]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
kernel: res_counter: remove the unused API
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8 167 struct rb_node tree_node; /* RB tree node */
3e32cb2e 168 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
3e32cb2e 201 unsigned long threshold;
2e72b634
KS
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
3e32cb2e
JW
287
288 /* Accounted resources */
289 struct page_counter memory;
290 struct page_counter memsw;
291 struct page_counter kmem;
292
293 unsigned long soft_limit;
59927fb9 294
70ddf637
AV
295 /* vmpressure notifications */
296 struct vmpressure vmpressure;
297
2f7dd7a4
JW
298 /* css_online() has been completed */
299 int initialized;
300
18f59ea7
BS
301 /*
302 * Should the accounting and control be hierarchical, per subtree?
303 */
304 bool use_hierarchy;
510fc4e1 305 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
306
307 bool oom_lock;
308 atomic_t under_oom;
3812c8c8 309 atomic_t oom_wakeups;
79dfdacc 310
1f4c025b 311 int swappiness;
3c11ecf4
KH
312 /* OOM-Killer disable */
313 int oom_kill_disable;
a7885eb8 314
2e72b634
KS
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
317
318 /* thresholds for memory usage. RCU-protected */
2c488db2 319 struct mem_cgroup_thresholds thresholds;
907860ed 320
2e72b634 321 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 322 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 323
9490ff27
KH
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
185efc0f 326
7dc74be0
DN
327 /*
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
330 */
f894ffa8 331 unsigned long move_charge_at_immigrate;
619d094b
KH
332 /*
333 * set > 0 if pages under this cgroup are moving to other cgroup.
334 */
335 atomic_t moving_account;
312734c0
KH
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
d52aa412 338 /*
c62b1a3b 339 * percpu counter.
d52aa412 340 */
3a7951b4 341 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
342 /*
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
345 */
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
d1a4c0b3 348
5f578161 349 atomic_t dead_count;
4bd2c1ee 350#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 351 struct cg_proto tcp_mem;
d1a4c0b3 352#endif
2633d7a0 353#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
354 /* analogous to slab_common's slab_caches list, but per-memcg;
355 * protected by memcg_slab_mutex */
2633d7a0 356 struct list_head memcg_slab_caches;
2633d7a0
GC
357 /* Index in the kmem_cache->memcg_params->memcg_caches array */
358 int kmemcg_id;
359#endif
45cf7ebd
GC
360
361 int last_scanned_node;
362#if MAX_NUMNODES > 1
363 nodemask_t scan_nodes;
364 atomic_t numainfo_events;
365 atomic_t numainfo_updating;
366#endif
70ddf637 367
fba94807
TH
368 /* List of events which userspace want to receive */
369 struct list_head event_list;
370 spinlock_t event_list_lock;
371
54f72fe0
JW
372 struct mem_cgroup_per_node *nodeinfo[0];
373 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
374};
375
510fc4e1
GC
376/* internal only representation about the status of kmem accounting. */
377enum {
6de64beb 378 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 379 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
380};
381
510fc4e1
GC
382#ifdef CONFIG_MEMCG_KMEM
383static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
384{
385 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
386}
7de37682
GC
387
388static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
389{
390 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
391}
392
393static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
394{
10d5ebf4
LZ
395 /*
396 * Our caller must use css_get() first, because memcg_uncharge_kmem()
397 * will call css_put() if it sees the memcg is dead.
398 */
399 smp_wmb();
7de37682
GC
400 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
401 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
402}
403
404static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
405{
406 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
407 &memcg->kmem_account_flags);
408}
510fc4e1
GC
409#endif
410
7dc74be0
DN
411/* Stuffs for move charges at task migration. */
412/*
ee5e8472
GC
413 * Types of charges to be moved. "move_charge_at_immitgrate" and
414 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
415 */
416enum move_type {
4ffef5fe 417 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 418 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
419 NR_MOVE_TYPE,
420};
421
4ffef5fe
DN
422/* "mc" and its members are protected by cgroup_mutex */
423static struct move_charge_struct {
b1dd693e 424 spinlock_t lock; /* for from, to */
4ffef5fe
DN
425 struct mem_cgroup *from;
426 struct mem_cgroup *to;
ee5e8472 427 unsigned long immigrate_flags;
4ffef5fe 428 unsigned long precharge;
854ffa8d 429 unsigned long moved_charge;
483c30b5 430 unsigned long moved_swap;
8033b97c
DN
431 struct task_struct *moving_task; /* a task moving charges */
432 wait_queue_head_t waitq; /* a waitq for other context */
433} mc = {
2bd9bb20 434 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
435 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
436};
4ffef5fe 437
90254a65
DN
438static bool move_anon(void)
439{
ee5e8472 440 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
441}
442
87946a72
DN
443static bool move_file(void)
444{
ee5e8472 445 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
446}
447
4e416953
BS
448/*
449 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
450 * limit reclaim to prevent infinite loops, if they ever occur.
451 */
a0db00fc 452#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 453#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 454
217bc319
KH
455enum charge_type {
456 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 457 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 458 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 459 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
460 NR_CHARGE_TYPE,
461};
462
8c7c6e34 463/* for encoding cft->private value on file */
86ae53e1
GC
464enum res_type {
465 _MEM,
466 _MEMSWAP,
467 _OOM_TYPE,
510fc4e1 468 _KMEM,
86ae53e1
GC
469};
470
a0db00fc
KS
471#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
472#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 473#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
474/* Used for OOM nofiier */
475#define OOM_CONTROL (0)
8c7c6e34 476
0999821b
GC
477/*
478 * The memcg_create_mutex will be held whenever a new cgroup is created.
479 * As a consequence, any change that needs to protect against new child cgroups
480 * appearing has to hold it as well.
481 */
482static DEFINE_MUTEX(memcg_create_mutex);
483
b2145145
WL
484struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
485{
a7c6d554 486 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
487}
488
70ddf637
AV
489/* Some nice accessors for the vmpressure. */
490struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
491{
492 if (!memcg)
493 memcg = root_mem_cgroup;
494 return &memcg->vmpressure;
495}
496
497struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
498{
499 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
500}
501
7ffc0edc
MH
502static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
503{
504 return (memcg == root_mem_cgroup);
505}
506
4219b2da
LZ
507/*
508 * We restrict the id in the range of [1, 65535], so it can fit into
509 * an unsigned short.
510 */
511#define MEM_CGROUP_ID_MAX USHRT_MAX
512
34c00c31
LZ
513static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
514{
15a4c835 515 return memcg->css.id;
34c00c31
LZ
516}
517
518static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
519{
520 struct cgroup_subsys_state *css;
521
7d699ddb 522 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
523 return mem_cgroup_from_css(css);
524}
525
e1aab161 526/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 527#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 528
e1aab161
GC
529void sock_update_memcg(struct sock *sk)
530{
376be5ff 531 if (mem_cgroup_sockets_enabled) {
e1aab161 532 struct mem_cgroup *memcg;
3f134619 533 struct cg_proto *cg_proto;
e1aab161
GC
534
535 BUG_ON(!sk->sk_prot->proto_cgroup);
536
f3f511e1
GC
537 /* Socket cloning can throw us here with sk_cgrp already
538 * filled. It won't however, necessarily happen from
539 * process context. So the test for root memcg given
540 * the current task's memcg won't help us in this case.
541 *
542 * Respecting the original socket's memcg is a better
543 * decision in this case.
544 */
545 if (sk->sk_cgrp) {
546 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 547 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
548 return;
549 }
550
e1aab161
GC
551 rcu_read_lock();
552 memcg = mem_cgroup_from_task(current);
3f134619 553 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 554 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
555 memcg_proto_active(cg_proto) &&
556 css_tryget_online(&memcg->css)) {
3f134619 557 sk->sk_cgrp = cg_proto;
e1aab161
GC
558 }
559 rcu_read_unlock();
560 }
561}
562EXPORT_SYMBOL(sock_update_memcg);
563
564void sock_release_memcg(struct sock *sk)
565{
376be5ff 566 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
567 struct mem_cgroup *memcg;
568 WARN_ON(!sk->sk_cgrp->memcg);
569 memcg = sk->sk_cgrp->memcg;
5347e5ae 570 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
571 }
572}
d1a4c0b3
GC
573
574struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
575{
576 if (!memcg || mem_cgroup_is_root(memcg))
577 return NULL;
578
2e685cad 579 return &memcg->tcp_mem;
d1a4c0b3
GC
580}
581EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 582
3f134619
GC
583static void disarm_sock_keys(struct mem_cgroup *memcg)
584{
2e685cad 585 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
586 return;
587 static_key_slow_dec(&memcg_socket_limit_enabled);
588}
589#else
590static void disarm_sock_keys(struct mem_cgroup *memcg)
591{
592}
593#endif
594
a8964b9b 595#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
596/*
597 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
598 * The main reason for not using cgroup id for this:
599 * this works better in sparse environments, where we have a lot of memcgs,
600 * but only a few kmem-limited. Or also, if we have, for instance, 200
601 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
602 * 200 entry array for that.
55007d84
GC
603 *
604 * The current size of the caches array is stored in
605 * memcg_limited_groups_array_size. It will double each time we have to
606 * increase it.
607 */
608static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
609int memcg_limited_groups_array_size;
610
55007d84
GC
611/*
612 * MIN_SIZE is different than 1, because we would like to avoid going through
613 * the alloc/free process all the time. In a small machine, 4 kmem-limited
614 * cgroups is a reasonable guess. In the future, it could be a parameter or
615 * tunable, but that is strictly not necessary.
616 *
b8627835 617 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
618 * this constant directly from cgroup, but it is understandable that this is
619 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 620 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
621 * increase ours as well if it increases.
622 */
623#define MEMCG_CACHES_MIN_SIZE 4
b8627835 624#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 625
d7f25f8a
GC
626/*
627 * A lot of the calls to the cache allocation functions are expected to be
628 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
629 * conditional to this static branch, we'll have to allow modules that does
630 * kmem_cache_alloc and the such to see this symbol as well
631 */
a8964b9b 632struct static_key memcg_kmem_enabled_key;
d7f25f8a 633EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 634
f3bb3043
VD
635static void memcg_free_cache_id(int id);
636
a8964b9b
GC
637static void disarm_kmem_keys(struct mem_cgroup *memcg)
638{
55007d84 639 if (memcg_kmem_is_active(memcg)) {
a8964b9b 640 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 641 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 642 }
bea207c8
GC
643 /*
644 * This check can't live in kmem destruction function,
645 * since the charges will outlive the cgroup
646 */
3e32cb2e 647 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
648}
649#else
650static void disarm_kmem_keys(struct mem_cgroup *memcg)
651{
652}
653#endif /* CONFIG_MEMCG_KMEM */
654
655static void disarm_static_keys(struct mem_cgroup *memcg)
656{
657 disarm_sock_keys(memcg);
658 disarm_kmem_keys(memcg);
659}
660
c0ff4b85 661static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 662
f64c3f54 663static struct mem_cgroup_per_zone *
e231875b 664mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 665{
e231875b
JZ
666 int nid = zone_to_nid(zone);
667 int zid = zone_idx(zone);
668
54f72fe0 669 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
670}
671
c0ff4b85 672struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 673{
c0ff4b85 674 return &memcg->css;
d324236b
WF
675}
676
f64c3f54 677static struct mem_cgroup_per_zone *
e231875b 678mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 679{
97a6c37b
JW
680 int nid = page_to_nid(page);
681 int zid = page_zonenum(page);
f64c3f54 682
e231875b 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
bb4cc1a8
AM
686static struct mem_cgroup_tree_per_zone *
687soft_limit_tree_node_zone(int nid, int zid)
688{
689 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
690}
691
692static struct mem_cgroup_tree_per_zone *
693soft_limit_tree_from_page(struct page *page)
694{
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
697
698 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
699}
700
cf2c8127
JW
701static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
702 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 703 unsigned long new_usage_in_excess)
bb4cc1a8
AM
704{
705 struct rb_node **p = &mctz->rb_root.rb_node;
706 struct rb_node *parent = NULL;
707 struct mem_cgroup_per_zone *mz_node;
708
709 if (mz->on_tree)
710 return;
711
712 mz->usage_in_excess = new_usage_in_excess;
713 if (!mz->usage_in_excess)
714 return;
715 while (*p) {
716 parent = *p;
717 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
718 tree_node);
719 if (mz->usage_in_excess < mz_node->usage_in_excess)
720 p = &(*p)->rb_left;
721 /*
722 * We can't avoid mem cgroups that are over their soft
723 * limit by the same amount
724 */
725 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
726 p = &(*p)->rb_right;
727 }
728 rb_link_node(&mz->tree_node, parent, p);
729 rb_insert_color(&mz->tree_node, &mctz->rb_root);
730 mz->on_tree = true;
731}
732
cf2c8127
JW
733static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
734 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
735{
736 if (!mz->on_tree)
737 return;
738 rb_erase(&mz->tree_node, &mctz->rb_root);
739 mz->on_tree = false;
740}
741
cf2c8127
JW
742static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
743 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 744{
0a31bc97
JW
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 748 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 749 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
750}
751
3e32cb2e
JW
752static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
753{
754 unsigned long nr_pages = page_counter_read(&memcg->memory);
755 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
756 unsigned long excess = 0;
757
758 if (nr_pages > soft_limit)
759 excess = nr_pages - soft_limit;
760
761 return excess;
762}
bb4cc1a8
AM
763
764static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
765{
3e32cb2e 766 unsigned long excess;
bb4cc1a8
AM
767 struct mem_cgroup_per_zone *mz;
768 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 769
e231875b 770 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
771 /*
772 * Necessary to update all ancestors when hierarchy is used.
773 * because their event counter is not touched.
774 */
775 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 776 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 777 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
778 /*
779 * We have to update the tree if mz is on RB-tree or
780 * mem is over its softlimit.
781 */
782 if (excess || mz->on_tree) {
0a31bc97
JW
783 unsigned long flags;
784
785 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
786 /* if on-tree, remove it */
787 if (mz->on_tree)
cf2c8127 788 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
789 /*
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
792 */
cf2c8127 793 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 794 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
795 }
796 }
797}
798
799static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
800{
bb4cc1a8 801 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
802 struct mem_cgroup_per_zone *mz;
803 int nid, zid;
bb4cc1a8 804
e231875b
JZ
805 for_each_node(nid) {
806 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
807 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
808 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 809 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
810 }
811 }
812}
813
814static struct mem_cgroup_per_zone *
815__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct rb_node *rightmost = NULL;
818 struct mem_cgroup_per_zone *mz;
819
820retry:
821 mz = NULL;
822 rightmost = rb_last(&mctz->rb_root);
823 if (!rightmost)
824 goto done; /* Nothing to reclaim from */
825
826 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
827 /*
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
831 */
cf2c8127 832 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 833 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 834 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
835 goto retry;
836done:
837 return mz;
838}
839
840static struct mem_cgroup_per_zone *
841mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
842{
843 struct mem_cgroup_per_zone *mz;
844
0a31bc97 845 spin_lock_irq(&mctz->lock);
bb4cc1a8 846 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 847 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
848 return mz;
849}
850
711d3d2c
KH
851/*
852 * Implementation Note: reading percpu statistics for memcg.
853 *
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
858 *
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
864 *
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
868 * implemented.
869 */
c0ff4b85 870static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 871 enum mem_cgroup_stat_index idx)
c62b1a3b 872{
7a159cc9 873 long val = 0;
c62b1a3b 874 int cpu;
c62b1a3b 875
711d3d2c
KH
876 get_online_cpus();
877 for_each_online_cpu(cpu)
c0ff4b85 878 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 879#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
880 spin_lock(&memcg->pcp_counter_lock);
881 val += memcg->nocpu_base.count[idx];
882 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
883#endif
884 put_online_cpus();
c62b1a3b
KH
885 return val;
886}
887
c0ff4b85 888static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
889 enum mem_cgroup_events_index idx)
890{
891 unsigned long val = 0;
892 int cpu;
893
9c567512 894 get_online_cpus();
e9f8974f 895 for_each_online_cpu(cpu)
c0ff4b85 896 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 897#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
898 spin_lock(&memcg->pcp_counter_lock);
899 val += memcg->nocpu_base.events[idx];
900 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 901#endif
9c567512 902 put_online_cpus();
e9f8974f
JW
903 return val;
904}
905
c0ff4b85 906static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 907 struct page *page,
0a31bc97 908 int nr_pages)
d52aa412 909{
b2402857
KH
910 /*
911 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
912 * counted as CACHE even if it's on ANON LRU.
913 */
0a31bc97 914 if (PageAnon(page))
b2402857 915 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 916 nr_pages);
d52aa412 917 else
b2402857 918 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 919 nr_pages);
55e462b0 920
b070e65c
DR
921 if (PageTransHuge(page))
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
923 nr_pages);
924
e401f176
KH
925 /* pagein of a big page is an event. So, ignore page size */
926 if (nr_pages > 0)
c0ff4b85 927 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 928 else {
c0ff4b85 929 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
930 nr_pages = -nr_pages; /* for event */
931 }
e401f176 932
13114716 933 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
934}
935
e231875b 936unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
937{
938 struct mem_cgroup_per_zone *mz;
939
940 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
941 return mz->lru_size[lru];
942}
943
e231875b
JZ
944static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
945 int nid,
946 unsigned int lru_mask)
bb2a0de9 947{
e231875b 948 unsigned long nr = 0;
889976db
YH
949 int zid;
950
e231875b 951 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 952
e231875b
JZ
953 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
954 struct mem_cgroup_per_zone *mz;
955 enum lru_list lru;
956
957 for_each_lru(lru) {
958 if (!(BIT(lru) & lru_mask))
959 continue;
960 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
961 nr += mz->lru_size[lru];
962 }
963 }
964 return nr;
889976db 965}
bb2a0de9 966
c0ff4b85 967static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 968 unsigned int lru_mask)
6d12e2d8 969{
e231875b 970 unsigned long nr = 0;
889976db 971 int nid;
6d12e2d8 972
31aaea4a 973 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
974 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
975 return nr;
d52aa412
KH
976}
977
f53d7ce3
JW
978static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
979 enum mem_cgroup_events_target target)
7a159cc9
JW
980{
981 unsigned long val, next;
982
13114716 983 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 984 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 985 /* from time_after() in jiffies.h */
f53d7ce3
JW
986 if ((long)next - (long)val < 0) {
987 switch (target) {
988 case MEM_CGROUP_TARGET_THRESH:
989 next = val + THRESHOLDS_EVENTS_TARGET;
990 break;
bb4cc1a8
AM
991 case MEM_CGROUP_TARGET_SOFTLIMIT:
992 next = val + SOFTLIMIT_EVENTS_TARGET;
993 break;
f53d7ce3
JW
994 case MEM_CGROUP_TARGET_NUMAINFO:
995 next = val + NUMAINFO_EVENTS_TARGET;
996 break;
997 default:
998 break;
999 }
1000 __this_cpu_write(memcg->stat->targets[target], next);
1001 return true;
7a159cc9 1002 }
f53d7ce3 1003 return false;
d2265e6f
KH
1004}
1005
1006/*
1007 * Check events in order.
1008 *
1009 */
c0ff4b85 1010static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
1011{
1012 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1015 bool do_softlimit;
82b3f2a7 1016 bool do_numainfo __maybe_unused;
f53d7ce3 1017
bb4cc1a8
AM
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1020#if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023#endif
c0ff4b85 1024 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1025 if (unlikely(do_softlimit))
1026 mem_cgroup_update_tree(memcg, page);
453a9bf3 1027#if MAX_NUMNODES > 1
f53d7ce3 1028 if (unlikely(do_numainfo))
c0ff4b85 1029 atomic_inc(&memcg->numainfo_events);
453a9bf3 1030#endif
0a31bc97 1031 }
d2265e6f
KH
1032}
1033
cf475ad2 1034struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1035{
31a78f23
BS
1036 /*
1037 * mm_update_next_owner() may clear mm->owner to NULL
1038 * if it races with swapoff, page migration, etc.
1039 * So this can be called with p == NULL.
1040 */
1041 if (unlikely(!p))
1042 return NULL;
1043
073219e9 1044 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1045}
1046
df381975 1047static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1048{
c0ff4b85 1049 struct mem_cgroup *memcg = NULL;
0b7f569e 1050
54595fe2
KH
1051 rcu_read_lock();
1052 do {
6f6acb00
MH
1053 /*
1054 * Page cache insertions can happen withou an
1055 * actual mm context, e.g. during disk probing
1056 * on boot, loopback IO, acct() writes etc.
1057 */
1058 if (unlikely(!mm))
df381975 1059 memcg = root_mem_cgroup;
6f6acb00
MH
1060 else {
1061 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1062 if (unlikely(!memcg))
1063 memcg = root_mem_cgroup;
1064 }
ec903c0c 1065 } while (!css_tryget_online(&memcg->css));
54595fe2 1066 rcu_read_unlock();
c0ff4b85 1067 return memcg;
54595fe2
KH
1068}
1069
16248d8f
MH
1070/*
1071 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1072 * ref. count) or NULL if the whole root's subtree has been visited.
1073 *
1074 * helper function to be used by mem_cgroup_iter
1075 */
1076static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1077 struct mem_cgroup *last_visited)
16248d8f 1078{
492eb21b 1079 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1080
bd8815a6 1081 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1082skip_node:
492eb21b 1083 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1084
1085 /*
1086 * Even if we found a group we have to make sure it is
1087 * alive. css && !memcg means that the groups should be
1088 * skipped and we should continue the tree walk.
1089 * last_visited css is safe to use because it is
1090 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1091 *
1092 * We do not take a reference on the root of the tree walk
1093 * because we might race with the root removal when it would
1094 * be the only node in the iterated hierarchy and mem_cgroup_iter
1095 * would end up in an endless loop because it expects that at
1096 * least one valid node will be returned. Root cannot disappear
1097 * because caller of the iterator should hold it already so
1098 * skipping css reference should be safe.
16248d8f 1099 */
492eb21b 1100 if (next_css) {
2f7dd7a4
JW
1101 struct mem_cgroup *memcg = mem_cgroup_from_css(next_css);
1102
1103 if (next_css == &root->css)
1104 return memcg;
1105
1106 if (css_tryget_online(next_css)) {
1107 /*
1108 * Make sure the memcg is initialized:
1109 * mem_cgroup_css_online() orders the the
1110 * initialization against setting the flag.
1111 */
1112 if (smp_load_acquire(&memcg->initialized))
1113 return memcg;
1114 css_put(next_css);
1115 }
0eef6156
MH
1116
1117 prev_css = next_css;
1118 goto skip_node;
16248d8f
MH
1119 }
1120
1121 return NULL;
1122}
1123
519ebea3
JW
1124static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1125{
1126 /*
1127 * When a group in the hierarchy below root is destroyed, the
1128 * hierarchy iterator can no longer be trusted since it might
1129 * have pointed to the destroyed group. Invalidate it.
1130 */
1131 atomic_inc(&root->dead_count);
1132}
1133
1134static struct mem_cgroup *
1135mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1136 struct mem_cgroup *root,
1137 int *sequence)
1138{
1139 struct mem_cgroup *position = NULL;
1140 /*
1141 * A cgroup destruction happens in two stages: offlining and
1142 * release. They are separated by a RCU grace period.
1143 *
1144 * If the iterator is valid, we may still race with an
1145 * offlining. The RCU lock ensures the object won't be
1146 * released, tryget will fail if we lost the race.
1147 */
1148 *sequence = atomic_read(&root->dead_count);
1149 if (iter->last_dead_count == *sequence) {
1150 smp_rmb();
1151 position = iter->last_visited;
ecc736fc
MH
1152
1153 /*
1154 * We cannot take a reference to root because we might race
1155 * with root removal and returning NULL would end up in
1156 * an endless loop on the iterator user level when root
1157 * would be returned all the time.
1158 */
1159 if (position && position != root &&
ec903c0c 1160 !css_tryget_online(&position->css))
519ebea3
JW
1161 position = NULL;
1162 }
1163 return position;
1164}
1165
1166static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1167 struct mem_cgroup *last_visited,
1168 struct mem_cgroup *new_position,
ecc736fc 1169 struct mem_cgroup *root,
519ebea3
JW
1170 int sequence)
1171{
ecc736fc
MH
1172 /* root reference counting symmetric to mem_cgroup_iter_load */
1173 if (last_visited && last_visited != root)
519ebea3
JW
1174 css_put(&last_visited->css);
1175 /*
1176 * We store the sequence count from the time @last_visited was
1177 * loaded successfully instead of rereading it here so that we
1178 * don't lose destruction events in between. We could have
1179 * raced with the destruction of @new_position after all.
1180 */
1181 iter->last_visited = new_position;
1182 smp_wmb();
1183 iter->last_dead_count = sequence;
1184}
1185
5660048c
JW
1186/**
1187 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1188 * @root: hierarchy root
1189 * @prev: previously returned memcg, NULL on first invocation
1190 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1191 *
1192 * Returns references to children of the hierarchy below @root, or
1193 * @root itself, or %NULL after a full round-trip.
1194 *
1195 * Caller must pass the return value in @prev on subsequent
1196 * invocations for reference counting, or use mem_cgroup_iter_break()
1197 * to cancel a hierarchy walk before the round-trip is complete.
1198 *
1199 * Reclaimers can specify a zone and a priority level in @reclaim to
1200 * divide up the memcgs in the hierarchy among all concurrent
1201 * reclaimers operating on the same zone and priority.
1202 */
694fbc0f 1203struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1204 struct mem_cgroup *prev,
694fbc0f 1205 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1206{
9f3a0d09 1207 struct mem_cgroup *memcg = NULL;
542f85f9 1208 struct mem_cgroup *last_visited = NULL;
711d3d2c 1209
694fbc0f
AM
1210 if (mem_cgroup_disabled())
1211 return NULL;
5660048c 1212
9f3a0d09
JW
1213 if (!root)
1214 root = root_mem_cgroup;
7d74b06f 1215
9f3a0d09 1216 if (prev && !reclaim)
542f85f9 1217 last_visited = prev;
14067bb3 1218
9f3a0d09
JW
1219 if (!root->use_hierarchy && root != root_mem_cgroup) {
1220 if (prev)
c40046f3 1221 goto out_css_put;
694fbc0f 1222 return root;
9f3a0d09 1223 }
14067bb3 1224
542f85f9 1225 rcu_read_lock();
9f3a0d09 1226 while (!memcg) {
527a5ec9 1227 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1228 int uninitialized_var(seq);
711d3d2c 1229
527a5ec9 1230 if (reclaim) {
527a5ec9
JW
1231 struct mem_cgroup_per_zone *mz;
1232
e231875b 1233 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
527a5ec9 1234 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1235 if (prev && reclaim->generation != iter->generation) {
5f578161 1236 iter->last_visited = NULL;
542f85f9
MH
1237 goto out_unlock;
1238 }
5f578161 1239
519ebea3 1240 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1241 }
7d74b06f 1242
694fbc0f 1243 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1244
527a5ec9 1245 if (reclaim) {
ecc736fc
MH
1246 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1247 seq);
542f85f9 1248
19f39402 1249 if (!memcg)
527a5ec9
JW
1250 iter->generation++;
1251 else if (!prev && memcg)
1252 reclaim->generation = iter->generation;
1253 }
9f3a0d09 1254
694fbc0f 1255 if (prev && !memcg)
542f85f9 1256 goto out_unlock;
9f3a0d09 1257 }
542f85f9
MH
1258out_unlock:
1259 rcu_read_unlock();
c40046f3
MH
1260out_css_put:
1261 if (prev && prev != root)
1262 css_put(&prev->css);
1263
9f3a0d09 1264 return memcg;
14067bb3 1265}
7d74b06f 1266
5660048c
JW
1267/**
1268 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1269 * @root: hierarchy root
1270 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1271 */
1272void mem_cgroup_iter_break(struct mem_cgroup *root,
1273 struct mem_cgroup *prev)
9f3a0d09
JW
1274{
1275 if (!root)
1276 root = root_mem_cgroup;
1277 if (prev && prev != root)
1278 css_put(&prev->css);
1279}
7d74b06f 1280
9f3a0d09
JW
1281/*
1282 * Iteration constructs for visiting all cgroups (under a tree). If
1283 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1284 * be used for reference counting.
1285 */
1286#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1287 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1288 iter != NULL; \
527a5ec9 1289 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1290
9f3a0d09 1291#define for_each_mem_cgroup(iter) \
527a5ec9 1292 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1293 iter != NULL; \
527a5ec9 1294 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1295
68ae564b 1296void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1297{
c0ff4b85 1298 struct mem_cgroup *memcg;
456f998e 1299
456f998e 1300 rcu_read_lock();
c0ff4b85
R
1301 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1302 if (unlikely(!memcg))
456f998e
YH
1303 goto out;
1304
1305 switch (idx) {
456f998e 1306 case PGFAULT:
0e574a93
JW
1307 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1308 break;
1309 case PGMAJFAULT:
1310 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1311 break;
1312 default:
1313 BUG();
1314 }
1315out:
1316 rcu_read_unlock();
1317}
68ae564b 1318EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1319
925b7673
JW
1320/**
1321 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1322 * @zone: zone of the wanted lruvec
fa9add64 1323 * @memcg: memcg of the wanted lruvec
925b7673
JW
1324 *
1325 * Returns the lru list vector holding pages for the given @zone and
1326 * @mem. This can be the global zone lruvec, if the memory controller
1327 * is disabled.
1328 */
1329struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1330 struct mem_cgroup *memcg)
1331{
1332 struct mem_cgroup_per_zone *mz;
bea8c150 1333 struct lruvec *lruvec;
925b7673 1334
bea8c150
HD
1335 if (mem_cgroup_disabled()) {
1336 lruvec = &zone->lruvec;
1337 goto out;
1338 }
925b7673 1339
e231875b 1340 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1341 lruvec = &mz->lruvec;
1342out:
1343 /*
1344 * Since a node can be onlined after the mem_cgroup was created,
1345 * we have to be prepared to initialize lruvec->zone here;
1346 * and if offlined then reonlined, we need to reinitialize it.
1347 */
1348 if (unlikely(lruvec->zone != zone))
1349 lruvec->zone = zone;
1350 return lruvec;
925b7673
JW
1351}
1352
925b7673 1353/**
fa9add64 1354 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1355 * @page: the page
fa9add64 1356 * @zone: zone of the page
925b7673 1357 */
fa9add64 1358struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1359{
08e552c6 1360 struct mem_cgroup_per_zone *mz;
925b7673
JW
1361 struct mem_cgroup *memcg;
1362 struct page_cgroup *pc;
bea8c150 1363 struct lruvec *lruvec;
6d12e2d8 1364
bea8c150
HD
1365 if (mem_cgroup_disabled()) {
1366 lruvec = &zone->lruvec;
1367 goto out;
1368 }
925b7673 1369
08e552c6 1370 pc = lookup_page_cgroup(page);
38c5d72f 1371 memcg = pc->mem_cgroup;
7512102c
HD
1372
1373 /*
fa9add64 1374 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1375 * an uncharged page off lru does nothing to secure
1376 * its former mem_cgroup from sudden removal.
1377 *
1378 * Our caller holds lru_lock, and PageCgroupUsed is updated
1379 * under page_cgroup lock: between them, they make all uses
1380 * of pc->mem_cgroup safe.
1381 */
fa9add64 1382 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1383 pc->mem_cgroup = memcg = root_mem_cgroup;
1384
e231875b 1385 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1386 lruvec = &mz->lruvec;
1387out:
1388 /*
1389 * Since a node can be onlined after the mem_cgroup was created,
1390 * we have to be prepared to initialize lruvec->zone here;
1391 * and if offlined then reonlined, we need to reinitialize it.
1392 */
1393 if (unlikely(lruvec->zone != zone))
1394 lruvec->zone = zone;
1395 return lruvec;
08e552c6 1396}
b69408e8 1397
925b7673 1398/**
fa9add64
HD
1399 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1400 * @lruvec: mem_cgroup per zone lru vector
1401 * @lru: index of lru list the page is sitting on
1402 * @nr_pages: positive when adding or negative when removing
925b7673 1403 *
fa9add64
HD
1404 * This function must be called when a page is added to or removed from an
1405 * lru list.
3f58a829 1406 */
fa9add64
HD
1407void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1408 int nr_pages)
3f58a829
MK
1409{
1410 struct mem_cgroup_per_zone *mz;
fa9add64 1411 unsigned long *lru_size;
3f58a829
MK
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
fa9add64
HD
1416 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1417 lru_size = mz->lru_size + lru;
1418 *lru_size += nr_pages;
1419 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1420}
544122e5 1421
3e92041d 1422/*
c0ff4b85 1423 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1424 * hierarchy subtree
1425 */
c3ac9a8a
JW
1426bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1427 struct mem_cgroup *memcg)
3e92041d 1428{
91c63734
JW
1429 if (root_memcg == memcg)
1430 return true;
3a981f48 1431 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1432 return false;
b47f77b5 1433 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1434}
1435
1436static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1437 struct mem_cgroup *memcg)
1438{
1439 bool ret;
1440
91c63734 1441 rcu_read_lock();
c3ac9a8a 1442 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1443 rcu_read_unlock();
1444 return ret;
3e92041d
MH
1445}
1446
ffbdccf5
DR
1447bool task_in_mem_cgroup(struct task_struct *task,
1448 const struct mem_cgroup *memcg)
4c4a2214 1449{
0b7f569e 1450 struct mem_cgroup *curr = NULL;
158e0a2d 1451 struct task_struct *p;
ffbdccf5 1452 bool ret;
4c4a2214 1453
158e0a2d 1454 p = find_lock_task_mm(task);
de077d22 1455 if (p) {
df381975 1456 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1457 task_unlock(p);
1458 } else {
1459 /*
1460 * All threads may have already detached their mm's, but the oom
1461 * killer still needs to detect if they have already been oom
1462 * killed to prevent needlessly killing additional tasks.
1463 */
ffbdccf5 1464 rcu_read_lock();
de077d22
DR
1465 curr = mem_cgroup_from_task(task);
1466 if (curr)
1467 css_get(&curr->css);
ffbdccf5 1468 rcu_read_unlock();
de077d22 1469 }
d31f56db 1470 /*
c0ff4b85 1471 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1472 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1473 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1474 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1475 */
c0ff4b85 1476 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1477 css_put(&curr->css);
4c4a2214
DR
1478 return ret;
1479}
1480
c56d5c7d 1481int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1482{
9b272977 1483 unsigned long inactive_ratio;
14797e23 1484 unsigned long inactive;
9b272977 1485 unsigned long active;
c772be93 1486 unsigned long gb;
14797e23 1487
4d7dcca2
HD
1488 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1489 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1490
c772be93
KM
1491 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1492 if (gb)
1493 inactive_ratio = int_sqrt(10 * gb);
1494 else
1495 inactive_ratio = 1;
1496
9b272977 1497 return inactive * inactive_ratio < active;
14797e23
KM
1498}
1499
3e32cb2e 1500#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1501 container_of(counter, struct mem_cgroup, member)
1502
19942822 1503/**
9d11ea9f 1504 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1505 * @memcg: the memory cgroup
19942822 1506 *
9d11ea9f 1507 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1508 * pages.
19942822 1509 */
c0ff4b85 1510static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1511{
3e32cb2e
JW
1512 unsigned long margin = 0;
1513 unsigned long count;
1514 unsigned long limit;
9d11ea9f 1515
3e32cb2e
JW
1516 count = page_counter_read(&memcg->memory);
1517 limit = ACCESS_ONCE(memcg->memory.limit);
1518 if (count < limit)
1519 margin = limit - count;
1520
1521 if (do_swap_account) {
1522 count = page_counter_read(&memcg->memsw);
1523 limit = ACCESS_ONCE(memcg->memsw.limit);
1524 if (count <= limit)
1525 margin = min(margin, limit - count);
1526 }
1527
1528 return margin;
19942822
JW
1529}
1530
1f4c025b 1531int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1532{
a7885eb8 1533 /* root ? */
14208b0e 1534 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1535 return vm_swappiness;
1536
bf1ff263 1537 return memcg->swappiness;
a7885eb8
KM
1538}
1539
619d094b
KH
1540/*
1541 * memcg->moving_account is used for checking possibility that some thread is
1542 * calling move_account(). When a thread on CPU-A starts moving pages under
1543 * a memcg, other threads should check memcg->moving_account under
1544 * rcu_read_lock(), like this:
1545 *
1546 * CPU-A CPU-B
1547 * rcu_read_lock()
1548 * memcg->moving_account+1 if (memcg->mocing_account)
1549 * take heavy locks.
1550 * synchronize_rcu() update something.
1551 * rcu_read_unlock()
1552 * start move here.
1553 */
4331f7d3 1554
c0ff4b85 1555static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1556{
619d094b 1557 atomic_inc(&memcg->moving_account);
32047e2a
KH
1558 synchronize_rcu();
1559}
1560
c0ff4b85 1561static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1562{
619d094b
KH
1563 /*
1564 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1565 * We check NULL in callee rather than caller.
1566 */
d7365e78 1567 if (memcg)
619d094b 1568 atomic_dec(&memcg->moving_account);
32047e2a 1569}
619d094b 1570
32047e2a 1571/*
bdcbb659 1572 * A routine for checking "mem" is under move_account() or not.
32047e2a 1573 *
bdcbb659
QH
1574 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1575 * moving cgroups. This is for waiting at high-memory pressure
1576 * caused by "move".
32047e2a 1577 */
c0ff4b85 1578static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1579{
2bd9bb20
KH
1580 struct mem_cgroup *from;
1581 struct mem_cgroup *to;
4b534334 1582 bool ret = false;
2bd9bb20
KH
1583 /*
1584 * Unlike task_move routines, we access mc.to, mc.from not under
1585 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1586 */
1587 spin_lock(&mc.lock);
1588 from = mc.from;
1589 to = mc.to;
1590 if (!from)
1591 goto unlock;
3e92041d 1592
c0ff4b85
R
1593 ret = mem_cgroup_same_or_subtree(memcg, from)
1594 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1595unlock:
1596 spin_unlock(&mc.lock);
4b534334
KH
1597 return ret;
1598}
1599
c0ff4b85 1600static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1601{
1602 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1603 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1604 DEFINE_WAIT(wait);
1605 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1606 /* moving charge context might have finished. */
1607 if (mc.moving_task)
1608 schedule();
1609 finish_wait(&mc.waitq, &wait);
1610 return true;
1611 }
1612 }
1613 return false;
1614}
1615
312734c0
KH
1616/*
1617 * Take this lock when
1618 * - a code tries to modify page's memcg while it's USED.
1619 * - a code tries to modify page state accounting in a memcg.
312734c0
KH
1620 */
1621static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1622 unsigned long *flags)
1623{
1624 spin_lock_irqsave(&memcg->move_lock, *flags);
1625}
1626
1627static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1628 unsigned long *flags)
1629{
1630 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1631}
1632
58cf188e 1633#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1634/**
58cf188e 1635 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1636 * @memcg: The memory cgroup that went over limit
1637 * @p: Task that is going to be killed
1638 *
1639 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1640 * enabled
1641 */
1642void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1643{
e61734c5 1644 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1645 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1646 struct mem_cgroup *iter;
1647 unsigned int i;
e222432b 1648
58cf188e 1649 if (!p)
e222432b
BS
1650 return;
1651
08088cb9 1652 mutex_lock(&oom_info_lock);
e222432b
BS
1653 rcu_read_lock();
1654
e61734c5
TH
1655 pr_info("Task in ");
1656 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1657 pr_info(" killed as a result of limit of ");
1658 pr_cont_cgroup_path(memcg->css.cgroup);
1659 pr_info("\n");
e222432b 1660
e222432b
BS
1661 rcu_read_unlock();
1662
3e32cb2e
JW
1663 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1664 K((u64)page_counter_read(&memcg->memory)),
1665 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1666 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1667 K((u64)page_counter_read(&memcg->memsw)),
1668 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1669 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->kmem)),
1671 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1672
1673 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1674 pr_info("Memory cgroup stats for ");
1675 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1676 pr_cont(":");
1677
1678 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1679 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1680 continue;
1681 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1682 K(mem_cgroup_read_stat(iter, i)));
1683 }
1684
1685 for (i = 0; i < NR_LRU_LISTS; i++)
1686 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1687 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1688
1689 pr_cont("\n");
1690 }
08088cb9 1691 mutex_unlock(&oom_info_lock);
e222432b
BS
1692}
1693
81d39c20
KH
1694/*
1695 * This function returns the number of memcg under hierarchy tree. Returns
1696 * 1(self count) if no children.
1697 */
c0ff4b85 1698static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1699{
1700 int num = 0;
7d74b06f
KH
1701 struct mem_cgroup *iter;
1702
c0ff4b85 1703 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1704 num++;
81d39c20
KH
1705 return num;
1706}
1707
a63d83f4
DR
1708/*
1709 * Return the memory (and swap, if configured) limit for a memcg.
1710 */
3e32cb2e 1711static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1712{
3e32cb2e 1713 unsigned long limit;
a63d83f4 1714
3e32cb2e 1715 limit = memcg->memory.limit;
9a5a8f19 1716 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1717 unsigned long memsw_limit;
9a5a8f19 1718
3e32cb2e
JW
1719 memsw_limit = memcg->memsw.limit;
1720 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1721 }
9a5a8f19 1722 return limit;
a63d83f4
DR
1723}
1724
19965460
DR
1725static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1726 int order)
9cbb78bb
DR
1727{
1728 struct mem_cgroup *iter;
1729 unsigned long chosen_points = 0;
1730 unsigned long totalpages;
1731 unsigned int points = 0;
1732 struct task_struct *chosen = NULL;
1733
876aafbf 1734 /*
465adcf1
DR
1735 * If current has a pending SIGKILL or is exiting, then automatically
1736 * select it. The goal is to allow it to allocate so that it may
1737 * quickly exit and free its memory.
876aafbf 1738 */
465adcf1 1739 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1740 set_thread_flag(TIF_MEMDIE);
1741 return;
1742 }
1743
1744 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1745 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1746 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1747 struct css_task_iter it;
9cbb78bb
DR
1748 struct task_struct *task;
1749
72ec7029
TH
1750 css_task_iter_start(&iter->css, &it);
1751 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1752 switch (oom_scan_process_thread(task, totalpages, NULL,
1753 false)) {
1754 case OOM_SCAN_SELECT:
1755 if (chosen)
1756 put_task_struct(chosen);
1757 chosen = task;
1758 chosen_points = ULONG_MAX;
1759 get_task_struct(chosen);
1760 /* fall through */
1761 case OOM_SCAN_CONTINUE:
1762 continue;
1763 case OOM_SCAN_ABORT:
72ec7029 1764 css_task_iter_end(&it);
9cbb78bb
DR
1765 mem_cgroup_iter_break(memcg, iter);
1766 if (chosen)
1767 put_task_struct(chosen);
1768 return;
1769 case OOM_SCAN_OK:
1770 break;
1771 };
1772 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1773 if (!points || points < chosen_points)
1774 continue;
1775 /* Prefer thread group leaders for display purposes */
1776 if (points == chosen_points &&
1777 thread_group_leader(chosen))
1778 continue;
1779
1780 if (chosen)
1781 put_task_struct(chosen);
1782 chosen = task;
1783 chosen_points = points;
1784 get_task_struct(chosen);
9cbb78bb 1785 }
72ec7029 1786 css_task_iter_end(&it);
9cbb78bb
DR
1787 }
1788
1789 if (!chosen)
1790 return;
1791 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1792 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1793 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1794}
1795
4d0c066d
KH
1796/**
1797 * test_mem_cgroup_node_reclaimable
dad7557e 1798 * @memcg: the target memcg
4d0c066d
KH
1799 * @nid: the node ID to be checked.
1800 * @noswap : specify true here if the user wants flle only information.
1801 *
1802 * This function returns whether the specified memcg contains any
1803 * reclaimable pages on a node. Returns true if there are any reclaimable
1804 * pages in the node.
1805 */
c0ff4b85 1806static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1807 int nid, bool noswap)
1808{
c0ff4b85 1809 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1810 return true;
1811 if (noswap || !total_swap_pages)
1812 return false;
c0ff4b85 1813 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1814 return true;
1815 return false;
1816
1817}
bb4cc1a8 1818#if MAX_NUMNODES > 1
889976db
YH
1819
1820/*
1821 * Always updating the nodemask is not very good - even if we have an empty
1822 * list or the wrong list here, we can start from some node and traverse all
1823 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1824 *
1825 */
c0ff4b85 1826static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1827{
1828 int nid;
453a9bf3
KH
1829 /*
1830 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1831 * pagein/pageout changes since the last update.
1832 */
c0ff4b85 1833 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1834 return;
c0ff4b85 1835 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1836 return;
1837
889976db 1838 /* make a nodemask where this memcg uses memory from */
31aaea4a 1839 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1840
31aaea4a 1841 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1842
c0ff4b85
R
1843 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1844 node_clear(nid, memcg->scan_nodes);
889976db 1845 }
453a9bf3 1846
c0ff4b85
R
1847 atomic_set(&memcg->numainfo_events, 0);
1848 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1849}
1850
1851/*
1852 * Selecting a node where we start reclaim from. Because what we need is just
1853 * reducing usage counter, start from anywhere is O,K. Considering
1854 * memory reclaim from current node, there are pros. and cons.
1855 *
1856 * Freeing memory from current node means freeing memory from a node which
1857 * we'll use or we've used. So, it may make LRU bad. And if several threads
1858 * hit limits, it will see a contention on a node. But freeing from remote
1859 * node means more costs for memory reclaim because of memory latency.
1860 *
1861 * Now, we use round-robin. Better algorithm is welcomed.
1862 */
c0ff4b85 1863int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1864{
1865 int node;
1866
c0ff4b85
R
1867 mem_cgroup_may_update_nodemask(memcg);
1868 node = memcg->last_scanned_node;
889976db 1869
c0ff4b85 1870 node = next_node(node, memcg->scan_nodes);
889976db 1871 if (node == MAX_NUMNODES)
c0ff4b85 1872 node = first_node(memcg->scan_nodes);
889976db
YH
1873 /*
1874 * We call this when we hit limit, not when pages are added to LRU.
1875 * No LRU may hold pages because all pages are UNEVICTABLE or
1876 * memcg is too small and all pages are not on LRU. In that case,
1877 * we use curret node.
1878 */
1879 if (unlikely(node == MAX_NUMNODES))
1880 node = numa_node_id();
1881
c0ff4b85 1882 memcg->last_scanned_node = node;
889976db
YH
1883 return node;
1884}
1885
bb4cc1a8
AM
1886/*
1887 * Check all nodes whether it contains reclaimable pages or not.
1888 * For quick scan, we make use of scan_nodes. This will allow us to skip
1889 * unused nodes. But scan_nodes is lazily updated and may not cotain
1890 * enough new information. We need to do double check.
1891 */
1892static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1893{
1894 int nid;
1895
1896 /*
1897 * quick check...making use of scan_node.
1898 * We can skip unused nodes.
1899 */
1900 if (!nodes_empty(memcg->scan_nodes)) {
1901 for (nid = first_node(memcg->scan_nodes);
1902 nid < MAX_NUMNODES;
1903 nid = next_node(nid, memcg->scan_nodes)) {
1904
1905 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1906 return true;
1907 }
1908 }
1909 /*
1910 * Check rest of nodes.
1911 */
1912 for_each_node_state(nid, N_MEMORY) {
1913 if (node_isset(nid, memcg->scan_nodes))
1914 continue;
1915 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1916 return true;
1917 }
1918 return false;
1919}
1920
889976db 1921#else
c0ff4b85 1922int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1923{
1924 return 0;
1925}
4d0c066d 1926
bb4cc1a8
AM
1927static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1928{
1929 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1930}
889976db
YH
1931#endif
1932
0608f43d
AM
1933static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1934 struct zone *zone,
1935 gfp_t gfp_mask,
1936 unsigned long *total_scanned)
1937{
1938 struct mem_cgroup *victim = NULL;
1939 int total = 0;
1940 int loop = 0;
1941 unsigned long excess;
1942 unsigned long nr_scanned;
1943 struct mem_cgroup_reclaim_cookie reclaim = {
1944 .zone = zone,
1945 .priority = 0,
1946 };
1947
3e32cb2e 1948 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1949
1950 while (1) {
1951 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1952 if (!victim) {
1953 loop++;
1954 if (loop >= 2) {
1955 /*
1956 * If we have not been able to reclaim
1957 * anything, it might because there are
1958 * no reclaimable pages under this hierarchy
1959 */
1960 if (!total)
1961 break;
1962 /*
1963 * We want to do more targeted reclaim.
1964 * excess >> 2 is not to excessive so as to
1965 * reclaim too much, nor too less that we keep
1966 * coming back to reclaim from this cgroup
1967 */
1968 if (total >= (excess >> 2) ||
1969 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1970 break;
1971 }
1972 continue;
1973 }
1974 if (!mem_cgroup_reclaimable(victim, false))
1975 continue;
1976 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1977 zone, &nr_scanned);
1978 *total_scanned += nr_scanned;
3e32cb2e 1979 if (!soft_limit_excess(root_memcg))
0608f43d 1980 break;
6d61ef40 1981 }
0608f43d
AM
1982 mem_cgroup_iter_break(root_memcg, victim);
1983 return total;
6d61ef40
BS
1984}
1985
0056f4e6
JW
1986#ifdef CONFIG_LOCKDEP
1987static struct lockdep_map memcg_oom_lock_dep_map = {
1988 .name = "memcg_oom_lock",
1989};
1990#endif
1991
fb2a6fc5
JW
1992static DEFINE_SPINLOCK(memcg_oom_lock);
1993
867578cb
KH
1994/*
1995 * Check OOM-Killer is already running under our hierarchy.
1996 * If someone is running, return false.
1997 */
fb2a6fc5 1998static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1999{
79dfdacc 2000 struct mem_cgroup *iter, *failed = NULL;
a636b327 2001
fb2a6fc5
JW
2002 spin_lock(&memcg_oom_lock);
2003
9f3a0d09 2004 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2005 if (iter->oom_lock) {
79dfdacc
MH
2006 /*
2007 * this subtree of our hierarchy is already locked
2008 * so we cannot give a lock.
2009 */
79dfdacc 2010 failed = iter;
9f3a0d09
JW
2011 mem_cgroup_iter_break(memcg, iter);
2012 break;
23751be0
JW
2013 } else
2014 iter->oom_lock = true;
7d74b06f 2015 }
867578cb 2016
fb2a6fc5
JW
2017 if (failed) {
2018 /*
2019 * OK, we failed to lock the whole subtree so we have
2020 * to clean up what we set up to the failing subtree
2021 */
2022 for_each_mem_cgroup_tree(iter, memcg) {
2023 if (iter == failed) {
2024 mem_cgroup_iter_break(memcg, iter);
2025 break;
2026 }
2027 iter->oom_lock = false;
79dfdacc 2028 }
0056f4e6
JW
2029 } else
2030 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2031
2032 spin_unlock(&memcg_oom_lock);
2033
2034 return !failed;
a636b327 2035}
0b7f569e 2036
fb2a6fc5 2037static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2038{
7d74b06f
KH
2039 struct mem_cgroup *iter;
2040
fb2a6fc5 2041 spin_lock(&memcg_oom_lock);
0056f4e6 2042 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2043 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2044 iter->oom_lock = false;
fb2a6fc5 2045 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2046}
2047
c0ff4b85 2048static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2049{
2050 struct mem_cgroup *iter;
2051
c0ff4b85 2052 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2053 atomic_inc(&iter->under_oom);
2054}
2055
c0ff4b85 2056static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2057{
2058 struct mem_cgroup *iter;
2059
867578cb
KH
2060 /*
2061 * When a new child is created while the hierarchy is under oom,
2062 * mem_cgroup_oom_lock() may not be called. We have to use
2063 * atomic_add_unless() here.
2064 */
c0ff4b85 2065 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2066 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2067}
2068
867578cb
KH
2069static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2070
dc98df5a 2071struct oom_wait_info {
d79154bb 2072 struct mem_cgroup *memcg;
dc98df5a
KH
2073 wait_queue_t wait;
2074};
2075
2076static int memcg_oom_wake_function(wait_queue_t *wait,
2077 unsigned mode, int sync, void *arg)
2078{
d79154bb
HD
2079 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2080 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2081 struct oom_wait_info *oom_wait_info;
2082
2083 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2084 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2085
dc98df5a 2086 /*
d79154bb 2087 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2088 * Then we can use css_is_ancestor without taking care of RCU.
2089 */
c0ff4b85
R
2090 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2091 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2092 return 0;
dc98df5a
KH
2093 return autoremove_wake_function(wait, mode, sync, arg);
2094}
2095
c0ff4b85 2096static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2097{
3812c8c8 2098 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2099 /* for filtering, pass "memcg" as argument. */
2100 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2101}
2102
c0ff4b85 2103static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2104{
c0ff4b85
R
2105 if (memcg && atomic_read(&memcg->under_oom))
2106 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2107}
2108
3812c8c8 2109static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2110{
3812c8c8
JW
2111 if (!current->memcg_oom.may_oom)
2112 return;
867578cb 2113 /*
49426420
JW
2114 * We are in the middle of the charge context here, so we
2115 * don't want to block when potentially sitting on a callstack
2116 * that holds all kinds of filesystem and mm locks.
2117 *
2118 * Also, the caller may handle a failed allocation gracefully
2119 * (like optional page cache readahead) and so an OOM killer
2120 * invocation might not even be necessary.
2121 *
2122 * That's why we don't do anything here except remember the
2123 * OOM context and then deal with it at the end of the page
2124 * fault when the stack is unwound, the locks are released,
2125 * and when we know whether the fault was overall successful.
867578cb 2126 */
49426420
JW
2127 css_get(&memcg->css);
2128 current->memcg_oom.memcg = memcg;
2129 current->memcg_oom.gfp_mask = mask;
2130 current->memcg_oom.order = order;
3812c8c8
JW
2131}
2132
2133/**
2134 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2135 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2136 *
49426420
JW
2137 * This has to be called at the end of a page fault if the memcg OOM
2138 * handler was enabled.
3812c8c8 2139 *
49426420 2140 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2141 * sleep on a waitqueue until the userspace task resolves the
2142 * situation. Sleeping directly in the charge context with all kinds
2143 * of locks held is not a good idea, instead we remember an OOM state
2144 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2145 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2146 *
2147 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2148 * completed, %false otherwise.
3812c8c8 2149 */
49426420 2150bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2151{
49426420 2152 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2153 struct oom_wait_info owait;
49426420 2154 bool locked;
3812c8c8
JW
2155
2156 /* OOM is global, do not handle */
3812c8c8 2157 if (!memcg)
49426420 2158 return false;
3812c8c8 2159
49426420
JW
2160 if (!handle)
2161 goto cleanup;
3812c8c8
JW
2162
2163 owait.memcg = memcg;
2164 owait.wait.flags = 0;
2165 owait.wait.func = memcg_oom_wake_function;
2166 owait.wait.private = current;
2167 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2168
3812c8c8 2169 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2170 mem_cgroup_mark_under_oom(memcg);
2171
2172 locked = mem_cgroup_oom_trylock(memcg);
2173
2174 if (locked)
2175 mem_cgroup_oom_notify(memcg);
2176
2177 if (locked && !memcg->oom_kill_disable) {
2178 mem_cgroup_unmark_under_oom(memcg);
2179 finish_wait(&memcg_oom_waitq, &owait.wait);
2180 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2181 current->memcg_oom.order);
2182 } else {
3812c8c8 2183 schedule();
49426420
JW
2184 mem_cgroup_unmark_under_oom(memcg);
2185 finish_wait(&memcg_oom_waitq, &owait.wait);
2186 }
2187
2188 if (locked) {
fb2a6fc5
JW
2189 mem_cgroup_oom_unlock(memcg);
2190 /*
2191 * There is no guarantee that an OOM-lock contender
2192 * sees the wakeups triggered by the OOM kill
2193 * uncharges. Wake any sleepers explicitely.
2194 */
2195 memcg_oom_recover(memcg);
2196 }
49426420
JW
2197cleanup:
2198 current->memcg_oom.memcg = NULL;
3812c8c8 2199 css_put(&memcg->css);
867578cb 2200 return true;
0b7f569e
KH
2201}
2202
d7365e78
JW
2203/**
2204 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2205 * @page: page that is going to change accounted state
2206 * @locked: &memcg->move_lock slowpath was taken
2207 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2208 *
d7365e78
JW
2209 * This function must mark the beginning of an accounted page state
2210 * change to prevent double accounting when the page is concurrently
2211 * being moved to another memcg:
32047e2a 2212 *
d7365e78
JW
2213 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2214 * if (TestClearPageState(page))
2215 * mem_cgroup_update_page_stat(memcg, state, -1);
2216 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2217 *
d7365e78
JW
2218 * The RCU lock is held throughout the transaction. The fast path can
2219 * get away without acquiring the memcg->move_lock (@locked is false)
2220 * because page moving starts with an RCU grace period.
32047e2a 2221 *
d7365e78
JW
2222 * The RCU lock also protects the memcg from being freed when the page
2223 * state that is going to change is the only thing preventing the page
2224 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2225 * which allows migration to go ahead and uncharge the page before the
2226 * account transaction might be complete.
d69b042f 2227 */
d7365e78
JW
2228struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2229 bool *locked,
2230 unsigned long *flags)
89c06bd5
KH
2231{
2232 struct mem_cgroup *memcg;
2233 struct page_cgroup *pc;
2234
d7365e78
JW
2235 rcu_read_lock();
2236
2237 if (mem_cgroup_disabled())
2238 return NULL;
2239
89c06bd5
KH
2240 pc = lookup_page_cgroup(page);
2241again:
2242 memcg = pc->mem_cgroup;
2243 if (unlikely(!memcg || !PageCgroupUsed(pc)))
d7365e78
JW
2244 return NULL;
2245
2246 *locked = false;
bdcbb659 2247 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2248 return memcg;
89c06bd5
KH
2249
2250 move_lock_mem_cgroup(memcg, flags);
2251 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2252 move_unlock_mem_cgroup(memcg, flags);
2253 goto again;
2254 }
2255 *locked = true;
d7365e78
JW
2256
2257 return memcg;
89c06bd5
KH
2258}
2259
d7365e78
JW
2260/**
2261 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2262 * @memcg: the memcg that was accounted against
2263 * @locked: value received from mem_cgroup_begin_page_stat()
2264 * @flags: value received from mem_cgroup_begin_page_stat()
2265 */
2266void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2267 unsigned long flags)
89c06bd5 2268{
d7365e78
JW
2269 if (memcg && locked)
2270 move_unlock_mem_cgroup(memcg, &flags);
89c06bd5 2271
d7365e78 2272 rcu_read_unlock();
89c06bd5
KH
2273}
2274
d7365e78
JW
2275/**
2276 * mem_cgroup_update_page_stat - update page state statistics
2277 * @memcg: memcg to account against
2278 * @idx: page state item to account
2279 * @val: number of pages (positive or negative)
2280 *
2281 * See mem_cgroup_begin_page_stat() for locking requirements.
2282 */
2283void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2284 enum mem_cgroup_stat_index idx, int val)
d69b042f 2285{
658b72c5 2286 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2287
d7365e78
JW
2288 if (memcg)
2289 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2290}
26174efd 2291
cdec2e42
KH
2292/*
2293 * size of first charge trial. "32" comes from vmscan.c's magic value.
2294 * TODO: maybe necessary to use big numbers in big irons.
2295 */
7ec99d62 2296#define CHARGE_BATCH 32U
cdec2e42
KH
2297struct memcg_stock_pcp {
2298 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2299 unsigned int nr_pages;
cdec2e42 2300 struct work_struct work;
26fe6168 2301 unsigned long flags;
a0db00fc 2302#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2303};
2304static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2305static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2306
a0956d54
SS
2307/**
2308 * consume_stock: Try to consume stocked charge on this cpu.
2309 * @memcg: memcg to consume from.
2310 * @nr_pages: how many pages to charge.
2311 *
2312 * The charges will only happen if @memcg matches the current cpu's memcg
2313 * stock, and at least @nr_pages are available in that stock. Failure to
2314 * service an allocation will refill the stock.
2315 *
2316 * returns true if successful, false otherwise.
cdec2e42 2317 */
a0956d54 2318static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2319{
2320 struct memcg_stock_pcp *stock;
3e32cb2e 2321 bool ret = false;
cdec2e42 2322
a0956d54 2323 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2324 return ret;
a0956d54 2325
cdec2e42 2326 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2327 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2328 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2329 ret = true;
2330 }
cdec2e42
KH
2331 put_cpu_var(memcg_stock);
2332 return ret;
2333}
2334
2335/*
3e32cb2e 2336 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2337 */
2338static void drain_stock(struct memcg_stock_pcp *stock)
2339{
2340 struct mem_cgroup *old = stock->cached;
2341
11c9ea4e 2342 if (stock->nr_pages) {
3e32cb2e 2343 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2344 if (do_swap_account)
3e32cb2e 2345 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2346 stock->nr_pages = 0;
cdec2e42
KH
2347 }
2348 stock->cached = NULL;
cdec2e42
KH
2349}
2350
2351/*
2352 * This must be called under preempt disabled or must be called by
2353 * a thread which is pinned to local cpu.
2354 */
2355static void drain_local_stock(struct work_struct *dummy)
2356{
7c8e0181 2357 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2358 drain_stock(stock);
26fe6168 2359 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2360}
2361
e4777496
MH
2362static void __init memcg_stock_init(void)
2363{
2364 int cpu;
2365
2366 for_each_possible_cpu(cpu) {
2367 struct memcg_stock_pcp *stock =
2368 &per_cpu(memcg_stock, cpu);
2369 INIT_WORK(&stock->work, drain_local_stock);
2370 }
2371}
2372
cdec2e42 2373/*
3e32cb2e 2374 * Cache charges(val) to local per_cpu area.
320cc51d 2375 * This will be consumed by consume_stock() function, later.
cdec2e42 2376 */
c0ff4b85 2377static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2378{
2379 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2380
c0ff4b85 2381 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2382 drain_stock(stock);
c0ff4b85 2383 stock->cached = memcg;
cdec2e42 2384 }
11c9ea4e 2385 stock->nr_pages += nr_pages;
cdec2e42
KH
2386 put_cpu_var(memcg_stock);
2387}
2388
2389/*
c0ff4b85 2390 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2391 * of the hierarchy under it. sync flag says whether we should block
2392 * until the work is done.
cdec2e42 2393 */
c0ff4b85 2394static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2395{
26fe6168 2396 int cpu, curcpu;
d38144b7 2397
cdec2e42 2398 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2399 get_online_cpus();
5af12d0e 2400 curcpu = get_cpu();
cdec2e42
KH
2401 for_each_online_cpu(cpu) {
2402 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2403 struct mem_cgroup *memcg;
26fe6168 2404
c0ff4b85
R
2405 memcg = stock->cached;
2406 if (!memcg || !stock->nr_pages)
26fe6168 2407 continue;
c0ff4b85 2408 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2409 continue;
d1a05b69
MH
2410 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2411 if (cpu == curcpu)
2412 drain_local_stock(&stock->work);
2413 else
2414 schedule_work_on(cpu, &stock->work);
2415 }
cdec2e42 2416 }
5af12d0e 2417 put_cpu();
d38144b7
MH
2418
2419 if (!sync)
2420 goto out;
2421
2422 for_each_online_cpu(cpu) {
2423 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2424 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2425 flush_work(&stock->work);
2426 }
2427out:
f894ffa8 2428 put_online_cpus();
d38144b7
MH
2429}
2430
2431/*
2432 * Tries to drain stocked charges in other cpus. This function is asynchronous
2433 * and just put a work per cpu for draining localy on each cpu. Caller can
3e32cb2e 2434 * expects some charges will be back later but cannot wait for it.
d38144b7 2435 */
c0ff4b85 2436static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2437{
9f50fad6
MH
2438 /*
2439 * If someone calls draining, avoid adding more kworker runs.
2440 */
2441 if (!mutex_trylock(&percpu_charge_mutex))
2442 return;
c0ff4b85 2443 drain_all_stock(root_memcg, false);
9f50fad6 2444 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2445}
2446
2447/* This is a synchronous drain interface. */
c0ff4b85 2448static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2449{
2450 /* called when force_empty is called */
9f50fad6 2451 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2452 drain_all_stock(root_memcg, true);
9f50fad6 2453 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2454}
2455
711d3d2c
KH
2456/*
2457 * This function drains percpu counter value from DEAD cpu and
2458 * move it to local cpu. Note that this function can be preempted.
2459 */
c0ff4b85 2460static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2461{
2462 int i;
2463
c0ff4b85 2464 spin_lock(&memcg->pcp_counter_lock);
6104621d 2465 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2466 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2467
c0ff4b85
R
2468 per_cpu(memcg->stat->count[i], cpu) = 0;
2469 memcg->nocpu_base.count[i] += x;
711d3d2c 2470 }
e9f8974f 2471 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2472 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2473
c0ff4b85
R
2474 per_cpu(memcg->stat->events[i], cpu) = 0;
2475 memcg->nocpu_base.events[i] += x;
e9f8974f 2476 }
c0ff4b85 2477 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2478}
2479
0db0628d 2480static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2481 unsigned long action,
2482 void *hcpu)
2483{
2484 int cpu = (unsigned long)hcpu;
2485 struct memcg_stock_pcp *stock;
711d3d2c 2486 struct mem_cgroup *iter;
cdec2e42 2487
619d094b 2488 if (action == CPU_ONLINE)
1489ebad 2489 return NOTIFY_OK;
1489ebad 2490
d833049b 2491 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2492 return NOTIFY_OK;
711d3d2c 2493
9f3a0d09 2494 for_each_mem_cgroup(iter)
711d3d2c
KH
2495 mem_cgroup_drain_pcp_counter(iter, cpu);
2496
cdec2e42
KH
2497 stock = &per_cpu(memcg_stock, cpu);
2498 drain_stock(stock);
2499 return NOTIFY_OK;
2500}
2501
00501b53
JW
2502static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503 unsigned int nr_pages)
8a9f3ccd 2504{
7ec99d62 2505 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2507 struct mem_cgroup *mem_over_limit;
3e32cb2e 2508 struct page_counter *counter;
6539cc05 2509 unsigned long nr_reclaimed;
b70a2a21
JW
2510 bool may_swap = true;
2511 bool drained = false;
05b84301 2512 int ret = 0;
a636b327 2513
ce00a967
JW
2514 if (mem_cgroup_is_root(memcg))
2515 goto done;
6539cc05 2516retry:
b6b6cc72
MH
2517 if (consume_stock(memcg, nr_pages))
2518 goto done;
8a9f3ccd 2519
3fbe7244 2520 if (!do_swap_account ||
3e32cb2e
JW
2521 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2523 goto done_restock;
3fbe7244 2524 if (do_swap_account)
3e32cb2e
JW
2525 page_counter_uncharge(&memcg->memsw, batch);
2526 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2527 } else {
3e32cb2e 2528 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2529 may_swap = false;
3fbe7244 2530 }
7a81b88c 2531
6539cc05
JW
2532 if (batch > nr_pages) {
2533 batch = nr_pages;
2534 goto retry;
2535 }
6d61ef40 2536
06b078fc
JW
2537 /*
2538 * Unlike in global OOM situations, memcg is not in a physical
2539 * memory shortage. Allow dying and OOM-killed tasks to
2540 * bypass the last charges so that they can exit quickly and
2541 * free their memory.
2542 */
2543 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2544 fatal_signal_pending(current) ||
2545 current->flags & PF_EXITING))
2546 goto bypass;
2547
2548 if (unlikely(task_in_memcg_oom(current)))
2549 goto nomem;
2550
6539cc05
JW
2551 if (!(gfp_mask & __GFP_WAIT))
2552 goto nomem;
4b534334 2553
b70a2a21
JW
2554 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2555 gfp_mask, may_swap);
6539cc05 2556
61e02c74 2557 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2558 goto retry;
28c34c29 2559
b70a2a21
JW
2560 if (!drained) {
2561 drain_all_stock_async(mem_over_limit);
2562 drained = true;
2563 goto retry;
2564 }
2565
28c34c29
JW
2566 if (gfp_mask & __GFP_NORETRY)
2567 goto nomem;
6539cc05
JW
2568 /*
2569 * Even though the limit is exceeded at this point, reclaim
2570 * may have been able to free some pages. Retry the charge
2571 * before killing the task.
2572 *
2573 * Only for regular pages, though: huge pages are rather
2574 * unlikely to succeed so close to the limit, and we fall back
2575 * to regular pages anyway in case of failure.
2576 */
61e02c74 2577 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2578 goto retry;
2579 /*
2580 * At task move, charge accounts can be doubly counted. So, it's
2581 * better to wait until the end of task_move if something is going on.
2582 */
2583 if (mem_cgroup_wait_acct_move(mem_over_limit))
2584 goto retry;
2585
9b130619
JW
2586 if (nr_retries--)
2587 goto retry;
2588
06b078fc
JW
2589 if (gfp_mask & __GFP_NOFAIL)
2590 goto bypass;
2591
6539cc05
JW
2592 if (fatal_signal_pending(current))
2593 goto bypass;
2594
61e02c74 2595 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2596nomem:
6d1fdc48 2597 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2598 return -ENOMEM;
867578cb 2599bypass:
ce00a967 2600 return -EINTR;
6539cc05
JW
2601
2602done_restock:
2603 if (batch > nr_pages)
2604 refill_stock(memcg, batch - nr_pages);
2605done:
05b84301 2606 return ret;
7a81b88c 2607}
8a9f3ccd 2608
00501b53 2609static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2610{
ce00a967
JW
2611 if (mem_cgroup_is_root(memcg))
2612 return;
2613
3e32cb2e 2614 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2615 if (do_swap_account)
3e32cb2e 2616 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2617}
2618
a3b2d692
KH
2619/*
2620 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2621 * rcu_read_lock(). The caller is responsible for calling
2622 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2623 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2624 */
2625static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2626{
a3b2d692
KH
2627 /* ID 0 is unused ID */
2628 if (!id)
2629 return NULL;
34c00c31 2630 return mem_cgroup_from_id(id);
a3b2d692
KH
2631}
2632
0a31bc97
JW
2633/*
2634 * try_get_mem_cgroup_from_page - look up page's memcg association
2635 * @page: the page
2636 *
2637 * Look up, get a css reference, and return the memcg that owns @page.
2638 *
2639 * The page must be locked to prevent racing with swap-in and page
2640 * cache charges. If coming from an unlocked page table, the caller
2641 * must ensure the page is on the LRU or this can race with charging.
2642 */
e42d9d5d 2643struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2644{
c0ff4b85 2645 struct mem_cgroup *memcg = NULL;
3c776e64 2646 struct page_cgroup *pc;
a3b2d692 2647 unsigned short id;
b5a84319
KH
2648 swp_entry_t ent;
2649
309381fe 2650 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2651
3c776e64 2652 pc = lookup_page_cgroup(page);
a3b2d692 2653 if (PageCgroupUsed(pc)) {
c0ff4b85 2654 memcg = pc->mem_cgroup;
ec903c0c 2655 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2656 memcg = NULL;
e42d9d5d 2657 } else if (PageSwapCache(page)) {
3c776e64 2658 ent.val = page_private(page);
9fb4b7cc 2659 id = lookup_swap_cgroup_id(ent);
a3b2d692 2660 rcu_read_lock();
c0ff4b85 2661 memcg = mem_cgroup_lookup(id);
ec903c0c 2662 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2663 memcg = NULL;
a3b2d692 2664 rcu_read_unlock();
3c776e64 2665 }
c0ff4b85 2666 return memcg;
b5a84319
KH
2667}
2668
0a31bc97
JW
2669static void lock_page_lru(struct page *page, int *isolated)
2670{
2671 struct zone *zone = page_zone(page);
2672
2673 spin_lock_irq(&zone->lru_lock);
2674 if (PageLRU(page)) {
2675 struct lruvec *lruvec;
2676
2677 lruvec = mem_cgroup_page_lruvec(page, zone);
2678 ClearPageLRU(page);
2679 del_page_from_lru_list(page, lruvec, page_lru(page));
2680 *isolated = 1;
2681 } else
2682 *isolated = 0;
2683}
2684
2685static void unlock_page_lru(struct page *page, int isolated)
2686{
2687 struct zone *zone = page_zone(page);
2688
2689 if (isolated) {
2690 struct lruvec *lruvec;
2691
2692 lruvec = mem_cgroup_page_lruvec(page, zone);
2693 VM_BUG_ON_PAGE(PageLRU(page), page);
2694 SetPageLRU(page);
2695 add_page_to_lru_list(page, lruvec, page_lru(page));
2696 }
2697 spin_unlock_irq(&zone->lru_lock);
2698}
2699
00501b53 2700static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2701 bool lrucare)
7a81b88c 2702{
ce587e65 2703 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2704 int isolated;
9ce70c02 2705
309381fe 2706 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2707 /*
2708 * we don't need page_cgroup_lock about tail pages, becase they are not
2709 * accessed by any other context at this point.
2710 */
9ce70c02
HD
2711
2712 /*
2713 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2714 * may already be on some other mem_cgroup's LRU. Take care of it.
2715 */
0a31bc97
JW
2716 if (lrucare)
2717 lock_page_lru(page, &isolated);
9ce70c02 2718
0a31bc97
JW
2719 /*
2720 * Nobody should be changing or seriously looking at
2721 * pc->mem_cgroup and pc->flags at this point:
2722 *
2723 * - the page is uncharged
2724 *
2725 * - the page is off-LRU
2726 *
2727 * - an anonymous fault has exclusive page access, except for
2728 * a locked page table
2729 *
2730 * - a page cache insertion, a swapin fault, or a migration
2731 * have the page locked
2732 */
c0ff4b85 2733 pc->mem_cgroup = memcg;
0a31bc97 2734 pc->flags = PCG_USED | PCG_MEM | (do_swap_account ? PCG_MEMSW : 0);
9ce70c02 2735
0a31bc97
JW
2736 if (lrucare)
2737 unlock_page_lru(page, isolated);
7a81b88c 2738}
66e1707b 2739
7ae1e1d0 2740#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2741/*
2742 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2743 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2744 */
2745static DEFINE_MUTEX(memcg_slab_mutex);
2746
d6441637
VD
2747static DEFINE_MUTEX(activate_kmem_mutex);
2748
1f458cbf
GC
2749/*
2750 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2751 * in the memcg_cache_params struct.
2752 */
2753static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2754{
2755 struct kmem_cache *cachep;
2756
2757 VM_BUG_ON(p->is_root_cache);
2758 cachep = p->root_cache;
7a67d7ab 2759 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2760}
2761
749c5415 2762#ifdef CONFIG_SLABINFO
2da8ca82 2763static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2764{
2da8ca82 2765 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2766 struct memcg_cache_params *params;
2767
cf2b8fbf 2768 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2769 return -EIO;
2770
2771 print_slabinfo_header(m);
2772
bd673145 2773 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2774 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2775 cache_show(memcg_params_to_cache(params), m);
bd673145 2776 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2777
2778 return 0;
2779}
2780#endif
2781
3e32cb2e
JW
2782static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2783 unsigned long nr_pages)
7ae1e1d0 2784{
3e32cb2e 2785 struct page_counter *counter;
7ae1e1d0 2786 int ret = 0;
7ae1e1d0 2787
3e32cb2e
JW
2788 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2789 if (ret < 0)
7ae1e1d0
GC
2790 return ret;
2791
3e32cb2e 2792 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2793 if (ret == -EINTR) {
2794 /*
00501b53
JW
2795 * try_charge() chose to bypass to root due to OOM kill or
2796 * fatal signal. Since our only options are to either fail
2797 * the allocation or charge it to this cgroup, do it as a
2798 * temporary condition. But we can't fail. From a kmem/slab
2799 * perspective, the cache has already been selected, by
2800 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2801 * our minds.
2802 *
2803 * This condition will only trigger if the task entered
00501b53
JW
2804 * memcg_charge_kmem in a sane state, but was OOM-killed
2805 * during try_charge() above. Tasks that were already dying
2806 * when the allocation triggers should have been already
7ae1e1d0
GC
2807 * directed to the root cgroup in memcontrol.h
2808 */
3e32cb2e 2809 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2810 if (do_swap_account)
3e32cb2e 2811 page_counter_charge(&memcg->memsw, nr_pages);
7ae1e1d0
GC
2812 ret = 0;
2813 } else if (ret)
3e32cb2e 2814 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2815
2816 return ret;
2817}
2818
3e32cb2e
JW
2819static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2820 unsigned long nr_pages)
7ae1e1d0 2821{
3e32cb2e 2822 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2823 if (do_swap_account)
3e32cb2e 2824 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682
GC
2825
2826 /* Not down to 0 */
3e32cb2e 2827 if (page_counter_uncharge(&memcg->kmem, nr_pages))
7de37682
GC
2828 return;
2829
10d5ebf4
LZ
2830 /*
2831 * Releases a reference taken in kmem_cgroup_css_offline in case
2832 * this last uncharge is racing with the offlining code or it is
2833 * outliving the memcg existence.
2834 *
2835 * The memory barrier imposed by test&clear is paired with the
2836 * explicit one in memcg_kmem_mark_dead().
2837 */
7de37682 2838 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2839 css_put(&memcg->css);
7ae1e1d0
GC
2840}
2841
2633d7a0
GC
2842/*
2843 * helper for acessing a memcg's index. It will be used as an index in the
2844 * child cache array in kmem_cache, and also to derive its name. This function
2845 * will return -1 when this is not a kmem-limited memcg.
2846 */
2847int memcg_cache_id(struct mem_cgroup *memcg)
2848{
2849 return memcg ? memcg->kmemcg_id : -1;
2850}
2851
f3bb3043 2852static int memcg_alloc_cache_id(void)
55007d84 2853{
f3bb3043
VD
2854 int id, size;
2855 int err;
2856
2857 id = ida_simple_get(&kmem_limited_groups,
2858 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2859 if (id < 0)
2860 return id;
55007d84 2861
f3bb3043
VD
2862 if (id < memcg_limited_groups_array_size)
2863 return id;
2864
2865 /*
2866 * There's no space for the new id in memcg_caches arrays,
2867 * so we have to grow them.
2868 */
2869
2870 size = 2 * (id + 1);
55007d84
GC
2871 if (size < MEMCG_CACHES_MIN_SIZE)
2872 size = MEMCG_CACHES_MIN_SIZE;
2873 else if (size > MEMCG_CACHES_MAX_SIZE)
2874 size = MEMCG_CACHES_MAX_SIZE;
2875
f3bb3043
VD
2876 mutex_lock(&memcg_slab_mutex);
2877 err = memcg_update_all_caches(size);
2878 mutex_unlock(&memcg_slab_mutex);
2879
2880 if (err) {
2881 ida_simple_remove(&kmem_limited_groups, id);
2882 return err;
2883 }
2884 return id;
2885}
2886
2887static void memcg_free_cache_id(int id)
2888{
2889 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2890}
2891
2892/*
2893 * We should update the current array size iff all caches updates succeed. This
2894 * can only be done from the slab side. The slab mutex needs to be held when
2895 * calling this.
2896 */
2897void memcg_update_array_size(int num)
2898{
f3bb3043 2899 memcg_limited_groups_array_size = num;
55007d84
GC
2900}
2901
776ed0f0
VD
2902static void memcg_register_cache(struct mem_cgroup *memcg,
2903 struct kmem_cache *root_cache)
2633d7a0 2904{
93f39eea
VD
2905 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2906 memcg_slab_mutex */
bd673145 2907 struct kmem_cache *cachep;
d7f25f8a
GC
2908 int id;
2909
bd673145
VD
2910 lockdep_assert_held(&memcg_slab_mutex);
2911
2912 id = memcg_cache_id(memcg);
2913
2914 /*
2915 * Since per-memcg caches are created asynchronously on first
2916 * allocation (see memcg_kmem_get_cache()), several threads can try to
2917 * create the same cache, but only one of them may succeed.
2918 */
2919 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2920 return;
2921
073ee1c6 2922 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2923 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2924 /*
bd673145
VD
2925 * If we could not create a memcg cache, do not complain, because
2926 * that's not critical at all as we can always proceed with the root
2927 * cache.
2edefe11 2928 */
bd673145
VD
2929 if (!cachep)
2930 return;
2edefe11 2931
33a690c4 2932 css_get(&memcg->css);
bd673145 2933 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2934
d7f25f8a 2935 /*
959c8963
VD
2936 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2937 * barrier here to ensure nobody will see the kmem_cache partially
2938 * initialized.
d7f25f8a 2939 */
959c8963
VD
2940 smp_wmb();
2941
bd673145
VD
2942 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2943 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2944}
d7f25f8a 2945
776ed0f0 2946static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2947{
bd673145 2948 struct kmem_cache *root_cache;
1aa13254
VD
2949 struct mem_cgroup *memcg;
2950 int id;
2951
bd673145 2952 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2953
bd673145 2954 BUG_ON(is_root_cache(cachep));
2edefe11 2955
bd673145
VD
2956 root_cache = cachep->memcg_params->root_cache;
2957 memcg = cachep->memcg_params->memcg;
96403da2 2958 id = memcg_cache_id(memcg);
d7f25f8a 2959
bd673145
VD
2960 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2961 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2962
bd673145
VD
2963 list_del(&cachep->memcg_params->list);
2964
2965 kmem_cache_destroy(cachep);
33a690c4
VD
2966
2967 /* drop the reference taken in memcg_register_cache */
2968 css_put(&memcg->css);
2633d7a0
GC
2969}
2970
0e9d92f2
GC
2971/*
2972 * During the creation a new cache, we need to disable our accounting mechanism
2973 * altogether. This is true even if we are not creating, but rather just
2974 * enqueing new caches to be created.
2975 *
2976 * This is because that process will trigger allocations; some visible, like
2977 * explicit kmallocs to auxiliary data structures, name strings and internal
2978 * cache structures; some well concealed, like INIT_WORK() that can allocate
2979 * objects during debug.
2980 *
2981 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2982 * to it. This may not be a bounded recursion: since the first cache creation
2983 * failed to complete (waiting on the allocation), we'll just try to create the
2984 * cache again, failing at the same point.
2985 *
2986 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2987 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2988 * inside the following two functions.
2989 */
2990static inline void memcg_stop_kmem_account(void)
2991{
2992 VM_BUG_ON(!current->mm);
2993 current->memcg_kmem_skip_account++;
2994}
2995
2996static inline void memcg_resume_kmem_account(void)
2997{
2998 VM_BUG_ON(!current->mm);
2999 current->memcg_kmem_skip_account--;
3000}
3001
776ed0f0 3002int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
3003{
3004 struct kmem_cache *c;
b8529907 3005 int i, failed = 0;
7cf27982 3006
bd673145 3007 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
3008 for_each_memcg_cache_index(i) {
3009 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3010 if (!c)
3011 continue;
3012
776ed0f0 3013 memcg_unregister_cache(c);
b8529907
VD
3014
3015 if (cache_from_memcg_idx(s, i))
3016 failed++;
7cf27982 3017 }
bd673145 3018 mutex_unlock(&memcg_slab_mutex);
b8529907 3019 return failed;
7cf27982
GC
3020}
3021
776ed0f0 3022static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3023{
3024 struct kmem_cache *cachep;
bd673145 3025 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
3026
3027 if (!memcg_kmem_is_active(memcg))
3028 return;
3029
bd673145
VD
3030 mutex_lock(&memcg_slab_mutex);
3031 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 3032 cachep = memcg_params_to_cache(params);
bd673145
VD
3033 kmem_cache_shrink(cachep);
3034 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 3035 memcg_unregister_cache(cachep);
1f458cbf 3036 }
bd673145 3037 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
3038}
3039
776ed0f0 3040struct memcg_register_cache_work {
5722d094
VD
3041 struct mem_cgroup *memcg;
3042 struct kmem_cache *cachep;
3043 struct work_struct work;
3044};
3045
776ed0f0 3046static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 3047{
776ed0f0
VD
3048 struct memcg_register_cache_work *cw =
3049 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
3050 struct mem_cgroup *memcg = cw->memcg;
3051 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3052
bd673145 3053 mutex_lock(&memcg_slab_mutex);
776ed0f0 3054 memcg_register_cache(memcg, cachep);
bd673145
VD
3055 mutex_unlock(&memcg_slab_mutex);
3056
5722d094 3057 css_put(&memcg->css);
d7f25f8a
GC
3058 kfree(cw);
3059}
3060
3061/*
3062 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3063 */
776ed0f0
VD
3064static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3065 struct kmem_cache *cachep)
d7f25f8a 3066{
776ed0f0 3067 struct memcg_register_cache_work *cw;
d7f25f8a 3068
776ed0f0 3069 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
3070 if (cw == NULL) {
3071 css_put(&memcg->css);
d7f25f8a
GC
3072 return;
3073 }
3074
3075 cw->memcg = memcg;
3076 cw->cachep = cachep;
3077
776ed0f0 3078 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
3079 schedule_work(&cw->work);
3080}
3081
776ed0f0
VD
3082static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3083 struct kmem_cache *cachep)
0e9d92f2
GC
3084{
3085 /*
3086 * We need to stop accounting when we kmalloc, because if the
3087 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 3088 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
3089 *
3090 * However, it is better to enclose the whole function. Depending on
3091 * the debugging options enabled, INIT_WORK(), for instance, can
3092 * trigger an allocation. This too, will make us recurse. Because at
3093 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3094 * the safest choice is to do it like this, wrapping the whole function.
3095 */
3096 memcg_stop_kmem_account();
776ed0f0 3097 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
3098 memcg_resume_kmem_account();
3099}
c67a8a68
VD
3100
3101int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3102{
3e32cb2e 3103 unsigned int nr_pages = 1 << order;
c67a8a68
VD
3104 int res;
3105
3e32cb2e 3106 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 3107 if (!res)
3e32cb2e 3108 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3109 return res;
3110}
3111
3112void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3113{
3e32cb2e
JW
3114 unsigned int nr_pages = 1 << order;
3115
3116 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
3117 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
3118}
3119
d7f25f8a
GC
3120/*
3121 * Return the kmem_cache we're supposed to use for a slab allocation.
3122 * We try to use the current memcg's version of the cache.
3123 *
3124 * If the cache does not exist yet, if we are the first user of it,
3125 * we either create it immediately, if possible, or create it asynchronously
3126 * in a workqueue.
3127 * In the latter case, we will let the current allocation go through with
3128 * the original cache.
3129 *
3130 * Can't be called in interrupt context or from kernel threads.
3131 * This function needs to be called with rcu_read_lock() held.
3132 */
3133struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3134 gfp_t gfp)
3135{
3136 struct mem_cgroup *memcg;
959c8963 3137 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3138
3139 VM_BUG_ON(!cachep->memcg_params);
3140 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3141
0e9d92f2
GC
3142 if (!current->mm || current->memcg_kmem_skip_account)
3143 return cachep;
3144
d7f25f8a
GC
3145 rcu_read_lock();
3146 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 3147
cf2b8fbf 3148 if (!memcg_kmem_is_active(memcg))
ca0dde97 3149 goto out;
d7f25f8a 3150
959c8963
VD
3151 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3152 if (likely(memcg_cachep)) {
3153 cachep = memcg_cachep;
ca0dde97 3154 goto out;
d7f25f8a
GC
3155 }
3156
ca0dde97 3157 /* The corresponding put will be done in the workqueue. */
ec903c0c 3158 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3159 goto out;
3160 rcu_read_unlock();
3161
3162 /*
3163 * If we are in a safe context (can wait, and not in interrupt
3164 * context), we could be be predictable and return right away.
3165 * This would guarantee that the allocation being performed
3166 * already belongs in the new cache.
3167 *
3168 * However, there are some clashes that can arrive from locking.
3169 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3170 * memcg_create_kmem_cache, this means no further allocation
3171 * could happen with the slab_mutex held. So it's better to
3172 * defer everything.
ca0dde97 3173 */
776ed0f0 3174 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3175 return cachep;
3176out:
3177 rcu_read_unlock();
3178 return cachep;
d7f25f8a 3179}
d7f25f8a 3180
7ae1e1d0
GC
3181/*
3182 * We need to verify if the allocation against current->mm->owner's memcg is
3183 * possible for the given order. But the page is not allocated yet, so we'll
3184 * need a further commit step to do the final arrangements.
3185 *
3186 * It is possible for the task to switch cgroups in this mean time, so at
3187 * commit time, we can't rely on task conversion any longer. We'll then use
3188 * the handle argument to return to the caller which cgroup we should commit
3189 * against. We could also return the memcg directly and avoid the pointer
3190 * passing, but a boolean return value gives better semantics considering
3191 * the compiled-out case as well.
3192 *
3193 * Returning true means the allocation is possible.
3194 */
3195bool
3196__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3197{
3198 struct mem_cgroup *memcg;
3199 int ret;
3200
3201 *_memcg = NULL;
6d42c232
GC
3202
3203 /*
3204 * Disabling accounting is only relevant for some specific memcg
3205 * internal allocations. Therefore we would initially not have such
52383431
VD
3206 * check here, since direct calls to the page allocator that are
3207 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3208 * outside memcg core. We are mostly concerned with cache allocations,
3209 * and by having this test at memcg_kmem_get_cache, we are already able
3210 * to relay the allocation to the root cache and bypass the memcg cache
3211 * altogether.
6d42c232
GC
3212 *
3213 * There is one exception, though: the SLUB allocator does not create
3214 * large order caches, but rather service large kmallocs directly from
3215 * the page allocator. Therefore, the following sequence when backed by
3216 * the SLUB allocator:
3217 *
f894ffa8
AM
3218 * memcg_stop_kmem_account();
3219 * kmalloc(<large_number>)
3220 * memcg_resume_kmem_account();
6d42c232
GC
3221 *
3222 * would effectively ignore the fact that we should skip accounting,
3223 * since it will drive us directly to this function without passing
3224 * through the cache selector memcg_kmem_get_cache. Such large
3225 * allocations are extremely rare but can happen, for instance, for the
3226 * cache arrays. We bring this test here.
3227 */
3228 if (!current->mm || current->memcg_kmem_skip_account)
3229 return true;
3230
df381975 3231 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3232
cf2b8fbf 3233 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3234 css_put(&memcg->css);
3235 return true;
3236 }
3237
3e32cb2e 3238 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3239 if (!ret)
3240 *_memcg = memcg;
7ae1e1d0
GC
3241
3242 css_put(&memcg->css);
3243 return (ret == 0);
3244}
3245
3246void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3247 int order)
3248{
3249 struct page_cgroup *pc;
3250
3251 VM_BUG_ON(mem_cgroup_is_root(memcg));
3252
3253 /* The page allocation failed. Revert */
3254 if (!page) {
3e32cb2e 3255 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3256 return;
3257 }
a840cda6
JW
3258 /*
3259 * The page is freshly allocated and not visible to any
3260 * outside callers yet. Set up pc non-atomically.
3261 */
7ae1e1d0 3262 pc = lookup_page_cgroup(page);
7ae1e1d0 3263 pc->mem_cgroup = memcg;
a840cda6 3264 pc->flags = PCG_USED;
7ae1e1d0
GC
3265}
3266
3267void __memcg_kmem_uncharge_pages(struct page *page, int order)
3268{
3269 struct mem_cgroup *memcg = NULL;
3270 struct page_cgroup *pc;
3271
3272
3273 pc = lookup_page_cgroup(page);
7ae1e1d0
GC
3274 if (!PageCgroupUsed(pc))
3275 return;
3276
a840cda6
JW
3277 memcg = pc->mem_cgroup;
3278 pc->flags = 0;
7ae1e1d0
GC
3279
3280 /*
3281 * We trust that only if there is a memcg associated with the page, it
3282 * is a valid allocation
3283 */
3284 if (!memcg)
3285 return;
3286
309381fe 3287 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3e32cb2e 3288 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0 3289}
1f458cbf 3290#else
776ed0f0 3291static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3292{
3293}
7ae1e1d0
GC
3294#endif /* CONFIG_MEMCG_KMEM */
3295
ca3e0214
KH
3296#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3297
ca3e0214
KH
3298/*
3299 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3300 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3301 * charge/uncharge will be never happen and move_account() is done under
3302 * compound_lock(), so we don't have to take care of races.
ca3e0214 3303 */
e94c8a9c 3304void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3305{
3306 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3307 struct page_cgroup *pc;
b070e65c 3308 struct mem_cgroup *memcg;
e94c8a9c 3309 int i;
ca3e0214 3310
3d37c4a9
KH
3311 if (mem_cgroup_disabled())
3312 return;
b070e65c
DR
3313
3314 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3315 for (i = 1; i < HPAGE_PMD_NR; i++) {
3316 pc = head_pc + i;
b070e65c 3317 pc->mem_cgroup = memcg;
0a31bc97 3318 pc->flags = head_pc->flags;
e94c8a9c 3319 }
b070e65c
DR
3320 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3321 HPAGE_PMD_NR);
ca3e0214 3322}
12d27107 3323#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3324
f817ed48 3325/**
de3638d9 3326 * mem_cgroup_move_account - move account of the page
5564e88b 3327 * @page: the page
7ec99d62 3328 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3329 * @pc: page_cgroup of the page.
3330 * @from: mem_cgroup which the page is moved from.
3331 * @to: mem_cgroup which the page is moved to. @from != @to.
3332 *
3333 * The caller must confirm following.
08e552c6 3334 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3335 * - compound_lock is held when nr_pages > 1
f817ed48 3336 *
2f3479b1
KH
3337 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3338 * from old cgroup.
f817ed48 3339 */
7ec99d62
JW
3340static int mem_cgroup_move_account(struct page *page,
3341 unsigned int nr_pages,
3342 struct page_cgroup *pc,
3343 struct mem_cgroup *from,
2f3479b1 3344 struct mem_cgroup *to)
f817ed48 3345{
de3638d9
JW
3346 unsigned long flags;
3347 int ret;
987eba66 3348
f817ed48 3349 VM_BUG_ON(from == to);
309381fe 3350 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3351 /*
3352 * The page is isolated from LRU. So, collapse function
3353 * will not handle this page. But page splitting can happen.
3354 * Do this check under compound_page_lock(). The caller should
3355 * hold it.
3356 */
3357 ret = -EBUSY;
7ec99d62 3358 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3359 goto out;
3360
0a31bc97
JW
3361 /*
3362 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3363 * of its source page while we change it: page migration takes
3364 * both pages off the LRU, but page cache replacement doesn't.
3365 */
3366 if (!trylock_page(page))
3367 goto out;
de3638d9
JW
3368
3369 ret = -EINVAL;
3370 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
0a31bc97 3371 goto out_unlock;
de3638d9 3372
312734c0 3373 move_lock_mem_cgroup(from, &flags);
f817ed48 3374
0a31bc97 3375 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3376 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3377 nr_pages);
3378 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3379 nr_pages);
3380 }
3ea67d06 3381
59d1d256
JW
3382 if (PageWriteback(page)) {
3383 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3384 nr_pages);
3385 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3386 nr_pages);
3387 }
3ea67d06 3388
0a31bc97
JW
3389 /*
3390 * It is safe to change pc->mem_cgroup here because the page
3391 * is referenced, charged, and isolated - we can't race with
3392 * uncharging, charging, migration, or LRU putback.
3393 */
d69b042f 3394
854ffa8d 3395 /* caller should have done css_get */
08e552c6 3396 pc->mem_cgroup = to;
312734c0 3397 move_unlock_mem_cgroup(from, &flags);
de3638d9 3398 ret = 0;
0a31bc97
JW
3399
3400 local_irq_disable();
3401 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3402 memcg_check_events(to, page);
0a31bc97 3403 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3404 memcg_check_events(from, page);
0a31bc97
JW
3405 local_irq_enable();
3406out_unlock:
3407 unlock_page(page);
de3638d9 3408out:
f817ed48
KH
3409 return ret;
3410}
3411
2ef37d3f
MH
3412/**
3413 * mem_cgroup_move_parent - moves page to the parent group
3414 * @page: the page to move
3415 * @pc: page_cgroup of the page
3416 * @child: page's cgroup
3417 *
3418 * move charges to its parent or the root cgroup if the group has no
3419 * parent (aka use_hierarchy==0).
3420 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3421 * mem_cgroup_move_account fails) the failure is always temporary and
3422 * it signals a race with a page removal/uncharge or migration. In the
3423 * first case the page is on the way out and it will vanish from the LRU
3424 * on the next attempt and the call should be retried later.
3425 * Isolation from the LRU fails only if page has been isolated from
3426 * the LRU since we looked at it and that usually means either global
3427 * reclaim or migration going on. The page will either get back to the
3428 * LRU or vanish.
3429 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3430 * (!PageCgroupUsed) or moved to a different group. The page will
3431 * disappear in the next attempt.
f817ed48 3432 */
5564e88b
JW
3433static int mem_cgroup_move_parent(struct page *page,
3434 struct page_cgroup *pc,
6068bf01 3435 struct mem_cgroup *child)
f817ed48 3436{
f817ed48 3437 struct mem_cgroup *parent;
7ec99d62 3438 unsigned int nr_pages;
4be4489f 3439 unsigned long uninitialized_var(flags);
f817ed48
KH
3440 int ret;
3441
d8423011 3442 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3443
57f9fd7d
DN
3444 ret = -EBUSY;
3445 if (!get_page_unless_zero(page))
3446 goto out;
3447 if (isolate_lru_page(page))
3448 goto put;
52dbb905 3449
7ec99d62 3450 nr_pages = hpage_nr_pages(page);
08e552c6 3451
cc926f78
KH
3452 parent = parent_mem_cgroup(child);
3453 /*
3454 * If no parent, move charges to root cgroup.
3455 */
3456 if (!parent)
3457 parent = root_mem_cgroup;
f817ed48 3458
2ef37d3f 3459 if (nr_pages > 1) {
309381fe 3460 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3461 flags = compound_lock_irqsave(page);
2ef37d3f 3462 }
987eba66 3463
cc926f78 3464 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3465 pc, child, parent);
3e32cb2e
JW
3466 if (!ret) {
3467 /* Take charge off the local counters */
3468 page_counter_cancel(&child->memory, nr_pages);
3469 if (do_swap_account)
3470 page_counter_cancel(&child->memsw, nr_pages);
3471 }
8dba474f 3472
7ec99d62 3473 if (nr_pages > 1)
987eba66 3474 compound_unlock_irqrestore(page, flags);
08e552c6 3475 putback_lru_page(page);
57f9fd7d 3476put:
40d58138 3477 put_page(page);
57f9fd7d 3478out:
f817ed48
KH
3479 return ret;
3480}
3481
c255a458 3482#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3483static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3484 bool charge)
d13d1443 3485{
0a31bc97
JW
3486 int val = (charge) ? 1 : -1;
3487 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3488}
02491447
DN
3489
3490/**
3491 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3492 * @entry: swap entry to be moved
3493 * @from: mem_cgroup which the entry is moved from
3494 * @to: mem_cgroup which the entry is moved to
3495 *
3496 * It succeeds only when the swap_cgroup's record for this entry is the same
3497 * as the mem_cgroup's id of @from.
3498 *
3499 * Returns 0 on success, -EINVAL on failure.
3500 *
3e32cb2e 3501 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3502 * both res and memsw, and called css_get().
3503 */
3504static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3505 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3506{
3507 unsigned short old_id, new_id;
3508
34c00c31
LZ
3509 old_id = mem_cgroup_id(from);
3510 new_id = mem_cgroup_id(to);
02491447
DN
3511
3512 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3513 mem_cgroup_swap_statistics(from, false);
483c30b5 3514 mem_cgroup_swap_statistics(to, true);
02491447 3515 /*
483c30b5 3516 * This function is only called from task migration context now.
3e32cb2e 3517 * It postpones page_counter and refcount handling till the end
483c30b5 3518 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3519 * improvement. But we cannot postpone css_get(to) because if
3520 * the process that has been moved to @to does swap-in, the
3521 * refcount of @to might be decreased to 0.
3522 *
3523 * We are in attach() phase, so the cgroup is guaranteed to be
3524 * alive, so we can just call css_get().
02491447 3525 */
4050377b 3526 css_get(&to->css);
02491447
DN
3527 return 0;
3528 }
3529 return -EINVAL;
3530}
3531#else
3532static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3533 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3534{
3535 return -EINVAL;
3536}
8c7c6e34 3537#endif
d13d1443 3538
f212ad7c
DN
3539#ifdef CONFIG_DEBUG_VM
3540static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3541{
3542 struct page_cgroup *pc;
3543
3544 pc = lookup_page_cgroup(page);
cfa44946
JW
3545 /*
3546 * Can be NULL while feeding pages into the page allocator for
3547 * the first time, i.e. during boot or memory hotplug;
3548 * or when mem_cgroup_disabled().
3549 */
f212ad7c
DN
3550 if (likely(pc) && PageCgroupUsed(pc))
3551 return pc;
3552 return NULL;
3553}
3554
3555bool mem_cgroup_bad_page_check(struct page *page)
3556{
3557 if (mem_cgroup_disabled())
3558 return false;
3559
3560 return lookup_page_cgroup_used(page) != NULL;
3561}
3562
3563void mem_cgroup_print_bad_page(struct page *page)
3564{
3565 struct page_cgroup *pc;
3566
3567 pc = lookup_page_cgroup_used(page);
3568 if (pc) {
d045197f
AM
3569 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3570 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3571 }
3572}
3573#endif
3574
3e32cb2e
JW
3575static DEFINE_MUTEX(memcg_limit_mutex);
3576
d38d2a75 3577static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3578 unsigned long limit)
628f4235 3579{
3e32cb2e
JW
3580 unsigned long curusage;
3581 unsigned long oldusage;
3582 bool enlarge = false;
81d39c20 3583 int retry_count;
3e32cb2e 3584 int ret;
81d39c20
KH
3585
3586 /*
3587 * For keeping hierarchical_reclaim simple, how long we should retry
3588 * is depends on callers. We set our retry-count to be function
3589 * of # of children which we should visit in this loop.
3590 */
3e32cb2e
JW
3591 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3592 mem_cgroup_count_children(memcg);
81d39c20 3593
3e32cb2e 3594 oldusage = page_counter_read(&memcg->memory);
628f4235 3595
3e32cb2e 3596 do {
628f4235
KH
3597 if (signal_pending(current)) {
3598 ret = -EINTR;
3599 break;
3600 }
3e32cb2e
JW
3601
3602 mutex_lock(&memcg_limit_mutex);
3603 if (limit > memcg->memsw.limit) {
3604 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3605 ret = -EINVAL;
628f4235
KH
3606 break;
3607 }
3e32cb2e
JW
3608 if (limit > memcg->memory.limit)
3609 enlarge = true;
3610 ret = page_counter_limit(&memcg->memory, limit);
3611 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3612
3613 if (!ret)
3614 break;
3615
b70a2a21
JW
3616 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3617
3e32cb2e 3618 curusage = page_counter_read(&memcg->memory);
81d39c20 3619 /* Usage is reduced ? */
f894ffa8 3620 if (curusage >= oldusage)
81d39c20
KH
3621 retry_count--;
3622 else
3623 oldusage = curusage;
3e32cb2e
JW
3624 } while (retry_count);
3625
3c11ecf4
KH
3626 if (!ret && enlarge)
3627 memcg_oom_recover(memcg);
14797e23 3628
8c7c6e34
KH
3629 return ret;
3630}
3631
338c8431 3632static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3633 unsigned long limit)
8c7c6e34 3634{
3e32cb2e
JW
3635 unsigned long curusage;
3636 unsigned long oldusage;
3637 bool enlarge = false;
81d39c20 3638 int retry_count;
3e32cb2e 3639 int ret;
8c7c6e34 3640
81d39c20 3641 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3642 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3643 mem_cgroup_count_children(memcg);
3644
3645 oldusage = page_counter_read(&memcg->memsw);
3646
3647 do {
8c7c6e34
KH
3648 if (signal_pending(current)) {
3649 ret = -EINTR;
3650 break;
3651 }
3e32cb2e
JW
3652
3653 mutex_lock(&memcg_limit_mutex);
3654 if (limit < memcg->memory.limit) {
3655 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3656 ret = -EINVAL;
8c7c6e34
KH
3657 break;
3658 }
3e32cb2e
JW
3659 if (limit > memcg->memsw.limit)
3660 enlarge = true;
3661 ret = page_counter_limit(&memcg->memsw, limit);
3662 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3663
3664 if (!ret)
3665 break;
3666
b70a2a21
JW
3667 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3668
3e32cb2e 3669 curusage = page_counter_read(&memcg->memsw);
81d39c20 3670 /* Usage is reduced ? */
8c7c6e34 3671 if (curusage >= oldusage)
628f4235 3672 retry_count--;
81d39c20
KH
3673 else
3674 oldusage = curusage;
3e32cb2e
JW
3675 } while (retry_count);
3676
3c11ecf4
KH
3677 if (!ret && enlarge)
3678 memcg_oom_recover(memcg);
3e32cb2e 3679
628f4235
KH
3680 return ret;
3681}
3682
0608f43d
AM
3683unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3684 gfp_t gfp_mask,
3685 unsigned long *total_scanned)
3686{
3687 unsigned long nr_reclaimed = 0;
3688 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3689 unsigned long reclaimed;
3690 int loop = 0;
3691 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3692 unsigned long excess;
0608f43d
AM
3693 unsigned long nr_scanned;
3694
3695 if (order > 0)
3696 return 0;
3697
3698 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3699 /*
3700 * This loop can run a while, specially if mem_cgroup's continuously
3701 * keep exceeding their soft limit and putting the system under
3702 * pressure
3703 */
3704 do {
3705 if (next_mz)
3706 mz = next_mz;
3707 else
3708 mz = mem_cgroup_largest_soft_limit_node(mctz);
3709 if (!mz)
3710 break;
3711
3712 nr_scanned = 0;
3713 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3714 gfp_mask, &nr_scanned);
3715 nr_reclaimed += reclaimed;
3716 *total_scanned += nr_scanned;
0a31bc97 3717 spin_lock_irq(&mctz->lock);
0608f43d
AM
3718
3719 /*
3720 * If we failed to reclaim anything from this memory cgroup
3721 * it is time to move on to the next cgroup
3722 */
3723 next_mz = NULL;
3724 if (!reclaimed) {
3725 do {
3726 /*
3727 * Loop until we find yet another one.
3728 *
3729 * By the time we get the soft_limit lock
3730 * again, someone might have aded the
3731 * group back on the RB tree. Iterate to
3732 * make sure we get a different mem.
3733 * mem_cgroup_largest_soft_limit_node returns
3734 * NULL if no other cgroup is present on
3735 * the tree
3736 */
3737 next_mz =
3738 __mem_cgroup_largest_soft_limit_node(mctz);
3739 if (next_mz == mz)
3740 css_put(&next_mz->memcg->css);
3741 else /* next_mz == NULL or other memcg */
3742 break;
3743 } while (1);
3744 }
cf2c8127 3745 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 3746 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3747 /*
3748 * One school of thought says that we should not add
3749 * back the node to the tree if reclaim returns 0.
3750 * But our reclaim could return 0, simply because due
3751 * to priority we are exposing a smaller subset of
3752 * memory to reclaim from. Consider this as a longer
3753 * term TODO.
3754 */
3755 /* If excess == 0, no tree ops */
cf2c8127 3756 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3757 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3758 css_put(&mz->memcg->css);
3759 loop++;
3760 /*
3761 * Could not reclaim anything and there are no more
3762 * mem cgroups to try or we seem to be looping without
3763 * reclaiming anything.
3764 */
3765 if (!nr_reclaimed &&
3766 (next_mz == NULL ||
3767 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3768 break;
3769 } while (!nr_reclaimed);
3770 if (next_mz)
3771 css_put(&next_mz->memcg->css);
3772 return nr_reclaimed;
3773}
3774
2ef37d3f
MH
3775/**
3776 * mem_cgroup_force_empty_list - clears LRU of a group
3777 * @memcg: group to clear
3778 * @node: NUMA node
3779 * @zid: zone id
3780 * @lru: lru to to clear
3781 *
3c935d18 3782 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3783 * reclaim the pages page themselves - pages are moved to the parent (or root)
3784 * group.
cc847582 3785 */
2ef37d3f 3786static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3787 int node, int zid, enum lru_list lru)
cc847582 3788{
bea8c150 3789 struct lruvec *lruvec;
2ef37d3f 3790 unsigned long flags;
072c56c1 3791 struct list_head *list;
925b7673
JW
3792 struct page *busy;
3793 struct zone *zone;
072c56c1 3794
08e552c6 3795 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3796 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3797 list = &lruvec->lists[lru];
cc847582 3798
f817ed48 3799 busy = NULL;
2ef37d3f 3800 do {
925b7673 3801 struct page_cgroup *pc;
5564e88b
JW
3802 struct page *page;
3803
08e552c6 3804 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3805 if (list_empty(list)) {
08e552c6 3806 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3807 break;
f817ed48 3808 }
925b7673
JW
3809 page = list_entry(list->prev, struct page, lru);
3810 if (busy == page) {
3811 list_move(&page->lru, list);
648bcc77 3812 busy = NULL;
08e552c6 3813 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3814 continue;
3815 }
08e552c6 3816 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3817
925b7673 3818 pc = lookup_page_cgroup(page);
5564e88b 3819
3c935d18 3820 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3821 /* found lock contention or "pc" is obsolete. */
925b7673 3822 busy = page;
f817ed48
KH
3823 } else
3824 busy = NULL;
2a7a0e0f 3825 cond_resched();
2ef37d3f 3826 } while (!list_empty(list));
cc847582
KH
3827}
3828
3829/*
c26251f9
MH
3830 * make mem_cgroup's charge to be 0 if there is no task by moving
3831 * all the charges and pages to the parent.
cc847582 3832 * This enables deleting this mem_cgroup.
c26251f9
MH
3833 *
3834 * Caller is responsible for holding css reference on the memcg.
cc847582 3835 */
ab5196c2 3836static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3837{
c26251f9 3838 int node, zid;
f817ed48 3839
fce66477 3840 do {
52d4b9ac
KH
3841 /* This is for making all *used* pages to be on LRU. */
3842 lru_add_drain_all();
c0ff4b85 3843 drain_all_stock_sync(memcg);
c0ff4b85 3844 mem_cgroup_start_move(memcg);
31aaea4a 3845 for_each_node_state(node, N_MEMORY) {
2ef37d3f 3846 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3847 enum lru_list lru;
3848 for_each_lru(lru) {
2ef37d3f 3849 mem_cgroup_force_empty_list(memcg,
f156ab93 3850 node, zid, lru);
f817ed48 3851 }
1ecaab2b 3852 }
f817ed48 3853 }
c0ff4b85
R
3854 mem_cgroup_end_move(memcg);
3855 memcg_oom_recover(memcg);
52d4b9ac 3856 cond_resched();
f817ed48 3857
2ef37d3f 3858 /*
bea207c8
GC
3859 * Kernel memory may not necessarily be trackable to a specific
3860 * process. So they are not migrated, and therefore we can't
3861 * expect their value to drop to 0 here.
3862 * Having res filled up with kmem only is enough.
3863 *
2ef37d3f
MH
3864 * This is a safety check because mem_cgroup_force_empty_list
3865 * could have raced with mem_cgroup_replace_page_cache callers
3866 * so the lru seemed empty but the page could have been added
3867 * right after the check. RES_USAGE should be safe as we always
3868 * charge before adding to the LRU.
3869 */
3e32cb2e
JW
3870 } while (page_counter_read(&memcg->memory) -
3871 page_counter_read(&memcg->kmem) > 0);
c26251f9
MH
3872}
3873
ea280e7b
TH
3874/*
3875 * Test whether @memcg has children, dead or alive. Note that this
3876 * function doesn't care whether @memcg has use_hierarchy enabled and
3877 * returns %true if there are child csses according to the cgroup
3878 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3879 */
b5f99b53
GC
3880static inline bool memcg_has_children(struct mem_cgroup *memcg)
3881{
ea280e7b
TH
3882 bool ret;
3883
696ac172 3884 /*
ea280e7b
TH
3885 * The lock does not prevent addition or deletion of children, but
3886 * it prevents a new child from being initialized based on this
3887 * parent in css_online(), so it's enough to decide whether
3888 * hierarchically inherited attributes can still be changed or not.
696ac172 3889 */
ea280e7b
TH
3890 lockdep_assert_held(&memcg_create_mutex);
3891
3892 rcu_read_lock();
3893 ret = css_next_child(NULL, &memcg->css);
3894 rcu_read_unlock();
3895 return ret;
b5f99b53
GC
3896}
3897
c26251f9
MH
3898/*
3899 * Reclaims as many pages from the given memcg as possible and moves
3900 * the rest to the parent.
3901 *
3902 * Caller is responsible for holding css reference for memcg.
3903 */
3904static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3905{
3906 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3907
c1e862c1
KH
3908 /* we call try-to-free pages for make this cgroup empty */
3909 lru_add_drain_all();
f817ed48 3910 /* try to free all pages in this cgroup */
3e32cb2e 3911 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3912 int progress;
c1e862c1 3913
c26251f9
MH
3914 if (signal_pending(current))
3915 return -EINTR;
3916
b70a2a21
JW
3917 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3918 GFP_KERNEL, true);
c1e862c1 3919 if (!progress) {
f817ed48 3920 nr_retries--;
c1e862c1 3921 /* maybe some writeback is necessary */
8aa7e847 3922 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3923 }
f817ed48
KH
3924
3925 }
ab5196c2
MH
3926
3927 return 0;
cc847582
KH
3928}
3929
6770c64e
TH
3930static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3931 char *buf, size_t nbytes,
3932 loff_t off)
c1e862c1 3933{
6770c64e 3934 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3935
d8423011
MH
3936 if (mem_cgroup_is_root(memcg))
3937 return -EINVAL;
6770c64e 3938 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3939}
3940
182446d0
TH
3941static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3942 struct cftype *cft)
18f59ea7 3943{
182446d0 3944 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3945}
3946
182446d0
TH
3947static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3948 struct cftype *cft, u64 val)
18f59ea7
BS
3949{
3950 int retval = 0;
182446d0 3951 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3952 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3953
0999821b 3954 mutex_lock(&memcg_create_mutex);
567fb435
GC
3955
3956 if (memcg->use_hierarchy == val)
3957 goto out;
3958
18f59ea7 3959 /*
af901ca1 3960 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3961 * in the child subtrees. If it is unset, then the change can
3962 * occur, provided the current cgroup has no children.
3963 *
3964 * For the root cgroup, parent_mem is NULL, we allow value to be
3965 * set if there are no children.
3966 */
c0ff4b85 3967 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3968 (val == 1 || val == 0)) {
ea280e7b 3969 if (!memcg_has_children(memcg))
c0ff4b85 3970 memcg->use_hierarchy = val;
18f59ea7
BS
3971 else
3972 retval = -EBUSY;
3973 } else
3974 retval = -EINVAL;
567fb435
GC
3975
3976out:
0999821b 3977 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3978
3979 return retval;
3980}
3981
3e32cb2e
JW
3982static unsigned long tree_stat(struct mem_cgroup *memcg,
3983 enum mem_cgroup_stat_index idx)
ce00a967
JW
3984{
3985 struct mem_cgroup *iter;
3986 long val = 0;
3987
3988 /* Per-cpu values can be negative, use a signed accumulator */
3989 for_each_mem_cgroup_tree(iter, memcg)
3990 val += mem_cgroup_read_stat(iter, idx);
3991
3992 if (val < 0) /* race ? */
3993 val = 0;
3994 return val;
3995}
3996
3997static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3998{
3999 u64 val;
4000
3e32cb2e
JW
4001 if (mem_cgroup_is_root(memcg)) {
4002 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
4003 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
4004 if (swap)
4005 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
4006 } else {
ce00a967 4007 if (!swap)
3e32cb2e 4008 val = page_counter_read(&memcg->memory);
ce00a967 4009 else
3e32cb2e 4010 val = page_counter_read(&memcg->memsw);
ce00a967 4011 }
ce00a967
JW
4012 return val << PAGE_SHIFT;
4013}
4014
3e32cb2e
JW
4015enum {
4016 RES_USAGE,
4017 RES_LIMIT,
4018 RES_MAX_USAGE,
4019 RES_FAILCNT,
4020 RES_SOFT_LIMIT,
4021};
ce00a967 4022
791badbd 4023static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 4024 struct cftype *cft)
8cdea7c0 4025{
182446d0 4026 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 4027 struct page_counter *counter;
af36f906 4028
3e32cb2e 4029 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 4030 case _MEM:
3e32cb2e
JW
4031 counter = &memcg->memory;
4032 break;
8c7c6e34 4033 case _MEMSWAP:
3e32cb2e
JW
4034 counter = &memcg->memsw;
4035 break;
510fc4e1 4036 case _KMEM:
3e32cb2e 4037 counter = &memcg->kmem;
510fc4e1 4038 break;
8c7c6e34
KH
4039 default:
4040 BUG();
8c7c6e34 4041 }
3e32cb2e
JW
4042
4043 switch (MEMFILE_ATTR(cft->private)) {
4044 case RES_USAGE:
4045 if (counter == &memcg->memory)
4046 return mem_cgroup_usage(memcg, false);
4047 if (counter == &memcg->memsw)
4048 return mem_cgroup_usage(memcg, true);
4049 return (u64)page_counter_read(counter) * PAGE_SIZE;
4050 case RES_LIMIT:
4051 return (u64)counter->limit * PAGE_SIZE;
4052 case RES_MAX_USAGE:
4053 return (u64)counter->watermark * PAGE_SIZE;
4054 case RES_FAILCNT:
4055 return counter->failcnt;
4056 case RES_SOFT_LIMIT:
4057 return (u64)memcg->soft_limit * PAGE_SIZE;
4058 default:
4059 BUG();
4060 }
8cdea7c0 4061}
510fc4e1 4062
510fc4e1 4063#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
4064/* should be called with activate_kmem_mutex held */
4065static int __memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 4066 unsigned long nr_pages)
d6441637
VD
4067{
4068 int err = 0;
4069 int memcg_id;
4070
4071 if (memcg_kmem_is_active(memcg))
4072 return 0;
4073
4074 /*
4075 * We are going to allocate memory for data shared by all memory
4076 * cgroups so let's stop accounting here.
4077 */
4078 memcg_stop_kmem_account();
4079
510fc4e1
GC
4080 /*
4081 * For simplicity, we won't allow this to be disabled. It also can't
4082 * be changed if the cgroup has children already, or if tasks had
4083 * already joined.
4084 *
4085 * If tasks join before we set the limit, a person looking at
4086 * kmem.usage_in_bytes will have no way to determine when it took
4087 * place, which makes the value quite meaningless.
4088 *
4089 * After it first became limited, changes in the value of the limit are
4090 * of course permitted.
510fc4e1 4091 */
0999821b 4092 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
4093 if (cgroup_has_tasks(memcg->css.cgroup) ||
4094 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
4095 err = -EBUSY;
4096 mutex_unlock(&memcg_create_mutex);
4097 if (err)
4098 goto out;
510fc4e1 4099
f3bb3043 4100 memcg_id = memcg_alloc_cache_id();
d6441637
VD
4101 if (memcg_id < 0) {
4102 err = memcg_id;
4103 goto out;
4104 }
4105
d6441637
VD
4106 memcg->kmemcg_id = memcg_id;
4107 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
4108
4109 /*
4110 * We couldn't have accounted to this cgroup, because it hasn't got the
4111 * active bit set yet, so this should succeed.
4112 */
3e32cb2e 4113 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
4114 VM_BUG_ON(err);
4115
4116 static_key_slow_inc(&memcg_kmem_enabled_key);
4117 /*
4118 * Setting the active bit after enabling static branching will
4119 * guarantee no one starts accounting before all call sites are
4120 * patched.
4121 */
4122 memcg_kmem_set_active(memcg);
510fc4e1 4123out:
d6441637
VD
4124 memcg_resume_kmem_account();
4125 return err;
d6441637
VD
4126}
4127
4128static int memcg_activate_kmem(struct mem_cgroup *memcg,
3e32cb2e 4129 unsigned long nr_pages)
d6441637
VD
4130{
4131 int ret;
4132
4133 mutex_lock(&activate_kmem_mutex);
3e32cb2e 4134 ret = __memcg_activate_kmem(memcg, nr_pages);
d6441637
VD
4135 mutex_unlock(&activate_kmem_mutex);
4136 return ret;
4137}
4138
4139static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4140 unsigned long limit)
d6441637
VD
4141{
4142 int ret;
4143
3e32cb2e 4144 mutex_lock(&memcg_limit_mutex);
d6441637 4145 if (!memcg_kmem_is_active(memcg))
3e32cb2e 4146 ret = memcg_activate_kmem(memcg, limit);
d6441637 4147 else
3e32cb2e
JW
4148 ret = page_counter_limit(&memcg->kmem, limit);
4149 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
4150 return ret;
4151}
4152
55007d84 4153static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4154{
55007d84 4155 int ret = 0;
510fc4e1 4156 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 4157
d6441637
VD
4158 if (!parent)
4159 return 0;
55007d84 4160
d6441637 4161 mutex_lock(&activate_kmem_mutex);
55007d84 4162 /*
d6441637
VD
4163 * If the parent cgroup is not kmem-active now, it cannot be activated
4164 * after this point, because it has at least one child already.
55007d84 4165 */
d6441637 4166 if (memcg_kmem_is_active(parent))
3e32cb2e 4167 ret = __memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
d6441637 4168 mutex_unlock(&activate_kmem_mutex);
55007d84 4169 return ret;
510fc4e1 4170}
d6441637
VD
4171#else
4172static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 4173 unsigned long limit)
d6441637
VD
4174{
4175 return -EINVAL;
4176}
6d043990 4177#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4178
628f4235
KH
4179/*
4180 * The user of this function is...
4181 * RES_LIMIT.
4182 */
451af504
TH
4183static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
4184 char *buf, size_t nbytes, loff_t off)
8cdea7c0 4185{
451af504 4186 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4187 unsigned long nr_pages;
628f4235
KH
4188 int ret;
4189
451af504 4190 buf = strstrip(buf);
3e32cb2e
JW
4191 ret = page_counter_memparse(buf, &nr_pages);
4192 if (ret)
4193 return ret;
af36f906 4194
3e32cb2e 4195 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 4196 case RES_LIMIT:
4b3bde4c
BS
4197 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4198 ret = -EINVAL;
4199 break;
4200 }
3e32cb2e
JW
4201 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4202 case _MEM:
4203 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 4204 break;
3e32cb2e
JW
4205 case _MEMSWAP:
4206 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 4207 break;
3e32cb2e
JW
4208 case _KMEM:
4209 ret = memcg_update_kmem_limit(memcg, nr_pages);
4210 break;
4211 }
296c81d8 4212 break;
3e32cb2e
JW
4213 case RES_SOFT_LIMIT:
4214 memcg->soft_limit = nr_pages;
4215 ret = 0;
628f4235
KH
4216 break;
4217 }
451af504 4218 return ret ?: nbytes;
8cdea7c0
BS
4219}
4220
6770c64e
TH
4221static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
4222 size_t nbytes, loff_t off)
c84872e1 4223{
6770c64e 4224 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 4225 struct page_counter *counter;
c84872e1 4226
3e32cb2e
JW
4227 switch (MEMFILE_TYPE(of_cft(of)->private)) {
4228 case _MEM:
4229 counter = &memcg->memory;
4230 break;
4231 case _MEMSWAP:
4232 counter = &memcg->memsw;
4233 break;
4234 case _KMEM:
4235 counter = &memcg->kmem;
4236 break;
4237 default:
4238 BUG();
4239 }
af36f906 4240
3e32cb2e 4241 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 4242 case RES_MAX_USAGE:
3e32cb2e 4243 page_counter_reset_watermark(counter);
29f2a4da
PE
4244 break;
4245 case RES_FAILCNT:
3e32cb2e 4246 counter->failcnt = 0;
29f2a4da 4247 break;
3e32cb2e
JW
4248 default:
4249 BUG();
29f2a4da 4250 }
f64c3f54 4251
6770c64e 4252 return nbytes;
c84872e1
PE
4253}
4254
182446d0 4255static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
4256 struct cftype *cft)
4257{
182446d0 4258 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
4259}
4260
02491447 4261#ifdef CONFIG_MMU
182446d0 4262static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
4263 struct cftype *cft, u64 val)
4264{
182446d0 4265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
4266
4267 if (val >= (1 << NR_MOVE_TYPE))
4268 return -EINVAL;
ee5e8472 4269
7dc74be0 4270 /*
ee5e8472
GC
4271 * No kind of locking is needed in here, because ->can_attach() will
4272 * check this value once in the beginning of the process, and then carry
4273 * on with stale data. This means that changes to this value will only
4274 * affect task migrations starting after the change.
7dc74be0 4275 */
c0ff4b85 4276 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4277 return 0;
4278}
02491447 4279#else
182446d0 4280static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
4281 struct cftype *cft, u64 val)
4282{
4283 return -ENOSYS;
4284}
4285#endif
7dc74be0 4286
406eb0c9 4287#ifdef CONFIG_NUMA
2da8ca82 4288static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 4289{
25485de6
GT
4290 struct numa_stat {
4291 const char *name;
4292 unsigned int lru_mask;
4293 };
4294
4295 static const struct numa_stat stats[] = {
4296 { "total", LRU_ALL },
4297 { "file", LRU_ALL_FILE },
4298 { "anon", LRU_ALL_ANON },
4299 { "unevictable", BIT(LRU_UNEVICTABLE) },
4300 };
4301 const struct numa_stat *stat;
406eb0c9 4302 int nid;
25485de6 4303 unsigned long nr;
2da8ca82 4304 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 4305
25485de6
GT
4306 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4307 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
4308 seq_printf(m, "%s=%lu", stat->name, nr);
4309 for_each_node_state(nid, N_MEMORY) {
4310 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4311 stat->lru_mask);
4312 seq_printf(m, " N%d=%lu", nid, nr);
4313 }
4314 seq_putc(m, '\n');
406eb0c9 4315 }
406eb0c9 4316
071aee13
YH
4317 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4318 struct mem_cgroup *iter;
4319
4320 nr = 0;
4321 for_each_mem_cgroup_tree(iter, memcg)
4322 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
4323 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
4324 for_each_node_state(nid, N_MEMORY) {
4325 nr = 0;
4326 for_each_mem_cgroup_tree(iter, memcg)
4327 nr += mem_cgroup_node_nr_lru_pages(
4328 iter, nid, stat->lru_mask);
4329 seq_printf(m, " N%d=%lu", nid, nr);
4330 }
4331 seq_putc(m, '\n');
406eb0c9 4332 }
406eb0c9 4333
406eb0c9
YH
4334 return 0;
4335}
4336#endif /* CONFIG_NUMA */
4337
af7c4b0e
JW
4338static inline void mem_cgroup_lru_names_not_uptodate(void)
4339{
4340 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4341}
4342
2da8ca82 4343static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4344{
2da8ca82 4345 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 4346 unsigned long memory, memsw;
af7c4b0e
JW
4347 struct mem_cgroup *mi;
4348 unsigned int i;
406eb0c9 4349
af7c4b0e 4350 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4351 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4352 continue;
af7c4b0e
JW
4353 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4354 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4355 }
7b854121 4356
af7c4b0e
JW
4357 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4358 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4359 mem_cgroup_read_events(memcg, i));
4360
4361 for (i = 0; i < NR_LRU_LISTS; i++)
4362 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4363 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4364
14067bb3 4365 /* Hierarchical information */
3e32cb2e
JW
4366 memory = memsw = PAGE_COUNTER_MAX;
4367 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4368 memory = min(memory, mi->memory.limit);
4369 memsw = min(memsw, mi->memsw.limit);
fee7b548 4370 }
3e32cb2e
JW
4371 seq_printf(m, "hierarchical_memory_limit %llu\n",
4372 (u64)memory * PAGE_SIZE);
4373 if (do_swap_account)
4374 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4375 (u64)memsw * PAGE_SIZE);
7f016ee8 4376
af7c4b0e
JW
4377 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4378 long long val = 0;
4379
bff6bb83 4380 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4381 continue;
af7c4b0e
JW
4382 for_each_mem_cgroup_tree(mi, memcg)
4383 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4384 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4385 }
4386
4387 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4388 unsigned long long val = 0;
4389
4390 for_each_mem_cgroup_tree(mi, memcg)
4391 val += mem_cgroup_read_events(mi, i);
4392 seq_printf(m, "total_%s %llu\n",
4393 mem_cgroup_events_names[i], val);
4394 }
4395
4396 for (i = 0; i < NR_LRU_LISTS; i++) {
4397 unsigned long long val = 0;
4398
4399 for_each_mem_cgroup_tree(mi, memcg)
4400 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4401 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4402 }
14067bb3 4403
7f016ee8 4404#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4405 {
4406 int nid, zid;
4407 struct mem_cgroup_per_zone *mz;
89abfab1 4408 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4409 unsigned long recent_rotated[2] = {0, 0};
4410 unsigned long recent_scanned[2] = {0, 0};
4411
4412 for_each_online_node(nid)
4413 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4414 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4415 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4416
89abfab1
HD
4417 recent_rotated[0] += rstat->recent_rotated[0];
4418 recent_rotated[1] += rstat->recent_rotated[1];
4419 recent_scanned[0] += rstat->recent_scanned[0];
4420 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4421 }
78ccf5b5
JW
4422 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4423 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4424 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4425 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4426 }
4427#endif
4428
d2ceb9b7
KH
4429 return 0;
4430}
4431
182446d0
TH
4432static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4433 struct cftype *cft)
a7885eb8 4434{
182446d0 4435 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4436
1f4c025b 4437 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4438}
4439
182446d0
TH
4440static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4441 struct cftype *cft, u64 val)
a7885eb8 4442{
182446d0 4443 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4444
3dae7fec 4445 if (val > 100)
a7885eb8
KM
4446 return -EINVAL;
4447
14208b0e 4448 if (css->parent)
3dae7fec
JW
4449 memcg->swappiness = val;
4450 else
4451 vm_swappiness = val;
068b38c1 4452
a7885eb8
KM
4453 return 0;
4454}
4455
2e72b634
KS
4456static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4457{
4458 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4459 unsigned long usage;
2e72b634
KS
4460 int i;
4461
4462 rcu_read_lock();
4463 if (!swap)
2c488db2 4464 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4465 else
2c488db2 4466 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4467
4468 if (!t)
4469 goto unlock;
4470
ce00a967 4471 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4472
4473 /*
748dad36 4474 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4475 * If it's not true, a threshold was crossed after last
4476 * call of __mem_cgroup_threshold().
4477 */
5407a562 4478 i = t->current_threshold;
2e72b634
KS
4479
4480 /*
4481 * Iterate backward over array of thresholds starting from
4482 * current_threshold and check if a threshold is crossed.
4483 * If none of thresholds below usage is crossed, we read
4484 * only one element of the array here.
4485 */
4486 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4487 eventfd_signal(t->entries[i].eventfd, 1);
4488
4489 /* i = current_threshold + 1 */
4490 i++;
4491
4492 /*
4493 * Iterate forward over array of thresholds starting from
4494 * current_threshold+1 and check if a threshold is crossed.
4495 * If none of thresholds above usage is crossed, we read
4496 * only one element of the array here.
4497 */
4498 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4499 eventfd_signal(t->entries[i].eventfd, 1);
4500
4501 /* Update current_threshold */
5407a562 4502 t->current_threshold = i - 1;
2e72b634
KS
4503unlock:
4504 rcu_read_unlock();
4505}
4506
4507static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4508{
ad4ca5f4
KS
4509 while (memcg) {
4510 __mem_cgroup_threshold(memcg, false);
4511 if (do_swap_account)
4512 __mem_cgroup_threshold(memcg, true);
4513
4514 memcg = parent_mem_cgroup(memcg);
4515 }
2e72b634
KS
4516}
4517
4518static int compare_thresholds(const void *a, const void *b)
4519{
4520 const struct mem_cgroup_threshold *_a = a;
4521 const struct mem_cgroup_threshold *_b = b;
4522
2bff24a3
GT
4523 if (_a->threshold > _b->threshold)
4524 return 1;
4525
4526 if (_a->threshold < _b->threshold)
4527 return -1;
4528
4529 return 0;
2e72b634
KS
4530}
4531
c0ff4b85 4532static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4533{
4534 struct mem_cgroup_eventfd_list *ev;
4535
2bcf2e92
MH
4536 spin_lock(&memcg_oom_lock);
4537
c0ff4b85 4538 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4539 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4540
4541 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4542 return 0;
4543}
4544
c0ff4b85 4545static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4546{
7d74b06f
KH
4547 struct mem_cgroup *iter;
4548
c0ff4b85 4549 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4550 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4551}
4552
59b6f873 4553static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4554 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4555{
2c488db2
KS
4556 struct mem_cgroup_thresholds *thresholds;
4557 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4558 unsigned long threshold;
4559 unsigned long usage;
2c488db2 4560 int i, size, ret;
2e72b634 4561
3e32cb2e 4562 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4563 if (ret)
4564 return ret;
4565
4566 mutex_lock(&memcg->thresholds_lock);
2c488db2 4567
05b84301 4568 if (type == _MEM) {
2c488db2 4569 thresholds = &memcg->thresholds;
ce00a967 4570 usage = mem_cgroup_usage(memcg, false);
05b84301 4571 } else if (type == _MEMSWAP) {
2c488db2 4572 thresholds = &memcg->memsw_thresholds;
ce00a967 4573 usage = mem_cgroup_usage(memcg, true);
05b84301 4574 } else
2e72b634
KS
4575 BUG();
4576
2e72b634 4577 /* Check if a threshold crossed before adding a new one */
2c488db2 4578 if (thresholds->primary)
2e72b634
KS
4579 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4580
2c488db2 4581 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4582
4583 /* Allocate memory for new array of thresholds */
2c488db2 4584 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4585 GFP_KERNEL);
2c488db2 4586 if (!new) {
2e72b634
KS
4587 ret = -ENOMEM;
4588 goto unlock;
4589 }
2c488db2 4590 new->size = size;
2e72b634
KS
4591
4592 /* Copy thresholds (if any) to new array */
2c488db2
KS
4593 if (thresholds->primary) {
4594 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4595 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4596 }
4597
2e72b634 4598 /* Add new threshold */
2c488db2
KS
4599 new->entries[size - 1].eventfd = eventfd;
4600 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4601
4602 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4603 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4604 compare_thresholds, NULL);
4605
4606 /* Find current threshold */
2c488db2 4607 new->current_threshold = -1;
2e72b634 4608 for (i = 0; i < size; i++) {
748dad36 4609 if (new->entries[i].threshold <= usage) {
2e72b634 4610 /*
2c488db2
KS
4611 * new->current_threshold will not be used until
4612 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4613 * it here.
4614 */
2c488db2 4615 ++new->current_threshold;
748dad36
SZ
4616 } else
4617 break;
2e72b634
KS
4618 }
4619
2c488db2
KS
4620 /* Free old spare buffer and save old primary buffer as spare */
4621 kfree(thresholds->spare);
4622 thresholds->spare = thresholds->primary;
4623
4624 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4625
907860ed 4626 /* To be sure that nobody uses thresholds */
2e72b634
KS
4627 synchronize_rcu();
4628
2e72b634
KS
4629unlock:
4630 mutex_unlock(&memcg->thresholds_lock);
4631
4632 return ret;
4633}
4634
59b6f873 4635static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4636 struct eventfd_ctx *eventfd, const char *args)
4637{
59b6f873 4638 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4639}
4640
59b6f873 4641static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4642 struct eventfd_ctx *eventfd, const char *args)
4643{
59b6f873 4644 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4645}
4646
59b6f873 4647static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4648 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4649{
2c488db2
KS
4650 struct mem_cgroup_thresholds *thresholds;
4651 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4652 unsigned long usage;
2c488db2 4653 int i, j, size;
2e72b634
KS
4654
4655 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4656
4657 if (type == _MEM) {
2c488db2 4658 thresholds = &memcg->thresholds;
ce00a967 4659 usage = mem_cgroup_usage(memcg, false);
05b84301 4660 } else if (type == _MEMSWAP) {
2c488db2 4661 thresholds = &memcg->memsw_thresholds;
ce00a967 4662 usage = mem_cgroup_usage(memcg, true);
05b84301 4663 } else
2e72b634
KS
4664 BUG();
4665
371528ca
AV
4666 if (!thresholds->primary)
4667 goto unlock;
4668
2e72b634
KS
4669 /* Check if a threshold crossed before removing */
4670 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4671
4672 /* Calculate new number of threshold */
2c488db2
KS
4673 size = 0;
4674 for (i = 0; i < thresholds->primary->size; i++) {
4675 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4676 size++;
4677 }
4678
2c488db2 4679 new = thresholds->spare;
907860ed 4680
2e72b634
KS
4681 /* Set thresholds array to NULL if we don't have thresholds */
4682 if (!size) {
2c488db2
KS
4683 kfree(new);
4684 new = NULL;
907860ed 4685 goto swap_buffers;
2e72b634
KS
4686 }
4687
2c488db2 4688 new->size = size;
2e72b634
KS
4689
4690 /* Copy thresholds and find current threshold */
2c488db2
KS
4691 new->current_threshold = -1;
4692 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4693 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4694 continue;
4695
2c488db2 4696 new->entries[j] = thresholds->primary->entries[i];
748dad36 4697 if (new->entries[j].threshold <= usage) {
2e72b634 4698 /*
2c488db2 4699 * new->current_threshold will not be used
2e72b634
KS
4700 * until rcu_assign_pointer(), so it's safe to increment
4701 * it here.
4702 */
2c488db2 4703 ++new->current_threshold;
2e72b634
KS
4704 }
4705 j++;
4706 }
4707
907860ed 4708swap_buffers:
2c488db2
KS
4709 /* Swap primary and spare array */
4710 thresholds->spare = thresholds->primary;
8c757763
SZ
4711 /* If all events are unregistered, free the spare array */
4712 if (!new) {
4713 kfree(thresholds->spare);
4714 thresholds->spare = NULL;
4715 }
4716
2c488db2 4717 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4718
907860ed 4719 /* To be sure that nobody uses thresholds */
2e72b634 4720 synchronize_rcu();
371528ca 4721unlock:
2e72b634 4722 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4723}
c1e862c1 4724
59b6f873 4725static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4726 struct eventfd_ctx *eventfd)
4727{
59b6f873 4728 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4729}
4730
59b6f873 4731static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4732 struct eventfd_ctx *eventfd)
4733{
59b6f873 4734 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4735}
4736
59b6f873 4737static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4738 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4739{
9490ff27 4740 struct mem_cgroup_eventfd_list *event;
9490ff27 4741
9490ff27
KH
4742 event = kmalloc(sizeof(*event), GFP_KERNEL);
4743 if (!event)
4744 return -ENOMEM;
4745
1af8efe9 4746 spin_lock(&memcg_oom_lock);
9490ff27
KH
4747
4748 event->eventfd = eventfd;
4749 list_add(&event->list, &memcg->oom_notify);
4750
4751 /* already in OOM ? */
79dfdacc 4752 if (atomic_read(&memcg->under_oom))
9490ff27 4753 eventfd_signal(eventfd, 1);
1af8efe9 4754 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4755
4756 return 0;
4757}
4758
59b6f873 4759static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4760 struct eventfd_ctx *eventfd)
9490ff27 4761{
9490ff27 4762 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4763
1af8efe9 4764 spin_lock(&memcg_oom_lock);
9490ff27 4765
c0ff4b85 4766 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4767 if (ev->eventfd == eventfd) {
4768 list_del(&ev->list);
4769 kfree(ev);
4770 }
4771 }
4772
1af8efe9 4773 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4774}
4775
2da8ca82 4776static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4777{
2da8ca82 4778 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4779
791badbd
TH
4780 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4781 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4782 return 0;
4783}
4784
182446d0 4785static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4786 struct cftype *cft, u64 val)
4787{
182446d0 4788 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4789
4790 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4791 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4792 return -EINVAL;
4793
c0ff4b85 4794 memcg->oom_kill_disable = val;
4d845ebf 4795 if (!val)
c0ff4b85 4796 memcg_oom_recover(memcg);
3dae7fec 4797
3c11ecf4
KH
4798 return 0;
4799}
4800
c255a458 4801#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4802static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4803{
55007d84
GC
4804 int ret;
4805
2633d7a0 4806 memcg->kmemcg_id = -1;
55007d84
GC
4807 ret = memcg_propagate_kmem(memcg);
4808 if (ret)
4809 return ret;
2633d7a0 4810
1d62e436 4811 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4812}
e5671dfa 4813
10d5ebf4 4814static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4815{
1d62e436 4816 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
4817}
4818
4819static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
4820{
4821 if (!memcg_kmem_is_active(memcg))
4822 return;
4823
4824 /*
4825 * kmem charges can outlive the cgroup. In the case of slab
4826 * pages, for instance, a page contain objects from various
4827 * processes. As we prevent from taking a reference for every
4828 * such allocation we have to be careful when doing uncharge
4829 * (see memcg_uncharge_kmem) and here during offlining.
4830 *
4831 * The idea is that that only the _last_ uncharge which sees
4832 * the dead memcg will drop the last reference. An additional
4833 * reference is taken here before the group is marked dead
4834 * which is then paired with css_put during uncharge resp. here.
4835 *
4836 * Although this might sound strange as this path is called from
ec903c0c
TH
4837 * css_offline() when the referencemight have dropped down to 0 and
4838 * shouldn't be incremented anymore (css_tryget_online() would
4839 * fail) we do not have other options because of the kmem
4840 * allocations lifetime.
10d5ebf4
LZ
4841 */
4842 css_get(&memcg->css);
7de37682
GC
4843
4844 memcg_kmem_mark_dead(memcg);
4845
3e32cb2e 4846 if (page_counter_read(&memcg->kmem))
7de37682
GC
4847 return;
4848
7de37682 4849 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 4850 css_put(&memcg->css);
d1a4c0b3 4851}
e5671dfa 4852#else
cbe128e3 4853static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4854{
4855 return 0;
4856}
d1a4c0b3 4857
10d5ebf4
LZ
4858static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4859{
4860}
4861
4862static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
4863{
4864}
e5671dfa
GC
4865#endif
4866
3bc942f3
TH
4867/*
4868 * DO NOT USE IN NEW FILES.
4869 *
4870 * "cgroup.event_control" implementation.
4871 *
4872 * This is way over-engineered. It tries to support fully configurable
4873 * events for each user. Such level of flexibility is completely
4874 * unnecessary especially in the light of the planned unified hierarchy.
4875 *
4876 * Please deprecate this and replace with something simpler if at all
4877 * possible.
4878 */
4879
79bd9814
TH
4880/*
4881 * Unregister event and free resources.
4882 *
4883 * Gets called from workqueue.
4884 */
3bc942f3 4885static void memcg_event_remove(struct work_struct *work)
79bd9814 4886{
3bc942f3
TH
4887 struct mem_cgroup_event *event =
4888 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4889 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4890
4891 remove_wait_queue(event->wqh, &event->wait);
4892
59b6f873 4893 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4894
4895 /* Notify userspace the event is going away. */
4896 eventfd_signal(event->eventfd, 1);
4897
4898 eventfd_ctx_put(event->eventfd);
4899 kfree(event);
59b6f873 4900 css_put(&memcg->css);
79bd9814
TH
4901}
4902
4903/*
4904 * Gets called on POLLHUP on eventfd when user closes it.
4905 *
4906 * Called with wqh->lock held and interrupts disabled.
4907 */
3bc942f3
TH
4908static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4909 int sync, void *key)
79bd9814 4910{
3bc942f3
TH
4911 struct mem_cgroup_event *event =
4912 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4913 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4914 unsigned long flags = (unsigned long)key;
4915
4916 if (flags & POLLHUP) {
4917 /*
4918 * If the event has been detached at cgroup removal, we
4919 * can simply return knowing the other side will cleanup
4920 * for us.
4921 *
4922 * We can't race against event freeing since the other
4923 * side will require wqh->lock via remove_wait_queue(),
4924 * which we hold.
4925 */
fba94807 4926 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4927 if (!list_empty(&event->list)) {
4928 list_del_init(&event->list);
4929 /*
4930 * We are in atomic context, but cgroup_event_remove()
4931 * may sleep, so we have to call it in workqueue.
4932 */
4933 schedule_work(&event->remove);
4934 }
fba94807 4935 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4936 }
4937
4938 return 0;
4939}
4940
3bc942f3 4941static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4942 wait_queue_head_t *wqh, poll_table *pt)
4943{
3bc942f3
TH
4944 struct mem_cgroup_event *event =
4945 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4946
4947 event->wqh = wqh;
4948 add_wait_queue(wqh, &event->wait);
4949}
4950
4951/*
3bc942f3
TH
4952 * DO NOT USE IN NEW FILES.
4953 *
79bd9814
TH
4954 * Parse input and register new cgroup event handler.
4955 *
4956 * Input must be in format '<event_fd> <control_fd> <args>'.
4957 * Interpretation of args is defined by control file implementation.
4958 */
451af504
TH
4959static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4960 char *buf, size_t nbytes, loff_t off)
79bd9814 4961{
451af504 4962 struct cgroup_subsys_state *css = of_css(of);
fba94807 4963 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4964 struct mem_cgroup_event *event;
79bd9814
TH
4965 struct cgroup_subsys_state *cfile_css;
4966 unsigned int efd, cfd;
4967 struct fd efile;
4968 struct fd cfile;
fba94807 4969 const char *name;
79bd9814
TH
4970 char *endp;
4971 int ret;
4972
451af504
TH
4973 buf = strstrip(buf);
4974
4975 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4976 if (*endp != ' ')
4977 return -EINVAL;
451af504 4978 buf = endp + 1;
79bd9814 4979
451af504 4980 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4981 if ((*endp != ' ') && (*endp != '\0'))
4982 return -EINVAL;
451af504 4983 buf = endp + 1;
79bd9814
TH
4984
4985 event = kzalloc(sizeof(*event), GFP_KERNEL);
4986 if (!event)
4987 return -ENOMEM;
4988
59b6f873 4989 event->memcg = memcg;
79bd9814 4990 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4991 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4992 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4993 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4994
4995 efile = fdget(efd);
4996 if (!efile.file) {
4997 ret = -EBADF;
4998 goto out_kfree;
4999 }
5000
5001 event->eventfd = eventfd_ctx_fileget(efile.file);
5002 if (IS_ERR(event->eventfd)) {
5003 ret = PTR_ERR(event->eventfd);
5004 goto out_put_efile;
5005 }
5006
5007 cfile = fdget(cfd);
5008 if (!cfile.file) {
5009 ret = -EBADF;
5010 goto out_put_eventfd;
5011 }
5012
5013 /* the process need read permission on control file */
5014 /* AV: shouldn't we check that it's been opened for read instead? */
5015 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5016 if (ret < 0)
5017 goto out_put_cfile;
5018
fba94807
TH
5019 /*
5020 * Determine the event callbacks and set them in @event. This used
5021 * to be done via struct cftype but cgroup core no longer knows
5022 * about these events. The following is crude but the whole thing
5023 * is for compatibility anyway.
3bc942f3
TH
5024 *
5025 * DO NOT ADD NEW FILES.
fba94807
TH
5026 */
5027 name = cfile.file->f_dentry->d_name.name;
5028
5029 if (!strcmp(name, "memory.usage_in_bytes")) {
5030 event->register_event = mem_cgroup_usage_register_event;
5031 event->unregister_event = mem_cgroup_usage_unregister_event;
5032 } else if (!strcmp(name, "memory.oom_control")) {
5033 event->register_event = mem_cgroup_oom_register_event;
5034 event->unregister_event = mem_cgroup_oom_unregister_event;
5035 } else if (!strcmp(name, "memory.pressure_level")) {
5036 event->register_event = vmpressure_register_event;
5037 event->unregister_event = vmpressure_unregister_event;
5038 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
5039 event->register_event = memsw_cgroup_usage_register_event;
5040 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
5041 } else {
5042 ret = -EINVAL;
5043 goto out_put_cfile;
5044 }
5045
79bd9814 5046 /*
b5557c4c
TH
5047 * Verify @cfile should belong to @css. Also, remaining events are
5048 * automatically removed on cgroup destruction but the removal is
5049 * asynchronous, so take an extra ref on @css.
79bd9814 5050 */
ec903c0c
TH
5051 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
5052 &memory_cgrp_subsys);
79bd9814 5053 ret = -EINVAL;
5a17f543 5054 if (IS_ERR(cfile_css))
79bd9814 5055 goto out_put_cfile;
5a17f543
TH
5056 if (cfile_css != css) {
5057 css_put(cfile_css);
79bd9814 5058 goto out_put_cfile;
5a17f543 5059 }
79bd9814 5060
451af504 5061 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
5062 if (ret)
5063 goto out_put_css;
5064
5065 efile.file->f_op->poll(efile.file, &event->pt);
5066
fba94807
TH
5067 spin_lock(&memcg->event_list_lock);
5068 list_add(&event->list, &memcg->event_list);
5069 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5070
5071 fdput(cfile);
5072 fdput(efile);
5073
451af504 5074 return nbytes;
79bd9814
TH
5075
5076out_put_css:
b5557c4c 5077 css_put(css);
79bd9814
TH
5078out_put_cfile:
5079 fdput(cfile);
5080out_put_eventfd:
5081 eventfd_ctx_put(event->eventfd);
5082out_put_efile:
5083 fdput(efile);
5084out_kfree:
5085 kfree(event);
5086
5087 return ret;
5088}
5089
8cdea7c0
BS
5090static struct cftype mem_cgroup_files[] = {
5091 {
0eea1030 5092 .name = "usage_in_bytes",
8c7c6e34 5093 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 5094 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5095 },
c84872e1
PE
5096 {
5097 .name = "max_usage_in_bytes",
8c7c6e34 5098 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 5099 .write = mem_cgroup_reset,
791badbd 5100 .read_u64 = mem_cgroup_read_u64,
c84872e1 5101 },
8cdea7c0 5102 {
0eea1030 5103 .name = "limit_in_bytes",
8c7c6e34 5104 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5105 .write = mem_cgroup_write,
791badbd 5106 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5107 },
296c81d8
BS
5108 {
5109 .name = "soft_limit_in_bytes",
5110 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5111 .write = mem_cgroup_write,
791badbd 5112 .read_u64 = mem_cgroup_read_u64,
296c81d8 5113 },
8cdea7c0
BS
5114 {
5115 .name = "failcnt",
8c7c6e34 5116 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5117 .write = mem_cgroup_reset,
791badbd 5118 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5119 },
d2ceb9b7
KH
5120 {
5121 .name = "stat",
2da8ca82 5122 .seq_show = memcg_stat_show,
d2ceb9b7 5123 },
c1e862c1
KH
5124 {
5125 .name = "force_empty",
6770c64e 5126 .write = mem_cgroup_force_empty_write,
c1e862c1 5127 },
18f59ea7
BS
5128 {
5129 .name = "use_hierarchy",
5130 .write_u64 = mem_cgroup_hierarchy_write,
5131 .read_u64 = mem_cgroup_hierarchy_read,
5132 },
79bd9814 5133 {
3bc942f3 5134 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5135 .write = memcg_write_event_control,
79bd9814
TH
5136 .flags = CFTYPE_NO_PREFIX,
5137 .mode = S_IWUGO,
5138 },
a7885eb8
KM
5139 {
5140 .name = "swappiness",
5141 .read_u64 = mem_cgroup_swappiness_read,
5142 .write_u64 = mem_cgroup_swappiness_write,
5143 },
7dc74be0
DN
5144 {
5145 .name = "move_charge_at_immigrate",
5146 .read_u64 = mem_cgroup_move_charge_read,
5147 .write_u64 = mem_cgroup_move_charge_write,
5148 },
9490ff27
KH
5149 {
5150 .name = "oom_control",
2da8ca82 5151 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5152 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5153 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5154 },
70ddf637
AV
5155 {
5156 .name = "pressure_level",
70ddf637 5157 },
406eb0c9
YH
5158#ifdef CONFIG_NUMA
5159 {
5160 .name = "numa_stat",
2da8ca82 5161 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5162 },
5163#endif
510fc4e1
GC
5164#ifdef CONFIG_MEMCG_KMEM
5165 {
5166 .name = "kmem.limit_in_bytes",
5167 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5168 .write = mem_cgroup_write,
791badbd 5169 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5170 },
5171 {
5172 .name = "kmem.usage_in_bytes",
5173 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5174 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5175 },
5176 {
5177 .name = "kmem.failcnt",
5178 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5179 .write = mem_cgroup_reset,
791badbd 5180 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5181 },
5182 {
5183 .name = "kmem.max_usage_in_bytes",
5184 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5185 .write = mem_cgroup_reset,
791badbd 5186 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5187 },
749c5415
GC
5188#ifdef CONFIG_SLABINFO
5189 {
5190 .name = "kmem.slabinfo",
2da8ca82 5191 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
5192 },
5193#endif
8c7c6e34 5194#endif
6bc10349 5195 { }, /* terminate */
af36f906 5196};
8c7c6e34 5197
2d11085e
MH
5198#ifdef CONFIG_MEMCG_SWAP
5199static struct cftype memsw_cgroup_files[] = {
5200 {
5201 .name = "memsw.usage_in_bytes",
5202 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 5203 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5204 },
5205 {
5206 .name = "memsw.max_usage_in_bytes",
5207 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 5208 .write = mem_cgroup_reset,
791badbd 5209 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5210 },
5211 {
5212 .name = "memsw.limit_in_bytes",
5213 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 5214 .write = mem_cgroup_write,
791badbd 5215 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5216 },
5217 {
5218 .name = "memsw.failcnt",
5219 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 5220 .write = mem_cgroup_reset,
791badbd 5221 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
5222 },
5223 { }, /* terminate */
5224};
5225#endif
c0ff4b85 5226static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5227{
5228 struct mem_cgroup_per_node *pn;
1ecaab2b 5229 struct mem_cgroup_per_zone *mz;
41e3355d 5230 int zone, tmp = node;
1ecaab2b
KH
5231 /*
5232 * This routine is called against possible nodes.
5233 * But it's BUG to call kmalloc() against offline node.
5234 *
5235 * TODO: this routine can waste much memory for nodes which will
5236 * never be onlined. It's better to use memory hotplug callback
5237 * function.
5238 */
41e3355d
KH
5239 if (!node_state(node, N_NORMAL_MEMORY))
5240 tmp = -1;
17295c88 5241 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5242 if (!pn)
5243 return 1;
1ecaab2b 5244
1ecaab2b
KH
5245 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5246 mz = &pn->zoneinfo[zone];
bea8c150 5247 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
5248 mz->usage_in_excess = 0;
5249 mz->on_tree = false;
d79154bb 5250 mz->memcg = memcg;
1ecaab2b 5251 }
54f72fe0 5252 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5253 return 0;
5254}
5255
c0ff4b85 5256static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5257{
54f72fe0 5258 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5259}
5260
33327948
KH
5261static struct mem_cgroup *mem_cgroup_alloc(void)
5262{
d79154bb 5263 struct mem_cgroup *memcg;
8ff69e2c 5264 size_t size;
33327948 5265
8ff69e2c
VD
5266 size = sizeof(struct mem_cgroup);
5267 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 5268
8ff69e2c 5269 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 5270 if (!memcg)
e7bbcdf3
DC
5271 return NULL;
5272
d79154bb
HD
5273 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5274 if (!memcg->stat)
d2e61b8d 5275 goto out_free;
d79154bb
HD
5276 spin_lock_init(&memcg->pcp_counter_lock);
5277 return memcg;
d2e61b8d
DC
5278
5279out_free:
8ff69e2c 5280 kfree(memcg);
d2e61b8d 5281 return NULL;
33327948
KH
5282}
5283
59927fb9 5284/*
c8b2a36f
GC
5285 * At destroying mem_cgroup, references from swap_cgroup can remain.
5286 * (scanning all at force_empty is too costly...)
5287 *
5288 * Instead of clearing all references at force_empty, we remember
5289 * the number of reference from swap_cgroup and free mem_cgroup when
5290 * it goes down to 0.
5291 *
5292 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5293 */
c8b2a36f
GC
5294
5295static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5296{
c8b2a36f 5297 int node;
59927fb9 5298
bb4cc1a8 5299 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
5300
5301 for_each_node(node)
5302 free_mem_cgroup_per_zone_info(memcg, node);
5303
5304 free_percpu(memcg->stat);
5305
3f134619
GC
5306 /*
5307 * We need to make sure that (at least for now), the jump label
5308 * destruction code runs outside of the cgroup lock. This is because
5309 * get_online_cpus(), which is called from the static_branch update,
5310 * can't be called inside the cgroup_lock. cpusets are the ones
5311 * enforcing this dependency, so if they ever change, we might as well.
5312 *
5313 * schedule_work() will guarantee this happens. Be careful if you need
5314 * to move this code around, and make sure it is outside
5315 * the cgroup_lock.
5316 */
a8964b9b 5317 disarm_static_keys(memcg);
8ff69e2c 5318 kfree(memcg);
59927fb9 5319}
3afe36b1 5320
7bcc1bb1
DN
5321/*
5322 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5323 */
e1aab161 5324struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5325{
3e32cb2e 5326 if (!memcg->memory.parent)
7bcc1bb1 5327 return NULL;
3e32cb2e 5328 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 5329}
e1aab161 5330EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5331
bb4cc1a8
AM
5332static void __init mem_cgroup_soft_limit_tree_init(void)
5333{
5334 struct mem_cgroup_tree_per_node *rtpn;
5335 struct mem_cgroup_tree_per_zone *rtpz;
5336 int tmp, node, zone;
5337
5338 for_each_node(node) {
5339 tmp = node;
5340 if (!node_state(node, N_NORMAL_MEMORY))
5341 tmp = -1;
5342 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5343 BUG_ON(!rtpn);
5344
5345 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5346
5347 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5348 rtpz = &rtpn->rb_tree_per_zone[zone];
5349 rtpz->rb_root = RB_ROOT;
5350 spin_lock_init(&rtpz->lock);
5351 }
5352 }
5353}
5354
0eb253e2 5355static struct cgroup_subsys_state * __ref
eb95419b 5356mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5357{
d142e3e6 5358 struct mem_cgroup *memcg;
04046e1a 5359 long error = -ENOMEM;
6d12e2d8 5360 int node;
8cdea7c0 5361
c0ff4b85
R
5362 memcg = mem_cgroup_alloc();
5363 if (!memcg)
04046e1a 5364 return ERR_PTR(error);
78fb7466 5365
3ed28fa1 5366 for_each_node(node)
c0ff4b85 5367 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5368 goto free_out;
f64c3f54 5369
c077719b 5370 /* root ? */
eb95419b 5371 if (parent_css == NULL) {
a41c58a6 5372 root_mem_cgroup = memcg;
3e32cb2e
JW
5373 page_counter_init(&memcg->memory, NULL);
5374 page_counter_init(&memcg->memsw, NULL);
5375 page_counter_init(&memcg->kmem, NULL);
18f59ea7 5376 }
28dbc4b6 5377
d142e3e6
GC
5378 memcg->last_scanned_node = MAX_NUMNODES;
5379 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5380 memcg->move_charge_at_immigrate = 0;
5381 mutex_init(&memcg->thresholds_lock);
5382 spin_lock_init(&memcg->move_lock);
70ddf637 5383 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5384 INIT_LIST_HEAD(&memcg->event_list);
5385 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
5386
5387 return &memcg->css;
5388
5389free_out:
5390 __mem_cgroup_free(memcg);
5391 return ERR_PTR(error);
5392}
5393
5394static int
eb95419b 5395mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5396{
eb95419b 5397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 5398 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 5399 int ret;
d142e3e6 5400
15a4c835 5401 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
5402 return -ENOSPC;
5403
63876986 5404 if (!parent)
d142e3e6
GC
5405 return 0;
5406
0999821b 5407 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5408
5409 memcg->use_hierarchy = parent->use_hierarchy;
5410 memcg->oom_kill_disable = parent->oom_kill_disable;
5411 memcg->swappiness = mem_cgroup_swappiness(parent);
5412
5413 if (parent->use_hierarchy) {
3e32cb2e
JW
5414 page_counter_init(&memcg->memory, &parent->memory);
5415 page_counter_init(&memcg->memsw, &parent->memsw);
5416 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5417
7bcc1bb1 5418 /*
8d76a979
LZ
5419 * No need to take a reference to the parent because cgroup
5420 * core guarantees its existence.
7bcc1bb1 5421 */
18f59ea7 5422 } else {
3e32cb2e
JW
5423 page_counter_init(&memcg->memory, NULL);
5424 page_counter_init(&memcg->memsw, NULL);
5425 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5426 /*
5427 * Deeper hierachy with use_hierarchy == false doesn't make
5428 * much sense so let cgroup subsystem know about this
5429 * unfortunate state in our controller.
5430 */
d142e3e6 5431 if (parent != root_mem_cgroup)
073219e9 5432 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5433 }
0999821b 5434 mutex_unlock(&memcg_create_mutex);
d6441637 5435
2f7dd7a4
JW
5436 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5437 if (ret)
5438 return ret;
5439
5440 /*
5441 * Make sure the memcg is initialized: mem_cgroup_iter()
5442 * orders reading memcg->initialized against its callers
5443 * reading the memcg members.
5444 */
5445 smp_store_release(&memcg->initialized, 1);
5446
5447 return 0;
8cdea7c0
BS
5448}
5449
5f578161
MH
5450/*
5451 * Announce all parents that a group from their hierarchy is gone.
5452 */
5453static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
5454{
5455 struct mem_cgroup *parent = memcg;
5456
5457 while ((parent = parent_mem_cgroup(parent)))
519ebea3 5458 mem_cgroup_iter_invalidate(parent);
5f578161
MH
5459
5460 /*
5461 * if the root memcg is not hierarchical we have to check it
5462 * explicitely.
5463 */
5464 if (!root_mem_cgroup->use_hierarchy)
519ebea3 5465 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
5466}
5467
eb95419b 5468static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5469{
eb95419b 5470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5471 struct mem_cgroup_event *event, *tmp;
4fb1a86f 5472 struct cgroup_subsys_state *iter;
79bd9814
TH
5473
5474 /*
5475 * Unregister events and notify userspace.
5476 * Notify userspace about cgroup removing only after rmdir of cgroup
5477 * directory to avoid race between userspace and kernelspace.
5478 */
fba94807
TH
5479 spin_lock(&memcg->event_list_lock);
5480 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5481 list_del_init(&event->list);
5482 schedule_work(&event->remove);
5483 }
fba94807 5484 spin_unlock(&memcg->event_list_lock);
ec64f515 5485
10d5ebf4
LZ
5486 kmem_cgroup_css_offline(memcg);
5487
5f578161 5488 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
5489
5490 /*
5491 * This requires that offlining is serialized. Right now that is
5492 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
5493 */
5494 css_for_each_descendant_post(iter, css)
5495 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
5496
776ed0f0 5497 memcg_unregister_all_caches(memcg);
33cb876e 5498 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5499}
5500
eb95419b 5501static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5502{
eb95419b 5503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
5504 /*
5505 * XXX: css_offline() would be where we should reparent all
5506 * memory to prepare the cgroup for destruction. However,
3e32cb2e 5507 * memcg does not do css_tryget_online() and page_counter charging
96f1c58d
JW
5508 * under the same RCU lock region, which means that charging
5509 * could race with offlining. Offlining only happens to
5510 * cgroups with no tasks in them but charges can show up
5511 * without any tasks from the swapin path when the target
5512 * memcg is looked up from the swapout record and not from the
5513 * current task as it usually is. A race like this can leak
5514 * charges and put pages with stale cgroup pointers into
5515 * circulation:
5516 *
5517 * #0 #1
5518 * lookup_swap_cgroup_id()
5519 * rcu_read_lock()
5520 * mem_cgroup_lookup()
ec903c0c 5521 * css_tryget_online()
96f1c58d 5522 * rcu_read_unlock()
ec903c0c 5523 * disable css_tryget_online()
96f1c58d
JW
5524 * call_rcu()
5525 * offline_css()
5526 * reparent_charges()
3e32cb2e 5527 * page_counter_try_charge()
96f1c58d
JW
5528 * css_put()
5529 * css_free()
5530 * pc->mem_cgroup = dead memcg
5531 * add page to lru
5532 *
5533 * The bulk of the charges are still moved in offline_css() to
5534 * avoid pinning a lot of pages in case a long-term reference
5535 * like a swapout record is deferring the css_free() to long
5536 * after offlining. But this makes sure we catch any charges
5537 * made after offlining:
5538 */
5539 mem_cgroup_reparent_charges(memcg);
c268e994 5540
10d5ebf4 5541 memcg_destroy_kmem(memcg);
465939a1 5542 __mem_cgroup_free(memcg);
8cdea7c0
BS
5543}
5544
1ced953b
TH
5545/**
5546 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5547 * @css: the target css
5548 *
5549 * Reset the states of the mem_cgroup associated with @css. This is
5550 * invoked when the userland requests disabling on the default hierarchy
5551 * but the memcg is pinned through dependency. The memcg should stop
5552 * applying policies and should revert to the vanilla state as it may be
5553 * made visible again.
5554 *
5555 * The current implementation only resets the essential configurations.
5556 * This needs to be expanded to cover all the visible parts.
5557 */
5558static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5559{
5560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5561
3e32cb2e
JW
5562 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5563 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5564 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5565 memcg->soft_limit = 0;
1ced953b
TH
5566}
5567
02491447 5568#ifdef CONFIG_MMU
7dc74be0 5569/* Handlers for move charge at task migration. */
854ffa8d 5570static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5571{
05b84301 5572 int ret;
9476db97
JW
5573
5574 /* Try a single bulk charge without reclaim first */
00501b53 5575 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5576 if (!ret) {
854ffa8d 5577 mc.precharge += count;
854ffa8d
DN
5578 return ret;
5579 }
692e7c45 5580 if (ret == -EINTR) {
00501b53 5581 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5582 return ret;
5583 }
9476db97
JW
5584
5585 /* Try charges one by one with reclaim */
854ffa8d 5586 while (count--) {
00501b53 5587 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5588 /*
5589 * In case of failure, any residual charges against
5590 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5591 * later on. However, cancel any charges that are
5592 * bypassed to root right away or they'll be lost.
9476db97 5593 */
692e7c45 5594 if (ret == -EINTR)
00501b53 5595 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5596 if (ret)
38c5d72f 5597 return ret;
854ffa8d 5598 mc.precharge++;
9476db97 5599 cond_resched();
854ffa8d 5600 }
9476db97 5601 return 0;
4ffef5fe
DN
5602}
5603
5604/**
8d32ff84 5605 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5606 * @vma: the vma the pte to be checked belongs
5607 * @addr: the address corresponding to the pte to be checked
5608 * @ptent: the pte to be checked
02491447 5609 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5610 *
5611 * Returns
5612 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5613 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5614 * move charge. if @target is not NULL, the page is stored in target->page
5615 * with extra refcnt got(Callers should handle it).
02491447
DN
5616 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5617 * target for charge migration. if @target is not NULL, the entry is stored
5618 * in target->ent.
4ffef5fe
DN
5619 *
5620 * Called with pte lock held.
5621 */
4ffef5fe
DN
5622union mc_target {
5623 struct page *page;
02491447 5624 swp_entry_t ent;
4ffef5fe
DN
5625};
5626
4ffef5fe 5627enum mc_target_type {
8d32ff84 5628 MC_TARGET_NONE = 0,
4ffef5fe 5629 MC_TARGET_PAGE,
02491447 5630 MC_TARGET_SWAP,
4ffef5fe
DN
5631};
5632
90254a65
DN
5633static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5634 unsigned long addr, pte_t ptent)
4ffef5fe 5635{
90254a65 5636 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5637
90254a65
DN
5638 if (!page || !page_mapped(page))
5639 return NULL;
5640 if (PageAnon(page)) {
5641 /* we don't move shared anon */
4b91355e 5642 if (!move_anon())
90254a65 5643 return NULL;
87946a72
DN
5644 } else if (!move_file())
5645 /* we ignore mapcount for file pages */
90254a65
DN
5646 return NULL;
5647 if (!get_page_unless_zero(page))
5648 return NULL;
5649
5650 return page;
5651}
5652
4b91355e 5653#ifdef CONFIG_SWAP
90254a65
DN
5654static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5655 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5656{
90254a65
DN
5657 struct page *page = NULL;
5658 swp_entry_t ent = pte_to_swp_entry(ptent);
5659
5660 if (!move_anon() || non_swap_entry(ent))
5661 return NULL;
4b91355e
KH
5662 /*
5663 * Because lookup_swap_cache() updates some statistics counter,
5664 * we call find_get_page() with swapper_space directly.
5665 */
33806f06 5666 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5667 if (do_swap_account)
5668 entry->val = ent.val;
5669
5670 return page;
5671}
4b91355e
KH
5672#else
5673static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5674 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5675{
5676 return NULL;
5677}
5678#endif
90254a65 5679
87946a72
DN
5680static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5681 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5682{
5683 struct page *page = NULL;
87946a72
DN
5684 struct address_space *mapping;
5685 pgoff_t pgoff;
5686
5687 if (!vma->vm_file) /* anonymous vma */
5688 return NULL;
5689 if (!move_file())
5690 return NULL;
5691
87946a72
DN
5692 mapping = vma->vm_file->f_mapping;
5693 if (pte_none(ptent))
5694 pgoff = linear_page_index(vma, addr);
5695 else /* pte_file(ptent) is true */
5696 pgoff = pte_to_pgoff(ptent);
5697
5698 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5699#ifdef CONFIG_SWAP
5700 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5701 if (shmem_mapping(mapping)) {
5702 page = find_get_entry(mapping, pgoff);
5703 if (radix_tree_exceptional_entry(page)) {
5704 swp_entry_t swp = radix_to_swp_entry(page);
5705 if (do_swap_account)
5706 *entry = swp;
5707 page = find_get_page(swap_address_space(swp), swp.val);
5708 }
5709 } else
5710 page = find_get_page(mapping, pgoff);
5711#else
5712 page = find_get_page(mapping, pgoff);
aa3b1895 5713#endif
87946a72
DN
5714 return page;
5715}
5716
8d32ff84 5717static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5718 unsigned long addr, pte_t ptent, union mc_target *target)
5719{
5720 struct page *page = NULL;
5721 struct page_cgroup *pc;
8d32ff84 5722 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5723 swp_entry_t ent = { .val = 0 };
5724
5725 if (pte_present(ptent))
5726 page = mc_handle_present_pte(vma, addr, ptent);
5727 else if (is_swap_pte(ptent))
5728 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5729 else if (pte_none(ptent) || pte_file(ptent))
5730 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5731
5732 if (!page && !ent.val)
8d32ff84 5733 return ret;
02491447
DN
5734 if (page) {
5735 pc = lookup_page_cgroup(page);
5736 /*
0a31bc97
JW
5737 * Do only loose check w/o serialization.
5738 * mem_cgroup_move_account() checks the pc is valid or
5739 * not under LRU exclusion.
02491447
DN
5740 */
5741 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5742 ret = MC_TARGET_PAGE;
5743 if (target)
5744 target->page = page;
5745 }
5746 if (!ret || !target)
5747 put_page(page);
5748 }
90254a65
DN
5749 /* There is a swap entry and a page doesn't exist or isn't charged */
5750 if (ent.val && !ret &&
34c00c31 5751 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5752 ret = MC_TARGET_SWAP;
5753 if (target)
5754 target->ent = ent;
4ffef5fe 5755 }
4ffef5fe
DN
5756 return ret;
5757}
5758
12724850
NH
5759#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5760/*
5761 * We don't consider swapping or file mapped pages because THP does not
5762 * support them for now.
5763 * Caller should make sure that pmd_trans_huge(pmd) is true.
5764 */
5765static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5766 unsigned long addr, pmd_t pmd, union mc_target *target)
5767{
5768 struct page *page = NULL;
5769 struct page_cgroup *pc;
5770 enum mc_target_type ret = MC_TARGET_NONE;
5771
5772 page = pmd_page(pmd);
309381fe 5773 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5774 if (!move_anon())
5775 return ret;
5776 pc = lookup_page_cgroup(page);
5777 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5778 ret = MC_TARGET_PAGE;
5779 if (target) {
5780 get_page(page);
5781 target->page = page;
5782 }
5783 }
5784 return ret;
5785}
5786#else
5787static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5788 unsigned long addr, pmd_t pmd, union mc_target *target)
5789{
5790 return MC_TARGET_NONE;
5791}
5792#endif
5793
4ffef5fe
DN
5794static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5795 unsigned long addr, unsigned long end,
5796 struct mm_walk *walk)
5797{
5798 struct vm_area_struct *vma = walk->private;
5799 pte_t *pte;
5800 spinlock_t *ptl;
5801
bf929152 5802 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5803 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5804 mc.precharge += HPAGE_PMD_NR;
bf929152 5805 spin_unlock(ptl);
1a5a9906 5806 return 0;
12724850 5807 }
03319327 5808
45f83cef
AA
5809 if (pmd_trans_unstable(pmd))
5810 return 0;
4ffef5fe
DN
5811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5812 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5813 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5814 mc.precharge++; /* increment precharge temporarily */
5815 pte_unmap_unlock(pte - 1, ptl);
5816 cond_resched();
5817
7dc74be0
DN
5818 return 0;
5819}
5820
4ffef5fe
DN
5821static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5822{
5823 unsigned long precharge;
5824 struct vm_area_struct *vma;
5825
dfe076b0 5826 down_read(&mm->mmap_sem);
4ffef5fe
DN
5827 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5828 struct mm_walk mem_cgroup_count_precharge_walk = {
5829 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5830 .mm = mm,
5831 .private = vma,
5832 };
5833 if (is_vm_hugetlb_page(vma))
5834 continue;
4ffef5fe
DN
5835 walk_page_range(vma->vm_start, vma->vm_end,
5836 &mem_cgroup_count_precharge_walk);
5837 }
dfe076b0 5838 up_read(&mm->mmap_sem);
4ffef5fe
DN
5839
5840 precharge = mc.precharge;
5841 mc.precharge = 0;
5842
5843 return precharge;
5844}
5845
4ffef5fe
DN
5846static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5847{
dfe076b0
DN
5848 unsigned long precharge = mem_cgroup_count_precharge(mm);
5849
5850 VM_BUG_ON(mc.moving_task);
5851 mc.moving_task = current;
5852 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5853}
5854
dfe076b0
DN
5855/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5856static void __mem_cgroup_clear_mc(void)
4ffef5fe 5857{
2bd9bb20
KH
5858 struct mem_cgroup *from = mc.from;
5859 struct mem_cgroup *to = mc.to;
4050377b 5860 int i;
2bd9bb20 5861
4ffef5fe 5862 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5863 if (mc.precharge) {
00501b53 5864 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5865 mc.precharge = 0;
5866 }
5867 /*
5868 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5869 * we must uncharge here.
5870 */
5871 if (mc.moved_charge) {
00501b53 5872 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5873 mc.moved_charge = 0;
4ffef5fe 5874 }
483c30b5
DN
5875 /* we must fixup refcnts and charges */
5876 if (mc.moved_swap) {
483c30b5 5877 /* uncharge swap account from the old cgroup */
ce00a967 5878 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5879 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5880
05b84301 5881 /*
3e32cb2e
JW
5882 * we charged both to->memory and to->memsw, so we
5883 * should uncharge to->memory.
05b84301 5884 */
ce00a967 5885 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5886 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5887
5888 for (i = 0; i < mc.moved_swap; i++)
5889 css_put(&mc.from->css);
5890
4050377b 5891 /* we've already done css_get(mc.to) */
483c30b5
DN
5892 mc.moved_swap = 0;
5893 }
dfe076b0
DN
5894 memcg_oom_recover(from);
5895 memcg_oom_recover(to);
5896 wake_up_all(&mc.waitq);
5897}
5898
5899static void mem_cgroup_clear_mc(void)
5900{
5901 struct mem_cgroup *from = mc.from;
5902
5903 /*
5904 * we must clear moving_task before waking up waiters at the end of
5905 * task migration.
5906 */
5907 mc.moving_task = NULL;
5908 __mem_cgroup_clear_mc();
2bd9bb20 5909 spin_lock(&mc.lock);
4ffef5fe
DN
5910 mc.from = NULL;
5911 mc.to = NULL;
2bd9bb20 5912 spin_unlock(&mc.lock);
32047e2a 5913 mem_cgroup_end_move(from);
4ffef5fe
DN
5914}
5915
eb95419b 5916static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5917 struct cgroup_taskset *tset)
7dc74be0 5918{
2f7ee569 5919 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5920 int ret = 0;
eb95419b 5921 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5922 unsigned long move_charge_at_immigrate;
7dc74be0 5923
ee5e8472
GC
5924 /*
5925 * We are now commited to this value whatever it is. Changes in this
5926 * tunable will only affect upcoming migrations, not the current one.
5927 * So we need to save it, and keep it going.
5928 */
5929 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5930 if (move_charge_at_immigrate) {
7dc74be0
DN
5931 struct mm_struct *mm;
5932 struct mem_cgroup *from = mem_cgroup_from_task(p);
5933
c0ff4b85 5934 VM_BUG_ON(from == memcg);
7dc74be0
DN
5935
5936 mm = get_task_mm(p);
5937 if (!mm)
5938 return 0;
7dc74be0 5939 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5940 if (mm->owner == p) {
5941 VM_BUG_ON(mc.from);
5942 VM_BUG_ON(mc.to);
5943 VM_BUG_ON(mc.precharge);
854ffa8d 5944 VM_BUG_ON(mc.moved_charge);
483c30b5 5945 VM_BUG_ON(mc.moved_swap);
32047e2a 5946 mem_cgroup_start_move(from);
2bd9bb20 5947 spin_lock(&mc.lock);
4ffef5fe 5948 mc.from = from;
c0ff4b85 5949 mc.to = memcg;
ee5e8472 5950 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5951 spin_unlock(&mc.lock);
dfe076b0 5952 /* We set mc.moving_task later */
4ffef5fe
DN
5953
5954 ret = mem_cgroup_precharge_mc(mm);
5955 if (ret)
5956 mem_cgroup_clear_mc();
dfe076b0
DN
5957 }
5958 mmput(mm);
7dc74be0
DN
5959 }
5960 return ret;
5961}
5962
eb95419b 5963static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5964 struct cgroup_taskset *tset)
7dc74be0 5965{
4ffef5fe 5966 mem_cgroup_clear_mc();
7dc74be0
DN
5967}
5968
4ffef5fe
DN
5969static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5970 unsigned long addr, unsigned long end,
5971 struct mm_walk *walk)
7dc74be0 5972{
4ffef5fe
DN
5973 int ret = 0;
5974 struct vm_area_struct *vma = walk->private;
5975 pte_t *pte;
5976 spinlock_t *ptl;
12724850
NH
5977 enum mc_target_type target_type;
5978 union mc_target target;
5979 struct page *page;
5980 struct page_cgroup *pc;
4ffef5fe 5981
12724850
NH
5982 /*
5983 * We don't take compound_lock() here but no race with splitting thp
5984 * happens because:
5985 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5986 * under splitting, which means there's no concurrent thp split,
5987 * - if another thread runs into split_huge_page() just after we
5988 * entered this if-block, the thread must wait for page table lock
5989 * to be unlocked in __split_huge_page_splitting(), where the main
5990 * part of thp split is not executed yet.
5991 */
bf929152 5992 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5993 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5994 spin_unlock(ptl);
12724850
NH
5995 return 0;
5996 }
5997 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5998 if (target_type == MC_TARGET_PAGE) {
5999 page = target.page;
6000 if (!isolate_lru_page(page)) {
6001 pc = lookup_page_cgroup(page);
6002 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6003 pc, mc.from, mc.to)) {
12724850
NH
6004 mc.precharge -= HPAGE_PMD_NR;
6005 mc.moved_charge += HPAGE_PMD_NR;
6006 }
6007 putback_lru_page(page);
6008 }
6009 put_page(page);
6010 }
bf929152 6011 spin_unlock(ptl);
1a5a9906 6012 return 0;
12724850
NH
6013 }
6014
45f83cef
AA
6015 if (pmd_trans_unstable(pmd))
6016 return 0;
4ffef5fe
DN
6017retry:
6018 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6019 for (; addr != end; addr += PAGE_SIZE) {
6020 pte_t ptent = *(pte++);
02491447 6021 swp_entry_t ent;
4ffef5fe
DN
6022
6023 if (!mc.precharge)
6024 break;
6025
8d32ff84 6026 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6027 case MC_TARGET_PAGE:
6028 page = target.page;
6029 if (isolate_lru_page(page))
6030 goto put;
6031 pc = lookup_page_cgroup(page);
7ec99d62 6032 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6033 mc.from, mc.to)) {
4ffef5fe 6034 mc.precharge--;
854ffa8d
DN
6035 /* we uncharge from mc.from later. */
6036 mc.moved_charge++;
4ffef5fe
DN
6037 }
6038 putback_lru_page(page);
8d32ff84 6039put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6040 put_page(page);
6041 break;
02491447
DN
6042 case MC_TARGET_SWAP:
6043 ent = target.ent;
e91cbb42 6044 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6045 mc.precharge--;
483c30b5
DN
6046 /* we fixup refcnts and charges later. */
6047 mc.moved_swap++;
6048 }
02491447 6049 break;
4ffef5fe
DN
6050 default:
6051 break;
6052 }
6053 }
6054 pte_unmap_unlock(pte - 1, ptl);
6055 cond_resched();
6056
6057 if (addr != end) {
6058 /*
6059 * We have consumed all precharges we got in can_attach().
6060 * We try charge one by one, but don't do any additional
6061 * charges to mc.to if we have failed in charge once in attach()
6062 * phase.
6063 */
854ffa8d 6064 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6065 if (!ret)
6066 goto retry;
6067 }
6068
6069 return ret;
6070}
6071
6072static void mem_cgroup_move_charge(struct mm_struct *mm)
6073{
6074 struct vm_area_struct *vma;
6075
6076 lru_add_drain_all();
dfe076b0
DN
6077retry:
6078 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6079 /*
6080 * Someone who are holding the mmap_sem might be waiting in
6081 * waitq. So we cancel all extra charges, wake up all waiters,
6082 * and retry. Because we cancel precharges, we might not be able
6083 * to move enough charges, but moving charge is a best-effort
6084 * feature anyway, so it wouldn't be a big problem.
6085 */
6086 __mem_cgroup_clear_mc();
6087 cond_resched();
6088 goto retry;
6089 }
4ffef5fe
DN
6090 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6091 int ret;
6092 struct mm_walk mem_cgroup_move_charge_walk = {
6093 .pmd_entry = mem_cgroup_move_charge_pte_range,
6094 .mm = mm,
6095 .private = vma,
6096 };
6097 if (is_vm_hugetlb_page(vma))
6098 continue;
4ffef5fe
DN
6099 ret = walk_page_range(vma->vm_start, vma->vm_end,
6100 &mem_cgroup_move_charge_walk);
6101 if (ret)
6102 /*
6103 * means we have consumed all precharges and failed in
6104 * doing additional charge. Just abandon here.
6105 */
6106 break;
6107 }
dfe076b0 6108 up_read(&mm->mmap_sem);
7dc74be0
DN
6109}
6110
eb95419b 6111static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6112 struct cgroup_taskset *tset)
67e465a7 6113{
2f7ee569 6114 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6115 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6116
dfe076b0 6117 if (mm) {
a433658c
KM
6118 if (mc.to)
6119 mem_cgroup_move_charge(mm);
dfe076b0
DN
6120 mmput(mm);
6121 }
a433658c
KM
6122 if (mc.to)
6123 mem_cgroup_clear_mc();
67e465a7 6124}
5cfb80a7 6125#else /* !CONFIG_MMU */
eb95419b 6126static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6127 struct cgroup_taskset *tset)
5cfb80a7
DN
6128{
6129 return 0;
6130}
eb95419b 6131static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6132 struct cgroup_taskset *tset)
5cfb80a7
DN
6133{
6134}
eb95419b 6135static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6136 struct cgroup_taskset *tset)
5cfb80a7
DN
6137{
6138}
6139#endif
67e465a7 6140
f00baae7
TH
6141/*
6142 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6143 * to verify whether we're attached to the default hierarchy on each mount
6144 * attempt.
f00baae7 6145 */
eb95419b 6146static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6147{
6148 /*
aa6ec29b 6149 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6150 * guarantees that @root doesn't have any children, so turning it
6151 * on for the root memcg is enough.
6152 */
aa6ec29b 6153 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 6154 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6155}
6156
073219e9 6157struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6158 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6159 .css_online = mem_cgroup_css_online,
92fb9748
TH
6160 .css_offline = mem_cgroup_css_offline,
6161 .css_free = mem_cgroup_css_free,
1ced953b 6162 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6163 .can_attach = mem_cgroup_can_attach,
6164 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6165 .attach = mem_cgroup_move_task,
f00baae7 6166 .bind = mem_cgroup_bind,
5577964e 6167 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 6168 .early_init = 0,
8cdea7c0 6169};
c077719b 6170
c255a458 6171#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6172static int __init enable_swap_account(char *s)
6173{
a2c8990a 6174 if (!strcmp(s, "1"))
a42c390c 6175 really_do_swap_account = 1;
a2c8990a 6176 else if (!strcmp(s, "0"))
a42c390c
MH
6177 really_do_swap_account = 0;
6178 return 1;
6179}
a2c8990a 6180__setup("swapaccount=", enable_swap_account);
c077719b 6181
2d11085e
MH
6182static void __init memsw_file_init(void)
6183{
2cf669a5
TH
6184 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6185 memsw_cgroup_files));
6acc8b02
MH
6186}
6187
6188static void __init enable_swap_cgroup(void)
6189{
6190 if (!mem_cgroup_disabled() && really_do_swap_account) {
6191 do_swap_account = 1;
6192 memsw_file_init();
6193 }
2d11085e 6194}
6acc8b02 6195
2d11085e 6196#else
6acc8b02 6197static void __init enable_swap_cgroup(void)
2d11085e
MH
6198{
6199}
c077719b 6200#endif
2d11085e 6201
0a31bc97
JW
6202#ifdef CONFIG_MEMCG_SWAP
6203/**
6204 * mem_cgroup_swapout - transfer a memsw charge to swap
6205 * @page: page whose memsw charge to transfer
6206 * @entry: swap entry to move the charge to
6207 *
6208 * Transfer the memsw charge of @page to @entry.
6209 */
6210void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6211{
6212 struct page_cgroup *pc;
6213 unsigned short oldid;
6214
6215 VM_BUG_ON_PAGE(PageLRU(page), page);
6216 VM_BUG_ON_PAGE(page_count(page), page);
6217
6218 if (!do_swap_account)
6219 return;
6220
6221 pc = lookup_page_cgroup(page);
6222
6223 /* Readahead page, never charged */
6224 if (!PageCgroupUsed(pc))
6225 return;
6226
6227 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEMSW), page);
6228
6229 oldid = swap_cgroup_record(entry, mem_cgroup_id(pc->mem_cgroup));
6230 VM_BUG_ON_PAGE(oldid, page);
6231
6232 pc->flags &= ~PCG_MEMSW;
6233 css_get(&pc->mem_cgroup->css);
6234 mem_cgroup_swap_statistics(pc->mem_cgroup, true);
6235}
6236
6237/**
6238 * mem_cgroup_uncharge_swap - uncharge a swap entry
6239 * @entry: swap entry to uncharge
6240 *
6241 * Drop the memsw charge associated with @entry.
6242 */
6243void mem_cgroup_uncharge_swap(swp_entry_t entry)
6244{
6245 struct mem_cgroup *memcg;
6246 unsigned short id;
6247
6248 if (!do_swap_account)
6249 return;
6250
6251 id = swap_cgroup_record(entry, 0);
6252 rcu_read_lock();
6253 memcg = mem_cgroup_lookup(id);
6254 if (memcg) {
ce00a967 6255 if (!mem_cgroup_is_root(memcg))
3e32cb2e 6256 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
6257 mem_cgroup_swap_statistics(memcg, false);
6258 css_put(&memcg->css);
6259 }
6260 rcu_read_unlock();
6261}
6262#endif
6263
00501b53
JW
6264/**
6265 * mem_cgroup_try_charge - try charging a page
6266 * @page: page to charge
6267 * @mm: mm context of the victim
6268 * @gfp_mask: reclaim mode
6269 * @memcgp: charged memcg return
6270 *
6271 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6272 * pages according to @gfp_mask if necessary.
6273 *
6274 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6275 * Otherwise, an error code is returned.
6276 *
6277 * After page->mapping has been set up, the caller must finalize the
6278 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6279 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6280 */
6281int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6282 gfp_t gfp_mask, struct mem_cgroup **memcgp)
6283{
6284 struct mem_cgroup *memcg = NULL;
6285 unsigned int nr_pages = 1;
6286 int ret = 0;
6287
6288 if (mem_cgroup_disabled())
6289 goto out;
6290
6291 if (PageSwapCache(page)) {
6292 struct page_cgroup *pc = lookup_page_cgroup(page);
6293 /*
6294 * Every swap fault against a single page tries to charge the
6295 * page, bail as early as possible. shmem_unuse() encounters
6296 * already charged pages, too. The USED bit is protected by
6297 * the page lock, which serializes swap cache removal, which
6298 * in turn serializes uncharging.
6299 */
6300 if (PageCgroupUsed(pc))
6301 goto out;
6302 }
6303
6304 if (PageTransHuge(page)) {
6305 nr_pages <<= compound_order(page);
6306 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6307 }
6308
6309 if (do_swap_account && PageSwapCache(page))
6310 memcg = try_get_mem_cgroup_from_page(page);
6311 if (!memcg)
6312 memcg = get_mem_cgroup_from_mm(mm);
6313
6314 ret = try_charge(memcg, gfp_mask, nr_pages);
6315
6316 css_put(&memcg->css);
6317
6318 if (ret == -EINTR) {
6319 memcg = root_mem_cgroup;
6320 ret = 0;
6321 }
6322out:
6323 *memcgp = memcg;
6324 return ret;
6325}
6326
6327/**
6328 * mem_cgroup_commit_charge - commit a page charge
6329 * @page: page to charge
6330 * @memcg: memcg to charge the page to
6331 * @lrucare: page might be on LRU already
6332 *
6333 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6334 * after page->mapping has been set up. This must happen atomically
6335 * as part of the page instantiation, i.e. under the page table lock
6336 * for anonymous pages, under the page lock for page and swap cache.
6337 *
6338 * In addition, the page must not be on the LRU during the commit, to
6339 * prevent racing with task migration. If it might be, use @lrucare.
6340 *
6341 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6342 */
6343void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6344 bool lrucare)
6345{
6346 unsigned int nr_pages = 1;
6347
6348 VM_BUG_ON_PAGE(!page->mapping, page);
6349 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6350
6351 if (mem_cgroup_disabled())
6352 return;
6353 /*
6354 * Swap faults will attempt to charge the same page multiple
6355 * times. But reuse_swap_page() might have removed the page
6356 * from swapcache already, so we can't check PageSwapCache().
6357 */
6358 if (!memcg)
6359 return;
6360
6abb5a86
JW
6361 commit_charge(page, memcg, lrucare);
6362
00501b53
JW
6363 if (PageTransHuge(page)) {
6364 nr_pages <<= compound_order(page);
6365 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6366 }
6367
6abb5a86
JW
6368 local_irq_disable();
6369 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6370 memcg_check_events(memcg, page);
6371 local_irq_enable();
00501b53
JW
6372
6373 if (do_swap_account && PageSwapCache(page)) {
6374 swp_entry_t entry = { .val = page_private(page) };
6375 /*
6376 * The swap entry might not get freed for a long time,
6377 * let's not wait for it. The page already received a
6378 * memory+swap charge, drop the swap entry duplicate.
6379 */
6380 mem_cgroup_uncharge_swap(entry);
6381 }
6382}
6383
6384/**
6385 * mem_cgroup_cancel_charge - cancel a page charge
6386 * @page: page to charge
6387 * @memcg: memcg to charge the page to
6388 *
6389 * Cancel a charge transaction started by mem_cgroup_try_charge().
6390 */
6391void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
6392{
6393 unsigned int nr_pages = 1;
6394
6395 if (mem_cgroup_disabled())
6396 return;
6397 /*
6398 * Swap faults will attempt to charge the same page multiple
6399 * times. But reuse_swap_page() might have removed the page
6400 * from swapcache already, so we can't check PageSwapCache().
6401 */
6402 if (!memcg)
6403 return;
6404
6405 if (PageTransHuge(page)) {
6406 nr_pages <<= compound_order(page);
6407 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6408 }
6409
6410 cancel_charge(memcg, nr_pages);
6411}
6412
747db954
JW
6413static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
6414 unsigned long nr_mem, unsigned long nr_memsw,
6415 unsigned long nr_anon, unsigned long nr_file,
6416 unsigned long nr_huge, struct page *dummy_page)
6417{
6418 unsigned long flags;
6419
ce00a967
JW
6420 if (!mem_cgroup_is_root(memcg)) {
6421 if (nr_mem)
3e32cb2e 6422 page_counter_uncharge(&memcg->memory, nr_mem);
ce00a967 6423 if (nr_memsw)
3e32cb2e 6424 page_counter_uncharge(&memcg->memsw, nr_memsw);
ce00a967
JW
6425 memcg_oom_recover(memcg);
6426 }
747db954
JW
6427
6428 local_irq_save(flags);
6429 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
6430 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
6431 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
6432 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
6433 __this_cpu_add(memcg->stat->nr_page_events, nr_anon + nr_file);
6434 memcg_check_events(memcg, dummy_page);
6435 local_irq_restore(flags);
6436}
6437
6438static void uncharge_list(struct list_head *page_list)
6439{
6440 struct mem_cgroup *memcg = NULL;
6441 unsigned long nr_memsw = 0;
6442 unsigned long nr_anon = 0;
6443 unsigned long nr_file = 0;
6444 unsigned long nr_huge = 0;
6445 unsigned long pgpgout = 0;
6446 unsigned long nr_mem = 0;
6447 struct list_head *next;
6448 struct page *page;
6449
6450 next = page_list->next;
6451 do {
6452 unsigned int nr_pages = 1;
6453 struct page_cgroup *pc;
6454
6455 page = list_entry(next, struct page, lru);
6456 next = page->lru.next;
6457
6458 VM_BUG_ON_PAGE(PageLRU(page), page);
6459 VM_BUG_ON_PAGE(page_count(page), page);
6460
6461 pc = lookup_page_cgroup(page);
6462 if (!PageCgroupUsed(pc))
6463 continue;
6464
6465 /*
6466 * Nobody should be changing or seriously looking at
6467 * pc->mem_cgroup and pc->flags at this point, we have
6468 * fully exclusive access to the page.
6469 */
6470
6471 if (memcg != pc->mem_cgroup) {
6472 if (memcg) {
6473 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6474 nr_anon, nr_file, nr_huge, page);
6475 pgpgout = nr_mem = nr_memsw = 0;
6476 nr_anon = nr_file = nr_huge = 0;
6477 }
6478 memcg = pc->mem_cgroup;
6479 }
6480
6481 if (PageTransHuge(page)) {
6482 nr_pages <<= compound_order(page);
6483 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6484 nr_huge += nr_pages;
6485 }
6486
6487 if (PageAnon(page))
6488 nr_anon += nr_pages;
6489 else
6490 nr_file += nr_pages;
6491
6492 if (pc->flags & PCG_MEM)
6493 nr_mem += nr_pages;
6494 if (pc->flags & PCG_MEMSW)
6495 nr_memsw += nr_pages;
6496 pc->flags = 0;
6497
6498 pgpgout++;
6499 } while (next != page_list);
6500
6501 if (memcg)
6502 uncharge_batch(memcg, pgpgout, nr_mem, nr_memsw,
6503 nr_anon, nr_file, nr_huge, page);
6504}
6505
0a31bc97
JW
6506/**
6507 * mem_cgroup_uncharge - uncharge a page
6508 * @page: page to uncharge
6509 *
6510 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6511 * mem_cgroup_commit_charge().
6512 */
6513void mem_cgroup_uncharge(struct page *page)
6514{
0a31bc97 6515 struct page_cgroup *pc;
0a31bc97
JW
6516
6517 if (mem_cgroup_disabled())
6518 return;
6519
747db954 6520 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6521 pc = lookup_page_cgroup(page);
0a31bc97
JW
6522 if (!PageCgroupUsed(pc))
6523 return;
6524
747db954
JW
6525 INIT_LIST_HEAD(&page->lru);
6526 uncharge_list(&page->lru);
6527}
0a31bc97 6528
747db954
JW
6529/**
6530 * mem_cgroup_uncharge_list - uncharge a list of page
6531 * @page_list: list of pages to uncharge
6532 *
6533 * Uncharge a list of pages previously charged with
6534 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6535 */
6536void mem_cgroup_uncharge_list(struct list_head *page_list)
6537{
6538 if (mem_cgroup_disabled())
6539 return;
0a31bc97 6540
747db954
JW
6541 if (!list_empty(page_list))
6542 uncharge_list(page_list);
0a31bc97
JW
6543}
6544
6545/**
6546 * mem_cgroup_migrate - migrate a charge to another page
6547 * @oldpage: currently charged page
6548 * @newpage: page to transfer the charge to
6549 * @lrucare: both pages might be on the LRU already
6550 *
6551 * Migrate the charge from @oldpage to @newpage.
6552 *
6553 * Both pages must be locked, @newpage->mapping must be set up.
6554 */
6555void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6556 bool lrucare)
6557{
0a31bc97
JW
6558 struct page_cgroup *pc;
6559 int isolated;
6560
6561 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6562 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6563 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6564 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6565 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6566 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6567 newpage);
0a31bc97
JW
6568
6569 if (mem_cgroup_disabled())
6570 return;
6571
6572 /* Page cache replacement: new page already charged? */
6573 pc = lookup_page_cgroup(newpage);
6574 if (PageCgroupUsed(pc))
6575 return;
6576
6577 /* Re-entrant migration: old page already uncharged? */
6578 pc = lookup_page_cgroup(oldpage);
6579 if (!PageCgroupUsed(pc))
6580 return;
6581
6582 VM_BUG_ON_PAGE(!(pc->flags & PCG_MEM), oldpage);
6583 VM_BUG_ON_PAGE(do_swap_account && !(pc->flags & PCG_MEMSW), oldpage);
6584
0a31bc97
JW
6585 if (lrucare)
6586 lock_page_lru(oldpage, &isolated);
6587
6588 pc->flags = 0;
6589
6590 if (lrucare)
6591 unlock_page_lru(oldpage, isolated);
6592
6abb5a86 6593 commit_charge(newpage, pc->mem_cgroup, lrucare);
0a31bc97
JW
6594}
6595
2d11085e 6596/*
1081312f
MH
6597 * subsys_initcall() for memory controller.
6598 *
6599 * Some parts like hotcpu_notifier() have to be initialized from this context
6600 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6601 * everything that doesn't depend on a specific mem_cgroup structure should
6602 * be initialized from here.
2d11085e
MH
6603 */
6604static int __init mem_cgroup_init(void)
6605{
6606 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6607 enable_swap_cgroup();
bb4cc1a8 6608 mem_cgroup_soft_limit_tree_init();
e4777496 6609 memcg_stock_init();
2d11085e
MH
6610 return 0;
6611}
6612subsys_initcall(mem_cgroup_init);