]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
memcg: switch lruvec stats to rstat
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
e267992f 87bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
a0db00fc
KS
106#define THRESHOLDS_EVENTS_TARGET 128
107#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 108
bb4cc1a8
AM
109/*
110 * Cgroups above their limits are maintained in a RB-Tree, independent of
111 * their hierarchy representation
112 */
113
ef8f2327 114struct mem_cgroup_tree_per_node {
bb4cc1a8 115 struct rb_root rb_root;
fa90b2fd 116 struct rb_node *rb_rightmost;
bb4cc1a8
AM
117 spinlock_t lock;
118};
119
bb4cc1a8
AM
120struct mem_cgroup_tree {
121 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
122};
123
124static struct mem_cgroup_tree soft_limit_tree __read_mostly;
125
9490ff27
KH
126/* for OOM */
127struct mem_cgroup_eventfd_list {
128 struct list_head list;
129 struct eventfd_ctx *eventfd;
130};
2e72b634 131
79bd9814
TH
132/*
133 * cgroup_event represents events which userspace want to receive.
134 */
3bc942f3 135struct mem_cgroup_event {
79bd9814 136 /*
59b6f873 137 * memcg which the event belongs to.
79bd9814 138 */
59b6f873 139 struct mem_cgroup *memcg;
79bd9814
TH
140 /*
141 * eventfd to signal userspace about the event.
142 */
143 struct eventfd_ctx *eventfd;
144 /*
145 * Each of these stored in a list by the cgroup.
146 */
147 struct list_head list;
fba94807
TH
148 /*
149 * register_event() callback will be used to add new userspace
150 * waiter for changes related to this event. Use eventfd_signal()
151 * on eventfd to send notification to userspace.
152 */
59b6f873 153 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 154 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
155 /*
156 * unregister_event() callback will be called when userspace closes
157 * the eventfd or on cgroup removing. This callback must be set,
158 * if you want provide notification functionality.
159 */
59b6f873 160 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 161 struct eventfd_ctx *eventfd);
79bd9814
TH
162 /*
163 * All fields below needed to unregister event when
164 * userspace closes eventfd.
165 */
166 poll_table pt;
167 wait_queue_head_t *wqh;
ac6424b9 168 wait_queue_entry_t wait;
79bd9814
TH
169 struct work_struct remove;
170};
171
c0ff4b85
R
172static void mem_cgroup_threshold(struct mem_cgroup *memcg);
173static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 174
7dc74be0
DN
175/* Stuffs for move charges at task migration. */
176/*
1dfab5ab 177 * Types of charges to be moved.
7dc74be0 178 */
1dfab5ab
JW
179#define MOVE_ANON 0x1U
180#define MOVE_FILE 0x2U
181#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 182
4ffef5fe
DN
183/* "mc" and its members are protected by cgroup_mutex */
184static struct move_charge_struct {
b1dd693e 185 spinlock_t lock; /* for from, to */
264a0ae1 186 struct mm_struct *mm;
4ffef5fe
DN
187 struct mem_cgroup *from;
188 struct mem_cgroup *to;
1dfab5ab 189 unsigned long flags;
4ffef5fe 190 unsigned long precharge;
854ffa8d 191 unsigned long moved_charge;
483c30b5 192 unsigned long moved_swap;
8033b97c
DN
193 struct task_struct *moving_task; /* a task moving charges */
194 wait_queue_head_t waitq; /* a waitq for other context */
195} mc = {
2bd9bb20 196 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
197 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
198};
4ffef5fe 199
4e416953
BS
200/*
201 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
202 * limit reclaim to prevent infinite loops, if they ever occur.
203 */
a0db00fc 204#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 205#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 206
8c7c6e34 207/* for encoding cft->private value on file */
86ae53e1
GC
208enum res_type {
209 _MEM,
210 _MEMSWAP,
211 _OOM_TYPE,
510fc4e1 212 _KMEM,
d55f90bf 213 _TCP,
86ae53e1
GC
214};
215
a0db00fc
KS
216#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
217#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 218#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 219/* Used for OOM notifier */
9490ff27 220#define OOM_CONTROL (0)
8c7c6e34 221
b05706f1
KT
222/*
223 * Iteration constructs for visiting all cgroups (under a tree). If
224 * loops are exited prematurely (break), mem_cgroup_iter_break() must
225 * be used for reference counting.
226 */
227#define for_each_mem_cgroup_tree(iter, root) \
228 for (iter = mem_cgroup_iter(root, NULL, NULL); \
229 iter != NULL; \
230 iter = mem_cgroup_iter(root, iter, NULL))
231
232#define for_each_mem_cgroup(iter) \
233 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(NULL, iter, NULL))
236
7775face
TH
237static inline bool should_force_charge(void)
238{
239 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
240 (current->flags & PF_EXITING);
241}
242
70ddf637
AV
243/* Some nice accessors for the vmpressure. */
244struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
245{
246 if (!memcg)
247 memcg = root_mem_cgroup;
248 return &memcg->vmpressure;
249}
250
251struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
252{
253 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
254}
255
84c07d11 256#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
257extern spinlock_t css_set_lock;
258
4d5c8aed
RG
259bool mem_cgroup_kmem_disabled(void)
260{
261 return cgroup_memory_nokmem;
262}
263
f1286fae
MS
264static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
265 unsigned int nr_pages);
c1a660de 266
bf4f0599
RG
267static void obj_cgroup_release(struct percpu_ref *ref)
268{
269 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
270 unsigned int nr_bytes;
271 unsigned int nr_pages;
272 unsigned long flags;
273
274 /*
275 * At this point all allocated objects are freed, and
276 * objcg->nr_charged_bytes can't have an arbitrary byte value.
277 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
278 *
279 * The following sequence can lead to it:
280 * 1) CPU0: objcg == stock->cached_objcg
281 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
282 * PAGE_SIZE bytes are charged
283 * 3) CPU1: a process from another memcg is allocating something,
284 * the stock if flushed,
285 * objcg->nr_charged_bytes = PAGE_SIZE - 92
286 * 5) CPU0: we do release this object,
287 * 92 bytes are added to stock->nr_bytes
288 * 6) CPU0: stock is flushed,
289 * 92 bytes are added to objcg->nr_charged_bytes
290 *
291 * In the result, nr_charged_bytes == PAGE_SIZE.
292 * This page will be uncharged in obj_cgroup_release().
293 */
294 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
295 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
296 nr_pages = nr_bytes >> PAGE_SHIFT;
297
bf4f0599 298 if (nr_pages)
f1286fae 299 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
300
301 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 302 list_del(&objcg->list);
bf4f0599
RG
303 spin_unlock_irqrestore(&css_set_lock, flags);
304
305 percpu_ref_exit(ref);
306 kfree_rcu(objcg, rcu);
307}
308
309static struct obj_cgroup *obj_cgroup_alloc(void)
310{
311 struct obj_cgroup *objcg;
312 int ret;
313
314 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
315 if (!objcg)
316 return NULL;
317
318 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
319 GFP_KERNEL);
320 if (ret) {
321 kfree(objcg);
322 return NULL;
323 }
324 INIT_LIST_HEAD(&objcg->list);
325 return objcg;
326}
327
328static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
329 struct mem_cgroup *parent)
330{
331 struct obj_cgroup *objcg, *iter;
332
333 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
334
335 spin_lock_irq(&css_set_lock);
336
9838354e
MS
337 /* 1) Ready to reparent active objcg. */
338 list_add(&objcg->list, &memcg->objcg_list);
339 /* 2) Reparent active objcg and already reparented objcgs to parent. */
340 list_for_each_entry(iter, &memcg->objcg_list, list)
341 WRITE_ONCE(iter->memcg, parent);
342 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348}
349
55007d84 350/*
9855609b 351 * This will be used as a shrinker list's index.
b8627835
LZ
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
55007d84 357 *
dbcf73e2
VD
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
55007d84 360 */
dbcf73e2
VD
361static DEFINE_IDA(memcg_cache_ida);
362int memcg_nr_cache_ids;
749c5415 363
05257a1a
VD
364/* Protects memcg_nr_cache_ids */
365static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367void memcg_get_cache_ids(void)
368{
369 down_read(&memcg_cache_ids_sem);
370}
371
372void memcg_put_cache_ids(void)
373{
374 up_read(&memcg_cache_ids_sem);
375}
376
55007d84
GC
377/*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
b8627835 383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
387 * increase ours as well if it increases.
388 */
389#define MEMCG_CACHES_MIN_SIZE 4
b8627835 390#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 391
d7f25f8a
GC
392/*
393 * A lot of the calls to the cache allocation functions are expected to be
272911a4 394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
ef12947c 398DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 399EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 400#endif
17cc4dfe 401
ad7fa852
TH
402/**
403 * mem_cgroup_css_from_page - css of the memcg associated with a page
404 * @page: page of interest
405 *
406 * If memcg is bound to the default hierarchy, css of the memcg associated
407 * with @page is returned. The returned css remains associated with @page
408 * until it is released.
409 *
410 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
411 * is returned.
ad7fa852
TH
412 */
413struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
414{
415 struct mem_cgroup *memcg;
416
bcfe06bf 417 memcg = page_memcg(page);
ad7fa852 418
9e10a130 419 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
420 memcg = root_mem_cgroup;
421
ad7fa852
TH
422 return &memcg->css;
423}
424
2fc04524
VD
425/**
426 * page_cgroup_ino - return inode number of the memcg a page is charged to
427 * @page: the page
428 *
429 * Look up the closest online ancestor of the memory cgroup @page is charged to
430 * and return its inode number or 0 if @page is not charged to any cgroup. It
431 * is safe to call this function without holding a reference to @page.
432 *
433 * Note, this function is inherently racy, because there is nothing to prevent
434 * the cgroup inode from getting torn down and potentially reallocated a moment
435 * after page_cgroup_ino() returns, so it only should be used by callers that
436 * do not care (such as procfs interfaces).
437 */
438ino_t page_cgroup_ino(struct page *page)
439{
440 struct mem_cgroup *memcg;
441 unsigned long ino = 0;
442
443 rcu_read_lock();
bcfe06bf 444 memcg = page_memcg_check(page);
286e04b8 445
2fc04524
VD
446 while (memcg && !(memcg->css.flags & CSS_ONLINE))
447 memcg = parent_mem_cgroup(memcg);
448 if (memcg)
449 ino = cgroup_ino(memcg->css.cgroup);
450 rcu_read_unlock();
451 return ino;
452}
453
ef8f2327
MG
454static struct mem_cgroup_per_node *
455mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 456{
97a6c37b 457 int nid = page_to_nid(page);
f64c3f54 458
ef8f2327 459 return memcg->nodeinfo[nid];
f64c3f54
BS
460}
461
ef8f2327
MG
462static struct mem_cgroup_tree_per_node *
463soft_limit_tree_node(int nid)
bb4cc1a8 464{
ef8f2327 465 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
466}
467
ef8f2327 468static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
469soft_limit_tree_from_page(struct page *page)
470{
471 int nid = page_to_nid(page);
bb4cc1a8 472
ef8f2327 473 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
474}
475
ef8f2327
MG
476static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
477 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 478 unsigned long new_usage_in_excess)
bb4cc1a8
AM
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
ef8f2327 482 struct mem_cgroup_per_node *mz_node;
fa90b2fd 483 bool rightmost = true;
bb4cc1a8
AM
484
485 if (mz->on_tree)
486 return;
487
488 mz->usage_in_excess = new_usage_in_excess;
489 if (!mz->usage_in_excess)
490 return;
491 while (*p) {
492 parent = *p;
ef8f2327 493 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 494 tree_node);
fa90b2fd 495 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 496 p = &(*p)->rb_left;
fa90b2fd 497 rightmost = false;
378876b0 498 } else {
bb4cc1a8 499 p = &(*p)->rb_right;
378876b0 500 }
bb4cc1a8 501 }
fa90b2fd
DB
502
503 if (rightmost)
504 mctz->rb_rightmost = &mz->tree_node;
505
bb4cc1a8
AM
506 rb_link_node(&mz->tree_node, parent, p);
507 rb_insert_color(&mz->tree_node, &mctz->rb_root);
508 mz->on_tree = true;
509}
510
ef8f2327
MG
511static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
513{
514 if (!mz->on_tree)
515 return;
fa90b2fd
DB
516
517 if (&mz->tree_node == mctz->rb_rightmost)
518 mctz->rb_rightmost = rb_prev(&mz->tree_node);
519
bb4cc1a8
AM
520 rb_erase(&mz->tree_node, &mctz->rb_root);
521 mz->on_tree = false;
522}
523
ef8f2327
MG
524static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
525 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 526{
0a31bc97
JW
527 unsigned long flags;
528
529 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 530 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 531 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
532}
533
3e32cb2e
JW
534static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
535{
536 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 537 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
538 unsigned long excess = 0;
539
540 if (nr_pages > soft_limit)
541 excess = nr_pages - soft_limit;
542
543 return excess;
544}
bb4cc1a8
AM
545
546static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
547{
3e32cb2e 548 unsigned long excess;
ef8f2327
MG
549 struct mem_cgroup_per_node *mz;
550 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 551
e231875b 552 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
553 if (!mctz)
554 return;
bb4cc1a8
AM
555 /*
556 * Necessary to update all ancestors when hierarchy is used.
557 * because their event counter is not touched.
558 */
559 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 560 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 561 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
562 /*
563 * We have to update the tree if mz is on RB-tree or
564 * mem is over its softlimit.
565 */
566 if (excess || mz->on_tree) {
0a31bc97
JW
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
570 /* if on-tree, remove it */
571 if (mz->on_tree)
cf2c8127 572 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
573 /*
574 * Insert again. mz->usage_in_excess will be updated.
575 * If excess is 0, no tree ops.
576 */
cf2c8127 577 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 578 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
579 }
580 }
581}
582
583static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
584{
ef8f2327
MG
585 struct mem_cgroup_tree_per_node *mctz;
586 struct mem_cgroup_per_node *mz;
587 int nid;
bb4cc1a8 588
e231875b 589 for_each_node(nid) {
a3747b53 590 mz = memcg->nodeinfo[nid];
ef8f2327 591 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
592 if (mctz)
593 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
594 }
595}
596
ef8f2327
MG
597static struct mem_cgroup_per_node *
598__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 599{
ef8f2327 600 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
601
602retry:
603 mz = NULL;
fa90b2fd 604 if (!mctz->rb_rightmost)
bb4cc1a8
AM
605 goto done; /* Nothing to reclaim from */
606
fa90b2fd
DB
607 mz = rb_entry(mctz->rb_rightmost,
608 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
609 /*
610 * Remove the node now but someone else can add it back,
611 * we will to add it back at the end of reclaim to its correct
612 * position in the tree.
613 */
cf2c8127 614 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 615 if (!soft_limit_excess(mz->memcg) ||
8965aa28 616 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
617 goto retry;
618done:
619 return mz;
620}
621
ef8f2327
MG
622static struct mem_cgroup_per_node *
623mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 624{
ef8f2327 625 struct mem_cgroup_per_node *mz;
bb4cc1a8 626
0a31bc97 627 spin_lock_irq(&mctz->lock);
bb4cc1a8 628 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 629 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
630 return mz;
631}
632
db9adbcb
JW
633/**
634 * __mod_memcg_state - update cgroup memory statistics
635 * @memcg: the memory cgroup
636 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
637 * @val: delta to add to the counter, can be negative
638 */
639void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
640{
db9adbcb
JW
641 if (mem_cgroup_disabled())
642 return;
643
2d146aa3
JW
644 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
645 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
646}
647
2d146aa3 648/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
649static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
650{
651 long x = 0;
652 int cpu;
653
654 for_each_possible_cpu(cpu)
2d146aa3 655 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
656#ifdef CONFIG_SMP
657 if (x < 0)
658 x = 0;
659#endif
660 return x;
661}
662
eedc4e5a
RG
663void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
664 int val)
db9adbcb
JW
665{
666 struct mem_cgroup_per_node *pn;
42a30035 667 struct mem_cgroup *memcg;
db9adbcb 668
db9adbcb 669 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 670 memcg = pn->memcg;
db9adbcb
JW
671
672 /* Update memcg */
42a30035 673 __mod_memcg_state(memcg, idx, val);
db9adbcb 674
b4c46484 675 /* Update lruvec */
7e1c0d6f 676 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
db9adbcb
JW
677}
678
eedc4e5a
RG
679/**
680 * __mod_lruvec_state - update lruvec memory statistics
681 * @lruvec: the lruvec
682 * @idx: the stat item
683 * @val: delta to add to the counter, can be negative
684 *
685 * The lruvec is the intersection of the NUMA node and a cgroup. This
686 * function updates the all three counters that are affected by a
687 * change of state at this level: per-node, per-cgroup, per-lruvec.
688 */
689void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
690 int val)
691{
692 /* Update node */
693 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
694
695 /* Update memcg and lruvec */
696 if (!mem_cgroup_disabled())
697 __mod_memcg_lruvec_state(lruvec, idx, val);
698}
699
c47d5032
SB
700void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
701 int val)
702{
703 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 704 struct mem_cgroup *memcg;
c47d5032
SB
705 pg_data_t *pgdat = page_pgdat(page);
706 struct lruvec *lruvec;
707
b4e0b68f
MS
708 rcu_read_lock();
709 memcg = page_memcg(head);
c47d5032 710 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 711 if (!memcg) {
b4e0b68f 712 rcu_read_unlock();
c47d5032
SB
713 __mod_node_page_state(pgdat, idx, val);
714 return;
715 }
716
d635a69d 717 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 718 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 719 rcu_read_unlock();
c47d5032 720}
f0c0c115 721EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 722
da3ceeff 723void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 724{
4f103c63 725 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
726 struct mem_cgroup *memcg;
727 struct lruvec *lruvec;
728
729 rcu_read_lock();
4f103c63 730 memcg = mem_cgroup_from_obj(p);
ec9f0238 731
8faeb1ff
MS
732 /*
733 * Untracked pages have no memcg, no lruvec. Update only the
734 * node. If we reparent the slab objects to the root memcg,
735 * when we free the slab object, we need to update the per-memcg
736 * vmstats to keep it correct for the root memcg.
737 */
738 if (!memcg) {
ec9f0238
RG
739 __mod_node_page_state(pgdat, idx, val);
740 } else {
867e5e1d 741 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
742 __mod_lruvec_state(lruvec, idx, val);
743 }
744 rcu_read_unlock();
745}
746
55927114
WL
747/*
748 * mod_objcg_mlstate() may be called with irq enabled, so
749 * mod_memcg_lruvec_state() should be used.
750 */
68ac5b3c
WL
751static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
752 struct pglist_data *pgdat,
753 enum node_stat_item idx, int nr)
fdbcb2a6
WL
754{
755 struct mem_cgroup *memcg;
756 struct lruvec *lruvec;
757
758 rcu_read_lock();
759 memcg = obj_cgroup_memcg(objcg);
760 lruvec = mem_cgroup_lruvec(memcg, pgdat);
55927114 761 mod_memcg_lruvec_state(lruvec, idx, nr);
fdbcb2a6
WL
762 rcu_read_unlock();
763}
764
db9adbcb
JW
765/**
766 * __count_memcg_events - account VM events in a cgroup
767 * @memcg: the memory cgroup
768 * @idx: the event item
f0953a1b 769 * @count: the number of events that occurred
db9adbcb
JW
770 */
771void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
772 unsigned long count)
773{
db9adbcb
JW
774 if (mem_cgroup_disabled())
775 return;
776
2d146aa3
JW
777 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
778 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
779}
780
42a30035 781static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 782{
2d146aa3 783 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
784}
785
42a30035
JW
786static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
787{
815744d7
JW
788 long x = 0;
789 int cpu;
790
791 for_each_possible_cpu(cpu)
2d146aa3 792 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 793 return x;
42a30035
JW
794}
795
c0ff4b85 796static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 797 struct page *page,
3fba69a5 798 int nr_pages)
d52aa412 799{
e401f176
KH
800 /* pagein of a big page is an event. So, ignore page size */
801 if (nr_pages > 0)
c9019e9b 802 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 803 else {
c9019e9b 804 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
805 nr_pages = -nr_pages; /* for event */
806 }
e401f176 807
871789d4 808 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
809}
810
f53d7ce3
JW
811static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
812 enum mem_cgroup_events_target target)
7a159cc9
JW
813{
814 unsigned long val, next;
815
871789d4
CD
816 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
817 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 818 /* from time_after() in jiffies.h */
6a1a8b80 819 if ((long)(next - val) < 0) {
f53d7ce3
JW
820 switch (target) {
821 case MEM_CGROUP_TARGET_THRESH:
822 next = val + THRESHOLDS_EVENTS_TARGET;
823 break;
bb4cc1a8
AM
824 case MEM_CGROUP_TARGET_SOFTLIMIT:
825 next = val + SOFTLIMIT_EVENTS_TARGET;
826 break;
f53d7ce3
JW
827 default:
828 break;
829 }
871789d4 830 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 831 return true;
7a159cc9 832 }
f53d7ce3 833 return false;
d2265e6f
KH
834}
835
836/*
837 * Check events in order.
838 *
839 */
c0ff4b85 840static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
841{
842 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
843 if (unlikely(mem_cgroup_event_ratelimit(memcg,
844 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 845 bool do_softlimit;
f53d7ce3 846
bb4cc1a8
AM
847 do_softlimit = mem_cgroup_event_ratelimit(memcg,
848 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 849 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
850 if (unlikely(do_softlimit))
851 mem_cgroup_update_tree(memcg, page);
0a31bc97 852 }
d2265e6f
KH
853}
854
cf475ad2 855struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 856{
31a78f23
BS
857 /*
858 * mm_update_next_owner() may clear mm->owner to NULL
859 * if it races with swapoff, page migration, etc.
860 * So this can be called with p == NULL.
861 */
862 if (unlikely(!p))
863 return NULL;
864
073219e9 865 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 866}
33398cf2 867EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 868
04f94e3f
DS
869static __always_inline struct mem_cgroup *active_memcg(void)
870{
871 if (in_interrupt())
872 return this_cpu_read(int_active_memcg);
873 else
874 return current->active_memcg;
875}
876
d46eb14b
SB
877/**
878 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
879 * @mm: mm from which memcg should be extracted. It can be NULL.
880 *
04f94e3f
DS
881 * Obtain a reference on mm->memcg and returns it if successful. If mm
882 * is NULL, then the memcg is chosen as follows:
883 * 1) The active memcg, if set.
884 * 2) current->mm->memcg, if available
885 * 3) root memcg
886 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
887 */
888struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 889{
d46eb14b
SB
890 struct mem_cgroup *memcg;
891
892 if (mem_cgroup_disabled())
893 return NULL;
0b7f569e 894
2884b6b7
MS
895 /*
896 * Page cache insertions can happen without an
897 * actual mm context, e.g. during disk probing
898 * on boot, loopback IO, acct() writes etc.
899 *
900 * No need to css_get on root memcg as the reference
901 * counting is disabled on the root level in the
902 * cgroup core. See CSS_NO_REF.
903 */
04f94e3f
DS
904 if (unlikely(!mm)) {
905 memcg = active_memcg();
906 if (unlikely(memcg)) {
907 /* remote memcg must hold a ref */
908 css_get(&memcg->css);
909 return memcg;
910 }
911 mm = current->mm;
912 if (unlikely(!mm))
913 return root_mem_cgroup;
914 }
2884b6b7 915
54595fe2
KH
916 rcu_read_lock();
917 do {
2884b6b7
MS
918 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
919 if (unlikely(!memcg))
df381975 920 memcg = root_mem_cgroup;
00d484f3 921 } while (!css_tryget(&memcg->css));
54595fe2 922 rcu_read_unlock();
c0ff4b85 923 return memcg;
54595fe2 924}
d46eb14b
SB
925EXPORT_SYMBOL(get_mem_cgroup_from_mm);
926
4127c650
RG
927static __always_inline bool memcg_kmem_bypass(void)
928{
929 /* Allow remote memcg charging from any context. */
930 if (unlikely(active_memcg()))
931 return false;
932
933 /* Memcg to charge can't be determined. */
934 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
935 return true;
936
937 return false;
938}
939
5660048c
JW
940/**
941 * mem_cgroup_iter - iterate over memory cgroup hierarchy
942 * @root: hierarchy root
943 * @prev: previously returned memcg, NULL on first invocation
944 * @reclaim: cookie for shared reclaim walks, NULL for full walks
945 *
946 * Returns references to children of the hierarchy below @root, or
947 * @root itself, or %NULL after a full round-trip.
948 *
949 * Caller must pass the return value in @prev on subsequent
950 * invocations for reference counting, or use mem_cgroup_iter_break()
951 * to cancel a hierarchy walk before the round-trip is complete.
952 *
05bdc520
ML
953 * Reclaimers can specify a node in @reclaim to divide up the memcgs
954 * in the hierarchy among all concurrent reclaimers operating on the
955 * same node.
5660048c 956 */
694fbc0f 957struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 958 struct mem_cgroup *prev,
694fbc0f 959 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 960{
3f649ab7 961 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 962 struct cgroup_subsys_state *css = NULL;
9f3a0d09 963 struct mem_cgroup *memcg = NULL;
5ac8fb31 964 struct mem_cgroup *pos = NULL;
711d3d2c 965
694fbc0f
AM
966 if (mem_cgroup_disabled())
967 return NULL;
5660048c 968
9f3a0d09
JW
969 if (!root)
970 root = root_mem_cgroup;
7d74b06f 971
9f3a0d09 972 if (prev && !reclaim)
5ac8fb31 973 pos = prev;
14067bb3 974
542f85f9 975 rcu_read_lock();
5f578161 976
5ac8fb31 977 if (reclaim) {
ef8f2327 978 struct mem_cgroup_per_node *mz;
5ac8fb31 979
a3747b53 980 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 981 iter = &mz->iter;
5ac8fb31
JW
982
983 if (prev && reclaim->generation != iter->generation)
984 goto out_unlock;
985
6df38689 986 while (1) {
4db0c3c2 987 pos = READ_ONCE(iter->position);
6df38689
VD
988 if (!pos || css_tryget(&pos->css))
989 break;
5ac8fb31 990 /*
6df38689
VD
991 * css reference reached zero, so iter->position will
992 * be cleared by ->css_released. However, we should not
993 * rely on this happening soon, because ->css_released
994 * is called from a work queue, and by busy-waiting we
995 * might block it. So we clear iter->position right
996 * away.
5ac8fb31 997 */
6df38689
VD
998 (void)cmpxchg(&iter->position, pos, NULL);
999 }
5ac8fb31
JW
1000 }
1001
1002 if (pos)
1003 css = &pos->css;
1004
1005 for (;;) {
1006 css = css_next_descendant_pre(css, &root->css);
1007 if (!css) {
1008 /*
1009 * Reclaimers share the hierarchy walk, and a
1010 * new one might jump in right at the end of
1011 * the hierarchy - make sure they see at least
1012 * one group and restart from the beginning.
1013 */
1014 if (!prev)
1015 continue;
1016 break;
527a5ec9 1017 }
7d74b06f 1018
5ac8fb31
JW
1019 /*
1020 * Verify the css and acquire a reference. The root
1021 * is provided by the caller, so we know it's alive
1022 * and kicking, and don't take an extra reference.
1023 */
1024 memcg = mem_cgroup_from_css(css);
14067bb3 1025
5ac8fb31
JW
1026 if (css == &root->css)
1027 break;
14067bb3 1028
0b8f73e1
JW
1029 if (css_tryget(css))
1030 break;
9f3a0d09 1031
5ac8fb31 1032 memcg = NULL;
9f3a0d09 1033 }
5ac8fb31
JW
1034
1035 if (reclaim) {
5ac8fb31 1036 /*
6df38689
VD
1037 * The position could have already been updated by a competing
1038 * thread, so check that the value hasn't changed since we read
1039 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1040 */
6df38689
VD
1041 (void)cmpxchg(&iter->position, pos, memcg);
1042
5ac8fb31
JW
1043 if (pos)
1044 css_put(&pos->css);
1045
1046 if (!memcg)
1047 iter->generation++;
1048 else if (!prev)
1049 reclaim->generation = iter->generation;
9f3a0d09 1050 }
5ac8fb31 1051
542f85f9
MH
1052out_unlock:
1053 rcu_read_unlock();
c40046f3
MH
1054 if (prev && prev != root)
1055 css_put(&prev->css);
1056
9f3a0d09 1057 return memcg;
14067bb3 1058}
7d74b06f 1059
5660048c
JW
1060/**
1061 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1062 * @root: hierarchy root
1063 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1064 */
1065void mem_cgroup_iter_break(struct mem_cgroup *root,
1066 struct mem_cgroup *prev)
9f3a0d09
JW
1067{
1068 if (!root)
1069 root = root_mem_cgroup;
1070 if (prev && prev != root)
1071 css_put(&prev->css);
1072}
7d74b06f 1073
54a83d6b
MC
1074static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1075 struct mem_cgroup *dead_memcg)
6df38689 1076{
6df38689 1077 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1078 struct mem_cgroup_per_node *mz;
1079 int nid;
6df38689 1080
54a83d6b 1081 for_each_node(nid) {
a3747b53 1082 mz = from->nodeinfo[nid];
9da83f3f
YS
1083 iter = &mz->iter;
1084 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1085 }
1086}
1087
54a83d6b
MC
1088static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1089{
1090 struct mem_cgroup *memcg = dead_memcg;
1091 struct mem_cgroup *last;
1092
1093 do {
1094 __invalidate_reclaim_iterators(memcg, dead_memcg);
1095 last = memcg;
1096 } while ((memcg = parent_mem_cgroup(memcg)));
1097
1098 /*
1099 * When cgruop1 non-hierarchy mode is used,
1100 * parent_mem_cgroup() does not walk all the way up to the
1101 * cgroup root (root_mem_cgroup). So we have to handle
1102 * dead_memcg from cgroup root separately.
1103 */
1104 if (last != root_mem_cgroup)
1105 __invalidate_reclaim_iterators(root_mem_cgroup,
1106 dead_memcg);
1107}
1108
7c5f64f8
VD
1109/**
1110 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1111 * @memcg: hierarchy root
1112 * @fn: function to call for each task
1113 * @arg: argument passed to @fn
1114 *
1115 * This function iterates over tasks attached to @memcg or to any of its
1116 * descendants and calls @fn for each task. If @fn returns a non-zero
1117 * value, the function breaks the iteration loop and returns the value.
1118 * Otherwise, it will iterate over all tasks and return 0.
1119 *
1120 * This function must not be called for the root memory cgroup.
1121 */
1122int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1123 int (*fn)(struct task_struct *, void *), void *arg)
1124{
1125 struct mem_cgroup *iter;
1126 int ret = 0;
1127
1128 BUG_ON(memcg == root_mem_cgroup);
1129
1130 for_each_mem_cgroup_tree(iter, memcg) {
1131 struct css_task_iter it;
1132 struct task_struct *task;
1133
f168a9a5 1134 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1135 while (!ret && (task = css_task_iter_next(&it)))
1136 ret = fn(task, arg);
1137 css_task_iter_end(&it);
1138 if (ret) {
1139 mem_cgroup_iter_break(memcg, iter);
1140 break;
1141 }
1142 }
1143 return ret;
1144}
1145
6168d0da
AS
1146#ifdef CONFIG_DEBUG_VM
1147void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1148{
1149 struct mem_cgroup *memcg;
1150
1151 if (mem_cgroup_disabled())
1152 return;
1153
1154 memcg = page_memcg(page);
1155
1156 if (!memcg)
1157 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1158 else
1159 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1160}
1161#endif
1162
6168d0da
AS
1163/**
1164 * lock_page_lruvec - lock and return lruvec for a given page.
1165 * @page: the page
1166 *
d7e3aba5
AS
1167 * These functions are safe to use under any of the following conditions:
1168 * - page locked
1169 * - PageLRU cleared
1170 * - lock_page_memcg()
1171 * - page->_refcount is zero
6168d0da
AS
1172 */
1173struct lruvec *lock_page_lruvec(struct page *page)
1174{
1175 struct lruvec *lruvec;
6168d0da 1176
a984226f 1177 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1178 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1179
1180 lruvec_memcg_debug(lruvec, page);
1181
1182 return lruvec;
1183}
1184
1185struct lruvec *lock_page_lruvec_irq(struct page *page)
1186{
1187 struct lruvec *lruvec;
6168d0da 1188
a984226f 1189 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1190 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1191
1192 lruvec_memcg_debug(lruvec, page);
1193
1194 return lruvec;
1195}
1196
1197struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1198{
1199 struct lruvec *lruvec;
6168d0da 1200
a984226f 1201 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1202 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1203
1204 lruvec_memcg_debug(lruvec, page);
1205
1206 return lruvec;
1207}
1208
925b7673 1209/**
fa9add64
HD
1210 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1211 * @lruvec: mem_cgroup per zone lru vector
1212 * @lru: index of lru list the page is sitting on
b4536f0c 1213 * @zid: zone id of the accounted pages
fa9add64 1214 * @nr_pages: positive when adding or negative when removing
925b7673 1215 *
ca707239
HD
1216 * This function must be called under lru_lock, just before a page is added
1217 * to or just after a page is removed from an lru list (that ordering being
1218 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1219 */
fa9add64 1220void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1221 int zid, int nr_pages)
3f58a829 1222{
ef8f2327 1223 struct mem_cgroup_per_node *mz;
fa9add64 1224 unsigned long *lru_size;
ca707239 1225 long size;
3f58a829
MK
1226
1227 if (mem_cgroup_disabled())
1228 return;
1229
ef8f2327 1230 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1231 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1232
1233 if (nr_pages < 0)
1234 *lru_size += nr_pages;
1235
1236 size = *lru_size;
b4536f0c
MH
1237 if (WARN_ONCE(size < 0,
1238 "%s(%p, %d, %d): lru_size %ld\n",
1239 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1240 VM_BUG_ON(1);
1241 *lru_size = 0;
1242 }
1243
1244 if (nr_pages > 0)
1245 *lru_size += nr_pages;
08e552c6 1246}
544122e5 1247
19942822 1248/**
9d11ea9f 1249 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1250 * @memcg: the memory cgroup
19942822 1251 *
9d11ea9f 1252 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1253 * pages.
19942822 1254 */
c0ff4b85 1255static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1256{
3e32cb2e
JW
1257 unsigned long margin = 0;
1258 unsigned long count;
1259 unsigned long limit;
9d11ea9f 1260
3e32cb2e 1261 count = page_counter_read(&memcg->memory);
bbec2e15 1262 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1263 if (count < limit)
1264 margin = limit - count;
1265
7941d214 1266 if (do_memsw_account()) {
3e32cb2e 1267 count = page_counter_read(&memcg->memsw);
bbec2e15 1268 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1269 if (count < limit)
3e32cb2e 1270 margin = min(margin, limit - count);
cbedbac3
LR
1271 else
1272 margin = 0;
3e32cb2e
JW
1273 }
1274
1275 return margin;
19942822
JW
1276}
1277
32047e2a 1278/*
bdcbb659 1279 * A routine for checking "mem" is under move_account() or not.
32047e2a 1280 *
bdcbb659
QH
1281 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1282 * moving cgroups. This is for waiting at high-memory pressure
1283 * caused by "move".
32047e2a 1284 */
c0ff4b85 1285static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1286{
2bd9bb20
KH
1287 struct mem_cgroup *from;
1288 struct mem_cgroup *to;
4b534334 1289 bool ret = false;
2bd9bb20
KH
1290 /*
1291 * Unlike task_move routines, we access mc.to, mc.from not under
1292 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1293 */
1294 spin_lock(&mc.lock);
1295 from = mc.from;
1296 to = mc.to;
1297 if (!from)
1298 goto unlock;
3e92041d 1299
2314b42d
JW
1300 ret = mem_cgroup_is_descendant(from, memcg) ||
1301 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1302unlock:
1303 spin_unlock(&mc.lock);
4b534334
KH
1304 return ret;
1305}
1306
c0ff4b85 1307static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1308{
1309 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1310 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1311 DEFINE_WAIT(wait);
1312 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1313 /* moving charge context might have finished. */
1314 if (mc.moving_task)
1315 schedule();
1316 finish_wait(&mc.waitq, &wait);
1317 return true;
1318 }
1319 }
1320 return false;
1321}
1322
5f9a4f4a
MS
1323struct memory_stat {
1324 const char *name;
5f9a4f4a
MS
1325 unsigned int idx;
1326};
1327
57b2847d 1328static const struct memory_stat memory_stats[] = {
fff66b79
MS
1329 { "anon", NR_ANON_MAPPED },
1330 { "file", NR_FILE_PAGES },
1331 { "kernel_stack", NR_KERNEL_STACK_KB },
1332 { "pagetables", NR_PAGETABLE },
1333 { "percpu", MEMCG_PERCPU_B },
1334 { "sock", MEMCG_SOCK },
1335 { "shmem", NR_SHMEM },
1336 { "file_mapped", NR_FILE_MAPPED },
1337 { "file_dirty", NR_FILE_DIRTY },
1338 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1339#ifdef CONFIG_SWAP
1340 { "swapcached", NR_SWAPCACHE },
1341#endif
5f9a4f4a 1342#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1343 { "anon_thp", NR_ANON_THPS },
1344 { "file_thp", NR_FILE_THPS },
1345 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1346#endif
fff66b79
MS
1347 { "inactive_anon", NR_INACTIVE_ANON },
1348 { "active_anon", NR_ACTIVE_ANON },
1349 { "inactive_file", NR_INACTIVE_FILE },
1350 { "active_file", NR_ACTIVE_FILE },
1351 { "unevictable", NR_UNEVICTABLE },
1352 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1353 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1354
1355 /* The memory events */
fff66b79
MS
1356 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1357 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1358 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1359 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1360 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1361 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1362 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1363};
1364
fff66b79
MS
1365/* Translate stat items to the correct unit for memory.stat output */
1366static int memcg_page_state_unit(int item)
1367{
1368 switch (item) {
1369 case MEMCG_PERCPU_B:
1370 case NR_SLAB_RECLAIMABLE_B:
1371 case NR_SLAB_UNRECLAIMABLE_B:
1372 case WORKINGSET_REFAULT_ANON:
1373 case WORKINGSET_REFAULT_FILE:
1374 case WORKINGSET_ACTIVATE_ANON:
1375 case WORKINGSET_ACTIVATE_FILE:
1376 case WORKINGSET_RESTORE_ANON:
1377 case WORKINGSET_RESTORE_FILE:
1378 case WORKINGSET_NODERECLAIM:
1379 return 1;
1380 case NR_KERNEL_STACK_KB:
1381 return SZ_1K;
1382 default:
1383 return PAGE_SIZE;
1384 }
1385}
1386
1387static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1388 int item)
1389{
1390 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1391}
1392
c8713d0b
JW
1393static char *memory_stat_format(struct mem_cgroup *memcg)
1394{
1395 struct seq_buf s;
1396 int i;
71cd3113 1397
c8713d0b
JW
1398 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1399 if (!s.buffer)
1400 return NULL;
1401
1402 /*
1403 * Provide statistics on the state of the memory subsystem as
1404 * well as cumulative event counters that show past behavior.
1405 *
1406 * This list is ordered following a combination of these gradients:
1407 * 1) generic big picture -> specifics and details
1408 * 2) reflecting userspace activity -> reflecting kernel heuristics
1409 *
1410 * Current memory state:
1411 */
2d146aa3 1412 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1413
5f9a4f4a
MS
1414 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1415 u64 size;
c8713d0b 1416
fff66b79 1417 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1418 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1419
5f9a4f4a 1420 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1421 size += memcg_page_state_output(memcg,
1422 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1423 seq_buf_printf(&s, "slab %llu\n", size);
1424 }
1425 }
c8713d0b
JW
1426
1427 /* Accumulated memory events */
1428
ebc5d83d
KK
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1430 memcg_events(memcg, PGFAULT));
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1432 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1434 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1435 seq_buf_printf(&s, "pgscan %lu\n",
1436 memcg_events(memcg, PGSCAN_KSWAPD) +
1437 memcg_events(memcg, PGSCAN_DIRECT));
1438 seq_buf_printf(&s, "pgsteal %lu\n",
1439 memcg_events(memcg, PGSTEAL_KSWAPD) +
1440 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1442 memcg_events(memcg, PGACTIVATE));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1444 memcg_events(memcg, PGDEACTIVATE));
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1446 memcg_events(memcg, PGLAZYFREE));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1448 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1449
1450#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1452 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1454 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1455#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1456
1457 /* The above should easily fit into one page */
1458 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1459
1460 return s.buffer;
1461}
71cd3113 1462
58cf188e 1463#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1464/**
f0c867d9 1465 * mem_cgroup_print_oom_context: Print OOM information relevant to
1466 * memory controller.
e222432b
BS
1467 * @memcg: The memory cgroup that went over limit
1468 * @p: Task that is going to be killed
1469 *
1470 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1471 * enabled
1472 */
f0c867d9 1473void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1474{
e222432b
BS
1475 rcu_read_lock();
1476
f0c867d9 1477 if (memcg) {
1478 pr_cont(",oom_memcg=");
1479 pr_cont_cgroup_path(memcg->css.cgroup);
1480 } else
1481 pr_cont(",global_oom");
2415b9f5 1482 if (p) {
f0c867d9 1483 pr_cont(",task_memcg=");
2415b9f5 1484 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1485 }
e222432b 1486 rcu_read_unlock();
f0c867d9 1487}
1488
1489/**
1490 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1491 * memory controller.
1492 * @memcg: The memory cgroup that went over limit
1493 */
1494void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1495{
c8713d0b 1496 char *buf;
e222432b 1497
3e32cb2e
JW
1498 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1499 K((u64)page_counter_read(&memcg->memory)),
15b42562 1500 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1501 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1502 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1503 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1504 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1505 else {
1506 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->memsw)),
1508 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1509 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1510 K((u64)page_counter_read(&memcg->kmem)),
1511 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1512 }
c8713d0b
JW
1513
1514 pr_info("Memory cgroup stats for ");
1515 pr_cont_cgroup_path(memcg->css.cgroup);
1516 pr_cont(":");
1517 buf = memory_stat_format(memcg);
1518 if (!buf)
1519 return;
1520 pr_info("%s", buf);
1521 kfree(buf);
e222432b
BS
1522}
1523
a63d83f4
DR
1524/*
1525 * Return the memory (and swap, if configured) limit for a memcg.
1526 */
bbec2e15 1527unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1528{
8d387a5f
WL
1529 unsigned long max = READ_ONCE(memcg->memory.max);
1530
1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1532 if (mem_cgroup_swappiness(memcg))
1533 max += min(READ_ONCE(memcg->swap.max),
1534 (unsigned long)total_swap_pages);
1535 } else { /* v1 */
1536 if (mem_cgroup_swappiness(memcg)) {
1537 /* Calculate swap excess capacity from memsw limit */
1538 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1539
1540 max += min(swap, (unsigned long)total_swap_pages);
1541 }
9a5a8f19 1542 }
bbec2e15 1543 return max;
a63d83f4
DR
1544}
1545
9783aa99
CD
1546unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1547{
1548 return page_counter_read(&memcg->memory);
1549}
1550
b6e6edcf 1551static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1552 int order)
9cbb78bb 1553{
6e0fc46d
DR
1554 struct oom_control oc = {
1555 .zonelist = NULL,
1556 .nodemask = NULL,
2a966b77 1557 .memcg = memcg,
6e0fc46d
DR
1558 .gfp_mask = gfp_mask,
1559 .order = order,
6e0fc46d 1560 };
1378b37d 1561 bool ret = true;
9cbb78bb 1562
7775face
TH
1563 if (mutex_lock_killable(&oom_lock))
1564 return true;
1378b37d
YS
1565
1566 if (mem_cgroup_margin(memcg) >= (1 << order))
1567 goto unlock;
1568
7775face
TH
1569 /*
1570 * A few threads which were not waiting at mutex_lock_killable() can
1571 * fail to bail out. Therefore, check again after holding oom_lock.
1572 */
1573 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1574
1575unlock:
dc56401f 1576 mutex_unlock(&oom_lock);
7c5f64f8 1577 return ret;
9cbb78bb
DR
1578}
1579
0608f43d 1580static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1581 pg_data_t *pgdat,
0608f43d
AM
1582 gfp_t gfp_mask,
1583 unsigned long *total_scanned)
1584{
1585 struct mem_cgroup *victim = NULL;
1586 int total = 0;
1587 int loop = 0;
1588 unsigned long excess;
1589 unsigned long nr_scanned;
1590 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1591 .pgdat = pgdat,
0608f43d
AM
1592 };
1593
3e32cb2e 1594 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1595
1596 while (1) {
1597 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1598 if (!victim) {
1599 loop++;
1600 if (loop >= 2) {
1601 /*
1602 * If we have not been able to reclaim
1603 * anything, it might because there are
1604 * no reclaimable pages under this hierarchy
1605 */
1606 if (!total)
1607 break;
1608 /*
1609 * We want to do more targeted reclaim.
1610 * excess >> 2 is not to excessive so as to
1611 * reclaim too much, nor too less that we keep
1612 * coming back to reclaim from this cgroup
1613 */
1614 if (total >= (excess >> 2) ||
1615 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1616 break;
1617 }
1618 continue;
1619 }
a9dd0a83 1620 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1621 pgdat, &nr_scanned);
0608f43d 1622 *total_scanned += nr_scanned;
3e32cb2e 1623 if (!soft_limit_excess(root_memcg))
0608f43d 1624 break;
6d61ef40 1625 }
0608f43d
AM
1626 mem_cgroup_iter_break(root_memcg, victim);
1627 return total;
6d61ef40
BS
1628}
1629
0056f4e6
JW
1630#ifdef CONFIG_LOCKDEP
1631static struct lockdep_map memcg_oom_lock_dep_map = {
1632 .name = "memcg_oom_lock",
1633};
1634#endif
1635
fb2a6fc5
JW
1636static DEFINE_SPINLOCK(memcg_oom_lock);
1637
867578cb
KH
1638/*
1639 * Check OOM-Killer is already running under our hierarchy.
1640 * If someone is running, return false.
1641 */
fb2a6fc5 1642static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1643{
79dfdacc 1644 struct mem_cgroup *iter, *failed = NULL;
a636b327 1645
fb2a6fc5
JW
1646 spin_lock(&memcg_oom_lock);
1647
9f3a0d09 1648 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1649 if (iter->oom_lock) {
79dfdacc
MH
1650 /*
1651 * this subtree of our hierarchy is already locked
1652 * so we cannot give a lock.
1653 */
79dfdacc 1654 failed = iter;
9f3a0d09
JW
1655 mem_cgroup_iter_break(memcg, iter);
1656 break;
23751be0
JW
1657 } else
1658 iter->oom_lock = true;
7d74b06f 1659 }
867578cb 1660
fb2a6fc5
JW
1661 if (failed) {
1662 /*
1663 * OK, we failed to lock the whole subtree so we have
1664 * to clean up what we set up to the failing subtree
1665 */
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 if (iter == failed) {
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1670 }
1671 iter->oom_lock = false;
79dfdacc 1672 }
0056f4e6
JW
1673 } else
1674 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1675
1676 spin_unlock(&memcg_oom_lock);
1677
1678 return !failed;
a636b327 1679}
0b7f569e 1680
fb2a6fc5 1681static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1682{
7d74b06f
KH
1683 struct mem_cgroup *iter;
1684
fb2a6fc5 1685 spin_lock(&memcg_oom_lock);
5facae4f 1686 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1687 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1688 iter->oom_lock = false;
fb2a6fc5 1689 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1690}
1691
c0ff4b85 1692static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1693{
1694 struct mem_cgroup *iter;
1695
c2b42d3c 1696 spin_lock(&memcg_oom_lock);
c0ff4b85 1697 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1698 iter->under_oom++;
1699 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1700}
1701
c0ff4b85 1702static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1703{
1704 struct mem_cgroup *iter;
1705
867578cb 1706 /*
f0953a1b 1707 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1708 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1709 */
c2b42d3c 1710 spin_lock(&memcg_oom_lock);
c0ff4b85 1711 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1712 if (iter->under_oom > 0)
1713 iter->under_oom--;
1714 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1715}
1716
867578cb
KH
1717static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1718
dc98df5a 1719struct oom_wait_info {
d79154bb 1720 struct mem_cgroup *memcg;
ac6424b9 1721 wait_queue_entry_t wait;
dc98df5a
KH
1722};
1723
ac6424b9 1724static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1725 unsigned mode, int sync, void *arg)
1726{
d79154bb
HD
1727 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1728 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1729 struct oom_wait_info *oom_wait_info;
1730
1731 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1732 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1733
2314b42d
JW
1734 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1735 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1736 return 0;
dc98df5a
KH
1737 return autoremove_wake_function(wait, mode, sync, arg);
1738}
1739
c0ff4b85 1740static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1741{
c2b42d3c
TH
1742 /*
1743 * For the following lockless ->under_oom test, the only required
1744 * guarantee is that it must see the state asserted by an OOM when
1745 * this function is called as a result of userland actions
1746 * triggered by the notification of the OOM. This is trivially
1747 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 * triggering notification.
1749 */
1750 if (memcg && memcg->under_oom)
f4b90b70 1751 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1752}
1753
29ef680a
MH
1754enum oom_status {
1755 OOM_SUCCESS,
1756 OOM_FAILED,
1757 OOM_ASYNC,
1758 OOM_SKIPPED
1759};
1760
1761static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1762{
7056d3a3
MH
1763 enum oom_status ret;
1764 bool locked;
1765
29ef680a
MH
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 return OOM_SKIPPED;
1768
7a1adfdd
RG
1769 memcg_memory_event(memcg, MEMCG_OOM);
1770
867578cb 1771 /*
49426420
JW
1772 * We are in the middle of the charge context here, so we
1773 * don't want to block when potentially sitting on a callstack
1774 * that holds all kinds of filesystem and mm locks.
1775 *
29ef680a
MH
1776 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 * handling until the charge can succeed; remember the context and put
1778 * the task to sleep at the end of the page fault when all locks are
1779 * released.
49426420 1780 *
29ef680a
MH
1781 * On the other hand, in-kernel OOM killer allows for an async victim
1782 * memory reclaim (oom_reaper) and that means that we are not solely
1783 * relying on the oom victim to make a forward progress and we can
1784 * invoke the oom killer here.
1785 *
1786 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 * victim and then we have to bail out from the charge path.
867578cb 1788 */
29ef680a
MH
1789 if (memcg->oom_kill_disable) {
1790 if (!current->in_user_fault)
1791 return OOM_SKIPPED;
1792 css_get(&memcg->css);
1793 current->memcg_in_oom = memcg;
1794 current->memcg_oom_gfp_mask = mask;
1795 current->memcg_oom_order = order;
1796
1797 return OOM_ASYNC;
1798 }
1799
7056d3a3
MH
1800 mem_cgroup_mark_under_oom(memcg);
1801
1802 locked = mem_cgroup_oom_trylock(memcg);
1803
1804 if (locked)
1805 mem_cgroup_oom_notify(memcg);
1806
1807 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1808 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1809 ret = OOM_SUCCESS;
1810 else
1811 ret = OOM_FAILED;
1812
1813 if (locked)
1814 mem_cgroup_oom_unlock(memcg);
29ef680a 1815
7056d3a3 1816 return ret;
3812c8c8
JW
1817}
1818
1819/**
1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1821 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1822 *
49426420
JW
1823 * This has to be called at the end of a page fault if the memcg OOM
1824 * handler was enabled.
3812c8c8 1825 *
49426420 1826 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1827 * sleep on a waitqueue until the userspace task resolves the
1828 * situation. Sleeping directly in the charge context with all kinds
1829 * of locks held is not a good idea, instead we remember an OOM state
1830 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1831 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1832 *
1833 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1834 * completed, %false otherwise.
3812c8c8 1835 */
49426420 1836bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1837{
626ebc41 1838 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1839 struct oom_wait_info owait;
49426420 1840 bool locked;
3812c8c8
JW
1841
1842 /* OOM is global, do not handle */
3812c8c8 1843 if (!memcg)
49426420 1844 return false;
3812c8c8 1845
7c5f64f8 1846 if (!handle)
49426420 1847 goto cleanup;
3812c8c8
JW
1848
1849 owait.memcg = memcg;
1850 owait.wait.flags = 0;
1851 owait.wait.func = memcg_oom_wake_function;
1852 owait.wait.private = current;
2055da97 1853 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1854
3812c8c8 1855 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1856 mem_cgroup_mark_under_oom(memcg);
1857
1858 locked = mem_cgroup_oom_trylock(memcg);
1859
1860 if (locked)
1861 mem_cgroup_oom_notify(memcg);
1862
1863 if (locked && !memcg->oom_kill_disable) {
1864 mem_cgroup_unmark_under_oom(memcg);
1865 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1866 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1867 current->memcg_oom_order);
49426420 1868 } else {
3812c8c8 1869 schedule();
49426420
JW
1870 mem_cgroup_unmark_under_oom(memcg);
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1872 }
1873
1874 if (locked) {
fb2a6fc5
JW
1875 mem_cgroup_oom_unlock(memcg);
1876 /*
1877 * There is no guarantee that an OOM-lock contender
1878 * sees the wakeups triggered by the OOM kill
f0953a1b 1879 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1880 */
1881 memcg_oom_recover(memcg);
1882 }
49426420 1883cleanup:
626ebc41 1884 current->memcg_in_oom = NULL;
3812c8c8 1885 css_put(&memcg->css);
867578cb 1886 return true;
0b7f569e
KH
1887}
1888
3d8b38eb
RG
1889/**
1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891 * @victim: task to be killed by the OOM killer
1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1893 *
1894 * Returns a pointer to a memory cgroup, which has to be cleaned up
1895 * by killing all belonging OOM-killable tasks.
1896 *
1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1898 */
1899struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1900 struct mem_cgroup *oom_domain)
1901{
1902 struct mem_cgroup *oom_group = NULL;
1903 struct mem_cgroup *memcg;
1904
1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 return NULL;
1907
1908 if (!oom_domain)
1909 oom_domain = root_mem_cgroup;
1910
1911 rcu_read_lock();
1912
1913 memcg = mem_cgroup_from_task(victim);
1914 if (memcg == root_mem_cgroup)
1915 goto out;
1916
48fe267c
RG
1917 /*
1918 * If the victim task has been asynchronously moved to a different
1919 * memory cgroup, we might end up killing tasks outside oom_domain.
1920 * In this case it's better to ignore memory.group.oom.
1921 */
1922 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1923 goto out;
1924
3d8b38eb
RG
1925 /*
1926 * Traverse the memory cgroup hierarchy from the victim task's
1927 * cgroup up to the OOMing cgroup (or root) to find the
1928 * highest-level memory cgroup with oom.group set.
1929 */
1930 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1931 if (memcg->oom_group)
1932 oom_group = memcg;
1933
1934 if (memcg == oom_domain)
1935 break;
1936 }
1937
1938 if (oom_group)
1939 css_get(&oom_group->css);
1940out:
1941 rcu_read_unlock();
1942
1943 return oom_group;
1944}
1945
1946void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1947{
1948 pr_info("Tasks in ");
1949 pr_cont_cgroup_path(memcg->css.cgroup);
1950 pr_cont(" are going to be killed due to memory.oom.group set\n");
1951}
1952
d7365e78 1953/**
bcfe06bf 1954 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 1955 * @page: the page
32047e2a 1956 *
81f8c3a4 1957 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1958 * another cgroup.
1959 *
1c824a68
JW
1960 * It ensures lifetime of the locked memcg. Caller is responsible
1961 * for the lifetime of the page.
d69b042f 1962 */
1c824a68 1963void lock_page_memcg(struct page *page)
89c06bd5 1964{
9da7b521 1965 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1966 struct mem_cgroup *memcg;
6de22619 1967 unsigned long flags;
89c06bd5 1968
6de22619
JW
1969 /*
1970 * The RCU lock is held throughout the transaction. The fast
1971 * path can get away without acquiring the memcg->move_lock
1972 * because page moving starts with an RCU grace period.
739f79fc 1973 */
d7365e78
JW
1974 rcu_read_lock();
1975
1976 if (mem_cgroup_disabled())
1c824a68 1977 return;
89c06bd5 1978again:
bcfe06bf 1979 memcg = page_memcg(head);
29833315 1980 if (unlikely(!memcg))
1c824a68 1981 return;
d7365e78 1982
20ad50d6
AS
1983#ifdef CONFIG_PROVE_LOCKING
1984 local_irq_save(flags);
1985 might_lock(&memcg->move_lock);
1986 local_irq_restore(flags);
1987#endif
1988
bdcbb659 1989 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 1990 return;
89c06bd5 1991
6de22619 1992 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 1993 if (memcg != page_memcg(head)) {
6de22619 1994 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1995 goto again;
1996 }
6de22619
JW
1997
1998 /*
1c824a68
JW
1999 * When charge migration first begins, we can have multiple
2000 * critical sections holding the fast-path RCU lock and one
2001 * holding the slowpath move_lock. Track the task who has the
2002 * move_lock for unlock_page_memcg().
6de22619
JW
2003 */
2004 memcg->move_lock_task = current;
2005 memcg->move_lock_flags = flags;
89c06bd5 2006}
81f8c3a4 2007EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2008
1c824a68 2009static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2010{
6de22619
JW
2011 if (memcg && memcg->move_lock_task == current) {
2012 unsigned long flags = memcg->move_lock_flags;
2013
2014 memcg->move_lock_task = NULL;
2015 memcg->move_lock_flags = 0;
2016
2017 spin_unlock_irqrestore(&memcg->move_lock, flags);
2018 }
89c06bd5 2019
d7365e78 2020 rcu_read_unlock();
89c06bd5 2021}
739f79fc
JW
2022
2023/**
bcfe06bf 2024 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2025 * @page: the page
2026 */
2027void unlock_page_memcg(struct page *page)
2028{
9da7b521
JW
2029 struct page *head = compound_head(page);
2030
bcfe06bf 2031 __unlock_page_memcg(page_memcg(head));
739f79fc 2032}
81f8c3a4 2033EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2034
55927114 2035struct obj_stock {
bf4f0599
RG
2036#ifdef CONFIG_MEMCG_KMEM
2037 struct obj_cgroup *cached_objcg;
68ac5b3c 2038 struct pglist_data *cached_pgdat;
bf4f0599 2039 unsigned int nr_bytes;
68ac5b3c
WL
2040 int nr_slab_reclaimable_b;
2041 int nr_slab_unreclaimable_b;
55927114
WL
2042#else
2043 int dummy[0];
bf4f0599 2044#endif
55927114
WL
2045};
2046
2047struct memcg_stock_pcp {
2048 struct mem_cgroup *cached; /* this never be root cgroup */
2049 unsigned int nr_pages;
2050 struct obj_stock task_obj;
2051 struct obj_stock irq_obj;
bf4f0599 2052
cdec2e42 2053 struct work_struct work;
26fe6168 2054 unsigned long flags;
a0db00fc 2055#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2056};
2057static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2058static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2059
bf4f0599 2060#ifdef CONFIG_MEMCG_KMEM
55927114 2061static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2062static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2063 struct mem_cgroup *root_memcg);
2064
2065#else
55927114 2066static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2067{
2068}
2069static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2070 struct mem_cgroup *root_memcg)
2071{
2072 return false;
2073}
2074#endif
2075
55927114
WL
2076/*
2077 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2078 * sequence used in this case to access content from object stock is slow.
2079 * To optimize for user context access, there are now two object stocks for
2080 * task context and interrupt context access respectively.
2081 *
2082 * The task context object stock can be accessed by disabling preemption only
2083 * which is cheap in non-preempt kernel. The interrupt context object stock
2084 * can only be accessed after disabling interrupt. User context code can
2085 * access interrupt object stock, but not vice versa.
2086 */
2087static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2088{
2089 struct memcg_stock_pcp *stock;
2090
2091 if (likely(in_task())) {
2092 *pflags = 0UL;
2093 preempt_disable();
2094 stock = this_cpu_ptr(&memcg_stock);
2095 return &stock->task_obj;
2096 }
2097
2098 local_irq_save(*pflags);
2099 stock = this_cpu_ptr(&memcg_stock);
2100 return &stock->irq_obj;
2101}
2102
2103static inline void put_obj_stock(unsigned long flags)
2104{
2105 if (likely(in_task()))
2106 preempt_enable();
2107 else
2108 local_irq_restore(flags);
2109}
2110
a0956d54
SS
2111/**
2112 * consume_stock: Try to consume stocked charge on this cpu.
2113 * @memcg: memcg to consume from.
2114 * @nr_pages: how many pages to charge.
2115 *
2116 * The charges will only happen if @memcg matches the current cpu's memcg
2117 * stock, and at least @nr_pages are available in that stock. Failure to
2118 * service an allocation will refill the stock.
2119 *
2120 * returns true if successful, false otherwise.
cdec2e42 2121 */
a0956d54 2122static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2123{
2124 struct memcg_stock_pcp *stock;
db2ba40c 2125 unsigned long flags;
3e32cb2e 2126 bool ret = false;
cdec2e42 2127
a983b5eb 2128 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2129 return ret;
a0956d54 2130
db2ba40c
JW
2131 local_irq_save(flags);
2132
2133 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2134 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2135 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2136 ret = true;
2137 }
db2ba40c
JW
2138
2139 local_irq_restore(flags);
2140
cdec2e42
KH
2141 return ret;
2142}
2143
2144/*
3e32cb2e 2145 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2146 */
2147static void drain_stock(struct memcg_stock_pcp *stock)
2148{
2149 struct mem_cgroup *old = stock->cached;
2150
1a3e1f40
JW
2151 if (!old)
2152 return;
2153
11c9ea4e 2154 if (stock->nr_pages) {
3e32cb2e 2155 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2156 if (do_memsw_account())
3e32cb2e 2157 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2158 stock->nr_pages = 0;
cdec2e42 2159 }
1a3e1f40
JW
2160
2161 css_put(&old->css);
cdec2e42 2162 stock->cached = NULL;
cdec2e42
KH
2163}
2164
cdec2e42
KH
2165static void drain_local_stock(struct work_struct *dummy)
2166{
db2ba40c
JW
2167 struct memcg_stock_pcp *stock;
2168 unsigned long flags;
2169
72f0184c
MH
2170 /*
2171 * The only protection from memory hotplug vs. drain_stock races is
2172 * that we always operate on local CPU stock here with IRQ disabled
2173 */
db2ba40c
JW
2174 local_irq_save(flags);
2175
2176 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2177 drain_obj_stock(&stock->irq_obj);
2178 if (in_task())
2179 drain_obj_stock(&stock->task_obj);
cdec2e42 2180 drain_stock(stock);
26fe6168 2181 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2182
2183 local_irq_restore(flags);
cdec2e42
KH
2184}
2185
2186/*
3e32cb2e 2187 * Cache charges(val) to local per_cpu area.
320cc51d 2188 * This will be consumed by consume_stock() function, later.
cdec2e42 2189 */
c0ff4b85 2190static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2191{
db2ba40c
JW
2192 struct memcg_stock_pcp *stock;
2193 unsigned long flags;
2194
2195 local_irq_save(flags);
cdec2e42 2196
db2ba40c 2197 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2198 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2199 drain_stock(stock);
1a3e1f40 2200 css_get(&memcg->css);
c0ff4b85 2201 stock->cached = memcg;
cdec2e42 2202 }
11c9ea4e 2203 stock->nr_pages += nr_pages;
db2ba40c 2204
a983b5eb 2205 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2206 drain_stock(stock);
2207
db2ba40c 2208 local_irq_restore(flags);
cdec2e42
KH
2209}
2210
2211/*
c0ff4b85 2212 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2213 * of the hierarchy under it.
cdec2e42 2214 */
6d3d6aa2 2215static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2216{
26fe6168 2217 int cpu, curcpu;
d38144b7 2218
6d3d6aa2
JW
2219 /* If someone's already draining, avoid adding running more workers. */
2220 if (!mutex_trylock(&percpu_charge_mutex))
2221 return;
72f0184c
MH
2222 /*
2223 * Notify other cpus that system-wide "drain" is running
2224 * We do not care about races with the cpu hotplug because cpu down
2225 * as well as workers from this path always operate on the local
2226 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2227 */
5af12d0e 2228 curcpu = get_cpu();
cdec2e42
KH
2229 for_each_online_cpu(cpu) {
2230 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2231 struct mem_cgroup *memcg;
e1a366be 2232 bool flush = false;
26fe6168 2233
e1a366be 2234 rcu_read_lock();
c0ff4b85 2235 memcg = stock->cached;
e1a366be
RG
2236 if (memcg && stock->nr_pages &&
2237 mem_cgroup_is_descendant(memcg, root_memcg))
2238 flush = true;
bf4f0599
RG
2239 if (obj_stock_flush_required(stock, root_memcg))
2240 flush = true;
e1a366be
RG
2241 rcu_read_unlock();
2242
2243 if (flush &&
2244 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2245 if (cpu == curcpu)
2246 drain_local_stock(&stock->work);
2247 else
2248 schedule_work_on(cpu, &stock->work);
2249 }
cdec2e42 2250 }
5af12d0e 2251 put_cpu();
9f50fad6 2252 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2253}
2254
2cd21c89
JW
2255static int memcg_hotplug_cpu_dead(unsigned int cpu)
2256{
2257 struct memcg_stock_pcp *stock;
a3d4c05a 2258
2cd21c89
JW
2259 stock = &per_cpu(memcg_stock, cpu);
2260 drain_stock(stock);
a3d4c05a 2261
308167fc 2262 return 0;
cdec2e42
KH
2263}
2264
b3ff9291
CD
2265static unsigned long reclaim_high(struct mem_cgroup *memcg,
2266 unsigned int nr_pages,
2267 gfp_t gfp_mask)
f7e1cb6e 2268{
b3ff9291
CD
2269 unsigned long nr_reclaimed = 0;
2270
f7e1cb6e 2271 do {
e22c6ed9
JW
2272 unsigned long pflags;
2273
d1663a90
JK
2274 if (page_counter_read(&memcg->memory) <=
2275 READ_ONCE(memcg->memory.high))
f7e1cb6e 2276 continue;
e22c6ed9 2277
e27be240 2278 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2279
2280 psi_memstall_enter(&pflags);
b3ff9291
CD
2281 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2282 gfp_mask, true);
e22c6ed9 2283 psi_memstall_leave(&pflags);
4bf17307
CD
2284 } while ((memcg = parent_mem_cgroup(memcg)) &&
2285 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2286
2287 return nr_reclaimed;
f7e1cb6e
JW
2288}
2289
2290static void high_work_func(struct work_struct *work)
2291{
2292 struct mem_cgroup *memcg;
2293
2294 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2295 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2296}
2297
0e4b01df
CD
2298/*
2299 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2300 * enough to still cause a significant slowdown in most cases, while still
2301 * allowing diagnostics and tracing to proceed without becoming stuck.
2302 */
2303#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2304
2305/*
2306 * When calculating the delay, we use these either side of the exponentiation to
2307 * maintain precision and scale to a reasonable number of jiffies (see the table
2308 * below.
2309 *
2310 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2311 * overage ratio to a delay.
ac5ddd0f 2312 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2313 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2314 * to produce a reasonable delay curve.
2315 *
2316 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2317 * reasonable delay curve compared to precision-adjusted overage, not
2318 * penalising heavily at first, but still making sure that growth beyond the
2319 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2320 * example, with a high of 100 megabytes:
2321 *
2322 * +-------+------------------------+
2323 * | usage | time to allocate in ms |
2324 * +-------+------------------------+
2325 * | 100M | 0 |
2326 * | 101M | 6 |
2327 * | 102M | 25 |
2328 * | 103M | 57 |
2329 * | 104M | 102 |
2330 * | 105M | 159 |
2331 * | 106M | 230 |
2332 * | 107M | 313 |
2333 * | 108M | 409 |
2334 * | 109M | 518 |
2335 * | 110M | 639 |
2336 * | 111M | 774 |
2337 * | 112M | 921 |
2338 * | 113M | 1081 |
2339 * | 114M | 1254 |
2340 * | 115M | 1439 |
2341 * | 116M | 1638 |
2342 * | 117M | 1849 |
2343 * | 118M | 2000 |
2344 * | 119M | 2000 |
2345 * | 120M | 2000 |
2346 * +-------+------------------------+
2347 */
2348 #define MEMCG_DELAY_PRECISION_SHIFT 20
2349 #define MEMCG_DELAY_SCALING_SHIFT 14
2350
8a5dbc65 2351static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2352{
8a5dbc65 2353 u64 overage;
b23afb93 2354
8a5dbc65
JK
2355 if (usage <= high)
2356 return 0;
e26733e0 2357
8a5dbc65
JK
2358 /*
2359 * Prevent division by 0 in overage calculation by acting as if
2360 * it was a threshold of 1 page
2361 */
2362 high = max(high, 1UL);
9b8b1754 2363
8a5dbc65
JK
2364 overage = usage - high;
2365 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2366 return div64_u64(overage, high);
2367}
e26733e0 2368
8a5dbc65
JK
2369static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2370{
2371 u64 overage, max_overage = 0;
e26733e0 2372
8a5dbc65
JK
2373 do {
2374 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2375 READ_ONCE(memcg->memory.high));
8a5dbc65 2376 max_overage = max(overage, max_overage);
e26733e0
CD
2377 } while ((memcg = parent_mem_cgroup(memcg)) &&
2378 !mem_cgroup_is_root(memcg));
2379
8a5dbc65
JK
2380 return max_overage;
2381}
2382
4b82ab4f
JK
2383static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2384{
2385 u64 overage, max_overage = 0;
2386
2387 do {
2388 overage = calculate_overage(page_counter_read(&memcg->swap),
2389 READ_ONCE(memcg->swap.high));
2390 if (overage)
2391 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2392 max_overage = max(overage, max_overage);
2393 } while ((memcg = parent_mem_cgroup(memcg)) &&
2394 !mem_cgroup_is_root(memcg));
2395
2396 return max_overage;
2397}
2398
8a5dbc65
JK
2399/*
2400 * Get the number of jiffies that we should penalise a mischievous cgroup which
2401 * is exceeding its memory.high by checking both it and its ancestors.
2402 */
2403static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2404 unsigned int nr_pages,
2405 u64 max_overage)
2406{
2407 unsigned long penalty_jiffies;
2408
e26733e0
CD
2409 if (!max_overage)
2410 return 0;
0e4b01df
CD
2411
2412 /*
0e4b01df
CD
2413 * We use overage compared to memory.high to calculate the number of
2414 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2415 * fairly lenient on small overages, and increasingly harsh when the
2416 * memcg in question makes it clear that it has no intention of stopping
2417 * its crazy behaviour, so we exponentially increase the delay based on
2418 * overage amount.
2419 */
e26733e0
CD
2420 penalty_jiffies = max_overage * max_overage * HZ;
2421 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2422 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2423
2424 /*
2425 * Factor in the task's own contribution to the overage, such that four
2426 * N-sized allocations are throttled approximately the same as one
2427 * 4N-sized allocation.
2428 *
2429 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2430 * larger the current charge patch is than that.
2431 */
ff144e69 2432 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2433}
2434
2435/*
2436 * Scheduled by try_charge() to be executed from the userland return path
2437 * and reclaims memory over the high limit.
2438 */
2439void mem_cgroup_handle_over_high(void)
2440{
2441 unsigned long penalty_jiffies;
2442 unsigned long pflags;
b3ff9291 2443 unsigned long nr_reclaimed;
e26733e0 2444 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2445 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2446 struct mem_cgroup *memcg;
b3ff9291 2447 bool in_retry = false;
e26733e0
CD
2448
2449 if (likely(!nr_pages))
2450 return;
2451
2452 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2453 current->memcg_nr_pages_over_high = 0;
2454
b3ff9291
CD
2455retry_reclaim:
2456 /*
2457 * The allocating task should reclaim at least the batch size, but for
2458 * subsequent retries we only want to do what's necessary to prevent oom
2459 * or breaching resource isolation.
2460 *
2461 * This is distinct from memory.max or page allocator behaviour because
2462 * memory.high is currently batched, whereas memory.max and the page
2463 * allocator run every time an allocation is made.
2464 */
2465 nr_reclaimed = reclaim_high(memcg,
2466 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2467 GFP_KERNEL);
2468
e26733e0
CD
2469 /*
2470 * memory.high is breached and reclaim is unable to keep up. Throttle
2471 * allocators proactively to slow down excessive growth.
2472 */
8a5dbc65
JK
2473 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2474 mem_find_max_overage(memcg));
0e4b01df 2475
4b82ab4f
JK
2476 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2477 swap_find_max_overage(memcg));
2478
ff144e69
JK
2479 /*
2480 * Clamp the max delay per usermode return so as to still keep the
2481 * application moving forwards and also permit diagnostics, albeit
2482 * extremely slowly.
2483 */
2484 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2485
0e4b01df
CD
2486 /*
2487 * Don't sleep if the amount of jiffies this memcg owes us is so low
2488 * that it's not even worth doing, in an attempt to be nice to those who
2489 * go only a small amount over their memory.high value and maybe haven't
2490 * been aggressively reclaimed enough yet.
2491 */
2492 if (penalty_jiffies <= HZ / 100)
2493 goto out;
2494
b3ff9291
CD
2495 /*
2496 * If reclaim is making forward progress but we're still over
2497 * memory.high, we want to encourage that rather than doing allocator
2498 * throttling.
2499 */
2500 if (nr_reclaimed || nr_retries--) {
2501 in_retry = true;
2502 goto retry_reclaim;
2503 }
2504
0e4b01df
CD
2505 /*
2506 * If we exit early, we're guaranteed to die (since
2507 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2508 * need to account for any ill-begotten jiffies to pay them off later.
2509 */
2510 psi_memstall_enter(&pflags);
2511 schedule_timeout_killable(penalty_jiffies);
2512 psi_memstall_leave(&pflags);
2513
2514out:
2515 css_put(&memcg->css);
b23afb93
TH
2516}
2517
c5c8b16b
MS
2518static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2519 unsigned int nr_pages)
8a9f3ccd 2520{
a983b5eb 2521 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2522 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2523 struct mem_cgroup *mem_over_limit;
3e32cb2e 2524 struct page_counter *counter;
e22c6ed9 2525 enum oom_status oom_status;
6539cc05 2526 unsigned long nr_reclaimed;
b70a2a21
JW
2527 bool may_swap = true;
2528 bool drained = false;
e22c6ed9 2529 unsigned long pflags;
a636b327 2530
6539cc05 2531retry:
b6b6cc72 2532 if (consume_stock(memcg, nr_pages))
10d53c74 2533 return 0;
8a9f3ccd 2534
7941d214 2535 if (!do_memsw_account() ||
6071ca52
JW
2536 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2537 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2538 goto done_restock;
7941d214 2539 if (do_memsw_account())
3e32cb2e
JW
2540 page_counter_uncharge(&memcg->memsw, batch);
2541 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2542 } else {
3e32cb2e 2543 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2544 may_swap = false;
3fbe7244 2545 }
7a81b88c 2546
6539cc05
JW
2547 if (batch > nr_pages) {
2548 batch = nr_pages;
2549 goto retry;
2550 }
6d61ef40 2551
869712fd
JW
2552 /*
2553 * Memcg doesn't have a dedicated reserve for atomic
2554 * allocations. But like the global atomic pool, we need to
2555 * put the burden of reclaim on regular allocation requests
2556 * and let these go through as privileged allocations.
2557 */
2558 if (gfp_mask & __GFP_ATOMIC)
2559 goto force;
2560
06b078fc
JW
2561 /*
2562 * Unlike in global OOM situations, memcg is not in a physical
2563 * memory shortage. Allow dying and OOM-killed tasks to
2564 * bypass the last charges so that they can exit quickly and
2565 * free their memory.
2566 */
7775face 2567 if (unlikely(should_force_charge()))
10d53c74 2568 goto force;
06b078fc 2569
89a28483
JW
2570 /*
2571 * Prevent unbounded recursion when reclaim operations need to
2572 * allocate memory. This might exceed the limits temporarily,
2573 * but we prefer facilitating memory reclaim and getting back
2574 * under the limit over triggering OOM kills in these cases.
2575 */
2576 if (unlikely(current->flags & PF_MEMALLOC))
2577 goto force;
2578
06b078fc
JW
2579 if (unlikely(task_in_memcg_oom(current)))
2580 goto nomem;
2581
d0164adc 2582 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2583 goto nomem;
4b534334 2584
e27be240 2585 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2586
e22c6ed9 2587 psi_memstall_enter(&pflags);
b70a2a21
JW
2588 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2589 gfp_mask, may_swap);
e22c6ed9 2590 psi_memstall_leave(&pflags);
6539cc05 2591
61e02c74 2592 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2593 goto retry;
28c34c29 2594
b70a2a21 2595 if (!drained) {
6d3d6aa2 2596 drain_all_stock(mem_over_limit);
b70a2a21
JW
2597 drained = true;
2598 goto retry;
2599 }
2600
28c34c29
JW
2601 if (gfp_mask & __GFP_NORETRY)
2602 goto nomem;
6539cc05
JW
2603 /*
2604 * Even though the limit is exceeded at this point, reclaim
2605 * may have been able to free some pages. Retry the charge
2606 * before killing the task.
2607 *
2608 * Only for regular pages, though: huge pages are rather
2609 * unlikely to succeed so close to the limit, and we fall back
2610 * to regular pages anyway in case of failure.
2611 */
61e02c74 2612 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2613 goto retry;
2614 /*
2615 * At task move, charge accounts can be doubly counted. So, it's
2616 * better to wait until the end of task_move if something is going on.
2617 */
2618 if (mem_cgroup_wait_acct_move(mem_over_limit))
2619 goto retry;
2620
9b130619
JW
2621 if (nr_retries--)
2622 goto retry;
2623
38d38493 2624 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2625 goto nomem;
2626
6539cc05 2627 if (fatal_signal_pending(current))
10d53c74 2628 goto force;
6539cc05 2629
29ef680a
MH
2630 /*
2631 * keep retrying as long as the memcg oom killer is able to make
2632 * a forward progress or bypass the charge if the oom killer
2633 * couldn't make any progress.
2634 */
2635 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2636 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2637 switch (oom_status) {
2638 case OOM_SUCCESS:
d977aa93 2639 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2640 goto retry;
2641 case OOM_FAILED:
2642 goto force;
2643 default:
2644 goto nomem;
2645 }
7a81b88c 2646nomem:
6d1fdc48 2647 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2648 return -ENOMEM;
10d53c74
TH
2649force:
2650 /*
2651 * The allocation either can't fail or will lead to more memory
2652 * being freed very soon. Allow memory usage go over the limit
2653 * temporarily by force charging it.
2654 */
2655 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2656 if (do_memsw_account())
10d53c74 2657 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2658
2659 return 0;
6539cc05
JW
2660
2661done_restock:
2662 if (batch > nr_pages)
2663 refill_stock(memcg, batch - nr_pages);
b23afb93 2664
241994ed 2665 /*
b23afb93
TH
2666 * If the hierarchy is above the normal consumption range, schedule
2667 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2668 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2669 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2670 * not recorded as it most likely matches current's and won't
2671 * change in the meantime. As high limit is checked again before
2672 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2673 */
2674 do {
4b82ab4f
JK
2675 bool mem_high, swap_high;
2676
2677 mem_high = page_counter_read(&memcg->memory) >
2678 READ_ONCE(memcg->memory.high);
2679 swap_high = page_counter_read(&memcg->swap) >
2680 READ_ONCE(memcg->swap.high);
2681
2682 /* Don't bother a random interrupted task */
2683 if (in_interrupt()) {
2684 if (mem_high) {
f7e1cb6e
JW
2685 schedule_work(&memcg->high_work);
2686 break;
2687 }
4b82ab4f
JK
2688 continue;
2689 }
2690
2691 if (mem_high || swap_high) {
2692 /*
2693 * The allocating tasks in this cgroup will need to do
2694 * reclaim or be throttled to prevent further growth
2695 * of the memory or swap footprints.
2696 *
2697 * Target some best-effort fairness between the tasks,
2698 * and distribute reclaim work and delay penalties
2699 * based on how much each task is actually allocating.
2700 */
9516a18a 2701 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2702 set_notify_resume(current);
2703 break;
2704 }
241994ed 2705 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2706
2707 return 0;
7a81b88c 2708}
8a9f3ccd 2709
c5c8b16b
MS
2710static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2711 unsigned int nr_pages)
2712{
2713 if (mem_cgroup_is_root(memcg))
2714 return 0;
2715
2716 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2717}
2718
f0e45fb4 2719#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2720static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2721{
ce00a967
JW
2722 if (mem_cgroup_is_root(memcg))
2723 return;
2724
3e32cb2e 2725 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2726 if (do_memsw_account())
3e32cb2e 2727 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2728}
f0e45fb4 2729#endif
d01dd17f 2730
d9eb1ea2 2731static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2732{
bcfe06bf 2733 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2734 /*
a5eb011a 2735 * Any of the following ensures page's memcg stability:
0a31bc97 2736 *
a0b5b414
JW
2737 * - the page lock
2738 * - LRU isolation
2739 * - lock_page_memcg()
2740 * - exclusive reference
0a31bc97 2741 */
bcfe06bf 2742 page->memcg_data = (unsigned long)memcg;
7a81b88c 2743}
66e1707b 2744
e74d2259
MS
2745static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2746{
2747 struct mem_cgroup *memcg;
2748
2749 rcu_read_lock();
2750retry:
2751 memcg = obj_cgroup_memcg(objcg);
2752 if (unlikely(!css_tryget(&memcg->css)))
2753 goto retry;
2754 rcu_read_unlock();
2755
2756 return memcg;
2757}
2758
84c07d11 2759#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2760/*
2761 * The allocated objcg pointers array is not accounted directly.
2762 * Moreover, it should not come from DMA buffer and is not readily
2763 * reclaimable. So those GFP bits should be masked off.
2764 */
2765#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2766
10befea9 2767int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2768 gfp_t gfp, bool new_page)
10befea9
RG
2769{
2770 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2771 unsigned long memcg_data;
10befea9
RG
2772 void *vec;
2773
41eb5df1 2774 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2775 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2776 page_to_nid(page));
2777 if (!vec)
2778 return -ENOMEM;
2779
2e9bd483
RG
2780 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2781 if (new_page) {
2782 /*
2783 * If the slab page is brand new and nobody can yet access
2784 * it's memcg_data, no synchronization is required and
2785 * memcg_data can be simply assigned.
2786 */
2787 page->memcg_data = memcg_data;
2788 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2789 /*
2790 * If the slab page is already in use, somebody can allocate
2791 * and assign obj_cgroups in parallel. In this case the existing
2792 * objcg vector should be reused.
2793 */
10befea9 2794 kfree(vec);
2e9bd483
RG
2795 return 0;
2796 }
10befea9 2797
2e9bd483 2798 kmemleak_not_leak(vec);
10befea9
RG
2799 return 0;
2800}
2801
8380ce47
RG
2802/*
2803 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2804 *
bcfe06bf
RG
2805 * A passed kernel object can be a slab object or a generic kernel page, so
2806 * different mechanisms for getting the memory cgroup pointer should be used.
2807 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2808 * can not know for sure how the kernel object is implemented.
2809 * mem_cgroup_from_obj() can be safely used in such cases.
2810 *
8380ce47
RG
2811 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2812 * cgroup_mutex, etc.
2813 */
2814struct mem_cgroup *mem_cgroup_from_obj(void *p)
2815{
2816 struct page *page;
2817
2818 if (mem_cgroup_disabled())
2819 return NULL;
2820
2821 page = virt_to_head_page(p);
2822
2823 /*
9855609b
RG
2824 * Slab objects are accounted individually, not per-page.
2825 * Memcg membership data for each individual object is saved in
2826 * the page->obj_cgroups.
8380ce47 2827 */
270c6a71 2828 if (page_objcgs_check(page)) {
9855609b
RG
2829 struct obj_cgroup *objcg;
2830 unsigned int off;
2831
2832 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2833 objcg = page_objcgs(page)[off];
10befea9
RG
2834 if (objcg)
2835 return obj_cgroup_memcg(objcg);
2836
2837 return NULL;
9855609b 2838 }
8380ce47 2839
bcfe06bf
RG
2840 /*
2841 * page_memcg_check() is used here, because page_has_obj_cgroups()
2842 * check above could fail because the object cgroups vector wasn't set
2843 * at that moment, but it can be set concurrently.
2844 * page_memcg_check(page) will guarantee that a proper memory
2845 * cgroup pointer or NULL will be returned.
2846 */
2847 return page_memcg_check(page);
8380ce47
RG
2848}
2849
bf4f0599
RG
2850__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2851{
2852 struct obj_cgroup *objcg = NULL;
2853 struct mem_cgroup *memcg;
2854
279c3393
RG
2855 if (memcg_kmem_bypass())
2856 return NULL;
2857
bf4f0599 2858 rcu_read_lock();
37d5985c
RG
2859 if (unlikely(active_memcg()))
2860 memcg = active_memcg();
bf4f0599
RG
2861 else
2862 memcg = mem_cgroup_from_task(current);
2863
2864 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2865 objcg = rcu_dereference(memcg->objcg);
2866 if (objcg && obj_cgroup_tryget(objcg))
2867 break;
2f7659a3 2868 objcg = NULL;
bf4f0599
RG
2869 }
2870 rcu_read_unlock();
2871
2872 return objcg;
2873}
2874
f3bb3043 2875static int memcg_alloc_cache_id(void)
55007d84 2876{
f3bb3043
VD
2877 int id, size;
2878 int err;
2879
dbcf73e2 2880 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2881 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2882 if (id < 0)
2883 return id;
55007d84 2884
dbcf73e2 2885 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2886 return id;
2887
2888 /*
2889 * There's no space for the new id in memcg_caches arrays,
2890 * so we have to grow them.
2891 */
05257a1a 2892 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2893
2894 size = 2 * (id + 1);
55007d84
GC
2895 if (size < MEMCG_CACHES_MIN_SIZE)
2896 size = MEMCG_CACHES_MIN_SIZE;
2897 else if (size > MEMCG_CACHES_MAX_SIZE)
2898 size = MEMCG_CACHES_MAX_SIZE;
2899
9855609b 2900 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2901 if (!err)
2902 memcg_nr_cache_ids = size;
2903
2904 up_write(&memcg_cache_ids_sem);
2905
f3bb3043 2906 if (err) {
dbcf73e2 2907 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2908 return err;
2909 }
2910 return id;
2911}
2912
2913static void memcg_free_cache_id(int id)
2914{
dbcf73e2 2915 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2916}
2917
f1286fae
MS
2918/*
2919 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2920 * @objcg: object cgroup to uncharge
2921 * @nr_pages: number of pages to uncharge
2922 */
e74d2259
MS
2923static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2924 unsigned int nr_pages)
2925{
2926 struct mem_cgroup *memcg;
2927
2928 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2929
f1286fae
MS
2930 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2931 page_counter_uncharge(&memcg->kmem, nr_pages);
2932 refill_stock(memcg, nr_pages);
e74d2259 2933
e74d2259 2934 css_put(&memcg->css);
e74d2259
MS
2935}
2936
f1286fae
MS
2937/*
2938 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2939 * @objcg: object cgroup to charge
45264778 2940 * @gfp: reclaim mode
92d0510c 2941 * @nr_pages: number of pages to charge
45264778
VD
2942 *
2943 * Returns 0 on success, an error code on failure.
2944 */
f1286fae
MS
2945static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2946 unsigned int nr_pages)
7ae1e1d0 2947{
f3ccb2c4 2948 struct page_counter *counter;
f1286fae 2949 struct mem_cgroup *memcg;
7ae1e1d0
GC
2950 int ret;
2951
f1286fae
MS
2952 memcg = get_mem_cgroup_from_objcg(objcg);
2953
c5c8b16b 2954 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 2955 if (ret)
f1286fae 2956 goto out;
52c29b04
JW
2957
2958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2959 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2960
2961 /*
2962 * Enforce __GFP_NOFAIL allocation because callers are not
2963 * prepared to see failures and likely do not have any failure
2964 * handling code.
2965 */
2966 if (gfp & __GFP_NOFAIL) {
2967 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae 2968 goto out;
e55d9d9b 2969 }
52c29b04 2970 cancel_charge(memcg, nr_pages);
f1286fae 2971 ret = -ENOMEM;
7ae1e1d0 2972 }
f1286fae
MS
2973out:
2974 css_put(&memcg->css);
4b13f64d 2975
f1286fae 2976 return ret;
4b13f64d
RG
2977}
2978
45264778 2979/**
f4b00eab 2980 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2981 * @page: page to charge
2982 * @gfp: reclaim mode
2983 * @order: allocation order
2984 *
2985 * Returns 0 on success, an error code on failure.
2986 */
f4b00eab 2987int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2988{
b4e0b68f 2989 struct obj_cgroup *objcg;
fcff7d7e 2990 int ret = 0;
7ae1e1d0 2991
b4e0b68f
MS
2992 objcg = get_obj_cgroup_from_current();
2993 if (objcg) {
2994 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 2995 if (!ret) {
b4e0b68f 2996 page->memcg_data = (unsigned long)objcg |
18b2db3b 2997 MEMCG_DATA_KMEM;
1a3e1f40 2998 return 0;
4d96ba35 2999 }
b4e0b68f 3000 obj_cgroup_put(objcg);
c4159a75 3001 }
d05e83a6 3002 return ret;
7ae1e1d0 3003}
49a18eae 3004
45264778 3005/**
f4b00eab 3006 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3007 * @page: page to uncharge
3008 * @order: allocation order
3009 */
f4b00eab 3010void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3011{
b4e0b68f 3012 struct obj_cgroup *objcg;
f3ccb2c4 3013 unsigned int nr_pages = 1 << order;
7ae1e1d0 3014
b4e0b68f 3015 if (!PageMemcgKmem(page))
7ae1e1d0
GC
3016 return;
3017
b4e0b68f
MS
3018 objcg = __page_objcg(page);
3019 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3020 page->memcg_data = 0;
b4e0b68f 3021 obj_cgroup_put(objcg);
60d3fd32 3022}
bf4f0599 3023
68ac5b3c
WL
3024void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3025 enum node_stat_item idx, int nr)
3026{
68ac5b3c 3027 unsigned long flags;
55927114 3028 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3029 int *bytes;
3030
68ac5b3c
WL
3031 /*
3032 * Save vmstat data in stock and skip vmstat array update unless
3033 * accumulating over a page of vmstat data or when pgdat or idx
3034 * changes.
3035 */
3036 if (stock->cached_objcg != objcg) {
3037 drain_obj_stock(stock);
3038 obj_cgroup_get(objcg);
3039 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3040 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3041 stock->cached_objcg = objcg;
3042 stock->cached_pgdat = pgdat;
3043 } else if (stock->cached_pgdat != pgdat) {
3044 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3045 struct pglist_data *oldpg = stock->cached_pgdat;
3046
68ac5b3c 3047 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3048 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3049 stock->nr_slab_reclaimable_b);
3050 stock->nr_slab_reclaimable_b = 0;
3051 }
3052 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3053 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3054 stock->nr_slab_unreclaimable_b);
3055 stock->nr_slab_unreclaimable_b = 0;
3056 }
3057 stock->cached_pgdat = pgdat;
3058 }
3059
3060 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3061 : &stock->nr_slab_unreclaimable_b;
3062 /*
3063 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3064 * cached locally at least once before pushing it out.
3065 */
3066 if (!*bytes) {
3067 *bytes = nr;
3068 nr = 0;
3069 } else {
3070 *bytes += nr;
3071 if (abs(*bytes) > PAGE_SIZE) {
3072 nr = *bytes;
3073 *bytes = 0;
3074 } else {
3075 nr = 0;
3076 }
3077 }
3078 if (nr)
3079 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3080
55927114 3081 put_obj_stock(flags);
68ac5b3c
WL
3082}
3083
bf4f0599
RG
3084static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3085{
bf4f0599 3086 unsigned long flags;
55927114 3087 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3088 bool ret = false;
3089
bf4f0599
RG
3090 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3091 stock->nr_bytes -= nr_bytes;
3092 ret = true;
3093 }
3094
55927114 3095 put_obj_stock(flags);
bf4f0599
RG
3096
3097 return ret;
3098}
3099
55927114 3100static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3101{
3102 struct obj_cgroup *old = stock->cached_objcg;
3103
3104 if (!old)
3105 return;
3106
3107 if (stock->nr_bytes) {
3108 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3109 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3110
e74d2259
MS
3111 if (nr_pages)
3112 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3113
3114 /*
3115 * The leftover is flushed to the centralized per-memcg value.
3116 * On the next attempt to refill obj stock it will be moved
3117 * to a per-cpu stock (probably, on an other CPU), see
3118 * refill_obj_stock().
3119 *
3120 * How often it's flushed is a trade-off between the memory
3121 * limit enforcement accuracy and potential CPU contention,
3122 * so it might be changed in the future.
3123 */
3124 atomic_add(nr_bytes, &old->nr_charged_bytes);
3125 stock->nr_bytes = 0;
3126 }
3127
68ac5b3c
WL
3128 /*
3129 * Flush the vmstat data in current stock
3130 */
3131 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3132 if (stock->nr_slab_reclaimable_b) {
3133 mod_objcg_mlstate(old, stock->cached_pgdat,
3134 NR_SLAB_RECLAIMABLE_B,
3135 stock->nr_slab_reclaimable_b);
3136 stock->nr_slab_reclaimable_b = 0;
3137 }
3138 if (stock->nr_slab_unreclaimable_b) {
3139 mod_objcg_mlstate(old, stock->cached_pgdat,
3140 NR_SLAB_UNRECLAIMABLE_B,
3141 stock->nr_slab_unreclaimable_b);
3142 stock->nr_slab_unreclaimable_b = 0;
3143 }
3144 stock->cached_pgdat = NULL;
3145 }
3146
bf4f0599
RG
3147 obj_cgroup_put(old);
3148 stock->cached_objcg = NULL;
3149}
3150
3151static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3152 struct mem_cgroup *root_memcg)
3153{
3154 struct mem_cgroup *memcg;
3155
55927114
WL
3156 if (in_task() && stock->task_obj.cached_objcg) {
3157 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3158 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3159 return true;
3160 }
3161 if (stock->irq_obj.cached_objcg) {
3162 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3163 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3164 return true;
3165 }
3166
3167 return false;
3168}
3169
5387c904
WL
3170static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3171 bool allow_uncharge)
bf4f0599 3172{
bf4f0599 3173 unsigned long flags;
55927114 3174 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3175 unsigned int nr_pages = 0;
bf4f0599 3176
bf4f0599
RG
3177 if (stock->cached_objcg != objcg) { /* reset if necessary */
3178 drain_obj_stock(stock);
3179 obj_cgroup_get(objcg);
3180 stock->cached_objcg = objcg;
5387c904
WL
3181 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3182 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3183 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3184 }
3185 stock->nr_bytes += nr_bytes;
3186
5387c904
WL
3187 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3188 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3189 stock->nr_bytes &= (PAGE_SIZE - 1);
3190 }
bf4f0599 3191
55927114 3192 put_obj_stock(flags);
5387c904
WL
3193
3194 if (nr_pages)
3195 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3196}
3197
3198int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3199{
bf4f0599
RG
3200 unsigned int nr_pages, nr_bytes;
3201 int ret;
3202
3203 if (consume_obj_stock(objcg, size))
3204 return 0;
3205
3206 /*
5387c904 3207 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3208 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3209 * flushing objcg->nr_charged_bytes requires two atomic
3210 * operations, and objcg->nr_charged_bytes can't be big.
3211 * The shared objcg->nr_charged_bytes can also become a
3212 * performance bottleneck if all tasks of the same memcg are
3213 * trying to update it. So it's better to ignore it and try
3214 * grab some new pages. The stock's nr_bytes will be flushed to
3215 * objcg->nr_charged_bytes later on when objcg changes.
3216 *
3217 * The stock's nr_bytes may contain enough pre-charged bytes
3218 * to allow one less page from being charged, but we can't rely
3219 * on the pre-charged bytes not being changed outside of
3220 * consume_obj_stock() or refill_obj_stock(). So ignore those
3221 * pre-charged bytes as well when charging pages. To avoid a
3222 * page uncharge right after a page charge, we set the
3223 * allow_uncharge flag to false when calling refill_obj_stock()
3224 * to temporarily allow the pre-charged bytes to exceed the page
3225 * size limit. The maximum reachable value of the pre-charged
3226 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3227 * race.
bf4f0599 3228 */
bf4f0599
RG
3229 nr_pages = size >> PAGE_SHIFT;
3230 nr_bytes = size & (PAGE_SIZE - 1);
3231
3232 if (nr_bytes)
3233 nr_pages += 1;
3234
e74d2259 3235 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3236 if (!ret && nr_bytes)
5387c904 3237 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3238
bf4f0599
RG
3239 return ret;
3240}
3241
3242void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3243{
5387c904 3244 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3245}
3246
84c07d11 3247#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3248
ca3e0214 3249/*
be6c8982 3250 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3251 */
be6c8982 3252void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3253{
bcfe06bf 3254 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3255 int i;
ca3e0214 3256
be6c8982 3257 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3258 return;
b070e65c 3259
be6c8982
ZG
3260 for (i = 1; i < nr; i++)
3261 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3262
3263 if (PageMemcgKmem(head))
3264 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3265 else
3266 css_get_many(&memcg->css, nr - 1);
ca3e0214 3267}
ca3e0214 3268
c255a458 3269#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3270/**
3271 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3272 * @entry: swap entry to be moved
3273 * @from: mem_cgroup which the entry is moved from
3274 * @to: mem_cgroup which the entry is moved to
3275 *
3276 * It succeeds only when the swap_cgroup's record for this entry is the same
3277 * as the mem_cgroup's id of @from.
3278 *
3279 * Returns 0 on success, -EINVAL on failure.
3280 *
3e32cb2e 3281 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3282 * both res and memsw, and called css_get().
3283 */
3284static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3285 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3286{
3287 unsigned short old_id, new_id;
3288
34c00c31
LZ
3289 old_id = mem_cgroup_id(from);
3290 new_id = mem_cgroup_id(to);
02491447
DN
3291
3292 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3293 mod_memcg_state(from, MEMCG_SWAP, -1);
3294 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3295 return 0;
3296 }
3297 return -EINVAL;
3298}
3299#else
3300static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3301 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3302{
3303 return -EINVAL;
3304}
8c7c6e34 3305#endif
d13d1443 3306
bbec2e15 3307static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3308
bbec2e15
RG
3309static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3310 unsigned long max, bool memsw)
628f4235 3311{
3e32cb2e 3312 bool enlarge = false;
bb4a7ea2 3313 bool drained = false;
3e32cb2e 3314 int ret;
c054a78c
YZ
3315 bool limits_invariant;
3316 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3317
3e32cb2e 3318 do {
628f4235
KH
3319 if (signal_pending(current)) {
3320 ret = -EINTR;
3321 break;
3322 }
3e32cb2e 3323
bbec2e15 3324 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3325 /*
3326 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3327 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3328 */
15b42562 3329 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3330 max <= memcg->memsw.max;
c054a78c 3331 if (!limits_invariant) {
bbec2e15 3332 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3333 ret = -EINVAL;
8c7c6e34
KH
3334 break;
3335 }
bbec2e15 3336 if (max > counter->max)
3e32cb2e 3337 enlarge = true;
bbec2e15
RG
3338 ret = page_counter_set_max(counter, max);
3339 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3340
3341 if (!ret)
3342 break;
3343
bb4a7ea2
SB
3344 if (!drained) {
3345 drain_all_stock(memcg);
3346 drained = true;
3347 continue;
3348 }
3349
1ab5c056
AR
3350 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3351 GFP_KERNEL, !memsw)) {
3352 ret = -EBUSY;
3353 break;
3354 }
3355 } while (true);
3e32cb2e 3356
3c11ecf4
KH
3357 if (!ret && enlarge)
3358 memcg_oom_recover(memcg);
3e32cb2e 3359
628f4235
KH
3360 return ret;
3361}
3362
ef8f2327 3363unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3364 gfp_t gfp_mask,
3365 unsigned long *total_scanned)
3366{
3367 unsigned long nr_reclaimed = 0;
ef8f2327 3368 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3369 unsigned long reclaimed;
3370 int loop = 0;
ef8f2327 3371 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3372 unsigned long excess;
0608f43d
AM
3373 unsigned long nr_scanned;
3374
3375 if (order > 0)
3376 return 0;
3377
ef8f2327 3378 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3379
3380 /*
3381 * Do not even bother to check the largest node if the root
3382 * is empty. Do it lockless to prevent lock bouncing. Races
3383 * are acceptable as soft limit is best effort anyway.
3384 */
bfc7228b 3385 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3386 return 0;
3387
0608f43d
AM
3388 /*
3389 * This loop can run a while, specially if mem_cgroup's continuously
3390 * keep exceeding their soft limit and putting the system under
3391 * pressure
3392 */
3393 do {
3394 if (next_mz)
3395 mz = next_mz;
3396 else
3397 mz = mem_cgroup_largest_soft_limit_node(mctz);
3398 if (!mz)
3399 break;
3400
3401 nr_scanned = 0;
ef8f2327 3402 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3403 gfp_mask, &nr_scanned);
3404 nr_reclaimed += reclaimed;
3405 *total_scanned += nr_scanned;
0a31bc97 3406 spin_lock_irq(&mctz->lock);
bc2f2e7f 3407 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3408
3409 /*
3410 * If we failed to reclaim anything from this memory cgroup
3411 * it is time to move on to the next cgroup
3412 */
3413 next_mz = NULL;
bc2f2e7f
VD
3414 if (!reclaimed)
3415 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3416
3e32cb2e 3417 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3418 /*
3419 * One school of thought says that we should not add
3420 * back the node to the tree if reclaim returns 0.
3421 * But our reclaim could return 0, simply because due
3422 * to priority we are exposing a smaller subset of
3423 * memory to reclaim from. Consider this as a longer
3424 * term TODO.
3425 */
3426 /* If excess == 0, no tree ops */
cf2c8127 3427 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3428 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3429 css_put(&mz->memcg->css);
3430 loop++;
3431 /*
3432 * Could not reclaim anything and there are no more
3433 * mem cgroups to try or we seem to be looping without
3434 * reclaiming anything.
3435 */
3436 if (!nr_reclaimed &&
3437 (next_mz == NULL ||
3438 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3439 break;
3440 } while (!nr_reclaimed);
3441 if (next_mz)
3442 css_put(&next_mz->memcg->css);
3443 return nr_reclaimed;
3444}
3445
c26251f9 3446/*
51038171 3447 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3448 *
3449 * Caller is responsible for holding css reference for memcg.
3450 */
3451static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3452{
d977aa93 3453 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3454
c1e862c1
KH
3455 /* we call try-to-free pages for make this cgroup empty */
3456 lru_add_drain_all();
d12c60f6
JS
3457
3458 drain_all_stock(memcg);
3459
f817ed48 3460 /* try to free all pages in this cgroup */
3e32cb2e 3461 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3462 int progress;
c1e862c1 3463
c26251f9
MH
3464 if (signal_pending(current))
3465 return -EINTR;
3466
b70a2a21
JW
3467 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3468 GFP_KERNEL, true);
c1e862c1 3469 if (!progress) {
f817ed48 3470 nr_retries--;
c1e862c1 3471 /* maybe some writeback is necessary */
8aa7e847 3472 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3473 }
f817ed48
KH
3474
3475 }
ab5196c2
MH
3476
3477 return 0;
cc847582
KH
3478}
3479
6770c64e
TH
3480static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3481 char *buf, size_t nbytes,
3482 loff_t off)
c1e862c1 3483{
6770c64e 3484 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3485
d8423011
MH
3486 if (mem_cgroup_is_root(memcg))
3487 return -EINVAL;
6770c64e 3488 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3489}
3490
182446d0
TH
3491static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3492 struct cftype *cft)
18f59ea7 3493{
bef8620c 3494 return 1;
18f59ea7
BS
3495}
3496
182446d0
TH
3497static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3498 struct cftype *cft, u64 val)
18f59ea7 3499{
bef8620c 3500 if (val == 1)
0b8f73e1 3501 return 0;
567fb435 3502
bef8620c
RG
3503 pr_warn_once("Non-hierarchical mode is deprecated. "
3504 "Please report your usecase to linux-mm@kvack.org if you "
3505 "depend on this functionality.\n");
567fb435 3506
bef8620c 3507 return -EINVAL;
18f59ea7
BS
3508}
3509
6f646156 3510static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3511{
42a30035 3512 unsigned long val;
ce00a967 3513
3e32cb2e 3514 if (mem_cgroup_is_root(memcg)) {
30def935
JW
3515 /* mem_cgroup_threshold() calls here from irqsafe context */
3516 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
0d1c2072 3517 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3518 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3519 if (swap)
3520 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3521 } else {
ce00a967 3522 if (!swap)
3e32cb2e 3523 val = page_counter_read(&memcg->memory);
ce00a967 3524 else
3e32cb2e 3525 val = page_counter_read(&memcg->memsw);
ce00a967 3526 }
c12176d3 3527 return val;
ce00a967
JW
3528}
3529
3e32cb2e
JW
3530enum {
3531 RES_USAGE,
3532 RES_LIMIT,
3533 RES_MAX_USAGE,
3534 RES_FAILCNT,
3535 RES_SOFT_LIMIT,
3536};
ce00a967 3537
791badbd 3538static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3539 struct cftype *cft)
8cdea7c0 3540{
182446d0 3541 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3542 struct page_counter *counter;
af36f906 3543
3e32cb2e 3544 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3545 case _MEM:
3e32cb2e
JW
3546 counter = &memcg->memory;
3547 break;
8c7c6e34 3548 case _MEMSWAP:
3e32cb2e
JW
3549 counter = &memcg->memsw;
3550 break;
510fc4e1 3551 case _KMEM:
3e32cb2e 3552 counter = &memcg->kmem;
510fc4e1 3553 break;
d55f90bf 3554 case _TCP:
0db15298 3555 counter = &memcg->tcpmem;
d55f90bf 3556 break;
8c7c6e34
KH
3557 default:
3558 BUG();
8c7c6e34 3559 }
3e32cb2e
JW
3560
3561 switch (MEMFILE_ATTR(cft->private)) {
3562 case RES_USAGE:
3563 if (counter == &memcg->memory)
c12176d3 3564 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3565 if (counter == &memcg->memsw)
c12176d3 3566 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3567 return (u64)page_counter_read(counter) * PAGE_SIZE;
3568 case RES_LIMIT:
bbec2e15 3569 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3570 case RES_MAX_USAGE:
3571 return (u64)counter->watermark * PAGE_SIZE;
3572 case RES_FAILCNT:
3573 return counter->failcnt;
3574 case RES_SOFT_LIMIT:
3575 return (u64)memcg->soft_limit * PAGE_SIZE;
3576 default:
3577 BUG();
3578 }
8cdea7c0 3579}
510fc4e1 3580
84c07d11 3581#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3582static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3583{
bf4f0599 3584 struct obj_cgroup *objcg;
d6441637
VD
3585 int memcg_id;
3586
b313aeee
VD
3587 if (cgroup_memory_nokmem)
3588 return 0;
3589
2a4db7eb 3590 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3591 BUG_ON(memcg->kmem_state);
d6441637 3592
f3bb3043 3593 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3594 if (memcg_id < 0)
3595 return memcg_id;
d6441637 3596
bf4f0599
RG
3597 objcg = obj_cgroup_alloc();
3598 if (!objcg) {
3599 memcg_free_cache_id(memcg_id);
3600 return -ENOMEM;
3601 }
3602 objcg->memcg = memcg;
3603 rcu_assign_pointer(memcg->objcg, objcg);
3604
d648bcc7
RG
3605 static_branch_enable(&memcg_kmem_enabled_key);
3606
900a38f0 3607 memcg->kmemcg_id = memcg_id;
567e9ab2 3608 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3609
3610 return 0;
d6441637
VD
3611}
3612
8e0a8912
JW
3613static void memcg_offline_kmem(struct mem_cgroup *memcg)
3614{
3615 struct cgroup_subsys_state *css;
3616 struct mem_cgroup *parent, *child;
3617 int kmemcg_id;
3618
3619 if (memcg->kmem_state != KMEM_ONLINE)
3620 return;
9855609b 3621
8e0a8912
JW
3622 memcg->kmem_state = KMEM_ALLOCATED;
3623
8e0a8912
JW
3624 parent = parent_mem_cgroup(memcg);
3625 if (!parent)
3626 parent = root_mem_cgroup;
3627
bf4f0599 3628 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3629
3630 kmemcg_id = memcg->kmemcg_id;
3631 BUG_ON(kmemcg_id < 0);
3632
8e0a8912
JW
3633 /*
3634 * Change kmemcg_id of this cgroup and all its descendants to the
3635 * parent's id, and then move all entries from this cgroup's list_lrus
3636 * to ones of the parent. After we have finished, all list_lrus
3637 * corresponding to this cgroup are guaranteed to remain empty. The
3638 * ordering is imposed by list_lru_node->lock taken by
3639 * memcg_drain_all_list_lrus().
3640 */
3a06bb78 3641 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3642 css_for_each_descendant_pre(css, &memcg->css) {
3643 child = mem_cgroup_from_css(css);
3644 BUG_ON(child->kmemcg_id != kmemcg_id);
3645 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3646 }
3a06bb78
TH
3647 rcu_read_unlock();
3648
9bec5c35 3649 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3650
3651 memcg_free_cache_id(kmemcg_id);
3652}
3653
3654static void memcg_free_kmem(struct mem_cgroup *memcg)
3655{
0b8f73e1
JW
3656 /* css_alloc() failed, offlining didn't happen */
3657 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3658 memcg_offline_kmem(memcg);
8e0a8912 3659}
d6441637 3660#else
0b8f73e1 3661static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3662{
3663 return 0;
3664}
3665static void memcg_offline_kmem(struct mem_cgroup *memcg)
3666{
3667}
3668static void memcg_free_kmem(struct mem_cgroup *memcg)
3669{
3670}
84c07d11 3671#endif /* CONFIG_MEMCG_KMEM */
127424c8 3672
bbec2e15
RG
3673static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3674 unsigned long max)
d6441637 3675{
b313aeee 3676 int ret;
127424c8 3677
bbec2e15
RG
3678 mutex_lock(&memcg_max_mutex);
3679 ret = page_counter_set_max(&memcg->kmem, max);
3680 mutex_unlock(&memcg_max_mutex);
127424c8 3681 return ret;
d6441637 3682}
510fc4e1 3683
bbec2e15 3684static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3685{
3686 int ret;
3687
bbec2e15 3688 mutex_lock(&memcg_max_mutex);
d55f90bf 3689
bbec2e15 3690 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3691 if (ret)
3692 goto out;
3693
0db15298 3694 if (!memcg->tcpmem_active) {
d55f90bf
VD
3695 /*
3696 * The active flag needs to be written after the static_key
3697 * update. This is what guarantees that the socket activation
2d758073
JW
3698 * function is the last one to run. See mem_cgroup_sk_alloc()
3699 * for details, and note that we don't mark any socket as
3700 * belonging to this memcg until that flag is up.
d55f90bf
VD
3701 *
3702 * We need to do this, because static_keys will span multiple
3703 * sites, but we can't control their order. If we mark a socket
3704 * as accounted, but the accounting functions are not patched in
3705 * yet, we'll lose accounting.
3706 *
2d758073 3707 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3708 * because when this value change, the code to process it is not
3709 * patched in yet.
3710 */
3711 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3712 memcg->tcpmem_active = true;
d55f90bf
VD
3713 }
3714out:
bbec2e15 3715 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3716 return ret;
3717}
d55f90bf 3718
628f4235
KH
3719/*
3720 * The user of this function is...
3721 * RES_LIMIT.
3722 */
451af504
TH
3723static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3724 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3725{
451af504 3726 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3727 unsigned long nr_pages;
628f4235
KH
3728 int ret;
3729
451af504 3730 buf = strstrip(buf);
650c5e56 3731 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3732 if (ret)
3733 return ret;
af36f906 3734
3e32cb2e 3735 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3736 case RES_LIMIT:
4b3bde4c
BS
3737 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3738 ret = -EINVAL;
3739 break;
3740 }
3e32cb2e
JW
3741 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3742 case _MEM:
bbec2e15 3743 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3744 break;
3e32cb2e 3745 case _MEMSWAP:
bbec2e15 3746 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3747 break;
3e32cb2e 3748 case _KMEM:
0158115f
MH
3749 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3750 "Please report your usecase to linux-mm@kvack.org if you "
3751 "depend on this functionality.\n");
bbec2e15 3752 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3753 break;
d55f90bf 3754 case _TCP:
bbec2e15 3755 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3756 break;
3e32cb2e 3757 }
296c81d8 3758 break;
3e32cb2e
JW
3759 case RES_SOFT_LIMIT:
3760 memcg->soft_limit = nr_pages;
3761 ret = 0;
628f4235
KH
3762 break;
3763 }
451af504 3764 return ret ?: nbytes;
8cdea7c0
BS
3765}
3766
6770c64e
TH
3767static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3768 size_t nbytes, loff_t off)
c84872e1 3769{
6770c64e 3770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3771 struct page_counter *counter;
c84872e1 3772
3e32cb2e
JW
3773 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3774 case _MEM:
3775 counter = &memcg->memory;
3776 break;
3777 case _MEMSWAP:
3778 counter = &memcg->memsw;
3779 break;
3780 case _KMEM:
3781 counter = &memcg->kmem;
3782 break;
d55f90bf 3783 case _TCP:
0db15298 3784 counter = &memcg->tcpmem;
d55f90bf 3785 break;
3e32cb2e
JW
3786 default:
3787 BUG();
3788 }
af36f906 3789
3e32cb2e 3790 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3791 case RES_MAX_USAGE:
3e32cb2e 3792 page_counter_reset_watermark(counter);
29f2a4da
PE
3793 break;
3794 case RES_FAILCNT:
3e32cb2e 3795 counter->failcnt = 0;
29f2a4da 3796 break;
3e32cb2e
JW
3797 default:
3798 BUG();
29f2a4da 3799 }
f64c3f54 3800
6770c64e 3801 return nbytes;
c84872e1
PE
3802}
3803
182446d0 3804static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3805 struct cftype *cft)
3806{
182446d0 3807 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3808}
3809
02491447 3810#ifdef CONFIG_MMU
182446d0 3811static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3812 struct cftype *cft, u64 val)
3813{
182446d0 3814 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3815
1dfab5ab 3816 if (val & ~MOVE_MASK)
7dc74be0 3817 return -EINVAL;
ee5e8472 3818
7dc74be0 3819 /*
ee5e8472
GC
3820 * No kind of locking is needed in here, because ->can_attach() will
3821 * check this value once in the beginning of the process, and then carry
3822 * on with stale data. This means that changes to this value will only
3823 * affect task migrations starting after the change.
7dc74be0 3824 */
c0ff4b85 3825 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3826 return 0;
3827}
02491447 3828#else
182446d0 3829static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3830 struct cftype *cft, u64 val)
3831{
3832 return -ENOSYS;
3833}
3834#endif
7dc74be0 3835
406eb0c9 3836#ifdef CONFIG_NUMA
113b7dfd
JW
3837
3838#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3839#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3840#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3841
3842static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3843 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3844{
867e5e1d 3845 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3846 unsigned long nr = 0;
3847 enum lru_list lru;
3848
3849 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3850
3851 for_each_lru(lru) {
3852 if (!(BIT(lru) & lru_mask))
3853 continue;
dd8657b6
SB
3854 if (tree)
3855 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3856 else
3857 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3858 }
3859 return nr;
3860}
3861
3862static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3863 unsigned int lru_mask,
3864 bool tree)
113b7dfd
JW
3865{
3866 unsigned long nr = 0;
3867 enum lru_list lru;
3868
3869 for_each_lru(lru) {
3870 if (!(BIT(lru) & lru_mask))
3871 continue;
dd8657b6
SB
3872 if (tree)
3873 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3874 else
3875 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3876 }
3877 return nr;
3878}
3879
2da8ca82 3880static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3881{
25485de6
GT
3882 struct numa_stat {
3883 const char *name;
3884 unsigned int lru_mask;
3885 };
3886
3887 static const struct numa_stat stats[] = {
3888 { "total", LRU_ALL },
3889 { "file", LRU_ALL_FILE },
3890 { "anon", LRU_ALL_ANON },
3891 { "unevictable", BIT(LRU_UNEVICTABLE) },
3892 };
3893 const struct numa_stat *stat;
406eb0c9 3894 int nid;
aa9694bb 3895 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3896
2d146aa3
JW
3897 cgroup_rstat_flush(memcg->css.cgroup);
3898
25485de6 3899 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3900 seq_printf(m, "%s=%lu", stat->name,
3901 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3902 false));
3903 for_each_node_state(nid, N_MEMORY)
3904 seq_printf(m, " N%d=%lu", nid,
3905 mem_cgroup_node_nr_lru_pages(memcg, nid,
3906 stat->lru_mask, false));
25485de6 3907 seq_putc(m, '\n');
406eb0c9 3908 }
406eb0c9 3909
071aee13 3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3911
3912 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3913 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3914 true));
3915 for_each_node_state(nid, N_MEMORY)
3916 seq_printf(m, " N%d=%lu", nid,
3917 mem_cgroup_node_nr_lru_pages(memcg, nid,
3918 stat->lru_mask, true));
071aee13 3919 seq_putc(m, '\n');
406eb0c9 3920 }
406eb0c9 3921
406eb0c9
YH
3922 return 0;
3923}
3924#endif /* CONFIG_NUMA */
3925
c8713d0b 3926static const unsigned int memcg1_stats[] = {
0d1c2072 3927 NR_FILE_PAGES,
be5d0a74 3928 NR_ANON_MAPPED,
468c3982
JW
3929#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3930 NR_ANON_THPS,
3931#endif
c8713d0b
JW
3932 NR_SHMEM,
3933 NR_FILE_MAPPED,
3934 NR_FILE_DIRTY,
3935 NR_WRITEBACK,
3936 MEMCG_SWAP,
3937};
3938
3939static const char *const memcg1_stat_names[] = {
3940 "cache",
3941 "rss",
468c3982 3942#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3943 "rss_huge",
468c3982 3944#endif
c8713d0b
JW
3945 "shmem",
3946 "mapped_file",
3947 "dirty",
3948 "writeback",
3949 "swap",
3950};
3951
df0e53d0 3952/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3953static const unsigned int memcg1_events[] = {
df0e53d0
JW
3954 PGPGIN,
3955 PGPGOUT,
3956 PGFAULT,
3957 PGMAJFAULT,
3958};
3959
2da8ca82 3960static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3961{
aa9694bb 3962 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3963 unsigned long memory, memsw;
af7c4b0e
JW
3964 struct mem_cgroup *mi;
3965 unsigned int i;
406eb0c9 3966
71cd3113 3967 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3968
2d146aa3
JW
3969 cgroup_rstat_flush(memcg->css.cgroup);
3970
71cd3113 3971 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3972 unsigned long nr;
3973
71cd3113 3974 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3975 continue;
468c3982 3976 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3977 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3978 }
7b854121 3979
df0e53d0 3980 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3981 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3982 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3983
3984 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3985 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3986 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3987 PAGE_SIZE);
af7c4b0e 3988
14067bb3 3989 /* Hierarchical information */
3e32cb2e
JW
3990 memory = memsw = PAGE_COUNTER_MAX;
3991 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3992 memory = min(memory, READ_ONCE(mi->memory.max));
3993 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3994 }
3e32cb2e
JW
3995 seq_printf(m, "hierarchical_memory_limit %llu\n",
3996 (u64)memory * PAGE_SIZE);
7941d214 3997 if (do_memsw_account())
3e32cb2e
JW
3998 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3999 (u64)memsw * PAGE_SIZE);
7f016ee8 4000
8de7ecc6 4001 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4002 unsigned long nr;
4003
71cd3113 4004 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4005 continue;
7de2e9f1 4006 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4007 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4008 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4009 }
4010
8de7ecc6 4011 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4012 seq_printf(m, "total_%s %llu\n",
4013 vm_event_name(memcg1_events[i]),
dd923990 4014 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4015
8de7ecc6 4016 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4017 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4018 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4019 PAGE_SIZE);
14067bb3 4020
7f016ee8 4021#ifdef CONFIG_DEBUG_VM
7f016ee8 4022 {
ef8f2327
MG
4023 pg_data_t *pgdat;
4024 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4025 unsigned long anon_cost = 0;
4026 unsigned long file_cost = 0;
7f016ee8 4027
ef8f2327 4028 for_each_online_pgdat(pgdat) {
a3747b53 4029 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4030
1431d4d1
JW
4031 anon_cost += mz->lruvec.anon_cost;
4032 file_cost += mz->lruvec.file_cost;
ef8f2327 4033 }
1431d4d1
JW
4034 seq_printf(m, "anon_cost %lu\n", anon_cost);
4035 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4036 }
4037#endif
4038
d2ceb9b7
KH
4039 return 0;
4040}
4041
182446d0
TH
4042static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4043 struct cftype *cft)
a7885eb8 4044{
182446d0 4045 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4046
1f4c025b 4047 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4048}
4049
182446d0
TH
4050static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4051 struct cftype *cft, u64 val)
a7885eb8 4052{
182446d0 4053 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4054
3dae7fec 4055 if (val > 100)
a7885eb8
KM
4056 return -EINVAL;
4057
a4792030 4058 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4059 memcg->swappiness = val;
4060 else
4061 vm_swappiness = val;
068b38c1 4062
a7885eb8
KM
4063 return 0;
4064}
4065
2e72b634
KS
4066static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4067{
4068 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4069 unsigned long usage;
2e72b634
KS
4070 int i;
4071
4072 rcu_read_lock();
4073 if (!swap)
2c488db2 4074 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4075 else
2c488db2 4076 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4077
4078 if (!t)
4079 goto unlock;
4080
ce00a967 4081 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4082
4083 /*
748dad36 4084 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4085 * If it's not true, a threshold was crossed after last
4086 * call of __mem_cgroup_threshold().
4087 */
5407a562 4088 i = t->current_threshold;
2e72b634
KS
4089
4090 /*
4091 * Iterate backward over array of thresholds starting from
4092 * current_threshold and check if a threshold is crossed.
4093 * If none of thresholds below usage is crossed, we read
4094 * only one element of the array here.
4095 */
4096 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4097 eventfd_signal(t->entries[i].eventfd, 1);
4098
4099 /* i = current_threshold + 1 */
4100 i++;
4101
4102 /*
4103 * Iterate forward over array of thresholds starting from
4104 * current_threshold+1 and check if a threshold is crossed.
4105 * If none of thresholds above usage is crossed, we read
4106 * only one element of the array here.
4107 */
4108 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4109 eventfd_signal(t->entries[i].eventfd, 1);
4110
4111 /* Update current_threshold */
5407a562 4112 t->current_threshold = i - 1;
2e72b634
KS
4113unlock:
4114 rcu_read_unlock();
4115}
4116
4117static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4118{
ad4ca5f4
KS
4119 while (memcg) {
4120 __mem_cgroup_threshold(memcg, false);
7941d214 4121 if (do_memsw_account())
ad4ca5f4
KS
4122 __mem_cgroup_threshold(memcg, true);
4123
4124 memcg = parent_mem_cgroup(memcg);
4125 }
2e72b634
KS
4126}
4127
4128static int compare_thresholds(const void *a, const void *b)
4129{
4130 const struct mem_cgroup_threshold *_a = a;
4131 const struct mem_cgroup_threshold *_b = b;
4132
2bff24a3
GT
4133 if (_a->threshold > _b->threshold)
4134 return 1;
4135
4136 if (_a->threshold < _b->threshold)
4137 return -1;
4138
4139 return 0;
2e72b634
KS
4140}
4141
c0ff4b85 4142static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4143{
4144 struct mem_cgroup_eventfd_list *ev;
4145
2bcf2e92
MH
4146 spin_lock(&memcg_oom_lock);
4147
c0ff4b85 4148 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4149 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4150
4151 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4152 return 0;
4153}
4154
c0ff4b85 4155static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4156{
7d74b06f
KH
4157 struct mem_cgroup *iter;
4158
c0ff4b85 4159 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4160 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4161}
4162
59b6f873 4163static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4164 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4165{
2c488db2
KS
4166 struct mem_cgroup_thresholds *thresholds;
4167 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4168 unsigned long threshold;
4169 unsigned long usage;
2c488db2 4170 int i, size, ret;
2e72b634 4171
650c5e56 4172 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4173 if (ret)
4174 return ret;
4175
4176 mutex_lock(&memcg->thresholds_lock);
2c488db2 4177
05b84301 4178 if (type == _MEM) {
2c488db2 4179 thresholds = &memcg->thresholds;
ce00a967 4180 usage = mem_cgroup_usage(memcg, false);
05b84301 4181 } else if (type == _MEMSWAP) {
2c488db2 4182 thresholds = &memcg->memsw_thresholds;
ce00a967 4183 usage = mem_cgroup_usage(memcg, true);
05b84301 4184 } else
2e72b634
KS
4185 BUG();
4186
2e72b634 4187 /* Check if a threshold crossed before adding a new one */
2c488db2 4188 if (thresholds->primary)
2e72b634
KS
4189 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4190
2c488db2 4191 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4192
4193 /* Allocate memory for new array of thresholds */
67b8046f 4194 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4195 if (!new) {
2e72b634
KS
4196 ret = -ENOMEM;
4197 goto unlock;
4198 }
2c488db2 4199 new->size = size;
2e72b634
KS
4200
4201 /* Copy thresholds (if any) to new array */
e90342e6
GS
4202 if (thresholds->primary)
4203 memcpy(new->entries, thresholds->primary->entries,
4204 flex_array_size(new, entries, size - 1));
2c488db2 4205
2e72b634 4206 /* Add new threshold */
2c488db2
KS
4207 new->entries[size - 1].eventfd = eventfd;
4208 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4209
4210 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4211 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4212 compare_thresholds, NULL);
4213
4214 /* Find current threshold */
2c488db2 4215 new->current_threshold = -1;
2e72b634 4216 for (i = 0; i < size; i++) {
748dad36 4217 if (new->entries[i].threshold <= usage) {
2e72b634 4218 /*
2c488db2
KS
4219 * new->current_threshold will not be used until
4220 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4221 * it here.
4222 */
2c488db2 4223 ++new->current_threshold;
748dad36
SZ
4224 } else
4225 break;
2e72b634
KS
4226 }
4227
2c488db2
KS
4228 /* Free old spare buffer and save old primary buffer as spare */
4229 kfree(thresholds->spare);
4230 thresholds->spare = thresholds->primary;
4231
4232 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4233
907860ed 4234 /* To be sure that nobody uses thresholds */
2e72b634
KS
4235 synchronize_rcu();
4236
2e72b634
KS
4237unlock:
4238 mutex_unlock(&memcg->thresholds_lock);
4239
4240 return ret;
4241}
4242
59b6f873 4243static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4244 struct eventfd_ctx *eventfd, const char *args)
4245{
59b6f873 4246 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4247}
4248
59b6f873 4249static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4250 struct eventfd_ctx *eventfd, const char *args)
4251{
59b6f873 4252 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4253}
4254
59b6f873 4255static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4256 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4257{
2c488db2
KS
4258 struct mem_cgroup_thresholds *thresholds;
4259 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4260 unsigned long usage;
7d36665a 4261 int i, j, size, entries;
2e72b634
KS
4262
4263 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4264
4265 if (type == _MEM) {
2c488db2 4266 thresholds = &memcg->thresholds;
ce00a967 4267 usage = mem_cgroup_usage(memcg, false);
05b84301 4268 } else if (type == _MEMSWAP) {
2c488db2 4269 thresholds = &memcg->memsw_thresholds;
ce00a967 4270 usage = mem_cgroup_usage(memcg, true);
05b84301 4271 } else
2e72b634
KS
4272 BUG();
4273
371528ca
AV
4274 if (!thresholds->primary)
4275 goto unlock;
4276
2e72b634
KS
4277 /* Check if a threshold crossed before removing */
4278 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4279
4280 /* Calculate new number of threshold */
7d36665a 4281 size = entries = 0;
2c488db2
KS
4282 for (i = 0; i < thresholds->primary->size; i++) {
4283 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4284 size++;
7d36665a
CX
4285 else
4286 entries++;
2e72b634
KS
4287 }
4288
2c488db2 4289 new = thresholds->spare;
907860ed 4290
7d36665a
CX
4291 /* If no items related to eventfd have been cleared, nothing to do */
4292 if (!entries)
4293 goto unlock;
4294
2e72b634
KS
4295 /* Set thresholds array to NULL if we don't have thresholds */
4296 if (!size) {
2c488db2
KS
4297 kfree(new);
4298 new = NULL;
907860ed 4299 goto swap_buffers;
2e72b634
KS
4300 }
4301
2c488db2 4302 new->size = size;
2e72b634
KS
4303
4304 /* Copy thresholds and find current threshold */
2c488db2
KS
4305 new->current_threshold = -1;
4306 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4307 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4308 continue;
4309
2c488db2 4310 new->entries[j] = thresholds->primary->entries[i];
748dad36 4311 if (new->entries[j].threshold <= usage) {
2e72b634 4312 /*
2c488db2 4313 * new->current_threshold will not be used
2e72b634
KS
4314 * until rcu_assign_pointer(), so it's safe to increment
4315 * it here.
4316 */
2c488db2 4317 ++new->current_threshold;
2e72b634
KS
4318 }
4319 j++;
4320 }
4321
907860ed 4322swap_buffers:
2c488db2
KS
4323 /* Swap primary and spare array */
4324 thresholds->spare = thresholds->primary;
8c757763 4325
2c488db2 4326 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4327
907860ed 4328 /* To be sure that nobody uses thresholds */
2e72b634 4329 synchronize_rcu();
6611d8d7
MC
4330
4331 /* If all events are unregistered, free the spare array */
4332 if (!new) {
4333 kfree(thresholds->spare);
4334 thresholds->spare = NULL;
4335 }
371528ca 4336unlock:
2e72b634 4337 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4338}
c1e862c1 4339
59b6f873 4340static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4341 struct eventfd_ctx *eventfd)
4342{
59b6f873 4343 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4344}
4345
59b6f873 4346static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4347 struct eventfd_ctx *eventfd)
4348{
59b6f873 4349 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4350}
4351
59b6f873 4352static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4353 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4354{
9490ff27 4355 struct mem_cgroup_eventfd_list *event;
9490ff27 4356
9490ff27
KH
4357 event = kmalloc(sizeof(*event), GFP_KERNEL);
4358 if (!event)
4359 return -ENOMEM;
4360
1af8efe9 4361 spin_lock(&memcg_oom_lock);
9490ff27
KH
4362
4363 event->eventfd = eventfd;
4364 list_add(&event->list, &memcg->oom_notify);
4365
4366 /* already in OOM ? */
c2b42d3c 4367 if (memcg->under_oom)
9490ff27 4368 eventfd_signal(eventfd, 1);
1af8efe9 4369 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4370
4371 return 0;
4372}
4373
59b6f873 4374static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4375 struct eventfd_ctx *eventfd)
9490ff27 4376{
9490ff27 4377 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4378
1af8efe9 4379 spin_lock(&memcg_oom_lock);
9490ff27 4380
c0ff4b85 4381 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4382 if (ev->eventfd == eventfd) {
4383 list_del(&ev->list);
4384 kfree(ev);
4385 }
4386 }
4387
1af8efe9 4388 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4389}
4390
2da8ca82 4391static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4392{
aa9694bb 4393 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4394
791badbd 4395 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4396 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4397 seq_printf(sf, "oom_kill %lu\n",
4398 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4399 return 0;
4400}
4401
182446d0 4402static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4403 struct cftype *cft, u64 val)
4404{
182446d0 4405 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4406
4407 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4408 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4409 return -EINVAL;
4410
c0ff4b85 4411 memcg->oom_kill_disable = val;
4d845ebf 4412 if (!val)
c0ff4b85 4413 memcg_oom_recover(memcg);
3dae7fec 4414
3c11ecf4
KH
4415 return 0;
4416}
4417
52ebea74
TH
4418#ifdef CONFIG_CGROUP_WRITEBACK
4419
3a8e9ac8
TH
4420#include <trace/events/writeback.h>
4421
841710aa
TH
4422static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4423{
4424 return wb_domain_init(&memcg->cgwb_domain, gfp);
4425}
4426
4427static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4428{
4429 wb_domain_exit(&memcg->cgwb_domain);
4430}
4431
2529bb3a
TH
4432static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433{
4434 wb_domain_size_changed(&memcg->cgwb_domain);
4435}
4436
841710aa
TH
4437struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4438{
4439 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4440
4441 if (!memcg->css.parent)
4442 return NULL;
4443
4444 return &memcg->cgwb_domain;
4445}
4446
c2aa723a
TH
4447/**
4448 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4449 * @wb: bdi_writeback in question
c5edf9cd
TH
4450 * @pfilepages: out parameter for number of file pages
4451 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4452 * @pdirty: out parameter for number of dirty pages
4453 * @pwriteback: out parameter for number of pages under writeback
4454 *
c5edf9cd
TH
4455 * Determine the numbers of file, headroom, dirty, and writeback pages in
4456 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4457 * is a bit more involved.
c2aa723a 4458 *
c5edf9cd
TH
4459 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4460 * headroom is calculated as the lowest headroom of itself and the
4461 * ancestors. Note that this doesn't consider the actual amount of
4462 * available memory in the system. The caller should further cap
4463 * *@pheadroom accordingly.
c2aa723a 4464 */
c5edf9cd
TH
4465void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4466 unsigned long *pheadroom, unsigned long *pdirty,
4467 unsigned long *pwriteback)
c2aa723a
TH
4468{
4469 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4470 struct mem_cgroup *parent;
c2aa723a 4471
2d146aa3 4472 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4473
2d146aa3
JW
4474 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4475 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4476 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4477 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4478
2d146aa3 4479 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4480 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4481 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4482 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4483 unsigned long used = page_counter_read(&memcg->memory);
4484
c5edf9cd 4485 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4486 memcg = parent;
4487 }
c2aa723a
TH
4488}
4489
97b27821
TH
4490/*
4491 * Foreign dirty flushing
4492 *
4493 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4494 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4495 * deliberate design decision because honoring per-page ownership in the
4496 * writeback path is complicated, may lead to higher CPU and IO overheads
4497 * and deemed unnecessary given that write-sharing an inode across
4498 * different cgroups isn't a common use-case.
4499 *
4500 * Combined with inode majority-writer ownership switching, this works well
4501 * enough in most cases but there are some pathological cases. For
4502 * example, let's say there are two cgroups A and B which keep writing to
4503 * different but confined parts of the same inode. B owns the inode and
4504 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4505 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4506 * triggering background writeback. A will be slowed down without a way to
4507 * make writeback of the dirty pages happen.
4508 *
f0953a1b 4509 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4510 * severely throttled after making some progress after each
f0953a1b 4511 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4512 * completely idle.
4513 *
4514 * Solving this problem completely requires matching the ownership tracking
4515 * granularities between memcg and writeback in either direction. However,
4516 * the more egregious behaviors can be avoided by simply remembering the
4517 * most recent foreign dirtying events and initiating remote flushes on
4518 * them when local writeback isn't enough to keep the memory clean enough.
4519 *
4520 * The following two functions implement such mechanism. When a foreign
4521 * page - a page whose memcg and writeback ownerships don't match - is
4522 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4523 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4524 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4525 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4526 * foreign bdi_writebacks which haven't expired. Both the numbers of
4527 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4528 * limited to MEMCG_CGWB_FRN_CNT.
4529 *
4530 * The mechanism only remembers IDs and doesn't hold any object references.
4531 * As being wrong occasionally doesn't matter, updates and accesses to the
4532 * records are lockless and racy.
4533 */
4534void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4535 struct bdi_writeback *wb)
4536{
bcfe06bf 4537 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4538 struct memcg_cgwb_frn *frn;
4539 u64 now = get_jiffies_64();
4540 u64 oldest_at = now;
4541 int oldest = -1;
4542 int i;
4543
3a8e9ac8
TH
4544 trace_track_foreign_dirty(page, wb);
4545
97b27821
TH
4546 /*
4547 * Pick the slot to use. If there is already a slot for @wb, keep
4548 * using it. If not replace the oldest one which isn't being
4549 * written out.
4550 */
4551 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4552 frn = &memcg->cgwb_frn[i];
4553 if (frn->bdi_id == wb->bdi->id &&
4554 frn->memcg_id == wb->memcg_css->id)
4555 break;
4556 if (time_before64(frn->at, oldest_at) &&
4557 atomic_read(&frn->done.cnt) == 1) {
4558 oldest = i;
4559 oldest_at = frn->at;
4560 }
4561 }
4562
4563 if (i < MEMCG_CGWB_FRN_CNT) {
4564 /*
4565 * Re-using an existing one. Update timestamp lazily to
4566 * avoid making the cacheline hot. We want them to be
4567 * reasonably up-to-date and significantly shorter than
4568 * dirty_expire_interval as that's what expires the record.
4569 * Use the shorter of 1s and dirty_expire_interval / 8.
4570 */
4571 unsigned long update_intv =
4572 min_t(unsigned long, HZ,
4573 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4574
4575 if (time_before64(frn->at, now - update_intv))
4576 frn->at = now;
4577 } else if (oldest >= 0) {
4578 /* replace the oldest free one */
4579 frn = &memcg->cgwb_frn[oldest];
4580 frn->bdi_id = wb->bdi->id;
4581 frn->memcg_id = wb->memcg_css->id;
4582 frn->at = now;
4583 }
4584}
4585
4586/* issue foreign writeback flushes for recorded foreign dirtying events */
4587void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4588{
4589 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4590 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4591 u64 now = jiffies_64;
4592 int i;
4593
4594 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4595 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4596
4597 /*
4598 * If the record is older than dirty_expire_interval,
4599 * writeback on it has already started. No need to kick it
4600 * off again. Also, don't start a new one if there's
4601 * already one in flight.
4602 */
4603 if (time_after64(frn->at, now - intv) &&
4604 atomic_read(&frn->done.cnt) == 1) {
4605 frn->at = 0;
3a8e9ac8 4606 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4607 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4608 WB_REASON_FOREIGN_FLUSH,
4609 &frn->done);
4610 }
4611 }
4612}
4613
841710aa
TH
4614#else /* CONFIG_CGROUP_WRITEBACK */
4615
4616static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4617{
4618 return 0;
4619}
4620
4621static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4622{
4623}
4624
2529bb3a
TH
4625static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4626{
4627}
4628
52ebea74
TH
4629#endif /* CONFIG_CGROUP_WRITEBACK */
4630
3bc942f3
TH
4631/*
4632 * DO NOT USE IN NEW FILES.
4633 *
4634 * "cgroup.event_control" implementation.
4635 *
4636 * This is way over-engineered. It tries to support fully configurable
4637 * events for each user. Such level of flexibility is completely
4638 * unnecessary especially in the light of the planned unified hierarchy.
4639 *
4640 * Please deprecate this and replace with something simpler if at all
4641 * possible.
4642 */
4643
79bd9814
TH
4644/*
4645 * Unregister event and free resources.
4646 *
4647 * Gets called from workqueue.
4648 */
3bc942f3 4649static void memcg_event_remove(struct work_struct *work)
79bd9814 4650{
3bc942f3
TH
4651 struct mem_cgroup_event *event =
4652 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4653 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4654
4655 remove_wait_queue(event->wqh, &event->wait);
4656
59b6f873 4657 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4658
4659 /* Notify userspace the event is going away. */
4660 eventfd_signal(event->eventfd, 1);
4661
4662 eventfd_ctx_put(event->eventfd);
4663 kfree(event);
59b6f873 4664 css_put(&memcg->css);
79bd9814
TH
4665}
4666
4667/*
a9a08845 4668 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4669 *
4670 * Called with wqh->lock held and interrupts disabled.
4671 */
ac6424b9 4672static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4673 int sync, void *key)
79bd9814 4674{
3bc942f3
TH
4675 struct mem_cgroup_event *event =
4676 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4677 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4678 __poll_t flags = key_to_poll(key);
79bd9814 4679
a9a08845 4680 if (flags & EPOLLHUP) {
79bd9814
TH
4681 /*
4682 * If the event has been detached at cgroup removal, we
4683 * can simply return knowing the other side will cleanup
4684 * for us.
4685 *
4686 * We can't race against event freeing since the other
4687 * side will require wqh->lock via remove_wait_queue(),
4688 * which we hold.
4689 */
fba94807 4690 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4691 if (!list_empty(&event->list)) {
4692 list_del_init(&event->list);
4693 /*
4694 * We are in atomic context, but cgroup_event_remove()
4695 * may sleep, so we have to call it in workqueue.
4696 */
4697 schedule_work(&event->remove);
4698 }
fba94807 4699 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4700 }
4701
4702 return 0;
4703}
4704
3bc942f3 4705static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4706 wait_queue_head_t *wqh, poll_table *pt)
4707{
3bc942f3
TH
4708 struct mem_cgroup_event *event =
4709 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4710
4711 event->wqh = wqh;
4712 add_wait_queue(wqh, &event->wait);
4713}
4714
4715/*
3bc942f3
TH
4716 * DO NOT USE IN NEW FILES.
4717 *
79bd9814
TH
4718 * Parse input and register new cgroup event handler.
4719 *
4720 * Input must be in format '<event_fd> <control_fd> <args>'.
4721 * Interpretation of args is defined by control file implementation.
4722 */
451af504
TH
4723static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4724 char *buf, size_t nbytes, loff_t off)
79bd9814 4725{
451af504 4726 struct cgroup_subsys_state *css = of_css(of);
fba94807 4727 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4728 struct mem_cgroup_event *event;
79bd9814
TH
4729 struct cgroup_subsys_state *cfile_css;
4730 unsigned int efd, cfd;
4731 struct fd efile;
4732 struct fd cfile;
fba94807 4733 const char *name;
79bd9814
TH
4734 char *endp;
4735 int ret;
4736
451af504
TH
4737 buf = strstrip(buf);
4738
4739 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4740 if (*endp != ' ')
4741 return -EINVAL;
451af504 4742 buf = endp + 1;
79bd9814 4743
451af504 4744 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4745 if ((*endp != ' ') && (*endp != '\0'))
4746 return -EINVAL;
451af504 4747 buf = endp + 1;
79bd9814
TH
4748
4749 event = kzalloc(sizeof(*event), GFP_KERNEL);
4750 if (!event)
4751 return -ENOMEM;
4752
59b6f873 4753 event->memcg = memcg;
79bd9814 4754 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4755 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4756 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4757 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4758
4759 efile = fdget(efd);
4760 if (!efile.file) {
4761 ret = -EBADF;
4762 goto out_kfree;
4763 }
4764
4765 event->eventfd = eventfd_ctx_fileget(efile.file);
4766 if (IS_ERR(event->eventfd)) {
4767 ret = PTR_ERR(event->eventfd);
4768 goto out_put_efile;
4769 }
4770
4771 cfile = fdget(cfd);
4772 if (!cfile.file) {
4773 ret = -EBADF;
4774 goto out_put_eventfd;
4775 }
4776
4777 /* the process need read permission on control file */
4778 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4779 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4780 if (ret < 0)
4781 goto out_put_cfile;
4782
fba94807
TH
4783 /*
4784 * Determine the event callbacks and set them in @event. This used
4785 * to be done via struct cftype but cgroup core no longer knows
4786 * about these events. The following is crude but the whole thing
4787 * is for compatibility anyway.
3bc942f3
TH
4788 *
4789 * DO NOT ADD NEW FILES.
fba94807 4790 */
b583043e 4791 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4792
4793 if (!strcmp(name, "memory.usage_in_bytes")) {
4794 event->register_event = mem_cgroup_usage_register_event;
4795 event->unregister_event = mem_cgroup_usage_unregister_event;
4796 } else if (!strcmp(name, "memory.oom_control")) {
4797 event->register_event = mem_cgroup_oom_register_event;
4798 event->unregister_event = mem_cgroup_oom_unregister_event;
4799 } else if (!strcmp(name, "memory.pressure_level")) {
4800 event->register_event = vmpressure_register_event;
4801 event->unregister_event = vmpressure_unregister_event;
4802 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4803 event->register_event = memsw_cgroup_usage_register_event;
4804 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4805 } else {
4806 ret = -EINVAL;
4807 goto out_put_cfile;
4808 }
4809
79bd9814 4810 /*
b5557c4c
TH
4811 * Verify @cfile should belong to @css. Also, remaining events are
4812 * automatically removed on cgroup destruction but the removal is
4813 * asynchronous, so take an extra ref on @css.
79bd9814 4814 */
b583043e 4815 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4816 &memory_cgrp_subsys);
79bd9814 4817 ret = -EINVAL;
5a17f543 4818 if (IS_ERR(cfile_css))
79bd9814 4819 goto out_put_cfile;
5a17f543
TH
4820 if (cfile_css != css) {
4821 css_put(cfile_css);
79bd9814 4822 goto out_put_cfile;
5a17f543 4823 }
79bd9814 4824
451af504 4825 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4826 if (ret)
4827 goto out_put_css;
4828
9965ed17 4829 vfs_poll(efile.file, &event->pt);
79bd9814 4830
fba94807
TH
4831 spin_lock(&memcg->event_list_lock);
4832 list_add(&event->list, &memcg->event_list);
4833 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4834
4835 fdput(cfile);
4836 fdput(efile);
4837
451af504 4838 return nbytes;
79bd9814
TH
4839
4840out_put_css:
b5557c4c 4841 css_put(css);
79bd9814
TH
4842out_put_cfile:
4843 fdput(cfile);
4844out_put_eventfd:
4845 eventfd_ctx_put(event->eventfd);
4846out_put_efile:
4847 fdput(efile);
4848out_kfree:
4849 kfree(event);
4850
4851 return ret;
4852}
4853
241994ed 4854static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4855 {
0eea1030 4856 .name = "usage_in_bytes",
8c7c6e34 4857 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4858 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4859 },
c84872e1
PE
4860 {
4861 .name = "max_usage_in_bytes",
8c7c6e34 4862 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4863 .write = mem_cgroup_reset,
791badbd 4864 .read_u64 = mem_cgroup_read_u64,
c84872e1 4865 },
8cdea7c0 4866 {
0eea1030 4867 .name = "limit_in_bytes",
8c7c6e34 4868 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4869 .write = mem_cgroup_write,
791badbd 4870 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4871 },
296c81d8
BS
4872 {
4873 .name = "soft_limit_in_bytes",
4874 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4875 .write = mem_cgroup_write,
791badbd 4876 .read_u64 = mem_cgroup_read_u64,
296c81d8 4877 },
8cdea7c0
BS
4878 {
4879 .name = "failcnt",
8c7c6e34 4880 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4881 .write = mem_cgroup_reset,
791badbd 4882 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4883 },
d2ceb9b7
KH
4884 {
4885 .name = "stat",
2da8ca82 4886 .seq_show = memcg_stat_show,
d2ceb9b7 4887 },
c1e862c1
KH
4888 {
4889 .name = "force_empty",
6770c64e 4890 .write = mem_cgroup_force_empty_write,
c1e862c1 4891 },
18f59ea7
BS
4892 {
4893 .name = "use_hierarchy",
4894 .write_u64 = mem_cgroup_hierarchy_write,
4895 .read_u64 = mem_cgroup_hierarchy_read,
4896 },
79bd9814 4897 {
3bc942f3 4898 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4899 .write = memcg_write_event_control,
7dbdb199 4900 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4901 },
a7885eb8
KM
4902 {
4903 .name = "swappiness",
4904 .read_u64 = mem_cgroup_swappiness_read,
4905 .write_u64 = mem_cgroup_swappiness_write,
4906 },
7dc74be0
DN
4907 {
4908 .name = "move_charge_at_immigrate",
4909 .read_u64 = mem_cgroup_move_charge_read,
4910 .write_u64 = mem_cgroup_move_charge_write,
4911 },
9490ff27
KH
4912 {
4913 .name = "oom_control",
2da8ca82 4914 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4915 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4916 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4917 },
70ddf637
AV
4918 {
4919 .name = "pressure_level",
70ddf637 4920 },
406eb0c9
YH
4921#ifdef CONFIG_NUMA
4922 {
4923 .name = "numa_stat",
2da8ca82 4924 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4925 },
4926#endif
510fc4e1
GC
4927 {
4928 .name = "kmem.limit_in_bytes",
4929 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4930 .write = mem_cgroup_write,
791badbd 4931 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4932 },
4933 {
4934 .name = "kmem.usage_in_bytes",
4935 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4936 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4937 },
4938 {
4939 .name = "kmem.failcnt",
4940 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4941 .write = mem_cgroup_reset,
791badbd 4942 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4943 },
4944 {
4945 .name = "kmem.max_usage_in_bytes",
4946 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4947 .write = mem_cgroup_reset,
791badbd 4948 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4949 },
a87425a3
YS
4950#if defined(CONFIG_MEMCG_KMEM) && \
4951 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4952 {
4953 .name = "kmem.slabinfo",
b047501c 4954 .seq_show = memcg_slab_show,
749c5415
GC
4955 },
4956#endif
d55f90bf
VD
4957 {
4958 .name = "kmem.tcp.limit_in_bytes",
4959 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4960 .write = mem_cgroup_write,
4961 .read_u64 = mem_cgroup_read_u64,
4962 },
4963 {
4964 .name = "kmem.tcp.usage_in_bytes",
4965 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4966 .read_u64 = mem_cgroup_read_u64,
4967 },
4968 {
4969 .name = "kmem.tcp.failcnt",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4971 .write = mem_cgroup_reset,
4972 .read_u64 = mem_cgroup_read_u64,
4973 },
4974 {
4975 .name = "kmem.tcp.max_usage_in_bytes",
4976 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4977 .write = mem_cgroup_reset,
4978 .read_u64 = mem_cgroup_read_u64,
4979 },
6bc10349 4980 { }, /* terminate */
af36f906 4981};
8c7c6e34 4982
73f576c0
JW
4983/*
4984 * Private memory cgroup IDR
4985 *
4986 * Swap-out records and page cache shadow entries need to store memcg
4987 * references in constrained space, so we maintain an ID space that is
4988 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4989 * memory-controlled cgroups to 64k.
4990 *
b8f2935f 4991 * However, there usually are many references to the offline CSS after
73f576c0
JW
4992 * the cgroup has been destroyed, such as page cache or reclaimable
4993 * slab objects, that don't need to hang on to the ID. We want to keep
4994 * those dead CSS from occupying IDs, or we might quickly exhaust the
4995 * relatively small ID space and prevent the creation of new cgroups
4996 * even when there are much fewer than 64k cgroups - possibly none.
4997 *
4998 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4999 * be freed and recycled when it's no longer needed, which is usually
5000 * when the CSS is offlined.
5001 *
5002 * The only exception to that are records of swapped out tmpfs/shmem
5003 * pages that need to be attributed to live ancestors on swapin. But
5004 * those references are manageable from userspace.
5005 */
5006
5007static DEFINE_IDR(mem_cgroup_idr);
5008
7e97de0b
KT
5009static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5010{
5011 if (memcg->id.id > 0) {
5012 idr_remove(&mem_cgroup_idr, memcg->id.id);
5013 memcg->id.id = 0;
5014 }
5015}
5016
c1514c0a
VF
5017static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5018 unsigned int n)
73f576c0 5019{
1c2d479a 5020 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5021}
5022
615d66c3 5023static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5024{
1c2d479a 5025 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5026 mem_cgroup_id_remove(memcg);
73f576c0
JW
5027
5028 /* Memcg ID pins CSS */
5029 css_put(&memcg->css);
5030 }
5031}
5032
615d66c3
VD
5033static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5034{
5035 mem_cgroup_id_put_many(memcg, 1);
5036}
5037
73f576c0
JW
5038/**
5039 * mem_cgroup_from_id - look up a memcg from a memcg id
5040 * @id: the memcg id to look up
5041 *
5042 * Caller must hold rcu_read_lock().
5043 */
5044struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5045{
5046 WARN_ON_ONCE(!rcu_read_lock_held());
5047 return idr_find(&mem_cgroup_idr, id);
5048}
5049
ef8f2327 5050static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5051{
5052 struct mem_cgroup_per_node *pn;
ef8f2327 5053 int tmp = node;
1ecaab2b
KH
5054 /*
5055 * This routine is called against possible nodes.
5056 * But it's BUG to call kmalloc() against offline node.
5057 *
5058 * TODO: this routine can waste much memory for nodes which will
5059 * never be onlined. It's better to use memory hotplug callback
5060 * function.
5061 */
41e3355d
KH
5062 if (!node_state(node, N_NORMAL_MEMORY))
5063 tmp = -1;
17295c88 5064 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5065 if (!pn)
5066 return 1;
1ecaab2b 5067
7e1c0d6f
SB
5068 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5069 GFP_KERNEL_ACCOUNT);
5070 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5071 kfree(pn);
5072 return 1;
5073 }
5074
ef8f2327
MG
5075 lruvec_init(&pn->lruvec);
5076 pn->usage_in_excess = 0;
5077 pn->on_tree = false;
5078 pn->memcg = memcg;
5079
54f72fe0 5080 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5081 return 0;
5082}
5083
ef8f2327 5084static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5085{
00f3ca2c
JW
5086 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5087
4eaf431f
MH
5088 if (!pn)
5089 return;
5090
7e1c0d6f 5091 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5092 kfree(pn);
1ecaab2b
KH
5093}
5094
40e952f9 5095static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5096{
c8b2a36f 5097 int node;
59927fb9 5098
c8b2a36f 5099 for_each_node(node)
ef8f2327 5100 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5101 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5102 kfree(memcg);
59927fb9 5103}
3afe36b1 5104
40e952f9
TE
5105static void mem_cgroup_free(struct mem_cgroup *memcg)
5106{
5107 memcg_wb_domain_exit(memcg);
5108 __mem_cgroup_free(memcg);
5109}
5110
0b8f73e1 5111static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5112{
d142e3e6 5113 struct mem_cgroup *memcg;
b9726c26 5114 unsigned int size;
6d12e2d8 5115 int node;
97b27821 5116 int __maybe_unused i;
11d67612 5117 long error = -ENOMEM;
8cdea7c0 5118
0b8f73e1
JW
5119 size = sizeof(struct mem_cgroup);
5120 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5121
5122 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5123 if (!memcg)
11d67612 5124 return ERR_PTR(error);
0b8f73e1 5125
73f576c0
JW
5126 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5127 1, MEM_CGROUP_ID_MAX,
5128 GFP_KERNEL);
11d67612
YS
5129 if (memcg->id.id < 0) {
5130 error = memcg->id.id;
73f576c0 5131 goto fail;
11d67612 5132 }
73f576c0 5133
3e38e0aa
RG
5134 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5135 GFP_KERNEL_ACCOUNT);
871789d4 5136 if (!memcg->vmstats_percpu)
0b8f73e1 5137 goto fail;
78fb7466 5138
3ed28fa1 5139 for_each_node(node)
ef8f2327 5140 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5141 goto fail;
f64c3f54 5142
0b8f73e1
JW
5143 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5144 goto fail;
28dbc4b6 5145
f7e1cb6e 5146 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5147 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5148 mutex_init(&memcg->thresholds_lock);
5149 spin_lock_init(&memcg->move_lock);
70ddf637 5150 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5151 INIT_LIST_HEAD(&memcg->event_list);
5152 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5153 memcg->socket_pressure = jiffies;
84c07d11 5154#ifdef CONFIG_MEMCG_KMEM
900a38f0 5155 memcg->kmemcg_id = -1;
bf4f0599 5156 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5157#endif
52ebea74
TH
5158#ifdef CONFIG_CGROUP_WRITEBACK
5159 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5160 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5161 memcg->cgwb_frn[i].done =
5162 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5163#endif
5164#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5165 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5166 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5167 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5168#endif
73f576c0 5169 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5170 return memcg;
5171fail:
7e97de0b 5172 mem_cgroup_id_remove(memcg);
40e952f9 5173 __mem_cgroup_free(memcg);
11d67612 5174 return ERR_PTR(error);
d142e3e6
GC
5175}
5176
0b8f73e1
JW
5177static struct cgroup_subsys_state * __ref
5178mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5179{
0b8f73e1 5180 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5181 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5182 long error = -ENOMEM;
d142e3e6 5183
b87d8cef 5184 old_memcg = set_active_memcg(parent);
0b8f73e1 5185 memcg = mem_cgroup_alloc();
b87d8cef 5186 set_active_memcg(old_memcg);
11d67612
YS
5187 if (IS_ERR(memcg))
5188 return ERR_CAST(memcg);
d142e3e6 5189
d1663a90 5190 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5191 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5192 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5193 if (parent) {
5194 memcg->swappiness = mem_cgroup_swappiness(parent);
5195 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5196
3e32cb2e 5197 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5198 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5199 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5200 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5201 } else {
bef8620c
RG
5202 page_counter_init(&memcg->memory, NULL);
5203 page_counter_init(&memcg->swap, NULL);
5204 page_counter_init(&memcg->kmem, NULL);
5205 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5206
0b8f73e1
JW
5207 root_mem_cgroup = memcg;
5208 return &memcg->css;
5209 }
5210
bef8620c 5211 /* The following stuff does not apply to the root */
b313aeee 5212 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5213 if (error)
5214 goto fail;
127424c8 5215
f7e1cb6e 5216 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5217 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5218
0b8f73e1
JW
5219 return &memcg->css;
5220fail:
7e97de0b 5221 mem_cgroup_id_remove(memcg);
0b8f73e1 5222 mem_cgroup_free(memcg);
11d67612 5223 return ERR_PTR(error);
0b8f73e1
JW
5224}
5225
73f576c0 5226static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5227{
58fa2a55
VD
5228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5229
0a4465d3 5230 /*
e4262c4f 5231 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5232 * by the time the maps are allocated. So, we allocate maps
5233 * here, when for_each_mem_cgroup() can't skip it.
5234 */
e4262c4f 5235 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5236 mem_cgroup_id_remove(memcg);
5237 return -ENOMEM;
5238 }
5239
73f576c0 5240 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5241 refcount_set(&memcg->id.ref, 1);
73f576c0 5242 css_get(css);
2f7dd7a4 5243 return 0;
8cdea7c0
BS
5244}
5245
eb95419b 5246static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5247{
eb95419b 5248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5249 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5250
5251 /*
5252 * Unregister events and notify userspace.
5253 * Notify userspace about cgroup removing only after rmdir of cgroup
5254 * directory to avoid race between userspace and kernelspace.
5255 */
fba94807
TH
5256 spin_lock(&memcg->event_list_lock);
5257 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5258 list_del_init(&event->list);
5259 schedule_work(&event->remove);
5260 }
fba94807 5261 spin_unlock(&memcg->event_list_lock);
ec64f515 5262
bf8d5d52 5263 page_counter_set_min(&memcg->memory, 0);
23067153 5264 page_counter_set_low(&memcg->memory, 0);
63677c74 5265
567e9ab2 5266 memcg_offline_kmem(memcg);
a178015c 5267 reparent_shrinker_deferred(memcg);
52ebea74 5268 wb_memcg_offline(memcg);
73f576c0 5269
591edfb1
RG
5270 drain_all_stock(memcg);
5271
73f576c0 5272 mem_cgroup_id_put(memcg);
df878fb0
KH
5273}
5274
6df38689
VD
5275static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5276{
5277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5278
5279 invalidate_reclaim_iterators(memcg);
5280}
5281
eb95419b 5282static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5283{
eb95419b 5284 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5285 int __maybe_unused i;
c268e994 5286
97b27821
TH
5287#ifdef CONFIG_CGROUP_WRITEBACK
5288 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5289 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5290#endif
f7e1cb6e 5291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5292 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5293
0db15298 5294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5295 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5296
0b8f73e1
JW
5297 vmpressure_cleanup(&memcg->vmpressure);
5298 cancel_work_sync(&memcg->high_work);
5299 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5300 free_shrinker_info(memcg);
d886f4e4 5301 memcg_free_kmem(memcg);
0b8f73e1 5302 mem_cgroup_free(memcg);
8cdea7c0
BS
5303}
5304
1ced953b
TH
5305/**
5306 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5307 * @css: the target css
5308 *
5309 * Reset the states of the mem_cgroup associated with @css. This is
5310 * invoked when the userland requests disabling on the default hierarchy
5311 * but the memcg is pinned through dependency. The memcg should stop
5312 * applying policies and should revert to the vanilla state as it may be
5313 * made visible again.
5314 *
5315 * The current implementation only resets the essential configurations.
5316 * This needs to be expanded to cover all the visible parts.
5317 */
5318static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5319{
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
bbec2e15
RG
5322 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5323 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5324 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5325 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5326 page_counter_set_min(&memcg->memory, 0);
23067153 5327 page_counter_set_low(&memcg->memory, 0);
d1663a90 5328 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5329 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5330 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5331 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5332}
5333
2d146aa3
JW
5334static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5335{
5336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5337 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5338 struct memcg_vmstats_percpu *statc;
5339 long delta, v;
7e1c0d6f 5340 int i, nid;
2d146aa3
JW
5341
5342 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5343
5344 for (i = 0; i < MEMCG_NR_STAT; i++) {
5345 /*
5346 * Collect the aggregated propagation counts of groups
5347 * below us. We're in a per-cpu loop here and this is
5348 * a global counter, so the first cycle will get them.
5349 */
5350 delta = memcg->vmstats.state_pending[i];
5351 if (delta)
5352 memcg->vmstats.state_pending[i] = 0;
5353
5354 /* Add CPU changes on this level since the last flush */
5355 v = READ_ONCE(statc->state[i]);
5356 if (v != statc->state_prev[i]) {
5357 delta += v - statc->state_prev[i];
5358 statc->state_prev[i] = v;
5359 }
5360
5361 if (!delta)
5362 continue;
5363
5364 /* Aggregate counts on this level and propagate upwards */
5365 memcg->vmstats.state[i] += delta;
5366 if (parent)
5367 parent->vmstats.state_pending[i] += delta;
5368 }
5369
5370 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5371 delta = memcg->vmstats.events_pending[i];
5372 if (delta)
5373 memcg->vmstats.events_pending[i] = 0;
5374
5375 v = READ_ONCE(statc->events[i]);
5376 if (v != statc->events_prev[i]) {
5377 delta += v - statc->events_prev[i];
5378 statc->events_prev[i] = v;
5379 }
5380
5381 if (!delta)
5382 continue;
5383
5384 memcg->vmstats.events[i] += delta;
5385 if (parent)
5386 parent->vmstats.events_pending[i] += delta;
5387 }
7e1c0d6f
SB
5388
5389 for_each_node_state(nid, N_MEMORY) {
5390 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5391 struct mem_cgroup_per_node *ppn = NULL;
5392 struct lruvec_stats_percpu *lstatc;
5393
5394 if (parent)
5395 ppn = parent->nodeinfo[nid];
5396
5397 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5398
5399 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5400 delta = pn->lruvec_stats.state_pending[i];
5401 if (delta)
5402 pn->lruvec_stats.state_pending[i] = 0;
5403
5404 v = READ_ONCE(lstatc->state[i]);
5405 if (v != lstatc->state_prev[i]) {
5406 delta += v - lstatc->state_prev[i];
5407 lstatc->state_prev[i] = v;
5408 }
5409
5410 if (!delta)
5411 continue;
5412
5413 pn->lruvec_stats.state[i] += delta;
5414 if (ppn)
5415 ppn->lruvec_stats.state_pending[i] += delta;
5416 }
5417 }
2d146aa3
JW
5418}
5419
02491447 5420#ifdef CONFIG_MMU
7dc74be0 5421/* Handlers for move charge at task migration. */
854ffa8d 5422static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5423{
05b84301 5424 int ret;
9476db97 5425
d0164adc
MG
5426 /* Try a single bulk charge without reclaim first, kswapd may wake */
5427 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5428 if (!ret) {
854ffa8d 5429 mc.precharge += count;
854ffa8d
DN
5430 return ret;
5431 }
9476db97 5432
3674534b 5433 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5434 while (count--) {
3674534b 5435 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5436 if (ret)
38c5d72f 5437 return ret;
854ffa8d 5438 mc.precharge++;
9476db97 5439 cond_resched();
854ffa8d 5440 }
9476db97 5441 return 0;
4ffef5fe
DN
5442}
5443
4ffef5fe
DN
5444union mc_target {
5445 struct page *page;
02491447 5446 swp_entry_t ent;
4ffef5fe
DN
5447};
5448
4ffef5fe 5449enum mc_target_type {
8d32ff84 5450 MC_TARGET_NONE = 0,
4ffef5fe 5451 MC_TARGET_PAGE,
02491447 5452 MC_TARGET_SWAP,
c733a828 5453 MC_TARGET_DEVICE,
4ffef5fe
DN
5454};
5455
90254a65
DN
5456static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5457 unsigned long addr, pte_t ptent)
4ffef5fe 5458{
25b2995a 5459 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5460
90254a65
DN
5461 if (!page || !page_mapped(page))
5462 return NULL;
5463 if (PageAnon(page)) {
1dfab5ab 5464 if (!(mc.flags & MOVE_ANON))
90254a65 5465 return NULL;
1dfab5ab
JW
5466 } else {
5467 if (!(mc.flags & MOVE_FILE))
5468 return NULL;
5469 }
90254a65
DN
5470 if (!get_page_unless_zero(page))
5471 return NULL;
5472
5473 return page;
5474}
5475
c733a828 5476#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5477static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5478 pte_t ptent, swp_entry_t *entry)
90254a65 5479{
90254a65
DN
5480 struct page *page = NULL;
5481 swp_entry_t ent = pte_to_swp_entry(ptent);
5482
9a137153 5483 if (!(mc.flags & MOVE_ANON))
90254a65 5484 return NULL;
c733a828
JG
5485
5486 /*
5487 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5488 * a device and because they are not accessible by CPU they are store
5489 * as special swap entry in the CPU page table.
5490 */
5491 if (is_device_private_entry(ent)) {
af5cdaf8 5492 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5493 /*
5494 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5495 * a refcount of 1 when free (unlike normal page)
5496 */
5497 if (!page_ref_add_unless(page, 1, 1))
5498 return NULL;
5499 return page;
5500 }
5501
9a137153
RC
5502 if (non_swap_entry(ent))
5503 return NULL;
5504
4b91355e
KH
5505 /*
5506 * Because lookup_swap_cache() updates some statistics counter,
5507 * we call find_get_page() with swapper_space directly.
5508 */
f6ab1f7f 5509 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5510 entry->val = ent.val;
90254a65
DN
5511
5512 return page;
5513}
4b91355e
KH
5514#else
5515static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5516 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5517{
5518 return NULL;
5519}
5520#endif
90254a65 5521
87946a72
DN
5522static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5523 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5524{
87946a72
DN
5525 if (!vma->vm_file) /* anonymous vma */
5526 return NULL;
1dfab5ab 5527 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5528 return NULL;
5529
87946a72 5530 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5531 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5532 return find_get_incore_page(vma->vm_file->f_mapping,
5533 linear_page_index(vma, addr));
87946a72
DN
5534}
5535
b1b0deab
CG
5536/**
5537 * mem_cgroup_move_account - move account of the page
5538 * @page: the page
25843c2b 5539 * @compound: charge the page as compound or small page
b1b0deab
CG
5540 * @from: mem_cgroup which the page is moved from.
5541 * @to: mem_cgroup which the page is moved to. @from != @to.
5542 *
3ac808fd 5543 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5544 *
5545 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5546 * from old cgroup.
5547 */
5548static int mem_cgroup_move_account(struct page *page,
f627c2f5 5549 bool compound,
b1b0deab
CG
5550 struct mem_cgroup *from,
5551 struct mem_cgroup *to)
5552{
ae8af438
KK
5553 struct lruvec *from_vec, *to_vec;
5554 struct pglist_data *pgdat;
6c357848 5555 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5556 int ret;
5557
5558 VM_BUG_ON(from == to);
5559 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5560 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5561
5562 /*
6a93ca8f 5563 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5564 * page's memory cgroup of its source page while we change it.
b1b0deab 5565 */
f627c2f5 5566 ret = -EBUSY;
b1b0deab
CG
5567 if (!trylock_page(page))
5568 goto out;
5569
5570 ret = -EINVAL;
bcfe06bf 5571 if (page_memcg(page) != from)
b1b0deab
CG
5572 goto out_unlock;
5573
ae8af438 5574 pgdat = page_pgdat(page);
867e5e1d
JW
5575 from_vec = mem_cgroup_lruvec(from, pgdat);
5576 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5577
abb242f5 5578 lock_page_memcg(page);
b1b0deab 5579
be5d0a74
JW
5580 if (PageAnon(page)) {
5581 if (page_mapped(page)) {
5582 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5583 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5584 if (PageTransHuge(page)) {
69473e5d
MS
5585 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5586 -nr_pages);
5587 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5588 nr_pages);
468c3982 5589 }
be5d0a74
JW
5590 }
5591 } else {
0d1c2072
JW
5592 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5593 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5594
5595 if (PageSwapBacked(page)) {
5596 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5597 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5598 }
5599
49e50d27
JW
5600 if (page_mapped(page)) {
5601 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5602 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5603 }
b1b0deab 5604
49e50d27
JW
5605 if (PageDirty(page)) {
5606 struct address_space *mapping = page_mapping(page);
c4843a75 5607
f56753ac 5608 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5609 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5610 -nr_pages);
5611 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5612 nr_pages);
5613 }
c4843a75
GT
5614 }
5615 }
5616
b1b0deab 5617 if (PageWriteback(page)) {
ae8af438
KK
5618 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5619 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5620 }
5621
5622 /*
abb242f5
JW
5623 * All state has been migrated, let's switch to the new memcg.
5624 *
bcfe06bf 5625 * It is safe to change page's memcg here because the page
abb242f5
JW
5626 * is referenced, charged, isolated, and locked: we can't race
5627 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5628 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5629 *
5630 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5631 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5632 * new memcg that isn't locked, the above state can change
5633 * concurrently again. Make sure we're truly done with it.
b1b0deab 5634 */
abb242f5 5635 smp_mb();
b1b0deab 5636
1a3e1f40
JW
5637 css_get(&to->css);
5638 css_put(&from->css);
5639
bcfe06bf 5640 page->memcg_data = (unsigned long)to;
87eaceb3 5641
abb242f5 5642 __unlock_page_memcg(from);
b1b0deab
CG
5643
5644 ret = 0;
5645
5646 local_irq_disable();
3fba69a5 5647 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5648 memcg_check_events(to, page);
3fba69a5 5649 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5650 memcg_check_events(from, page);
5651 local_irq_enable();
5652out_unlock:
5653 unlock_page(page);
5654out:
5655 return ret;
5656}
5657
7cf7806c
LR
5658/**
5659 * get_mctgt_type - get target type of moving charge
5660 * @vma: the vma the pte to be checked belongs
5661 * @addr: the address corresponding to the pte to be checked
5662 * @ptent: the pte to be checked
5663 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5664 *
5665 * Returns
5666 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5667 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5668 * move charge. if @target is not NULL, the page is stored in target->page
5669 * with extra refcnt got(Callers should handle it).
5670 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5671 * target for charge migration. if @target is not NULL, the entry is stored
5672 * in target->ent.
25b2995a
CH
5673 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5674 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5675 * For now we such page is charge like a regular page would be as for all
5676 * intent and purposes it is just special memory taking the place of a
5677 * regular page.
c733a828
JG
5678 *
5679 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5680 *
5681 * Called with pte lock held.
5682 */
5683
8d32ff84 5684static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5685 unsigned long addr, pte_t ptent, union mc_target *target)
5686{
5687 struct page *page = NULL;
8d32ff84 5688 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5689 swp_entry_t ent = { .val = 0 };
5690
5691 if (pte_present(ptent))
5692 page = mc_handle_present_pte(vma, addr, ptent);
5693 else if (is_swap_pte(ptent))
48406ef8 5694 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5695 else if (pte_none(ptent))
87946a72 5696 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5697
5698 if (!page && !ent.val)
8d32ff84 5699 return ret;
02491447 5700 if (page) {
02491447 5701 /*
0a31bc97 5702 * Do only loose check w/o serialization.
1306a85a 5703 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5704 * not under LRU exclusion.
02491447 5705 */
bcfe06bf 5706 if (page_memcg(page) == mc.from) {
02491447 5707 ret = MC_TARGET_PAGE;
25b2995a 5708 if (is_device_private_page(page))
c733a828 5709 ret = MC_TARGET_DEVICE;
02491447
DN
5710 if (target)
5711 target->page = page;
5712 }
5713 if (!ret || !target)
5714 put_page(page);
5715 }
3e14a57b
HY
5716 /*
5717 * There is a swap entry and a page doesn't exist or isn't charged.
5718 * But we cannot move a tail-page in a THP.
5719 */
5720 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5721 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5722 ret = MC_TARGET_SWAP;
5723 if (target)
5724 target->ent = ent;
4ffef5fe 5725 }
4ffef5fe
DN
5726 return ret;
5727}
5728
12724850
NH
5729#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5730/*
d6810d73
HY
5731 * We don't consider PMD mapped swapping or file mapped pages because THP does
5732 * not support them for now.
12724850
NH
5733 * Caller should make sure that pmd_trans_huge(pmd) is true.
5734 */
5735static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5736 unsigned long addr, pmd_t pmd, union mc_target *target)
5737{
5738 struct page *page = NULL;
12724850
NH
5739 enum mc_target_type ret = MC_TARGET_NONE;
5740
84c3fc4e
ZY
5741 if (unlikely(is_swap_pmd(pmd))) {
5742 VM_BUG_ON(thp_migration_supported() &&
5743 !is_pmd_migration_entry(pmd));
5744 return ret;
5745 }
12724850 5746 page = pmd_page(pmd);
309381fe 5747 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5748 if (!(mc.flags & MOVE_ANON))
12724850 5749 return ret;
bcfe06bf 5750 if (page_memcg(page) == mc.from) {
12724850
NH
5751 ret = MC_TARGET_PAGE;
5752 if (target) {
5753 get_page(page);
5754 target->page = page;
5755 }
5756 }
5757 return ret;
5758}
5759#else
5760static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5761 unsigned long addr, pmd_t pmd, union mc_target *target)
5762{
5763 return MC_TARGET_NONE;
5764}
5765#endif
5766
4ffef5fe
DN
5767static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5768 unsigned long addr, unsigned long end,
5769 struct mm_walk *walk)
5770{
26bcd64a 5771 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5772 pte_t *pte;
5773 spinlock_t *ptl;
5774
b6ec57f4
KS
5775 ptl = pmd_trans_huge_lock(pmd, vma);
5776 if (ptl) {
c733a828
JG
5777 /*
5778 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5779 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5780 * this might change.
c733a828 5781 */
12724850
NH
5782 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5783 mc.precharge += HPAGE_PMD_NR;
bf929152 5784 spin_unlock(ptl);
1a5a9906 5785 return 0;
12724850 5786 }
03319327 5787
45f83cef
AA
5788 if (pmd_trans_unstable(pmd))
5789 return 0;
4ffef5fe
DN
5790 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5791 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5792 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5793 mc.precharge++; /* increment precharge temporarily */
5794 pte_unmap_unlock(pte - 1, ptl);
5795 cond_resched();
5796
7dc74be0
DN
5797 return 0;
5798}
5799
7b86ac33
CH
5800static const struct mm_walk_ops precharge_walk_ops = {
5801 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5802};
5803
4ffef5fe
DN
5804static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5805{
5806 unsigned long precharge;
4ffef5fe 5807
d8ed45c5 5808 mmap_read_lock(mm);
7b86ac33 5809 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5810 mmap_read_unlock(mm);
4ffef5fe
DN
5811
5812 precharge = mc.precharge;
5813 mc.precharge = 0;
5814
5815 return precharge;
5816}
5817
4ffef5fe
DN
5818static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5819{
dfe076b0
DN
5820 unsigned long precharge = mem_cgroup_count_precharge(mm);
5821
5822 VM_BUG_ON(mc.moving_task);
5823 mc.moving_task = current;
5824 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5825}
5826
dfe076b0
DN
5827/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5828static void __mem_cgroup_clear_mc(void)
4ffef5fe 5829{
2bd9bb20
KH
5830 struct mem_cgroup *from = mc.from;
5831 struct mem_cgroup *to = mc.to;
5832
4ffef5fe 5833 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5834 if (mc.precharge) {
00501b53 5835 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5836 mc.precharge = 0;
5837 }
5838 /*
5839 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5840 * we must uncharge here.
5841 */
5842 if (mc.moved_charge) {
00501b53 5843 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5844 mc.moved_charge = 0;
4ffef5fe 5845 }
483c30b5
DN
5846 /* we must fixup refcnts and charges */
5847 if (mc.moved_swap) {
483c30b5 5848 /* uncharge swap account from the old cgroup */
ce00a967 5849 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5850 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5851
615d66c3
VD
5852 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5853
05b84301 5854 /*
3e32cb2e
JW
5855 * we charged both to->memory and to->memsw, so we
5856 * should uncharge to->memory.
05b84301 5857 */
ce00a967 5858 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5859 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5860
483c30b5
DN
5861 mc.moved_swap = 0;
5862 }
dfe076b0
DN
5863 memcg_oom_recover(from);
5864 memcg_oom_recover(to);
5865 wake_up_all(&mc.waitq);
5866}
5867
5868static void mem_cgroup_clear_mc(void)
5869{
264a0ae1
TH
5870 struct mm_struct *mm = mc.mm;
5871
dfe076b0
DN
5872 /*
5873 * we must clear moving_task before waking up waiters at the end of
5874 * task migration.
5875 */
5876 mc.moving_task = NULL;
5877 __mem_cgroup_clear_mc();
2bd9bb20 5878 spin_lock(&mc.lock);
4ffef5fe
DN
5879 mc.from = NULL;
5880 mc.to = NULL;
264a0ae1 5881 mc.mm = NULL;
2bd9bb20 5882 spin_unlock(&mc.lock);
264a0ae1
TH
5883
5884 mmput(mm);
4ffef5fe
DN
5885}
5886
1f7dd3e5 5887static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5888{
1f7dd3e5 5889 struct cgroup_subsys_state *css;
eed67d75 5890 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5891 struct mem_cgroup *from;
4530eddb 5892 struct task_struct *leader, *p;
9f2115f9 5893 struct mm_struct *mm;
1dfab5ab 5894 unsigned long move_flags;
9f2115f9 5895 int ret = 0;
7dc74be0 5896
1f7dd3e5
TH
5897 /* charge immigration isn't supported on the default hierarchy */
5898 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5899 return 0;
5900
4530eddb
TH
5901 /*
5902 * Multi-process migrations only happen on the default hierarchy
5903 * where charge immigration is not used. Perform charge
5904 * immigration if @tset contains a leader and whine if there are
5905 * multiple.
5906 */
5907 p = NULL;
1f7dd3e5 5908 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5909 WARN_ON_ONCE(p);
5910 p = leader;
1f7dd3e5 5911 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5912 }
5913 if (!p)
5914 return 0;
5915
1f7dd3e5 5916 /*
f0953a1b 5917 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5918 * tunable will only affect upcoming migrations, not the current one.
5919 * So we need to save it, and keep it going.
5920 */
5921 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5922 if (!move_flags)
5923 return 0;
5924
9f2115f9
TH
5925 from = mem_cgroup_from_task(p);
5926
5927 VM_BUG_ON(from == memcg);
5928
5929 mm = get_task_mm(p);
5930 if (!mm)
5931 return 0;
5932 /* We move charges only when we move a owner of the mm */
5933 if (mm->owner == p) {
5934 VM_BUG_ON(mc.from);
5935 VM_BUG_ON(mc.to);
5936 VM_BUG_ON(mc.precharge);
5937 VM_BUG_ON(mc.moved_charge);
5938 VM_BUG_ON(mc.moved_swap);
5939
5940 spin_lock(&mc.lock);
264a0ae1 5941 mc.mm = mm;
9f2115f9
TH
5942 mc.from = from;
5943 mc.to = memcg;
5944 mc.flags = move_flags;
5945 spin_unlock(&mc.lock);
5946 /* We set mc.moving_task later */
5947
5948 ret = mem_cgroup_precharge_mc(mm);
5949 if (ret)
5950 mem_cgroup_clear_mc();
264a0ae1
TH
5951 } else {
5952 mmput(mm);
7dc74be0
DN
5953 }
5954 return ret;
5955}
5956
1f7dd3e5 5957static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5958{
4e2f245d
JW
5959 if (mc.to)
5960 mem_cgroup_clear_mc();
7dc74be0
DN
5961}
5962
4ffef5fe
DN
5963static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5964 unsigned long addr, unsigned long end,
5965 struct mm_walk *walk)
7dc74be0 5966{
4ffef5fe 5967 int ret = 0;
26bcd64a 5968 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5969 pte_t *pte;
5970 spinlock_t *ptl;
12724850
NH
5971 enum mc_target_type target_type;
5972 union mc_target target;
5973 struct page *page;
4ffef5fe 5974
b6ec57f4
KS
5975 ptl = pmd_trans_huge_lock(pmd, vma);
5976 if (ptl) {
62ade86a 5977 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5978 spin_unlock(ptl);
12724850
NH
5979 return 0;
5980 }
5981 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5982 if (target_type == MC_TARGET_PAGE) {
5983 page = target.page;
5984 if (!isolate_lru_page(page)) {
f627c2f5 5985 if (!mem_cgroup_move_account(page, true,
1306a85a 5986 mc.from, mc.to)) {
12724850
NH
5987 mc.precharge -= HPAGE_PMD_NR;
5988 mc.moved_charge += HPAGE_PMD_NR;
5989 }
5990 putback_lru_page(page);
5991 }
5992 put_page(page);
c733a828
JG
5993 } else if (target_type == MC_TARGET_DEVICE) {
5994 page = target.page;
5995 if (!mem_cgroup_move_account(page, true,
5996 mc.from, mc.to)) {
5997 mc.precharge -= HPAGE_PMD_NR;
5998 mc.moved_charge += HPAGE_PMD_NR;
5999 }
6000 put_page(page);
12724850 6001 }
bf929152 6002 spin_unlock(ptl);
1a5a9906 6003 return 0;
12724850
NH
6004 }
6005
45f83cef
AA
6006 if (pmd_trans_unstable(pmd))
6007 return 0;
4ffef5fe
DN
6008retry:
6009 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6010 for (; addr != end; addr += PAGE_SIZE) {
6011 pte_t ptent = *(pte++);
c733a828 6012 bool device = false;
02491447 6013 swp_entry_t ent;
4ffef5fe
DN
6014
6015 if (!mc.precharge)
6016 break;
6017
8d32ff84 6018 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6019 case MC_TARGET_DEVICE:
6020 device = true;
e4a9bc58 6021 fallthrough;
4ffef5fe
DN
6022 case MC_TARGET_PAGE:
6023 page = target.page;
53f9263b
KS
6024 /*
6025 * We can have a part of the split pmd here. Moving it
6026 * can be done but it would be too convoluted so simply
6027 * ignore such a partial THP and keep it in original
6028 * memcg. There should be somebody mapping the head.
6029 */
6030 if (PageTransCompound(page))
6031 goto put;
c733a828 6032 if (!device && isolate_lru_page(page))
4ffef5fe 6033 goto put;
f627c2f5
KS
6034 if (!mem_cgroup_move_account(page, false,
6035 mc.from, mc.to)) {
4ffef5fe 6036 mc.precharge--;
854ffa8d
DN
6037 /* we uncharge from mc.from later. */
6038 mc.moved_charge++;
4ffef5fe 6039 }
c733a828
JG
6040 if (!device)
6041 putback_lru_page(page);
8d32ff84 6042put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6043 put_page(page);
6044 break;
02491447
DN
6045 case MC_TARGET_SWAP:
6046 ent = target.ent;
e91cbb42 6047 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6048 mc.precharge--;
8d22a935
HD
6049 mem_cgroup_id_get_many(mc.to, 1);
6050 /* we fixup other refcnts and charges later. */
483c30b5
DN
6051 mc.moved_swap++;
6052 }
02491447 6053 break;
4ffef5fe
DN
6054 default:
6055 break;
6056 }
6057 }
6058 pte_unmap_unlock(pte - 1, ptl);
6059 cond_resched();
6060
6061 if (addr != end) {
6062 /*
6063 * We have consumed all precharges we got in can_attach().
6064 * We try charge one by one, but don't do any additional
6065 * charges to mc.to if we have failed in charge once in attach()
6066 * phase.
6067 */
854ffa8d 6068 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6069 if (!ret)
6070 goto retry;
6071 }
6072
6073 return ret;
6074}
6075
7b86ac33
CH
6076static const struct mm_walk_ops charge_walk_ops = {
6077 .pmd_entry = mem_cgroup_move_charge_pte_range,
6078};
6079
264a0ae1 6080static void mem_cgroup_move_charge(void)
4ffef5fe 6081{
4ffef5fe 6082 lru_add_drain_all();
312722cb 6083 /*
81f8c3a4
JW
6084 * Signal lock_page_memcg() to take the memcg's move_lock
6085 * while we're moving its pages to another memcg. Then wait
6086 * for already started RCU-only updates to finish.
312722cb
JW
6087 */
6088 atomic_inc(&mc.from->moving_account);
6089 synchronize_rcu();
dfe076b0 6090retry:
d8ed45c5 6091 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6092 /*
c1e8d7c6 6093 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6094 * waitq. So we cancel all extra charges, wake up all waiters,
6095 * and retry. Because we cancel precharges, we might not be able
6096 * to move enough charges, but moving charge is a best-effort
6097 * feature anyway, so it wouldn't be a big problem.
6098 */
6099 __mem_cgroup_clear_mc();
6100 cond_resched();
6101 goto retry;
6102 }
26bcd64a
NH
6103 /*
6104 * When we have consumed all precharges and failed in doing
6105 * additional charge, the page walk just aborts.
6106 */
7b86ac33
CH
6107 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6108 NULL);
0247f3f4 6109
d8ed45c5 6110 mmap_read_unlock(mc.mm);
312722cb 6111 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6112}
6113
264a0ae1 6114static void mem_cgroup_move_task(void)
67e465a7 6115{
264a0ae1
TH
6116 if (mc.to) {
6117 mem_cgroup_move_charge();
a433658c 6118 mem_cgroup_clear_mc();
264a0ae1 6119 }
67e465a7 6120}
5cfb80a7 6121#else /* !CONFIG_MMU */
1f7dd3e5 6122static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6123{
6124 return 0;
6125}
1f7dd3e5 6126static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6127{
6128}
264a0ae1 6129static void mem_cgroup_move_task(void)
5cfb80a7
DN
6130{
6131}
6132#endif
67e465a7 6133
677dc973
CD
6134static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6135{
6136 if (value == PAGE_COUNTER_MAX)
6137 seq_puts(m, "max\n");
6138 else
6139 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6140
6141 return 0;
6142}
6143
241994ed
JW
6144static u64 memory_current_read(struct cgroup_subsys_state *css,
6145 struct cftype *cft)
6146{
f5fc3c5d
JW
6147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6148
6149 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6150}
6151
bf8d5d52
RG
6152static int memory_min_show(struct seq_file *m, void *v)
6153{
677dc973
CD
6154 return seq_puts_memcg_tunable(m,
6155 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6156}
6157
6158static ssize_t memory_min_write(struct kernfs_open_file *of,
6159 char *buf, size_t nbytes, loff_t off)
6160{
6161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6162 unsigned long min;
6163 int err;
6164
6165 buf = strstrip(buf);
6166 err = page_counter_memparse(buf, "max", &min);
6167 if (err)
6168 return err;
6169
6170 page_counter_set_min(&memcg->memory, min);
6171
6172 return nbytes;
6173}
6174
241994ed
JW
6175static int memory_low_show(struct seq_file *m, void *v)
6176{
677dc973
CD
6177 return seq_puts_memcg_tunable(m,
6178 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6179}
6180
6181static ssize_t memory_low_write(struct kernfs_open_file *of,
6182 char *buf, size_t nbytes, loff_t off)
6183{
6184 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6185 unsigned long low;
6186 int err;
6187
6188 buf = strstrip(buf);
d2973697 6189 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6190 if (err)
6191 return err;
6192
23067153 6193 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6194
6195 return nbytes;
6196}
6197
6198static int memory_high_show(struct seq_file *m, void *v)
6199{
d1663a90
JK
6200 return seq_puts_memcg_tunable(m,
6201 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6202}
6203
6204static ssize_t memory_high_write(struct kernfs_open_file *of,
6205 char *buf, size_t nbytes, loff_t off)
6206{
6207 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6208 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6209 bool drained = false;
241994ed
JW
6210 unsigned long high;
6211 int err;
6212
6213 buf = strstrip(buf);
d2973697 6214 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6215 if (err)
6216 return err;
6217
e82553c1
JW
6218 page_counter_set_high(&memcg->memory, high);
6219
8c8c383c
JW
6220 for (;;) {
6221 unsigned long nr_pages = page_counter_read(&memcg->memory);
6222 unsigned long reclaimed;
6223
6224 if (nr_pages <= high)
6225 break;
6226
6227 if (signal_pending(current))
6228 break;
6229
6230 if (!drained) {
6231 drain_all_stock(memcg);
6232 drained = true;
6233 continue;
6234 }
6235
6236 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6237 GFP_KERNEL, true);
6238
6239 if (!reclaimed && !nr_retries--)
6240 break;
6241 }
588083bb 6242
19ce33ac 6243 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6244 return nbytes;
6245}
6246
6247static int memory_max_show(struct seq_file *m, void *v)
6248{
677dc973
CD
6249 return seq_puts_memcg_tunable(m,
6250 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6251}
6252
6253static ssize_t memory_max_write(struct kernfs_open_file *of,
6254 char *buf, size_t nbytes, loff_t off)
6255{
6256 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6257 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6258 bool drained = false;
241994ed
JW
6259 unsigned long max;
6260 int err;
6261
6262 buf = strstrip(buf);
d2973697 6263 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6264 if (err)
6265 return err;
6266
bbec2e15 6267 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6268
6269 for (;;) {
6270 unsigned long nr_pages = page_counter_read(&memcg->memory);
6271
6272 if (nr_pages <= max)
6273 break;
6274
7249c9f0 6275 if (signal_pending(current))
b6e6edcf 6276 break;
b6e6edcf
JW
6277
6278 if (!drained) {
6279 drain_all_stock(memcg);
6280 drained = true;
6281 continue;
6282 }
6283
6284 if (nr_reclaims) {
6285 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6286 GFP_KERNEL, true))
6287 nr_reclaims--;
6288 continue;
6289 }
6290
e27be240 6291 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6292 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6293 break;
6294 }
241994ed 6295
2529bb3a 6296 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6297 return nbytes;
6298}
6299
1e577f97
SB
6300static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6301{
6302 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6303 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6304 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6305 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6306 seq_printf(m, "oom_kill %lu\n",
6307 atomic_long_read(&events[MEMCG_OOM_KILL]));
6308}
6309
241994ed
JW
6310static int memory_events_show(struct seq_file *m, void *v)
6311{
aa9694bb 6312 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6313
1e577f97
SB
6314 __memory_events_show(m, memcg->memory_events);
6315 return 0;
6316}
6317
6318static int memory_events_local_show(struct seq_file *m, void *v)
6319{
6320 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6321
1e577f97 6322 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6323 return 0;
6324}
6325
587d9f72
JW
6326static int memory_stat_show(struct seq_file *m, void *v)
6327{
aa9694bb 6328 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6329 char *buf;
1ff9e6e1 6330
c8713d0b
JW
6331 buf = memory_stat_format(memcg);
6332 if (!buf)
6333 return -ENOMEM;
6334 seq_puts(m, buf);
6335 kfree(buf);
587d9f72
JW
6336 return 0;
6337}
6338
5f9a4f4a 6339#ifdef CONFIG_NUMA
fff66b79
MS
6340static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6341 int item)
6342{
6343 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6344}
6345
5f9a4f4a
MS
6346static int memory_numa_stat_show(struct seq_file *m, void *v)
6347{
6348 int i;
6349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6350
7e1c0d6f
SB
6351 cgroup_rstat_flush(memcg->css.cgroup);
6352
5f9a4f4a
MS
6353 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6354 int nid;
6355
6356 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6357 continue;
6358
6359 seq_printf(m, "%s", memory_stats[i].name);
6360 for_each_node_state(nid, N_MEMORY) {
6361 u64 size;
6362 struct lruvec *lruvec;
6363
6364 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6365 size = lruvec_page_state_output(lruvec,
6366 memory_stats[i].idx);
5f9a4f4a
MS
6367 seq_printf(m, " N%d=%llu", nid, size);
6368 }
6369 seq_putc(m, '\n');
6370 }
6371
6372 return 0;
6373}
6374#endif
6375
3d8b38eb
RG
6376static int memory_oom_group_show(struct seq_file *m, void *v)
6377{
aa9694bb 6378 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6379
6380 seq_printf(m, "%d\n", memcg->oom_group);
6381
6382 return 0;
6383}
6384
6385static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6386 char *buf, size_t nbytes, loff_t off)
6387{
6388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6389 int ret, oom_group;
6390
6391 buf = strstrip(buf);
6392 if (!buf)
6393 return -EINVAL;
6394
6395 ret = kstrtoint(buf, 0, &oom_group);
6396 if (ret)
6397 return ret;
6398
6399 if (oom_group != 0 && oom_group != 1)
6400 return -EINVAL;
6401
6402 memcg->oom_group = oom_group;
6403
6404 return nbytes;
6405}
6406
241994ed
JW
6407static struct cftype memory_files[] = {
6408 {
6409 .name = "current",
f5fc3c5d 6410 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6411 .read_u64 = memory_current_read,
6412 },
bf8d5d52
RG
6413 {
6414 .name = "min",
6415 .flags = CFTYPE_NOT_ON_ROOT,
6416 .seq_show = memory_min_show,
6417 .write = memory_min_write,
6418 },
241994ed
JW
6419 {
6420 .name = "low",
6421 .flags = CFTYPE_NOT_ON_ROOT,
6422 .seq_show = memory_low_show,
6423 .write = memory_low_write,
6424 },
6425 {
6426 .name = "high",
6427 .flags = CFTYPE_NOT_ON_ROOT,
6428 .seq_show = memory_high_show,
6429 .write = memory_high_write,
6430 },
6431 {
6432 .name = "max",
6433 .flags = CFTYPE_NOT_ON_ROOT,
6434 .seq_show = memory_max_show,
6435 .write = memory_max_write,
6436 },
6437 {
6438 .name = "events",
6439 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6440 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6441 .seq_show = memory_events_show,
6442 },
1e577f97
SB
6443 {
6444 .name = "events.local",
6445 .flags = CFTYPE_NOT_ON_ROOT,
6446 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6447 .seq_show = memory_events_local_show,
6448 },
587d9f72
JW
6449 {
6450 .name = "stat",
587d9f72
JW
6451 .seq_show = memory_stat_show,
6452 },
5f9a4f4a
MS
6453#ifdef CONFIG_NUMA
6454 {
6455 .name = "numa_stat",
6456 .seq_show = memory_numa_stat_show,
6457 },
6458#endif
3d8b38eb
RG
6459 {
6460 .name = "oom.group",
6461 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6462 .seq_show = memory_oom_group_show,
6463 .write = memory_oom_group_write,
6464 },
241994ed
JW
6465 { } /* terminate */
6466};
6467
073219e9 6468struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6469 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6470 .css_online = mem_cgroup_css_online,
92fb9748 6471 .css_offline = mem_cgroup_css_offline,
6df38689 6472 .css_released = mem_cgroup_css_released,
92fb9748 6473 .css_free = mem_cgroup_css_free,
1ced953b 6474 .css_reset = mem_cgroup_css_reset,
2d146aa3 6475 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6476 .can_attach = mem_cgroup_can_attach,
6477 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6478 .post_attach = mem_cgroup_move_task,
241994ed
JW
6479 .dfl_cftypes = memory_files,
6480 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6481 .early_init = 0,
8cdea7c0 6482};
c077719b 6483
bc50bcc6
JW
6484/*
6485 * This function calculates an individual cgroup's effective
6486 * protection which is derived from its own memory.min/low, its
6487 * parent's and siblings' settings, as well as the actual memory
6488 * distribution in the tree.
6489 *
6490 * The following rules apply to the effective protection values:
6491 *
6492 * 1. At the first level of reclaim, effective protection is equal to
6493 * the declared protection in memory.min and memory.low.
6494 *
6495 * 2. To enable safe delegation of the protection configuration, at
6496 * subsequent levels the effective protection is capped to the
6497 * parent's effective protection.
6498 *
6499 * 3. To make complex and dynamic subtrees easier to configure, the
6500 * user is allowed to overcommit the declared protection at a given
6501 * level. If that is the case, the parent's effective protection is
6502 * distributed to the children in proportion to how much protection
6503 * they have declared and how much of it they are utilizing.
6504 *
6505 * This makes distribution proportional, but also work-conserving:
6506 * if one cgroup claims much more protection than it uses memory,
6507 * the unused remainder is available to its siblings.
6508 *
6509 * 4. Conversely, when the declared protection is undercommitted at a
6510 * given level, the distribution of the larger parental protection
6511 * budget is NOT proportional. A cgroup's protection from a sibling
6512 * is capped to its own memory.min/low setting.
6513 *
8a931f80
JW
6514 * 5. However, to allow protecting recursive subtrees from each other
6515 * without having to declare each individual cgroup's fixed share
6516 * of the ancestor's claim to protection, any unutilized -
6517 * "floating" - protection from up the tree is distributed in
6518 * proportion to each cgroup's *usage*. This makes the protection
6519 * neutral wrt sibling cgroups and lets them compete freely over
6520 * the shared parental protection budget, but it protects the
6521 * subtree as a whole from neighboring subtrees.
6522 *
6523 * Note that 4. and 5. are not in conflict: 4. is about protecting
6524 * against immediate siblings whereas 5. is about protecting against
6525 * neighboring subtrees.
bc50bcc6
JW
6526 */
6527static unsigned long effective_protection(unsigned long usage,
8a931f80 6528 unsigned long parent_usage,
bc50bcc6
JW
6529 unsigned long setting,
6530 unsigned long parent_effective,
6531 unsigned long siblings_protected)
6532{
6533 unsigned long protected;
8a931f80 6534 unsigned long ep;
bc50bcc6
JW
6535
6536 protected = min(usage, setting);
6537 /*
6538 * If all cgroups at this level combined claim and use more
6539 * protection then what the parent affords them, distribute
6540 * shares in proportion to utilization.
6541 *
6542 * We are using actual utilization rather than the statically
6543 * claimed protection in order to be work-conserving: claimed
6544 * but unused protection is available to siblings that would
6545 * otherwise get a smaller chunk than what they claimed.
6546 */
6547 if (siblings_protected > parent_effective)
6548 return protected * parent_effective / siblings_protected;
6549
6550 /*
6551 * Ok, utilized protection of all children is within what the
6552 * parent affords them, so we know whatever this child claims
6553 * and utilizes is effectively protected.
6554 *
6555 * If there is unprotected usage beyond this value, reclaim
6556 * will apply pressure in proportion to that amount.
6557 *
6558 * If there is unutilized protection, the cgroup will be fully
6559 * shielded from reclaim, but we do return a smaller value for
6560 * protection than what the group could enjoy in theory. This
6561 * is okay. With the overcommit distribution above, effective
6562 * protection is always dependent on how memory is actually
6563 * consumed among the siblings anyway.
6564 */
8a931f80
JW
6565 ep = protected;
6566
6567 /*
6568 * If the children aren't claiming (all of) the protection
6569 * afforded to them by the parent, distribute the remainder in
6570 * proportion to the (unprotected) memory of each cgroup. That
6571 * way, cgroups that aren't explicitly prioritized wrt each
6572 * other compete freely over the allowance, but they are
6573 * collectively protected from neighboring trees.
6574 *
6575 * We're using unprotected memory for the weight so that if
6576 * some cgroups DO claim explicit protection, we don't protect
6577 * the same bytes twice.
cd324edc
JW
6578 *
6579 * Check both usage and parent_usage against the respective
6580 * protected values. One should imply the other, but they
6581 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6582 */
6583 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6584 return ep;
cd324edc
JW
6585 if (parent_effective > siblings_protected &&
6586 parent_usage > siblings_protected &&
6587 usage > protected) {
8a931f80
JW
6588 unsigned long unclaimed;
6589
6590 unclaimed = parent_effective - siblings_protected;
6591 unclaimed *= usage - protected;
6592 unclaimed /= parent_usage - siblings_protected;
6593
6594 ep += unclaimed;
6595 }
6596
6597 return ep;
bc50bcc6
JW
6598}
6599
241994ed 6600/**
05395718 6601 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6602 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6603 * @memcg: the memory cgroup to check
6604 *
23067153
RG
6605 * WARNING: This function is not stateless! It can only be used as part
6606 * of a top-down tree iteration, not for isolated queries.
241994ed 6607 */
45c7f7e1
CD
6608void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6609 struct mem_cgroup *memcg)
241994ed 6610{
8a931f80 6611 unsigned long usage, parent_usage;
23067153
RG
6612 struct mem_cgroup *parent;
6613
241994ed 6614 if (mem_cgroup_disabled())
45c7f7e1 6615 return;
241994ed 6616
34c81057
SC
6617 if (!root)
6618 root = root_mem_cgroup;
22f7496f
YS
6619
6620 /*
6621 * Effective values of the reclaim targets are ignored so they
6622 * can be stale. Have a look at mem_cgroup_protection for more
6623 * details.
6624 * TODO: calculation should be more robust so that we do not need
6625 * that special casing.
6626 */
34c81057 6627 if (memcg == root)
45c7f7e1 6628 return;
241994ed 6629
23067153 6630 usage = page_counter_read(&memcg->memory);
bf8d5d52 6631 if (!usage)
45c7f7e1 6632 return;
bf8d5d52 6633
bf8d5d52 6634 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6635 /* No parent means a non-hierarchical mode on v1 memcg */
6636 if (!parent)
45c7f7e1 6637 return;
df2a4196 6638
bc50bcc6 6639 if (parent == root) {
c3d53200 6640 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6641 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6642 return;
bf8d5d52
RG
6643 }
6644
8a931f80
JW
6645 parent_usage = page_counter_read(&parent->memory);
6646
b3a7822e 6647 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6648 READ_ONCE(memcg->memory.min),
6649 READ_ONCE(parent->memory.emin),
b3a7822e 6650 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6651
b3a7822e 6652 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6653 READ_ONCE(memcg->memory.low),
6654 READ_ONCE(parent->memory.elow),
b3a7822e 6655 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6656}
6657
2c8d8f97 6658static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
0add0c77
SB
6659{
6660 unsigned int nr_pages = thp_nr_pages(page);
6661 int ret;
6662
6663 ret = try_charge(memcg, gfp, nr_pages);
6664 if (ret)
6665 goto out;
6666
6667 css_get(&memcg->css);
6668 commit_charge(page, memcg);
6669
6670 local_irq_disable();
6671 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6672 memcg_check_events(memcg, page);
6673 local_irq_enable();
6674out:
6675 return ret;
6676}
6677
00501b53 6678/**
2c8d8f97 6679 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6680 * @page: page to charge
6681 * @mm: mm context of the victim
6682 * @gfp_mask: reclaim mode
00501b53
JW
6683 *
6684 * Try to charge @page to the memcg that @mm belongs to, reclaiming
04f94e3f
DS
6685 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6686 * charge to the active memcg.
00501b53 6687 *
0add0c77
SB
6688 * Do not use this for pages allocated for swapin.
6689 *
f0e45fb4 6690 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6691 */
2c8d8f97
SB
6692int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6693 gfp_t gfp_mask)
00501b53 6694{
0add0c77
SB
6695 struct mem_cgroup *memcg;
6696 int ret;
00501b53 6697
0add0c77 6698 memcg = get_mem_cgroup_from_mm(mm);
2c8d8f97 6699 ret = charge_memcg(page, memcg, gfp_mask);
0add0c77 6700 css_put(&memcg->css);
2d1c4980 6701
0add0c77
SB
6702 return ret;
6703}
e993d905 6704
0add0c77
SB
6705/**
6706 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6707 * @page: page to charge
6708 * @mm: mm context of the victim
6709 * @gfp: reclaim mode
6710 * @entry: swap entry for which the page is allocated
6711 *
6712 * This function charges a page allocated for swapin. Please call this before
6713 * adding the page to the swapcache.
6714 *
6715 * Returns 0 on success. Otherwise, an error code is returned.
6716 */
6717int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6718 gfp_t gfp, swp_entry_t entry)
6719{
6720 struct mem_cgroup *memcg;
6721 unsigned short id;
6722 int ret;
00501b53 6723
0add0c77
SB
6724 if (mem_cgroup_disabled())
6725 return 0;
00501b53 6726
0add0c77
SB
6727 id = lookup_swap_cgroup_id(entry);
6728 rcu_read_lock();
6729 memcg = mem_cgroup_from_id(id);
6730 if (!memcg || !css_tryget_online(&memcg->css))
6731 memcg = get_mem_cgroup_from_mm(mm);
6732 rcu_read_unlock();
00501b53 6733
2c8d8f97 6734 ret = charge_memcg(page, memcg, gfp);
6abb5a86 6735
0add0c77
SB
6736 css_put(&memcg->css);
6737 return ret;
6738}
00501b53 6739
0add0c77
SB
6740/*
6741 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6742 * @entry: swap entry for which the page is charged
6743 *
6744 * Call this function after successfully adding the charged page to swapcache.
6745 *
6746 * Note: This function assumes the page for which swap slot is being uncharged
6747 * is order 0 page.
6748 */
6749void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6750{
cae3af62
MS
6751 /*
6752 * Cgroup1's unified memory+swap counter has been charged with the
6753 * new swapcache page, finish the transfer by uncharging the swap
6754 * slot. The swap slot would also get uncharged when it dies, but
6755 * it can stick around indefinitely and we'd count the page twice
6756 * the entire time.
6757 *
6758 * Cgroup2 has separate resource counters for memory and swap,
6759 * so this is a non-issue here. Memory and swap charge lifetimes
6760 * correspond 1:1 to page and swap slot lifetimes: we charge the
6761 * page to memory here, and uncharge swap when the slot is freed.
6762 */
0add0c77 6763 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6764 /*
6765 * The swap entry might not get freed for a long time,
6766 * let's not wait for it. The page already received a
6767 * memory+swap charge, drop the swap entry duplicate.
6768 */
0add0c77 6769 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6770 }
3fea5a49
JW
6771}
6772
a9d5adee
JG
6773struct uncharge_gather {
6774 struct mem_cgroup *memcg;
b4e0b68f 6775 unsigned long nr_memory;
a9d5adee 6776 unsigned long pgpgout;
a9d5adee 6777 unsigned long nr_kmem;
a9d5adee
JG
6778 struct page *dummy_page;
6779};
6780
6781static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6782{
a9d5adee
JG
6783 memset(ug, 0, sizeof(*ug));
6784}
6785
6786static void uncharge_batch(const struct uncharge_gather *ug)
6787{
747db954
JW
6788 unsigned long flags;
6789
b4e0b68f
MS
6790 if (ug->nr_memory) {
6791 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6792 if (do_memsw_account())
b4e0b68f 6793 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6794 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6795 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6796 memcg_oom_recover(ug->memcg);
ce00a967 6797 }
747db954
JW
6798
6799 local_irq_save(flags);
c9019e9b 6800 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6801 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6802 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6803 local_irq_restore(flags);
f1796544
MH
6804
6805 /* drop reference from uncharge_page */
6806 css_put(&ug->memcg->css);
a9d5adee
JG
6807}
6808
6809static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6810{
9f762dbe 6811 unsigned long nr_pages;
b4e0b68f
MS
6812 struct mem_cgroup *memcg;
6813 struct obj_cgroup *objcg;
55927114 6814 bool use_objcg = PageMemcgKmem(page);
9f762dbe 6815
a9d5adee 6816 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6817
a9d5adee
JG
6818 /*
6819 * Nobody should be changing or seriously looking at
b4e0b68f 6820 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6821 * exclusive access to the page.
6822 */
55927114 6823 if (use_objcg) {
b4e0b68f
MS
6824 objcg = __page_objcg(page);
6825 /*
6826 * This get matches the put at the end of the function and
6827 * kmem pages do not hold memcg references anymore.
6828 */
6829 memcg = get_mem_cgroup_from_objcg(objcg);
6830 } else {
6831 memcg = __page_memcg(page);
6832 }
a9d5adee 6833
b4e0b68f
MS
6834 if (!memcg)
6835 return;
6836
6837 if (ug->memcg != memcg) {
a9d5adee
JG
6838 if (ug->memcg) {
6839 uncharge_batch(ug);
6840 uncharge_gather_clear(ug);
6841 }
b4e0b68f 6842 ug->memcg = memcg;
7ab345a8 6843 ug->dummy_page = page;
f1796544
MH
6844
6845 /* pairs with css_put in uncharge_batch */
b4e0b68f 6846 css_get(&memcg->css);
a9d5adee
JG
6847 }
6848
9f762dbe 6849 nr_pages = compound_nr(page);
a9d5adee 6850
55927114 6851 if (use_objcg) {
b4e0b68f 6852 ug->nr_memory += nr_pages;
9f762dbe 6853 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6854
6855 page->memcg_data = 0;
6856 obj_cgroup_put(objcg);
6857 } else {
6858 /* LRU pages aren't accounted at the root level */
6859 if (!mem_cgroup_is_root(memcg))
6860 ug->nr_memory += nr_pages;
18b2db3b 6861 ug->pgpgout++;
a9d5adee 6862
b4e0b68f
MS
6863 page->memcg_data = 0;
6864 }
6865
6866 css_put(&memcg->css);
747db954
JW
6867}
6868
0a31bc97 6869/**
2c8d8f97 6870 * __mem_cgroup_uncharge - uncharge a page
0a31bc97
JW
6871 * @page: page to uncharge
6872 *
2c8d8f97 6873 * Uncharge a page previously charged with __mem_cgroup_charge().
0a31bc97 6874 */
2c8d8f97 6875void __mem_cgroup_uncharge(struct page *page)
0a31bc97 6876{
a9d5adee
JG
6877 struct uncharge_gather ug;
6878
747db954 6879 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6880 if (!page_memcg(page))
0a31bc97
JW
6881 return;
6882
a9d5adee
JG
6883 uncharge_gather_clear(&ug);
6884 uncharge_page(page, &ug);
6885 uncharge_batch(&ug);
747db954 6886}
0a31bc97 6887
747db954 6888/**
2c8d8f97 6889 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6890 * @page_list: list of pages to uncharge
6891 *
6892 * Uncharge a list of pages previously charged with
2c8d8f97 6893 * __mem_cgroup_charge().
747db954 6894 */
2c8d8f97 6895void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6896{
c41a40b6
MS
6897 struct uncharge_gather ug;
6898 struct page *page;
6899
c41a40b6
MS
6900 uncharge_gather_clear(&ug);
6901 list_for_each_entry(page, page_list, lru)
6902 uncharge_page(page, &ug);
6903 if (ug.memcg)
6904 uncharge_batch(&ug);
0a31bc97
JW
6905}
6906
6907/**
6a93ca8f
JW
6908 * mem_cgroup_migrate - charge a page's replacement
6909 * @oldpage: currently circulating page
6910 * @newpage: replacement page
0a31bc97 6911 *
6a93ca8f
JW
6912 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6913 * be uncharged upon free.
0a31bc97
JW
6914 *
6915 * Both pages must be locked, @newpage->mapping must be set up.
6916 */
6a93ca8f 6917void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6918{
29833315 6919 struct mem_cgroup *memcg;
44b7a8d3 6920 unsigned int nr_pages;
d93c4130 6921 unsigned long flags;
0a31bc97
JW
6922
6923 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6924 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6925 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6926 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6927 newpage);
0a31bc97
JW
6928
6929 if (mem_cgroup_disabled())
6930 return;
6931
6932 /* Page cache replacement: new page already charged? */
bcfe06bf 6933 if (page_memcg(newpage))
0a31bc97
JW
6934 return;
6935
bcfe06bf 6936 memcg = page_memcg(oldpage);
a4055888 6937 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6938 if (!memcg)
0a31bc97
JW
6939 return;
6940
44b7a8d3 6941 /* Force-charge the new page. The old one will be freed soon */
6c357848 6942 nr_pages = thp_nr_pages(newpage);
44b7a8d3 6943
8dc87c7d
MS
6944 if (!mem_cgroup_is_root(memcg)) {
6945 page_counter_charge(&memcg->memory, nr_pages);
6946 if (do_memsw_account())
6947 page_counter_charge(&memcg->memsw, nr_pages);
6948 }
0a31bc97 6949
1a3e1f40 6950 css_get(&memcg->css);
d9eb1ea2 6951 commit_charge(newpage, memcg);
44b7a8d3 6952
d93c4130 6953 local_irq_save(flags);
3fba69a5 6954 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6955 memcg_check_events(memcg, newpage);
d93c4130 6956 local_irq_restore(flags);
0a31bc97
JW
6957}
6958
ef12947c 6959DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6960EXPORT_SYMBOL(memcg_sockets_enabled_key);
6961
2d758073 6962void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6963{
6964 struct mem_cgroup *memcg;
6965
2d758073
JW
6966 if (!mem_cgroup_sockets_enabled)
6967 return;
6968
e876ecc6
SB
6969 /* Do not associate the sock with unrelated interrupted task's memcg. */
6970 if (in_interrupt())
6971 return;
6972
11092087
JW
6973 rcu_read_lock();
6974 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6975 if (memcg == root_mem_cgroup)
6976 goto out;
0db15298 6977 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6978 goto out;
8965aa28 6979 if (css_tryget(&memcg->css))
11092087 6980 sk->sk_memcg = memcg;
f7e1cb6e 6981out:
11092087
JW
6982 rcu_read_unlock();
6983}
11092087 6984
2d758073 6985void mem_cgroup_sk_free(struct sock *sk)
11092087 6986{
2d758073
JW
6987 if (sk->sk_memcg)
6988 css_put(&sk->sk_memcg->css);
11092087
JW
6989}
6990
6991/**
6992 * mem_cgroup_charge_skmem - charge socket memory
6993 * @memcg: memcg to charge
6994 * @nr_pages: number of pages to charge
6995 *
6996 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6997 * @memcg's configured limit, %false if the charge had to be forced.
6998 */
6999bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7000{
f7e1cb6e 7001 gfp_t gfp_mask = GFP_KERNEL;
11092087 7002
f7e1cb6e 7003 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7004 struct page_counter *fail;
f7e1cb6e 7005
0db15298
JW
7006 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7007 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7008 return true;
7009 }
0db15298
JW
7010 page_counter_charge(&memcg->tcpmem, nr_pages);
7011 memcg->tcpmem_pressure = 1;
f7e1cb6e 7012 return false;
11092087 7013 }
d886f4e4 7014
f7e1cb6e
JW
7015 /* Don't block in the packet receive path */
7016 if (in_softirq())
7017 gfp_mask = GFP_NOWAIT;
7018
c9019e9b 7019 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7020
f7e1cb6e
JW
7021 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7022 return true;
7023
7024 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7025 return false;
7026}
7027
7028/**
7029 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7030 * @memcg: memcg to uncharge
7031 * @nr_pages: number of pages to uncharge
11092087
JW
7032 */
7033void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7034{
f7e1cb6e 7035 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7036 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7037 return;
7038 }
d886f4e4 7039
c9019e9b 7040 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7041
475d0487 7042 refill_stock(memcg, nr_pages);
11092087
JW
7043}
7044
f7e1cb6e
JW
7045static int __init cgroup_memory(char *s)
7046{
7047 char *token;
7048
7049 while ((token = strsep(&s, ",")) != NULL) {
7050 if (!*token)
7051 continue;
7052 if (!strcmp(token, "nosocket"))
7053 cgroup_memory_nosocket = true;
04823c83
VD
7054 if (!strcmp(token, "nokmem"))
7055 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7056 }
7057 return 0;
7058}
7059__setup("cgroup.memory=", cgroup_memory);
11092087 7060
2d11085e 7061/*
1081312f
MH
7062 * subsys_initcall() for memory controller.
7063 *
308167fc
SAS
7064 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7065 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7066 * basically everything that doesn't depend on a specific mem_cgroup structure
7067 * should be initialized from here.
2d11085e
MH
7068 */
7069static int __init mem_cgroup_init(void)
7070{
95a045f6
JW
7071 int cpu, node;
7072
f3344adf
MS
7073 /*
7074 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7075 * used for per-memcg-per-cpu caching of per-node statistics. In order
7076 * to work fine, we should make sure that the overfill threshold can't
7077 * exceed S32_MAX / PAGE_SIZE.
7078 */
7079 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7080
308167fc
SAS
7081 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7082 memcg_hotplug_cpu_dead);
95a045f6
JW
7083
7084 for_each_possible_cpu(cpu)
7085 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7086 drain_local_stock);
7087
7088 for_each_node(node) {
7089 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7090
7091 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7092 node_online(node) ? node : NUMA_NO_NODE);
7093
ef8f2327 7094 rtpn->rb_root = RB_ROOT;
fa90b2fd 7095 rtpn->rb_rightmost = NULL;
ef8f2327 7096 spin_lock_init(&rtpn->lock);
95a045f6
JW
7097 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7098 }
7099
2d11085e
MH
7100 return 0;
7101}
7102subsys_initcall(mem_cgroup_init);
21afa38e
JW
7103
7104#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7105static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7106{
1c2d479a 7107 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7108 /*
7109 * The root cgroup cannot be destroyed, so it's refcount must
7110 * always be >= 1.
7111 */
7112 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7113 VM_BUG_ON(1);
7114 break;
7115 }
7116 memcg = parent_mem_cgroup(memcg);
7117 if (!memcg)
7118 memcg = root_mem_cgroup;
7119 }
7120 return memcg;
7121}
7122
21afa38e
JW
7123/**
7124 * mem_cgroup_swapout - transfer a memsw charge to swap
7125 * @page: page whose memsw charge to transfer
7126 * @entry: swap entry to move the charge to
7127 *
7128 * Transfer the memsw charge of @page to @entry.
7129 */
7130void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7131{
1f47b61f 7132 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7133 unsigned int nr_entries;
21afa38e
JW
7134 unsigned short oldid;
7135
7136 VM_BUG_ON_PAGE(PageLRU(page), page);
7137 VM_BUG_ON_PAGE(page_count(page), page);
7138
76358ab5
AS
7139 if (mem_cgroup_disabled())
7140 return;
7141
2d1c4980 7142 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7143 return;
7144
bcfe06bf 7145 memcg = page_memcg(page);
21afa38e 7146
a4055888 7147 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7148 if (!memcg)
7149 return;
7150
1f47b61f
VD
7151 /*
7152 * In case the memcg owning these pages has been offlined and doesn't
7153 * have an ID allocated to it anymore, charge the closest online
7154 * ancestor for the swap instead and transfer the memory+swap charge.
7155 */
7156 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7157 nr_entries = thp_nr_pages(page);
d6810d73
HY
7158 /* Get references for the tail pages, too */
7159 if (nr_entries > 1)
7160 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7161 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7162 nr_entries);
21afa38e 7163 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7164 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7165
bcfe06bf 7166 page->memcg_data = 0;
21afa38e
JW
7167
7168 if (!mem_cgroup_is_root(memcg))
d6810d73 7169 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7170
2d1c4980 7171 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7172 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7173 page_counter_charge(&swap_memcg->memsw, nr_entries);
7174 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7175 }
7176
ce9ce665
SAS
7177 /*
7178 * Interrupts should be disabled here because the caller holds the
b93b0163 7179 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7180 * important here to have the interrupts disabled because it is the
b93b0163 7181 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7182 */
7183 VM_BUG_ON(!irqs_disabled());
3fba69a5 7184 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7185 memcg_check_events(memcg, page);
73f576c0 7186
1a3e1f40 7187 css_put(&memcg->css);
21afa38e
JW
7188}
7189
38d8b4e6 7190/**
01c4b28c 7191 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7192 * @page: page being added to swap
7193 * @entry: swap entry to charge
7194 *
38d8b4e6 7195 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7196 *
7197 * Returns 0 on success, -ENOMEM on failure.
7198 */
01c4b28c 7199int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7200{
6c357848 7201 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7202 struct page_counter *counter;
38d8b4e6 7203 struct mem_cgroup *memcg;
37e84351
VD
7204 unsigned short oldid;
7205
2d1c4980 7206 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7207 return 0;
7208
bcfe06bf 7209 memcg = page_memcg(page);
37e84351 7210
a4055888 7211 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7212 if (!memcg)
7213 return 0;
7214
f3a53a3a
TH
7215 if (!entry.val) {
7216 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7217 return 0;
f3a53a3a 7218 }
bb98f2c5 7219
1f47b61f
VD
7220 memcg = mem_cgroup_id_get_online(memcg);
7221
2d1c4980 7222 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7223 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7224 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7225 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7226 mem_cgroup_id_put(memcg);
37e84351 7227 return -ENOMEM;
1f47b61f 7228 }
37e84351 7229
38d8b4e6
HY
7230 /* Get references for the tail pages, too */
7231 if (nr_pages > 1)
7232 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7233 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7234 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7235 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7236
37e84351
VD
7237 return 0;
7238}
7239
21afa38e 7240/**
01c4b28c 7241 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7242 * @entry: swap entry to uncharge
38d8b4e6 7243 * @nr_pages: the amount of swap space to uncharge
21afa38e 7244 */
01c4b28c 7245void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7246{
7247 struct mem_cgroup *memcg;
7248 unsigned short id;
7249
38d8b4e6 7250 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7251 rcu_read_lock();
adbe427b 7252 memcg = mem_cgroup_from_id(id);
21afa38e 7253 if (memcg) {
2d1c4980 7254 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7255 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7256 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7257 else
38d8b4e6 7258 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7259 }
c9019e9b 7260 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7261 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7262 }
7263 rcu_read_unlock();
7264}
7265
d8b38438
VD
7266long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7267{
7268 long nr_swap_pages = get_nr_swap_pages();
7269
eccb52e7 7270 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7271 return nr_swap_pages;
7272 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7273 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7274 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7275 page_counter_read(&memcg->swap));
7276 return nr_swap_pages;
7277}
7278
5ccc5aba
VD
7279bool mem_cgroup_swap_full(struct page *page)
7280{
7281 struct mem_cgroup *memcg;
7282
7283 VM_BUG_ON_PAGE(!PageLocked(page), page);
7284
7285 if (vm_swap_full())
7286 return true;
eccb52e7 7287 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7288 return false;
7289
bcfe06bf 7290 memcg = page_memcg(page);
5ccc5aba
VD
7291 if (!memcg)
7292 return false;
7293
4b82ab4f
JK
7294 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7295 unsigned long usage = page_counter_read(&memcg->swap);
7296
7297 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7298 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7299 return true;
4b82ab4f 7300 }
5ccc5aba
VD
7301
7302 return false;
7303}
7304
eccb52e7 7305static int __init setup_swap_account(char *s)
21afa38e
JW
7306{
7307 if (!strcmp(s, "1"))
5ab92901 7308 cgroup_memory_noswap = false;
21afa38e 7309 else if (!strcmp(s, "0"))
5ab92901 7310 cgroup_memory_noswap = true;
21afa38e
JW
7311 return 1;
7312}
eccb52e7 7313__setup("swapaccount=", setup_swap_account);
21afa38e 7314
37e84351
VD
7315static u64 swap_current_read(struct cgroup_subsys_state *css,
7316 struct cftype *cft)
7317{
7318 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7319
7320 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7321}
7322
4b82ab4f
JK
7323static int swap_high_show(struct seq_file *m, void *v)
7324{
7325 return seq_puts_memcg_tunable(m,
7326 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7327}
7328
7329static ssize_t swap_high_write(struct kernfs_open_file *of,
7330 char *buf, size_t nbytes, loff_t off)
7331{
7332 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7333 unsigned long high;
7334 int err;
7335
7336 buf = strstrip(buf);
7337 err = page_counter_memparse(buf, "max", &high);
7338 if (err)
7339 return err;
7340
7341 page_counter_set_high(&memcg->swap, high);
7342
7343 return nbytes;
7344}
7345
37e84351
VD
7346static int swap_max_show(struct seq_file *m, void *v)
7347{
677dc973
CD
7348 return seq_puts_memcg_tunable(m,
7349 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7350}
7351
7352static ssize_t swap_max_write(struct kernfs_open_file *of,
7353 char *buf, size_t nbytes, loff_t off)
7354{
7355 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7356 unsigned long max;
7357 int err;
7358
7359 buf = strstrip(buf);
7360 err = page_counter_memparse(buf, "max", &max);
7361 if (err)
7362 return err;
7363
be09102b 7364 xchg(&memcg->swap.max, max);
37e84351
VD
7365
7366 return nbytes;
7367}
7368
f3a53a3a
TH
7369static int swap_events_show(struct seq_file *m, void *v)
7370{
aa9694bb 7371 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7372
4b82ab4f
JK
7373 seq_printf(m, "high %lu\n",
7374 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7375 seq_printf(m, "max %lu\n",
7376 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7377 seq_printf(m, "fail %lu\n",
7378 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7379
7380 return 0;
7381}
7382
37e84351
VD
7383static struct cftype swap_files[] = {
7384 {
7385 .name = "swap.current",
7386 .flags = CFTYPE_NOT_ON_ROOT,
7387 .read_u64 = swap_current_read,
7388 },
4b82ab4f
JK
7389 {
7390 .name = "swap.high",
7391 .flags = CFTYPE_NOT_ON_ROOT,
7392 .seq_show = swap_high_show,
7393 .write = swap_high_write,
7394 },
37e84351
VD
7395 {
7396 .name = "swap.max",
7397 .flags = CFTYPE_NOT_ON_ROOT,
7398 .seq_show = swap_max_show,
7399 .write = swap_max_write,
7400 },
f3a53a3a
TH
7401 {
7402 .name = "swap.events",
7403 .flags = CFTYPE_NOT_ON_ROOT,
7404 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7405 .seq_show = swap_events_show,
7406 },
37e84351
VD
7407 { } /* terminate */
7408};
7409
eccb52e7 7410static struct cftype memsw_files[] = {
21afa38e
JW
7411 {
7412 .name = "memsw.usage_in_bytes",
7413 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7414 .read_u64 = mem_cgroup_read_u64,
7415 },
7416 {
7417 .name = "memsw.max_usage_in_bytes",
7418 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7419 .write = mem_cgroup_reset,
7420 .read_u64 = mem_cgroup_read_u64,
7421 },
7422 {
7423 .name = "memsw.limit_in_bytes",
7424 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7425 .write = mem_cgroup_write,
7426 .read_u64 = mem_cgroup_read_u64,
7427 },
7428 {
7429 .name = "memsw.failcnt",
7430 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7431 .write = mem_cgroup_reset,
7432 .read_u64 = mem_cgroup_read_u64,
7433 },
7434 { }, /* terminate */
7435};
7436
82ff165c
BS
7437/*
7438 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7439 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7440 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7441 * boot parameter. This may result in premature OOPS inside
7442 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7443 */
21afa38e
JW
7444static int __init mem_cgroup_swap_init(void)
7445{
2d1c4980
JW
7446 /* No memory control -> no swap control */
7447 if (mem_cgroup_disabled())
7448 cgroup_memory_noswap = true;
7449
7450 if (cgroup_memory_noswap)
eccb52e7
JW
7451 return 0;
7452
7453 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7454 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7455
21afa38e
JW
7456 return 0;
7457}
82ff165c 7458core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7459
7460#endif /* CONFIG_MEMCG_SWAP */