]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
docs, bpf: Ensure IETF's BPF mailing list gets copied for ISA doc changes
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
014bb1de 70#include "swap.h"
8cdea7c0 71
7c0f6ba6 72#include <linux/uaccess.h>
8697d331 73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
37d5985c
RG
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 84
f7e1cb6e 85/* Socket memory accounting disabled? */
0f0cace3 86static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 87
04823c83 88/* Kernel memory accounting disabled? */
17c17367 89static bool cgroup_memory_nokmem __ro_after_init;
04823c83 90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
b25806dc 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
7941d214
JW
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
8c7c6e34 202/* for encoding cft->private value on file */
86ae53e1
GC
203enum res_type {
204 _MEM,
205 _MEMSWAP,
510fc4e1 206 _KMEM,
d55f90bf 207 _TCP,
86ae53e1
GC
208};
209
a0db00fc
KS
210#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
211#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
212#define MEMFILE_ATTR(val) ((val) & 0xffff)
213
b05706f1
KT
214/*
215 * Iteration constructs for visiting all cgroups (under a tree). If
216 * loops are exited prematurely (break), mem_cgroup_iter_break() must
217 * be used for reference counting.
218 */
219#define for_each_mem_cgroup_tree(iter, root) \
220 for (iter = mem_cgroup_iter(root, NULL, NULL); \
221 iter != NULL; \
222 iter = mem_cgroup_iter(root, iter, NULL))
223
224#define for_each_mem_cgroup(iter) \
225 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
226 iter != NULL; \
227 iter = mem_cgroup_iter(NULL, iter, NULL))
228
a4ebf1b6 229static inline bool task_is_dying(void)
7775face
TH
230{
231 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
232 (current->flags & PF_EXITING);
233}
234
70ddf637
AV
235/* Some nice accessors for the vmpressure. */
236struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237{
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241}
242
9647875b 243struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 244{
9647875b 245 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
246}
247
84c07d11 248#ifdef CONFIG_MEMCG_KMEM
0764db9b 249static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 250
4d5c8aed
RG
251bool mem_cgroup_kmem_disabled(void)
252{
253 return cgroup_memory_nokmem;
254}
255
f1286fae
MS
256static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
257 unsigned int nr_pages);
c1a660de 258
bf4f0599
RG
259static void obj_cgroup_release(struct percpu_ref *ref)
260{
261 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
bf4f0599 290 if (nr_pages)
f1286fae 291 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 292
0764db9b 293 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 294 list_del(&objcg->list);
0764db9b 295 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
296
297 percpu_ref_exit(ref);
298 kfree_rcu(objcg, rcu);
299}
300
301static struct obj_cgroup *obj_cgroup_alloc(void)
302{
303 struct obj_cgroup *objcg;
304 int ret;
305
306 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
307 if (!objcg)
308 return NULL;
309
310 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
311 GFP_KERNEL);
312 if (ret) {
313 kfree(objcg);
314 return NULL;
315 }
316 INIT_LIST_HEAD(&objcg->list);
317 return objcg;
318}
319
320static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
321 struct mem_cgroup *parent)
322{
323 struct obj_cgroup *objcg, *iter;
324
325 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
326
0764db9b 327 spin_lock_irq(&objcg_lock);
bf4f0599 328
9838354e
MS
329 /* 1) Ready to reparent active objcg. */
330 list_add(&objcg->list, &memcg->objcg_list);
331 /* 2) Reparent active objcg and already reparented objcgs to parent. */
332 list_for_each_entry(iter, &memcg->objcg_list, list)
333 WRITE_ONCE(iter->memcg, parent);
334 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
0764db9b 337 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
d7f25f8a
GC
342/*
343 * A lot of the calls to the cache allocation functions are expected to be
272911a4 344 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
345 * conditional to this static branch, we'll have to allow modules that does
346 * kmem_cache_alloc and the such to see this symbol as well
347 */
ef12947c 348DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 349EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 350#endif
17cc4dfe 351
ad7fa852
TH
352/**
353 * mem_cgroup_css_from_page - css of the memcg associated with a page
354 * @page: page of interest
355 *
356 * If memcg is bound to the default hierarchy, css of the memcg associated
357 * with @page is returned. The returned css remains associated with @page
358 * until it is released.
359 *
360 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
361 * is returned.
ad7fa852
TH
362 */
363struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
364{
365 struct mem_cgroup *memcg;
366
bcfe06bf 367 memcg = page_memcg(page);
ad7fa852 368
9e10a130 369 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
370 memcg = root_mem_cgroup;
371
ad7fa852
TH
372 return &memcg->css;
373}
374
2fc04524
VD
375/**
376 * page_cgroup_ino - return inode number of the memcg a page is charged to
377 * @page: the page
378 *
379 * Look up the closest online ancestor of the memory cgroup @page is charged to
380 * and return its inode number or 0 if @page is not charged to any cgroup. It
381 * is safe to call this function without holding a reference to @page.
382 *
383 * Note, this function is inherently racy, because there is nothing to prevent
384 * the cgroup inode from getting torn down and potentially reallocated a moment
385 * after page_cgroup_ino() returns, so it only should be used by callers that
386 * do not care (such as procfs interfaces).
387 */
388ino_t page_cgroup_ino(struct page *page)
389{
390 struct mem_cgroup *memcg;
391 unsigned long ino = 0;
392
393 rcu_read_lock();
bcfe06bf 394 memcg = page_memcg_check(page);
286e04b8 395
2fc04524
VD
396 while (memcg && !(memcg->css.flags & CSS_ONLINE))
397 memcg = parent_mem_cgroup(memcg);
398 if (memcg)
399 ino = cgroup_ino(memcg->css.cgroup);
400 rcu_read_unlock();
401 return ino;
402}
403
ef8f2327
MG
404static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
405 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 406 unsigned long new_usage_in_excess)
bb4cc1a8
AM
407{
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
ef8f2327 410 struct mem_cgroup_per_node *mz_node;
fa90b2fd 411 bool rightmost = true;
bb4cc1a8
AM
412
413 if (mz->on_tree)
414 return;
415
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
419 while (*p) {
420 parent = *p;
ef8f2327 421 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 422 tree_node);
fa90b2fd 423 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 424 p = &(*p)->rb_left;
fa90b2fd 425 rightmost = false;
378876b0 426 } else {
bb4cc1a8 427 p = &(*p)->rb_right;
378876b0 428 }
bb4cc1a8 429 }
fa90b2fd
DB
430
431 if (rightmost)
432 mctz->rb_rightmost = &mz->tree_node;
433
bb4cc1a8
AM
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
437}
438
ef8f2327
MG
439static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
441{
442 if (!mz->on_tree)
443 return;
fa90b2fd
DB
444
445 if (&mz->tree_node == mctz->rb_rightmost)
446 mctz->rb_rightmost = rb_prev(&mz->tree_node);
447
bb4cc1a8
AM
448 rb_erase(&mz->tree_node, &mctz->rb_root);
449 mz->on_tree = false;
450}
451
ef8f2327
MG
452static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
453 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 454{
0a31bc97
JW
455 unsigned long flags;
456
457 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 458 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 459 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
460}
461
3e32cb2e
JW
462static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
463{
464 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 465 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
466 unsigned long excess = 0;
467
468 if (nr_pages > soft_limit)
469 excess = nr_pages - soft_limit;
470
471 return excess;
472}
bb4cc1a8 473
658b69c9 474static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 475{
3e32cb2e 476 unsigned long excess;
ef8f2327
MG
477 struct mem_cgroup_per_node *mz;
478 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 479
2ab082ba 480 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
481 if (!mctz)
482 return;
bb4cc1a8
AM
483 /*
484 * Necessary to update all ancestors when hierarchy is used.
485 * because their event counter is not touched.
486 */
487 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 488 mz = memcg->nodeinfo[nid];
3e32cb2e 489 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
490 /*
491 * We have to update the tree if mz is on RB-tree or
492 * mem is over its softlimit.
493 */
494 if (excess || mz->on_tree) {
0a31bc97
JW
495 unsigned long flags;
496
497 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
498 /* if on-tree, remove it */
499 if (mz->on_tree)
cf2c8127 500 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
501 /*
502 * Insert again. mz->usage_in_excess will be updated.
503 * If excess is 0, no tree ops.
504 */
cf2c8127 505 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 506 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
507 }
508 }
509}
510
511static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
512{
ef8f2327
MG
513 struct mem_cgroup_tree_per_node *mctz;
514 struct mem_cgroup_per_node *mz;
515 int nid;
bb4cc1a8 516
e231875b 517 for_each_node(nid) {
a3747b53 518 mz = memcg->nodeinfo[nid];
2ab082ba 519 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
520 if (mctz)
521 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
522 }
523}
524
ef8f2327
MG
525static struct mem_cgroup_per_node *
526__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 527{
ef8f2327 528 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
529
530retry:
531 mz = NULL;
fa90b2fd 532 if (!mctz->rb_rightmost)
bb4cc1a8
AM
533 goto done; /* Nothing to reclaim from */
534
fa90b2fd
DB
535 mz = rb_entry(mctz->rb_rightmost,
536 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
537 /*
538 * Remove the node now but someone else can add it back,
539 * we will to add it back at the end of reclaim to its correct
540 * position in the tree.
541 */
cf2c8127 542 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 543 if (!soft_limit_excess(mz->memcg) ||
8965aa28 544 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
545 goto retry;
546done:
547 return mz;
548}
549
ef8f2327
MG
550static struct mem_cgroup_per_node *
551mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 552{
ef8f2327 553 struct mem_cgroup_per_node *mz;
bb4cc1a8 554
0a31bc97 555 spin_lock_irq(&mctz->lock);
bb4cc1a8 556 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 557 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
558 return mz;
559}
560
11192d9c
SB
561/*
562 * memcg and lruvec stats flushing
563 *
564 * Many codepaths leading to stats update or read are performance sensitive and
565 * adding stats flushing in such codepaths is not desirable. So, to optimize the
566 * flushing the kernel does:
567 *
568 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
569 * rstat update tree grow unbounded.
570 *
571 * 2) Flush the stats synchronously on reader side only when there are more than
572 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
573 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
574 * only for 2 seconds due to (1).
575 */
576static void flush_memcg_stats_dwork(struct work_struct *w);
577static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
578static DEFINE_SPINLOCK(stats_flush_lock);
579static DEFINE_PER_CPU(unsigned int, stats_updates);
580static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
581static u64 flush_next_time;
582
583#define FLUSH_TIME (2UL*HZ)
11192d9c 584
be3e67b5
SAS
585/*
586 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
587 * not rely on this as part of an acquired spinlock_t lock. These functions are
588 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
589 * is sufficient.
590 */
591static void memcg_stats_lock(void)
592{
e575d401
TG
593 preempt_disable_nested();
594 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
595}
596
597static void __memcg_stats_lock(void)
598{
e575d401 599 preempt_disable_nested();
be3e67b5
SAS
600}
601
602static void memcg_stats_unlock(void)
603{
e575d401 604 preempt_enable_nested();
be3e67b5
SAS
605}
606
5b3be698 607static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 608{
5b3be698
SB
609 unsigned int x;
610
11192d9c 611 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
612
613 x = __this_cpu_add_return(stats_updates, abs(val));
614 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
615 /*
616 * If stats_flush_threshold exceeds the threshold
617 * (>num_online_cpus()), cgroup stats update will be triggered
618 * in __mem_cgroup_flush_stats(). Increasing this var further
619 * is redundant and simply adds overhead in atomic update.
620 */
621 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
622 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
623 __this_cpu_write(stats_updates, 0);
624 }
11192d9c
SB
625}
626
627static void __mem_cgroup_flush_stats(void)
628{
fd25a9e0
SB
629 unsigned long flag;
630
631 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
632 return;
633
9b301615 634 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
11192d9c
SB
635 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
636 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 637 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
638}
639
640void mem_cgroup_flush_stats(void)
641{
642 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
643 __mem_cgroup_flush_stats();
644}
645
9b301615
SB
646void mem_cgroup_flush_stats_delayed(void)
647{
648 if (time_after64(jiffies_64, flush_next_time))
649 mem_cgroup_flush_stats();
650}
651
11192d9c
SB
652static void flush_memcg_stats_dwork(struct work_struct *w)
653{
5b3be698 654 __mem_cgroup_flush_stats();
9b301615 655 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
656}
657
d396def5
SB
658/* Subset of vm_event_item to report for memcg event stats */
659static const unsigned int memcg_vm_event_stat[] = {
8278f1c7
SB
660 PGPGIN,
661 PGPGOUT,
d396def5
SB
662 PGSCAN_KSWAPD,
663 PGSCAN_DIRECT,
57e9cc50 664 PGSCAN_KHUGEPAGED,
d396def5
SB
665 PGSTEAL_KSWAPD,
666 PGSTEAL_DIRECT,
57e9cc50 667 PGSTEAL_KHUGEPAGED,
d396def5
SB
668 PGFAULT,
669 PGMAJFAULT,
670 PGREFILL,
671 PGACTIVATE,
672 PGDEACTIVATE,
673 PGLAZYFREE,
674 PGLAZYFREED,
675#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
676 ZSWPIN,
677 ZSWPOUT,
678#endif
679#ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 THP_FAULT_ALLOC,
681 THP_COLLAPSE_ALLOC,
682#endif
683};
684
8278f1c7
SB
685#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
686static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
687
688static void init_memcg_events(void)
689{
690 int i;
691
692 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
693 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
694}
695
696static inline int memcg_events_index(enum vm_event_item idx)
697{
698 return mem_cgroup_events_index[idx] - 1;
699}
700
410f8e82
SB
701struct memcg_vmstats_percpu {
702 /* Local (CPU and cgroup) page state & events */
703 long state[MEMCG_NR_STAT];
8278f1c7 704 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
705
706 /* Delta calculation for lockless upward propagation */
707 long state_prev[MEMCG_NR_STAT];
8278f1c7 708 unsigned long events_prev[NR_MEMCG_EVENTS];
410f8e82
SB
709
710 /* Cgroup1: threshold notifications & softlimit tree updates */
711 unsigned long nr_page_events;
712 unsigned long targets[MEM_CGROUP_NTARGETS];
713};
714
715struct memcg_vmstats {
716 /* Aggregated (CPU and subtree) page state & events */
717 long state[MEMCG_NR_STAT];
8278f1c7 718 unsigned long events[NR_MEMCG_EVENTS];
410f8e82
SB
719
720 /* Pending child counts during tree propagation */
721 long state_pending[MEMCG_NR_STAT];
8278f1c7 722 unsigned long events_pending[NR_MEMCG_EVENTS];
410f8e82
SB
723};
724
725unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
726{
727 long x = READ_ONCE(memcg->vmstats->state[idx]);
728#ifdef CONFIG_SMP
729 if (x < 0)
730 x = 0;
731#endif
732 return x;
733}
734
db9adbcb
JW
735/**
736 * __mod_memcg_state - update cgroup memory statistics
737 * @memcg: the memory cgroup
738 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
739 * @val: delta to add to the counter, can be negative
740 */
741void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
742{
db9adbcb
JW
743 if (mem_cgroup_disabled())
744 return;
745
2d146aa3 746 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 747 memcg_rstat_updated(memcg, val);
db9adbcb
JW
748}
749
2d146aa3 750/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
751static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
752{
753 long x = 0;
754 int cpu;
755
756 for_each_possible_cpu(cpu)
2d146aa3 757 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
758#ifdef CONFIG_SMP
759 if (x < 0)
760 x = 0;
761#endif
762 return x;
763}
764
eedc4e5a
RG
765void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
766 int val)
db9adbcb
JW
767{
768 struct mem_cgroup_per_node *pn;
42a30035 769 struct mem_cgroup *memcg;
db9adbcb 770
db9adbcb 771 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 772 memcg = pn->memcg;
db9adbcb 773
be3e67b5
SAS
774 /*
775 * The caller from rmap relay on disabled preemption becase they never
776 * update their counter from in-interrupt context. For these two
777 * counters we check that the update is never performed from an
778 * interrupt context while other caller need to have disabled interrupt.
779 */
780 __memcg_stats_lock();
e575d401 781 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
be3e67b5
SAS
782 switch (idx) {
783 case NR_ANON_MAPPED:
784 case NR_FILE_MAPPED:
785 case NR_ANON_THPS:
786 case NR_SHMEM_PMDMAPPED:
787 case NR_FILE_PMDMAPPED:
788 WARN_ON_ONCE(!in_task());
789 break;
790 default:
e575d401 791 VM_WARN_ON_IRQS_ENABLED();
be3e67b5
SAS
792 }
793 }
794
db9adbcb 795 /* Update memcg */
11192d9c 796 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 797
b4c46484 798 /* Update lruvec */
7e1c0d6f 799 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 800
5b3be698 801 memcg_rstat_updated(memcg, val);
be3e67b5 802 memcg_stats_unlock();
db9adbcb
JW
803}
804
eedc4e5a
RG
805/**
806 * __mod_lruvec_state - update lruvec memory statistics
807 * @lruvec: the lruvec
808 * @idx: the stat item
809 * @val: delta to add to the counter, can be negative
810 *
811 * The lruvec is the intersection of the NUMA node and a cgroup. This
812 * function updates the all three counters that are affected by a
813 * change of state at this level: per-node, per-cgroup, per-lruvec.
814 */
815void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
816 int val)
817{
818 /* Update node */
819 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
820
821 /* Update memcg and lruvec */
822 if (!mem_cgroup_disabled())
823 __mod_memcg_lruvec_state(lruvec, idx, val);
824}
825
c47d5032
SB
826void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
827 int val)
828{
829 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 830 struct mem_cgroup *memcg;
c47d5032
SB
831 pg_data_t *pgdat = page_pgdat(page);
832 struct lruvec *lruvec;
833
b4e0b68f
MS
834 rcu_read_lock();
835 memcg = page_memcg(head);
c47d5032 836 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 837 if (!memcg) {
b4e0b68f 838 rcu_read_unlock();
c47d5032
SB
839 __mod_node_page_state(pgdat, idx, val);
840 return;
841 }
842
d635a69d 843 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 844 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 845 rcu_read_unlock();
c47d5032 846}
f0c0c115 847EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 848
da3ceeff 849void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 850{
4f103c63 851 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
852 struct mem_cgroup *memcg;
853 struct lruvec *lruvec;
854
855 rcu_read_lock();
fc4db90f 856 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 857
8faeb1ff
MS
858 /*
859 * Untracked pages have no memcg, no lruvec. Update only the
860 * node. If we reparent the slab objects to the root memcg,
861 * when we free the slab object, we need to update the per-memcg
862 * vmstats to keep it correct for the root memcg.
863 */
864 if (!memcg) {
ec9f0238
RG
865 __mod_node_page_state(pgdat, idx, val);
866 } else {
867e5e1d 867 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
868 __mod_lruvec_state(lruvec, idx, val);
869 }
870 rcu_read_unlock();
871}
872
db9adbcb
JW
873/**
874 * __count_memcg_events - account VM events in a cgroup
875 * @memcg: the memory cgroup
876 * @idx: the event item
f0953a1b 877 * @count: the number of events that occurred
db9adbcb
JW
878 */
879void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
880 unsigned long count)
881{
8278f1c7
SB
882 int index = memcg_events_index(idx);
883
884 if (mem_cgroup_disabled() || index < 0)
db9adbcb
JW
885 return;
886
be3e67b5 887 memcg_stats_lock();
8278f1c7 888 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
5b3be698 889 memcg_rstat_updated(memcg, count);
be3e67b5 890 memcg_stats_unlock();
db9adbcb
JW
891}
892
42a30035 893static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 894{
8278f1c7
SB
895 int index = memcg_events_index(event);
896
897 if (index < 0)
898 return 0;
899 return READ_ONCE(memcg->vmstats->events[index]);
e9f8974f
JW
900}
901
42a30035
JW
902static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
903{
815744d7
JW
904 long x = 0;
905 int cpu;
8278f1c7
SB
906 int index = memcg_events_index(event);
907
908 if (index < 0)
909 return 0;
815744d7
JW
910
911 for_each_possible_cpu(cpu)
8278f1c7 912 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
815744d7 913 return x;
42a30035
JW
914}
915
c0ff4b85 916static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 917 int nr_pages)
d52aa412 918{
e401f176
KH
919 /* pagein of a big page is an event. So, ignore page size */
920 if (nr_pages > 0)
c9019e9b 921 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 922 else {
c9019e9b 923 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
924 nr_pages = -nr_pages; /* for event */
925 }
e401f176 926
871789d4 927 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
928}
929
f53d7ce3
JW
930static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
931 enum mem_cgroup_events_target target)
7a159cc9
JW
932{
933 unsigned long val, next;
934
871789d4
CD
935 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
936 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 937 /* from time_after() in jiffies.h */
6a1a8b80 938 if ((long)(next - val) < 0) {
f53d7ce3
JW
939 switch (target) {
940 case MEM_CGROUP_TARGET_THRESH:
941 next = val + THRESHOLDS_EVENTS_TARGET;
942 break;
bb4cc1a8
AM
943 case MEM_CGROUP_TARGET_SOFTLIMIT:
944 next = val + SOFTLIMIT_EVENTS_TARGET;
945 break;
f53d7ce3
JW
946 default:
947 break;
948 }
871789d4 949 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 950 return true;
7a159cc9 951 }
f53d7ce3 952 return false;
d2265e6f
KH
953}
954
955/*
956 * Check events in order.
957 *
958 */
8e88bd2d 959static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 960{
2343e88d
SAS
961 if (IS_ENABLED(CONFIG_PREEMPT_RT))
962 return;
963
d2265e6f 964 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
965 if (unlikely(mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 967 bool do_softlimit;
f53d7ce3 968
bb4cc1a8
AM
969 do_softlimit = mem_cgroup_event_ratelimit(memcg,
970 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 971 mem_cgroup_threshold(memcg);
bb4cc1a8 972 if (unlikely(do_softlimit))
8e88bd2d 973 mem_cgroup_update_tree(memcg, nid);
0a31bc97 974 }
d2265e6f
KH
975}
976
cf475ad2 977struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 978{
31a78f23
BS
979 /*
980 * mm_update_next_owner() may clear mm->owner to NULL
981 * if it races with swapoff, page migration, etc.
982 * So this can be called with p == NULL.
983 */
984 if (unlikely(!p))
985 return NULL;
986
073219e9 987 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 988}
33398cf2 989EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 990
04f94e3f
DS
991static __always_inline struct mem_cgroup *active_memcg(void)
992{
55a68c82 993 if (!in_task())
04f94e3f
DS
994 return this_cpu_read(int_active_memcg);
995 else
996 return current->active_memcg;
997}
998
d46eb14b
SB
999/**
1000 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1001 * @mm: mm from which memcg should be extracted. It can be NULL.
1002 *
04f94e3f
DS
1003 * Obtain a reference on mm->memcg and returns it if successful. If mm
1004 * is NULL, then the memcg is chosen as follows:
1005 * 1) The active memcg, if set.
1006 * 2) current->mm->memcg, if available
1007 * 3) root memcg
1008 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
1009 */
1010struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1011{
d46eb14b
SB
1012 struct mem_cgroup *memcg;
1013
1014 if (mem_cgroup_disabled())
1015 return NULL;
0b7f569e 1016
2884b6b7
MS
1017 /*
1018 * Page cache insertions can happen without an
1019 * actual mm context, e.g. during disk probing
1020 * on boot, loopback IO, acct() writes etc.
1021 *
1022 * No need to css_get on root memcg as the reference
1023 * counting is disabled on the root level in the
1024 * cgroup core. See CSS_NO_REF.
1025 */
04f94e3f
DS
1026 if (unlikely(!mm)) {
1027 memcg = active_memcg();
1028 if (unlikely(memcg)) {
1029 /* remote memcg must hold a ref */
1030 css_get(&memcg->css);
1031 return memcg;
1032 }
1033 mm = current->mm;
1034 if (unlikely(!mm))
1035 return root_mem_cgroup;
1036 }
2884b6b7 1037
54595fe2
KH
1038 rcu_read_lock();
1039 do {
2884b6b7
MS
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
df381975 1042 memcg = root_mem_cgroup;
00d484f3 1043 } while (!css_tryget(&memcg->css));
54595fe2 1044 rcu_read_unlock();
c0ff4b85 1045 return memcg;
54595fe2 1046}
d46eb14b
SB
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
4127c650
RG
1049static __always_inline bool memcg_kmem_bypass(void)
1050{
1051 /* Allow remote memcg charging from any context. */
1052 if (unlikely(active_memcg()))
1053 return false;
1054
1055 /* Memcg to charge can't be determined. */
6126891c 1056 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
1057 return true;
1058
1059 return false;
1060}
1061
5660048c
JW
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1067 *
1068 * Returns references to children of the hierarchy below @root, or
1069 * @root itself, or %NULL after a full round-trip.
1070 *
1071 * Caller must pass the return value in @prev on subsequent
1072 * invocations for reference counting, or use mem_cgroup_iter_break()
1073 * to cancel a hierarchy walk before the round-trip is complete.
1074 *
05bdc520
ML
1075 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1076 * in the hierarchy among all concurrent reclaimers operating on the
1077 * same node.
5660048c 1078 */
694fbc0f 1079struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1080 struct mem_cgroup *prev,
694fbc0f 1081 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1082{
3f649ab7 1083 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1084 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1085 struct mem_cgroup *memcg = NULL;
5ac8fb31 1086 struct mem_cgroup *pos = NULL;
711d3d2c 1087
694fbc0f
AM
1088 if (mem_cgroup_disabled())
1089 return NULL;
5660048c 1090
9f3a0d09
JW
1091 if (!root)
1092 root = root_mem_cgroup;
7d74b06f 1093
542f85f9 1094 rcu_read_lock();
5f578161 1095
5ac8fb31 1096 if (reclaim) {
ef8f2327 1097 struct mem_cgroup_per_node *mz;
5ac8fb31 1098
a3747b53 1099 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1100 iter = &mz->iter;
5ac8fb31 1101
a9320aae
WY
1102 /*
1103 * On start, join the current reclaim iteration cycle.
1104 * Exit when a concurrent walker completes it.
1105 */
1106 if (!prev)
1107 reclaim->generation = iter->generation;
1108 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1109 goto out_unlock;
1110
6df38689 1111 while (1) {
4db0c3c2 1112 pos = READ_ONCE(iter->position);
6df38689
VD
1113 if (!pos || css_tryget(&pos->css))
1114 break;
5ac8fb31 1115 /*
6df38689
VD
1116 * css reference reached zero, so iter->position will
1117 * be cleared by ->css_released. However, we should not
1118 * rely on this happening soon, because ->css_released
1119 * is called from a work queue, and by busy-waiting we
1120 * might block it. So we clear iter->position right
1121 * away.
5ac8fb31 1122 */
6df38689
VD
1123 (void)cmpxchg(&iter->position, pos, NULL);
1124 }
89d8330c
WY
1125 } else if (prev) {
1126 pos = prev;
5ac8fb31
JW
1127 }
1128
1129 if (pos)
1130 css = &pos->css;
1131
1132 for (;;) {
1133 css = css_next_descendant_pre(css, &root->css);
1134 if (!css) {
1135 /*
1136 * Reclaimers share the hierarchy walk, and a
1137 * new one might jump in right at the end of
1138 * the hierarchy - make sure they see at least
1139 * one group and restart from the beginning.
1140 */
1141 if (!prev)
1142 continue;
1143 break;
527a5ec9 1144 }
7d74b06f 1145
5ac8fb31
JW
1146 /*
1147 * Verify the css and acquire a reference. The root
1148 * is provided by the caller, so we know it's alive
1149 * and kicking, and don't take an extra reference.
1150 */
41555dad
WY
1151 if (css == &root->css || css_tryget(css)) {
1152 memcg = mem_cgroup_from_css(css);
0b8f73e1 1153 break;
41555dad 1154 }
9f3a0d09 1155 }
5ac8fb31
JW
1156
1157 if (reclaim) {
5ac8fb31 1158 /*
6df38689
VD
1159 * The position could have already been updated by a competing
1160 * thread, so check that the value hasn't changed since we read
1161 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1162 */
6df38689
VD
1163 (void)cmpxchg(&iter->position, pos, memcg);
1164
5ac8fb31
JW
1165 if (pos)
1166 css_put(&pos->css);
1167
1168 if (!memcg)
1169 iter->generation++;
9f3a0d09 1170 }
5ac8fb31 1171
542f85f9
MH
1172out_unlock:
1173 rcu_read_unlock();
c40046f3
MH
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176
9f3a0d09 1177 return memcg;
14067bb3 1178}
7d74b06f 1179
5660048c
JW
1180/**
1181 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1182 * @root: hierarchy root
1183 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1184 */
1185void mem_cgroup_iter_break(struct mem_cgroup *root,
1186 struct mem_cgroup *prev)
9f3a0d09
JW
1187{
1188 if (!root)
1189 root = root_mem_cgroup;
1190 if (prev && prev != root)
1191 css_put(&prev->css);
1192}
7d74b06f 1193
54a83d6b
MC
1194static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1195 struct mem_cgroup *dead_memcg)
6df38689 1196{
6df38689 1197 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1198 struct mem_cgroup_per_node *mz;
1199 int nid;
6df38689 1200
54a83d6b 1201 for_each_node(nid) {
a3747b53 1202 mz = from->nodeinfo[nid];
9da83f3f
YS
1203 iter = &mz->iter;
1204 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1205 }
1206}
1207
54a83d6b
MC
1208static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1209{
1210 struct mem_cgroup *memcg = dead_memcg;
1211 struct mem_cgroup *last;
1212
1213 do {
1214 __invalidate_reclaim_iterators(memcg, dead_memcg);
1215 last = memcg;
1216 } while ((memcg = parent_mem_cgroup(memcg)));
1217
1218 /*
b8dd3ee9 1219 * When cgroup1 non-hierarchy mode is used,
54a83d6b
MC
1220 * parent_mem_cgroup() does not walk all the way up to the
1221 * cgroup root (root_mem_cgroup). So we have to handle
1222 * dead_memcg from cgroup root separately.
1223 */
7848ed62 1224 if (!mem_cgroup_is_root(last))
54a83d6b
MC
1225 __invalidate_reclaim_iterators(root_mem_cgroup,
1226 dead_memcg);
1227}
1228
7c5f64f8
VD
1229/**
1230 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1231 * @memcg: hierarchy root
1232 * @fn: function to call for each task
1233 * @arg: argument passed to @fn
1234 *
1235 * This function iterates over tasks attached to @memcg or to any of its
1236 * descendants and calls @fn for each task. If @fn returns a non-zero
1237 * value, the function breaks the iteration loop and returns the value.
1238 * Otherwise, it will iterate over all tasks and return 0.
1239 *
1240 * This function must not be called for the root memory cgroup.
1241 */
1242int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1243 int (*fn)(struct task_struct *, void *), void *arg)
1244{
1245 struct mem_cgroup *iter;
1246 int ret = 0;
1247
7848ed62 1248 BUG_ON(mem_cgroup_is_root(memcg));
7c5f64f8
VD
1249
1250 for_each_mem_cgroup_tree(iter, memcg) {
1251 struct css_task_iter it;
1252 struct task_struct *task;
1253
f168a9a5 1254 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1255 while (!ret && (task = css_task_iter_next(&it)))
1256 ret = fn(task, arg);
1257 css_task_iter_end(&it);
1258 if (ret) {
1259 mem_cgroup_iter_break(memcg, iter);
1260 break;
1261 }
1262 }
1263 return ret;
1264}
1265
6168d0da 1266#ifdef CONFIG_DEBUG_VM
e809c3fe 1267void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1268{
1269 struct mem_cgroup *memcg;
1270
1271 if (mem_cgroup_disabled())
1272 return;
1273
e809c3fe 1274 memcg = folio_memcg(folio);
6168d0da
AS
1275
1276 if (!memcg)
7848ed62 1277 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
6168d0da 1278 else
e809c3fe 1279 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1280}
1281#endif
1282
6168d0da 1283/**
e809c3fe
MWO
1284 * folio_lruvec_lock - Lock the lruvec for a folio.
1285 * @folio: Pointer to the folio.
6168d0da 1286 *
d7e3aba5 1287 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1288 * - folio locked
1289 * - folio_test_lru false
1290 * - folio_memcg_lock()
1291 * - folio frozen (refcount of 0)
1292 *
1293 * Return: The lruvec this folio is on with its lock held.
6168d0da 1294 */
e809c3fe 1295struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1296{
e809c3fe 1297 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1298
6168d0da 1299 spin_lock(&lruvec->lru_lock);
e809c3fe 1300 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1301
1302 return lruvec;
1303}
1304
e809c3fe
MWO
1305/**
1306 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1307 * @folio: Pointer to the folio.
1308 *
1309 * These functions are safe to use under any of the following conditions:
1310 * - folio locked
1311 * - folio_test_lru false
1312 * - folio_memcg_lock()
1313 * - folio frozen (refcount of 0)
1314 *
1315 * Return: The lruvec this folio is on with its lock held and interrupts
1316 * disabled.
1317 */
1318struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1319{
e809c3fe 1320 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1321
6168d0da 1322 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1323 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1324
1325 return lruvec;
1326}
1327
e809c3fe
MWO
1328/**
1329 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1330 * @folio: Pointer to the folio.
1331 * @flags: Pointer to irqsave flags.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1343 unsigned long *flags)
6168d0da 1344{
e809c3fe 1345 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1346
6168d0da 1347 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1348 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1349
1350 return lruvec;
1351}
1352
925b7673 1353/**
fa9add64
HD
1354 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1355 * @lruvec: mem_cgroup per zone lru vector
1356 * @lru: index of lru list the page is sitting on
b4536f0c 1357 * @zid: zone id of the accounted pages
fa9add64 1358 * @nr_pages: positive when adding or negative when removing
925b7673 1359 *
ca707239 1360 * This function must be called under lru_lock, just before a page is added
07ca7606 1361 * to or just after a page is removed from an lru list.
3f58a829 1362 */
fa9add64 1363void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1364 int zid, int nr_pages)
3f58a829 1365{
ef8f2327 1366 struct mem_cgroup_per_node *mz;
fa9add64 1367 unsigned long *lru_size;
ca707239 1368 long size;
3f58a829
MK
1369
1370 if (mem_cgroup_disabled())
1371 return;
1372
ef8f2327 1373 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1374 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1375
1376 if (nr_pages < 0)
1377 *lru_size += nr_pages;
1378
1379 size = *lru_size;
b4536f0c
MH
1380 if (WARN_ONCE(size < 0,
1381 "%s(%p, %d, %d): lru_size %ld\n",
1382 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1383 VM_BUG_ON(1);
1384 *lru_size = 0;
1385 }
1386
1387 if (nr_pages > 0)
1388 *lru_size += nr_pages;
08e552c6 1389}
544122e5 1390
19942822 1391/**
9d11ea9f 1392 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1393 * @memcg: the memory cgroup
19942822 1394 *
9d11ea9f 1395 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1396 * pages.
19942822 1397 */
c0ff4b85 1398static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1399{
3e32cb2e
JW
1400 unsigned long margin = 0;
1401 unsigned long count;
1402 unsigned long limit;
9d11ea9f 1403
3e32cb2e 1404 count = page_counter_read(&memcg->memory);
bbec2e15 1405 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1406 if (count < limit)
1407 margin = limit - count;
1408
7941d214 1409 if (do_memsw_account()) {
3e32cb2e 1410 count = page_counter_read(&memcg->memsw);
bbec2e15 1411 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1412 if (count < limit)
3e32cb2e 1413 margin = min(margin, limit - count);
cbedbac3
LR
1414 else
1415 margin = 0;
3e32cb2e
JW
1416 }
1417
1418 return margin;
19942822
JW
1419}
1420
32047e2a 1421/*
bdcbb659 1422 * A routine for checking "mem" is under move_account() or not.
32047e2a 1423 *
bdcbb659
QH
1424 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1425 * moving cgroups. This is for waiting at high-memory pressure
1426 * caused by "move".
32047e2a 1427 */
c0ff4b85 1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1429{
2bd9bb20
KH
1430 struct mem_cgroup *from;
1431 struct mem_cgroup *to;
4b534334 1432 bool ret = false;
2bd9bb20
KH
1433 /*
1434 * Unlike task_move routines, we access mc.to, mc.from not under
1435 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 */
1437 spin_lock(&mc.lock);
1438 from = mc.from;
1439 to = mc.to;
1440 if (!from)
1441 goto unlock;
3e92041d 1442
2314b42d
JW
1443 ret = mem_cgroup_is_descendant(from, memcg) ||
1444 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1445unlock:
1446 spin_unlock(&mc.lock);
4b534334
KH
1447 return ret;
1448}
1449
c0ff4b85 1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1451{
1452 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1453 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1454 DEFINE_WAIT(wait);
1455 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 /* moving charge context might have finished. */
1457 if (mc.moving_task)
1458 schedule();
1459 finish_wait(&mc.waitq, &wait);
1460 return true;
1461 }
1462 }
1463 return false;
1464}
1465
5f9a4f4a
MS
1466struct memory_stat {
1467 const char *name;
5f9a4f4a
MS
1468 unsigned int idx;
1469};
1470
57b2847d 1471static const struct memory_stat memory_stats[] = {
fff66b79
MS
1472 { "anon", NR_ANON_MAPPED },
1473 { "file", NR_FILE_PAGES },
a8c49af3 1474 { "kernel", MEMCG_KMEM },
fff66b79
MS
1475 { "kernel_stack", NR_KERNEL_STACK_KB },
1476 { "pagetables", NR_PAGETABLE },
ebc97a52 1477 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
fff66b79
MS
1478 { "percpu", MEMCG_PERCPU_B },
1479 { "sock", MEMCG_SOCK },
4e5aa1f4 1480 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1481 { "shmem", NR_SHMEM },
f4840ccf
JW
1482#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1483 { "zswap", MEMCG_ZSWAP_B },
1484 { "zswapped", MEMCG_ZSWAPPED },
1485#endif
fff66b79
MS
1486 { "file_mapped", NR_FILE_MAPPED },
1487 { "file_dirty", NR_FILE_DIRTY },
1488 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1489#ifdef CONFIG_SWAP
1490 { "swapcached", NR_SWAPCACHE },
1491#endif
5f9a4f4a 1492#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1493 { "anon_thp", NR_ANON_THPS },
1494 { "file_thp", NR_FILE_THPS },
1495 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1496#endif
fff66b79
MS
1497 { "inactive_anon", NR_INACTIVE_ANON },
1498 { "active_anon", NR_ACTIVE_ANON },
1499 { "inactive_file", NR_INACTIVE_FILE },
1500 { "active_file", NR_ACTIVE_FILE },
1501 { "unevictable", NR_UNEVICTABLE },
1502 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1503 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1504
1505 /* The memory events */
fff66b79
MS
1506 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1507 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1508 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1509 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1510 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1511 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1512 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1513};
1514
fff66b79
MS
1515/* Translate stat items to the correct unit for memory.stat output */
1516static int memcg_page_state_unit(int item)
1517{
1518 switch (item) {
1519 case MEMCG_PERCPU_B:
f4840ccf 1520 case MEMCG_ZSWAP_B:
fff66b79
MS
1521 case NR_SLAB_RECLAIMABLE_B:
1522 case NR_SLAB_UNRECLAIMABLE_B:
1523 case WORKINGSET_REFAULT_ANON:
1524 case WORKINGSET_REFAULT_FILE:
1525 case WORKINGSET_ACTIVATE_ANON:
1526 case WORKINGSET_ACTIVATE_FILE:
1527 case WORKINGSET_RESTORE_ANON:
1528 case WORKINGSET_RESTORE_FILE:
1529 case WORKINGSET_NODERECLAIM:
1530 return 1;
1531 case NR_KERNEL_STACK_KB:
1532 return SZ_1K;
1533 default:
1534 return PAGE_SIZE;
1535 }
1536}
1537
1538static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1539 int item)
1540{
1541 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1542}
1543
68aaee14 1544static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1545{
1546 struct seq_buf s;
1547 int i;
71cd3113 1548
68aaee14 1549 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1550
1551 /*
1552 * Provide statistics on the state of the memory subsystem as
1553 * well as cumulative event counters that show past behavior.
1554 *
1555 * This list is ordered following a combination of these gradients:
1556 * 1) generic big picture -> specifics and details
1557 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 *
1559 * Current memory state:
1560 */
fd25a9e0 1561 mem_cgroup_flush_stats();
c8713d0b 1562
5f9a4f4a
MS
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 u64 size;
c8713d0b 1565
fff66b79 1566 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1567 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1568
5f9a4f4a 1569 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1570 size += memcg_page_state_output(memcg,
1571 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1572 seq_buf_printf(&s, "slab %llu\n", size);
1573 }
1574 }
c8713d0b
JW
1575
1576 /* Accumulated memory events */
c8713d0b
JW
1577 seq_buf_printf(&s, "pgscan %lu\n",
1578 memcg_events(memcg, PGSCAN_KSWAPD) +
57e9cc50
JW
1579 memcg_events(memcg, PGSCAN_DIRECT) +
1580 memcg_events(memcg, PGSCAN_KHUGEPAGED));
c8713d0b
JW
1581 seq_buf_printf(&s, "pgsteal %lu\n",
1582 memcg_events(memcg, PGSTEAL_KSWAPD) +
57e9cc50
JW
1583 memcg_events(memcg, PGSTEAL_DIRECT) +
1584 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
c8713d0b 1585
8278f1c7
SB
1586 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1587 if (memcg_vm_event_stat[i] == PGPGIN ||
1588 memcg_vm_event_stat[i] == PGPGOUT)
1589 continue;
1590
673520f8
QZ
1591 seq_buf_printf(&s, "%s %lu\n",
1592 vm_event_name(memcg_vm_event_stat[i]),
1593 memcg_events(memcg, memcg_vm_event_stat[i]));
8278f1c7 1594 }
c8713d0b
JW
1595
1596 /* The above should easily fit into one page */
1597 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1598}
71cd3113 1599
58cf188e 1600#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1601/**
f0c867d9 1602 * mem_cgroup_print_oom_context: Print OOM information relevant to
1603 * memory controller.
e222432b
BS
1604 * @memcg: The memory cgroup that went over limit
1605 * @p: Task that is going to be killed
1606 *
1607 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1608 * enabled
1609 */
f0c867d9 1610void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1611{
e222432b
BS
1612 rcu_read_lock();
1613
f0c867d9 1614 if (memcg) {
1615 pr_cont(",oom_memcg=");
1616 pr_cont_cgroup_path(memcg->css.cgroup);
1617 } else
1618 pr_cont(",global_oom");
2415b9f5 1619 if (p) {
f0c867d9 1620 pr_cont(",task_memcg=");
2415b9f5 1621 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1622 }
e222432b 1623 rcu_read_unlock();
f0c867d9 1624}
1625
1626/**
1627 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1628 * memory controller.
1629 * @memcg: The memory cgroup that went over limit
1630 */
1631void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1632{
68aaee14
TH
1633 /* Use static buffer, for the caller is holding oom_lock. */
1634 static char buf[PAGE_SIZE];
1635
1636 lockdep_assert_held(&oom_lock);
e222432b 1637
3e32cb2e
JW
1638 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1639 K((u64)page_counter_read(&memcg->memory)),
15b42562 1640 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1641 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1642 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1644 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1645 else {
1646 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 K((u64)page_counter_read(&memcg->memsw)),
1648 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1649 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1650 K((u64)page_counter_read(&memcg->kmem)),
1651 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1652 }
c8713d0b
JW
1653
1654 pr_info("Memory cgroup stats for ");
1655 pr_cont_cgroup_path(memcg->css.cgroup);
1656 pr_cont(":");
68aaee14 1657 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1658 pr_info("%s", buf);
e222432b
BS
1659}
1660
a63d83f4
DR
1661/*
1662 * Return the memory (and swap, if configured) limit for a memcg.
1663 */
bbec2e15 1664unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1665{
8d387a5f
WL
1666 unsigned long max = READ_ONCE(memcg->memory.max);
1667
b94c4e94 1668 if (do_memsw_account()) {
8d387a5f
WL
1669 if (mem_cgroup_swappiness(memcg)) {
1670 /* Calculate swap excess capacity from memsw limit */
1671 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1672
1673 max += min(swap, (unsigned long)total_swap_pages);
1674 }
b94c4e94
JW
1675 } else {
1676 if (mem_cgroup_swappiness(memcg))
1677 max += min(READ_ONCE(memcg->swap.max),
1678 (unsigned long)total_swap_pages);
9a5a8f19 1679 }
bbec2e15 1680 return max;
a63d83f4
DR
1681}
1682
9783aa99
CD
1683unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1684{
1685 return page_counter_read(&memcg->memory);
1686}
1687
b6e6edcf 1688static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1689 int order)
9cbb78bb 1690{
6e0fc46d
DR
1691 struct oom_control oc = {
1692 .zonelist = NULL,
1693 .nodemask = NULL,
2a966b77 1694 .memcg = memcg,
6e0fc46d
DR
1695 .gfp_mask = gfp_mask,
1696 .order = order,
6e0fc46d 1697 };
1378b37d 1698 bool ret = true;
9cbb78bb 1699
7775face
TH
1700 if (mutex_lock_killable(&oom_lock))
1701 return true;
1378b37d
YS
1702
1703 if (mem_cgroup_margin(memcg) >= (1 << order))
1704 goto unlock;
1705
7775face
TH
1706 /*
1707 * A few threads which were not waiting at mutex_lock_killable() can
1708 * fail to bail out. Therefore, check again after holding oom_lock.
1709 */
a4ebf1b6 1710 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1711
1712unlock:
dc56401f 1713 mutex_unlock(&oom_lock);
7c5f64f8 1714 return ret;
9cbb78bb
DR
1715}
1716
0608f43d 1717static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1718 pg_data_t *pgdat,
0608f43d
AM
1719 gfp_t gfp_mask,
1720 unsigned long *total_scanned)
1721{
1722 struct mem_cgroup *victim = NULL;
1723 int total = 0;
1724 int loop = 0;
1725 unsigned long excess;
1726 unsigned long nr_scanned;
1727 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1728 .pgdat = pgdat,
0608f43d
AM
1729 };
1730
3e32cb2e 1731 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
a9dd0a83 1757 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1758 pgdat, &nr_scanned);
0608f43d 1759 *total_scanned += nr_scanned;
3e32cb2e 1760 if (!soft_limit_excess(root_memcg))
0608f43d 1761 break;
6d61ef40 1762 }
0608f43d
AM
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
6d61ef40
BS
1765}
1766
0056f4e6
JW
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770};
1771#endif
1772
fb2a6fc5
JW
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
867578cb
KH
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
fb2a6fc5 1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1780{
79dfdacc 1781 struct mem_cgroup *iter, *failed = NULL;
a636b327 1782
fb2a6fc5
JW
1783 spin_lock(&memcg_oom_lock);
1784
9f3a0d09 1785 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1786 if (iter->oom_lock) {
79dfdacc
MH
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
79dfdacc 1791 failed = iter;
9f3a0d09
JW
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
23751be0
JW
1794 } else
1795 iter->oom_lock = true;
7d74b06f 1796 }
867578cb 1797
fb2a6fc5
JW
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
79dfdacc 1809 }
0056f4e6
JW
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
a636b327 1816}
0b7f569e 1817
fb2a6fc5 1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1819{
7d74b06f
KH
1820 struct mem_cgroup *iter;
1821
fb2a6fc5 1822 spin_lock(&memcg_oom_lock);
5facae4f 1823 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1824 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1825 iter->oom_lock = false;
fb2a6fc5 1826 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1827}
1828
c0ff4b85 1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1830{
1831 struct mem_cgroup *iter;
1832
c2b42d3c 1833 spin_lock(&memcg_oom_lock);
c0ff4b85 1834 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1835 iter->under_oom++;
1836 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1837}
1838
c0ff4b85 1839static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1840{
1841 struct mem_cgroup *iter;
1842
867578cb 1843 /*
f0953a1b 1844 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1845 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1846 */
c2b42d3c 1847 spin_lock(&memcg_oom_lock);
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1849 if (iter->under_oom > 0)
1850 iter->under_oom--;
1851 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1852}
1853
867578cb
KH
1854static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1855
dc98df5a 1856struct oom_wait_info {
d79154bb 1857 struct mem_cgroup *memcg;
ac6424b9 1858 wait_queue_entry_t wait;
dc98df5a
KH
1859};
1860
ac6424b9 1861static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1862 unsigned mode, int sync, void *arg)
1863{
d79154bb
HD
1864 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1865 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1866 struct oom_wait_info *oom_wait_info;
1867
1868 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1869 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1870
2314b42d
JW
1871 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1872 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1873 return 0;
dc98df5a
KH
1874 return autoremove_wake_function(wait, mode, sync, arg);
1875}
1876
c0ff4b85 1877static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1878{
c2b42d3c
TH
1879 /*
1880 * For the following lockless ->under_oom test, the only required
1881 * guarantee is that it must see the state asserted by an OOM when
1882 * this function is called as a result of userland actions
1883 * triggered by the notification of the OOM. This is trivially
1884 * achieved by invoking mem_cgroup_mark_under_oom() before
1885 * triggering notification.
1886 */
1887 if (memcg && memcg->under_oom)
f4b90b70 1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1889}
1890
becdf89d
SB
1891/*
1892 * Returns true if successfully killed one or more processes. Though in some
1893 * corner cases it can return true even without killing any process.
1894 */
1895static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1896{
becdf89d 1897 bool locked, ret;
7056d3a3 1898
29ef680a 1899 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1900 return false;
29ef680a 1901
7a1adfdd
RG
1902 memcg_memory_event(memcg, MEMCG_OOM);
1903
867578cb 1904 /*
49426420
JW
1905 * We are in the middle of the charge context here, so we
1906 * don't want to block when potentially sitting on a callstack
1907 * that holds all kinds of filesystem and mm locks.
1908 *
29ef680a
MH
1909 * cgroup1 allows disabling the OOM killer and waiting for outside
1910 * handling until the charge can succeed; remember the context and put
1911 * the task to sleep at the end of the page fault when all locks are
1912 * released.
49426420 1913 *
29ef680a
MH
1914 * On the other hand, in-kernel OOM killer allows for an async victim
1915 * memory reclaim (oom_reaper) and that means that we are not solely
1916 * relying on the oom victim to make a forward progress and we can
1917 * invoke the oom killer here.
1918 *
1919 * Please note that mem_cgroup_out_of_memory might fail to find a
1920 * victim and then we have to bail out from the charge path.
867578cb 1921 */
29ef680a 1922 if (memcg->oom_kill_disable) {
becdf89d
SB
1923 if (current->in_user_fault) {
1924 css_get(&memcg->css);
1925 current->memcg_in_oom = memcg;
1926 current->memcg_oom_gfp_mask = mask;
1927 current->memcg_oom_order = order;
1928 }
1929 return false;
29ef680a
MH
1930 }
1931
7056d3a3
MH
1932 mem_cgroup_mark_under_oom(memcg);
1933
1934 locked = mem_cgroup_oom_trylock(memcg);
1935
1936 if (locked)
1937 mem_cgroup_oom_notify(memcg);
1938
1939 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1940 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1941
1942 if (locked)
1943 mem_cgroup_oom_unlock(memcg);
29ef680a 1944
7056d3a3 1945 return ret;
3812c8c8
JW
1946}
1947
1948/**
1949 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1950 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1951 *
49426420
JW
1952 * This has to be called at the end of a page fault if the memcg OOM
1953 * handler was enabled.
3812c8c8 1954 *
49426420 1955 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1956 * sleep on a waitqueue until the userspace task resolves the
1957 * situation. Sleeping directly in the charge context with all kinds
1958 * of locks held is not a good idea, instead we remember an OOM state
1959 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1960 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1961 *
1962 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1963 * completed, %false otherwise.
3812c8c8 1964 */
49426420 1965bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1966{
626ebc41 1967 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1968 struct oom_wait_info owait;
49426420 1969 bool locked;
3812c8c8
JW
1970
1971 /* OOM is global, do not handle */
3812c8c8 1972 if (!memcg)
49426420 1973 return false;
3812c8c8 1974
7c5f64f8 1975 if (!handle)
49426420 1976 goto cleanup;
3812c8c8
JW
1977
1978 owait.memcg = memcg;
1979 owait.wait.flags = 0;
1980 owait.wait.func = memcg_oom_wake_function;
1981 owait.wait.private = current;
2055da97 1982 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1983
3812c8c8 1984 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 if (locked && !memcg->oom_kill_disable) {
1993 mem_cgroup_unmark_under_oom(memcg);
1994 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1995 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1996 current->memcg_oom_order);
49426420 1997 } else {
3812c8c8 1998 schedule();
49426420
JW
1999 mem_cgroup_unmark_under_oom(memcg);
2000 finish_wait(&memcg_oom_waitq, &owait.wait);
2001 }
2002
2003 if (locked) {
fb2a6fc5
JW
2004 mem_cgroup_oom_unlock(memcg);
2005 /*
2006 * There is no guarantee that an OOM-lock contender
2007 * sees the wakeups triggered by the OOM kill
f0953a1b 2008 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
2009 */
2010 memcg_oom_recover(memcg);
2011 }
49426420 2012cleanup:
626ebc41 2013 current->memcg_in_oom = NULL;
3812c8c8 2014 css_put(&memcg->css);
867578cb 2015 return true;
0b7f569e
KH
2016}
2017
3d8b38eb
RG
2018/**
2019 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2020 * @victim: task to be killed by the OOM killer
2021 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2022 *
2023 * Returns a pointer to a memory cgroup, which has to be cleaned up
2024 * by killing all belonging OOM-killable tasks.
2025 *
2026 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2027 */
2028struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2029 struct mem_cgroup *oom_domain)
2030{
2031 struct mem_cgroup *oom_group = NULL;
2032 struct mem_cgroup *memcg;
2033
2034 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2035 return NULL;
2036
2037 if (!oom_domain)
2038 oom_domain = root_mem_cgroup;
2039
2040 rcu_read_lock();
2041
2042 memcg = mem_cgroup_from_task(victim);
7848ed62 2043 if (mem_cgroup_is_root(memcg))
3d8b38eb
RG
2044 goto out;
2045
48fe267c
RG
2046 /*
2047 * If the victim task has been asynchronously moved to a different
2048 * memory cgroup, we might end up killing tasks outside oom_domain.
2049 * In this case it's better to ignore memory.group.oom.
2050 */
2051 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2052 goto out;
2053
3d8b38eb
RG
2054 /*
2055 * Traverse the memory cgroup hierarchy from the victim task's
2056 * cgroup up to the OOMing cgroup (or root) to find the
2057 * highest-level memory cgroup with oom.group set.
2058 */
2059 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2060 if (memcg->oom_group)
2061 oom_group = memcg;
2062
2063 if (memcg == oom_domain)
2064 break;
2065 }
2066
2067 if (oom_group)
2068 css_get(&oom_group->css);
2069out:
2070 rcu_read_unlock();
2071
2072 return oom_group;
2073}
2074
2075void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2076{
2077 pr_info("Tasks in ");
2078 pr_cont_cgroup_path(memcg->css.cgroup);
2079 pr_cont(" are going to be killed due to memory.oom.group set\n");
2080}
2081
d7365e78 2082/**
f70ad448
MWO
2083 * folio_memcg_lock - Bind a folio to its memcg.
2084 * @folio: The folio.
32047e2a 2085 *
f70ad448 2086 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2087 * another cgroup.
2088 *
f70ad448
MWO
2089 * It ensures lifetime of the bound memcg. The caller is responsible
2090 * for the lifetime of the folio.
d69b042f 2091 */
f70ad448 2092void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2093{
2094 struct mem_cgroup *memcg;
6de22619 2095 unsigned long flags;
89c06bd5 2096
6de22619
JW
2097 /*
2098 * The RCU lock is held throughout the transaction. The fast
2099 * path can get away without acquiring the memcg->move_lock
2100 * because page moving starts with an RCU grace period.
739f79fc 2101 */
d7365e78
JW
2102 rcu_read_lock();
2103
2104 if (mem_cgroup_disabled())
1c824a68 2105 return;
89c06bd5 2106again:
f70ad448 2107 memcg = folio_memcg(folio);
29833315 2108 if (unlikely(!memcg))
1c824a68 2109 return;
d7365e78 2110
20ad50d6
AS
2111#ifdef CONFIG_PROVE_LOCKING
2112 local_irq_save(flags);
2113 might_lock(&memcg->move_lock);
2114 local_irq_restore(flags);
2115#endif
2116
bdcbb659 2117 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2118 return;
89c06bd5 2119
6de22619 2120 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2121 if (memcg != folio_memcg(folio)) {
6de22619 2122 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2123 goto again;
2124 }
6de22619
JW
2125
2126 /*
1c824a68
JW
2127 * When charge migration first begins, we can have multiple
2128 * critical sections holding the fast-path RCU lock and one
2129 * holding the slowpath move_lock. Track the task who has the
2130 * move_lock for unlock_page_memcg().
6de22619
JW
2131 */
2132 memcg->move_lock_task = current;
2133 memcg->move_lock_flags = flags;
89c06bd5 2134}
f70ad448
MWO
2135
2136void lock_page_memcg(struct page *page)
2137{
2138 folio_memcg_lock(page_folio(page));
2139}
89c06bd5 2140
f70ad448 2141static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2142{
6de22619
JW
2143 if (memcg && memcg->move_lock_task == current) {
2144 unsigned long flags = memcg->move_lock_flags;
2145
2146 memcg->move_lock_task = NULL;
2147 memcg->move_lock_flags = 0;
2148
2149 spin_unlock_irqrestore(&memcg->move_lock, flags);
2150 }
89c06bd5 2151
d7365e78 2152 rcu_read_unlock();
89c06bd5 2153}
739f79fc
JW
2154
2155/**
f70ad448
MWO
2156 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2157 * @folio: The folio.
2158 *
2159 * This releases the binding created by folio_memcg_lock(). This does
2160 * not change the accounting of this folio to its memcg, but it does
2161 * permit others to change it.
739f79fc 2162 */
f70ad448 2163void folio_memcg_unlock(struct folio *folio)
739f79fc 2164{
f70ad448
MWO
2165 __folio_memcg_unlock(folio_memcg(folio));
2166}
9da7b521 2167
f70ad448
MWO
2168void unlock_page_memcg(struct page *page)
2169{
2170 folio_memcg_unlock(page_folio(page));
739f79fc 2171}
89c06bd5 2172
fead2b86 2173struct memcg_stock_pcp {
56751146 2174 local_lock_t stock_lock;
fead2b86
MH
2175 struct mem_cgroup *cached; /* this never be root cgroup */
2176 unsigned int nr_pages;
2177
bf4f0599
RG
2178#ifdef CONFIG_MEMCG_KMEM
2179 struct obj_cgroup *cached_objcg;
68ac5b3c 2180 struct pglist_data *cached_pgdat;
bf4f0599 2181 unsigned int nr_bytes;
68ac5b3c
WL
2182 int nr_slab_reclaimable_b;
2183 int nr_slab_unreclaimable_b;
bf4f0599
RG
2184#endif
2185
cdec2e42 2186 struct work_struct work;
26fe6168 2187 unsigned long flags;
a0db00fc 2188#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2189};
56751146
SAS
2190static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2191 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2192};
9f50fad6 2193static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2194
bf4f0599 2195#ifdef CONFIG_MEMCG_KMEM
56751146 2196static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2198 struct mem_cgroup *root_memcg);
a8c49af3 2199static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2200
2201#else
56751146 2202static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2203{
56751146 2204 return NULL;
bf4f0599
RG
2205}
2206static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2207 struct mem_cgroup *root_memcg)
2208{
2209 return false;
2210}
a8c49af3
YA
2211static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2212{
2213}
bf4f0599
RG
2214#endif
2215
a0956d54
SS
2216/**
2217 * consume_stock: Try to consume stocked charge on this cpu.
2218 * @memcg: memcg to consume from.
2219 * @nr_pages: how many pages to charge.
2220 *
2221 * The charges will only happen if @memcg matches the current cpu's memcg
2222 * stock, and at least @nr_pages are available in that stock. Failure to
2223 * service an allocation will refill the stock.
2224 *
2225 * returns true if successful, false otherwise.
cdec2e42 2226 */
a0956d54 2227static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2228{
2229 struct memcg_stock_pcp *stock;
db2ba40c 2230 unsigned long flags;
3e32cb2e 2231 bool ret = false;
cdec2e42 2232
a983b5eb 2233 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2234 return ret;
a0956d54 2235
56751146 2236 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2237
2238 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2239 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2240 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2241 ret = true;
2242 }
db2ba40c 2243
56751146 2244 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2245
cdec2e42
KH
2246 return ret;
2247}
2248
2249/*
3e32cb2e 2250 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2251 */
2252static void drain_stock(struct memcg_stock_pcp *stock)
2253{
2254 struct mem_cgroup *old = stock->cached;
2255
1a3e1f40
JW
2256 if (!old)
2257 return;
2258
11c9ea4e 2259 if (stock->nr_pages) {
3e32cb2e 2260 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2261 if (do_memsw_account())
3e32cb2e 2262 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2263 stock->nr_pages = 0;
cdec2e42 2264 }
1a3e1f40
JW
2265
2266 css_put(&old->css);
cdec2e42 2267 stock->cached = NULL;
cdec2e42
KH
2268}
2269
cdec2e42
KH
2270static void drain_local_stock(struct work_struct *dummy)
2271{
db2ba40c 2272 struct memcg_stock_pcp *stock;
56751146 2273 struct obj_cgroup *old = NULL;
db2ba40c
JW
2274 unsigned long flags;
2275
72f0184c 2276 /*
5c49cf9a
MH
2277 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2278 * drain_stock races is that we always operate on local CPU stock
2279 * here with IRQ disabled
72f0184c 2280 */
56751146 2281 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2282
2283 stock = this_cpu_ptr(&memcg_stock);
56751146 2284 old = drain_obj_stock(stock);
cdec2e42 2285 drain_stock(stock);
26fe6168 2286 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2287
56751146
SAS
2288 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2289 if (old)
2290 obj_cgroup_put(old);
cdec2e42
KH
2291}
2292
2293/*
3e32cb2e 2294 * Cache charges(val) to local per_cpu area.
320cc51d 2295 * This will be consumed by consume_stock() function, later.
cdec2e42 2296 */
af9a3b69 2297static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2298{
db2ba40c 2299 struct memcg_stock_pcp *stock;
cdec2e42 2300
db2ba40c 2301 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2302 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2303 drain_stock(stock);
1a3e1f40 2304 css_get(&memcg->css);
c0ff4b85 2305 stock->cached = memcg;
cdec2e42 2306 }
11c9ea4e 2307 stock->nr_pages += nr_pages;
db2ba40c 2308
a983b5eb 2309 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2310 drain_stock(stock);
af9a3b69
JW
2311}
2312
2313static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2314{
2315 unsigned long flags;
475d0487 2316
56751146 2317 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2318 __refill_stock(memcg, nr_pages);
56751146 2319 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2320}
2321
2322/*
c0ff4b85 2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2324 * of the hierarchy under it.
cdec2e42 2325 */
6d3d6aa2 2326static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2327{
26fe6168 2328 int cpu, curcpu;
d38144b7 2329
6d3d6aa2
JW
2330 /* If someone's already draining, avoid adding running more workers. */
2331 if (!mutex_trylock(&percpu_charge_mutex))
2332 return;
72f0184c
MH
2333 /*
2334 * Notify other cpus that system-wide "drain" is running
2335 * We do not care about races with the cpu hotplug because cpu down
2336 * as well as workers from this path always operate on the local
2337 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 */
0790ed62
SAS
2339 migrate_disable();
2340 curcpu = smp_processor_id();
cdec2e42
KH
2341 for_each_online_cpu(cpu) {
2342 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2343 struct mem_cgroup *memcg;
e1a366be 2344 bool flush = false;
26fe6168 2345
e1a366be 2346 rcu_read_lock();
c0ff4b85 2347 memcg = stock->cached;
e1a366be
RG
2348 if (memcg && stock->nr_pages &&
2349 mem_cgroup_is_descendant(memcg, root_memcg))
2350 flush = true;
27fb0956 2351 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2352 flush = true;
e1a366be
RG
2353 rcu_read_unlock();
2354
2355 if (flush &&
2356 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2357 if (cpu == curcpu)
2358 drain_local_stock(&stock->work);
2359 else
2360 schedule_work_on(cpu, &stock->work);
2361 }
cdec2e42 2362 }
0790ed62 2363 migrate_enable();
9f50fad6 2364 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2365}
2366
2cd21c89
JW
2367static int memcg_hotplug_cpu_dead(unsigned int cpu)
2368{
2369 struct memcg_stock_pcp *stock;
a3d4c05a 2370
2cd21c89
JW
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
a3d4c05a 2373
308167fc 2374 return 0;
cdec2e42
KH
2375}
2376
b3ff9291
CD
2377static unsigned long reclaim_high(struct mem_cgroup *memcg,
2378 unsigned int nr_pages,
2379 gfp_t gfp_mask)
f7e1cb6e 2380{
b3ff9291
CD
2381 unsigned long nr_reclaimed = 0;
2382
f7e1cb6e 2383 do {
e22c6ed9
JW
2384 unsigned long pflags;
2385
d1663a90
JK
2386 if (page_counter_read(&memcg->memory) <=
2387 READ_ONCE(memcg->memory.high))
f7e1cb6e 2388 continue;
e22c6ed9 2389
e27be240 2390 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2391
2392 psi_memstall_enter(&pflags);
b3ff9291 2393 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac 2394 gfp_mask,
55ab834a 2395 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2396 psi_memstall_leave(&pflags);
4bf17307
CD
2397 } while ((memcg = parent_mem_cgroup(memcg)) &&
2398 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2399
2400 return nr_reclaimed;
f7e1cb6e
JW
2401}
2402
2403static void high_work_func(struct work_struct *work)
2404{
2405 struct mem_cgroup *memcg;
2406
2407 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2408 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2409}
2410
0e4b01df
CD
2411/*
2412 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2413 * enough to still cause a significant slowdown in most cases, while still
2414 * allowing diagnostics and tracing to proceed without becoming stuck.
2415 */
2416#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2417
2418/*
2419 * When calculating the delay, we use these either side of the exponentiation to
2420 * maintain precision and scale to a reasonable number of jiffies (see the table
2421 * below.
2422 *
2423 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2424 * overage ratio to a delay.
ac5ddd0f 2425 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2426 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2427 * to produce a reasonable delay curve.
2428 *
2429 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2430 * reasonable delay curve compared to precision-adjusted overage, not
2431 * penalising heavily at first, but still making sure that growth beyond the
2432 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2433 * example, with a high of 100 megabytes:
2434 *
2435 * +-------+------------------------+
2436 * | usage | time to allocate in ms |
2437 * +-------+------------------------+
2438 * | 100M | 0 |
2439 * | 101M | 6 |
2440 * | 102M | 25 |
2441 * | 103M | 57 |
2442 * | 104M | 102 |
2443 * | 105M | 159 |
2444 * | 106M | 230 |
2445 * | 107M | 313 |
2446 * | 108M | 409 |
2447 * | 109M | 518 |
2448 * | 110M | 639 |
2449 * | 111M | 774 |
2450 * | 112M | 921 |
2451 * | 113M | 1081 |
2452 * | 114M | 1254 |
2453 * | 115M | 1439 |
2454 * | 116M | 1638 |
2455 * | 117M | 1849 |
2456 * | 118M | 2000 |
2457 * | 119M | 2000 |
2458 * | 120M | 2000 |
2459 * +-------+------------------------+
2460 */
2461 #define MEMCG_DELAY_PRECISION_SHIFT 20
2462 #define MEMCG_DELAY_SCALING_SHIFT 14
2463
8a5dbc65 2464static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2465{
8a5dbc65 2466 u64 overage;
b23afb93 2467
8a5dbc65
JK
2468 if (usage <= high)
2469 return 0;
e26733e0 2470
8a5dbc65
JK
2471 /*
2472 * Prevent division by 0 in overage calculation by acting as if
2473 * it was a threshold of 1 page
2474 */
2475 high = max(high, 1UL);
9b8b1754 2476
8a5dbc65
JK
2477 overage = usage - high;
2478 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2479 return div64_u64(overage, high);
2480}
e26733e0 2481
8a5dbc65
JK
2482static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2483{
2484 u64 overage, max_overage = 0;
e26733e0 2485
8a5dbc65
JK
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2488 READ_ONCE(memcg->memory.high));
8a5dbc65 2489 max_overage = max(overage, max_overage);
e26733e0
CD
2490 } while ((memcg = parent_mem_cgroup(memcg)) &&
2491 !mem_cgroup_is_root(memcg));
2492
8a5dbc65
JK
2493 return max_overage;
2494}
2495
4b82ab4f
JK
2496static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2497{
2498 u64 overage, max_overage = 0;
2499
2500 do {
2501 overage = calculate_overage(page_counter_read(&memcg->swap),
2502 READ_ONCE(memcg->swap.high));
2503 if (overage)
2504 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2505 max_overage = max(overage, max_overage);
2506 } while ((memcg = parent_mem_cgroup(memcg)) &&
2507 !mem_cgroup_is_root(memcg));
2508
2509 return max_overage;
2510}
2511
8a5dbc65
JK
2512/*
2513 * Get the number of jiffies that we should penalise a mischievous cgroup which
2514 * is exceeding its memory.high by checking both it and its ancestors.
2515 */
2516static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2517 unsigned int nr_pages,
2518 u64 max_overage)
2519{
2520 unsigned long penalty_jiffies;
2521
e26733e0
CD
2522 if (!max_overage)
2523 return 0;
0e4b01df
CD
2524
2525 /*
0e4b01df
CD
2526 * We use overage compared to memory.high to calculate the number of
2527 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2528 * fairly lenient on small overages, and increasingly harsh when the
2529 * memcg in question makes it clear that it has no intention of stopping
2530 * its crazy behaviour, so we exponentially increase the delay based on
2531 * overage amount.
2532 */
e26733e0
CD
2533 penalty_jiffies = max_overage * max_overage * HZ;
2534 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2535 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2536
2537 /*
2538 * Factor in the task's own contribution to the overage, such that four
2539 * N-sized allocations are throttled approximately the same as one
2540 * 4N-sized allocation.
2541 *
2542 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2543 * larger the current charge patch is than that.
2544 */
ff144e69 2545 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2546}
2547
2548/*
2549 * Scheduled by try_charge() to be executed from the userland return path
2550 * and reclaims memory over the high limit.
2551 */
2552void mem_cgroup_handle_over_high(void)
2553{
2554 unsigned long penalty_jiffies;
2555 unsigned long pflags;
b3ff9291 2556 unsigned long nr_reclaimed;
e26733e0 2557 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2558 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2559 struct mem_cgroup *memcg;
b3ff9291 2560 bool in_retry = false;
e26733e0
CD
2561
2562 if (likely(!nr_pages))
2563 return;
2564
2565 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2566 current->memcg_nr_pages_over_high = 0;
2567
b3ff9291
CD
2568retry_reclaim:
2569 /*
2570 * The allocating task should reclaim at least the batch size, but for
2571 * subsequent retries we only want to do what's necessary to prevent oom
2572 * or breaching resource isolation.
2573 *
2574 * This is distinct from memory.max or page allocator behaviour because
2575 * memory.high is currently batched, whereas memory.max and the page
2576 * allocator run every time an allocation is made.
2577 */
2578 nr_reclaimed = reclaim_high(memcg,
2579 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2580 GFP_KERNEL);
2581
e26733e0
CD
2582 /*
2583 * memory.high is breached and reclaim is unable to keep up. Throttle
2584 * allocators proactively to slow down excessive growth.
2585 */
8a5dbc65
JK
2586 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2587 mem_find_max_overage(memcg));
0e4b01df 2588
4b82ab4f
JK
2589 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2590 swap_find_max_overage(memcg));
2591
ff144e69
JK
2592 /*
2593 * Clamp the max delay per usermode return so as to still keep the
2594 * application moving forwards and also permit diagnostics, albeit
2595 * extremely slowly.
2596 */
2597 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2598
0e4b01df
CD
2599 /*
2600 * Don't sleep if the amount of jiffies this memcg owes us is so low
2601 * that it's not even worth doing, in an attempt to be nice to those who
2602 * go only a small amount over their memory.high value and maybe haven't
2603 * been aggressively reclaimed enough yet.
2604 */
2605 if (penalty_jiffies <= HZ / 100)
2606 goto out;
2607
b3ff9291
CD
2608 /*
2609 * If reclaim is making forward progress but we're still over
2610 * memory.high, we want to encourage that rather than doing allocator
2611 * throttling.
2612 */
2613 if (nr_reclaimed || nr_retries--) {
2614 in_retry = true;
2615 goto retry_reclaim;
2616 }
2617
0e4b01df
CD
2618 /*
2619 * If we exit early, we're guaranteed to die (since
2620 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2621 * need to account for any ill-begotten jiffies to pay them off later.
2622 */
2623 psi_memstall_enter(&pflags);
2624 schedule_timeout_killable(penalty_jiffies);
2625 psi_memstall_leave(&pflags);
2626
2627out:
2628 css_put(&memcg->css);
b23afb93
TH
2629}
2630
c5c8b16b
MS
2631static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2632 unsigned int nr_pages)
8a9f3ccd 2633{
a983b5eb 2634 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2635 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2636 struct mem_cgroup *mem_over_limit;
3e32cb2e 2637 struct page_counter *counter;
6539cc05 2638 unsigned long nr_reclaimed;
a4ebf1b6 2639 bool passed_oom = false;
73b73bac 2640 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2641 bool drained = false;
d6e103a7 2642 bool raised_max_event = false;
e22c6ed9 2643 unsigned long pflags;
a636b327 2644
6539cc05 2645retry:
b6b6cc72 2646 if (consume_stock(memcg, nr_pages))
10d53c74 2647 return 0;
8a9f3ccd 2648
7941d214 2649 if (!do_memsw_account() ||
6071ca52
JW
2650 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2651 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2652 goto done_restock;
7941d214 2653 if (do_memsw_account())
3e32cb2e
JW
2654 page_counter_uncharge(&memcg->memsw, batch);
2655 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2656 } else {
3e32cb2e 2657 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2658 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2659 }
7a81b88c 2660
6539cc05
JW
2661 if (batch > nr_pages) {
2662 batch = nr_pages;
2663 goto retry;
2664 }
6d61ef40 2665
89a28483
JW
2666 /*
2667 * Prevent unbounded recursion when reclaim operations need to
2668 * allocate memory. This might exceed the limits temporarily,
2669 * but we prefer facilitating memory reclaim and getting back
2670 * under the limit over triggering OOM kills in these cases.
2671 */
2672 if (unlikely(current->flags & PF_MEMALLOC))
2673 goto force;
2674
06b078fc
JW
2675 if (unlikely(task_in_memcg_oom(current)))
2676 goto nomem;
2677
d0164adc 2678 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2679 goto nomem;
4b534334 2680
e27be240 2681 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2682 raised_max_event = true;
241994ed 2683
e22c6ed9 2684 psi_memstall_enter(&pflags);
b70a2a21 2685 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
55ab834a 2686 gfp_mask, reclaim_options);
e22c6ed9 2687 psi_memstall_leave(&pflags);
6539cc05 2688
61e02c74 2689 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2690 goto retry;
28c34c29 2691
b70a2a21 2692 if (!drained) {
6d3d6aa2 2693 drain_all_stock(mem_over_limit);
b70a2a21
JW
2694 drained = true;
2695 goto retry;
2696 }
2697
28c34c29
JW
2698 if (gfp_mask & __GFP_NORETRY)
2699 goto nomem;
6539cc05
JW
2700 /*
2701 * Even though the limit is exceeded at this point, reclaim
2702 * may have been able to free some pages. Retry the charge
2703 * before killing the task.
2704 *
2705 * Only for regular pages, though: huge pages are rather
2706 * unlikely to succeed so close to the limit, and we fall back
2707 * to regular pages anyway in case of failure.
2708 */
61e02c74 2709 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2710 goto retry;
2711 /*
2712 * At task move, charge accounts can be doubly counted. So, it's
2713 * better to wait until the end of task_move if something is going on.
2714 */
2715 if (mem_cgroup_wait_acct_move(mem_over_limit))
2716 goto retry;
2717
9b130619
JW
2718 if (nr_retries--)
2719 goto retry;
2720
38d38493 2721 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2722 goto nomem;
2723
a4ebf1b6
VA
2724 /* Avoid endless loop for tasks bypassed by the oom killer */
2725 if (passed_oom && task_is_dying())
2726 goto nomem;
6539cc05 2727
29ef680a
MH
2728 /*
2729 * keep retrying as long as the memcg oom killer is able to make
2730 * a forward progress or bypass the charge if the oom killer
2731 * couldn't make any progress.
2732 */
becdf89d
SB
2733 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2734 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2735 passed_oom = true;
d977aa93 2736 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2737 goto retry;
29ef680a 2738 }
7a81b88c 2739nomem:
1461e8c2
SB
2740 /*
2741 * Memcg doesn't have a dedicated reserve for atomic
2742 * allocations. But like the global atomic pool, we need to
2743 * put the burden of reclaim on regular allocation requests
2744 * and let these go through as privileged allocations.
2745 */
2746 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2747 return -ENOMEM;
10d53c74 2748force:
d6e103a7
RG
2749 /*
2750 * If the allocation has to be enforced, don't forget to raise
2751 * a MEMCG_MAX event.
2752 */
2753 if (!raised_max_event)
2754 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2755
10d53c74
TH
2756 /*
2757 * The allocation either can't fail or will lead to more memory
2758 * being freed very soon. Allow memory usage go over the limit
2759 * temporarily by force charging it.
2760 */
2761 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2762 if (do_memsw_account())
10d53c74 2763 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2764
2765 return 0;
6539cc05
JW
2766
2767done_restock:
2768 if (batch > nr_pages)
2769 refill_stock(memcg, batch - nr_pages);
b23afb93 2770
241994ed 2771 /*
b23afb93
TH
2772 * If the hierarchy is above the normal consumption range, schedule
2773 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2774 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2775 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2776 * not recorded as it most likely matches current's and won't
2777 * change in the meantime. As high limit is checked again before
2778 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2779 */
2780 do {
4b82ab4f
JK
2781 bool mem_high, swap_high;
2782
2783 mem_high = page_counter_read(&memcg->memory) >
2784 READ_ONCE(memcg->memory.high);
2785 swap_high = page_counter_read(&memcg->swap) >
2786 READ_ONCE(memcg->swap.high);
2787
2788 /* Don't bother a random interrupted task */
086f694a 2789 if (!in_task()) {
4b82ab4f 2790 if (mem_high) {
f7e1cb6e
JW
2791 schedule_work(&memcg->high_work);
2792 break;
2793 }
4b82ab4f
JK
2794 continue;
2795 }
2796
2797 if (mem_high || swap_high) {
2798 /*
2799 * The allocating tasks in this cgroup will need to do
2800 * reclaim or be throttled to prevent further growth
2801 * of the memory or swap footprints.
2802 *
2803 * Target some best-effort fairness between the tasks,
2804 * and distribute reclaim work and delay penalties
2805 * based on how much each task is actually allocating.
2806 */
9516a18a 2807 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2808 set_notify_resume(current);
2809 break;
2810 }
241994ed 2811 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2812
c9afe31e
SB
2813 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2814 !(current->flags & PF_MEMALLOC) &&
2815 gfpflags_allow_blocking(gfp_mask)) {
2816 mem_cgroup_handle_over_high();
2817 }
10d53c74 2818 return 0;
7a81b88c 2819}
8a9f3ccd 2820
c5c8b16b
MS
2821static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2822 unsigned int nr_pages)
2823{
2824 if (mem_cgroup_is_root(memcg))
2825 return 0;
2826
2827 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2828}
2829
58056f77 2830static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2831{
ce00a967
JW
2832 if (mem_cgroup_is_root(memcg))
2833 return;
2834
3e32cb2e 2835 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2836 if (do_memsw_account())
3e32cb2e 2837 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2838}
2839
118f2875 2840static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2841{
118f2875 2842 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2843 /*
a5eb011a 2844 * Any of the following ensures page's memcg stability:
0a31bc97 2845 *
a0b5b414
JW
2846 * - the page lock
2847 * - LRU isolation
2848 * - lock_page_memcg()
2849 * - exclusive reference
018ee47f 2850 * - mem_cgroup_trylock_pages()
0a31bc97 2851 */
118f2875 2852 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2853}
66e1707b 2854
84c07d11 2855#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2856/*
2857 * The allocated objcg pointers array is not accounted directly.
2858 * Moreover, it should not come from DMA buffer and is not readily
2859 * reclaimable. So those GFP bits should be masked off.
2860 */
2861#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2862
a7ebf564
WL
2863/*
2864 * mod_objcg_mlstate() may be called with irq enabled, so
2865 * mod_memcg_lruvec_state() should be used.
2866 */
2867static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2868 struct pglist_data *pgdat,
2869 enum node_stat_item idx, int nr)
2870{
2871 struct mem_cgroup *memcg;
2872 struct lruvec *lruvec;
2873
2874 rcu_read_lock();
2875 memcg = obj_cgroup_memcg(objcg);
2876 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2877 mod_memcg_lruvec_state(lruvec, idx, nr);
2878 rcu_read_unlock();
2879}
2880
4b5f8d9a
VB
2881int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2882 gfp_t gfp, bool new_slab)
10befea9 2883{
4b5f8d9a 2884 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2885 unsigned long memcg_data;
10befea9
RG
2886 void *vec;
2887
41eb5df1 2888 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2889 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2890 slab_nid(slab));
10befea9
RG
2891 if (!vec)
2892 return -ENOMEM;
2893
2e9bd483 2894 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2895 if (new_slab) {
2e9bd483 2896 /*
4b5f8d9a
VB
2897 * If the slab is brand new and nobody can yet access its
2898 * memcg_data, no synchronization is required and memcg_data can
2899 * be simply assigned.
2e9bd483 2900 */
4b5f8d9a
VB
2901 slab->memcg_data = memcg_data;
2902 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2903 /*
4b5f8d9a
VB
2904 * If the slab is already in use, somebody can allocate and
2905 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2906 * objcg vector should be reused.
2907 */
10befea9 2908 kfree(vec);
2e9bd483
RG
2909 return 0;
2910 }
10befea9 2911
2e9bd483 2912 kmemleak_not_leak(vec);
10befea9
RG
2913 return 0;
2914}
2915
fc4db90f
RG
2916static __always_inline
2917struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2918{
8380ce47 2919 /*
9855609b
RG
2920 * Slab objects are accounted individually, not per-page.
2921 * Memcg membership data for each individual object is saved in
4b5f8d9a 2922 * slab->memcg_data.
8380ce47 2923 */
4b5f8d9a
VB
2924 if (folio_test_slab(folio)) {
2925 struct obj_cgroup **objcgs;
2926 struct slab *slab;
9855609b
RG
2927 unsigned int off;
2928
4b5f8d9a
VB
2929 slab = folio_slab(folio);
2930 objcgs = slab_objcgs(slab);
2931 if (!objcgs)
2932 return NULL;
2933
2934 off = obj_to_index(slab->slab_cache, slab, p);
2935 if (objcgs[off])
2936 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2937
2938 return NULL;
9855609b 2939 }
8380ce47 2940
bcfe06bf 2941 /*
4b5f8d9a
VB
2942 * page_memcg_check() is used here, because in theory we can encounter
2943 * a folio where the slab flag has been cleared already, but
2944 * slab->memcg_data has not been freed yet
bcfe06bf
RG
2945 * page_memcg_check(page) will guarantee that a proper memory
2946 * cgroup pointer or NULL will be returned.
2947 */
4b5f8d9a 2948 return page_memcg_check(folio_page(folio, 0));
8380ce47
RG
2949}
2950
fc4db90f
RG
2951/*
2952 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2953 *
2954 * A passed kernel object can be a slab object, vmalloc object or a generic
2955 * kernel page, so different mechanisms for getting the memory cgroup pointer
2956 * should be used.
2957 *
2958 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2959 * can not know for sure how the kernel object is implemented.
2960 * mem_cgroup_from_obj() can be safely used in such cases.
2961 *
2962 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2963 * cgroup_mutex, etc.
2964 */
2965struct mem_cgroup *mem_cgroup_from_obj(void *p)
2966{
2967 struct folio *folio;
2968
2969 if (mem_cgroup_disabled())
2970 return NULL;
2971
2972 if (unlikely(is_vmalloc_addr(p)))
2973 folio = page_folio(vmalloc_to_page(p));
2974 else
2975 folio = virt_to_folio(p);
2976
2977 return mem_cgroup_from_obj_folio(folio, p);
2978}
2979
2980/*
2981 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2982 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2983 * allocated using vmalloc().
2984 *
2985 * A passed kernel object must be a slab object or a generic kernel page.
2986 *
2987 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2988 * cgroup_mutex, etc.
2989 */
2990struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2991{
2992 if (mem_cgroup_disabled())
2993 return NULL;
2994
2995 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2996}
2997
f4840ccf
JW
2998static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2999{
3000 struct obj_cgroup *objcg = NULL;
3001
7848ed62 3002 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
f4840ccf
JW
3003 objcg = rcu_dereference(memcg->objcg);
3004 if (objcg && obj_cgroup_tryget(objcg))
3005 break;
3006 objcg = NULL;
3007 }
3008 return objcg;
3009}
3010
bf4f0599
RG
3011__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3012{
3013 struct obj_cgroup *objcg = NULL;
3014 struct mem_cgroup *memcg;
3015
279c3393
RG
3016 if (memcg_kmem_bypass())
3017 return NULL;
3018
bf4f0599 3019 rcu_read_lock();
37d5985c
RG
3020 if (unlikely(active_memcg()))
3021 memcg = active_memcg();
bf4f0599
RG
3022 else
3023 memcg = mem_cgroup_from_task(current);
f4840ccf 3024 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 3025 rcu_read_unlock();
f4840ccf
JW
3026 return objcg;
3027}
3028
3029struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3030{
3031 struct obj_cgroup *objcg;
3032
cd08d80e 3033 if (!memcg_kmem_enabled())
f4840ccf
JW
3034 return NULL;
3035
3036 if (PageMemcgKmem(page)) {
3037 objcg = __folio_objcg(page_folio(page));
3038 obj_cgroup_get(objcg);
3039 } else {
3040 struct mem_cgroup *memcg;
bf4f0599 3041
f4840ccf
JW
3042 rcu_read_lock();
3043 memcg = __folio_memcg(page_folio(page));
3044 if (memcg)
3045 objcg = __get_obj_cgroup_from_memcg(memcg);
3046 else
3047 objcg = NULL;
3048 rcu_read_unlock();
3049 }
bf4f0599
RG
3050 return objcg;
3051}
3052
a8c49af3
YA
3053static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3054{
3055 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3056 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3057 if (nr_pages > 0)
3058 page_counter_charge(&memcg->kmem, nr_pages);
3059 else
3060 page_counter_uncharge(&memcg->kmem, -nr_pages);
3061 }
3062}
3063
3064
f1286fae
MS
3065/*
3066 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3067 * @objcg: object cgroup to uncharge
3068 * @nr_pages: number of pages to uncharge
3069 */
e74d2259
MS
3070static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3071 unsigned int nr_pages)
3072{
3073 struct mem_cgroup *memcg;
3074
3075 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3076
a8c49af3 3077 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3078 refill_stock(memcg, nr_pages);
e74d2259 3079
e74d2259 3080 css_put(&memcg->css);
e74d2259
MS
3081}
3082
f1286fae
MS
3083/*
3084 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3085 * @objcg: object cgroup to charge
45264778 3086 * @gfp: reclaim mode
92d0510c 3087 * @nr_pages: number of pages to charge
45264778
VD
3088 *
3089 * Returns 0 on success, an error code on failure.
3090 */
f1286fae
MS
3091static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3092 unsigned int nr_pages)
7ae1e1d0 3093{
f1286fae 3094 struct mem_cgroup *memcg;
7ae1e1d0
GC
3095 int ret;
3096
f1286fae
MS
3097 memcg = get_mem_cgroup_from_objcg(objcg);
3098
c5c8b16b 3099 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3100 if (ret)
f1286fae 3101 goto out;
52c29b04 3102
a8c49af3 3103 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3104out:
3105 css_put(&memcg->css);
4b13f64d 3106
f1286fae 3107 return ret;
4b13f64d
RG
3108}
3109
45264778 3110/**
f4b00eab 3111 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3112 * @page: page to charge
3113 * @gfp: reclaim mode
3114 * @order: allocation order
3115 *
3116 * Returns 0 on success, an error code on failure.
3117 */
f4b00eab 3118int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3119{
b4e0b68f 3120 struct obj_cgroup *objcg;
fcff7d7e 3121 int ret = 0;
7ae1e1d0 3122
b4e0b68f
MS
3123 objcg = get_obj_cgroup_from_current();
3124 if (objcg) {
3125 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3126 if (!ret) {
b4e0b68f 3127 page->memcg_data = (unsigned long)objcg |
18b2db3b 3128 MEMCG_DATA_KMEM;
1a3e1f40 3129 return 0;
4d96ba35 3130 }
b4e0b68f 3131 obj_cgroup_put(objcg);
c4159a75 3132 }
d05e83a6 3133 return ret;
7ae1e1d0 3134}
49a18eae 3135
45264778 3136/**
f4b00eab 3137 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3138 * @page: page to uncharge
3139 * @order: allocation order
3140 */
f4b00eab 3141void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3142{
1b7e4464 3143 struct folio *folio = page_folio(page);
b4e0b68f 3144 struct obj_cgroup *objcg;
f3ccb2c4 3145 unsigned int nr_pages = 1 << order;
7ae1e1d0 3146
1b7e4464 3147 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3148 return;
3149
1b7e4464 3150 objcg = __folio_objcg(folio);
b4e0b68f 3151 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3152 folio->memcg_data = 0;
b4e0b68f 3153 obj_cgroup_put(objcg);
60d3fd32 3154}
bf4f0599 3155
68ac5b3c
WL
3156void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3157 enum node_stat_item idx, int nr)
3158{
fead2b86 3159 struct memcg_stock_pcp *stock;
56751146 3160 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3161 unsigned long flags;
3162 int *bytes;
3163
56751146 3164 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3165 stock = this_cpu_ptr(&memcg_stock);
3166
68ac5b3c
WL
3167 /*
3168 * Save vmstat data in stock and skip vmstat array update unless
3169 * accumulating over a page of vmstat data or when pgdat or idx
3170 * changes.
3171 */
3172 if (stock->cached_objcg != objcg) {
56751146 3173 old = drain_obj_stock(stock);
68ac5b3c
WL
3174 obj_cgroup_get(objcg);
3175 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3176 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3177 stock->cached_objcg = objcg;
3178 stock->cached_pgdat = pgdat;
3179 } else if (stock->cached_pgdat != pgdat) {
3180 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3181 struct pglist_data *oldpg = stock->cached_pgdat;
3182
68ac5b3c 3183 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3184 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3185 stock->nr_slab_reclaimable_b);
3186 stock->nr_slab_reclaimable_b = 0;
3187 }
3188 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3189 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3190 stock->nr_slab_unreclaimable_b);
3191 stock->nr_slab_unreclaimable_b = 0;
3192 }
3193 stock->cached_pgdat = pgdat;
3194 }
3195
3196 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3197 : &stock->nr_slab_unreclaimable_b;
3198 /*
3199 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3200 * cached locally at least once before pushing it out.
3201 */
3202 if (!*bytes) {
3203 *bytes = nr;
3204 nr = 0;
3205 } else {
3206 *bytes += nr;
3207 if (abs(*bytes) > PAGE_SIZE) {
3208 nr = *bytes;
3209 *bytes = 0;
3210 } else {
3211 nr = 0;
3212 }
3213 }
3214 if (nr)
3215 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3216
56751146
SAS
3217 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3218 if (old)
3219 obj_cgroup_put(old);
68ac5b3c
WL
3220}
3221
bf4f0599
RG
3222static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3223{
fead2b86 3224 struct memcg_stock_pcp *stock;
bf4f0599
RG
3225 unsigned long flags;
3226 bool ret = false;
3227
56751146 3228 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3229
3230 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3231 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3232 stock->nr_bytes -= nr_bytes;
3233 ret = true;
3234 }
3235
56751146 3236 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3237
3238 return ret;
3239}
3240
56751146 3241static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3242{
3243 struct obj_cgroup *old = stock->cached_objcg;
3244
3245 if (!old)
56751146 3246 return NULL;
bf4f0599
RG
3247
3248 if (stock->nr_bytes) {
3249 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3250 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3251
af9a3b69
JW
3252 if (nr_pages) {
3253 struct mem_cgroup *memcg;
3254
3255 memcg = get_mem_cgroup_from_objcg(old);
3256
3257 memcg_account_kmem(memcg, -nr_pages);
3258 __refill_stock(memcg, nr_pages);
3259
3260 css_put(&memcg->css);
3261 }
bf4f0599
RG
3262
3263 /*
3264 * The leftover is flushed to the centralized per-memcg value.
3265 * On the next attempt to refill obj stock it will be moved
3266 * to a per-cpu stock (probably, on an other CPU), see
3267 * refill_obj_stock().
3268 *
3269 * How often it's flushed is a trade-off between the memory
3270 * limit enforcement accuracy and potential CPU contention,
3271 * so it might be changed in the future.
3272 */
3273 atomic_add(nr_bytes, &old->nr_charged_bytes);
3274 stock->nr_bytes = 0;
3275 }
3276
68ac5b3c
WL
3277 /*
3278 * Flush the vmstat data in current stock
3279 */
3280 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3281 if (stock->nr_slab_reclaimable_b) {
3282 mod_objcg_mlstate(old, stock->cached_pgdat,
3283 NR_SLAB_RECLAIMABLE_B,
3284 stock->nr_slab_reclaimable_b);
3285 stock->nr_slab_reclaimable_b = 0;
3286 }
3287 if (stock->nr_slab_unreclaimable_b) {
3288 mod_objcg_mlstate(old, stock->cached_pgdat,
3289 NR_SLAB_UNRECLAIMABLE_B,
3290 stock->nr_slab_unreclaimable_b);
3291 stock->nr_slab_unreclaimable_b = 0;
3292 }
3293 stock->cached_pgdat = NULL;
3294 }
3295
bf4f0599 3296 stock->cached_objcg = NULL;
56751146
SAS
3297 /*
3298 * The `old' objects needs to be released by the caller via
3299 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3300 */
3301 return old;
bf4f0599
RG
3302}
3303
3304static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3305 struct mem_cgroup *root_memcg)
3306{
3307 struct mem_cgroup *memcg;
3308
fead2b86
MH
3309 if (stock->cached_objcg) {
3310 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3311 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3312 return true;
3313 }
3314
3315 return false;
3316}
3317
5387c904
WL
3318static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3319 bool allow_uncharge)
bf4f0599 3320{
fead2b86 3321 struct memcg_stock_pcp *stock;
56751146 3322 struct obj_cgroup *old = NULL;
bf4f0599 3323 unsigned long flags;
5387c904 3324 unsigned int nr_pages = 0;
bf4f0599 3325
56751146 3326 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3327
3328 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3329 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3330 old = drain_obj_stock(stock);
bf4f0599
RG
3331 obj_cgroup_get(objcg);
3332 stock->cached_objcg = objcg;
5387c904
WL
3333 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3334 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3335 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3336 }
3337 stock->nr_bytes += nr_bytes;
3338
5387c904
WL
3339 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3340 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3341 stock->nr_bytes &= (PAGE_SIZE - 1);
3342 }
bf4f0599 3343
56751146
SAS
3344 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3345 if (old)
3346 obj_cgroup_put(old);
5387c904
WL
3347
3348 if (nr_pages)
3349 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3350}
3351
3352int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3353{
bf4f0599
RG
3354 unsigned int nr_pages, nr_bytes;
3355 int ret;
3356
3357 if (consume_obj_stock(objcg, size))
3358 return 0;
3359
3360 /*
5387c904 3361 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3362 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3363 * flushing objcg->nr_charged_bytes requires two atomic
3364 * operations, and objcg->nr_charged_bytes can't be big.
3365 * The shared objcg->nr_charged_bytes can also become a
3366 * performance bottleneck if all tasks of the same memcg are
3367 * trying to update it. So it's better to ignore it and try
3368 * grab some new pages. The stock's nr_bytes will be flushed to
3369 * objcg->nr_charged_bytes later on when objcg changes.
3370 *
3371 * The stock's nr_bytes may contain enough pre-charged bytes
3372 * to allow one less page from being charged, but we can't rely
3373 * on the pre-charged bytes not being changed outside of
3374 * consume_obj_stock() or refill_obj_stock(). So ignore those
3375 * pre-charged bytes as well when charging pages. To avoid a
3376 * page uncharge right after a page charge, we set the
3377 * allow_uncharge flag to false when calling refill_obj_stock()
3378 * to temporarily allow the pre-charged bytes to exceed the page
3379 * size limit. The maximum reachable value of the pre-charged
3380 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3381 * race.
bf4f0599 3382 */
bf4f0599
RG
3383 nr_pages = size >> PAGE_SHIFT;
3384 nr_bytes = size & (PAGE_SIZE - 1);
3385
3386 if (nr_bytes)
3387 nr_pages += 1;
3388
e74d2259 3389 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3390 if (!ret && nr_bytes)
5387c904 3391 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3392
bf4f0599
RG
3393 return ret;
3394}
3395
3396void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3397{
5387c904 3398 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3399}
3400
84c07d11 3401#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3402
ca3e0214 3403/*
be6c8982 3404 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3405 */
be6c8982 3406void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3407{
1b7e4464
MWO
3408 struct folio *folio = page_folio(head);
3409 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3410 int i;
ca3e0214 3411
be6c8982 3412 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3413 return;
b070e65c 3414
be6c8982 3415 for (i = 1; i < nr; i++)
1b7e4464 3416 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3417
1b7e4464
MWO
3418 if (folio_memcg_kmem(folio))
3419 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3420 else
3421 css_get_many(&memcg->css, nr - 1);
ca3e0214 3422}
ca3e0214 3423
e55b9f96 3424#ifdef CONFIG_SWAP
02491447
DN
3425/**
3426 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3427 * @entry: swap entry to be moved
3428 * @from: mem_cgroup which the entry is moved from
3429 * @to: mem_cgroup which the entry is moved to
3430 *
3431 * It succeeds only when the swap_cgroup's record for this entry is the same
3432 * as the mem_cgroup's id of @from.
3433 *
3434 * Returns 0 on success, -EINVAL on failure.
3435 *
3e32cb2e 3436 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3437 * both res and memsw, and called css_get().
3438 */
3439static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3440 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3441{
3442 unsigned short old_id, new_id;
3443
34c00c31
LZ
3444 old_id = mem_cgroup_id(from);
3445 new_id = mem_cgroup_id(to);
02491447
DN
3446
3447 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3448 mod_memcg_state(from, MEMCG_SWAP, -1);
3449 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3450 return 0;
3451 }
3452 return -EINVAL;
3453}
3454#else
3455static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3456 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3457{
3458 return -EINVAL;
3459}
8c7c6e34 3460#endif
d13d1443 3461
bbec2e15 3462static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3463
bbec2e15
RG
3464static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3465 unsigned long max, bool memsw)
628f4235 3466{
3e32cb2e 3467 bool enlarge = false;
bb4a7ea2 3468 bool drained = false;
3e32cb2e 3469 int ret;
c054a78c
YZ
3470 bool limits_invariant;
3471 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3472
3e32cb2e 3473 do {
628f4235
KH
3474 if (signal_pending(current)) {
3475 ret = -EINTR;
3476 break;
3477 }
3e32cb2e 3478
bbec2e15 3479 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3480 /*
3481 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3482 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3483 */
15b42562 3484 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3485 max <= memcg->memsw.max;
c054a78c 3486 if (!limits_invariant) {
bbec2e15 3487 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3488 ret = -EINVAL;
8c7c6e34
KH
3489 break;
3490 }
bbec2e15 3491 if (max > counter->max)
3e32cb2e 3492 enlarge = true;
bbec2e15
RG
3493 ret = page_counter_set_max(counter, max);
3494 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3495
3496 if (!ret)
3497 break;
3498
bb4a7ea2
SB
3499 if (!drained) {
3500 drain_all_stock(memcg);
3501 drained = true;
3502 continue;
3503 }
3504
73b73bac 3505 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3506 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3507 ret = -EBUSY;
3508 break;
3509 }
3510 } while (true);
3e32cb2e 3511
3c11ecf4
KH
3512 if (!ret && enlarge)
3513 memcg_oom_recover(memcg);
3e32cb2e 3514
628f4235
KH
3515 return ret;
3516}
3517
ef8f2327 3518unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3519 gfp_t gfp_mask,
3520 unsigned long *total_scanned)
3521{
3522 unsigned long nr_reclaimed = 0;
ef8f2327 3523 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3524 unsigned long reclaimed;
3525 int loop = 0;
ef8f2327 3526 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3527 unsigned long excess;
0608f43d
AM
3528
3529 if (order > 0)
3530 return 0;
3531
2ab082ba 3532 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3533
3534 /*
3535 * Do not even bother to check the largest node if the root
3536 * is empty. Do it lockless to prevent lock bouncing. Races
3537 * are acceptable as soft limit is best effort anyway.
3538 */
bfc7228b 3539 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3540 return 0;
3541
0608f43d
AM
3542 /*
3543 * This loop can run a while, specially if mem_cgroup's continuously
3544 * keep exceeding their soft limit and putting the system under
3545 * pressure
3546 */
3547 do {
3548 if (next_mz)
3549 mz = next_mz;
3550 else
3551 mz = mem_cgroup_largest_soft_limit_node(mctz);
3552 if (!mz)
3553 break;
3554
ef8f2327 3555 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3556 gfp_mask, total_scanned);
0608f43d 3557 nr_reclaimed += reclaimed;
0a31bc97 3558 spin_lock_irq(&mctz->lock);
0608f43d
AM
3559
3560 /*
3561 * If we failed to reclaim anything from this memory cgroup
3562 * it is time to move on to the next cgroup
3563 */
3564 next_mz = NULL;
bc2f2e7f
VD
3565 if (!reclaimed)
3566 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3567
3e32cb2e 3568 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3569 /*
3570 * One school of thought says that we should not add
3571 * back the node to the tree if reclaim returns 0.
3572 * But our reclaim could return 0, simply because due
3573 * to priority we are exposing a smaller subset of
3574 * memory to reclaim from. Consider this as a longer
3575 * term TODO.
3576 */
3577 /* If excess == 0, no tree ops */
cf2c8127 3578 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3579 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3580 css_put(&mz->memcg->css);
3581 loop++;
3582 /*
3583 * Could not reclaim anything and there are no more
3584 * mem cgroups to try or we seem to be looping without
3585 * reclaiming anything.
3586 */
3587 if (!nr_reclaimed &&
3588 (next_mz == NULL ||
3589 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3590 break;
3591 } while (!nr_reclaimed);
3592 if (next_mz)
3593 css_put(&next_mz->memcg->css);
3594 return nr_reclaimed;
3595}
3596
c26251f9 3597/*
51038171 3598 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3599 *
3600 * Caller is responsible for holding css reference for memcg.
3601 */
3602static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3603{
d977aa93 3604 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3605
c1e862c1
KH
3606 /* we call try-to-free pages for make this cgroup empty */
3607 lru_add_drain_all();
d12c60f6
JS
3608
3609 drain_all_stock(memcg);
3610
f817ed48 3611 /* try to free all pages in this cgroup */
3e32cb2e 3612 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3613 if (signal_pending(current))
3614 return -EINTR;
3615
73b73bac 3616 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
55ab834a 3617 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3618 nr_retries--;
f817ed48 3619 }
ab5196c2
MH
3620
3621 return 0;
cc847582
KH
3622}
3623
6770c64e
TH
3624static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3625 char *buf, size_t nbytes,
3626 loff_t off)
c1e862c1 3627{
6770c64e 3628 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3629
d8423011
MH
3630 if (mem_cgroup_is_root(memcg))
3631 return -EINVAL;
6770c64e 3632 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3633}
3634
182446d0
TH
3635static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3636 struct cftype *cft)
18f59ea7 3637{
bef8620c 3638 return 1;
18f59ea7
BS
3639}
3640
182446d0
TH
3641static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3642 struct cftype *cft, u64 val)
18f59ea7 3643{
bef8620c 3644 if (val == 1)
0b8f73e1 3645 return 0;
567fb435 3646
bef8620c
RG
3647 pr_warn_once("Non-hierarchical mode is deprecated. "
3648 "Please report your usecase to linux-mm@kvack.org if you "
3649 "depend on this functionality.\n");
567fb435 3650
bef8620c 3651 return -EINVAL;
18f59ea7
BS
3652}
3653
6f646156 3654static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3655{
42a30035 3656 unsigned long val;
ce00a967 3657
3e32cb2e 3658 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3659 mem_cgroup_flush_stats();
0d1c2072 3660 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3661 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3662 if (swap)
3663 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3664 } else {
ce00a967 3665 if (!swap)
3e32cb2e 3666 val = page_counter_read(&memcg->memory);
ce00a967 3667 else
3e32cb2e 3668 val = page_counter_read(&memcg->memsw);
ce00a967 3669 }
c12176d3 3670 return val;
ce00a967
JW
3671}
3672
3e32cb2e
JW
3673enum {
3674 RES_USAGE,
3675 RES_LIMIT,
3676 RES_MAX_USAGE,
3677 RES_FAILCNT,
3678 RES_SOFT_LIMIT,
3679};
ce00a967 3680
791badbd 3681static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3682 struct cftype *cft)
8cdea7c0 3683{
182446d0 3684 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3685 struct page_counter *counter;
af36f906 3686
3e32cb2e 3687 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3688 case _MEM:
3e32cb2e
JW
3689 counter = &memcg->memory;
3690 break;
8c7c6e34 3691 case _MEMSWAP:
3e32cb2e
JW
3692 counter = &memcg->memsw;
3693 break;
510fc4e1 3694 case _KMEM:
3e32cb2e 3695 counter = &memcg->kmem;
510fc4e1 3696 break;
d55f90bf 3697 case _TCP:
0db15298 3698 counter = &memcg->tcpmem;
d55f90bf 3699 break;
8c7c6e34
KH
3700 default:
3701 BUG();
8c7c6e34 3702 }
3e32cb2e
JW
3703
3704 switch (MEMFILE_ATTR(cft->private)) {
3705 case RES_USAGE:
3706 if (counter == &memcg->memory)
c12176d3 3707 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3708 if (counter == &memcg->memsw)
c12176d3 3709 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3710 return (u64)page_counter_read(counter) * PAGE_SIZE;
3711 case RES_LIMIT:
bbec2e15 3712 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3713 case RES_MAX_USAGE:
3714 return (u64)counter->watermark * PAGE_SIZE;
3715 case RES_FAILCNT:
3716 return counter->failcnt;
3717 case RES_SOFT_LIMIT:
3718 return (u64)memcg->soft_limit * PAGE_SIZE;
3719 default:
3720 BUG();
3721 }
8cdea7c0 3722}
510fc4e1 3723
84c07d11 3724#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3725static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3726{
bf4f0599 3727 struct obj_cgroup *objcg;
d6441637 3728
9c94bef9 3729 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3730 return 0;
3731
da0efe30
MS
3732 if (unlikely(mem_cgroup_is_root(memcg)))
3733 return 0;
d6441637 3734
bf4f0599 3735 objcg = obj_cgroup_alloc();
f9c69d63 3736 if (!objcg)
bf4f0599 3737 return -ENOMEM;
f9c69d63 3738
bf4f0599
RG
3739 objcg->memcg = memcg;
3740 rcu_assign_pointer(memcg->objcg, objcg);
3741
d648bcc7
RG
3742 static_branch_enable(&memcg_kmem_enabled_key);
3743
f9c69d63 3744 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3745
3746 return 0;
d6441637
VD
3747}
3748
8e0a8912
JW
3749static void memcg_offline_kmem(struct mem_cgroup *memcg)
3750{
64268868 3751 struct mem_cgroup *parent;
8e0a8912 3752
9c94bef9 3753 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3754 return;
3755
3756 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3757 return;
9855609b 3758
8e0a8912
JW
3759 parent = parent_mem_cgroup(memcg);
3760 if (!parent)
3761 parent = root_mem_cgroup;
3762
bf4f0599 3763 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3764
8e0a8912 3765 /*
64268868
MS
3766 * After we have finished memcg_reparent_objcgs(), all list_lrus
3767 * corresponding to this cgroup are guaranteed to remain empty.
3768 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3769 * memcg_reparent_list_lrus().
8e0a8912 3770 */
1f391eb2 3771 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3772}
d6441637 3773#else
0b8f73e1 3774static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3775{
3776 return 0;
3777}
3778static void memcg_offline_kmem(struct mem_cgroup *memcg)
3779{
3780}
84c07d11 3781#endif /* CONFIG_MEMCG_KMEM */
127424c8 3782
bbec2e15 3783static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3784{
3785 int ret;
3786
bbec2e15 3787 mutex_lock(&memcg_max_mutex);
d55f90bf 3788
bbec2e15 3789 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3790 if (ret)
3791 goto out;
3792
0db15298 3793 if (!memcg->tcpmem_active) {
d55f90bf
VD
3794 /*
3795 * The active flag needs to be written after the static_key
3796 * update. This is what guarantees that the socket activation
2d758073
JW
3797 * function is the last one to run. See mem_cgroup_sk_alloc()
3798 * for details, and note that we don't mark any socket as
3799 * belonging to this memcg until that flag is up.
d55f90bf
VD
3800 *
3801 * We need to do this, because static_keys will span multiple
3802 * sites, but we can't control their order. If we mark a socket
3803 * as accounted, but the accounting functions are not patched in
3804 * yet, we'll lose accounting.
3805 *
2d758073 3806 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3807 * because when this value change, the code to process it is not
3808 * patched in yet.
3809 */
3810 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3811 memcg->tcpmem_active = true;
d55f90bf
VD
3812 }
3813out:
bbec2e15 3814 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3815 return ret;
3816}
d55f90bf 3817
628f4235
KH
3818/*
3819 * The user of this function is...
3820 * RES_LIMIT.
3821 */
451af504
TH
3822static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3823 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3824{
451af504 3825 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3826 unsigned long nr_pages;
628f4235
KH
3827 int ret;
3828
451af504 3829 buf = strstrip(buf);
650c5e56 3830 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3831 if (ret)
3832 return ret;
af36f906 3833
3e32cb2e 3834 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3835 case RES_LIMIT:
4b3bde4c
BS
3836 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3837 ret = -EINVAL;
3838 break;
3839 }
3e32cb2e
JW
3840 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3841 case _MEM:
bbec2e15 3842 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3843 break;
3e32cb2e 3844 case _MEMSWAP:
bbec2e15 3845 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3846 break;
3e32cb2e 3847 case _KMEM:
58056f77
SB
3848 /* kmem.limit_in_bytes is deprecated. */
3849 ret = -EOPNOTSUPP;
3e32cb2e 3850 break;
d55f90bf 3851 case _TCP:
bbec2e15 3852 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3853 break;
3e32cb2e 3854 }
296c81d8 3855 break;
3e32cb2e 3856 case RES_SOFT_LIMIT:
2343e88d
SAS
3857 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3858 ret = -EOPNOTSUPP;
3859 } else {
3860 memcg->soft_limit = nr_pages;
3861 ret = 0;
3862 }
628f4235
KH
3863 break;
3864 }
451af504 3865 return ret ?: nbytes;
8cdea7c0
BS
3866}
3867
6770c64e
TH
3868static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3869 size_t nbytes, loff_t off)
c84872e1 3870{
6770c64e 3871 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3872 struct page_counter *counter;
c84872e1 3873
3e32cb2e
JW
3874 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3875 case _MEM:
3876 counter = &memcg->memory;
3877 break;
3878 case _MEMSWAP:
3879 counter = &memcg->memsw;
3880 break;
3881 case _KMEM:
3882 counter = &memcg->kmem;
3883 break;
d55f90bf 3884 case _TCP:
0db15298 3885 counter = &memcg->tcpmem;
d55f90bf 3886 break;
3e32cb2e
JW
3887 default:
3888 BUG();
3889 }
af36f906 3890
3e32cb2e 3891 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3892 case RES_MAX_USAGE:
3e32cb2e 3893 page_counter_reset_watermark(counter);
29f2a4da
PE
3894 break;
3895 case RES_FAILCNT:
3e32cb2e 3896 counter->failcnt = 0;
29f2a4da 3897 break;
3e32cb2e
JW
3898 default:
3899 BUG();
29f2a4da 3900 }
f64c3f54 3901
6770c64e 3902 return nbytes;
c84872e1
PE
3903}
3904
182446d0 3905static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3906 struct cftype *cft)
3907{
182446d0 3908 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3909}
3910
02491447 3911#ifdef CONFIG_MMU
182446d0 3912static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3913 struct cftype *cft, u64 val)
3914{
182446d0 3915 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3916
1dfab5ab 3917 if (val & ~MOVE_MASK)
7dc74be0 3918 return -EINVAL;
ee5e8472 3919
7dc74be0 3920 /*
ee5e8472
GC
3921 * No kind of locking is needed in here, because ->can_attach() will
3922 * check this value once in the beginning of the process, and then carry
3923 * on with stale data. This means that changes to this value will only
3924 * affect task migrations starting after the change.
7dc74be0 3925 */
c0ff4b85 3926 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3927 return 0;
3928}
02491447 3929#else
182446d0 3930static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3931 struct cftype *cft, u64 val)
3932{
3933 return -ENOSYS;
3934}
3935#endif
7dc74be0 3936
406eb0c9 3937#ifdef CONFIG_NUMA
113b7dfd
JW
3938
3939#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3940#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3941#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3942
3943static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3944 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3945{
867e5e1d 3946 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3947 unsigned long nr = 0;
3948 enum lru_list lru;
3949
3950 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3951
3952 for_each_lru(lru) {
3953 if (!(BIT(lru) & lru_mask))
3954 continue;
dd8657b6
SB
3955 if (tree)
3956 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3957 else
3958 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3959 }
3960 return nr;
3961}
3962
3963static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3964 unsigned int lru_mask,
3965 bool tree)
113b7dfd
JW
3966{
3967 unsigned long nr = 0;
3968 enum lru_list lru;
3969
3970 for_each_lru(lru) {
3971 if (!(BIT(lru) & lru_mask))
3972 continue;
dd8657b6
SB
3973 if (tree)
3974 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3975 else
3976 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3977 }
3978 return nr;
3979}
3980
2da8ca82 3981static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3982{
25485de6
GT
3983 struct numa_stat {
3984 const char *name;
3985 unsigned int lru_mask;
3986 };
3987
3988 static const struct numa_stat stats[] = {
3989 { "total", LRU_ALL },
3990 { "file", LRU_ALL_FILE },
3991 { "anon", LRU_ALL_ANON },
3992 { "unevictable", BIT(LRU_UNEVICTABLE) },
3993 };
3994 const struct numa_stat *stat;
406eb0c9 3995 int nid;
aa9694bb 3996 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3997
fd25a9e0 3998 mem_cgroup_flush_stats();
2d146aa3 3999
25485de6 4000 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4001 seq_printf(m, "%s=%lu", stat->name,
4002 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4003 false));
4004 for_each_node_state(nid, N_MEMORY)
4005 seq_printf(m, " N%d=%lu", nid,
4006 mem_cgroup_node_nr_lru_pages(memcg, nid,
4007 stat->lru_mask, false));
25485de6 4008 seq_putc(m, '\n');
406eb0c9 4009 }
406eb0c9 4010
071aee13 4011 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4012
4013 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 true));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, true));
071aee13 4020 seq_putc(m, '\n');
406eb0c9 4021 }
406eb0c9 4022
406eb0c9
YH
4023 return 0;
4024}
4025#endif /* CONFIG_NUMA */
4026
c8713d0b 4027static const unsigned int memcg1_stats[] = {
0d1c2072 4028 NR_FILE_PAGES,
be5d0a74 4029 NR_ANON_MAPPED,
468c3982
JW
4030#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4031 NR_ANON_THPS,
4032#endif
c8713d0b
JW
4033 NR_SHMEM,
4034 NR_FILE_MAPPED,
4035 NR_FILE_DIRTY,
4036 NR_WRITEBACK,
e09b0b61
YS
4037 WORKINGSET_REFAULT_ANON,
4038 WORKINGSET_REFAULT_FILE,
c8713d0b
JW
4039 MEMCG_SWAP,
4040};
4041
4042static const char *const memcg1_stat_names[] = {
4043 "cache",
4044 "rss",
468c3982 4045#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4046 "rss_huge",
468c3982 4047#endif
c8713d0b
JW
4048 "shmem",
4049 "mapped_file",
4050 "dirty",
4051 "writeback",
e09b0b61
YS
4052 "workingset_refault_anon",
4053 "workingset_refault_file",
c8713d0b
JW
4054 "swap",
4055};
4056
df0e53d0 4057/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4058static const unsigned int memcg1_events[] = {
df0e53d0
JW
4059 PGPGIN,
4060 PGPGOUT,
4061 PGFAULT,
4062 PGMAJFAULT,
4063};
4064
2da8ca82 4065static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4066{
aa9694bb 4067 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4068 unsigned long memory, memsw;
af7c4b0e
JW
4069 struct mem_cgroup *mi;
4070 unsigned int i;
406eb0c9 4071
71cd3113 4072 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4073
fd25a9e0 4074 mem_cgroup_flush_stats();
2d146aa3 4075
71cd3113 4076 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4077 unsigned long nr;
4078
71cd3113 4079 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4080 continue;
468c3982 4081 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
e09b0b61
YS
4082 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4083 nr * memcg_page_state_unit(memcg1_stats[i]));
1dd3a273 4084 }
7b854121 4085
df0e53d0 4086 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4087 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4088 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4089
4090 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4091 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4092 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4093 PAGE_SIZE);
af7c4b0e 4094
14067bb3 4095 /* Hierarchical information */
3e32cb2e
JW
4096 memory = memsw = PAGE_COUNTER_MAX;
4097 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4098 memory = min(memory, READ_ONCE(mi->memory.max));
4099 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4100 }
3e32cb2e
JW
4101 seq_printf(m, "hierarchical_memory_limit %llu\n",
4102 (u64)memory * PAGE_SIZE);
7941d214 4103 if (do_memsw_account())
3e32cb2e
JW
4104 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4105 (u64)memsw * PAGE_SIZE);
7f016ee8 4106
8de7ecc6 4107 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4108 unsigned long nr;
4109
71cd3113 4110 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4111 continue;
7de2e9f1 4112 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
e09b0b61 4114 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
af7c4b0e
JW
4115 }
4116
8de7ecc6 4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4118 seq_printf(m, "total_%s %llu\n",
4119 vm_event_name(memcg1_events[i]),
dd923990 4120 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4121
8de7ecc6 4122 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 PAGE_SIZE);
14067bb3 4126
7f016ee8 4127#ifdef CONFIG_DEBUG_VM
7f016ee8 4128 {
ef8f2327
MG
4129 pg_data_t *pgdat;
4130 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4131 unsigned long anon_cost = 0;
4132 unsigned long file_cost = 0;
7f016ee8 4133
ef8f2327 4134 for_each_online_pgdat(pgdat) {
a3747b53 4135 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4136
1431d4d1
JW
4137 anon_cost += mz->lruvec.anon_cost;
4138 file_cost += mz->lruvec.file_cost;
ef8f2327 4139 }
1431d4d1
JW
4140 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4142 }
4143#endif
4144
d2ceb9b7
KH
4145 return 0;
4146}
4147
182446d0
TH
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 struct cftype *cft)
a7885eb8 4150{
182446d0 4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4152
1f4c025b 4153 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4154}
4155
182446d0
TH
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
a7885eb8 4158{
182446d0 4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4160
37bc3cb9 4161 if (val > 200)
a7885eb8
KM
4162 return -EINVAL;
4163
a4792030 4164 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4165 memcg->swappiness = val;
4166 else
4167 vm_swappiness = val;
068b38c1 4168
a7885eb8
KM
4169 return 0;
4170}
4171
2e72b634
KS
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4175 unsigned long usage;
2e72b634
KS
4176 int i;
4177
4178 rcu_read_lock();
4179 if (!swap)
2c488db2 4180 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4181 else
2c488db2 4182 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4183
4184 if (!t)
4185 goto unlock;
4186
ce00a967 4187 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4188
4189 /*
748dad36 4190 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4191 * If it's not true, a threshold was crossed after last
4192 * call of __mem_cgroup_threshold().
4193 */
5407a562 4194 i = t->current_threshold;
2e72b634
KS
4195
4196 /*
4197 * Iterate backward over array of thresholds starting from
4198 * current_threshold and check if a threshold is crossed.
4199 * If none of thresholds below usage is crossed, we read
4200 * only one element of the array here.
4201 */
4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205 /* i = current_threshold + 1 */
4206 i++;
4207
4208 /*
4209 * Iterate forward over array of thresholds starting from
4210 * current_threshold+1 and check if a threshold is crossed.
4211 * If none of thresholds above usage is crossed, we read
4212 * only one element of the array here.
4213 */
4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217 /* Update current_threshold */
5407a562 4218 t->current_threshold = i - 1;
2e72b634
KS
4219unlock:
4220 rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
ad4ca5f4
KS
4225 while (memcg) {
4226 __mem_cgroup_threshold(memcg, false);
7941d214 4227 if (do_memsw_account())
ad4ca5f4
KS
4228 __mem_cgroup_threshold(memcg, true);
4229
4230 memcg = parent_mem_cgroup(memcg);
4231 }
2e72b634
KS
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236 const struct mem_cgroup_threshold *_a = a;
4237 const struct mem_cgroup_threshold *_b = b;
4238
2bff24a3
GT
4239 if (_a->threshold > _b->threshold)
4240 return 1;
4241
4242 if (_a->threshold < _b->threshold)
4243 return -1;
4244
4245 return 0;
2e72b634
KS
4246}
4247
c0ff4b85 4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4249{
4250 struct mem_cgroup_eventfd_list *ev;
4251
2bcf2e92
MH
4252 spin_lock(&memcg_oom_lock);
4253
c0ff4b85 4254 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4255 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4256
4257 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4258 return 0;
4259}
4260
c0ff4b85 4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4262{
7d74b06f
KH
4263 struct mem_cgroup *iter;
4264
c0ff4b85 4265 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4266 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4267}
4268
59b6f873 4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4271{
2c488db2
KS
4272 struct mem_cgroup_thresholds *thresholds;
4273 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4274 unsigned long threshold;
4275 unsigned long usage;
2c488db2 4276 int i, size, ret;
2e72b634 4277
650c5e56 4278 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4279 if (ret)
4280 return ret;
4281
4282 mutex_lock(&memcg->thresholds_lock);
2c488db2 4283
05b84301 4284 if (type == _MEM) {
2c488db2 4285 thresholds = &memcg->thresholds;
ce00a967 4286 usage = mem_cgroup_usage(memcg, false);
05b84301 4287 } else if (type == _MEMSWAP) {
2c488db2 4288 thresholds = &memcg->memsw_thresholds;
ce00a967 4289 usage = mem_cgroup_usage(memcg, true);
05b84301 4290 } else
2e72b634
KS
4291 BUG();
4292
2e72b634 4293 /* Check if a threshold crossed before adding a new one */
2c488db2 4294 if (thresholds->primary)
2e72b634
KS
4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
2c488db2 4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4298
4299 /* Allocate memory for new array of thresholds */
67b8046f 4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4301 if (!new) {
2e72b634
KS
4302 ret = -ENOMEM;
4303 goto unlock;
4304 }
2c488db2 4305 new->size = size;
2e72b634
KS
4306
4307 /* Copy thresholds (if any) to new array */
e90342e6
GS
4308 if (thresholds->primary)
4309 memcpy(new->entries, thresholds->primary->entries,
4310 flex_array_size(new, entries, size - 1));
2c488db2 4311
2e72b634 4312 /* Add new threshold */
2c488db2
KS
4313 new->entries[size - 1].eventfd = eventfd;
4314 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4315
4316 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4317 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4318 compare_thresholds, NULL);
4319
4320 /* Find current threshold */
2c488db2 4321 new->current_threshold = -1;
2e72b634 4322 for (i = 0; i < size; i++) {
748dad36 4323 if (new->entries[i].threshold <= usage) {
2e72b634 4324 /*
2c488db2
KS
4325 * new->current_threshold will not be used until
4326 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4327 * it here.
4328 */
2c488db2 4329 ++new->current_threshold;
748dad36
SZ
4330 } else
4331 break;
2e72b634
KS
4332 }
4333
2c488db2
KS
4334 /* Free old spare buffer and save old primary buffer as spare */
4335 kfree(thresholds->spare);
4336 thresholds->spare = thresholds->primary;
4337
4338 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4339
907860ed 4340 /* To be sure that nobody uses thresholds */
2e72b634
KS
4341 synchronize_rcu();
4342
2e72b634
KS
4343unlock:
4344 mutex_unlock(&memcg->thresholds_lock);
4345
4346 return ret;
4347}
4348
59b6f873 4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4350 struct eventfd_ctx *eventfd, const char *args)
4351{
59b6f873 4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4353}
4354
59b6f873 4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
59b6f873 4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4359}
4360
59b6f873 4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4362 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4363{
2c488db2
KS
4364 struct mem_cgroup_thresholds *thresholds;
4365 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4366 unsigned long usage;
7d36665a 4367 int i, j, size, entries;
2e72b634
KS
4368
4369 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4370
4371 if (type == _MEM) {
2c488db2 4372 thresholds = &memcg->thresholds;
ce00a967 4373 usage = mem_cgroup_usage(memcg, false);
05b84301 4374 } else if (type == _MEMSWAP) {
2c488db2 4375 thresholds = &memcg->memsw_thresholds;
ce00a967 4376 usage = mem_cgroup_usage(memcg, true);
05b84301 4377 } else
2e72b634
KS
4378 BUG();
4379
371528ca
AV
4380 if (!thresholds->primary)
4381 goto unlock;
4382
2e72b634
KS
4383 /* Check if a threshold crossed before removing */
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386 /* Calculate new number of threshold */
7d36665a 4387 size = entries = 0;
2c488db2
KS
4388 for (i = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4390 size++;
7d36665a
CX
4391 else
4392 entries++;
2e72b634
KS
4393 }
4394
2c488db2 4395 new = thresholds->spare;
907860ed 4396
7d36665a
CX
4397 /* If no items related to eventfd have been cleared, nothing to do */
4398 if (!entries)
4399 goto unlock;
4400
2e72b634
KS
4401 /* Set thresholds array to NULL if we don't have thresholds */
4402 if (!size) {
2c488db2
KS
4403 kfree(new);
4404 new = NULL;
907860ed 4405 goto swap_buffers;
2e72b634
KS
4406 }
4407
2c488db2 4408 new->size = size;
2e72b634
KS
4409
4410 /* Copy thresholds and find current threshold */
2c488db2
KS
4411 new->current_threshold = -1;
4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4414 continue;
4415
2c488db2 4416 new->entries[j] = thresholds->primary->entries[i];
748dad36 4417 if (new->entries[j].threshold <= usage) {
2e72b634 4418 /*
2c488db2 4419 * new->current_threshold will not be used
2e72b634
KS
4420 * until rcu_assign_pointer(), so it's safe to increment
4421 * it here.
4422 */
2c488db2 4423 ++new->current_threshold;
2e72b634
KS
4424 }
4425 j++;
4426 }
4427
907860ed 4428swap_buffers:
2c488db2
KS
4429 /* Swap primary and spare array */
4430 thresholds->spare = thresholds->primary;
8c757763 4431
2c488db2 4432 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4433
907860ed 4434 /* To be sure that nobody uses thresholds */
2e72b634 4435 synchronize_rcu();
6611d8d7
MC
4436
4437 /* If all events are unregistered, free the spare array */
4438 if (!new) {
4439 kfree(thresholds->spare);
4440 thresholds->spare = NULL;
4441 }
371528ca 4442unlock:
2e72b634 4443 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4444}
c1e862c1 4445
59b6f873 4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4447 struct eventfd_ctx *eventfd)
4448{
59b6f873 4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4450}
4451
59b6f873 4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4453 struct eventfd_ctx *eventfd)
4454{
59b6f873 4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4456}
4457
59b6f873 4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4459 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4460{
9490ff27 4461 struct mem_cgroup_eventfd_list *event;
9490ff27 4462
9490ff27
KH
4463 event = kmalloc(sizeof(*event), GFP_KERNEL);
4464 if (!event)
4465 return -ENOMEM;
4466
1af8efe9 4467 spin_lock(&memcg_oom_lock);
9490ff27
KH
4468
4469 event->eventfd = eventfd;
4470 list_add(&event->list, &memcg->oom_notify);
4471
4472 /* already in OOM ? */
c2b42d3c 4473 if (memcg->under_oom)
9490ff27 4474 eventfd_signal(eventfd, 1);
1af8efe9 4475 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4476
4477 return 0;
4478}
4479
59b6f873 4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4481 struct eventfd_ctx *eventfd)
9490ff27 4482{
9490ff27 4483 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4484
1af8efe9 4485 spin_lock(&memcg_oom_lock);
9490ff27 4486
c0ff4b85 4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4488 if (ev->eventfd == eventfd) {
4489 list_del(&ev->list);
4490 kfree(ev);
4491 }
4492 }
4493
1af8efe9 4494 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4495}
4496
2da8ca82 4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4498{
aa9694bb 4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4500
791badbd 4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4503 seq_printf(sf, "oom_kill %lu\n",
4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4505 return 0;
4506}
4507
182446d0 4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4509 struct cftype *cft, u64 val)
4510{
182446d0 4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4512
4513 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4514 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4515 return -EINVAL;
4516
c0ff4b85 4517 memcg->oom_kill_disable = val;
4d845ebf 4518 if (!val)
c0ff4b85 4519 memcg_oom_recover(memcg);
3dae7fec 4520
3c11ecf4
KH
4521 return 0;
4522}
4523
52ebea74
TH
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
3a8e9ac8
TH
4526#include <trace/events/writeback.h>
4527
841710aa
TH
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530 return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535 wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
2529bb3a
TH
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540 wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
841710aa
TH
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547 if (!memcg->css.parent)
4548 return NULL;
4549
4550 return &memcg->cgwb_domain;
4551}
4552
c2aa723a
TH
4553/**
4554 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4555 * @wb: bdi_writeback in question
c5edf9cd
TH
4556 * @pfilepages: out parameter for number of file pages
4557 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4558 * @pdirty: out parameter for number of dirty pages
4559 * @pwriteback: out parameter for number of pages under writeback
4560 *
c5edf9cd
TH
4561 * Determine the numbers of file, headroom, dirty, and writeback pages in
4562 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4563 * is a bit more involved.
c2aa723a 4564 *
c5edf9cd
TH
4565 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4566 * headroom is calculated as the lowest headroom of itself and the
4567 * ancestors. Note that this doesn't consider the actual amount of
4568 * available memory in the system. The caller should further cap
4569 * *@pheadroom accordingly.
c2aa723a 4570 */
c5edf9cd
TH
4571void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4572 unsigned long *pheadroom, unsigned long *pdirty,
4573 unsigned long *pwriteback)
c2aa723a
TH
4574{
4575 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4576 struct mem_cgroup *parent;
c2aa723a 4577
fd25a9e0 4578 mem_cgroup_flush_stats();
c2aa723a 4579
2d146aa3
JW
4580 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4581 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4582 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4583 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4584
2d146aa3 4585 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4586 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4587 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4588 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4589 unsigned long used = page_counter_read(&memcg->memory);
4590
c5edf9cd 4591 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4592 memcg = parent;
4593 }
c2aa723a
TH
4594}
4595
97b27821
TH
4596/*
4597 * Foreign dirty flushing
4598 *
4599 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4600 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4601 * deliberate design decision because honoring per-page ownership in the
4602 * writeback path is complicated, may lead to higher CPU and IO overheads
4603 * and deemed unnecessary given that write-sharing an inode across
4604 * different cgroups isn't a common use-case.
4605 *
4606 * Combined with inode majority-writer ownership switching, this works well
4607 * enough in most cases but there are some pathological cases. For
4608 * example, let's say there are two cgroups A and B which keep writing to
4609 * different but confined parts of the same inode. B owns the inode and
4610 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4611 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4612 * triggering background writeback. A will be slowed down without a way to
4613 * make writeback of the dirty pages happen.
4614 *
f0953a1b 4615 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4616 * severely throttled after making some progress after each
f0953a1b 4617 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4618 * completely idle.
4619 *
4620 * Solving this problem completely requires matching the ownership tracking
4621 * granularities between memcg and writeback in either direction. However,
4622 * the more egregious behaviors can be avoided by simply remembering the
4623 * most recent foreign dirtying events and initiating remote flushes on
4624 * them when local writeback isn't enough to keep the memory clean enough.
4625 *
4626 * The following two functions implement such mechanism. When a foreign
4627 * page - a page whose memcg and writeback ownerships don't match - is
4628 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4629 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4630 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4631 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4632 * foreign bdi_writebacks which haven't expired. Both the numbers of
4633 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4634 * limited to MEMCG_CGWB_FRN_CNT.
4635 *
4636 * The mechanism only remembers IDs and doesn't hold any object references.
4637 * As being wrong occasionally doesn't matter, updates and accesses to the
4638 * records are lockless and racy.
4639 */
9d8053fc 4640void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4641 struct bdi_writeback *wb)
4642{
9d8053fc 4643 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4644 struct memcg_cgwb_frn *frn;
4645 u64 now = get_jiffies_64();
4646 u64 oldest_at = now;
4647 int oldest = -1;
4648 int i;
4649
9d8053fc 4650 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4651
97b27821
TH
4652 /*
4653 * Pick the slot to use. If there is already a slot for @wb, keep
4654 * using it. If not replace the oldest one which isn't being
4655 * written out.
4656 */
4657 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4658 frn = &memcg->cgwb_frn[i];
4659 if (frn->bdi_id == wb->bdi->id &&
4660 frn->memcg_id == wb->memcg_css->id)
4661 break;
4662 if (time_before64(frn->at, oldest_at) &&
4663 atomic_read(&frn->done.cnt) == 1) {
4664 oldest = i;
4665 oldest_at = frn->at;
4666 }
4667 }
4668
4669 if (i < MEMCG_CGWB_FRN_CNT) {
4670 /*
4671 * Re-using an existing one. Update timestamp lazily to
4672 * avoid making the cacheline hot. We want them to be
4673 * reasonably up-to-date and significantly shorter than
4674 * dirty_expire_interval as that's what expires the record.
4675 * Use the shorter of 1s and dirty_expire_interval / 8.
4676 */
4677 unsigned long update_intv =
4678 min_t(unsigned long, HZ,
4679 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4680
4681 if (time_before64(frn->at, now - update_intv))
4682 frn->at = now;
4683 } else if (oldest >= 0) {
4684 /* replace the oldest free one */
4685 frn = &memcg->cgwb_frn[oldest];
4686 frn->bdi_id = wb->bdi->id;
4687 frn->memcg_id = wb->memcg_css->id;
4688 frn->at = now;
4689 }
4690}
4691
4692/* issue foreign writeback flushes for recorded foreign dirtying events */
4693void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4694{
4695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4696 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4697 u64 now = jiffies_64;
4698 int i;
4699
4700 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4701 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4702
4703 /*
4704 * If the record is older than dirty_expire_interval,
4705 * writeback on it has already started. No need to kick it
4706 * off again. Also, don't start a new one if there's
4707 * already one in flight.
4708 */
4709 if (time_after64(frn->at, now - intv) &&
4710 atomic_read(&frn->done.cnt) == 1) {
4711 frn->at = 0;
3a8e9ac8 4712 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4713 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4714 WB_REASON_FOREIGN_FLUSH,
4715 &frn->done);
4716 }
4717 }
4718}
4719
841710aa
TH
4720#else /* CONFIG_CGROUP_WRITEBACK */
4721
4722static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4723{
4724 return 0;
4725}
4726
4727static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4728{
4729}
4730
2529bb3a
TH
4731static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4732{
4733}
4734
52ebea74
TH
4735#endif /* CONFIG_CGROUP_WRITEBACK */
4736
3bc942f3
TH
4737/*
4738 * DO NOT USE IN NEW FILES.
4739 *
4740 * "cgroup.event_control" implementation.
4741 *
4742 * This is way over-engineered. It tries to support fully configurable
4743 * events for each user. Such level of flexibility is completely
4744 * unnecessary especially in the light of the planned unified hierarchy.
4745 *
4746 * Please deprecate this and replace with something simpler if at all
4747 * possible.
4748 */
4749
79bd9814
TH
4750/*
4751 * Unregister event and free resources.
4752 *
4753 * Gets called from workqueue.
4754 */
3bc942f3 4755static void memcg_event_remove(struct work_struct *work)
79bd9814 4756{
3bc942f3
TH
4757 struct mem_cgroup_event *event =
4758 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4759 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4760
4761 remove_wait_queue(event->wqh, &event->wait);
4762
59b6f873 4763 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4764
4765 /* Notify userspace the event is going away. */
4766 eventfd_signal(event->eventfd, 1);
4767
4768 eventfd_ctx_put(event->eventfd);
4769 kfree(event);
59b6f873 4770 css_put(&memcg->css);
79bd9814
TH
4771}
4772
4773/*
a9a08845 4774 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4775 *
4776 * Called with wqh->lock held and interrupts disabled.
4777 */
ac6424b9 4778static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4779 int sync, void *key)
79bd9814 4780{
3bc942f3
TH
4781 struct mem_cgroup_event *event =
4782 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4783 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4784 __poll_t flags = key_to_poll(key);
79bd9814 4785
a9a08845 4786 if (flags & EPOLLHUP) {
79bd9814
TH
4787 /*
4788 * If the event has been detached at cgroup removal, we
4789 * can simply return knowing the other side will cleanup
4790 * for us.
4791 *
4792 * We can't race against event freeing since the other
4793 * side will require wqh->lock via remove_wait_queue(),
4794 * which we hold.
4795 */
fba94807 4796 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4797 if (!list_empty(&event->list)) {
4798 list_del_init(&event->list);
4799 /*
4800 * We are in atomic context, but cgroup_event_remove()
4801 * may sleep, so we have to call it in workqueue.
4802 */
4803 schedule_work(&event->remove);
4804 }
fba94807 4805 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4806 }
4807
4808 return 0;
4809}
4810
3bc942f3 4811static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4812 wait_queue_head_t *wqh, poll_table *pt)
4813{
3bc942f3
TH
4814 struct mem_cgroup_event *event =
4815 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4816
4817 event->wqh = wqh;
4818 add_wait_queue(wqh, &event->wait);
4819}
4820
4821/*
3bc942f3
TH
4822 * DO NOT USE IN NEW FILES.
4823 *
79bd9814
TH
4824 * Parse input and register new cgroup event handler.
4825 *
4826 * Input must be in format '<event_fd> <control_fd> <args>'.
4827 * Interpretation of args is defined by control file implementation.
4828 */
451af504
TH
4829static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4830 char *buf, size_t nbytes, loff_t off)
79bd9814 4831{
451af504 4832 struct cgroup_subsys_state *css = of_css(of);
fba94807 4833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4834 struct mem_cgroup_event *event;
79bd9814
TH
4835 struct cgroup_subsys_state *cfile_css;
4836 unsigned int efd, cfd;
4837 struct fd efile;
4838 struct fd cfile;
4a7ba45b 4839 struct dentry *cdentry;
fba94807 4840 const char *name;
79bd9814
TH
4841 char *endp;
4842 int ret;
4843
2343e88d
SAS
4844 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4845 return -EOPNOTSUPP;
4846
451af504
TH
4847 buf = strstrip(buf);
4848
4849 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4850 if (*endp != ' ')
4851 return -EINVAL;
451af504 4852 buf = endp + 1;
79bd9814 4853
451af504 4854 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4855 if ((*endp != ' ') && (*endp != '\0'))
4856 return -EINVAL;
451af504 4857 buf = endp + 1;
79bd9814
TH
4858
4859 event = kzalloc(sizeof(*event), GFP_KERNEL);
4860 if (!event)
4861 return -ENOMEM;
4862
59b6f873 4863 event->memcg = memcg;
79bd9814 4864 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4865 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4866 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4867 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4868
4869 efile = fdget(efd);
4870 if (!efile.file) {
4871 ret = -EBADF;
4872 goto out_kfree;
4873 }
4874
4875 event->eventfd = eventfd_ctx_fileget(efile.file);
4876 if (IS_ERR(event->eventfd)) {
4877 ret = PTR_ERR(event->eventfd);
4878 goto out_put_efile;
4879 }
4880
4881 cfile = fdget(cfd);
4882 if (!cfile.file) {
4883 ret = -EBADF;
4884 goto out_put_eventfd;
4885 }
4886
4887 /* the process need read permission on control file */
4888 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4889 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4890 if (ret < 0)
4891 goto out_put_cfile;
4892
4a7ba45b
TH
4893 /*
4894 * The control file must be a regular cgroup1 file. As a regular cgroup
4895 * file can't be renamed, it's safe to access its name afterwards.
4896 */
4897 cdentry = cfile.file->f_path.dentry;
4898 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4899 ret = -EINVAL;
4900 goto out_put_cfile;
4901 }
4902
fba94807
TH
4903 /*
4904 * Determine the event callbacks and set them in @event. This used
4905 * to be done via struct cftype but cgroup core no longer knows
4906 * about these events. The following is crude but the whole thing
4907 * is for compatibility anyway.
3bc942f3
TH
4908 *
4909 * DO NOT ADD NEW FILES.
fba94807 4910 */
4a7ba45b 4911 name = cdentry->d_name.name;
fba94807
TH
4912
4913 if (!strcmp(name, "memory.usage_in_bytes")) {
4914 event->register_event = mem_cgroup_usage_register_event;
4915 event->unregister_event = mem_cgroup_usage_unregister_event;
4916 } else if (!strcmp(name, "memory.oom_control")) {
4917 event->register_event = mem_cgroup_oom_register_event;
4918 event->unregister_event = mem_cgroup_oom_unregister_event;
4919 } else if (!strcmp(name, "memory.pressure_level")) {
4920 event->register_event = vmpressure_register_event;
4921 event->unregister_event = vmpressure_unregister_event;
4922 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4923 event->register_event = memsw_cgroup_usage_register_event;
4924 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4925 } else {
4926 ret = -EINVAL;
4927 goto out_put_cfile;
4928 }
4929
79bd9814 4930 /*
b5557c4c
TH
4931 * Verify @cfile should belong to @css. Also, remaining events are
4932 * automatically removed on cgroup destruction but the removal is
4933 * asynchronous, so take an extra ref on @css.
79bd9814 4934 */
4a7ba45b 4935 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
ec903c0c 4936 &memory_cgrp_subsys);
79bd9814 4937 ret = -EINVAL;
5a17f543 4938 if (IS_ERR(cfile_css))
79bd9814 4939 goto out_put_cfile;
5a17f543
TH
4940 if (cfile_css != css) {
4941 css_put(cfile_css);
79bd9814 4942 goto out_put_cfile;
5a17f543 4943 }
79bd9814 4944
451af504 4945 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4946 if (ret)
4947 goto out_put_css;
4948
9965ed17 4949 vfs_poll(efile.file, &event->pt);
79bd9814 4950
4ba9515d 4951 spin_lock_irq(&memcg->event_list_lock);
fba94807 4952 list_add(&event->list, &memcg->event_list);
4ba9515d 4953 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4954
4955 fdput(cfile);
4956 fdput(efile);
4957
451af504 4958 return nbytes;
79bd9814
TH
4959
4960out_put_css:
b5557c4c 4961 css_put(css);
79bd9814
TH
4962out_put_cfile:
4963 fdput(cfile);
4964out_put_eventfd:
4965 eventfd_ctx_put(event->eventfd);
4966out_put_efile:
4967 fdput(efile);
4968out_kfree:
4969 kfree(event);
4970
4971 return ret;
4972}
4973
c29b5b3d
MS
4974#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4975static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4976{
4977 /*
4978 * Deprecated.
df4ae285 4979 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
4980 */
4981 return 0;
4982}
4983#endif
4984
241994ed 4985static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4986 {
0eea1030 4987 .name = "usage_in_bytes",
8c7c6e34 4988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4989 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4990 },
c84872e1
PE
4991 {
4992 .name = "max_usage_in_bytes",
8c7c6e34 4993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4994 .write = mem_cgroup_reset,
791badbd 4995 .read_u64 = mem_cgroup_read_u64,
c84872e1 4996 },
8cdea7c0 4997 {
0eea1030 4998 .name = "limit_in_bytes",
8c7c6e34 4999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5000 .write = mem_cgroup_write,
791badbd 5001 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5002 },
296c81d8
BS
5003 {
5004 .name = "soft_limit_in_bytes",
5005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5006 .write = mem_cgroup_write,
791badbd 5007 .read_u64 = mem_cgroup_read_u64,
296c81d8 5008 },
8cdea7c0
BS
5009 {
5010 .name = "failcnt",
8c7c6e34 5011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5012 .write = mem_cgroup_reset,
791badbd 5013 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5014 },
d2ceb9b7
KH
5015 {
5016 .name = "stat",
2da8ca82 5017 .seq_show = memcg_stat_show,
d2ceb9b7 5018 },
c1e862c1
KH
5019 {
5020 .name = "force_empty",
6770c64e 5021 .write = mem_cgroup_force_empty_write,
c1e862c1 5022 },
18f59ea7
BS
5023 {
5024 .name = "use_hierarchy",
5025 .write_u64 = mem_cgroup_hierarchy_write,
5026 .read_u64 = mem_cgroup_hierarchy_read,
5027 },
79bd9814 5028 {
3bc942f3 5029 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5030 .write = memcg_write_event_control,
7dbdb199 5031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5032 },
a7885eb8
KM
5033 {
5034 .name = "swappiness",
5035 .read_u64 = mem_cgroup_swappiness_read,
5036 .write_u64 = mem_cgroup_swappiness_write,
5037 },
7dc74be0
DN
5038 {
5039 .name = "move_charge_at_immigrate",
5040 .read_u64 = mem_cgroup_move_charge_read,
5041 .write_u64 = mem_cgroup_move_charge_write,
5042 },
9490ff27
KH
5043 {
5044 .name = "oom_control",
2da8ca82 5045 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5046 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 5047 },
70ddf637
AV
5048 {
5049 .name = "pressure_level",
70ddf637 5050 },
406eb0c9
YH
5051#ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
2da8ca82 5054 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5055 },
5056#endif
510fc4e1
GC
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5060 .write = mem_cgroup_write,
791badbd 5061 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5066 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5071 .write = mem_cgroup_reset,
791badbd 5072 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5077 .write = mem_cgroup_reset,
791badbd 5078 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5079 },
a87425a3
YS
5080#if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5082 {
5083 .name = "kmem.slabinfo",
c29b5b3d 5084 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5085 },
5086#endif
d55f90bf
VD
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
6bc10349 5110 { }, /* terminate */
af36f906 5111};
8c7c6e34 5112
73f576c0
JW
5113/*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
b8f2935f 5121 * However, there usually are many references to the offline CSS after
73f576c0
JW
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137static DEFINE_IDR(mem_cgroup_idr);
5138
7e97de0b
KT
5139static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140{
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145}
5146
c1514c0a
VF
5147static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
73f576c0 5149{
1c2d479a 5150 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5151}
5152
615d66c3 5153static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5154{
1c2d479a 5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5156 mem_cgroup_id_remove(memcg);
73f576c0
JW
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161}
5162
615d66c3
VD
5163static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164{
5165 mem_cgroup_id_put_many(memcg, 1);
5166}
5167
73f576c0
JW
5168/**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175{
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178}
5179
c15187a4
RG
5180#ifdef CONFIG_SHRINKER_DEBUG
5181struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5182{
5183 struct cgroup *cgrp;
5184 struct cgroup_subsys_state *css;
5185 struct mem_cgroup *memcg;
5186
5187 cgrp = cgroup_get_from_id(ino);
fa7e439c 5188 if (IS_ERR(cgrp))
c0f2df49 5189 return ERR_CAST(cgrp);
c15187a4
RG
5190
5191 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5192 if (css)
5193 memcg = container_of(css, struct mem_cgroup, css);
5194 else
5195 memcg = ERR_PTR(-ENOENT);
5196
5197 cgroup_put(cgrp);
5198
5199 return memcg;
5200}
5201#endif
5202
ef8f2327 5203static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5204{
5205 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5206
5207 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5208 if (!pn)
5209 return 1;
1ecaab2b 5210
7e1c0d6f
SB
5211 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5212 GFP_KERNEL_ACCOUNT);
5213 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5214 kfree(pn);
5215 return 1;
5216 }
5217
ef8f2327 5218 lruvec_init(&pn->lruvec);
ef8f2327
MG
5219 pn->memcg = memcg;
5220
54f72fe0 5221 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5222 return 0;
5223}
5224
ef8f2327 5225static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5226{
00f3ca2c
JW
5227 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5228
4eaf431f
MH
5229 if (!pn)
5230 return;
5231
7e1c0d6f 5232 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5233 kfree(pn);
1ecaab2b
KH
5234}
5235
40e952f9 5236static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5237{
c8b2a36f 5238 int node;
59927fb9 5239
c8b2a36f 5240 for_each_node(node)
ef8f2327 5241 free_mem_cgroup_per_node_info(memcg, node);
410f8e82 5242 kfree(memcg->vmstats);
871789d4 5243 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5244 kfree(memcg);
59927fb9 5245}
3afe36b1 5246
40e952f9
TE
5247static void mem_cgroup_free(struct mem_cgroup *memcg)
5248{
ec1c86b2 5249 lru_gen_exit_memcg(memcg);
40e952f9
TE
5250 memcg_wb_domain_exit(memcg);
5251 __mem_cgroup_free(memcg);
5252}
5253
0b8f73e1 5254static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5255{
d142e3e6 5256 struct mem_cgroup *memcg;
6d12e2d8 5257 int node;
97b27821 5258 int __maybe_unused i;
11d67612 5259 long error = -ENOMEM;
8cdea7c0 5260
06b2c3b0 5261 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5262 if (!memcg)
11d67612 5263 return ERR_PTR(error);
0b8f73e1 5264
73f576c0 5265 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5266 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5267 if (memcg->id.id < 0) {
5268 error = memcg->id.id;
73f576c0 5269 goto fail;
11d67612 5270 }
73f576c0 5271
410f8e82
SB
5272 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5273 if (!memcg->vmstats)
5274 goto fail;
5275
3e38e0aa
RG
5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
871789d4 5278 if (!memcg->vmstats_percpu)
0b8f73e1 5279 goto fail;
78fb7466 5280
3ed28fa1 5281 for_each_node(node)
ef8f2327 5282 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5283 goto fail;
f64c3f54 5284
0b8f73e1
JW
5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 goto fail;
28dbc4b6 5287
f7e1cb6e 5288 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5289 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5290 mutex_init(&memcg->thresholds_lock);
5291 spin_lock_init(&memcg->move_lock);
70ddf637 5292 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5293 INIT_LIST_HEAD(&memcg->event_list);
5294 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5295 memcg->socket_pressure = jiffies;
84c07d11 5296#ifdef CONFIG_MEMCG_KMEM
900a38f0 5297 memcg->kmemcg_id = -1;
bf4f0599 5298 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5299#endif
52ebea74
TH
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 memcg->cgwb_frn[i].done =
5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5310#endif
73f576c0 5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
ec1c86b2 5312 lru_gen_init_memcg(memcg);
0b8f73e1
JW
5313 return memcg;
5314fail:
7e97de0b 5315 mem_cgroup_id_remove(memcg);
40e952f9 5316 __mem_cgroup_free(memcg);
11d67612 5317 return ERR_PTR(error);
d142e3e6
GC
5318}
5319
0b8f73e1
JW
5320static struct cgroup_subsys_state * __ref
5321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5322{
0b8f73e1 5323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5324 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5325
b87d8cef 5326 old_memcg = set_active_memcg(parent);
0b8f73e1 5327 memcg = mem_cgroup_alloc();
b87d8cef 5328 set_active_memcg(old_memcg);
11d67612
YS
5329 if (IS_ERR(memcg))
5330 return ERR_CAST(memcg);
d142e3e6 5331
d1663a90 5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5333 memcg->soft_limit = PAGE_COUNTER_MAX;
f4840ccf
JW
5334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5335 memcg->zswap_max = PAGE_COUNTER_MAX;
5336#endif
4b82ab4f 5337 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5338 if (parent) {
5339 memcg->swappiness = mem_cgroup_swappiness(parent);
5340 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5341
3e32cb2e 5342 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5343 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5344 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5345 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5346 } else {
8278f1c7 5347 init_memcg_events();
bef8620c
RG
5348 page_counter_init(&memcg->memory, NULL);
5349 page_counter_init(&memcg->swap, NULL);
5350 page_counter_init(&memcg->kmem, NULL);
5351 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5352
0b8f73e1
JW
5353 root_mem_cgroup = memcg;
5354 return &memcg->css;
5355 }
5356
f7e1cb6e 5357 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5358 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5359
0b8f73e1 5360 return &memcg->css;
0b8f73e1
JW
5361}
5362
73f576c0 5363static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5364{
58fa2a55
VD
5365 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5366
da0efe30
MS
5367 if (memcg_online_kmem(memcg))
5368 goto remove_id;
5369
0a4465d3 5370 /*
e4262c4f 5371 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5372 * by the time the maps are allocated. So, we allocate maps
5373 * here, when for_each_mem_cgroup() can't skip it.
5374 */
da0efe30
MS
5375 if (alloc_shrinker_info(memcg))
5376 goto offline_kmem;
0a4465d3 5377
73f576c0 5378 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5379 refcount_set(&memcg->id.ref, 1);
73f576c0 5380 css_get(css);
aa48e47e
SB
5381
5382 if (unlikely(mem_cgroup_is_root(memcg)))
5383 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5384 2UL*HZ);
2f7dd7a4 5385 return 0;
da0efe30
MS
5386offline_kmem:
5387 memcg_offline_kmem(memcg);
5388remove_id:
5389 mem_cgroup_id_remove(memcg);
5390 return -ENOMEM;
8cdea7c0
BS
5391}
5392
eb95419b 5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5394{
eb95419b 5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5396 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
4ba9515d 5403 spin_lock_irq(&memcg->event_list_lock);
fba94807 5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
4ba9515d 5408 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5409
bf8d5d52 5410 page_counter_set_min(&memcg->memory, 0);
23067153 5411 page_counter_set_low(&memcg->memory, 0);
63677c74 5412
567e9ab2 5413 memcg_offline_kmem(memcg);
a178015c 5414 reparent_shrinker_deferred(memcg);
52ebea74 5415 wb_memcg_offline(memcg);
73f576c0 5416
591edfb1
RG
5417 drain_all_stock(memcg);
5418
73f576c0 5419 mem_cgroup_id_put(memcg);
df878fb0
KH
5420}
5421
6df38689
VD
5422static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5423{
5424 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5425
5426 invalidate_reclaim_iterators(memcg);
5427}
5428
eb95419b 5429static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5430{
eb95419b 5431 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5432 int __maybe_unused i;
c268e994 5433
97b27821
TH
5434#ifdef CONFIG_CGROUP_WRITEBACK
5435 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5436 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5437#endif
f7e1cb6e 5438 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5439 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5440
0db15298 5441 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5442 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5443
0b8f73e1
JW
5444 vmpressure_cleanup(&memcg->vmpressure);
5445 cancel_work_sync(&memcg->high_work);
5446 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5447 free_shrinker_info(memcg);
0b8f73e1 5448 mem_cgroup_free(memcg);
8cdea7c0
BS
5449}
5450
1ced953b
TH
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css. This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency. The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
bbec2e15
RG
5468 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5470 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5472 page_counter_set_min(&memcg->memory, 0);
23067153 5473 page_counter_set_low(&memcg->memory, 0);
d1663a90 5474 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5475 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5476 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5477 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5478}
5479
2d146aa3
JW
5480static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5481{
5482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5483 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5484 struct memcg_vmstats_percpu *statc;
5485 long delta, v;
7e1c0d6f 5486 int i, nid;
2d146aa3
JW
5487
5488 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5489
5490 for (i = 0; i < MEMCG_NR_STAT; i++) {
5491 /*
5492 * Collect the aggregated propagation counts of groups
5493 * below us. We're in a per-cpu loop here and this is
5494 * a global counter, so the first cycle will get them.
5495 */
410f8e82 5496 delta = memcg->vmstats->state_pending[i];
2d146aa3 5497 if (delta)
410f8e82 5498 memcg->vmstats->state_pending[i] = 0;
2d146aa3
JW
5499
5500 /* Add CPU changes on this level since the last flush */
5501 v = READ_ONCE(statc->state[i]);
5502 if (v != statc->state_prev[i]) {
5503 delta += v - statc->state_prev[i];
5504 statc->state_prev[i] = v;
5505 }
5506
5507 if (!delta)
5508 continue;
5509
5510 /* Aggregate counts on this level and propagate upwards */
410f8e82 5511 memcg->vmstats->state[i] += delta;
2d146aa3 5512 if (parent)
410f8e82 5513 parent->vmstats->state_pending[i] += delta;
2d146aa3
JW
5514 }
5515
8278f1c7 5516 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
410f8e82 5517 delta = memcg->vmstats->events_pending[i];
2d146aa3 5518 if (delta)
410f8e82 5519 memcg->vmstats->events_pending[i] = 0;
2d146aa3
JW
5520
5521 v = READ_ONCE(statc->events[i]);
5522 if (v != statc->events_prev[i]) {
5523 delta += v - statc->events_prev[i];
5524 statc->events_prev[i] = v;
5525 }
5526
5527 if (!delta)
5528 continue;
5529
410f8e82 5530 memcg->vmstats->events[i] += delta;
2d146aa3 5531 if (parent)
410f8e82 5532 parent->vmstats->events_pending[i] += delta;
2d146aa3 5533 }
7e1c0d6f
SB
5534
5535 for_each_node_state(nid, N_MEMORY) {
5536 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5537 struct mem_cgroup_per_node *ppn = NULL;
5538 struct lruvec_stats_percpu *lstatc;
5539
5540 if (parent)
5541 ppn = parent->nodeinfo[nid];
5542
5543 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5544
5545 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5546 delta = pn->lruvec_stats.state_pending[i];
5547 if (delta)
5548 pn->lruvec_stats.state_pending[i] = 0;
5549
5550 v = READ_ONCE(lstatc->state[i]);
5551 if (v != lstatc->state_prev[i]) {
5552 delta += v - lstatc->state_prev[i];
5553 lstatc->state_prev[i] = v;
5554 }
5555
5556 if (!delta)
5557 continue;
5558
5559 pn->lruvec_stats.state[i] += delta;
5560 if (ppn)
5561 ppn->lruvec_stats.state_pending[i] += delta;
5562 }
5563 }
2d146aa3
JW
5564}
5565
02491447 5566#ifdef CONFIG_MMU
7dc74be0 5567/* Handlers for move charge at task migration. */
854ffa8d 5568static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5569{
05b84301 5570 int ret;
9476db97 5571
d0164adc
MG
5572 /* Try a single bulk charge without reclaim first, kswapd may wake */
5573 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5574 if (!ret) {
854ffa8d 5575 mc.precharge += count;
854ffa8d
DN
5576 return ret;
5577 }
9476db97 5578
3674534b 5579 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5580 while (count--) {
3674534b 5581 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5582 if (ret)
38c5d72f 5583 return ret;
854ffa8d 5584 mc.precharge++;
9476db97 5585 cond_resched();
854ffa8d 5586 }
9476db97 5587 return 0;
4ffef5fe
DN
5588}
5589
4ffef5fe
DN
5590union mc_target {
5591 struct page *page;
02491447 5592 swp_entry_t ent;
4ffef5fe
DN
5593};
5594
4ffef5fe 5595enum mc_target_type {
8d32ff84 5596 MC_TARGET_NONE = 0,
4ffef5fe 5597 MC_TARGET_PAGE,
02491447 5598 MC_TARGET_SWAP,
c733a828 5599 MC_TARGET_DEVICE,
4ffef5fe
DN
5600};
5601
90254a65
DN
5602static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5603 unsigned long addr, pte_t ptent)
4ffef5fe 5604{
25b2995a 5605 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5606
90254a65
DN
5607 if (!page || !page_mapped(page))
5608 return NULL;
5609 if (PageAnon(page)) {
1dfab5ab 5610 if (!(mc.flags & MOVE_ANON))
90254a65 5611 return NULL;
1dfab5ab
JW
5612 } else {
5613 if (!(mc.flags & MOVE_FILE))
5614 return NULL;
5615 }
90254a65
DN
5616 if (!get_page_unless_zero(page))
5617 return NULL;
5618
5619 return page;
5620}
5621
c733a828 5622#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5623static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5624 pte_t ptent, swp_entry_t *entry)
90254a65 5625{
90254a65
DN
5626 struct page *page = NULL;
5627 swp_entry_t ent = pte_to_swp_entry(ptent);
5628
9a137153 5629 if (!(mc.flags & MOVE_ANON))
90254a65 5630 return NULL;
c733a828
JG
5631
5632 /*
27674ef6
CH
5633 * Handle device private pages that are not accessible by the CPU, but
5634 * stored as special swap entries in the page table.
c733a828
JG
5635 */
5636 if (is_device_private_entry(ent)) {
af5cdaf8 5637 page = pfn_swap_entry_to_page(ent);
27674ef6 5638 if (!get_page_unless_zero(page))
c733a828
JG
5639 return NULL;
5640 return page;
5641 }
5642
9a137153
RC
5643 if (non_swap_entry(ent))
5644 return NULL;
5645
4b91355e 5646 /*
cb691e2f 5647 * Because swap_cache_get_folio() updates some statistics counter,
4b91355e
KH
5648 * we call find_get_page() with swapper_space directly.
5649 */
f6ab1f7f 5650 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5651 entry->val = ent.val;
90254a65
DN
5652
5653 return page;
5654}
4b91355e
KH
5655#else
5656static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5657 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5658{
5659 return NULL;
5660}
5661#endif
90254a65 5662
87946a72 5663static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5664 unsigned long addr, pte_t ptent)
87946a72 5665{
524984ff
MWO
5666 unsigned long index;
5667 struct folio *folio;
5668
87946a72
DN
5669 if (!vma->vm_file) /* anonymous vma */
5670 return NULL;
1dfab5ab 5671 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5672 return NULL;
5673
524984ff 5674 /* folio is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5675 /* shmem/tmpfs may report page out on swap: account for that too. */
524984ff
MWO
5676 index = linear_page_index(vma, addr);
5677 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5678 if (!folio)
5679 return NULL;
5680 return folio_file_page(folio, index);
87946a72
DN
5681}
5682
b1b0deab
CG
5683/**
5684 * mem_cgroup_move_account - move account of the page
5685 * @page: the page
25843c2b 5686 * @compound: charge the page as compound or small page
b1b0deab
CG
5687 * @from: mem_cgroup which the page is moved from.
5688 * @to: mem_cgroup which the page is moved to. @from != @to.
5689 *
3ac808fd 5690 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5691 *
5692 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5693 * from old cgroup.
5694 */
5695static int mem_cgroup_move_account(struct page *page,
f627c2f5 5696 bool compound,
b1b0deab
CG
5697 struct mem_cgroup *from,
5698 struct mem_cgroup *to)
5699{
fcce4672 5700 struct folio *folio = page_folio(page);
ae8af438
KK
5701 struct lruvec *from_vec, *to_vec;
5702 struct pglist_data *pgdat;
fcce4672 5703 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5704 int nid, ret;
b1b0deab
CG
5705
5706 VM_BUG_ON(from == to);
fcce4672 5707 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5708 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5709
5710 /*
6a93ca8f 5711 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5712 * page's memory cgroup of its source page while we change it.
b1b0deab 5713 */
f627c2f5 5714 ret = -EBUSY;
fcce4672 5715 if (!folio_trylock(folio))
b1b0deab
CG
5716 goto out;
5717
5718 ret = -EINVAL;
fcce4672 5719 if (folio_memcg(folio) != from)
b1b0deab
CG
5720 goto out_unlock;
5721
fcce4672 5722 pgdat = folio_pgdat(folio);
867e5e1d
JW
5723 from_vec = mem_cgroup_lruvec(from, pgdat);
5724 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5725
fcce4672 5726 folio_memcg_lock(folio);
b1b0deab 5727
fcce4672
MWO
5728 if (folio_test_anon(folio)) {
5729 if (folio_mapped(folio)) {
be5d0a74
JW
5730 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5731 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5732 if (folio_test_transhuge(folio)) {
69473e5d
MS
5733 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5734 -nr_pages);
5735 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5736 nr_pages);
468c3982 5737 }
be5d0a74
JW
5738 }
5739 } else {
0d1c2072
JW
5740 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5741 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5742
fcce4672 5743 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5744 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5745 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5746 }
5747
fcce4672 5748 if (folio_mapped(folio)) {
49e50d27
JW
5749 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5750 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5751 }
b1b0deab 5752
fcce4672
MWO
5753 if (folio_test_dirty(folio)) {
5754 struct address_space *mapping = folio_mapping(folio);
c4843a75 5755
f56753ac 5756 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5757 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5758 -nr_pages);
5759 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5760 nr_pages);
5761 }
c4843a75
GT
5762 }
5763 }
5764
c449deb2
HD
5765#ifdef CONFIG_SWAP
5766 if (folio_test_swapcache(folio)) {
5767 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5769 }
5770#endif
fcce4672 5771 if (folio_test_writeback(folio)) {
ae8af438
KK
5772 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5773 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5774 }
5775
5776 /*
abb242f5
JW
5777 * All state has been migrated, let's switch to the new memcg.
5778 *
bcfe06bf 5779 * It is safe to change page's memcg here because the page
abb242f5
JW
5780 * is referenced, charged, isolated, and locked: we can't race
5781 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5782 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5783 *
5784 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5785 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5786 * new memcg that isn't locked, the above state can change
5787 * concurrently again. Make sure we're truly done with it.
b1b0deab 5788 */
abb242f5 5789 smp_mb();
b1b0deab 5790
1a3e1f40
JW
5791 css_get(&to->css);
5792 css_put(&from->css);
5793
fcce4672 5794 folio->memcg_data = (unsigned long)to;
87eaceb3 5795
f70ad448 5796 __folio_memcg_unlock(from);
b1b0deab
CG
5797
5798 ret = 0;
fcce4672 5799 nid = folio_nid(folio);
b1b0deab
CG
5800
5801 local_irq_disable();
6e0110c2 5802 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5803 memcg_check_events(to, nid);
6e0110c2 5804 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5805 memcg_check_events(from, nid);
b1b0deab
CG
5806 local_irq_enable();
5807out_unlock:
fcce4672 5808 folio_unlock(folio);
b1b0deab
CG
5809out:
5810 return ret;
5811}
5812
7cf7806c
LR
5813/**
5814 * get_mctgt_type - get target type of moving charge
5815 * @vma: the vma the pte to be checked belongs
5816 * @addr: the address corresponding to the pte to be checked
5817 * @ptent: the pte to be checked
5818 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5819 *
5820 * Returns
5821 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5822 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5823 * move charge. if @target is not NULL, the page is stored in target->page
5824 * with extra refcnt got(Callers should handle it).
5825 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5826 * target for charge migration. if @target is not NULL, the entry is stored
5827 * in target->ent.
f25cbb7a
AS
5828 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5829 * thus not on the lru.
df6ad698
JG
5830 * For now we such page is charge like a regular page would be as for all
5831 * intent and purposes it is just special memory taking the place of a
5832 * regular page.
c733a828
JG
5833 *
5834 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5835 *
5836 * Called with pte lock held.
5837 */
5838
8d32ff84 5839static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5840 unsigned long addr, pte_t ptent, union mc_target *target)
5841{
5842 struct page *page = NULL;
8d32ff84 5843 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5844 swp_entry_t ent = { .val = 0 };
5845
5846 if (pte_present(ptent))
5847 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5848 else if (pte_none_mostly(ptent))
5849 /*
5850 * PTE markers should be treated as a none pte here, separated
5851 * from other swap handling below.
5852 */
5853 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5854 else if (is_swap_pte(ptent))
48406ef8 5855 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65
DN
5856
5857 if (!page && !ent.val)
8d32ff84 5858 return ret;
02491447 5859 if (page) {
02491447 5860 /*
0a31bc97 5861 * Do only loose check w/o serialization.
1306a85a 5862 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5863 * not under LRU exclusion.
02491447 5864 */
bcfe06bf 5865 if (page_memcg(page) == mc.from) {
02491447 5866 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5867 if (is_device_private_page(page) ||
5868 is_device_coherent_page(page))
c733a828 5869 ret = MC_TARGET_DEVICE;
02491447
DN
5870 if (target)
5871 target->page = page;
5872 }
5873 if (!ret || !target)
5874 put_page(page);
5875 }
3e14a57b
HY
5876 /*
5877 * There is a swap entry and a page doesn't exist or isn't charged.
5878 * But we cannot move a tail-page in a THP.
5879 */
5880 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5881 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5882 ret = MC_TARGET_SWAP;
5883 if (target)
5884 target->ent = ent;
4ffef5fe 5885 }
4ffef5fe
DN
5886 return ret;
5887}
5888
12724850
NH
5889#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5890/*
d6810d73
HY
5891 * We don't consider PMD mapped swapping or file mapped pages because THP does
5892 * not support them for now.
12724850
NH
5893 * Caller should make sure that pmd_trans_huge(pmd) is true.
5894 */
5895static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5896 unsigned long addr, pmd_t pmd, union mc_target *target)
5897{
5898 struct page *page = NULL;
12724850
NH
5899 enum mc_target_type ret = MC_TARGET_NONE;
5900
84c3fc4e
ZY
5901 if (unlikely(is_swap_pmd(pmd))) {
5902 VM_BUG_ON(thp_migration_supported() &&
5903 !is_pmd_migration_entry(pmd));
5904 return ret;
5905 }
12724850 5906 page = pmd_page(pmd);
309381fe 5907 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5908 if (!(mc.flags & MOVE_ANON))
12724850 5909 return ret;
bcfe06bf 5910 if (page_memcg(page) == mc.from) {
12724850
NH
5911 ret = MC_TARGET_PAGE;
5912 if (target) {
5913 get_page(page);
5914 target->page = page;
5915 }
5916 }
5917 return ret;
5918}
5919#else
5920static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5921 unsigned long addr, pmd_t pmd, union mc_target *target)
5922{
5923 return MC_TARGET_NONE;
5924}
5925#endif
5926
4ffef5fe
DN
5927static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5928 unsigned long addr, unsigned long end,
5929 struct mm_walk *walk)
5930{
26bcd64a 5931 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5932 pte_t *pte;
5933 spinlock_t *ptl;
5934
b6ec57f4
KS
5935 ptl = pmd_trans_huge_lock(pmd, vma);
5936 if (ptl) {
c733a828
JG
5937 /*
5938 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5939 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5940 * this might change.
c733a828 5941 */
12724850
NH
5942 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5943 mc.precharge += HPAGE_PMD_NR;
bf929152 5944 spin_unlock(ptl);
1a5a9906 5945 return 0;
12724850 5946 }
03319327 5947
45f83cef
AA
5948 if (pmd_trans_unstable(pmd))
5949 return 0;
4ffef5fe
DN
5950 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5951 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5952 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5953 mc.precharge++; /* increment precharge temporarily */
5954 pte_unmap_unlock(pte - 1, ptl);
5955 cond_resched();
5956
7dc74be0
DN
5957 return 0;
5958}
5959
7b86ac33
CH
5960static const struct mm_walk_ops precharge_walk_ops = {
5961 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5962};
5963
4ffef5fe
DN
5964static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5965{
5966 unsigned long precharge;
4ffef5fe 5967
d8ed45c5 5968 mmap_read_lock(mm);
ba0aff8e 5969 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
d8ed45c5 5970 mmap_read_unlock(mm);
4ffef5fe
DN
5971
5972 precharge = mc.precharge;
5973 mc.precharge = 0;
5974
5975 return precharge;
5976}
5977
4ffef5fe
DN
5978static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5979{
dfe076b0
DN
5980 unsigned long precharge = mem_cgroup_count_precharge(mm);
5981
5982 VM_BUG_ON(mc.moving_task);
5983 mc.moving_task = current;
5984 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5985}
5986
dfe076b0
DN
5987/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5988static void __mem_cgroup_clear_mc(void)
4ffef5fe 5989{
2bd9bb20
KH
5990 struct mem_cgroup *from = mc.from;
5991 struct mem_cgroup *to = mc.to;
5992
4ffef5fe 5993 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5994 if (mc.precharge) {
00501b53 5995 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5996 mc.precharge = 0;
5997 }
5998 /*
5999 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6000 * we must uncharge here.
6001 */
6002 if (mc.moved_charge) {
00501b53 6003 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 6004 mc.moved_charge = 0;
4ffef5fe 6005 }
483c30b5
DN
6006 /* we must fixup refcnts and charges */
6007 if (mc.moved_swap) {
483c30b5 6008 /* uncharge swap account from the old cgroup */
ce00a967 6009 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 6010 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 6011
615d66c3
VD
6012 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6013
05b84301 6014 /*
3e32cb2e
JW
6015 * we charged both to->memory and to->memsw, so we
6016 * should uncharge to->memory.
05b84301 6017 */
ce00a967 6018 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
6019 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6020
483c30b5
DN
6021 mc.moved_swap = 0;
6022 }
dfe076b0
DN
6023 memcg_oom_recover(from);
6024 memcg_oom_recover(to);
6025 wake_up_all(&mc.waitq);
6026}
6027
6028static void mem_cgroup_clear_mc(void)
6029{
264a0ae1
TH
6030 struct mm_struct *mm = mc.mm;
6031
dfe076b0
DN
6032 /*
6033 * we must clear moving_task before waking up waiters at the end of
6034 * task migration.
6035 */
6036 mc.moving_task = NULL;
6037 __mem_cgroup_clear_mc();
2bd9bb20 6038 spin_lock(&mc.lock);
4ffef5fe
DN
6039 mc.from = NULL;
6040 mc.to = NULL;
264a0ae1 6041 mc.mm = NULL;
2bd9bb20 6042 spin_unlock(&mc.lock);
264a0ae1
TH
6043
6044 mmput(mm);
4ffef5fe
DN
6045}
6046
1f7dd3e5 6047static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 6048{
1f7dd3e5 6049 struct cgroup_subsys_state *css;
eed67d75 6050 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 6051 struct mem_cgroup *from;
4530eddb 6052 struct task_struct *leader, *p;
9f2115f9 6053 struct mm_struct *mm;
1dfab5ab 6054 unsigned long move_flags;
9f2115f9 6055 int ret = 0;
7dc74be0 6056
1f7dd3e5
TH
6057 /* charge immigration isn't supported on the default hierarchy */
6058 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
6059 return 0;
6060
4530eddb
TH
6061 /*
6062 * Multi-process migrations only happen on the default hierarchy
6063 * where charge immigration is not used. Perform charge
6064 * immigration if @tset contains a leader and whine if there are
6065 * multiple.
6066 */
6067 p = NULL;
1f7dd3e5 6068 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
6069 WARN_ON_ONCE(p);
6070 p = leader;
1f7dd3e5 6071 memcg = mem_cgroup_from_css(css);
4530eddb
TH
6072 }
6073 if (!p)
6074 return 0;
6075
1f7dd3e5 6076 /*
f0953a1b 6077 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
6078 * tunable will only affect upcoming migrations, not the current one.
6079 * So we need to save it, and keep it going.
6080 */
6081 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6082 if (!move_flags)
6083 return 0;
6084
9f2115f9
TH
6085 from = mem_cgroup_from_task(p);
6086
6087 VM_BUG_ON(from == memcg);
6088
6089 mm = get_task_mm(p);
6090 if (!mm)
6091 return 0;
6092 /* We move charges only when we move a owner of the mm */
6093 if (mm->owner == p) {
6094 VM_BUG_ON(mc.from);
6095 VM_BUG_ON(mc.to);
6096 VM_BUG_ON(mc.precharge);
6097 VM_BUG_ON(mc.moved_charge);
6098 VM_BUG_ON(mc.moved_swap);
6099
6100 spin_lock(&mc.lock);
264a0ae1 6101 mc.mm = mm;
9f2115f9
TH
6102 mc.from = from;
6103 mc.to = memcg;
6104 mc.flags = move_flags;
6105 spin_unlock(&mc.lock);
6106 /* We set mc.moving_task later */
6107
6108 ret = mem_cgroup_precharge_mc(mm);
6109 if (ret)
6110 mem_cgroup_clear_mc();
264a0ae1
TH
6111 } else {
6112 mmput(mm);
7dc74be0
DN
6113 }
6114 return ret;
6115}
6116
1f7dd3e5 6117static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6118{
4e2f245d
JW
6119 if (mc.to)
6120 mem_cgroup_clear_mc();
7dc74be0
DN
6121}
6122
4ffef5fe
DN
6123static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6124 unsigned long addr, unsigned long end,
6125 struct mm_walk *walk)
7dc74be0 6126{
4ffef5fe 6127 int ret = 0;
26bcd64a 6128 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6129 pte_t *pte;
6130 spinlock_t *ptl;
12724850
NH
6131 enum mc_target_type target_type;
6132 union mc_target target;
6133 struct page *page;
4ffef5fe 6134
b6ec57f4
KS
6135 ptl = pmd_trans_huge_lock(pmd, vma);
6136 if (ptl) {
62ade86a 6137 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6138 spin_unlock(ptl);
12724850
NH
6139 return 0;
6140 }
6141 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6142 if (target_type == MC_TARGET_PAGE) {
6143 page = target.page;
6144 if (!isolate_lru_page(page)) {
f627c2f5 6145 if (!mem_cgroup_move_account(page, true,
1306a85a 6146 mc.from, mc.to)) {
12724850
NH
6147 mc.precharge -= HPAGE_PMD_NR;
6148 mc.moved_charge += HPAGE_PMD_NR;
6149 }
6150 putback_lru_page(page);
6151 }
6152 put_page(page);
c733a828
JG
6153 } else if (target_type == MC_TARGET_DEVICE) {
6154 page = target.page;
6155 if (!mem_cgroup_move_account(page, true,
6156 mc.from, mc.to)) {
6157 mc.precharge -= HPAGE_PMD_NR;
6158 mc.moved_charge += HPAGE_PMD_NR;
6159 }
6160 put_page(page);
12724850 6161 }
bf929152 6162 spin_unlock(ptl);
1a5a9906 6163 return 0;
12724850
NH
6164 }
6165
45f83cef
AA
6166 if (pmd_trans_unstable(pmd))
6167 return 0;
4ffef5fe
DN
6168retry:
6169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6170 for (; addr != end; addr += PAGE_SIZE) {
6171 pte_t ptent = *(pte++);
c733a828 6172 bool device = false;
02491447 6173 swp_entry_t ent;
4ffef5fe
DN
6174
6175 if (!mc.precharge)
6176 break;
6177
8d32ff84 6178 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6179 case MC_TARGET_DEVICE:
6180 device = true;
e4a9bc58 6181 fallthrough;
4ffef5fe
DN
6182 case MC_TARGET_PAGE:
6183 page = target.page;
53f9263b
KS
6184 /*
6185 * We can have a part of the split pmd here. Moving it
6186 * can be done but it would be too convoluted so simply
6187 * ignore such a partial THP and keep it in original
6188 * memcg. There should be somebody mapping the head.
6189 */
6190 if (PageTransCompound(page))
6191 goto put;
c733a828 6192 if (!device && isolate_lru_page(page))
4ffef5fe 6193 goto put;
f627c2f5
KS
6194 if (!mem_cgroup_move_account(page, false,
6195 mc.from, mc.to)) {
4ffef5fe 6196 mc.precharge--;
854ffa8d
DN
6197 /* we uncharge from mc.from later. */
6198 mc.moved_charge++;
4ffef5fe 6199 }
c733a828
JG
6200 if (!device)
6201 putback_lru_page(page);
8d32ff84 6202put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6203 put_page(page);
6204 break;
02491447
DN
6205 case MC_TARGET_SWAP:
6206 ent = target.ent;
e91cbb42 6207 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6208 mc.precharge--;
8d22a935
HD
6209 mem_cgroup_id_get_many(mc.to, 1);
6210 /* we fixup other refcnts and charges later. */
483c30b5
DN
6211 mc.moved_swap++;
6212 }
02491447 6213 break;
4ffef5fe
DN
6214 default:
6215 break;
6216 }
6217 }
6218 pte_unmap_unlock(pte - 1, ptl);
6219 cond_resched();
6220
6221 if (addr != end) {
6222 /*
6223 * We have consumed all precharges we got in can_attach().
6224 * We try charge one by one, but don't do any additional
6225 * charges to mc.to if we have failed in charge once in attach()
6226 * phase.
6227 */
854ffa8d 6228 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6229 if (!ret)
6230 goto retry;
6231 }
6232
6233 return ret;
6234}
6235
7b86ac33
CH
6236static const struct mm_walk_ops charge_walk_ops = {
6237 .pmd_entry = mem_cgroup_move_charge_pte_range,
6238};
6239
264a0ae1 6240static void mem_cgroup_move_charge(void)
4ffef5fe 6241{
4ffef5fe 6242 lru_add_drain_all();
312722cb 6243 /*
81f8c3a4
JW
6244 * Signal lock_page_memcg() to take the memcg's move_lock
6245 * while we're moving its pages to another memcg. Then wait
6246 * for already started RCU-only updates to finish.
312722cb
JW
6247 */
6248 atomic_inc(&mc.from->moving_account);
6249 synchronize_rcu();
dfe076b0 6250retry:
d8ed45c5 6251 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6252 /*
c1e8d7c6 6253 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6254 * waitq. So we cancel all extra charges, wake up all waiters,
6255 * and retry. Because we cancel precharges, we might not be able
6256 * to move enough charges, but moving charge is a best-effort
6257 * feature anyway, so it wouldn't be a big problem.
6258 */
6259 __mem_cgroup_clear_mc();
6260 cond_resched();
6261 goto retry;
6262 }
26bcd64a
NH
6263 /*
6264 * When we have consumed all precharges and failed in doing
6265 * additional charge, the page walk just aborts.
6266 */
ba0aff8e 6267 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
d8ed45c5 6268 mmap_read_unlock(mc.mm);
312722cb 6269 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6270}
6271
264a0ae1 6272static void mem_cgroup_move_task(void)
67e465a7 6273{
264a0ae1
TH
6274 if (mc.to) {
6275 mem_cgroup_move_charge();
a433658c 6276 mem_cgroup_clear_mc();
264a0ae1 6277 }
67e465a7 6278}
5cfb80a7 6279#else /* !CONFIG_MMU */
1f7dd3e5 6280static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6281{
6282 return 0;
6283}
1f7dd3e5 6284static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6285{
6286}
264a0ae1 6287static void mem_cgroup_move_task(void)
5cfb80a7
DN
6288{
6289}
6290#endif
67e465a7 6291
bd74fdae
YZ
6292#ifdef CONFIG_LRU_GEN
6293static void mem_cgroup_attach(struct cgroup_taskset *tset)
6294{
6295 struct task_struct *task;
6296 struct cgroup_subsys_state *css;
6297
6298 /* find the first leader if there is any */
6299 cgroup_taskset_for_each_leader(task, css, tset)
6300 break;
6301
6302 if (!task)
6303 return;
6304
6305 task_lock(task);
6306 if (task->mm && READ_ONCE(task->mm->owner) == task)
6307 lru_gen_migrate_mm(task->mm);
6308 task_unlock(task);
6309}
6310#else
6311static void mem_cgroup_attach(struct cgroup_taskset *tset)
6312{
6313}
6314#endif /* CONFIG_LRU_GEN */
6315
677dc973
CD
6316static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6317{
6318 if (value == PAGE_COUNTER_MAX)
6319 seq_puts(m, "max\n");
6320 else
6321 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6322
6323 return 0;
6324}
6325
241994ed
JW
6326static u64 memory_current_read(struct cgroup_subsys_state *css,
6327 struct cftype *cft)
6328{
f5fc3c5d
JW
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6330
6331 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6332}
6333
8e20d4b3
GR
6334static u64 memory_peak_read(struct cgroup_subsys_state *css,
6335 struct cftype *cft)
6336{
6337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6338
6339 return (u64)memcg->memory.watermark * PAGE_SIZE;
6340}
6341
bf8d5d52
RG
6342static int memory_min_show(struct seq_file *m, void *v)
6343{
677dc973
CD
6344 return seq_puts_memcg_tunable(m,
6345 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6346}
6347
6348static ssize_t memory_min_write(struct kernfs_open_file *of,
6349 char *buf, size_t nbytes, loff_t off)
6350{
6351 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6352 unsigned long min;
6353 int err;
6354
6355 buf = strstrip(buf);
6356 err = page_counter_memparse(buf, "max", &min);
6357 if (err)
6358 return err;
6359
6360 page_counter_set_min(&memcg->memory, min);
6361
6362 return nbytes;
6363}
6364
241994ed
JW
6365static int memory_low_show(struct seq_file *m, void *v)
6366{
677dc973
CD
6367 return seq_puts_memcg_tunable(m,
6368 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6369}
6370
6371static ssize_t memory_low_write(struct kernfs_open_file *of,
6372 char *buf, size_t nbytes, loff_t off)
6373{
6374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6375 unsigned long low;
6376 int err;
6377
6378 buf = strstrip(buf);
d2973697 6379 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6380 if (err)
6381 return err;
6382
23067153 6383 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6384
6385 return nbytes;
6386}
6387
6388static int memory_high_show(struct seq_file *m, void *v)
6389{
d1663a90
JK
6390 return seq_puts_memcg_tunable(m,
6391 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6392}
6393
6394static ssize_t memory_high_write(struct kernfs_open_file *of,
6395 char *buf, size_t nbytes, loff_t off)
6396{
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6398 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6399 bool drained = false;
241994ed
JW
6400 unsigned long high;
6401 int err;
6402
6403 buf = strstrip(buf);
d2973697 6404 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6405 if (err)
6406 return err;
6407
e82553c1
JW
6408 page_counter_set_high(&memcg->memory, high);
6409
8c8c383c
JW
6410 for (;;) {
6411 unsigned long nr_pages = page_counter_read(&memcg->memory);
6412 unsigned long reclaimed;
6413
6414 if (nr_pages <= high)
6415 break;
6416
6417 if (signal_pending(current))
6418 break;
6419
6420 if (!drained) {
6421 drain_all_stock(memcg);
6422 drained = true;
6423 continue;
6424 }
6425
6426 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
55ab834a 6427 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6428
6429 if (!reclaimed && !nr_retries--)
6430 break;
6431 }
588083bb 6432
19ce33ac 6433 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6434 return nbytes;
6435}
6436
6437static int memory_max_show(struct seq_file *m, void *v)
6438{
677dc973
CD
6439 return seq_puts_memcg_tunable(m,
6440 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6441}
6442
6443static ssize_t memory_max_write(struct kernfs_open_file *of,
6444 char *buf, size_t nbytes, loff_t off)
6445{
6446 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6447 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6448 bool drained = false;
241994ed
JW
6449 unsigned long max;
6450 int err;
6451
6452 buf = strstrip(buf);
d2973697 6453 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6454 if (err)
6455 return err;
6456
bbec2e15 6457 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6458
6459 for (;;) {
6460 unsigned long nr_pages = page_counter_read(&memcg->memory);
6461
6462 if (nr_pages <= max)
6463 break;
6464
7249c9f0 6465 if (signal_pending(current))
b6e6edcf 6466 break;
b6e6edcf
JW
6467
6468 if (!drained) {
6469 drain_all_stock(memcg);
6470 drained = true;
6471 continue;
6472 }
6473
6474 if (nr_reclaims) {
6475 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
55ab834a 6476 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6477 nr_reclaims--;
6478 continue;
6479 }
6480
e27be240 6481 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6482 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6483 break;
6484 }
241994ed 6485
2529bb3a 6486 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6487 return nbytes;
6488}
6489
1e577f97
SB
6490static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6491{
6492 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6493 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6494 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6495 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6496 seq_printf(m, "oom_kill %lu\n",
6497 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6498 seq_printf(m, "oom_group_kill %lu\n",
6499 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6500}
6501
241994ed
JW
6502static int memory_events_show(struct seq_file *m, void *v)
6503{
aa9694bb 6504 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6505
1e577f97
SB
6506 __memory_events_show(m, memcg->memory_events);
6507 return 0;
6508}
6509
6510static int memory_events_local_show(struct seq_file *m, void *v)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6513
1e577f97 6514 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6515 return 0;
6516}
6517
587d9f72
JW
6518static int memory_stat_show(struct seq_file *m, void *v)
6519{
aa9694bb 6520 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6521 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6522
c8713d0b
JW
6523 if (!buf)
6524 return -ENOMEM;
68aaee14 6525 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6526 seq_puts(m, buf);
6527 kfree(buf);
587d9f72
JW
6528 return 0;
6529}
6530
5f9a4f4a 6531#ifdef CONFIG_NUMA
fff66b79
MS
6532static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6533 int item)
6534{
6535 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6536}
6537
5f9a4f4a
MS
6538static int memory_numa_stat_show(struct seq_file *m, void *v)
6539{
6540 int i;
6541 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6542
fd25a9e0 6543 mem_cgroup_flush_stats();
7e1c0d6f 6544
5f9a4f4a
MS
6545 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6546 int nid;
6547
6548 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6549 continue;
6550
6551 seq_printf(m, "%s", memory_stats[i].name);
6552 for_each_node_state(nid, N_MEMORY) {
6553 u64 size;
6554 struct lruvec *lruvec;
6555
6556 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6557 size = lruvec_page_state_output(lruvec,
6558 memory_stats[i].idx);
5f9a4f4a
MS
6559 seq_printf(m, " N%d=%llu", nid, size);
6560 }
6561 seq_putc(m, '\n');
6562 }
6563
6564 return 0;
6565}
6566#endif
6567
3d8b38eb
RG
6568static int memory_oom_group_show(struct seq_file *m, void *v)
6569{
aa9694bb 6570 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6571
6572 seq_printf(m, "%d\n", memcg->oom_group);
6573
6574 return 0;
6575}
6576
6577static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6578 char *buf, size_t nbytes, loff_t off)
6579{
6580 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6581 int ret, oom_group;
6582
6583 buf = strstrip(buf);
6584 if (!buf)
6585 return -EINVAL;
6586
6587 ret = kstrtoint(buf, 0, &oom_group);
6588 if (ret)
6589 return ret;
6590
6591 if (oom_group != 0 && oom_group != 1)
6592 return -EINVAL;
6593
6594 memcg->oom_group = oom_group;
6595
6596 return nbytes;
6597}
6598
94968384
SB
6599static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6600 size_t nbytes, loff_t off)
6601{
6602 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6603 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6604 unsigned long nr_to_reclaim, nr_reclaimed = 0;
55ab834a
MH
6605 unsigned int reclaim_options;
6606 int err;
12a5d395
MA
6607
6608 buf = strstrip(buf);
55ab834a
MH
6609 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6610 if (err)
6611 return err;
12a5d395 6612
55ab834a 6613 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6614 while (nr_reclaimed < nr_to_reclaim) {
6615 unsigned long reclaimed;
6616
6617 if (signal_pending(current))
6618 return -EINTR;
6619
6620 /*
6621 * This is the final attempt, drain percpu lru caches in the
6622 * hope of introducing more evictable pages for
6623 * try_to_free_mem_cgroup_pages().
6624 */
6625 if (!nr_retries)
6626 lru_add_drain_all();
6627
6628 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6629 nr_to_reclaim - nr_reclaimed,
55ab834a 6630 GFP_KERNEL, reclaim_options);
94968384
SB
6631
6632 if (!reclaimed && !nr_retries--)
6633 return -EAGAIN;
6634
6635 nr_reclaimed += reclaimed;
6636 }
6637
6638 return nbytes;
6639}
6640
241994ed
JW
6641static struct cftype memory_files[] = {
6642 {
6643 .name = "current",
f5fc3c5d 6644 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6645 .read_u64 = memory_current_read,
6646 },
8e20d4b3
GR
6647 {
6648 .name = "peak",
6649 .flags = CFTYPE_NOT_ON_ROOT,
6650 .read_u64 = memory_peak_read,
6651 },
bf8d5d52
RG
6652 {
6653 .name = "min",
6654 .flags = CFTYPE_NOT_ON_ROOT,
6655 .seq_show = memory_min_show,
6656 .write = memory_min_write,
6657 },
241994ed
JW
6658 {
6659 .name = "low",
6660 .flags = CFTYPE_NOT_ON_ROOT,
6661 .seq_show = memory_low_show,
6662 .write = memory_low_write,
6663 },
6664 {
6665 .name = "high",
6666 .flags = CFTYPE_NOT_ON_ROOT,
6667 .seq_show = memory_high_show,
6668 .write = memory_high_write,
6669 },
6670 {
6671 .name = "max",
6672 .flags = CFTYPE_NOT_ON_ROOT,
6673 .seq_show = memory_max_show,
6674 .write = memory_max_write,
6675 },
6676 {
6677 .name = "events",
6678 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6679 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6680 .seq_show = memory_events_show,
6681 },
1e577f97
SB
6682 {
6683 .name = "events.local",
6684 .flags = CFTYPE_NOT_ON_ROOT,
6685 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6686 .seq_show = memory_events_local_show,
6687 },
587d9f72
JW
6688 {
6689 .name = "stat",
587d9f72
JW
6690 .seq_show = memory_stat_show,
6691 },
5f9a4f4a
MS
6692#ifdef CONFIG_NUMA
6693 {
6694 .name = "numa_stat",
6695 .seq_show = memory_numa_stat_show,
6696 },
6697#endif
3d8b38eb
RG
6698 {
6699 .name = "oom.group",
6700 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6701 .seq_show = memory_oom_group_show,
6702 .write = memory_oom_group_write,
6703 },
94968384
SB
6704 {
6705 .name = "reclaim",
6706 .flags = CFTYPE_NS_DELEGATABLE,
6707 .write = memory_reclaim,
6708 },
241994ed
JW
6709 { } /* terminate */
6710};
6711
073219e9 6712struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6713 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6714 .css_online = mem_cgroup_css_online,
92fb9748 6715 .css_offline = mem_cgroup_css_offline,
6df38689 6716 .css_released = mem_cgroup_css_released,
92fb9748 6717 .css_free = mem_cgroup_css_free,
1ced953b 6718 .css_reset = mem_cgroup_css_reset,
2d146aa3 6719 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0 6720 .can_attach = mem_cgroup_can_attach,
bd74fdae 6721 .attach = mem_cgroup_attach,
7dc74be0 6722 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6723 .post_attach = mem_cgroup_move_task,
241994ed
JW
6724 .dfl_cftypes = memory_files,
6725 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6726 .early_init = 0,
8cdea7c0 6727};
c077719b 6728
bc50bcc6
JW
6729/*
6730 * This function calculates an individual cgroup's effective
6731 * protection which is derived from its own memory.min/low, its
6732 * parent's and siblings' settings, as well as the actual memory
6733 * distribution in the tree.
6734 *
6735 * The following rules apply to the effective protection values:
6736 *
6737 * 1. At the first level of reclaim, effective protection is equal to
6738 * the declared protection in memory.min and memory.low.
6739 *
6740 * 2. To enable safe delegation of the protection configuration, at
6741 * subsequent levels the effective protection is capped to the
6742 * parent's effective protection.
6743 *
6744 * 3. To make complex and dynamic subtrees easier to configure, the
6745 * user is allowed to overcommit the declared protection at a given
6746 * level. If that is the case, the parent's effective protection is
6747 * distributed to the children in proportion to how much protection
6748 * they have declared and how much of it they are utilizing.
6749 *
6750 * This makes distribution proportional, but also work-conserving:
6751 * if one cgroup claims much more protection than it uses memory,
6752 * the unused remainder is available to its siblings.
6753 *
6754 * 4. Conversely, when the declared protection is undercommitted at a
6755 * given level, the distribution of the larger parental protection
6756 * budget is NOT proportional. A cgroup's protection from a sibling
6757 * is capped to its own memory.min/low setting.
6758 *
8a931f80
JW
6759 * 5. However, to allow protecting recursive subtrees from each other
6760 * without having to declare each individual cgroup's fixed share
6761 * of the ancestor's claim to protection, any unutilized -
6762 * "floating" - protection from up the tree is distributed in
6763 * proportion to each cgroup's *usage*. This makes the protection
6764 * neutral wrt sibling cgroups and lets them compete freely over
6765 * the shared parental protection budget, but it protects the
6766 * subtree as a whole from neighboring subtrees.
6767 *
6768 * Note that 4. and 5. are not in conflict: 4. is about protecting
6769 * against immediate siblings whereas 5. is about protecting against
6770 * neighboring subtrees.
bc50bcc6
JW
6771 */
6772static unsigned long effective_protection(unsigned long usage,
8a931f80 6773 unsigned long parent_usage,
bc50bcc6
JW
6774 unsigned long setting,
6775 unsigned long parent_effective,
6776 unsigned long siblings_protected)
6777{
6778 unsigned long protected;
8a931f80 6779 unsigned long ep;
bc50bcc6
JW
6780
6781 protected = min(usage, setting);
6782 /*
6783 * If all cgroups at this level combined claim and use more
6784 * protection then what the parent affords them, distribute
6785 * shares in proportion to utilization.
6786 *
6787 * We are using actual utilization rather than the statically
6788 * claimed protection in order to be work-conserving: claimed
6789 * but unused protection is available to siblings that would
6790 * otherwise get a smaller chunk than what they claimed.
6791 */
6792 if (siblings_protected > parent_effective)
6793 return protected * parent_effective / siblings_protected;
6794
6795 /*
6796 * Ok, utilized protection of all children is within what the
6797 * parent affords them, so we know whatever this child claims
6798 * and utilizes is effectively protected.
6799 *
6800 * If there is unprotected usage beyond this value, reclaim
6801 * will apply pressure in proportion to that amount.
6802 *
6803 * If there is unutilized protection, the cgroup will be fully
6804 * shielded from reclaim, but we do return a smaller value for
6805 * protection than what the group could enjoy in theory. This
6806 * is okay. With the overcommit distribution above, effective
6807 * protection is always dependent on how memory is actually
6808 * consumed among the siblings anyway.
6809 */
8a931f80
JW
6810 ep = protected;
6811
6812 /*
6813 * If the children aren't claiming (all of) the protection
6814 * afforded to them by the parent, distribute the remainder in
6815 * proportion to the (unprotected) memory of each cgroup. That
6816 * way, cgroups that aren't explicitly prioritized wrt each
6817 * other compete freely over the allowance, but they are
6818 * collectively protected from neighboring trees.
6819 *
6820 * We're using unprotected memory for the weight so that if
6821 * some cgroups DO claim explicit protection, we don't protect
6822 * the same bytes twice.
cd324edc
JW
6823 *
6824 * Check both usage and parent_usage against the respective
6825 * protected values. One should imply the other, but they
6826 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6827 */
6828 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6829 return ep;
cd324edc
JW
6830 if (parent_effective > siblings_protected &&
6831 parent_usage > siblings_protected &&
6832 usage > protected) {
8a931f80
JW
6833 unsigned long unclaimed;
6834
6835 unclaimed = parent_effective - siblings_protected;
6836 unclaimed *= usage - protected;
6837 unclaimed /= parent_usage - siblings_protected;
6838
6839 ep += unclaimed;
6840 }
6841
6842 return ep;
bc50bcc6
JW
6843}
6844
241994ed 6845/**
05395718 6846 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6847 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6848 * @memcg: the memory cgroup to check
6849 *
23067153
RG
6850 * WARNING: This function is not stateless! It can only be used as part
6851 * of a top-down tree iteration, not for isolated queries.
241994ed 6852 */
45c7f7e1
CD
6853void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6854 struct mem_cgroup *memcg)
241994ed 6855{
8a931f80 6856 unsigned long usage, parent_usage;
23067153
RG
6857 struct mem_cgroup *parent;
6858
241994ed 6859 if (mem_cgroup_disabled())
45c7f7e1 6860 return;
241994ed 6861
34c81057
SC
6862 if (!root)
6863 root = root_mem_cgroup;
22f7496f
YS
6864
6865 /*
6866 * Effective values of the reclaim targets are ignored so they
6867 * can be stale. Have a look at mem_cgroup_protection for more
6868 * details.
6869 * TODO: calculation should be more robust so that we do not need
6870 * that special casing.
6871 */
34c81057 6872 if (memcg == root)
45c7f7e1 6873 return;
241994ed 6874
23067153 6875 usage = page_counter_read(&memcg->memory);
bf8d5d52 6876 if (!usage)
45c7f7e1 6877 return;
bf8d5d52 6878
bf8d5d52 6879 parent = parent_mem_cgroup(memcg);
df2a4196 6880
bc50bcc6 6881 if (parent == root) {
c3d53200 6882 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6883 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6884 return;
bf8d5d52
RG
6885 }
6886
8a931f80
JW
6887 parent_usage = page_counter_read(&parent->memory);
6888
b3a7822e 6889 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6890 READ_ONCE(memcg->memory.min),
6891 READ_ONCE(parent->memory.emin),
b3a7822e 6892 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6893
b3a7822e 6894 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6895 READ_ONCE(memcg->memory.low),
6896 READ_ONCE(parent->memory.elow),
b3a7822e 6897 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6898}
6899
8f425e4e
MWO
6900static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6901 gfp_t gfp)
0add0c77 6902{
118f2875 6903 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6904 int ret;
6905
6906 ret = try_charge(memcg, gfp, nr_pages);
6907 if (ret)
6908 goto out;
6909
6910 css_get(&memcg->css);
118f2875 6911 commit_charge(folio, memcg);
0add0c77
SB
6912
6913 local_irq_disable();
6e0110c2 6914 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6915 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6916 local_irq_enable();
6917out:
6918 return ret;
6919}
6920
8f425e4e 6921int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6922{
0add0c77
SB
6923 struct mem_cgroup *memcg;
6924 int ret;
00501b53 6925
0add0c77 6926 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6927 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6928 css_put(&memcg->css);
2d1c4980 6929
0add0c77
SB
6930 return ret;
6931}
e993d905 6932
0add0c77 6933/**
65995918
MWO
6934 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
6935 * @folio: folio to charge.
0add0c77
SB
6936 * @mm: mm context of the victim
6937 * @gfp: reclaim mode
65995918 6938 * @entry: swap entry for which the folio is allocated
0add0c77 6939 *
65995918
MWO
6940 * This function charges a folio allocated for swapin. Please call this before
6941 * adding the folio to the swapcache.
0add0c77
SB
6942 *
6943 * Returns 0 on success. Otherwise, an error code is returned.
6944 */
65995918 6945int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
0add0c77
SB
6946 gfp_t gfp, swp_entry_t entry)
6947{
6948 struct mem_cgroup *memcg;
6949 unsigned short id;
6950 int ret;
00501b53 6951
0add0c77
SB
6952 if (mem_cgroup_disabled())
6953 return 0;
00501b53 6954
0add0c77
SB
6955 id = lookup_swap_cgroup_id(entry);
6956 rcu_read_lock();
6957 memcg = mem_cgroup_from_id(id);
6958 if (!memcg || !css_tryget_online(&memcg->css))
6959 memcg = get_mem_cgroup_from_mm(mm);
6960 rcu_read_unlock();
00501b53 6961
8f425e4e 6962 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 6963
0add0c77
SB
6964 css_put(&memcg->css);
6965 return ret;
6966}
00501b53 6967
0add0c77
SB
6968/*
6969 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6970 * @entry: swap entry for which the page is charged
6971 *
6972 * Call this function after successfully adding the charged page to swapcache.
6973 *
6974 * Note: This function assumes the page for which swap slot is being uncharged
6975 * is order 0 page.
6976 */
6977void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6978{
cae3af62
MS
6979 /*
6980 * Cgroup1's unified memory+swap counter has been charged with the
6981 * new swapcache page, finish the transfer by uncharging the swap
6982 * slot. The swap slot would also get uncharged when it dies, but
6983 * it can stick around indefinitely and we'd count the page twice
6984 * the entire time.
6985 *
6986 * Cgroup2 has separate resource counters for memory and swap,
6987 * so this is a non-issue here. Memory and swap charge lifetimes
6988 * correspond 1:1 to page and swap slot lifetimes: we charge the
6989 * page to memory here, and uncharge swap when the slot is freed.
6990 */
0add0c77 6991 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6992 /*
6993 * The swap entry might not get freed for a long time,
6994 * let's not wait for it. The page already received a
6995 * memory+swap charge, drop the swap entry duplicate.
6996 */
0add0c77 6997 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6998 }
3fea5a49
JW
6999}
7000
a9d5adee
JG
7001struct uncharge_gather {
7002 struct mem_cgroup *memcg;
b4e0b68f 7003 unsigned long nr_memory;
a9d5adee 7004 unsigned long pgpgout;
a9d5adee 7005 unsigned long nr_kmem;
8e88bd2d 7006 int nid;
a9d5adee
JG
7007};
7008
7009static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 7010{
a9d5adee
JG
7011 memset(ug, 0, sizeof(*ug));
7012}
7013
7014static void uncharge_batch(const struct uncharge_gather *ug)
7015{
747db954
JW
7016 unsigned long flags;
7017
b4e0b68f
MS
7018 if (ug->nr_memory) {
7019 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 7020 if (do_memsw_account())
b4e0b68f 7021 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
7022 if (ug->nr_kmem)
7023 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 7024 memcg_oom_recover(ug->memcg);
ce00a967 7025 }
747db954
JW
7026
7027 local_irq_save(flags);
c9019e9b 7028 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 7029 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 7030 memcg_check_events(ug->memcg, ug->nid);
747db954 7031 local_irq_restore(flags);
f1796544 7032
c4ed6ebf 7033 /* drop reference from uncharge_folio */
f1796544 7034 css_put(&ug->memcg->css);
a9d5adee
JG
7035}
7036
c4ed6ebf 7037static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 7038{
c4ed6ebf 7039 long nr_pages;
b4e0b68f
MS
7040 struct mem_cgroup *memcg;
7041 struct obj_cgroup *objcg;
9f762dbe 7042
c4ed6ebf 7043 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 7044
a9d5adee
JG
7045 /*
7046 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
7047 * folio memcg or objcg at this point, we have fully
7048 * exclusive access to the folio.
a9d5adee 7049 */
fead2b86 7050 if (folio_memcg_kmem(folio)) {
1b7e4464 7051 objcg = __folio_objcg(folio);
b4e0b68f
MS
7052 /*
7053 * This get matches the put at the end of the function and
7054 * kmem pages do not hold memcg references anymore.
7055 */
7056 memcg = get_mem_cgroup_from_objcg(objcg);
7057 } else {
1b7e4464 7058 memcg = __folio_memcg(folio);
b4e0b68f 7059 }
a9d5adee 7060
b4e0b68f
MS
7061 if (!memcg)
7062 return;
7063
7064 if (ug->memcg != memcg) {
a9d5adee
JG
7065 if (ug->memcg) {
7066 uncharge_batch(ug);
7067 uncharge_gather_clear(ug);
7068 }
b4e0b68f 7069 ug->memcg = memcg;
c4ed6ebf 7070 ug->nid = folio_nid(folio);
f1796544
MH
7071
7072 /* pairs with css_put in uncharge_batch */
b4e0b68f 7073 css_get(&memcg->css);
a9d5adee
JG
7074 }
7075
c4ed6ebf 7076 nr_pages = folio_nr_pages(folio);
a9d5adee 7077
fead2b86 7078 if (folio_memcg_kmem(folio)) {
b4e0b68f 7079 ug->nr_memory += nr_pages;
9f762dbe 7080 ug->nr_kmem += nr_pages;
b4e0b68f 7081
c4ed6ebf 7082 folio->memcg_data = 0;
b4e0b68f
MS
7083 obj_cgroup_put(objcg);
7084 } else {
7085 /* LRU pages aren't accounted at the root level */
7086 if (!mem_cgroup_is_root(memcg))
7087 ug->nr_memory += nr_pages;
18b2db3b 7088 ug->pgpgout++;
a9d5adee 7089
c4ed6ebf 7090 folio->memcg_data = 0;
b4e0b68f
MS
7091 }
7092
7093 css_put(&memcg->css);
747db954
JW
7094}
7095
bbc6b703 7096void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 7097{
a9d5adee
JG
7098 struct uncharge_gather ug;
7099
bbc6b703
MWO
7100 /* Don't touch folio->lru of any random page, pre-check: */
7101 if (!folio_memcg(folio))
0a31bc97
JW
7102 return;
7103
a9d5adee 7104 uncharge_gather_clear(&ug);
bbc6b703 7105 uncharge_folio(folio, &ug);
a9d5adee 7106 uncharge_batch(&ug);
747db954 7107}
0a31bc97 7108
747db954 7109/**
2c8d8f97 7110 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
7111 * @page_list: list of pages to uncharge
7112 *
7113 * Uncharge a list of pages previously charged with
2c8d8f97 7114 * __mem_cgroup_charge().
747db954 7115 */
2c8d8f97 7116void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7117{
c41a40b6 7118 struct uncharge_gather ug;
c4ed6ebf 7119 struct folio *folio;
c41a40b6 7120
c41a40b6 7121 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7122 list_for_each_entry(folio, page_list, lru)
7123 uncharge_folio(folio, &ug);
c41a40b6
MS
7124 if (ug.memcg)
7125 uncharge_batch(&ug);
0a31bc97
JW
7126}
7127
7128/**
d21bba2b
MWO
7129 * mem_cgroup_migrate - Charge a folio's replacement.
7130 * @old: Currently circulating folio.
7131 * @new: Replacement folio.
0a31bc97 7132 *
d21bba2b 7133 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7134 * be uncharged upon free.
0a31bc97 7135 *
d21bba2b 7136 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7137 */
d21bba2b 7138void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7139{
29833315 7140 struct mem_cgroup *memcg;
d21bba2b 7141 long nr_pages = folio_nr_pages(new);
d93c4130 7142 unsigned long flags;
0a31bc97 7143
d21bba2b
MWO
7144 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7145 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7146 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7147 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7148
7149 if (mem_cgroup_disabled())
7150 return;
7151
d21bba2b
MWO
7152 /* Page cache replacement: new folio already charged? */
7153 if (folio_memcg(new))
0a31bc97
JW
7154 return;
7155
d21bba2b
MWO
7156 memcg = folio_memcg(old);
7157 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7158 if (!memcg)
0a31bc97
JW
7159 return;
7160
44b7a8d3 7161 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7162 if (!mem_cgroup_is_root(memcg)) {
7163 page_counter_charge(&memcg->memory, nr_pages);
7164 if (do_memsw_account())
7165 page_counter_charge(&memcg->memsw, nr_pages);
7166 }
0a31bc97 7167
1a3e1f40 7168 css_get(&memcg->css);
d21bba2b 7169 commit_charge(new, memcg);
44b7a8d3 7170
d93c4130 7171 local_irq_save(flags);
6e0110c2 7172 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7173 memcg_check_events(memcg, folio_nid(new));
d93c4130 7174 local_irq_restore(flags);
0a31bc97
JW
7175}
7176
ef12947c 7177DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7178EXPORT_SYMBOL(memcg_sockets_enabled_key);
7179
2d758073 7180void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7181{
7182 struct mem_cgroup *memcg;
7183
2d758073
JW
7184 if (!mem_cgroup_sockets_enabled)
7185 return;
7186
e876ecc6 7187 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7188 if (!in_task())
e876ecc6
SB
7189 return;
7190
11092087
JW
7191 rcu_read_lock();
7192 memcg = mem_cgroup_from_task(current);
7848ed62 7193 if (mem_cgroup_is_root(memcg))
f7e1cb6e 7194 goto out;
0db15298 7195 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7196 goto out;
8965aa28 7197 if (css_tryget(&memcg->css))
11092087 7198 sk->sk_memcg = memcg;
f7e1cb6e 7199out:
11092087
JW
7200 rcu_read_unlock();
7201}
11092087 7202
2d758073 7203void mem_cgroup_sk_free(struct sock *sk)
11092087 7204{
2d758073
JW
7205 if (sk->sk_memcg)
7206 css_put(&sk->sk_memcg->css);
11092087
JW
7207}
7208
7209/**
7210 * mem_cgroup_charge_skmem - charge socket memory
7211 * @memcg: memcg to charge
7212 * @nr_pages: number of pages to charge
4b1327be 7213 * @gfp_mask: reclaim mode
11092087
JW
7214 *
7215 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7216 * @memcg's configured limit, %false if it doesn't.
11092087 7217 */
4b1327be
WW
7218bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7219 gfp_t gfp_mask)
11092087 7220{
f7e1cb6e 7221 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7222 struct page_counter *fail;
f7e1cb6e 7223
0db15298
JW
7224 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7225 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7226 return true;
7227 }
0db15298 7228 memcg->tcpmem_pressure = 1;
4b1327be
WW
7229 if (gfp_mask & __GFP_NOFAIL) {
7230 page_counter_charge(&memcg->tcpmem, nr_pages);
7231 return true;
7232 }
f7e1cb6e 7233 return false;
11092087 7234 }
d886f4e4 7235
4b1327be
WW
7236 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7237 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7238 return true;
4b1327be 7239 }
f7e1cb6e 7240
11092087
JW
7241 return false;
7242}
7243
7244/**
7245 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7246 * @memcg: memcg to uncharge
7247 * @nr_pages: number of pages to uncharge
11092087
JW
7248 */
7249void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7250{
f7e1cb6e 7251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7252 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7253 return;
7254 }
d886f4e4 7255
c9019e9b 7256 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7257
475d0487 7258 refill_stock(memcg, nr_pages);
11092087
JW
7259}
7260
f7e1cb6e
JW
7261static int __init cgroup_memory(char *s)
7262{
7263 char *token;
7264
7265 while ((token = strsep(&s, ",")) != NULL) {
7266 if (!*token)
7267 continue;
7268 if (!strcmp(token, "nosocket"))
7269 cgroup_memory_nosocket = true;
04823c83
VD
7270 if (!strcmp(token, "nokmem"))
7271 cgroup_memory_nokmem = true;
f7e1cb6e 7272 }
460a79e1 7273 return 1;
f7e1cb6e
JW
7274}
7275__setup("cgroup.memory=", cgroup_memory);
11092087 7276
2d11085e 7277/*
1081312f
MH
7278 * subsys_initcall() for memory controller.
7279 *
308167fc
SAS
7280 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7281 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7282 * basically everything that doesn't depend on a specific mem_cgroup structure
7283 * should be initialized from here.
2d11085e
MH
7284 */
7285static int __init mem_cgroup_init(void)
7286{
95a045f6
JW
7287 int cpu, node;
7288
f3344adf
MS
7289 /*
7290 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7291 * used for per-memcg-per-cpu caching of per-node statistics. In order
7292 * to work fine, we should make sure that the overfill threshold can't
7293 * exceed S32_MAX / PAGE_SIZE.
7294 */
7295 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7296
308167fc
SAS
7297 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7298 memcg_hotplug_cpu_dead);
95a045f6
JW
7299
7300 for_each_possible_cpu(cpu)
7301 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7302 drain_local_stock);
7303
7304 for_each_node(node) {
7305 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7306
7307 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7308 node_online(node) ? node : NUMA_NO_NODE);
7309
ef8f2327 7310 rtpn->rb_root = RB_ROOT;
fa90b2fd 7311 rtpn->rb_rightmost = NULL;
ef8f2327 7312 spin_lock_init(&rtpn->lock);
95a045f6
JW
7313 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7314 }
7315
2d11085e
MH
7316 return 0;
7317}
7318subsys_initcall(mem_cgroup_init);
21afa38e 7319
e55b9f96 7320#ifdef CONFIG_SWAP
358c07fc
AB
7321static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7322{
1c2d479a 7323 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7324 /*
7325 * The root cgroup cannot be destroyed, so it's refcount must
7326 * always be >= 1.
7327 */
7848ed62 7328 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
358c07fc
AB
7329 VM_BUG_ON(1);
7330 break;
7331 }
7332 memcg = parent_mem_cgroup(memcg);
7333 if (!memcg)
7334 memcg = root_mem_cgroup;
7335 }
7336 return memcg;
7337}
7338
21afa38e
JW
7339/**
7340 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7341 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7342 * @entry: swap entry to move the charge to
7343 *
3ecb0087 7344 * Transfer the memsw charge of @folio to @entry.
21afa38e 7345 */
3ecb0087 7346void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7347{
1f47b61f 7348 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7349 unsigned int nr_entries;
21afa38e
JW
7350 unsigned short oldid;
7351
3ecb0087
MWO
7352 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7353 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7354
76358ab5
AS
7355 if (mem_cgroup_disabled())
7356 return;
7357
b94c4e94 7358 if (!do_memsw_account())
21afa38e
JW
7359 return;
7360
3ecb0087 7361 memcg = folio_memcg(folio);
21afa38e 7362
3ecb0087 7363 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7364 if (!memcg)
7365 return;
7366
1f47b61f
VD
7367 /*
7368 * In case the memcg owning these pages has been offlined and doesn't
7369 * have an ID allocated to it anymore, charge the closest online
7370 * ancestor for the swap instead and transfer the memory+swap charge.
7371 */
7372 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7373 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7374 /* Get references for the tail pages, too */
7375 if (nr_entries > 1)
7376 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7377 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7378 nr_entries);
3ecb0087 7379 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7380 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7381
3ecb0087 7382 folio->memcg_data = 0;
21afa38e
JW
7383
7384 if (!mem_cgroup_is_root(memcg))
d6810d73 7385 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7386
b25806dc 7387 if (memcg != swap_memcg) {
1f47b61f 7388 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7389 page_counter_charge(&swap_memcg->memsw, nr_entries);
7390 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7391 }
7392
ce9ce665
SAS
7393 /*
7394 * Interrupts should be disabled here because the caller holds the
b93b0163 7395 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7396 * important here to have the interrupts disabled because it is the
b93b0163 7397 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7398 */
be3e67b5 7399 memcg_stats_lock();
6e0110c2 7400 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7401 memcg_stats_unlock();
3ecb0087 7402 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7403
1a3e1f40 7404 css_put(&memcg->css);
21afa38e
JW
7405}
7406
38d8b4e6 7407/**
e2e3fdc7
MWO
7408 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7409 * @folio: folio being added to swap
37e84351
VD
7410 * @entry: swap entry to charge
7411 *
e2e3fdc7 7412 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7413 *
7414 * Returns 0 on success, -ENOMEM on failure.
7415 */
e2e3fdc7 7416int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7417{
e2e3fdc7 7418 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7419 struct page_counter *counter;
38d8b4e6 7420 struct mem_cgroup *memcg;
37e84351
VD
7421 unsigned short oldid;
7422
b94c4e94 7423 if (do_memsw_account())
37e84351
VD
7424 return 0;
7425
e2e3fdc7 7426 memcg = folio_memcg(folio);
37e84351 7427
e2e3fdc7 7428 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7429 if (!memcg)
7430 return 0;
7431
f3a53a3a
TH
7432 if (!entry.val) {
7433 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7434 return 0;
f3a53a3a 7435 }
bb98f2c5 7436
1f47b61f
VD
7437 memcg = mem_cgroup_id_get_online(memcg);
7438
b25806dc 7439 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7440 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7441 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7442 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7443 mem_cgroup_id_put(memcg);
37e84351 7444 return -ENOMEM;
1f47b61f 7445 }
37e84351 7446
38d8b4e6
HY
7447 /* Get references for the tail pages, too */
7448 if (nr_pages > 1)
7449 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7450 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7451 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7452 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7453
37e84351
VD
7454 return 0;
7455}
7456
21afa38e 7457/**
01c4b28c 7458 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7459 * @entry: swap entry to uncharge
38d8b4e6 7460 * @nr_pages: the amount of swap space to uncharge
21afa38e 7461 */
01c4b28c 7462void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7463{
7464 struct mem_cgroup *memcg;
7465 unsigned short id;
7466
c91bdc93
JW
7467 if (mem_cgroup_disabled())
7468 return;
7469
38d8b4e6 7470 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7471 rcu_read_lock();
adbe427b 7472 memcg = mem_cgroup_from_id(id);
21afa38e 7473 if (memcg) {
b25806dc 7474 if (!mem_cgroup_is_root(memcg)) {
b94c4e94 7475 if (do_memsw_account())
38d8b4e6 7476 page_counter_uncharge(&memcg->memsw, nr_pages);
b94c4e94
JW
7477 else
7478 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7479 }
c9019e9b 7480 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7481 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7482 }
7483 rcu_read_unlock();
7484}
7485
d8b38438
VD
7486long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7487{
7488 long nr_swap_pages = get_nr_swap_pages();
7489
b25806dc 7490 if (mem_cgroup_disabled() || do_memsw_account())
d8b38438 7491 return nr_swap_pages;
7848ed62 7492 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
d8b38438 7493 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7494 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7495 page_counter_read(&memcg->swap));
7496 return nr_swap_pages;
7497}
7498
9202d527 7499bool mem_cgroup_swap_full(struct folio *folio)
5ccc5aba
VD
7500{
7501 struct mem_cgroup *memcg;
7502
9202d527 7503 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5ccc5aba
VD
7504
7505 if (vm_swap_full())
7506 return true;
b25806dc 7507 if (do_memsw_account())
5ccc5aba
VD
7508 return false;
7509
9202d527 7510 memcg = folio_memcg(folio);
5ccc5aba
VD
7511 if (!memcg)
7512 return false;
7513
7848ed62 7514 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
4b82ab4f
JK
7515 unsigned long usage = page_counter_read(&memcg->swap);
7516
7517 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7518 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7519 return true;
4b82ab4f 7520 }
5ccc5aba
VD
7521
7522 return false;
7523}
7524
eccb52e7 7525static int __init setup_swap_account(char *s)
21afa38e 7526{
b25806dc
JW
7527 pr_warn_once("The swapaccount= commandline option is deprecated. "
7528 "Please report your usecase to linux-mm@kvack.org if you "
7529 "depend on this functionality.\n");
21afa38e
JW
7530 return 1;
7531}
eccb52e7 7532__setup("swapaccount=", setup_swap_account);
21afa38e 7533
37e84351
VD
7534static u64 swap_current_read(struct cgroup_subsys_state *css,
7535 struct cftype *cft)
7536{
7537 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7538
7539 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7540}
7541
4b82ab4f
JK
7542static int swap_high_show(struct seq_file *m, void *v)
7543{
7544 return seq_puts_memcg_tunable(m,
7545 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7546}
7547
7548static ssize_t swap_high_write(struct kernfs_open_file *of,
7549 char *buf, size_t nbytes, loff_t off)
7550{
7551 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7552 unsigned long high;
7553 int err;
7554
7555 buf = strstrip(buf);
7556 err = page_counter_memparse(buf, "max", &high);
7557 if (err)
7558 return err;
7559
7560 page_counter_set_high(&memcg->swap, high);
7561
7562 return nbytes;
7563}
7564
37e84351
VD
7565static int swap_max_show(struct seq_file *m, void *v)
7566{
677dc973
CD
7567 return seq_puts_memcg_tunable(m,
7568 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7569}
7570
7571static ssize_t swap_max_write(struct kernfs_open_file *of,
7572 char *buf, size_t nbytes, loff_t off)
7573{
7574 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7575 unsigned long max;
7576 int err;
7577
7578 buf = strstrip(buf);
7579 err = page_counter_memparse(buf, "max", &max);
7580 if (err)
7581 return err;
7582
be09102b 7583 xchg(&memcg->swap.max, max);
37e84351
VD
7584
7585 return nbytes;
7586}
7587
f3a53a3a
TH
7588static int swap_events_show(struct seq_file *m, void *v)
7589{
aa9694bb 7590 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7591
4b82ab4f
JK
7592 seq_printf(m, "high %lu\n",
7593 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7594 seq_printf(m, "max %lu\n",
7595 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7596 seq_printf(m, "fail %lu\n",
7597 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7598
7599 return 0;
7600}
7601
37e84351
VD
7602static struct cftype swap_files[] = {
7603 {
7604 .name = "swap.current",
7605 .flags = CFTYPE_NOT_ON_ROOT,
7606 .read_u64 = swap_current_read,
7607 },
4b82ab4f
JK
7608 {
7609 .name = "swap.high",
7610 .flags = CFTYPE_NOT_ON_ROOT,
7611 .seq_show = swap_high_show,
7612 .write = swap_high_write,
7613 },
37e84351
VD
7614 {
7615 .name = "swap.max",
7616 .flags = CFTYPE_NOT_ON_ROOT,
7617 .seq_show = swap_max_show,
7618 .write = swap_max_write,
7619 },
f3a53a3a
TH
7620 {
7621 .name = "swap.events",
7622 .flags = CFTYPE_NOT_ON_ROOT,
7623 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7624 .seq_show = swap_events_show,
7625 },
37e84351
VD
7626 { } /* terminate */
7627};
7628
eccb52e7 7629static struct cftype memsw_files[] = {
21afa38e
JW
7630 {
7631 .name = "memsw.usage_in_bytes",
7632 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7633 .read_u64 = mem_cgroup_read_u64,
7634 },
7635 {
7636 .name = "memsw.max_usage_in_bytes",
7637 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7638 .write = mem_cgroup_reset,
7639 .read_u64 = mem_cgroup_read_u64,
7640 },
7641 {
7642 .name = "memsw.limit_in_bytes",
7643 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7644 .write = mem_cgroup_write,
7645 .read_u64 = mem_cgroup_read_u64,
7646 },
7647 {
7648 .name = "memsw.failcnt",
7649 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7650 .write = mem_cgroup_reset,
7651 .read_u64 = mem_cgroup_read_u64,
7652 },
7653 { }, /* terminate */
7654};
7655
f4840ccf
JW
7656#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7657/**
7658 * obj_cgroup_may_zswap - check if this cgroup can zswap
7659 * @objcg: the object cgroup
7660 *
7661 * Check if the hierarchical zswap limit has been reached.
7662 *
7663 * This doesn't check for specific headroom, and it is not atomic
7664 * either. But with zswap, the size of the allocation is only known
7665 * once compression has occured, and this optimistic pre-check avoids
7666 * spending cycles on compression when there is already no room left
7667 * or zswap is disabled altogether somewhere in the hierarchy.
7668 */
7669bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7670{
7671 struct mem_cgroup *memcg, *original_memcg;
7672 bool ret = true;
7673
7674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7675 return true;
7676
7677 original_memcg = get_mem_cgroup_from_objcg(objcg);
7848ed62 7678 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
f4840ccf
JW
7679 memcg = parent_mem_cgroup(memcg)) {
7680 unsigned long max = READ_ONCE(memcg->zswap_max);
7681 unsigned long pages;
7682
7683 if (max == PAGE_COUNTER_MAX)
7684 continue;
7685 if (max == 0) {
7686 ret = false;
7687 break;
7688 }
7689
7690 cgroup_rstat_flush(memcg->css.cgroup);
7691 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7692 if (pages < max)
7693 continue;
7694 ret = false;
7695 break;
7696 }
7697 mem_cgroup_put(original_memcg);
7698 return ret;
7699}
7700
7701/**
7702 * obj_cgroup_charge_zswap - charge compression backend memory
7703 * @objcg: the object cgroup
7704 * @size: size of compressed object
7705 *
7706 * This forces the charge after obj_cgroup_may_swap() allowed
7707 * compression and storage in zwap for this cgroup to go ahead.
7708 */
7709void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7710{
7711 struct mem_cgroup *memcg;
7712
7713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7714 return;
7715
7716 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7717
7718 /* PF_MEMALLOC context, charging must succeed */
7719 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7720 VM_WARN_ON_ONCE(1);
7721
7722 rcu_read_lock();
7723 memcg = obj_cgroup_memcg(objcg);
7724 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7725 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7726 rcu_read_unlock();
7727}
7728
7729/**
7730 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7731 * @objcg: the object cgroup
7732 * @size: size of compressed object
7733 *
7734 * Uncharges zswap memory on page in.
7735 */
7736void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7737{
7738 struct mem_cgroup *memcg;
7739
7740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7741 return;
7742
7743 obj_cgroup_uncharge(objcg, size);
7744
7745 rcu_read_lock();
7746 memcg = obj_cgroup_memcg(objcg);
7747 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7748 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7749 rcu_read_unlock();
7750}
7751
7752static u64 zswap_current_read(struct cgroup_subsys_state *css,
7753 struct cftype *cft)
7754{
7755 cgroup_rstat_flush(css->cgroup);
7756 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7757}
7758
7759static int zswap_max_show(struct seq_file *m, void *v)
7760{
7761 return seq_puts_memcg_tunable(m,
7762 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7763}
7764
7765static ssize_t zswap_max_write(struct kernfs_open_file *of,
7766 char *buf, size_t nbytes, loff_t off)
7767{
7768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7769 unsigned long max;
7770 int err;
7771
7772 buf = strstrip(buf);
7773 err = page_counter_memparse(buf, "max", &max);
7774 if (err)
7775 return err;
7776
7777 xchg(&memcg->zswap_max, max);
7778
7779 return nbytes;
7780}
7781
7782static struct cftype zswap_files[] = {
7783 {
7784 .name = "zswap.current",
7785 .flags = CFTYPE_NOT_ON_ROOT,
7786 .read_u64 = zswap_current_read,
7787 },
7788 {
7789 .name = "zswap.max",
7790 .flags = CFTYPE_NOT_ON_ROOT,
7791 .seq_show = zswap_max_show,
7792 .write = zswap_max_write,
7793 },
7794 { } /* terminate */
7795};
7796#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7797
21afa38e
JW
7798static int __init mem_cgroup_swap_init(void)
7799{
2d1c4980 7800 if (mem_cgroup_disabled())
eccb52e7
JW
7801 return 0;
7802
7803 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7804 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7805#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7806 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7807#endif
21afa38e
JW
7808 return 0;
7809}
b25806dc 7810subsys_initcall(mem_cgroup_swap_init);
21afa38e 7811
e55b9f96 7812#endif /* CONFIG_SWAP */