]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
3a4f8a0b 38#include <linux/shmem_fs.h>
4ffef5fe 39#include <linux/hugetlb.h>
d13d1443 40#include <linux/pagemap.h>
d52aa412 41#include <linux/smp.h>
8a9f3ccd 42#include <linux/page-flags.h>
66e1707b 43#include <linux/backing-dev.h>
8a9f3ccd
BS
44#include <linux/bit_spinlock.h>
45#include <linux/rcupdate.h>
e222432b 46#include <linux/limits.h>
b9e15baf 47#include <linux/export.h>
8c7c6e34 48#include <linux/mutex.h>
bb4cc1a8 49#include <linux/rbtree.h>
b6ac57d5 50#include <linux/slab.h>
66e1707b 51#include <linux/swap.h>
02491447 52#include <linux/swapops.h>
66e1707b 53#include <linux/spinlock.h>
2e72b634 54#include <linux/eventfd.h>
79bd9814 55#include <linux/poll.h>
2e72b634 56#include <linux/sort.h>
66e1707b 57#include <linux/fs.h>
d2ceb9b7 58#include <linux/seq_file.h>
70ddf637 59#include <linux/vmpressure.h>
b69408e8 60#include <linux/mm_inline.h>
5d1ea48b 61#include <linux/swap_cgroup.h>
cdec2e42 62#include <linux/cpu.h>
158e0a2d 63#include <linux/oom.h>
0056f4e6 64#include <linux/lockdep.h>
79bd9814 65#include <linux/file.h>
b23afb93 66#include <linux/tracehook.h>
08e552c6 67#include "internal.h"
d1a4c0b3 68#include <net/sock.h>
4bd2c1ee 69#include <net/ip.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
7c0f6ba6 72#include <linux/uaccess.h>
8697d331 73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
f7e1cb6e
JW
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket;
85
04823c83
VD
86/* Kernel memory accounting disabled? */
87static bool cgroup_memory_nokmem;
88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
c077719b 91int do_swap_account __read_mostly;
c077719b 92#else
a0db00fc 93#define do_swap_account 0
c077719b
KH
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
100}
101
af7c4b0e
JW
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
b070e65c 105 "rss_huge",
af7c4b0e 106 "mapped_file",
c4843a75 107 "dirty",
3ea67d06 108 "writeback",
af7c4b0e
JW
109 "swap",
110};
111
af7c4b0e
JW
112static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117};
118
58cf188e
SZ
119static const char * const mem_cgroup_lru_names[] = {
120 "inactive_anon",
121 "active_anon",
122 "inactive_file",
123 "active_file",
124 "unevictable",
125};
126
a0db00fc
KS
127#define THRESHOLDS_EVENTS_TARGET 128
128#define SOFTLIMIT_EVENTS_TARGET 1024
129#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 130
bb4cc1a8
AM
131/*
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
134 */
135
ef8f2327 136struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
137 struct rb_root rb_root;
138 spinlock_t lock;
139};
140
bb4cc1a8
AM
141struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143};
144
145static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
9490ff27
KH
147/* for OOM */
148struct mem_cgroup_eventfd_list {
149 struct list_head list;
150 struct eventfd_ctx *eventfd;
151};
2e72b634 152
79bd9814
TH
153/*
154 * cgroup_event represents events which userspace want to receive.
155 */
3bc942f3 156struct mem_cgroup_event {
79bd9814 157 /*
59b6f873 158 * memcg which the event belongs to.
79bd9814 159 */
59b6f873 160 struct mem_cgroup *memcg;
79bd9814
TH
161 /*
162 * eventfd to signal userspace about the event.
163 */
164 struct eventfd_ctx *eventfd;
165 /*
166 * Each of these stored in a list by the cgroup.
167 */
168 struct list_head list;
fba94807
TH
169 /*
170 * register_event() callback will be used to add new userspace
171 * waiter for changes related to this event. Use eventfd_signal()
172 * on eventfd to send notification to userspace.
173 */
59b6f873 174 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 175 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
176 /*
177 * unregister_event() callback will be called when userspace closes
178 * the eventfd or on cgroup removing. This callback must be set,
179 * if you want provide notification functionality.
180 */
59b6f873 181 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 182 struct eventfd_ctx *eventfd);
79bd9814
TH
183 /*
184 * All fields below needed to unregister event when
185 * userspace closes eventfd.
186 */
187 poll_table pt;
188 wait_queue_head_t *wqh;
189 wait_queue_t wait;
190 struct work_struct remove;
191};
192
c0ff4b85
R
193static void mem_cgroup_threshold(struct mem_cgroup *memcg);
194static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 195
7dc74be0
DN
196/* Stuffs for move charges at task migration. */
197/*
1dfab5ab 198 * Types of charges to be moved.
7dc74be0 199 */
1dfab5ab
JW
200#define MOVE_ANON 0x1U
201#define MOVE_FILE 0x2U
202#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 203
4ffef5fe
DN
204/* "mc" and its members are protected by cgroup_mutex */
205static struct move_charge_struct {
b1dd693e 206 spinlock_t lock; /* for from, to */
264a0ae1 207 struct mm_struct *mm;
4ffef5fe
DN
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
1dfab5ab 210 unsigned long flags;
4ffef5fe 211 unsigned long precharge;
854ffa8d 212 unsigned long moved_charge;
483c30b5 213 unsigned long moved_swap;
8033b97c
DN
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216} mc = {
2bd9bb20 217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219};
4ffef5fe 220
4e416953
BS
221/*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
a0db00fc 225#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 226#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 227
217bc319
KH
228enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 230 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
233 NR_CHARGE_TYPE,
234};
235
8c7c6e34 236/* for encoding cft->private value on file */
86ae53e1
GC
237enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
510fc4e1 241 _KMEM,
d55f90bf 242 _TCP,
86ae53e1
GC
243};
244
a0db00fc
KS
245#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
246#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 247#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
248/* Used for OOM nofiier */
249#define OOM_CONTROL (0)
8c7c6e34 250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
7ffc0edc
MH
264static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
265{
266 return (memcg == root_mem_cgroup);
267}
268
127424c8 269#ifndef CONFIG_SLOB
55007d84 270/*
f7ce3190 271 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
272 * The main reason for not using cgroup id for this:
273 * this works better in sparse environments, where we have a lot of memcgs,
274 * but only a few kmem-limited. Or also, if we have, for instance, 200
275 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
276 * 200 entry array for that.
55007d84 277 *
dbcf73e2
VD
278 * The current size of the caches array is stored in memcg_nr_cache_ids. It
279 * will double each time we have to increase it.
55007d84 280 */
dbcf73e2
VD
281static DEFINE_IDA(memcg_cache_ida);
282int memcg_nr_cache_ids;
749c5415 283
05257a1a
VD
284/* Protects memcg_nr_cache_ids */
285static DECLARE_RWSEM(memcg_cache_ids_sem);
286
287void memcg_get_cache_ids(void)
288{
289 down_read(&memcg_cache_ids_sem);
290}
291
292void memcg_put_cache_ids(void)
293{
294 up_read(&memcg_cache_ids_sem);
295}
296
55007d84
GC
297/*
298 * MIN_SIZE is different than 1, because we would like to avoid going through
299 * the alloc/free process all the time. In a small machine, 4 kmem-limited
300 * cgroups is a reasonable guess. In the future, it could be a parameter or
301 * tunable, but that is strictly not necessary.
302 *
b8627835 303 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
304 * this constant directly from cgroup, but it is understandable that this is
305 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 306 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
307 * increase ours as well if it increases.
308 */
309#define MEMCG_CACHES_MIN_SIZE 4
b8627835 310#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 311
d7f25f8a
GC
312/*
313 * A lot of the calls to the cache allocation functions are expected to be
314 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
315 * conditional to this static branch, we'll have to allow modules that does
316 * kmem_cache_alloc and the such to see this symbol as well
317 */
ef12947c 318DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 319EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 320
17cc4dfe
TH
321struct workqueue_struct *memcg_kmem_cache_wq;
322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
ad7fa852
TH
325/**
326 * mem_cgroup_css_from_page - css of the memcg associated with a page
327 * @page: page of interest
328 *
329 * If memcg is bound to the default hierarchy, css of the memcg associated
330 * with @page is returned. The returned css remains associated with @page
331 * until it is released.
332 *
333 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
334 * is returned.
ad7fa852
TH
335 */
336struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
337{
338 struct mem_cgroup *memcg;
339
ad7fa852
TH
340 memcg = page->mem_cgroup;
341
9e10a130 342 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
343 memcg = root_mem_cgroup;
344
ad7fa852
TH
345 return &memcg->css;
346}
347
2fc04524
VD
348/**
349 * page_cgroup_ino - return inode number of the memcg a page is charged to
350 * @page: the page
351 *
352 * Look up the closest online ancestor of the memory cgroup @page is charged to
353 * and return its inode number or 0 if @page is not charged to any cgroup. It
354 * is safe to call this function without holding a reference to @page.
355 *
356 * Note, this function is inherently racy, because there is nothing to prevent
357 * the cgroup inode from getting torn down and potentially reallocated a moment
358 * after page_cgroup_ino() returns, so it only should be used by callers that
359 * do not care (such as procfs interfaces).
360 */
361ino_t page_cgroup_ino(struct page *page)
362{
363 struct mem_cgroup *memcg;
364 unsigned long ino = 0;
365
366 rcu_read_lock();
367 memcg = READ_ONCE(page->mem_cgroup);
368 while (memcg && !(memcg->css.flags & CSS_ONLINE))
369 memcg = parent_mem_cgroup(memcg);
370 if (memcg)
371 ino = cgroup_ino(memcg->css.cgroup);
372 rcu_read_unlock();
373 return ino;
374}
375
ef8f2327
MG
376static struct mem_cgroup_per_node *
377mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 378{
97a6c37b 379 int nid = page_to_nid(page);
f64c3f54 380
ef8f2327 381 return memcg->nodeinfo[nid];
f64c3f54
BS
382}
383
ef8f2327
MG
384static struct mem_cgroup_tree_per_node *
385soft_limit_tree_node(int nid)
bb4cc1a8 386{
ef8f2327 387 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
388}
389
ef8f2327 390static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
391soft_limit_tree_from_page(struct page *page)
392{
393 int nid = page_to_nid(page);
bb4cc1a8 394
ef8f2327 395 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
396}
397
ef8f2327
MG
398static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
399 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 400 unsigned long new_usage_in_excess)
bb4cc1a8
AM
401{
402 struct rb_node **p = &mctz->rb_root.rb_node;
403 struct rb_node *parent = NULL;
ef8f2327 404 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
405
406 if (mz->on_tree)
407 return;
408
409 mz->usage_in_excess = new_usage_in_excess;
410 if (!mz->usage_in_excess)
411 return;
412 while (*p) {
413 parent = *p;
ef8f2327 414 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
415 tree_node);
416 if (mz->usage_in_excess < mz_node->usage_in_excess)
417 p = &(*p)->rb_left;
418 /*
419 * We can't avoid mem cgroups that are over their soft
420 * limit by the same amount
421 */
422 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
423 p = &(*p)->rb_right;
424 }
425 rb_link_node(&mz->tree_node, parent, p);
426 rb_insert_color(&mz->tree_node, &mctz->rb_root);
427 mz->on_tree = true;
428}
429
ef8f2327
MG
430static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
431 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
432{
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
437}
438
ef8f2327
MG
439static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 441{
0a31bc97
JW
442 unsigned long flags;
443
444 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 445 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 446 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
447}
448
3e32cb2e
JW
449static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
450{
451 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 452 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
453 unsigned long excess = 0;
454
455 if (nr_pages > soft_limit)
456 excess = nr_pages - soft_limit;
457
458 return excess;
459}
bb4cc1a8
AM
460
461static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462{
3e32cb2e 463 unsigned long excess;
ef8f2327
MG
464 struct mem_cgroup_per_node *mz;
465 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 466
e231875b 467 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
468 /*
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
471 */
472 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 473 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 474 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
475 /*
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
478 */
479 if (excess || mz->on_tree) {
0a31bc97
JW
480 unsigned long flags;
481
482 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
483 /* if on-tree, remove it */
484 if (mz->on_tree)
cf2c8127 485 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
486 /*
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
489 */
cf2c8127 490 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 491 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
492 }
493 }
494}
495
496static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497{
ef8f2327
MG
498 struct mem_cgroup_tree_per_node *mctz;
499 struct mem_cgroup_per_node *mz;
500 int nid;
bb4cc1a8 501
e231875b 502 for_each_node(nid) {
ef8f2327
MG
503 mz = mem_cgroup_nodeinfo(memcg, nid);
504 mctz = soft_limit_tree_node(nid);
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
511{
512 struct rb_node *rightmost = NULL;
ef8f2327 513 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
514
515retry:
516 mz = NULL;
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
520
ef8f2327 521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
522 /*
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
526 */
cf2c8127 527 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 528 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 529 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
530 goto retry;
531done:
532 return mz;
533}
534
ef8f2327
MG
535static struct mem_cgroup_per_node *
536mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 537{
ef8f2327 538 struct mem_cgroup_per_node *mz;
bb4cc1a8 539
0a31bc97 540 spin_lock_irq(&mctz->lock);
bb4cc1a8 541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 542 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
543 return mz;
544}
545
711d3d2c 546/*
484ebb3b
GT
547 * Return page count for single (non recursive) @memcg.
548 *
711d3d2c
KH
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 554 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 564 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
565 * implemented.
566 */
484ebb3b
GT
567static unsigned long
568mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 569{
7a159cc9 570 long val = 0;
c62b1a3b 571 int cpu;
c62b1a3b 572
484ebb3b 573 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 574 for_each_possible_cpu(cpu)
c0ff4b85 575 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
576 /*
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
579 */
580 if (val < 0)
581 val = 0;
c62b1a3b
KH
582 return val;
583}
584
c0ff4b85 585static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
586 enum mem_cgroup_events_index idx)
587{
588 unsigned long val = 0;
589 int cpu;
590
733a572e 591 for_each_possible_cpu(cpu)
c0ff4b85 592 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
593 return val;
594}
595
c0ff4b85 596static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 597 struct page *page,
f627c2f5 598 bool compound, int nr_pages)
d52aa412 599{
b2402857
KH
600 /*
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
603 */
0a31bc97 604 if (PageAnon(page))
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 606 nr_pages);
d52aa412 607 else
b2402857 608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 609 nr_pages);
55e462b0 610
f627c2f5
KS
611 if (compound) {
612 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 nr_pages);
f627c2f5 615 }
b070e65c 616
e401f176
KH
617 /* pagein of a big page is an event. So, ignore page size */
618 if (nr_pages > 0)
c0ff4b85 619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 620 else {
c0ff4b85 621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
622 nr_pages = -nr_pages; /* for event */
623 }
e401f176 624
13114716 625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
626}
627
0a6b76dd
VD
628unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 int nid, unsigned int lru_mask)
bb2a0de9 630{
b4536f0c 631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 632 unsigned long nr = 0;
ef8f2327 633 enum lru_list lru;
889976db 634
e231875b 635 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 636
ef8f2327
MG
637 for_each_lru(lru) {
638 if (!(BIT(lru) & lru_mask))
639 continue;
b4536f0c 640 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
641 }
642 return nr;
889976db 643}
bb2a0de9 644
c0ff4b85 645static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 646 unsigned int lru_mask)
6d12e2d8 647{
e231875b 648 unsigned long nr = 0;
889976db 649 int nid;
6d12e2d8 650
31aaea4a 651 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
653 return nr;
d52aa412
KH
654}
655
f53d7ce3
JW
656static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 enum mem_cgroup_events_target target)
7a159cc9
JW
658{
659 unsigned long val, next;
660
13114716 661 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 662 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 663 /* from time_after() in jiffies.h */
f53d7ce3
JW
664 if ((long)next - (long)val < 0) {
665 switch (target) {
666 case MEM_CGROUP_TARGET_THRESH:
667 next = val + THRESHOLDS_EVENTS_TARGET;
668 break;
bb4cc1a8
AM
669 case MEM_CGROUP_TARGET_SOFTLIMIT:
670 next = val + SOFTLIMIT_EVENTS_TARGET;
671 break;
f53d7ce3
JW
672 case MEM_CGROUP_TARGET_NUMAINFO:
673 next = val + NUMAINFO_EVENTS_TARGET;
674 break;
675 default:
676 break;
677 }
678 __this_cpu_write(memcg->stat->targets[target], next);
679 return true;
7a159cc9 680 }
f53d7ce3 681 return false;
d2265e6f
KH
682}
683
684/*
685 * Check events in order.
686 *
687 */
c0ff4b85 688static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
689{
690 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
691 if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 693 bool do_softlimit;
82b3f2a7 694 bool do_numainfo __maybe_unused;
f53d7ce3 695
bb4cc1a8
AM
696 do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
698#if MAX_NUMNODES > 1
699 do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 MEM_CGROUP_TARGET_NUMAINFO);
701#endif
c0ff4b85 702 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
703 if (unlikely(do_softlimit))
704 mem_cgroup_update_tree(memcg, page);
453a9bf3 705#if MAX_NUMNODES > 1
f53d7ce3 706 if (unlikely(do_numainfo))
c0ff4b85 707 atomic_inc(&memcg->numainfo_events);
453a9bf3 708#endif
0a31bc97 709 }
d2265e6f
KH
710}
711
cf475ad2 712struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 713{
31a78f23
BS
714 /*
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
718 */
719 if (unlikely(!p))
720 return NULL;
721
073219e9 722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 723}
33398cf2 724EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 725
df381975 726static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 727{
c0ff4b85 728 struct mem_cgroup *memcg = NULL;
0b7f569e 729
54595fe2
KH
730 rcu_read_lock();
731 do {
6f6acb00
MH
732 /*
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
736 */
737 if (unlikely(!mm))
df381975 738 memcg = root_mem_cgroup;
6f6acb00
MH
739 else {
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (unlikely(!memcg))
742 memcg = root_mem_cgroup;
743 }
ec903c0c 744 } while (!css_tryget_online(&memcg->css));
54595fe2 745 rcu_read_unlock();
c0ff4b85 746 return memcg;
54595fe2
KH
747}
748
5660048c
JW
749/**
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
754 *
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
757 *
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
761 *
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
765 */
694fbc0f 766struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 767 struct mem_cgroup *prev,
694fbc0f 768 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 769{
33398cf2 770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 771 struct cgroup_subsys_state *css = NULL;
9f3a0d09 772 struct mem_cgroup *memcg = NULL;
5ac8fb31 773 struct mem_cgroup *pos = NULL;
711d3d2c 774
694fbc0f
AM
775 if (mem_cgroup_disabled())
776 return NULL;
5660048c 777
9f3a0d09
JW
778 if (!root)
779 root = root_mem_cgroup;
7d74b06f 780
9f3a0d09 781 if (prev && !reclaim)
5ac8fb31 782 pos = prev;
14067bb3 783
9f3a0d09
JW
784 if (!root->use_hierarchy && root != root_mem_cgroup) {
785 if (prev)
5ac8fb31 786 goto out;
694fbc0f 787 return root;
9f3a0d09 788 }
14067bb3 789
542f85f9 790 rcu_read_lock();
5f578161 791
5ac8fb31 792 if (reclaim) {
ef8f2327 793 struct mem_cgroup_per_node *mz;
5ac8fb31 794
ef8f2327 795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
796 iter = &mz->iter[reclaim->priority];
797
798 if (prev && reclaim->generation != iter->generation)
799 goto out_unlock;
800
6df38689 801 while (1) {
4db0c3c2 802 pos = READ_ONCE(iter->position);
6df38689
VD
803 if (!pos || css_tryget(&pos->css))
804 break;
5ac8fb31 805 /*
6df38689
VD
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
811 * away.
5ac8fb31 812 */
6df38689
VD
813 (void)cmpxchg(&iter->position, pos, NULL);
814 }
5ac8fb31
JW
815 }
816
817 if (pos)
818 css = &pos->css;
819
820 for (;;) {
821 css = css_next_descendant_pre(css, &root->css);
822 if (!css) {
823 /*
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
828 */
829 if (!prev)
830 continue;
831 break;
527a5ec9 832 }
7d74b06f 833
5ac8fb31
JW
834 /*
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
838 */
839 memcg = mem_cgroup_from_css(css);
14067bb3 840
5ac8fb31
JW
841 if (css == &root->css)
842 break;
14067bb3 843
0b8f73e1
JW
844 if (css_tryget(css))
845 break;
9f3a0d09 846
5ac8fb31 847 memcg = NULL;
9f3a0d09 848 }
5ac8fb31
JW
849
850 if (reclaim) {
5ac8fb31 851 /*
6df38689
VD
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 855 */
6df38689
VD
856 (void)cmpxchg(&iter->position, pos, memcg);
857
5ac8fb31
JW
858 if (pos)
859 css_put(&pos->css);
860
861 if (!memcg)
862 iter->generation++;
863 else if (!prev)
864 reclaim->generation = iter->generation;
9f3a0d09 865 }
5ac8fb31 866
542f85f9
MH
867out_unlock:
868 rcu_read_unlock();
5ac8fb31 869out:
c40046f3
MH
870 if (prev && prev != root)
871 css_put(&prev->css);
872
9f3a0d09 873 return memcg;
14067bb3 874}
7d74b06f 875
5660048c
JW
876/**
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
880 */
881void mem_cgroup_iter_break(struct mem_cgroup *root,
882 struct mem_cgroup *prev)
9f3a0d09
JW
883{
884 if (!root)
885 root = root_mem_cgroup;
886 if (prev && prev != root)
887 css_put(&prev->css);
888}
7d74b06f 889
6df38689
VD
890static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
891{
892 struct mem_cgroup *memcg = dead_memcg;
893 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
894 struct mem_cgroup_per_node *mz;
895 int nid;
6df38689
VD
896 int i;
897
898 while ((memcg = parent_mem_cgroup(memcg))) {
899 for_each_node(nid) {
ef8f2327
MG
900 mz = mem_cgroup_nodeinfo(memcg, nid);
901 for (i = 0; i <= DEF_PRIORITY; i++) {
902 iter = &mz->iter[i];
903 cmpxchg(&iter->position,
904 dead_memcg, NULL);
6df38689
VD
905 }
906 }
907 }
908}
909
9f3a0d09
JW
910/*
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
914 */
915#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 917 iter != NULL; \
527a5ec9 918 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 919
9f3a0d09 920#define for_each_mem_cgroup(iter) \
527a5ec9 921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 922 iter != NULL; \
527a5ec9 923 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 924
7c5f64f8
VD
925/**
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
930 *
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
935 *
936 * This function must not be called for the root memory cgroup.
937 */
938int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 int (*fn)(struct task_struct *, void *), void *arg)
940{
941 struct mem_cgroup *iter;
942 int ret = 0;
943
944 BUG_ON(memcg == root_mem_cgroup);
945
946 for_each_mem_cgroup_tree(iter, memcg) {
947 struct css_task_iter it;
948 struct task_struct *task;
949
950 css_task_iter_start(&iter->css, &it);
951 while (!ret && (task = css_task_iter_next(&it)))
952 ret = fn(task, arg);
953 css_task_iter_end(&it);
954 if (ret) {
955 mem_cgroup_iter_break(memcg, iter);
956 break;
957 }
958 }
959 return ret;
960}
961
925b7673 962/**
dfe0e773 963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 964 * @page: the page
fa9add64 965 * @zone: zone of the page
dfe0e773
JW
966 *
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 970 */
599d0c95 971struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 972{
ef8f2327 973 struct mem_cgroup_per_node *mz;
925b7673 974 struct mem_cgroup *memcg;
bea8c150 975 struct lruvec *lruvec;
6d12e2d8 976
bea8c150 977 if (mem_cgroup_disabled()) {
599d0c95 978 lruvec = &pgdat->lruvec;
bea8c150
HD
979 goto out;
980 }
925b7673 981
1306a85a 982 memcg = page->mem_cgroup;
7512102c 983 /*
dfe0e773 984 * Swapcache readahead pages are added to the LRU - and
29833315 985 * possibly migrated - before they are charged.
7512102c 986 */
29833315
JW
987 if (!memcg)
988 memcg = root_mem_cgroup;
7512102c 989
ef8f2327 990 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
991 lruvec = &mz->lruvec;
992out:
993 /*
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
997 */
599d0c95
MG
998 if (unlikely(lruvec->pgdat != pgdat))
999 lruvec->pgdat = pgdat;
bea8c150 1000 return lruvec;
08e552c6 1001}
b69408e8 1002
925b7673 1003/**
fa9add64
HD
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
b4536f0c 1007 * @zid: zone id of the accounted pages
fa9add64 1008 * @nr_pages: positive when adding or negative when removing
925b7673 1009 *
ca707239
HD
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1013 */
fa9add64 1014void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1015 int zid, int nr_pages)
3f58a829 1016{
ef8f2327 1017 struct mem_cgroup_per_node *mz;
fa9add64 1018 unsigned long *lru_size;
ca707239 1019 long size;
3f58a829
MK
1020
1021 if (mem_cgroup_disabled())
1022 return;
1023
ef8f2327 1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1025 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1026
1027 if (nr_pages < 0)
1028 *lru_size += nr_pages;
1029
1030 size = *lru_size;
b4536f0c
MH
1031 if (WARN_ONCE(size < 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1034 VM_BUG_ON(1);
1035 *lru_size = 0;
1036 }
1037
1038 if (nr_pages > 0)
1039 *lru_size += nr_pages;
08e552c6 1040}
544122e5 1041
2314b42d 1042bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1043{
2314b42d 1044 struct mem_cgroup *task_memcg;
158e0a2d 1045 struct task_struct *p;
ffbdccf5 1046 bool ret;
4c4a2214 1047
158e0a2d 1048 p = find_lock_task_mm(task);
de077d22 1049 if (p) {
2314b42d 1050 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1051 task_unlock(p);
1052 } else {
1053 /*
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1057 */
ffbdccf5 1058 rcu_read_lock();
2314b42d
JW
1059 task_memcg = mem_cgroup_from_task(task);
1060 css_get(&task_memcg->css);
ffbdccf5 1061 rcu_read_unlock();
de077d22 1062 }
2314b42d
JW
1063 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 css_put(&task_memcg->css);
4c4a2214
DR
1065 return ret;
1066}
1067
19942822 1068/**
9d11ea9f 1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1070 * @memcg: the memory cgroup
19942822 1071 *
9d11ea9f 1072 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1073 * pages.
19942822 1074 */
c0ff4b85 1075static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1076{
3e32cb2e
JW
1077 unsigned long margin = 0;
1078 unsigned long count;
1079 unsigned long limit;
9d11ea9f 1080
3e32cb2e 1081 count = page_counter_read(&memcg->memory);
4db0c3c2 1082 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1083 if (count < limit)
1084 margin = limit - count;
1085
7941d214 1086 if (do_memsw_account()) {
3e32cb2e 1087 count = page_counter_read(&memcg->memsw);
4db0c3c2 1088 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1089 if (count <= limit)
1090 margin = min(margin, limit - count);
cbedbac3
LR
1091 else
1092 margin = 0;
3e32cb2e
JW
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
58cf188e
SZ
1154 struct mem_cgroup *iter;
1155 unsigned int i;
e222432b 1156
e222432b
BS
1157 rcu_read_lock();
1158
2415b9f5
BV
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
e61734c5 1167 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1168 pr_cont("\n");
e222432b 1169
e222432b
BS
1170 rcu_read_unlock();
1171
3e32cb2e
JW
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1189 continue;
484ebb3b 1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
e222432b
BS
1200}
1201
81d39c20
KH
1202/*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
c0ff4b85 1206static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1207{
1208 int num = 0;
7d74b06f
KH
1209 struct mem_cgroup *iter;
1210
c0ff4b85 1211 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1212 num++;
81d39c20
KH
1213 return num;
1214}
1215
a63d83f4
DR
1216/*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
7c5f64f8 1219unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1220{
3e32cb2e 1221 unsigned long limit;
f3e8eb70 1222
3e32cb2e 1223 limit = memcg->memory.limit;
9a5a8f19 1224 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1225 unsigned long memsw_limit;
37e84351 1226 unsigned long swap_limit;
9a5a8f19 1227
3e32cb2e 1228 memsw_limit = memcg->memsw.limit;
37e84351
VD
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1232 }
9a5a8f19 1233 return limit;
a63d83f4
DR
1234}
1235
b6e6edcf 1236static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1237 int order)
9cbb78bb 1238{
6e0fc46d
DR
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
2a966b77 1242 .memcg = memcg,
6e0fc46d
DR
1243 .gfp_mask = gfp_mask,
1244 .order = order,
6e0fc46d 1245 };
7c5f64f8 1246 bool ret;
9cbb78bb 1247
dc56401f 1248 mutex_lock(&oom_lock);
7c5f64f8 1249 ret = out_of_memory(&oc);
dc56401f 1250 mutex_unlock(&oom_lock);
7c5f64f8 1251 return ret;
9cbb78bb
DR
1252}
1253
ae6e71d3
MC
1254#if MAX_NUMNODES > 1
1255
4d0c066d
KH
1256/**
1257 * test_mem_cgroup_node_reclaimable
dad7557e 1258 * @memcg: the target memcg
4d0c066d
KH
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1261 *
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1265 */
c0ff4b85 1266static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1267 int nid, bool noswap)
1268{
c0ff4b85 1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1270 return true;
1271 if (noswap || !total_swap_pages)
1272 return false;
c0ff4b85 1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1274 return true;
1275 return false;
1276
1277}
889976db
YH
1278
1279/*
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1283 *
1284 */
c0ff4b85 1285static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1286{
1287 int nid;
453a9bf3
KH
1288 /*
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1291 */
c0ff4b85 1292 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1293 return;
c0ff4b85 1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1295 return;
1296
889976db 1297 /* make a nodemask where this memcg uses memory from */
31aaea4a 1298 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1299
31aaea4a 1300 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1301
c0ff4b85
R
1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 node_clear(nid, memcg->scan_nodes);
889976db 1304 }
453a9bf3 1305
c0ff4b85
R
1306 atomic_set(&memcg->numainfo_events, 0);
1307 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1308}
1309
1310/*
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1314 *
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1319 *
1320 * Now, we use round-robin. Better algorithm is welcomed.
1321 */
c0ff4b85 1322int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1323{
1324 int node;
1325
c0ff4b85
R
1326 mem_cgroup_may_update_nodemask(memcg);
1327 node = memcg->last_scanned_node;
889976db 1328
0edaf86c 1329 node = next_node_in(node, memcg->scan_nodes);
889976db 1330 /*
fda3d69b
MH
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
889976db
YH
1334 */
1335 if (unlikely(node == MAX_NUMNODES))
1336 node = numa_node_id();
1337
c0ff4b85 1338 memcg->last_scanned_node = node;
889976db
YH
1339 return node;
1340}
889976db 1341#else
c0ff4b85 1342int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1343{
1344 return 0;
1345}
1346#endif
1347
0608f43d 1348static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1349 pg_data_t *pgdat,
0608f43d
AM
1350 gfp_t gfp_mask,
1351 unsigned long *total_scanned)
1352{
1353 struct mem_cgroup *victim = NULL;
1354 int total = 0;
1355 int loop = 0;
1356 unsigned long excess;
1357 unsigned long nr_scanned;
1358 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1359 .pgdat = pgdat,
0608f43d
AM
1360 .priority = 0,
1361 };
1362
3e32cb2e 1363 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1364
1365 while (1) {
1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1367 if (!victim) {
1368 loop++;
1369 if (loop >= 2) {
1370 /*
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1374 */
1375 if (!total)
1376 break;
1377 /*
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1382 */
1383 if (total >= (excess >> 2) ||
1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1385 break;
1386 }
1387 continue;
1388 }
a9dd0a83 1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1390 pgdat, &nr_scanned);
0608f43d 1391 *total_scanned += nr_scanned;
3e32cb2e 1392 if (!soft_limit_excess(root_memcg))
0608f43d 1393 break;
6d61ef40 1394 }
0608f43d
AM
1395 mem_cgroup_iter_break(root_memcg, victim);
1396 return total;
6d61ef40
BS
1397}
1398
0056f4e6
JW
1399#ifdef CONFIG_LOCKDEP
1400static struct lockdep_map memcg_oom_lock_dep_map = {
1401 .name = "memcg_oom_lock",
1402};
1403#endif
1404
fb2a6fc5
JW
1405static DEFINE_SPINLOCK(memcg_oom_lock);
1406
867578cb
KH
1407/*
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1410 */
fb2a6fc5 1411static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1412{
79dfdacc 1413 struct mem_cgroup *iter, *failed = NULL;
a636b327 1414
fb2a6fc5
JW
1415 spin_lock(&memcg_oom_lock);
1416
9f3a0d09 1417 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1418 if (iter->oom_lock) {
79dfdacc
MH
1419 /*
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1422 */
79dfdacc 1423 failed = iter;
9f3a0d09
JW
1424 mem_cgroup_iter_break(memcg, iter);
1425 break;
23751be0
JW
1426 } else
1427 iter->oom_lock = true;
7d74b06f 1428 }
867578cb 1429
fb2a6fc5
JW
1430 if (failed) {
1431 /*
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1434 */
1435 for_each_mem_cgroup_tree(iter, memcg) {
1436 if (iter == failed) {
1437 mem_cgroup_iter_break(memcg, iter);
1438 break;
1439 }
1440 iter->oom_lock = false;
79dfdacc 1441 }
0056f4e6
JW
1442 } else
1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1444
1445 spin_unlock(&memcg_oom_lock);
1446
1447 return !failed;
a636b327 1448}
0b7f569e 1449
fb2a6fc5 1450static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1451{
7d74b06f
KH
1452 struct mem_cgroup *iter;
1453
fb2a6fc5 1454 spin_lock(&memcg_oom_lock);
0056f4e6 1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1456 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1457 iter->oom_lock = false;
fb2a6fc5 1458 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1459}
1460
c0ff4b85 1461static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1462{
1463 struct mem_cgroup *iter;
1464
c2b42d3c 1465 spin_lock(&memcg_oom_lock);
c0ff4b85 1466 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1467 iter->under_oom++;
1468 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1469}
1470
c0ff4b85 1471static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1472{
1473 struct mem_cgroup *iter;
1474
867578cb
KH
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1478 */
c2b42d3c 1479 spin_lock(&memcg_oom_lock);
c0ff4b85 1480 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1481 if (iter->under_oom > 0)
1482 iter->under_oom--;
1483 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1484}
1485
867578cb
KH
1486static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
dc98df5a 1488struct oom_wait_info {
d79154bb 1489 struct mem_cgroup *memcg;
dc98df5a
KH
1490 wait_queue_t wait;
1491};
1492
1493static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1495{
d79154bb
HD
1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1501 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1502
2314b42d
JW
1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1505 return 0;
dc98df5a
KH
1506 return autoremove_wake_function(wait, mode, sync, arg);
1507}
1508
c0ff4b85 1509static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1510{
c2b42d3c
TH
1511 /*
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1518 */
1519 if (memcg && memcg->under_oom)
f4b90b70 1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1521}
1522
3812c8c8 1523static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1524{
d0db7afa 1525 if (!current->memcg_may_oom)
3812c8c8 1526 return;
867578cb 1527 /*
49426420
JW
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1531 *
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1535 *
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
867578cb 1540 */
49426420 1541 css_get(&memcg->css);
626ebc41
TH
1542 current->memcg_in_oom = memcg;
1543 current->memcg_oom_gfp_mask = mask;
1544 current->memcg_oom_order = order;
3812c8c8
JW
1545}
1546
1547/**
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1549 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1550 *
49426420
JW
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
3812c8c8 1553 *
49426420 1554 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1559 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1560 *
1561 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1562 * completed, %false otherwise.
3812c8c8 1563 */
49426420 1564bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1565{
626ebc41 1566 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1567 struct oom_wait_info owait;
49426420 1568 bool locked;
3812c8c8
JW
1569
1570 /* OOM is global, do not handle */
3812c8c8 1571 if (!memcg)
49426420 1572 return false;
3812c8c8 1573
7c5f64f8 1574 if (!handle)
49426420 1575 goto cleanup;
3812c8c8
JW
1576
1577 owait.memcg = memcg;
1578 owait.wait.flags = 0;
1579 owait.wait.func = memcg_oom_wake_function;
1580 owait.wait.private = current;
1581 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1582
3812c8c8 1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1584 mem_cgroup_mark_under_oom(memcg);
1585
1586 locked = mem_cgroup_oom_trylock(memcg);
1587
1588 if (locked)
1589 mem_cgroup_oom_notify(memcg);
1590
1591 if (locked && !memcg->oom_kill_disable) {
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 current->memcg_oom_order);
49426420 1596 } else {
3812c8c8 1597 schedule();
49426420
JW
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1600 }
1601
1602 if (locked) {
fb2a6fc5
JW
1603 mem_cgroup_oom_unlock(memcg);
1604 /*
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1608 */
1609 memcg_oom_recover(memcg);
1610 }
49426420 1611cleanup:
626ebc41 1612 current->memcg_in_oom = NULL;
3812c8c8 1613 css_put(&memcg->css);
867578cb 1614 return true;
0b7f569e
KH
1615}
1616
d7365e78 1617/**
81f8c3a4
JW
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1619 * @page: the page
32047e2a 1620 *
81f8c3a4
JW
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1623 */
62cccb8c 1624void lock_page_memcg(struct page *page)
89c06bd5
KH
1625{
1626 struct mem_cgroup *memcg;
6de22619 1627 unsigned long flags;
89c06bd5 1628
6de22619
JW
1629 /*
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
6de22619 1633 */
d7365e78
JW
1634 rcu_read_lock();
1635
1636 if (mem_cgroup_disabled())
62cccb8c 1637 return;
89c06bd5 1638again:
1306a85a 1639 memcg = page->mem_cgroup;
29833315 1640 if (unlikely(!memcg))
62cccb8c 1641 return;
d7365e78 1642
bdcbb659 1643 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1644 return;
89c06bd5 1645
6de22619 1646 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1647 if (memcg != page->mem_cgroup) {
6de22619 1648 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1649 goto again;
1650 }
6de22619
JW
1651
1652 /*
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1655 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1656 */
1657 memcg->move_lock_task = current;
1658 memcg->move_lock_flags = flags;
d7365e78 1659
62cccb8c 1660 return;
89c06bd5 1661}
81f8c3a4 1662EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1663
d7365e78 1664/**
81f8c3a4 1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1666 * @page: the page
d7365e78 1667 */
62cccb8c 1668void unlock_page_memcg(struct page *page)
89c06bd5 1669{
62cccb8c
JW
1670 struct mem_cgroup *memcg = page->mem_cgroup;
1671
6de22619
JW
1672 if (memcg && memcg->move_lock_task == current) {
1673 unsigned long flags = memcg->move_lock_flags;
1674
1675 memcg->move_lock_task = NULL;
1676 memcg->move_lock_flags = 0;
1677
1678 spin_unlock_irqrestore(&memcg->move_lock, flags);
1679 }
89c06bd5 1680
d7365e78 1681 rcu_read_unlock();
89c06bd5 1682}
81f8c3a4 1683EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1684
cdec2e42
KH
1685/*
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1688 */
7ec99d62 1689#define CHARGE_BATCH 32U
cdec2e42
KH
1690struct memcg_stock_pcp {
1691 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1692 unsigned int nr_pages;
cdec2e42 1693 struct work_struct work;
26fe6168 1694 unsigned long flags;
a0db00fc 1695#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1696};
1697static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1698static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1699
a0956d54
SS
1700/**
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1704 *
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1708 *
1709 * returns true if successful, false otherwise.
cdec2e42 1710 */
a0956d54 1711static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1712{
1713 struct memcg_stock_pcp *stock;
db2ba40c 1714 unsigned long flags;
3e32cb2e 1715 bool ret = false;
cdec2e42 1716
a0956d54 1717 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1718 return ret;
a0956d54 1719
db2ba40c
JW
1720 local_irq_save(flags);
1721
1722 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1724 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1725 ret = true;
1726 }
db2ba40c
JW
1727
1728 local_irq_restore(flags);
1729
cdec2e42
KH
1730 return ret;
1731}
1732
1733/*
3e32cb2e 1734 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1735 */
1736static void drain_stock(struct memcg_stock_pcp *stock)
1737{
1738 struct mem_cgroup *old = stock->cached;
1739
11c9ea4e 1740 if (stock->nr_pages) {
3e32cb2e 1741 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1742 if (do_memsw_account())
3e32cb2e 1743 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1744 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1745 stock->nr_pages = 0;
cdec2e42
KH
1746 }
1747 stock->cached = NULL;
cdec2e42
KH
1748}
1749
cdec2e42
KH
1750static void drain_local_stock(struct work_struct *dummy)
1751{
db2ba40c
JW
1752 struct memcg_stock_pcp *stock;
1753 unsigned long flags;
1754
1755 local_irq_save(flags);
1756
1757 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1758 drain_stock(stock);
26fe6168 1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1760
1761 local_irq_restore(flags);
cdec2e42
KH
1762}
1763
1764/*
3e32cb2e 1765 * Cache charges(val) to local per_cpu area.
320cc51d 1766 * This will be consumed by consume_stock() function, later.
cdec2e42 1767 */
c0ff4b85 1768static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1769{
db2ba40c
JW
1770 struct memcg_stock_pcp *stock;
1771 unsigned long flags;
1772
1773 local_irq_save(flags);
cdec2e42 1774
db2ba40c 1775 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1776 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1777 drain_stock(stock);
c0ff4b85 1778 stock->cached = memcg;
cdec2e42 1779 }
11c9ea4e 1780 stock->nr_pages += nr_pages;
db2ba40c
JW
1781
1782 local_irq_restore(flags);
cdec2e42
KH
1783}
1784
1785/*
c0ff4b85 1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1787 * of the hierarchy under it.
cdec2e42 1788 */
6d3d6aa2 1789static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1790{
26fe6168 1791 int cpu, curcpu;
d38144b7 1792
6d3d6aa2
JW
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex))
1795 return;
cdec2e42 1796 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1797 get_online_cpus();
5af12d0e 1798 curcpu = get_cpu();
cdec2e42
KH
1799 for_each_online_cpu(cpu) {
1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1801 struct mem_cgroup *memcg;
26fe6168 1802
c0ff4b85
R
1803 memcg = stock->cached;
1804 if (!memcg || !stock->nr_pages)
26fe6168 1805 continue;
2314b42d 1806 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1807 continue;
d1a05b69
MH
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1809 if (cpu == curcpu)
1810 drain_local_stock(&stock->work);
1811 else
1812 schedule_work_on(cpu, &stock->work);
1813 }
cdec2e42 1814 }
5af12d0e 1815 put_cpu();
f894ffa8 1816 put_online_cpus();
9f50fad6 1817 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1818}
1819
308167fc 1820static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1821{
cdec2e42
KH
1822 struct memcg_stock_pcp *stock;
1823
cdec2e42
KH
1824 stock = &per_cpu(memcg_stock, cpu);
1825 drain_stock(stock);
308167fc 1826 return 0;
cdec2e42
KH
1827}
1828
f7e1cb6e
JW
1829static void reclaim_high(struct mem_cgroup *memcg,
1830 unsigned int nr_pages,
1831 gfp_t gfp_mask)
1832{
1833 do {
1834 if (page_counter_read(&memcg->memory) <= memcg->high)
1835 continue;
1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1838 } while ((memcg = parent_mem_cgroup(memcg)));
1839}
1840
1841static void high_work_func(struct work_struct *work)
1842{
1843 struct mem_cgroup *memcg;
1844
1845 memcg = container_of(work, struct mem_cgroup, high_work);
1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1847}
1848
b23afb93
TH
1849/*
1850 * Scheduled by try_charge() to be executed from the userland return path
1851 * and reclaims memory over the high limit.
1852 */
1853void mem_cgroup_handle_over_high(void)
1854{
1855 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1856 struct mem_cgroup *memcg;
b23afb93
TH
1857
1858 if (likely(!nr_pages))
1859 return;
1860
f7e1cb6e
JW
1861 memcg = get_mem_cgroup_from_mm(current->mm);
1862 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1863 css_put(&memcg->css);
1864 current->memcg_nr_pages_over_high = 0;
1865}
1866
00501b53
JW
1867static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1868 unsigned int nr_pages)
8a9f3ccd 1869{
7ec99d62 1870 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1872 struct mem_cgroup *mem_over_limit;
3e32cb2e 1873 struct page_counter *counter;
6539cc05 1874 unsigned long nr_reclaimed;
b70a2a21
JW
1875 bool may_swap = true;
1876 bool drained = false;
a636b327 1877
ce00a967 1878 if (mem_cgroup_is_root(memcg))
10d53c74 1879 return 0;
6539cc05 1880retry:
b6b6cc72 1881 if (consume_stock(memcg, nr_pages))
10d53c74 1882 return 0;
8a9f3ccd 1883
7941d214 1884 if (!do_memsw_account() ||
6071ca52
JW
1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1886 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1887 goto done_restock;
7941d214 1888 if (do_memsw_account())
3e32cb2e
JW
1889 page_counter_uncharge(&memcg->memsw, batch);
1890 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1891 } else {
3e32cb2e 1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1893 may_swap = false;
3fbe7244 1894 }
7a81b88c 1895
6539cc05
JW
1896 if (batch > nr_pages) {
1897 batch = nr_pages;
1898 goto retry;
1899 }
6d61ef40 1900
06b078fc
JW
1901 /*
1902 * Unlike in global OOM situations, memcg is not in a physical
1903 * memory shortage. Allow dying and OOM-killed tasks to
1904 * bypass the last charges so that they can exit quickly and
1905 * free their memory.
1906 */
1907 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1908 fatal_signal_pending(current) ||
1909 current->flags & PF_EXITING))
10d53c74 1910 goto force;
06b078fc 1911
89a28483
JW
1912 /*
1913 * Prevent unbounded recursion when reclaim operations need to
1914 * allocate memory. This might exceed the limits temporarily,
1915 * but we prefer facilitating memory reclaim and getting back
1916 * under the limit over triggering OOM kills in these cases.
1917 */
1918 if (unlikely(current->flags & PF_MEMALLOC))
1919 goto force;
1920
06b078fc
JW
1921 if (unlikely(task_in_memcg_oom(current)))
1922 goto nomem;
1923
d0164adc 1924 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1925 goto nomem;
4b534334 1926
241994ed
JW
1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1928
b70a2a21
JW
1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1930 gfp_mask, may_swap);
6539cc05 1931
61e02c74 1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1933 goto retry;
28c34c29 1934
b70a2a21 1935 if (!drained) {
6d3d6aa2 1936 drain_all_stock(mem_over_limit);
b70a2a21
JW
1937 drained = true;
1938 goto retry;
1939 }
1940
28c34c29
JW
1941 if (gfp_mask & __GFP_NORETRY)
1942 goto nomem;
6539cc05
JW
1943 /*
1944 * Even though the limit is exceeded at this point, reclaim
1945 * may have been able to free some pages. Retry the charge
1946 * before killing the task.
1947 *
1948 * Only for regular pages, though: huge pages are rather
1949 * unlikely to succeed so close to the limit, and we fall back
1950 * to regular pages anyway in case of failure.
1951 */
61e02c74 1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1953 goto retry;
1954 /*
1955 * At task move, charge accounts can be doubly counted. So, it's
1956 * better to wait until the end of task_move if something is going on.
1957 */
1958 if (mem_cgroup_wait_acct_move(mem_over_limit))
1959 goto retry;
1960
9b130619
JW
1961 if (nr_retries--)
1962 goto retry;
1963
06b078fc 1964 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1965 goto force;
06b078fc 1966
6539cc05 1967 if (fatal_signal_pending(current))
10d53c74 1968 goto force;
6539cc05 1969
241994ed
JW
1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1971
3608de07
JM
1972 mem_cgroup_oom(mem_over_limit, gfp_mask,
1973 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1974nomem:
6d1fdc48 1975 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1976 return -ENOMEM;
10d53c74
TH
1977force:
1978 /*
1979 * The allocation either can't fail or will lead to more memory
1980 * being freed very soon. Allow memory usage go over the limit
1981 * temporarily by force charging it.
1982 */
1983 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1984 if (do_memsw_account())
10d53c74
TH
1985 page_counter_charge(&memcg->memsw, nr_pages);
1986 css_get_many(&memcg->css, nr_pages);
1987
1988 return 0;
6539cc05
JW
1989
1990done_restock:
e8ea14cc 1991 css_get_many(&memcg->css, batch);
6539cc05
JW
1992 if (batch > nr_pages)
1993 refill_stock(memcg, batch - nr_pages);
b23afb93 1994
241994ed 1995 /*
b23afb93
TH
1996 * If the hierarchy is above the normal consumption range, schedule
1997 * reclaim on returning to userland. We can perform reclaim here
71baba4b 1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2000 * not recorded as it most likely matches current's and won't
2001 * change in the meantime. As high limit is checked again before
2002 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2003 */
2004 do {
b23afb93 2005 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2006 /* Don't bother a random interrupted task */
2007 if (in_interrupt()) {
2008 schedule_work(&memcg->high_work);
2009 break;
2010 }
9516a18a 2011 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2012 set_notify_resume(current);
2013 break;
2014 }
241994ed 2015 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2016
2017 return 0;
7a81b88c 2018}
8a9f3ccd 2019
00501b53 2020static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2021{
ce00a967
JW
2022 if (mem_cgroup_is_root(memcg))
2023 return;
2024
3e32cb2e 2025 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2026 if (do_memsw_account())
3e32cb2e 2027 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2028
e8ea14cc 2029 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2030}
2031
0a31bc97
JW
2032static void lock_page_lru(struct page *page, int *isolated)
2033{
2034 struct zone *zone = page_zone(page);
2035
a52633d8 2036 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2037 if (PageLRU(page)) {
2038 struct lruvec *lruvec;
2039
599d0c95 2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2041 ClearPageLRU(page);
2042 del_page_from_lru_list(page, lruvec, page_lru(page));
2043 *isolated = 1;
2044 } else
2045 *isolated = 0;
2046}
2047
2048static void unlock_page_lru(struct page *page, int isolated)
2049{
2050 struct zone *zone = page_zone(page);
2051
2052 if (isolated) {
2053 struct lruvec *lruvec;
2054
599d0c95 2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2056 VM_BUG_ON_PAGE(PageLRU(page), page);
2057 SetPageLRU(page);
2058 add_page_to_lru_list(page, lruvec, page_lru(page));
2059 }
a52633d8 2060 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2061}
2062
00501b53 2063static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2064 bool lrucare)
7a81b88c 2065{
0a31bc97 2066 int isolated;
9ce70c02 2067
1306a85a 2068 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2069
2070 /*
2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2072 * may already be on some other mem_cgroup's LRU. Take care of it.
2073 */
0a31bc97
JW
2074 if (lrucare)
2075 lock_page_lru(page, &isolated);
9ce70c02 2076
0a31bc97
JW
2077 /*
2078 * Nobody should be changing or seriously looking at
1306a85a 2079 * page->mem_cgroup at this point:
0a31bc97
JW
2080 *
2081 * - the page is uncharged
2082 *
2083 * - the page is off-LRU
2084 *
2085 * - an anonymous fault has exclusive page access, except for
2086 * a locked page table
2087 *
2088 * - a page cache insertion, a swapin fault, or a migration
2089 * have the page locked
2090 */
1306a85a 2091 page->mem_cgroup = memcg;
9ce70c02 2092
0a31bc97
JW
2093 if (lrucare)
2094 unlock_page_lru(page, isolated);
7a81b88c 2095}
66e1707b 2096
127424c8 2097#ifndef CONFIG_SLOB
f3bb3043 2098static int memcg_alloc_cache_id(void)
55007d84 2099{
f3bb3043
VD
2100 int id, size;
2101 int err;
2102
dbcf73e2 2103 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2105 if (id < 0)
2106 return id;
55007d84 2107
dbcf73e2 2108 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2109 return id;
2110
2111 /*
2112 * There's no space for the new id in memcg_caches arrays,
2113 * so we have to grow them.
2114 */
05257a1a 2115 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2116
2117 size = 2 * (id + 1);
55007d84
GC
2118 if (size < MEMCG_CACHES_MIN_SIZE)
2119 size = MEMCG_CACHES_MIN_SIZE;
2120 else if (size > MEMCG_CACHES_MAX_SIZE)
2121 size = MEMCG_CACHES_MAX_SIZE;
2122
f3bb3043 2123 err = memcg_update_all_caches(size);
60d3fd32
VD
2124 if (!err)
2125 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2126 if (!err)
2127 memcg_nr_cache_ids = size;
2128
2129 up_write(&memcg_cache_ids_sem);
2130
f3bb3043 2131 if (err) {
dbcf73e2 2132 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2133 return err;
2134 }
2135 return id;
2136}
2137
2138static void memcg_free_cache_id(int id)
2139{
dbcf73e2 2140 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2141}
2142
d5b3cf71 2143struct memcg_kmem_cache_create_work {
5722d094
VD
2144 struct mem_cgroup *memcg;
2145 struct kmem_cache *cachep;
2146 struct work_struct work;
2147};
2148
d5b3cf71 2149static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2150{
d5b3cf71
VD
2151 struct memcg_kmem_cache_create_work *cw =
2152 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2153 struct mem_cgroup *memcg = cw->memcg;
2154 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2155
d5b3cf71 2156 memcg_create_kmem_cache(memcg, cachep);
bd673145 2157
5722d094 2158 css_put(&memcg->css);
d7f25f8a
GC
2159 kfree(cw);
2160}
2161
2162/*
2163 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2164 */
d5b3cf71
VD
2165static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2166 struct kmem_cache *cachep)
d7f25f8a 2167{
d5b3cf71 2168 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2169
776ed0f0 2170 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2171 if (!cw)
d7f25f8a 2172 return;
8135be5a
VD
2173
2174 css_get(&memcg->css);
d7f25f8a
GC
2175
2176 cw->memcg = memcg;
2177 cw->cachep = cachep;
d5b3cf71 2178 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2179
17cc4dfe 2180 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2181}
2182
d5b3cf71
VD
2183static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2184 struct kmem_cache *cachep)
0e9d92f2
GC
2185{
2186 /*
2187 * We need to stop accounting when we kmalloc, because if the
2188 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2189 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2190 *
2191 * However, it is better to enclose the whole function. Depending on
2192 * the debugging options enabled, INIT_WORK(), for instance, can
2193 * trigger an allocation. This too, will make us recurse. Because at
2194 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2195 * the safest choice is to do it like this, wrapping the whole function.
2196 */
6f185c29 2197 current->memcg_kmem_skip_account = 1;
d5b3cf71 2198 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2199 current->memcg_kmem_skip_account = 0;
0e9d92f2 2200}
c67a8a68 2201
45264778
VD
2202static inline bool memcg_kmem_bypass(void)
2203{
2204 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2205 return true;
2206 return false;
2207}
2208
2209/**
2210 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2211 * @cachep: the original global kmem cache
2212 *
d7f25f8a
GC
2213 * Return the kmem_cache we're supposed to use for a slab allocation.
2214 * We try to use the current memcg's version of the cache.
2215 *
45264778
VD
2216 * If the cache does not exist yet, if we are the first user of it, we
2217 * create it asynchronously in a workqueue and let the current allocation
2218 * go through with the original cache.
d7f25f8a 2219 *
45264778
VD
2220 * This function takes a reference to the cache it returns to assure it
2221 * won't get destroyed while we are working with it. Once the caller is
2222 * done with it, memcg_kmem_put_cache() must be called to release the
2223 * reference.
d7f25f8a 2224 */
45264778 2225struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2226{
2227 struct mem_cgroup *memcg;
959c8963 2228 struct kmem_cache *memcg_cachep;
2a4db7eb 2229 int kmemcg_id;
d7f25f8a 2230
f7ce3190 2231 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2232
45264778 2233 if (memcg_kmem_bypass())
230e9fc2
VD
2234 return cachep;
2235
9d100c5e 2236 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2237 return cachep;
2238
8135be5a 2239 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2240 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2241 if (kmemcg_id < 0)
ca0dde97 2242 goto out;
d7f25f8a 2243
2a4db7eb 2244 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2245 if (likely(memcg_cachep))
2246 return memcg_cachep;
ca0dde97
LZ
2247
2248 /*
2249 * If we are in a safe context (can wait, and not in interrupt
2250 * context), we could be be predictable and return right away.
2251 * This would guarantee that the allocation being performed
2252 * already belongs in the new cache.
2253 *
2254 * However, there are some clashes that can arrive from locking.
2255 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2256 * memcg_create_kmem_cache, this means no further allocation
2257 * could happen with the slab_mutex held. So it's better to
2258 * defer everything.
ca0dde97 2259 */
d5b3cf71 2260 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2261out:
8135be5a 2262 css_put(&memcg->css);
ca0dde97 2263 return cachep;
d7f25f8a 2264}
d7f25f8a 2265
45264778
VD
2266/**
2267 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2268 * @cachep: the cache returned by memcg_kmem_get_cache
2269 */
2270void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2271{
2272 if (!is_root_cache(cachep))
f7ce3190 2273 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2274}
2275
45264778
VD
2276/**
2277 * memcg_kmem_charge: charge a kmem page
2278 * @page: page to charge
2279 * @gfp: reclaim mode
2280 * @order: allocation order
2281 * @memcg: memory cgroup to charge
2282 *
2283 * Returns 0 on success, an error code on failure.
2284 */
2285int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2286 struct mem_cgroup *memcg)
7ae1e1d0 2287{
f3ccb2c4
VD
2288 unsigned int nr_pages = 1 << order;
2289 struct page_counter *counter;
7ae1e1d0
GC
2290 int ret;
2291
f3ccb2c4 2292 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2293 if (ret)
f3ccb2c4 2294 return ret;
52c29b04
JW
2295
2296 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2297 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2298 cancel_charge(memcg, nr_pages);
2299 return -ENOMEM;
7ae1e1d0
GC
2300 }
2301
f3ccb2c4 2302 page->mem_cgroup = memcg;
7ae1e1d0 2303
f3ccb2c4 2304 return 0;
7ae1e1d0
GC
2305}
2306
45264778
VD
2307/**
2308 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2309 * @page: page to charge
2310 * @gfp: reclaim mode
2311 * @order: allocation order
2312 *
2313 * Returns 0 on success, an error code on failure.
2314 */
2315int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2316{
f3ccb2c4 2317 struct mem_cgroup *memcg;
fcff7d7e 2318 int ret = 0;
7ae1e1d0 2319
45264778
VD
2320 if (memcg_kmem_bypass())
2321 return 0;
2322
f3ccb2c4 2323 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2324 if (!mem_cgroup_is_root(memcg)) {
45264778 2325 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2326 if (!ret)
2327 __SetPageKmemcg(page);
2328 }
7ae1e1d0 2329 css_put(&memcg->css);
d05e83a6 2330 return ret;
7ae1e1d0 2331}
45264778
VD
2332/**
2333 * memcg_kmem_uncharge: uncharge a kmem page
2334 * @page: page to uncharge
2335 * @order: allocation order
2336 */
2337void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2338{
1306a85a 2339 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2340 unsigned int nr_pages = 1 << order;
7ae1e1d0 2341
7ae1e1d0
GC
2342 if (!memcg)
2343 return;
2344
309381fe 2345 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2346
52c29b04
JW
2347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2348 page_counter_uncharge(&memcg->kmem, nr_pages);
2349
f3ccb2c4 2350 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2351 if (do_memsw_account())
f3ccb2c4 2352 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2353
1306a85a 2354 page->mem_cgroup = NULL;
c4159a75
VD
2355
2356 /* slab pages do not have PageKmemcg flag set */
2357 if (PageKmemcg(page))
2358 __ClearPageKmemcg(page);
2359
f3ccb2c4 2360 css_put_many(&memcg->css, nr_pages);
60d3fd32 2361}
127424c8 2362#endif /* !CONFIG_SLOB */
7ae1e1d0 2363
ca3e0214
KH
2364#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2365
ca3e0214
KH
2366/*
2367 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2368 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2369 */
e94c8a9c 2370void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2371{
e94c8a9c 2372 int i;
ca3e0214 2373
3d37c4a9
KH
2374 if (mem_cgroup_disabled())
2375 return;
b070e65c 2376
29833315 2377 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2378 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2379
1306a85a 2380 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2381 HPAGE_PMD_NR);
ca3e0214 2382}
12d27107 2383#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2384
c255a458 2385#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2386static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2387 bool charge)
d13d1443 2388{
0a31bc97
JW
2389 int val = (charge) ? 1 : -1;
2390 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2391}
02491447
DN
2392
2393/**
2394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2395 * @entry: swap entry to be moved
2396 * @from: mem_cgroup which the entry is moved from
2397 * @to: mem_cgroup which the entry is moved to
2398 *
2399 * It succeeds only when the swap_cgroup's record for this entry is the same
2400 * as the mem_cgroup's id of @from.
2401 *
2402 * Returns 0 on success, -EINVAL on failure.
2403 *
3e32cb2e 2404 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2405 * both res and memsw, and called css_get().
2406 */
2407static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2408 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2409{
2410 unsigned short old_id, new_id;
2411
34c00c31
LZ
2412 old_id = mem_cgroup_id(from);
2413 new_id = mem_cgroup_id(to);
02491447
DN
2414
2415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2416 mem_cgroup_swap_statistics(from, false);
483c30b5 2417 mem_cgroup_swap_statistics(to, true);
02491447
DN
2418 return 0;
2419 }
2420 return -EINVAL;
2421}
2422#else
2423static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2424 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2425{
2426 return -EINVAL;
2427}
8c7c6e34 2428#endif
d13d1443 2429
3e32cb2e 2430static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2431
d38d2a75 2432static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2433 unsigned long limit)
628f4235 2434{
3e32cb2e
JW
2435 unsigned long curusage;
2436 unsigned long oldusage;
2437 bool enlarge = false;
81d39c20 2438 int retry_count;
3e32cb2e 2439 int ret;
81d39c20
KH
2440
2441 /*
2442 * For keeping hierarchical_reclaim simple, how long we should retry
2443 * is depends on callers. We set our retry-count to be function
2444 * of # of children which we should visit in this loop.
2445 */
3e32cb2e
JW
2446 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2447 mem_cgroup_count_children(memcg);
81d39c20 2448
3e32cb2e 2449 oldusage = page_counter_read(&memcg->memory);
628f4235 2450
3e32cb2e 2451 do {
628f4235
KH
2452 if (signal_pending(current)) {
2453 ret = -EINTR;
2454 break;
2455 }
3e32cb2e
JW
2456
2457 mutex_lock(&memcg_limit_mutex);
2458 if (limit > memcg->memsw.limit) {
2459 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2460 ret = -EINVAL;
628f4235
KH
2461 break;
2462 }
3e32cb2e
JW
2463 if (limit > memcg->memory.limit)
2464 enlarge = true;
2465 ret = page_counter_limit(&memcg->memory, limit);
2466 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2467
2468 if (!ret)
2469 break;
2470
b70a2a21
JW
2471 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2472
3e32cb2e 2473 curusage = page_counter_read(&memcg->memory);
81d39c20 2474 /* Usage is reduced ? */
f894ffa8 2475 if (curusage >= oldusage)
81d39c20
KH
2476 retry_count--;
2477 else
2478 oldusage = curusage;
3e32cb2e
JW
2479 } while (retry_count);
2480
3c11ecf4
KH
2481 if (!ret && enlarge)
2482 memcg_oom_recover(memcg);
14797e23 2483
8c7c6e34
KH
2484 return ret;
2485}
2486
338c8431 2487static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2488 unsigned long limit)
8c7c6e34 2489{
3e32cb2e
JW
2490 unsigned long curusage;
2491 unsigned long oldusage;
2492 bool enlarge = false;
81d39c20 2493 int retry_count;
3e32cb2e 2494 int ret;
8c7c6e34 2495
81d39c20 2496 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2497 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2498 mem_cgroup_count_children(memcg);
2499
2500 oldusage = page_counter_read(&memcg->memsw);
2501
2502 do {
8c7c6e34
KH
2503 if (signal_pending(current)) {
2504 ret = -EINTR;
2505 break;
2506 }
3e32cb2e
JW
2507
2508 mutex_lock(&memcg_limit_mutex);
2509 if (limit < memcg->memory.limit) {
2510 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2511 ret = -EINVAL;
8c7c6e34
KH
2512 break;
2513 }
3e32cb2e
JW
2514 if (limit > memcg->memsw.limit)
2515 enlarge = true;
2516 ret = page_counter_limit(&memcg->memsw, limit);
2517 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2518
2519 if (!ret)
2520 break;
2521
b70a2a21
JW
2522 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2523
3e32cb2e 2524 curusage = page_counter_read(&memcg->memsw);
81d39c20 2525 /* Usage is reduced ? */
8c7c6e34 2526 if (curusage >= oldusage)
628f4235 2527 retry_count--;
81d39c20
KH
2528 else
2529 oldusage = curusage;
3e32cb2e
JW
2530 } while (retry_count);
2531
3c11ecf4
KH
2532 if (!ret && enlarge)
2533 memcg_oom_recover(memcg);
3e32cb2e 2534
628f4235
KH
2535 return ret;
2536}
2537
ef8f2327 2538unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2539 gfp_t gfp_mask,
2540 unsigned long *total_scanned)
2541{
2542 unsigned long nr_reclaimed = 0;
ef8f2327 2543 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2544 unsigned long reclaimed;
2545 int loop = 0;
ef8f2327 2546 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2547 unsigned long excess;
0608f43d
AM
2548 unsigned long nr_scanned;
2549
2550 if (order > 0)
2551 return 0;
2552
ef8f2327 2553 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2554
2555 /*
2556 * Do not even bother to check the largest node if the root
2557 * is empty. Do it lockless to prevent lock bouncing. Races
2558 * are acceptable as soft limit is best effort anyway.
2559 */
2560 if (RB_EMPTY_ROOT(&mctz->rb_root))
2561 return 0;
2562
0608f43d
AM
2563 /*
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2566 * pressure
2567 */
2568 do {
2569 if (next_mz)
2570 mz = next_mz;
2571 else
2572 mz = mem_cgroup_largest_soft_limit_node(mctz);
2573 if (!mz)
2574 break;
2575
2576 nr_scanned = 0;
ef8f2327 2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2578 gfp_mask, &nr_scanned);
2579 nr_reclaimed += reclaimed;
2580 *total_scanned += nr_scanned;
0a31bc97 2581 spin_lock_irq(&mctz->lock);
bc2f2e7f 2582 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2583
2584 /*
2585 * If we failed to reclaim anything from this memory cgroup
2586 * it is time to move on to the next cgroup
2587 */
2588 next_mz = NULL;
bc2f2e7f
VD
2589 if (!reclaimed)
2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2591
3e32cb2e 2592 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2593 /*
2594 * One school of thought says that we should not add
2595 * back the node to the tree if reclaim returns 0.
2596 * But our reclaim could return 0, simply because due
2597 * to priority we are exposing a smaller subset of
2598 * memory to reclaim from. Consider this as a longer
2599 * term TODO.
2600 */
2601 /* If excess == 0, no tree ops */
cf2c8127 2602 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2603 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2604 css_put(&mz->memcg->css);
2605 loop++;
2606 /*
2607 * Could not reclaim anything and there are no more
2608 * mem cgroups to try or we seem to be looping without
2609 * reclaiming anything.
2610 */
2611 if (!nr_reclaimed &&
2612 (next_mz == NULL ||
2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2614 break;
2615 } while (!nr_reclaimed);
2616 if (next_mz)
2617 css_put(&next_mz->memcg->css);
2618 return nr_reclaimed;
2619}
2620
ea280e7b
TH
2621/*
2622 * Test whether @memcg has children, dead or alive. Note that this
2623 * function doesn't care whether @memcg has use_hierarchy enabled and
2624 * returns %true if there are child csses according to the cgroup
2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2626 */
b5f99b53
GC
2627static inline bool memcg_has_children(struct mem_cgroup *memcg)
2628{
ea280e7b
TH
2629 bool ret;
2630
ea280e7b
TH
2631 rcu_read_lock();
2632 ret = css_next_child(NULL, &memcg->css);
2633 rcu_read_unlock();
2634 return ret;
b5f99b53
GC
2635}
2636
c26251f9 2637/*
51038171 2638 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2639 *
2640 * Caller is responsible for holding css reference for memcg.
2641 */
2642static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2643{
2644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2645
c1e862c1
KH
2646 /* we call try-to-free pages for make this cgroup empty */
2647 lru_add_drain_all();
f817ed48 2648 /* try to free all pages in this cgroup */
3e32cb2e 2649 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2650 int progress;
c1e862c1 2651
c26251f9
MH
2652 if (signal_pending(current))
2653 return -EINTR;
2654
b70a2a21
JW
2655 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2656 GFP_KERNEL, true);
c1e862c1 2657 if (!progress) {
f817ed48 2658 nr_retries--;
c1e862c1 2659 /* maybe some writeback is necessary */
8aa7e847 2660 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2661 }
f817ed48
KH
2662
2663 }
ab5196c2
MH
2664
2665 return 0;
cc847582
KH
2666}
2667
6770c64e
TH
2668static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2669 char *buf, size_t nbytes,
2670 loff_t off)
c1e862c1 2671{
6770c64e 2672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2673
d8423011
MH
2674 if (mem_cgroup_is_root(memcg))
2675 return -EINVAL;
6770c64e 2676 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2677}
2678
182446d0
TH
2679static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2680 struct cftype *cft)
18f59ea7 2681{
182446d0 2682 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2683}
2684
182446d0
TH
2685static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2686 struct cftype *cft, u64 val)
18f59ea7
BS
2687{
2688 int retval = 0;
182446d0 2689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2691
567fb435 2692 if (memcg->use_hierarchy == val)
0b8f73e1 2693 return 0;
567fb435 2694
18f59ea7 2695 /*
af901ca1 2696 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2697 * in the child subtrees. If it is unset, then the change can
2698 * occur, provided the current cgroup has no children.
2699 *
2700 * For the root cgroup, parent_mem is NULL, we allow value to be
2701 * set if there are no children.
2702 */
c0ff4b85 2703 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2704 (val == 1 || val == 0)) {
ea280e7b 2705 if (!memcg_has_children(memcg))
c0ff4b85 2706 memcg->use_hierarchy = val;
18f59ea7
BS
2707 else
2708 retval = -EBUSY;
2709 } else
2710 retval = -EINVAL;
567fb435 2711
18f59ea7
BS
2712 return retval;
2713}
2714
72b54e73 2715static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2716{
2717 struct mem_cgroup *iter;
72b54e73 2718 int i;
ce00a967 2719
72b54e73 2720 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2721
72b54e73
VD
2722 for_each_mem_cgroup_tree(iter, memcg) {
2723 for (i = 0; i < MEMCG_NR_STAT; i++)
2724 stat[i] += mem_cgroup_read_stat(iter, i);
2725 }
ce00a967
JW
2726}
2727
72b54e73 2728static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2729{
2730 struct mem_cgroup *iter;
72b54e73 2731 int i;
587d9f72 2732
72b54e73 2733 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2734
72b54e73
VD
2735 for_each_mem_cgroup_tree(iter, memcg) {
2736 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2737 events[i] += mem_cgroup_read_events(iter, i);
2738 }
587d9f72
JW
2739}
2740
6f646156 2741static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2742{
72b54e73 2743 unsigned long val = 0;
ce00a967 2744
3e32cb2e 2745 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2746 struct mem_cgroup *iter;
2747
2748 for_each_mem_cgroup_tree(iter, memcg) {
2749 val += mem_cgroup_read_stat(iter,
2750 MEM_CGROUP_STAT_CACHE);
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_RSS);
2753 if (swap)
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_SWAP);
2756 }
3e32cb2e 2757 } else {
ce00a967 2758 if (!swap)
3e32cb2e 2759 val = page_counter_read(&memcg->memory);
ce00a967 2760 else
3e32cb2e 2761 val = page_counter_read(&memcg->memsw);
ce00a967 2762 }
c12176d3 2763 return val;
ce00a967
JW
2764}
2765
3e32cb2e
JW
2766enum {
2767 RES_USAGE,
2768 RES_LIMIT,
2769 RES_MAX_USAGE,
2770 RES_FAILCNT,
2771 RES_SOFT_LIMIT,
2772};
ce00a967 2773
791badbd 2774static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2775 struct cftype *cft)
8cdea7c0 2776{
182446d0 2777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2778 struct page_counter *counter;
af36f906 2779
3e32cb2e 2780 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2781 case _MEM:
3e32cb2e
JW
2782 counter = &memcg->memory;
2783 break;
8c7c6e34 2784 case _MEMSWAP:
3e32cb2e
JW
2785 counter = &memcg->memsw;
2786 break;
510fc4e1 2787 case _KMEM:
3e32cb2e 2788 counter = &memcg->kmem;
510fc4e1 2789 break;
d55f90bf 2790 case _TCP:
0db15298 2791 counter = &memcg->tcpmem;
d55f90bf 2792 break;
8c7c6e34
KH
2793 default:
2794 BUG();
8c7c6e34 2795 }
3e32cb2e
JW
2796
2797 switch (MEMFILE_ATTR(cft->private)) {
2798 case RES_USAGE:
2799 if (counter == &memcg->memory)
c12176d3 2800 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2801 if (counter == &memcg->memsw)
c12176d3 2802 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2803 return (u64)page_counter_read(counter) * PAGE_SIZE;
2804 case RES_LIMIT:
2805 return (u64)counter->limit * PAGE_SIZE;
2806 case RES_MAX_USAGE:
2807 return (u64)counter->watermark * PAGE_SIZE;
2808 case RES_FAILCNT:
2809 return counter->failcnt;
2810 case RES_SOFT_LIMIT:
2811 return (u64)memcg->soft_limit * PAGE_SIZE;
2812 default:
2813 BUG();
2814 }
8cdea7c0 2815}
510fc4e1 2816
127424c8 2817#ifndef CONFIG_SLOB
567e9ab2 2818static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2819{
d6441637
VD
2820 int memcg_id;
2821
b313aeee
VD
2822 if (cgroup_memory_nokmem)
2823 return 0;
2824
2a4db7eb 2825 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2826 BUG_ON(memcg->kmem_state);
d6441637 2827
f3bb3043 2828 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2829 if (memcg_id < 0)
2830 return memcg_id;
d6441637 2831
ef12947c 2832 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2833 /*
567e9ab2 2834 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2835 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2836 * guarantee no one starts accounting before all call sites are
2837 * patched.
2838 */
900a38f0 2839 memcg->kmemcg_id = memcg_id;
567e9ab2 2840 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2841 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2842
2843 return 0;
d6441637
VD
2844}
2845
8e0a8912
JW
2846static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847{
2848 struct cgroup_subsys_state *css;
2849 struct mem_cgroup *parent, *child;
2850 int kmemcg_id;
2851
2852 if (memcg->kmem_state != KMEM_ONLINE)
2853 return;
2854 /*
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2859 */
2860 memcg->kmem_state = KMEM_ALLOCATED;
2861
2862 memcg_deactivate_kmem_caches(memcg);
2863
2864 kmemcg_id = memcg->kmemcg_id;
2865 BUG_ON(kmemcg_id < 0);
2866
2867 parent = parent_mem_cgroup(memcg);
2868 if (!parent)
2869 parent = root_mem_cgroup;
2870
2871 /*
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2878 */
3a06bb78 2879 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
3a06bb78
TH
2887 rcu_read_unlock();
2888
8e0a8912
JW
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891 memcg_free_cache_id(kmemcg_id);
2892}
2893
2894static void memcg_free_kmem(struct mem_cgroup *memcg)
2895{
0b8f73e1
JW
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2899
8e0a8912
JW
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2904 }
8e0a8912 2905}
d6441637 2906#else
0b8f73e1 2907static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2908{
2909 return 0;
2910}
2911static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912{
2913}
2914static void memcg_free_kmem(struct mem_cgroup *memcg)
2915{
2916}
2917#endif /* !CONFIG_SLOB */
2918
d6441637 2919static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2920 unsigned long limit)
d6441637 2921{
b313aeee 2922 int ret;
127424c8
JW
2923
2924 mutex_lock(&memcg_limit_mutex);
127424c8 2925 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2926 mutex_unlock(&memcg_limit_mutex);
2927 return ret;
d6441637 2928}
510fc4e1 2929
d55f90bf
VD
2930static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931{
2932 int ret;
2933
2934 mutex_lock(&memcg_limit_mutex);
2935
0db15298 2936 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2937 if (ret)
2938 goto out;
2939
0db15298 2940 if (!memcg->tcpmem_active) {
d55f90bf
VD
2941 /*
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2d758073
JW
2944 * function is the last one to run. See mem_cgroup_sk_alloc()
2945 * for details, and note that we don't mark any socket as
2946 * belonging to this memcg until that flag is up.
d55f90bf
VD
2947 *
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2952 *
2d758073 2953 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2954 * because when this value change, the code to process it is not
2955 * patched in yet.
2956 */
2957 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2958 memcg->tcpmem_active = true;
d55f90bf
VD
2959 }
2960out:
2961 mutex_unlock(&memcg_limit_mutex);
2962 return ret;
2963}
d55f90bf 2964
628f4235
KH
2965/*
2966 * The user of this function is...
2967 * RES_LIMIT.
2968 */
451af504
TH
2969static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2971{
451af504 2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2973 unsigned long nr_pages;
628f4235
KH
2974 int ret;
2975
451af504 2976 buf = strstrip(buf);
650c5e56 2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2978 if (ret)
2979 return ret;
af36f906 2980
3e32cb2e 2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2982 case RES_LIMIT:
4b3bde4c
BS
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 ret = -EINVAL;
2985 break;
2986 }
3e32cb2e
JW
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 case _MEM:
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2990 break;
3e32cb2e
JW
2991 case _MEMSWAP:
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2993 break;
3e32cb2e
JW
2994 case _KMEM:
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 break;
d55f90bf
VD
2997 case _TCP:
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 break;
3e32cb2e 3000 }
296c81d8 3001 break;
3e32cb2e
JW
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3004 ret = 0;
628f4235
KH
3005 break;
3006 }
451af504 3007 return ret ?: nbytes;
8cdea7c0
BS
3008}
3009
6770c64e
TH
3010static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
c84872e1 3012{
6770c64e 3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3014 struct page_counter *counter;
c84872e1 3015
3e32cb2e
JW
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 counter = &memcg->memory;
3019 break;
3020 case _MEMSWAP:
3021 counter = &memcg->memsw;
3022 break;
3023 case _KMEM:
3024 counter = &memcg->kmem;
3025 break;
d55f90bf 3026 case _TCP:
0db15298 3027 counter = &memcg->tcpmem;
d55f90bf 3028 break;
3e32cb2e
JW
3029 default:
3030 BUG();
3031 }
af36f906 3032
3e32cb2e 3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3034 case RES_MAX_USAGE:
3e32cb2e 3035 page_counter_reset_watermark(counter);
29f2a4da
PE
3036 break;
3037 case RES_FAILCNT:
3e32cb2e 3038 counter->failcnt = 0;
29f2a4da 3039 break;
3e32cb2e
JW
3040 default:
3041 BUG();
29f2a4da 3042 }
f64c3f54 3043
6770c64e 3044 return nbytes;
c84872e1
PE
3045}
3046
182446d0 3047static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3048 struct cftype *cft)
3049{
182446d0 3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3051}
3052
02491447 3053#ifdef CONFIG_MMU
182446d0 3054static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3055 struct cftype *cft, u64 val)
3056{
182446d0 3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3058
1dfab5ab 3059 if (val & ~MOVE_MASK)
7dc74be0 3060 return -EINVAL;
ee5e8472 3061
7dc74be0 3062 /*
ee5e8472
GC
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
7dc74be0 3067 */
c0ff4b85 3068 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3069 return 0;
3070}
02491447 3071#else
182446d0 3072static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3073 struct cftype *cft, u64 val)
3074{
3075 return -ENOSYS;
3076}
3077#endif
7dc74be0 3078
406eb0c9 3079#ifdef CONFIG_NUMA
2da8ca82 3080static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3081{
25485de6
GT
3082 struct numa_stat {
3083 const char *name;
3084 unsigned int lru_mask;
3085 };
3086
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092 };
3093 const struct numa_stat *stat;
406eb0c9 3094 int nid;
25485de6 3095 unsigned long nr;
2da8ca82 3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3097
25485de6
GT
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 stat->lru_mask);
3104 seq_printf(m, " N%d=%lu", nid, nr);
3105 }
3106 seq_putc(m, '\n');
406eb0c9 3107 }
406eb0c9 3108
071aee13
YH
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3111
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = 0;
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
406eb0c9 3124 }
406eb0c9 3125
406eb0c9
YH
3126 return 0;
3127}
3128#endif /* CONFIG_NUMA */
3129
2da8ca82 3130static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3131{
2da8ca82 3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3133 unsigned long memory, memsw;
af7c4b0e
JW
3134 struct mem_cgroup *mi;
3135 unsigned int i;
406eb0c9 3136
0ca44b14
GT
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
af7c4b0e 3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3145 continue;
484ebb3b 3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3148 }
7b854121 3149
af7c4b0e
JW
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3153
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
14067bb3 3158 /* Hierarchical information */
3e32cb2e
JW
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
fee7b548 3163 }
3e32cb2e
JW
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
7941d214 3166 if (do_memsw_account())
3e32cb2e
JW
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
7f016ee8 3169
af7c4b0e 3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3171 unsigned long long val = 0;
af7c4b0e 3172
7941d214 3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3174 continue;
af7c4b0e
JW
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3182
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3187 }
3188
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3195 }
14067bb3 3196
7f016ee8 3197#ifdef CONFIG_DEBUG_VM
7f016ee8 3198 {
ef8f2327
MG
3199 pg_data_t *pgdat;
3200 struct mem_cgroup_per_node *mz;
89abfab1 3201 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3204
ef8f2327
MG
3205 for_each_online_pgdat(pgdat) {
3206 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3207 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3208
ef8f2327
MG
3209 recent_rotated[0] += rstat->recent_rotated[0];
3210 recent_rotated[1] += rstat->recent_rotated[1];
3211 recent_scanned[0] += rstat->recent_scanned[0];
3212 recent_scanned[1] += rstat->recent_scanned[1];
3213 }
78ccf5b5
JW
3214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3218 }
3219#endif
3220
d2ceb9b7
KH
3221 return 0;
3222}
3223
182446d0
TH
3224static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3225 struct cftype *cft)
a7885eb8 3226{
182446d0 3227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3228
1f4c025b 3229 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3230}
3231
182446d0
TH
3232static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3233 struct cftype *cft, u64 val)
a7885eb8 3234{
182446d0 3235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3236
3dae7fec 3237 if (val > 100)
a7885eb8
KM
3238 return -EINVAL;
3239
14208b0e 3240 if (css->parent)
3dae7fec
JW
3241 memcg->swappiness = val;
3242 else
3243 vm_swappiness = val;
068b38c1 3244
a7885eb8
KM
3245 return 0;
3246}
3247
2e72b634
KS
3248static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3249{
3250 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3251 unsigned long usage;
2e72b634
KS
3252 int i;
3253
3254 rcu_read_lock();
3255 if (!swap)
2c488db2 3256 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3257 else
2c488db2 3258 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3259
3260 if (!t)
3261 goto unlock;
3262
ce00a967 3263 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3264
3265 /*
748dad36 3266 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3267 * If it's not true, a threshold was crossed after last
3268 * call of __mem_cgroup_threshold().
3269 */
5407a562 3270 i = t->current_threshold;
2e72b634
KS
3271
3272 /*
3273 * Iterate backward over array of thresholds starting from
3274 * current_threshold and check if a threshold is crossed.
3275 * If none of thresholds below usage is crossed, we read
3276 * only one element of the array here.
3277 */
3278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3279 eventfd_signal(t->entries[i].eventfd, 1);
3280
3281 /* i = current_threshold + 1 */
3282 i++;
3283
3284 /*
3285 * Iterate forward over array of thresholds starting from
3286 * current_threshold+1 and check if a threshold is crossed.
3287 * If none of thresholds above usage is crossed, we read
3288 * only one element of the array here.
3289 */
3290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3291 eventfd_signal(t->entries[i].eventfd, 1);
3292
3293 /* Update current_threshold */
5407a562 3294 t->current_threshold = i - 1;
2e72b634
KS
3295unlock:
3296 rcu_read_unlock();
3297}
3298
3299static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3300{
ad4ca5f4
KS
3301 while (memcg) {
3302 __mem_cgroup_threshold(memcg, false);
7941d214 3303 if (do_memsw_account())
ad4ca5f4
KS
3304 __mem_cgroup_threshold(memcg, true);
3305
3306 memcg = parent_mem_cgroup(memcg);
3307 }
2e72b634
KS
3308}
3309
3310static int compare_thresholds(const void *a, const void *b)
3311{
3312 const struct mem_cgroup_threshold *_a = a;
3313 const struct mem_cgroup_threshold *_b = b;
3314
2bff24a3
GT
3315 if (_a->threshold > _b->threshold)
3316 return 1;
3317
3318 if (_a->threshold < _b->threshold)
3319 return -1;
3320
3321 return 0;
2e72b634
KS
3322}
3323
c0ff4b85 3324static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3325{
3326 struct mem_cgroup_eventfd_list *ev;
3327
2bcf2e92
MH
3328 spin_lock(&memcg_oom_lock);
3329
c0ff4b85 3330 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3331 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3332
3333 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3334 return 0;
3335}
3336
c0ff4b85 3337static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3338{
7d74b06f
KH
3339 struct mem_cgroup *iter;
3340
c0ff4b85 3341 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3342 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3343}
3344
59b6f873 3345static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3346 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3347{
2c488db2
KS
3348 struct mem_cgroup_thresholds *thresholds;
3349 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3350 unsigned long threshold;
3351 unsigned long usage;
2c488db2 3352 int i, size, ret;
2e72b634 3353
650c5e56 3354 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3355 if (ret)
3356 return ret;
3357
3358 mutex_lock(&memcg->thresholds_lock);
2c488db2 3359
05b84301 3360 if (type == _MEM) {
2c488db2 3361 thresholds = &memcg->thresholds;
ce00a967 3362 usage = mem_cgroup_usage(memcg, false);
05b84301 3363 } else if (type == _MEMSWAP) {
2c488db2 3364 thresholds = &memcg->memsw_thresholds;
ce00a967 3365 usage = mem_cgroup_usage(memcg, true);
05b84301 3366 } else
2e72b634
KS
3367 BUG();
3368
2e72b634 3369 /* Check if a threshold crossed before adding a new one */
2c488db2 3370 if (thresholds->primary)
2e72b634
KS
3371 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3372
2c488db2 3373 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3374
3375 /* Allocate memory for new array of thresholds */
2c488db2 3376 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3377 GFP_KERNEL);
2c488db2 3378 if (!new) {
2e72b634
KS
3379 ret = -ENOMEM;
3380 goto unlock;
3381 }
2c488db2 3382 new->size = size;
2e72b634
KS
3383
3384 /* Copy thresholds (if any) to new array */
2c488db2
KS
3385 if (thresholds->primary) {
3386 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3387 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3388 }
3389
2e72b634 3390 /* Add new threshold */
2c488db2
KS
3391 new->entries[size - 1].eventfd = eventfd;
3392 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3393
3394 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3395 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3396 compare_thresholds, NULL);
3397
3398 /* Find current threshold */
2c488db2 3399 new->current_threshold = -1;
2e72b634 3400 for (i = 0; i < size; i++) {
748dad36 3401 if (new->entries[i].threshold <= usage) {
2e72b634 3402 /*
2c488db2
KS
3403 * new->current_threshold will not be used until
3404 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3405 * it here.
3406 */
2c488db2 3407 ++new->current_threshold;
748dad36
SZ
3408 } else
3409 break;
2e72b634
KS
3410 }
3411
2c488db2
KS
3412 /* Free old spare buffer and save old primary buffer as spare */
3413 kfree(thresholds->spare);
3414 thresholds->spare = thresholds->primary;
3415
3416 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3417
907860ed 3418 /* To be sure that nobody uses thresholds */
2e72b634
KS
3419 synchronize_rcu();
3420
2e72b634
KS
3421unlock:
3422 mutex_unlock(&memcg->thresholds_lock);
3423
3424 return ret;
3425}
3426
59b6f873 3427static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3428 struct eventfd_ctx *eventfd, const char *args)
3429{
59b6f873 3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3431}
3432
59b6f873 3433static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3434 struct eventfd_ctx *eventfd, const char *args)
3435{
59b6f873 3436 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3437}
3438
59b6f873 3439static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3440 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3441{
2c488db2
KS
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3444 unsigned long usage;
2c488db2 3445 int i, j, size;
2e72b634
KS
3446
3447 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3448
3449 if (type == _MEM) {
2c488db2 3450 thresholds = &memcg->thresholds;
ce00a967 3451 usage = mem_cgroup_usage(memcg, false);
05b84301 3452 } else if (type == _MEMSWAP) {
2c488db2 3453 thresholds = &memcg->memsw_thresholds;
ce00a967 3454 usage = mem_cgroup_usage(memcg, true);
05b84301 3455 } else
2e72b634
KS
3456 BUG();
3457
371528ca
AV
3458 if (!thresholds->primary)
3459 goto unlock;
3460
2e72b634
KS
3461 /* Check if a threshold crossed before removing */
3462 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3463
3464 /* Calculate new number of threshold */
2c488db2
KS
3465 size = 0;
3466 for (i = 0; i < thresholds->primary->size; i++) {
3467 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3468 size++;
3469 }
3470
2c488db2 3471 new = thresholds->spare;
907860ed 3472
2e72b634
KS
3473 /* Set thresholds array to NULL if we don't have thresholds */
3474 if (!size) {
2c488db2
KS
3475 kfree(new);
3476 new = NULL;
907860ed 3477 goto swap_buffers;
2e72b634
KS
3478 }
3479
2c488db2 3480 new->size = size;
2e72b634
KS
3481
3482 /* Copy thresholds and find current threshold */
2c488db2
KS
3483 new->current_threshold = -1;
3484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3486 continue;
3487
2c488db2 3488 new->entries[j] = thresholds->primary->entries[i];
748dad36 3489 if (new->entries[j].threshold <= usage) {
2e72b634 3490 /*
2c488db2 3491 * new->current_threshold will not be used
2e72b634
KS
3492 * until rcu_assign_pointer(), so it's safe to increment
3493 * it here.
3494 */
2c488db2 3495 ++new->current_threshold;
2e72b634
KS
3496 }
3497 j++;
3498 }
3499
907860ed 3500swap_buffers:
2c488db2
KS
3501 /* Swap primary and spare array */
3502 thresholds->spare = thresholds->primary;
8c757763 3503
2c488db2 3504 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3505
907860ed 3506 /* To be sure that nobody uses thresholds */
2e72b634 3507 synchronize_rcu();
6611d8d7
MC
3508
3509 /* If all events are unregistered, free the spare array */
3510 if (!new) {
3511 kfree(thresholds->spare);
3512 thresholds->spare = NULL;
3513 }
371528ca 3514unlock:
2e72b634 3515 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3516}
c1e862c1 3517
59b6f873 3518static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3519 struct eventfd_ctx *eventfd)
3520{
59b6f873 3521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3522}
3523
59b6f873 3524static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3525 struct eventfd_ctx *eventfd)
3526{
59b6f873 3527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3528}
3529
59b6f873 3530static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3531 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3532{
9490ff27 3533 struct mem_cgroup_eventfd_list *event;
9490ff27 3534
9490ff27
KH
3535 event = kmalloc(sizeof(*event), GFP_KERNEL);
3536 if (!event)
3537 return -ENOMEM;
3538
1af8efe9 3539 spin_lock(&memcg_oom_lock);
9490ff27
KH
3540
3541 event->eventfd = eventfd;
3542 list_add(&event->list, &memcg->oom_notify);
3543
3544 /* already in OOM ? */
c2b42d3c 3545 if (memcg->under_oom)
9490ff27 3546 eventfd_signal(eventfd, 1);
1af8efe9 3547 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3548
3549 return 0;
3550}
3551
59b6f873 3552static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3553 struct eventfd_ctx *eventfd)
9490ff27 3554{
9490ff27 3555 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3556
1af8efe9 3557 spin_lock(&memcg_oom_lock);
9490ff27 3558
c0ff4b85 3559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3560 if (ev->eventfd == eventfd) {
3561 list_del(&ev->list);
3562 kfree(ev);
3563 }
3564 }
3565
1af8efe9 3566 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3567}
3568
2da8ca82 3569static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3570{
2da8ca82 3571 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3572
791badbd 3573 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3575 return 0;
3576}
3577
182446d0 3578static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3579 struct cftype *cft, u64 val)
3580{
182446d0 3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3582
3583 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3584 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3585 return -EINVAL;
3586
c0ff4b85 3587 memcg->oom_kill_disable = val;
4d845ebf 3588 if (!val)
c0ff4b85 3589 memcg_oom_recover(memcg);
3dae7fec 3590
3c11ecf4
KH
3591 return 0;
3592}
3593
52ebea74
TH
3594#ifdef CONFIG_CGROUP_WRITEBACK
3595
3596struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3597{
3598 return &memcg->cgwb_list;
3599}
3600
841710aa
TH
3601static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3602{
3603 return wb_domain_init(&memcg->cgwb_domain, gfp);
3604}
3605
3606static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3607{
3608 wb_domain_exit(&memcg->cgwb_domain);
3609}
3610
2529bb3a
TH
3611static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3612{
3613 wb_domain_size_changed(&memcg->cgwb_domain);
3614}
3615
841710aa
TH
3616struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3617{
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3619
3620 if (!memcg->css.parent)
3621 return NULL;
3622
3623 return &memcg->cgwb_domain;
3624}
3625
c2aa723a
TH
3626/**
3627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3628 * @wb: bdi_writeback in question
c5edf9cd
TH
3629 * @pfilepages: out parameter for number of file pages
3630 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3631 * @pdirty: out parameter for number of dirty pages
3632 * @pwriteback: out parameter for number of pages under writeback
3633 *
c5edf9cd
TH
3634 * Determine the numbers of file, headroom, dirty, and writeback pages in
3635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3636 * is a bit more involved.
c2aa723a 3637 *
c5edf9cd
TH
3638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3639 * headroom is calculated as the lowest headroom of itself and the
3640 * ancestors. Note that this doesn't consider the actual amount of
3641 * available memory in the system. The caller should further cap
3642 * *@pheadroom accordingly.
c2aa723a 3643 */
c5edf9cd
TH
3644void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3645 unsigned long *pheadroom, unsigned long *pdirty,
3646 unsigned long *pwriteback)
c2aa723a
TH
3647{
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3649 struct mem_cgroup *parent;
c2aa723a
TH
3650
3651 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3652
3653 /* this should eventually include NR_UNSTABLE_NFS */
3654 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3655 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3656 (1 << LRU_ACTIVE_FILE));
3657 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3658
c2aa723a
TH
3659 while ((parent = parent_mem_cgroup(memcg))) {
3660 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3661 unsigned long used = page_counter_read(&memcg->memory);
3662
c5edf9cd 3663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3664 memcg = parent;
3665 }
c2aa723a
TH
3666}
3667
841710aa
TH
3668#else /* CONFIG_CGROUP_WRITEBACK */
3669
3670static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671{
3672 return 0;
3673}
3674
3675static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3676{
3677}
3678
2529bb3a
TH
3679static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3680{
3681}
3682
52ebea74
TH
3683#endif /* CONFIG_CGROUP_WRITEBACK */
3684
3bc942f3
TH
3685/*
3686 * DO NOT USE IN NEW FILES.
3687 *
3688 * "cgroup.event_control" implementation.
3689 *
3690 * This is way over-engineered. It tries to support fully configurable
3691 * events for each user. Such level of flexibility is completely
3692 * unnecessary especially in the light of the planned unified hierarchy.
3693 *
3694 * Please deprecate this and replace with something simpler if at all
3695 * possible.
3696 */
3697
79bd9814
TH
3698/*
3699 * Unregister event and free resources.
3700 *
3701 * Gets called from workqueue.
3702 */
3bc942f3 3703static void memcg_event_remove(struct work_struct *work)
79bd9814 3704{
3bc942f3
TH
3705 struct mem_cgroup_event *event =
3706 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3707 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3708
3709 remove_wait_queue(event->wqh, &event->wait);
3710
59b6f873 3711 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3712
3713 /* Notify userspace the event is going away. */
3714 eventfd_signal(event->eventfd, 1);
3715
3716 eventfd_ctx_put(event->eventfd);
3717 kfree(event);
59b6f873 3718 css_put(&memcg->css);
79bd9814
TH
3719}
3720
3721/*
3722 * Gets called on POLLHUP on eventfd when user closes it.
3723 *
3724 * Called with wqh->lock held and interrupts disabled.
3725 */
3bc942f3
TH
3726static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3727 int sync, void *key)
79bd9814 3728{
3bc942f3
TH
3729 struct mem_cgroup_event *event =
3730 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3731 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3732 unsigned long flags = (unsigned long)key;
3733
3734 if (flags & POLLHUP) {
3735 /*
3736 * If the event has been detached at cgroup removal, we
3737 * can simply return knowing the other side will cleanup
3738 * for us.
3739 *
3740 * We can't race against event freeing since the other
3741 * side will require wqh->lock via remove_wait_queue(),
3742 * which we hold.
3743 */
fba94807 3744 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3745 if (!list_empty(&event->list)) {
3746 list_del_init(&event->list);
3747 /*
3748 * We are in atomic context, but cgroup_event_remove()
3749 * may sleep, so we have to call it in workqueue.
3750 */
3751 schedule_work(&event->remove);
3752 }
fba94807 3753 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3754 }
3755
3756 return 0;
3757}
3758
3bc942f3 3759static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3760 wait_queue_head_t *wqh, poll_table *pt)
3761{
3bc942f3
TH
3762 struct mem_cgroup_event *event =
3763 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3764
3765 event->wqh = wqh;
3766 add_wait_queue(wqh, &event->wait);
3767}
3768
3769/*
3bc942f3
TH
3770 * DO NOT USE IN NEW FILES.
3771 *
79bd9814
TH
3772 * Parse input and register new cgroup event handler.
3773 *
3774 * Input must be in format '<event_fd> <control_fd> <args>'.
3775 * Interpretation of args is defined by control file implementation.
3776 */
451af504
TH
3777static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3778 char *buf, size_t nbytes, loff_t off)
79bd9814 3779{
451af504 3780 struct cgroup_subsys_state *css = of_css(of);
fba94807 3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3782 struct mem_cgroup_event *event;
79bd9814
TH
3783 struct cgroup_subsys_state *cfile_css;
3784 unsigned int efd, cfd;
3785 struct fd efile;
3786 struct fd cfile;
fba94807 3787 const char *name;
79bd9814
TH
3788 char *endp;
3789 int ret;
3790
451af504
TH
3791 buf = strstrip(buf);
3792
3793 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3794 if (*endp != ' ')
3795 return -EINVAL;
451af504 3796 buf = endp + 1;
79bd9814 3797
451af504 3798 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3799 if ((*endp != ' ') && (*endp != '\0'))
3800 return -EINVAL;
451af504 3801 buf = endp + 1;
79bd9814
TH
3802
3803 event = kzalloc(sizeof(*event), GFP_KERNEL);
3804 if (!event)
3805 return -ENOMEM;
3806
59b6f873 3807 event->memcg = memcg;
79bd9814 3808 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3809 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3810 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3811 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3812
3813 efile = fdget(efd);
3814 if (!efile.file) {
3815 ret = -EBADF;
3816 goto out_kfree;
3817 }
3818
3819 event->eventfd = eventfd_ctx_fileget(efile.file);
3820 if (IS_ERR(event->eventfd)) {
3821 ret = PTR_ERR(event->eventfd);
3822 goto out_put_efile;
3823 }
3824
3825 cfile = fdget(cfd);
3826 if (!cfile.file) {
3827 ret = -EBADF;
3828 goto out_put_eventfd;
3829 }
3830
3831 /* the process need read permission on control file */
3832 /* AV: shouldn't we check that it's been opened for read instead? */
3833 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3834 if (ret < 0)
3835 goto out_put_cfile;
3836
fba94807
TH
3837 /*
3838 * Determine the event callbacks and set them in @event. This used
3839 * to be done via struct cftype but cgroup core no longer knows
3840 * about these events. The following is crude but the whole thing
3841 * is for compatibility anyway.
3bc942f3
TH
3842 *
3843 * DO NOT ADD NEW FILES.
fba94807 3844 */
b583043e 3845 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3846
3847 if (!strcmp(name, "memory.usage_in_bytes")) {
3848 event->register_event = mem_cgroup_usage_register_event;
3849 event->unregister_event = mem_cgroup_usage_unregister_event;
3850 } else if (!strcmp(name, "memory.oom_control")) {
3851 event->register_event = mem_cgroup_oom_register_event;
3852 event->unregister_event = mem_cgroup_oom_unregister_event;
3853 } else if (!strcmp(name, "memory.pressure_level")) {
3854 event->register_event = vmpressure_register_event;
3855 event->unregister_event = vmpressure_unregister_event;
3856 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3857 event->register_event = memsw_cgroup_usage_register_event;
3858 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3859 } else {
3860 ret = -EINVAL;
3861 goto out_put_cfile;
3862 }
3863
79bd9814 3864 /*
b5557c4c
TH
3865 * Verify @cfile should belong to @css. Also, remaining events are
3866 * automatically removed on cgroup destruction but the removal is
3867 * asynchronous, so take an extra ref on @css.
79bd9814 3868 */
b583043e 3869 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3870 &memory_cgrp_subsys);
79bd9814 3871 ret = -EINVAL;
5a17f543 3872 if (IS_ERR(cfile_css))
79bd9814 3873 goto out_put_cfile;
5a17f543
TH
3874 if (cfile_css != css) {
3875 css_put(cfile_css);
79bd9814 3876 goto out_put_cfile;
5a17f543 3877 }
79bd9814 3878
451af504 3879 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3880 if (ret)
3881 goto out_put_css;
3882
3883 efile.file->f_op->poll(efile.file, &event->pt);
3884
fba94807
TH
3885 spin_lock(&memcg->event_list_lock);
3886 list_add(&event->list, &memcg->event_list);
3887 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3888
3889 fdput(cfile);
3890 fdput(efile);
3891
451af504 3892 return nbytes;
79bd9814
TH
3893
3894out_put_css:
b5557c4c 3895 css_put(css);
79bd9814
TH
3896out_put_cfile:
3897 fdput(cfile);
3898out_put_eventfd:
3899 eventfd_ctx_put(event->eventfd);
3900out_put_efile:
3901 fdput(efile);
3902out_kfree:
3903 kfree(event);
3904
3905 return ret;
3906}
3907
241994ed 3908static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3909 {
0eea1030 3910 .name = "usage_in_bytes",
8c7c6e34 3911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3912 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3913 },
c84872e1
PE
3914 {
3915 .name = "max_usage_in_bytes",
8c7c6e34 3916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3917 .write = mem_cgroup_reset,
791badbd 3918 .read_u64 = mem_cgroup_read_u64,
c84872e1 3919 },
8cdea7c0 3920 {
0eea1030 3921 .name = "limit_in_bytes",
8c7c6e34 3922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3923 .write = mem_cgroup_write,
791badbd 3924 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3925 },
296c81d8
BS
3926 {
3927 .name = "soft_limit_in_bytes",
3928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3929 .write = mem_cgroup_write,
791badbd 3930 .read_u64 = mem_cgroup_read_u64,
296c81d8 3931 },
8cdea7c0
BS
3932 {
3933 .name = "failcnt",
8c7c6e34 3934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3935 .write = mem_cgroup_reset,
791badbd 3936 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3937 },
d2ceb9b7
KH
3938 {
3939 .name = "stat",
2da8ca82 3940 .seq_show = memcg_stat_show,
d2ceb9b7 3941 },
c1e862c1
KH
3942 {
3943 .name = "force_empty",
6770c64e 3944 .write = mem_cgroup_force_empty_write,
c1e862c1 3945 },
18f59ea7
BS
3946 {
3947 .name = "use_hierarchy",
3948 .write_u64 = mem_cgroup_hierarchy_write,
3949 .read_u64 = mem_cgroup_hierarchy_read,
3950 },
79bd9814 3951 {
3bc942f3 3952 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3953 .write = memcg_write_event_control,
7dbdb199 3954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3955 },
a7885eb8
KM
3956 {
3957 .name = "swappiness",
3958 .read_u64 = mem_cgroup_swappiness_read,
3959 .write_u64 = mem_cgroup_swappiness_write,
3960 },
7dc74be0
DN
3961 {
3962 .name = "move_charge_at_immigrate",
3963 .read_u64 = mem_cgroup_move_charge_read,
3964 .write_u64 = mem_cgroup_move_charge_write,
3965 },
9490ff27
KH
3966 {
3967 .name = "oom_control",
2da8ca82 3968 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3969 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3970 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3971 },
70ddf637
AV
3972 {
3973 .name = "pressure_level",
70ddf637 3974 },
406eb0c9
YH
3975#ifdef CONFIG_NUMA
3976 {
3977 .name = "numa_stat",
2da8ca82 3978 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3979 },
3980#endif
510fc4e1
GC
3981 {
3982 .name = "kmem.limit_in_bytes",
3983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3984 .write = mem_cgroup_write,
791badbd 3985 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3986 },
3987 {
3988 .name = "kmem.usage_in_bytes",
3989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3990 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3991 },
3992 {
3993 .name = "kmem.failcnt",
3994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3995 .write = mem_cgroup_reset,
791badbd 3996 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3997 },
3998 {
3999 .name = "kmem.max_usage_in_bytes",
4000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4001 .write = mem_cgroup_reset,
791badbd 4002 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4003 },
749c5415
GC
4004#ifdef CONFIG_SLABINFO
4005 {
4006 .name = "kmem.slabinfo",
bc2791f8
TH
4007 .seq_start = memcg_slab_start,
4008 .seq_next = memcg_slab_next,
4009 .seq_stop = memcg_slab_stop,
b047501c 4010 .seq_show = memcg_slab_show,
749c5415
GC
4011 },
4012#endif
d55f90bf
VD
4013 {
4014 .name = "kmem.tcp.limit_in_bytes",
4015 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4016 .write = mem_cgroup_write,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 {
4020 .name = "kmem.tcp.usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4022 .read_u64 = mem_cgroup_read_u64,
4023 },
4024 {
4025 .name = "kmem.tcp.failcnt",
4026 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "kmem.tcp.max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
6bc10349 4036 { }, /* terminate */
af36f906 4037};
8c7c6e34 4038
73f576c0
JW
4039/*
4040 * Private memory cgroup IDR
4041 *
4042 * Swap-out records and page cache shadow entries need to store memcg
4043 * references in constrained space, so we maintain an ID space that is
4044 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4045 * memory-controlled cgroups to 64k.
4046 *
4047 * However, there usually are many references to the oflline CSS after
4048 * the cgroup has been destroyed, such as page cache or reclaimable
4049 * slab objects, that don't need to hang on to the ID. We want to keep
4050 * those dead CSS from occupying IDs, or we might quickly exhaust the
4051 * relatively small ID space and prevent the creation of new cgroups
4052 * even when there are much fewer than 64k cgroups - possibly none.
4053 *
4054 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4055 * be freed and recycled when it's no longer needed, which is usually
4056 * when the CSS is offlined.
4057 *
4058 * The only exception to that are records of swapped out tmpfs/shmem
4059 * pages that need to be attributed to live ancestors on swapin. But
4060 * those references are manageable from userspace.
4061 */
4062
4063static DEFINE_IDR(mem_cgroup_idr);
4064
615d66c3 4065static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4066{
58fa2a55 4067 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4068 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4069}
4070
615d66c3 4071static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4072{
58fa2a55 4073 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4074 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4075 idr_remove(&mem_cgroup_idr, memcg->id.id);
4076 memcg->id.id = 0;
4077
4078 /* Memcg ID pins CSS */
4079 css_put(&memcg->css);
4080 }
4081}
4082
615d66c3
VD
4083static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4084{
4085 mem_cgroup_id_get_many(memcg, 1);
4086}
4087
4088static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4089{
4090 mem_cgroup_id_put_many(memcg, 1);
4091}
4092
73f576c0
JW
4093/**
4094 * mem_cgroup_from_id - look up a memcg from a memcg id
4095 * @id: the memcg id to look up
4096 *
4097 * Caller must hold rcu_read_lock().
4098 */
4099struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4100{
4101 WARN_ON_ONCE(!rcu_read_lock_held());
4102 return idr_find(&mem_cgroup_idr, id);
4103}
4104
ef8f2327 4105static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4106{
4107 struct mem_cgroup_per_node *pn;
ef8f2327 4108 int tmp = node;
1ecaab2b
KH
4109 /*
4110 * This routine is called against possible nodes.
4111 * But it's BUG to call kmalloc() against offline node.
4112 *
4113 * TODO: this routine can waste much memory for nodes which will
4114 * never be onlined. It's better to use memory hotplug callback
4115 * function.
4116 */
41e3355d
KH
4117 if (!node_state(node, N_NORMAL_MEMORY))
4118 tmp = -1;
17295c88 4119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4120 if (!pn)
4121 return 1;
1ecaab2b 4122
ef8f2327
MG
4123 lruvec_init(&pn->lruvec);
4124 pn->usage_in_excess = 0;
4125 pn->on_tree = false;
4126 pn->memcg = memcg;
4127
54f72fe0 4128 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4129 return 0;
4130}
4131
ef8f2327 4132static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4133{
54f72fe0 4134 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4135}
4136
0b8f73e1 4137static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4138{
c8b2a36f 4139 int node;
59927fb9 4140
0b8f73e1 4141 memcg_wb_domain_exit(memcg);
c8b2a36f 4142 for_each_node(node)
ef8f2327 4143 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4144 free_percpu(memcg->stat);
8ff69e2c 4145 kfree(memcg);
59927fb9 4146}
3afe36b1 4147
0b8f73e1 4148static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4149{
d142e3e6 4150 struct mem_cgroup *memcg;
0b8f73e1 4151 size_t size;
6d12e2d8 4152 int node;
8cdea7c0 4153
0b8f73e1
JW
4154 size = sizeof(struct mem_cgroup);
4155 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4156
4157 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4158 if (!memcg)
0b8f73e1
JW
4159 return NULL;
4160
73f576c0
JW
4161 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4162 1, MEM_CGROUP_ID_MAX,
4163 GFP_KERNEL);
4164 if (memcg->id.id < 0)
4165 goto fail;
4166
0b8f73e1
JW
4167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4168 if (!memcg->stat)
4169 goto fail;
78fb7466 4170
3ed28fa1 4171 for_each_node(node)
ef8f2327 4172 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4173 goto fail;
f64c3f54 4174
0b8f73e1
JW
4175 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4176 goto fail;
28dbc4b6 4177
f7e1cb6e 4178 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4179 memcg->last_scanned_node = MAX_NUMNODES;
4180 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4181 mutex_init(&memcg->thresholds_lock);
4182 spin_lock_init(&memcg->move_lock);
70ddf637 4183 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4184 INIT_LIST_HEAD(&memcg->event_list);
4185 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4186 memcg->socket_pressure = jiffies;
127424c8 4187#ifndef CONFIG_SLOB
900a38f0 4188 memcg->kmemcg_id = -1;
900a38f0 4189#endif
52ebea74
TH
4190#ifdef CONFIG_CGROUP_WRITEBACK
4191 INIT_LIST_HEAD(&memcg->cgwb_list);
4192#endif
73f576c0 4193 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4194 return memcg;
4195fail:
73f576c0
JW
4196 if (memcg->id.id > 0)
4197 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4198 mem_cgroup_free(memcg);
4199 return NULL;
d142e3e6
GC
4200}
4201
0b8f73e1
JW
4202static struct cgroup_subsys_state * __ref
4203mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4204{
0b8f73e1
JW
4205 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4206 struct mem_cgroup *memcg;
4207 long error = -ENOMEM;
d142e3e6 4208
0b8f73e1
JW
4209 memcg = mem_cgroup_alloc();
4210 if (!memcg)
4211 return ERR_PTR(error);
d142e3e6 4212
0b8f73e1
JW
4213 memcg->high = PAGE_COUNTER_MAX;
4214 memcg->soft_limit = PAGE_COUNTER_MAX;
4215 if (parent) {
4216 memcg->swappiness = mem_cgroup_swappiness(parent);
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4218 }
4219 if (parent && parent->use_hierarchy) {
4220 memcg->use_hierarchy = true;
3e32cb2e 4221 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4222 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4223 page_counter_init(&memcg->memsw, &parent->memsw);
4224 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4225 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4226 } else {
3e32cb2e 4227 page_counter_init(&memcg->memory, NULL);
37e84351 4228 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4229 page_counter_init(&memcg->memsw, NULL);
4230 page_counter_init(&memcg->kmem, NULL);
0db15298 4231 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4232 /*
4233 * Deeper hierachy with use_hierarchy == false doesn't make
4234 * much sense so let cgroup subsystem know about this
4235 * unfortunate state in our controller.
4236 */
d142e3e6 4237 if (parent != root_mem_cgroup)
073219e9 4238 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4239 }
d6441637 4240
0b8f73e1
JW
4241 /* The following stuff does not apply to the root */
4242 if (!parent) {
4243 root_mem_cgroup = memcg;
4244 return &memcg->css;
4245 }
4246
b313aeee 4247 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4248 if (error)
4249 goto fail;
127424c8 4250
f7e1cb6e 4251 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4252 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4253
0b8f73e1
JW
4254 return &memcg->css;
4255fail:
4256 mem_cgroup_free(memcg);
ea3a9645 4257 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4258}
4259
73f576c0 4260static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4261{
58fa2a55
VD
4262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4263
73f576c0 4264 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4265 atomic_set(&memcg->id.ref, 1);
73f576c0 4266 css_get(css);
2f7dd7a4 4267 return 0;
8cdea7c0
BS
4268}
4269
eb95419b 4270static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4271{
eb95419b 4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4273 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4274
4275 /*
4276 * Unregister events and notify userspace.
4277 * Notify userspace about cgroup removing only after rmdir of cgroup
4278 * directory to avoid race between userspace and kernelspace.
4279 */
fba94807
TH
4280 spin_lock(&memcg->event_list_lock);
4281 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4282 list_del_init(&event->list);
4283 schedule_work(&event->remove);
4284 }
fba94807 4285 spin_unlock(&memcg->event_list_lock);
ec64f515 4286
567e9ab2 4287 memcg_offline_kmem(memcg);
52ebea74 4288 wb_memcg_offline(memcg);
73f576c0
JW
4289
4290 mem_cgroup_id_put(memcg);
df878fb0
KH
4291}
4292
6df38689
VD
4293static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4294{
4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296
4297 invalidate_reclaim_iterators(memcg);
4298}
4299
eb95419b 4300static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4301{
eb95419b 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4303
f7e1cb6e 4304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4305 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4306
0db15298 4307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4308 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4309
0b8f73e1
JW
4310 vmpressure_cleanup(&memcg->vmpressure);
4311 cancel_work_sync(&memcg->high_work);
4312 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4313 memcg_free_kmem(memcg);
0b8f73e1 4314 mem_cgroup_free(memcg);
8cdea7c0
BS
4315}
4316
1ced953b
TH
4317/**
4318 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4319 * @css: the target css
4320 *
4321 * Reset the states of the mem_cgroup associated with @css. This is
4322 * invoked when the userland requests disabling on the default hierarchy
4323 * but the memcg is pinned through dependency. The memcg should stop
4324 * applying policies and should revert to the vanilla state as it may be
4325 * made visible again.
4326 *
4327 * The current implementation only resets the essential configurations.
4328 * This needs to be expanded to cover all the visible parts.
4329 */
4330static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4331{
4332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4333
d334c9bc
VD
4334 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4337 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4338 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4341 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4342 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4343}
4344
02491447 4345#ifdef CONFIG_MMU
7dc74be0 4346/* Handlers for move charge at task migration. */
854ffa8d 4347static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4348{
05b84301 4349 int ret;
9476db97 4350
d0164adc
MG
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4353 if (!ret) {
854ffa8d 4354 mc.precharge += count;
854ffa8d
DN
4355 return ret;
4356 }
9476db97 4357
3674534b 4358 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4359 while (count--) {
3674534b 4360 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4361 if (ret)
38c5d72f 4362 return ret;
854ffa8d 4363 mc.precharge++;
9476db97 4364 cond_resched();
854ffa8d 4365 }
9476db97 4366 return 0;
4ffef5fe
DN
4367}
4368
4ffef5fe
DN
4369union mc_target {
4370 struct page *page;
02491447 4371 swp_entry_t ent;
4ffef5fe
DN
4372};
4373
4ffef5fe 4374enum mc_target_type {
8d32ff84 4375 MC_TARGET_NONE = 0,
4ffef5fe 4376 MC_TARGET_PAGE,
02491447 4377 MC_TARGET_SWAP,
4ffef5fe
DN
4378};
4379
90254a65
DN
4380static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4381 unsigned long addr, pte_t ptent)
4ffef5fe 4382{
90254a65 4383 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4384
90254a65
DN
4385 if (!page || !page_mapped(page))
4386 return NULL;
4387 if (PageAnon(page)) {
1dfab5ab 4388 if (!(mc.flags & MOVE_ANON))
90254a65 4389 return NULL;
1dfab5ab
JW
4390 } else {
4391 if (!(mc.flags & MOVE_FILE))
4392 return NULL;
4393 }
90254a65
DN
4394 if (!get_page_unless_zero(page))
4395 return NULL;
4396
4397 return page;
4398}
4399
4b91355e 4400#ifdef CONFIG_SWAP
90254a65 4401static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4402 pte_t ptent, swp_entry_t *entry)
90254a65 4403{
90254a65
DN
4404 struct page *page = NULL;
4405 swp_entry_t ent = pte_to_swp_entry(ptent);
4406
1dfab5ab 4407 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4408 return NULL;
4b91355e
KH
4409 /*
4410 * Because lookup_swap_cache() updates some statistics counter,
4411 * we call find_get_page() with swapper_space directly.
4412 */
f6ab1f7f 4413 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4414 if (do_memsw_account())
90254a65
DN
4415 entry->val = ent.val;
4416
4417 return page;
4418}
4b91355e
KH
4419#else
4420static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4421 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4422{
4423 return NULL;
4424}
4425#endif
90254a65 4426
87946a72
DN
4427static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4428 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4429{
4430 struct page *page = NULL;
87946a72
DN
4431 struct address_space *mapping;
4432 pgoff_t pgoff;
4433
4434 if (!vma->vm_file) /* anonymous vma */
4435 return NULL;
1dfab5ab 4436 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4437 return NULL;
4438
87946a72 4439 mapping = vma->vm_file->f_mapping;
0661a336 4440 pgoff = linear_page_index(vma, addr);
87946a72
DN
4441
4442 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4443#ifdef CONFIG_SWAP
4444 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4445 if (shmem_mapping(mapping)) {
4446 page = find_get_entry(mapping, pgoff);
4447 if (radix_tree_exceptional_entry(page)) {
4448 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4449 if (do_memsw_account())
139b6a6f 4450 *entry = swp;
f6ab1f7f
HY
4451 page = find_get_page(swap_address_space(swp),
4452 swp_offset(swp));
139b6a6f
JW
4453 }
4454 } else
4455 page = find_get_page(mapping, pgoff);
4456#else
4457 page = find_get_page(mapping, pgoff);
aa3b1895 4458#endif
87946a72
DN
4459 return page;
4460}
4461
b1b0deab
CG
4462/**
4463 * mem_cgroup_move_account - move account of the page
4464 * @page: the page
25843c2b 4465 * @compound: charge the page as compound or small page
b1b0deab
CG
4466 * @from: mem_cgroup which the page is moved from.
4467 * @to: mem_cgroup which the page is moved to. @from != @to.
4468 *
3ac808fd 4469 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4470 *
4471 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4472 * from old cgroup.
4473 */
4474static int mem_cgroup_move_account(struct page *page,
f627c2f5 4475 bool compound,
b1b0deab
CG
4476 struct mem_cgroup *from,
4477 struct mem_cgroup *to)
4478{
4479 unsigned long flags;
f627c2f5 4480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4481 int ret;
c4843a75 4482 bool anon;
b1b0deab
CG
4483
4484 VM_BUG_ON(from == to);
4485 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4486 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4487
4488 /*
6a93ca8f 4489 * Prevent mem_cgroup_migrate() from looking at
45637bab 4490 * page->mem_cgroup of its source page while we change it.
b1b0deab 4491 */
f627c2f5 4492 ret = -EBUSY;
b1b0deab
CG
4493 if (!trylock_page(page))
4494 goto out;
4495
4496 ret = -EINVAL;
4497 if (page->mem_cgroup != from)
4498 goto out_unlock;
4499
c4843a75
GT
4500 anon = PageAnon(page);
4501
b1b0deab
CG
4502 spin_lock_irqsave(&from->move_lock, flags);
4503
c4843a75 4504 if (!anon && page_mapped(page)) {
b1b0deab
CG
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 nr_pages);
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4508 nr_pages);
4509 }
4510
c4843a75
GT
4511 /*
4512 * move_lock grabbed above and caller set from->moving_account, so
4513 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4514 * So mapping should be stable for dirty pages.
4515 */
4516 if (!anon && PageDirty(page)) {
4517 struct address_space *mapping = page_mapping(page);
4518
4519 if (mapping_cap_account_dirty(mapping)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4523 nr_pages);
4524 }
4525 }
4526
b1b0deab
CG
4527 if (PageWriteback(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 nr_pages);
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4531 nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
f627c2f5 4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4548 memcg_check_events(to, page);
f627c2f5 4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552out_unlock:
4553 unlock_page(page);
4554out:
4555 return ret;
4556}
4557
7cf7806c
LR
4558/**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 *
4574 * Called with pte lock held.
4575 */
4576
8d32ff84 4577static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4578 unsigned long addr, pte_t ptent, union mc_target *target)
4579{
4580 struct page *page = NULL;
8d32ff84 4581 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4582 swp_entry_t ent = { .val = 0 };
4583
4584 if (pte_present(ptent))
4585 page = mc_handle_present_pte(vma, addr, ptent);
4586 else if (is_swap_pte(ptent))
48406ef8 4587 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4588 else if (pte_none(ptent))
87946a72 4589 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4590
4591 if (!page && !ent.val)
8d32ff84 4592 return ret;
02491447 4593 if (page) {
02491447 4594 /*
0a31bc97 4595 * Do only loose check w/o serialization.
1306a85a 4596 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4597 * not under LRU exclusion.
02491447 4598 */
1306a85a 4599 if (page->mem_cgroup == mc.from) {
02491447
DN
4600 ret = MC_TARGET_PAGE;
4601 if (target)
4602 target->page = page;
4603 }
4604 if (!ret || !target)
4605 put_page(page);
4606 }
90254a65
DN
4607 /* There is a swap entry and a page doesn't exist or isn't charged */
4608 if (ent.val && !ret &&
34c00c31 4609 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4610 ret = MC_TARGET_SWAP;
4611 if (target)
4612 target->ent = ent;
4ffef5fe 4613 }
4ffef5fe
DN
4614 return ret;
4615}
4616
12724850
NH
4617#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4618/*
4619 * We don't consider swapping or file mapped pages because THP does not
4620 * support them for now.
4621 * Caller should make sure that pmd_trans_huge(pmd) is true.
4622 */
4623static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4624 unsigned long addr, pmd_t pmd, union mc_target *target)
4625{
4626 struct page *page = NULL;
12724850
NH
4627 enum mc_target_type ret = MC_TARGET_NONE;
4628
4629 page = pmd_page(pmd);
309381fe 4630 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4631 if (!(mc.flags & MOVE_ANON))
12724850 4632 return ret;
1306a85a 4633 if (page->mem_cgroup == mc.from) {
12724850
NH
4634 ret = MC_TARGET_PAGE;
4635 if (target) {
4636 get_page(page);
4637 target->page = page;
4638 }
4639 }
4640 return ret;
4641}
4642#else
4643static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 unsigned long addr, pmd_t pmd, union mc_target *target)
4645{
4646 return MC_TARGET_NONE;
4647}
4648#endif
4649
4ffef5fe
DN
4650static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4651 unsigned long addr, unsigned long end,
4652 struct mm_walk *walk)
4653{
26bcd64a 4654 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4655 pte_t *pte;
4656 spinlock_t *ptl;
4657
b6ec57f4
KS
4658 ptl = pmd_trans_huge_lock(pmd, vma);
4659 if (ptl) {
12724850
NH
4660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4661 mc.precharge += HPAGE_PMD_NR;
bf929152 4662 spin_unlock(ptl);
1a5a9906 4663 return 0;
12724850 4664 }
03319327 4665
45f83cef
AA
4666 if (pmd_trans_unstable(pmd))
4667 return 0;
4ffef5fe
DN
4668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4669 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4670 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4671 mc.precharge++; /* increment precharge temporarily */
4672 pte_unmap_unlock(pte - 1, ptl);
4673 cond_resched();
4674
7dc74be0
DN
4675 return 0;
4676}
4677
4ffef5fe
DN
4678static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4679{
4680 unsigned long precharge;
4ffef5fe 4681
26bcd64a
NH
4682 struct mm_walk mem_cgroup_count_precharge_walk = {
4683 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4684 .mm = mm,
4685 };
dfe076b0 4686 down_read(&mm->mmap_sem);
0247f3f4
JM
4687 walk_page_range(0, mm->highest_vm_end,
4688 &mem_cgroup_count_precharge_walk);
dfe076b0 4689 up_read(&mm->mmap_sem);
4ffef5fe
DN
4690
4691 precharge = mc.precharge;
4692 mc.precharge = 0;
4693
4694 return precharge;
4695}
4696
4ffef5fe
DN
4697static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4698{
dfe076b0
DN
4699 unsigned long precharge = mem_cgroup_count_precharge(mm);
4700
4701 VM_BUG_ON(mc.moving_task);
4702 mc.moving_task = current;
4703 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4704}
4705
dfe076b0
DN
4706/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4707static void __mem_cgroup_clear_mc(void)
4ffef5fe 4708{
2bd9bb20
KH
4709 struct mem_cgroup *from = mc.from;
4710 struct mem_cgroup *to = mc.to;
4711
4ffef5fe 4712 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4713 if (mc.precharge) {
00501b53 4714 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4715 mc.precharge = 0;
4716 }
4717 /*
4718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4719 * we must uncharge here.
4720 */
4721 if (mc.moved_charge) {
00501b53 4722 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4723 mc.moved_charge = 0;
4ffef5fe 4724 }
483c30b5
DN
4725 /* we must fixup refcnts and charges */
4726 if (mc.moved_swap) {
483c30b5 4727 /* uncharge swap account from the old cgroup */
ce00a967 4728 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4729 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4730
615d66c3
VD
4731 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4732
05b84301 4733 /*
3e32cb2e
JW
4734 * we charged both to->memory and to->memsw, so we
4735 * should uncharge to->memory.
05b84301 4736 */
ce00a967 4737 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4739
615d66c3
VD
4740 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4741 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4742
483c30b5
DN
4743 mc.moved_swap = 0;
4744 }
dfe076b0
DN
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4748}
4749
4750static void mem_cgroup_clear_mc(void)
4751{
264a0ae1
TH
4752 struct mm_struct *mm = mc.mm;
4753
dfe076b0
DN
4754 /*
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4757 */
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
2bd9bb20 4760 spin_lock(&mc.lock);
4ffef5fe
DN
4761 mc.from = NULL;
4762 mc.to = NULL;
264a0ae1 4763 mc.mm = NULL;
2bd9bb20 4764 spin_unlock(&mc.lock);
264a0ae1
TH
4765
4766 mmput(mm);
4ffef5fe
DN
4767}
4768
1f7dd3e5 4769static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4770{
1f7dd3e5 4771 struct cgroup_subsys_state *css;
eed67d75 4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4773 struct mem_cgroup *from;
4530eddb 4774 struct task_struct *leader, *p;
9f2115f9 4775 struct mm_struct *mm;
1dfab5ab 4776 unsigned long move_flags;
9f2115f9 4777 int ret = 0;
7dc74be0 4778
1f7dd3e5
TH
4779 /* charge immigration isn't supported on the default hierarchy */
4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4781 return 0;
4782
4530eddb
TH
4783 /*
4784 * Multi-process migrations only happen on the default hierarchy
4785 * where charge immigration is not used. Perform charge
4786 * immigration if @tset contains a leader and whine if there are
4787 * multiple.
4788 */
4789 p = NULL;
1f7dd3e5 4790 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4791 WARN_ON_ONCE(p);
4792 p = leader;
1f7dd3e5 4793 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4794 }
4795 if (!p)
4796 return 0;
4797
1f7dd3e5
TH
4798 /*
4799 * We are now commited to this value whatever it is. Changes in this
4800 * tunable will only affect upcoming migrations, not the current one.
4801 * So we need to save it, and keep it going.
4802 */
4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4804 if (!move_flags)
4805 return 0;
4806
9f2115f9
TH
4807 from = mem_cgroup_from_task(p);
4808
4809 VM_BUG_ON(from == memcg);
4810
4811 mm = get_task_mm(p);
4812 if (!mm)
4813 return 0;
4814 /* We move charges only when we move a owner of the mm */
4815 if (mm->owner == p) {
4816 VM_BUG_ON(mc.from);
4817 VM_BUG_ON(mc.to);
4818 VM_BUG_ON(mc.precharge);
4819 VM_BUG_ON(mc.moved_charge);
4820 VM_BUG_ON(mc.moved_swap);
4821
4822 spin_lock(&mc.lock);
264a0ae1 4823 mc.mm = mm;
9f2115f9
TH
4824 mc.from = from;
4825 mc.to = memcg;
4826 mc.flags = move_flags;
4827 spin_unlock(&mc.lock);
4828 /* We set mc.moving_task later */
4829
4830 ret = mem_cgroup_precharge_mc(mm);
4831 if (ret)
4832 mem_cgroup_clear_mc();
264a0ae1
TH
4833 } else {
4834 mmput(mm);
7dc74be0
DN
4835 }
4836 return ret;
4837}
4838
1f7dd3e5 4839static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4840{
4e2f245d
JW
4841 if (mc.to)
4842 mem_cgroup_clear_mc();
7dc74be0
DN
4843}
4844
4ffef5fe
DN
4845static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 unsigned long addr, unsigned long end,
4847 struct mm_walk *walk)
7dc74be0 4848{
4ffef5fe 4849 int ret = 0;
26bcd64a 4850 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4851 pte_t *pte;
4852 spinlock_t *ptl;
12724850
NH
4853 enum mc_target_type target_type;
4854 union mc_target target;
4855 struct page *page;
4ffef5fe 4856
b6ec57f4
KS
4857 ptl = pmd_trans_huge_lock(pmd, vma);
4858 if (ptl) {
62ade86a 4859 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4860 spin_unlock(ptl);
12724850
NH
4861 return 0;
4862 }
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4865 page = target.page;
4866 if (!isolate_lru_page(page)) {
f627c2f5 4867 if (!mem_cgroup_move_account(page, true,
1306a85a 4868 mc.from, mc.to)) {
12724850
NH
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4871 }
4872 putback_lru_page(page);
4873 }
4874 put_page(page);
4875 }
bf929152 4876 spin_unlock(ptl);
1a5a9906 4877 return 0;
12724850
NH
4878 }
4879
45f83cef
AA
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4ffef5fe
DN
4882retry:
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
02491447 4886 swp_entry_t ent;
4ffef5fe
DN
4887
4888 if (!mc.precharge)
4889 break;
4890
8d32ff84 4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4892 case MC_TARGET_PAGE:
4893 page = target.page;
53f9263b
KS
4894 /*
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4899 */
4900 if (PageTransCompound(page))
4901 goto put;
4ffef5fe
DN
4902 if (isolate_lru_page(page))
4903 goto put;
f627c2f5
KS
4904 if (!mem_cgroup_move_account(page, false,
4905 mc.from, mc.to)) {
4ffef5fe 4906 mc.precharge--;
854ffa8d
DN
4907 /* we uncharge from mc.from later. */
4908 mc.moved_charge++;
4ffef5fe
DN
4909 }
4910 putback_lru_page(page);
8d32ff84 4911put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4912 put_page(page);
4913 break;
02491447
DN
4914 case MC_TARGET_SWAP:
4915 ent = target.ent;
e91cbb42 4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4917 mc.precharge--;
483c30b5
DN
4918 /* we fixup refcnts and charges later. */
4919 mc.moved_swap++;
4920 }
02491447 4921 break;
4ffef5fe
DN
4922 default:
4923 break;
4924 }
4925 }
4926 pte_unmap_unlock(pte - 1, ptl);
4927 cond_resched();
4928
4929 if (addr != end) {
4930 /*
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4934 * phase.
4935 */
854ffa8d 4936 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4937 if (!ret)
4938 goto retry;
4939 }
4940
4941 return ret;
4942}
4943
264a0ae1 4944static void mem_cgroup_move_charge(void)
4ffef5fe 4945{
26bcd64a
NH
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4948 .mm = mc.mm,
26bcd64a 4949 };
4ffef5fe
DN
4950
4951 lru_add_drain_all();
312722cb 4952 /*
81f8c3a4
JW
4953 * Signal lock_page_memcg() to take the memcg's move_lock
4954 * while we're moving its pages to another memcg. Then wait
4955 * for already started RCU-only updates to finish.
312722cb
JW
4956 */
4957 atomic_inc(&mc.from->moving_account);
4958 synchronize_rcu();
dfe076b0 4959retry:
264a0ae1 4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4961 /*
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4967 */
4968 __mem_cgroup_clear_mc();
4969 cond_resched();
4970 goto retry;
4971 }
26bcd64a
NH
4972 /*
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4975 */
0247f3f4
JM
4976 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4977
264a0ae1 4978 up_read(&mc.mm->mmap_sem);
312722cb 4979 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4980}
4981
264a0ae1 4982static void mem_cgroup_move_task(void)
67e465a7 4983{
264a0ae1
TH
4984 if (mc.to) {
4985 mem_cgroup_move_charge();
a433658c 4986 mem_cgroup_clear_mc();
264a0ae1 4987 }
67e465a7 4988}
5cfb80a7 4989#else /* !CONFIG_MMU */
1f7dd3e5 4990static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4991{
4992 return 0;
4993}
1f7dd3e5 4994static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4995{
4996}
264a0ae1 4997static void mem_cgroup_move_task(void)
5cfb80a7
DN
4998{
4999}
5000#endif
67e465a7 5001
f00baae7
TH
5002/*
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5004 * to verify whether we're attached to the default hierarchy on each mount
5005 * attempt.
f00baae7 5006 */
eb95419b 5007static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5008{
5009 /*
aa6ec29b 5010 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5013 */
9e10a130 5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5015 root_mem_cgroup->use_hierarchy = true;
5016 else
5017 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5018}
5019
241994ed
JW
5020static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 struct cftype *cft)
5022{
f5fc3c5d
JW
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5026}
5027
5028static int memory_low_show(struct seq_file *m, void *v)
5029{
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5031 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5032
5033 if (low == PAGE_COUNTER_MAX)
d2973697 5034 seq_puts(m, "max\n");
241994ed
JW
5035 else
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037
5038 return 0;
5039}
5040
5041static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned long low;
5046 int err;
5047
5048 buf = strstrip(buf);
d2973697 5049 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5050 if (err)
5051 return err;
5052
5053 memcg->low = low;
5054
5055 return nbytes;
5056}
5057
5058static int memory_high_show(struct seq_file *m, void *v)
5059{
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5061 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5062
5063 if (high == PAGE_COUNTER_MAX)
d2973697 5064 seq_puts(m, "max\n");
241994ed
JW
5065 else
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067
5068 return 0;
5069}
5070
5071static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5075 unsigned long nr_pages;
241994ed
JW
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
d2973697 5080 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
588083bb
JW
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 GFP_KERNEL, true);
5090
2529bb3a 5091 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5092 return nbytes;
5093}
5094
5095static int memory_max_show(struct seq_file *m, void *v)
5096{
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5098 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5099
5100 if (max == PAGE_COUNTER_MAX)
d2973697 5101 seq_puts(m, "max\n");
241994ed
JW
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106}
5107
5108static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110{
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
241994ed
JW
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
d2973697 5118 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5119 if (err)
5120 return err;
5121
b6e6edcf
JW
5122 xchg(&memcg->memory.limit, max);
5123
5124 for (;;) {
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5126
5127 if (nr_pages <= max)
5128 break;
5129
5130 if (signal_pending(current)) {
5131 err = -EINTR;
5132 break;
5133 }
5134
5135 if (!drained) {
5136 drain_all_stock(memcg);
5137 drained = true;
5138 continue;
5139 }
5140
5141 if (nr_reclaims) {
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 GFP_KERNEL, true))
5144 nr_reclaims--;
5145 continue;
5146 }
5147
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 break;
5151 }
241994ed 5152
2529bb3a 5153 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5154 return nbytes;
5155}
5156
5157static int memory_events_show(struct seq_file *m, void *v)
5158{
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165
5166 return 0;
5167}
5168
587d9f72
JW
5169static int memory_stat_show(struct seq_file *m, void *v)
5170{
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5174 int i;
5175
5176 /*
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5179 *
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 *
5184 * Current memory state:
5185 */
5186
72b54e73
VD
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5189
587d9f72 5190 seq_printf(m, "anon %llu\n",
72b54e73 5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5192 seq_printf(m, "file %llu\n",
72b54e73 5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5194 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5195 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5199 seq_printf(m, "sock %llu\n",
72b54e73 5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5201
5202 seq_printf(m, "file_mapped %llu\n",
72b54e73 5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5204 seq_printf(m, "file_dirty %llu\n",
72b54e73 5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5206 seq_printf(m, "file_writeback %llu\n",
72b54e73 5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5208
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5212
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 }
5218
27ee57c9
VD
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223
587d9f72
JW
5224 /* Accumulated memory events */
5225
5226 seq_printf(m, "pgfault %lu\n",
72b54e73 5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5228 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5230
5231 return 0;
5232}
5233
241994ed
JW
5234static struct cftype memory_files[] = {
5235 {
5236 .name = "current",
f5fc3c5d 5237 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5238 .read_u64 = memory_current_read,
5239 },
5240 {
5241 .name = "low",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5245 },
5246 {
5247 .name = "high",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5251 },
5252 {
5253 .name = "max",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5257 },
5258 {
5259 .name = "events",
5260 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5261 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5262 .seq_show = memory_events_show,
5263 },
587d9f72
JW
5264 {
5265 .name = "stat",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5268 },
241994ed
JW
5269 { } /* terminate */
5270};
5271
073219e9 5272struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5273 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5274 .css_online = mem_cgroup_css_online,
92fb9748 5275 .css_offline = mem_cgroup_css_offline,
6df38689 5276 .css_released = mem_cgroup_css_released,
92fb9748 5277 .css_free = mem_cgroup_css_free,
1ced953b 5278 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5281 .post_attach = mem_cgroup_move_task,
f00baae7 5282 .bind = mem_cgroup_bind,
241994ed
JW
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5285 .early_init = 0,
8cdea7c0 5286};
c077719b 5287
241994ed
JW
5288/**
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5292 *
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5295 */
5296bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297{
5298 if (mem_cgroup_disabled())
5299 return false;
5300
5301 /*
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5305 */
5306
5307 if (memcg == root_mem_cgroup)
5308 return false;
5309
4e54dede 5310 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5311 return false;
5312
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5315
5316 if (memcg == root_mem_cgroup)
5317 break;
5318
4e54dede 5319 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5320 return false;
5321 }
5322 return true;
5323}
5324
00501b53
JW
5325/**
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
25843c2b 5331 * @compound: charge the page as compound or small page
00501b53
JW
5332 *
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5335 *
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5338 *
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342 */
5343int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 bool compound)
00501b53
JW
5346{
5347 struct mem_cgroup *memcg = NULL;
f627c2f5 5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5349 int ret = 0;
5350
5351 if (mem_cgroup_disabled())
5352 goto out;
5353
5354 if (PageSwapCache(page)) {
00501b53
JW
5355 /*
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5361 */
e993d905 5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5363 if (page->mem_cgroup)
00501b53 5364 goto out;
e993d905 5365
37e84351 5366 if (do_swap_account) {
e993d905
VD
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5369
5370 rcu_read_lock();
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5373 memcg = NULL;
5374 rcu_read_unlock();
5375 }
00501b53
JW
5376 }
5377
00501b53
JW
5378 if (!memcg)
5379 memcg = get_mem_cgroup_from_mm(mm);
5380
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5382
5383 css_put(&memcg->css);
00501b53
JW
5384out:
5385 *memcgp = memcg;
5386 return ret;
5387}
5388
5389/**
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
25843c2b 5394 * @compound: charge the page as compound or small page
00501b53
JW
5395 *
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5400 *
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5403 *
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405 */
5406void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5407 bool lrucare, bool compound)
00501b53 5408{
f627c2f5 5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5410
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413
5414 if (mem_cgroup_disabled())
5415 return;
5416 /*
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5420 */
5421 if (!memcg)
5422 return;
5423
6abb5a86
JW
5424 commit_charge(page, memcg, lrucare);
5425
6abb5a86 5426 local_irq_disable();
f627c2f5 5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5428 memcg_check_events(memcg, page);
5429 local_irq_enable();
00501b53 5430
7941d214 5431 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5432 swp_entry_t entry = { .val = page_private(page) };
5433 /*
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5437 */
5438 mem_cgroup_uncharge_swap(entry);
5439 }
5440}
5441
5442/**
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
25843c2b 5446 * @compound: charge the page as compound or small page
00501b53
JW
5447 *
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5449 */
f627c2f5
KS
5450void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool compound)
00501b53 5452{
f627c2f5 5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5454
5455 if (mem_cgroup_disabled())
5456 return;
5457 /*
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5461 */
5462 if (!memcg)
5463 return;
5464
00501b53
JW
5465 cancel_charge(memcg, nr_pages);
5466}
5467
747db954 5468static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5469 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
747db954 5472{
5e8d35f8 5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5474 unsigned long flags;
5475
ce00a967 5476 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5477 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5478 if (do_memsw_account())
18eca2e6 5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5482 memcg_oom_recover(memcg);
5483 }
747db954
JW
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
e8ea14cc
JW
5493
5494 if (!mem_cgroup_is_root(memcg))
18eca2e6 5495 css_put_many(&memcg->css, nr_pages);
747db954
JW
5496}
5497
5498static void uncharge_list(struct list_head *page_list)
5499{
5500 struct mem_cgroup *memcg = NULL;
747db954
JW
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5e8d35f8 5504 unsigned long nr_kmem = 0;
747db954 5505 unsigned long pgpgout = 0;
747db954
JW
5506 struct list_head *next;
5507 struct page *page;
5508
8b592656
JW
5509 /*
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5512 */
747db954
JW
5513 next = page_list->next;
5514 do {
747db954
JW
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5517
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5520
1306a85a 5521 if (!page->mem_cgroup)
747db954
JW
5522 continue;
5523
5524 /*
5525 * Nobody should be changing or seriously looking at
1306a85a 5526 * page->mem_cgroup at this point, we have fully
29833315 5527 * exclusive access to the page.
747db954
JW
5528 */
5529
1306a85a 5530 if (memcg != page->mem_cgroup) {
747db954 5531 if (memcg) {
18eca2e6 5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
747db954 5536 }
1306a85a 5537 memcg = page->mem_cgroup;
747db954
JW
5538 }
5539
5e8d35f8
VD
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
747db954 5542
5e8d35f8
VD
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5e8d35f8
VD
5545 nr_huge += nr_pages;
5546 }
5547 if (PageAnon(page))
5548 nr_anon += nr_pages;
5549 else
5550 nr_file += nr_pages;
5551 pgpgout++;
c4159a75 5552 } else {
5e8d35f8 5553 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5554 __ClearPageKmemcg(page);
5555 }
747db954 5556
1306a85a 5557 page->mem_cgroup = NULL;
747db954
JW
5558 } while (next != page_list);
5559
5560 if (memcg)
18eca2e6 5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5562 nr_huge, nr_kmem, page);
747db954
JW
5563}
5564
0a31bc97
JW
5565/**
5566 * mem_cgroup_uncharge - uncharge a page
5567 * @page: page to uncharge
5568 *
5569 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5570 * mem_cgroup_commit_charge().
5571 */
5572void mem_cgroup_uncharge(struct page *page)
5573{
0a31bc97
JW
5574 if (mem_cgroup_disabled())
5575 return;
5576
747db954 5577 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5578 if (!page->mem_cgroup)
0a31bc97
JW
5579 return;
5580
747db954
JW
5581 INIT_LIST_HEAD(&page->lru);
5582 uncharge_list(&page->lru);
5583}
0a31bc97 5584
747db954
JW
5585/**
5586 * mem_cgroup_uncharge_list - uncharge a list of page
5587 * @page_list: list of pages to uncharge
5588 *
5589 * Uncharge a list of pages previously charged with
5590 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5591 */
5592void mem_cgroup_uncharge_list(struct list_head *page_list)
5593{
5594 if (mem_cgroup_disabled())
5595 return;
0a31bc97 5596
747db954
JW
5597 if (!list_empty(page_list))
5598 uncharge_list(page_list);
0a31bc97
JW
5599}
5600
5601/**
6a93ca8f
JW
5602 * mem_cgroup_migrate - charge a page's replacement
5603 * @oldpage: currently circulating page
5604 * @newpage: replacement page
0a31bc97 5605 *
6a93ca8f
JW
5606 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5607 * be uncharged upon free.
0a31bc97
JW
5608 *
5609 * Both pages must be locked, @newpage->mapping must be set up.
5610 */
6a93ca8f 5611void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5612{
29833315 5613 struct mem_cgroup *memcg;
44b7a8d3
JW
5614 unsigned int nr_pages;
5615 bool compound;
d93c4130 5616 unsigned long flags;
0a31bc97
JW
5617
5618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5620 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5621 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5622 newpage);
0a31bc97
JW
5623
5624 if (mem_cgroup_disabled())
5625 return;
5626
5627 /* Page cache replacement: new page already charged? */
1306a85a 5628 if (newpage->mem_cgroup)
0a31bc97
JW
5629 return;
5630
45637bab 5631 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5632 memcg = oldpage->mem_cgroup;
29833315 5633 if (!memcg)
0a31bc97
JW
5634 return;
5635
44b7a8d3
JW
5636 /* Force-charge the new page. The old one will be freed soon */
5637 compound = PageTransHuge(newpage);
5638 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5639
5640 page_counter_charge(&memcg->memory, nr_pages);
5641 if (do_memsw_account())
5642 page_counter_charge(&memcg->memsw, nr_pages);
5643 css_get_many(&memcg->css, nr_pages);
0a31bc97 5644
9cf7666a 5645 commit_charge(newpage, memcg, false);
44b7a8d3 5646
d93c4130 5647 local_irq_save(flags);
44b7a8d3
JW
5648 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5649 memcg_check_events(memcg, newpage);
d93c4130 5650 local_irq_restore(flags);
0a31bc97
JW
5651}
5652
ef12947c 5653DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5654EXPORT_SYMBOL(memcg_sockets_enabled_key);
5655
2d758073 5656void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5657{
5658 struct mem_cgroup *memcg;
5659
2d758073
JW
5660 if (!mem_cgroup_sockets_enabled)
5661 return;
5662
5663 /*
5664 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5665 * filled. It won't however, necessarily happen from
5666 * process context. So the test for root memcg given
5667 * the current task's memcg won't help us in this case.
5668 *
5669 * Respecting the original socket's memcg is a better
5670 * decision in this case.
5671 */
5672 if (sk->sk_memcg) {
5673 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5674 css_get(&sk->sk_memcg->css);
5675 return;
5676 }
5677
5678 rcu_read_lock();
5679 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5680 if (memcg == root_mem_cgroup)
5681 goto out;
0db15298 5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5683 goto out;
f7e1cb6e 5684 if (css_tryget_online(&memcg->css))
11092087 5685 sk->sk_memcg = memcg;
f7e1cb6e 5686out:
11092087
JW
5687 rcu_read_unlock();
5688}
11092087 5689
2d758073 5690void mem_cgroup_sk_free(struct sock *sk)
11092087 5691{
2d758073
JW
5692 if (sk->sk_memcg)
5693 css_put(&sk->sk_memcg->css);
11092087
JW
5694}
5695
5696/**
5697 * mem_cgroup_charge_skmem - charge socket memory
5698 * @memcg: memcg to charge
5699 * @nr_pages: number of pages to charge
5700 *
5701 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5702 * @memcg's configured limit, %false if the charge had to be forced.
5703 */
5704bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5705{
f7e1cb6e 5706 gfp_t gfp_mask = GFP_KERNEL;
11092087 5707
f7e1cb6e 5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5709 struct page_counter *fail;
f7e1cb6e 5710
0db15298
JW
5711 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5712 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5713 return true;
5714 }
0db15298
JW
5715 page_counter_charge(&memcg->tcpmem, nr_pages);
5716 memcg->tcpmem_pressure = 1;
f7e1cb6e 5717 return false;
11092087 5718 }
d886f4e4 5719
f7e1cb6e
JW
5720 /* Don't block in the packet receive path */
5721 if (in_softirq())
5722 gfp_mask = GFP_NOWAIT;
5723
b2807f07
JW
5724 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5725
f7e1cb6e
JW
5726 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5727 return true;
5728
5729 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5730 return false;
5731}
5732
5733/**
5734 * mem_cgroup_uncharge_skmem - uncharge socket memory
5735 * @memcg - memcg to uncharge
5736 * @nr_pages - number of pages to uncharge
5737 */
5738void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5739{
f7e1cb6e 5740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5741 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5742 return;
5743 }
d886f4e4 5744
b2807f07
JW
5745 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5746
f7e1cb6e
JW
5747 page_counter_uncharge(&memcg->memory, nr_pages);
5748 css_put_many(&memcg->css, nr_pages);
11092087
JW
5749}
5750
f7e1cb6e
JW
5751static int __init cgroup_memory(char *s)
5752{
5753 char *token;
5754
5755 while ((token = strsep(&s, ",")) != NULL) {
5756 if (!*token)
5757 continue;
5758 if (!strcmp(token, "nosocket"))
5759 cgroup_memory_nosocket = true;
04823c83
VD
5760 if (!strcmp(token, "nokmem"))
5761 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5762 }
5763 return 0;
5764}
5765__setup("cgroup.memory=", cgroup_memory);
11092087 5766
2d11085e 5767/*
1081312f
MH
5768 * subsys_initcall() for memory controller.
5769 *
308167fc
SAS
5770 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5771 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5772 * basically everything that doesn't depend on a specific mem_cgroup structure
5773 * should be initialized from here.
2d11085e
MH
5774 */
5775static int __init mem_cgroup_init(void)
5776{
95a045f6
JW
5777 int cpu, node;
5778
13583c3d
VD
5779#ifndef CONFIG_SLOB
5780 /*
5781 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5782 * so use a workqueue with limited concurrency to avoid stalling
5783 * all worker threads in case lots of cgroups are created and
5784 * destroyed simultaneously.
13583c3d 5785 */
17cc4dfe
TH
5786 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5787 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5788#endif
5789
308167fc
SAS
5790 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5791 memcg_hotplug_cpu_dead);
95a045f6
JW
5792
5793 for_each_possible_cpu(cpu)
5794 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5795 drain_local_stock);
5796
5797 for_each_node(node) {
5798 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5799
5800 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5801 node_online(node) ? node : NUMA_NO_NODE);
5802
ef8f2327
MG
5803 rtpn->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpn->lock);
95a045f6
JW
5805 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5806 }
5807
2d11085e
MH
5808 return 0;
5809}
5810subsys_initcall(mem_cgroup_init);
21afa38e
JW
5811
5812#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5813static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5814{
5815 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5816 /*
5817 * The root cgroup cannot be destroyed, so it's refcount must
5818 * always be >= 1.
5819 */
5820 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5821 VM_BUG_ON(1);
5822 break;
5823 }
5824 memcg = parent_mem_cgroup(memcg);
5825 if (!memcg)
5826 memcg = root_mem_cgroup;
5827 }
5828 return memcg;
5829}
5830
21afa38e
JW
5831/**
5832 * mem_cgroup_swapout - transfer a memsw charge to swap
5833 * @page: page whose memsw charge to transfer
5834 * @entry: swap entry to move the charge to
5835 *
5836 * Transfer the memsw charge of @page to @entry.
5837 */
5838void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5839{
1f47b61f 5840 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5841 unsigned short oldid;
5842
5843 VM_BUG_ON_PAGE(PageLRU(page), page);
5844 VM_BUG_ON_PAGE(page_count(page), page);
5845
7941d214 5846 if (!do_memsw_account())
21afa38e
JW
5847 return;
5848
5849 memcg = page->mem_cgroup;
5850
5851 /* Readahead page, never charged */
5852 if (!memcg)
5853 return;
5854
1f47b61f
VD
5855 /*
5856 * In case the memcg owning these pages has been offlined and doesn't
5857 * have an ID allocated to it anymore, charge the closest online
5858 * ancestor for the swap instead and transfer the memory+swap charge.
5859 */
5860 swap_memcg = mem_cgroup_id_get_online(memcg);
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5862 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5863 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5864
5865 page->mem_cgroup = NULL;
5866
5867 if (!mem_cgroup_is_root(memcg))
5868 page_counter_uncharge(&memcg->memory, 1);
5869
1f47b61f
VD
5870 if (memcg != swap_memcg) {
5871 if (!mem_cgroup_is_root(swap_memcg))
5872 page_counter_charge(&swap_memcg->memsw, 1);
5873 page_counter_uncharge(&memcg->memsw, 1);
5874 }
5875
ce9ce665
SAS
5876 /*
5877 * Interrupts should be disabled here because the caller holds the
5878 * mapping->tree_lock lock which is taken with interrupts-off. It is
5879 * important here to have the interrupts disabled because it is the
5880 * only synchronisation we have for udpating the per-CPU variables.
5881 */
5882 VM_BUG_ON(!irqs_disabled());
f627c2f5 5883 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5884 memcg_check_events(memcg, page);
73f576c0
JW
5885
5886 if (!mem_cgroup_is_root(memcg))
5887 css_put(&memcg->css);
21afa38e
JW
5888}
5889
37e84351
VD
5890/*
5891 * mem_cgroup_try_charge_swap - try charging a swap entry
5892 * @page: page being added to swap
5893 * @entry: swap entry to charge
5894 *
5895 * Try to charge @entry to the memcg that @page belongs to.
5896 *
5897 * Returns 0 on success, -ENOMEM on failure.
5898 */
5899int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5900{
5901 struct mem_cgroup *memcg;
5902 struct page_counter *counter;
5903 unsigned short oldid;
5904
5905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5906 return 0;
5907
5908 memcg = page->mem_cgroup;
5909
5910 /* Readahead page, never charged */
5911 if (!memcg)
5912 return 0;
5913
1f47b61f
VD
5914 memcg = mem_cgroup_id_get_online(memcg);
5915
37e84351 5916 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5917 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5918 mem_cgroup_id_put(memcg);
37e84351 5919 return -ENOMEM;
1f47b61f 5920 }
37e84351
VD
5921
5922 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5923 VM_BUG_ON_PAGE(oldid, page);
5924 mem_cgroup_swap_statistics(memcg, true);
5925
37e84351
VD
5926 return 0;
5927}
5928
21afa38e
JW
5929/**
5930 * mem_cgroup_uncharge_swap - uncharge a swap entry
5931 * @entry: swap entry to uncharge
5932 *
37e84351 5933 * Drop the swap charge associated with @entry.
21afa38e
JW
5934 */
5935void mem_cgroup_uncharge_swap(swp_entry_t entry)
5936{
5937 struct mem_cgroup *memcg;
5938 unsigned short id;
5939
37e84351 5940 if (!do_swap_account)
21afa38e
JW
5941 return;
5942
5943 id = swap_cgroup_record(entry, 0);
5944 rcu_read_lock();
adbe427b 5945 memcg = mem_cgroup_from_id(id);
21afa38e 5946 if (memcg) {
37e84351
VD
5947 if (!mem_cgroup_is_root(memcg)) {
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 page_counter_uncharge(&memcg->swap, 1);
5950 else
5951 page_counter_uncharge(&memcg->memsw, 1);
5952 }
21afa38e 5953 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5954 mem_cgroup_id_put(memcg);
21afa38e
JW
5955 }
5956 rcu_read_unlock();
5957}
5958
d8b38438
VD
5959long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5960{
5961 long nr_swap_pages = get_nr_swap_pages();
5962
5963 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 return nr_swap_pages;
5965 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5966 nr_swap_pages = min_t(long, nr_swap_pages,
5967 READ_ONCE(memcg->swap.limit) -
5968 page_counter_read(&memcg->swap));
5969 return nr_swap_pages;
5970}
5971
5ccc5aba
VD
5972bool mem_cgroup_swap_full(struct page *page)
5973{
5974 struct mem_cgroup *memcg;
5975
5976 VM_BUG_ON_PAGE(!PageLocked(page), page);
5977
5978 if (vm_swap_full())
5979 return true;
5980 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5981 return false;
5982
5983 memcg = page->mem_cgroup;
5984 if (!memcg)
5985 return false;
5986
5987 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5988 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5989 return true;
5990
5991 return false;
5992}
5993
21afa38e
JW
5994/* for remember boot option*/
5995#ifdef CONFIG_MEMCG_SWAP_ENABLED
5996static int really_do_swap_account __initdata = 1;
5997#else
5998static int really_do_swap_account __initdata;
5999#endif
6000
6001static int __init enable_swap_account(char *s)
6002{
6003 if (!strcmp(s, "1"))
6004 really_do_swap_account = 1;
6005 else if (!strcmp(s, "0"))
6006 really_do_swap_account = 0;
6007 return 1;
6008}
6009__setup("swapaccount=", enable_swap_account);
6010
37e84351
VD
6011static u64 swap_current_read(struct cgroup_subsys_state *css,
6012 struct cftype *cft)
6013{
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015
6016 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6017}
6018
6019static int swap_max_show(struct seq_file *m, void *v)
6020{
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6022 unsigned long max = READ_ONCE(memcg->swap.limit);
6023
6024 if (max == PAGE_COUNTER_MAX)
6025 seq_puts(m, "max\n");
6026 else
6027 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6028
6029 return 0;
6030}
6031
6032static ssize_t swap_max_write(struct kernfs_open_file *of,
6033 char *buf, size_t nbytes, loff_t off)
6034{
6035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6036 unsigned long max;
6037 int err;
6038
6039 buf = strstrip(buf);
6040 err = page_counter_memparse(buf, "max", &max);
6041 if (err)
6042 return err;
6043
6044 mutex_lock(&memcg_limit_mutex);
6045 err = page_counter_limit(&memcg->swap, max);
6046 mutex_unlock(&memcg_limit_mutex);
6047 if (err)
6048 return err;
6049
6050 return nbytes;
6051}
6052
6053static struct cftype swap_files[] = {
6054 {
6055 .name = "swap.current",
6056 .flags = CFTYPE_NOT_ON_ROOT,
6057 .read_u64 = swap_current_read,
6058 },
6059 {
6060 .name = "swap.max",
6061 .flags = CFTYPE_NOT_ON_ROOT,
6062 .seq_show = swap_max_show,
6063 .write = swap_max_write,
6064 },
6065 { } /* terminate */
6066};
6067
21afa38e
JW
6068static struct cftype memsw_cgroup_files[] = {
6069 {
6070 .name = "memsw.usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 .read_u64 = mem_cgroup_read_u64,
6073 },
6074 {
6075 .name = "memsw.max_usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 .write = mem_cgroup_reset,
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.limit_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 .write = mem_cgroup_write,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.failcnt",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 .write = mem_cgroup_reset,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 { }, /* terminate */
6093};
6094
6095static int __init mem_cgroup_swap_init(void)
6096{
6097 if (!mem_cgroup_disabled() && really_do_swap_account) {
6098 do_swap_account = 1;
37e84351
VD
6099 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6100 swap_files));
21afa38e
JW
6101 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6102 memsw_cgroup_files));
6103 }
6104 return 0;
6105}
6106subsys_initcall(mem_cgroup_swap_init);
6107
6108#endif /* CONFIG_MEMCG_SWAP */