]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcg/percpu: per-memcg percpu memory statistics
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
f7e1cb6e
JW
76/* Socket memory accounting disabled? */
77static bool cgroup_memory_nosocket;
78
04823c83
VD
79/* Kernel memory accounting disabled? */
80static bool cgroup_memory_nokmem;
81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
eccb52e7 84bool cgroup_memory_noswap __read_mostly;
c077719b 85#else
eccb52e7 86#define cgroup_memory_noswap 1
2d1c4980 87#endif
c077719b 88
97b27821
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91#endif
92
7941d214
JW
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
eccb52e7 96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
97}
98
a0db00fc
KS
99#define THRESHOLDS_EVENTS_TARGET 128
100#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 101
bb4cc1a8
AM
102/*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
ef8f2327 107struct mem_cgroup_tree_per_node {
bb4cc1a8 108 struct rb_root rb_root;
fa90b2fd 109 struct rb_node *rb_rightmost;
bb4cc1a8
AM
110 spinlock_t lock;
111};
112
bb4cc1a8
AM
113struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115};
116
117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
9490ff27
KH
119/* for OOM */
120struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123};
2e72b634 124
79bd9814
TH
125/*
126 * cgroup_event represents events which userspace want to receive.
127 */
3bc942f3 128struct mem_cgroup_event {
79bd9814 129 /*
59b6f873 130 * memcg which the event belongs to.
79bd9814 131 */
59b6f873 132 struct mem_cgroup *memcg;
79bd9814
TH
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
fba94807
TH
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
59b6f873 146 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 147 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
59b6f873 153 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 154 struct eventfd_ctx *eventfd);
79bd9814
TH
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
ac6424b9 161 wait_queue_entry_t wait;
79bd9814
TH
162 struct work_struct remove;
163};
164
c0ff4b85
R
165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 167
7dc74be0
DN
168/* Stuffs for move charges at task migration. */
169/*
1dfab5ab 170 * Types of charges to be moved.
7dc74be0 171 */
1dfab5ab
JW
172#define MOVE_ANON 0x1U
173#define MOVE_FILE 0x2U
174#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 175
4ffef5fe
DN
176/* "mc" and its members are protected by cgroup_mutex */
177static struct move_charge_struct {
b1dd693e 178 spinlock_t lock; /* for from, to */
264a0ae1 179 struct mm_struct *mm;
4ffef5fe
DN
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
1dfab5ab 182 unsigned long flags;
4ffef5fe 183 unsigned long precharge;
854ffa8d 184 unsigned long moved_charge;
483c30b5 185 unsigned long moved_swap;
8033b97c
DN
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188} mc = {
2bd9bb20 189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191};
4ffef5fe 192
4e416953
BS
193/*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
a0db00fc 197#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 198#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 199
217bc319
KH
200enum charge_type {
201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 202 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
205 NR_CHARGE_TYPE,
206};
207
8c7c6e34 208/* for encoding cft->private value on file */
86ae53e1
GC
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
510fc4e1 213 _KMEM,
d55f90bf 214 _TCP,
86ae53e1
GC
215};
216
a0db00fc
KS
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 219#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
220/* Used for OOM nofiier */
221#define OOM_CONTROL (0)
8c7c6e34 222
b05706f1
KT
223/*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228#define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233#define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
7775face
TH
238static inline bool should_force_charge(void)
239{
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242}
243
70ddf637
AV
244/* Some nice accessors for the vmpressure. */
245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246{
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250}
251
252struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253{
254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255}
256
84c07d11 257#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
258extern spinlock_t css_set_lock;
259
260static void obj_cgroup_release(struct percpu_ref *ref)
261{
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263 struct mem_cgroup *memcg;
264 unsigned int nr_bytes;
265 unsigned int nr_pages;
266 unsigned long flags;
267
268 /*
269 * At this point all allocated objects are freed, and
270 * objcg->nr_charged_bytes can't have an arbitrary byte value.
271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272 *
273 * The following sequence can lead to it:
274 * 1) CPU0: objcg == stock->cached_objcg
275 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276 * PAGE_SIZE bytes are charged
277 * 3) CPU1: a process from another memcg is allocating something,
278 * the stock if flushed,
279 * objcg->nr_charged_bytes = PAGE_SIZE - 92
280 * 5) CPU0: we do release this object,
281 * 92 bytes are added to stock->nr_bytes
282 * 6) CPU0: stock is flushed,
283 * 92 bytes are added to objcg->nr_charged_bytes
284 *
285 * In the result, nr_charged_bytes == PAGE_SIZE.
286 * This page will be uncharged in obj_cgroup_release().
287 */
288 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290 nr_pages = nr_bytes >> PAGE_SHIFT;
291
292 spin_lock_irqsave(&css_set_lock, flags);
293 memcg = obj_cgroup_memcg(objcg);
294 if (nr_pages)
295 __memcg_kmem_uncharge(memcg, nr_pages);
296 list_del(&objcg->list);
297 mem_cgroup_put(memcg);
298 spin_unlock_irqrestore(&css_set_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302}
303
304static struct obj_cgroup *obj_cgroup_alloc(void)
305{
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321}
322
323static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325{
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&css_set_lock);
331
332 /* Move active objcg to the parent's list */
333 xchg(&objcg->memcg, parent);
334 css_get(&parent->css);
335 list_add(&objcg->list, &parent->objcg_list);
336
337 /* Move already reparented objcgs to the parent's list */
338 list_for_each_entry(iter, &memcg->objcg_list, list) {
339 css_get(&parent->css);
340 xchg(&iter->memcg, parent);
341 css_put(&memcg->css);
342 }
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
55007d84 350/*
9855609b 351 * This will be used as a shrinker list's index.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
272911a4 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
ef12947c 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 400#endif
17cc4dfe 401
0a4465d3
KT
402static int memcg_shrinker_map_size;
403static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406{
407 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408}
409
410static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411 int size, int old_size)
412{
413 struct memcg_shrinker_map *new, *old;
414 int nid;
415
416 lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418 for_each_node(nid) {
419 old = rcu_dereference_protected(
420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421 /* Not yet online memcg */
422 if (!old)
423 return 0;
424
86daf94e 425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
426 if (!new)
427 return -ENOMEM;
428
429 /* Set all old bits, clear all new bits */
430 memset(new->map, (int)0xff, old_size);
431 memset((void *)new->map + old_size, 0, size - old_size);
432
433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435 }
436
437 return 0;
438}
439
440static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441{
442 struct mem_cgroup_per_node *pn;
443 struct memcg_shrinker_map *map;
444 int nid;
445
446 if (mem_cgroup_is_root(memcg))
447 return;
448
449 for_each_node(nid) {
450 pn = mem_cgroup_nodeinfo(memcg, nid);
451 map = rcu_dereference_protected(pn->shrinker_map, true);
452 if (map)
453 kvfree(map);
454 rcu_assign_pointer(pn->shrinker_map, NULL);
455 }
456}
457
458static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459{
460 struct memcg_shrinker_map *map;
461 int nid, size, ret = 0;
462
463 if (mem_cgroup_is_root(memcg))
464 return 0;
465
466 mutex_lock(&memcg_shrinker_map_mutex);
467 size = memcg_shrinker_map_size;
468 for_each_node(nid) {
86daf94e 469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
470 if (!map) {
471 memcg_free_shrinker_maps(memcg);
472 ret = -ENOMEM;
473 break;
474 }
475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476 }
477 mutex_unlock(&memcg_shrinker_map_mutex);
478
479 return ret;
480}
481
482int memcg_expand_shrinker_maps(int new_id)
483{
484 int size, old_size, ret = 0;
485 struct mem_cgroup *memcg;
486
487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488 old_size = memcg_shrinker_map_size;
489 if (size <= old_size)
490 return 0;
491
492 mutex_lock(&memcg_shrinker_map_mutex);
493 if (!root_mem_cgroup)
494 goto unlock;
495
496 for_each_mem_cgroup(memcg) {
497 if (mem_cgroup_is_root(memcg))
498 continue;
499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
500 if (ret) {
501 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 502 goto unlock;
75866af6 503 }
0a4465d3
KT
504 }
505unlock:
506 if (!ret)
507 memcg_shrinker_map_size = size;
508 mutex_unlock(&memcg_shrinker_map_mutex);
509 return ret;
510}
fae91d6d
KT
511
512void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513{
514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515 struct memcg_shrinker_map *map;
516
517 rcu_read_lock();
518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
519 /* Pairs with smp mb in shrink_slab() */
520 smp_mb__before_atomic();
fae91d6d
KT
521 set_bit(shrinker_id, map->map);
522 rcu_read_unlock();
523 }
524}
525
ad7fa852
TH
526/**
527 * mem_cgroup_css_from_page - css of the memcg associated with a page
528 * @page: page of interest
529 *
530 * If memcg is bound to the default hierarchy, css of the memcg associated
531 * with @page is returned. The returned css remains associated with @page
532 * until it is released.
533 *
534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 * is returned.
ad7fa852
TH
536 */
537struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538{
539 struct mem_cgroup *memcg;
540
ad7fa852
TH
541 memcg = page->mem_cgroup;
542
9e10a130 543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
544 memcg = root_mem_cgroup;
545
ad7fa852
TH
546 return &memcg->css;
547}
548
2fc04524
VD
549/**
550 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * @page: the page
552 *
553 * Look up the closest online ancestor of the memory cgroup @page is charged to
554 * and return its inode number or 0 if @page is not charged to any cgroup. It
555 * is safe to call this function without holding a reference to @page.
556 *
557 * Note, this function is inherently racy, because there is nothing to prevent
558 * the cgroup inode from getting torn down and potentially reallocated a moment
559 * after page_cgroup_ino() returns, so it only should be used by callers that
560 * do not care (such as procfs interfaces).
561 */
562ino_t page_cgroup_ino(struct page *page)
563{
564 struct mem_cgroup *memcg;
565 unsigned long ino = 0;
566
567 rcu_read_lock();
9855609b 568 memcg = page->mem_cgroup;
286e04b8 569
9855609b
RG
570 /*
571 * The lowest bit set means that memcg isn't a valid
572 * memcg pointer, but a obj_cgroups pointer.
573 * In this case the page is shared and doesn't belong
574 * to any specific memory cgroup.
575 */
576 if ((unsigned long) memcg & 0x1UL)
577 memcg = NULL;
286e04b8 578
2fc04524
VD
579 while (memcg && !(memcg->css.flags & CSS_ONLINE))
580 memcg = parent_mem_cgroup(memcg);
581 if (memcg)
582 ino = cgroup_ino(memcg->css.cgroup);
583 rcu_read_unlock();
584 return ino;
585}
586
ef8f2327
MG
587static struct mem_cgroup_per_node *
588mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 589{
97a6c37b 590 int nid = page_to_nid(page);
f64c3f54 591
ef8f2327 592 return memcg->nodeinfo[nid];
f64c3f54
BS
593}
594
ef8f2327
MG
595static struct mem_cgroup_tree_per_node *
596soft_limit_tree_node(int nid)
bb4cc1a8 597{
ef8f2327 598 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
599}
600
ef8f2327 601static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
602soft_limit_tree_from_page(struct page *page)
603{
604 int nid = page_to_nid(page);
bb4cc1a8 605
ef8f2327 606 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
607}
608
ef8f2327
MG
609static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 611 unsigned long new_usage_in_excess)
bb4cc1a8
AM
612{
613 struct rb_node **p = &mctz->rb_root.rb_node;
614 struct rb_node *parent = NULL;
ef8f2327 615 struct mem_cgroup_per_node *mz_node;
fa90b2fd 616 bool rightmost = true;
bb4cc1a8
AM
617
618 if (mz->on_tree)
619 return;
620
621 mz->usage_in_excess = new_usage_in_excess;
622 if (!mz->usage_in_excess)
623 return;
624 while (*p) {
625 parent = *p;
ef8f2327 626 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 627 tree_node);
fa90b2fd 628 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 629 p = &(*p)->rb_left;
fa90b2fd
DB
630 rightmost = false;
631 }
632
bb4cc1a8
AM
633 /*
634 * We can't avoid mem cgroups that are over their soft
635 * limit by the same amount
636 */
637 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638 p = &(*p)->rb_right;
639 }
fa90b2fd
DB
640
641 if (rightmost)
642 mctz->rb_rightmost = &mz->tree_node;
643
bb4cc1a8
AM
644 rb_link_node(&mz->tree_node, parent, p);
645 rb_insert_color(&mz->tree_node, &mctz->rb_root);
646 mz->on_tree = true;
647}
648
ef8f2327
MG
649static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
651{
652 if (!mz->on_tree)
653 return;
fa90b2fd
DB
654
655 if (&mz->tree_node == mctz->rb_rightmost)
656 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
bb4cc1a8
AM
658 rb_erase(&mz->tree_node, &mctz->rb_root);
659 mz->on_tree = false;
660}
661
ef8f2327
MG
662static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 664{
0a31bc97
JW
665 unsigned long flags;
666
667 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 668 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 669 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
670}
671
3e32cb2e
JW
672static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673{
674 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
676 unsigned long excess = 0;
677
678 if (nr_pages > soft_limit)
679 excess = nr_pages - soft_limit;
680
681 return excess;
682}
bb4cc1a8
AM
683
684static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685{
3e32cb2e 686 unsigned long excess;
ef8f2327
MG
687 struct mem_cgroup_per_node *mz;
688 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 689
e231875b 690 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
691 if (!mctz)
692 return;
bb4cc1a8
AM
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 698 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 699 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
0a31bc97
JW
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
708 /* if on-tree, remove it */
709 if (mz->on_tree)
cf2c8127 710 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
cf2c8127 715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 716 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
717 }
718 }
719}
720
721static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722{
ef8f2327
MG
723 struct mem_cgroup_tree_per_node *mctz;
724 struct mem_cgroup_per_node *mz;
725 int nid;
bb4cc1a8 726
e231875b 727 for_each_node(nid) {
ef8f2327
MG
728 mz = mem_cgroup_nodeinfo(memcg, nid);
729 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
730 if (mctz)
731 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
732 }
733}
734
ef8f2327
MG
735static struct mem_cgroup_per_node *
736__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 737{
ef8f2327 738 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
739
740retry:
741 mz = NULL;
fa90b2fd 742 if (!mctz->rb_rightmost)
bb4cc1a8
AM
743 goto done; /* Nothing to reclaim from */
744
fa90b2fd
DB
745 mz = rb_entry(mctz->rb_rightmost,
746 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
747 /*
748 * Remove the node now but someone else can add it back,
749 * we will to add it back at the end of reclaim to its correct
750 * position in the tree.
751 */
cf2c8127 752 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 753 if (!soft_limit_excess(mz->memcg) ||
8965aa28 754 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
755 goto retry;
756done:
757 return mz;
758}
759
ef8f2327
MG
760static struct mem_cgroup_per_node *
761mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 762{
ef8f2327 763 struct mem_cgroup_per_node *mz;
bb4cc1a8 764
0a31bc97 765 spin_lock_irq(&mctz->lock);
bb4cc1a8 766 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 767 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
768 return mz;
769}
770
db9adbcb
JW
771/**
772 * __mod_memcg_state - update cgroup memory statistics
773 * @memcg: the memory cgroup
774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775 * @val: delta to add to the counter, can be negative
776 */
777void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778{
ea426c2a 779 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
780
781 if (mem_cgroup_disabled())
782 return;
783
772616b0 784 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
785 threshold <<= PAGE_SHIFT;
786
db9adbcb 787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 788 if (unlikely(abs(x) > threshold)) {
42a30035
JW
789 struct mem_cgroup *mi;
790
766a4c19
YS
791 /*
792 * Batch local counters to keep them in sync with
793 * the hierarchical ones.
794 */
795 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
798 x = 0;
799 }
800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801}
802
42a30035
JW
803static struct mem_cgroup_per_node *
804parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805{
806 struct mem_cgroup *parent;
807
808 parent = parent_mem_cgroup(pn->memcg);
809 if (!parent)
810 return NULL;
811 return mem_cgroup_nodeinfo(parent, nid);
812}
813
eedc4e5a
RG
814void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815 int val)
db9adbcb
JW
816{
817 struct mem_cgroup_per_node *pn;
42a30035 818 struct mem_cgroup *memcg;
ea426c2a 819 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 820
db9adbcb 821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 822 memcg = pn->memcg;
db9adbcb
JW
823
824 /* Update memcg */
42a30035 825 __mod_memcg_state(memcg, idx, val);
db9adbcb 826
b4c46484
RG
827 /* Update lruvec */
828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
ea426c2a
RG
830 if (vmstat_item_in_bytes(idx))
831 threshold <<= PAGE_SHIFT;
832
db9adbcb 833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 834 if (unlikely(abs(x) > threshold)) {
eedc4e5a 835 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
836 struct mem_cgroup_per_node *pi;
837
42a30035
JW
838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
840 x = 0;
841 }
842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843}
844
eedc4e5a
RG
845/**
846 * __mod_lruvec_state - update lruvec memory statistics
847 * @lruvec: the lruvec
848 * @idx: the stat item
849 * @val: delta to add to the counter, can be negative
850 *
851 * The lruvec is the intersection of the NUMA node and a cgroup. This
852 * function updates the all three counters that are affected by a
853 * change of state at this level: per-node, per-cgroup, per-lruvec.
854 */
855void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856 int val)
857{
858 /* Update node */
859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861 /* Update memcg and lruvec */
862 if (!mem_cgroup_disabled())
863 __mod_memcg_lruvec_state(lruvec, idx, val);
864}
865
ec9f0238
RG
866void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867{
4f103c63 868 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
869 struct mem_cgroup *memcg;
870 struct lruvec *lruvec;
871
872 rcu_read_lock();
4f103c63 873 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
874
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg || memcg == root_mem_cgroup) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
867e5e1d 879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883}
884
8380ce47
RG
885void mod_memcg_obj_state(void *p, int idx, int val)
886{
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894}
895
db9adbcb
JW
896/**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904{
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
912 struct mem_cgroup *mi;
913
766a4c19
YS
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924}
925
42a30035 926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 927{
871789d4 928 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
929}
930
42a30035
JW
931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932{
815744d7
JW
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
42a30035
JW
939}
940
c0ff4b85 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 942 struct page *page,
3fba69a5 943 int nr_pages)
d52aa412 944{
e401f176
KH
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
c9019e9b 947 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 948 else {
c9019e9b 949 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
950 nr_pages = -nr_pages; /* for event */
951 }
e401f176 952
871789d4 953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
954}
955
f53d7ce3
JW
956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
7a159cc9
JW
958{
959 unsigned long val, next;
960
871789d4
CD
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 963 /* from time_after() in jiffies.h */
6a1a8b80 964 if ((long)(next - val) < 0) {
f53d7ce3
JW
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
bb4cc1a8
AM
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
f53d7ce3
JW
972 default:
973 break;
974 }
871789d4 975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 976 return true;
7a159cc9 977 }
f53d7ce3 978 return false;
d2265e6f
KH
979}
980
981/*
982 * Check events in order.
983 *
984 */
c0ff4b85 985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
986{
987 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 990 bool do_softlimit;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 994 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
0a31bc97 997 }
d2265e6f
KH
998}
999
cf475ad2 1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1001{
31a78f23
BS
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
073219e9 1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1011}
33398cf2 1012EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1013
d46eb14b
SB
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1023{
d46eb14b
SB
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
0b7f569e 1028
54595fe2
KH
1029 rcu_read_lock();
1030 do {
6f6acb00
MH
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
df381975 1037 memcg = root_mem_cgroup;
6f6acb00
MH
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
00d484f3 1043 } while (!css_tryget(&memcg->css));
54595fe2 1044 rcu_read_unlock();
c0ff4b85 1045 return memcg;
54595fe2 1046}
d46eb14b
SB
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
f745c6f5
SB
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
8965aa28
SB
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
d46eb14b
SB
1072/**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076{
1077 if (unlikely(current->active_memcg)) {
8965aa28 1078 struct mem_cgroup *memcg;
d46eb14b
SB
1079
1080 rcu_read_lock();
8965aa28
SB
1081 /* current->active_memcg must hold a ref. */
1082 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083 memcg = root_mem_cgroup;
1084 else
d46eb14b
SB
1085 memcg = current->active_memcg;
1086 rcu_read_unlock();
1087 return memcg;
1088 }
1089 return get_mem_cgroup_from_mm(current->mm);
1090}
54595fe2 1091
5660048c
JW
1092/**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
b213b54f 1105 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1106 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1107 * reclaimers operating on the same node and priority.
5660048c 1108 */
694fbc0f 1109struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1110 struct mem_cgroup *prev,
694fbc0f 1111 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1112{
3f649ab7 1113 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1114 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1115 struct mem_cgroup *memcg = NULL;
5ac8fb31 1116 struct mem_cgroup *pos = NULL;
711d3d2c 1117
694fbc0f
AM
1118 if (mem_cgroup_disabled())
1119 return NULL;
5660048c 1120
9f3a0d09
JW
1121 if (!root)
1122 root = root_mem_cgroup;
7d74b06f 1123
9f3a0d09 1124 if (prev && !reclaim)
5ac8fb31 1125 pos = prev;
14067bb3 1126
9f3a0d09
JW
1127 if (!root->use_hierarchy && root != root_mem_cgroup) {
1128 if (prev)
5ac8fb31 1129 goto out;
694fbc0f 1130 return root;
9f3a0d09 1131 }
14067bb3 1132
542f85f9 1133 rcu_read_lock();
5f578161 1134
5ac8fb31 1135 if (reclaim) {
ef8f2327 1136 struct mem_cgroup_per_node *mz;
5ac8fb31 1137
ef8f2327 1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1139 iter = &mz->iter;
5ac8fb31
JW
1140
1141 if (prev && reclaim->generation != iter->generation)
1142 goto out_unlock;
1143
6df38689 1144 while (1) {
4db0c3c2 1145 pos = READ_ONCE(iter->position);
6df38689
VD
1146 if (!pos || css_tryget(&pos->css))
1147 break;
5ac8fb31 1148 /*
6df38689
VD
1149 * css reference reached zero, so iter->position will
1150 * be cleared by ->css_released. However, we should not
1151 * rely on this happening soon, because ->css_released
1152 * is called from a work queue, and by busy-waiting we
1153 * might block it. So we clear iter->position right
1154 * away.
5ac8fb31 1155 */
6df38689
VD
1156 (void)cmpxchg(&iter->position, pos, NULL);
1157 }
5ac8fb31
JW
1158 }
1159
1160 if (pos)
1161 css = &pos->css;
1162
1163 for (;;) {
1164 css = css_next_descendant_pre(css, &root->css);
1165 if (!css) {
1166 /*
1167 * Reclaimers share the hierarchy walk, and a
1168 * new one might jump in right at the end of
1169 * the hierarchy - make sure they see at least
1170 * one group and restart from the beginning.
1171 */
1172 if (!prev)
1173 continue;
1174 break;
527a5ec9 1175 }
7d74b06f 1176
5ac8fb31
JW
1177 /*
1178 * Verify the css and acquire a reference. The root
1179 * is provided by the caller, so we know it's alive
1180 * and kicking, and don't take an extra reference.
1181 */
1182 memcg = mem_cgroup_from_css(css);
14067bb3 1183
5ac8fb31
JW
1184 if (css == &root->css)
1185 break;
14067bb3 1186
0b8f73e1
JW
1187 if (css_tryget(css))
1188 break;
9f3a0d09 1189
5ac8fb31 1190 memcg = NULL;
9f3a0d09 1191 }
5ac8fb31
JW
1192
1193 if (reclaim) {
5ac8fb31 1194 /*
6df38689
VD
1195 * The position could have already been updated by a competing
1196 * thread, so check that the value hasn't changed since we read
1197 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1198 */
6df38689
VD
1199 (void)cmpxchg(&iter->position, pos, memcg);
1200
5ac8fb31
JW
1201 if (pos)
1202 css_put(&pos->css);
1203
1204 if (!memcg)
1205 iter->generation++;
1206 else if (!prev)
1207 reclaim->generation = iter->generation;
9f3a0d09 1208 }
5ac8fb31 1209
542f85f9
MH
1210out_unlock:
1211 rcu_read_unlock();
5ac8fb31 1212out:
c40046f3
MH
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
9f3a0d09 1216 return memcg;
14067bb3 1217}
7d74b06f 1218
5660048c
JW
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
9f3a0d09
JW
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
7d74b06f 1232
54a83d6b
MC
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
6df38689 1235{
6df38689 1236 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
6df38689 1239
54a83d6b
MC
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1244 }
1245}
1246
54a83d6b
MC
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
7c5f64f8
VD
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
f168a9a5 1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
925b7673 1305/**
dfe0e773 1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1307 * @page: the page
f144c390 1308 * @pgdat: pgdat of the page
dfe0e773 1309 *
a0b5b414
JW
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
925b7673 1312 */
599d0c95 1313struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1314{
ef8f2327 1315 struct mem_cgroup_per_node *mz;
925b7673 1316 struct mem_cgroup *memcg;
bea8c150 1317 struct lruvec *lruvec;
6d12e2d8 1318
bea8c150 1319 if (mem_cgroup_disabled()) {
867e5e1d 1320 lruvec = &pgdat->__lruvec;
bea8c150
HD
1321 goto out;
1322 }
925b7673 1323
1306a85a 1324 memcg = page->mem_cgroup;
7512102c 1325 /*
dfe0e773 1326 * Swapcache readahead pages are added to the LRU - and
29833315 1327 * possibly migrated - before they are charged.
7512102c 1328 */
29833315
JW
1329 if (!memcg)
1330 memcg = root_mem_cgroup;
7512102c 1331
ef8f2327 1332 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1333 lruvec = &mz->lruvec;
1334out:
1335 /*
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1339 */
599d0c95
MG
1340 if (unlikely(lruvec->pgdat != pgdat))
1341 lruvec->pgdat = pgdat;
bea8c150 1342 return lruvec;
08e552c6 1343}
b69408e8 1344
925b7673 1345/**
fa9add64
HD
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
b4536f0c 1349 * @zid: zone id of the accounted pages
fa9add64 1350 * @nr_pages: positive when adding or negative when removing
925b7673 1351 *
ca707239
HD
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1355 */
fa9add64 1356void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1357 int zid, int nr_pages)
3f58a829 1358{
ef8f2327 1359 struct mem_cgroup_per_node *mz;
fa9add64 1360 unsigned long *lru_size;
ca707239 1361 long size;
3f58a829
MK
1362
1363 if (mem_cgroup_disabled())
1364 return;
1365
ef8f2327 1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1367 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1368
1369 if (nr_pages < 0)
1370 *lru_size += nr_pages;
1371
1372 size = *lru_size;
b4536f0c
MH
1373 if (WARN_ONCE(size < 0,
1374 "%s(%p, %d, %d): lru_size %ld\n",
1375 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1376 VM_BUG_ON(1);
1377 *lru_size = 0;
1378 }
1379
1380 if (nr_pages > 0)
1381 *lru_size += nr_pages;
08e552c6 1382}
544122e5 1383
19942822 1384/**
9d11ea9f 1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1386 * @memcg: the memory cgroup
19942822 1387 *
9d11ea9f 1388 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1389 * pages.
19942822 1390 */
c0ff4b85 1391static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1392{
3e32cb2e
JW
1393 unsigned long margin = 0;
1394 unsigned long count;
1395 unsigned long limit;
9d11ea9f 1396
3e32cb2e 1397 count = page_counter_read(&memcg->memory);
bbec2e15 1398 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1399 if (count < limit)
1400 margin = limit - count;
1401
7941d214 1402 if (do_memsw_account()) {
3e32cb2e 1403 count = page_counter_read(&memcg->memsw);
bbec2e15 1404 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1405 if (count < limit)
3e32cb2e 1406 margin = min(margin, limit - count);
cbedbac3
LR
1407 else
1408 margin = 0;
3e32cb2e
JW
1409 }
1410
1411 return margin;
19942822
JW
1412}
1413
32047e2a 1414/*
bdcbb659 1415 * A routine for checking "mem" is under move_account() or not.
32047e2a 1416 *
bdcbb659
QH
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
32047e2a 1420 */
c0ff4b85 1421static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1422{
2bd9bb20
KH
1423 struct mem_cgroup *from;
1424 struct mem_cgroup *to;
4b534334 1425 bool ret = false;
2bd9bb20
KH
1426 /*
1427 * Unlike task_move routines, we access mc.to, mc.from not under
1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429 */
1430 spin_lock(&mc.lock);
1431 from = mc.from;
1432 to = mc.to;
1433 if (!from)
1434 goto unlock;
3e92041d 1435
2314b42d
JW
1436 ret = mem_cgroup_is_descendant(from, memcg) ||
1437 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1438unlock:
1439 spin_unlock(&mc.lock);
4b534334
KH
1440 return ret;
1441}
1442
c0ff4b85 1443static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1444{
1445 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1446 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1447 DEFINE_WAIT(wait);
1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449 /* moving charge context might have finished. */
1450 if (mc.moving_task)
1451 schedule();
1452 finish_wait(&mc.waitq, &wait);
1453 return true;
1454 }
1455 }
1456 return false;
1457}
1458
c8713d0b
JW
1459static char *memory_stat_format(struct mem_cgroup *memcg)
1460{
1461 struct seq_buf s;
1462 int i;
71cd3113 1463
c8713d0b
JW
1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465 if (!s.buffer)
1466 return NULL;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478
1479 seq_buf_printf(&s, "anon %llu\n",
be5d0a74 1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
c8713d0b
JW
1481 PAGE_SIZE);
1482 seq_buf_printf(&s, "file %llu\n",
0d1c2072 1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
c8713d0b
JW
1484 PAGE_SIZE);
1485 seq_buf_printf(&s, "kernel_stack %llu\n",
991e7673 1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
c8713d0b
JW
1487 1024);
1488 seq_buf_printf(&s, "slab %llu\n",
d42f3245
RG
1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
772616b0
RG
1491 seq_buf_printf(&s, "percpu %llu\n",
1492 (u64)memcg_page_state(memcg, MEMCG_PERCPU_B));
c8713d0b
JW
1493 seq_buf_printf(&s, "sock %llu\n",
1494 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495 PAGE_SIZE);
1496
1497 seq_buf_printf(&s, "shmem %llu\n",
1498 (u64)memcg_page_state(memcg, NR_SHMEM) *
1499 PAGE_SIZE);
1500 seq_buf_printf(&s, "file_mapped %llu\n",
1501 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502 PAGE_SIZE);
1503 seq_buf_printf(&s, "file_dirty %llu\n",
1504 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505 PAGE_SIZE);
1506 seq_buf_printf(&s, "file_writeback %llu\n",
1507 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508 PAGE_SIZE);
1509
468c3982 1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 1511 seq_buf_printf(&s, "anon_thp %llu\n",
468c3982
JW
1512 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513 HPAGE_PMD_SIZE);
1514#endif
c8713d0b
JW
1515
1516 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1517 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1518 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519 PAGE_SIZE);
1520
1521 seq_buf_printf(&s, "slab_reclaimable %llu\n",
d42f3245 1522 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
c8713d0b 1523 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
d42f3245 1524 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
c8713d0b
JW
1525
1526 /* Accumulated memory events */
1527
ebc5d83d
KK
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529 memcg_events(memcg, PGFAULT));
1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1532
1533 seq_buf_printf(&s, "workingset_refault %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_REFAULT));
1535 seq_buf_printf(&s, "workingset_activate %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
a6f5576b
YS
1537 seq_buf_printf(&s, "workingset_restore %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_RESTORE));
c8713d0b
JW
1539 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1540 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1541
ebc5d83d
KK
1542 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1543 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1544 seq_buf_printf(&s, "pgscan %lu\n",
1545 memcg_events(memcg, PGSCAN_KSWAPD) +
1546 memcg_events(memcg, PGSCAN_DIRECT));
1547 seq_buf_printf(&s, "pgsteal %lu\n",
1548 memcg_events(memcg, PGSTEAL_KSWAPD) +
1549 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1550 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1551 memcg_events(memcg, PGACTIVATE));
1552 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1553 memcg_events(memcg, PGDEACTIVATE));
1554 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1555 memcg_events(memcg, PGLAZYFREE));
1556 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1557 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1558
1559#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1561 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1562 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1563 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1564#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1565
1566 /* The above should easily fit into one page */
1567 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1568
1569 return s.buffer;
1570}
71cd3113 1571
58cf188e 1572#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1573/**
f0c867d9 1574 * mem_cgroup_print_oom_context: Print OOM information relevant to
1575 * memory controller.
e222432b
BS
1576 * @memcg: The memory cgroup that went over limit
1577 * @p: Task that is going to be killed
1578 *
1579 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1580 * enabled
1581 */
f0c867d9 1582void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1583{
e222432b
BS
1584 rcu_read_lock();
1585
f0c867d9 1586 if (memcg) {
1587 pr_cont(",oom_memcg=");
1588 pr_cont_cgroup_path(memcg->css.cgroup);
1589 } else
1590 pr_cont(",global_oom");
2415b9f5 1591 if (p) {
f0c867d9 1592 pr_cont(",task_memcg=");
2415b9f5 1593 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1594 }
e222432b 1595 rcu_read_unlock();
f0c867d9 1596}
1597
1598/**
1599 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1600 * memory controller.
1601 * @memcg: The memory cgroup that went over limit
1602 */
1603void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1604{
c8713d0b 1605 char *buf;
e222432b 1606
3e32cb2e
JW
1607 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1608 K((u64)page_counter_read(&memcg->memory)),
15b42562 1609 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1611 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1612 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1613 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1614 else {
1615 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1616 K((u64)page_counter_read(&memcg->memsw)),
1617 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1618 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1619 K((u64)page_counter_read(&memcg->kmem)),
1620 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1621 }
c8713d0b
JW
1622
1623 pr_info("Memory cgroup stats for ");
1624 pr_cont_cgroup_path(memcg->css.cgroup);
1625 pr_cont(":");
1626 buf = memory_stat_format(memcg);
1627 if (!buf)
1628 return;
1629 pr_info("%s", buf);
1630 kfree(buf);
e222432b
BS
1631}
1632
a63d83f4
DR
1633/*
1634 * Return the memory (and swap, if configured) limit for a memcg.
1635 */
bbec2e15 1636unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1637{
bbec2e15 1638 unsigned long max;
f3e8eb70 1639
15b42562 1640 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1641 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1642 unsigned long memsw_max;
1643 unsigned long swap_max;
9a5a8f19 1644
bbec2e15 1645 memsw_max = memcg->memsw.max;
32d087cd 1646 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1647 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1648 max = min(max + swap_max, memsw_max);
9a5a8f19 1649 }
bbec2e15 1650 return max;
a63d83f4
DR
1651}
1652
9783aa99
CD
1653unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1654{
1655 return page_counter_read(&memcg->memory);
1656}
1657
b6e6edcf 1658static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1659 int order)
9cbb78bb 1660{
6e0fc46d
DR
1661 struct oom_control oc = {
1662 .zonelist = NULL,
1663 .nodemask = NULL,
2a966b77 1664 .memcg = memcg,
6e0fc46d
DR
1665 .gfp_mask = gfp_mask,
1666 .order = order,
6e0fc46d 1667 };
1378b37d 1668 bool ret = true;
9cbb78bb 1669
7775face
TH
1670 if (mutex_lock_killable(&oom_lock))
1671 return true;
1378b37d
YS
1672
1673 if (mem_cgroup_margin(memcg) >= (1 << order))
1674 goto unlock;
1675
7775face
TH
1676 /*
1677 * A few threads which were not waiting at mutex_lock_killable() can
1678 * fail to bail out. Therefore, check again after holding oom_lock.
1679 */
1680 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1681
1682unlock:
dc56401f 1683 mutex_unlock(&oom_lock);
7c5f64f8 1684 return ret;
9cbb78bb
DR
1685}
1686
0608f43d 1687static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1688 pg_data_t *pgdat,
0608f43d
AM
1689 gfp_t gfp_mask,
1690 unsigned long *total_scanned)
1691{
1692 struct mem_cgroup *victim = NULL;
1693 int total = 0;
1694 int loop = 0;
1695 unsigned long excess;
1696 unsigned long nr_scanned;
1697 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1698 .pgdat = pgdat,
0608f43d
AM
1699 };
1700
3e32cb2e 1701 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1702
1703 while (1) {
1704 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1705 if (!victim) {
1706 loop++;
1707 if (loop >= 2) {
1708 /*
1709 * If we have not been able to reclaim
1710 * anything, it might because there are
1711 * no reclaimable pages under this hierarchy
1712 */
1713 if (!total)
1714 break;
1715 /*
1716 * We want to do more targeted reclaim.
1717 * excess >> 2 is not to excessive so as to
1718 * reclaim too much, nor too less that we keep
1719 * coming back to reclaim from this cgroup
1720 */
1721 if (total >= (excess >> 2) ||
1722 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1723 break;
1724 }
1725 continue;
1726 }
a9dd0a83 1727 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1728 pgdat, &nr_scanned);
0608f43d 1729 *total_scanned += nr_scanned;
3e32cb2e 1730 if (!soft_limit_excess(root_memcg))
0608f43d 1731 break;
6d61ef40 1732 }
0608f43d
AM
1733 mem_cgroup_iter_break(root_memcg, victim);
1734 return total;
6d61ef40
BS
1735}
1736
0056f4e6
JW
1737#ifdef CONFIG_LOCKDEP
1738static struct lockdep_map memcg_oom_lock_dep_map = {
1739 .name = "memcg_oom_lock",
1740};
1741#endif
1742
fb2a6fc5
JW
1743static DEFINE_SPINLOCK(memcg_oom_lock);
1744
867578cb
KH
1745/*
1746 * Check OOM-Killer is already running under our hierarchy.
1747 * If someone is running, return false.
1748 */
fb2a6fc5 1749static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1750{
79dfdacc 1751 struct mem_cgroup *iter, *failed = NULL;
a636b327 1752
fb2a6fc5
JW
1753 spin_lock(&memcg_oom_lock);
1754
9f3a0d09 1755 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1756 if (iter->oom_lock) {
79dfdacc
MH
1757 /*
1758 * this subtree of our hierarchy is already locked
1759 * so we cannot give a lock.
1760 */
79dfdacc 1761 failed = iter;
9f3a0d09
JW
1762 mem_cgroup_iter_break(memcg, iter);
1763 break;
23751be0
JW
1764 } else
1765 iter->oom_lock = true;
7d74b06f 1766 }
867578cb 1767
fb2a6fc5
JW
1768 if (failed) {
1769 /*
1770 * OK, we failed to lock the whole subtree so we have
1771 * to clean up what we set up to the failing subtree
1772 */
1773 for_each_mem_cgroup_tree(iter, memcg) {
1774 if (iter == failed) {
1775 mem_cgroup_iter_break(memcg, iter);
1776 break;
1777 }
1778 iter->oom_lock = false;
79dfdacc 1779 }
0056f4e6
JW
1780 } else
1781 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1782
1783 spin_unlock(&memcg_oom_lock);
1784
1785 return !failed;
a636b327 1786}
0b7f569e 1787
fb2a6fc5 1788static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1789{
7d74b06f
KH
1790 struct mem_cgroup *iter;
1791
fb2a6fc5 1792 spin_lock(&memcg_oom_lock);
5facae4f 1793 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1794 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1795 iter->oom_lock = false;
fb2a6fc5 1796 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1797}
1798
c0ff4b85 1799static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1800{
1801 struct mem_cgroup *iter;
1802
c2b42d3c 1803 spin_lock(&memcg_oom_lock);
c0ff4b85 1804 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1805 iter->under_oom++;
1806 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1807}
1808
c0ff4b85 1809static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1810{
1811 struct mem_cgroup *iter;
1812
867578cb
KH
1813 /*
1814 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1815 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1816 */
c2b42d3c 1817 spin_lock(&memcg_oom_lock);
c0ff4b85 1818 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1819 if (iter->under_oom > 0)
1820 iter->under_oom--;
1821 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1822}
1823
867578cb
KH
1824static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1825
dc98df5a 1826struct oom_wait_info {
d79154bb 1827 struct mem_cgroup *memcg;
ac6424b9 1828 wait_queue_entry_t wait;
dc98df5a
KH
1829};
1830
ac6424b9 1831static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1832 unsigned mode, int sync, void *arg)
1833{
d79154bb
HD
1834 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1835 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1836 struct oom_wait_info *oom_wait_info;
1837
1838 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1839 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1840
2314b42d
JW
1841 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1842 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1843 return 0;
dc98df5a
KH
1844 return autoremove_wake_function(wait, mode, sync, arg);
1845}
1846
c0ff4b85 1847static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1848{
c2b42d3c
TH
1849 /*
1850 * For the following lockless ->under_oom test, the only required
1851 * guarantee is that it must see the state asserted by an OOM when
1852 * this function is called as a result of userland actions
1853 * triggered by the notification of the OOM. This is trivially
1854 * achieved by invoking mem_cgroup_mark_under_oom() before
1855 * triggering notification.
1856 */
1857 if (memcg && memcg->under_oom)
f4b90b70 1858 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1859}
1860
29ef680a
MH
1861enum oom_status {
1862 OOM_SUCCESS,
1863 OOM_FAILED,
1864 OOM_ASYNC,
1865 OOM_SKIPPED
1866};
1867
1868static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1869{
7056d3a3
MH
1870 enum oom_status ret;
1871 bool locked;
1872
29ef680a
MH
1873 if (order > PAGE_ALLOC_COSTLY_ORDER)
1874 return OOM_SKIPPED;
1875
7a1adfdd
RG
1876 memcg_memory_event(memcg, MEMCG_OOM);
1877
867578cb 1878 /*
49426420
JW
1879 * We are in the middle of the charge context here, so we
1880 * don't want to block when potentially sitting on a callstack
1881 * that holds all kinds of filesystem and mm locks.
1882 *
29ef680a
MH
1883 * cgroup1 allows disabling the OOM killer and waiting for outside
1884 * handling until the charge can succeed; remember the context and put
1885 * the task to sleep at the end of the page fault when all locks are
1886 * released.
49426420 1887 *
29ef680a
MH
1888 * On the other hand, in-kernel OOM killer allows for an async victim
1889 * memory reclaim (oom_reaper) and that means that we are not solely
1890 * relying on the oom victim to make a forward progress and we can
1891 * invoke the oom killer here.
1892 *
1893 * Please note that mem_cgroup_out_of_memory might fail to find a
1894 * victim and then we have to bail out from the charge path.
867578cb 1895 */
29ef680a
MH
1896 if (memcg->oom_kill_disable) {
1897 if (!current->in_user_fault)
1898 return OOM_SKIPPED;
1899 css_get(&memcg->css);
1900 current->memcg_in_oom = memcg;
1901 current->memcg_oom_gfp_mask = mask;
1902 current->memcg_oom_order = order;
1903
1904 return OOM_ASYNC;
1905 }
1906
7056d3a3
MH
1907 mem_cgroup_mark_under_oom(memcg);
1908
1909 locked = mem_cgroup_oom_trylock(memcg);
1910
1911 if (locked)
1912 mem_cgroup_oom_notify(memcg);
1913
1914 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1915 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1916 ret = OOM_SUCCESS;
1917 else
1918 ret = OOM_FAILED;
1919
1920 if (locked)
1921 mem_cgroup_oom_unlock(memcg);
29ef680a 1922
7056d3a3 1923 return ret;
3812c8c8
JW
1924}
1925
1926/**
1927 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1928 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1929 *
49426420
JW
1930 * This has to be called at the end of a page fault if the memcg OOM
1931 * handler was enabled.
3812c8c8 1932 *
49426420 1933 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1934 * sleep on a waitqueue until the userspace task resolves the
1935 * situation. Sleeping directly in the charge context with all kinds
1936 * of locks held is not a good idea, instead we remember an OOM state
1937 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1938 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1939 *
1940 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1941 * completed, %false otherwise.
3812c8c8 1942 */
49426420 1943bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1944{
626ebc41 1945 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1946 struct oom_wait_info owait;
49426420 1947 bool locked;
3812c8c8
JW
1948
1949 /* OOM is global, do not handle */
3812c8c8 1950 if (!memcg)
49426420 1951 return false;
3812c8c8 1952
7c5f64f8 1953 if (!handle)
49426420 1954 goto cleanup;
3812c8c8
JW
1955
1956 owait.memcg = memcg;
1957 owait.wait.flags = 0;
1958 owait.wait.func = memcg_oom_wake_function;
1959 owait.wait.private = current;
2055da97 1960 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1961
3812c8c8 1962 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1963 mem_cgroup_mark_under_oom(memcg);
1964
1965 locked = mem_cgroup_oom_trylock(memcg);
1966
1967 if (locked)
1968 mem_cgroup_oom_notify(memcg);
1969
1970 if (locked && !memcg->oom_kill_disable) {
1971 mem_cgroup_unmark_under_oom(memcg);
1972 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1973 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1974 current->memcg_oom_order);
49426420 1975 } else {
3812c8c8 1976 schedule();
49426420
JW
1977 mem_cgroup_unmark_under_oom(memcg);
1978 finish_wait(&memcg_oom_waitq, &owait.wait);
1979 }
1980
1981 if (locked) {
fb2a6fc5
JW
1982 mem_cgroup_oom_unlock(memcg);
1983 /*
1984 * There is no guarantee that an OOM-lock contender
1985 * sees the wakeups triggered by the OOM kill
1986 * uncharges. Wake any sleepers explicitely.
1987 */
1988 memcg_oom_recover(memcg);
1989 }
49426420 1990cleanup:
626ebc41 1991 current->memcg_in_oom = NULL;
3812c8c8 1992 css_put(&memcg->css);
867578cb 1993 return true;
0b7f569e
KH
1994}
1995
3d8b38eb
RG
1996/**
1997 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1998 * @victim: task to be killed by the OOM killer
1999 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2000 *
2001 * Returns a pointer to a memory cgroup, which has to be cleaned up
2002 * by killing all belonging OOM-killable tasks.
2003 *
2004 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2005 */
2006struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2007 struct mem_cgroup *oom_domain)
2008{
2009 struct mem_cgroup *oom_group = NULL;
2010 struct mem_cgroup *memcg;
2011
2012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2013 return NULL;
2014
2015 if (!oom_domain)
2016 oom_domain = root_mem_cgroup;
2017
2018 rcu_read_lock();
2019
2020 memcg = mem_cgroup_from_task(victim);
2021 if (memcg == root_mem_cgroup)
2022 goto out;
2023
48fe267c
RG
2024 /*
2025 * If the victim task has been asynchronously moved to a different
2026 * memory cgroup, we might end up killing tasks outside oom_domain.
2027 * In this case it's better to ignore memory.group.oom.
2028 */
2029 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2030 goto out;
2031
3d8b38eb
RG
2032 /*
2033 * Traverse the memory cgroup hierarchy from the victim task's
2034 * cgroup up to the OOMing cgroup (or root) to find the
2035 * highest-level memory cgroup with oom.group set.
2036 */
2037 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2038 if (memcg->oom_group)
2039 oom_group = memcg;
2040
2041 if (memcg == oom_domain)
2042 break;
2043 }
2044
2045 if (oom_group)
2046 css_get(&oom_group->css);
2047out:
2048 rcu_read_unlock();
2049
2050 return oom_group;
2051}
2052
2053void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2054{
2055 pr_info("Tasks in ");
2056 pr_cont_cgroup_path(memcg->css.cgroup);
2057 pr_cont(" are going to be killed due to memory.oom.group set\n");
2058}
2059
d7365e78 2060/**
81f8c3a4
JW
2061 * lock_page_memcg - lock a page->mem_cgroup binding
2062 * @page: the page
32047e2a 2063 *
81f8c3a4 2064 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2065 * another cgroup.
2066 *
2067 * It ensures lifetime of the returned memcg. Caller is responsible
2068 * for the lifetime of the page; __unlock_page_memcg() is available
2069 * when @page might get freed inside the locked section.
d69b042f 2070 */
739f79fc 2071struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2072{
9da7b521 2073 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2074 struct mem_cgroup *memcg;
6de22619 2075 unsigned long flags;
89c06bd5 2076
6de22619
JW
2077 /*
2078 * The RCU lock is held throughout the transaction. The fast
2079 * path can get away without acquiring the memcg->move_lock
2080 * because page moving starts with an RCU grace period.
739f79fc
JW
2081 *
2082 * The RCU lock also protects the memcg from being freed when
2083 * the page state that is going to change is the only thing
2084 * preventing the page itself from being freed. E.g. writeback
2085 * doesn't hold a page reference and relies on PG_writeback to
2086 * keep off truncation, migration and so forth.
2087 */
d7365e78
JW
2088 rcu_read_lock();
2089
2090 if (mem_cgroup_disabled())
739f79fc 2091 return NULL;
89c06bd5 2092again:
9da7b521 2093 memcg = head->mem_cgroup;
29833315 2094 if (unlikely(!memcg))
739f79fc 2095 return NULL;
d7365e78 2096
bdcbb659 2097 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2098 return memcg;
89c06bd5 2099
6de22619 2100 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2101 if (memcg != head->mem_cgroup) {
6de22619 2102 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2103 goto again;
2104 }
6de22619
JW
2105
2106 /*
2107 * When charge migration first begins, we can have locked and
2108 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2109 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2110 */
2111 memcg->move_lock_task = current;
2112 memcg->move_lock_flags = flags;
d7365e78 2113
739f79fc 2114 return memcg;
89c06bd5 2115}
81f8c3a4 2116EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2117
d7365e78 2118/**
739f79fc
JW
2119 * __unlock_page_memcg - unlock and unpin a memcg
2120 * @memcg: the memcg
2121 *
2122 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2123 */
739f79fc 2124void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2125{
6de22619
JW
2126 if (memcg && memcg->move_lock_task == current) {
2127 unsigned long flags = memcg->move_lock_flags;
2128
2129 memcg->move_lock_task = NULL;
2130 memcg->move_lock_flags = 0;
2131
2132 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 }
89c06bd5 2134
d7365e78 2135 rcu_read_unlock();
89c06bd5 2136}
739f79fc
JW
2137
2138/**
2139 * unlock_page_memcg - unlock a page->mem_cgroup binding
2140 * @page: the page
2141 */
2142void unlock_page_memcg(struct page *page)
2143{
9da7b521
JW
2144 struct page *head = compound_head(page);
2145
2146 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2147}
81f8c3a4 2148EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2149
cdec2e42
KH
2150struct memcg_stock_pcp {
2151 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2152 unsigned int nr_pages;
bf4f0599
RG
2153
2154#ifdef CONFIG_MEMCG_KMEM
2155 struct obj_cgroup *cached_objcg;
2156 unsigned int nr_bytes;
2157#endif
2158
cdec2e42 2159 struct work_struct work;
26fe6168 2160 unsigned long flags;
a0db00fc 2161#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2162};
2163static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2164static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2165
bf4f0599
RG
2166#ifdef CONFIG_MEMCG_KMEM
2167static void drain_obj_stock(struct memcg_stock_pcp *stock);
2168static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2169 struct mem_cgroup *root_memcg);
2170
2171#else
2172static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2173{
2174}
2175static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2176 struct mem_cgroup *root_memcg)
2177{
2178 return false;
2179}
2180#endif
2181
a0956d54
SS
2182/**
2183 * consume_stock: Try to consume stocked charge on this cpu.
2184 * @memcg: memcg to consume from.
2185 * @nr_pages: how many pages to charge.
2186 *
2187 * The charges will only happen if @memcg matches the current cpu's memcg
2188 * stock, and at least @nr_pages are available in that stock. Failure to
2189 * service an allocation will refill the stock.
2190 *
2191 * returns true if successful, false otherwise.
cdec2e42 2192 */
a0956d54 2193static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2194{
2195 struct memcg_stock_pcp *stock;
db2ba40c 2196 unsigned long flags;
3e32cb2e 2197 bool ret = false;
cdec2e42 2198
a983b5eb 2199 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2200 return ret;
a0956d54 2201
db2ba40c
JW
2202 local_irq_save(flags);
2203
2204 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2205 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2206 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2207 ret = true;
2208 }
db2ba40c
JW
2209
2210 local_irq_restore(flags);
2211
cdec2e42
KH
2212 return ret;
2213}
2214
2215/*
3e32cb2e 2216 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2217 */
2218static void drain_stock(struct memcg_stock_pcp *stock)
2219{
2220 struct mem_cgroup *old = stock->cached;
2221
1a3e1f40
JW
2222 if (!old)
2223 return;
2224
11c9ea4e 2225 if (stock->nr_pages) {
3e32cb2e 2226 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2227 if (do_memsw_account())
3e32cb2e 2228 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2229 stock->nr_pages = 0;
cdec2e42 2230 }
1a3e1f40
JW
2231
2232 css_put(&old->css);
cdec2e42 2233 stock->cached = NULL;
cdec2e42
KH
2234}
2235
cdec2e42
KH
2236static void drain_local_stock(struct work_struct *dummy)
2237{
db2ba40c
JW
2238 struct memcg_stock_pcp *stock;
2239 unsigned long flags;
2240
72f0184c
MH
2241 /*
2242 * The only protection from memory hotplug vs. drain_stock races is
2243 * that we always operate on local CPU stock here with IRQ disabled
2244 */
db2ba40c
JW
2245 local_irq_save(flags);
2246
2247 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2248 drain_obj_stock(stock);
cdec2e42 2249 drain_stock(stock);
26fe6168 2250 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2251
2252 local_irq_restore(flags);
cdec2e42
KH
2253}
2254
2255/*
3e32cb2e 2256 * Cache charges(val) to local per_cpu area.
320cc51d 2257 * This will be consumed by consume_stock() function, later.
cdec2e42 2258 */
c0ff4b85 2259static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2260{
db2ba40c
JW
2261 struct memcg_stock_pcp *stock;
2262 unsigned long flags;
2263
2264 local_irq_save(flags);
cdec2e42 2265
db2ba40c 2266 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2267 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2268 drain_stock(stock);
1a3e1f40 2269 css_get(&memcg->css);
c0ff4b85 2270 stock->cached = memcg;
cdec2e42 2271 }
11c9ea4e 2272 stock->nr_pages += nr_pages;
db2ba40c 2273
a983b5eb 2274 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2275 drain_stock(stock);
2276
db2ba40c 2277 local_irq_restore(flags);
cdec2e42
KH
2278}
2279
2280/*
c0ff4b85 2281 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2282 * of the hierarchy under it.
cdec2e42 2283 */
6d3d6aa2 2284static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2285{
26fe6168 2286 int cpu, curcpu;
d38144b7 2287
6d3d6aa2
JW
2288 /* If someone's already draining, avoid adding running more workers. */
2289 if (!mutex_trylock(&percpu_charge_mutex))
2290 return;
72f0184c
MH
2291 /*
2292 * Notify other cpus that system-wide "drain" is running
2293 * We do not care about races with the cpu hotplug because cpu down
2294 * as well as workers from this path always operate on the local
2295 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2296 */
5af12d0e 2297 curcpu = get_cpu();
cdec2e42
KH
2298 for_each_online_cpu(cpu) {
2299 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2300 struct mem_cgroup *memcg;
e1a366be 2301 bool flush = false;
26fe6168 2302
e1a366be 2303 rcu_read_lock();
c0ff4b85 2304 memcg = stock->cached;
e1a366be
RG
2305 if (memcg && stock->nr_pages &&
2306 mem_cgroup_is_descendant(memcg, root_memcg))
2307 flush = true;
bf4f0599
RG
2308 if (obj_stock_flush_required(stock, root_memcg))
2309 flush = true;
e1a366be
RG
2310 rcu_read_unlock();
2311
2312 if (flush &&
2313 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2314 if (cpu == curcpu)
2315 drain_local_stock(&stock->work);
2316 else
2317 schedule_work_on(cpu, &stock->work);
2318 }
cdec2e42 2319 }
5af12d0e 2320 put_cpu();
9f50fad6 2321 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2322}
2323
308167fc 2324static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2325{
cdec2e42 2326 struct memcg_stock_pcp *stock;
42a30035 2327 struct mem_cgroup *memcg, *mi;
cdec2e42 2328
cdec2e42
KH
2329 stock = &per_cpu(memcg_stock, cpu);
2330 drain_stock(stock);
a983b5eb
JW
2331
2332 for_each_mem_cgroup(memcg) {
2333 int i;
2334
2335 for (i = 0; i < MEMCG_NR_STAT; i++) {
2336 int nid;
2337 long x;
2338
871789d4 2339 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2340 if (x)
42a30035
JW
2341 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2342 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2343
2344 if (i >= NR_VM_NODE_STAT_ITEMS)
2345 continue;
2346
2347 for_each_node(nid) {
2348 struct mem_cgroup_per_node *pn;
2349
2350 pn = mem_cgroup_nodeinfo(memcg, nid);
2351 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2352 if (x)
42a30035
JW
2353 do {
2354 atomic_long_add(x, &pn->lruvec_stat[i]);
2355 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2356 }
2357 }
2358
e27be240 2359 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2360 long x;
2361
871789d4 2362 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2363 if (x)
42a30035
JW
2364 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2365 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2366 }
2367 }
2368
308167fc 2369 return 0;
cdec2e42
KH
2370}
2371
b3ff9291
CD
2372static unsigned long reclaim_high(struct mem_cgroup *memcg,
2373 unsigned int nr_pages,
2374 gfp_t gfp_mask)
f7e1cb6e 2375{
b3ff9291
CD
2376 unsigned long nr_reclaimed = 0;
2377
f7e1cb6e 2378 do {
e22c6ed9
JW
2379 unsigned long pflags;
2380
d1663a90
JK
2381 if (page_counter_read(&memcg->memory) <=
2382 READ_ONCE(memcg->memory.high))
f7e1cb6e 2383 continue;
e22c6ed9 2384
e27be240 2385 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2386
2387 psi_memstall_enter(&pflags);
b3ff9291
CD
2388 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2389 gfp_mask, true);
e22c6ed9 2390 psi_memstall_leave(&pflags);
4bf17307
CD
2391 } while ((memcg = parent_mem_cgroup(memcg)) &&
2392 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2393
2394 return nr_reclaimed;
f7e1cb6e
JW
2395}
2396
2397static void high_work_func(struct work_struct *work)
2398{
2399 struct mem_cgroup *memcg;
2400
2401 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2402 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2403}
2404
0e4b01df
CD
2405/*
2406 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2407 * enough to still cause a significant slowdown in most cases, while still
2408 * allowing diagnostics and tracing to proceed without becoming stuck.
2409 */
2410#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2411
2412/*
2413 * When calculating the delay, we use these either side of the exponentiation to
2414 * maintain precision and scale to a reasonable number of jiffies (see the table
2415 * below.
2416 *
2417 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2418 * overage ratio to a delay.
2419 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2420 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2421 * to produce a reasonable delay curve.
2422 *
2423 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2424 * reasonable delay curve compared to precision-adjusted overage, not
2425 * penalising heavily at first, but still making sure that growth beyond the
2426 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2427 * example, with a high of 100 megabytes:
2428 *
2429 * +-------+------------------------+
2430 * | usage | time to allocate in ms |
2431 * +-------+------------------------+
2432 * | 100M | 0 |
2433 * | 101M | 6 |
2434 * | 102M | 25 |
2435 * | 103M | 57 |
2436 * | 104M | 102 |
2437 * | 105M | 159 |
2438 * | 106M | 230 |
2439 * | 107M | 313 |
2440 * | 108M | 409 |
2441 * | 109M | 518 |
2442 * | 110M | 639 |
2443 * | 111M | 774 |
2444 * | 112M | 921 |
2445 * | 113M | 1081 |
2446 * | 114M | 1254 |
2447 * | 115M | 1439 |
2448 * | 116M | 1638 |
2449 * | 117M | 1849 |
2450 * | 118M | 2000 |
2451 * | 119M | 2000 |
2452 * | 120M | 2000 |
2453 * +-------+------------------------+
2454 */
2455 #define MEMCG_DELAY_PRECISION_SHIFT 20
2456 #define MEMCG_DELAY_SCALING_SHIFT 14
2457
8a5dbc65 2458static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2459{
8a5dbc65 2460 u64 overage;
b23afb93 2461
8a5dbc65
JK
2462 if (usage <= high)
2463 return 0;
e26733e0 2464
8a5dbc65
JK
2465 /*
2466 * Prevent division by 0 in overage calculation by acting as if
2467 * it was a threshold of 1 page
2468 */
2469 high = max(high, 1UL);
9b8b1754 2470
8a5dbc65
JK
2471 overage = usage - high;
2472 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2473 return div64_u64(overage, high);
2474}
e26733e0 2475
8a5dbc65
JK
2476static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2477{
2478 u64 overage, max_overage = 0;
e26733e0 2479
8a5dbc65
JK
2480 do {
2481 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2482 READ_ONCE(memcg->memory.high));
8a5dbc65 2483 max_overage = max(overage, max_overage);
e26733e0
CD
2484 } while ((memcg = parent_mem_cgroup(memcg)) &&
2485 !mem_cgroup_is_root(memcg));
2486
8a5dbc65
JK
2487 return max_overage;
2488}
2489
4b82ab4f
JK
2490static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2491{
2492 u64 overage, max_overage = 0;
2493
2494 do {
2495 overage = calculate_overage(page_counter_read(&memcg->swap),
2496 READ_ONCE(memcg->swap.high));
2497 if (overage)
2498 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2499 max_overage = max(overage, max_overage);
2500 } while ((memcg = parent_mem_cgroup(memcg)) &&
2501 !mem_cgroup_is_root(memcg));
2502
2503 return max_overage;
2504}
2505
8a5dbc65
JK
2506/*
2507 * Get the number of jiffies that we should penalise a mischievous cgroup which
2508 * is exceeding its memory.high by checking both it and its ancestors.
2509 */
2510static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2511 unsigned int nr_pages,
2512 u64 max_overage)
2513{
2514 unsigned long penalty_jiffies;
2515
e26733e0
CD
2516 if (!max_overage)
2517 return 0;
0e4b01df
CD
2518
2519 /*
0e4b01df
CD
2520 * We use overage compared to memory.high to calculate the number of
2521 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2522 * fairly lenient on small overages, and increasingly harsh when the
2523 * memcg in question makes it clear that it has no intention of stopping
2524 * its crazy behaviour, so we exponentially increase the delay based on
2525 * overage amount.
2526 */
e26733e0
CD
2527 penalty_jiffies = max_overage * max_overage * HZ;
2528 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2529 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2530
2531 /*
2532 * Factor in the task's own contribution to the overage, such that four
2533 * N-sized allocations are throttled approximately the same as one
2534 * 4N-sized allocation.
2535 *
2536 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2537 * larger the current charge patch is than that.
2538 */
ff144e69 2539 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2540}
2541
2542/*
2543 * Scheduled by try_charge() to be executed from the userland return path
2544 * and reclaims memory over the high limit.
2545 */
2546void mem_cgroup_handle_over_high(void)
2547{
2548 unsigned long penalty_jiffies;
2549 unsigned long pflags;
b3ff9291 2550 unsigned long nr_reclaimed;
e26733e0 2551 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2552 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2553 struct mem_cgroup *memcg;
b3ff9291 2554 bool in_retry = false;
e26733e0
CD
2555
2556 if (likely(!nr_pages))
2557 return;
2558
2559 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2560 current->memcg_nr_pages_over_high = 0;
2561
b3ff9291
CD
2562retry_reclaim:
2563 /*
2564 * The allocating task should reclaim at least the batch size, but for
2565 * subsequent retries we only want to do what's necessary to prevent oom
2566 * or breaching resource isolation.
2567 *
2568 * This is distinct from memory.max or page allocator behaviour because
2569 * memory.high is currently batched, whereas memory.max and the page
2570 * allocator run every time an allocation is made.
2571 */
2572 nr_reclaimed = reclaim_high(memcg,
2573 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2574 GFP_KERNEL);
2575
e26733e0
CD
2576 /*
2577 * memory.high is breached and reclaim is unable to keep up. Throttle
2578 * allocators proactively to slow down excessive growth.
2579 */
8a5dbc65
JK
2580 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2581 mem_find_max_overage(memcg));
0e4b01df 2582
4b82ab4f
JK
2583 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2584 swap_find_max_overage(memcg));
2585
ff144e69
JK
2586 /*
2587 * Clamp the max delay per usermode return so as to still keep the
2588 * application moving forwards and also permit diagnostics, albeit
2589 * extremely slowly.
2590 */
2591 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2592
0e4b01df
CD
2593 /*
2594 * Don't sleep if the amount of jiffies this memcg owes us is so low
2595 * that it's not even worth doing, in an attempt to be nice to those who
2596 * go only a small amount over their memory.high value and maybe haven't
2597 * been aggressively reclaimed enough yet.
2598 */
2599 if (penalty_jiffies <= HZ / 100)
2600 goto out;
2601
b3ff9291
CD
2602 /*
2603 * If reclaim is making forward progress but we're still over
2604 * memory.high, we want to encourage that rather than doing allocator
2605 * throttling.
2606 */
2607 if (nr_reclaimed || nr_retries--) {
2608 in_retry = true;
2609 goto retry_reclaim;
2610 }
2611
0e4b01df
CD
2612 /*
2613 * If we exit early, we're guaranteed to die (since
2614 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2615 * need to account for any ill-begotten jiffies to pay them off later.
2616 */
2617 psi_memstall_enter(&pflags);
2618 schedule_timeout_killable(penalty_jiffies);
2619 psi_memstall_leave(&pflags);
2620
2621out:
2622 css_put(&memcg->css);
b23afb93
TH
2623}
2624
00501b53
JW
2625static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2626 unsigned int nr_pages)
8a9f3ccd 2627{
a983b5eb 2628 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2629 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2630 struct mem_cgroup *mem_over_limit;
3e32cb2e 2631 struct page_counter *counter;
e22c6ed9 2632 enum oom_status oom_status;
6539cc05 2633 unsigned long nr_reclaimed;
b70a2a21
JW
2634 bool may_swap = true;
2635 bool drained = false;
e22c6ed9 2636 unsigned long pflags;
a636b327 2637
ce00a967 2638 if (mem_cgroup_is_root(memcg))
10d53c74 2639 return 0;
6539cc05 2640retry:
b6b6cc72 2641 if (consume_stock(memcg, nr_pages))
10d53c74 2642 return 0;
8a9f3ccd 2643
7941d214 2644 if (!do_memsw_account() ||
6071ca52
JW
2645 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2646 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2647 goto done_restock;
7941d214 2648 if (do_memsw_account())
3e32cb2e
JW
2649 page_counter_uncharge(&memcg->memsw, batch);
2650 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2651 } else {
3e32cb2e 2652 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2653 may_swap = false;
3fbe7244 2654 }
7a81b88c 2655
6539cc05
JW
2656 if (batch > nr_pages) {
2657 batch = nr_pages;
2658 goto retry;
2659 }
6d61ef40 2660
869712fd
JW
2661 /*
2662 * Memcg doesn't have a dedicated reserve for atomic
2663 * allocations. But like the global atomic pool, we need to
2664 * put the burden of reclaim on regular allocation requests
2665 * and let these go through as privileged allocations.
2666 */
2667 if (gfp_mask & __GFP_ATOMIC)
2668 goto force;
2669
06b078fc
JW
2670 /*
2671 * Unlike in global OOM situations, memcg is not in a physical
2672 * memory shortage. Allow dying and OOM-killed tasks to
2673 * bypass the last charges so that they can exit quickly and
2674 * free their memory.
2675 */
7775face 2676 if (unlikely(should_force_charge()))
10d53c74 2677 goto force;
06b078fc 2678
89a28483
JW
2679 /*
2680 * Prevent unbounded recursion when reclaim operations need to
2681 * allocate memory. This might exceed the limits temporarily,
2682 * but we prefer facilitating memory reclaim and getting back
2683 * under the limit over triggering OOM kills in these cases.
2684 */
2685 if (unlikely(current->flags & PF_MEMALLOC))
2686 goto force;
2687
06b078fc
JW
2688 if (unlikely(task_in_memcg_oom(current)))
2689 goto nomem;
2690
d0164adc 2691 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2692 goto nomem;
4b534334 2693
e27be240 2694 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2695
e22c6ed9 2696 psi_memstall_enter(&pflags);
b70a2a21
JW
2697 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2698 gfp_mask, may_swap);
e22c6ed9 2699 psi_memstall_leave(&pflags);
6539cc05 2700
61e02c74 2701 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2702 goto retry;
28c34c29 2703
b70a2a21 2704 if (!drained) {
6d3d6aa2 2705 drain_all_stock(mem_over_limit);
b70a2a21
JW
2706 drained = true;
2707 goto retry;
2708 }
2709
28c34c29
JW
2710 if (gfp_mask & __GFP_NORETRY)
2711 goto nomem;
6539cc05
JW
2712 /*
2713 * Even though the limit is exceeded at this point, reclaim
2714 * may have been able to free some pages. Retry the charge
2715 * before killing the task.
2716 *
2717 * Only for regular pages, though: huge pages are rather
2718 * unlikely to succeed so close to the limit, and we fall back
2719 * to regular pages anyway in case of failure.
2720 */
61e02c74 2721 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2722 goto retry;
2723 /*
2724 * At task move, charge accounts can be doubly counted. So, it's
2725 * better to wait until the end of task_move if something is going on.
2726 */
2727 if (mem_cgroup_wait_acct_move(mem_over_limit))
2728 goto retry;
2729
9b130619
JW
2730 if (nr_retries--)
2731 goto retry;
2732
38d38493 2733 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2734 goto nomem;
2735
06b078fc 2736 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2737 goto force;
06b078fc 2738
6539cc05 2739 if (fatal_signal_pending(current))
10d53c74 2740 goto force;
6539cc05 2741
29ef680a
MH
2742 /*
2743 * keep retrying as long as the memcg oom killer is able to make
2744 * a forward progress or bypass the charge if the oom killer
2745 * couldn't make any progress.
2746 */
2747 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2748 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2749 switch (oom_status) {
2750 case OOM_SUCCESS:
d977aa93 2751 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2752 goto retry;
2753 case OOM_FAILED:
2754 goto force;
2755 default:
2756 goto nomem;
2757 }
7a81b88c 2758nomem:
6d1fdc48 2759 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2760 return -ENOMEM;
10d53c74
TH
2761force:
2762 /*
2763 * The allocation either can't fail or will lead to more memory
2764 * being freed very soon. Allow memory usage go over the limit
2765 * temporarily by force charging it.
2766 */
2767 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2768 if (do_memsw_account())
10d53c74 2769 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2770
2771 return 0;
6539cc05
JW
2772
2773done_restock:
2774 if (batch > nr_pages)
2775 refill_stock(memcg, batch - nr_pages);
b23afb93 2776
241994ed 2777 /*
b23afb93
TH
2778 * If the hierarchy is above the normal consumption range, schedule
2779 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2780 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2781 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2782 * not recorded as it most likely matches current's and won't
2783 * change in the meantime. As high limit is checked again before
2784 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2785 */
2786 do {
4b82ab4f
JK
2787 bool mem_high, swap_high;
2788
2789 mem_high = page_counter_read(&memcg->memory) >
2790 READ_ONCE(memcg->memory.high);
2791 swap_high = page_counter_read(&memcg->swap) >
2792 READ_ONCE(memcg->swap.high);
2793
2794 /* Don't bother a random interrupted task */
2795 if (in_interrupt()) {
2796 if (mem_high) {
f7e1cb6e
JW
2797 schedule_work(&memcg->high_work);
2798 break;
2799 }
4b82ab4f
JK
2800 continue;
2801 }
2802
2803 if (mem_high || swap_high) {
2804 /*
2805 * The allocating tasks in this cgroup will need to do
2806 * reclaim or be throttled to prevent further growth
2807 * of the memory or swap footprints.
2808 *
2809 * Target some best-effort fairness between the tasks,
2810 * and distribute reclaim work and delay penalties
2811 * based on how much each task is actually allocating.
2812 */
9516a18a 2813 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2814 set_notify_resume(current);
2815 break;
2816 }
241994ed 2817 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2818
2819 return 0;
7a81b88c 2820}
8a9f3ccd 2821
f0e45fb4 2822#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2823static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2824{
ce00a967
JW
2825 if (mem_cgroup_is_root(memcg))
2826 return;
2827
3e32cb2e 2828 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2829 if (do_memsw_account())
3e32cb2e 2830 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2831}
f0e45fb4 2832#endif
d01dd17f 2833
d9eb1ea2 2834static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2835{
1306a85a 2836 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2837 /*
a0b5b414 2838 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2839 *
a0b5b414
JW
2840 * - the page lock
2841 * - LRU isolation
2842 * - lock_page_memcg()
2843 * - exclusive reference
0a31bc97 2844 */
1306a85a 2845 page->mem_cgroup = memcg;
7a81b88c 2846}
66e1707b 2847
84c07d11 2848#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2849int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2850 gfp_t gfp)
2851{
2852 unsigned int objects = objs_per_slab_page(s, page);
2853 void *vec;
2854
2855 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2856 page_to_nid(page));
2857 if (!vec)
2858 return -ENOMEM;
2859
2860 if (cmpxchg(&page->obj_cgroups, NULL,
2861 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2862 kfree(vec);
2863 else
2864 kmemleak_not_leak(vec);
2865
2866 return 0;
2867}
2868
8380ce47
RG
2869/*
2870 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2871 *
2872 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2873 * cgroup_mutex, etc.
2874 */
2875struct mem_cgroup *mem_cgroup_from_obj(void *p)
2876{
2877 struct page *page;
2878
2879 if (mem_cgroup_disabled())
2880 return NULL;
2881
2882 page = virt_to_head_page(p);
2883
2884 /*
9855609b
RG
2885 * Slab objects are accounted individually, not per-page.
2886 * Memcg membership data for each individual object is saved in
2887 * the page->obj_cgroups.
8380ce47 2888 */
9855609b
RG
2889 if (page_has_obj_cgroups(page)) {
2890 struct obj_cgroup *objcg;
2891 unsigned int off;
2892
2893 off = obj_to_index(page->slab_cache, page, p);
2894 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2895 if (objcg)
2896 return obj_cgroup_memcg(objcg);
2897
2898 return NULL;
9855609b 2899 }
8380ce47
RG
2900
2901 /* All other pages use page->mem_cgroup */
2902 return page->mem_cgroup;
2903}
2904
bf4f0599
RG
2905__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2906{
2907 struct obj_cgroup *objcg = NULL;
2908 struct mem_cgroup *memcg;
2909
2910 if (unlikely(!current->mm && !current->active_memcg))
2911 return NULL;
2912
2913 rcu_read_lock();
2914 if (unlikely(current->active_memcg))
2915 memcg = rcu_dereference(current->active_memcg);
2916 else
2917 memcg = mem_cgroup_from_task(current);
2918
2919 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2920 objcg = rcu_dereference(memcg->objcg);
2921 if (objcg && obj_cgroup_tryget(objcg))
2922 break;
2923 }
2924 rcu_read_unlock();
2925
2926 return objcg;
2927}
2928
f3bb3043 2929static int memcg_alloc_cache_id(void)
55007d84 2930{
f3bb3043
VD
2931 int id, size;
2932 int err;
2933
dbcf73e2 2934 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2935 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2936 if (id < 0)
2937 return id;
55007d84 2938
dbcf73e2 2939 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2940 return id;
2941
2942 /*
2943 * There's no space for the new id in memcg_caches arrays,
2944 * so we have to grow them.
2945 */
05257a1a 2946 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2947
2948 size = 2 * (id + 1);
55007d84
GC
2949 if (size < MEMCG_CACHES_MIN_SIZE)
2950 size = MEMCG_CACHES_MIN_SIZE;
2951 else if (size > MEMCG_CACHES_MAX_SIZE)
2952 size = MEMCG_CACHES_MAX_SIZE;
2953
9855609b 2954 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2955 if (!err)
2956 memcg_nr_cache_ids = size;
2957
2958 up_write(&memcg_cache_ids_sem);
2959
f3bb3043 2960 if (err) {
dbcf73e2 2961 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2962 return err;
2963 }
2964 return id;
2965}
2966
2967static void memcg_free_cache_id(int id)
2968{
dbcf73e2 2969 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2970}
2971
45264778 2972/**
4b13f64d 2973 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2974 * @memcg: memory cgroup to charge
45264778 2975 * @gfp: reclaim mode
92d0510c 2976 * @nr_pages: number of pages to charge
45264778
VD
2977 *
2978 * Returns 0 on success, an error code on failure.
2979 */
4b13f64d
RG
2980int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2981 unsigned int nr_pages)
7ae1e1d0 2982{
f3ccb2c4 2983 struct page_counter *counter;
7ae1e1d0
GC
2984 int ret;
2985
f3ccb2c4 2986 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2987 if (ret)
f3ccb2c4 2988 return ret;
52c29b04
JW
2989
2990 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2991 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2992
2993 /*
2994 * Enforce __GFP_NOFAIL allocation because callers are not
2995 * prepared to see failures and likely do not have any failure
2996 * handling code.
2997 */
2998 if (gfp & __GFP_NOFAIL) {
2999 page_counter_charge(&memcg->kmem, nr_pages);
3000 return 0;
3001 }
52c29b04
JW
3002 cancel_charge(memcg, nr_pages);
3003 return -ENOMEM;
7ae1e1d0 3004 }
f3ccb2c4 3005 return 0;
7ae1e1d0
GC
3006}
3007
4b13f64d
RG
3008/**
3009 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3010 * @memcg: memcg to uncharge
3011 * @nr_pages: number of pages to uncharge
3012 */
3013void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3014{
3015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3016 page_counter_uncharge(&memcg->kmem, nr_pages);
3017
3018 page_counter_uncharge(&memcg->memory, nr_pages);
3019 if (do_memsw_account())
3020 page_counter_uncharge(&memcg->memsw, nr_pages);
3021}
3022
45264778 3023/**
f4b00eab 3024 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3025 * @page: page to charge
3026 * @gfp: reclaim mode
3027 * @order: allocation order
3028 *
3029 * Returns 0 on success, an error code on failure.
3030 */
f4b00eab 3031int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3032{
f3ccb2c4 3033 struct mem_cgroup *memcg;
fcff7d7e 3034 int ret = 0;
7ae1e1d0 3035
60cd4bcd 3036 if (memcg_kmem_bypass())
45264778
VD
3037 return 0;
3038
d46eb14b 3039 memcg = get_mem_cgroup_from_current();
c4159a75 3040 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 3041 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3042 if (!ret) {
3043 page->mem_cgroup = memcg;
c4159a75 3044 __SetPageKmemcg(page);
1a3e1f40 3045 return 0;
4d96ba35 3046 }
c4159a75 3047 }
7ae1e1d0 3048 css_put(&memcg->css);
d05e83a6 3049 return ret;
7ae1e1d0 3050}
49a18eae 3051
45264778 3052/**
f4b00eab 3053 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3054 * @page: page to uncharge
3055 * @order: allocation order
3056 */
f4b00eab 3057void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3058{
1306a85a 3059 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3060 unsigned int nr_pages = 1 << order;
7ae1e1d0 3061
7ae1e1d0
GC
3062 if (!memcg)
3063 return;
3064
309381fe 3065 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3066 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3067 page->mem_cgroup = NULL;
1a3e1f40 3068 css_put(&memcg->css);
c4159a75
VD
3069
3070 /* slab pages do not have PageKmemcg flag set */
3071 if (PageKmemcg(page))
3072 __ClearPageKmemcg(page);
60d3fd32 3073}
bf4f0599
RG
3074
3075static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3076{
3077 struct memcg_stock_pcp *stock;
3078 unsigned long flags;
3079 bool ret = false;
3080
3081 local_irq_save(flags);
3082
3083 stock = this_cpu_ptr(&memcg_stock);
3084 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3085 stock->nr_bytes -= nr_bytes;
3086 ret = true;
3087 }
3088
3089 local_irq_restore(flags);
3090
3091 return ret;
3092}
3093
3094static void drain_obj_stock(struct memcg_stock_pcp *stock)
3095{
3096 struct obj_cgroup *old = stock->cached_objcg;
3097
3098 if (!old)
3099 return;
3100
3101 if (stock->nr_bytes) {
3102 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3103 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3104
3105 if (nr_pages) {
3106 rcu_read_lock();
3107 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3108 rcu_read_unlock();
3109 }
3110
3111 /*
3112 * The leftover is flushed to the centralized per-memcg value.
3113 * On the next attempt to refill obj stock it will be moved
3114 * to a per-cpu stock (probably, on an other CPU), see
3115 * refill_obj_stock().
3116 *
3117 * How often it's flushed is a trade-off between the memory
3118 * limit enforcement accuracy and potential CPU contention,
3119 * so it might be changed in the future.
3120 */
3121 atomic_add(nr_bytes, &old->nr_charged_bytes);
3122 stock->nr_bytes = 0;
3123 }
3124
3125 obj_cgroup_put(old);
3126 stock->cached_objcg = NULL;
3127}
3128
3129static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3130 struct mem_cgroup *root_memcg)
3131{
3132 struct mem_cgroup *memcg;
3133
3134 if (stock->cached_objcg) {
3135 memcg = obj_cgroup_memcg(stock->cached_objcg);
3136 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3137 return true;
3138 }
3139
3140 return false;
3141}
3142
3143static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3144{
3145 struct memcg_stock_pcp *stock;
3146 unsigned long flags;
3147
3148 local_irq_save(flags);
3149
3150 stock = this_cpu_ptr(&memcg_stock);
3151 if (stock->cached_objcg != objcg) { /* reset if necessary */
3152 drain_obj_stock(stock);
3153 obj_cgroup_get(objcg);
3154 stock->cached_objcg = objcg;
3155 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3156 }
3157 stock->nr_bytes += nr_bytes;
3158
3159 if (stock->nr_bytes > PAGE_SIZE)
3160 drain_obj_stock(stock);
3161
3162 local_irq_restore(flags);
3163}
3164
3165int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3166{
3167 struct mem_cgroup *memcg;
3168 unsigned int nr_pages, nr_bytes;
3169 int ret;
3170
3171 if (consume_obj_stock(objcg, size))
3172 return 0;
3173
3174 /*
3175 * In theory, memcg->nr_charged_bytes can have enough
3176 * pre-charged bytes to satisfy the allocation. However,
3177 * flushing memcg->nr_charged_bytes requires two atomic
3178 * operations, and memcg->nr_charged_bytes can't be big,
3179 * so it's better to ignore it and try grab some new pages.
3180 * memcg->nr_charged_bytes will be flushed in
3181 * refill_obj_stock(), called from this function or
3182 * independently later.
3183 */
3184 rcu_read_lock();
3185 memcg = obj_cgroup_memcg(objcg);
3186 css_get(&memcg->css);
3187 rcu_read_unlock();
3188
3189 nr_pages = size >> PAGE_SHIFT;
3190 nr_bytes = size & (PAGE_SIZE - 1);
3191
3192 if (nr_bytes)
3193 nr_pages += 1;
3194
3195 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3196 if (!ret && nr_bytes)
3197 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3198
3199 css_put(&memcg->css);
3200 return ret;
3201}
3202
3203void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3204{
3205 refill_obj_stock(objcg, size);
3206}
3207
84c07d11 3208#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3209
ca3e0214
KH
3210#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3211
ca3e0214
KH
3212/*
3213 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3214 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3215 */
e94c8a9c 3216void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3217{
1a3e1f40 3218 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3219 int i;
ca3e0214 3220
3d37c4a9
KH
3221 if (mem_cgroup_disabled())
3222 return;
b070e65c 3223
1a3e1f40
JW
3224 for (i = 1; i < HPAGE_PMD_NR; i++) {
3225 css_get(&memcg->css);
3226 head[i].mem_cgroup = memcg;
3227 }
ca3e0214 3228}
12d27107 3229#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3230
c255a458 3231#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3232/**
3233 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3234 * @entry: swap entry to be moved
3235 * @from: mem_cgroup which the entry is moved from
3236 * @to: mem_cgroup which the entry is moved to
3237 *
3238 * It succeeds only when the swap_cgroup's record for this entry is the same
3239 * as the mem_cgroup's id of @from.
3240 *
3241 * Returns 0 on success, -EINVAL on failure.
3242 *
3e32cb2e 3243 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3244 * both res and memsw, and called css_get().
3245 */
3246static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3247 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3248{
3249 unsigned short old_id, new_id;
3250
34c00c31
LZ
3251 old_id = mem_cgroup_id(from);
3252 new_id = mem_cgroup_id(to);
02491447
DN
3253
3254 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3255 mod_memcg_state(from, MEMCG_SWAP, -1);
3256 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3257 return 0;
3258 }
3259 return -EINVAL;
3260}
3261#else
3262static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3263 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3264{
3265 return -EINVAL;
3266}
8c7c6e34 3267#endif
d13d1443 3268
bbec2e15 3269static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3270
bbec2e15
RG
3271static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3272 unsigned long max, bool memsw)
628f4235 3273{
3e32cb2e 3274 bool enlarge = false;
bb4a7ea2 3275 bool drained = false;
3e32cb2e 3276 int ret;
c054a78c
YZ
3277 bool limits_invariant;
3278 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3279
3e32cb2e 3280 do {
628f4235
KH
3281 if (signal_pending(current)) {
3282 ret = -EINTR;
3283 break;
3284 }
3e32cb2e 3285
bbec2e15 3286 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3287 /*
3288 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3289 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3290 */
15b42562 3291 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3292 max <= memcg->memsw.max;
c054a78c 3293 if (!limits_invariant) {
bbec2e15 3294 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3295 ret = -EINVAL;
8c7c6e34
KH
3296 break;
3297 }
bbec2e15 3298 if (max > counter->max)
3e32cb2e 3299 enlarge = true;
bbec2e15
RG
3300 ret = page_counter_set_max(counter, max);
3301 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3302
3303 if (!ret)
3304 break;
3305
bb4a7ea2
SB
3306 if (!drained) {
3307 drain_all_stock(memcg);
3308 drained = true;
3309 continue;
3310 }
3311
1ab5c056
AR
3312 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3313 GFP_KERNEL, !memsw)) {
3314 ret = -EBUSY;
3315 break;
3316 }
3317 } while (true);
3e32cb2e 3318
3c11ecf4
KH
3319 if (!ret && enlarge)
3320 memcg_oom_recover(memcg);
3e32cb2e 3321
628f4235
KH
3322 return ret;
3323}
3324
ef8f2327 3325unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3326 gfp_t gfp_mask,
3327 unsigned long *total_scanned)
3328{
3329 unsigned long nr_reclaimed = 0;
ef8f2327 3330 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3331 unsigned long reclaimed;
3332 int loop = 0;
ef8f2327 3333 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3334 unsigned long excess;
0608f43d
AM
3335 unsigned long nr_scanned;
3336
3337 if (order > 0)
3338 return 0;
3339
ef8f2327 3340 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3341
3342 /*
3343 * Do not even bother to check the largest node if the root
3344 * is empty. Do it lockless to prevent lock bouncing. Races
3345 * are acceptable as soft limit is best effort anyway.
3346 */
bfc7228b 3347 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3348 return 0;
3349
0608f43d
AM
3350 /*
3351 * This loop can run a while, specially if mem_cgroup's continuously
3352 * keep exceeding their soft limit and putting the system under
3353 * pressure
3354 */
3355 do {
3356 if (next_mz)
3357 mz = next_mz;
3358 else
3359 mz = mem_cgroup_largest_soft_limit_node(mctz);
3360 if (!mz)
3361 break;
3362
3363 nr_scanned = 0;
ef8f2327 3364 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3365 gfp_mask, &nr_scanned);
3366 nr_reclaimed += reclaimed;
3367 *total_scanned += nr_scanned;
0a31bc97 3368 spin_lock_irq(&mctz->lock);
bc2f2e7f 3369 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3370
3371 /*
3372 * If we failed to reclaim anything from this memory cgroup
3373 * it is time to move on to the next cgroup
3374 */
3375 next_mz = NULL;
bc2f2e7f
VD
3376 if (!reclaimed)
3377 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3378
3e32cb2e 3379 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3380 /*
3381 * One school of thought says that we should not add
3382 * back the node to the tree if reclaim returns 0.
3383 * But our reclaim could return 0, simply because due
3384 * to priority we are exposing a smaller subset of
3385 * memory to reclaim from. Consider this as a longer
3386 * term TODO.
3387 */
3388 /* If excess == 0, no tree ops */
cf2c8127 3389 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3390 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3391 css_put(&mz->memcg->css);
3392 loop++;
3393 /*
3394 * Could not reclaim anything and there are no more
3395 * mem cgroups to try or we seem to be looping without
3396 * reclaiming anything.
3397 */
3398 if (!nr_reclaimed &&
3399 (next_mz == NULL ||
3400 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3401 break;
3402 } while (!nr_reclaimed);
3403 if (next_mz)
3404 css_put(&next_mz->memcg->css);
3405 return nr_reclaimed;
3406}
3407
ea280e7b
TH
3408/*
3409 * Test whether @memcg has children, dead or alive. Note that this
3410 * function doesn't care whether @memcg has use_hierarchy enabled and
3411 * returns %true if there are child csses according to the cgroup
b8f2935f 3412 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3413 */
b5f99b53
GC
3414static inline bool memcg_has_children(struct mem_cgroup *memcg)
3415{
ea280e7b
TH
3416 bool ret;
3417
ea280e7b
TH
3418 rcu_read_lock();
3419 ret = css_next_child(NULL, &memcg->css);
3420 rcu_read_unlock();
3421 return ret;
b5f99b53
GC
3422}
3423
c26251f9 3424/*
51038171 3425 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3426 *
3427 * Caller is responsible for holding css reference for memcg.
3428 */
3429static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3430{
d977aa93 3431 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3432
c1e862c1
KH
3433 /* we call try-to-free pages for make this cgroup empty */
3434 lru_add_drain_all();
d12c60f6
JS
3435
3436 drain_all_stock(memcg);
3437
f817ed48 3438 /* try to free all pages in this cgroup */
3e32cb2e 3439 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3440 int progress;
c1e862c1 3441
c26251f9
MH
3442 if (signal_pending(current))
3443 return -EINTR;
3444
b70a2a21
JW
3445 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3446 GFP_KERNEL, true);
c1e862c1 3447 if (!progress) {
f817ed48 3448 nr_retries--;
c1e862c1 3449 /* maybe some writeback is necessary */
8aa7e847 3450 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3451 }
f817ed48
KH
3452
3453 }
ab5196c2
MH
3454
3455 return 0;
cc847582
KH
3456}
3457
6770c64e
TH
3458static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3459 char *buf, size_t nbytes,
3460 loff_t off)
c1e862c1 3461{
6770c64e 3462 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3463
d8423011
MH
3464 if (mem_cgroup_is_root(memcg))
3465 return -EINVAL;
6770c64e 3466 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3467}
3468
182446d0
TH
3469static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3470 struct cftype *cft)
18f59ea7 3471{
182446d0 3472 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3473}
3474
182446d0
TH
3475static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3476 struct cftype *cft, u64 val)
18f59ea7
BS
3477{
3478 int retval = 0;
182446d0 3479 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3480 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3481
567fb435 3482 if (memcg->use_hierarchy == val)
0b8f73e1 3483 return 0;
567fb435 3484
18f59ea7 3485 /*
af901ca1 3486 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3487 * in the child subtrees. If it is unset, then the change can
3488 * occur, provided the current cgroup has no children.
3489 *
3490 * For the root cgroup, parent_mem is NULL, we allow value to be
3491 * set if there are no children.
3492 */
c0ff4b85 3493 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3494 (val == 1 || val == 0)) {
ea280e7b 3495 if (!memcg_has_children(memcg))
c0ff4b85 3496 memcg->use_hierarchy = val;
18f59ea7
BS
3497 else
3498 retval = -EBUSY;
3499 } else
3500 retval = -EINVAL;
567fb435 3501
18f59ea7
BS
3502 return retval;
3503}
3504
6f646156 3505static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3506{
42a30035 3507 unsigned long val;
ce00a967 3508
3e32cb2e 3509 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3510 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3511 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3512 if (swap)
3513 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3514 } else {
ce00a967 3515 if (!swap)
3e32cb2e 3516 val = page_counter_read(&memcg->memory);
ce00a967 3517 else
3e32cb2e 3518 val = page_counter_read(&memcg->memsw);
ce00a967 3519 }
c12176d3 3520 return val;
ce00a967
JW
3521}
3522
3e32cb2e
JW
3523enum {
3524 RES_USAGE,
3525 RES_LIMIT,
3526 RES_MAX_USAGE,
3527 RES_FAILCNT,
3528 RES_SOFT_LIMIT,
3529};
ce00a967 3530
791badbd 3531static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3532 struct cftype *cft)
8cdea7c0 3533{
182446d0 3534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3535 struct page_counter *counter;
af36f906 3536
3e32cb2e 3537 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3538 case _MEM:
3e32cb2e
JW
3539 counter = &memcg->memory;
3540 break;
8c7c6e34 3541 case _MEMSWAP:
3e32cb2e
JW
3542 counter = &memcg->memsw;
3543 break;
510fc4e1 3544 case _KMEM:
3e32cb2e 3545 counter = &memcg->kmem;
510fc4e1 3546 break;
d55f90bf 3547 case _TCP:
0db15298 3548 counter = &memcg->tcpmem;
d55f90bf 3549 break;
8c7c6e34
KH
3550 default:
3551 BUG();
8c7c6e34 3552 }
3e32cb2e
JW
3553
3554 switch (MEMFILE_ATTR(cft->private)) {
3555 case RES_USAGE:
3556 if (counter == &memcg->memory)
c12176d3 3557 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3558 if (counter == &memcg->memsw)
c12176d3 3559 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3560 return (u64)page_counter_read(counter) * PAGE_SIZE;
3561 case RES_LIMIT:
bbec2e15 3562 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3563 case RES_MAX_USAGE:
3564 return (u64)counter->watermark * PAGE_SIZE;
3565 case RES_FAILCNT:
3566 return counter->failcnt;
3567 case RES_SOFT_LIMIT:
3568 return (u64)memcg->soft_limit * PAGE_SIZE;
3569 default:
3570 BUG();
3571 }
8cdea7c0 3572}
510fc4e1 3573
4a87e2a2 3574static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3575{
4a87e2a2 3576 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3577 struct mem_cgroup *mi;
3578 int node, cpu, i;
c350a99e
RG
3579
3580 for_each_online_cpu(cpu)
4a87e2a2 3581 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3582 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3583
3584 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3585 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3586 atomic_long_add(stat[i], &mi->vmstats[i]);
3587
3588 for_each_node(node) {
3589 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3590 struct mem_cgroup_per_node *pi;
3591
4a87e2a2 3592 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3593 stat[i] = 0;
3594
3595 for_each_online_cpu(cpu)
4a87e2a2 3596 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3597 stat[i] += per_cpu(
3598 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3599
3600 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3601 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3602 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3603 }
3604}
3605
bb65f89b
RG
3606static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3607{
3608 unsigned long events[NR_VM_EVENT_ITEMS];
3609 struct mem_cgroup *mi;
3610 int cpu, i;
3611
3612 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3613 events[i] = 0;
3614
3615 for_each_online_cpu(cpu)
3616 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3617 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3618 cpu);
bb65f89b
RG
3619
3620 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3621 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3622 atomic_long_add(events[i], &mi->vmevents[i]);
3623}
3624
84c07d11 3625#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3626static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3627{
bf4f0599 3628 struct obj_cgroup *objcg;
d6441637
VD
3629 int memcg_id;
3630
b313aeee
VD
3631 if (cgroup_memory_nokmem)
3632 return 0;
3633
2a4db7eb 3634 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3635 BUG_ON(memcg->kmem_state);
d6441637 3636
f3bb3043 3637 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3638 if (memcg_id < 0)
3639 return memcg_id;
d6441637 3640
bf4f0599
RG
3641 objcg = obj_cgroup_alloc();
3642 if (!objcg) {
3643 memcg_free_cache_id(memcg_id);
3644 return -ENOMEM;
3645 }
3646 objcg->memcg = memcg;
3647 rcu_assign_pointer(memcg->objcg, objcg);
3648
d648bcc7
RG
3649 static_branch_enable(&memcg_kmem_enabled_key);
3650
d6441637 3651 /*
567e9ab2 3652 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3653 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3654 * guarantee no one starts accounting before all call sites are
3655 * patched.
3656 */
900a38f0 3657 memcg->kmemcg_id = memcg_id;
567e9ab2 3658 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3659
3660 return 0;
d6441637
VD
3661}
3662
8e0a8912
JW
3663static void memcg_offline_kmem(struct mem_cgroup *memcg)
3664{
3665 struct cgroup_subsys_state *css;
3666 struct mem_cgroup *parent, *child;
3667 int kmemcg_id;
3668
3669 if (memcg->kmem_state != KMEM_ONLINE)
3670 return;
9855609b 3671
8e0a8912
JW
3672 memcg->kmem_state = KMEM_ALLOCATED;
3673
8e0a8912
JW
3674 parent = parent_mem_cgroup(memcg);
3675 if (!parent)
3676 parent = root_mem_cgroup;
3677
bf4f0599 3678 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3679
3680 kmemcg_id = memcg->kmemcg_id;
3681 BUG_ON(kmemcg_id < 0);
3682
8e0a8912
JW
3683 /*
3684 * Change kmemcg_id of this cgroup and all its descendants to the
3685 * parent's id, and then move all entries from this cgroup's list_lrus
3686 * to ones of the parent. After we have finished, all list_lrus
3687 * corresponding to this cgroup are guaranteed to remain empty. The
3688 * ordering is imposed by list_lru_node->lock taken by
3689 * memcg_drain_all_list_lrus().
3690 */
3a06bb78 3691 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3692 css_for_each_descendant_pre(css, &memcg->css) {
3693 child = mem_cgroup_from_css(css);
3694 BUG_ON(child->kmemcg_id != kmemcg_id);
3695 child->kmemcg_id = parent->kmemcg_id;
3696 if (!memcg->use_hierarchy)
3697 break;
3698 }
3a06bb78
TH
3699 rcu_read_unlock();
3700
9bec5c35 3701 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3702
3703 memcg_free_cache_id(kmemcg_id);
3704}
3705
3706static void memcg_free_kmem(struct mem_cgroup *memcg)
3707{
0b8f73e1
JW
3708 /* css_alloc() failed, offlining didn't happen */
3709 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3710 memcg_offline_kmem(memcg);
8e0a8912 3711}
d6441637 3712#else
0b8f73e1 3713static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3714{
3715 return 0;
3716}
3717static void memcg_offline_kmem(struct mem_cgroup *memcg)
3718{
3719}
3720static void memcg_free_kmem(struct mem_cgroup *memcg)
3721{
3722}
84c07d11 3723#endif /* CONFIG_MEMCG_KMEM */
127424c8 3724
bbec2e15
RG
3725static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3726 unsigned long max)
d6441637 3727{
b313aeee 3728 int ret;
127424c8 3729
bbec2e15
RG
3730 mutex_lock(&memcg_max_mutex);
3731 ret = page_counter_set_max(&memcg->kmem, max);
3732 mutex_unlock(&memcg_max_mutex);
127424c8 3733 return ret;
d6441637 3734}
510fc4e1 3735
bbec2e15 3736static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3737{
3738 int ret;
3739
bbec2e15 3740 mutex_lock(&memcg_max_mutex);
d55f90bf 3741
bbec2e15 3742 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3743 if (ret)
3744 goto out;
3745
0db15298 3746 if (!memcg->tcpmem_active) {
d55f90bf
VD
3747 /*
3748 * The active flag needs to be written after the static_key
3749 * update. This is what guarantees that the socket activation
2d758073
JW
3750 * function is the last one to run. See mem_cgroup_sk_alloc()
3751 * for details, and note that we don't mark any socket as
3752 * belonging to this memcg until that flag is up.
d55f90bf
VD
3753 *
3754 * We need to do this, because static_keys will span multiple
3755 * sites, but we can't control their order. If we mark a socket
3756 * as accounted, but the accounting functions are not patched in
3757 * yet, we'll lose accounting.
3758 *
2d758073 3759 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3760 * because when this value change, the code to process it is not
3761 * patched in yet.
3762 */
3763 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3764 memcg->tcpmem_active = true;
d55f90bf
VD
3765 }
3766out:
bbec2e15 3767 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3768 return ret;
3769}
d55f90bf 3770
628f4235
KH
3771/*
3772 * The user of this function is...
3773 * RES_LIMIT.
3774 */
451af504
TH
3775static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3776 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3777{
451af504 3778 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3779 unsigned long nr_pages;
628f4235
KH
3780 int ret;
3781
451af504 3782 buf = strstrip(buf);
650c5e56 3783 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3784 if (ret)
3785 return ret;
af36f906 3786
3e32cb2e 3787 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3788 case RES_LIMIT:
4b3bde4c
BS
3789 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3790 ret = -EINVAL;
3791 break;
3792 }
3e32cb2e
JW
3793 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3794 case _MEM:
bbec2e15 3795 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3796 break;
3e32cb2e 3797 case _MEMSWAP:
bbec2e15 3798 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3799 break;
3e32cb2e 3800 case _KMEM:
0158115f
MH
3801 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3802 "Please report your usecase to linux-mm@kvack.org if you "
3803 "depend on this functionality.\n");
bbec2e15 3804 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3805 break;
d55f90bf 3806 case _TCP:
bbec2e15 3807 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3808 break;
3e32cb2e 3809 }
296c81d8 3810 break;
3e32cb2e
JW
3811 case RES_SOFT_LIMIT:
3812 memcg->soft_limit = nr_pages;
3813 ret = 0;
628f4235
KH
3814 break;
3815 }
451af504 3816 return ret ?: nbytes;
8cdea7c0
BS
3817}
3818
6770c64e
TH
3819static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3820 size_t nbytes, loff_t off)
c84872e1 3821{
6770c64e 3822 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3823 struct page_counter *counter;
c84872e1 3824
3e32cb2e
JW
3825 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3826 case _MEM:
3827 counter = &memcg->memory;
3828 break;
3829 case _MEMSWAP:
3830 counter = &memcg->memsw;
3831 break;
3832 case _KMEM:
3833 counter = &memcg->kmem;
3834 break;
d55f90bf 3835 case _TCP:
0db15298 3836 counter = &memcg->tcpmem;
d55f90bf 3837 break;
3e32cb2e
JW
3838 default:
3839 BUG();
3840 }
af36f906 3841
3e32cb2e 3842 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3843 case RES_MAX_USAGE:
3e32cb2e 3844 page_counter_reset_watermark(counter);
29f2a4da
PE
3845 break;
3846 case RES_FAILCNT:
3e32cb2e 3847 counter->failcnt = 0;
29f2a4da 3848 break;
3e32cb2e
JW
3849 default:
3850 BUG();
29f2a4da 3851 }
f64c3f54 3852
6770c64e 3853 return nbytes;
c84872e1
PE
3854}
3855
182446d0 3856static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3857 struct cftype *cft)
3858{
182446d0 3859 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3860}
3861
02491447 3862#ifdef CONFIG_MMU
182446d0 3863static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3864 struct cftype *cft, u64 val)
3865{
182446d0 3866 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3867
1dfab5ab 3868 if (val & ~MOVE_MASK)
7dc74be0 3869 return -EINVAL;
ee5e8472 3870
7dc74be0 3871 /*
ee5e8472
GC
3872 * No kind of locking is needed in here, because ->can_attach() will
3873 * check this value once in the beginning of the process, and then carry
3874 * on with stale data. This means that changes to this value will only
3875 * affect task migrations starting after the change.
7dc74be0 3876 */
c0ff4b85 3877 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3878 return 0;
3879}
02491447 3880#else
182446d0 3881static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3882 struct cftype *cft, u64 val)
3883{
3884 return -ENOSYS;
3885}
3886#endif
7dc74be0 3887
406eb0c9 3888#ifdef CONFIG_NUMA
113b7dfd
JW
3889
3890#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3891#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3892#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3893
3894static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3895 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3896{
867e5e1d 3897 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3898 unsigned long nr = 0;
3899 enum lru_list lru;
3900
3901 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3902
3903 for_each_lru(lru) {
3904 if (!(BIT(lru) & lru_mask))
3905 continue;
dd8657b6
SB
3906 if (tree)
3907 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3908 else
3909 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3910 }
3911 return nr;
3912}
3913
3914static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3915 unsigned int lru_mask,
3916 bool tree)
113b7dfd
JW
3917{
3918 unsigned long nr = 0;
3919 enum lru_list lru;
3920
3921 for_each_lru(lru) {
3922 if (!(BIT(lru) & lru_mask))
3923 continue;
dd8657b6
SB
3924 if (tree)
3925 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3926 else
3927 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3928 }
3929 return nr;
3930}
3931
2da8ca82 3932static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3933{
25485de6
GT
3934 struct numa_stat {
3935 const char *name;
3936 unsigned int lru_mask;
3937 };
3938
3939 static const struct numa_stat stats[] = {
3940 { "total", LRU_ALL },
3941 { "file", LRU_ALL_FILE },
3942 { "anon", LRU_ALL_ANON },
3943 { "unevictable", BIT(LRU_UNEVICTABLE) },
3944 };
3945 const struct numa_stat *stat;
406eb0c9 3946 int nid;
aa9694bb 3947 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3948
25485de6 3949 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3950 seq_printf(m, "%s=%lu", stat->name,
3951 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3952 false));
3953 for_each_node_state(nid, N_MEMORY)
3954 seq_printf(m, " N%d=%lu", nid,
3955 mem_cgroup_node_nr_lru_pages(memcg, nid,
3956 stat->lru_mask, false));
25485de6 3957 seq_putc(m, '\n');
406eb0c9 3958 }
406eb0c9 3959
071aee13 3960 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3961
3962 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3963 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3964 true));
3965 for_each_node_state(nid, N_MEMORY)
3966 seq_printf(m, " N%d=%lu", nid,
3967 mem_cgroup_node_nr_lru_pages(memcg, nid,
3968 stat->lru_mask, true));
071aee13 3969 seq_putc(m, '\n');
406eb0c9 3970 }
406eb0c9 3971
406eb0c9
YH
3972 return 0;
3973}
3974#endif /* CONFIG_NUMA */
3975
c8713d0b 3976static const unsigned int memcg1_stats[] = {
0d1c2072 3977 NR_FILE_PAGES,
be5d0a74 3978 NR_ANON_MAPPED,
468c3982
JW
3979#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980 NR_ANON_THPS,
3981#endif
c8713d0b
JW
3982 NR_SHMEM,
3983 NR_FILE_MAPPED,
3984 NR_FILE_DIRTY,
3985 NR_WRITEBACK,
3986 MEMCG_SWAP,
3987};
3988
3989static const char *const memcg1_stat_names[] = {
3990 "cache",
3991 "rss",
468c3982 3992#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3993 "rss_huge",
468c3982 3994#endif
c8713d0b
JW
3995 "shmem",
3996 "mapped_file",
3997 "dirty",
3998 "writeback",
3999 "swap",
4000};
4001
df0e53d0 4002/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4003static const unsigned int memcg1_events[] = {
df0e53d0
JW
4004 PGPGIN,
4005 PGPGOUT,
4006 PGFAULT,
4007 PGMAJFAULT,
4008};
4009
2da8ca82 4010static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4011{
aa9694bb 4012 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4013 unsigned long memory, memsw;
af7c4b0e
JW
4014 struct mem_cgroup *mi;
4015 unsigned int i;
406eb0c9 4016
71cd3113 4017 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4018
71cd3113 4019 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4020 unsigned long nr;
4021
71cd3113 4022 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4023 continue;
468c3982
JW
4024 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4025#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4026 if (memcg1_stats[i] == NR_ANON_THPS)
4027 nr *= HPAGE_PMD_NR;
4028#endif
4029 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4030 }
7b854121 4031
df0e53d0 4032 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4033 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4034 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4035
4036 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4037 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4038 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4039 PAGE_SIZE);
af7c4b0e 4040
14067bb3 4041 /* Hierarchical information */
3e32cb2e
JW
4042 memory = memsw = PAGE_COUNTER_MAX;
4043 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4044 memory = min(memory, READ_ONCE(mi->memory.max));
4045 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4046 }
3e32cb2e
JW
4047 seq_printf(m, "hierarchical_memory_limit %llu\n",
4048 (u64)memory * PAGE_SIZE);
7941d214 4049 if (do_memsw_account())
3e32cb2e
JW
4050 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4051 (u64)memsw * PAGE_SIZE);
7f016ee8 4052
8de7ecc6 4053 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 4054 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4055 continue;
8de7ecc6 4056 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
4057 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4058 PAGE_SIZE);
af7c4b0e
JW
4059 }
4060
8de7ecc6 4061 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4062 seq_printf(m, "total_%s %llu\n",
4063 vm_event_name(memcg1_events[i]),
dd923990 4064 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4065
8de7ecc6 4066 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4067 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4068 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4069 PAGE_SIZE);
14067bb3 4070
7f016ee8 4071#ifdef CONFIG_DEBUG_VM
7f016ee8 4072 {
ef8f2327
MG
4073 pg_data_t *pgdat;
4074 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4075 unsigned long anon_cost = 0;
4076 unsigned long file_cost = 0;
7f016ee8 4077
ef8f2327
MG
4078 for_each_online_pgdat(pgdat) {
4079 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4080
1431d4d1
JW
4081 anon_cost += mz->lruvec.anon_cost;
4082 file_cost += mz->lruvec.file_cost;
ef8f2327 4083 }
1431d4d1
JW
4084 seq_printf(m, "anon_cost %lu\n", anon_cost);
4085 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4086 }
4087#endif
4088
d2ceb9b7
KH
4089 return 0;
4090}
4091
182446d0
TH
4092static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4093 struct cftype *cft)
a7885eb8 4094{
182446d0 4095 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4096
1f4c025b 4097 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4098}
4099
182446d0
TH
4100static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4101 struct cftype *cft, u64 val)
a7885eb8 4102{
182446d0 4103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4104
3dae7fec 4105 if (val > 100)
a7885eb8
KM
4106 return -EINVAL;
4107
14208b0e 4108 if (css->parent)
3dae7fec
JW
4109 memcg->swappiness = val;
4110 else
4111 vm_swappiness = val;
068b38c1 4112
a7885eb8
KM
4113 return 0;
4114}
4115
2e72b634
KS
4116static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4117{
4118 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4119 unsigned long usage;
2e72b634
KS
4120 int i;
4121
4122 rcu_read_lock();
4123 if (!swap)
2c488db2 4124 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4125 else
2c488db2 4126 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4127
4128 if (!t)
4129 goto unlock;
4130
ce00a967 4131 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4132
4133 /*
748dad36 4134 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4135 * If it's not true, a threshold was crossed after last
4136 * call of __mem_cgroup_threshold().
4137 */
5407a562 4138 i = t->current_threshold;
2e72b634
KS
4139
4140 /*
4141 * Iterate backward over array of thresholds starting from
4142 * current_threshold and check if a threshold is crossed.
4143 * If none of thresholds below usage is crossed, we read
4144 * only one element of the array here.
4145 */
4146 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4147 eventfd_signal(t->entries[i].eventfd, 1);
4148
4149 /* i = current_threshold + 1 */
4150 i++;
4151
4152 /*
4153 * Iterate forward over array of thresholds starting from
4154 * current_threshold+1 and check if a threshold is crossed.
4155 * If none of thresholds above usage is crossed, we read
4156 * only one element of the array here.
4157 */
4158 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4159 eventfd_signal(t->entries[i].eventfd, 1);
4160
4161 /* Update current_threshold */
5407a562 4162 t->current_threshold = i - 1;
2e72b634
KS
4163unlock:
4164 rcu_read_unlock();
4165}
4166
4167static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4168{
ad4ca5f4
KS
4169 while (memcg) {
4170 __mem_cgroup_threshold(memcg, false);
7941d214 4171 if (do_memsw_account())
ad4ca5f4
KS
4172 __mem_cgroup_threshold(memcg, true);
4173
4174 memcg = parent_mem_cgroup(memcg);
4175 }
2e72b634
KS
4176}
4177
4178static int compare_thresholds(const void *a, const void *b)
4179{
4180 const struct mem_cgroup_threshold *_a = a;
4181 const struct mem_cgroup_threshold *_b = b;
4182
2bff24a3
GT
4183 if (_a->threshold > _b->threshold)
4184 return 1;
4185
4186 if (_a->threshold < _b->threshold)
4187 return -1;
4188
4189 return 0;
2e72b634
KS
4190}
4191
c0ff4b85 4192static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4193{
4194 struct mem_cgroup_eventfd_list *ev;
4195
2bcf2e92
MH
4196 spin_lock(&memcg_oom_lock);
4197
c0ff4b85 4198 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4199 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4200
4201 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4202 return 0;
4203}
4204
c0ff4b85 4205static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4206{
7d74b06f
KH
4207 struct mem_cgroup *iter;
4208
c0ff4b85 4209 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4210 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4211}
4212
59b6f873 4213static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4214 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4215{
2c488db2
KS
4216 struct mem_cgroup_thresholds *thresholds;
4217 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4218 unsigned long threshold;
4219 unsigned long usage;
2c488db2 4220 int i, size, ret;
2e72b634 4221
650c5e56 4222 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4223 if (ret)
4224 return ret;
4225
4226 mutex_lock(&memcg->thresholds_lock);
2c488db2 4227
05b84301 4228 if (type == _MEM) {
2c488db2 4229 thresholds = &memcg->thresholds;
ce00a967 4230 usage = mem_cgroup_usage(memcg, false);
05b84301 4231 } else if (type == _MEMSWAP) {
2c488db2 4232 thresholds = &memcg->memsw_thresholds;
ce00a967 4233 usage = mem_cgroup_usage(memcg, true);
05b84301 4234 } else
2e72b634
KS
4235 BUG();
4236
2e72b634 4237 /* Check if a threshold crossed before adding a new one */
2c488db2 4238 if (thresholds->primary)
2e72b634
KS
4239 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4240
2c488db2 4241 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4242
4243 /* Allocate memory for new array of thresholds */
67b8046f 4244 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4245 if (!new) {
2e72b634
KS
4246 ret = -ENOMEM;
4247 goto unlock;
4248 }
2c488db2 4249 new->size = size;
2e72b634
KS
4250
4251 /* Copy thresholds (if any) to new array */
2c488db2
KS
4252 if (thresholds->primary) {
4253 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4254 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4255 }
4256
2e72b634 4257 /* Add new threshold */
2c488db2
KS
4258 new->entries[size - 1].eventfd = eventfd;
4259 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4260
4261 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4262 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4263 compare_thresholds, NULL);
4264
4265 /* Find current threshold */
2c488db2 4266 new->current_threshold = -1;
2e72b634 4267 for (i = 0; i < size; i++) {
748dad36 4268 if (new->entries[i].threshold <= usage) {
2e72b634 4269 /*
2c488db2
KS
4270 * new->current_threshold will not be used until
4271 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4272 * it here.
4273 */
2c488db2 4274 ++new->current_threshold;
748dad36
SZ
4275 } else
4276 break;
2e72b634
KS
4277 }
4278
2c488db2
KS
4279 /* Free old spare buffer and save old primary buffer as spare */
4280 kfree(thresholds->spare);
4281 thresholds->spare = thresholds->primary;
4282
4283 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4284
907860ed 4285 /* To be sure that nobody uses thresholds */
2e72b634
KS
4286 synchronize_rcu();
4287
2e72b634
KS
4288unlock:
4289 mutex_unlock(&memcg->thresholds_lock);
4290
4291 return ret;
4292}
4293
59b6f873 4294static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4295 struct eventfd_ctx *eventfd, const char *args)
4296{
59b6f873 4297 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4298}
4299
59b6f873 4300static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4301 struct eventfd_ctx *eventfd, const char *args)
4302{
59b6f873 4303 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4304}
4305
59b6f873 4306static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4307 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4308{
2c488db2
KS
4309 struct mem_cgroup_thresholds *thresholds;
4310 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4311 unsigned long usage;
7d36665a 4312 int i, j, size, entries;
2e72b634
KS
4313
4314 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4315
4316 if (type == _MEM) {
2c488db2 4317 thresholds = &memcg->thresholds;
ce00a967 4318 usage = mem_cgroup_usage(memcg, false);
05b84301 4319 } else if (type == _MEMSWAP) {
2c488db2 4320 thresholds = &memcg->memsw_thresholds;
ce00a967 4321 usage = mem_cgroup_usage(memcg, true);
05b84301 4322 } else
2e72b634
KS
4323 BUG();
4324
371528ca
AV
4325 if (!thresholds->primary)
4326 goto unlock;
4327
2e72b634
KS
4328 /* Check if a threshold crossed before removing */
4329 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4330
4331 /* Calculate new number of threshold */
7d36665a 4332 size = entries = 0;
2c488db2
KS
4333 for (i = 0; i < thresholds->primary->size; i++) {
4334 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4335 size++;
7d36665a
CX
4336 else
4337 entries++;
2e72b634
KS
4338 }
4339
2c488db2 4340 new = thresholds->spare;
907860ed 4341
7d36665a
CX
4342 /* If no items related to eventfd have been cleared, nothing to do */
4343 if (!entries)
4344 goto unlock;
4345
2e72b634
KS
4346 /* Set thresholds array to NULL if we don't have thresholds */
4347 if (!size) {
2c488db2
KS
4348 kfree(new);
4349 new = NULL;
907860ed 4350 goto swap_buffers;
2e72b634
KS
4351 }
4352
2c488db2 4353 new->size = size;
2e72b634
KS
4354
4355 /* Copy thresholds and find current threshold */
2c488db2
KS
4356 new->current_threshold = -1;
4357 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4358 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4359 continue;
4360
2c488db2 4361 new->entries[j] = thresholds->primary->entries[i];
748dad36 4362 if (new->entries[j].threshold <= usage) {
2e72b634 4363 /*
2c488db2 4364 * new->current_threshold will not be used
2e72b634
KS
4365 * until rcu_assign_pointer(), so it's safe to increment
4366 * it here.
4367 */
2c488db2 4368 ++new->current_threshold;
2e72b634
KS
4369 }
4370 j++;
4371 }
4372
907860ed 4373swap_buffers:
2c488db2
KS
4374 /* Swap primary and spare array */
4375 thresholds->spare = thresholds->primary;
8c757763 4376
2c488db2 4377 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4378
907860ed 4379 /* To be sure that nobody uses thresholds */
2e72b634 4380 synchronize_rcu();
6611d8d7
MC
4381
4382 /* If all events are unregistered, free the spare array */
4383 if (!new) {
4384 kfree(thresholds->spare);
4385 thresholds->spare = NULL;
4386 }
371528ca 4387unlock:
2e72b634 4388 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4389}
c1e862c1 4390
59b6f873 4391static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4392 struct eventfd_ctx *eventfd)
4393{
59b6f873 4394 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4395}
4396
59b6f873 4397static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4398 struct eventfd_ctx *eventfd)
4399{
59b6f873 4400 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4401}
4402
59b6f873 4403static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4404 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4405{
9490ff27 4406 struct mem_cgroup_eventfd_list *event;
9490ff27 4407
9490ff27
KH
4408 event = kmalloc(sizeof(*event), GFP_KERNEL);
4409 if (!event)
4410 return -ENOMEM;
4411
1af8efe9 4412 spin_lock(&memcg_oom_lock);
9490ff27
KH
4413
4414 event->eventfd = eventfd;
4415 list_add(&event->list, &memcg->oom_notify);
4416
4417 /* already in OOM ? */
c2b42d3c 4418 if (memcg->under_oom)
9490ff27 4419 eventfd_signal(eventfd, 1);
1af8efe9 4420 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4421
4422 return 0;
4423}
4424
59b6f873 4425static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4426 struct eventfd_ctx *eventfd)
9490ff27 4427{
9490ff27 4428 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4429
1af8efe9 4430 spin_lock(&memcg_oom_lock);
9490ff27 4431
c0ff4b85 4432 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4433 if (ev->eventfd == eventfd) {
4434 list_del(&ev->list);
4435 kfree(ev);
4436 }
4437 }
4438
1af8efe9 4439 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4440}
4441
2da8ca82 4442static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4443{
aa9694bb 4444 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4445
791badbd 4446 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4447 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4448 seq_printf(sf, "oom_kill %lu\n",
4449 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4450 return 0;
4451}
4452
182446d0 4453static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4454 struct cftype *cft, u64 val)
4455{
182446d0 4456 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4457
4458 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4459 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4460 return -EINVAL;
4461
c0ff4b85 4462 memcg->oom_kill_disable = val;
4d845ebf 4463 if (!val)
c0ff4b85 4464 memcg_oom_recover(memcg);
3dae7fec 4465
3c11ecf4
KH
4466 return 0;
4467}
4468
52ebea74
TH
4469#ifdef CONFIG_CGROUP_WRITEBACK
4470
3a8e9ac8
TH
4471#include <trace/events/writeback.h>
4472
841710aa
TH
4473static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4474{
4475 return wb_domain_init(&memcg->cgwb_domain, gfp);
4476}
4477
4478static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4479{
4480 wb_domain_exit(&memcg->cgwb_domain);
4481}
4482
2529bb3a
TH
4483static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4484{
4485 wb_domain_size_changed(&memcg->cgwb_domain);
4486}
4487
841710aa
TH
4488struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4489{
4490 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4491
4492 if (!memcg->css.parent)
4493 return NULL;
4494
4495 return &memcg->cgwb_domain;
4496}
4497
0b3d6e6f
GT
4498/*
4499 * idx can be of type enum memcg_stat_item or node_stat_item.
4500 * Keep in sync with memcg_exact_page().
4501 */
4502static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4503{
871789d4 4504 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4505 int cpu;
4506
4507 for_each_online_cpu(cpu)
871789d4 4508 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4509 if (x < 0)
4510 x = 0;
4511 return x;
4512}
4513
c2aa723a
TH
4514/**
4515 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4516 * @wb: bdi_writeback in question
c5edf9cd
TH
4517 * @pfilepages: out parameter for number of file pages
4518 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4519 * @pdirty: out parameter for number of dirty pages
4520 * @pwriteback: out parameter for number of pages under writeback
4521 *
c5edf9cd
TH
4522 * Determine the numbers of file, headroom, dirty, and writeback pages in
4523 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4524 * is a bit more involved.
c2aa723a 4525 *
c5edf9cd
TH
4526 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4527 * headroom is calculated as the lowest headroom of itself and the
4528 * ancestors. Note that this doesn't consider the actual amount of
4529 * available memory in the system. The caller should further cap
4530 * *@pheadroom accordingly.
c2aa723a 4531 */
c5edf9cd
TH
4532void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4533 unsigned long *pheadroom, unsigned long *pdirty,
4534 unsigned long *pwriteback)
c2aa723a
TH
4535{
4536 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4537 struct mem_cgroup *parent;
c2aa723a 4538
0b3d6e6f 4539 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4540
0b3d6e6f 4541 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4542 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4543 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4544 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4545
c2aa723a 4546 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4547 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4548 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4549 unsigned long used = page_counter_read(&memcg->memory);
4550
c5edf9cd 4551 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4552 memcg = parent;
4553 }
c2aa723a
TH
4554}
4555
97b27821
TH
4556/*
4557 * Foreign dirty flushing
4558 *
4559 * There's an inherent mismatch between memcg and writeback. The former
4560 * trackes ownership per-page while the latter per-inode. This was a
4561 * deliberate design decision because honoring per-page ownership in the
4562 * writeback path is complicated, may lead to higher CPU and IO overheads
4563 * and deemed unnecessary given that write-sharing an inode across
4564 * different cgroups isn't a common use-case.
4565 *
4566 * Combined with inode majority-writer ownership switching, this works well
4567 * enough in most cases but there are some pathological cases. For
4568 * example, let's say there are two cgroups A and B which keep writing to
4569 * different but confined parts of the same inode. B owns the inode and
4570 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4571 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4572 * triggering background writeback. A will be slowed down without a way to
4573 * make writeback of the dirty pages happen.
4574 *
4575 * Conditions like the above can lead to a cgroup getting repatedly and
4576 * severely throttled after making some progress after each
4577 * dirty_expire_interval while the underyling IO device is almost
4578 * completely idle.
4579 *
4580 * Solving this problem completely requires matching the ownership tracking
4581 * granularities between memcg and writeback in either direction. However,
4582 * the more egregious behaviors can be avoided by simply remembering the
4583 * most recent foreign dirtying events and initiating remote flushes on
4584 * them when local writeback isn't enough to keep the memory clean enough.
4585 *
4586 * The following two functions implement such mechanism. When a foreign
4587 * page - a page whose memcg and writeback ownerships don't match - is
4588 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4589 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4590 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4591 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4592 * foreign bdi_writebacks which haven't expired. Both the numbers of
4593 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4594 * limited to MEMCG_CGWB_FRN_CNT.
4595 *
4596 * The mechanism only remembers IDs and doesn't hold any object references.
4597 * As being wrong occasionally doesn't matter, updates and accesses to the
4598 * records are lockless and racy.
4599 */
4600void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4601 struct bdi_writeback *wb)
4602{
4603 struct mem_cgroup *memcg = page->mem_cgroup;
4604 struct memcg_cgwb_frn *frn;
4605 u64 now = get_jiffies_64();
4606 u64 oldest_at = now;
4607 int oldest = -1;
4608 int i;
4609
3a8e9ac8
TH
4610 trace_track_foreign_dirty(page, wb);
4611
97b27821
TH
4612 /*
4613 * Pick the slot to use. If there is already a slot for @wb, keep
4614 * using it. If not replace the oldest one which isn't being
4615 * written out.
4616 */
4617 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4618 frn = &memcg->cgwb_frn[i];
4619 if (frn->bdi_id == wb->bdi->id &&
4620 frn->memcg_id == wb->memcg_css->id)
4621 break;
4622 if (time_before64(frn->at, oldest_at) &&
4623 atomic_read(&frn->done.cnt) == 1) {
4624 oldest = i;
4625 oldest_at = frn->at;
4626 }
4627 }
4628
4629 if (i < MEMCG_CGWB_FRN_CNT) {
4630 /*
4631 * Re-using an existing one. Update timestamp lazily to
4632 * avoid making the cacheline hot. We want them to be
4633 * reasonably up-to-date and significantly shorter than
4634 * dirty_expire_interval as that's what expires the record.
4635 * Use the shorter of 1s and dirty_expire_interval / 8.
4636 */
4637 unsigned long update_intv =
4638 min_t(unsigned long, HZ,
4639 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4640
4641 if (time_before64(frn->at, now - update_intv))
4642 frn->at = now;
4643 } else if (oldest >= 0) {
4644 /* replace the oldest free one */
4645 frn = &memcg->cgwb_frn[oldest];
4646 frn->bdi_id = wb->bdi->id;
4647 frn->memcg_id = wb->memcg_css->id;
4648 frn->at = now;
4649 }
4650}
4651
4652/* issue foreign writeback flushes for recorded foreign dirtying events */
4653void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4654{
4655 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4656 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4657 u64 now = jiffies_64;
4658 int i;
4659
4660 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4661 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4662
4663 /*
4664 * If the record is older than dirty_expire_interval,
4665 * writeback on it has already started. No need to kick it
4666 * off again. Also, don't start a new one if there's
4667 * already one in flight.
4668 */
4669 if (time_after64(frn->at, now - intv) &&
4670 atomic_read(&frn->done.cnt) == 1) {
4671 frn->at = 0;
3a8e9ac8 4672 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4673 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4674 WB_REASON_FOREIGN_FLUSH,
4675 &frn->done);
4676 }
4677 }
4678}
4679
841710aa
TH
4680#else /* CONFIG_CGROUP_WRITEBACK */
4681
4682static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4683{
4684 return 0;
4685}
4686
4687static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4688{
4689}
4690
2529bb3a
TH
4691static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4692{
4693}
4694
52ebea74
TH
4695#endif /* CONFIG_CGROUP_WRITEBACK */
4696
3bc942f3
TH
4697/*
4698 * DO NOT USE IN NEW FILES.
4699 *
4700 * "cgroup.event_control" implementation.
4701 *
4702 * This is way over-engineered. It tries to support fully configurable
4703 * events for each user. Such level of flexibility is completely
4704 * unnecessary especially in the light of the planned unified hierarchy.
4705 *
4706 * Please deprecate this and replace with something simpler if at all
4707 * possible.
4708 */
4709
79bd9814
TH
4710/*
4711 * Unregister event and free resources.
4712 *
4713 * Gets called from workqueue.
4714 */
3bc942f3 4715static void memcg_event_remove(struct work_struct *work)
79bd9814 4716{
3bc942f3
TH
4717 struct mem_cgroup_event *event =
4718 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4719 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4720
4721 remove_wait_queue(event->wqh, &event->wait);
4722
59b6f873 4723 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4724
4725 /* Notify userspace the event is going away. */
4726 eventfd_signal(event->eventfd, 1);
4727
4728 eventfd_ctx_put(event->eventfd);
4729 kfree(event);
59b6f873 4730 css_put(&memcg->css);
79bd9814
TH
4731}
4732
4733/*
a9a08845 4734 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4735 *
4736 * Called with wqh->lock held and interrupts disabled.
4737 */
ac6424b9 4738static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4739 int sync, void *key)
79bd9814 4740{
3bc942f3
TH
4741 struct mem_cgroup_event *event =
4742 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4743 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4744 __poll_t flags = key_to_poll(key);
79bd9814 4745
a9a08845 4746 if (flags & EPOLLHUP) {
79bd9814
TH
4747 /*
4748 * If the event has been detached at cgroup removal, we
4749 * can simply return knowing the other side will cleanup
4750 * for us.
4751 *
4752 * We can't race against event freeing since the other
4753 * side will require wqh->lock via remove_wait_queue(),
4754 * which we hold.
4755 */
fba94807 4756 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4757 if (!list_empty(&event->list)) {
4758 list_del_init(&event->list);
4759 /*
4760 * We are in atomic context, but cgroup_event_remove()
4761 * may sleep, so we have to call it in workqueue.
4762 */
4763 schedule_work(&event->remove);
4764 }
fba94807 4765 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4766 }
4767
4768 return 0;
4769}
4770
3bc942f3 4771static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4772 wait_queue_head_t *wqh, poll_table *pt)
4773{
3bc942f3
TH
4774 struct mem_cgroup_event *event =
4775 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4776
4777 event->wqh = wqh;
4778 add_wait_queue(wqh, &event->wait);
4779}
4780
4781/*
3bc942f3
TH
4782 * DO NOT USE IN NEW FILES.
4783 *
79bd9814
TH
4784 * Parse input and register new cgroup event handler.
4785 *
4786 * Input must be in format '<event_fd> <control_fd> <args>'.
4787 * Interpretation of args is defined by control file implementation.
4788 */
451af504
TH
4789static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4790 char *buf, size_t nbytes, loff_t off)
79bd9814 4791{
451af504 4792 struct cgroup_subsys_state *css = of_css(of);
fba94807 4793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4794 struct mem_cgroup_event *event;
79bd9814
TH
4795 struct cgroup_subsys_state *cfile_css;
4796 unsigned int efd, cfd;
4797 struct fd efile;
4798 struct fd cfile;
fba94807 4799 const char *name;
79bd9814
TH
4800 char *endp;
4801 int ret;
4802
451af504
TH
4803 buf = strstrip(buf);
4804
4805 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4806 if (*endp != ' ')
4807 return -EINVAL;
451af504 4808 buf = endp + 1;
79bd9814 4809
451af504 4810 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4811 if ((*endp != ' ') && (*endp != '\0'))
4812 return -EINVAL;
451af504 4813 buf = endp + 1;
79bd9814
TH
4814
4815 event = kzalloc(sizeof(*event), GFP_KERNEL);
4816 if (!event)
4817 return -ENOMEM;
4818
59b6f873 4819 event->memcg = memcg;
79bd9814 4820 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4821 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4822 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4823 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4824
4825 efile = fdget(efd);
4826 if (!efile.file) {
4827 ret = -EBADF;
4828 goto out_kfree;
4829 }
4830
4831 event->eventfd = eventfd_ctx_fileget(efile.file);
4832 if (IS_ERR(event->eventfd)) {
4833 ret = PTR_ERR(event->eventfd);
4834 goto out_put_efile;
4835 }
4836
4837 cfile = fdget(cfd);
4838 if (!cfile.file) {
4839 ret = -EBADF;
4840 goto out_put_eventfd;
4841 }
4842
4843 /* the process need read permission on control file */
4844 /* AV: shouldn't we check that it's been opened for read instead? */
4845 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4846 if (ret < 0)
4847 goto out_put_cfile;
4848
fba94807
TH
4849 /*
4850 * Determine the event callbacks and set them in @event. This used
4851 * to be done via struct cftype but cgroup core no longer knows
4852 * about these events. The following is crude but the whole thing
4853 * is for compatibility anyway.
3bc942f3
TH
4854 *
4855 * DO NOT ADD NEW FILES.
fba94807 4856 */
b583043e 4857 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4858
4859 if (!strcmp(name, "memory.usage_in_bytes")) {
4860 event->register_event = mem_cgroup_usage_register_event;
4861 event->unregister_event = mem_cgroup_usage_unregister_event;
4862 } else if (!strcmp(name, "memory.oom_control")) {
4863 event->register_event = mem_cgroup_oom_register_event;
4864 event->unregister_event = mem_cgroup_oom_unregister_event;
4865 } else if (!strcmp(name, "memory.pressure_level")) {
4866 event->register_event = vmpressure_register_event;
4867 event->unregister_event = vmpressure_unregister_event;
4868 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4869 event->register_event = memsw_cgroup_usage_register_event;
4870 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4871 } else {
4872 ret = -EINVAL;
4873 goto out_put_cfile;
4874 }
4875
79bd9814 4876 /*
b5557c4c
TH
4877 * Verify @cfile should belong to @css. Also, remaining events are
4878 * automatically removed on cgroup destruction but the removal is
4879 * asynchronous, so take an extra ref on @css.
79bd9814 4880 */
b583043e 4881 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4882 &memory_cgrp_subsys);
79bd9814 4883 ret = -EINVAL;
5a17f543 4884 if (IS_ERR(cfile_css))
79bd9814 4885 goto out_put_cfile;
5a17f543
TH
4886 if (cfile_css != css) {
4887 css_put(cfile_css);
79bd9814 4888 goto out_put_cfile;
5a17f543 4889 }
79bd9814 4890
451af504 4891 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4892 if (ret)
4893 goto out_put_css;
4894
9965ed17 4895 vfs_poll(efile.file, &event->pt);
79bd9814 4896
fba94807
TH
4897 spin_lock(&memcg->event_list_lock);
4898 list_add(&event->list, &memcg->event_list);
4899 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4900
4901 fdput(cfile);
4902 fdput(efile);
4903
451af504 4904 return nbytes;
79bd9814
TH
4905
4906out_put_css:
b5557c4c 4907 css_put(css);
79bd9814
TH
4908out_put_cfile:
4909 fdput(cfile);
4910out_put_eventfd:
4911 eventfd_ctx_put(event->eventfd);
4912out_put_efile:
4913 fdput(efile);
4914out_kfree:
4915 kfree(event);
4916
4917 return ret;
4918}
4919
241994ed 4920static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4921 {
0eea1030 4922 .name = "usage_in_bytes",
8c7c6e34 4923 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4924 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4925 },
c84872e1
PE
4926 {
4927 .name = "max_usage_in_bytes",
8c7c6e34 4928 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4929 .write = mem_cgroup_reset,
791badbd 4930 .read_u64 = mem_cgroup_read_u64,
c84872e1 4931 },
8cdea7c0 4932 {
0eea1030 4933 .name = "limit_in_bytes",
8c7c6e34 4934 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4935 .write = mem_cgroup_write,
791badbd 4936 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4937 },
296c81d8
BS
4938 {
4939 .name = "soft_limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4941 .write = mem_cgroup_write,
791badbd 4942 .read_u64 = mem_cgroup_read_u64,
296c81d8 4943 },
8cdea7c0
BS
4944 {
4945 .name = "failcnt",
8c7c6e34 4946 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4947 .write = mem_cgroup_reset,
791badbd 4948 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4949 },
d2ceb9b7
KH
4950 {
4951 .name = "stat",
2da8ca82 4952 .seq_show = memcg_stat_show,
d2ceb9b7 4953 },
c1e862c1
KH
4954 {
4955 .name = "force_empty",
6770c64e 4956 .write = mem_cgroup_force_empty_write,
c1e862c1 4957 },
18f59ea7
BS
4958 {
4959 .name = "use_hierarchy",
4960 .write_u64 = mem_cgroup_hierarchy_write,
4961 .read_u64 = mem_cgroup_hierarchy_read,
4962 },
79bd9814 4963 {
3bc942f3 4964 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4965 .write = memcg_write_event_control,
7dbdb199 4966 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4967 },
a7885eb8
KM
4968 {
4969 .name = "swappiness",
4970 .read_u64 = mem_cgroup_swappiness_read,
4971 .write_u64 = mem_cgroup_swappiness_write,
4972 },
7dc74be0
DN
4973 {
4974 .name = "move_charge_at_immigrate",
4975 .read_u64 = mem_cgroup_move_charge_read,
4976 .write_u64 = mem_cgroup_move_charge_write,
4977 },
9490ff27
KH
4978 {
4979 .name = "oom_control",
2da8ca82 4980 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4981 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4982 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4983 },
70ddf637
AV
4984 {
4985 .name = "pressure_level",
70ddf637 4986 },
406eb0c9
YH
4987#ifdef CONFIG_NUMA
4988 {
4989 .name = "numa_stat",
2da8ca82 4990 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4991 },
4992#endif
510fc4e1
GC
4993 {
4994 .name = "kmem.limit_in_bytes",
4995 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4996 .write = mem_cgroup_write,
791badbd 4997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4998 },
4999 {
5000 .name = "kmem.usage_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5002 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5003 },
5004 {
5005 .name = "kmem.failcnt",
5006 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5007 .write = mem_cgroup_reset,
791badbd 5008 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5009 },
5010 {
5011 .name = "kmem.max_usage_in_bytes",
5012 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5013 .write = mem_cgroup_reset,
791badbd 5014 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5015 },
a87425a3
YS
5016#if defined(CONFIG_MEMCG_KMEM) && \
5017 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5018 {
5019 .name = "kmem.slabinfo",
b047501c 5020 .seq_show = memcg_slab_show,
749c5415
GC
5021 },
5022#endif
d55f90bf
VD
5023 {
5024 .name = "kmem.tcp.limit_in_bytes",
5025 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5026 .write = mem_cgroup_write,
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.usage_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5032 .read_u64 = mem_cgroup_read_u64,
5033 },
5034 {
5035 .name = "kmem.tcp.failcnt",
5036 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5037 .write = mem_cgroup_reset,
5038 .read_u64 = mem_cgroup_read_u64,
5039 },
5040 {
5041 .name = "kmem.tcp.max_usage_in_bytes",
5042 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5043 .write = mem_cgroup_reset,
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
6bc10349 5046 { }, /* terminate */
af36f906 5047};
8c7c6e34 5048
73f576c0
JW
5049/*
5050 * Private memory cgroup IDR
5051 *
5052 * Swap-out records and page cache shadow entries need to store memcg
5053 * references in constrained space, so we maintain an ID space that is
5054 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5055 * memory-controlled cgroups to 64k.
5056 *
b8f2935f 5057 * However, there usually are many references to the offline CSS after
73f576c0
JW
5058 * the cgroup has been destroyed, such as page cache or reclaimable
5059 * slab objects, that don't need to hang on to the ID. We want to keep
5060 * those dead CSS from occupying IDs, or we might quickly exhaust the
5061 * relatively small ID space and prevent the creation of new cgroups
5062 * even when there are much fewer than 64k cgroups - possibly none.
5063 *
5064 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5065 * be freed and recycled when it's no longer needed, which is usually
5066 * when the CSS is offlined.
5067 *
5068 * The only exception to that are records of swapped out tmpfs/shmem
5069 * pages that need to be attributed to live ancestors on swapin. But
5070 * those references are manageable from userspace.
5071 */
5072
5073static DEFINE_IDR(mem_cgroup_idr);
5074
7e97de0b
KT
5075static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5076{
5077 if (memcg->id.id > 0) {
5078 idr_remove(&mem_cgroup_idr, memcg->id.id);
5079 memcg->id.id = 0;
5080 }
5081}
5082
c1514c0a
VF
5083static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5084 unsigned int n)
73f576c0 5085{
1c2d479a 5086 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5087}
5088
615d66c3 5089static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5090{
1c2d479a 5091 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5092 mem_cgroup_id_remove(memcg);
73f576c0
JW
5093
5094 /* Memcg ID pins CSS */
5095 css_put(&memcg->css);
5096 }
5097}
5098
615d66c3
VD
5099static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5100{
5101 mem_cgroup_id_put_many(memcg, 1);
5102}
5103
73f576c0
JW
5104/**
5105 * mem_cgroup_from_id - look up a memcg from a memcg id
5106 * @id: the memcg id to look up
5107 *
5108 * Caller must hold rcu_read_lock().
5109 */
5110struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5111{
5112 WARN_ON_ONCE(!rcu_read_lock_held());
5113 return idr_find(&mem_cgroup_idr, id);
5114}
5115
ef8f2327 5116static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5117{
5118 struct mem_cgroup_per_node *pn;
ef8f2327 5119 int tmp = node;
1ecaab2b
KH
5120 /*
5121 * This routine is called against possible nodes.
5122 * But it's BUG to call kmalloc() against offline node.
5123 *
5124 * TODO: this routine can waste much memory for nodes which will
5125 * never be onlined. It's better to use memory hotplug callback
5126 * function.
5127 */
41e3355d
KH
5128 if (!node_state(node, N_NORMAL_MEMORY))
5129 tmp = -1;
17295c88 5130 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5131 if (!pn)
5132 return 1;
1ecaab2b 5133
815744d7
JW
5134 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5135 if (!pn->lruvec_stat_local) {
5136 kfree(pn);
5137 return 1;
5138 }
5139
a983b5eb
JW
5140 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5141 if (!pn->lruvec_stat_cpu) {
815744d7 5142 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5143 kfree(pn);
5144 return 1;
5145 }
5146
ef8f2327
MG
5147 lruvec_init(&pn->lruvec);
5148 pn->usage_in_excess = 0;
5149 pn->on_tree = false;
5150 pn->memcg = memcg;
5151
54f72fe0 5152 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5153 return 0;
5154}
5155
ef8f2327 5156static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5157{
00f3ca2c
JW
5158 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5159
4eaf431f
MH
5160 if (!pn)
5161 return;
5162
a983b5eb 5163 free_percpu(pn->lruvec_stat_cpu);
815744d7 5164 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5165 kfree(pn);
1ecaab2b
KH
5166}
5167
40e952f9 5168static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5169{
c8b2a36f 5170 int node;
59927fb9 5171
c8b2a36f 5172 for_each_node(node)
ef8f2327 5173 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5174 free_percpu(memcg->vmstats_percpu);
815744d7 5175 free_percpu(memcg->vmstats_local);
8ff69e2c 5176 kfree(memcg);
59927fb9 5177}
3afe36b1 5178
40e952f9
TE
5179static void mem_cgroup_free(struct mem_cgroup *memcg)
5180{
5181 memcg_wb_domain_exit(memcg);
7961eee3
SB
5182 /*
5183 * Flush percpu vmstats and vmevents to guarantee the value correctness
5184 * on parent's and all ancestor levels.
5185 */
4a87e2a2 5186 memcg_flush_percpu_vmstats(memcg);
7961eee3 5187 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5188 __mem_cgroup_free(memcg);
5189}
5190
0b8f73e1 5191static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5192{
d142e3e6 5193 struct mem_cgroup *memcg;
b9726c26 5194 unsigned int size;
6d12e2d8 5195 int node;
97b27821 5196 int __maybe_unused i;
11d67612 5197 long error = -ENOMEM;
8cdea7c0 5198
0b8f73e1
JW
5199 size = sizeof(struct mem_cgroup);
5200 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5201
5202 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5203 if (!memcg)
11d67612 5204 return ERR_PTR(error);
0b8f73e1 5205
73f576c0
JW
5206 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5207 1, MEM_CGROUP_ID_MAX,
5208 GFP_KERNEL);
11d67612
YS
5209 if (memcg->id.id < 0) {
5210 error = memcg->id.id;
73f576c0 5211 goto fail;
11d67612 5212 }
73f576c0 5213
815744d7
JW
5214 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5215 if (!memcg->vmstats_local)
5216 goto fail;
5217
871789d4
CD
5218 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5219 if (!memcg->vmstats_percpu)
0b8f73e1 5220 goto fail;
78fb7466 5221
3ed28fa1 5222 for_each_node(node)
ef8f2327 5223 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5224 goto fail;
f64c3f54 5225
0b8f73e1
JW
5226 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5227 goto fail;
28dbc4b6 5228
f7e1cb6e 5229 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5230 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5231 mutex_init(&memcg->thresholds_lock);
5232 spin_lock_init(&memcg->move_lock);
70ddf637 5233 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5234 INIT_LIST_HEAD(&memcg->event_list);
5235 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5236 memcg->socket_pressure = jiffies;
84c07d11 5237#ifdef CONFIG_MEMCG_KMEM
900a38f0 5238 memcg->kmemcg_id = -1;
bf4f0599 5239 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5240#endif
52ebea74
TH
5241#ifdef CONFIG_CGROUP_WRITEBACK
5242 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5243 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5244 memcg->cgwb_frn[i].done =
5245 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5246#endif
5247#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5248 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5249 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5250 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5251#endif
73f576c0 5252 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5253 return memcg;
5254fail:
7e97de0b 5255 mem_cgroup_id_remove(memcg);
40e952f9 5256 __mem_cgroup_free(memcg);
11d67612 5257 return ERR_PTR(error);
d142e3e6
GC
5258}
5259
0b8f73e1
JW
5260static struct cgroup_subsys_state * __ref
5261mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5262{
0b8f73e1
JW
5263 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5264 struct mem_cgroup *memcg;
5265 long error = -ENOMEM;
d142e3e6 5266
0b8f73e1 5267 memcg = mem_cgroup_alloc();
11d67612
YS
5268 if (IS_ERR(memcg))
5269 return ERR_CAST(memcg);
d142e3e6 5270
d1663a90 5271 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5272 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5273 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5274 if (parent) {
5275 memcg->swappiness = mem_cgroup_swappiness(parent);
5276 memcg->oom_kill_disable = parent->oom_kill_disable;
5277 }
5278 if (parent && parent->use_hierarchy) {
5279 memcg->use_hierarchy = true;
3e32cb2e 5280 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5281 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5282 page_counter_init(&memcg->memsw, &parent->memsw);
5283 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5284 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5285 } else {
3e32cb2e 5286 page_counter_init(&memcg->memory, NULL);
37e84351 5287 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5288 page_counter_init(&memcg->memsw, NULL);
5289 page_counter_init(&memcg->kmem, NULL);
0db15298 5290 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5291 /*
5292 * Deeper hierachy with use_hierarchy == false doesn't make
5293 * much sense so let cgroup subsystem know about this
5294 * unfortunate state in our controller.
5295 */
d142e3e6 5296 if (parent != root_mem_cgroup)
073219e9 5297 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5298 }
d6441637 5299
0b8f73e1
JW
5300 /* The following stuff does not apply to the root */
5301 if (!parent) {
5302 root_mem_cgroup = memcg;
5303 return &memcg->css;
5304 }
5305
b313aeee 5306 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5307 if (error)
5308 goto fail;
127424c8 5309
f7e1cb6e 5310 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5311 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5312
0b8f73e1
JW
5313 return &memcg->css;
5314fail:
7e97de0b 5315 mem_cgroup_id_remove(memcg);
0b8f73e1 5316 mem_cgroup_free(memcg);
11d67612 5317 return ERR_PTR(error);
0b8f73e1
JW
5318}
5319
73f576c0 5320static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5321{
58fa2a55
VD
5322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5323
0a4465d3
KT
5324 /*
5325 * A memcg must be visible for memcg_expand_shrinker_maps()
5326 * by the time the maps are allocated. So, we allocate maps
5327 * here, when for_each_mem_cgroup() can't skip it.
5328 */
5329 if (memcg_alloc_shrinker_maps(memcg)) {
5330 mem_cgroup_id_remove(memcg);
5331 return -ENOMEM;
5332 }
5333
73f576c0 5334 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5335 refcount_set(&memcg->id.ref, 1);
73f576c0 5336 css_get(css);
2f7dd7a4 5337 return 0;
8cdea7c0
BS
5338}
5339
eb95419b 5340static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5341{
eb95419b 5342 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5343 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5344
5345 /*
5346 * Unregister events and notify userspace.
5347 * Notify userspace about cgroup removing only after rmdir of cgroup
5348 * directory to avoid race between userspace and kernelspace.
5349 */
fba94807
TH
5350 spin_lock(&memcg->event_list_lock);
5351 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5352 list_del_init(&event->list);
5353 schedule_work(&event->remove);
5354 }
fba94807 5355 spin_unlock(&memcg->event_list_lock);
ec64f515 5356
bf8d5d52 5357 page_counter_set_min(&memcg->memory, 0);
23067153 5358 page_counter_set_low(&memcg->memory, 0);
63677c74 5359
567e9ab2 5360 memcg_offline_kmem(memcg);
52ebea74 5361 wb_memcg_offline(memcg);
73f576c0 5362
591edfb1
RG
5363 drain_all_stock(memcg);
5364
73f576c0 5365 mem_cgroup_id_put(memcg);
df878fb0
KH
5366}
5367
6df38689
VD
5368static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5369{
5370 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5371
5372 invalidate_reclaim_iterators(memcg);
5373}
5374
eb95419b 5375static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5376{
eb95419b 5377 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5378 int __maybe_unused i;
c268e994 5379
97b27821
TH
5380#ifdef CONFIG_CGROUP_WRITEBACK
5381 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5382 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5383#endif
f7e1cb6e 5384 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5385 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5386
0db15298 5387 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5388 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5389
0b8f73e1
JW
5390 vmpressure_cleanup(&memcg->vmpressure);
5391 cancel_work_sync(&memcg->high_work);
5392 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5393 memcg_free_shrinker_maps(memcg);
d886f4e4 5394 memcg_free_kmem(memcg);
0b8f73e1 5395 mem_cgroup_free(memcg);
8cdea7c0
BS
5396}
5397
1ced953b
TH
5398/**
5399 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5400 * @css: the target css
5401 *
5402 * Reset the states of the mem_cgroup associated with @css. This is
5403 * invoked when the userland requests disabling on the default hierarchy
5404 * but the memcg is pinned through dependency. The memcg should stop
5405 * applying policies and should revert to the vanilla state as it may be
5406 * made visible again.
5407 *
5408 * The current implementation only resets the essential configurations.
5409 * This needs to be expanded to cover all the visible parts.
5410 */
5411static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5412{
5413 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5414
bbec2e15
RG
5415 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5416 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5417 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5418 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5419 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5420 page_counter_set_min(&memcg->memory, 0);
23067153 5421 page_counter_set_low(&memcg->memory, 0);
d1663a90 5422 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5423 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5424 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5425 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5426}
5427
02491447 5428#ifdef CONFIG_MMU
7dc74be0 5429/* Handlers for move charge at task migration. */
854ffa8d 5430static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5431{
05b84301 5432 int ret;
9476db97 5433
d0164adc
MG
5434 /* Try a single bulk charge without reclaim first, kswapd may wake */
5435 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5436 if (!ret) {
854ffa8d 5437 mc.precharge += count;
854ffa8d
DN
5438 return ret;
5439 }
9476db97 5440
3674534b 5441 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5442 while (count--) {
3674534b 5443 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5444 if (ret)
38c5d72f 5445 return ret;
854ffa8d 5446 mc.precharge++;
9476db97 5447 cond_resched();
854ffa8d 5448 }
9476db97 5449 return 0;
4ffef5fe
DN
5450}
5451
4ffef5fe
DN
5452union mc_target {
5453 struct page *page;
02491447 5454 swp_entry_t ent;
4ffef5fe
DN
5455};
5456
4ffef5fe 5457enum mc_target_type {
8d32ff84 5458 MC_TARGET_NONE = 0,
4ffef5fe 5459 MC_TARGET_PAGE,
02491447 5460 MC_TARGET_SWAP,
c733a828 5461 MC_TARGET_DEVICE,
4ffef5fe
DN
5462};
5463
90254a65
DN
5464static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5465 unsigned long addr, pte_t ptent)
4ffef5fe 5466{
25b2995a 5467 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5468
90254a65
DN
5469 if (!page || !page_mapped(page))
5470 return NULL;
5471 if (PageAnon(page)) {
1dfab5ab 5472 if (!(mc.flags & MOVE_ANON))
90254a65 5473 return NULL;
1dfab5ab
JW
5474 } else {
5475 if (!(mc.flags & MOVE_FILE))
5476 return NULL;
5477 }
90254a65
DN
5478 if (!get_page_unless_zero(page))
5479 return NULL;
5480
5481 return page;
5482}
5483
c733a828 5484#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5485static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5486 pte_t ptent, swp_entry_t *entry)
90254a65 5487{
90254a65
DN
5488 struct page *page = NULL;
5489 swp_entry_t ent = pte_to_swp_entry(ptent);
5490
1dfab5ab 5491 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5492 return NULL;
c733a828
JG
5493
5494 /*
5495 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5496 * a device and because they are not accessible by CPU they are store
5497 * as special swap entry in the CPU page table.
5498 */
5499 if (is_device_private_entry(ent)) {
5500 page = device_private_entry_to_page(ent);
5501 /*
5502 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5503 * a refcount of 1 when free (unlike normal page)
5504 */
5505 if (!page_ref_add_unless(page, 1, 1))
5506 return NULL;
5507 return page;
5508 }
5509
4b91355e
KH
5510 /*
5511 * Because lookup_swap_cache() updates some statistics counter,
5512 * we call find_get_page() with swapper_space directly.
5513 */
f6ab1f7f 5514 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5515 entry->val = ent.val;
90254a65
DN
5516
5517 return page;
5518}
4b91355e
KH
5519#else
5520static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5521 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5522{
5523 return NULL;
5524}
5525#endif
90254a65 5526
87946a72
DN
5527static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5528 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5529{
5530 struct page *page = NULL;
87946a72
DN
5531 struct address_space *mapping;
5532 pgoff_t pgoff;
5533
5534 if (!vma->vm_file) /* anonymous vma */
5535 return NULL;
1dfab5ab 5536 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5537 return NULL;
5538
87946a72 5539 mapping = vma->vm_file->f_mapping;
0661a336 5540 pgoff = linear_page_index(vma, addr);
87946a72
DN
5541
5542 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5543#ifdef CONFIG_SWAP
5544 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5545 if (shmem_mapping(mapping)) {
5546 page = find_get_entry(mapping, pgoff);
3159f943 5547 if (xa_is_value(page)) {
139b6a6f 5548 swp_entry_t swp = radix_to_swp_entry(page);
2d1c4980 5549 *entry = swp;
f6ab1f7f
HY
5550 page = find_get_page(swap_address_space(swp),
5551 swp_offset(swp));
139b6a6f
JW
5552 }
5553 } else
5554 page = find_get_page(mapping, pgoff);
5555#else
5556 page = find_get_page(mapping, pgoff);
aa3b1895 5557#endif
87946a72
DN
5558 return page;
5559}
5560
b1b0deab
CG
5561/**
5562 * mem_cgroup_move_account - move account of the page
5563 * @page: the page
25843c2b 5564 * @compound: charge the page as compound or small page
b1b0deab
CG
5565 * @from: mem_cgroup which the page is moved from.
5566 * @to: mem_cgroup which the page is moved to. @from != @to.
5567 *
3ac808fd 5568 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5569 *
5570 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5571 * from old cgroup.
5572 */
5573static int mem_cgroup_move_account(struct page *page,
f627c2f5 5574 bool compound,
b1b0deab
CG
5575 struct mem_cgroup *from,
5576 struct mem_cgroup *to)
5577{
ae8af438
KK
5578 struct lruvec *from_vec, *to_vec;
5579 struct pglist_data *pgdat;
f627c2f5 5580 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab
CG
5581 int ret;
5582
5583 VM_BUG_ON(from == to);
5584 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5585 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5586
5587 /*
6a93ca8f 5588 * Prevent mem_cgroup_migrate() from looking at
45637bab 5589 * page->mem_cgroup of its source page while we change it.
b1b0deab 5590 */
f627c2f5 5591 ret = -EBUSY;
b1b0deab
CG
5592 if (!trylock_page(page))
5593 goto out;
5594
5595 ret = -EINVAL;
5596 if (page->mem_cgroup != from)
5597 goto out_unlock;
5598
ae8af438 5599 pgdat = page_pgdat(page);
867e5e1d
JW
5600 from_vec = mem_cgroup_lruvec(from, pgdat);
5601 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5602
abb242f5 5603 lock_page_memcg(page);
b1b0deab 5604
be5d0a74
JW
5605 if (PageAnon(page)) {
5606 if (page_mapped(page)) {
5607 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5608 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5609 if (PageTransHuge(page)) {
5610 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5611 -nr_pages);
5612 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5613 nr_pages);
5614 }
5615
be5d0a74
JW
5616 }
5617 } else {
0d1c2072
JW
5618 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5619 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5620
5621 if (PageSwapBacked(page)) {
5622 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5623 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5624 }
5625
49e50d27
JW
5626 if (page_mapped(page)) {
5627 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5628 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5629 }
b1b0deab 5630
49e50d27
JW
5631 if (PageDirty(page)) {
5632 struct address_space *mapping = page_mapping(page);
c4843a75 5633
49e50d27
JW
5634 if (mapping_cap_account_dirty(mapping)) {
5635 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5636 -nr_pages);
5637 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5638 nr_pages);
5639 }
c4843a75
GT
5640 }
5641 }
5642
b1b0deab 5643 if (PageWriteback(page)) {
ae8af438
KK
5644 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5645 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5646 }
5647
5648 /*
abb242f5
JW
5649 * All state has been migrated, let's switch to the new memcg.
5650 *
b1b0deab 5651 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5652 * is referenced, charged, isolated, and locked: we can't race
5653 * with (un)charging, migration, LRU putback, or anything else
5654 * that would rely on a stable page->mem_cgroup.
5655 *
5656 * Note that lock_page_memcg is a memcg lock, not a page lock,
5657 * to save space. As soon as we switch page->mem_cgroup to a
5658 * new memcg that isn't locked, the above state can change
5659 * concurrently again. Make sure we're truly done with it.
b1b0deab 5660 */
abb242f5 5661 smp_mb();
b1b0deab 5662
1a3e1f40
JW
5663 css_get(&to->css);
5664 css_put(&from->css);
5665
5666 page->mem_cgroup = to;
87eaceb3 5667
abb242f5 5668 __unlock_page_memcg(from);
b1b0deab
CG
5669
5670 ret = 0;
5671
5672 local_irq_disable();
3fba69a5 5673 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5674 memcg_check_events(to, page);
3fba69a5 5675 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5676 memcg_check_events(from, page);
5677 local_irq_enable();
5678out_unlock:
5679 unlock_page(page);
5680out:
5681 return ret;
5682}
5683
7cf7806c
LR
5684/**
5685 * get_mctgt_type - get target type of moving charge
5686 * @vma: the vma the pte to be checked belongs
5687 * @addr: the address corresponding to the pte to be checked
5688 * @ptent: the pte to be checked
5689 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5690 *
5691 * Returns
5692 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5693 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5694 * move charge. if @target is not NULL, the page is stored in target->page
5695 * with extra refcnt got(Callers should handle it).
5696 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5697 * target for charge migration. if @target is not NULL, the entry is stored
5698 * in target->ent.
25b2995a
CH
5699 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5700 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5701 * For now we such page is charge like a regular page would be as for all
5702 * intent and purposes it is just special memory taking the place of a
5703 * regular page.
c733a828
JG
5704 *
5705 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5706 *
5707 * Called with pte lock held.
5708 */
5709
8d32ff84 5710static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5711 unsigned long addr, pte_t ptent, union mc_target *target)
5712{
5713 struct page *page = NULL;
8d32ff84 5714 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5715 swp_entry_t ent = { .val = 0 };
5716
5717 if (pte_present(ptent))
5718 page = mc_handle_present_pte(vma, addr, ptent);
5719 else if (is_swap_pte(ptent))
48406ef8 5720 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5721 else if (pte_none(ptent))
87946a72 5722 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5723
5724 if (!page && !ent.val)
8d32ff84 5725 return ret;
02491447 5726 if (page) {
02491447 5727 /*
0a31bc97 5728 * Do only loose check w/o serialization.
1306a85a 5729 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5730 * not under LRU exclusion.
02491447 5731 */
1306a85a 5732 if (page->mem_cgroup == mc.from) {
02491447 5733 ret = MC_TARGET_PAGE;
25b2995a 5734 if (is_device_private_page(page))
c733a828 5735 ret = MC_TARGET_DEVICE;
02491447
DN
5736 if (target)
5737 target->page = page;
5738 }
5739 if (!ret || !target)
5740 put_page(page);
5741 }
3e14a57b
HY
5742 /*
5743 * There is a swap entry and a page doesn't exist or isn't charged.
5744 * But we cannot move a tail-page in a THP.
5745 */
5746 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5747 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5748 ret = MC_TARGET_SWAP;
5749 if (target)
5750 target->ent = ent;
4ffef5fe 5751 }
4ffef5fe
DN
5752 return ret;
5753}
5754
12724850
NH
5755#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5756/*
d6810d73
HY
5757 * We don't consider PMD mapped swapping or file mapped pages because THP does
5758 * not support them for now.
12724850
NH
5759 * Caller should make sure that pmd_trans_huge(pmd) is true.
5760 */
5761static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5762 unsigned long addr, pmd_t pmd, union mc_target *target)
5763{
5764 struct page *page = NULL;
12724850
NH
5765 enum mc_target_type ret = MC_TARGET_NONE;
5766
84c3fc4e
ZY
5767 if (unlikely(is_swap_pmd(pmd))) {
5768 VM_BUG_ON(thp_migration_supported() &&
5769 !is_pmd_migration_entry(pmd));
5770 return ret;
5771 }
12724850 5772 page = pmd_page(pmd);
309381fe 5773 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5774 if (!(mc.flags & MOVE_ANON))
12724850 5775 return ret;
1306a85a 5776 if (page->mem_cgroup == mc.from) {
12724850
NH
5777 ret = MC_TARGET_PAGE;
5778 if (target) {
5779 get_page(page);
5780 target->page = page;
5781 }
5782 }
5783 return ret;
5784}
5785#else
5786static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5787 unsigned long addr, pmd_t pmd, union mc_target *target)
5788{
5789 return MC_TARGET_NONE;
5790}
5791#endif
5792
4ffef5fe
DN
5793static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5794 unsigned long addr, unsigned long end,
5795 struct mm_walk *walk)
5796{
26bcd64a 5797 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5798 pte_t *pte;
5799 spinlock_t *ptl;
5800
b6ec57f4
KS
5801 ptl = pmd_trans_huge_lock(pmd, vma);
5802 if (ptl) {
c733a828
JG
5803 /*
5804 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5805 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5806 * this might change.
c733a828 5807 */
12724850
NH
5808 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5809 mc.precharge += HPAGE_PMD_NR;
bf929152 5810 spin_unlock(ptl);
1a5a9906 5811 return 0;
12724850 5812 }
03319327 5813
45f83cef
AA
5814 if (pmd_trans_unstable(pmd))
5815 return 0;
4ffef5fe
DN
5816 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5817 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5818 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5819 mc.precharge++; /* increment precharge temporarily */
5820 pte_unmap_unlock(pte - 1, ptl);
5821 cond_resched();
5822
7dc74be0
DN
5823 return 0;
5824}
5825
7b86ac33
CH
5826static const struct mm_walk_ops precharge_walk_ops = {
5827 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5828};
5829
4ffef5fe
DN
5830static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5831{
5832 unsigned long precharge;
4ffef5fe 5833
d8ed45c5 5834 mmap_read_lock(mm);
7b86ac33 5835 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5836 mmap_read_unlock(mm);
4ffef5fe
DN
5837
5838 precharge = mc.precharge;
5839 mc.precharge = 0;
5840
5841 return precharge;
5842}
5843
4ffef5fe
DN
5844static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5845{
dfe076b0
DN
5846 unsigned long precharge = mem_cgroup_count_precharge(mm);
5847
5848 VM_BUG_ON(mc.moving_task);
5849 mc.moving_task = current;
5850 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5851}
5852
dfe076b0
DN
5853/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5854static void __mem_cgroup_clear_mc(void)
4ffef5fe 5855{
2bd9bb20
KH
5856 struct mem_cgroup *from = mc.from;
5857 struct mem_cgroup *to = mc.to;
5858
4ffef5fe 5859 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5860 if (mc.precharge) {
00501b53 5861 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5862 mc.precharge = 0;
5863 }
5864 /*
5865 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5866 * we must uncharge here.
5867 */
5868 if (mc.moved_charge) {
00501b53 5869 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5870 mc.moved_charge = 0;
4ffef5fe 5871 }
483c30b5
DN
5872 /* we must fixup refcnts and charges */
5873 if (mc.moved_swap) {
483c30b5 5874 /* uncharge swap account from the old cgroup */
ce00a967 5875 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5876 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5877
615d66c3
VD
5878 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5879
05b84301 5880 /*
3e32cb2e
JW
5881 * we charged both to->memory and to->memsw, so we
5882 * should uncharge to->memory.
05b84301 5883 */
ce00a967 5884 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5885 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5886
483c30b5
DN
5887 mc.moved_swap = 0;
5888 }
dfe076b0
DN
5889 memcg_oom_recover(from);
5890 memcg_oom_recover(to);
5891 wake_up_all(&mc.waitq);
5892}
5893
5894static void mem_cgroup_clear_mc(void)
5895{
264a0ae1
TH
5896 struct mm_struct *mm = mc.mm;
5897
dfe076b0
DN
5898 /*
5899 * we must clear moving_task before waking up waiters at the end of
5900 * task migration.
5901 */
5902 mc.moving_task = NULL;
5903 __mem_cgroup_clear_mc();
2bd9bb20 5904 spin_lock(&mc.lock);
4ffef5fe
DN
5905 mc.from = NULL;
5906 mc.to = NULL;
264a0ae1 5907 mc.mm = NULL;
2bd9bb20 5908 spin_unlock(&mc.lock);
264a0ae1
TH
5909
5910 mmput(mm);
4ffef5fe
DN
5911}
5912
1f7dd3e5 5913static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5914{
1f7dd3e5 5915 struct cgroup_subsys_state *css;
eed67d75 5916 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5917 struct mem_cgroup *from;
4530eddb 5918 struct task_struct *leader, *p;
9f2115f9 5919 struct mm_struct *mm;
1dfab5ab 5920 unsigned long move_flags;
9f2115f9 5921 int ret = 0;
7dc74be0 5922
1f7dd3e5
TH
5923 /* charge immigration isn't supported on the default hierarchy */
5924 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5925 return 0;
5926
4530eddb
TH
5927 /*
5928 * Multi-process migrations only happen on the default hierarchy
5929 * where charge immigration is not used. Perform charge
5930 * immigration if @tset contains a leader and whine if there are
5931 * multiple.
5932 */
5933 p = NULL;
1f7dd3e5 5934 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5935 WARN_ON_ONCE(p);
5936 p = leader;
1f7dd3e5 5937 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5938 }
5939 if (!p)
5940 return 0;
5941
1f7dd3e5
TH
5942 /*
5943 * We are now commited to this value whatever it is. Changes in this
5944 * tunable will only affect upcoming migrations, not the current one.
5945 * So we need to save it, and keep it going.
5946 */
5947 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5948 if (!move_flags)
5949 return 0;
5950
9f2115f9
TH
5951 from = mem_cgroup_from_task(p);
5952
5953 VM_BUG_ON(from == memcg);
5954
5955 mm = get_task_mm(p);
5956 if (!mm)
5957 return 0;
5958 /* We move charges only when we move a owner of the mm */
5959 if (mm->owner == p) {
5960 VM_BUG_ON(mc.from);
5961 VM_BUG_ON(mc.to);
5962 VM_BUG_ON(mc.precharge);
5963 VM_BUG_ON(mc.moved_charge);
5964 VM_BUG_ON(mc.moved_swap);
5965
5966 spin_lock(&mc.lock);
264a0ae1 5967 mc.mm = mm;
9f2115f9
TH
5968 mc.from = from;
5969 mc.to = memcg;
5970 mc.flags = move_flags;
5971 spin_unlock(&mc.lock);
5972 /* We set mc.moving_task later */
5973
5974 ret = mem_cgroup_precharge_mc(mm);
5975 if (ret)
5976 mem_cgroup_clear_mc();
264a0ae1
TH
5977 } else {
5978 mmput(mm);
7dc74be0
DN
5979 }
5980 return ret;
5981}
5982
1f7dd3e5 5983static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5984{
4e2f245d
JW
5985 if (mc.to)
5986 mem_cgroup_clear_mc();
7dc74be0
DN
5987}
5988
4ffef5fe
DN
5989static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5990 unsigned long addr, unsigned long end,
5991 struct mm_walk *walk)
7dc74be0 5992{
4ffef5fe 5993 int ret = 0;
26bcd64a 5994 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5995 pte_t *pte;
5996 spinlock_t *ptl;
12724850
NH
5997 enum mc_target_type target_type;
5998 union mc_target target;
5999 struct page *page;
4ffef5fe 6000
b6ec57f4
KS
6001 ptl = pmd_trans_huge_lock(pmd, vma);
6002 if (ptl) {
62ade86a 6003 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6004 spin_unlock(ptl);
12724850
NH
6005 return 0;
6006 }
6007 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6008 if (target_type == MC_TARGET_PAGE) {
6009 page = target.page;
6010 if (!isolate_lru_page(page)) {
f627c2f5 6011 if (!mem_cgroup_move_account(page, true,
1306a85a 6012 mc.from, mc.to)) {
12724850
NH
6013 mc.precharge -= HPAGE_PMD_NR;
6014 mc.moved_charge += HPAGE_PMD_NR;
6015 }
6016 putback_lru_page(page);
6017 }
6018 put_page(page);
c733a828
JG
6019 } else if (target_type == MC_TARGET_DEVICE) {
6020 page = target.page;
6021 if (!mem_cgroup_move_account(page, true,
6022 mc.from, mc.to)) {
6023 mc.precharge -= HPAGE_PMD_NR;
6024 mc.moved_charge += HPAGE_PMD_NR;
6025 }
6026 put_page(page);
12724850 6027 }
bf929152 6028 spin_unlock(ptl);
1a5a9906 6029 return 0;
12724850
NH
6030 }
6031
45f83cef
AA
6032 if (pmd_trans_unstable(pmd))
6033 return 0;
4ffef5fe
DN
6034retry:
6035 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6036 for (; addr != end; addr += PAGE_SIZE) {
6037 pte_t ptent = *(pte++);
c733a828 6038 bool device = false;
02491447 6039 swp_entry_t ent;
4ffef5fe
DN
6040
6041 if (!mc.precharge)
6042 break;
6043
8d32ff84 6044 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6045 case MC_TARGET_DEVICE:
6046 device = true;
e4a9bc58 6047 fallthrough;
4ffef5fe
DN
6048 case MC_TARGET_PAGE:
6049 page = target.page;
53f9263b
KS
6050 /*
6051 * We can have a part of the split pmd here. Moving it
6052 * can be done but it would be too convoluted so simply
6053 * ignore such a partial THP and keep it in original
6054 * memcg. There should be somebody mapping the head.
6055 */
6056 if (PageTransCompound(page))
6057 goto put;
c733a828 6058 if (!device && isolate_lru_page(page))
4ffef5fe 6059 goto put;
f627c2f5
KS
6060 if (!mem_cgroup_move_account(page, false,
6061 mc.from, mc.to)) {
4ffef5fe 6062 mc.precharge--;
854ffa8d
DN
6063 /* we uncharge from mc.from later. */
6064 mc.moved_charge++;
4ffef5fe 6065 }
c733a828
JG
6066 if (!device)
6067 putback_lru_page(page);
8d32ff84 6068put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6069 put_page(page);
6070 break;
02491447
DN
6071 case MC_TARGET_SWAP:
6072 ent = target.ent;
e91cbb42 6073 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6074 mc.precharge--;
8d22a935
HD
6075 mem_cgroup_id_get_many(mc.to, 1);
6076 /* we fixup other refcnts and charges later. */
483c30b5
DN
6077 mc.moved_swap++;
6078 }
02491447 6079 break;
4ffef5fe
DN
6080 default:
6081 break;
6082 }
6083 }
6084 pte_unmap_unlock(pte - 1, ptl);
6085 cond_resched();
6086
6087 if (addr != end) {
6088 /*
6089 * We have consumed all precharges we got in can_attach().
6090 * We try charge one by one, but don't do any additional
6091 * charges to mc.to if we have failed in charge once in attach()
6092 * phase.
6093 */
854ffa8d 6094 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6095 if (!ret)
6096 goto retry;
6097 }
6098
6099 return ret;
6100}
6101
7b86ac33
CH
6102static const struct mm_walk_ops charge_walk_ops = {
6103 .pmd_entry = mem_cgroup_move_charge_pte_range,
6104};
6105
264a0ae1 6106static void mem_cgroup_move_charge(void)
4ffef5fe 6107{
4ffef5fe 6108 lru_add_drain_all();
312722cb 6109 /*
81f8c3a4
JW
6110 * Signal lock_page_memcg() to take the memcg's move_lock
6111 * while we're moving its pages to another memcg. Then wait
6112 * for already started RCU-only updates to finish.
312722cb
JW
6113 */
6114 atomic_inc(&mc.from->moving_account);
6115 synchronize_rcu();
dfe076b0 6116retry:
d8ed45c5 6117 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6118 /*
c1e8d7c6 6119 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6120 * waitq. So we cancel all extra charges, wake up all waiters,
6121 * and retry. Because we cancel precharges, we might not be able
6122 * to move enough charges, but moving charge is a best-effort
6123 * feature anyway, so it wouldn't be a big problem.
6124 */
6125 __mem_cgroup_clear_mc();
6126 cond_resched();
6127 goto retry;
6128 }
26bcd64a
NH
6129 /*
6130 * When we have consumed all precharges and failed in doing
6131 * additional charge, the page walk just aborts.
6132 */
7b86ac33
CH
6133 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6134 NULL);
0247f3f4 6135
d8ed45c5 6136 mmap_read_unlock(mc.mm);
312722cb 6137 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6138}
6139
264a0ae1 6140static void mem_cgroup_move_task(void)
67e465a7 6141{
264a0ae1
TH
6142 if (mc.to) {
6143 mem_cgroup_move_charge();
a433658c 6144 mem_cgroup_clear_mc();
264a0ae1 6145 }
67e465a7 6146}
5cfb80a7 6147#else /* !CONFIG_MMU */
1f7dd3e5 6148static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6149{
6150 return 0;
6151}
1f7dd3e5 6152static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6153{
6154}
264a0ae1 6155static void mem_cgroup_move_task(void)
5cfb80a7
DN
6156{
6157}
6158#endif
67e465a7 6159
f00baae7
TH
6160/*
6161 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6162 * to verify whether we're attached to the default hierarchy on each mount
6163 * attempt.
f00baae7 6164 */
eb95419b 6165static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6166{
6167 /*
aa6ec29b 6168 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6169 * guarantees that @root doesn't have any children, so turning it
6170 * on for the root memcg is enough.
6171 */
9e10a130 6172 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6173 root_mem_cgroup->use_hierarchy = true;
6174 else
6175 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6176}
6177
677dc973
CD
6178static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6179{
6180 if (value == PAGE_COUNTER_MAX)
6181 seq_puts(m, "max\n");
6182 else
6183 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6184
6185 return 0;
6186}
6187
241994ed
JW
6188static u64 memory_current_read(struct cgroup_subsys_state *css,
6189 struct cftype *cft)
6190{
f5fc3c5d
JW
6191 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6192
6193 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6194}
6195
bf8d5d52
RG
6196static int memory_min_show(struct seq_file *m, void *v)
6197{
677dc973
CD
6198 return seq_puts_memcg_tunable(m,
6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6200}
6201
6202static ssize_t memory_min_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 unsigned long min;
6207 int err;
6208
6209 buf = strstrip(buf);
6210 err = page_counter_memparse(buf, "max", &min);
6211 if (err)
6212 return err;
6213
6214 page_counter_set_min(&memcg->memory, min);
6215
6216 return nbytes;
6217}
6218
241994ed
JW
6219static int memory_low_show(struct seq_file *m, void *v)
6220{
677dc973
CD
6221 return seq_puts_memcg_tunable(m,
6222 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6223}
6224
6225static ssize_t memory_low_write(struct kernfs_open_file *of,
6226 char *buf, size_t nbytes, loff_t off)
6227{
6228 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6229 unsigned long low;
6230 int err;
6231
6232 buf = strstrip(buf);
d2973697 6233 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6234 if (err)
6235 return err;
6236
23067153 6237 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6238
6239 return nbytes;
6240}
6241
6242static int memory_high_show(struct seq_file *m, void *v)
6243{
d1663a90
JK
6244 return seq_puts_memcg_tunable(m,
6245 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6246}
6247
6248static ssize_t memory_high_write(struct kernfs_open_file *of,
6249 char *buf, size_t nbytes, loff_t off)
6250{
6251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6252 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6253 bool drained = false;
241994ed
JW
6254 unsigned long high;
6255 int err;
6256
6257 buf = strstrip(buf);
d2973697 6258 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6259 if (err)
6260 return err;
6261
8c8c383c
JW
6262 for (;;) {
6263 unsigned long nr_pages = page_counter_read(&memcg->memory);
6264 unsigned long reclaimed;
6265
6266 if (nr_pages <= high)
6267 break;
6268
6269 if (signal_pending(current))
6270 break;
6271
6272 if (!drained) {
6273 drain_all_stock(memcg);
6274 drained = true;
6275 continue;
6276 }
6277
6278 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6279 GFP_KERNEL, true);
6280
6281 if (!reclaimed && !nr_retries--)
6282 break;
6283 }
588083bb 6284
536d3bf2
RG
6285 page_counter_set_high(&memcg->memory, high);
6286
19ce33ac
JW
6287 memcg_wb_domain_size_changed(memcg);
6288
241994ed
JW
6289 return nbytes;
6290}
6291
6292static int memory_max_show(struct seq_file *m, void *v)
6293{
677dc973
CD
6294 return seq_puts_memcg_tunable(m,
6295 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6296}
6297
6298static ssize_t memory_max_write(struct kernfs_open_file *of,
6299 char *buf, size_t nbytes, loff_t off)
6300{
6301 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6302 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6303 bool drained = false;
241994ed
JW
6304 unsigned long max;
6305 int err;
6306
6307 buf = strstrip(buf);
d2973697 6308 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6309 if (err)
6310 return err;
6311
bbec2e15 6312 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6313
6314 for (;;) {
6315 unsigned long nr_pages = page_counter_read(&memcg->memory);
6316
6317 if (nr_pages <= max)
6318 break;
6319
7249c9f0 6320 if (signal_pending(current))
b6e6edcf 6321 break;
b6e6edcf
JW
6322
6323 if (!drained) {
6324 drain_all_stock(memcg);
6325 drained = true;
6326 continue;
6327 }
6328
6329 if (nr_reclaims) {
6330 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6331 GFP_KERNEL, true))
6332 nr_reclaims--;
6333 continue;
6334 }
6335
e27be240 6336 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6337 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6338 break;
6339 }
241994ed 6340
2529bb3a 6341 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6342 return nbytes;
6343}
6344
1e577f97
SB
6345static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6346{
6347 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6348 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6349 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6350 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6351 seq_printf(m, "oom_kill %lu\n",
6352 atomic_long_read(&events[MEMCG_OOM_KILL]));
6353}
6354
241994ed
JW
6355static int memory_events_show(struct seq_file *m, void *v)
6356{
aa9694bb 6357 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6358
1e577f97
SB
6359 __memory_events_show(m, memcg->memory_events);
6360 return 0;
6361}
6362
6363static int memory_events_local_show(struct seq_file *m, void *v)
6364{
6365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6366
1e577f97 6367 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6368 return 0;
6369}
6370
587d9f72
JW
6371static int memory_stat_show(struct seq_file *m, void *v)
6372{
aa9694bb 6373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6374 char *buf;
1ff9e6e1 6375
c8713d0b
JW
6376 buf = memory_stat_format(memcg);
6377 if (!buf)
6378 return -ENOMEM;
6379 seq_puts(m, buf);
6380 kfree(buf);
587d9f72
JW
6381 return 0;
6382}
6383
3d8b38eb
RG
6384static int memory_oom_group_show(struct seq_file *m, void *v)
6385{
aa9694bb 6386 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6387
6388 seq_printf(m, "%d\n", memcg->oom_group);
6389
6390 return 0;
6391}
6392
6393static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6394 char *buf, size_t nbytes, loff_t off)
6395{
6396 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6397 int ret, oom_group;
6398
6399 buf = strstrip(buf);
6400 if (!buf)
6401 return -EINVAL;
6402
6403 ret = kstrtoint(buf, 0, &oom_group);
6404 if (ret)
6405 return ret;
6406
6407 if (oom_group != 0 && oom_group != 1)
6408 return -EINVAL;
6409
6410 memcg->oom_group = oom_group;
6411
6412 return nbytes;
6413}
6414
241994ed
JW
6415static struct cftype memory_files[] = {
6416 {
6417 .name = "current",
f5fc3c5d 6418 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6419 .read_u64 = memory_current_read,
6420 },
bf8d5d52
RG
6421 {
6422 .name = "min",
6423 .flags = CFTYPE_NOT_ON_ROOT,
6424 .seq_show = memory_min_show,
6425 .write = memory_min_write,
6426 },
241994ed
JW
6427 {
6428 .name = "low",
6429 .flags = CFTYPE_NOT_ON_ROOT,
6430 .seq_show = memory_low_show,
6431 .write = memory_low_write,
6432 },
6433 {
6434 .name = "high",
6435 .flags = CFTYPE_NOT_ON_ROOT,
6436 .seq_show = memory_high_show,
6437 .write = memory_high_write,
6438 },
6439 {
6440 .name = "max",
6441 .flags = CFTYPE_NOT_ON_ROOT,
6442 .seq_show = memory_max_show,
6443 .write = memory_max_write,
6444 },
6445 {
6446 .name = "events",
6447 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6448 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6449 .seq_show = memory_events_show,
6450 },
1e577f97
SB
6451 {
6452 .name = "events.local",
6453 .flags = CFTYPE_NOT_ON_ROOT,
6454 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6455 .seq_show = memory_events_local_show,
6456 },
587d9f72
JW
6457 {
6458 .name = "stat",
587d9f72
JW
6459 .seq_show = memory_stat_show,
6460 },
3d8b38eb
RG
6461 {
6462 .name = "oom.group",
6463 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6464 .seq_show = memory_oom_group_show,
6465 .write = memory_oom_group_write,
6466 },
241994ed
JW
6467 { } /* terminate */
6468};
6469
073219e9 6470struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6471 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6472 .css_online = mem_cgroup_css_online,
92fb9748 6473 .css_offline = mem_cgroup_css_offline,
6df38689 6474 .css_released = mem_cgroup_css_released,
92fb9748 6475 .css_free = mem_cgroup_css_free,
1ced953b 6476 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6477 .can_attach = mem_cgroup_can_attach,
6478 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6479 .post_attach = mem_cgroup_move_task,
f00baae7 6480 .bind = mem_cgroup_bind,
241994ed
JW
6481 .dfl_cftypes = memory_files,
6482 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6483 .early_init = 0,
8cdea7c0 6484};
c077719b 6485
bc50bcc6
JW
6486/*
6487 * This function calculates an individual cgroup's effective
6488 * protection which is derived from its own memory.min/low, its
6489 * parent's and siblings' settings, as well as the actual memory
6490 * distribution in the tree.
6491 *
6492 * The following rules apply to the effective protection values:
6493 *
6494 * 1. At the first level of reclaim, effective protection is equal to
6495 * the declared protection in memory.min and memory.low.
6496 *
6497 * 2. To enable safe delegation of the protection configuration, at
6498 * subsequent levels the effective protection is capped to the
6499 * parent's effective protection.
6500 *
6501 * 3. To make complex and dynamic subtrees easier to configure, the
6502 * user is allowed to overcommit the declared protection at a given
6503 * level. If that is the case, the parent's effective protection is
6504 * distributed to the children in proportion to how much protection
6505 * they have declared and how much of it they are utilizing.
6506 *
6507 * This makes distribution proportional, but also work-conserving:
6508 * if one cgroup claims much more protection than it uses memory,
6509 * the unused remainder is available to its siblings.
6510 *
6511 * 4. Conversely, when the declared protection is undercommitted at a
6512 * given level, the distribution of the larger parental protection
6513 * budget is NOT proportional. A cgroup's protection from a sibling
6514 * is capped to its own memory.min/low setting.
6515 *
8a931f80
JW
6516 * 5. However, to allow protecting recursive subtrees from each other
6517 * without having to declare each individual cgroup's fixed share
6518 * of the ancestor's claim to protection, any unutilized -
6519 * "floating" - protection from up the tree is distributed in
6520 * proportion to each cgroup's *usage*. This makes the protection
6521 * neutral wrt sibling cgroups and lets them compete freely over
6522 * the shared parental protection budget, but it protects the
6523 * subtree as a whole from neighboring subtrees.
6524 *
6525 * Note that 4. and 5. are not in conflict: 4. is about protecting
6526 * against immediate siblings whereas 5. is about protecting against
6527 * neighboring subtrees.
bc50bcc6
JW
6528 */
6529static unsigned long effective_protection(unsigned long usage,
8a931f80 6530 unsigned long parent_usage,
bc50bcc6
JW
6531 unsigned long setting,
6532 unsigned long parent_effective,
6533 unsigned long siblings_protected)
6534{
6535 unsigned long protected;
8a931f80 6536 unsigned long ep;
bc50bcc6
JW
6537
6538 protected = min(usage, setting);
6539 /*
6540 * If all cgroups at this level combined claim and use more
6541 * protection then what the parent affords them, distribute
6542 * shares in proportion to utilization.
6543 *
6544 * We are using actual utilization rather than the statically
6545 * claimed protection in order to be work-conserving: claimed
6546 * but unused protection is available to siblings that would
6547 * otherwise get a smaller chunk than what they claimed.
6548 */
6549 if (siblings_protected > parent_effective)
6550 return protected * parent_effective / siblings_protected;
6551
6552 /*
6553 * Ok, utilized protection of all children is within what the
6554 * parent affords them, so we know whatever this child claims
6555 * and utilizes is effectively protected.
6556 *
6557 * If there is unprotected usage beyond this value, reclaim
6558 * will apply pressure in proportion to that amount.
6559 *
6560 * If there is unutilized protection, the cgroup will be fully
6561 * shielded from reclaim, but we do return a smaller value for
6562 * protection than what the group could enjoy in theory. This
6563 * is okay. With the overcommit distribution above, effective
6564 * protection is always dependent on how memory is actually
6565 * consumed among the siblings anyway.
6566 */
8a931f80
JW
6567 ep = protected;
6568
6569 /*
6570 * If the children aren't claiming (all of) the protection
6571 * afforded to them by the parent, distribute the remainder in
6572 * proportion to the (unprotected) memory of each cgroup. That
6573 * way, cgroups that aren't explicitly prioritized wrt each
6574 * other compete freely over the allowance, but they are
6575 * collectively protected from neighboring trees.
6576 *
6577 * We're using unprotected memory for the weight so that if
6578 * some cgroups DO claim explicit protection, we don't protect
6579 * the same bytes twice.
cd324edc
JW
6580 *
6581 * Check both usage and parent_usage against the respective
6582 * protected values. One should imply the other, but they
6583 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6584 */
6585 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6586 return ep;
cd324edc
JW
6587 if (parent_effective > siblings_protected &&
6588 parent_usage > siblings_protected &&
6589 usage > protected) {
8a931f80
JW
6590 unsigned long unclaimed;
6591
6592 unclaimed = parent_effective - siblings_protected;
6593 unclaimed *= usage - protected;
6594 unclaimed /= parent_usage - siblings_protected;
6595
6596 ep += unclaimed;
6597 }
6598
6599 return ep;
bc50bcc6
JW
6600}
6601
241994ed 6602/**
bf8d5d52 6603 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6604 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6605 * @memcg: the memory cgroup to check
6606 *
23067153
RG
6607 * WARNING: This function is not stateless! It can only be used as part
6608 * of a top-down tree iteration, not for isolated queries.
241994ed 6609 */
45c7f7e1
CD
6610void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6611 struct mem_cgroup *memcg)
241994ed 6612{
8a931f80 6613 unsigned long usage, parent_usage;
23067153
RG
6614 struct mem_cgroup *parent;
6615
241994ed 6616 if (mem_cgroup_disabled())
45c7f7e1 6617 return;
241994ed 6618
34c81057
SC
6619 if (!root)
6620 root = root_mem_cgroup;
22f7496f
YS
6621
6622 /*
6623 * Effective values of the reclaim targets are ignored so they
6624 * can be stale. Have a look at mem_cgroup_protection for more
6625 * details.
6626 * TODO: calculation should be more robust so that we do not need
6627 * that special casing.
6628 */
34c81057 6629 if (memcg == root)
45c7f7e1 6630 return;
241994ed 6631
23067153 6632 usage = page_counter_read(&memcg->memory);
bf8d5d52 6633 if (!usage)
45c7f7e1 6634 return;
bf8d5d52 6635
bf8d5d52 6636 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6637 /* No parent means a non-hierarchical mode on v1 memcg */
6638 if (!parent)
45c7f7e1 6639 return;
df2a4196 6640
bc50bcc6 6641 if (parent == root) {
c3d53200 6642 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6643 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6644 return;
bf8d5d52
RG
6645 }
6646
8a931f80
JW
6647 parent_usage = page_counter_read(&parent->memory);
6648
b3a7822e 6649 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6650 READ_ONCE(memcg->memory.min),
6651 READ_ONCE(parent->memory.emin),
b3a7822e 6652 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6653
b3a7822e 6654 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6655 READ_ONCE(memcg->memory.low),
6656 READ_ONCE(parent->memory.elow),
b3a7822e 6657 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6658}
6659
00501b53 6660/**
f0e45fb4 6661 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6662 * @page: page to charge
6663 * @mm: mm context of the victim
6664 * @gfp_mask: reclaim mode
00501b53
JW
6665 *
6666 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6667 * pages according to @gfp_mask if necessary.
6668 *
f0e45fb4 6669 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6670 */
d9eb1ea2 6671int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6672{
3fba69a5 6673 unsigned int nr_pages = hpage_nr_pages(page);
00501b53 6674 struct mem_cgroup *memcg = NULL;
00501b53
JW
6675 int ret = 0;
6676
6677 if (mem_cgroup_disabled())
6678 goto out;
6679
6680 if (PageSwapCache(page)) {
2d1c4980
JW
6681 swp_entry_t ent = { .val = page_private(page), };
6682 unsigned short id;
6683
00501b53
JW
6684 /*
6685 * Every swap fault against a single page tries to charge the
6686 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6687 * already charged pages, too. page->mem_cgroup is protected
6688 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6689 * in turn serializes uncharging.
6690 */
e993d905 6691 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6692 if (compound_head(page)->mem_cgroup)
00501b53 6693 goto out;
e993d905 6694
2d1c4980
JW
6695 id = lookup_swap_cgroup_id(ent);
6696 rcu_read_lock();
6697 memcg = mem_cgroup_from_id(id);
6698 if (memcg && !css_tryget_online(&memcg->css))
6699 memcg = NULL;
6700 rcu_read_unlock();
00501b53
JW
6701 }
6702
00501b53
JW
6703 if (!memcg)
6704 memcg = get_mem_cgroup_from_mm(mm);
6705
6706 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6707 if (ret)
6708 goto out_put;
00501b53 6709
1a3e1f40 6710 css_get(&memcg->css);
d9eb1ea2 6711 commit_charge(page, memcg);
6abb5a86 6712
6abb5a86 6713 local_irq_disable();
3fba69a5 6714 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6715 memcg_check_events(memcg, page);
6716 local_irq_enable();
00501b53 6717
2d1c4980 6718 if (PageSwapCache(page)) {
00501b53
JW
6719 swp_entry_t entry = { .val = page_private(page) };
6720 /*
6721 * The swap entry might not get freed for a long time,
6722 * let's not wait for it. The page already received a
6723 * memory+swap charge, drop the swap entry duplicate.
6724 */
38d8b4e6 6725 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6726 }
00501b53 6727
f0e45fb4
JW
6728out_put:
6729 css_put(&memcg->css);
6730out:
6731 return ret;
3fea5a49
JW
6732}
6733
a9d5adee
JG
6734struct uncharge_gather {
6735 struct mem_cgroup *memcg;
9f762dbe 6736 unsigned long nr_pages;
a9d5adee 6737 unsigned long pgpgout;
a9d5adee 6738 unsigned long nr_kmem;
a9d5adee
JG
6739 struct page *dummy_page;
6740};
6741
6742static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6743{
a9d5adee
JG
6744 memset(ug, 0, sizeof(*ug));
6745}
6746
6747static void uncharge_batch(const struct uncharge_gather *ug)
6748{
747db954
JW
6749 unsigned long flags;
6750
a9d5adee 6751 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6752 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6753 if (do_memsw_account())
9f762dbe 6754 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6755 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6756 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6757 memcg_oom_recover(ug->memcg);
ce00a967 6758 }
747db954
JW
6759
6760 local_irq_save(flags);
c9019e9b 6761 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6762 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6763 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6764 local_irq_restore(flags);
a9d5adee
JG
6765}
6766
6767static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6768{
9f762dbe
JW
6769 unsigned long nr_pages;
6770
a9d5adee 6771 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6772
6773 if (!page->mem_cgroup)
6774 return;
6775
6776 /*
6777 * Nobody should be changing or seriously looking at
6778 * page->mem_cgroup at this point, we have fully
6779 * exclusive access to the page.
6780 */
6781
6782 if (ug->memcg != page->mem_cgroup) {
6783 if (ug->memcg) {
6784 uncharge_batch(ug);
6785 uncharge_gather_clear(ug);
6786 }
6787 ug->memcg = page->mem_cgroup;
6788 }
6789
9f762dbe
JW
6790 nr_pages = compound_nr(page);
6791 ug->nr_pages += nr_pages;
a9d5adee 6792
9f762dbe 6793 if (!PageKmemcg(page)) {
a9d5adee
JG
6794 ug->pgpgout++;
6795 } else {
9f762dbe 6796 ug->nr_kmem += nr_pages;
a9d5adee
JG
6797 __ClearPageKmemcg(page);
6798 }
6799
6800 ug->dummy_page = page;
6801 page->mem_cgroup = NULL;
1a3e1f40 6802 css_put(&ug->memcg->css);
747db954
JW
6803}
6804
6805static void uncharge_list(struct list_head *page_list)
6806{
a9d5adee 6807 struct uncharge_gather ug;
747db954 6808 struct list_head *next;
a9d5adee
JG
6809
6810 uncharge_gather_clear(&ug);
747db954 6811
8b592656
JW
6812 /*
6813 * Note that the list can be a single page->lru; hence the
6814 * do-while loop instead of a simple list_for_each_entry().
6815 */
747db954
JW
6816 next = page_list->next;
6817 do {
a9d5adee
JG
6818 struct page *page;
6819
747db954
JW
6820 page = list_entry(next, struct page, lru);
6821 next = page->lru.next;
6822
a9d5adee 6823 uncharge_page(page, &ug);
747db954
JW
6824 } while (next != page_list);
6825
a9d5adee
JG
6826 if (ug.memcg)
6827 uncharge_batch(&ug);
747db954
JW
6828}
6829
0a31bc97
JW
6830/**
6831 * mem_cgroup_uncharge - uncharge a page
6832 * @page: page to uncharge
6833 *
f0e45fb4 6834 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6835 */
6836void mem_cgroup_uncharge(struct page *page)
6837{
a9d5adee
JG
6838 struct uncharge_gather ug;
6839
0a31bc97
JW
6840 if (mem_cgroup_disabled())
6841 return;
6842
747db954 6843 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6844 if (!page->mem_cgroup)
0a31bc97
JW
6845 return;
6846
a9d5adee
JG
6847 uncharge_gather_clear(&ug);
6848 uncharge_page(page, &ug);
6849 uncharge_batch(&ug);
747db954 6850}
0a31bc97 6851
747db954
JW
6852/**
6853 * mem_cgroup_uncharge_list - uncharge a list of page
6854 * @page_list: list of pages to uncharge
6855 *
6856 * Uncharge a list of pages previously charged with
f0e45fb4 6857 * mem_cgroup_charge().
747db954
JW
6858 */
6859void mem_cgroup_uncharge_list(struct list_head *page_list)
6860{
6861 if (mem_cgroup_disabled())
6862 return;
0a31bc97 6863
747db954
JW
6864 if (!list_empty(page_list))
6865 uncharge_list(page_list);
0a31bc97
JW
6866}
6867
6868/**
6a93ca8f
JW
6869 * mem_cgroup_migrate - charge a page's replacement
6870 * @oldpage: currently circulating page
6871 * @newpage: replacement page
0a31bc97 6872 *
6a93ca8f
JW
6873 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6874 * be uncharged upon free.
0a31bc97
JW
6875 *
6876 * Both pages must be locked, @newpage->mapping must be set up.
6877 */
6a93ca8f 6878void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6879{
29833315 6880 struct mem_cgroup *memcg;
44b7a8d3 6881 unsigned int nr_pages;
d93c4130 6882 unsigned long flags;
0a31bc97
JW
6883
6884 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6885 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6886 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6887 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6888 newpage);
0a31bc97
JW
6889
6890 if (mem_cgroup_disabled())
6891 return;
6892
6893 /* Page cache replacement: new page already charged? */
1306a85a 6894 if (newpage->mem_cgroup)
0a31bc97
JW
6895 return;
6896
45637bab 6897 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6898 memcg = oldpage->mem_cgroup;
29833315 6899 if (!memcg)
0a31bc97
JW
6900 return;
6901
44b7a8d3 6902 /* Force-charge the new page. The old one will be freed soon */
92855270 6903 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6904
6905 page_counter_charge(&memcg->memory, nr_pages);
6906 if (do_memsw_account())
6907 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6908
1a3e1f40 6909 css_get(&memcg->css);
d9eb1ea2 6910 commit_charge(newpage, memcg);
44b7a8d3 6911
d93c4130 6912 local_irq_save(flags);
3fba69a5 6913 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6914 memcg_check_events(memcg, newpage);
d93c4130 6915 local_irq_restore(flags);
0a31bc97
JW
6916}
6917
ef12947c 6918DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6919EXPORT_SYMBOL(memcg_sockets_enabled_key);
6920
2d758073 6921void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6922{
6923 struct mem_cgroup *memcg;
6924
2d758073
JW
6925 if (!mem_cgroup_sockets_enabled)
6926 return;
6927
e876ecc6
SB
6928 /* Do not associate the sock with unrelated interrupted task's memcg. */
6929 if (in_interrupt())
6930 return;
6931
11092087
JW
6932 rcu_read_lock();
6933 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6934 if (memcg == root_mem_cgroup)
6935 goto out;
0db15298 6936 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6937 goto out;
8965aa28 6938 if (css_tryget(&memcg->css))
11092087 6939 sk->sk_memcg = memcg;
f7e1cb6e 6940out:
11092087
JW
6941 rcu_read_unlock();
6942}
11092087 6943
2d758073 6944void mem_cgroup_sk_free(struct sock *sk)
11092087 6945{
2d758073
JW
6946 if (sk->sk_memcg)
6947 css_put(&sk->sk_memcg->css);
11092087
JW
6948}
6949
6950/**
6951 * mem_cgroup_charge_skmem - charge socket memory
6952 * @memcg: memcg to charge
6953 * @nr_pages: number of pages to charge
6954 *
6955 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6956 * @memcg's configured limit, %false if the charge had to be forced.
6957 */
6958bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6959{
f7e1cb6e 6960 gfp_t gfp_mask = GFP_KERNEL;
11092087 6961
f7e1cb6e 6962 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6963 struct page_counter *fail;
f7e1cb6e 6964
0db15298
JW
6965 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6966 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6967 return true;
6968 }
0db15298
JW
6969 page_counter_charge(&memcg->tcpmem, nr_pages);
6970 memcg->tcpmem_pressure = 1;
f7e1cb6e 6971 return false;
11092087 6972 }
d886f4e4 6973
f7e1cb6e
JW
6974 /* Don't block in the packet receive path */
6975 if (in_softirq())
6976 gfp_mask = GFP_NOWAIT;
6977
c9019e9b 6978 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6979
f7e1cb6e
JW
6980 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6981 return true;
6982
6983 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6984 return false;
6985}
6986
6987/**
6988 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6989 * @memcg: memcg to uncharge
6990 * @nr_pages: number of pages to uncharge
11092087
JW
6991 */
6992void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6993{
f7e1cb6e 6994 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6995 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6996 return;
6997 }
d886f4e4 6998
c9019e9b 6999 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7000
475d0487 7001 refill_stock(memcg, nr_pages);
11092087
JW
7002}
7003
f7e1cb6e
JW
7004static int __init cgroup_memory(char *s)
7005{
7006 char *token;
7007
7008 while ((token = strsep(&s, ",")) != NULL) {
7009 if (!*token)
7010 continue;
7011 if (!strcmp(token, "nosocket"))
7012 cgroup_memory_nosocket = true;
04823c83
VD
7013 if (!strcmp(token, "nokmem"))
7014 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7015 }
7016 return 0;
7017}
7018__setup("cgroup.memory=", cgroup_memory);
11092087 7019
2d11085e 7020/*
1081312f
MH
7021 * subsys_initcall() for memory controller.
7022 *
308167fc
SAS
7023 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7024 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7025 * basically everything that doesn't depend on a specific mem_cgroup structure
7026 * should be initialized from here.
2d11085e
MH
7027 */
7028static int __init mem_cgroup_init(void)
7029{
95a045f6
JW
7030 int cpu, node;
7031
308167fc
SAS
7032 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7033 memcg_hotplug_cpu_dead);
95a045f6
JW
7034
7035 for_each_possible_cpu(cpu)
7036 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7037 drain_local_stock);
7038
7039 for_each_node(node) {
7040 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7041
7042 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7043 node_online(node) ? node : NUMA_NO_NODE);
7044
ef8f2327 7045 rtpn->rb_root = RB_ROOT;
fa90b2fd 7046 rtpn->rb_rightmost = NULL;
ef8f2327 7047 spin_lock_init(&rtpn->lock);
95a045f6
JW
7048 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7049 }
7050
2d11085e
MH
7051 return 0;
7052}
7053subsys_initcall(mem_cgroup_init);
21afa38e
JW
7054
7055#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7056static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7057{
1c2d479a 7058 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7059 /*
7060 * The root cgroup cannot be destroyed, so it's refcount must
7061 * always be >= 1.
7062 */
7063 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7064 VM_BUG_ON(1);
7065 break;
7066 }
7067 memcg = parent_mem_cgroup(memcg);
7068 if (!memcg)
7069 memcg = root_mem_cgroup;
7070 }
7071 return memcg;
7072}
7073
21afa38e
JW
7074/**
7075 * mem_cgroup_swapout - transfer a memsw charge to swap
7076 * @page: page whose memsw charge to transfer
7077 * @entry: swap entry to move the charge to
7078 *
7079 * Transfer the memsw charge of @page to @entry.
7080 */
7081void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7082{
1f47b61f 7083 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7084 unsigned int nr_entries;
21afa38e
JW
7085 unsigned short oldid;
7086
7087 VM_BUG_ON_PAGE(PageLRU(page), page);
7088 VM_BUG_ON_PAGE(page_count(page), page);
7089
2d1c4980 7090 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7091 return;
7092
7093 memcg = page->mem_cgroup;
7094
7095 /* Readahead page, never charged */
7096 if (!memcg)
7097 return;
7098
1f47b61f
VD
7099 /*
7100 * In case the memcg owning these pages has been offlined and doesn't
7101 * have an ID allocated to it anymore, charge the closest online
7102 * ancestor for the swap instead and transfer the memory+swap charge.
7103 */
7104 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7105 nr_entries = hpage_nr_pages(page);
7106 /* Get references for the tail pages, too */
7107 if (nr_entries > 1)
7108 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7109 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7110 nr_entries);
21afa38e 7111 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7112 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7113
7114 page->mem_cgroup = NULL;
7115
7116 if (!mem_cgroup_is_root(memcg))
d6810d73 7117 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7118
2d1c4980 7119 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7120 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7121 page_counter_charge(&swap_memcg->memsw, nr_entries);
7122 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7123 }
7124
ce9ce665
SAS
7125 /*
7126 * Interrupts should be disabled here because the caller holds the
b93b0163 7127 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7128 * important here to have the interrupts disabled because it is the
b93b0163 7129 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7130 */
7131 VM_BUG_ON(!irqs_disabled());
3fba69a5 7132 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7133 memcg_check_events(memcg, page);
73f576c0 7134
1a3e1f40 7135 css_put(&memcg->css);
21afa38e
JW
7136}
7137
38d8b4e6
HY
7138/**
7139 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7140 * @page: page being added to swap
7141 * @entry: swap entry to charge
7142 *
38d8b4e6 7143 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7144 *
7145 * Returns 0 on success, -ENOMEM on failure.
7146 */
7147int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7148{
38d8b4e6 7149 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7150 struct page_counter *counter;
38d8b4e6 7151 struct mem_cgroup *memcg;
37e84351
VD
7152 unsigned short oldid;
7153
2d1c4980 7154 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7155 return 0;
7156
7157 memcg = page->mem_cgroup;
7158
7159 /* Readahead page, never charged */
7160 if (!memcg)
7161 return 0;
7162
f3a53a3a
TH
7163 if (!entry.val) {
7164 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7165 return 0;
f3a53a3a 7166 }
bb98f2c5 7167
1f47b61f
VD
7168 memcg = mem_cgroup_id_get_online(memcg);
7169
2d1c4980 7170 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7171 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7172 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7173 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7174 mem_cgroup_id_put(memcg);
37e84351 7175 return -ENOMEM;
1f47b61f 7176 }
37e84351 7177
38d8b4e6
HY
7178 /* Get references for the tail pages, too */
7179 if (nr_pages > 1)
7180 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7181 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7182 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7183 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7184
37e84351
VD
7185 return 0;
7186}
7187
21afa38e 7188/**
38d8b4e6 7189 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7190 * @entry: swap entry to uncharge
38d8b4e6 7191 * @nr_pages: the amount of swap space to uncharge
21afa38e 7192 */
38d8b4e6 7193void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7194{
7195 struct mem_cgroup *memcg;
7196 unsigned short id;
7197
38d8b4e6 7198 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7199 rcu_read_lock();
adbe427b 7200 memcg = mem_cgroup_from_id(id);
21afa38e 7201 if (memcg) {
2d1c4980 7202 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7203 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7204 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7205 else
38d8b4e6 7206 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7207 }
c9019e9b 7208 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7209 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7210 }
7211 rcu_read_unlock();
7212}
7213
d8b38438
VD
7214long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7215{
7216 long nr_swap_pages = get_nr_swap_pages();
7217
eccb52e7 7218 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7219 return nr_swap_pages;
7220 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7221 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7222 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7223 page_counter_read(&memcg->swap));
7224 return nr_swap_pages;
7225}
7226
5ccc5aba
VD
7227bool mem_cgroup_swap_full(struct page *page)
7228{
7229 struct mem_cgroup *memcg;
7230
7231 VM_BUG_ON_PAGE(!PageLocked(page), page);
7232
7233 if (vm_swap_full())
7234 return true;
eccb52e7 7235 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7236 return false;
7237
7238 memcg = page->mem_cgroup;
7239 if (!memcg)
7240 return false;
7241
4b82ab4f
JK
7242 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7243 unsigned long usage = page_counter_read(&memcg->swap);
7244
7245 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7246 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7247 return true;
4b82ab4f 7248 }
5ccc5aba
VD
7249
7250 return false;
7251}
7252
eccb52e7 7253static int __init setup_swap_account(char *s)
21afa38e
JW
7254{
7255 if (!strcmp(s, "1"))
eccb52e7 7256 cgroup_memory_noswap = 0;
21afa38e 7257 else if (!strcmp(s, "0"))
eccb52e7 7258 cgroup_memory_noswap = 1;
21afa38e
JW
7259 return 1;
7260}
eccb52e7 7261__setup("swapaccount=", setup_swap_account);
21afa38e 7262
37e84351
VD
7263static u64 swap_current_read(struct cgroup_subsys_state *css,
7264 struct cftype *cft)
7265{
7266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7267
7268 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7269}
7270
4b82ab4f
JK
7271static int swap_high_show(struct seq_file *m, void *v)
7272{
7273 return seq_puts_memcg_tunable(m,
7274 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7275}
7276
7277static ssize_t swap_high_write(struct kernfs_open_file *of,
7278 char *buf, size_t nbytes, loff_t off)
7279{
7280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7281 unsigned long high;
7282 int err;
7283
7284 buf = strstrip(buf);
7285 err = page_counter_memparse(buf, "max", &high);
7286 if (err)
7287 return err;
7288
7289 page_counter_set_high(&memcg->swap, high);
7290
7291 return nbytes;
7292}
7293
37e84351
VD
7294static int swap_max_show(struct seq_file *m, void *v)
7295{
677dc973
CD
7296 return seq_puts_memcg_tunable(m,
7297 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7298}
7299
7300static ssize_t swap_max_write(struct kernfs_open_file *of,
7301 char *buf, size_t nbytes, loff_t off)
7302{
7303 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7304 unsigned long max;
7305 int err;
7306
7307 buf = strstrip(buf);
7308 err = page_counter_memparse(buf, "max", &max);
7309 if (err)
7310 return err;
7311
be09102b 7312 xchg(&memcg->swap.max, max);
37e84351
VD
7313
7314 return nbytes;
7315}
7316
f3a53a3a
TH
7317static int swap_events_show(struct seq_file *m, void *v)
7318{
aa9694bb 7319 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7320
4b82ab4f
JK
7321 seq_printf(m, "high %lu\n",
7322 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7323 seq_printf(m, "max %lu\n",
7324 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7325 seq_printf(m, "fail %lu\n",
7326 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7327
7328 return 0;
7329}
7330
37e84351
VD
7331static struct cftype swap_files[] = {
7332 {
7333 .name = "swap.current",
7334 .flags = CFTYPE_NOT_ON_ROOT,
7335 .read_u64 = swap_current_read,
7336 },
4b82ab4f
JK
7337 {
7338 .name = "swap.high",
7339 .flags = CFTYPE_NOT_ON_ROOT,
7340 .seq_show = swap_high_show,
7341 .write = swap_high_write,
7342 },
37e84351
VD
7343 {
7344 .name = "swap.max",
7345 .flags = CFTYPE_NOT_ON_ROOT,
7346 .seq_show = swap_max_show,
7347 .write = swap_max_write,
7348 },
f3a53a3a
TH
7349 {
7350 .name = "swap.events",
7351 .flags = CFTYPE_NOT_ON_ROOT,
7352 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7353 .seq_show = swap_events_show,
7354 },
37e84351
VD
7355 { } /* terminate */
7356};
7357
eccb52e7 7358static struct cftype memsw_files[] = {
21afa38e
JW
7359 {
7360 .name = "memsw.usage_in_bytes",
7361 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7362 .read_u64 = mem_cgroup_read_u64,
7363 },
7364 {
7365 .name = "memsw.max_usage_in_bytes",
7366 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7367 .write = mem_cgroup_reset,
7368 .read_u64 = mem_cgroup_read_u64,
7369 },
7370 {
7371 .name = "memsw.limit_in_bytes",
7372 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7373 .write = mem_cgroup_write,
7374 .read_u64 = mem_cgroup_read_u64,
7375 },
7376 {
7377 .name = "memsw.failcnt",
7378 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7379 .write = mem_cgroup_reset,
7380 .read_u64 = mem_cgroup_read_u64,
7381 },
7382 { }, /* terminate */
7383};
7384
82ff165c
BS
7385/*
7386 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7387 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7388 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7389 * boot parameter. This may result in premature OOPS inside
7390 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7391 */
21afa38e
JW
7392static int __init mem_cgroup_swap_init(void)
7393{
2d1c4980
JW
7394 /* No memory control -> no swap control */
7395 if (mem_cgroup_disabled())
7396 cgroup_memory_noswap = true;
7397
7398 if (cgroup_memory_noswap)
eccb52e7
JW
7399 return 0;
7400
7401 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7402 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7403
21afa38e
JW
7404 return 0;
7405}
82ff165c 7406core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7407
7408#endif /* CONFIG_MEMCG_SWAP */