]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: change ug->dummy_page only if memcg changed
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
c1a660de
RG
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
55007d84 353/*
9855609b 354 * This will be used as a shrinker list's index.
b8627835
LZ
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
55007d84 360 *
dbcf73e2
VD
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
55007d84 363 */
dbcf73e2
VD
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
749c5415 366
05257a1a
VD
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
55007d84
GC
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
b8627835 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
b8627835 393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 394
d7f25f8a
GC
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
272911a4 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
ef12947c 401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 402EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 403#endif
17cc4dfe 404
0a4465d3
KT
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
a3747b53 417 struct mem_cgroup_per_node *pn;
0a4465d3
KT
418 int nid;
419
420 lockdep_assert_held(&memcg_shrinker_map_mutex);
421
422 for_each_node(nid) {
a3747b53
JW
423 pn = memcg->nodeinfo[nid];
424 old = rcu_dereference_protected(pn->shrinker_map, true);
0a4465d3
KT
425 /* Not yet online memcg */
426 if (!old)
427 return 0;
428
86daf94e 429 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
430 if (!new)
431 return -ENOMEM;
432
433 /* Set all old bits, clear all new bits */
434 memset(new->map, (int)0xff, old_size);
435 memset((void *)new->map + old_size, 0, size - old_size);
436
a3747b53 437 rcu_assign_pointer(pn->shrinker_map, new);
0a4465d3
KT
438 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
439 }
440
441 return 0;
442}
443
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
445{
446 struct mem_cgroup_per_node *pn;
447 struct memcg_shrinker_map *map;
448 int nid;
449
450 if (mem_cgroup_is_root(memcg))
451 return;
452
453 for_each_node(nid) {
a3747b53 454 pn = memcg->nodeinfo[nid];
0a4465d3 455 map = rcu_dereference_protected(pn->shrinker_map, true);
8a260162 456 kvfree(map);
0a4465d3
KT
457 rcu_assign_pointer(pn->shrinker_map, NULL);
458 }
459}
460
461static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
462{
463 struct memcg_shrinker_map *map;
464 int nid, size, ret = 0;
465
466 if (mem_cgroup_is_root(memcg))
467 return 0;
468
469 mutex_lock(&memcg_shrinker_map_mutex);
470 size = memcg_shrinker_map_size;
471 for_each_node(nid) {
86daf94e 472 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
473 if (!map) {
474 memcg_free_shrinker_maps(memcg);
475 ret = -ENOMEM;
476 break;
477 }
478 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
479 }
480 mutex_unlock(&memcg_shrinker_map_mutex);
481
482 return ret;
483}
484
485int memcg_expand_shrinker_maps(int new_id)
486{
487 int size, old_size, ret = 0;
488 struct mem_cgroup *memcg;
489
490 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
491 old_size = memcg_shrinker_map_size;
492 if (size <= old_size)
493 return 0;
494
495 mutex_lock(&memcg_shrinker_map_mutex);
496 if (!root_mem_cgroup)
497 goto unlock;
498
499 for_each_mem_cgroup(memcg) {
500 if (mem_cgroup_is_root(memcg))
501 continue;
502 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
503 if (ret) {
504 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 505 goto unlock;
75866af6 506 }
0a4465d3
KT
507 }
508unlock:
509 if (!ret)
510 memcg_shrinker_map_size = size;
511 mutex_unlock(&memcg_shrinker_map_mutex);
512 return ret;
513}
fae91d6d
KT
514
515void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
516{
517 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
518 struct memcg_shrinker_map *map;
519
520 rcu_read_lock();
521 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
522 /* Pairs with smp mb in shrink_slab() */
523 smp_mb__before_atomic();
fae91d6d
KT
524 set_bit(shrinker_id, map->map);
525 rcu_read_unlock();
526 }
527}
528
ad7fa852
TH
529/**
530 * mem_cgroup_css_from_page - css of the memcg associated with a page
531 * @page: page of interest
532 *
533 * If memcg is bound to the default hierarchy, css of the memcg associated
534 * with @page is returned. The returned css remains associated with @page
535 * until it is released.
536 *
537 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
538 * is returned.
ad7fa852
TH
539 */
540struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
541{
542 struct mem_cgroup *memcg;
543
bcfe06bf 544 memcg = page_memcg(page);
ad7fa852 545
9e10a130 546 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
547 memcg = root_mem_cgroup;
548
ad7fa852
TH
549 return &memcg->css;
550}
551
2fc04524
VD
552/**
553 * page_cgroup_ino - return inode number of the memcg a page is charged to
554 * @page: the page
555 *
556 * Look up the closest online ancestor of the memory cgroup @page is charged to
557 * and return its inode number or 0 if @page is not charged to any cgroup. It
558 * is safe to call this function without holding a reference to @page.
559 *
560 * Note, this function is inherently racy, because there is nothing to prevent
561 * the cgroup inode from getting torn down and potentially reallocated a moment
562 * after page_cgroup_ino() returns, so it only should be used by callers that
563 * do not care (such as procfs interfaces).
564 */
565ino_t page_cgroup_ino(struct page *page)
566{
567 struct mem_cgroup *memcg;
568 unsigned long ino = 0;
569
570 rcu_read_lock();
bcfe06bf 571 memcg = page_memcg_check(page);
286e04b8 572
2fc04524
VD
573 while (memcg && !(memcg->css.flags & CSS_ONLINE))
574 memcg = parent_mem_cgroup(memcg);
575 if (memcg)
576 ino = cgroup_ino(memcg->css.cgroup);
577 rcu_read_unlock();
578 return ino;
579}
580
ef8f2327
MG
581static struct mem_cgroup_per_node *
582mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 583{
97a6c37b 584 int nid = page_to_nid(page);
f64c3f54 585
ef8f2327 586 return memcg->nodeinfo[nid];
f64c3f54
BS
587}
588
ef8f2327
MG
589static struct mem_cgroup_tree_per_node *
590soft_limit_tree_node(int nid)
bb4cc1a8 591{
ef8f2327 592 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
593}
594
ef8f2327 595static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
596soft_limit_tree_from_page(struct page *page)
597{
598 int nid = page_to_nid(page);
bb4cc1a8 599
ef8f2327 600 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
601}
602
ef8f2327
MG
603static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
604 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 605 unsigned long new_usage_in_excess)
bb4cc1a8
AM
606{
607 struct rb_node **p = &mctz->rb_root.rb_node;
608 struct rb_node *parent = NULL;
ef8f2327 609 struct mem_cgroup_per_node *mz_node;
fa90b2fd 610 bool rightmost = true;
bb4cc1a8
AM
611
612 if (mz->on_tree)
613 return;
614
615 mz->usage_in_excess = new_usage_in_excess;
616 if (!mz->usage_in_excess)
617 return;
618 while (*p) {
619 parent = *p;
ef8f2327 620 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 621 tree_node);
fa90b2fd 622 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 623 p = &(*p)->rb_left;
fa90b2fd 624 rightmost = false;
378876b0 625 } else {
bb4cc1a8 626 p = &(*p)->rb_right;
378876b0 627 }
bb4cc1a8 628 }
fa90b2fd
DB
629
630 if (rightmost)
631 mctz->rb_rightmost = &mz->tree_node;
632
bb4cc1a8
AM
633 rb_link_node(&mz->tree_node, parent, p);
634 rb_insert_color(&mz->tree_node, &mctz->rb_root);
635 mz->on_tree = true;
636}
637
ef8f2327
MG
638static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
639 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
640{
641 if (!mz->on_tree)
642 return;
fa90b2fd
DB
643
644 if (&mz->tree_node == mctz->rb_rightmost)
645 mctz->rb_rightmost = rb_prev(&mz->tree_node);
646
bb4cc1a8
AM
647 rb_erase(&mz->tree_node, &mctz->rb_root);
648 mz->on_tree = false;
649}
650
ef8f2327
MG
651static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
652 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 653{
0a31bc97
JW
654 unsigned long flags;
655
656 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 658 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
659}
660
3e32cb2e
JW
661static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
662{
663 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 664 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
665 unsigned long excess = 0;
666
667 if (nr_pages > soft_limit)
668 excess = nr_pages - soft_limit;
669
670 return excess;
671}
bb4cc1a8
AM
672
673static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
674{
3e32cb2e 675 unsigned long excess;
ef8f2327
MG
676 struct mem_cgroup_per_node *mz;
677 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 678
e231875b 679 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
680 if (!mctz)
681 return;
bb4cc1a8
AM
682 /*
683 * Necessary to update all ancestors when hierarchy is used.
684 * because their event counter is not touched.
685 */
686 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 687 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 688 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
689 /*
690 * We have to update the tree if mz is on RB-tree or
691 * mem is over its softlimit.
692 */
693 if (excess || mz->on_tree) {
0a31bc97
JW
694 unsigned long flags;
695
696 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
697 /* if on-tree, remove it */
698 if (mz->on_tree)
cf2c8127 699 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
700 /*
701 * Insert again. mz->usage_in_excess will be updated.
702 * If excess is 0, no tree ops.
703 */
cf2c8127 704 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 705 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
706 }
707 }
708}
709
710static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
711{
ef8f2327
MG
712 struct mem_cgroup_tree_per_node *mctz;
713 struct mem_cgroup_per_node *mz;
714 int nid;
bb4cc1a8 715
e231875b 716 for_each_node(nid) {
a3747b53 717 mz = memcg->nodeinfo[nid];
ef8f2327 718 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
719 if (mctz)
720 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
721 }
722}
723
ef8f2327
MG
724static struct mem_cgroup_per_node *
725__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 726{
ef8f2327 727 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
728
729retry:
730 mz = NULL;
fa90b2fd 731 if (!mctz->rb_rightmost)
bb4cc1a8
AM
732 goto done; /* Nothing to reclaim from */
733
fa90b2fd
DB
734 mz = rb_entry(mctz->rb_rightmost,
735 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
736 /*
737 * Remove the node now but someone else can add it back,
738 * we will to add it back at the end of reclaim to its correct
739 * position in the tree.
740 */
cf2c8127 741 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 742 if (!soft_limit_excess(mz->memcg) ||
8965aa28 743 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
744 goto retry;
745done:
746 return mz;
747}
748
ef8f2327
MG
749static struct mem_cgroup_per_node *
750mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 751{
ef8f2327 752 struct mem_cgroup_per_node *mz;
bb4cc1a8 753
0a31bc97 754 spin_lock_irq(&mctz->lock);
bb4cc1a8 755 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 756 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
757 return mz;
758}
759
db9adbcb
JW
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
db9adbcb
JW
768 if (mem_cgroup_disabled())
769 return;
770
2d146aa3
JW
771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
773}
774
2d146aa3 775/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
776static unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
777{
2d146aa3 778 long x = READ_ONCE(memcg->vmstats.state[idx]);
a18e6e6e
JW
779#ifdef CONFIG_SMP
780 if (x < 0)
781 x = 0;
782#endif
783 return x;
784}
785
2d146aa3 786/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
787static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
788{
789 long x = 0;
790 int cpu;
791
792 for_each_possible_cpu(cpu)
2d146aa3 793 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
794#ifdef CONFIG_SMP
795 if (x < 0)
796 x = 0;
797#endif
798 return x;
799}
800
42a30035
JW
801static struct mem_cgroup_per_node *
802parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
803{
804 struct mem_cgroup *parent;
805
806 parent = parent_mem_cgroup(pn->memcg);
807 if (!parent)
808 return NULL;
a3747b53 809 return parent->nodeinfo[nid];
42a30035
JW
810}
811
eedc4e5a
RG
812void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
813 int val)
db9adbcb
JW
814{
815 struct mem_cgroup_per_node *pn;
42a30035 816 struct mem_cgroup *memcg;
ea426c2a 817 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 818
db9adbcb 819 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 820 memcg = pn->memcg;
db9adbcb
JW
821
822 /* Update memcg */
42a30035 823 __mod_memcg_state(memcg, idx, val);
db9adbcb 824
b4c46484
RG
825 /* Update lruvec */
826 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
827
ea426c2a
RG
828 if (vmstat_item_in_bytes(idx))
829 threshold <<= PAGE_SHIFT;
830
db9adbcb 831 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 832 if (unlikely(abs(x) > threshold)) {
eedc4e5a 833 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
834 struct mem_cgroup_per_node *pi;
835
42a30035
JW
836 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
837 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
838 x = 0;
839 }
840 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
841}
842
eedc4e5a
RG
843/**
844 * __mod_lruvec_state - update lruvec memory statistics
845 * @lruvec: the lruvec
846 * @idx: the stat item
847 * @val: delta to add to the counter, can be negative
848 *
849 * The lruvec is the intersection of the NUMA node and a cgroup. This
850 * function updates the all three counters that are affected by a
851 * change of state at this level: per-node, per-cgroup, per-lruvec.
852 */
853void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
854 int val)
855{
856 /* Update node */
857 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
858
859 /* Update memcg and lruvec */
860 if (!mem_cgroup_disabled())
861 __mod_memcg_lruvec_state(lruvec, idx, val);
862}
863
c47d5032
SB
864void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
865 int val)
866{
867 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 868 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
869 pg_data_t *pgdat = page_pgdat(page);
870 struct lruvec *lruvec;
871
872 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 873 if (!memcg) {
c47d5032
SB
874 __mod_node_page_state(pgdat, idx, val);
875 return;
876 }
877
d635a69d 878 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
879 __mod_lruvec_state(lruvec, idx, val);
880}
f0c0c115 881EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 882
da3ceeff 883void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 884{
4f103c63 885 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
886 struct mem_cgroup *memcg;
887 struct lruvec *lruvec;
888
889 rcu_read_lock();
4f103c63 890 memcg = mem_cgroup_from_obj(p);
ec9f0238 891
8faeb1ff
MS
892 /*
893 * Untracked pages have no memcg, no lruvec. Update only the
894 * node. If we reparent the slab objects to the root memcg,
895 * when we free the slab object, we need to update the per-memcg
896 * vmstats to keep it correct for the root memcg.
897 */
898 if (!memcg) {
ec9f0238
RG
899 __mod_node_page_state(pgdat, idx, val);
900 } else {
867e5e1d 901 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
902 __mod_lruvec_state(lruvec, idx, val);
903 }
904 rcu_read_unlock();
905}
906
db9adbcb
JW
907/**
908 * __count_memcg_events - account VM events in a cgroup
909 * @memcg: the memory cgroup
910 * @idx: the event item
911 * @count: the number of events that occured
912 */
913void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
914 unsigned long count)
915{
db9adbcb
JW
916 if (mem_cgroup_disabled())
917 return;
918
2d146aa3
JW
919 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
920 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
921}
922
42a30035 923static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 924{
2d146aa3 925 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
926}
927
42a30035
JW
928static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929{
815744d7
JW
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
2d146aa3 934 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 935 return x;
42a30035
JW
936}
937
c0ff4b85 938static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 939 struct page *page,
3fba69a5 940 int nr_pages)
d52aa412 941{
e401f176
KH
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
c9019e9b 944 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 945 else {
c9019e9b 946 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
947 nr_pages = -nr_pages; /* for event */
948 }
e401f176 949
871789d4 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
951}
952
f53d7ce3
JW
953static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
7a159cc9
JW
955{
956 unsigned long val, next;
957
871789d4
CD
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 960 /* from time_after() in jiffies.h */
6a1a8b80 961 if ((long)(next - val) < 0) {
f53d7ce3
JW
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
bb4cc1a8
AM
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
f53d7ce3
JW
969 default:
970 break;
971 }
871789d4 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 973 return true;
7a159cc9 974 }
f53d7ce3 975 return false;
d2265e6f
KH
976}
977
978/*
979 * Check events in order.
980 *
981 */
c0ff4b85 982static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
983{
984 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 987 bool do_softlimit;
f53d7ce3 988
bb4cc1a8
AM
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 991 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
0a31bc97 994 }
d2265e6f
KH
995}
996
cf475ad2 997struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 998{
31a78f23
BS
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
073219e9 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1008}
33398cf2 1009EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1010
d46eb14b
SB
1011/**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1020{
d46eb14b
SB
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
0b7f569e 1025
54595fe2
KH
1026 rcu_read_lock();
1027 do {
6f6acb00
MH
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
df381975 1034 memcg = root_mem_cgroup;
6f6acb00
MH
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
00d484f3 1040 } while (!css_tryget(&memcg->css));
54595fe2 1041 rcu_read_unlock();
c0ff4b85 1042 return memcg;
54595fe2 1043}
d46eb14b
SB
1044EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
37d5985c 1046static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1047{
37d5985c
RG
1048 if (in_interrupt())
1049 return this_cpu_read(int_active_memcg);
1050 else
1051 return current->active_memcg;
1052}
279c3393 1053
37d5985c
RG
1054static __always_inline struct mem_cgroup *get_active_memcg(void)
1055{
1056 struct mem_cgroup *memcg;
d46eb14b 1057
37d5985c
RG
1058 rcu_read_lock();
1059 memcg = active_memcg();
1685bde6
MS
1060 /* remote memcg must hold a ref. */
1061 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1062 memcg = root_mem_cgroup;
37d5985c
RG
1063 rcu_read_unlock();
1064
1065 return memcg;
1066}
1067
4127c650
RG
1068static __always_inline bool memcg_kmem_bypass(void)
1069{
1070 /* Allow remote memcg charging from any context. */
1071 if (unlikely(active_memcg()))
1072 return false;
1073
1074 /* Memcg to charge can't be determined. */
1075 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1076 return true;
1077
1078 return false;
1079}
1080
37d5985c
RG
1081/**
1082 * If active memcg is set, do not fallback to current->mm->memcg.
1083 */
1084static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1085{
1086 if (memcg_kmem_bypass())
1087 return NULL;
1088
1089 if (unlikely(active_memcg()))
1090 return get_active_memcg();
1091
d46eb14b
SB
1092 return get_mem_cgroup_from_mm(current->mm);
1093}
54595fe2 1094
5660048c
JW
1095/**
1096 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1097 * @root: hierarchy root
1098 * @prev: previously returned memcg, NULL on first invocation
1099 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1100 *
1101 * Returns references to children of the hierarchy below @root, or
1102 * @root itself, or %NULL after a full round-trip.
1103 *
1104 * Caller must pass the return value in @prev on subsequent
1105 * invocations for reference counting, or use mem_cgroup_iter_break()
1106 * to cancel a hierarchy walk before the round-trip is complete.
1107 *
05bdc520
ML
1108 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1109 * in the hierarchy among all concurrent reclaimers operating on the
1110 * same node.
5660048c 1111 */
694fbc0f 1112struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1113 struct mem_cgroup *prev,
694fbc0f 1114 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1115{
3f649ab7 1116 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1117 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1118 struct mem_cgroup *memcg = NULL;
5ac8fb31 1119 struct mem_cgroup *pos = NULL;
711d3d2c 1120
694fbc0f
AM
1121 if (mem_cgroup_disabled())
1122 return NULL;
5660048c 1123
9f3a0d09
JW
1124 if (!root)
1125 root = root_mem_cgroup;
7d74b06f 1126
9f3a0d09 1127 if (prev && !reclaim)
5ac8fb31 1128 pos = prev;
14067bb3 1129
542f85f9 1130 rcu_read_lock();
5f578161 1131
5ac8fb31 1132 if (reclaim) {
ef8f2327 1133 struct mem_cgroup_per_node *mz;
5ac8fb31 1134
a3747b53 1135 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1136 iter = &mz->iter;
5ac8fb31
JW
1137
1138 if (prev && reclaim->generation != iter->generation)
1139 goto out_unlock;
1140
6df38689 1141 while (1) {
4db0c3c2 1142 pos = READ_ONCE(iter->position);
6df38689
VD
1143 if (!pos || css_tryget(&pos->css))
1144 break;
5ac8fb31 1145 /*
6df38689
VD
1146 * css reference reached zero, so iter->position will
1147 * be cleared by ->css_released. However, we should not
1148 * rely on this happening soon, because ->css_released
1149 * is called from a work queue, and by busy-waiting we
1150 * might block it. So we clear iter->position right
1151 * away.
5ac8fb31 1152 */
6df38689
VD
1153 (void)cmpxchg(&iter->position, pos, NULL);
1154 }
5ac8fb31
JW
1155 }
1156
1157 if (pos)
1158 css = &pos->css;
1159
1160 for (;;) {
1161 css = css_next_descendant_pre(css, &root->css);
1162 if (!css) {
1163 /*
1164 * Reclaimers share the hierarchy walk, and a
1165 * new one might jump in right at the end of
1166 * the hierarchy - make sure they see at least
1167 * one group and restart from the beginning.
1168 */
1169 if (!prev)
1170 continue;
1171 break;
527a5ec9 1172 }
7d74b06f 1173
5ac8fb31
JW
1174 /*
1175 * Verify the css and acquire a reference. The root
1176 * is provided by the caller, so we know it's alive
1177 * and kicking, and don't take an extra reference.
1178 */
1179 memcg = mem_cgroup_from_css(css);
14067bb3 1180
5ac8fb31
JW
1181 if (css == &root->css)
1182 break;
14067bb3 1183
0b8f73e1
JW
1184 if (css_tryget(css))
1185 break;
9f3a0d09 1186
5ac8fb31 1187 memcg = NULL;
9f3a0d09 1188 }
5ac8fb31
JW
1189
1190 if (reclaim) {
5ac8fb31 1191 /*
6df38689
VD
1192 * The position could have already been updated by a competing
1193 * thread, so check that the value hasn't changed since we read
1194 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1195 */
6df38689
VD
1196 (void)cmpxchg(&iter->position, pos, memcg);
1197
5ac8fb31
JW
1198 if (pos)
1199 css_put(&pos->css);
1200
1201 if (!memcg)
1202 iter->generation++;
1203 else if (!prev)
1204 reclaim->generation = iter->generation;
9f3a0d09 1205 }
5ac8fb31 1206
542f85f9
MH
1207out_unlock:
1208 rcu_read_unlock();
c40046f3
MH
1209 if (prev && prev != root)
1210 css_put(&prev->css);
1211
9f3a0d09 1212 return memcg;
14067bb3 1213}
7d74b06f 1214
5660048c
JW
1215/**
1216 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1217 * @root: hierarchy root
1218 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1219 */
1220void mem_cgroup_iter_break(struct mem_cgroup *root,
1221 struct mem_cgroup *prev)
9f3a0d09
JW
1222{
1223 if (!root)
1224 root = root_mem_cgroup;
1225 if (prev && prev != root)
1226 css_put(&prev->css);
1227}
7d74b06f 1228
54a83d6b
MC
1229static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1230 struct mem_cgroup *dead_memcg)
6df38689 1231{
6df38689 1232 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1233 struct mem_cgroup_per_node *mz;
1234 int nid;
6df38689 1235
54a83d6b 1236 for_each_node(nid) {
a3747b53 1237 mz = from->nodeinfo[nid];
9da83f3f
YS
1238 iter = &mz->iter;
1239 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1240 }
1241}
1242
54a83d6b
MC
1243static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1244{
1245 struct mem_cgroup *memcg = dead_memcg;
1246 struct mem_cgroup *last;
1247
1248 do {
1249 __invalidate_reclaim_iterators(memcg, dead_memcg);
1250 last = memcg;
1251 } while ((memcg = parent_mem_cgroup(memcg)));
1252
1253 /*
1254 * When cgruop1 non-hierarchy mode is used,
1255 * parent_mem_cgroup() does not walk all the way up to the
1256 * cgroup root (root_mem_cgroup). So we have to handle
1257 * dead_memcg from cgroup root separately.
1258 */
1259 if (last != root_mem_cgroup)
1260 __invalidate_reclaim_iterators(root_mem_cgroup,
1261 dead_memcg);
1262}
1263
7c5f64f8
VD
1264/**
1265 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1266 * @memcg: hierarchy root
1267 * @fn: function to call for each task
1268 * @arg: argument passed to @fn
1269 *
1270 * This function iterates over tasks attached to @memcg or to any of its
1271 * descendants and calls @fn for each task. If @fn returns a non-zero
1272 * value, the function breaks the iteration loop and returns the value.
1273 * Otherwise, it will iterate over all tasks and return 0.
1274 *
1275 * This function must not be called for the root memory cgroup.
1276 */
1277int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1278 int (*fn)(struct task_struct *, void *), void *arg)
1279{
1280 struct mem_cgroup *iter;
1281 int ret = 0;
1282
1283 BUG_ON(memcg == root_mem_cgroup);
1284
1285 for_each_mem_cgroup_tree(iter, memcg) {
1286 struct css_task_iter it;
1287 struct task_struct *task;
1288
f168a9a5 1289 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1290 while (!ret && (task = css_task_iter_next(&it)))
1291 ret = fn(task, arg);
1292 css_task_iter_end(&it);
1293 if (ret) {
1294 mem_cgroup_iter_break(memcg, iter);
1295 break;
1296 }
1297 }
1298 return ret;
1299}
1300
6168d0da
AS
1301#ifdef CONFIG_DEBUG_VM
1302void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1303{
1304 struct mem_cgroup *memcg;
1305
1306 if (mem_cgroup_disabled())
1307 return;
1308
1309 memcg = page_memcg(page);
1310
1311 if (!memcg)
1312 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1313 else
1314 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1315}
1316#endif
1317
6168d0da
AS
1318/**
1319 * lock_page_lruvec - lock and return lruvec for a given page.
1320 * @page: the page
1321 *
d7e3aba5
AS
1322 * These functions are safe to use under any of the following conditions:
1323 * - page locked
1324 * - PageLRU cleared
1325 * - lock_page_memcg()
1326 * - page->_refcount is zero
6168d0da
AS
1327 */
1328struct lruvec *lock_page_lruvec(struct page *page)
1329{
1330 struct lruvec *lruvec;
1331 struct pglist_data *pgdat = page_pgdat(page);
1332
6168d0da
AS
1333 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1334 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1335
1336 lruvec_memcg_debug(lruvec, page);
1337
1338 return lruvec;
1339}
1340
1341struct lruvec *lock_page_lruvec_irq(struct page *page)
1342{
1343 struct lruvec *lruvec;
1344 struct pglist_data *pgdat = page_pgdat(page);
1345
6168d0da
AS
1346 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1347 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1348
1349 lruvec_memcg_debug(lruvec, page);
1350
1351 return lruvec;
1352}
1353
1354struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1355{
1356 struct lruvec *lruvec;
1357 struct pglist_data *pgdat = page_pgdat(page);
1358
6168d0da
AS
1359 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1360 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1361
1362 lruvec_memcg_debug(lruvec, page);
1363
1364 return lruvec;
1365}
1366
925b7673 1367/**
fa9add64
HD
1368 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1369 * @lruvec: mem_cgroup per zone lru vector
1370 * @lru: index of lru list the page is sitting on
b4536f0c 1371 * @zid: zone id of the accounted pages
fa9add64 1372 * @nr_pages: positive when adding or negative when removing
925b7673 1373 *
ca707239
HD
1374 * This function must be called under lru_lock, just before a page is added
1375 * to or just after a page is removed from an lru list (that ordering being
1376 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1377 */
fa9add64 1378void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1379 int zid, int nr_pages)
3f58a829 1380{
ef8f2327 1381 struct mem_cgroup_per_node *mz;
fa9add64 1382 unsigned long *lru_size;
ca707239 1383 long size;
3f58a829
MK
1384
1385 if (mem_cgroup_disabled())
1386 return;
1387
ef8f2327 1388 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1389 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1390
1391 if (nr_pages < 0)
1392 *lru_size += nr_pages;
1393
1394 size = *lru_size;
b4536f0c
MH
1395 if (WARN_ONCE(size < 0,
1396 "%s(%p, %d, %d): lru_size %ld\n",
1397 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1398 VM_BUG_ON(1);
1399 *lru_size = 0;
1400 }
1401
1402 if (nr_pages > 0)
1403 *lru_size += nr_pages;
08e552c6 1404}
544122e5 1405
19942822 1406/**
9d11ea9f 1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1408 * @memcg: the memory cgroup
19942822 1409 *
9d11ea9f 1410 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1411 * pages.
19942822 1412 */
c0ff4b85 1413static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1414{
3e32cb2e
JW
1415 unsigned long margin = 0;
1416 unsigned long count;
1417 unsigned long limit;
9d11ea9f 1418
3e32cb2e 1419 count = page_counter_read(&memcg->memory);
bbec2e15 1420 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1421 if (count < limit)
1422 margin = limit - count;
1423
7941d214 1424 if (do_memsw_account()) {
3e32cb2e 1425 count = page_counter_read(&memcg->memsw);
bbec2e15 1426 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1427 if (count < limit)
3e32cb2e 1428 margin = min(margin, limit - count);
cbedbac3
LR
1429 else
1430 margin = 0;
3e32cb2e
JW
1431 }
1432
1433 return margin;
19942822
JW
1434}
1435
32047e2a 1436/*
bdcbb659 1437 * A routine for checking "mem" is under move_account() or not.
32047e2a 1438 *
bdcbb659
QH
1439 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1440 * moving cgroups. This is for waiting at high-memory pressure
1441 * caused by "move".
32047e2a 1442 */
c0ff4b85 1443static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1444{
2bd9bb20
KH
1445 struct mem_cgroup *from;
1446 struct mem_cgroup *to;
4b534334 1447 bool ret = false;
2bd9bb20
KH
1448 /*
1449 * Unlike task_move routines, we access mc.to, mc.from not under
1450 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1451 */
1452 spin_lock(&mc.lock);
1453 from = mc.from;
1454 to = mc.to;
1455 if (!from)
1456 goto unlock;
3e92041d 1457
2314b42d
JW
1458 ret = mem_cgroup_is_descendant(from, memcg) ||
1459 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1460unlock:
1461 spin_unlock(&mc.lock);
4b534334
KH
1462 return ret;
1463}
1464
c0ff4b85 1465static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1466{
1467 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1468 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1469 DEFINE_WAIT(wait);
1470 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1471 /* moving charge context might have finished. */
1472 if (mc.moving_task)
1473 schedule();
1474 finish_wait(&mc.waitq, &wait);
1475 return true;
1476 }
1477 }
1478 return false;
1479}
1480
5f9a4f4a
MS
1481struct memory_stat {
1482 const char *name;
5f9a4f4a
MS
1483 unsigned int idx;
1484};
1485
57b2847d 1486static const struct memory_stat memory_stats[] = {
fff66b79
MS
1487 { "anon", NR_ANON_MAPPED },
1488 { "file", NR_FILE_PAGES },
1489 { "kernel_stack", NR_KERNEL_STACK_KB },
1490 { "pagetables", NR_PAGETABLE },
1491 { "percpu", MEMCG_PERCPU_B },
1492 { "sock", MEMCG_SOCK },
1493 { "shmem", NR_SHMEM },
1494 { "file_mapped", NR_FILE_MAPPED },
1495 { "file_dirty", NR_FILE_DIRTY },
1496 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1497#ifdef CONFIG_SWAP
1498 { "swapcached", NR_SWAPCACHE },
1499#endif
5f9a4f4a 1500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1501 { "anon_thp", NR_ANON_THPS },
1502 { "file_thp", NR_FILE_THPS },
1503 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1504#endif
fff66b79
MS
1505 { "inactive_anon", NR_INACTIVE_ANON },
1506 { "active_anon", NR_ACTIVE_ANON },
1507 { "inactive_file", NR_INACTIVE_FILE },
1508 { "active_file", NR_ACTIVE_FILE },
1509 { "unevictable", NR_UNEVICTABLE },
1510 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1511 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1512
1513 /* The memory events */
fff66b79
MS
1514 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1515 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1516 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1517 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1518 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1519 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1520 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1521};
1522
fff66b79
MS
1523/* Translate stat items to the correct unit for memory.stat output */
1524static int memcg_page_state_unit(int item)
1525{
1526 switch (item) {
1527 case MEMCG_PERCPU_B:
1528 case NR_SLAB_RECLAIMABLE_B:
1529 case NR_SLAB_UNRECLAIMABLE_B:
1530 case WORKINGSET_REFAULT_ANON:
1531 case WORKINGSET_REFAULT_FILE:
1532 case WORKINGSET_ACTIVATE_ANON:
1533 case WORKINGSET_ACTIVATE_FILE:
1534 case WORKINGSET_RESTORE_ANON:
1535 case WORKINGSET_RESTORE_FILE:
1536 case WORKINGSET_NODERECLAIM:
1537 return 1;
1538 case NR_KERNEL_STACK_KB:
1539 return SZ_1K;
1540 default:
1541 return PAGE_SIZE;
1542 }
1543}
1544
1545static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1546 int item)
1547{
1548 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1549}
1550
c8713d0b
JW
1551static char *memory_stat_format(struct mem_cgroup *memcg)
1552{
1553 struct seq_buf s;
1554 int i;
71cd3113 1555
c8713d0b
JW
1556 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1557 if (!s.buffer)
1558 return NULL;
1559
1560 /*
1561 * Provide statistics on the state of the memory subsystem as
1562 * well as cumulative event counters that show past behavior.
1563 *
1564 * This list is ordered following a combination of these gradients:
1565 * 1) generic big picture -> specifics and details
1566 * 2) reflecting userspace activity -> reflecting kernel heuristics
1567 *
1568 * Current memory state:
1569 */
2d146aa3 1570 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1571
5f9a4f4a
MS
1572 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1573 u64 size;
c8713d0b 1574
fff66b79 1575 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1576 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1577
5f9a4f4a 1578 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1579 size += memcg_page_state_output(memcg,
1580 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1581 seq_buf_printf(&s, "slab %llu\n", size);
1582 }
1583 }
c8713d0b
JW
1584
1585 /* Accumulated memory events */
1586
ebc5d83d
KK
1587 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1588 memcg_events(memcg, PGFAULT));
1589 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1590 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1591 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1592 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1593 seq_buf_printf(&s, "pgscan %lu\n",
1594 memcg_events(memcg, PGSCAN_KSWAPD) +
1595 memcg_events(memcg, PGSCAN_DIRECT));
1596 seq_buf_printf(&s, "pgsteal %lu\n",
1597 memcg_events(memcg, PGSTEAL_KSWAPD) +
1598 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1599 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1600 memcg_events(memcg, PGACTIVATE));
1601 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1602 memcg_events(memcg, PGDEACTIVATE));
1603 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1604 memcg_events(memcg, PGLAZYFREE));
1605 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1606 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1607
1608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1609 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1610 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1611 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1612 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1613#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1614
1615 /* The above should easily fit into one page */
1616 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1617
1618 return s.buffer;
1619}
71cd3113 1620
58cf188e 1621#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1622/**
f0c867d9 1623 * mem_cgroup_print_oom_context: Print OOM information relevant to
1624 * memory controller.
e222432b
BS
1625 * @memcg: The memory cgroup that went over limit
1626 * @p: Task that is going to be killed
1627 *
1628 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1629 * enabled
1630 */
f0c867d9 1631void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1632{
e222432b
BS
1633 rcu_read_lock();
1634
f0c867d9 1635 if (memcg) {
1636 pr_cont(",oom_memcg=");
1637 pr_cont_cgroup_path(memcg->css.cgroup);
1638 } else
1639 pr_cont(",global_oom");
2415b9f5 1640 if (p) {
f0c867d9 1641 pr_cont(",task_memcg=");
2415b9f5 1642 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1643 }
e222432b 1644 rcu_read_unlock();
f0c867d9 1645}
1646
1647/**
1648 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1649 * memory controller.
1650 * @memcg: The memory cgroup that went over limit
1651 */
1652void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1653{
c8713d0b 1654 char *buf;
e222432b 1655
3e32cb2e
JW
1656 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1657 K((u64)page_counter_read(&memcg->memory)),
15b42562 1658 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1659 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1660 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1661 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1662 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1663 else {
1664 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1665 K((u64)page_counter_read(&memcg->memsw)),
1666 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1667 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->kmem)),
1669 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1670 }
c8713d0b
JW
1671
1672 pr_info("Memory cgroup stats for ");
1673 pr_cont_cgroup_path(memcg->css.cgroup);
1674 pr_cont(":");
1675 buf = memory_stat_format(memcg);
1676 if (!buf)
1677 return;
1678 pr_info("%s", buf);
1679 kfree(buf);
e222432b
BS
1680}
1681
a63d83f4
DR
1682/*
1683 * Return the memory (and swap, if configured) limit for a memcg.
1684 */
bbec2e15 1685unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1686{
8d387a5f
WL
1687 unsigned long max = READ_ONCE(memcg->memory.max);
1688
1689 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1690 if (mem_cgroup_swappiness(memcg))
1691 max += min(READ_ONCE(memcg->swap.max),
1692 (unsigned long)total_swap_pages);
1693 } else { /* v1 */
1694 if (mem_cgroup_swappiness(memcg)) {
1695 /* Calculate swap excess capacity from memsw limit */
1696 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1697
1698 max += min(swap, (unsigned long)total_swap_pages);
1699 }
9a5a8f19 1700 }
bbec2e15 1701 return max;
a63d83f4
DR
1702}
1703
9783aa99
CD
1704unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1705{
1706 return page_counter_read(&memcg->memory);
1707}
1708
b6e6edcf 1709static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1710 int order)
9cbb78bb 1711{
6e0fc46d
DR
1712 struct oom_control oc = {
1713 .zonelist = NULL,
1714 .nodemask = NULL,
2a966b77 1715 .memcg = memcg,
6e0fc46d
DR
1716 .gfp_mask = gfp_mask,
1717 .order = order,
6e0fc46d 1718 };
1378b37d 1719 bool ret = true;
9cbb78bb 1720
7775face
TH
1721 if (mutex_lock_killable(&oom_lock))
1722 return true;
1378b37d
YS
1723
1724 if (mem_cgroup_margin(memcg) >= (1 << order))
1725 goto unlock;
1726
7775face
TH
1727 /*
1728 * A few threads which were not waiting at mutex_lock_killable() can
1729 * fail to bail out. Therefore, check again after holding oom_lock.
1730 */
1731 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1732
1733unlock:
dc56401f 1734 mutex_unlock(&oom_lock);
7c5f64f8 1735 return ret;
9cbb78bb
DR
1736}
1737
0608f43d 1738static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1739 pg_data_t *pgdat,
0608f43d
AM
1740 gfp_t gfp_mask,
1741 unsigned long *total_scanned)
1742{
1743 struct mem_cgroup *victim = NULL;
1744 int total = 0;
1745 int loop = 0;
1746 unsigned long excess;
1747 unsigned long nr_scanned;
1748 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1749 .pgdat = pgdat,
0608f43d
AM
1750 };
1751
3e32cb2e 1752 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1753
1754 while (1) {
1755 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1756 if (!victim) {
1757 loop++;
1758 if (loop >= 2) {
1759 /*
1760 * If we have not been able to reclaim
1761 * anything, it might because there are
1762 * no reclaimable pages under this hierarchy
1763 */
1764 if (!total)
1765 break;
1766 /*
1767 * We want to do more targeted reclaim.
1768 * excess >> 2 is not to excessive so as to
1769 * reclaim too much, nor too less that we keep
1770 * coming back to reclaim from this cgroup
1771 */
1772 if (total >= (excess >> 2) ||
1773 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1774 break;
1775 }
1776 continue;
1777 }
a9dd0a83 1778 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1779 pgdat, &nr_scanned);
0608f43d 1780 *total_scanned += nr_scanned;
3e32cb2e 1781 if (!soft_limit_excess(root_memcg))
0608f43d 1782 break;
6d61ef40 1783 }
0608f43d
AM
1784 mem_cgroup_iter_break(root_memcg, victim);
1785 return total;
6d61ef40
BS
1786}
1787
0056f4e6
JW
1788#ifdef CONFIG_LOCKDEP
1789static struct lockdep_map memcg_oom_lock_dep_map = {
1790 .name = "memcg_oom_lock",
1791};
1792#endif
1793
fb2a6fc5
JW
1794static DEFINE_SPINLOCK(memcg_oom_lock);
1795
867578cb
KH
1796/*
1797 * Check OOM-Killer is already running under our hierarchy.
1798 * If someone is running, return false.
1799 */
fb2a6fc5 1800static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1801{
79dfdacc 1802 struct mem_cgroup *iter, *failed = NULL;
a636b327 1803
fb2a6fc5
JW
1804 spin_lock(&memcg_oom_lock);
1805
9f3a0d09 1806 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1807 if (iter->oom_lock) {
79dfdacc
MH
1808 /*
1809 * this subtree of our hierarchy is already locked
1810 * so we cannot give a lock.
1811 */
79dfdacc 1812 failed = iter;
9f3a0d09
JW
1813 mem_cgroup_iter_break(memcg, iter);
1814 break;
23751be0
JW
1815 } else
1816 iter->oom_lock = true;
7d74b06f 1817 }
867578cb 1818
fb2a6fc5
JW
1819 if (failed) {
1820 /*
1821 * OK, we failed to lock the whole subtree so we have
1822 * to clean up what we set up to the failing subtree
1823 */
1824 for_each_mem_cgroup_tree(iter, memcg) {
1825 if (iter == failed) {
1826 mem_cgroup_iter_break(memcg, iter);
1827 break;
1828 }
1829 iter->oom_lock = false;
79dfdacc 1830 }
0056f4e6
JW
1831 } else
1832 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1833
1834 spin_unlock(&memcg_oom_lock);
1835
1836 return !failed;
a636b327 1837}
0b7f569e 1838
fb2a6fc5 1839static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1840{
7d74b06f
KH
1841 struct mem_cgroup *iter;
1842
fb2a6fc5 1843 spin_lock(&memcg_oom_lock);
5facae4f 1844 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1845 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1846 iter->oom_lock = false;
fb2a6fc5 1847 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1848}
1849
c0ff4b85 1850static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1851{
1852 struct mem_cgroup *iter;
1853
c2b42d3c 1854 spin_lock(&memcg_oom_lock);
c0ff4b85 1855 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1856 iter->under_oom++;
1857 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1858}
1859
c0ff4b85 1860static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1861{
1862 struct mem_cgroup *iter;
1863
867578cb 1864 /*
7a52d4d8
ML
1865 * Be careful about under_oom underflows becase a child memcg
1866 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1867 */
c2b42d3c 1868 spin_lock(&memcg_oom_lock);
c0ff4b85 1869 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1870 if (iter->under_oom > 0)
1871 iter->under_oom--;
1872 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1873}
1874
867578cb
KH
1875static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1876
dc98df5a 1877struct oom_wait_info {
d79154bb 1878 struct mem_cgroup *memcg;
ac6424b9 1879 wait_queue_entry_t wait;
dc98df5a
KH
1880};
1881
ac6424b9 1882static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1883 unsigned mode, int sync, void *arg)
1884{
d79154bb
HD
1885 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1886 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1887 struct oom_wait_info *oom_wait_info;
1888
1889 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1890 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1891
2314b42d
JW
1892 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1893 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1894 return 0;
dc98df5a
KH
1895 return autoremove_wake_function(wait, mode, sync, arg);
1896}
1897
c0ff4b85 1898static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1899{
c2b42d3c
TH
1900 /*
1901 * For the following lockless ->under_oom test, the only required
1902 * guarantee is that it must see the state asserted by an OOM when
1903 * this function is called as a result of userland actions
1904 * triggered by the notification of the OOM. This is trivially
1905 * achieved by invoking mem_cgroup_mark_under_oom() before
1906 * triggering notification.
1907 */
1908 if (memcg && memcg->under_oom)
f4b90b70 1909 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1910}
1911
29ef680a
MH
1912enum oom_status {
1913 OOM_SUCCESS,
1914 OOM_FAILED,
1915 OOM_ASYNC,
1916 OOM_SKIPPED
1917};
1918
1919static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1920{
7056d3a3
MH
1921 enum oom_status ret;
1922 bool locked;
1923
29ef680a
MH
1924 if (order > PAGE_ALLOC_COSTLY_ORDER)
1925 return OOM_SKIPPED;
1926
7a1adfdd
RG
1927 memcg_memory_event(memcg, MEMCG_OOM);
1928
867578cb 1929 /*
49426420
JW
1930 * We are in the middle of the charge context here, so we
1931 * don't want to block when potentially sitting on a callstack
1932 * that holds all kinds of filesystem and mm locks.
1933 *
29ef680a
MH
1934 * cgroup1 allows disabling the OOM killer and waiting for outside
1935 * handling until the charge can succeed; remember the context and put
1936 * the task to sleep at the end of the page fault when all locks are
1937 * released.
49426420 1938 *
29ef680a
MH
1939 * On the other hand, in-kernel OOM killer allows for an async victim
1940 * memory reclaim (oom_reaper) and that means that we are not solely
1941 * relying on the oom victim to make a forward progress and we can
1942 * invoke the oom killer here.
1943 *
1944 * Please note that mem_cgroup_out_of_memory might fail to find a
1945 * victim and then we have to bail out from the charge path.
867578cb 1946 */
29ef680a
MH
1947 if (memcg->oom_kill_disable) {
1948 if (!current->in_user_fault)
1949 return OOM_SKIPPED;
1950 css_get(&memcg->css);
1951 current->memcg_in_oom = memcg;
1952 current->memcg_oom_gfp_mask = mask;
1953 current->memcg_oom_order = order;
1954
1955 return OOM_ASYNC;
1956 }
1957
7056d3a3
MH
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1966 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1967 ret = OOM_SUCCESS;
1968 else
1969 ret = OOM_FAILED;
1970
1971 if (locked)
1972 mem_cgroup_oom_unlock(memcg);
29ef680a 1973
7056d3a3 1974 return ret;
3812c8c8
JW
1975}
1976
1977/**
1978 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1979 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1980 *
49426420
JW
1981 * This has to be called at the end of a page fault if the memcg OOM
1982 * handler was enabled.
3812c8c8 1983 *
49426420 1984 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1985 * sleep on a waitqueue until the userspace task resolves the
1986 * situation. Sleeping directly in the charge context with all kinds
1987 * of locks held is not a good idea, instead we remember an OOM state
1988 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1989 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1990 *
1991 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1992 * completed, %false otherwise.
3812c8c8 1993 */
49426420 1994bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1995{
626ebc41 1996 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1997 struct oom_wait_info owait;
49426420 1998 bool locked;
3812c8c8
JW
1999
2000 /* OOM is global, do not handle */
3812c8c8 2001 if (!memcg)
49426420 2002 return false;
3812c8c8 2003
7c5f64f8 2004 if (!handle)
49426420 2005 goto cleanup;
3812c8c8
JW
2006
2007 owait.memcg = memcg;
2008 owait.wait.flags = 0;
2009 owait.wait.func = memcg_oom_wake_function;
2010 owait.wait.private = current;
2055da97 2011 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2012
3812c8c8 2013 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2014 mem_cgroup_mark_under_oom(memcg);
2015
2016 locked = mem_cgroup_oom_trylock(memcg);
2017
2018 if (locked)
2019 mem_cgroup_oom_notify(memcg);
2020
2021 if (locked && !memcg->oom_kill_disable) {
2022 mem_cgroup_unmark_under_oom(memcg);
2023 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2024 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2025 current->memcg_oom_order);
49426420 2026 } else {
3812c8c8 2027 schedule();
49426420
JW
2028 mem_cgroup_unmark_under_oom(memcg);
2029 finish_wait(&memcg_oom_waitq, &owait.wait);
2030 }
2031
2032 if (locked) {
fb2a6fc5
JW
2033 mem_cgroup_oom_unlock(memcg);
2034 /*
2035 * There is no guarantee that an OOM-lock contender
2036 * sees the wakeups triggered by the OOM kill
2037 * uncharges. Wake any sleepers explicitely.
2038 */
2039 memcg_oom_recover(memcg);
2040 }
49426420 2041cleanup:
626ebc41 2042 current->memcg_in_oom = NULL;
3812c8c8 2043 css_put(&memcg->css);
867578cb 2044 return true;
0b7f569e
KH
2045}
2046
3d8b38eb
RG
2047/**
2048 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2049 * @victim: task to be killed by the OOM killer
2050 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2051 *
2052 * Returns a pointer to a memory cgroup, which has to be cleaned up
2053 * by killing all belonging OOM-killable tasks.
2054 *
2055 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2056 */
2057struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2058 struct mem_cgroup *oom_domain)
2059{
2060 struct mem_cgroup *oom_group = NULL;
2061 struct mem_cgroup *memcg;
2062
2063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2064 return NULL;
2065
2066 if (!oom_domain)
2067 oom_domain = root_mem_cgroup;
2068
2069 rcu_read_lock();
2070
2071 memcg = mem_cgroup_from_task(victim);
2072 if (memcg == root_mem_cgroup)
2073 goto out;
2074
48fe267c
RG
2075 /*
2076 * If the victim task has been asynchronously moved to a different
2077 * memory cgroup, we might end up killing tasks outside oom_domain.
2078 * In this case it's better to ignore memory.group.oom.
2079 */
2080 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2081 goto out;
2082
3d8b38eb
RG
2083 /*
2084 * Traverse the memory cgroup hierarchy from the victim task's
2085 * cgroup up to the OOMing cgroup (or root) to find the
2086 * highest-level memory cgroup with oom.group set.
2087 */
2088 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2089 if (memcg->oom_group)
2090 oom_group = memcg;
2091
2092 if (memcg == oom_domain)
2093 break;
2094 }
2095
2096 if (oom_group)
2097 css_get(&oom_group->css);
2098out:
2099 rcu_read_unlock();
2100
2101 return oom_group;
2102}
2103
2104void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2105{
2106 pr_info("Tasks in ");
2107 pr_cont_cgroup_path(memcg->css.cgroup);
2108 pr_cont(" are going to be killed due to memory.oom.group set\n");
2109}
2110
d7365e78 2111/**
bcfe06bf 2112 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2113 * @page: the page
32047e2a 2114 *
81f8c3a4 2115 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2116 * another cgroup.
2117 *
1c824a68
JW
2118 * It ensures lifetime of the locked memcg. Caller is responsible
2119 * for the lifetime of the page.
d69b042f 2120 */
1c824a68 2121void lock_page_memcg(struct page *page)
89c06bd5 2122{
9da7b521 2123 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2124 struct mem_cgroup *memcg;
6de22619 2125 unsigned long flags;
89c06bd5 2126
6de22619
JW
2127 /*
2128 * The RCU lock is held throughout the transaction. The fast
2129 * path can get away without acquiring the memcg->move_lock
2130 * because page moving starts with an RCU grace period.
739f79fc 2131 */
d7365e78
JW
2132 rcu_read_lock();
2133
2134 if (mem_cgroup_disabled())
1c824a68 2135 return;
89c06bd5 2136again:
bcfe06bf 2137 memcg = page_memcg(head);
29833315 2138 if (unlikely(!memcg))
1c824a68 2139 return;
d7365e78 2140
20ad50d6
AS
2141#ifdef CONFIG_PROVE_LOCKING
2142 local_irq_save(flags);
2143 might_lock(&memcg->move_lock);
2144 local_irq_restore(flags);
2145#endif
2146
bdcbb659 2147 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2148 return;
89c06bd5 2149
6de22619 2150 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2151 if (memcg != page_memcg(head)) {
6de22619 2152 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2153 goto again;
2154 }
6de22619
JW
2155
2156 /*
1c824a68
JW
2157 * When charge migration first begins, we can have multiple
2158 * critical sections holding the fast-path RCU lock and one
2159 * holding the slowpath move_lock. Track the task who has the
2160 * move_lock for unlock_page_memcg().
6de22619
JW
2161 */
2162 memcg->move_lock_task = current;
2163 memcg->move_lock_flags = flags;
89c06bd5 2164}
81f8c3a4 2165EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2166
1c824a68 2167static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2168{
6de22619
JW
2169 if (memcg && memcg->move_lock_task == current) {
2170 unsigned long flags = memcg->move_lock_flags;
2171
2172 memcg->move_lock_task = NULL;
2173 memcg->move_lock_flags = 0;
2174
2175 spin_unlock_irqrestore(&memcg->move_lock, flags);
2176 }
89c06bd5 2177
d7365e78 2178 rcu_read_unlock();
89c06bd5 2179}
739f79fc
JW
2180
2181/**
bcfe06bf 2182 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2183 * @page: the page
2184 */
2185void unlock_page_memcg(struct page *page)
2186{
9da7b521
JW
2187 struct page *head = compound_head(page);
2188
bcfe06bf 2189 __unlock_page_memcg(page_memcg(head));
739f79fc 2190}
81f8c3a4 2191EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2192
cdec2e42
KH
2193struct memcg_stock_pcp {
2194 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2195 unsigned int nr_pages;
bf4f0599
RG
2196
2197#ifdef CONFIG_MEMCG_KMEM
2198 struct obj_cgroup *cached_objcg;
2199 unsigned int nr_bytes;
2200#endif
2201
cdec2e42 2202 struct work_struct work;
26fe6168 2203 unsigned long flags;
a0db00fc 2204#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2205};
2206static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2207static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2208
bf4f0599
RG
2209#ifdef CONFIG_MEMCG_KMEM
2210static void drain_obj_stock(struct memcg_stock_pcp *stock);
2211static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2212 struct mem_cgroup *root_memcg);
2213
2214#else
2215static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2216{
2217}
2218static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2219 struct mem_cgroup *root_memcg)
2220{
2221 return false;
2222}
2223#endif
2224
a0956d54
SS
2225/**
2226 * consume_stock: Try to consume stocked charge on this cpu.
2227 * @memcg: memcg to consume from.
2228 * @nr_pages: how many pages to charge.
2229 *
2230 * The charges will only happen if @memcg matches the current cpu's memcg
2231 * stock, and at least @nr_pages are available in that stock. Failure to
2232 * service an allocation will refill the stock.
2233 *
2234 * returns true if successful, false otherwise.
cdec2e42 2235 */
a0956d54 2236static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2237{
2238 struct memcg_stock_pcp *stock;
db2ba40c 2239 unsigned long flags;
3e32cb2e 2240 bool ret = false;
cdec2e42 2241
a983b5eb 2242 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2243 return ret;
a0956d54 2244
db2ba40c
JW
2245 local_irq_save(flags);
2246
2247 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2248 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2249 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2250 ret = true;
2251 }
db2ba40c
JW
2252
2253 local_irq_restore(flags);
2254
cdec2e42
KH
2255 return ret;
2256}
2257
2258/*
3e32cb2e 2259 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2260 */
2261static void drain_stock(struct memcg_stock_pcp *stock)
2262{
2263 struct mem_cgroup *old = stock->cached;
2264
1a3e1f40
JW
2265 if (!old)
2266 return;
2267
11c9ea4e 2268 if (stock->nr_pages) {
3e32cb2e 2269 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2270 if (do_memsw_account())
3e32cb2e 2271 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2272 stock->nr_pages = 0;
cdec2e42 2273 }
1a3e1f40
JW
2274
2275 css_put(&old->css);
cdec2e42 2276 stock->cached = NULL;
cdec2e42
KH
2277}
2278
cdec2e42
KH
2279static void drain_local_stock(struct work_struct *dummy)
2280{
db2ba40c
JW
2281 struct memcg_stock_pcp *stock;
2282 unsigned long flags;
2283
72f0184c
MH
2284 /*
2285 * The only protection from memory hotplug vs. drain_stock races is
2286 * that we always operate on local CPU stock here with IRQ disabled
2287 */
db2ba40c
JW
2288 local_irq_save(flags);
2289
2290 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2291 drain_obj_stock(stock);
cdec2e42 2292 drain_stock(stock);
26fe6168 2293 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2294
2295 local_irq_restore(flags);
cdec2e42
KH
2296}
2297
2298/*
3e32cb2e 2299 * Cache charges(val) to local per_cpu area.
320cc51d 2300 * This will be consumed by consume_stock() function, later.
cdec2e42 2301 */
c0ff4b85 2302static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2303{
db2ba40c
JW
2304 struct memcg_stock_pcp *stock;
2305 unsigned long flags;
2306
2307 local_irq_save(flags);
cdec2e42 2308
db2ba40c 2309 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2310 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2311 drain_stock(stock);
1a3e1f40 2312 css_get(&memcg->css);
c0ff4b85 2313 stock->cached = memcg;
cdec2e42 2314 }
11c9ea4e 2315 stock->nr_pages += nr_pages;
db2ba40c 2316
a983b5eb 2317 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2318 drain_stock(stock);
2319
db2ba40c 2320 local_irq_restore(flags);
cdec2e42
KH
2321}
2322
2323/*
c0ff4b85 2324 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2325 * of the hierarchy under it.
cdec2e42 2326 */
6d3d6aa2 2327static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2328{
26fe6168 2329 int cpu, curcpu;
d38144b7 2330
6d3d6aa2
JW
2331 /* If someone's already draining, avoid adding running more workers. */
2332 if (!mutex_trylock(&percpu_charge_mutex))
2333 return;
72f0184c
MH
2334 /*
2335 * Notify other cpus that system-wide "drain" is running
2336 * We do not care about races with the cpu hotplug because cpu down
2337 * as well as workers from this path always operate on the local
2338 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2339 */
5af12d0e 2340 curcpu = get_cpu();
cdec2e42
KH
2341 for_each_online_cpu(cpu) {
2342 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2343 struct mem_cgroup *memcg;
e1a366be 2344 bool flush = false;
26fe6168 2345
e1a366be 2346 rcu_read_lock();
c0ff4b85 2347 memcg = stock->cached;
e1a366be
RG
2348 if (memcg && stock->nr_pages &&
2349 mem_cgroup_is_descendant(memcg, root_memcg))
2350 flush = true;
bf4f0599
RG
2351 if (obj_stock_flush_required(stock, root_memcg))
2352 flush = true;
e1a366be
RG
2353 rcu_read_unlock();
2354
2355 if (flush &&
2356 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2357 if (cpu == curcpu)
2358 drain_local_stock(&stock->work);
2359 else
2360 schedule_work_on(cpu, &stock->work);
2361 }
cdec2e42 2362 }
5af12d0e 2363 put_cpu();
9f50fad6 2364 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2365}
2366
2cd21c89 2367static void memcg_flush_lruvec_page_state(struct mem_cgroup *memcg, int cpu)
cdec2e42 2368{
2cd21c89 2369 int nid;
a983b5eb 2370
2cd21c89
JW
2371 for_each_node(nid) {
2372 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
2373 unsigned long stat[NR_VM_NODE_STAT_ITEMS];
2374 struct batched_lruvec_stat *lstatc;
a983b5eb
JW
2375 int i;
2376
2cd21c89 2377 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2d146aa3 2378 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
2cd21c89
JW
2379 stat[i] = lstatc->count[i];
2380 lstatc->count[i] = 0;
2381 }
a983b5eb 2382
2cd21c89
JW
2383 do {
2384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
2385 atomic_long_add(stat[i], &pn->lruvec_stat[i]);
2386 } while ((pn = parent_nodeinfo(pn, nid)));
2387 }
2388}
a983b5eb 2389
2cd21c89
JW
2390static int memcg_hotplug_cpu_dead(unsigned int cpu)
2391{
2392 struct memcg_stock_pcp *stock;
2393 struct mem_cgroup *memcg;
a3d4c05a 2394
2cd21c89
JW
2395 stock = &per_cpu(memcg_stock, cpu);
2396 drain_stock(stock);
a3d4c05a 2397
2cd21c89
JW
2398 for_each_mem_cgroup(memcg)
2399 memcg_flush_lruvec_page_state(memcg, cpu);
a983b5eb 2400
308167fc 2401 return 0;
cdec2e42
KH
2402}
2403
b3ff9291
CD
2404static unsigned long reclaim_high(struct mem_cgroup *memcg,
2405 unsigned int nr_pages,
2406 gfp_t gfp_mask)
f7e1cb6e 2407{
b3ff9291
CD
2408 unsigned long nr_reclaimed = 0;
2409
f7e1cb6e 2410 do {
e22c6ed9
JW
2411 unsigned long pflags;
2412
d1663a90
JK
2413 if (page_counter_read(&memcg->memory) <=
2414 READ_ONCE(memcg->memory.high))
f7e1cb6e 2415 continue;
e22c6ed9 2416
e27be240 2417 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2418
2419 psi_memstall_enter(&pflags);
b3ff9291
CD
2420 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2421 gfp_mask, true);
e22c6ed9 2422 psi_memstall_leave(&pflags);
4bf17307
CD
2423 } while ((memcg = parent_mem_cgroup(memcg)) &&
2424 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2425
2426 return nr_reclaimed;
f7e1cb6e
JW
2427}
2428
2429static void high_work_func(struct work_struct *work)
2430{
2431 struct mem_cgroup *memcg;
2432
2433 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2434 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2435}
2436
0e4b01df
CD
2437/*
2438 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2439 * enough to still cause a significant slowdown in most cases, while still
2440 * allowing diagnostics and tracing to proceed without becoming stuck.
2441 */
2442#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2443
2444/*
2445 * When calculating the delay, we use these either side of the exponentiation to
2446 * maintain precision and scale to a reasonable number of jiffies (see the table
2447 * below.
2448 *
2449 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2450 * overage ratio to a delay.
ac5ddd0f 2451 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2452 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2453 * to produce a reasonable delay curve.
2454 *
2455 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2456 * reasonable delay curve compared to precision-adjusted overage, not
2457 * penalising heavily at first, but still making sure that growth beyond the
2458 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2459 * example, with a high of 100 megabytes:
2460 *
2461 * +-------+------------------------+
2462 * | usage | time to allocate in ms |
2463 * +-------+------------------------+
2464 * | 100M | 0 |
2465 * | 101M | 6 |
2466 * | 102M | 25 |
2467 * | 103M | 57 |
2468 * | 104M | 102 |
2469 * | 105M | 159 |
2470 * | 106M | 230 |
2471 * | 107M | 313 |
2472 * | 108M | 409 |
2473 * | 109M | 518 |
2474 * | 110M | 639 |
2475 * | 111M | 774 |
2476 * | 112M | 921 |
2477 * | 113M | 1081 |
2478 * | 114M | 1254 |
2479 * | 115M | 1439 |
2480 * | 116M | 1638 |
2481 * | 117M | 1849 |
2482 * | 118M | 2000 |
2483 * | 119M | 2000 |
2484 * | 120M | 2000 |
2485 * +-------+------------------------+
2486 */
2487 #define MEMCG_DELAY_PRECISION_SHIFT 20
2488 #define MEMCG_DELAY_SCALING_SHIFT 14
2489
8a5dbc65 2490static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2491{
8a5dbc65 2492 u64 overage;
b23afb93 2493
8a5dbc65
JK
2494 if (usage <= high)
2495 return 0;
e26733e0 2496
8a5dbc65
JK
2497 /*
2498 * Prevent division by 0 in overage calculation by acting as if
2499 * it was a threshold of 1 page
2500 */
2501 high = max(high, 1UL);
9b8b1754 2502
8a5dbc65
JK
2503 overage = usage - high;
2504 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2505 return div64_u64(overage, high);
2506}
e26733e0 2507
8a5dbc65
JK
2508static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2509{
2510 u64 overage, max_overage = 0;
e26733e0 2511
8a5dbc65
JK
2512 do {
2513 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2514 READ_ONCE(memcg->memory.high));
8a5dbc65 2515 max_overage = max(overage, max_overage);
e26733e0
CD
2516 } while ((memcg = parent_mem_cgroup(memcg)) &&
2517 !mem_cgroup_is_root(memcg));
2518
8a5dbc65
JK
2519 return max_overage;
2520}
2521
4b82ab4f
JK
2522static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2523{
2524 u64 overage, max_overage = 0;
2525
2526 do {
2527 overage = calculate_overage(page_counter_read(&memcg->swap),
2528 READ_ONCE(memcg->swap.high));
2529 if (overage)
2530 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2531 max_overage = max(overage, max_overage);
2532 } while ((memcg = parent_mem_cgroup(memcg)) &&
2533 !mem_cgroup_is_root(memcg));
2534
2535 return max_overage;
2536}
2537
8a5dbc65
JK
2538/*
2539 * Get the number of jiffies that we should penalise a mischievous cgroup which
2540 * is exceeding its memory.high by checking both it and its ancestors.
2541 */
2542static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2543 unsigned int nr_pages,
2544 u64 max_overage)
2545{
2546 unsigned long penalty_jiffies;
2547
e26733e0
CD
2548 if (!max_overage)
2549 return 0;
0e4b01df
CD
2550
2551 /*
0e4b01df
CD
2552 * We use overage compared to memory.high to calculate the number of
2553 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2554 * fairly lenient on small overages, and increasingly harsh when the
2555 * memcg in question makes it clear that it has no intention of stopping
2556 * its crazy behaviour, so we exponentially increase the delay based on
2557 * overage amount.
2558 */
e26733e0
CD
2559 penalty_jiffies = max_overage * max_overage * HZ;
2560 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2561 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2562
2563 /*
2564 * Factor in the task's own contribution to the overage, such that four
2565 * N-sized allocations are throttled approximately the same as one
2566 * 4N-sized allocation.
2567 *
2568 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2569 * larger the current charge patch is than that.
2570 */
ff144e69 2571 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2572}
2573
2574/*
2575 * Scheduled by try_charge() to be executed from the userland return path
2576 * and reclaims memory over the high limit.
2577 */
2578void mem_cgroup_handle_over_high(void)
2579{
2580 unsigned long penalty_jiffies;
2581 unsigned long pflags;
b3ff9291 2582 unsigned long nr_reclaimed;
e26733e0 2583 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2584 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2585 struct mem_cgroup *memcg;
b3ff9291 2586 bool in_retry = false;
e26733e0
CD
2587
2588 if (likely(!nr_pages))
2589 return;
2590
2591 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2592 current->memcg_nr_pages_over_high = 0;
2593
b3ff9291
CD
2594retry_reclaim:
2595 /*
2596 * The allocating task should reclaim at least the batch size, but for
2597 * subsequent retries we only want to do what's necessary to prevent oom
2598 * or breaching resource isolation.
2599 *
2600 * This is distinct from memory.max or page allocator behaviour because
2601 * memory.high is currently batched, whereas memory.max and the page
2602 * allocator run every time an allocation is made.
2603 */
2604 nr_reclaimed = reclaim_high(memcg,
2605 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2606 GFP_KERNEL);
2607
e26733e0
CD
2608 /*
2609 * memory.high is breached and reclaim is unable to keep up. Throttle
2610 * allocators proactively to slow down excessive growth.
2611 */
8a5dbc65
JK
2612 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2613 mem_find_max_overage(memcg));
0e4b01df 2614
4b82ab4f
JK
2615 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2616 swap_find_max_overage(memcg));
2617
ff144e69
JK
2618 /*
2619 * Clamp the max delay per usermode return so as to still keep the
2620 * application moving forwards and also permit diagnostics, albeit
2621 * extremely slowly.
2622 */
2623 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2624
0e4b01df
CD
2625 /*
2626 * Don't sleep if the amount of jiffies this memcg owes us is so low
2627 * that it's not even worth doing, in an attempt to be nice to those who
2628 * go only a small amount over their memory.high value and maybe haven't
2629 * been aggressively reclaimed enough yet.
2630 */
2631 if (penalty_jiffies <= HZ / 100)
2632 goto out;
2633
b3ff9291
CD
2634 /*
2635 * If reclaim is making forward progress but we're still over
2636 * memory.high, we want to encourage that rather than doing allocator
2637 * throttling.
2638 */
2639 if (nr_reclaimed || nr_retries--) {
2640 in_retry = true;
2641 goto retry_reclaim;
2642 }
2643
0e4b01df
CD
2644 /*
2645 * If we exit early, we're guaranteed to die (since
2646 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2647 * need to account for any ill-begotten jiffies to pay them off later.
2648 */
2649 psi_memstall_enter(&pflags);
2650 schedule_timeout_killable(penalty_jiffies);
2651 psi_memstall_leave(&pflags);
2652
2653out:
2654 css_put(&memcg->css);
b23afb93
TH
2655}
2656
00501b53
JW
2657static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2658 unsigned int nr_pages)
8a9f3ccd 2659{
a983b5eb 2660 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2661 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2662 struct mem_cgroup *mem_over_limit;
3e32cb2e 2663 struct page_counter *counter;
e22c6ed9 2664 enum oom_status oom_status;
6539cc05 2665 unsigned long nr_reclaimed;
b70a2a21
JW
2666 bool may_swap = true;
2667 bool drained = false;
e22c6ed9 2668 unsigned long pflags;
a636b327 2669
ce00a967 2670 if (mem_cgroup_is_root(memcg))
10d53c74 2671 return 0;
6539cc05 2672retry:
b6b6cc72 2673 if (consume_stock(memcg, nr_pages))
10d53c74 2674 return 0;
8a9f3ccd 2675
7941d214 2676 if (!do_memsw_account() ||
6071ca52
JW
2677 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2678 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2679 goto done_restock;
7941d214 2680 if (do_memsw_account())
3e32cb2e
JW
2681 page_counter_uncharge(&memcg->memsw, batch);
2682 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2683 } else {
3e32cb2e 2684 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2685 may_swap = false;
3fbe7244 2686 }
7a81b88c 2687
6539cc05
JW
2688 if (batch > nr_pages) {
2689 batch = nr_pages;
2690 goto retry;
2691 }
6d61ef40 2692
869712fd
JW
2693 /*
2694 * Memcg doesn't have a dedicated reserve for atomic
2695 * allocations. But like the global atomic pool, we need to
2696 * put the burden of reclaim on regular allocation requests
2697 * and let these go through as privileged allocations.
2698 */
2699 if (gfp_mask & __GFP_ATOMIC)
2700 goto force;
2701
06b078fc
JW
2702 /*
2703 * Unlike in global OOM situations, memcg is not in a physical
2704 * memory shortage. Allow dying and OOM-killed tasks to
2705 * bypass the last charges so that they can exit quickly and
2706 * free their memory.
2707 */
7775face 2708 if (unlikely(should_force_charge()))
10d53c74 2709 goto force;
06b078fc 2710
89a28483
JW
2711 /*
2712 * Prevent unbounded recursion when reclaim operations need to
2713 * allocate memory. This might exceed the limits temporarily,
2714 * but we prefer facilitating memory reclaim and getting back
2715 * under the limit over triggering OOM kills in these cases.
2716 */
2717 if (unlikely(current->flags & PF_MEMALLOC))
2718 goto force;
2719
06b078fc
JW
2720 if (unlikely(task_in_memcg_oom(current)))
2721 goto nomem;
2722
d0164adc 2723 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2724 goto nomem;
4b534334 2725
e27be240 2726 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2727
e22c6ed9 2728 psi_memstall_enter(&pflags);
b70a2a21
JW
2729 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2730 gfp_mask, may_swap);
e22c6ed9 2731 psi_memstall_leave(&pflags);
6539cc05 2732
61e02c74 2733 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2734 goto retry;
28c34c29 2735
b70a2a21 2736 if (!drained) {
6d3d6aa2 2737 drain_all_stock(mem_over_limit);
b70a2a21
JW
2738 drained = true;
2739 goto retry;
2740 }
2741
28c34c29
JW
2742 if (gfp_mask & __GFP_NORETRY)
2743 goto nomem;
6539cc05
JW
2744 /*
2745 * Even though the limit is exceeded at this point, reclaim
2746 * may have been able to free some pages. Retry the charge
2747 * before killing the task.
2748 *
2749 * Only for regular pages, though: huge pages are rather
2750 * unlikely to succeed so close to the limit, and we fall back
2751 * to regular pages anyway in case of failure.
2752 */
61e02c74 2753 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2754 goto retry;
2755 /*
2756 * At task move, charge accounts can be doubly counted. So, it's
2757 * better to wait until the end of task_move if something is going on.
2758 */
2759 if (mem_cgroup_wait_acct_move(mem_over_limit))
2760 goto retry;
2761
9b130619
JW
2762 if (nr_retries--)
2763 goto retry;
2764
38d38493 2765 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2766 goto nomem;
2767
6539cc05 2768 if (fatal_signal_pending(current))
10d53c74 2769 goto force;
6539cc05 2770
29ef680a
MH
2771 /*
2772 * keep retrying as long as the memcg oom killer is able to make
2773 * a forward progress or bypass the charge if the oom killer
2774 * couldn't make any progress.
2775 */
2776 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2777 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2778 switch (oom_status) {
2779 case OOM_SUCCESS:
d977aa93 2780 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2781 goto retry;
2782 case OOM_FAILED:
2783 goto force;
2784 default:
2785 goto nomem;
2786 }
7a81b88c 2787nomem:
6d1fdc48 2788 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2789 return -ENOMEM;
10d53c74
TH
2790force:
2791 /*
2792 * The allocation either can't fail or will lead to more memory
2793 * being freed very soon. Allow memory usage go over the limit
2794 * temporarily by force charging it.
2795 */
2796 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2797 if (do_memsw_account())
10d53c74 2798 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2799
2800 return 0;
6539cc05
JW
2801
2802done_restock:
2803 if (batch > nr_pages)
2804 refill_stock(memcg, batch - nr_pages);
b23afb93 2805
241994ed 2806 /*
b23afb93
TH
2807 * If the hierarchy is above the normal consumption range, schedule
2808 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2809 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2810 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2811 * not recorded as it most likely matches current's and won't
2812 * change in the meantime. As high limit is checked again before
2813 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2814 */
2815 do {
4b82ab4f
JK
2816 bool mem_high, swap_high;
2817
2818 mem_high = page_counter_read(&memcg->memory) >
2819 READ_ONCE(memcg->memory.high);
2820 swap_high = page_counter_read(&memcg->swap) >
2821 READ_ONCE(memcg->swap.high);
2822
2823 /* Don't bother a random interrupted task */
2824 if (in_interrupt()) {
2825 if (mem_high) {
f7e1cb6e
JW
2826 schedule_work(&memcg->high_work);
2827 break;
2828 }
4b82ab4f
JK
2829 continue;
2830 }
2831
2832 if (mem_high || swap_high) {
2833 /*
2834 * The allocating tasks in this cgroup will need to do
2835 * reclaim or be throttled to prevent further growth
2836 * of the memory or swap footprints.
2837 *
2838 * Target some best-effort fairness between the tasks,
2839 * and distribute reclaim work and delay penalties
2840 * based on how much each task is actually allocating.
2841 */
9516a18a 2842 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2843 set_notify_resume(current);
2844 break;
2845 }
241994ed 2846 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2847
2848 return 0;
7a81b88c 2849}
8a9f3ccd 2850
f0e45fb4 2851#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2852static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2853{
ce00a967
JW
2854 if (mem_cgroup_is_root(memcg))
2855 return;
2856
3e32cb2e 2857 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2858 if (do_memsw_account())
3e32cb2e 2859 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2860}
f0e45fb4 2861#endif
d01dd17f 2862
d9eb1ea2 2863static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2864{
bcfe06bf 2865 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2866 /*
a5eb011a 2867 * Any of the following ensures page's memcg stability:
0a31bc97 2868 *
a0b5b414
JW
2869 * - the page lock
2870 * - LRU isolation
2871 * - lock_page_memcg()
2872 * - exclusive reference
0a31bc97 2873 */
bcfe06bf 2874 page->memcg_data = (unsigned long)memcg;
7a81b88c 2875}
66e1707b 2876
e74d2259
MS
2877static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2878{
2879 struct mem_cgroup *memcg;
2880
2881 rcu_read_lock();
2882retry:
2883 memcg = obj_cgroup_memcg(objcg);
2884 if (unlikely(!css_tryget(&memcg->css)))
2885 goto retry;
2886 rcu_read_unlock();
2887
2888 return memcg;
2889}
2890
84c07d11 2891#ifdef CONFIG_MEMCG_KMEM
10befea9 2892int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2893 gfp_t gfp, bool new_page)
10befea9
RG
2894{
2895 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2896 unsigned long memcg_data;
10befea9
RG
2897 void *vec;
2898
2899 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900 page_to_nid(page));
2901 if (!vec)
2902 return -ENOMEM;
2903
2e9bd483
RG
2904 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905 if (new_page) {
2906 /*
2907 * If the slab page is brand new and nobody can yet access
2908 * it's memcg_data, no synchronization is required and
2909 * memcg_data can be simply assigned.
2910 */
2911 page->memcg_data = memcg_data;
2912 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2913 /*
2914 * If the slab page is already in use, somebody can allocate
2915 * and assign obj_cgroups in parallel. In this case the existing
2916 * objcg vector should be reused.
2917 */
10befea9 2918 kfree(vec);
2e9bd483
RG
2919 return 0;
2920 }
10befea9 2921
2e9bd483 2922 kmemleak_not_leak(vec);
10befea9
RG
2923 return 0;
2924}
2925
8380ce47
RG
2926/*
2927 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2928 *
bcfe06bf
RG
2929 * A passed kernel object can be a slab object or a generic kernel page, so
2930 * different mechanisms for getting the memory cgroup pointer should be used.
2931 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2932 * can not know for sure how the kernel object is implemented.
2933 * mem_cgroup_from_obj() can be safely used in such cases.
2934 *
8380ce47
RG
2935 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2936 * cgroup_mutex, etc.
2937 */
2938struct mem_cgroup *mem_cgroup_from_obj(void *p)
2939{
2940 struct page *page;
2941
2942 if (mem_cgroup_disabled())
2943 return NULL;
2944
2945 page = virt_to_head_page(p);
2946
2947 /*
9855609b
RG
2948 * Slab objects are accounted individually, not per-page.
2949 * Memcg membership data for each individual object is saved in
2950 * the page->obj_cgroups.
8380ce47 2951 */
270c6a71 2952 if (page_objcgs_check(page)) {
9855609b
RG
2953 struct obj_cgroup *objcg;
2954 unsigned int off;
2955
2956 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2957 objcg = page_objcgs(page)[off];
10befea9
RG
2958 if (objcg)
2959 return obj_cgroup_memcg(objcg);
2960
2961 return NULL;
9855609b 2962 }
8380ce47 2963
bcfe06bf
RG
2964 /*
2965 * page_memcg_check() is used here, because page_has_obj_cgroups()
2966 * check above could fail because the object cgroups vector wasn't set
2967 * at that moment, but it can be set concurrently.
2968 * page_memcg_check(page) will guarantee that a proper memory
2969 * cgroup pointer or NULL will be returned.
2970 */
2971 return page_memcg_check(page);
8380ce47
RG
2972}
2973
bf4f0599
RG
2974__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2975{
2976 struct obj_cgroup *objcg = NULL;
2977 struct mem_cgroup *memcg;
2978
279c3393
RG
2979 if (memcg_kmem_bypass())
2980 return NULL;
2981
bf4f0599 2982 rcu_read_lock();
37d5985c
RG
2983 if (unlikely(active_memcg()))
2984 memcg = active_memcg();
bf4f0599
RG
2985 else
2986 memcg = mem_cgroup_from_task(current);
2987
2988 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2989 objcg = rcu_dereference(memcg->objcg);
2990 if (objcg && obj_cgroup_tryget(objcg))
2991 break;
2f7659a3 2992 objcg = NULL;
bf4f0599
RG
2993 }
2994 rcu_read_unlock();
2995
2996 return objcg;
2997}
2998
f3bb3043 2999static int memcg_alloc_cache_id(void)
55007d84 3000{
f3bb3043
VD
3001 int id, size;
3002 int err;
3003
dbcf73e2 3004 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3005 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3006 if (id < 0)
3007 return id;
55007d84 3008
dbcf73e2 3009 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3010 return id;
3011
3012 /*
3013 * There's no space for the new id in memcg_caches arrays,
3014 * so we have to grow them.
3015 */
05257a1a 3016 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3017
3018 size = 2 * (id + 1);
55007d84
GC
3019 if (size < MEMCG_CACHES_MIN_SIZE)
3020 size = MEMCG_CACHES_MIN_SIZE;
3021 else if (size > MEMCG_CACHES_MAX_SIZE)
3022 size = MEMCG_CACHES_MAX_SIZE;
3023
9855609b 3024 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3025 if (!err)
3026 memcg_nr_cache_ids = size;
3027
3028 up_write(&memcg_cache_ids_sem);
3029
f3bb3043 3030 if (err) {
dbcf73e2 3031 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3032 return err;
3033 }
3034 return id;
3035}
3036
3037static void memcg_free_cache_id(int id)
3038{
dbcf73e2 3039 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3040}
3041
e74d2259
MS
3042static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3043 unsigned int nr_pages)
3044{
3045 struct mem_cgroup *memcg;
3046
3047 memcg = get_mem_cgroup_from_objcg(objcg);
3048 __memcg_kmem_uncharge(memcg, nr_pages);
3049 css_put(&memcg->css);
3050}
3051
3052static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3053 unsigned int nr_pages)
3054{
3055 struct mem_cgroup *memcg;
3056 int ret;
3057
3058 memcg = get_mem_cgroup_from_objcg(objcg);
3059 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3060 css_put(&memcg->css);
3061
3062 return ret;
3063}
3064
45264778 3065/**
4b13f64d 3066 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3067 * @memcg: memory cgroup to charge
45264778 3068 * @gfp: reclaim mode
92d0510c 3069 * @nr_pages: number of pages to charge
45264778
VD
3070 *
3071 * Returns 0 on success, an error code on failure.
3072 */
c1a660de
RG
3073static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3074 unsigned int nr_pages)
7ae1e1d0 3075{
f3ccb2c4 3076 struct page_counter *counter;
7ae1e1d0
GC
3077 int ret;
3078
f3ccb2c4 3079 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3080 if (ret)
f3ccb2c4 3081 return ret;
52c29b04
JW
3082
3083 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3084 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3085
3086 /*
3087 * Enforce __GFP_NOFAIL allocation because callers are not
3088 * prepared to see failures and likely do not have any failure
3089 * handling code.
3090 */
3091 if (gfp & __GFP_NOFAIL) {
3092 page_counter_charge(&memcg->kmem, nr_pages);
3093 return 0;
3094 }
52c29b04
JW
3095 cancel_charge(memcg, nr_pages);
3096 return -ENOMEM;
7ae1e1d0 3097 }
f3ccb2c4 3098 return 0;
7ae1e1d0
GC
3099}
3100
4b13f64d
RG
3101/**
3102 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3103 * @memcg: memcg to uncharge
3104 * @nr_pages: number of pages to uncharge
3105 */
c1a660de 3106static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
4b13f64d
RG
3107{
3108 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3109 page_counter_uncharge(&memcg->kmem, nr_pages);
3110
3de7d4f2 3111 refill_stock(memcg, nr_pages);
4b13f64d
RG
3112}
3113
45264778 3114/**
f4b00eab 3115 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3116 * @page: page to charge
3117 * @gfp: reclaim mode
3118 * @order: allocation order
3119 *
3120 * Returns 0 on success, an error code on failure.
3121 */
f4b00eab 3122int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3123{
f3ccb2c4 3124 struct mem_cgroup *memcg;
fcff7d7e 3125 int ret = 0;
7ae1e1d0 3126
d46eb14b 3127 memcg = get_mem_cgroup_from_current();
279c3393 3128 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3129 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3130 if (!ret) {
18b2db3b
RG
3131 page->memcg_data = (unsigned long)memcg |
3132 MEMCG_DATA_KMEM;
1a3e1f40 3133 return 0;
4d96ba35 3134 }
279c3393 3135 css_put(&memcg->css);
c4159a75 3136 }
d05e83a6 3137 return ret;
7ae1e1d0 3138}
49a18eae 3139
45264778 3140/**
f4b00eab 3141 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3142 * @page: page to uncharge
3143 * @order: allocation order
3144 */
f4b00eab 3145void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3146{
bcfe06bf 3147 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3148 unsigned int nr_pages = 1 << order;
7ae1e1d0 3149
7ae1e1d0
GC
3150 if (!memcg)
3151 return;
3152
309381fe 3153 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3154 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3155 page->memcg_data = 0;
1a3e1f40 3156 css_put(&memcg->css);
60d3fd32 3157}
bf4f0599
RG
3158
3159static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3160{
3161 struct memcg_stock_pcp *stock;
3162 unsigned long flags;
3163 bool ret = false;
3164
3165 local_irq_save(flags);
3166
3167 stock = this_cpu_ptr(&memcg_stock);
3168 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3169 stock->nr_bytes -= nr_bytes;
3170 ret = true;
3171 }
3172
3173 local_irq_restore(flags);
3174
3175 return ret;
3176}
3177
3178static void drain_obj_stock(struct memcg_stock_pcp *stock)
3179{
3180 struct obj_cgroup *old = stock->cached_objcg;
3181
3182 if (!old)
3183 return;
3184
3185 if (stock->nr_bytes) {
3186 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3187 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3188
e74d2259
MS
3189 if (nr_pages)
3190 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3191
3192 /*
3193 * The leftover is flushed to the centralized per-memcg value.
3194 * On the next attempt to refill obj stock it will be moved
3195 * to a per-cpu stock (probably, on an other CPU), see
3196 * refill_obj_stock().
3197 *
3198 * How often it's flushed is a trade-off between the memory
3199 * limit enforcement accuracy and potential CPU contention,
3200 * so it might be changed in the future.
3201 */
3202 atomic_add(nr_bytes, &old->nr_charged_bytes);
3203 stock->nr_bytes = 0;
3204 }
3205
3206 obj_cgroup_put(old);
3207 stock->cached_objcg = NULL;
3208}
3209
3210static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3211 struct mem_cgroup *root_memcg)
3212{
3213 struct mem_cgroup *memcg;
3214
3215 if (stock->cached_objcg) {
3216 memcg = obj_cgroup_memcg(stock->cached_objcg);
3217 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3218 return true;
3219 }
3220
3221 return false;
3222}
3223
3224static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3225{
3226 struct memcg_stock_pcp *stock;
3227 unsigned long flags;
3228
3229 local_irq_save(flags);
3230
3231 stock = this_cpu_ptr(&memcg_stock);
3232 if (stock->cached_objcg != objcg) { /* reset if necessary */
3233 drain_obj_stock(stock);
3234 obj_cgroup_get(objcg);
3235 stock->cached_objcg = objcg;
3236 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3237 }
3238 stock->nr_bytes += nr_bytes;
3239
3240 if (stock->nr_bytes > PAGE_SIZE)
3241 drain_obj_stock(stock);
3242
3243 local_irq_restore(flags);
3244}
3245
3246int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3247{
bf4f0599
RG
3248 unsigned int nr_pages, nr_bytes;
3249 int ret;
3250
3251 if (consume_obj_stock(objcg, size))
3252 return 0;
3253
3254 /*
3255 * In theory, memcg->nr_charged_bytes can have enough
3256 * pre-charged bytes to satisfy the allocation. However,
3257 * flushing memcg->nr_charged_bytes requires two atomic
3258 * operations, and memcg->nr_charged_bytes can't be big,
3259 * so it's better to ignore it and try grab some new pages.
3260 * memcg->nr_charged_bytes will be flushed in
3261 * refill_obj_stock(), called from this function or
3262 * independently later.
3263 */
bf4f0599
RG
3264 nr_pages = size >> PAGE_SHIFT;
3265 nr_bytes = size & (PAGE_SIZE - 1);
3266
3267 if (nr_bytes)
3268 nr_pages += 1;
3269
e74d2259 3270 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599
RG
3271 if (!ret && nr_bytes)
3272 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3273
bf4f0599
RG
3274 return ret;
3275}
3276
3277void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3278{
3279 refill_obj_stock(objcg, size);
3280}
3281
84c07d11 3282#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3283
ca3e0214 3284/*
be6c8982 3285 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3286 */
be6c8982 3287void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3288{
bcfe06bf 3289 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3290 int i;
ca3e0214 3291
be6c8982 3292 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3293 return;
b070e65c 3294
be6c8982
ZG
3295 for (i = 1; i < nr; i++)
3296 head[i].memcg_data = head->memcg_data;
3297 css_get_many(&memcg->css, nr - 1);
ca3e0214 3298}
ca3e0214 3299
c255a458 3300#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3301/**
3302 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3303 * @entry: swap entry to be moved
3304 * @from: mem_cgroup which the entry is moved from
3305 * @to: mem_cgroup which the entry is moved to
3306 *
3307 * It succeeds only when the swap_cgroup's record for this entry is the same
3308 * as the mem_cgroup's id of @from.
3309 *
3310 * Returns 0 on success, -EINVAL on failure.
3311 *
3e32cb2e 3312 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3313 * both res and memsw, and called css_get().
3314 */
3315static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3316 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3317{
3318 unsigned short old_id, new_id;
3319
34c00c31
LZ
3320 old_id = mem_cgroup_id(from);
3321 new_id = mem_cgroup_id(to);
02491447
DN
3322
3323 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3324 mod_memcg_state(from, MEMCG_SWAP, -1);
3325 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3326 return 0;
3327 }
3328 return -EINVAL;
3329}
3330#else
3331static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3332 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3333{
3334 return -EINVAL;
3335}
8c7c6e34 3336#endif
d13d1443 3337
bbec2e15 3338static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3339
bbec2e15
RG
3340static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3341 unsigned long max, bool memsw)
628f4235 3342{
3e32cb2e 3343 bool enlarge = false;
bb4a7ea2 3344 bool drained = false;
3e32cb2e 3345 int ret;
c054a78c
YZ
3346 bool limits_invariant;
3347 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3348
3e32cb2e 3349 do {
628f4235
KH
3350 if (signal_pending(current)) {
3351 ret = -EINTR;
3352 break;
3353 }
3e32cb2e 3354
bbec2e15 3355 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3356 /*
3357 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3358 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3359 */
15b42562 3360 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3361 max <= memcg->memsw.max;
c054a78c 3362 if (!limits_invariant) {
bbec2e15 3363 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3364 ret = -EINVAL;
8c7c6e34
KH
3365 break;
3366 }
bbec2e15 3367 if (max > counter->max)
3e32cb2e 3368 enlarge = true;
bbec2e15
RG
3369 ret = page_counter_set_max(counter, max);
3370 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3371
3372 if (!ret)
3373 break;
3374
bb4a7ea2
SB
3375 if (!drained) {
3376 drain_all_stock(memcg);
3377 drained = true;
3378 continue;
3379 }
3380
1ab5c056
AR
3381 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3382 GFP_KERNEL, !memsw)) {
3383 ret = -EBUSY;
3384 break;
3385 }
3386 } while (true);
3e32cb2e 3387
3c11ecf4
KH
3388 if (!ret && enlarge)
3389 memcg_oom_recover(memcg);
3e32cb2e 3390
628f4235
KH
3391 return ret;
3392}
3393
ef8f2327 3394unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3395 gfp_t gfp_mask,
3396 unsigned long *total_scanned)
3397{
3398 unsigned long nr_reclaimed = 0;
ef8f2327 3399 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3400 unsigned long reclaimed;
3401 int loop = 0;
ef8f2327 3402 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3403 unsigned long excess;
0608f43d
AM
3404 unsigned long nr_scanned;
3405
3406 if (order > 0)
3407 return 0;
3408
ef8f2327 3409 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3410
3411 /*
3412 * Do not even bother to check the largest node if the root
3413 * is empty. Do it lockless to prevent lock bouncing. Races
3414 * are acceptable as soft limit is best effort anyway.
3415 */
bfc7228b 3416 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3417 return 0;
3418
0608f43d
AM
3419 /*
3420 * This loop can run a while, specially if mem_cgroup's continuously
3421 * keep exceeding their soft limit and putting the system under
3422 * pressure
3423 */
3424 do {
3425 if (next_mz)
3426 mz = next_mz;
3427 else
3428 mz = mem_cgroup_largest_soft_limit_node(mctz);
3429 if (!mz)
3430 break;
3431
3432 nr_scanned = 0;
ef8f2327 3433 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3434 gfp_mask, &nr_scanned);
3435 nr_reclaimed += reclaimed;
3436 *total_scanned += nr_scanned;
0a31bc97 3437 spin_lock_irq(&mctz->lock);
bc2f2e7f 3438 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3439
3440 /*
3441 * If we failed to reclaim anything from this memory cgroup
3442 * it is time to move on to the next cgroup
3443 */
3444 next_mz = NULL;
bc2f2e7f
VD
3445 if (!reclaimed)
3446 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3447
3e32cb2e 3448 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3449 /*
3450 * One school of thought says that we should not add
3451 * back the node to the tree if reclaim returns 0.
3452 * But our reclaim could return 0, simply because due
3453 * to priority we are exposing a smaller subset of
3454 * memory to reclaim from. Consider this as a longer
3455 * term TODO.
3456 */
3457 /* If excess == 0, no tree ops */
cf2c8127 3458 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3459 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3460 css_put(&mz->memcg->css);
3461 loop++;
3462 /*
3463 * Could not reclaim anything and there are no more
3464 * mem cgroups to try or we seem to be looping without
3465 * reclaiming anything.
3466 */
3467 if (!nr_reclaimed &&
3468 (next_mz == NULL ||
3469 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3470 break;
3471 } while (!nr_reclaimed);
3472 if (next_mz)
3473 css_put(&next_mz->memcg->css);
3474 return nr_reclaimed;
3475}
3476
c26251f9 3477/*
51038171 3478 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3479 *
3480 * Caller is responsible for holding css reference for memcg.
3481 */
3482static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3483{
d977aa93 3484 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3485
c1e862c1
KH
3486 /* we call try-to-free pages for make this cgroup empty */
3487 lru_add_drain_all();
d12c60f6
JS
3488
3489 drain_all_stock(memcg);
3490
f817ed48 3491 /* try to free all pages in this cgroup */
3e32cb2e 3492 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3493 int progress;
c1e862c1 3494
c26251f9
MH
3495 if (signal_pending(current))
3496 return -EINTR;
3497
b70a2a21
JW
3498 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3499 GFP_KERNEL, true);
c1e862c1 3500 if (!progress) {
f817ed48 3501 nr_retries--;
c1e862c1 3502 /* maybe some writeback is necessary */
8aa7e847 3503 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3504 }
f817ed48
KH
3505
3506 }
ab5196c2
MH
3507
3508 return 0;
cc847582
KH
3509}
3510
6770c64e
TH
3511static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3512 char *buf, size_t nbytes,
3513 loff_t off)
c1e862c1 3514{
6770c64e 3515 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3516
d8423011
MH
3517 if (mem_cgroup_is_root(memcg))
3518 return -EINVAL;
6770c64e 3519 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3520}
3521
182446d0
TH
3522static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3523 struct cftype *cft)
18f59ea7 3524{
bef8620c 3525 return 1;
18f59ea7
BS
3526}
3527
182446d0
TH
3528static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3529 struct cftype *cft, u64 val)
18f59ea7 3530{
bef8620c 3531 if (val == 1)
0b8f73e1 3532 return 0;
567fb435 3533
bef8620c
RG
3534 pr_warn_once("Non-hierarchical mode is deprecated. "
3535 "Please report your usecase to linux-mm@kvack.org if you "
3536 "depend on this functionality.\n");
567fb435 3537
bef8620c 3538 return -EINVAL;
18f59ea7
BS
3539}
3540
6f646156 3541static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3542{
42a30035 3543 unsigned long val;
ce00a967 3544
3e32cb2e 3545 if (mem_cgroup_is_root(memcg)) {
2d146aa3 3546 cgroup_rstat_flush(memcg->css.cgroup);
0d1c2072 3547 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3548 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3549 if (swap)
3550 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3551 } else {
ce00a967 3552 if (!swap)
3e32cb2e 3553 val = page_counter_read(&memcg->memory);
ce00a967 3554 else
3e32cb2e 3555 val = page_counter_read(&memcg->memsw);
ce00a967 3556 }
c12176d3 3557 return val;
ce00a967
JW
3558}
3559
3e32cb2e
JW
3560enum {
3561 RES_USAGE,
3562 RES_LIMIT,
3563 RES_MAX_USAGE,
3564 RES_FAILCNT,
3565 RES_SOFT_LIMIT,
3566};
ce00a967 3567
791badbd 3568static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3569 struct cftype *cft)
8cdea7c0 3570{
182446d0 3571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3572 struct page_counter *counter;
af36f906 3573
3e32cb2e 3574 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3575 case _MEM:
3e32cb2e
JW
3576 counter = &memcg->memory;
3577 break;
8c7c6e34 3578 case _MEMSWAP:
3e32cb2e
JW
3579 counter = &memcg->memsw;
3580 break;
510fc4e1 3581 case _KMEM:
3e32cb2e 3582 counter = &memcg->kmem;
510fc4e1 3583 break;
d55f90bf 3584 case _TCP:
0db15298 3585 counter = &memcg->tcpmem;
d55f90bf 3586 break;
8c7c6e34
KH
3587 default:
3588 BUG();
8c7c6e34 3589 }
3e32cb2e
JW
3590
3591 switch (MEMFILE_ATTR(cft->private)) {
3592 case RES_USAGE:
3593 if (counter == &memcg->memory)
c12176d3 3594 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3595 if (counter == &memcg->memsw)
c12176d3 3596 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3597 return (u64)page_counter_read(counter) * PAGE_SIZE;
3598 case RES_LIMIT:
bbec2e15 3599 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3600 case RES_MAX_USAGE:
3601 return (u64)counter->watermark * PAGE_SIZE;
3602 case RES_FAILCNT:
3603 return counter->failcnt;
3604 case RES_SOFT_LIMIT:
3605 return (u64)memcg->soft_limit * PAGE_SIZE;
3606 default:
3607 BUG();
3608 }
8cdea7c0 3609}
510fc4e1 3610
84c07d11 3611#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3612static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3613{
bf4f0599 3614 struct obj_cgroup *objcg;
d6441637
VD
3615 int memcg_id;
3616
b313aeee
VD
3617 if (cgroup_memory_nokmem)
3618 return 0;
3619
2a4db7eb 3620 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3621 BUG_ON(memcg->kmem_state);
d6441637 3622
f3bb3043 3623 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3624 if (memcg_id < 0)
3625 return memcg_id;
d6441637 3626
bf4f0599
RG
3627 objcg = obj_cgroup_alloc();
3628 if (!objcg) {
3629 memcg_free_cache_id(memcg_id);
3630 return -ENOMEM;
3631 }
3632 objcg->memcg = memcg;
3633 rcu_assign_pointer(memcg->objcg, objcg);
3634
d648bcc7
RG
3635 static_branch_enable(&memcg_kmem_enabled_key);
3636
900a38f0 3637 memcg->kmemcg_id = memcg_id;
567e9ab2 3638 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3639
3640 return 0;
d6441637
VD
3641}
3642
8e0a8912
JW
3643static void memcg_offline_kmem(struct mem_cgroup *memcg)
3644{
3645 struct cgroup_subsys_state *css;
3646 struct mem_cgroup *parent, *child;
3647 int kmemcg_id;
3648
3649 if (memcg->kmem_state != KMEM_ONLINE)
3650 return;
9855609b 3651
8e0a8912
JW
3652 memcg->kmem_state = KMEM_ALLOCATED;
3653
8e0a8912
JW
3654 parent = parent_mem_cgroup(memcg);
3655 if (!parent)
3656 parent = root_mem_cgroup;
3657
bf4f0599 3658 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3659
3660 kmemcg_id = memcg->kmemcg_id;
3661 BUG_ON(kmemcg_id < 0);
3662
8e0a8912
JW
3663 /*
3664 * Change kmemcg_id of this cgroup and all its descendants to the
3665 * parent's id, and then move all entries from this cgroup's list_lrus
3666 * to ones of the parent. After we have finished, all list_lrus
3667 * corresponding to this cgroup are guaranteed to remain empty. The
3668 * ordering is imposed by list_lru_node->lock taken by
3669 * memcg_drain_all_list_lrus().
3670 */
3a06bb78 3671 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3672 css_for_each_descendant_pre(css, &memcg->css) {
3673 child = mem_cgroup_from_css(css);
3674 BUG_ON(child->kmemcg_id != kmemcg_id);
3675 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3676 }
3a06bb78
TH
3677 rcu_read_unlock();
3678
9bec5c35 3679 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3680
3681 memcg_free_cache_id(kmemcg_id);
3682}
3683
3684static void memcg_free_kmem(struct mem_cgroup *memcg)
3685{
0b8f73e1
JW
3686 /* css_alloc() failed, offlining didn't happen */
3687 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3688 memcg_offline_kmem(memcg);
8e0a8912 3689}
d6441637 3690#else
0b8f73e1 3691static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3692{
3693 return 0;
3694}
3695static void memcg_offline_kmem(struct mem_cgroup *memcg)
3696{
3697}
3698static void memcg_free_kmem(struct mem_cgroup *memcg)
3699{
3700}
84c07d11 3701#endif /* CONFIG_MEMCG_KMEM */
127424c8 3702
bbec2e15
RG
3703static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3704 unsigned long max)
d6441637 3705{
b313aeee 3706 int ret;
127424c8 3707
bbec2e15
RG
3708 mutex_lock(&memcg_max_mutex);
3709 ret = page_counter_set_max(&memcg->kmem, max);
3710 mutex_unlock(&memcg_max_mutex);
127424c8 3711 return ret;
d6441637 3712}
510fc4e1 3713
bbec2e15 3714static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3715{
3716 int ret;
3717
bbec2e15 3718 mutex_lock(&memcg_max_mutex);
d55f90bf 3719
bbec2e15 3720 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3721 if (ret)
3722 goto out;
3723
0db15298 3724 if (!memcg->tcpmem_active) {
d55f90bf
VD
3725 /*
3726 * The active flag needs to be written after the static_key
3727 * update. This is what guarantees that the socket activation
2d758073
JW
3728 * function is the last one to run. See mem_cgroup_sk_alloc()
3729 * for details, and note that we don't mark any socket as
3730 * belonging to this memcg until that flag is up.
d55f90bf
VD
3731 *
3732 * We need to do this, because static_keys will span multiple
3733 * sites, but we can't control their order. If we mark a socket
3734 * as accounted, but the accounting functions are not patched in
3735 * yet, we'll lose accounting.
3736 *
2d758073 3737 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3738 * because when this value change, the code to process it is not
3739 * patched in yet.
3740 */
3741 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3742 memcg->tcpmem_active = true;
d55f90bf
VD
3743 }
3744out:
bbec2e15 3745 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3746 return ret;
3747}
d55f90bf 3748
628f4235
KH
3749/*
3750 * The user of this function is...
3751 * RES_LIMIT.
3752 */
451af504
TH
3753static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3754 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3755{
451af504 3756 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3757 unsigned long nr_pages;
628f4235
KH
3758 int ret;
3759
451af504 3760 buf = strstrip(buf);
650c5e56 3761 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3762 if (ret)
3763 return ret;
af36f906 3764
3e32cb2e 3765 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3766 case RES_LIMIT:
4b3bde4c
BS
3767 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3768 ret = -EINVAL;
3769 break;
3770 }
3e32cb2e
JW
3771 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3772 case _MEM:
bbec2e15 3773 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3774 break;
3e32cb2e 3775 case _MEMSWAP:
bbec2e15 3776 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3777 break;
3e32cb2e 3778 case _KMEM:
0158115f
MH
3779 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3780 "Please report your usecase to linux-mm@kvack.org if you "
3781 "depend on this functionality.\n");
bbec2e15 3782 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3783 break;
d55f90bf 3784 case _TCP:
bbec2e15 3785 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3786 break;
3e32cb2e 3787 }
296c81d8 3788 break;
3e32cb2e
JW
3789 case RES_SOFT_LIMIT:
3790 memcg->soft_limit = nr_pages;
3791 ret = 0;
628f4235
KH
3792 break;
3793 }
451af504 3794 return ret ?: nbytes;
8cdea7c0
BS
3795}
3796
6770c64e
TH
3797static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3798 size_t nbytes, loff_t off)
c84872e1 3799{
6770c64e 3800 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3801 struct page_counter *counter;
c84872e1 3802
3e32cb2e
JW
3803 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3804 case _MEM:
3805 counter = &memcg->memory;
3806 break;
3807 case _MEMSWAP:
3808 counter = &memcg->memsw;
3809 break;
3810 case _KMEM:
3811 counter = &memcg->kmem;
3812 break;
d55f90bf 3813 case _TCP:
0db15298 3814 counter = &memcg->tcpmem;
d55f90bf 3815 break;
3e32cb2e
JW
3816 default:
3817 BUG();
3818 }
af36f906 3819
3e32cb2e 3820 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3821 case RES_MAX_USAGE:
3e32cb2e 3822 page_counter_reset_watermark(counter);
29f2a4da
PE
3823 break;
3824 case RES_FAILCNT:
3e32cb2e 3825 counter->failcnt = 0;
29f2a4da 3826 break;
3e32cb2e
JW
3827 default:
3828 BUG();
29f2a4da 3829 }
f64c3f54 3830
6770c64e 3831 return nbytes;
c84872e1
PE
3832}
3833
182446d0 3834static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3835 struct cftype *cft)
3836{
182446d0 3837 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3838}
3839
02491447 3840#ifdef CONFIG_MMU
182446d0 3841static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3842 struct cftype *cft, u64 val)
3843{
182446d0 3844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3845
1dfab5ab 3846 if (val & ~MOVE_MASK)
7dc74be0 3847 return -EINVAL;
ee5e8472 3848
7dc74be0 3849 /*
ee5e8472
GC
3850 * No kind of locking is needed in here, because ->can_attach() will
3851 * check this value once in the beginning of the process, and then carry
3852 * on with stale data. This means that changes to this value will only
3853 * affect task migrations starting after the change.
7dc74be0 3854 */
c0ff4b85 3855 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3856 return 0;
3857}
02491447 3858#else
182446d0 3859static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3860 struct cftype *cft, u64 val)
3861{
3862 return -ENOSYS;
3863}
3864#endif
7dc74be0 3865
406eb0c9 3866#ifdef CONFIG_NUMA
113b7dfd
JW
3867
3868#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3869#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3870#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3871
3872static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3873 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3874{
867e5e1d 3875 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3876 unsigned long nr = 0;
3877 enum lru_list lru;
3878
3879 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3880
3881 for_each_lru(lru) {
3882 if (!(BIT(lru) & lru_mask))
3883 continue;
dd8657b6
SB
3884 if (tree)
3885 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3886 else
3887 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3888 }
3889 return nr;
3890}
3891
3892static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3893 unsigned int lru_mask,
3894 bool tree)
113b7dfd
JW
3895{
3896 unsigned long nr = 0;
3897 enum lru_list lru;
3898
3899 for_each_lru(lru) {
3900 if (!(BIT(lru) & lru_mask))
3901 continue;
dd8657b6
SB
3902 if (tree)
3903 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3904 else
3905 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3906 }
3907 return nr;
3908}
3909
2da8ca82 3910static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3911{
25485de6
GT
3912 struct numa_stat {
3913 const char *name;
3914 unsigned int lru_mask;
3915 };
3916
3917 static const struct numa_stat stats[] = {
3918 { "total", LRU_ALL },
3919 { "file", LRU_ALL_FILE },
3920 { "anon", LRU_ALL_ANON },
3921 { "unevictable", BIT(LRU_UNEVICTABLE) },
3922 };
3923 const struct numa_stat *stat;
406eb0c9 3924 int nid;
aa9694bb 3925 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3926
2d146aa3
JW
3927 cgroup_rstat_flush(memcg->css.cgroup);
3928
25485de6 3929 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3930 seq_printf(m, "%s=%lu", stat->name,
3931 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3932 false));
3933 for_each_node_state(nid, N_MEMORY)
3934 seq_printf(m, " N%d=%lu", nid,
3935 mem_cgroup_node_nr_lru_pages(memcg, nid,
3936 stat->lru_mask, false));
25485de6 3937 seq_putc(m, '\n');
406eb0c9 3938 }
406eb0c9 3939
071aee13 3940 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3941
3942 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3943 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3944 true));
3945 for_each_node_state(nid, N_MEMORY)
3946 seq_printf(m, " N%d=%lu", nid,
3947 mem_cgroup_node_nr_lru_pages(memcg, nid,
3948 stat->lru_mask, true));
071aee13 3949 seq_putc(m, '\n');
406eb0c9 3950 }
406eb0c9 3951
406eb0c9
YH
3952 return 0;
3953}
3954#endif /* CONFIG_NUMA */
3955
c8713d0b 3956static const unsigned int memcg1_stats[] = {
0d1c2072 3957 NR_FILE_PAGES,
be5d0a74 3958 NR_ANON_MAPPED,
468c3982
JW
3959#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3960 NR_ANON_THPS,
3961#endif
c8713d0b
JW
3962 NR_SHMEM,
3963 NR_FILE_MAPPED,
3964 NR_FILE_DIRTY,
3965 NR_WRITEBACK,
3966 MEMCG_SWAP,
3967};
3968
3969static const char *const memcg1_stat_names[] = {
3970 "cache",
3971 "rss",
468c3982 3972#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3973 "rss_huge",
468c3982 3974#endif
c8713d0b
JW
3975 "shmem",
3976 "mapped_file",
3977 "dirty",
3978 "writeback",
3979 "swap",
3980};
3981
df0e53d0 3982/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3983static const unsigned int memcg1_events[] = {
df0e53d0
JW
3984 PGPGIN,
3985 PGPGOUT,
3986 PGFAULT,
3987 PGMAJFAULT,
3988};
3989
2da8ca82 3990static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3991{
aa9694bb 3992 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3993 unsigned long memory, memsw;
af7c4b0e
JW
3994 struct mem_cgroup *mi;
3995 unsigned int i;
406eb0c9 3996
71cd3113 3997 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3998
2d146aa3
JW
3999 cgroup_rstat_flush(memcg->css.cgroup);
4000
71cd3113 4001 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4002 unsigned long nr;
4003
71cd3113 4004 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4005 continue;
468c3982 4006 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4007 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4008 }
7b854121 4009
df0e53d0 4010 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4011 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4012 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4013
4014 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4015 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4016 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4017 PAGE_SIZE);
af7c4b0e 4018
14067bb3 4019 /* Hierarchical information */
3e32cb2e
JW
4020 memory = memsw = PAGE_COUNTER_MAX;
4021 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4022 memory = min(memory, READ_ONCE(mi->memory.max));
4023 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4024 }
3e32cb2e
JW
4025 seq_printf(m, "hierarchical_memory_limit %llu\n",
4026 (u64)memory * PAGE_SIZE);
7941d214 4027 if (do_memsw_account())
3e32cb2e
JW
4028 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4029 (u64)memsw * PAGE_SIZE);
7f016ee8 4030
8de7ecc6 4031 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4032 unsigned long nr;
4033
71cd3113 4034 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4035 continue;
7de2e9f1 4036 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4037 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4038 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4039 }
4040
8de7ecc6 4041 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4042 seq_printf(m, "total_%s %llu\n",
4043 vm_event_name(memcg1_events[i]),
dd923990 4044 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4045
8de7ecc6 4046 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4047 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4048 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4049 PAGE_SIZE);
14067bb3 4050
7f016ee8 4051#ifdef CONFIG_DEBUG_VM
7f016ee8 4052 {
ef8f2327
MG
4053 pg_data_t *pgdat;
4054 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4055 unsigned long anon_cost = 0;
4056 unsigned long file_cost = 0;
7f016ee8 4057
ef8f2327 4058 for_each_online_pgdat(pgdat) {
a3747b53 4059 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4060
1431d4d1
JW
4061 anon_cost += mz->lruvec.anon_cost;
4062 file_cost += mz->lruvec.file_cost;
ef8f2327 4063 }
1431d4d1
JW
4064 seq_printf(m, "anon_cost %lu\n", anon_cost);
4065 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4066 }
4067#endif
4068
d2ceb9b7
KH
4069 return 0;
4070}
4071
182446d0
TH
4072static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4073 struct cftype *cft)
a7885eb8 4074{
182446d0 4075 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4076
1f4c025b 4077 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4078}
4079
182446d0
TH
4080static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4081 struct cftype *cft, u64 val)
a7885eb8 4082{
182446d0 4083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4084
3dae7fec 4085 if (val > 100)
a7885eb8
KM
4086 return -EINVAL;
4087
a4792030 4088 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4089 memcg->swappiness = val;
4090 else
4091 vm_swappiness = val;
068b38c1 4092
a7885eb8
KM
4093 return 0;
4094}
4095
2e72b634
KS
4096static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4097{
4098 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4099 unsigned long usage;
2e72b634
KS
4100 int i;
4101
4102 rcu_read_lock();
4103 if (!swap)
2c488db2 4104 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4105 else
2c488db2 4106 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4107
4108 if (!t)
4109 goto unlock;
4110
ce00a967 4111 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4112
4113 /*
748dad36 4114 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4115 * If it's not true, a threshold was crossed after last
4116 * call of __mem_cgroup_threshold().
4117 */
5407a562 4118 i = t->current_threshold;
2e72b634
KS
4119
4120 /*
4121 * Iterate backward over array of thresholds starting from
4122 * current_threshold and check if a threshold is crossed.
4123 * If none of thresholds below usage is crossed, we read
4124 * only one element of the array here.
4125 */
4126 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4127 eventfd_signal(t->entries[i].eventfd, 1);
4128
4129 /* i = current_threshold + 1 */
4130 i++;
4131
4132 /*
4133 * Iterate forward over array of thresholds starting from
4134 * current_threshold+1 and check if a threshold is crossed.
4135 * If none of thresholds above usage is crossed, we read
4136 * only one element of the array here.
4137 */
4138 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4139 eventfd_signal(t->entries[i].eventfd, 1);
4140
4141 /* Update current_threshold */
5407a562 4142 t->current_threshold = i - 1;
2e72b634
KS
4143unlock:
4144 rcu_read_unlock();
4145}
4146
4147static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4148{
ad4ca5f4
KS
4149 while (memcg) {
4150 __mem_cgroup_threshold(memcg, false);
7941d214 4151 if (do_memsw_account())
ad4ca5f4
KS
4152 __mem_cgroup_threshold(memcg, true);
4153
4154 memcg = parent_mem_cgroup(memcg);
4155 }
2e72b634
KS
4156}
4157
4158static int compare_thresholds(const void *a, const void *b)
4159{
4160 const struct mem_cgroup_threshold *_a = a;
4161 const struct mem_cgroup_threshold *_b = b;
4162
2bff24a3
GT
4163 if (_a->threshold > _b->threshold)
4164 return 1;
4165
4166 if (_a->threshold < _b->threshold)
4167 return -1;
4168
4169 return 0;
2e72b634
KS
4170}
4171
c0ff4b85 4172static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4173{
4174 struct mem_cgroup_eventfd_list *ev;
4175
2bcf2e92
MH
4176 spin_lock(&memcg_oom_lock);
4177
c0ff4b85 4178 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4179 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4180
4181 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4182 return 0;
4183}
4184
c0ff4b85 4185static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4186{
7d74b06f
KH
4187 struct mem_cgroup *iter;
4188
c0ff4b85 4189 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4190 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4191}
4192
59b6f873 4193static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4194 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4195{
2c488db2
KS
4196 struct mem_cgroup_thresholds *thresholds;
4197 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4198 unsigned long threshold;
4199 unsigned long usage;
2c488db2 4200 int i, size, ret;
2e72b634 4201
650c5e56 4202 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4203 if (ret)
4204 return ret;
4205
4206 mutex_lock(&memcg->thresholds_lock);
2c488db2 4207
05b84301 4208 if (type == _MEM) {
2c488db2 4209 thresholds = &memcg->thresholds;
ce00a967 4210 usage = mem_cgroup_usage(memcg, false);
05b84301 4211 } else if (type == _MEMSWAP) {
2c488db2 4212 thresholds = &memcg->memsw_thresholds;
ce00a967 4213 usage = mem_cgroup_usage(memcg, true);
05b84301 4214 } else
2e72b634
KS
4215 BUG();
4216
2e72b634 4217 /* Check if a threshold crossed before adding a new one */
2c488db2 4218 if (thresholds->primary)
2e72b634
KS
4219 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4220
2c488db2 4221 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4222
4223 /* Allocate memory for new array of thresholds */
67b8046f 4224 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4225 if (!new) {
2e72b634
KS
4226 ret = -ENOMEM;
4227 goto unlock;
4228 }
2c488db2 4229 new->size = size;
2e72b634
KS
4230
4231 /* Copy thresholds (if any) to new array */
e90342e6
GS
4232 if (thresholds->primary)
4233 memcpy(new->entries, thresholds->primary->entries,
4234 flex_array_size(new, entries, size - 1));
2c488db2 4235
2e72b634 4236 /* Add new threshold */
2c488db2
KS
4237 new->entries[size - 1].eventfd = eventfd;
4238 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4239
4240 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4241 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4242 compare_thresholds, NULL);
4243
4244 /* Find current threshold */
2c488db2 4245 new->current_threshold = -1;
2e72b634 4246 for (i = 0; i < size; i++) {
748dad36 4247 if (new->entries[i].threshold <= usage) {
2e72b634 4248 /*
2c488db2
KS
4249 * new->current_threshold will not be used until
4250 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4251 * it here.
4252 */
2c488db2 4253 ++new->current_threshold;
748dad36
SZ
4254 } else
4255 break;
2e72b634
KS
4256 }
4257
2c488db2
KS
4258 /* Free old spare buffer and save old primary buffer as spare */
4259 kfree(thresholds->spare);
4260 thresholds->spare = thresholds->primary;
4261
4262 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4263
907860ed 4264 /* To be sure that nobody uses thresholds */
2e72b634
KS
4265 synchronize_rcu();
4266
2e72b634
KS
4267unlock:
4268 mutex_unlock(&memcg->thresholds_lock);
4269
4270 return ret;
4271}
4272
59b6f873 4273static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4274 struct eventfd_ctx *eventfd, const char *args)
4275{
59b6f873 4276 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4277}
4278
59b6f873 4279static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4280 struct eventfd_ctx *eventfd, const char *args)
4281{
59b6f873 4282 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4283}
4284
59b6f873 4285static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4286 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4287{
2c488db2
KS
4288 struct mem_cgroup_thresholds *thresholds;
4289 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4290 unsigned long usage;
7d36665a 4291 int i, j, size, entries;
2e72b634
KS
4292
4293 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4294
4295 if (type == _MEM) {
2c488db2 4296 thresholds = &memcg->thresholds;
ce00a967 4297 usage = mem_cgroup_usage(memcg, false);
05b84301 4298 } else if (type == _MEMSWAP) {
2c488db2 4299 thresholds = &memcg->memsw_thresholds;
ce00a967 4300 usage = mem_cgroup_usage(memcg, true);
05b84301 4301 } else
2e72b634
KS
4302 BUG();
4303
371528ca
AV
4304 if (!thresholds->primary)
4305 goto unlock;
4306
2e72b634
KS
4307 /* Check if a threshold crossed before removing */
4308 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4309
4310 /* Calculate new number of threshold */
7d36665a 4311 size = entries = 0;
2c488db2
KS
4312 for (i = 0; i < thresholds->primary->size; i++) {
4313 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4314 size++;
7d36665a
CX
4315 else
4316 entries++;
2e72b634
KS
4317 }
4318
2c488db2 4319 new = thresholds->spare;
907860ed 4320
7d36665a
CX
4321 /* If no items related to eventfd have been cleared, nothing to do */
4322 if (!entries)
4323 goto unlock;
4324
2e72b634
KS
4325 /* Set thresholds array to NULL if we don't have thresholds */
4326 if (!size) {
2c488db2
KS
4327 kfree(new);
4328 new = NULL;
907860ed 4329 goto swap_buffers;
2e72b634
KS
4330 }
4331
2c488db2 4332 new->size = size;
2e72b634
KS
4333
4334 /* Copy thresholds and find current threshold */
2c488db2
KS
4335 new->current_threshold = -1;
4336 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4337 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4338 continue;
4339
2c488db2 4340 new->entries[j] = thresholds->primary->entries[i];
748dad36 4341 if (new->entries[j].threshold <= usage) {
2e72b634 4342 /*
2c488db2 4343 * new->current_threshold will not be used
2e72b634
KS
4344 * until rcu_assign_pointer(), so it's safe to increment
4345 * it here.
4346 */
2c488db2 4347 ++new->current_threshold;
2e72b634
KS
4348 }
4349 j++;
4350 }
4351
907860ed 4352swap_buffers:
2c488db2
KS
4353 /* Swap primary and spare array */
4354 thresholds->spare = thresholds->primary;
8c757763 4355
2c488db2 4356 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4357
907860ed 4358 /* To be sure that nobody uses thresholds */
2e72b634 4359 synchronize_rcu();
6611d8d7
MC
4360
4361 /* If all events are unregistered, free the spare array */
4362 if (!new) {
4363 kfree(thresholds->spare);
4364 thresholds->spare = NULL;
4365 }
371528ca 4366unlock:
2e72b634 4367 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4368}
c1e862c1 4369
59b6f873 4370static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4371 struct eventfd_ctx *eventfd)
4372{
59b6f873 4373 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4374}
4375
59b6f873 4376static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4377 struct eventfd_ctx *eventfd)
4378{
59b6f873 4379 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4380}
4381
59b6f873 4382static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4383 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4384{
9490ff27 4385 struct mem_cgroup_eventfd_list *event;
9490ff27 4386
9490ff27
KH
4387 event = kmalloc(sizeof(*event), GFP_KERNEL);
4388 if (!event)
4389 return -ENOMEM;
4390
1af8efe9 4391 spin_lock(&memcg_oom_lock);
9490ff27
KH
4392
4393 event->eventfd = eventfd;
4394 list_add(&event->list, &memcg->oom_notify);
4395
4396 /* already in OOM ? */
c2b42d3c 4397 if (memcg->under_oom)
9490ff27 4398 eventfd_signal(eventfd, 1);
1af8efe9 4399 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4400
4401 return 0;
4402}
4403
59b6f873 4404static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4405 struct eventfd_ctx *eventfd)
9490ff27 4406{
9490ff27 4407 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4408
1af8efe9 4409 spin_lock(&memcg_oom_lock);
9490ff27 4410
c0ff4b85 4411 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4412 if (ev->eventfd == eventfd) {
4413 list_del(&ev->list);
4414 kfree(ev);
4415 }
4416 }
4417
1af8efe9 4418 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4419}
4420
2da8ca82 4421static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4422{
aa9694bb 4423 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4424
791badbd 4425 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4426 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4427 seq_printf(sf, "oom_kill %lu\n",
4428 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4429 return 0;
4430}
4431
182446d0 4432static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4433 struct cftype *cft, u64 val)
4434{
182446d0 4435 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4436
4437 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4438 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4439 return -EINVAL;
4440
c0ff4b85 4441 memcg->oom_kill_disable = val;
4d845ebf 4442 if (!val)
c0ff4b85 4443 memcg_oom_recover(memcg);
3dae7fec 4444
3c11ecf4
KH
4445 return 0;
4446}
4447
52ebea74
TH
4448#ifdef CONFIG_CGROUP_WRITEBACK
4449
3a8e9ac8
TH
4450#include <trace/events/writeback.h>
4451
841710aa
TH
4452static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4453{
4454 return wb_domain_init(&memcg->cgwb_domain, gfp);
4455}
4456
4457static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4458{
4459 wb_domain_exit(&memcg->cgwb_domain);
4460}
4461
2529bb3a
TH
4462static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4463{
4464 wb_domain_size_changed(&memcg->cgwb_domain);
4465}
4466
841710aa
TH
4467struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4470
4471 if (!memcg->css.parent)
4472 return NULL;
4473
4474 return &memcg->cgwb_domain;
4475}
4476
c2aa723a
TH
4477/**
4478 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4479 * @wb: bdi_writeback in question
c5edf9cd
TH
4480 * @pfilepages: out parameter for number of file pages
4481 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4482 * @pdirty: out parameter for number of dirty pages
4483 * @pwriteback: out parameter for number of pages under writeback
4484 *
c5edf9cd
TH
4485 * Determine the numbers of file, headroom, dirty, and writeback pages in
4486 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4487 * is a bit more involved.
c2aa723a 4488 *
c5edf9cd
TH
4489 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4490 * headroom is calculated as the lowest headroom of itself and the
4491 * ancestors. Note that this doesn't consider the actual amount of
4492 * available memory in the system. The caller should further cap
4493 * *@pheadroom accordingly.
c2aa723a 4494 */
c5edf9cd
TH
4495void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4496 unsigned long *pheadroom, unsigned long *pdirty,
4497 unsigned long *pwriteback)
c2aa723a
TH
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4500 struct mem_cgroup *parent;
c2aa723a 4501
2d146aa3 4502 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4503
2d146aa3
JW
4504 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4505 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4506 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4507 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4508
2d146aa3 4509 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4510 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4511 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4512 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4513 unsigned long used = page_counter_read(&memcg->memory);
4514
c5edf9cd 4515 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4516 memcg = parent;
4517 }
c2aa723a
TH
4518}
4519
97b27821
TH
4520/*
4521 * Foreign dirty flushing
4522 *
4523 * There's an inherent mismatch between memcg and writeback. The former
4524 * trackes ownership per-page while the latter per-inode. This was a
4525 * deliberate design decision because honoring per-page ownership in the
4526 * writeback path is complicated, may lead to higher CPU and IO overheads
4527 * and deemed unnecessary given that write-sharing an inode across
4528 * different cgroups isn't a common use-case.
4529 *
4530 * Combined with inode majority-writer ownership switching, this works well
4531 * enough in most cases but there are some pathological cases. For
4532 * example, let's say there are two cgroups A and B which keep writing to
4533 * different but confined parts of the same inode. B owns the inode and
4534 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4535 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4536 * triggering background writeback. A will be slowed down without a way to
4537 * make writeback of the dirty pages happen.
4538 *
4539 * Conditions like the above can lead to a cgroup getting repatedly and
4540 * severely throttled after making some progress after each
4541 * dirty_expire_interval while the underyling IO device is almost
4542 * completely idle.
4543 *
4544 * Solving this problem completely requires matching the ownership tracking
4545 * granularities between memcg and writeback in either direction. However,
4546 * the more egregious behaviors can be avoided by simply remembering the
4547 * most recent foreign dirtying events and initiating remote flushes on
4548 * them when local writeback isn't enough to keep the memory clean enough.
4549 *
4550 * The following two functions implement such mechanism. When a foreign
4551 * page - a page whose memcg and writeback ownerships don't match - is
4552 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4553 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4554 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4555 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4556 * foreign bdi_writebacks which haven't expired. Both the numbers of
4557 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4558 * limited to MEMCG_CGWB_FRN_CNT.
4559 *
4560 * The mechanism only remembers IDs and doesn't hold any object references.
4561 * As being wrong occasionally doesn't matter, updates and accesses to the
4562 * records are lockless and racy.
4563 */
4564void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4565 struct bdi_writeback *wb)
4566{
bcfe06bf 4567 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4568 struct memcg_cgwb_frn *frn;
4569 u64 now = get_jiffies_64();
4570 u64 oldest_at = now;
4571 int oldest = -1;
4572 int i;
4573
3a8e9ac8
TH
4574 trace_track_foreign_dirty(page, wb);
4575
97b27821
TH
4576 /*
4577 * Pick the slot to use. If there is already a slot for @wb, keep
4578 * using it. If not replace the oldest one which isn't being
4579 * written out.
4580 */
4581 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4582 frn = &memcg->cgwb_frn[i];
4583 if (frn->bdi_id == wb->bdi->id &&
4584 frn->memcg_id == wb->memcg_css->id)
4585 break;
4586 if (time_before64(frn->at, oldest_at) &&
4587 atomic_read(&frn->done.cnt) == 1) {
4588 oldest = i;
4589 oldest_at = frn->at;
4590 }
4591 }
4592
4593 if (i < MEMCG_CGWB_FRN_CNT) {
4594 /*
4595 * Re-using an existing one. Update timestamp lazily to
4596 * avoid making the cacheline hot. We want them to be
4597 * reasonably up-to-date and significantly shorter than
4598 * dirty_expire_interval as that's what expires the record.
4599 * Use the shorter of 1s and dirty_expire_interval / 8.
4600 */
4601 unsigned long update_intv =
4602 min_t(unsigned long, HZ,
4603 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4604
4605 if (time_before64(frn->at, now - update_intv))
4606 frn->at = now;
4607 } else if (oldest >= 0) {
4608 /* replace the oldest free one */
4609 frn = &memcg->cgwb_frn[oldest];
4610 frn->bdi_id = wb->bdi->id;
4611 frn->memcg_id = wb->memcg_css->id;
4612 frn->at = now;
4613 }
4614}
4615
4616/* issue foreign writeback flushes for recorded foreign dirtying events */
4617void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4618{
4619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4620 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4621 u64 now = jiffies_64;
4622 int i;
4623
4624 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4625 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4626
4627 /*
4628 * If the record is older than dirty_expire_interval,
4629 * writeback on it has already started. No need to kick it
4630 * off again. Also, don't start a new one if there's
4631 * already one in flight.
4632 */
4633 if (time_after64(frn->at, now - intv) &&
4634 atomic_read(&frn->done.cnt) == 1) {
4635 frn->at = 0;
3a8e9ac8 4636 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4637 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4638 WB_REASON_FOREIGN_FLUSH,
4639 &frn->done);
4640 }
4641 }
4642}
4643
841710aa
TH
4644#else /* CONFIG_CGROUP_WRITEBACK */
4645
4646static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4647{
4648 return 0;
4649}
4650
4651static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4652{
4653}
4654
2529bb3a
TH
4655static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4656{
4657}
4658
52ebea74
TH
4659#endif /* CONFIG_CGROUP_WRITEBACK */
4660
3bc942f3
TH
4661/*
4662 * DO NOT USE IN NEW FILES.
4663 *
4664 * "cgroup.event_control" implementation.
4665 *
4666 * This is way over-engineered. It tries to support fully configurable
4667 * events for each user. Such level of flexibility is completely
4668 * unnecessary especially in the light of the planned unified hierarchy.
4669 *
4670 * Please deprecate this and replace with something simpler if at all
4671 * possible.
4672 */
4673
79bd9814
TH
4674/*
4675 * Unregister event and free resources.
4676 *
4677 * Gets called from workqueue.
4678 */
3bc942f3 4679static void memcg_event_remove(struct work_struct *work)
79bd9814 4680{
3bc942f3
TH
4681 struct mem_cgroup_event *event =
4682 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4683 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4684
4685 remove_wait_queue(event->wqh, &event->wait);
4686
59b6f873 4687 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4688
4689 /* Notify userspace the event is going away. */
4690 eventfd_signal(event->eventfd, 1);
4691
4692 eventfd_ctx_put(event->eventfd);
4693 kfree(event);
59b6f873 4694 css_put(&memcg->css);
79bd9814
TH
4695}
4696
4697/*
a9a08845 4698 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4699 *
4700 * Called with wqh->lock held and interrupts disabled.
4701 */
ac6424b9 4702static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4703 int sync, void *key)
79bd9814 4704{
3bc942f3
TH
4705 struct mem_cgroup_event *event =
4706 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4707 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4708 __poll_t flags = key_to_poll(key);
79bd9814 4709
a9a08845 4710 if (flags & EPOLLHUP) {
79bd9814
TH
4711 /*
4712 * If the event has been detached at cgroup removal, we
4713 * can simply return knowing the other side will cleanup
4714 * for us.
4715 *
4716 * We can't race against event freeing since the other
4717 * side will require wqh->lock via remove_wait_queue(),
4718 * which we hold.
4719 */
fba94807 4720 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4721 if (!list_empty(&event->list)) {
4722 list_del_init(&event->list);
4723 /*
4724 * We are in atomic context, but cgroup_event_remove()
4725 * may sleep, so we have to call it in workqueue.
4726 */
4727 schedule_work(&event->remove);
4728 }
fba94807 4729 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4730 }
4731
4732 return 0;
4733}
4734
3bc942f3 4735static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4736 wait_queue_head_t *wqh, poll_table *pt)
4737{
3bc942f3
TH
4738 struct mem_cgroup_event *event =
4739 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4740
4741 event->wqh = wqh;
4742 add_wait_queue(wqh, &event->wait);
4743}
4744
4745/*
3bc942f3
TH
4746 * DO NOT USE IN NEW FILES.
4747 *
79bd9814
TH
4748 * Parse input and register new cgroup event handler.
4749 *
4750 * Input must be in format '<event_fd> <control_fd> <args>'.
4751 * Interpretation of args is defined by control file implementation.
4752 */
451af504
TH
4753static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4754 char *buf, size_t nbytes, loff_t off)
79bd9814 4755{
451af504 4756 struct cgroup_subsys_state *css = of_css(of);
fba94807 4757 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4758 struct mem_cgroup_event *event;
79bd9814
TH
4759 struct cgroup_subsys_state *cfile_css;
4760 unsigned int efd, cfd;
4761 struct fd efile;
4762 struct fd cfile;
fba94807 4763 const char *name;
79bd9814
TH
4764 char *endp;
4765 int ret;
4766
451af504
TH
4767 buf = strstrip(buf);
4768
4769 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4770 if (*endp != ' ')
4771 return -EINVAL;
451af504 4772 buf = endp + 1;
79bd9814 4773
451af504 4774 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4775 if ((*endp != ' ') && (*endp != '\0'))
4776 return -EINVAL;
451af504 4777 buf = endp + 1;
79bd9814
TH
4778
4779 event = kzalloc(sizeof(*event), GFP_KERNEL);
4780 if (!event)
4781 return -ENOMEM;
4782
59b6f873 4783 event->memcg = memcg;
79bd9814 4784 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4785 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4786 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4787 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4788
4789 efile = fdget(efd);
4790 if (!efile.file) {
4791 ret = -EBADF;
4792 goto out_kfree;
4793 }
4794
4795 event->eventfd = eventfd_ctx_fileget(efile.file);
4796 if (IS_ERR(event->eventfd)) {
4797 ret = PTR_ERR(event->eventfd);
4798 goto out_put_efile;
4799 }
4800
4801 cfile = fdget(cfd);
4802 if (!cfile.file) {
4803 ret = -EBADF;
4804 goto out_put_eventfd;
4805 }
4806
4807 /* the process need read permission on control file */
4808 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4809 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4810 if (ret < 0)
4811 goto out_put_cfile;
4812
fba94807
TH
4813 /*
4814 * Determine the event callbacks and set them in @event. This used
4815 * to be done via struct cftype but cgroup core no longer knows
4816 * about these events. The following is crude but the whole thing
4817 * is for compatibility anyway.
3bc942f3
TH
4818 *
4819 * DO NOT ADD NEW FILES.
fba94807 4820 */
b583043e 4821 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4822
4823 if (!strcmp(name, "memory.usage_in_bytes")) {
4824 event->register_event = mem_cgroup_usage_register_event;
4825 event->unregister_event = mem_cgroup_usage_unregister_event;
4826 } else if (!strcmp(name, "memory.oom_control")) {
4827 event->register_event = mem_cgroup_oom_register_event;
4828 event->unregister_event = mem_cgroup_oom_unregister_event;
4829 } else if (!strcmp(name, "memory.pressure_level")) {
4830 event->register_event = vmpressure_register_event;
4831 event->unregister_event = vmpressure_unregister_event;
4832 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4833 event->register_event = memsw_cgroup_usage_register_event;
4834 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4835 } else {
4836 ret = -EINVAL;
4837 goto out_put_cfile;
4838 }
4839
79bd9814 4840 /*
b5557c4c
TH
4841 * Verify @cfile should belong to @css. Also, remaining events are
4842 * automatically removed on cgroup destruction but the removal is
4843 * asynchronous, so take an extra ref on @css.
79bd9814 4844 */
b583043e 4845 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4846 &memory_cgrp_subsys);
79bd9814 4847 ret = -EINVAL;
5a17f543 4848 if (IS_ERR(cfile_css))
79bd9814 4849 goto out_put_cfile;
5a17f543
TH
4850 if (cfile_css != css) {
4851 css_put(cfile_css);
79bd9814 4852 goto out_put_cfile;
5a17f543 4853 }
79bd9814 4854
451af504 4855 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4856 if (ret)
4857 goto out_put_css;
4858
9965ed17 4859 vfs_poll(efile.file, &event->pt);
79bd9814 4860
fba94807
TH
4861 spin_lock(&memcg->event_list_lock);
4862 list_add(&event->list, &memcg->event_list);
4863 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4864
4865 fdput(cfile);
4866 fdput(efile);
4867
451af504 4868 return nbytes;
79bd9814
TH
4869
4870out_put_css:
b5557c4c 4871 css_put(css);
79bd9814
TH
4872out_put_cfile:
4873 fdput(cfile);
4874out_put_eventfd:
4875 eventfd_ctx_put(event->eventfd);
4876out_put_efile:
4877 fdput(efile);
4878out_kfree:
4879 kfree(event);
4880
4881 return ret;
4882}
4883
241994ed 4884static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4885 {
0eea1030 4886 .name = "usage_in_bytes",
8c7c6e34 4887 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4888 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4889 },
c84872e1
PE
4890 {
4891 .name = "max_usage_in_bytes",
8c7c6e34 4892 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4893 .write = mem_cgroup_reset,
791badbd 4894 .read_u64 = mem_cgroup_read_u64,
c84872e1 4895 },
8cdea7c0 4896 {
0eea1030 4897 .name = "limit_in_bytes",
8c7c6e34 4898 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4899 .write = mem_cgroup_write,
791badbd 4900 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4901 },
296c81d8
BS
4902 {
4903 .name = "soft_limit_in_bytes",
4904 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4905 .write = mem_cgroup_write,
791badbd 4906 .read_u64 = mem_cgroup_read_u64,
296c81d8 4907 },
8cdea7c0
BS
4908 {
4909 .name = "failcnt",
8c7c6e34 4910 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4911 .write = mem_cgroup_reset,
791badbd 4912 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4913 },
d2ceb9b7
KH
4914 {
4915 .name = "stat",
2da8ca82 4916 .seq_show = memcg_stat_show,
d2ceb9b7 4917 },
c1e862c1
KH
4918 {
4919 .name = "force_empty",
6770c64e 4920 .write = mem_cgroup_force_empty_write,
c1e862c1 4921 },
18f59ea7
BS
4922 {
4923 .name = "use_hierarchy",
4924 .write_u64 = mem_cgroup_hierarchy_write,
4925 .read_u64 = mem_cgroup_hierarchy_read,
4926 },
79bd9814 4927 {
3bc942f3 4928 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4929 .write = memcg_write_event_control,
7dbdb199 4930 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4931 },
a7885eb8
KM
4932 {
4933 .name = "swappiness",
4934 .read_u64 = mem_cgroup_swappiness_read,
4935 .write_u64 = mem_cgroup_swappiness_write,
4936 },
7dc74be0
DN
4937 {
4938 .name = "move_charge_at_immigrate",
4939 .read_u64 = mem_cgroup_move_charge_read,
4940 .write_u64 = mem_cgroup_move_charge_write,
4941 },
9490ff27
KH
4942 {
4943 .name = "oom_control",
2da8ca82 4944 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4945 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4946 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4947 },
70ddf637
AV
4948 {
4949 .name = "pressure_level",
70ddf637 4950 },
406eb0c9
YH
4951#ifdef CONFIG_NUMA
4952 {
4953 .name = "numa_stat",
2da8ca82 4954 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4955 },
4956#endif
510fc4e1
GC
4957 {
4958 .name = "kmem.limit_in_bytes",
4959 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4960 .write = mem_cgroup_write,
791badbd 4961 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4962 },
4963 {
4964 .name = "kmem.usage_in_bytes",
4965 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4966 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4967 },
4968 {
4969 .name = "kmem.failcnt",
4970 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4971 .write = mem_cgroup_reset,
791badbd 4972 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4973 },
4974 {
4975 .name = "kmem.max_usage_in_bytes",
4976 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4977 .write = mem_cgroup_reset,
791badbd 4978 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4979 },
a87425a3
YS
4980#if defined(CONFIG_MEMCG_KMEM) && \
4981 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4982 {
4983 .name = "kmem.slabinfo",
b047501c 4984 .seq_show = memcg_slab_show,
749c5415
GC
4985 },
4986#endif
d55f90bf
VD
4987 {
4988 .name = "kmem.tcp.limit_in_bytes",
4989 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4990 .write = mem_cgroup_write,
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 {
4994 .name = "kmem.tcp.usage_in_bytes",
4995 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4996 .read_u64 = mem_cgroup_read_u64,
4997 },
4998 {
4999 .name = "kmem.tcp.failcnt",
5000 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5001 .write = mem_cgroup_reset,
5002 .read_u64 = mem_cgroup_read_u64,
5003 },
5004 {
5005 .name = "kmem.tcp.max_usage_in_bytes",
5006 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5007 .write = mem_cgroup_reset,
5008 .read_u64 = mem_cgroup_read_u64,
5009 },
6bc10349 5010 { }, /* terminate */
af36f906 5011};
8c7c6e34 5012
73f576c0
JW
5013/*
5014 * Private memory cgroup IDR
5015 *
5016 * Swap-out records and page cache shadow entries need to store memcg
5017 * references in constrained space, so we maintain an ID space that is
5018 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5019 * memory-controlled cgroups to 64k.
5020 *
b8f2935f 5021 * However, there usually are many references to the offline CSS after
73f576c0
JW
5022 * the cgroup has been destroyed, such as page cache or reclaimable
5023 * slab objects, that don't need to hang on to the ID. We want to keep
5024 * those dead CSS from occupying IDs, or we might quickly exhaust the
5025 * relatively small ID space and prevent the creation of new cgroups
5026 * even when there are much fewer than 64k cgroups - possibly none.
5027 *
5028 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5029 * be freed and recycled when it's no longer needed, which is usually
5030 * when the CSS is offlined.
5031 *
5032 * The only exception to that are records of swapped out tmpfs/shmem
5033 * pages that need to be attributed to live ancestors on swapin. But
5034 * those references are manageable from userspace.
5035 */
5036
5037static DEFINE_IDR(mem_cgroup_idr);
5038
7e97de0b
KT
5039static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5040{
5041 if (memcg->id.id > 0) {
5042 idr_remove(&mem_cgroup_idr, memcg->id.id);
5043 memcg->id.id = 0;
5044 }
5045}
5046
c1514c0a
VF
5047static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5048 unsigned int n)
73f576c0 5049{
1c2d479a 5050 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5051}
5052
615d66c3 5053static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5054{
1c2d479a 5055 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5056 mem_cgroup_id_remove(memcg);
73f576c0
JW
5057
5058 /* Memcg ID pins CSS */
5059 css_put(&memcg->css);
5060 }
5061}
5062
615d66c3
VD
5063static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5064{
5065 mem_cgroup_id_put_many(memcg, 1);
5066}
5067
73f576c0
JW
5068/**
5069 * mem_cgroup_from_id - look up a memcg from a memcg id
5070 * @id: the memcg id to look up
5071 *
5072 * Caller must hold rcu_read_lock().
5073 */
5074struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5075{
5076 WARN_ON_ONCE(!rcu_read_lock_held());
5077 return idr_find(&mem_cgroup_idr, id);
5078}
5079
ef8f2327 5080static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5081{
5082 struct mem_cgroup_per_node *pn;
ef8f2327 5083 int tmp = node;
1ecaab2b
KH
5084 /*
5085 * This routine is called against possible nodes.
5086 * But it's BUG to call kmalloc() against offline node.
5087 *
5088 * TODO: this routine can waste much memory for nodes which will
5089 * never be onlined. It's better to use memory hotplug callback
5090 * function.
5091 */
41e3355d
KH
5092 if (!node_state(node, N_NORMAL_MEMORY))
5093 tmp = -1;
17295c88 5094 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5095 if (!pn)
5096 return 1;
1ecaab2b 5097
3e38e0aa
RG
5098 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5099 GFP_KERNEL_ACCOUNT);
815744d7
JW
5100 if (!pn->lruvec_stat_local) {
5101 kfree(pn);
5102 return 1;
5103 }
5104
f3344adf 5105 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5106 GFP_KERNEL_ACCOUNT);
a983b5eb 5107 if (!pn->lruvec_stat_cpu) {
815744d7 5108 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5109 kfree(pn);
5110 return 1;
5111 }
5112
ef8f2327
MG
5113 lruvec_init(&pn->lruvec);
5114 pn->usage_in_excess = 0;
5115 pn->on_tree = false;
5116 pn->memcg = memcg;
5117
54f72fe0 5118 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5119 return 0;
5120}
5121
ef8f2327 5122static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5123{
00f3ca2c
JW
5124 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5125
4eaf431f
MH
5126 if (!pn)
5127 return;
5128
a983b5eb 5129 free_percpu(pn->lruvec_stat_cpu);
815744d7 5130 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5131 kfree(pn);
1ecaab2b
KH
5132}
5133
40e952f9 5134static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5135{
c8b2a36f 5136 int node;
59927fb9 5137
c8b2a36f 5138 for_each_node(node)
ef8f2327 5139 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5140 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5141 kfree(memcg);
59927fb9 5142}
3afe36b1 5143
40e952f9
TE
5144static void mem_cgroup_free(struct mem_cgroup *memcg)
5145{
2cd21c89
JW
5146 int cpu;
5147
40e952f9 5148 memcg_wb_domain_exit(memcg);
7961eee3 5149 /*
2d146aa3
JW
5150 * Flush percpu lruvec stats to guarantee the value
5151 * correctness on parent's and all ancestor levels.
7961eee3 5152 */
2cd21c89
JW
5153 for_each_online_cpu(cpu)
5154 memcg_flush_lruvec_page_state(memcg, cpu);
40e952f9
TE
5155 __mem_cgroup_free(memcg);
5156}
5157
0b8f73e1 5158static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5159{
d142e3e6 5160 struct mem_cgroup *memcg;
b9726c26 5161 unsigned int size;
6d12e2d8 5162 int node;
97b27821 5163 int __maybe_unused i;
11d67612 5164 long error = -ENOMEM;
8cdea7c0 5165
0b8f73e1
JW
5166 size = sizeof(struct mem_cgroup);
5167 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5168
5169 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5170 if (!memcg)
11d67612 5171 return ERR_PTR(error);
0b8f73e1 5172
73f576c0
JW
5173 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5174 1, MEM_CGROUP_ID_MAX,
5175 GFP_KERNEL);
11d67612
YS
5176 if (memcg->id.id < 0) {
5177 error = memcg->id.id;
73f576c0 5178 goto fail;
11d67612 5179 }
73f576c0 5180
3e38e0aa
RG
5181 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5182 GFP_KERNEL_ACCOUNT);
871789d4 5183 if (!memcg->vmstats_percpu)
0b8f73e1 5184 goto fail;
78fb7466 5185
3ed28fa1 5186 for_each_node(node)
ef8f2327 5187 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5188 goto fail;
f64c3f54 5189
0b8f73e1
JW
5190 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5191 goto fail;
28dbc4b6 5192
f7e1cb6e 5193 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5194 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5195 mutex_init(&memcg->thresholds_lock);
5196 spin_lock_init(&memcg->move_lock);
70ddf637 5197 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5198 INIT_LIST_HEAD(&memcg->event_list);
5199 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5200 memcg->socket_pressure = jiffies;
84c07d11 5201#ifdef CONFIG_MEMCG_KMEM
900a38f0 5202 memcg->kmemcg_id = -1;
bf4f0599 5203 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5204#endif
52ebea74
TH
5205#ifdef CONFIG_CGROUP_WRITEBACK
5206 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5207 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5208 memcg->cgwb_frn[i].done =
5209 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5210#endif
5211#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5212 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5213 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5214 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5215#endif
73f576c0 5216 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5217 return memcg;
5218fail:
7e97de0b 5219 mem_cgroup_id_remove(memcg);
40e952f9 5220 __mem_cgroup_free(memcg);
11d67612 5221 return ERR_PTR(error);
d142e3e6
GC
5222}
5223
0b8f73e1
JW
5224static struct cgroup_subsys_state * __ref
5225mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5226{
0b8f73e1 5227 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5228 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5229 long error = -ENOMEM;
d142e3e6 5230
b87d8cef 5231 old_memcg = set_active_memcg(parent);
0b8f73e1 5232 memcg = mem_cgroup_alloc();
b87d8cef 5233 set_active_memcg(old_memcg);
11d67612
YS
5234 if (IS_ERR(memcg))
5235 return ERR_CAST(memcg);
d142e3e6 5236
d1663a90 5237 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5238 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5239 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5240 if (parent) {
5241 memcg->swappiness = mem_cgroup_swappiness(parent);
5242 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5243
3e32cb2e 5244 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5245 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5246 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5247 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5248 } else {
bef8620c
RG
5249 page_counter_init(&memcg->memory, NULL);
5250 page_counter_init(&memcg->swap, NULL);
5251 page_counter_init(&memcg->kmem, NULL);
5252 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5253
0b8f73e1
JW
5254 root_mem_cgroup = memcg;
5255 return &memcg->css;
5256 }
5257
bef8620c 5258 /* The following stuff does not apply to the root */
b313aeee 5259 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5260 if (error)
5261 goto fail;
127424c8 5262
f7e1cb6e 5263 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5264 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5265
0b8f73e1
JW
5266 return &memcg->css;
5267fail:
7e97de0b 5268 mem_cgroup_id_remove(memcg);
0b8f73e1 5269 mem_cgroup_free(memcg);
11d67612 5270 return ERR_PTR(error);
0b8f73e1
JW
5271}
5272
73f576c0 5273static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5274{
58fa2a55
VD
5275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5276
0a4465d3
KT
5277 /*
5278 * A memcg must be visible for memcg_expand_shrinker_maps()
5279 * by the time the maps are allocated. So, we allocate maps
5280 * here, when for_each_mem_cgroup() can't skip it.
5281 */
5282 if (memcg_alloc_shrinker_maps(memcg)) {
5283 mem_cgroup_id_remove(memcg);
5284 return -ENOMEM;
5285 }
5286
73f576c0 5287 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5288 refcount_set(&memcg->id.ref, 1);
73f576c0 5289 css_get(css);
2f7dd7a4 5290 return 0;
8cdea7c0
BS
5291}
5292
eb95419b 5293static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5294{
eb95419b 5295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5296 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5297
5298 /*
5299 * Unregister events and notify userspace.
5300 * Notify userspace about cgroup removing only after rmdir of cgroup
5301 * directory to avoid race between userspace and kernelspace.
5302 */
fba94807
TH
5303 spin_lock(&memcg->event_list_lock);
5304 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5305 list_del_init(&event->list);
5306 schedule_work(&event->remove);
5307 }
fba94807 5308 spin_unlock(&memcg->event_list_lock);
ec64f515 5309
bf8d5d52 5310 page_counter_set_min(&memcg->memory, 0);
23067153 5311 page_counter_set_low(&memcg->memory, 0);
63677c74 5312
567e9ab2 5313 memcg_offline_kmem(memcg);
52ebea74 5314 wb_memcg_offline(memcg);
73f576c0 5315
591edfb1
RG
5316 drain_all_stock(memcg);
5317
73f576c0 5318 mem_cgroup_id_put(memcg);
df878fb0
KH
5319}
5320
6df38689
VD
5321static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5322{
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5324
5325 invalidate_reclaim_iterators(memcg);
5326}
5327
eb95419b 5328static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5329{
eb95419b 5330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5331 int __maybe_unused i;
c268e994 5332
97b27821
TH
5333#ifdef CONFIG_CGROUP_WRITEBACK
5334 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5335 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5336#endif
f7e1cb6e 5337 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5338 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5339
0db15298 5340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5341 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5342
0b8f73e1
JW
5343 vmpressure_cleanup(&memcg->vmpressure);
5344 cancel_work_sync(&memcg->high_work);
5345 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5346 memcg_free_shrinker_maps(memcg);
d886f4e4 5347 memcg_free_kmem(memcg);
0b8f73e1 5348 mem_cgroup_free(memcg);
8cdea7c0
BS
5349}
5350
1ced953b
TH
5351/**
5352 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5353 * @css: the target css
5354 *
5355 * Reset the states of the mem_cgroup associated with @css. This is
5356 * invoked when the userland requests disabling on the default hierarchy
5357 * but the memcg is pinned through dependency. The memcg should stop
5358 * applying policies and should revert to the vanilla state as it may be
5359 * made visible again.
5360 *
5361 * The current implementation only resets the essential configurations.
5362 * This needs to be expanded to cover all the visible parts.
5363 */
5364static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5365{
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367
bbec2e15
RG
5368 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5369 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5370 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5371 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5372 page_counter_set_min(&memcg->memory, 0);
23067153 5373 page_counter_set_low(&memcg->memory, 0);
d1663a90 5374 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5375 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5376 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5377 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5378}
5379
2d146aa3
JW
5380static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5381{
5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5383 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5384 struct memcg_vmstats_percpu *statc;
5385 long delta, v;
5386 int i;
5387
5388 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5389
5390 for (i = 0; i < MEMCG_NR_STAT; i++) {
5391 /*
5392 * Collect the aggregated propagation counts of groups
5393 * below us. We're in a per-cpu loop here and this is
5394 * a global counter, so the first cycle will get them.
5395 */
5396 delta = memcg->vmstats.state_pending[i];
5397 if (delta)
5398 memcg->vmstats.state_pending[i] = 0;
5399
5400 /* Add CPU changes on this level since the last flush */
5401 v = READ_ONCE(statc->state[i]);
5402 if (v != statc->state_prev[i]) {
5403 delta += v - statc->state_prev[i];
5404 statc->state_prev[i] = v;
5405 }
5406
5407 if (!delta)
5408 continue;
5409
5410 /* Aggregate counts on this level and propagate upwards */
5411 memcg->vmstats.state[i] += delta;
5412 if (parent)
5413 parent->vmstats.state_pending[i] += delta;
5414 }
5415
5416 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5417 delta = memcg->vmstats.events_pending[i];
5418 if (delta)
5419 memcg->vmstats.events_pending[i] = 0;
5420
5421 v = READ_ONCE(statc->events[i]);
5422 if (v != statc->events_prev[i]) {
5423 delta += v - statc->events_prev[i];
5424 statc->events_prev[i] = v;
5425 }
5426
5427 if (!delta)
5428 continue;
5429
5430 memcg->vmstats.events[i] += delta;
5431 if (parent)
5432 parent->vmstats.events_pending[i] += delta;
5433 }
5434}
5435
02491447 5436#ifdef CONFIG_MMU
7dc74be0 5437/* Handlers for move charge at task migration. */
854ffa8d 5438static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5439{
05b84301 5440 int ret;
9476db97 5441
d0164adc
MG
5442 /* Try a single bulk charge without reclaim first, kswapd may wake */
5443 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5444 if (!ret) {
854ffa8d 5445 mc.precharge += count;
854ffa8d
DN
5446 return ret;
5447 }
9476db97 5448
3674534b 5449 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5450 while (count--) {
3674534b 5451 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5452 if (ret)
38c5d72f 5453 return ret;
854ffa8d 5454 mc.precharge++;
9476db97 5455 cond_resched();
854ffa8d 5456 }
9476db97 5457 return 0;
4ffef5fe
DN
5458}
5459
4ffef5fe
DN
5460union mc_target {
5461 struct page *page;
02491447 5462 swp_entry_t ent;
4ffef5fe
DN
5463};
5464
4ffef5fe 5465enum mc_target_type {
8d32ff84 5466 MC_TARGET_NONE = 0,
4ffef5fe 5467 MC_TARGET_PAGE,
02491447 5468 MC_TARGET_SWAP,
c733a828 5469 MC_TARGET_DEVICE,
4ffef5fe
DN
5470};
5471
90254a65
DN
5472static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5473 unsigned long addr, pte_t ptent)
4ffef5fe 5474{
25b2995a 5475 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5476
90254a65
DN
5477 if (!page || !page_mapped(page))
5478 return NULL;
5479 if (PageAnon(page)) {
1dfab5ab 5480 if (!(mc.flags & MOVE_ANON))
90254a65 5481 return NULL;
1dfab5ab
JW
5482 } else {
5483 if (!(mc.flags & MOVE_FILE))
5484 return NULL;
5485 }
90254a65
DN
5486 if (!get_page_unless_zero(page))
5487 return NULL;
5488
5489 return page;
5490}
5491
c733a828 5492#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5493static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5494 pte_t ptent, swp_entry_t *entry)
90254a65 5495{
90254a65
DN
5496 struct page *page = NULL;
5497 swp_entry_t ent = pte_to_swp_entry(ptent);
5498
9a137153 5499 if (!(mc.flags & MOVE_ANON))
90254a65 5500 return NULL;
c733a828
JG
5501
5502 /*
5503 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5504 * a device and because they are not accessible by CPU they are store
5505 * as special swap entry in the CPU page table.
5506 */
5507 if (is_device_private_entry(ent)) {
5508 page = device_private_entry_to_page(ent);
5509 /*
5510 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5511 * a refcount of 1 when free (unlike normal page)
5512 */
5513 if (!page_ref_add_unless(page, 1, 1))
5514 return NULL;
5515 return page;
5516 }
5517
9a137153
RC
5518 if (non_swap_entry(ent))
5519 return NULL;
5520
4b91355e
KH
5521 /*
5522 * Because lookup_swap_cache() updates some statistics counter,
5523 * we call find_get_page() with swapper_space directly.
5524 */
f6ab1f7f 5525 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5526 entry->val = ent.val;
90254a65
DN
5527
5528 return page;
5529}
4b91355e
KH
5530#else
5531static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5532 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5533{
5534 return NULL;
5535}
5536#endif
90254a65 5537
87946a72
DN
5538static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5539 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5540{
87946a72
DN
5541 if (!vma->vm_file) /* anonymous vma */
5542 return NULL;
1dfab5ab 5543 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5544 return NULL;
5545
87946a72 5546 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5547 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5548 return find_get_incore_page(vma->vm_file->f_mapping,
5549 linear_page_index(vma, addr));
87946a72
DN
5550}
5551
b1b0deab
CG
5552/**
5553 * mem_cgroup_move_account - move account of the page
5554 * @page: the page
25843c2b 5555 * @compound: charge the page as compound or small page
b1b0deab
CG
5556 * @from: mem_cgroup which the page is moved from.
5557 * @to: mem_cgroup which the page is moved to. @from != @to.
5558 *
3ac808fd 5559 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5560 *
5561 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5562 * from old cgroup.
5563 */
5564static int mem_cgroup_move_account(struct page *page,
f627c2f5 5565 bool compound,
b1b0deab
CG
5566 struct mem_cgroup *from,
5567 struct mem_cgroup *to)
5568{
ae8af438
KK
5569 struct lruvec *from_vec, *to_vec;
5570 struct pglist_data *pgdat;
6c357848 5571 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5572 int ret;
5573
5574 VM_BUG_ON(from == to);
5575 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5576 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5577
5578 /*
6a93ca8f 5579 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5580 * page's memory cgroup of its source page while we change it.
b1b0deab 5581 */
f627c2f5 5582 ret = -EBUSY;
b1b0deab
CG
5583 if (!trylock_page(page))
5584 goto out;
5585
5586 ret = -EINVAL;
bcfe06bf 5587 if (page_memcg(page) != from)
b1b0deab
CG
5588 goto out_unlock;
5589
ae8af438 5590 pgdat = page_pgdat(page);
867e5e1d
JW
5591 from_vec = mem_cgroup_lruvec(from, pgdat);
5592 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5593
abb242f5 5594 lock_page_memcg(page);
b1b0deab 5595
be5d0a74
JW
5596 if (PageAnon(page)) {
5597 if (page_mapped(page)) {
5598 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5599 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5600 if (PageTransHuge(page)) {
69473e5d
MS
5601 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5602 -nr_pages);
5603 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5604 nr_pages);
468c3982 5605 }
be5d0a74
JW
5606 }
5607 } else {
0d1c2072
JW
5608 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5609 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5610
5611 if (PageSwapBacked(page)) {
5612 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5613 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5614 }
5615
49e50d27
JW
5616 if (page_mapped(page)) {
5617 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5619 }
b1b0deab 5620
49e50d27
JW
5621 if (PageDirty(page)) {
5622 struct address_space *mapping = page_mapping(page);
c4843a75 5623
f56753ac 5624 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5625 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5626 -nr_pages);
5627 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5628 nr_pages);
5629 }
c4843a75
GT
5630 }
5631 }
5632
b1b0deab 5633 if (PageWriteback(page)) {
ae8af438
KK
5634 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5635 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5636 }
5637
5638 /*
abb242f5
JW
5639 * All state has been migrated, let's switch to the new memcg.
5640 *
bcfe06bf 5641 * It is safe to change page's memcg here because the page
abb242f5
JW
5642 * is referenced, charged, isolated, and locked: we can't race
5643 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5644 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5645 *
5646 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5647 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5648 * new memcg that isn't locked, the above state can change
5649 * concurrently again. Make sure we're truly done with it.
b1b0deab 5650 */
abb242f5 5651 smp_mb();
b1b0deab 5652
1a3e1f40
JW
5653 css_get(&to->css);
5654 css_put(&from->css);
5655
bcfe06bf 5656 page->memcg_data = (unsigned long)to;
87eaceb3 5657
abb242f5 5658 __unlock_page_memcg(from);
b1b0deab
CG
5659
5660 ret = 0;
5661
5662 local_irq_disable();
3fba69a5 5663 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5664 memcg_check_events(to, page);
3fba69a5 5665 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5666 memcg_check_events(from, page);
5667 local_irq_enable();
5668out_unlock:
5669 unlock_page(page);
5670out:
5671 return ret;
5672}
5673
7cf7806c
LR
5674/**
5675 * get_mctgt_type - get target type of moving charge
5676 * @vma: the vma the pte to be checked belongs
5677 * @addr: the address corresponding to the pte to be checked
5678 * @ptent: the pte to be checked
5679 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5680 *
5681 * Returns
5682 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5683 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5684 * move charge. if @target is not NULL, the page is stored in target->page
5685 * with extra refcnt got(Callers should handle it).
5686 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5687 * target for charge migration. if @target is not NULL, the entry is stored
5688 * in target->ent.
25b2995a
CH
5689 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5690 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5691 * For now we such page is charge like a regular page would be as for all
5692 * intent and purposes it is just special memory taking the place of a
5693 * regular page.
c733a828
JG
5694 *
5695 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5696 *
5697 * Called with pte lock held.
5698 */
5699
8d32ff84 5700static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5701 unsigned long addr, pte_t ptent, union mc_target *target)
5702{
5703 struct page *page = NULL;
8d32ff84 5704 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5705 swp_entry_t ent = { .val = 0 };
5706
5707 if (pte_present(ptent))
5708 page = mc_handle_present_pte(vma, addr, ptent);
5709 else if (is_swap_pte(ptent))
48406ef8 5710 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5711 else if (pte_none(ptent))
87946a72 5712 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5713
5714 if (!page && !ent.val)
8d32ff84 5715 return ret;
02491447 5716 if (page) {
02491447 5717 /*
0a31bc97 5718 * Do only loose check w/o serialization.
1306a85a 5719 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5720 * not under LRU exclusion.
02491447 5721 */
bcfe06bf 5722 if (page_memcg(page) == mc.from) {
02491447 5723 ret = MC_TARGET_PAGE;
25b2995a 5724 if (is_device_private_page(page))
c733a828 5725 ret = MC_TARGET_DEVICE;
02491447
DN
5726 if (target)
5727 target->page = page;
5728 }
5729 if (!ret || !target)
5730 put_page(page);
5731 }
3e14a57b
HY
5732 /*
5733 * There is a swap entry and a page doesn't exist or isn't charged.
5734 * But we cannot move a tail-page in a THP.
5735 */
5736 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5737 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5738 ret = MC_TARGET_SWAP;
5739 if (target)
5740 target->ent = ent;
4ffef5fe 5741 }
4ffef5fe
DN
5742 return ret;
5743}
5744
12724850
NH
5745#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5746/*
d6810d73
HY
5747 * We don't consider PMD mapped swapping or file mapped pages because THP does
5748 * not support them for now.
12724850
NH
5749 * Caller should make sure that pmd_trans_huge(pmd) is true.
5750 */
5751static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5752 unsigned long addr, pmd_t pmd, union mc_target *target)
5753{
5754 struct page *page = NULL;
12724850
NH
5755 enum mc_target_type ret = MC_TARGET_NONE;
5756
84c3fc4e
ZY
5757 if (unlikely(is_swap_pmd(pmd))) {
5758 VM_BUG_ON(thp_migration_supported() &&
5759 !is_pmd_migration_entry(pmd));
5760 return ret;
5761 }
12724850 5762 page = pmd_page(pmd);
309381fe 5763 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5764 if (!(mc.flags & MOVE_ANON))
12724850 5765 return ret;
bcfe06bf 5766 if (page_memcg(page) == mc.from) {
12724850
NH
5767 ret = MC_TARGET_PAGE;
5768 if (target) {
5769 get_page(page);
5770 target->page = page;
5771 }
5772 }
5773 return ret;
5774}
5775#else
5776static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5777 unsigned long addr, pmd_t pmd, union mc_target *target)
5778{
5779 return MC_TARGET_NONE;
5780}
5781#endif
5782
4ffef5fe
DN
5783static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5784 unsigned long addr, unsigned long end,
5785 struct mm_walk *walk)
5786{
26bcd64a 5787 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5788 pte_t *pte;
5789 spinlock_t *ptl;
5790
b6ec57f4
KS
5791 ptl = pmd_trans_huge_lock(pmd, vma);
5792 if (ptl) {
c733a828
JG
5793 /*
5794 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5795 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5796 * this might change.
c733a828 5797 */
12724850
NH
5798 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5799 mc.precharge += HPAGE_PMD_NR;
bf929152 5800 spin_unlock(ptl);
1a5a9906 5801 return 0;
12724850 5802 }
03319327 5803
45f83cef
AA
5804 if (pmd_trans_unstable(pmd))
5805 return 0;
4ffef5fe
DN
5806 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5807 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5808 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5809 mc.precharge++; /* increment precharge temporarily */
5810 pte_unmap_unlock(pte - 1, ptl);
5811 cond_resched();
5812
7dc74be0
DN
5813 return 0;
5814}
5815
7b86ac33
CH
5816static const struct mm_walk_ops precharge_walk_ops = {
5817 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5818};
5819
4ffef5fe
DN
5820static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5821{
5822 unsigned long precharge;
4ffef5fe 5823
d8ed45c5 5824 mmap_read_lock(mm);
7b86ac33 5825 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5826 mmap_read_unlock(mm);
4ffef5fe
DN
5827
5828 precharge = mc.precharge;
5829 mc.precharge = 0;
5830
5831 return precharge;
5832}
5833
4ffef5fe
DN
5834static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5835{
dfe076b0
DN
5836 unsigned long precharge = mem_cgroup_count_precharge(mm);
5837
5838 VM_BUG_ON(mc.moving_task);
5839 mc.moving_task = current;
5840 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5841}
5842
dfe076b0
DN
5843/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5844static void __mem_cgroup_clear_mc(void)
4ffef5fe 5845{
2bd9bb20
KH
5846 struct mem_cgroup *from = mc.from;
5847 struct mem_cgroup *to = mc.to;
5848
4ffef5fe 5849 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5850 if (mc.precharge) {
00501b53 5851 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5852 mc.precharge = 0;
5853 }
5854 /*
5855 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5856 * we must uncharge here.
5857 */
5858 if (mc.moved_charge) {
00501b53 5859 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5860 mc.moved_charge = 0;
4ffef5fe 5861 }
483c30b5
DN
5862 /* we must fixup refcnts and charges */
5863 if (mc.moved_swap) {
483c30b5 5864 /* uncharge swap account from the old cgroup */
ce00a967 5865 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5866 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5867
615d66c3
VD
5868 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5869
05b84301 5870 /*
3e32cb2e
JW
5871 * we charged both to->memory and to->memsw, so we
5872 * should uncharge to->memory.
05b84301 5873 */
ce00a967 5874 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5875 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5876
483c30b5
DN
5877 mc.moved_swap = 0;
5878 }
dfe076b0
DN
5879 memcg_oom_recover(from);
5880 memcg_oom_recover(to);
5881 wake_up_all(&mc.waitq);
5882}
5883
5884static void mem_cgroup_clear_mc(void)
5885{
264a0ae1
TH
5886 struct mm_struct *mm = mc.mm;
5887
dfe076b0
DN
5888 /*
5889 * we must clear moving_task before waking up waiters at the end of
5890 * task migration.
5891 */
5892 mc.moving_task = NULL;
5893 __mem_cgroup_clear_mc();
2bd9bb20 5894 spin_lock(&mc.lock);
4ffef5fe
DN
5895 mc.from = NULL;
5896 mc.to = NULL;
264a0ae1 5897 mc.mm = NULL;
2bd9bb20 5898 spin_unlock(&mc.lock);
264a0ae1
TH
5899
5900 mmput(mm);
4ffef5fe
DN
5901}
5902
1f7dd3e5 5903static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5904{
1f7dd3e5 5905 struct cgroup_subsys_state *css;
eed67d75 5906 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5907 struct mem_cgroup *from;
4530eddb 5908 struct task_struct *leader, *p;
9f2115f9 5909 struct mm_struct *mm;
1dfab5ab 5910 unsigned long move_flags;
9f2115f9 5911 int ret = 0;
7dc74be0 5912
1f7dd3e5
TH
5913 /* charge immigration isn't supported on the default hierarchy */
5914 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5915 return 0;
5916
4530eddb
TH
5917 /*
5918 * Multi-process migrations only happen on the default hierarchy
5919 * where charge immigration is not used. Perform charge
5920 * immigration if @tset contains a leader and whine if there are
5921 * multiple.
5922 */
5923 p = NULL;
1f7dd3e5 5924 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5925 WARN_ON_ONCE(p);
5926 p = leader;
1f7dd3e5 5927 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5928 }
5929 if (!p)
5930 return 0;
5931
1f7dd3e5
TH
5932 /*
5933 * We are now commited to this value whatever it is. Changes in this
5934 * tunable will only affect upcoming migrations, not the current one.
5935 * So we need to save it, and keep it going.
5936 */
5937 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5938 if (!move_flags)
5939 return 0;
5940
9f2115f9
TH
5941 from = mem_cgroup_from_task(p);
5942
5943 VM_BUG_ON(from == memcg);
5944
5945 mm = get_task_mm(p);
5946 if (!mm)
5947 return 0;
5948 /* We move charges only when we move a owner of the mm */
5949 if (mm->owner == p) {
5950 VM_BUG_ON(mc.from);
5951 VM_BUG_ON(mc.to);
5952 VM_BUG_ON(mc.precharge);
5953 VM_BUG_ON(mc.moved_charge);
5954 VM_BUG_ON(mc.moved_swap);
5955
5956 spin_lock(&mc.lock);
264a0ae1 5957 mc.mm = mm;
9f2115f9
TH
5958 mc.from = from;
5959 mc.to = memcg;
5960 mc.flags = move_flags;
5961 spin_unlock(&mc.lock);
5962 /* We set mc.moving_task later */
5963
5964 ret = mem_cgroup_precharge_mc(mm);
5965 if (ret)
5966 mem_cgroup_clear_mc();
264a0ae1
TH
5967 } else {
5968 mmput(mm);
7dc74be0
DN
5969 }
5970 return ret;
5971}
5972
1f7dd3e5 5973static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5974{
4e2f245d
JW
5975 if (mc.to)
5976 mem_cgroup_clear_mc();
7dc74be0
DN
5977}
5978
4ffef5fe
DN
5979static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5980 unsigned long addr, unsigned long end,
5981 struct mm_walk *walk)
7dc74be0 5982{
4ffef5fe 5983 int ret = 0;
26bcd64a 5984 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5985 pte_t *pte;
5986 spinlock_t *ptl;
12724850
NH
5987 enum mc_target_type target_type;
5988 union mc_target target;
5989 struct page *page;
4ffef5fe 5990
b6ec57f4
KS
5991 ptl = pmd_trans_huge_lock(pmd, vma);
5992 if (ptl) {
62ade86a 5993 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5994 spin_unlock(ptl);
12724850
NH
5995 return 0;
5996 }
5997 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5998 if (target_type == MC_TARGET_PAGE) {
5999 page = target.page;
6000 if (!isolate_lru_page(page)) {
f627c2f5 6001 if (!mem_cgroup_move_account(page, true,
1306a85a 6002 mc.from, mc.to)) {
12724850
NH
6003 mc.precharge -= HPAGE_PMD_NR;
6004 mc.moved_charge += HPAGE_PMD_NR;
6005 }
6006 putback_lru_page(page);
6007 }
6008 put_page(page);
c733a828
JG
6009 } else if (target_type == MC_TARGET_DEVICE) {
6010 page = target.page;
6011 if (!mem_cgroup_move_account(page, true,
6012 mc.from, mc.to)) {
6013 mc.precharge -= HPAGE_PMD_NR;
6014 mc.moved_charge += HPAGE_PMD_NR;
6015 }
6016 put_page(page);
12724850 6017 }
bf929152 6018 spin_unlock(ptl);
1a5a9906 6019 return 0;
12724850
NH
6020 }
6021
45f83cef
AA
6022 if (pmd_trans_unstable(pmd))
6023 return 0;
4ffef5fe
DN
6024retry:
6025 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6026 for (; addr != end; addr += PAGE_SIZE) {
6027 pte_t ptent = *(pte++);
c733a828 6028 bool device = false;
02491447 6029 swp_entry_t ent;
4ffef5fe
DN
6030
6031 if (!mc.precharge)
6032 break;
6033
8d32ff84 6034 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6035 case MC_TARGET_DEVICE:
6036 device = true;
e4a9bc58 6037 fallthrough;
4ffef5fe
DN
6038 case MC_TARGET_PAGE:
6039 page = target.page;
53f9263b
KS
6040 /*
6041 * We can have a part of the split pmd here. Moving it
6042 * can be done but it would be too convoluted so simply
6043 * ignore such a partial THP and keep it in original
6044 * memcg. There should be somebody mapping the head.
6045 */
6046 if (PageTransCompound(page))
6047 goto put;
c733a828 6048 if (!device && isolate_lru_page(page))
4ffef5fe 6049 goto put;
f627c2f5
KS
6050 if (!mem_cgroup_move_account(page, false,
6051 mc.from, mc.to)) {
4ffef5fe 6052 mc.precharge--;
854ffa8d
DN
6053 /* we uncharge from mc.from later. */
6054 mc.moved_charge++;
4ffef5fe 6055 }
c733a828
JG
6056 if (!device)
6057 putback_lru_page(page);
8d32ff84 6058put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6059 put_page(page);
6060 break;
02491447
DN
6061 case MC_TARGET_SWAP:
6062 ent = target.ent;
e91cbb42 6063 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6064 mc.precharge--;
8d22a935
HD
6065 mem_cgroup_id_get_many(mc.to, 1);
6066 /* we fixup other refcnts and charges later. */
483c30b5
DN
6067 mc.moved_swap++;
6068 }
02491447 6069 break;
4ffef5fe
DN
6070 default:
6071 break;
6072 }
6073 }
6074 pte_unmap_unlock(pte - 1, ptl);
6075 cond_resched();
6076
6077 if (addr != end) {
6078 /*
6079 * We have consumed all precharges we got in can_attach().
6080 * We try charge one by one, but don't do any additional
6081 * charges to mc.to if we have failed in charge once in attach()
6082 * phase.
6083 */
854ffa8d 6084 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6085 if (!ret)
6086 goto retry;
6087 }
6088
6089 return ret;
6090}
6091
7b86ac33
CH
6092static const struct mm_walk_ops charge_walk_ops = {
6093 .pmd_entry = mem_cgroup_move_charge_pte_range,
6094};
6095
264a0ae1 6096static void mem_cgroup_move_charge(void)
4ffef5fe 6097{
4ffef5fe 6098 lru_add_drain_all();
312722cb 6099 /*
81f8c3a4
JW
6100 * Signal lock_page_memcg() to take the memcg's move_lock
6101 * while we're moving its pages to another memcg. Then wait
6102 * for already started RCU-only updates to finish.
312722cb
JW
6103 */
6104 atomic_inc(&mc.from->moving_account);
6105 synchronize_rcu();
dfe076b0 6106retry:
d8ed45c5 6107 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6108 /*
c1e8d7c6 6109 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6110 * waitq. So we cancel all extra charges, wake up all waiters,
6111 * and retry. Because we cancel precharges, we might not be able
6112 * to move enough charges, but moving charge is a best-effort
6113 * feature anyway, so it wouldn't be a big problem.
6114 */
6115 __mem_cgroup_clear_mc();
6116 cond_resched();
6117 goto retry;
6118 }
26bcd64a
NH
6119 /*
6120 * When we have consumed all precharges and failed in doing
6121 * additional charge, the page walk just aborts.
6122 */
7b86ac33
CH
6123 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6124 NULL);
0247f3f4 6125
d8ed45c5 6126 mmap_read_unlock(mc.mm);
312722cb 6127 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6128}
6129
264a0ae1 6130static void mem_cgroup_move_task(void)
67e465a7 6131{
264a0ae1
TH
6132 if (mc.to) {
6133 mem_cgroup_move_charge();
a433658c 6134 mem_cgroup_clear_mc();
264a0ae1 6135 }
67e465a7 6136}
5cfb80a7 6137#else /* !CONFIG_MMU */
1f7dd3e5 6138static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6139{
6140 return 0;
6141}
1f7dd3e5 6142static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6143{
6144}
264a0ae1 6145static void mem_cgroup_move_task(void)
5cfb80a7
DN
6146{
6147}
6148#endif
67e465a7 6149
677dc973
CD
6150static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6151{
6152 if (value == PAGE_COUNTER_MAX)
6153 seq_puts(m, "max\n");
6154 else
6155 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6156
6157 return 0;
6158}
6159
241994ed
JW
6160static u64 memory_current_read(struct cgroup_subsys_state *css,
6161 struct cftype *cft)
6162{
f5fc3c5d
JW
6163 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6164
6165 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6166}
6167
bf8d5d52
RG
6168static int memory_min_show(struct seq_file *m, void *v)
6169{
677dc973
CD
6170 return seq_puts_memcg_tunable(m,
6171 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6172}
6173
6174static ssize_t memory_min_write(struct kernfs_open_file *of,
6175 char *buf, size_t nbytes, loff_t off)
6176{
6177 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6178 unsigned long min;
6179 int err;
6180
6181 buf = strstrip(buf);
6182 err = page_counter_memparse(buf, "max", &min);
6183 if (err)
6184 return err;
6185
6186 page_counter_set_min(&memcg->memory, min);
6187
6188 return nbytes;
6189}
6190
241994ed
JW
6191static int memory_low_show(struct seq_file *m, void *v)
6192{
677dc973
CD
6193 return seq_puts_memcg_tunable(m,
6194 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6195}
6196
6197static ssize_t memory_low_write(struct kernfs_open_file *of,
6198 char *buf, size_t nbytes, loff_t off)
6199{
6200 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6201 unsigned long low;
6202 int err;
6203
6204 buf = strstrip(buf);
d2973697 6205 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6206 if (err)
6207 return err;
6208
23067153 6209 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6210
6211 return nbytes;
6212}
6213
6214static int memory_high_show(struct seq_file *m, void *v)
6215{
d1663a90
JK
6216 return seq_puts_memcg_tunable(m,
6217 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6218}
6219
6220static ssize_t memory_high_write(struct kernfs_open_file *of,
6221 char *buf, size_t nbytes, loff_t off)
6222{
6223 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6224 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6225 bool drained = false;
241994ed
JW
6226 unsigned long high;
6227 int err;
6228
6229 buf = strstrip(buf);
d2973697 6230 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6231 if (err)
6232 return err;
6233
e82553c1
JW
6234 page_counter_set_high(&memcg->memory, high);
6235
8c8c383c
JW
6236 for (;;) {
6237 unsigned long nr_pages = page_counter_read(&memcg->memory);
6238 unsigned long reclaimed;
6239
6240 if (nr_pages <= high)
6241 break;
6242
6243 if (signal_pending(current))
6244 break;
6245
6246 if (!drained) {
6247 drain_all_stock(memcg);
6248 drained = true;
6249 continue;
6250 }
6251
6252 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6253 GFP_KERNEL, true);
6254
6255 if (!reclaimed && !nr_retries--)
6256 break;
6257 }
588083bb 6258
19ce33ac 6259 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6260 return nbytes;
6261}
6262
6263static int memory_max_show(struct seq_file *m, void *v)
6264{
677dc973
CD
6265 return seq_puts_memcg_tunable(m,
6266 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6267}
6268
6269static ssize_t memory_max_write(struct kernfs_open_file *of,
6270 char *buf, size_t nbytes, loff_t off)
6271{
6272 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6273 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6274 bool drained = false;
241994ed
JW
6275 unsigned long max;
6276 int err;
6277
6278 buf = strstrip(buf);
d2973697 6279 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6280 if (err)
6281 return err;
6282
bbec2e15 6283 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6284
6285 for (;;) {
6286 unsigned long nr_pages = page_counter_read(&memcg->memory);
6287
6288 if (nr_pages <= max)
6289 break;
6290
7249c9f0 6291 if (signal_pending(current))
b6e6edcf 6292 break;
b6e6edcf
JW
6293
6294 if (!drained) {
6295 drain_all_stock(memcg);
6296 drained = true;
6297 continue;
6298 }
6299
6300 if (nr_reclaims) {
6301 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6302 GFP_KERNEL, true))
6303 nr_reclaims--;
6304 continue;
6305 }
6306
e27be240 6307 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6308 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6309 break;
6310 }
241994ed 6311
2529bb3a 6312 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6313 return nbytes;
6314}
6315
1e577f97
SB
6316static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6317{
6318 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6319 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6320 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6321 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6322 seq_printf(m, "oom_kill %lu\n",
6323 atomic_long_read(&events[MEMCG_OOM_KILL]));
6324}
6325
241994ed
JW
6326static int memory_events_show(struct seq_file *m, void *v)
6327{
aa9694bb 6328 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6329
1e577f97
SB
6330 __memory_events_show(m, memcg->memory_events);
6331 return 0;
6332}
6333
6334static int memory_events_local_show(struct seq_file *m, void *v)
6335{
6336 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6337
1e577f97 6338 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6339 return 0;
6340}
6341
587d9f72
JW
6342static int memory_stat_show(struct seq_file *m, void *v)
6343{
aa9694bb 6344 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6345 char *buf;
1ff9e6e1 6346
c8713d0b
JW
6347 buf = memory_stat_format(memcg);
6348 if (!buf)
6349 return -ENOMEM;
6350 seq_puts(m, buf);
6351 kfree(buf);
587d9f72
JW
6352 return 0;
6353}
6354
5f9a4f4a 6355#ifdef CONFIG_NUMA
fff66b79
MS
6356static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6357 int item)
6358{
6359 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6360}
6361
5f9a4f4a
MS
6362static int memory_numa_stat_show(struct seq_file *m, void *v)
6363{
6364 int i;
6365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6366
6367 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6368 int nid;
6369
6370 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6371 continue;
6372
6373 seq_printf(m, "%s", memory_stats[i].name);
6374 for_each_node_state(nid, N_MEMORY) {
6375 u64 size;
6376 struct lruvec *lruvec;
6377
6378 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6379 size = lruvec_page_state_output(lruvec,
6380 memory_stats[i].idx);
5f9a4f4a
MS
6381 seq_printf(m, " N%d=%llu", nid, size);
6382 }
6383 seq_putc(m, '\n');
6384 }
6385
6386 return 0;
6387}
6388#endif
6389
3d8b38eb
RG
6390static int memory_oom_group_show(struct seq_file *m, void *v)
6391{
aa9694bb 6392 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6393
6394 seq_printf(m, "%d\n", memcg->oom_group);
6395
6396 return 0;
6397}
6398
6399static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6400 char *buf, size_t nbytes, loff_t off)
6401{
6402 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6403 int ret, oom_group;
6404
6405 buf = strstrip(buf);
6406 if (!buf)
6407 return -EINVAL;
6408
6409 ret = kstrtoint(buf, 0, &oom_group);
6410 if (ret)
6411 return ret;
6412
6413 if (oom_group != 0 && oom_group != 1)
6414 return -EINVAL;
6415
6416 memcg->oom_group = oom_group;
6417
6418 return nbytes;
6419}
6420
241994ed
JW
6421static struct cftype memory_files[] = {
6422 {
6423 .name = "current",
f5fc3c5d 6424 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6425 .read_u64 = memory_current_read,
6426 },
bf8d5d52
RG
6427 {
6428 .name = "min",
6429 .flags = CFTYPE_NOT_ON_ROOT,
6430 .seq_show = memory_min_show,
6431 .write = memory_min_write,
6432 },
241994ed
JW
6433 {
6434 .name = "low",
6435 .flags = CFTYPE_NOT_ON_ROOT,
6436 .seq_show = memory_low_show,
6437 .write = memory_low_write,
6438 },
6439 {
6440 .name = "high",
6441 .flags = CFTYPE_NOT_ON_ROOT,
6442 .seq_show = memory_high_show,
6443 .write = memory_high_write,
6444 },
6445 {
6446 .name = "max",
6447 .flags = CFTYPE_NOT_ON_ROOT,
6448 .seq_show = memory_max_show,
6449 .write = memory_max_write,
6450 },
6451 {
6452 .name = "events",
6453 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6454 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6455 .seq_show = memory_events_show,
6456 },
1e577f97
SB
6457 {
6458 .name = "events.local",
6459 .flags = CFTYPE_NOT_ON_ROOT,
6460 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6461 .seq_show = memory_events_local_show,
6462 },
587d9f72
JW
6463 {
6464 .name = "stat",
587d9f72
JW
6465 .seq_show = memory_stat_show,
6466 },
5f9a4f4a
MS
6467#ifdef CONFIG_NUMA
6468 {
6469 .name = "numa_stat",
6470 .seq_show = memory_numa_stat_show,
6471 },
6472#endif
3d8b38eb
RG
6473 {
6474 .name = "oom.group",
6475 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6476 .seq_show = memory_oom_group_show,
6477 .write = memory_oom_group_write,
6478 },
241994ed
JW
6479 { } /* terminate */
6480};
6481
073219e9 6482struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6483 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6484 .css_online = mem_cgroup_css_online,
92fb9748 6485 .css_offline = mem_cgroup_css_offline,
6df38689 6486 .css_released = mem_cgroup_css_released,
92fb9748 6487 .css_free = mem_cgroup_css_free,
1ced953b 6488 .css_reset = mem_cgroup_css_reset,
2d146aa3 6489 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6490 .can_attach = mem_cgroup_can_attach,
6491 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6492 .post_attach = mem_cgroup_move_task,
241994ed
JW
6493 .dfl_cftypes = memory_files,
6494 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6495 .early_init = 0,
8cdea7c0 6496};
c077719b 6497
bc50bcc6
JW
6498/*
6499 * This function calculates an individual cgroup's effective
6500 * protection which is derived from its own memory.min/low, its
6501 * parent's and siblings' settings, as well as the actual memory
6502 * distribution in the tree.
6503 *
6504 * The following rules apply to the effective protection values:
6505 *
6506 * 1. At the first level of reclaim, effective protection is equal to
6507 * the declared protection in memory.min and memory.low.
6508 *
6509 * 2. To enable safe delegation of the protection configuration, at
6510 * subsequent levels the effective protection is capped to the
6511 * parent's effective protection.
6512 *
6513 * 3. To make complex and dynamic subtrees easier to configure, the
6514 * user is allowed to overcommit the declared protection at a given
6515 * level. If that is the case, the parent's effective protection is
6516 * distributed to the children in proportion to how much protection
6517 * they have declared and how much of it they are utilizing.
6518 *
6519 * This makes distribution proportional, but also work-conserving:
6520 * if one cgroup claims much more protection than it uses memory,
6521 * the unused remainder is available to its siblings.
6522 *
6523 * 4. Conversely, when the declared protection is undercommitted at a
6524 * given level, the distribution of the larger parental protection
6525 * budget is NOT proportional. A cgroup's protection from a sibling
6526 * is capped to its own memory.min/low setting.
6527 *
8a931f80
JW
6528 * 5. However, to allow protecting recursive subtrees from each other
6529 * without having to declare each individual cgroup's fixed share
6530 * of the ancestor's claim to protection, any unutilized -
6531 * "floating" - protection from up the tree is distributed in
6532 * proportion to each cgroup's *usage*. This makes the protection
6533 * neutral wrt sibling cgroups and lets them compete freely over
6534 * the shared parental protection budget, but it protects the
6535 * subtree as a whole from neighboring subtrees.
6536 *
6537 * Note that 4. and 5. are not in conflict: 4. is about protecting
6538 * against immediate siblings whereas 5. is about protecting against
6539 * neighboring subtrees.
bc50bcc6
JW
6540 */
6541static unsigned long effective_protection(unsigned long usage,
8a931f80 6542 unsigned long parent_usage,
bc50bcc6
JW
6543 unsigned long setting,
6544 unsigned long parent_effective,
6545 unsigned long siblings_protected)
6546{
6547 unsigned long protected;
8a931f80 6548 unsigned long ep;
bc50bcc6
JW
6549
6550 protected = min(usage, setting);
6551 /*
6552 * If all cgroups at this level combined claim and use more
6553 * protection then what the parent affords them, distribute
6554 * shares in proportion to utilization.
6555 *
6556 * We are using actual utilization rather than the statically
6557 * claimed protection in order to be work-conserving: claimed
6558 * but unused protection is available to siblings that would
6559 * otherwise get a smaller chunk than what they claimed.
6560 */
6561 if (siblings_protected > parent_effective)
6562 return protected * parent_effective / siblings_protected;
6563
6564 /*
6565 * Ok, utilized protection of all children is within what the
6566 * parent affords them, so we know whatever this child claims
6567 * and utilizes is effectively protected.
6568 *
6569 * If there is unprotected usage beyond this value, reclaim
6570 * will apply pressure in proportion to that amount.
6571 *
6572 * If there is unutilized protection, the cgroup will be fully
6573 * shielded from reclaim, but we do return a smaller value for
6574 * protection than what the group could enjoy in theory. This
6575 * is okay. With the overcommit distribution above, effective
6576 * protection is always dependent on how memory is actually
6577 * consumed among the siblings anyway.
6578 */
8a931f80
JW
6579 ep = protected;
6580
6581 /*
6582 * If the children aren't claiming (all of) the protection
6583 * afforded to them by the parent, distribute the remainder in
6584 * proportion to the (unprotected) memory of each cgroup. That
6585 * way, cgroups that aren't explicitly prioritized wrt each
6586 * other compete freely over the allowance, but they are
6587 * collectively protected from neighboring trees.
6588 *
6589 * We're using unprotected memory for the weight so that if
6590 * some cgroups DO claim explicit protection, we don't protect
6591 * the same bytes twice.
cd324edc
JW
6592 *
6593 * Check both usage and parent_usage against the respective
6594 * protected values. One should imply the other, but they
6595 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6596 */
6597 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6598 return ep;
cd324edc
JW
6599 if (parent_effective > siblings_protected &&
6600 parent_usage > siblings_protected &&
6601 usage > protected) {
8a931f80
JW
6602 unsigned long unclaimed;
6603
6604 unclaimed = parent_effective - siblings_protected;
6605 unclaimed *= usage - protected;
6606 unclaimed /= parent_usage - siblings_protected;
6607
6608 ep += unclaimed;
6609 }
6610
6611 return ep;
bc50bcc6
JW
6612}
6613
241994ed 6614/**
bf8d5d52 6615 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6616 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6617 * @memcg: the memory cgroup to check
6618 *
23067153
RG
6619 * WARNING: This function is not stateless! It can only be used as part
6620 * of a top-down tree iteration, not for isolated queries.
241994ed 6621 */
45c7f7e1
CD
6622void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6623 struct mem_cgroup *memcg)
241994ed 6624{
8a931f80 6625 unsigned long usage, parent_usage;
23067153
RG
6626 struct mem_cgroup *parent;
6627
241994ed 6628 if (mem_cgroup_disabled())
45c7f7e1 6629 return;
241994ed 6630
34c81057
SC
6631 if (!root)
6632 root = root_mem_cgroup;
22f7496f
YS
6633
6634 /*
6635 * Effective values of the reclaim targets are ignored so they
6636 * can be stale. Have a look at mem_cgroup_protection for more
6637 * details.
6638 * TODO: calculation should be more robust so that we do not need
6639 * that special casing.
6640 */
34c81057 6641 if (memcg == root)
45c7f7e1 6642 return;
241994ed 6643
23067153 6644 usage = page_counter_read(&memcg->memory);
bf8d5d52 6645 if (!usage)
45c7f7e1 6646 return;
bf8d5d52 6647
bf8d5d52 6648 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6649 /* No parent means a non-hierarchical mode on v1 memcg */
6650 if (!parent)
45c7f7e1 6651 return;
df2a4196 6652
bc50bcc6 6653 if (parent == root) {
c3d53200 6654 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6655 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6656 return;
bf8d5d52
RG
6657 }
6658
8a931f80
JW
6659 parent_usage = page_counter_read(&parent->memory);
6660
b3a7822e 6661 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6662 READ_ONCE(memcg->memory.min),
6663 READ_ONCE(parent->memory.emin),
b3a7822e 6664 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6665
b3a7822e 6666 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6667 READ_ONCE(memcg->memory.low),
6668 READ_ONCE(parent->memory.elow),
b3a7822e 6669 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6670}
6671
0add0c77
SB
6672static int __mem_cgroup_charge(struct page *page, struct mem_cgroup *memcg,
6673 gfp_t gfp)
6674{
6675 unsigned int nr_pages = thp_nr_pages(page);
6676 int ret;
6677
6678 ret = try_charge(memcg, gfp, nr_pages);
6679 if (ret)
6680 goto out;
6681
6682 css_get(&memcg->css);
6683 commit_charge(page, memcg);
6684
6685 local_irq_disable();
6686 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6687 memcg_check_events(memcg, page);
6688 local_irq_enable();
6689out:
6690 return ret;
6691}
6692
00501b53 6693/**
f0e45fb4 6694 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6695 * @page: page to charge
6696 * @mm: mm context of the victim
6697 * @gfp_mask: reclaim mode
00501b53
JW
6698 *
6699 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6700 * pages according to @gfp_mask if necessary.
6701 *
0add0c77
SB
6702 * Do not use this for pages allocated for swapin.
6703 *
f0e45fb4 6704 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6705 */
d9eb1ea2 6706int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6707{
0add0c77
SB
6708 struct mem_cgroup *memcg;
6709 int ret;
00501b53
JW
6710
6711 if (mem_cgroup_disabled())
0add0c77 6712 return 0;
00501b53 6713
0add0c77
SB
6714 memcg = get_mem_cgroup_from_mm(mm);
6715 ret = __mem_cgroup_charge(page, memcg, gfp_mask);
6716 css_put(&memcg->css);
2d1c4980 6717
0add0c77
SB
6718 return ret;
6719}
e993d905 6720
0add0c77
SB
6721/**
6722 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6723 * @page: page to charge
6724 * @mm: mm context of the victim
6725 * @gfp: reclaim mode
6726 * @entry: swap entry for which the page is allocated
6727 *
6728 * This function charges a page allocated for swapin. Please call this before
6729 * adding the page to the swapcache.
6730 *
6731 * Returns 0 on success. Otherwise, an error code is returned.
6732 */
6733int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6734 gfp_t gfp, swp_entry_t entry)
6735{
6736 struct mem_cgroup *memcg;
6737 unsigned short id;
6738 int ret;
00501b53 6739
0add0c77
SB
6740 if (mem_cgroup_disabled())
6741 return 0;
00501b53 6742
0add0c77
SB
6743 id = lookup_swap_cgroup_id(entry);
6744 rcu_read_lock();
6745 memcg = mem_cgroup_from_id(id);
6746 if (!memcg || !css_tryget_online(&memcg->css))
6747 memcg = get_mem_cgroup_from_mm(mm);
6748 rcu_read_unlock();
00501b53 6749
0add0c77 6750 ret = __mem_cgroup_charge(page, memcg, gfp);
6abb5a86 6751
0add0c77
SB
6752 css_put(&memcg->css);
6753 return ret;
6754}
00501b53 6755
0add0c77
SB
6756/*
6757 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6758 * @entry: swap entry for which the page is charged
6759 *
6760 * Call this function after successfully adding the charged page to swapcache.
6761 *
6762 * Note: This function assumes the page for which swap slot is being uncharged
6763 * is order 0 page.
6764 */
6765void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6766{
cae3af62
MS
6767 /*
6768 * Cgroup1's unified memory+swap counter has been charged with the
6769 * new swapcache page, finish the transfer by uncharging the swap
6770 * slot. The swap slot would also get uncharged when it dies, but
6771 * it can stick around indefinitely and we'd count the page twice
6772 * the entire time.
6773 *
6774 * Cgroup2 has separate resource counters for memory and swap,
6775 * so this is a non-issue here. Memory and swap charge lifetimes
6776 * correspond 1:1 to page and swap slot lifetimes: we charge the
6777 * page to memory here, and uncharge swap when the slot is freed.
6778 */
0add0c77 6779 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6780 /*
6781 * The swap entry might not get freed for a long time,
6782 * let's not wait for it. The page already received a
6783 * memory+swap charge, drop the swap entry duplicate.
6784 */
0add0c77 6785 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6786 }
3fea5a49
JW
6787}
6788
a9d5adee
JG
6789struct uncharge_gather {
6790 struct mem_cgroup *memcg;
9f762dbe 6791 unsigned long nr_pages;
a9d5adee 6792 unsigned long pgpgout;
a9d5adee 6793 unsigned long nr_kmem;
a9d5adee
JG
6794 struct page *dummy_page;
6795};
6796
6797static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6798{
a9d5adee
JG
6799 memset(ug, 0, sizeof(*ug));
6800}
6801
6802static void uncharge_batch(const struct uncharge_gather *ug)
6803{
747db954
JW
6804 unsigned long flags;
6805
a9d5adee 6806 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6807 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6808 if (do_memsw_account())
9f762dbe 6809 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6810 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6811 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6812 memcg_oom_recover(ug->memcg);
ce00a967 6813 }
747db954
JW
6814
6815 local_irq_save(flags);
c9019e9b 6816 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6817 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6818 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6819 local_irq_restore(flags);
f1796544
MH
6820
6821 /* drop reference from uncharge_page */
6822 css_put(&ug->memcg->css);
a9d5adee
JG
6823}
6824
6825static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6826{
9f762dbe
JW
6827 unsigned long nr_pages;
6828
a9d5adee 6829 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6830
bcfe06bf 6831 if (!page_memcg(page))
a9d5adee
JG
6832 return;
6833
6834 /*
6835 * Nobody should be changing or seriously looking at
bcfe06bf 6836 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6837 * exclusive access to the page.
6838 */
6839
bcfe06bf 6840 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6841 if (ug->memcg) {
6842 uncharge_batch(ug);
6843 uncharge_gather_clear(ug);
6844 }
bcfe06bf 6845 ug->memcg = page_memcg(page);
7ab345a8 6846 ug->dummy_page = page;
f1796544
MH
6847
6848 /* pairs with css_put in uncharge_batch */
6849 css_get(&ug->memcg->css);
a9d5adee
JG
6850 }
6851
9f762dbe
JW
6852 nr_pages = compound_nr(page);
6853 ug->nr_pages += nr_pages;
a9d5adee 6854
18b2db3b 6855 if (PageMemcgKmem(page))
9f762dbe 6856 ug->nr_kmem += nr_pages;
18b2db3b
RG
6857 else
6858 ug->pgpgout++;
a9d5adee 6859
bcfe06bf 6860 page->memcg_data = 0;
1a3e1f40 6861 css_put(&ug->memcg->css);
747db954
JW
6862}
6863
0a31bc97
JW
6864/**
6865 * mem_cgroup_uncharge - uncharge a page
6866 * @page: page to uncharge
6867 *
f0e45fb4 6868 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6869 */
6870void mem_cgroup_uncharge(struct page *page)
6871{
a9d5adee
JG
6872 struct uncharge_gather ug;
6873
0a31bc97
JW
6874 if (mem_cgroup_disabled())
6875 return;
6876
747db954 6877 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6878 if (!page_memcg(page))
0a31bc97
JW
6879 return;
6880
a9d5adee
JG
6881 uncharge_gather_clear(&ug);
6882 uncharge_page(page, &ug);
6883 uncharge_batch(&ug);
747db954 6884}
0a31bc97 6885
747db954
JW
6886/**
6887 * mem_cgroup_uncharge_list - uncharge a list of page
6888 * @page_list: list of pages to uncharge
6889 *
6890 * Uncharge a list of pages previously charged with
f0e45fb4 6891 * mem_cgroup_charge().
747db954
JW
6892 */
6893void mem_cgroup_uncharge_list(struct list_head *page_list)
6894{
c41a40b6
MS
6895 struct uncharge_gather ug;
6896 struct page *page;
6897
747db954
JW
6898 if (mem_cgroup_disabled())
6899 return;
0a31bc97 6900
c41a40b6
MS
6901 uncharge_gather_clear(&ug);
6902 list_for_each_entry(page, page_list, lru)
6903 uncharge_page(page, &ug);
6904 if (ug.memcg)
6905 uncharge_batch(&ug);
0a31bc97
JW
6906}
6907
6908/**
6a93ca8f
JW
6909 * mem_cgroup_migrate - charge a page's replacement
6910 * @oldpage: currently circulating page
6911 * @newpage: replacement page
0a31bc97 6912 *
6a93ca8f
JW
6913 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6914 * be uncharged upon free.
0a31bc97
JW
6915 *
6916 * Both pages must be locked, @newpage->mapping must be set up.
6917 */
6a93ca8f 6918void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6919{
29833315 6920 struct mem_cgroup *memcg;
44b7a8d3 6921 unsigned int nr_pages;
d93c4130 6922 unsigned long flags;
0a31bc97
JW
6923
6924 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6925 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6926 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6927 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6928 newpage);
0a31bc97
JW
6929
6930 if (mem_cgroup_disabled())
6931 return;
6932
6933 /* Page cache replacement: new page already charged? */
bcfe06bf 6934 if (page_memcg(newpage))
0a31bc97
JW
6935 return;
6936
bcfe06bf 6937 memcg = page_memcg(oldpage);
a4055888 6938 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6939 if (!memcg)
0a31bc97
JW
6940 return;
6941
44b7a8d3 6942 /* Force-charge the new page. The old one will be freed soon */
6c357848 6943 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6944
6945 page_counter_charge(&memcg->memory, nr_pages);
6946 if (do_memsw_account())
6947 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6948
1a3e1f40 6949 css_get(&memcg->css);
d9eb1ea2 6950 commit_charge(newpage, memcg);
44b7a8d3 6951
d93c4130 6952 local_irq_save(flags);
3fba69a5 6953 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6954 memcg_check_events(memcg, newpage);
d93c4130 6955 local_irq_restore(flags);
0a31bc97
JW
6956}
6957
ef12947c 6958DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6959EXPORT_SYMBOL(memcg_sockets_enabled_key);
6960
2d758073 6961void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6962{
6963 struct mem_cgroup *memcg;
6964
2d758073
JW
6965 if (!mem_cgroup_sockets_enabled)
6966 return;
6967
e876ecc6
SB
6968 /* Do not associate the sock with unrelated interrupted task's memcg. */
6969 if (in_interrupt())
6970 return;
6971
11092087
JW
6972 rcu_read_lock();
6973 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6974 if (memcg == root_mem_cgroup)
6975 goto out;
0db15298 6976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6977 goto out;
8965aa28 6978 if (css_tryget(&memcg->css))
11092087 6979 sk->sk_memcg = memcg;
f7e1cb6e 6980out:
11092087
JW
6981 rcu_read_unlock();
6982}
11092087 6983
2d758073 6984void mem_cgroup_sk_free(struct sock *sk)
11092087 6985{
2d758073
JW
6986 if (sk->sk_memcg)
6987 css_put(&sk->sk_memcg->css);
11092087
JW
6988}
6989
6990/**
6991 * mem_cgroup_charge_skmem - charge socket memory
6992 * @memcg: memcg to charge
6993 * @nr_pages: number of pages to charge
6994 *
6995 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6996 * @memcg's configured limit, %false if the charge had to be forced.
6997 */
6998bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6999{
f7e1cb6e 7000 gfp_t gfp_mask = GFP_KERNEL;
11092087 7001
f7e1cb6e 7002 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7003 struct page_counter *fail;
f7e1cb6e 7004
0db15298
JW
7005 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7006 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7007 return true;
7008 }
0db15298
JW
7009 page_counter_charge(&memcg->tcpmem, nr_pages);
7010 memcg->tcpmem_pressure = 1;
f7e1cb6e 7011 return false;
11092087 7012 }
d886f4e4 7013
f7e1cb6e
JW
7014 /* Don't block in the packet receive path */
7015 if (in_softirq())
7016 gfp_mask = GFP_NOWAIT;
7017
c9019e9b 7018 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7019
f7e1cb6e
JW
7020 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7021 return true;
7022
7023 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7024 return false;
7025}
7026
7027/**
7028 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7029 * @memcg: memcg to uncharge
7030 * @nr_pages: number of pages to uncharge
11092087
JW
7031 */
7032void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7033{
f7e1cb6e 7034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7035 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7036 return;
7037 }
d886f4e4 7038
c9019e9b 7039 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7040
475d0487 7041 refill_stock(memcg, nr_pages);
11092087
JW
7042}
7043
f7e1cb6e
JW
7044static int __init cgroup_memory(char *s)
7045{
7046 char *token;
7047
7048 while ((token = strsep(&s, ",")) != NULL) {
7049 if (!*token)
7050 continue;
7051 if (!strcmp(token, "nosocket"))
7052 cgroup_memory_nosocket = true;
04823c83
VD
7053 if (!strcmp(token, "nokmem"))
7054 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7055 }
7056 return 0;
7057}
7058__setup("cgroup.memory=", cgroup_memory);
11092087 7059
2d11085e 7060/*
1081312f
MH
7061 * subsys_initcall() for memory controller.
7062 *
308167fc
SAS
7063 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7064 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7065 * basically everything that doesn't depend on a specific mem_cgroup structure
7066 * should be initialized from here.
2d11085e
MH
7067 */
7068static int __init mem_cgroup_init(void)
7069{
95a045f6
JW
7070 int cpu, node;
7071
f3344adf
MS
7072 /*
7073 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7074 * used for per-memcg-per-cpu caching of per-node statistics. In order
7075 * to work fine, we should make sure that the overfill threshold can't
7076 * exceed S32_MAX / PAGE_SIZE.
7077 */
7078 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7079
308167fc
SAS
7080 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7081 memcg_hotplug_cpu_dead);
95a045f6
JW
7082
7083 for_each_possible_cpu(cpu)
7084 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7085 drain_local_stock);
7086
7087 for_each_node(node) {
7088 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7089
7090 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7091 node_online(node) ? node : NUMA_NO_NODE);
7092
ef8f2327 7093 rtpn->rb_root = RB_ROOT;
fa90b2fd 7094 rtpn->rb_rightmost = NULL;
ef8f2327 7095 spin_lock_init(&rtpn->lock);
95a045f6
JW
7096 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7097 }
7098
2d11085e
MH
7099 return 0;
7100}
7101subsys_initcall(mem_cgroup_init);
21afa38e
JW
7102
7103#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7104static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7105{
1c2d479a 7106 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7107 /*
7108 * The root cgroup cannot be destroyed, so it's refcount must
7109 * always be >= 1.
7110 */
7111 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7112 VM_BUG_ON(1);
7113 break;
7114 }
7115 memcg = parent_mem_cgroup(memcg);
7116 if (!memcg)
7117 memcg = root_mem_cgroup;
7118 }
7119 return memcg;
7120}
7121
21afa38e
JW
7122/**
7123 * mem_cgroup_swapout - transfer a memsw charge to swap
7124 * @page: page whose memsw charge to transfer
7125 * @entry: swap entry to move the charge to
7126 *
7127 * Transfer the memsw charge of @page to @entry.
7128 */
7129void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7130{
1f47b61f 7131 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7132 unsigned int nr_entries;
21afa38e
JW
7133 unsigned short oldid;
7134
7135 VM_BUG_ON_PAGE(PageLRU(page), page);
7136 VM_BUG_ON_PAGE(page_count(page), page);
7137
76358ab5
AS
7138 if (mem_cgroup_disabled())
7139 return;
7140
2d1c4980 7141 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7142 return;
7143
bcfe06bf 7144 memcg = page_memcg(page);
21afa38e 7145
a4055888 7146 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7147 if (!memcg)
7148 return;
7149
1f47b61f
VD
7150 /*
7151 * In case the memcg owning these pages has been offlined and doesn't
7152 * have an ID allocated to it anymore, charge the closest online
7153 * ancestor for the swap instead and transfer the memory+swap charge.
7154 */
7155 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7156 nr_entries = thp_nr_pages(page);
d6810d73
HY
7157 /* Get references for the tail pages, too */
7158 if (nr_entries > 1)
7159 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7160 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7161 nr_entries);
21afa38e 7162 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7163 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7164
bcfe06bf 7165 page->memcg_data = 0;
21afa38e
JW
7166
7167 if (!mem_cgroup_is_root(memcg))
d6810d73 7168 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7169
2d1c4980 7170 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7171 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7172 page_counter_charge(&swap_memcg->memsw, nr_entries);
7173 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7174 }
7175
ce9ce665
SAS
7176 /*
7177 * Interrupts should be disabled here because the caller holds the
b93b0163 7178 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7179 * important here to have the interrupts disabled because it is the
b93b0163 7180 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7181 */
7182 VM_BUG_ON(!irqs_disabled());
3fba69a5 7183 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7184 memcg_check_events(memcg, page);
73f576c0 7185
1a3e1f40 7186 css_put(&memcg->css);
21afa38e
JW
7187}
7188
38d8b4e6
HY
7189/**
7190 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7191 * @page: page being added to swap
7192 * @entry: swap entry to charge
7193 *
38d8b4e6 7194 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7195 *
7196 * Returns 0 on success, -ENOMEM on failure.
7197 */
7198int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7199{
6c357848 7200 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7201 struct page_counter *counter;
38d8b4e6 7202 struct mem_cgroup *memcg;
37e84351
VD
7203 unsigned short oldid;
7204
76358ab5
AS
7205 if (mem_cgroup_disabled())
7206 return 0;
7207
2d1c4980 7208 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7209 return 0;
7210
bcfe06bf 7211 memcg = page_memcg(page);
37e84351 7212
a4055888 7213 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7214 if (!memcg)
7215 return 0;
7216
f3a53a3a
TH
7217 if (!entry.val) {
7218 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7219 return 0;
f3a53a3a 7220 }
bb98f2c5 7221
1f47b61f
VD
7222 memcg = mem_cgroup_id_get_online(memcg);
7223
2d1c4980 7224 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7225 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7226 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7227 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7228 mem_cgroup_id_put(memcg);
37e84351 7229 return -ENOMEM;
1f47b61f 7230 }
37e84351 7231
38d8b4e6
HY
7232 /* Get references for the tail pages, too */
7233 if (nr_pages > 1)
7234 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7235 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7236 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7237 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7238
37e84351
VD
7239 return 0;
7240}
7241
21afa38e 7242/**
38d8b4e6 7243 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7244 * @entry: swap entry to uncharge
38d8b4e6 7245 * @nr_pages: the amount of swap space to uncharge
21afa38e 7246 */
38d8b4e6 7247void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7248{
7249 struct mem_cgroup *memcg;
7250 unsigned short id;
7251
38d8b4e6 7252 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7253 rcu_read_lock();
adbe427b 7254 memcg = mem_cgroup_from_id(id);
21afa38e 7255 if (memcg) {
2d1c4980 7256 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7258 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7259 else
38d8b4e6 7260 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7261 }
c9019e9b 7262 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7263 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7264 }
7265 rcu_read_unlock();
7266}
7267
d8b38438
VD
7268long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7269{
7270 long nr_swap_pages = get_nr_swap_pages();
7271
eccb52e7 7272 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7273 return nr_swap_pages;
7274 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7275 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7276 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7277 page_counter_read(&memcg->swap));
7278 return nr_swap_pages;
7279}
7280
5ccc5aba
VD
7281bool mem_cgroup_swap_full(struct page *page)
7282{
7283 struct mem_cgroup *memcg;
7284
7285 VM_BUG_ON_PAGE(!PageLocked(page), page);
7286
7287 if (vm_swap_full())
7288 return true;
eccb52e7 7289 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7290 return false;
7291
bcfe06bf 7292 memcg = page_memcg(page);
5ccc5aba
VD
7293 if (!memcg)
7294 return false;
7295
4b82ab4f
JK
7296 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7297 unsigned long usage = page_counter_read(&memcg->swap);
7298
7299 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7300 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7301 return true;
4b82ab4f 7302 }
5ccc5aba
VD
7303
7304 return false;
7305}
7306
eccb52e7 7307static int __init setup_swap_account(char *s)
21afa38e
JW
7308{
7309 if (!strcmp(s, "1"))
5ab92901 7310 cgroup_memory_noswap = false;
21afa38e 7311 else if (!strcmp(s, "0"))
5ab92901 7312 cgroup_memory_noswap = true;
21afa38e
JW
7313 return 1;
7314}
eccb52e7 7315__setup("swapaccount=", setup_swap_account);
21afa38e 7316
37e84351
VD
7317static u64 swap_current_read(struct cgroup_subsys_state *css,
7318 struct cftype *cft)
7319{
7320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7321
7322 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7323}
7324
4b82ab4f
JK
7325static int swap_high_show(struct seq_file *m, void *v)
7326{
7327 return seq_puts_memcg_tunable(m,
7328 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7329}
7330
7331static ssize_t swap_high_write(struct kernfs_open_file *of,
7332 char *buf, size_t nbytes, loff_t off)
7333{
7334 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7335 unsigned long high;
7336 int err;
7337
7338 buf = strstrip(buf);
7339 err = page_counter_memparse(buf, "max", &high);
7340 if (err)
7341 return err;
7342
7343 page_counter_set_high(&memcg->swap, high);
7344
7345 return nbytes;
7346}
7347
37e84351
VD
7348static int swap_max_show(struct seq_file *m, void *v)
7349{
677dc973
CD
7350 return seq_puts_memcg_tunable(m,
7351 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7352}
7353
7354static ssize_t swap_max_write(struct kernfs_open_file *of,
7355 char *buf, size_t nbytes, loff_t off)
7356{
7357 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7358 unsigned long max;
7359 int err;
7360
7361 buf = strstrip(buf);
7362 err = page_counter_memparse(buf, "max", &max);
7363 if (err)
7364 return err;
7365
be09102b 7366 xchg(&memcg->swap.max, max);
37e84351
VD
7367
7368 return nbytes;
7369}
7370
f3a53a3a
TH
7371static int swap_events_show(struct seq_file *m, void *v)
7372{
aa9694bb 7373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7374
4b82ab4f
JK
7375 seq_printf(m, "high %lu\n",
7376 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7377 seq_printf(m, "max %lu\n",
7378 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7379 seq_printf(m, "fail %lu\n",
7380 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7381
7382 return 0;
7383}
7384
37e84351
VD
7385static struct cftype swap_files[] = {
7386 {
7387 .name = "swap.current",
7388 .flags = CFTYPE_NOT_ON_ROOT,
7389 .read_u64 = swap_current_read,
7390 },
4b82ab4f
JK
7391 {
7392 .name = "swap.high",
7393 .flags = CFTYPE_NOT_ON_ROOT,
7394 .seq_show = swap_high_show,
7395 .write = swap_high_write,
7396 },
37e84351
VD
7397 {
7398 .name = "swap.max",
7399 .flags = CFTYPE_NOT_ON_ROOT,
7400 .seq_show = swap_max_show,
7401 .write = swap_max_write,
7402 },
f3a53a3a
TH
7403 {
7404 .name = "swap.events",
7405 .flags = CFTYPE_NOT_ON_ROOT,
7406 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7407 .seq_show = swap_events_show,
7408 },
37e84351
VD
7409 { } /* terminate */
7410};
7411
eccb52e7 7412static struct cftype memsw_files[] = {
21afa38e
JW
7413 {
7414 .name = "memsw.usage_in_bytes",
7415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7416 .read_u64 = mem_cgroup_read_u64,
7417 },
7418 {
7419 .name = "memsw.max_usage_in_bytes",
7420 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7421 .write = mem_cgroup_reset,
7422 .read_u64 = mem_cgroup_read_u64,
7423 },
7424 {
7425 .name = "memsw.limit_in_bytes",
7426 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7427 .write = mem_cgroup_write,
7428 .read_u64 = mem_cgroup_read_u64,
7429 },
7430 {
7431 .name = "memsw.failcnt",
7432 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7433 .write = mem_cgroup_reset,
7434 .read_u64 = mem_cgroup_read_u64,
7435 },
7436 { }, /* terminate */
7437};
7438
82ff165c
BS
7439/*
7440 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7441 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7442 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7443 * boot parameter. This may result in premature OOPS inside
7444 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7445 */
21afa38e
JW
7446static int __init mem_cgroup_swap_init(void)
7447{
2d1c4980
JW
7448 /* No memory control -> no swap control */
7449 if (mem_cgroup_disabled())
7450 cgroup_memory_noswap = true;
7451
7452 if (cgroup_memory_noswap)
eccb52e7
JW
7453 return 0;
7454
7455 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7456 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7457
21afa38e
JW
7458 return 0;
7459}
82ff165c 7460core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7461
7462#endif /* CONFIG_MEMCG_SWAP */