldn't be a big problem.
5524 */
5525 __mem_cgroup_clear_mc();
5526 cond_resched();
5527 goto retry;
5528 }
4ffef5fe
DN
5529 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5530 int ret;
5531 struct mm_walk mem_cgroup_move_charge_walk = {
5532 .pmd_entry = mem_cgroup_move_charge_pte_range,
5533 .mm = mm,
5534 .private = vma,
5535 };
5536 if (is_vm_hugetlb_page(vma))
5537 continue;
4ffef5fe
DN
5538 ret = walk_page_range(vma->vm_start, vma->vm_end,
5539 &mem_cgroup_move_charge_walk);
5540 if (ret)
5541 /*
5542 * means we have consumed all precharges and failed in
5543 * doing additional charge. Just abandon here.
5544 */
5545 break;
5546 }
dfe076b0 5547 up_read(&mm->mmap_sem);
312722cb 5548 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5549}
5550
eb95419b 5551static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5552 struct cgroup_taskset *tset)
67e465a7 5553{
2f7ee569 5554 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5555 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5556
dfe076b0 5557 if (mm) {
a433658c
KM
5558 if (mc.to)
5559 mem_cgroup_move_charge(mm);
dfe076b0
DN
5560 mmput(mm);
5561 }
a433658c
KM
5562 if (mc.to)
5563 mem_cgroup_clear_mc();
67e465a7 5564}
5cfb80a7 5565#else /* !CONFIG_MMU */
eb95419b 5566static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5567 struct cgroup_taskset *tset)
5cfb80a7
DN
5568{
5569 return 0;
5570}
eb95419b 5571static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5572 struct cgroup_taskset *tset)
5cfb80a7
DN
5573{
5574}
eb95419b 5575static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5576 struct cgroup_taskset *tset)
5cfb80a7
DN
5577{
5578}
5579#endif
67e465a7 5580
f00baae7
TH
5581/*
5582 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5583 * to verify whether we're attached to the default hierarchy on each mount
5584 * attempt.
f00baae7 5585 */
eb95419b 5586static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5587{
5588 /*
aa6ec29b 5589 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5590 * guarantees that @root doesn't have any children, so turning it
5591 * on for the root memcg is enough.
5592 */
aa6ec29b 5593 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5594 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5595}
5596
073219e9 5597struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5598 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5599 .css_online = mem_cgroup_css_online,
92fb9748
TH
5600 .css_offline = mem_cgroup_css_offline,
5601 .css_free = mem_cgroup_css_free,
1ced953b 5602 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5603 .can_attach = mem_cgroup_can_attach,
5604 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5605 .attach = mem_cgroup_move_task,
f00baae7 5606 .bind = mem_cgroup_bind,
5577964e 5607 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5608 .early_init = 0,
8cdea7c0 5609};
c077719b 5610
c255a458 5611#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5612static int __init enable_swap_account(char *s)
5613{
a2c8990a 5614 if (!strcmp(s, "1"))
a42c390c 5615 really_do_swap_account = 1;
a2c8990a 5616 else if (!strcmp(s, "0"))
a42c390c
MH
5617 really_do_swap_account = 0;
5618 return 1;
5619}
a2c8990a 5620__setup("swapaccount=", enable_swap_account);
c077719b 5621
2d11085e
MH
5622static void __init memsw_file_init(void)
5623{
2cf669a5
TH
5624 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5625 memsw_cgroup_files));
6acc8b02
MH
5626}
5627
5628static void __init enable_swap_cgroup(void)
5629{
5630 if (!mem_cgroup_disabled() && really_do_swap_account) {
5631 do_swap_account = 1;
5632 memsw_file_init();
5633 }
2d11085e 5634}
6acc8b02 5635
2d11085e 5636#else
6acc8b02 5637static void __init enable_swap_cgroup(void)
2d11085e
MH
5638{
5639}
c077719b 5640#endif
2d11085e 5641
0a31bc97
JW
5642#ifdef CONFIG_MEMCG_SWAP
5643/**
5644 * mem_cgroup_swapout - transfer a memsw charge to swap
5645 * @page: page whose memsw charge to transfer
5646 * @entry: swap entry to move the charge to
5647 *
5648 * Transfer the memsw charge of @page to @entry.
5649 */
5650void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5651{
7bdd143c 5652 struct mem_cgroup *memcg;
0a31bc97
JW
5653 struct page_cgroup *pc;
5654 unsigned short oldid;
5655
5656 VM_BUG_ON_PAGE(PageLRU(page), page);
5657 VM_BUG_ON_PAGE(page_count(page), page);
5658
5659 if (!do_swap_account)
5660 return;
5661
5662 pc = lookup_page_cgroup(page);
29833315 5663 memcg = pc->mem_cgroup;
0a31bc97
JW
5664
5665 /* Readahead page, never charged */
29833315 5666 if (!memcg)
0a31bc97
JW
5667 return;
5668
7bdd143c 5669 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5670 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5671 mem_cgroup_swap_statistics(memcg, true);
5672
29833315 5673 pc->mem_cgroup = NULL;
7bdd143c
JW
5674
5675 if (!mem_cgroup_is_root(memcg))
5676 page_counter_uncharge(&memcg->memory, 1);
5677
5678 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5679 VM_BUG_ON(!irqs_disabled());
0a31bc97 5680
7bdd143c
JW
5681 mem_cgroup_charge_statistics(memcg, page, -1);
5682 memcg_check_events(memcg, page);
0a31bc97
JW
5683}
5684
5685/**
5686 * mem_cgroup_uncharge_swap - uncharge a swap entry
5687 * @entry: swap entry to uncharge
5688 *
5689 * Drop the memsw charge associated with @entry.
5690 */
5691void mem_cgroup_uncharge_swap(swp_entry_t entry)
5692{
5693 struct mem_cgroup *memcg;
5694 unsigned short id;
5695
5696 if (!do_swap_account)
5697 return;
5698
5699 id = swap_cgroup_record(entry, 0);
5700 rcu_read_lock();
5701 memcg = mem_cgroup_lookup(id);
5702 if (memcg) {
ce00a967 5703 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5704 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5705 mem_cgroup_swap_statistics(memcg, false);
5706 css_put(&memcg->css);
5707 }
5708 rcu_read_unlock();
5709}
5710#endif
5711
00501b53
JW
5712/**
5713 * mem_cgroup_try_charge - try charging a page
5714 * @page: page to charge
5715 * @mm: mm context of the victim
5716 * @gfp_mask: reclaim mode
5717 * @memcgp: charged memcg return
5718 *
5719 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5720 * pages according to @gfp_mask if necessary.
5721 *
5722 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5723 * Otherwise, an error code is returned.
5724 *
5725 * After page->mapping has been set up, the caller must finalize the
5726 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5727 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5728 */
5729int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5730 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5731{
5732 struct mem_cgroup *memcg = NULL;
5733 unsigned int nr_pages = 1;
5734 int ret = 0;
5735
5736 if (mem_cgroup_disabled())
5737 goto out;
5738
5739 if (PageSwapCache(page)) {
5740 struct page_cgroup *pc = lookup_page_cgroup(page);
5741 /*
5742 * Every swap fault against a single page tries to charge the
5743 * page, bail as early as possible. shmem_unuse() encounters
5744 * already charged pages, too. The USED bit is protected by
5745 * the page lock, which serializes swap cache removal, which
5746 * in turn serializes uncharging.
5747 */
29833315 5748 if (pc->mem_cgroup)
00501b53
JW
5749 goto out;
5750 }
5751
5752 if (PageTransHuge(page)) {
5753 nr_pages <<= compound_order(page);
5754 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5755 }
5756
5757 if (do_swap_account && PageSwapCache(page))
5758 memcg = try_get_mem_cgroup_from_page(page);
5759 if (!memcg)
5760 memcg = get_mem_cgroup_from_mm(mm);
5761
5762 ret = try_charge(memcg, gfp_mask, nr_pages);
5763
5764 css_put(&memcg->css);
5765
5766 if (ret == -EINTR) {
5767 memcg = root_mem_cgroup;
5768 ret = 0;
5769 }
5770out:
5771 *memcgp = memcg;
5772 return ret;
5773}
5774
5775/**
5776 * mem_cgroup_commit_charge - commit a page charge
5777 * @page: page to charge
5778 * @memcg: memcg to charge the page to
5779 * @lrucare: page might be on LRU already
5780 *
5781 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5782 * after page->mapping has been set up. This must happen atomically
5783 * as part of the page instantiation, i.e. under the page table lock
5784 * for anonymous pages, under the page lock for page and swap cache.
5785 *
5786 * In addition, the page must not be on the LRU during the commit, to
5787 * prevent racing with task migration. If it might be, use @lrucare.
5788 *
5789 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5790 */
5791void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5792 bool lrucare)
5793{
5794 unsigned int nr_pages = 1;
5795
5796 VM_BUG_ON_PAGE(!page->mapping, page);
5797 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5798
5799 if (mem_cgroup_disabled())
5800 return;
5801 /*
5802 * Swap faults will attempt to charge the same page multiple
5803 * times. But reuse_swap_page() might have removed the page
5804 * from swapcache already, so we can't check PageSwapCache().
5805 */
5806 if (!memcg)
5807 return;
5808
6abb5a86
JW
5809 commit_charge(page, memcg, lrucare);
5810
00501b53
JW
5811 if (PageTransHuge(page)) {
5812 nr_pages <<= compound_order(page);
5813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5814 }
5815
6abb5a86
JW
5816 local_irq_disable();
5817 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5818 memcg_check_events(memcg, page);
5819 local_irq_enable();
00501b53
JW
5820
5821 if (do_swap_account && PageSwapCache(page)) {
5822 swp_entry_t entry = { .val = page_private(page) };
5823 /*
5824 * The swap entry might not get freed for a long time,
5825 * let's not wait for it. The page already received a
5826 * memory+swap charge, drop the swap entry duplicate.
5827 */
5828 mem_cgroup_uncharge_swap(entry);
5829 }
5830}
5831
5832/**
5833 * mem_cgroup_cancel_charge - cancel a page charge
5834 * @page: page to charge
5835 * @memcg: memcg to charge the page to
5836 *
5837 * Cancel a charge transaction started by mem_cgroup_try_charge().
5838 */
5839void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5840{
5841 unsigned int nr_pages = 1;
5842
5843 if (mem_cgroup_disabled())
5844 return;
5845 /*
5846 * Swap faults will attempt to charge the same page multiple
5847 * times. But reuse_swap_page() might have removed the page
5848 * from swapcache already, so we can't check PageSwapCache().
5849 */
5850 if (!memcg)
5851 return;
5852
5853 if (PageTransHuge(page)) {
5854 nr_pages <<= compound_order(page);
5855 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5856 }
5857
5858 cancel_charge(memcg, nr_pages);
5859}
5860
747db954 5861static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5862 unsigned long nr_anon, unsigned long nr_file,
5863 unsigned long nr_huge, struct page *dummy_page)
5864{
18eca2e6 5865 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5866 unsigned long flags;
5867
ce00a967 5868 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5869 page_counter_uncharge(&memcg->memory, nr_pages);
5870 if (do_swap_account)
5871 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5872 memcg_oom_recover(memcg);
5873 }
747db954
JW
5874
5875 local_irq_save(flags);
5876 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5877 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5878 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5879 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5880 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5881 memcg_check_events(memcg, dummy_page);
5882 local_irq_restore(flags);
e8ea14cc
JW
5883
5884 if (!mem_cgroup_is_root(memcg))
18eca2e6 5885 css_put_many(&memcg->css, nr_pages);
747db954
JW
5886}
5887
5888static void uncharge_list(struct list_head *page_list)
5889{
5890 struct mem_cgroup *memcg = NULL;
747db954
JW
5891 unsigned long nr_anon = 0;
5892 unsigned long nr_file = 0;
5893 unsigned long nr_huge = 0;
5894 unsigned long pgpgout = 0;
747db954
JW
5895 struct list_head *next;
5896 struct page *page;
5897
5898 next = page_list->next;
5899 do {
5900 unsigned int nr_pages = 1;
5901 struct page_cgroup *pc;
5902
5903 page = list_entry(next, struct page, lru);
5904 next = page->lru.next;
5905
5906 VM_BUG_ON_PAGE(PageLRU(page), page);
5907 VM_BUG_ON_PAGE(page_count(page), page);
5908
5909 pc = lookup_page_cgroup(page);
29833315 5910 if (!pc->mem_cgroup)
747db954
JW
5911 continue;
5912
5913 /*
5914 * Nobody should be changing or seriously looking at
29833315
JW
5915 * pc->mem_cgroup at this point, we have fully
5916 * exclusive access to the page.
747db954
JW
5917 */
5918
5919 if (memcg != pc->mem_cgroup) {
5920 if (memcg) {
18eca2e6
JW
5921 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5922 nr_huge, page);
5923 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
5924 }
5925 memcg = pc->mem_cgroup;
5926 }
5927
5928 if (PageTransHuge(page)) {
5929 nr_pages <<= compound_order(page);
5930 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5931 nr_huge += nr_pages;
5932 }
5933
5934 if (PageAnon(page))
5935 nr_anon += nr_pages;
5936 else
5937 nr_file += nr_pages;
5938
29833315 5939 pc->mem_cgroup = NULL;
747db954
JW
5940
5941 pgpgout++;
5942 } while (next != page_list);
5943
5944 if (memcg)
18eca2e6
JW
5945 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5946 nr_huge, page);
747db954
JW
5947}
5948
0a31bc97
JW
5949/**
5950 * mem_cgroup_uncharge - uncharge a page
5951 * @page: page to uncharge
5952 *
5953 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5954 * mem_cgroup_commit_charge().
5955 */
5956void mem_cgroup_uncharge(struct page *page)
5957{
0a31bc97 5958 struct page_cgroup *pc;
0a31bc97
JW
5959
5960 if (mem_cgroup_disabled())
5961 return;
5962
747db954 5963 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 5964 pc = lookup_page_cgroup(page);
29833315 5965 if (!pc->mem_cgroup)
0a31bc97
JW
5966 return;
5967
747db954
JW
5968 INIT_LIST_HEAD(&page->lru);
5969 uncharge_list(&page->lru);
5970}
0a31bc97 5971
747db954
JW
5972/**
5973 * mem_cgroup_uncharge_list - uncharge a list of page
5974 * @page_list: list of pages to uncharge
5975 *
5976 * Uncharge a list of pages previously charged with
5977 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5978 */
5979void mem_cgroup_uncharge_list(struct list_head *page_list)
5980{
5981 if (mem_cgroup_disabled())
5982 return;
0a31bc97 5983
747db954
JW
5984 if (!list_empty(page_list))
5985 uncharge_list(page_list);
0a31bc97
JW
5986}
5987
5988/**
5989 * mem_cgroup_migrate - migrate a charge to another page
5990 * @oldpage: currently charged page
5991 * @newpage: page to transfer the charge to
5992 * @lrucare: both pages might be on the LRU already
5993 *
5994 * Migrate the charge from @oldpage to @newpage.
5995 *
5996 * Both pages must be locked, @newpage->mapping must be set up.
5997 */
5998void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5999 bool lrucare)
6000{
29833315 6001 struct mem_cgroup *memcg;
0a31bc97
JW
6002 struct page_cgroup *pc;
6003 int isolated;
6004
6005 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6006 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6007 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6008 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6009 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6010 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6011 newpage);
0a31bc97
JW
6012
6013 if (mem_cgroup_disabled())
6014 return;
6015
6016 /* Page cache replacement: new page already charged? */
6017 pc = lookup_page_cgroup(newpage);
29833315 6018 if (pc->mem_cgroup)
0a31bc97
JW
6019 return;
6020
7d5e3245
JW
6021 /*
6022 * Swapcache readahead pages can get migrated before being
6023 * charged, and migration from compaction can happen to an
6024 * uncharged page when the PFN walker finds a page that
6025 * reclaim just put back on the LRU but has not released yet.
6026 */
0a31bc97 6027 pc = lookup_page_cgroup(oldpage);
29833315
JW
6028 memcg = pc->mem_cgroup;
6029 if (!memcg)
0a31bc97
JW
6030 return;
6031
0a31bc97
JW
6032 if (lrucare)
6033 lock_page_lru(oldpage, &isolated);
6034
29833315 6035 pc->mem_cgroup = NULL;
0a31bc97
JW
6036
6037 if (lrucare)
6038 unlock_page_lru(oldpage, isolated);
6039
29833315 6040 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
6041}
6042
2d11085e 6043/*
1081312f
MH
6044 * subsys_initcall() for memory controller.
6045 *
6046 * Some parts like hotcpu_notifier() have to be initialized from this context
6047 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6048 * everything that doesn't depend on a specific mem_cgroup structure should
6049 * be initialized from here.
2d11085e
MH
6050 */
6051static int __init mem_cgroup_init(void)
6052{
6053 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6054 enable_swap_cgroup();
bb4cc1a8 6055 mem_cgroup_soft_limit_tree_init();
e4777496 6056 memcg_stock_init();
2d11085e
MH
6057 return 0;
6058}
6059subsys_initcall(mem_cgroup_init);