]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
mm: memcontrol: do not account memory+swap on unified hierarchy
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
af7c4b0e
JW
96static const char * const mem_cgroup_stat_names[] = {
97 "cache",
98 "rss",
b070e65c 99 "rss_huge",
af7c4b0e 100 "mapped_file",
c4843a75 101 "dirty",
3ea67d06 102 "writeback",
af7c4b0e
JW
103 "swap",
104};
105
af7c4b0e
JW
106static const char * const mem_cgroup_events_names[] = {
107 "pgpgin",
108 "pgpgout",
109 "pgfault",
110 "pgmajfault",
111};
112
58cf188e
SZ
113static const char * const mem_cgroup_lru_names[] = {
114 "inactive_anon",
115 "active_anon",
116 "inactive_file",
117 "active_file",
118 "unevictable",
119};
120
a0db00fc
KS
121#define THRESHOLDS_EVENTS_TARGET 128
122#define SOFTLIMIT_EVENTS_TARGET 1024
123#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 124
bb4cc1a8
AM
125/*
126 * Cgroups above their limits are maintained in a RB-Tree, independent of
127 * their hierarchy representation
128 */
129
130struct mem_cgroup_tree_per_zone {
131 struct rb_root rb_root;
132 spinlock_t lock;
133};
134
135struct mem_cgroup_tree_per_node {
136 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
137};
138
139struct mem_cgroup_tree {
140 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
141};
142
143static struct mem_cgroup_tree soft_limit_tree __read_mostly;
144
9490ff27
KH
145/* for OOM */
146struct mem_cgroup_eventfd_list {
147 struct list_head list;
148 struct eventfd_ctx *eventfd;
149};
2e72b634 150
79bd9814
TH
151/*
152 * cgroup_event represents events which userspace want to receive.
153 */
3bc942f3 154struct mem_cgroup_event {
79bd9814 155 /*
59b6f873 156 * memcg which the event belongs to.
79bd9814 157 */
59b6f873 158 struct mem_cgroup *memcg;
79bd9814
TH
159 /*
160 * eventfd to signal userspace about the event.
161 */
162 struct eventfd_ctx *eventfd;
163 /*
164 * Each of these stored in a list by the cgroup.
165 */
166 struct list_head list;
fba94807
TH
167 /*
168 * register_event() callback will be used to add new userspace
169 * waiter for changes related to this event. Use eventfd_signal()
170 * on eventfd to send notification to userspace.
171 */
59b6f873 172 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 173 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
174 /*
175 * unregister_event() callback will be called when userspace closes
176 * the eventfd or on cgroup removing. This callback must be set,
177 * if you want provide notification functionality.
178 */
59b6f873 179 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 180 struct eventfd_ctx *eventfd);
79bd9814
TH
181 /*
182 * All fields below needed to unregister event when
183 * userspace closes eventfd.
184 */
185 poll_table pt;
186 wait_queue_head_t *wqh;
187 wait_queue_t wait;
188 struct work_struct remove;
189};
190
c0ff4b85
R
191static void mem_cgroup_threshold(struct mem_cgroup *memcg);
192static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 193
7dc74be0
DN
194/* Stuffs for move charges at task migration. */
195/*
1dfab5ab 196 * Types of charges to be moved.
7dc74be0 197 */
1dfab5ab
JW
198#define MOVE_ANON 0x1U
199#define MOVE_FILE 0x2U
200#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 201
4ffef5fe
DN
202/* "mc" and its members are protected by cgroup_mutex */
203static struct move_charge_struct {
b1dd693e 204 spinlock_t lock; /* for from, to */
4ffef5fe
DN
205 struct mem_cgroup *from;
206 struct mem_cgroup *to;
1dfab5ab 207 unsigned long flags;
4ffef5fe 208 unsigned long precharge;
854ffa8d 209 unsigned long moved_charge;
483c30b5 210 unsigned long moved_swap;
8033b97c
DN
211 struct task_struct *moving_task; /* a task moving charges */
212 wait_queue_head_t waitq; /* a waitq for other context */
213} mc = {
2bd9bb20 214 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
215 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
216};
4ffef5fe 217
4e416953
BS
218/*
219 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
220 * limit reclaim to prevent infinite loops, if they ever occur.
221 */
a0db00fc 222#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 223#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 224
217bc319
KH
225enum charge_type {
226 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 227 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 228 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 229 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
230 NR_CHARGE_TYPE,
231};
232
8c7c6e34 233/* for encoding cft->private value on file */
86ae53e1
GC
234enum res_type {
235 _MEM,
236 _MEMSWAP,
237 _OOM_TYPE,
510fc4e1 238 _KMEM,
86ae53e1
GC
239};
240
a0db00fc
KS
241#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
242#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 243#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
244/* Used for OOM nofiier */
245#define OOM_CONTROL (0)
8c7c6e34 246
0999821b
GC
247/*
248 * The memcg_create_mutex will be held whenever a new cgroup is created.
249 * As a consequence, any change that needs to protect against new child cgroups
250 * appearing has to hold it as well.
251 */
252static DEFINE_MUTEX(memcg_create_mutex);
253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
4219b2da
LZ
272/*
273 * We restrict the id in the range of [1, 65535], so it can fit into
274 * an unsigned short.
275 */
276#define MEM_CGROUP_ID_MAX USHRT_MAX
277
34c00c31
LZ
278static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
279{
15a4c835 280 return memcg->css.id;
34c00c31
LZ
281}
282
adbe427b
VD
283/*
284 * A helper function to get mem_cgroup from ID. must be called under
285 * rcu_read_lock(). The caller is responsible for calling
286 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
287 * refcnt from swap can be called against removed memcg.)
288 */
34c00c31
LZ
289static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
290{
291 struct cgroup_subsys_state *css;
292
7d699ddb 293 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
294 return mem_cgroup_from_css(css);
295}
296
e1aab161 297/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 298#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 299
80e95fe0
JW
300struct static_key memcg_sockets_enabled_key;
301EXPORT_SYMBOL(memcg_sockets_enabled_key);
302
e1aab161
GC
303void sock_update_memcg(struct sock *sk)
304{
3d596f7b 305 struct mem_cgroup *memcg;
3d596f7b
JW
306
307 /* Socket cloning can throw us here with sk_cgrp already
308 * filled. It won't however, necessarily happen from
309 * process context. So the test for root memcg given
310 * the current task's memcg won't help us in this case.
311 *
312 * Respecting the original socket's memcg is a better
313 * decision in this case.
314 */
baac50bb
JW
315 if (sk->sk_memcg) {
316 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
317 css_get(&sk->sk_memcg->css);
3d596f7b 318 return;
e1aab161 319 }
3d596f7b
JW
320
321 rcu_read_lock();
322 memcg = mem_cgroup_from_task(current);
baac50bb
JW
323 if (memcg != root_mem_cgroup &&
324 memcg->tcp_mem.active &&
325 css_tryget_online(&memcg->css))
326 sk->sk_memcg = memcg;
3d596f7b 327 rcu_read_unlock();
e1aab161
GC
328}
329EXPORT_SYMBOL(sock_update_memcg);
330
331void sock_release_memcg(struct sock *sk)
332{
baac50bb
JW
333 WARN_ON(!sk->sk_memcg);
334 css_put(&sk->sk_memcg->css);
d1a4c0b3 335}
e1aab161 336
e805605c
JW
337/**
338 * mem_cgroup_charge_skmem - charge socket memory
baac50bb 339 * @memcg: memcg to charge
e805605c
JW
340 * @nr_pages: number of pages to charge
341 *
baac50bb
JW
342 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
343 * @memcg's configured limit, %false if the charge had to be forced.
e805605c 344 */
baac50bb 345bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
e805605c
JW
346{
347 struct page_counter *counter;
348
baac50bb 349 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
e805605c 350 nr_pages, &counter)) {
baac50bb 351 memcg->tcp_mem.memory_pressure = 0;
e805605c
JW
352 return true;
353 }
baac50bb
JW
354 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
355 memcg->tcp_mem.memory_pressure = 1;
e805605c
JW
356 return false;
357}
358
359/**
360 * mem_cgroup_uncharge_skmem - uncharge socket memory
baac50bb 361 * @memcg - memcg to uncharge
e805605c
JW
362 * @nr_pages - number of pages to uncharge
363 */
baac50bb 364void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
e805605c 365{
baac50bb 366 page_counter_uncharge(&memcg->tcp_mem.memory_allocated, nr_pages);
e805605c
JW
367}
368
3f134619
GC
369#endif
370
a8964b9b 371#ifdef CONFIG_MEMCG_KMEM
55007d84 372/*
f7ce3190 373 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
374 * The main reason for not using cgroup id for this:
375 * this works better in sparse environments, where we have a lot of memcgs,
376 * but only a few kmem-limited. Or also, if we have, for instance, 200
377 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
378 * 200 entry array for that.
55007d84 379 *
dbcf73e2
VD
380 * The current size of the caches array is stored in memcg_nr_cache_ids. It
381 * will double each time we have to increase it.
55007d84 382 */
dbcf73e2
VD
383static DEFINE_IDA(memcg_cache_ida);
384int memcg_nr_cache_ids;
749c5415 385
05257a1a
VD
386/* Protects memcg_nr_cache_ids */
387static DECLARE_RWSEM(memcg_cache_ids_sem);
388
389void memcg_get_cache_ids(void)
390{
391 down_read(&memcg_cache_ids_sem);
392}
393
394void memcg_put_cache_ids(void)
395{
396 up_read(&memcg_cache_ids_sem);
397}
398
55007d84
GC
399/*
400 * MIN_SIZE is different than 1, because we would like to avoid going through
401 * the alloc/free process all the time. In a small machine, 4 kmem-limited
402 * cgroups is a reasonable guess. In the future, it could be a parameter or
403 * tunable, but that is strictly not necessary.
404 *
b8627835 405 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
406 * this constant directly from cgroup, but it is understandable that this is
407 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 408 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
409 * increase ours as well if it increases.
410 */
411#define MEMCG_CACHES_MIN_SIZE 4
b8627835 412#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 413
d7f25f8a
GC
414/*
415 * A lot of the calls to the cache allocation functions are expected to be
416 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
417 * conditional to this static branch, we'll have to allow modules that does
418 * kmem_cache_alloc and the such to see this symbol as well
419 */
a8964b9b 420struct static_key memcg_kmem_enabled_key;
d7f25f8a 421EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 422
a8964b9b
GC
423#endif /* CONFIG_MEMCG_KMEM */
424
f64c3f54 425static struct mem_cgroup_per_zone *
e231875b 426mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 427{
e231875b
JZ
428 int nid = zone_to_nid(zone);
429 int zid = zone_idx(zone);
430
54f72fe0 431 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
432}
433
ad7fa852
TH
434/**
435 * mem_cgroup_css_from_page - css of the memcg associated with a page
436 * @page: page of interest
437 *
438 * If memcg is bound to the default hierarchy, css of the memcg associated
439 * with @page is returned. The returned css remains associated with @page
440 * until it is released.
441 *
442 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
443 * is returned.
444 *
445 * XXX: The above description of behavior on the default hierarchy isn't
446 * strictly true yet as replace_page_cache_page() can modify the
447 * association before @page is released even on the default hierarchy;
448 * however, the current and planned usages don't mix the the two functions
449 * and replace_page_cache_page() will soon be updated to make the invariant
450 * actually true.
451 */
452struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
453{
454 struct mem_cgroup *memcg;
455
456 rcu_read_lock();
457
458 memcg = page->mem_cgroup;
459
9e10a130 460 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
461 memcg = root_mem_cgroup;
462
463 rcu_read_unlock();
464 return &memcg->css;
465}
466
2fc04524
VD
467/**
468 * page_cgroup_ino - return inode number of the memcg a page is charged to
469 * @page: the page
470 *
471 * Look up the closest online ancestor of the memory cgroup @page is charged to
472 * and return its inode number or 0 if @page is not charged to any cgroup. It
473 * is safe to call this function without holding a reference to @page.
474 *
475 * Note, this function is inherently racy, because there is nothing to prevent
476 * the cgroup inode from getting torn down and potentially reallocated a moment
477 * after page_cgroup_ino() returns, so it only should be used by callers that
478 * do not care (such as procfs interfaces).
479 */
480ino_t page_cgroup_ino(struct page *page)
481{
482 struct mem_cgroup *memcg;
483 unsigned long ino = 0;
484
485 rcu_read_lock();
486 memcg = READ_ONCE(page->mem_cgroup);
487 while (memcg && !(memcg->css.flags & CSS_ONLINE))
488 memcg = parent_mem_cgroup(memcg);
489 if (memcg)
490 ino = cgroup_ino(memcg->css.cgroup);
491 rcu_read_unlock();
492 return ino;
493}
494
f64c3f54 495static struct mem_cgroup_per_zone *
e231875b 496mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 497{
97a6c37b
JW
498 int nid = page_to_nid(page);
499 int zid = page_zonenum(page);
f64c3f54 500
e231875b 501 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
502}
503
bb4cc1a8
AM
504static struct mem_cgroup_tree_per_zone *
505soft_limit_tree_node_zone(int nid, int zid)
506{
507 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
508}
509
510static struct mem_cgroup_tree_per_zone *
511soft_limit_tree_from_page(struct page *page)
512{
513 int nid = page_to_nid(page);
514 int zid = page_zonenum(page);
515
516 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
517}
518
cf2c8127
JW
519static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
520 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 521 unsigned long new_usage_in_excess)
bb4cc1a8
AM
522{
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
525 struct mem_cgroup_per_zone *mz_node;
526
527 if (mz->on_tree)
528 return;
529
530 mz->usage_in_excess = new_usage_in_excess;
531 if (!mz->usage_in_excess)
532 return;
533 while (*p) {
534 parent = *p;
535 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
536 tree_node);
537 if (mz->usage_in_excess < mz_node->usage_in_excess)
538 p = &(*p)->rb_left;
539 /*
540 * We can't avoid mem cgroups that are over their soft
541 * limit by the same amount
542 */
543 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
544 p = &(*p)->rb_right;
545 }
546 rb_link_node(&mz->tree_node, parent, p);
547 rb_insert_color(&mz->tree_node, &mctz->rb_root);
548 mz->on_tree = true;
549}
550
cf2c8127
JW
551static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
552 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
553{
554 if (!mz->on_tree)
555 return;
556 rb_erase(&mz->tree_node, &mctz->rb_root);
557 mz->on_tree = false;
558}
559
cf2c8127
JW
560static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
561 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 562{
0a31bc97
JW
563 unsigned long flags;
564
565 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 566 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 567 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
568}
569
3e32cb2e
JW
570static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
571{
572 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 573 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
574 unsigned long excess = 0;
575
576 if (nr_pages > soft_limit)
577 excess = nr_pages - soft_limit;
578
579 return excess;
580}
bb4cc1a8
AM
581
582static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
583{
3e32cb2e 584 unsigned long excess;
bb4cc1a8
AM
585 struct mem_cgroup_per_zone *mz;
586 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 587
e231875b 588 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
589 /*
590 * Necessary to update all ancestors when hierarchy is used.
591 * because their event counter is not touched.
592 */
593 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 594 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 595 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
596 /*
597 * We have to update the tree if mz is on RB-tree or
598 * mem is over its softlimit.
599 */
600 if (excess || mz->on_tree) {
0a31bc97
JW
601 unsigned long flags;
602
603 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
604 /* if on-tree, remove it */
605 if (mz->on_tree)
cf2c8127 606 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
607 /*
608 * Insert again. mz->usage_in_excess will be updated.
609 * If excess is 0, no tree ops.
610 */
cf2c8127 611 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 612 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
613 }
614 }
615}
616
617static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
618{
bb4cc1a8 619 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
620 struct mem_cgroup_per_zone *mz;
621 int nid, zid;
bb4cc1a8 622
e231875b
JZ
623 for_each_node(nid) {
624 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
625 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
626 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 627 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
628 }
629 }
630}
631
632static struct mem_cgroup_per_zone *
633__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
634{
635 struct rb_node *rightmost = NULL;
636 struct mem_cgroup_per_zone *mz;
637
638retry:
639 mz = NULL;
640 rightmost = rb_last(&mctz->rb_root);
641 if (!rightmost)
642 goto done; /* Nothing to reclaim from */
643
644 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
645 /*
646 * Remove the node now but someone else can add it back,
647 * we will to add it back at the end of reclaim to its correct
648 * position in the tree.
649 */
cf2c8127 650 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 651 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 652 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
653 goto retry;
654done:
655 return mz;
656}
657
658static struct mem_cgroup_per_zone *
659mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
660{
661 struct mem_cgroup_per_zone *mz;
662
0a31bc97 663 spin_lock_irq(&mctz->lock);
bb4cc1a8 664 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 665 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
666 return mz;
667}
668
711d3d2c 669/*
484ebb3b
GT
670 * Return page count for single (non recursive) @memcg.
671 *
711d3d2c
KH
672 * Implementation Note: reading percpu statistics for memcg.
673 *
674 * Both of vmstat[] and percpu_counter has threshold and do periodic
675 * synchronization to implement "quick" read. There are trade-off between
676 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 677 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
678 *
679 * But this _read() function is used for user interface now. The user accounts
680 * memory usage by memory cgroup and he _always_ requires exact value because
681 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
682 * have to visit all online cpus and make sum. So, for now, unnecessary
683 * synchronization is not implemented. (just implemented for cpu hotplug)
684 *
685 * If there are kernel internal actions which can make use of some not-exact
686 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 687 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
688 * implemented.
689 */
484ebb3b
GT
690static unsigned long
691mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 692{
7a159cc9 693 long val = 0;
c62b1a3b 694 int cpu;
c62b1a3b 695
484ebb3b 696 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 697 for_each_possible_cpu(cpu)
c0ff4b85 698 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
699 /*
700 * Summing races with updates, so val may be negative. Avoid exposing
701 * transient negative values.
702 */
703 if (val < 0)
704 val = 0;
c62b1a3b
KH
705 return val;
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
733a572e 714 for_each_possible_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
716 return val;
717}
718
c0ff4b85 719static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 720 struct page *page,
0a31bc97 721 int nr_pages)
d52aa412 722{
b2402857
KH
723 /*
724 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
725 * counted as CACHE even if it's on ANON LRU.
726 */
0a31bc97 727 if (PageAnon(page))
b2402857 728 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 729 nr_pages);
d52aa412 730 else
b2402857 731 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 732 nr_pages);
55e462b0 733
b070e65c
DR
734 if (PageTransHuge(page))
735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
736 nr_pages);
737
e401f176
KH
738 /* pagein of a big page is an event. So, ignore page size */
739 if (nr_pages > 0)
c0ff4b85 740 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 741 else {
c0ff4b85 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
743 nr_pages = -nr_pages; /* for event */
744 }
e401f176 745
13114716 746 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
747}
748
e231875b
JZ
749static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
750 int nid,
751 unsigned int lru_mask)
bb2a0de9 752{
e231875b 753 unsigned long nr = 0;
889976db
YH
754 int zid;
755
e231875b 756 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 757
e231875b
JZ
758 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
759 struct mem_cgroup_per_zone *mz;
760 enum lru_list lru;
761
762 for_each_lru(lru) {
763 if (!(BIT(lru) & lru_mask))
764 continue;
765 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
766 nr += mz->lru_size[lru];
767 }
768 }
769 return nr;
889976db 770}
bb2a0de9 771
c0ff4b85 772static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 773 unsigned int lru_mask)
6d12e2d8 774{
e231875b 775 unsigned long nr = 0;
889976db 776 int nid;
6d12e2d8 777
31aaea4a 778 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
779 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
780 return nr;
d52aa412
KH
781}
782
f53d7ce3
JW
783static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
784 enum mem_cgroup_events_target target)
7a159cc9
JW
785{
786 unsigned long val, next;
787
13114716 788 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 789 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 790 /* from time_after() in jiffies.h */
f53d7ce3
JW
791 if ((long)next - (long)val < 0) {
792 switch (target) {
793 case MEM_CGROUP_TARGET_THRESH:
794 next = val + THRESHOLDS_EVENTS_TARGET;
795 break;
bb4cc1a8
AM
796 case MEM_CGROUP_TARGET_SOFTLIMIT:
797 next = val + SOFTLIMIT_EVENTS_TARGET;
798 break;
f53d7ce3
JW
799 case MEM_CGROUP_TARGET_NUMAINFO:
800 next = val + NUMAINFO_EVENTS_TARGET;
801 break;
802 default:
803 break;
804 }
805 __this_cpu_write(memcg->stat->targets[target], next);
806 return true;
7a159cc9 807 }
f53d7ce3 808 return false;
d2265e6f
KH
809}
810
811/*
812 * Check events in order.
813 *
814 */
c0ff4b85 815static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
816{
817 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
818 if (unlikely(mem_cgroup_event_ratelimit(memcg,
819 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 820 bool do_softlimit;
82b3f2a7 821 bool do_numainfo __maybe_unused;
f53d7ce3 822
bb4cc1a8
AM
823 do_softlimit = mem_cgroup_event_ratelimit(memcg,
824 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
825#if MAX_NUMNODES > 1
826 do_numainfo = mem_cgroup_event_ratelimit(memcg,
827 MEM_CGROUP_TARGET_NUMAINFO);
828#endif
c0ff4b85 829 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
830 if (unlikely(do_softlimit))
831 mem_cgroup_update_tree(memcg, page);
453a9bf3 832#if MAX_NUMNODES > 1
f53d7ce3 833 if (unlikely(do_numainfo))
c0ff4b85 834 atomic_inc(&memcg->numainfo_events);
453a9bf3 835#endif
0a31bc97 836 }
d2265e6f
KH
837}
838
cf475ad2 839struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 840{
31a78f23
BS
841 /*
842 * mm_update_next_owner() may clear mm->owner to NULL
843 * if it races with swapoff, page migration, etc.
844 * So this can be called with p == NULL.
845 */
846 if (unlikely(!p))
847 return NULL;
848
073219e9 849 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 850}
33398cf2 851EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 852
df381975 853static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 854{
c0ff4b85 855 struct mem_cgroup *memcg = NULL;
0b7f569e 856
54595fe2
KH
857 rcu_read_lock();
858 do {
6f6acb00
MH
859 /*
860 * Page cache insertions can happen withou an
861 * actual mm context, e.g. during disk probing
862 * on boot, loopback IO, acct() writes etc.
863 */
864 if (unlikely(!mm))
df381975 865 memcg = root_mem_cgroup;
6f6acb00
MH
866 else {
867 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
868 if (unlikely(!memcg))
869 memcg = root_mem_cgroup;
870 }
ec903c0c 871 } while (!css_tryget_online(&memcg->css));
54595fe2 872 rcu_read_unlock();
c0ff4b85 873 return memcg;
54595fe2
KH
874}
875
5660048c
JW
876/**
877 * mem_cgroup_iter - iterate over memory cgroup hierarchy
878 * @root: hierarchy root
879 * @prev: previously returned memcg, NULL on first invocation
880 * @reclaim: cookie for shared reclaim walks, NULL for full walks
881 *
882 * Returns references to children of the hierarchy below @root, or
883 * @root itself, or %NULL after a full round-trip.
884 *
885 * Caller must pass the return value in @prev on subsequent
886 * invocations for reference counting, or use mem_cgroup_iter_break()
887 * to cancel a hierarchy walk before the round-trip is complete.
888 *
889 * Reclaimers can specify a zone and a priority level in @reclaim to
890 * divide up the memcgs in the hierarchy among all concurrent
891 * reclaimers operating on the same zone and priority.
892 */
694fbc0f 893struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 894 struct mem_cgroup *prev,
694fbc0f 895 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 896{
33398cf2 897 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 898 struct cgroup_subsys_state *css = NULL;
9f3a0d09 899 struct mem_cgroup *memcg = NULL;
5ac8fb31 900 struct mem_cgroup *pos = NULL;
711d3d2c 901
694fbc0f
AM
902 if (mem_cgroup_disabled())
903 return NULL;
5660048c 904
9f3a0d09
JW
905 if (!root)
906 root = root_mem_cgroup;
7d74b06f 907
9f3a0d09 908 if (prev && !reclaim)
5ac8fb31 909 pos = prev;
14067bb3 910
9f3a0d09
JW
911 if (!root->use_hierarchy && root != root_mem_cgroup) {
912 if (prev)
5ac8fb31 913 goto out;
694fbc0f 914 return root;
9f3a0d09 915 }
14067bb3 916
542f85f9 917 rcu_read_lock();
5f578161 918
5ac8fb31
JW
919 if (reclaim) {
920 struct mem_cgroup_per_zone *mz;
921
922 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
923 iter = &mz->iter[reclaim->priority];
924
925 if (prev && reclaim->generation != iter->generation)
926 goto out_unlock;
927
6df38689 928 while (1) {
4db0c3c2 929 pos = READ_ONCE(iter->position);
6df38689
VD
930 if (!pos || css_tryget(&pos->css))
931 break;
5ac8fb31 932 /*
6df38689
VD
933 * css reference reached zero, so iter->position will
934 * be cleared by ->css_released. However, we should not
935 * rely on this happening soon, because ->css_released
936 * is called from a work queue, and by busy-waiting we
937 * might block it. So we clear iter->position right
938 * away.
5ac8fb31 939 */
6df38689
VD
940 (void)cmpxchg(&iter->position, pos, NULL);
941 }
5ac8fb31
JW
942 }
943
944 if (pos)
945 css = &pos->css;
946
947 for (;;) {
948 css = css_next_descendant_pre(css, &root->css);
949 if (!css) {
950 /*
951 * Reclaimers share the hierarchy walk, and a
952 * new one might jump in right at the end of
953 * the hierarchy - make sure they see at least
954 * one group and restart from the beginning.
955 */
956 if (!prev)
957 continue;
958 break;
527a5ec9 959 }
7d74b06f 960
5ac8fb31
JW
961 /*
962 * Verify the css and acquire a reference. The root
963 * is provided by the caller, so we know it's alive
964 * and kicking, and don't take an extra reference.
965 */
966 memcg = mem_cgroup_from_css(css);
14067bb3 967
5ac8fb31
JW
968 if (css == &root->css)
969 break;
14067bb3 970
b2052564 971 if (css_tryget(css)) {
5ac8fb31
JW
972 /*
973 * Make sure the memcg is initialized:
974 * mem_cgroup_css_online() orders the the
975 * initialization against setting the flag.
976 */
977 if (smp_load_acquire(&memcg->initialized))
978 break;
542f85f9 979
5ac8fb31 980 css_put(css);
527a5ec9 981 }
9f3a0d09 982
5ac8fb31 983 memcg = NULL;
9f3a0d09 984 }
5ac8fb31
JW
985
986 if (reclaim) {
5ac8fb31 987 /*
6df38689
VD
988 * The position could have already been updated by a competing
989 * thread, so check that the value hasn't changed since we read
990 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 991 */
6df38689
VD
992 (void)cmpxchg(&iter->position, pos, memcg);
993
5ac8fb31
JW
994 if (pos)
995 css_put(&pos->css);
996
997 if (!memcg)
998 iter->generation++;
999 else if (!prev)
1000 reclaim->generation = iter->generation;
9f3a0d09 1001 }
5ac8fb31 1002
542f85f9
MH
1003out_unlock:
1004 rcu_read_unlock();
5ac8fb31 1005out:
c40046f3
MH
1006 if (prev && prev != root)
1007 css_put(&prev->css);
1008
9f3a0d09 1009 return memcg;
14067bb3 1010}
7d74b06f 1011
5660048c
JW
1012/**
1013 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1014 * @root: hierarchy root
1015 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1016 */
1017void mem_cgroup_iter_break(struct mem_cgroup *root,
1018 struct mem_cgroup *prev)
9f3a0d09
JW
1019{
1020 if (!root)
1021 root = root_mem_cgroup;
1022 if (prev && prev != root)
1023 css_put(&prev->css);
1024}
7d74b06f 1025
6df38689
VD
1026static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1027{
1028 struct mem_cgroup *memcg = dead_memcg;
1029 struct mem_cgroup_reclaim_iter *iter;
1030 struct mem_cgroup_per_zone *mz;
1031 int nid, zid;
1032 int i;
1033
1034 while ((memcg = parent_mem_cgroup(memcg))) {
1035 for_each_node(nid) {
1036 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1037 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
1038 for (i = 0; i <= DEF_PRIORITY; i++) {
1039 iter = &mz->iter[i];
1040 cmpxchg(&iter->position,
1041 dead_memcg, NULL);
1042 }
1043 }
1044 }
1045 }
1046}
1047
9f3a0d09
JW
1048/*
1049 * Iteration constructs for visiting all cgroups (under a tree). If
1050 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1051 * be used for reference counting.
1052 */
1053#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1054 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1055 iter != NULL; \
527a5ec9 1056 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1057
9f3a0d09 1058#define for_each_mem_cgroup(iter) \
527a5ec9 1059 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1060 iter != NULL; \
527a5ec9 1061 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1062
925b7673
JW
1063/**
1064 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1065 * @zone: zone of the wanted lruvec
fa9add64 1066 * @memcg: memcg of the wanted lruvec
925b7673
JW
1067 *
1068 * Returns the lru list vector holding pages for the given @zone and
1069 * @mem. This can be the global zone lruvec, if the memory controller
1070 * is disabled.
1071 */
1072struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1073 struct mem_cgroup *memcg)
1074{
1075 struct mem_cgroup_per_zone *mz;
bea8c150 1076 struct lruvec *lruvec;
925b7673 1077
bea8c150
HD
1078 if (mem_cgroup_disabled()) {
1079 lruvec = &zone->lruvec;
1080 goto out;
1081 }
925b7673 1082
e231875b 1083 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1084 lruvec = &mz->lruvec;
1085out:
1086 /*
1087 * Since a node can be onlined after the mem_cgroup was created,
1088 * we have to be prepared to initialize lruvec->zone here;
1089 * and if offlined then reonlined, we need to reinitialize it.
1090 */
1091 if (unlikely(lruvec->zone != zone))
1092 lruvec->zone = zone;
1093 return lruvec;
925b7673
JW
1094}
1095
925b7673 1096/**
dfe0e773 1097 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1098 * @page: the page
fa9add64 1099 * @zone: zone of the page
dfe0e773
JW
1100 *
1101 * This function is only safe when following the LRU page isolation
1102 * and putback protocol: the LRU lock must be held, and the page must
1103 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1104 */
fa9add64 1105struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1106{
08e552c6 1107 struct mem_cgroup_per_zone *mz;
925b7673 1108 struct mem_cgroup *memcg;
bea8c150 1109 struct lruvec *lruvec;
6d12e2d8 1110
bea8c150
HD
1111 if (mem_cgroup_disabled()) {
1112 lruvec = &zone->lruvec;
1113 goto out;
1114 }
925b7673 1115
1306a85a 1116 memcg = page->mem_cgroup;
7512102c 1117 /*
dfe0e773 1118 * Swapcache readahead pages are added to the LRU - and
29833315 1119 * possibly migrated - before they are charged.
7512102c 1120 */
29833315
JW
1121 if (!memcg)
1122 memcg = root_mem_cgroup;
7512102c 1123
e231875b 1124 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1125 lruvec = &mz->lruvec;
1126out:
1127 /*
1128 * Since a node can be onlined after the mem_cgroup was created,
1129 * we have to be prepared to initialize lruvec->zone here;
1130 * and if offlined then reonlined, we need to reinitialize it.
1131 */
1132 if (unlikely(lruvec->zone != zone))
1133 lruvec->zone = zone;
1134 return lruvec;
08e552c6 1135}
b69408e8 1136
925b7673 1137/**
fa9add64
HD
1138 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1139 * @lruvec: mem_cgroup per zone lru vector
1140 * @lru: index of lru list the page is sitting on
1141 * @nr_pages: positive when adding or negative when removing
925b7673 1142 *
fa9add64
HD
1143 * This function must be called when a page is added to or removed from an
1144 * lru list.
3f58a829 1145 */
fa9add64
HD
1146void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1147 int nr_pages)
3f58a829
MK
1148{
1149 struct mem_cgroup_per_zone *mz;
fa9add64 1150 unsigned long *lru_size;
3f58a829
MK
1151
1152 if (mem_cgroup_disabled())
1153 return;
1154
fa9add64
HD
1155 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1156 lru_size = mz->lru_size + lru;
1157 *lru_size += nr_pages;
1158 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1159}
544122e5 1160
2314b42d 1161bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1162{
2314b42d 1163 struct mem_cgroup *task_memcg;
158e0a2d 1164 struct task_struct *p;
ffbdccf5 1165 bool ret;
4c4a2214 1166
158e0a2d 1167 p = find_lock_task_mm(task);
de077d22 1168 if (p) {
2314b42d 1169 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1170 task_unlock(p);
1171 } else {
1172 /*
1173 * All threads may have already detached their mm's, but the oom
1174 * killer still needs to detect if they have already been oom
1175 * killed to prevent needlessly killing additional tasks.
1176 */
ffbdccf5 1177 rcu_read_lock();
2314b42d
JW
1178 task_memcg = mem_cgroup_from_task(task);
1179 css_get(&task_memcg->css);
ffbdccf5 1180 rcu_read_unlock();
de077d22 1181 }
2314b42d
JW
1182 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1183 css_put(&task_memcg->css);
4c4a2214
DR
1184 return ret;
1185}
1186
3e32cb2e 1187#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1188 container_of(counter, struct mem_cgroup, member)
1189
19942822 1190/**
9d11ea9f 1191 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1192 * @memcg: the memory cgroup
19942822 1193 *
9d11ea9f 1194 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1195 * pages.
19942822 1196 */
c0ff4b85 1197static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1198{
3e32cb2e
JW
1199 unsigned long margin = 0;
1200 unsigned long count;
1201 unsigned long limit;
9d11ea9f 1202
3e32cb2e 1203 count = page_counter_read(&memcg->memory);
4db0c3c2 1204 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1205 if (count < limit)
1206 margin = limit - count;
1207
7941d214 1208 if (do_memsw_account()) {
3e32cb2e 1209 count = page_counter_read(&memcg->memsw);
4db0c3c2 1210 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1211 if (count <= limit)
1212 margin = min(margin, limit - count);
1213 }
1214
1215 return margin;
19942822
JW
1216}
1217
32047e2a 1218/*
bdcbb659 1219 * A routine for checking "mem" is under move_account() or not.
32047e2a 1220 *
bdcbb659
QH
1221 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1222 * moving cgroups. This is for waiting at high-memory pressure
1223 * caused by "move".
32047e2a 1224 */
c0ff4b85 1225static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1226{
2bd9bb20
KH
1227 struct mem_cgroup *from;
1228 struct mem_cgroup *to;
4b534334 1229 bool ret = false;
2bd9bb20
KH
1230 /*
1231 * Unlike task_move routines, we access mc.to, mc.from not under
1232 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1233 */
1234 spin_lock(&mc.lock);
1235 from = mc.from;
1236 to = mc.to;
1237 if (!from)
1238 goto unlock;
3e92041d 1239
2314b42d
JW
1240 ret = mem_cgroup_is_descendant(from, memcg) ||
1241 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1242unlock:
1243 spin_unlock(&mc.lock);
4b534334
KH
1244 return ret;
1245}
1246
c0ff4b85 1247static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1248{
1249 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1250 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1251 DEFINE_WAIT(wait);
1252 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1253 /* moving charge context might have finished. */
1254 if (mc.moving_task)
1255 schedule();
1256 finish_wait(&mc.waitq, &wait);
1257 return true;
1258 }
1259 }
1260 return false;
1261}
1262
58cf188e 1263#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1264/**
58cf188e 1265 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1266 * @memcg: The memory cgroup that went over limit
1267 * @p: Task that is going to be killed
1268 *
1269 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1270 * enabled
1271 */
1272void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1273{
e61734c5 1274 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1275 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1276 struct mem_cgroup *iter;
1277 unsigned int i;
e222432b 1278
08088cb9 1279 mutex_lock(&oom_info_lock);
e222432b
BS
1280 rcu_read_lock();
1281
2415b9f5
BV
1282 if (p) {
1283 pr_info("Task in ");
1284 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1285 pr_cont(" killed as a result of limit of ");
1286 } else {
1287 pr_info("Memory limit reached of cgroup ");
1288 }
1289
e61734c5 1290 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1291 pr_cont("\n");
e222432b 1292
e222432b
BS
1293 rcu_read_unlock();
1294
3e32cb2e
JW
1295 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1296 K((u64)page_counter_read(&memcg->memory)),
1297 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1298 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1299 K((u64)page_counter_read(&memcg->memsw)),
1300 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1301 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1302 K((u64)page_counter_read(&memcg->kmem)),
1303 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1304
1305 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1306 pr_info("Memory cgroup stats for ");
1307 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1308 pr_cont(":");
1309
1310 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 1311 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
58cf188e 1312 continue;
484ebb3b 1313 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1314 K(mem_cgroup_read_stat(iter, i)));
1315 }
1316
1317 for (i = 0; i < NR_LRU_LISTS; i++)
1318 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1319 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1320
1321 pr_cont("\n");
1322 }
08088cb9 1323 mutex_unlock(&oom_info_lock);
e222432b
BS
1324}
1325
81d39c20
KH
1326/*
1327 * This function returns the number of memcg under hierarchy tree. Returns
1328 * 1(self count) if no children.
1329 */
c0ff4b85 1330static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1331{
1332 int num = 0;
7d74b06f
KH
1333 struct mem_cgroup *iter;
1334
c0ff4b85 1335 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1336 num++;
81d39c20
KH
1337 return num;
1338}
1339
a63d83f4
DR
1340/*
1341 * Return the memory (and swap, if configured) limit for a memcg.
1342 */
3e32cb2e 1343static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1344{
3e32cb2e 1345 unsigned long limit;
f3e8eb70 1346
3e32cb2e 1347 limit = memcg->memory.limit;
9a5a8f19 1348 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1349 unsigned long memsw_limit;
9a5a8f19 1350
3e32cb2e
JW
1351 memsw_limit = memcg->memsw.limit;
1352 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1353 }
9a5a8f19 1354 return limit;
a63d83f4
DR
1355}
1356
19965460
DR
1357static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1358 int order)
9cbb78bb 1359{
6e0fc46d
DR
1360 struct oom_control oc = {
1361 .zonelist = NULL,
1362 .nodemask = NULL,
1363 .gfp_mask = gfp_mask,
1364 .order = order,
6e0fc46d 1365 };
9cbb78bb
DR
1366 struct mem_cgroup *iter;
1367 unsigned long chosen_points = 0;
1368 unsigned long totalpages;
1369 unsigned int points = 0;
1370 struct task_struct *chosen = NULL;
1371
dc56401f
JW
1372 mutex_lock(&oom_lock);
1373
876aafbf 1374 /*
465adcf1
DR
1375 * If current has a pending SIGKILL or is exiting, then automatically
1376 * select it. The goal is to allow it to allocate so that it may
1377 * quickly exit and free its memory.
876aafbf 1378 */
d003f371 1379 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1380 mark_oom_victim(current);
dc56401f 1381 goto unlock;
876aafbf
DR
1382 }
1383
6e0fc46d 1384 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1385 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1386 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1387 struct css_task_iter it;
9cbb78bb
DR
1388 struct task_struct *task;
1389
72ec7029
TH
1390 css_task_iter_start(&iter->css, &it);
1391 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1392 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1393 case OOM_SCAN_SELECT:
1394 if (chosen)
1395 put_task_struct(chosen);
1396 chosen = task;
1397 chosen_points = ULONG_MAX;
1398 get_task_struct(chosen);
1399 /* fall through */
1400 case OOM_SCAN_CONTINUE:
1401 continue;
1402 case OOM_SCAN_ABORT:
72ec7029 1403 css_task_iter_end(&it);
9cbb78bb
DR
1404 mem_cgroup_iter_break(memcg, iter);
1405 if (chosen)
1406 put_task_struct(chosen);
dc56401f 1407 goto unlock;
9cbb78bb
DR
1408 case OOM_SCAN_OK:
1409 break;
1410 };
1411 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1412 if (!points || points < chosen_points)
1413 continue;
1414 /* Prefer thread group leaders for display purposes */
1415 if (points == chosen_points &&
1416 thread_group_leader(chosen))
1417 continue;
1418
1419 if (chosen)
1420 put_task_struct(chosen);
1421 chosen = task;
1422 chosen_points = points;
1423 get_task_struct(chosen);
9cbb78bb 1424 }
72ec7029 1425 css_task_iter_end(&it);
9cbb78bb
DR
1426 }
1427
dc56401f
JW
1428 if (chosen) {
1429 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1430 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1431 "Memory cgroup out of memory");
dc56401f
JW
1432 }
1433unlock:
1434 mutex_unlock(&oom_lock);
9cbb78bb
DR
1435}
1436
ae6e71d3
MC
1437#if MAX_NUMNODES > 1
1438
4d0c066d
KH
1439/**
1440 * test_mem_cgroup_node_reclaimable
dad7557e 1441 * @memcg: the target memcg
4d0c066d
KH
1442 * @nid: the node ID to be checked.
1443 * @noswap : specify true here if the user wants flle only information.
1444 *
1445 * This function returns whether the specified memcg contains any
1446 * reclaimable pages on a node. Returns true if there are any reclaimable
1447 * pages in the node.
1448 */
c0ff4b85 1449static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1450 int nid, bool noswap)
1451{
c0ff4b85 1452 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1453 return true;
1454 if (noswap || !total_swap_pages)
1455 return false;
c0ff4b85 1456 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1457 return true;
1458 return false;
1459
1460}
889976db
YH
1461
1462/*
1463 * Always updating the nodemask is not very good - even if we have an empty
1464 * list or the wrong list here, we can start from some node and traverse all
1465 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1466 *
1467 */
c0ff4b85 1468static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1469{
1470 int nid;
453a9bf3
KH
1471 /*
1472 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1473 * pagein/pageout changes since the last update.
1474 */
c0ff4b85 1475 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1476 return;
c0ff4b85 1477 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1478 return;
1479
889976db 1480 /* make a nodemask where this memcg uses memory from */
31aaea4a 1481 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1482
31aaea4a 1483 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1484
c0ff4b85
R
1485 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1486 node_clear(nid, memcg->scan_nodes);
889976db 1487 }
453a9bf3 1488
c0ff4b85
R
1489 atomic_set(&memcg->numainfo_events, 0);
1490 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1491}
1492
1493/*
1494 * Selecting a node where we start reclaim from. Because what we need is just
1495 * reducing usage counter, start from anywhere is O,K. Considering
1496 * memory reclaim from current node, there are pros. and cons.
1497 *
1498 * Freeing memory from current node means freeing memory from a node which
1499 * we'll use or we've used. So, it may make LRU bad. And if several threads
1500 * hit limits, it will see a contention on a node. But freeing from remote
1501 * node means more costs for memory reclaim because of memory latency.
1502 *
1503 * Now, we use round-robin. Better algorithm is welcomed.
1504 */
c0ff4b85 1505int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1506{
1507 int node;
1508
c0ff4b85
R
1509 mem_cgroup_may_update_nodemask(memcg);
1510 node = memcg->last_scanned_node;
889976db 1511
c0ff4b85 1512 node = next_node(node, memcg->scan_nodes);
889976db 1513 if (node == MAX_NUMNODES)
c0ff4b85 1514 node = first_node(memcg->scan_nodes);
889976db
YH
1515 /*
1516 * We call this when we hit limit, not when pages are added to LRU.
1517 * No LRU may hold pages because all pages are UNEVICTABLE or
1518 * memcg is too small and all pages are not on LRU. In that case,
1519 * we use curret node.
1520 */
1521 if (unlikely(node == MAX_NUMNODES))
1522 node = numa_node_id();
1523
c0ff4b85 1524 memcg->last_scanned_node = node;
889976db
YH
1525 return node;
1526}
889976db 1527#else
c0ff4b85 1528int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1529{
1530 return 0;
1531}
1532#endif
1533
0608f43d
AM
1534static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1535 struct zone *zone,
1536 gfp_t gfp_mask,
1537 unsigned long *total_scanned)
1538{
1539 struct mem_cgroup *victim = NULL;
1540 int total = 0;
1541 int loop = 0;
1542 unsigned long excess;
1543 unsigned long nr_scanned;
1544 struct mem_cgroup_reclaim_cookie reclaim = {
1545 .zone = zone,
1546 .priority = 0,
1547 };
1548
3e32cb2e 1549 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1550
1551 while (1) {
1552 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1553 if (!victim) {
1554 loop++;
1555 if (loop >= 2) {
1556 /*
1557 * If we have not been able to reclaim
1558 * anything, it might because there are
1559 * no reclaimable pages under this hierarchy
1560 */
1561 if (!total)
1562 break;
1563 /*
1564 * We want to do more targeted reclaim.
1565 * excess >> 2 is not to excessive so as to
1566 * reclaim too much, nor too less that we keep
1567 * coming back to reclaim from this cgroup
1568 */
1569 if (total >= (excess >> 2) ||
1570 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1571 break;
1572 }
1573 continue;
1574 }
0608f43d
AM
1575 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1576 zone, &nr_scanned);
1577 *total_scanned += nr_scanned;
3e32cb2e 1578 if (!soft_limit_excess(root_memcg))
0608f43d 1579 break;
6d61ef40 1580 }
0608f43d
AM
1581 mem_cgroup_iter_break(root_memcg, victim);
1582 return total;
6d61ef40
BS
1583}
1584
0056f4e6
JW
1585#ifdef CONFIG_LOCKDEP
1586static struct lockdep_map memcg_oom_lock_dep_map = {
1587 .name = "memcg_oom_lock",
1588};
1589#endif
1590
fb2a6fc5
JW
1591static DEFINE_SPINLOCK(memcg_oom_lock);
1592
867578cb
KH
1593/*
1594 * Check OOM-Killer is already running under our hierarchy.
1595 * If someone is running, return false.
1596 */
fb2a6fc5 1597static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1598{
79dfdacc 1599 struct mem_cgroup *iter, *failed = NULL;
a636b327 1600
fb2a6fc5
JW
1601 spin_lock(&memcg_oom_lock);
1602
9f3a0d09 1603 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1604 if (iter->oom_lock) {
79dfdacc
MH
1605 /*
1606 * this subtree of our hierarchy is already locked
1607 * so we cannot give a lock.
1608 */
79dfdacc 1609 failed = iter;
9f3a0d09
JW
1610 mem_cgroup_iter_break(memcg, iter);
1611 break;
23751be0
JW
1612 } else
1613 iter->oom_lock = true;
7d74b06f 1614 }
867578cb 1615
fb2a6fc5
JW
1616 if (failed) {
1617 /*
1618 * OK, we failed to lock the whole subtree so we have
1619 * to clean up what we set up to the failing subtree
1620 */
1621 for_each_mem_cgroup_tree(iter, memcg) {
1622 if (iter == failed) {
1623 mem_cgroup_iter_break(memcg, iter);
1624 break;
1625 }
1626 iter->oom_lock = false;
79dfdacc 1627 }
0056f4e6
JW
1628 } else
1629 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1630
1631 spin_unlock(&memcg_oom_lock);
1632
1633 return !failed;
a636b327 1634}
0b7f569e 1635
fb2a6fc5 1636static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1637{
7d74b06f
KH
1638 struct mem_cgroup *iter;
1639
fb2a6fc5 1640 spin_lock(&memcg_oom_lock);
0056f4e6 1641 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1642 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1643 iter->oom_lock = false;
fb2a6fc5 1644 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1645}
1646
c0ff4b85 1647static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1648{
1649 struct mem_cgroup *iter;
1650
c2b42d3c 1651 spin_lock(&memcg_oom_lock);
c0ff4b85 1652 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1653 iter->under_oom++;
1654 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1655}
1656
c0ff4b85 1657static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1658{
1659 struct mem_cgroup *iter;
1660
867578cb
KH
1661 /*
1662 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1663 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1664 */
c2b42d3c 1665 spin_lock(&memcg_oom_lock);
c0ff4b85 1666 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1667 if (iter->under_oom > 0)
1668 iter->under_oom--;
1669 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1670}
1671
867578cb
KH
1672static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1673
dc98df5a 1674struct oom_wait_info {
d79154bb 1675 struct mem_cgroup *memcg;
dc98df5a
KH
1676 wait_queue_t wait;
1677};
1678
1679static int memcg_oom_wake_function(wait_queue_t *wait,
1680 unsigned mode, int sync, void *arg)
1681{
d79154bb
HD
1682 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1683 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1684 struct oom_wait_info *oom_wait_info;
1685
1686 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1687 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1688
2314b42d
JW
1689 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1690 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1691 return 0;
dc98df5a
KH
1692 return autoremove_wake_function(wait, mode, sync, arg);
1693}
1694
c0ff4b85 1695static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1696{
c2b42d3c
TH
1697 /*
1698 * For the following lockless ->under_oom test, the only required
1699 * guarantee is that it must see the state asserted by an OOM when
1700 * this function is called as a result of userland actions
1701 * triggered by the notification of the OOM. This is trivially
1702 * achieved by invoking mem_cgroup_mark_under_oom() before
1703 * triggering notification.
1704 */
1705 if (memcg && memcg->under_oom)
f4b90b70 1706 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1707}
1708
3812c8c8 1709static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1710{
626ebc41 1711 if (!current->memcg_may_oom)
3812c8c8 1712 return;
867578cb 1713 /*
49426420
JW
1714 * We are in the middle of the charge context here, so we
1715 * don't want to block when potentially sitting on a callstack
1716 * that holds all kinds of filesystem and mm locks.
1717 *
1718 * Also, the caller may handle a failed allocation gracefully
1719 * (like optional page cache readahead) and so an OOM killer
1720 * invocation might not even be necessary.
1721 *
1722 * That's why we don't do anything here except remember the
1723 * OOM context and then deal with it at the end of the page
1724 * fault when the stack is unwound, the locks are released,
1725 * and when we know whether the fault was overall successful.
867578cb 1726 */
49426420 1727 css_get(&memcg->css);
626ebc41
TH
1728 current->memcg_in_oom = memcg;
1729 current->memcg_oom_gfp_mask = mask;
1730 current->memcg_oom_order = order;
3812c8c8
JW
1731}
1732
1733/**
1734 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1735 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1736 *
49426420
JW
1737 * This has to be called at the end of a page fault if the memcg OOM
1738 * handler was enabled.
3812c8c8 1739 *
49426420 1740 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1741 * sleep on a waitqueue until the userspace task resolves the
1742 * situation. Sleeping directly in the charge context with all kinds
1743 * of locks held is not a good idea, instead we remember an OOM state
1744 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1745 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1746 *
1747 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1748 * completed, %false otherwise.
3812c8c8 1749 */
49426420 1750bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1751{
626ebc41 1752 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1753 struct oom_wait_info owait;
49426420 1754 bool locked;
3812c8c8
JW
1755
1756 /* OOM is global, do not handle */
3812c8c8 1757 if (!memcg)
49426420 1758 return false;
3812c8c8 1759
c32b3cbe 1760 if (!handle || oom_killer_disabled)
49426420 1761 goto cleanup;
3812c8c8
JW
1762
1763 owait.memcg = memcg;
1764 owait.wait.flags = 0;
1765 owait.wait.func = memcg_oom_wake_function;
1766 owait.wait.private = current;
1767 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1768
3812c8c8 1769 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1770 mem_cgroup_mark_under_oom(memcg);
1771
1772 locked = mem_cgroup_oom_trylock(memcg);
1773
1774 if (locked)
1775 mem_cgroup_oom_notify(memcg);
1776
1777 if (locked && !memcg->oom_kill_disable) {
1778 mem_cgroup_unmark_under_oom(memcg);
1779 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1780 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1781 current->memcg_oom_order);
49426420 1782 } else {
3812c8c8 1783 schedule();
49426420
JW
1784 mem_cgroup_unmark_under_oom(memcg);
1785 finish_wait(&memcg_oom_waitq, &owait.wait);
1786 }
1787
1788 if (locked) {
fb2a6fc5
JW
1789 mem_cgroup_oom_unlock(memcg);
1790 /*
1791 * There is no guarantee that an OOM-lock contender
1792 * sees the wakeups triggered by the OOM kill
1793 * uncharges. Wake any sleepers explicitely.
1794 */
1795 memcg_oom_recover(memcg);
1796 }
49426420 1797cleanup:
626ebc41 1798 current->memcg_in_oom = NULL;
3812c8c8 1799 css_put(&memcg->css);
867578cb 1800 return true;
0b7f569e
KH
1801}
1802
d7365e78
JW
1803/**
1804 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1805 * @page: page that is going to change accounted state
32047e2a 1806 *
d7365e78
JW
1807 * This function must mark the beginning of an accounted page state
1808 * change to prevent double accounting when the page is concurrently
1809 * being moved to another memcg:
32047e2a 1810 *
6de22619 1811 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1812 * if (TestClearPageState(page))
1813 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1814 * mem_cgroup_end_page_stat(memcg);
d69b042f 1815 */
6de22619 1816struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1817{
1818 struct mem_cgroup *memcg;
6de22619 1819 unsigned long flags;
89c06bd5 1820
6de22619
JW
1821 /*
1822 * The RCU lock is held throughout the transaction. The fast
1823 * path can get away without acquiring the memcg->move_lock
1824 * because page moving starts with an RCU grace period.
1825 *
1826 * The RCU lock also protects the memcg from being freed when
1827 * the page state that is going to change is the only thing
1828 * preventing the page from being uncharged.
1829 * E.g. end-writeback clearing PageWriteback(), which allows
1830 * migration to go ahead and uncharge the page before the
1831 * account transaction might be complete.
1832 */
d7365e78
JW
1833 rcu_read_lock();
1834
1835 if (mem_cgroup_disabled())
1836 return NULL;
89c06bd5 1837again:
1306a85a 1838 memcg = page->mem_cgroup;
29833315 1839 if (unlikely(!memcg))
d7365e78
JW
1840 return NULL;
1841
bdcbb659 1842 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1843 return memcg;
89c06bd5 1844
6de22619 1845 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1846 if (memcg != page->mem_cgroup) {
6de22619 1847 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1848 goto again;
1849 }
6de22619
JW
1850
1851 /*
1852 * When charge migration first begins, we can have locked and
1853 * unlocked page stat updates happening concurrently. Track
1854 * the task who has the lock for mem_cgroup_end_page_stat().
1855 */
1856 memcg->move_lock_task = current;
1857 memcg->move_lock_flags = flags;
d7365e78
JW
1858
1859 return memcg;
89c06bd5 1860}
c4843a75 1861EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1862
d7365e78
JW
1863/**
1864 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1865 * @memcg: the memcg that was accounted against
d7365e78 1866 */
6de22619 1867void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1868{
6de22619
JW
1869 if (memcg && memcg->move_lock_task == current) {
1870 unsigned long flags = memcg->move_lock_flags;
1871
1872 memcg->move_lock_task = NULL;
1873 memcg->move_lock_flags = 0;
1874
1875 spin_unlock_irqrestore(&memcg->move_lock, flags);
1876 }
89c06bd5 1877
d7365e78 1878 rcu_read_unlock();
89c06bd5 1879}
c4843a75 1880EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1881
cdec2e42
KH
1882/*
1883 * size of first charge trial. "32" comes from vmscan.c's magic value.
1884 * TODO: maybe necessary to use big numbers in big irons.
1885 */
7ec99d62 1886#define CHARGE_BATCH 32U
cdec2e42
KH
1887struct memcg_stock_pcp {
1888 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1889 unsigned int nr_pages;
cdec2e42 1890 struct work_struct work;
26fe6168 1891 unsigned long flags;
a0db00fc 1892#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1893};
1894static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1895static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1896
a0956d54
SS
1897/**
1898 * consume_stock: Try to consume stocked charge on this cpu.
1899 * @memcg: memcg to consume from.
1900 * @nr_pages: how many pages to charge.
1901 *
1902 * The charges will only happen if @memcg matches the current cpu's memcg
1903 * stock, and at least @nr_pages are available in that stock. Failure to
1904 * service an allocation will refill the stock.
1905 *
1906 * returns true if successful, false otherwise.
cdec2e42 1907 */
a0956d54 1908static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1909{
1910 struct memcg_stock_pcp *stock;
3e32cb2e 1911 bool ret = false;
cdec2e42 1912
a0956d54 1913 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1914 return ret;
a0956d54 1915
cdec2e42 1916 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1917 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1918 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1919 ret = true;
1920 }
cdec2e42
KH
1921 put_cpu_var(memcg_stock);
1922 return ret;
1923}
1924
1925/*
3e32cb2e 1926 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1927 */
1928static void drain_stock(struct memcg_stock_pcp *stock)
1929{
1930 struct mem_cgroup *old = stock->cached;
1931
11c9ea4e 1932 if (stock->nr_pages) {
3e32cb2e 1933 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1934 if (do_memsw_account())
3e32cb2e 1935 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1936 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1937 stock->nr_pages = 0;
cdec2e42
KH
1938 }
1939 stock->cached = NULL;
cdec2e42
KH
1940}
1941
1942/*
1943 * This must be called under preempt disabled or must be called by
1944 * a thread which is pinned to local cpu.
1945 */
1946static void drain_local_stock(struct work_struct *dummy)
1947{
7c8e0181 1948 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1949 drain_stock(stock);
26fe6168 1950 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1951}
1952
1953/*
3e32cb2e 1954 * Cache charges(val) to local per_cpu area.
320cc51d 1955 * This will be consumed by consume_stock() function, later.
cdec2e42 1956 */
c0ff4b85 1957static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1958{
1959 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1960
c0ff4b85 1961 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1962 drain_stock(stock);
c0ff4b85 1963 stock->cached = memcg;
cdec2e42 1964 }
11c9ea4e 1965 stock->nr_pages += nr_pages;
cdec2e42
KH
1966 put_cpu_var(memcg_stock);
1967}
1968
1969/*
c0ff4b85 1970 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1971 * of the hierarchy under it.
cdec2e42 1972 */
6d3d6aa2 1973static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1974{
26fe6168 1975 int cpu, curcpu;
d38144b7 1976
6d3d6aa2
JW
1977 /* If someone's already draining, avoid adding running more workers. */
1978 if (!mutex_trylock(&percpu_charge_mutex))
1979 return;
cdec2e42 1980 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1981 get_online_cpus();
5af12d0e 1982 curcpu = get_cpu();
cdec2e42
KH
1983 for_each_online_cpu(cpu) {
1984 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1985 struct mem_cgroup *memcg;
26fe6168 1986
c0ff4b85
R
1987 memcg = stock->cached;
1988 if (!memcg || !stock->nr_pages)
26fe6168 1989 continue;
2314b42d 1990 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1991 continue;
d1a05b69
MH
1992 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1993 if (cpu == curcpu)
1994 drain_local_stock(&stock->work);
1995 else
1996 schedule_work_on(cpu, &stock->work);
1997 }
cdec2e42 1998 }
5af12d0e 1999 put_cpu();
f894ffa8 2000 put_online_cpus();
9f50fad6 2001 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2002}
2003
0db0628d 2004static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2005 unsigned long action,
2006 void *hcpu)
2007{
2008 int cpu = (unsigned long)hcpu;
2009 struct memcg_stock_pcp *stock;
2010
619d094b 2011 if (action == CPU_ONLINE)
1489ebad 2012 return NOTIFY_OK;
1489ebad 2013
d833049b 2014 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2015 return NOTIFY_OK;
711d3d2c 2016
cdec2e42
KH
2017 stock = &per_cpu(memcg_stock, cpu);
2018 drain_stock(stock);
2019 return NOTIFY_OK;
2020}
2021
b23afb93
TH
2022/*
2023 * Scheduled by try_charge() to be executed from the userland return path
2024 * and reclaims memory over the high limit.
2025 */
2026void mem_cgroup_handle_over_high(void)
2027{
2028 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2029 struct mem_cgroup *memcg, *pos;
2030
2031 if (likely(!nr_pages))
2032 return;
2033
2034 pos = memcg = get_mem_cgroup_from_mm(current->mm);
2035
2036 do {
2037 if (page_counter_read(&pos->memory) <= pos->high)
2038 continue;
2039 mem_cgroup_events(pos, MEMCG_HIGH, 1);
2040 try_to_free_mem_cgroup_pages(pos, nr_pages, GFP_KERNEL, true);
2041 } while ((pos = parent_mem_cgroup(pos)));
2042
2043 css_put(&memcg->css);
2044 current->memcg_nr_pages_over_high = 0;
2045}
2046
00501b53
JW
2047static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2048 unsigned int nr_pages)
8a9f3ccd 2049{
7ec99d62 2050 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2051 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2052 struct mem_cgroup *mem_over_limit;
3e32cb2e 2053 struct page_counter *counter;
6539cc05 2054 unsigned long nr_reclaimed;
b70a2a21
JW
2055 bool may_swap = true;
2056 bool drained = false;
a636b327 2057
ce00a967 2058 if (mem_cgroup_is_root(memcg))
10d53c74 2059 return 0;
6539cc05 2060retry:
b6b6cc72 2061 if (consume_stock(memcg, nr_pages))
10d53c74 2062 return 0;
8a9f3ccd 2063
7941d214 2064 if (!do_memsw_account() ||
6071ca52
JW
2065 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2066 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2067 goto done_restock;
7941d214 2068 if (do_memsw_account())
3e32cb2e
JW
2069 page_counter_uncharge(&memcg->memsw, batch);
2070 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2071 } else {
3e32cb2e 2072 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2073 may_swap = false;
3fbe7244 2074 }
7a81b88c 2075
6539cc05
JW
2076 if (batch > nr_pages) {
2077 batch = nr_pages;
2078 goto retry;
2079 }
6d61ef40 2080
06b078fc
JW
2081 /*
2082 * Unlike in global OOM situations, memcg is not in a physical
2083 * memory shortage. Allow dying and OOM-killed tasks to
2084 * bypass the last charges so that they can exit quickly and
2085 * free their memory.
2086 */
2087 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2088 fatal_signal_pending(current) ||
2089 current->flags & PF_EXITING))
10d53c74 2090 goto force;
06b078fc
JW
2091
2092 if (unlikely(task_in_memcg_oom(current)))
2093 goto nomem;
2094
d0164adc 2095 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2096 goto nomem;
4b534334 2097
241994ed
JW
2098 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2099
b70a2a21
JW
2100 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2101 gfp_mask, may_swap);
6539cc05 2102
61e02c74 2103 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2104 goto retry;
28c34c29 2105
b70a2a21 2106 if (!drained) {
6d3d6aa2 2107 drain_all_stock(mem_over_limit);
b70a2a21
JW
2108 drained = true;
2109 goto retry;
2110 }
2111
28c34c29
JW
2112 if (gfp_mask & __GFP_NORETRY)
2113 goto nomem;
6539cc05
JW
2114 /*
2115 * Even though the limit is exceeded at this point, reclaim
2116 * may have been able to free some pages. Retry the charge
2117 * before killing the task.
2118 *
2119 * Only for regular pages, though: huge pages are rather
2120 * unlikely to succeed so close to the limit, and we fall back
2121 * to regular pages anyway in case of failure.
2122 */
61e02c74 2123 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2124 goto retry;
2125 /*
2126 * At task move, charge accounts can be doubly counted. So, it's
2127 * better to wait until the end of task_move if something is going on.
2128 */
2129 if (mem_cgroup_wait_acct_move(mem_over_limit))
2130 goto retry;
2131
9b130619
JW
2132 if (nr_retries--)
2133 goto retry;
2134
06b078fc 2135 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2136 goto force;
06b078fc 2137
6539cc05 2138 if (fatal_signal_pending(current))
10d53c74 2139 goto force;
6539cc05 2140
241994ed
JW
2141 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2142
3608de07
JM
2143 mem_cgroup_oom(mem_over_limit, gfp_mask,
2144 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2145nomem:
6d1fdc48 2146 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2147 return -ENOMEM;
10d53c74
TH
2148force:
2149 /*
2150 * The allocation either can't fail or will lead to more memory
2151 * being freed very soon. Allow memory usage go over the limit
2152 * temporarily by force charging it.
2153 */
2154 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2155 if (do_memsw_account())
10d53c74
TH
2156 page_counter_charge(&memcg->memsw, nr_pages);
2157 css_get_many(&memcg->css, nr_pages);
2158
2159 return 0;
6539cc05
JW
2160
2161done_restock:
e8ea14cc 2162 css_get_many(&memcg->css, batch);
6539cc05
JW
2163 if (batch > nr_pages)
2164 refill_stock(memcg, batch - nr_pages);
b23afb93 2165
241994ed 2166 /*
b23afb93
TH
2167 * If the hierarchy is above the normal consumption range, schedule
2168 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2169 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2170 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2171 * not recorded as it most likely matches current's and won't
2172 * change in the meantime. As high limit is checked again before
2173 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2174 */
2175 do {
b23afb93 2176 if (page_counter_read(&memcg->memory) > memcg->high) {
9516a18a 2177 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2178 set_notify_resume(current);
2179 break;
2180 }
241994ed 2181 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2182
2183 return 0;
7a81b88c 2184}
8a9f3ccd 2185
00501b53 2186static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2187{
ce00a967
JW
2188 if (mem_cgroup_is_root(memcg))
2189 return;
2190
3e32cb2e 2191 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2192 if (do_memsw_account())
3e32cb2e 2193 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2194
e8ea14cc 2195 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2196}
2197
0a31bc97
JW
2198static void lock_page_lru(struct page *page, int *isolated)
2199{
2200 struct zone *zone = page_zone(page);
2201
2202 spin_lock_irq(&zone->lru_lock);
2203 if (PageLRU(page)) {
2204 struct lruvec *lruvec;
2205
2206 lruvec = mem_cgroup_page_lruvec(page, zone);
2207 ClearPageLRU(page);
2208 del_page_from_lru_list(page, lruvec, page_lru(page));
2209 *isolated = 1;
2210 } else
2211 *isolated = 0;
2212}
2213
2214static void unlock_page_lru(struct page *page, int isolated)
2215{
2216 struct zone *zone = page_zone(page);
2217
2218 if (isolated) {
2219 struct lruvec *lruvec;
2220
2221 lruvec = mem_cgroup_page_lruvec(page, zone);
2222 VM_BUG_ON_PAGE(PageLRU(page), page);
2223 SetPageLRU(page);
2224 add_page_to_lru_list(page, lruvec, page_lru(page));
2225 }
2226 spin_unlock_irq(&zone->lru_lock);
2227}
2228
00501b53 2229static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2230 bool lrucare)
7a81b88c 2231{
0a31bc97 2232 int isolated;
9ce70c02 2233
1306a85a 2234 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2235
2236 /*
2237 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2238 * may already be on some other mem_cgroup's LRU. Take care of it.
2239 */
0a31bc97
JW
2240 if (lrucare)
2241 lock_page_lru(page, &isolated);
9ce70c02 2242
0a31bc97
JW
2243 /*
2244 * Nobody should be changing or seriously looking at
1306a85a 2245 * page->mem_cgroup at this point:
0a31bc97
JW
2246 *
2247 * - the page is uncharged
2248 *
2249 * - the page is off-LRU
2250 *
2251 * - an anonymous fault has exclusive page access, except for
2252 * a locked page table
2253 *
2254 * - a page cache insertion, a swapin fault, or a migration
2255 * have the page locked
2256 */
1306a85a 2257 page->mem_cgroup = memcg;
9ce70c02 2258
0a31bc97
JW
2259 if (lrucare)
2260 unlock_page_lru(page, isolated);
7a81b88c 2261}
66e1707b 2262
7ae1e1d0 2263#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2264static int memcg_alloc_cache_id(void)
55007d84 2265{
f3bb3043
VD
2266 int id, size;
2267 int err;
2268
dbcf73e2 2269 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2270 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2271 if (id < 0)
2272 return id;
55007d84 2273
dbcf73e2 2274 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2275 return id;
2276
2277 /*
2278 * There's no space for the new id in memcg_caches arrays,
2279 * so we have to grow them.
2280 */
05257a1a 2281 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2282
2283 size = 2 * (id + 1);
55007d84
GC
2284 if (size < MEMCG_CACHES_MIN_SIZE)
2285 size = MEMCG_CACHES_MIN_SIZE;
2286 else if (size > MEMCG_CACHES_MAX_SIZE)
2287 size = MEMCG_CACHES_MAX_SIZE;
2288
f3bb3043 2289 err = memcg_update_all_caches(size);
60d3fd32
VD
2290 if (!err)
2291 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2292 if (!err)
2293 memcg_nr_cache_ids = size;
2294
2295 up_write(&memcg_cache_ids_sem);
2296
f3bb3043 2297 if (err) {
dbcf73e2 2298 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2299 return err;
2300 }
2301 return id;
2302}
2303
2304static void memcg_free_cache_id(int id)
2305{
dbcf73e2 2306 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2307}
2308
d5b3cf71 2309struct memcg_kmem_cache_create_work {
5722d094
VD
2310 struct mem_cgroup *memcg;
2311 struct kmem_cache *cachep;
2312 struct work_struct work;
2313};
2314
d5b3cf71 2315static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2316{
d5b3cf71
VD
2317 struct memcg_kmem_cache_create_work *cw =
2318 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2319 struct mem_cgroup *memcg = cw->memcg;
2320 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2321
d5b3cf71 2322 memcg_create_kmem_cache(memcg, cachep);
bd673145 2323
5722d094 2324 css_put(&memcg->css);
d7f25f8a
GC
2325 kfree(cw);
2326}
2327
2328/*
2329 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2330 */
d5b3cf71
VD
2331static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2332 struct kmem_cache *cachep)
d7f25f8a 2333{
d5b3cf71 2334 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2335
776ed0f0 2336 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2337 if (!cw)
d7f25f8a 2338 return;
8135be5a
VD
2339
2340 css_get(&memcg->css);
d7f25f8a
GC
2341
2342 cw->memcg = memcg;
2343 cw->cachep = cachep;
d5b3cf71 2344 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2345
d7f25f8a
GC
2346 schedule_work(&cw->work);
2347}
2348
d5b3cf71
VD
2349static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2350 struct kmem_cache *cachep)
0e9d92f2
GC
2351{
2352 /*
2353 * We need to stop accounting when we kmalloc, because if the
2354 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2355 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2356 *
2357 * However, it is better to enclose the whole function. Depending on
2358 * the debugging options enabled, INIT_WORK(), for instance, can
2359 * trigger an allocation. This too, will make us recurse. Because at
2360 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2361 * the safest choice is to do it like this, wrapping the whole function.
2362 */
6f185c29 2363 current->memcg_kmem_skip_account = 1;
d5b3cf71 2364 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2365 current->memcg_kmem_skip_account = 0;
0e9d92f2 2366}
c67a8a68 2367
d7f25f8a
GC
2368/*
2369 * Return the kmem_cache we're supposed to use for a slab allocation.
2370 * We try to use the current memcg's version of the cache.
2371 *
2372 * If the cache does not exist yet, if we are the first user of it,
2373 * we either create it immediately, if possible, or create it asynchronously
2374 * in a workqueue.
2375 * In the latter case, we will let the current allocation go through with
2376 * the original cache.
2377 *
2378 * Can't be called in interrupt context or from kernel threads.
2379 * This function needs to be called with rcu_read_lock() held.
2380 */
230e9fc2 2381struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2382{
2383 struct mem_cgroup *memcg;
959c8963 2384 struct kmem_cache *memcg_cachep;
2a4db7eb 2385 int kmemcg_id;
d7f25f8a 2386
f7ce3190 2387 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2388
230e9fc2
VD
2389 if (cachep->flags & SLAB_ACCOUNT)
2390 gfp |= __GFP_ACCOUNT;
2391
2392 if (!(gfp & __GFP_ACCOUNT))
2393 return cachep;
2394
9d100c5e 2395 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2396 return cachep;
2397
8135be5a 2398 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2399 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2400 if (kmemcg_id < 0)
ca0dde97 2401 goto out;
d7f25f8a 2402
2a4db7eb 2403 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2404 if (likely(memcg_cachep))
2405 return memcg_cachep;
ca0dde97
LZ
2406
2407 /*
2408 * If we are in a safe context (can wait, and not in interrupt
2409 * context), we could be be predictable and return right away.
2410 * This would guarantee that the allocation being performed
2411 * already belongs in the new cache.
2412 *
2413 * However, there are some clashes that can arrive from locking.
2414 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2415 * memcg_create_kmem_cache, this means no further allocation
2416 * could happen with the slab_mutex held. So it's better to
2417 * defer everything.
ca0dde97 2418 */
d5b3cf71 2419 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2420out:
8135be5a 2421 css_put(&memcg->css);
ca0dde97 2422 return cachep;
d7f25f8a 2423}
d7f25f8a 2424
8135be5a
VD
2425void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2426{
2427 if (!is_root_cache(cachep))
f7ce3190 2428 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2429}
2430
f3ccb2c4
VD
2431int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2432 struct mem_cgroup *memcg)
7ae1e1d0 2433{
f3ccb2c4
VD
2434 unsigned int nr_pages = 1 << order;
2435 struct page_counter *counter;
7ae1e1d0
GC
2436 int ret;
2437
f3ccb2c4 2438 if (!memcg_kmem_is_active(memcg))
d05e83a6 2439 return 0;
6d42c232 2440
6071ca52
JW
2441 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2442 return -ENOMEM;
7ae1e1d0 2443
f3ccb2c4
VD
2444 ret = try_charge(memcg, gfp, nr_pages);
2445 if (ret) {
2446 page_counter_uncharge(&memcg->kmem, nr_pages);
2447 return ret;
7ae1e1d0
GC
2448 }
2449
f3ccb2c4 2450 page->mem_cgroup = memcg;
7ae1e1d0 2451
f3ccb2c4 2452 return 0;
7ae1e1d0
GC
2453}
2454
f3ccb2c4 2455int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2456{
f3ccb2c4
VD
2457 struct mem_cgroup *memcg;
2458 int ret;
7ae1e1d0 2459
f3ccb2c4
VD
2460 memcg = get_mem_cgroup_from_mm(current->mm);
2461 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2462 css_put(&memcg->css);
d05e83a6 2463 return ret;
7ae1e1d0
GC
2464}
2465
d05e83a6 2466void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2467{
1306a85a 2468 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2469 unsigned int nr_pages = 1 << order;
7ae1e1d0 2470
7ae1e1d0
GC
2471 if (!memcg)
2472 return;
2473
309381fe 2474 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2475
f3ccb2c4
VD
2476 page_counter_uncharge(&memcg->kmem, nr_pages);
2477 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2478 if (do_memsw_account())
f3ccb2c4 2479 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2480
1306a85a 2481 page->mem_cgroup = NULL;
f3ccb2c4 2482 css_put_many(&memcg->css, nr_pages);
60d3fd32 2483}
7ae1e1d0
GC
2484#endif /* CONFIG_MEMCG_KMEM */
2485
ca3e0214
KH
2486#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2487
ca3e0214
KH
2488/*
2489 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2490 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2491 * charge/uncharge will be never happen and move_account() is done under
2492 * compound_lock(), so we don't have to take care of races.
ca3e0214 2493 */
e94c8a9c 2494void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2495{
e94c8a9c 2496 int i;
ca3e0214 2497
3d37c4a9
KH
2498 if (mem_cgroup_disabled())
2499 return;
b070e65c 2500
29833315 2501 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2502 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2503
1306a85a 2504 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2505 HPAGE_PMD_NR);
ca3e0214 2506}
12d27107 2507#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2508
c255a458 2509#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2510static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2511 bool charge)
d13d1443 2512{
0a31bc97
JW
2513 int val = (charge) ? 1 : -1;
2514 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2515}
02491447
DN
2516
2517/**
2518 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2519 * @entry: swap entry to be moved
2520 * @from: mem_cgroup which the entry is moved from
2521 * @to: mem_cgroup which the entry is moved to
2522 *
2523 * It succeeds only when the swap_cgroup's record for this entry is the same
2524 * as the mem_cgroup's id of @from.
2525 *
2526 * Returns 0 on success, -EINVAL on failure.
2527 *
3e32cb2e 2528 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2529 * both res and memsw, and called css_get().
2530 */
2531static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2532 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2533{
2534 unsigned short old_id, new_id;
2535
34c00c31
LZ
2536 old_id = mem_cgroup_id(from);
2537 new_id = mem_cgroup_id(to);
02491447
DN
2538
2539 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2540 mem_cgroup_swap_statistics(from, false);
483c30b5 2541 mem_cgroup_swap_statistics(to, true);
02491447
DN
2542 return 0;
2543 }
2544 return -EINVAL;
2545}
2546#else
2547static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2548 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2549{
2550 return -EINVAL;
2551}
8c7c6e34 2552#endif
d13d1443 2553
3e32cb2e 2554static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2555
d38d2a75 2556static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2557 unsigned long limit)
628f4235 2558{
3e32cb2e
JW
2559 unsigned long curusage;
2560 unsigned long oldusage;
2561 bool enlarge = false;
81d39c20 2562 int retry_count;
3e32cb2e 2563 int ret;
81d39c20
KH
2564
2565 /*
2566 * For keeping hierarchical_reclaim simple, how long we should retry
2567 * is depends on callers. We set our retry-count to be function
2568 * of # of children which we should visit in this loop.
2569 */
3e32cb2e
JW
2570 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2571 mem_cgroup_count_children(memcg);
81d39c20 2572
3e32cb2e 2573 oldusage = page_counter_read(&memcg->memory);
628f4235 2574
3e32cb2e 2575 do {
628f4235
KH
2576 if (signal_pending(current)) {
2577 ret = -EINTR;
2578 break;
2579 }
3e32cb2e
JW
2580
2581 mutex_lock(&memcg_limit_mutex);
2582 if (limit > memcg->memsw.limit) {
2583 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2584 ret = -EINVAL;
628f4235
KH
2585 break;
2586 }
3e32cb2e
JW
2587 if (limit > memcg->memory.limit)
2588 enlarge = true;
2589 ret = page_counter_limit(&memcg->memory, limit);
2590 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2591
2592 if (!ret)
2593 break;
2594
b70a2a21
JW
2595 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2596
3e32cb2e 2597 curusage = page_counter_read(&memcg->memory);
81d39c20 2598 /* Usage is reduced ? */
f894ffa8 2599 if (curusage >= oldusage)
81d39c20
KH
2600 retry_count--;
2601 else
2602 oldusage = curusage;
3e32cb2e
JW
2603 } while (retry_count);
2604
3c11ecf4
KH
2605 if (!ret && enlarge)
2606 memcg_oom_recover(memcg);
14797e23 2607
8c7c6e34
KH
2608 return ret;
2609}
2610
338c8431 2611static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2612 unsigned long limit)
8c7c6e34 2613{
3e32cb2e
JW
2614 unsigned long curusage;
2615 unsigned long oldusage;
2616 bool enlarge = false;
81d39c20 2617 int retry_count;
3e32cb2e 2618 int ret;
8c7c6e34 2619
81d39c20 2620 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2621 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2622 mem_cgroup_count_children(memcg);
2623
2624 oldusage = page_counter_read(&memcg->memsw);
2625
2626 do {
8c7c6e34
KH
2627 if (signal_pending(current)) {
2628 ret = -EINTR;
2629 break;
2630 }
3e32cb2e
JW
2631
2632 mutex_lock(&memcg_limit_mutex);
2633 if (limit < memcg->memory.limit) {
2634 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2635 ret = -EINVAL;
8c7c6e34
KH
2636 break;
2637 }
3e32cb2e
JW
2638 if (limit > memcg->memsw.limit)
2639 enlarge = true;
2640 ret = page_counter_limit(&memcg->memsw, limit);
2641 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2642
2643 if (!ret)
2644 break;
2645
b70a2a21
JW
2646 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2647
3e32cb2e 2648 curusage = page_counter_read(&memcg->memsw);
81d39c20 2649 /* Usage is reduced ? */
8c7c6e34 2650 if (curusage >= oldusage)
628f4235 2651 retry_count--;
81d39c20
KH
2652 else
2653 oldusage = curusage;
3e32cb2e
JW
2654 } while (retry_count);
2655
3c11ecf4
KH
2656 if (!ret && enlarge)
2657 memcg_oom_recover(memcg);
3e32cb2e 2658
628f4235
KH
2659 return ret;
2660}
2661
0608f43d
AM
2662unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2663 gfp_t gfp_mask,
2664 unsigned long *total_scanned)
2665{
2666 unsigned long nr_reclaimed = 0;
2667 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2668 unsigned long reclaimed;
2669 int loop = 0;
2670 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2671 unsigned long excess;
0608f43d
AM
2672 unsigned long nr_scanned;
2673
2674 if (order > 0)
2675 return 0;
2676
2677 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2678 /*
2679 * This loop can run a while, specially if mem_cgroup's continuously
2680 * keep exceeding their soft limit and putting the system under
2681 * pressure
2682 */
2683 do {
2684 if (next_mz)
2685 mz = next_mz;
2686 else
2687 mz = mem_cgroup_largest_soft_limit_node(mctz);
2688 if (!mz)
2689 break;
2690
2691 nr_scanned = 0;
2692 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2693 gfp_mask, &nr_scanned);
2694 nr_reclaimed += reclaimed;
2695 *total_scanned += nr_scanned;
0a31bc97 2696 spin_lock_irq(&mctz->lock);
bc2f2e7f 2697 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2698
2699 /*
2700 * If we failed to reclaim anything from this memory cgroup
2701 * it is time to move on to the next cgroup
2702 */
2703 next_mz = NULL;
bc2f2e7f
VD
2704 if (!reclaimed)
2705 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2706
3e32cb2e 2707 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2708 /*
2709 * One school of thought says that we should not add
2710 * back the node to the tree if reclaim returns 0.
2711 * But our reclaim could return 0, simply because due
2712 * to priority we are exposing a smaller subset of
2713 * memory to reclaim from. Consider this as a longer
2714 * term TODO.
2715 */
2716 /* If excess == 0, no tree ops */
cf2c8127 2717 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2718 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2719 css_put(&mz->memcg->css);
2720 loop++;
2721 /*
2722 * Could not reclaim anything and there are no more
2723 * mem cgroups to try or we seem to be looping without
2724 * reclaiming anything.
2725 */
2726 if (!nr_reclaimed &&
2727 (next_mz == NULL ||
2728 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2729 break;
2730 } while (!nr_reclaimed);
2731 if (next_mz)
2732 css_put(&next_mz->memcg->css);
2733 return nr_reclaimed;
2734}
2735
ea280e7b
TH
2736/*
2737 * Test whether @memcg has children, dead or alive. Note that this
2738 * function doesn't care whether @memcg has use_hierarchy enabled and
2739 * returns %true if there are child csses according to the cgroup
2740 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2741 */
b5f99b53
GC
2742static inline bool memcg_has_children(struct mem_cgroup *memcg)
2743{
ea280e7b
TH
2744 bool ret;
2745
696ac172 2746 /*
ea280e7b
TH
2747 * The lock does not prevent addition or deletion of children, but
2748 * it prevents a new child from being initialized based on this
2749 * parent in css_online(), so it's enough to decide whether
2750 * hierarchically inherited attributes can still be changed or not.
696ac172 2751 */
ea280e7b
TH
2752 lockdep_assert_held(&memcg_create_mutex);
2753
2754 rcu_read_lock();
2755 ret = css_next_child(NULL, &memcg->css);
2756 rcu_read_unlock();
2757 return ret;
b5f99b53
GC
2758}
2759
c26251f9
MH
2760/*
2761 * Reclaims as many pages from the given memcg as possible and moves
2762 * the rest to the parent.
2763 *
2764 * Caller is responsible for holding css reference for memcg.
2765 */
2766static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2767{
2768 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2769
c1e862c1
KH
2770 /* we call try-to-free pages for make this cgroup empty */
2771 lru_add_drain_all();
f817ed48 2772 /* try to free all pages in this cgroup */
3e32cb2e 2773 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2774 int progress;
c1e862c1 2775
c26251f9
MH
2776 if (signal_pending(current))
2777 return -EINTR;
2778
b70a2a21
JW
2779 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2780 GFP_KERNEL, true);
c1e862c1 2781 if (!progress) {
f817ed48 2782 nr_retries--;
c1e862c1 2783 /* maybe some writeback is necessary */
8aa7e847 2784 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2785 }
f817ed48
KH
2786
2787 }
ab5196c2
MH
2788
2789 return 0;
cc847582
KH
2790}
2791
6770c64e
TH
2792static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2793 char *buf, size_t nbytes,
2794 loff_t off)
c1e862c1 2795{
6770c64e 2796 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2797
d8423011
MH
2798 if (mem_cgroup_is_root(memcg))
2799 return -EINVAL;
6770c64e 2800 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2801}
2802
182446d0
TH
2803static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2804 struct cftype *cft)
18f59ea7 2805{
182446d0 2806 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2807}
2808
182446d0
TH
2809static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2810 struct cftype *cft, u64 val)
18f59ea7
BS
2811{
2812 int retval = 0;
182446d0 2813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2814 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2815
0999821b 2816 mutex_lock(&memcg_create_mutex);
567fb435
GC
2817
2818 if (memcg->use_hierarchy == val)
2819 goto out;
2820
18f59ea7 2821 /*
af901ca1 2822 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2823 * in the child subtrees. If it is unset, then the change can
2824 * occur, provided the current cgroup has no children.
2825 *
2826 * For the root cgroup, parent_mem is NULL, we allow value to be
2827 * set if there are no children.
2828 */
c0ff4b85 2829 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2830 (val == 1 || val == 0)) {
ea280e7b 2831 if (!memcg_has_children(memcg))
c0ff4b85 2832 memcg->use_hierarchy = val;
18f59ea7
BS
2833 else
2834 retval = -EBUSY;
2835 } else
2836 retval = -EINVAL;
567fb435
GC
2837
2838out:
0999821b 2839 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2840
2841 return retval;
2842}
2843
3e32cb2e
JW
2844static unsigned long tree_stat(struct mem_cgroup *memcg,
2845 enum mem_cgroup_stat_index idx)
ce00a967
JW
2846{
2847 struct mem_cgroup *iter;
484ebb3b 2848 unsigned long val = 0;
ce00a967 2849
ce00a967
JW
2850 for_each_mem_cgroup_tree(iter, memcg)
2851 val += mem_cgroup_read_stat(iter, idx);
2852
ce00a967
JW
2853 return val;
2854}
2855
6f646156 2856static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2857{
c12176d3 2858 unsigned long val;
ce00a967 2859
3e32cb2e
JW
2860 if (mem_cgroup_is_root(memcg)) {
2861 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2862 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2863 if (swap)
2864 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2865 } else {
ce00a967 2866 if (!swap)
3e32cb2e 2867 val = page_counter_read(&memcg->memory);
ce00a967 2868 else
3e32cb2e 2869 val = page_counter_read(&memcg->memsw);
ce00a967 2870 }
c12176d3 2871 return val;
ce00a967
JW
2872}
2873
3e32cb2e
JW
2874enum {
2875 RES_USAGE,
2876 RES_LIMIT,
2877 RES_MAX_USAGE,
2878 RES_FAILCNT,
2879 RES_SOFT_LIMIT,
2880};
ce00a967 2881
791badbd 2882static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2883 struct cftype *cft)
8cdea7c0 2884{
182446d0 2885 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2886 struct page_counter *counter;
af36f906 2887
3e32cb2e 2888 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2889 case _MEM:
3e32cb2e
JW
2890 counter = &memcg->memory;
2891 break;
8c7c6e34 2892 case _MEMSWAP:
3e32cb2e
JW
2893 counter = &memcg->memsw;
2894 break;
510fc4e1 2895 case _KMEM:
3e32cb2e 2896 counter = &memcg->kmem;
510fc4e1 2897 break;
8c7c6e34
KH
2898 default:
2899 BUG();
8c7c6e34 2900 }
3e32cb2e
JW
2901
2902 switch (MEMFILE_ATTR(cft->private)) {
2903 case RES_USAGE:
2904 if (counter == &memcg->memory)
c12176d3 2905 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2906 if (counter == &memcg->memsw)
c12176d3 2907 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2908 return (u64)page_counter_read(counter) * PAGE_SIZE;
2909 case RES_LIMIT:
2910 return (u64)counter->limit * PAGE_SIZE;
2911 case RES_MAX_USAGE:
2912 return (u64)counter->watermark * PAGE_SIZE;
2913 case RES_FAILCNT:
2914 return counter->failcnt;
2915 case RES_SOFT_LIMIT:
2916 return (u64)memcg->soft_limit * PAGE_SIZE;
2917 default:
2918 BUG();
2919 }
8cdea7c0 2920}
510fc4e1 2921
510fc4e1 2922#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2923static int memcg_activate_kmem(struct mem_cgroup *memcg,
2924 unsigned long nr_pages)
d6441637
VD
2925{
2926 int err = 0;
2927 int memcg_id;
2928
2a4db7eb 2929 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2930 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2931 BUG_ON(memcg->kmem_acct_active);
d6441637 2932
510fc4e1
GC
2933 /*
2934 * For simplicity, we won't allow this to be disabled. It also can't
2935 * be changed if the cgroup has children already, or if tasks had
2936 * already joined.
2937 *
2938 * If tasks join before we set the limit, a person looking at
2939 * kmem.usage_in_bytes will have no way to determine when it took
2940 * place, which makes the value quite meaningless.
2941 *
2942 * After it first became limited, changes in the value of the limit are
2943 * of course permitted.
510fc4e1 2944 */
0999821b 2945 mutex_lock(&memcg_create_mutex);
27bd4dbb 2946 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2947 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2948 err = -EBUSY;
2949 mutex_unlock(&memcg_create_mutex);
2950 if (err)
2951 goto out;
510fc4e1 2952
f3bb3043 2953 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2954 if (memcg_id < 0) {
2955 err = memcg_id;
2956 goto out;
2957 }
2958
d6441637 2959 /*
900a38f0
VD
2960 * We couldn't have accounted to this cgroup, because it hasn't got
2961 * activated yet, so this should succeed.
d6441637 2962 */
3e32cb2e 2963 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2964 VM_BUG_ON(err);
2965
2966 static_key_slow_inc(&memcg_kmem_enabled_key);
2967 /*
900a38f0
VD
2968 * A memory cgroup is considered kmem-active as soon as it gets
2969 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2970 * guarantee no one starts accounting before all call sites are
2971 * patched.
2972 */
900a38f0 2973 memcg->kmemcg_id = memcg_id;
2788cf0c 2974 memcg->kmem_acct_activated = true;
2a4db7eb 2975 memcg->kmem_acct_active = true;
510fc4e1 2976out:
d6441637 2977 return err;
d6441637
VD
2978}
2979
d6441637 2980static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2981 unsigned long limit)
d6441637
VD
2982{
2983 int ret;
2984
3e32cb2e 2985 mutex_lock(&memcg_limit_mutex);
d6441637 2986 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2987 ret = memcg_activate_kmem(memcg, limit);
d6441637 2988 else
3e32cb2e
JW
2989 ret = page_counter_limit(&memcg->kmem, limit);
2990 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2991 return ret;
2992}
2993
55007d84 2994static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2995{
55007d84 2996 int ret = 0;
510fc4e1 2997 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2998
d6441637
VD
2999 if (!parent)
3000 return 0;
55007d84 3001
8c0145b6 3002 mutex_lock(&memcg_limit_mutex);
55007d84 3003 /*
d6441637
VD
3004 * If the parent cgroup is not kmem-active now, it cannot be activated
3005 * after this point, because it has at least one child already.
55007d84 3006 */
d6441637 3007 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3008 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3009 mutex_unlock(&memcg_limit_mutex);
55007d84 3010 return ret;
510fc4e1 3011}
d6441637
VD
3012#else
3013static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3014 unsigned long limit)
d6441637
VD
3015{
3016 return -EINVAL;
3017}
6d043990 3018#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3019
628f4235
KH
3020/*
3021 * The user of this function is...
3022 * RES_LIMIT.
3023 */
451af504
TH
3024static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3025 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3026{
451af504 3027 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3028 unsigned long nr_pages;
628f4235
KH
3029 int ret;
3030
451af504 3031 buf = strstrip(buf);
650c5e56 3032 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3033 if (ret)
3034 return ret;
af36f906 3035
3e32cb2e 3036 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3037 case RES_LIMIT:
4b3bde4c
BS
3038 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3039 ret = -EINVAL;
3040 break;
3041 }
3e32cb2e
JW
3042 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3043 case _MEM:
3044 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3045 break;
3e32cb2e
JW
3046 case _MEMSWAP:
3047 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3048 break;
3e32cb2e
JW
3049 case _KMEM:
3050 ret = memcg_update_kmem_limit(memcg, nr_pages);
3051 break;
3052 }
296c81d8 3053 break;
3e32cb2e
JW
3054 case RES_SOFT_LIMIT:
3055 memcg->soft_limit = nr_pages;
3056 ret = 0;
628f4235
KH
3057 break;
3058 }
451af504 3059 return ret ?: nbytes;
8cdea7c0
BS
3060}
3061
6770c64e
TH
3062static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3063 size_t nbytes, loff_t off)
c84872e1 3064{
6770c64e 3065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3066 struct page_counter *counter;
c84872e1 3067
3e32cb2e
JW
3068 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3069 case _MEM:
3070 counter = &memcg->memory;
3071 break;
3072 case _MEMSWAP:
3073 counter = &memcg->memsw;
3074 break;
3075 case _KMEM:
3076 counter = &memcg->kmem;
3077 break;
3078 default:
3079 BUG();
3080 }
af36f906 3081
3e32cb2e 3082 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3083 case RES_MAX_USAGE:
3e32cb2e 3084 page_counter_reset_watermark(counter);
29f2a4da
PE
3085 break;
3086 case RES_FAILCNT:
3e32cb2e 3087 counter->failcnt = 0;
29f2a4da 3088 break;
3e32cb2e
JW
3089 default:
3090 BUG();
29f2a4da 3091 }
f64c3f54 3092
6770c64e 3093 return nbytes;
c84872e1
PE
3094}
3095
182446d0 3096static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3097 struct cftype *cft)
3098{
182446d0 3099 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3100}
3101
02491447 3102#ifdef CONFIG_MMU
182446d0 3103static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3104 struct cftype *cft, u64 val)
3105{
182446d0 3106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3107
1dfab5ab 3108 if (val & ~MOVE_MASK)
7dc74be0 3109 return -EINVAL;
ee5e8472 3110
7dc74be0 3111 /*
ee5e8472
GC
3112 * No kind of locking is needed in here, because ->can_attach() will
3113 * check this value once in the beginning of the process, and then carry
3114 * on with stale data. This means that changes to this value will only
3115 * affect task migrations starting after the change.
7dc74be0 3116 */
c0ff4b85 3117 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3118 return 0;
3119}
02491447 3120#else
182446d0 3121static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3122 struct cftype *cft, u64 val)
3123{
3124 return -ENOSYS;
3125}
3126#endif
7dc74be0 3127
406eb0c9 3128#ifdef CONFIG_NUMA
2da8ca82 3129static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3130{
25485de6
GT
3131 struct numa_stat {
3132 const char *name;
3133 unsigned int lru_mask;
3134 };
3135
3136 static const struct numa_stat stats[] = {
3137 { "total", LRU_ALL },
3138 { "file", LRU_ALL_FILE },
3139 { "anon", LRU_ALL_ANON },
3140 { "unevictable", BIT(LRU_UNEVICTABLE) },
3141 };
3142 const struct numa_stat *stat;
406eb0c9 3143 int nid;
25485de6 3144 unsigned long nr;
2da8ca82 3145 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3146
25485de6
GT
3147 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3148 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3149 seq_printf(m, "%s=%lu", stat->name, nr);
3150 for_each_node_state(nid, N_MEMORY) {
3151 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3152 stat->lru_mask);
3153 seq_printf(m, " N%d=%lu", nid, nr);
3154 }
3155 seq_putc(m, '\n');
406eb0c9 3156 }
406eb0c9 3157
071aee13
YH
3158 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3159 struct mem_cgroup *iter;
3160
3161 nr = 0;
3162 for_each_mem_cgroup_tree(iter, memcg)
3163 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3164 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3165 for_each_node_state(nid, N_MEMORY) {
3166 nr = 0;
3167 for_each_mem_cgroup_tree(iter, memcg)
3168 nr += mem_cgroup_node_nr_lru_pages(
3169 iter, nid, stat->lru_mask);
3170 seq_printf(m, " N%d=%lu", nid, nr);
3171 }
3172 seq_putc(m, '\n');
406eb0c9 3173 }
406eb0c9 3174
406eb0c9
YH
3175 return 0;
3176}
3177#endif /* CONFIG_NUMA */
3178
2da8ca82 3179static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3180{
2da8ca82 3181 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3182 unsigned long memory, memsw;
af7c4b0e
JW
3183 struct mem_cgroup *mi;
3184 unsigned int i;
406eb0c9 3185
0ca44b14
GT
3186 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3187 MEM_CGROUP_STAT_NSTATS);
3188 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3189 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3190 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3191
af7c4b0e 3192 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3193 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3194 continue;
484ebb3b 3195 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3196 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3197 }
7b854121 3198
af7c4b0e
JW
3199 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3200 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3201 mem_cgroup_read_events(memcg, i));
3202
3203 for (i = 0; i < NR_LRU_LISTS; i++)
3204 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3205 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3206
14067bb3 3207 /* Hierarchical information */
3e32cb2e
JW
3208 memory = memsw = PAGE_COUNTER_MAX;
3209 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3210 memory = min(memory, mi->memory.limit);
3211 memsw = min(memsw, mi->memsw.limit);
fee7b548 3212 }
3e32cb2e
JW
3213 seq_printf(m, "hierarchical_memory_limit %llu\n",
3214 (u64)memory * PAGE_SIZE);
7941d214 3215 if (do_memsw_account())
3e32cb2e
JW
3216 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3217 (u64)memsw * PAGE_SIZE);
7f016ee8 3218
af7c4b0e 3219 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3220 unsigned long long val = 0;
af7c4b0e 3221
7941d214 3222 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3223 continue;
af7c4b0e
JW
3224 for_each_mem_cgroup_tree(mi, memcg)
3225 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3226 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3227 }
3228
3229 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3230 unsigned long long val = 0;
3231
3232 for_each_mem_cgroup_tree(mi, memcg)
3233 val += mem_cgroup_read_events(mi, i);
3234 seq_printf(m, "total_%s %llu\n",
3235 mem_cgroup_events_names[i], val);
3236 }
3237
3238 for (i = 0; i < NR_LRU_LISTS; i++) {
3239 unsigned long long val = 0;
3240
3241 for_each_mem_cgroup_tree(mi, memcg)
3242 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3243 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3244 }
14067bb3 3245
7f016ee8 3246#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3247 {
3248 int nid, zid;
3249 struct mem_cgroup_per_zone *mz;
89abfab1 3250 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3251 unsigned long recent_rotated[2] = {0, 0};
3252 unsigned long recent_scanned[2] = {0, 0};
3253
3254 for_each_online_node(nid)
3255 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3256 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3257 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3258
89abfab1
HD
3259 recent_rotated[0] += rstat->recent_rotated[0];
3260 recent_rotated[1] += rstat->recent_rotated[1];
3261 recent_scanned[0] += rstat->recent_scanned[0];
3262 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3263 }
78ccf5b5
JW
3264 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3265 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3266 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3267 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3268 }
3269#endif
3270
d2ceb9b7
KH
3271 return 0;
3272}
3273
182446d0
TH
3274static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3275 struct cftype *cft)
a7885eb8 3276{
182446d0 3277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3278
1f4c025b 3279 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3280}
3281
182446d0
TH
3282static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3283 struct cftype *cft, u64 val)
a7885eb8 3284{
182446d0 3285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3286
3dae7fec 3287 if (val > 100)
a7885eb8
KM
3288 return -EINVAL;
3289
14208b0e 3290 if (css->parent)
3dae7fec
JW
3291 memcg->swappiness = val;
3292 else
3293 vm_swappiness = val;
068b38c1 3294
a7885eb8
KM
3295 return 0;
3296}
3297
2e72b634
KS
3298static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3299{
3300 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3301 unsigned long usage;
2e72b634
KS
3302 int i;
3303
3304 rcu_read_lock();
3305 if (!swap)
2c488db2 3306 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3307 else
2c488db2 3308 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3309
3310 if (!t)
3311 goto unlock;
3312
ce00a967 3313 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3314
3315 /*
748dad36 3316 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3317 * If it's not true, a threshold was crossed after last
3318 * call of __mem_cgroup_threshold().
3319 */
5407a562 3320 i = t->current_threshold;
2e72b634
KS
3321
3322 /*
3323 * Iterate backward over array of thresholds starting from
3324 * current_threshold and check if a threshold is crossed.
3325 * If none of thresholds below usage is crossed, we read
3326 * only one element of the array here.
3327 */
3328 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3329 eventfd_signal(t->entries[i].eventfd, 1);
3330
3331 /* i = current_threshold + 1 */
3332 i++;
3333
3334 /*
3335 * Iterate forward over array of thresholds starting from
3336 * current_threshold+1 and check if a threshold is crossed.
3337 * If none of thresholds above usage is crossed, we read
3338 * only one element of the array here.
3339 */
3340 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3341 eventfd_signal(t->entries[i].eventfd, 1);
3342
3343 /* Update current_threshold */
5407a562 3344 t->current_threshold = i - 1;
2e72b634
KS
3345unlock:
3346 rcu_read_unlock();
3347}
3348
3349static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3350{
ad4ca5f4
KS
3351 while (memcg) {
3352 __mem_cgroup_threshold(memcg, false);
7941d214 3353 if (do_memsw_account())
ad4ca5f4
KS
3354 __mem_cgroup_threshold(memcg, true);
3355
3356 memcg = parent_mem_cgroup(memcg);
3357 }
2e72b634
KS
3358}
3359
3360static int compare_thresholds(const void *a, const void *b)
3361{
3362 const struct mem_cgroup_threshold *_a = a;
3363 const struct mem_cgroup_threshold *_b = b;
3364
2bff24a3
GT
3365 if (_a->threshold > _b->threshold)
3366 return 1;
3367
3368 if (_a->threshold < _b->threshold)
3369 return -1;
3370
3371 return 0;
2e72b634
KS
3372}
3373
c0ff4b85 3374static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3375{
3376 struct mem_cgroup_eventfd_list *ev;
3377
2bcf2e92
MH
3378 spin_lock(&memcg_oom_lock);
3379
c0ff4b85 3380 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3381 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3382
3383 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3384 return 0;
3385}
3386
c0ff4b85 3387static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3388{
7d74b06f
KH
3389 struct mem_cgroup *iter;
3390
c0ff4b85 3391 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3392 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3393}
3394
59b6f873 3395static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3396 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3397{
2c488db2
KS
3398 struct mem_cgroup_thresholds *thresholds;
3399 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3400 unsigned long threshold;
3401 unsigned long usage;
2c488db2 3402 int i, size, ret;
2e72b634 3403
650c5e56 3404 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3405 if (ret)
3406 return ret;
3407
3408 mutex_lock(&memcg->thresholds_lock);
2c488db2 3409
05b84301 3410 if (type == _MEM) {
2c488db2 3411 thresholds = &memcg->thresholds;
ce00a967 3412 usage = mem_cgroup_usage(memcg, false);
05b84301 3413 } else if (type == _MEMSWAP) {
2c488db2 3414 thresholds = &memcg->memsw_thresholds;
ce00a967 3415 usage = mem_cgroup_usage(memcg, true);
05b84301 3416 } else
2e72b634
KS
3417 BUG();
3418
2e72b634 3419 /* Check if a threshold crossed before adding a new one */
2c488db2 3420 if (thresholds->primary)
2e72b634
KS
3421 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3422
2c488db2 3423 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3424
3425 /* Allocate memory for new array of thresholds */
2c488db2 3426 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3427 GFP_KERNEL);
2c488db2 3428 if (!new) {
2e72b634
KS
3429 ret = -ENOMEM;
3430 goto unlock;
3431 }
2c488db2 3432 new->size = size;
2e72b634
KS
3433
3434 /* Copy thresholds (if any) to new array */
2c488db2
KS
3435 if (thresholds->primary) {
3436 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3437 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3438 }
3439
2e72b634 3440 /* Add new threshold */
2c488db2
KS
3441 new->entries[size - 1].eventfd = eventfd;
3442 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3443
3444 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3445 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3446 compare_thresholds, NULL);
3447
3448 /* Find current threshold */
2c488db2 3449 new->current_threshold = -1;
2e72b634 3450 for (i = 0; i < size; i++) {
748dad36 3451 if (new->entries[i].threshold <= usage) {
2e72b634 3452 /*
2c488db2
KS
3453 * new->current_threshold will not be used until
3454 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3455 * it here.
3456 */
2c488db2 3457 ++new->current_threshold;
748dad36
SZ
3458 } else
3459 break;
2e72b634
KS
3460 }
3461
2c488db2
KS
3462 /* Free old spare buffer and save old primary buffer as spare */
3463 kfree(thresholds->spare);
3464 thresholds->spare = thresholds->primary;
3465
3466 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3467
907860ed 3468 /* To be sure that nobody uses thresholds */
2e72b634
KS
3469 synchronize_rcu();
3470
2e72b634
KS
3471unlock:
3472 mutex_unlock(&memcg->thresholds_lock);
3473
3474 return ret;
3475}
3476
59b6f873 3477static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3478 struct eventfd_ctx *eventfd, const char *args)
3479{
59b6f873 3480 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3481}
3482
59b6f873 3483static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3484 struct eventfd_ctx *eventfd, const char *args)
3485{
59b6f873 3486 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3487}
3488
59b6f873 3489static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3490 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3491{
2c488db2
KS
3492 struct mem_cgroup_thresholds *thresholds;
3493 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3494 unsigned long usage;
2c488db2 3495 int i, j, size;
2e72b634
KS
3496
3497 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3498
3499 if (type == _MEM) {
2c488db2 3500 thresholds = &memcg->thresholds;
ce00a967 3501 usage = mem_cgroup_usage(memcg, false);
05b84301 3502 } else if (type == _MEMSWAP) {
2c488db2 3503 thresholds = &memcg->memsw_thresholds;
ce00a967 3504 usage = mem_cgroup_usage(memcg, true);
05b84301 3505 } else
2e72b634
KS
3506 BUG();
3507
371528ca
AV
3508 if (!thresholds->primary)
3509 goto unlock;
3510
2e72b634
KS
3511 /* Check if a threshold crossed before removing */
3512 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3513
3514 /* Calculate new number of threshold */
2c488db2
KS
3515 size = 0;
3516 for (i = 0; i < thresholds->primary->size; i++) {
3517 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3518 size++;
3519 }
3520
2c488db2 3521 new = thresholds->spare;
907860ed 3522
2e72b634
KS
3523 /* Set thresholds array to NULL if we don't have thresholds */
3524 if (!size) {
2c488db2
KS
3525 kfree(new);
3526 new = NULL;
907860ed 3527 goto swap_buffers;
2e72b634
KS
3528 }
3529
2c488db2 3530 new->size = size;
2e72b634
KS
3531
3532 /* Copy thresholds and find current threshold */
2c488db2
KS
3533 new->current_threshold = -1;
3534 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3535 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3536 continue;
3537
2c488db2 3538 new->entries[j] = thresholds->primary->entries[i];
748dad36 3539 if (new->entries[j].threshold <= usage) {
2e72b634 3540 /*
2c488db2 3541 * new->current_threshold will not be used
2e72b634
KS
3542 * until rcu_assign_pointer(), so it's safe to increment
3543 * it here.
3544 */
2c488db2 3545 ++new->current_threshold;
2e72b634
KS
3546 }
3547 j++;
3548 }
3549
907860ed 3550swap_buffers:
2c488db2
KS
3551 /* Swap primary and spare array */
3552 thresholds->spare = thresholds->primary;
8c757763
SZ
3553 /* If all events are unregistered, free the spare array */
3554 if (!new) {
3555 kfree(thresholds->spare);
3556 thresholds->spare = NULL;
3557 }
3558
2c488db2 3559 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3560
907860ed 3561 /* To be sure that nobody uses thresholds */
2e72b634 3562 synchronize_rcu();
371528ca 3563unlock:
2e72b634 3564 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3565}
c1e862c1 3566
59b6f873 3567static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3568 struct eventfd_ctx *eventfd)
3569{
59b6f873 3570 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3571}
3572
59b6f873 3573static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3574 struct eventfd_ctx *eventfd)
3575{
59b6f873 3576 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3577}
3578
59b6f873 3579static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3580 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3581{
9490ff27 3582 struct mem_cgroup_eventfd_list *event;
9490ff27 3583
9490ff27
KH
3584 event = kmalloc(sizeof(*event), GFP_KERNEL);
3585 if (!event)
3586 return -ENOMEM;
3587
1af8efe9 3588 spin_lock(&memcg_oom_lock);
9490ff27
KH
3589
3590 event->eventfd = eventfd;
3591 list_add(&event->list, &memcg->oom_notify);
3592
3593 /* already in OOM ? */
c2b42d3c 3594 if (memcg->under_oom)
9490ff27 3595 eventfd_signal(eventfd, 1);
1af8efe9 3596 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3597
3598 return 0;
3599}
3600
59b6f873 3601static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3602 struct eventfd_ctx *eventfd)
9490ff27 3603{
9490ff27 3604 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3605
1af8efe9 3606 spin_lock(&memcg_oom_lock);
9490ff27 3607
c0ff4b85 3608 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3609 if (ev->eventfd == eventfd) {
3610 list_del(&ev->list);
3611 kfree(ev);
3612 }
3613 }
3614
1af8efe9 3615 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3616}
3617
2da8ca82 3618static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3619{
2da8ca82 3620 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3621
791badbd 3622 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3623 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3624 return 0;
3625}
3626
182446d0 3627static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3628 struct cftype *cft, u64 val)
3629{
182446d0 3630 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3631
3632 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3633 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3634 return -EINVAL;
3635
c0ff4b85 3636 memcg->oom_kill_disable = val;
4d845ebf 3637 if (!val)
c0ff4b85 3638 memcg_oom_recover(memcg);
3dae7fec 3639
3c11ecf4
KH
3640 return 0;
3641}
3642
c255a458 3643#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3644static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3645{
55007d84
GC
3646 int ret;
3647
55007d84
GC
3648 ret = memcg_propagate_kmem(memcg);
3649 if (ret)
3650 return ret;
2633d7a0 3651
baac50bb 3652 return tcp_init_cgroup(memcg, ss);
573b400d 3653}
e5671dfa 3654
2a4db7eb
VD
3655static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3656{
2788cf0c
VD
3657 struct cgroup_subsys_state *css;
3658 struct mem_cgroup *parent, *child;
3659 int kmemcg_id;
3660
2a4db7eb
VD
3661 if (!memcg->kmem_acct_active)
3662 return;
3663
3664 /*
3665 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3666 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3667 * guarantees no cache will be created for this cgroup after we are
3668 * done (see memcg_create_kmem_cache()).
3669 */
3670 memcg->kmem_acct_active = false;
3671
3672 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3673
3674 kmemcg_id = memcg->kmemcg_id;
3675 BUG_ON(kmemcg_id < 0);
3676
3677 parent = parent_mem_cgroup(memcg);
3678 if (!parent)
3679 parent = root_mem_cgroup;
3680
3681 /*
3682 * Change kmemcg_id of this cgroup and all its descendants to the
3683 * parent's id, and then move all entries from this cgroup's list_lrus
3684 * to ones of the parent. After we have finished, all list_lrus
3685 * corresponding to this cgroup are guaranteed to remain empty. The
3686 * ordering is imposed by list_lru_node->lock taken by
3687 * memcg_drain_all_list_lrus().
3688 */
3689 css_for_each_descendant_pre(css, &memcg->css) {
3690 child = mem_cgroup_from_css(css);
3691 BUG_ON(child->kmemcg_id != kmemcg_id);
3692 child->kmemcg_id = parent->kmemcg_id;
3693 if (!memcg->use_hierarchy)
3694 break;
3695 }
3696 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3697
3698 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3699}
3700
10d5ebf4 3701static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3702{
f48b80a5
VD
3703 if (memcg->kmem_acct_activated) {
3704 memcg_destroy_kmem_caches(memcg);
3705 static_key_slow_dec(&memcg_kmem_enabled_key);
3706 WARN_ON(page_counter_read(&memcg->kmem));
3707 }
baac50bb 3708 tcp_destroy_cgroup(memcg);
10d5ebf4 3709}
e5671dfa 3710#else
cbe128e3 3711static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3712{
3713 return 0;
3714}
d1a4c0b3 3715
2a4db7eb
VD
3716static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3717{
3718}
3719
10d5ebf4
LZ
3720static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3721{
3722}
e5671dfa
GC
3723#endif
3724
52ebea74
TH
3725#ifdef CONFIG_CGROUP_WRITEBACK
3726
3727struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3728{
3729 return &memcg->cgwb_list;
3730}
3731
841710aa
TH
3732static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3733{
3734 return wb_domain_init(&memcg->cgwb_domain, gfp);
3735}
3736
3737static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3738{
3739 wb_domain_exit(&memcg->cgwb_domain);
3740}
3741
2529bb3a
TH
3742static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3743{
3744 wb_domain_size_changed(&memcg->cgwb_domain);
3745}
3746
841710aa
TH
3747struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3748{
3749 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3750
3751 if (!memcg->css.parent)
3752 return NULL;
3753
3754 return &memcg->cgwb_domain;
3755}
3756
c2aa723a
TH
3757/**
3758 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3759 * @wb: bdi_writeback in question
c5edf9cd
TH
3760 * @pfilepages: out parameter for number of file pages
3761 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3762 * @pdirty: out parameter for number of dirty pages
3763 * @pwriteback: out parameter for number of pages under writeback
3764 *
c5edf9cd
TH
3765 * Determine the numbers of file, headroom, dirty, and writeback pages in
3766 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3767 * is a bit more involved.
c2aa723a 3768 *
c5edf9cd
TH
3769 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3770 * headroom is calculated as the lowest headroom of itself and the
3771 * ancestors. Note that this doesn't consider the actual amount of
3772 * available memory in the system. The caller should further cap
3773 * *@pheadroom accordingly.
c2aa723a 3774 */
c5edf9cd
TH
3775void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3776 unsigned long *pheadroom, unsigned long *pdirty,
3777 unsigned long *pwriteback)
c2aa723a
TH
3778{
3779 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3780 struct mem_cgroup *parent;
c2aa723a
TH
3781
3782 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3783
3784 /* this should eventually include NR_UNSTABLE_NFS */
3785 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3786 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3787 (1 << LRU_ACTIVE_FILE));
3788 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3789
c2aa723a
TH
3790 while ((parent = parent_mem_cgroup(memcg))) {
3791 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3792 unsigned long used = page_counter_read(&memcg->memory);
3793
c5edf9cd 3794 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3795 memcg = parent;
3796 }
c2aa723a
TH
3797}
3798
841710aa
TH
3799#else /* CONFIG_CGROUP_WRITEBACK */
3800
3801static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3802{
3803 return 0;
3804}
3805
3806static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3807{
3808}
3809
2529bb3a
TH
3810static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3811{
3812}
3813
52ebea74
TH
3814#endif /* CONFIG_CGROUP_WRITEBACK */
3815
3bc942f3
TH
3816/*
3817 * DO NOT USE IN NEW FILES.
3818 *
3819 * "cgroup.event_control" implementation.
3820 *
3821 * This is way over-engineered. It tries to support fully configurable
3822 * events for each user. Such level of flexibility is completely
3823 * unnecessary especially in the light of the planned unified hierarchy.
3824 *
3825 * Please deprecate this and replace with something simpler if at all
3826 * possible.
3827 */
3828
79bd9814
TH
3829/*
3830 * Unregister event and free resources.
3831 *
3832 * Gets called from workqueue.
3833 */
3bc942f3 3834static void memcg_event_remove(struct work_struct *work)
79bd9814 3835{
3bc942f3
TH
3836 struct mem_cgroup_event *event =
3837 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3838 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3839
3840 remove_wait_queue(event->wqh, &event->wait);
3841
59b6f873 3842 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3843
3844 /* Notify userspace the event is going away. */
3845 eventfd_signal(event->eventfd, 1);
3846
3847 eventfd_ctx_put(event->eventfd);
3848 kfree(event);
59b6f873 3849 css_put(&memcg->css);
79bd9814
TH
3850}
3851
3852/*
3853 * Gets called on POLLHUP on eventfd when user closes it.
3854 *
3855 * Called with wqh->lock held and interrupts disabled.
3856 */
3bc942f3
TH
3857static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3858 int sync, void *key)
79bd9814 3859{
3bc942f3
TH
3860 struct mem_cgroup_event *event =
3861 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3862 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3863 unsigned long flags = (unsigned long)key;
3864
3865 if (flags & POLLHUP) {
3866 /*
3867 * If the event has been detached at cgroup removal, we
3868 * can simply return knowing the other side will cleanup
3869 * for us.
3870 *
3871 * We can't race against event freeing since the other
3872 * side will require wqh->lock via remove_wait_queue(),
3873 * which we hold.
3874 */
fba94807 3875 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3876 if (!list_empty(&event->list)) {
3877 list_del_init(&event->list);
3878 /*
3879 * We are in atomic context, but cgroup_event_remove()
3880 * may sleep, so we have to call it in workqueue.
3881 */
3882 schedule_work(&event->remove);
3883 }
fba94807 3884 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3885 }
3886
3887 return 0;
3888}
3889
3bc942f3 3890static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3891 wait_queue_head_t *wqh, poll_table *pt)
3892{
3bc942f3
TH
3893 struct mem_cgroup_event *event =
3894 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3895
3896 event->wqh = wqh;
3897 add_wait_queue(wqh, &event->wait);
3898}
3899
3900/*
3bc942f3
TH
3901 * DO NOT USE IN NEW FILES.
3902 *
79bd9814
TH
3903 * Parse input and register new cgroup event handler.
3904 *
3905 * Input must be in format '<event_fd> <control_fd> <args>'.
3906 * Interpretation of args is defined by control file implementation.
3907 */
451af504
TH
3908static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3909 char *buf, size_t nbytes, loff_t off)
79bd9814 3910{
451af504 3911 struct cgroup_subsys_state *css = of_css(of);
fba94807 3912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3913 struct mem_cgroup_event *event;
79bd9814
TH
3914 struct cgroup_subsys_state *cfile_css;
3915 unsigned int efd, cfd;
3916 struct fd efile;
3917 struct fd cfile;
fba94807 3918 const char *name;
79bd9814
TH
3919 char *endp;
3920 int ret;
3921
451af504
TH
3922 buf = strstrip(buf);
3923
3924 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3925 if (*endp != ' ')
3926 return -EINVAL;
451af504 3927 buf = endp + 1;
79bd9814 3928
451af504 3929 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3930 if ((*endp != ' ') && (*endp != '\0'))
3931 return -EINVAL;
451af504 3932 buf = endp + 1;
79bd9814
TH
3933
3934 event = kzalloc(sizeof(*event), GFP_KERNEL);
3935 if (!event)
3936 return -ENOMEM;
3937
59b6f873 3938 event->memcg = memcg;
79bd9814 3939 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3940 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3941 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3942 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3943
3944 efile = fdget(efd);
3945 if (!efile.file) {
3946 ret = -EBADF;
3947 goto out_kfree;
3948 }
3949
3950 event->eventfd = eventfd_ctx_fileget(efile.file);
3951 if (IS_ERR(event->eventfd)) {
3952 ret = PTR_ERR(event->eventfd);
3953 goto out_put_efile;
3954 }
3955
3956 cfile = fdget(cfd);
3957 if (!cfile.file) {
3958 ret = -EBADF;
3959 goto out_put_eventfd;
3960 }
3961
3962 /* the process need read permission on control file */
3963 /* AV: shouldn't we check that it's been opened for read instead? */
3964 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3965 if (ret < 0)
3966 goto out_put_cfile;
3967
fba94807
TH
3968 /*
3969 * Determine the event callbacks and set them in @event. This used
3970 * to be done via struct cftype but cgroup core no longer knows
3971 * about these events. The following is crude but the whole thing
3972 * is for compatibility anyway.
3bc942f3
TH
3973 *
3974 * DO NOT ADD NEW FILES.
fba94807 3975 */
b583043e 3976 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3977
3978 if (!strcmp(name, "memory.usage_in_bytes")) {
3979 event->register_event = mem_cgroup_usage_register_event;
3980 event->unregister_event = mem_cgroup_usage_unregister_event;
3981 } else if (!strcmp(name, "memory.oom_control")) {
3982 event->register_event = mem_cgroup_oom_register_event;
3983 event->unregister_event = mem_cgroup_oom_unregister_event;
3984 } else if (!strcmp(name, "memory.pressure_level")) {
3985 event->register_event = vmpressure_register_event;
3986 event->unregister_event = vmpressure_unregister_event;
3987 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3988 event->register_event = memsw_cgroup_usage_register_event;
3989 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3990 } else {
3991 ret = -EINVAL;
3992 goto out_put_cfile;
3993 }
3994
79bd9814 3995 /*
b5557c4c
TH
3996 * Verify @cfile should belong to @css. Also, remaining events are
3997 * automatically removed on cgroup destruction but the removal is
3998 * asynchronous, so take an extra ref on @css.
79bd9814 3999 */
b583043e 4000 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4001 &memory_cgrp_subsys);
79bd9814 4002 ret = -EINVAL;
5a17f543 4003 if (IS_ERR(cfile_css))
79bd9814 4004 goto out_put_cfile;
5a17f543
TH
4005 if (cfile_css != css) {
4006 css_put(cfile_css);
79bd9814 4007 goto out_put_cfile;
5a17f543 4008 }
79bd9814 4009
451af504 4010 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4011 if (ret)
4012 goto out_put_css;
4013
4014 efile.file->f_op->poll(efile.file, &event->pt);
4015
fba94807
TH
4016 spin_lock(&memcg->event_list_lock);
4017 list_add(&event->list, &memcg->event_list);
4018 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4019
4020 fdput(cfile);
4021 fdput(efile);
4022
451af504 4023 return nbytes;
79bd9814
TH
4024
4025out_put_css:
b5557c4c 4026 css_put(css);
79bd9814
TH
4027out_put_cfile:
4028 fdput(cfile);
4029out_put_eventfd:
4030 eventfd_ctx_put(event->eventfd);
4031out_put_efile:
4032 fdput(efile);
4033out_kfree:
4034 kfree(event);
4035
4036 return ret;
4037}
4038
241994ed 4039static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4040 {
0eea1030 4041 .name = "usage_in_bytes",
8c7c6e34 4042 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4043 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4044 },
c84872e1
PE
4045 {
4046 .name = "max_usage_in_bytes",
8c7c6e34 4047 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4048 .write = mem_cgroup_reset,
791badbd 4049 .read_u64 = mem_cgroup_read_u64,
c84872e1 4050 },
8cdea7c0 4051 {
0eea1030 4052 .name = "limit_in_bytes",
8c7c6e34 4053 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4054 .write = mem_cgroup_write,
791badbd 4055 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4056 },
296c81d8
BS
4057 {
4058 .name = "soft_limit_in_bytes",
4059 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4060 .write = mem_cgroup_write,
791badbd 4061 .read_u64 = mem_cgroup_read_u64,
296c81d8 4062 },
8cdea7c0
BS
4063 {
4064 .name = "failcnt",
8c7c6e34 4065 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4066 .write = mem_cgroup_reset,
791badbd 4067 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4068 },
d2ceb9b7
KH
4069 {
4070 .name = "stat",
2da8ca82 4071 .seq_show = memcg_stat_show,
d2ceb9b7 4072 },
c1e862c1
KH
4073 {
4074 .name = "force_empty",
6770c64e 4075 .write = mem_cgroup_force_empty_write,
c1e862c1 4076 },
18f59ea7
BS
4077 {
4078 .name = "use_hierarchy",
4079 .write_u64 = mem_cgroup_hierarchy_write,
4080 .read_u64 = mem_cgroup_hierarchy_read,
4081 },
79bd9814 4082 {
3bc942f3 4083 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4084 .write = memcg_write_event_control,
7dbdb199 4085 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4086 },
a7885eb8
KM
4087 {
4088 .name = "swappiness",
4089 .read_u64 = mem_cgroup_swappiness_read,
4090 .write_u64 = mem_cgroup_swappiness_write,
4091 },
7dc74be0
DN
4092 {
4093 .name = "move_charge_at_immigrate",
4094 .read_u64 = mem_cgroup_move_charge_read,
4095 .write_u64 = mem_cgroup_move_charge_write,
4096 },
9490ff27
KH
4097 {
4098 .name = "oom_control",
2da8ca82 4099 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4100 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4101 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4102 },
70ddf637
AV
4103 {
4104 .name = "pressure_level",
70ddf637 4105 },
406eb0c9
YH
4106#ifdef CONFIG_NUMA
4107 {
4108 .name = "numa_stat",
2da8ca82 4109 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4110 },
4111#endif
510fc4e1
GC
4112#ifdef CONFIG_MEMCG_KMEM
4113 {
4114 .name = "kmem.limit_in_bytes",
4115 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4116 .write = mem_cgroup_write,
791badbd 4117 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4118 },
4119 {
4120 .name = "kmem.usage_in_bytes",
4121 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4122 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4123 },
4124 {
4125 .name = "kmem.failcnt",
4126 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4127 .write = mem_cgroup_reset,
791badbd 4128 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4129 },
4130 {
4131 .name = "kmem.max_usage_in_bytes",
4132 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4133 .write = mem_cgroup_reset,
791badbd 4134 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4135 },
749c5415
GC
4136#ifdef CONFIG_SLABINFO
4137 {
4138 .name = "kmem.slabinfo",
b047501c
VD
4139 .seq_start = slab_start,
4140 .seq_next = slab_next,
4141 .seq_stop = slab_stop,
4142 .seq_show = memcg_slab_show,
749c5415
GC
4143 },
4144#endif
8c7c6e34 4145#endif
6bc10349 4146 { }, /* terminate */
af36f906 4147};
8c7c6e34 4148
c0ff4b85 4149static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4150{
4151 struct mem_cgroup_per_node *pn;
1ecaab2b 4152 struct mem_cgroup_per_zone *mz;
41e3355d 4153 int zone, tmp = node;
1ecaab2b
KH
4154 /*
4155 * This routine is called against possible nodes.
4156 * But it's BUG to call kmalloc() against offline node.
4157 *
4158 * TODO: this routine can waste much memory for nodes which will
4159 * never be onlined. It's better to use memory hotplug callback
4160 * function.
4161 */
41e3355d
KH
4162 if (!node_state(node, N_NORMAL_MEMORY))
4163 tmp = -1;
17295c88 4164 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4165 if (!pn)
4166 return 1;
1ecaab2b 4167
1ecaab2b
KH
4168 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4169 mz = &pn->zoneinfo[zone];
bea8c150 4170 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4171 mz->usage_in_excess = 0;
4172 mz->on_tree = false;
d79154bb 4173 mz->memcg = memcg;
1ecaab2b 4174 }
54f72fe0 4175 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4176 return 0;
4177}
4178
c0ff4b85 4179static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4180{
54f72fe0 4181 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4182}
4183
33327948
KH
4184static struct mem_cgroup *mem_cgroup_alloc(void)
4185{
d79154bb 4186 struct mem_cgroup *memcg;
8ff69e2c 4187 size_t size;
33327948 4188
8ff69e2c
VD
4189 size = sizeof(struct mem_cgroup);
4190 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4191
8ff69e2c 4192 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4193 if (!memcg)
e7bbcdf3
DC
4194 return NULL;
4195
d79154bb
HD
4196 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4197 if (!memcg->stat)
d2e61b8d 4198 goto out_free;
841710aa
TH
4199
4200 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4201 goto out_free_stat;
4202
d79154bb 4203 return memcg;
d2e61b8d 4204
841710aa
TH
4205out_free_stat:
4206 free_percpu(memcg->stat);
d2e61b8d 4207out_free:
8ff69e2c 4208 kfree(memcg);
d2e61b8d 4209 return NULL;
33327948
KH
4210}
4211
59927fb9 4212/*
c8b2a36f
GC
4213 * At destroying mem_cgroup, references from swap_cgroup can remain.
4214 * (scanning all at force_empty is too costly...)
4215 *
4216 * Instead of clearing all references at force_empty, we remember
4217 * the number of reference from swap_cgroup and free mem_cgroup when
4218 * it goes down to 0.
4219 *
4220 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4221 */
c8b2a36f
GC
4222
4223static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4224{
c8b2a36f 4225 int node;
59927fb9 4226
bb4cc1a8 4227 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4228
4229 for_each_node(node)
4230 free_mem_cgroup_per_zone_info(memcg, node);
4231
4232 free_percpu(memcg->stat);
841710aa 4233 memcg_wb_domain_exit(memcg);
8ff69e2c 4234 kfree(memcg);
59927fb9 4235}
3afe36b1 4236
7bcc1bb1
DN
4237/*
4238 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4239 */
e1aab161 4240struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4241{
3e32cb2e 4242 if (!memcg->memory.parent)
7bcc1bb1 4243 return NULL;
3e32cb2e 4244 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4245}
e1aab161 4246EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4247
0eb253e2 4248static struct cgroup_subsys_state * __ref
eb95419b 4249mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4250{
d142e3e6 4251 struct mem_cgroup *memcg;
04046e1a 4252 long error = -ENOMEM;
6d12e2d8 4253 int node;
8cdea7c0 4254
c0ff4b85
R
4255 memcg = mem_cgroup_alloc();
4256 if (!memcg)
04046e1a 4257 return ERR_PTR(error);
78fb7466 4258
3ed28fa1 4259 for_each_node(node)
c0ff4b85 4260 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4261 goto free_out;
f64c3f54 4262
c077719b 4263 /* root ? */
eb95419b 4264 if (parent_css == NULL) {
a41c58a6 4265 root_mem_cgroup = memcg;
3e32cb2e 4266 page_counter_init(&memcg->memory, NULL);
241994ed 4267 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4268 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4269 page_counter_init(&memcg->memsw, NULL);
4270 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4271 }
28dbc4b6 4272
d142e3e6
GC
4273 memcg->last_scanned_node = MAX_NUMNODES;
4274 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4275 memcg->move_charge_at_immigrate = 0;
4276 mutex_init(&memcg->thresholds_lock);
4277 spin_lock_init(&memcg->move_lock);
70ddf637 4278 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4279 INIT_LIST_HEAD(&memcg->event_list);
4280 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4281#ifdef CONFIG_MEMCG_KMEM
4282 memcg->kmemcg_id = -1;
900a38f0 4283#endif
52ebea74
TH
4284#ifdef CONFIG_CGROUP_WRITEBACK
4285 INIT_LIST_HEAD(&memcg->cgwb_list);
4286#endif
d142e3e6
GC
4287 return &memcg->css;
4288
4289free_out:
4290 __mem_cgroup_free(memcg);
4291 return ERR_PTR(error);
4292}
4293
4294static int
eb95419b 4295mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4296{
eb95419b 4297 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4298 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4299 int ret;
d142e3e6 4300
15a4c835 4301 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4302 return -ENOSPC;
4303
63876986 4304 if (!parent)
d142e3e6
GC
4305 return 0;
4306
0999821b 4307 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4308
4309 memcg->use_hierarchy = parent->use_hierarchy;
4310 memcg->oom_kill_disable = parent->oom_kill_disable;
4311 memcg->swappiness = mem_cgroup_swappiness(parent);
4312
4313 if (parent->use_hierarchy) {
3e32cb2e 4314 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4315 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4316 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4317 page_counter_init(&memcg->memsw, &parent->memsw);
4318 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4319
7bcc1bb1 4320 /*
8d76a979
LZ
4321 * No need to take a reference to the parent because cgroup
4322 * core guarantees its existence.
7bcc1bb1 4323 */
18f59ea7 4324 } else {
3e32cb2e 4325 page_counter_init(&memcg->memory, NULL);
241994ed 4326 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4327 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4328 page_counter_init(&memcg->memsw, NULL);
4329 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4330 /*
4331 * Deeper hierachy with use_hierarchy == false doesn't make
4332 * much sense so let cgroup subsystem know about this
4333 * unfortunate state in our controller.
4334 */
d142e3e6 4335 if (parent != root_mem_cgroup)
073219e9 4336 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4337 }
0999821b 4338 mutex_unlock(&memcg_create_mutex);
d6441637 4339
2f7dd7a4
JW
4340 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4341 if (ret)
4342 return ret;
4343
4344 /*
4345 * Make sure the memcg is initialized: mem_cgroup_iter()
4346 * orders reading memcg->initialized against its callers
4347 * reading the memcg members.
4348 */
4349 smp_store_release(&memcg->initialized, 1);
4350
4351 return 0;
8cdea7c0
BS
4352}
4353
eb95419b 4354static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4355{
eb95419b 4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4357 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4358
4359 /*
4360 * Unregister events and notify userspace.
4361 * Notify userspace about cgroup removing only after rmdir of cgroup
4362 * directory to avoid race between userspace and kernelspace.
4363 */
fba94807
TH
4364 spin_lock(&memcg->event_list_lock);
4365 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4366 list_del_init(&event->list);
4367 schedule_work(&event->remove);
4368 }
fba94807 4369 spin_unlock(&memcg->event_list_lock);
ec64f515 4370
33cb876e 4371 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4372
4373 memcg_deactivate_kmem(memcg);
52ebea74
TH
4374
4375 wb_memcg_offline(memcg);
df878fb0
KH
4376}
4377
6df38689
VD
4378static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4379{
4380 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4381
4382 invalidate_reclaim_iterators(memcg);
4383}
4384
eb95419b 4385static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4386{
eb95419b 4387 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4388
10d5ebf4 4389 memcg_destroy_kmem(memcg);
465939a1 4390 __mem_cgroup_free(memcg);
8cdea7c0
BS
4391}
4392
1ced953b
TH
4393/**
4394 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4395 * @css: the target css
4396 *
4397 * Reset the states of the mem_cgroup associated with @css. This is
4398 * invoked when the userland requests disabling on the default hierarchy
4399 * but the memcg is pinned through dependency. The memcg should stop
4400 * applying policies and should revert to the vanilla state as it may be
4401 * made visible again.
4402 *
4403 * The current implementation only resets the essential configurations.
4404 * This needs to be expanded to cover all the visible parts.
4405 */
4406static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4407{
4408 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4409
3e32cb2e
JW
4410 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4411 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4412 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4413 memcg->low = 0;
4414 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4415 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4416 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4417}
4418
02491447 4419#ifdef CONFIG_MMU
7dc74be0 4420/* Handlers for move charge at task migration. */
854ffa8d 4421static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4422{
05b84301 4423 int ret;
9476db97 4424
d0164adc
MG
4425 /* Try a single bulk charge without reclaim first, kswapd may wake */
4426 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4427 if (!ret) {
854ffa8d 4428 mc.precharge += count;
854ffa8d
DN
4429 return ret;
4430 }
9476db97
JW
4431
4432 /* Try charges one by one with reclaim */
854ffa8d 4433 while (count--) {
00501b53 4434 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4435 if (ret)
38c5d72f 4436 return ret;
854ffa8d 4437 mc.precharge++;
9476db97 4438 cond_resched();
854ffa8d 4439 }
9476db97 4440 return 0;
4ffef5fe
DN
4441}
4442
4443/**
8d32ff84 4444 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4445 * @vma: the vma the pte to be checked belongs
4446 * @addr: the address corresponding to the pte to be checked
4447 * @ptent: the pte to be checked
02491447 4448 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4449 *
4450 * Returns
4451 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4452 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4453 * move charge. if @target is not NULL, the page is stored in target->page
4454 * with extra refcnt got(Callers should handle it).
02491447
DN
4455 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4456 * target for charge migration. if @target is not NULL, the entry is stored
4457 * in target->ent.
4ffef5fe
DN
4458 *
4459 * Called with pte lock held.
4460 */
4ffef5fe
DN
4461union mc_target {
4462 struct page *page;
02491447 4463 swp_entry_t ent;
4ffef5fe
DN
4464};
4465
4ffef5fe 4466enum mc_target_type {
8d32ff84 4467 MC_TARGET_NONE = 0,
4ffef5fe 4468 MC_TARGET_PAGE,
02491447 4469 MC_TARGET_SWAP,
4ffef5fe
DN
4470};
4471
90254a65
DN
4472static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4473 unsigned long addr, pte_t ptent)
4ffef5fe 4474{
90254a65 4475 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4476
90254a65
DN
4477 if (!page || !page_mapped(page))
4478 return NULL;
4479 if (PageAnon(page)) {
1dfab5ab 4480 if (!(mc.flags & MOVE_ANON))
90254a65 4481 return NULL;
1dfab5ab
JW
4482 } else {
4483 if (!(mc.flags & MOVE_FILE))
4484 return NULL;
4485 }
90254a65
DN
4486 if (!get_page_unless_zero(page))
4487 return NULL;
4488
4489 return page;
4490}
4491
4b91355e 4492#ifdef CONFIG_SWAP
90254a65
DN
4493static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4494 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4495{
90254a65
DN
4496 struct page *page = NULL;
4497 swp_entry_t ent = pte_to_swp_entry(ptent);
4498
1dfab5ab 4499 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4500 return NULL;
4b91355e
KH
4501 /*
4502 * Because lookup_swap_cache() updates some statistics counter,
4503 * we call find_get_page() with swapper_space directly.
4504 */
33806f06 4505 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4506 if (do_memsw_account())
90254a65
DN
4507 entry->val = ent.val;
4508
4509 return page;
4510}
4b91355e
KH
4511#else
4512static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4513 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4514{
4515 return NULL;
4516}
4517#endif
90254a65 4518
87946a72
DN
4519static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4520 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4521{
4522 struct page *page = NULL;
87946a72
DN
4523 struct address_space *mapping;
4524 pgoff_t pgoff;
4525
4526 if (!vma->vm_file) /* anonymous vma */
4527 return NULL;
1dfab5ab 4528 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4529 return NULL;
4530
87946a72 4531 mapping = vma->vm_file->f_mapping;
0661a336 4532 pgoff = linear_page_index(vma, addr);
87946a72
DN
4533
4534 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4535#ifdef CONFIG_SWAP
4536 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4537 if (shmem_mapping(mapping)) {
4538 page = find_get_entry(mapping, pgoff);
4539 if (radix_tree_exceptional_entry(page)) {
4540 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4541 if (do_memsw_account())
139b6a6f
JW
4542 *entry = swp;
4543 page = find_get_page(swap_address_space(swp), swp.val);
4544 }
4545 } else
4546 page = find_get_page(mapping, pgoff);
4547#else
4548 page = find_get_page(mapping, pgoff);
aa3b1895 4549#endif
87946a72
DN
4550 return page;
4551}
4552
b1b0deab
CG
4553/**
4554 * mem_cgroup_move_account - move account of the page
4555 * @page: the page
4556 * @nr_pages: number of regular pages (>1 for huge pages)
4557 * @from: mem_cgroup which the page is moved from.
4558 * @to: mem_cgroup which the page is moved to. @from != @to.
4559 *
4560 * The caller must confirm following.
4561 * - page is not on LRU (isolate_page() is useful.)
4562 * - compound_lock is held when nr_pages > 1
4563 *
4564 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4565 * from old cgroup.
4566 */
4567static int mem_cgroup_move_account(struct page *page,
4568 unsigned int nr_pages,
4569 struct mem_cgroup *from,
4570 struct mem_cgroup *to)
4571{
4572 unsigned long flags;
4573 int ret;
c4843a75 4574 bool anon;
b1b0deab
CG
4575
4576 VM_BUG_ON(from == to);
4577 VM_BUG_ON_PAGE(PageLRU(page), page);
4578 /*
4579 * The page is isolated from LRU. So, collapse function
4580 * will not handle this page. But page splitting can happen.
4581 * Do this check under compound_page_lock(). The caller should
4582 * hold it.
4583 */
4584 ret = -EBUSY;
4585 if (nr_pages > 1 && !PageTransHuge(page))
4586 goto out;
4587
4588 /*
45637bab
HD
4589 * Prevent mem_cgroup_replace_page() from looking at
4590 * page->mem_cgroup of its source page while we change it.
b1b0deab
CG
4591 */
4592 if (!trylock_page(page))
4593 goto out;
4594
4595 ret = -EINVAL;
4596 if (page->mem_cgroup != from)
4597 goto out_unlock;
4598
c4843a75
GT
4599 anon = PageAnon(page);
4600
b1b0deab
CG
4601 spin_lock_irqsave(&from->move_lock, flags);
4602
c4843a75 4603 if (!anon && page_mapped(page)) {
b1b0deab
CG
4604 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4605 nr_pages);
4606 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4607 nr_pages);
4608 }
4609
c4843a75
GT
4610 /*
4611 * move_lock grabbed above and caller set from->moving_account, so
4612 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4613 * So mapping should be stable for dirty pages.
4614 */
4615 if (!anon && PageDirty(page)) {
4616 struct address_space *mapping = page_mapping(page);
4617
4618 if (mapping_cap_account_dirty(mapping)) {
4619 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4620 nr_pages);
4621 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4622 nr_pages);
4623 }
4624 }
4625
b1b0deab
CG
4626 if (PageWriteback(page)) {
4627 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4628 nr_pages);
4629 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4630 nr_pages);
4631 }
4632
4633 /*
4634 * It is safe to change page->mem_cgroup here because the page
4635 * is referenced, charged, and isolated - we can't race with
4636 * uncharging, charging, migration, or LRU putback.
4637 */
4638
4639 /* caller should have done css_get */
4640 page->mem_cgroup = to;
4641 spin_unlock_irqrestore(&from->move_lock, flags);
4642
4643 ret = 0;
4644
4645 local_irq_disable();
4646 mem_cgroup_charge_statistics(to, page, nr_pages);
4647 memcg_check_events(to, page);
4648 mem_cgroup_charge_statistics(from, page, -nr_pages);
4649 memcg_check_events(from, page);
4650 local_irq_enable();
4651out_unlock:
4652 unlock_page(page);
4653out:
4654 return ret;
4655}
4656
8d32ff84 4657static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4658 unsigned long addr, pte_t ptent, union mc_target *target)
4659{
4660 struct page *page = NULL;
8d32ff84 4661 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4662 swp_entry_t ent = { .val = 0 };
4663
4664 if (pte_present(ptent))
4665 page = mc_handle_present_pte(vma, addr, ptent);
4666 else if (is_swap_pte(ptent))
4667 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4668 else if (pte_none(ptent))
87946a72 4669 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4670
4671 if (!page && !ent.val)
8d32ff84 4672 return ret;
02491447 4673 if (page) {
02491447 4674 /*
0a31bc97 4675 * Do only loose check w/o serialization.
1306a85a 4676 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4677 * not under LRU exclusion.
02491447 4678 */
1306a85a 4679 if (page->mem_cgroup == mc.from) {
02491447
DN
4680 ret = MC_TARGET_PAGE;
4681 if (target)
4682 target->page = page;
4683 }
4684 if (!ret || !target)
4685 put_page(page);
4686 }
90254a65
DN
4687 /* There is a swap entry and a page doesn't exist or isn't charged */
4688 if (ent.val && !ret &&
34c00c31 4689 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4690 ret = MC_TARGET_SWAP;
4691 if (target)
4692 target->ent = ent;
4ffef5fe 4693 }
4ffef5fe
DN
4694 return ret;
4695}
4696
12724850
NH
4697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4698/*
4699 * We don't consider swapping or file mapped pages because THP does not
4700 * support them for now.
4701 * Caller should make sure that pmd_trans_huge(pmd) is true.
4702 */
4703static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4704 unsigned long addr, pmd_t pmd, union mc_target *target)
4705{
4706 struct page *page = NULL;
12724850
NH
4707 enum mc_target_type ret = MC_TARGET_NONE;
4708
4709 page = pmd_page(pmd);
309381fe 4710 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4711 if (!(mc.flags & MOVE_ANON))
12724850 4712 return ret;
1306a85a 4713 if (page->mem_cgroup == mc.from) {
12724850
NH
4714 ret = MC_TARGET_PAGE;
4715 if (target) {
4716 get_page(page);
4717 target->page = page;
4718 }
4719 }
4720 return ret;
4721}
4722#else
4723static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4724 unsigned long addr, pmd_t pmd, union mc_target *target)
4725{
4726 return MC_TARGET_NONE;
4727}
4728#endif
4729
4ffef5fe
DN
4730static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4731 unsigned long addr, unsigned long end,
4732 struct mm_walk *walk)
4733{
26bcd64a 4734 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4735 pte_t *pte;
4736 spinlock_t *ptl;
4737
bf929152 4738 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4739 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4740 mc.precharge += HPAGE_PMD_NR;
bf929152 4741 spin_unlock(ptl);
1a5a9906 4742 return 0;
12724850 4743 }
03319327 4744
45f83cef
AA
4745 if (pmd_trans_unstable(pmd))
4746 return 0;
4ffef5fe
DN
4747 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4748 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4749 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4750 mc.precharge++; /* increment precharge temporarily */
4751 pte_unmap_unlock(pte - 1, ptl);
4752 cond_resched();
4753
7dc74be0
DN
4754 return 0;
4755}
4756
4ffef5fe
DN
4757static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4758{
4759 unsigned long precharge;
4ffef5fe 4760
26bcd64a
NH
4761 struct mm_walk mem_cgroup_count_precharge_walk = {
4762 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4763 .mm = mm,
4764 };
dfe076b0 4765 down_read(&mm->mmap_sem);
26bcd64a 4766 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4767 up_read(&mm->mmap_sem);
4ffef5fe
DN
4768
4769 precharge = mc.precharge;
4770 mc.precharge = 0;
4771
4772 return precharge;
4773}
4774
4ffef5fe
DN
4775static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4776{
dfe076b0
DN
4777 unsigned long precharge = mem_cgroup_count_precharge(mm);
4778
4779 VM_BUG_ON(mc.moving_task);
4780 mc.moving_task = current;
4781 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4782}
4783
dfe076b0
DN
4784/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4785static void __mem_cgroup_clear_mc(void)
4ffef5fe 4786{
2bd9bb20
KH
4787 struct mem_cgroup *from = mc.from;
4788 struct mem_cgroup *to = mc.to;
4789
4ffef5fe 4790 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4791 if (mc.precharge) {
00501b53 4792 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4793 mc.precharge = 0;
4794 }
4795 /*
4796 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4797 * we must uncharge here.
4798 */
4799 if (mc.moved_charge) {
00501b53 4800 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4801 mc.moved_charge = 0;
4ffef5fe 4802 }
483c30b5
DN
4803 /* we must fixup refcnts and charges */
4804 if (mc.moved_swap) {
483c30b5 4805 /* uncharge swap account from the old cgroup */
ce00a967 4806 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4807 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4808
05b84301 4809 /*
3e32cb2e
JW
4810 * we charged both to->memory and to->memsw, so we
4811 * should uncharge to->memory.
05b84301 4812 */
ce00a967 4813 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4814 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4815
e8ea14cc 4816 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4817
4050377b 4818 /* we've already done css_get(mc.to) */
483c30b5
DN
4819 mc.moved_swap = 0;
4820 }
dfe076b0
DN
4821 memcg_oom_recover(from);
4822 memcg_oom_recover(to);
4823 wake_up_all(&mc.waitq);
4824}
4825
4826static void mem_cgroup_clear_mc(void)
4827{
dfe076b0
DN
4828 /*
4829 * we must clear moving_task before waking up waiters at the end of
4830 * task migration.
4831 */
4832 mc.moving_task = NULL;
4833 __mem_cgroup_clear_mc();
2bd9bb20 4834 spin_lock(&mc.lock);
4ffef5fe
DN
4835 mc.from = NULL;
4836 mc.to = NULL;
2bd9bb20 4837 spin_unlock(&mc.lock);
4ffef5fe
DN
4838}
4839
1f7dd3e5 4840static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4841{
1f7dd3e5 4842 struct cgroup_subsys_state *css;
eed67d75 4843 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4844 struct mem_cgroup *from;
4530eddb 4845 struct task_struct *leader, *p;
9f2115f9 4846 struct mm_struct *mm;
1dfab5ab 4847 unsigned long move_flags;
9f2115f9 4848 int ret = 0;
7dc74be0 4849
1f7dd3e5
TH
4850 /* charge immigration isn't supported on the default hierarchy */
4851 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4852 return 0;
4853
4530eddb
TH
4854 /*
4855 * Multi-process migrations only happen on the default hierarchy
4856 * where charge immigration is not used. Perform charge
4857 * immigration if @tset contains a leader and whine if there are
4858 * multiple.
4859 */
4860 p = NULL;
1f7dd3e5 4861 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4862 WARN_ON_ONCE(p);
4863 p = leader;
1f7dd3e5 4864 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4865 }
4866 if (!p)
4867 return 0;
4868
1f7dd3e5
TH
4869 /*
4870 * We are now commited to this value whatever it is. Changes in this
4871 * tunable will only affect upcoming migrations, not the current one.
4872 * So we need to save it, and keep it going.
4873 */
4874 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4875 if (!move_flags)
4876 return 0;
4877
9f2115f9
TH
4878 from = mem_cgroup_from_task(p);
4879
4880 VM_BUG_ON(from == memcg);
4881
4882 mm = get_task_mm(p);
4883 if (!mm)
4884 return 0;
4885 /* We move charges only when we move a owner of the mm */
4886 if (mm->owner == p) {
4887 VM_BUG_ON(mc.from);
4888 VM_BUG_ON(mc.to);
4889 VM_BUG_ON(mc.precharge);
4890 VM_BUG_ON(mc.moved_charge);
4891 VM_BUG_ON(mc.moved_swap);
4892
4893 spin_lock(&mc.lock);
4894 mc.from = from;
4895 mc.to = memcg;
4896 mc.flags = move_flags;
4897 spin_unlock(&mc.lock);
4898 /* We set mc.moving_task later */
4899
4900 ret = mem_cgroup_precharge_mc(mm);
4901 if (ret)
4902 mem_cgroup_clear_mc();
7dc74be0 4903 }
9f2115f9 4904 mmput(mm);
7dc74be0
DN
4905 return ret;
4906}
4907
1f7dd3e5 4908static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4909{
4e2f245d
JW
4910 if (mc.to)
4911 mem_cgroup_clear_mc();
7dc74be0
DN
4912}
4913
4ffef5fe
DN
4914static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4915 unsigned long addr, unsigned long end,
4916 struct mm_walk *walk)
7dc74be0 4917{
4ffef5fe 4918 int ret = 0;
26bcd64a 4919 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4920 pte_t *pte;
4921 spinlock_t *ptl;
12724850
NH
4922 enum mc_target_type target_type;
4923 union mc_target target;
4924 struct page *page;
4ffef5fe 4925
12724850
NH
4926 /*
4927 * We don't take compound_lock() here but no race with splitting thp
4928 * happens because:
4929 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4930 * under splitting, which means there's no concurrent thp split,
4931 * - if another thread runs into split_huge_page() just after we
4932 * entered this if-block, the thread must wait for page table lock
4933 * to be unlocked in __split_huge_page_splitting(), where the main
4934 * part of thp split is not executed yet.
4935 */
bf929152 4936 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4937 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4938 spin_unlock(ptl);
12724850
NH
4939 return 0;
4940 }
4941 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4942 if (target_type == MC_TARGET_PAGE) {
4943 page = target.page;
4944 if (!isolate_lru_page(page)) {
12724850 4945 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 4946 mc.from, mc.to)) {
12724850
NH
4947 mc.precharge -= HPAGE_PMD_NR;
4948 mc.moved_charge += HPAGE_PMD_NR;
4949 }
4950 putback_lru_page(page);
4951 }
4952 put_page(page);
4953 }
bf929152 4954 spin_unlock(ptl);
1a5a9906 4955 return 0;
12724850
NH
4956 }
4957
45f83cef
AA
4958 if (pmd_trans_unstable(pmd))
4959 return 0;
4ffef5fe
DN
4960retry:
4961 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4962 for (; addr != end; addr += PAGE_SIZE) {
4963 pte_t ptent = *(pte++);
02491447 4964 swp_entry_t ent;
4ffef5fe
DN
4965
4966 if (!mc.precharge)
4967 break;
4968
8d32ff84 4969 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4970 case MC_TARGET_PAGE:
4971 page = target.page;
4972 if (isolate_lru_page(page))
4973 goto put;
1306a85a 4974 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 4975 mc.precharge--;
854ffa8d
DN
4976 /* we uncharge from mc.from later. */
4977 mc.moved_charge++;
4ffef5fe
DN
4978 }
4979 putback_lru_page(page);
8d32ff84 4980put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4981 put_page(page);
4982 break;
02491447
DN
4983 case MC_TARGET_SWAP:
4984 ent = target.ent;
e91cbb42 4985 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4986 mc.precharge--;
483c30b5
DN
4987 /* we fixup refcnts and charges later. */
4988 mc.moved_swap++;
4989 }
02491447 4990 break;
4ffef5fe
DN
4991 default:
4992 break;
4993 }
4994 }
4995 pte_unmap_unlock(pte - 1, ptl);
4996 cond_resched();
4997
4998 if (addr != end) {
4999 /*
5000 * We have consumed all precharges we got in can_attach().
5001 * We try charge one by one, but don't do any additional
5002 * charges to mc.to if we have failed in charge once in attach()
5003 * phase.
5004 */
854ffa8d 5005 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5006 if (!ret)
5007 goto retry;
5008 }
5009
5010 return ret;
5011}
5012
5013static void mem_cgroup_move_charge(struct mm_struct *mm)
5014{
26bcd64a
NH
5015 struct mm_walk mem_cgroup_move_charge_walk = {
5016 .pmd_entry = mem_cgroup_move_charge_pte_range,
5017 .mm = mm,
5018 };
4ffef5fe
DN
5019
5020 lru_add_drain_all();
312722cb
JW
5021 /*
5022 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5023 * move_lock while we're moving its pages to another memcg.
5024 * Then wait for already started RCU-only updates to finish.
5025 */
5026 atomic_inc(&mc.from->moving_account);
5027 synchronize_rcu();
dfe076b0
DN
5028retry:
5029 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5030 /*
5031 * Someone who are holding the mmap_sem might be waiting in
5032 * waitq. So we cancel all extra charges, wake up all waiters,
5033 * and retry. Because we cancel precharges, we might not be able
5034 * to move enough charges, but moving charge is a best-effort
5035 * feature anyway, so it wouldn't be a big problem.
5036 */
5037 __mem_cgroup_clear_mc();
5038 cond_resched();
5039 goto retry;
5040 }
26bcd64a
NH
5041 /*
5042 * When we have consumed all precharges and failed in doing
5043 * additional charge, the page walk just aborts.
5044 */
5045 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5046 up_read(&mm->mmap_sem);
312722cb 5047 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5048}
5049
1f7dd3e5 5050static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 5051{
1f7dd3e5
TH
5052 struct cgroup_subsys_state *css;
5053 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 5054 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5055
dfe076b0 5056 if (mm) {
a433658c
KM
5057 if (mc.to)
5058 mem_cgroup_move_charge(mm);
dfe076b0
DN
5059 mmput(mm);
5060 }
a433658c
KM
5061 if (mc.to)
5062 mem_cgroup_clear_mc();
67e465a7 5063}
5cfb80a7 5064#else /* !CONFIG_MMU */
1f7dd3e5 5065static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5066{
5067 return 0;
5068}
1f7dd3e5 5069static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5070{
5071}
1f7dd3e5 5072static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5073{
5074}
5075#endif
67e465a7 5076
f00baae7
TH
5077/*
5078 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5079 * to verify whether we're attached to the default hierarchy on each mount
5080 * attempt.
f00baae7 5081 */
eb95419b 5082static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5083{
5084 /*
aa6ec29b 5085 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5086 * guarantees that @root doesn't have any children, so turning it
5087 * on for the root memcg is enough.
5088 */
9e10a130 5089 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5090 root_mem_cgroup->use_hierarchy = true;
5091 else
5092 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5093}
5094
241994ed
JW
5095static u64 memory_current_read(struct cgroup_subsys_state *css,
5096 struct cftype *cft)
5097{
f5fc3c5d
JW
5098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5099
5100 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5101}
5102
5103static int memory_low_show(struct seq_file *m, void *v)
5104{
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5106 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5107
5108 if (low == PAGE_COUNTER_MAX)
d2973697 5109 seq_puts(m, "max\n");
241994ed
JW
5110 else
5111 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5112
5113 return 0;
5114}
5115
5116static ssize_t memory_low_write(struct kernfs_open_file *of,
5117 char *buf, size_t nbytes, loff_t off)
5118{
5119 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5120 unsigned long low;
5121 int err;
5122
5123 buf = strstrip(buf);
d2973697 5124 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5125 if (err)
5126 return err;
5127
5128 memcg->low = low;
5129
5130 return nbytes;
5131}
5132
5133static int memory_high_show(struct seq_file *m, void *v)
5134{
5135 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5136 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5137
5138 if (high == PAGE_COUNTER_MAX)
d2973697 5139 seq_puts(m, "max\n");
241994ed
JW
5140 else
5141 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5142
5143 return 0;
5144}
5145
5146static ssize_t memory_high_write(struct kernfs_open_file *of,
5147 char *buf, size_t nbytes, loff_t off)
5148{
5149 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5150 unsigned long high;
5151 int err;
5152
5153 buf = strstrip(buf);
d2973697 5154 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5155 if (err)
5156 return err;
5157
5158 memcg->high = high;
5159
2529bb3a 5160 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5161 return nbytes;
5162}
5163
5164static int memory_max_show(struct seq_file *m, void *v)
5165{
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5167 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5168
5169 if (max == PAGE_COUNTER_MAX)
d2973697 5170 seq_puts(m, "max\n");
241994ed
JW
5171 else
5172 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5173
5174 return 0;
5175}
5176
5177static ssize_t memory_max_write(struct kernfs_open_file *of,
5178 char *buf, size_t nbytes, loff_t off)
5179{
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5181 unsigned long max;
5182 int err;
5183
5184 buf = strstrip(buf);
d2973697 5185 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5186 if (err)
5187 return err;
5188
5189 err = mem_cgroup_resize_limit(memcg, max);
5190 if (err)
5191 return err;
5192
2529bb3a 5193 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5194 return nbytes;
5195}
5196
5197static int memory_events_show(struct seq_file *m, void *v)
5198{
5199 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5200
5201 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5202 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5203 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5204 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5205
5206 return 0;
5207}
5208
5209static struct cftype memory_files[] = {
5210 {
5211 .name = "current",
f5fc3c5d 5212 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5213 .read_u64 = memory_current_read,
5214 },
5215 {
5216 .name = "low",
5217 .flags = CFTYPE_NOT_ON_ROOT,
5218 .seq_show = memory_low_show,
5219 .write = memory_low_write,
5220 },
5221 {
5222 .name = "high",
5223 .flags = CFTYPE_NOT_ON_ROOT,
5224 .seq_show = memory_high_show,
5225 .write = memory_high_write,
5226 },
5227 {
5228 .name = "max",
5229 .flags = CFTYPE_NOT_ON_ROOT,
5230 .seq_show = memory_max_show,
5231 .write = memory_max_write,
5232 },
5233 {
5234 .name = "events",
5235 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5236 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5237 .seq_show = memory_events_show,
5238 },
5239 { } /* terminate */
5240};
5241
073219e9 5242struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5243 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5244 .css_online = mem_cgroup_css_online,
92fb9748 5245 .css_offline = mem_cgroup_css_offline,
6df38689 5246 .css_released = mem_cgroup_css_released,
92fb9748 5247 .css_free = mem_cgroup_css_free,
1ced953b 5248 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5249 .can_attach = mem_cgroup_can_attach,
5250 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5251 .attach = mem_cgroup_move_task,
f00baae7 5252 .bind = mem_cgroup_bind,
241994ed
JW
5253 .dfl_cftypes = memory_files,
5254 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5255 .early_init = 0,
8cdea7c0 5256};
c077719b 5257
241994ed
JW
5258/**
5259 * mem_cgroup_low - check if memory consumption is below the normal range
5260 * @root: the highest ancestor to consider
5261 * @memcg: the memory cgroup to check
5262 *
5263 * Returns %true if memory consumption of @memcg, and that of all
5264 * configurable ancestors up to @root, is below the normal range.
5265 */
5266bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5267{
5268 if (mem_cgroup_disabled())
5269 return false;
5270
5271 /*
5272 * The toplevel group doesn't have a configurable range, so
5273 * it's never low when looked at directly, and it is not
5274 * considered an ancestor when assessing the hierarchy.
5275 */
5276
5277 if (memcg == root_mem_cgroup)
5278 return false;
5279
4e54dede 5280 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5281 return false;
5282
5283 while (memcg != root) {
5284 memcg = parent_mem_cgroup(memcg);
5285
5286 if (memcg == root_mem_cgroup)
5287 break;
5288
4e54dede 5289 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5290 return false;
5291 }
5292 return true;
5293}
5294
00501b53
JW
5295/**
5296 * mem_cgroup_try_charge - try charging a page
5297 * @page: page to charge
5298 * @mm: mm context of the victim
5299 * @gfp_mask: reclaim mode
5300 * @memcgp: charged memcg return
5301 *
5302 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5303 * pages according to @gfp_mask if necessary.
5304 *
5305 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5306 * Otherwise, an error code is returned.
5307 *
5308 * After page->mapping has been set up, the caller must finalize the
5309 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5310 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5311 */
5312int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5313 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5314{
5315 struct mem_cgroup *memcg = NULL;
5316 unsigned int nr_pages = 1;
5317 int ret = 0;
5318
5319 if (mem_cgroup_disabled())
5320 goto out;
5321
5322 if (PageSwapCache(page)) {
00501b53
JW
5323 /*
5324 * Every swap fault against a single page tries to charge the
5325 * page, bail as early as possible. shmem_unuse() encounters
5326 * already charged pages, too. The USED bit is protected by
5327 * the page lock, which serializes swap cache removal, which
5328 * in turn serializes uncharging.
5329 */
e993d905 5330 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5331 if (page->mem_cgroup)
00501b53 5332 goto out;
e993d905 5333
7941d214 5334 if (do_memsw_account()) {
e993d905
VD
5335 swp_entry_t ent = { .val = page_private(page), };
5336 unsigned short id = lookup_swap_cgroup_id(ent);
5337
5338 rcu_read_lock();
5339 memcg = mem_cgroup_from_id(id);
5340 if (memcg && !css_tryget_online(&memcg->css))
5341 memcg = NULL;
5342 rcu_read_unlock();
5343 }
00501b53
JW
5344 }
5345
5346 if (PageTransHuge(page)) {
5347 nr_pages <<= compound_order(page);
5348 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5349 }
5350
00501b53
JW
5351 if (!memcg)
5352 memcg = get_mem_cgroup_from_mm(mm);
5353
5354 ret = try_charge(memcg, gfp_mask, nr_pages);
5355
5356 css_put(&memcg->css);
00501b53
JW
5357out:
5358 *memcgp = memcg;
5359 return ret;
5360}
5361
5362/**
5363 * mem_cgroup_commit_charge - commit a page charge
5364 * @page: page to charge
5365 * @memcg: memcg to charge the page to
5366 * @lrucare: page might be on LRU already
5367 *
5368 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5369 * after page->mapping has been set up. This must happen atomically
5370 * as part of the page instantiation, i.e. under the page table lock
5371 * for anonymous pages, under the page lock for page and swap cache.
5372 *
5373 * In addition, the page must not be on the LRU during the commit, to
5374 * prevent racing with task migration. If it might be, use @lrucare.
5375 *
5376 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5377 */
5378void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5379 bool lrucare)
5380{
5381 unsigned int nr_pages = 1;
5382
5383 VM_BUG_ON_PAGE(!page->mapping, page);
5384 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5385
5386 if (mem_cgroup_disabled())
5387 return;
5388 /*
5389 * Swap faults will attempt to charge the same page multiple
5390 * times. But reuse_swap_page() might have removed the page
5391 * from swapcache already, so we can't check PageSwapCache().
5392 */
5393 if (!memcg)
5394 return;
5395
6abb5a86
JW
5396 commit_charge(page, memcg, lrucare);
5397
00501b53
JW
5398 if (PageTransHuge(page)) {
5399 nr_pages <<= compound_order(page);
5400 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5401 }
5402
6abb5a86
JW
5403 local_irq_disable();
5404 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5405 memcg_check_events(memcg, page);
5406 local_irq_enable();
00501b53 5407
7941d214 5408 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5409 swp_entry_t entry = { .val = page_private(page) };
5410 /*
5411 * The swap entry might not get freed for a long time,
5412 * let's not wait for it. The page already received a
5413 * memory+swap charge, drop the swap entry duplicate.
5414 */
5415 mem_cgroup_uncharge_swap(entry);
5416 }
5417}
5418
5419/**
5420 * mem_cgroup_cancel_charge - cancel a page charge
5421 * @page: page to charge
5422 * @memcg: memcg to charge the page to
5423 *
5424 * Cancel a charge transaction started by mem_cgroup_try_charge().
5425 */
5426void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5427{
5428 unsigned int nr_pages = 1;
5429
5430 if (mem_cgroup_disabled())
5431 return;
5432 /*
5433 * Swap faults will attempt to charge the same page multiple
5434 * times. But reuse_swap_page() might have removed the page
5435 * from swapcache already, so we can't check PageSwapCache().
5436 */
5437 if (!memcg)
5438 return;
5439
5440 if (PageTransHuge(page)) {
5441 nr_pages <<= compound_order(page);
5442 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5443 }
5444
5445 cancel_charge(memcg, nr_pages);
5446}
5447
747db954 5448static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5449 unsigned long nr_anon, unsigned long nr_file,
5450 unsigned long nr_huge, struct page *dummy_page)
5451{
18eca2e6 5452 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5453 unsigned long flags;
5454
ce00a967 5455 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5456 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5457 if (do_memsw_account())
18eca2e6 5458 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5459 memcg_oom_recover(memcg);
5460 }
747db954
JW
5461
5462 local_irq_save(flags);
5463 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5464 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5465 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5466 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5467 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5468 memcg_check_events(memcg, dummy_page);
5469 local_irq_restore(flags);
e8ea14cc
JW
5470
5471 if (!mem_cgroup_is_root(memcg))
18eca2e6 5472 css_put_many(&memcg->css, nr_pages);
747db954
JW
5473}
5474
5475static void uncharge_list(struct list_head *page_list)
5476{
5477 struct mem_cgroup *memcg = NULL;
747db954
JW
5478 unsigned long nr_anon = 0;
5479 unsigned long nr_file = 0;
5480 unsigned long nr_huge = 0;
5481 unsigned long pgpgout = 0;
747db954
JW
5482 struct list_head *next;
5483 struct page *page;
5484
5485 next = page_list->next;
5486 do {
5487 unsigned int nr_pages = 1;
747db954
JW
5488
5489 page = list_entry(next, struct page, lru);
5490 next = page->lru.next;
5491
5492 VM_BUG_ON_PAGE(PageLRU(page), page);
5493 VM_BUG_ON_PAGE(page_count(page), page);
5494
1306a85a 5495 if (!page->mem_cgroup)
747db954
JW
5496 continue;
5497
5498 /*
5499 * Nobody should be changing or seriously looking at
1306a85a 5500 * page->mem_cgroup at this point, we have fully
29833315 5501 * exclusive access to the page.
747db954
JW
5502 */
5503
1306a85a 5504 if (memcg != page->mem_cgroup) {
747db954 5505 if (memcg) {
18eca2e6
JW
5506 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5507 nr_huge, page);
5508 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5509 }
1306a85a 5510 memcg = page->mem_cgroup;
747db954
JW
5511 }
5512
5513 if (PageTransHuge(page)) {
5514 nr_pages <<= compound_order(page);
5515 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5516 nr_huge += nr_pages;
5517 }
5518
5519 if (PageAnon(page))
5520 nr_anon += nr_pages;
5521 else
5522 nr_file += nr_pages;
5523
1306a85a 5524 page->mem_cgroup = NULL;
747db954
JW
5525
5526 pgpgout++;
5527 } while (next != page_list);
5528
5529 if (memcg)
18eca2e6
JW
5530 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5531 nr_huge, page);
747db954
JW
5532}
5533
0a31bc97
JW
5534/**
5535 * mem_cgroup_uncharge - uncharge a page
5536 * @page: page to uncharge
5537 *
5538 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5539 * mem_cgroup_commit_charge().
5540 */
5541void mem_cgroup_uncharge(struct page *page)
5542{
0a31bc97
JW
5543 if (mem_cgroup_disabled())
5544 return;
5545
747db954 5546 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5547 if (!page->mem_cgroup)
0a31bc97
JW
5548 return;
5549
747db954
JW
5550 INIT_LIST_HEAD(&page->lru);
5551 uncharge_list(&page->lru);
5552}
0a31bc97 5553
747db954
JW
5554/**
5555 * mem_cgroup_uncharge_list - uncharge a list of page
5556 * @page_list: list of pages to uncharge
5557 *
5558 * Uncharge a list of pages previously charged with
5559 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5560 */
5561void mem_cgroup_uncharge_list(struct list_head *page_list)
5562{
5563 if (mem_cgroup_disabled())
5564 return;
0a31bc97 5565
747db954
JW
5566 if (!list_empty(page_list))
5567 uncharge_list(page_list);
0a31bc97
JW
5568}
5569
5570/**
45637bab 5571 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5572 * @oldpage: currently charged page
5573 * @newpage: page to transfer the charge to
0a31bc97
JW
5574 *
5575 * Migrate the charge from @oldpage to @newpage.
5576 *
5577 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5578 * Either or both pages might be on the LRU already.
0a31bc97 5579 */
45637bab 5580void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5581{
29833315 5582 struct mem_cgroup *memcg;
0a31bc97
JW
5583 int isolated;
5584
5585 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5586 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5587 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5588 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5589 newpage);
0a31bc97
JW
5590
5591 if (mem_cgroup_disabled())
5592 return;
5593
5594 /* Page cache replacement: new page already charged? */
1306a85a 5595 if (newpage->mem_cgroup)
0a31bc97
JW
5596 return;
5597
45637bab 5598 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5599 memcg = oldpage->mem_cgroup;
29833315 5600 if (!memcg)
0a31bc97
JW
5601 return;
5602
45637bab 5603 lock_page_lru(oldpage, &isolated);
1306a85a 5604 oldpage->mem_cgroup = NULL;
45637bab 5605 unlock_page_lru(oldpage, isolated);
0a31bc97 5606
45637bab 5607 commit_charge(newpage, memcg, true);
0a31bc97
JW
5608}
5609
2d11085e 5610/*
1081312f
MH
5611 * subsys_initcall() for memory controller.
5612 *
5613 * Some parts like hotcpu_notifier() have to be initialized from this context
5614 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5615 * everything that doesn't depend on a specific mem_cgroup structure should
5616 * be initialized from here.
2d11085e
MH
5617 */
5618static int __init mem_cgroup_init(void)
5619{
95a045f6
JW
5620 int cpu, node;
5621
2d11085e 5622 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5623
5624 for_each_possible_cpu(cpu)
5625 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5626 drain_local_stock);
5627
5628 for_each_node(node) {
5629 struct mem_cgroup_tree_per_node *rtpn;
5630 int zone;
5631
5632 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5633 node_online(node) ? node : NUMA_NO_NODE);
5634
5635 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5636 struct mem_cgroup_tree_per_zone *rtpz;
5637
5638 rtpz = &rtpn->rb_tree_per_zone[zone];
5639 rtpz->rb_root = RB_ROOT;
5640 spin_lock_init(&rtpz->lock);
5641 }
5642 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5643 }
5644
2d11085e
MH
5645 return 0;
5646}
5647subsys_initcall(mem_cgroup_init);
21afa38e
JW
5648
5649#ifdef CONFIG_MEMCG_SWAP
5650/**
5651 * mem_cgroup_swapout - transfer a memsw charge to swap
5652 * @page: page whose memsw charge to transfer
5653 * @entry: swap entry to move the charge to
5654 *
5655 * Transfer the memsw charge of @page to @entry.
5656 */
5657void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5658{
5659 struct mem_cgroup *memcg;
5660 unsigned short oldid;
5661
5662 VM_BUG_ON_PAGE(PageLRU(page), page);
5663 VM_BUG_ON_PAGE(page_count(page), page);
5664
7941d214 5665 if (!do_memsw_account())
21afa38e
JW
5666 return;
5667
5668 memcg = page->mem_cgroup;
5669
5670 /* Readahead page, never charged */
5671 if (!memcg)
5672 return;
5673
5674 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5675 VM_BUG_ON_PAGE(oldid, page);
5676 mem_cgroup_swap_statistics(memcg, true);
5677
5678 page->mem_cgroup = NULL;
5679
5680 if (!mem_cgroup_is_root(memcg))
5681 page_counter_uncharge(&memcg->memory, 1);
5682
ce9ce665
SAS
5683 /*
5684 * Interrupts should be disabled here because the caller holds the
5685 * mapping->tree_lock lock which is taken with interrupts-off. It is
5686 * important here to have the interrupts disabled because it is the
5687 * only synchronisation we have for udpating the per-CPU variables.
5688 */
5689 VM_BUG_ON(!irqs_disabled());
21afa38e
JW
5690 mem_cgroup_charge_statistics(memcg, page, -1);
5691 memcg_check_events(memcg, page);
5692}
5693
5694/**
5695 * mem_cgroup_uncharge_swap - uncharge a swap entry
5696 * @entry: swap entry to uncharge
5697 *
5698 * Drop the memsw charge associated with @entry.
5699 */
5700void mem_cgroup_uncharge_swap(swp_entry_t entry)
5701{
5702 struct mem_cgroup *memcg;
5703 unsigned short id;
5704
7941d214 5705 if (!do_memsw_account())
21afa38e
JW
5706 return;
5707
5708 id = swap_cgroup_record(entry, 0);
5709 rcu_read_lock();
adbe427b 5710 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5711 if (memcg) {
5712 if (!mem_cgroup_is_root(memcg))
5713 page_counter_uncharge(&memcg->memsw, 1);
5714 mem_cgroup_swap_statistics(memcg, false);
5715 css_put(&memcg->css);
5716 }
5717 rcu_read_unlock();
5718}
5719
5720/* for remember boot option*/
5721#ifdef CONFIG_MEMCG_SWAP_ENABLED
5722static int really_do_swap_account __initdata = 1;
5723#else
5724static int really_do_swap_account __initdata;
5725#endif
5726
5727static int __init enable_swap_account(char *s)
5728{
5729 if (!strcmp(s, "1"))
5730 really_do_swap_account = 1;
5731 else if (!strcmp(s, "0"))
5732 really_do_swap_account = 0;
5733 return 1;
5734}
5735__setup("swapaccount=", enable_swap_account);
5736
5737static struct cftype memsw_cgroup_files[] = {
5738 {
5739 .name = "memsw.usage_in_bytes",
5740 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5741 .read_u64 = mem_cgroup_read_u64,
5742 },
5743 {
5744 .name = "memsw.max_usage_in_bytes",
5745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5746 .write = mem_cgroup_reset,
5747 .read_u64 = mem_cgroup_read_u64,
5748 },
5749 {
5750 .name = "memsw.limit_in_bytes",
5751 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5752 .write = mem_cgroup_write,
5753 .read_u64 = mem_cgroup_read_u64,
5754 },
5755 {
5756 .name = "memsw.failcnt",
5757 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5758 .write = mem_cgroup_reset,
5759 .read_u64 = mem_cgroup_read_u64,
5760 },
5761 { }, /* terminate */
5762};
5763
5764static int __init mem_cgroup_swap_init(void)
5765{
5766 if (!mem_cgroup_disabled() && really_do_swap_account) {
5767 do_swap_account = 1;
5768 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5769 memsw_cgroup_files));
5770 }
5771 return 0;
5772}
5773subsys_initcall(mem_cgroup_swap_init);
5774
5775#endif /* CONFIG_MEMCG_SWAP */