]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: madvise: complete input validation before taking lock
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
58cf188e
SZ
123static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129};
130
7a159cc9
JW
131/*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 140 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
141 MEM_CGROUP_NTARGETS,
142};
a0db00fc
KS
143#define THRESHOLDS_EVENTS_TARGET 128
144#define SOFTLIMIT_EVENTS_TARGET 1024
145#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 146
d52aa412 147struct mem_cgroup_stat_cpu {
7a159cc9 148 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 150 unsigned long nr_page_events;
7a159cc9 151 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
152};
153
527a5ec9 154struct mem_cgroup_reclaim_iter {
5f578161
MH
155 /*
156 * last scanned hierarchy member. Valid only if last_dead_count
157 * matches memcg->dead_count of the hierarchy root group.
158 */
542f85f9 159 struct mem_cgroup *last_visited;
5f578161
MH
160 unsigned long last_dead_count;
161
527a5ec9
JW
162 /* scan generation, increased every round-trip */
163 unsigned int generation;
164};
165
6d12e2d8
KH
166/*
167 * per-zone information in memory controller.
168 */
6d12e2d8 169struct mem_cgroup_per_zone {
6290df54 170 struct lruvec lruvec;
1eb49272 171 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 172
527a5ec9
JW
173 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
174
f64c3f54
BS
175 struct rb_node tree_node; /* RB tree node */
176 unsigned long long usage_in_excess;/* Set to the value by which */
177 /* the soft limit is exceeded*/
178 bool on_tree;
d79154bb 179 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 180 /* use container_of */
6d12e2d8 181};
6d12e2d8
KH
182
183struct mem_cgroup_per_node {
184 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_lru_info {
45cf7ebd 188 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
189};
190
f64c3f54
BS
191/*
192 * Cgroups above their limits are maintained in a RB-Tree, independent of
193 * their hierarchy representation
194 */
195
196struct mem_cgroup_tree_per_zone {
197 struct rb_root rb_root;
198 spinlock_t lock;
199};
200
201struct mem_cgroup_tree_per_node {
202 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
203};
204
205struct mem_cgroup_tree {
206 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
207};
208
209static struct mem_cgroup_tree soft_limit_tree __read_mostly;
210
2e72b634
KS
211struct mem_cgroup_threshold {
212 struct eventfd_ctx *eventfd;
213 u64 threshold;
214};
215
9490ff27 216/* For threshold */
2e72b634 217struct mem_cgroup_threshold_ary {
748dad36 218 /* An array index points to threshold just below or equal to usage. */
5407a562 219 int current_threshold;
2e72b634
KS
220 /* Size of entries[] */
221 unsigned int size;
222 /* Array of thresholds */
223 struct mem_cgroup_threshold entries[0];
224};
2c488db2
KS
225
226struct mem_cgroup_thresholds {
227 /* Primary thresholds array */
228 struct mem_cgroup_threshold_ary *primary;
229 /*
230 * Spare threshold array.
231 * This is needed to make mem_cgroup_unregister_event() "never fail".
232 * It must be able to store at least primary->size - 1 entries.
233 */
234 struct mem_cgroup_threshold_ary *spare;
235};
236
9490ff27
KH
237/* for OOM */
238struct mem_cgroup_eventfd_list {
239 struct list_head list;
240 struct eventfd_ctx *eventfd;
241};
2e72b634 242
c0ff4b85
R
243static void mem_cgroup_threshold(struct mem_cgroup *memcg);
244static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 245
8cdea7c0
BS
246/*
247 * The memory controller data structure. The memory controller controls both
248 * page cache and RSS per cgroup. We would eventually like to provide
249 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
250 * to help the administrator determine what knobs to tune.
251 *
252 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
253 * we hit the water mark. May be even add a low water mark, such that
254 * no reclaim occurs from a cgroup at it's low water mark, this is
255 * a feature that will be implemented much later in the future.
8cdea7c0
BS
256 */
257struct mem_cgroup {
258 struct cgroup_subsys_state css;
259 /*
260 * the counter to account for memory usage
261 */
262 struct res_counter res;
59927fb9
HD
263
264 union {
265 /*
266 * the counter to account for mem+swap usage.
267 */
268 struct res_counter memsw;
269
270 /*
271 * rcu_freeing is used only when freeing struct mem_cgroup,
272 * so put it into a union to avoid wasting more memory.
273 * It must be disjoint from the css field. It could be
274 * in a union with the res field, but res plays a much
275 * larger part in mem_cgroup life than memsw, and might
276 * be of interest, even at time of free, when debugging.
277 * So share rcu_head with the less interesting memsw.
278 */
279 struct rcu_head rcu_freeing;
280 /*
3afe36b1
GC
281 * We also need some space for a worker in deferred freeing.
282 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
283 */
284 struct work_struct work_freeing;
285 };
286
510fc4e1
GC
287 /*
288 * the counter to account for kernel memory usage.
289 */
290 struct res_counter kmem;
18f59ea7
BS
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
510fc4e1 295 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
296
297 bool oom_lock;
298 atomic_t under_oom;
299
8c7c6e34 300 atomic_t refcnt;
14797e23 301
1f4c025b 302 int swappiness;
3c11ecf4
KH
303 /* OOM-Killer disable */
304 int oom_kill_disable;
a7885eb8 305
22a668d7
KH
306 /* set when res.limit == memsw.limit */
307 bool memsw_is_minimum;
308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
5f578161 343 atomic_t dead_count;
4bd2c1ee 344#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
345 struct tcp_memcontrol tcp_mem;
346#endif
2633d7a0
GC
347#if defined(CONFIG_MEMCG_KMEM)
348 /* analogous to slab_common's slab_caches list. per-memcg */
349 struct list_head memcg_slab_caches;
350 /* Not a spinlock, we can take a lot of time walking the list */
351 struct mutex slab_caches_mutex;
352 /* Index in the kmem_cache->memcg_params->memcg_caches array */
353 int kmemcg_id;
354#endif
45cf7ebd
GC
355
356 int last_scanned_node;
357#if MAX_NUMNODES > 1
358 nodemask_t scan_nodes;
359 atomic_t numainfo_events;
360 atomic_t numainfo_updating;
361#endif
362 /*
363 * Per cgroup active and inactive list, similar to the
364 * per zone LRU lists.
365 *
366 * WARNING: This has to be the last element of the struct. Don't
367 * add new fields after this point.
368 */
369 struct mem_cgroup_lru_info info;
8cdea7c0
BS
370};
371
45cf7ebd
GC
372static size_t memcg_size(void)
373{
374 return sizeof(struct mem_cgroup) +
375 nr_node_ids * sizeof(struct mem_cgroup_per_node);
376}
377
510fc4e1
GC
378/* internal only representation about the status of kmem accounting. */
379enum {
380 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 381 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 382 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
383};
384
a8964b9b
GC
385/* We account when limit is on, but only after call sites are patched */
386#define KMEM_ACCOUNTED_MASK \
387 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
388
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
a8964b9b
GC
400static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
401{
402 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
403}
404
55007d84
GC
405static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
406{
407 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408}
409
7de37682
GC
410static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
411{
412 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
413 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
414}
415
416static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
417{
418 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
419 &memcg->kmem_account_flags);
420}
510fc4e1
GC
421#endif
422
7dc74be0
DN
423/* Stuffs for move charges at task migration. */
424/*
ee5e8472
GC
425 * Types of charges to be moved. "move_charge_at_immitgrate" and
426 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
427 */
428enum move_type {
4ffef5fe 429 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 430 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
431 NR_MOVE_TYPE,
432};
433
4ffef5fe
DN
434/* "mc" and its members are protected by cgroup_mutex */
435static struct move_charge_struct {
b1dd693e 436 spinlock_t lock; /* for from, to */
4ffef5fe
DN
437 struct mem_cgroup *from;
438 struct mem_cgroup *to;
ee5e8472 439 unsigned long immigrate_flags;
4ffef5fe 440 unsigned long precharge;
854ffa8d 441 unsigned long moved_charge;
483c30b5 442 unsigned long moved_swap;
8033b97c
DN
443 struct task_struct *moving_task; /* a task moving charges */
444 wait_queue_head_t waitq; /* a waitq for other context */
445} mc = {
2bd9bb20 446 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
447 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
448};
4ffef5fe 449
90254a65
DN
450static bool move_anon(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
453}
454
87946a72
DN
455static bool move_file(void)
456{
ee5e8472 457 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
458}
459
4e416953
BS
460/*
461 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
462 * limit reclaim to prevent infinite loops, if they ever occur.
463 */
a0db00fc
KS
464#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
465#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 466
217bc319
KH
467enum charge_type {
468 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 469 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 470 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 471 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
472 NR_CHARGE_TYPE,
473};
474
8c7c6e34 475/* for encoding cft->private value on file */
86ae53e1
GC
476enum res_type {
477 _MEM,
478 _MEMSWAP,
479 _OOM_TYPE,
510fc4e1 480 _KMEM,
86ae53e1
GC
481};
482
a0db00fc
KS
483#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
484#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 485#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
486/* Used for OOM nofiier */
487#define OOM_CONTROL (0)
8c7c6e34 488
75822b44
BS
489/*
490 * Reclaim flags for mem_cgroup_hierarchical_reclaim
491 */
492#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
493#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
494#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
495#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
496
0999821b
GC
497/*
498 * The memcg_create_mutex will be held whenever a new cgroup is created.
499 * As a consequence, any change that needs to protect against new child cgroups
500 * appearing has to hold it as well.
501 */
502static DEFINE_MUTEX(memcg_create_mutex);
503
c0ff4b85
R
504static void mem_cgroup_get(struct mem_cgroup *memcg);
505static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 506
b2145145
WL
507static inline
508struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
509{
510 return container_of(s, struct mem_cgroup, css);
511}
512
7ffc0edc
MH
513static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
514{
515 return (memcg == root_mem_cgroup);
516}
517
e1aab161 518/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 519#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 520
e1aab161
GC
521void sock_update_memcg(struct sock *sk)
522{
376be5ff 523 if (mem_cgroup_sockets_enabled) {
e1aab161 524 struct mem_cgroup *memcg;
3f134619 525 struct cg_proto *cg_proto;
e1aab161
GC
526
527 BUG_ON(!sk->sk_prot->proto_cgroup);
528
f3f511e1
GC
529 /* Socket cloning can throw us here with sk_cgrp already
530 * filled. It won't however, necessarily happen from
531 * process context. So the test for root memcg given
532 * the current task's memcg won't help us in this case.
533 *
534 * Respecting the original socket's memcg is a better
535 * decision in this case.
536 */
537 if (sk->sk_cgrp) {
538 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
539 mem_cgroup_get(sk->sk_cgrp->memcg);
540 return;
541 }
542
e1aab161
GC
543 rcu_read_lock();
544 memcg = mem_cgroup_from_task(current);
3f134619
GC
545 cg_proto = sk->sk_prot->proto_cgroup(memcg);
546 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 547 mem_cgroup_get(memcg);
3f134619 548 sk->sk_cgrp = cg_proto;
e1aab161
GC
549 }
550 rcu_read_unlock();
551 }
552}
553EXPORT_SYMBOL(sock_update_memcg);
554
555void sock_release_memcg(struct sock *sk)
556{
376be5ff 557 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
558 struct mem_cgroup *memcg;
559 WARN_ON(!sk->sk_cgrp->memcg);
560 memcg = sk->sk_cgrp->memcg;
561 mem_cgroup_put(memcg);
562 }
563}
d1a4c0b3
GC
564
565struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
566{
567 if (!memcg || mem_cgroup_is_root(memcg))
568 return NULL;
569
570 return &memcg->tcp_mem.cg_proto;
571}
572EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 573
3f134619
GC
574static void disarm_sock_keys(struct mem_cgroup *memcg)
575{
576 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
577 return;
578 static_key_slow_dec(&memcg_socket_limit_enabled);
579}
580#else
581static void disarm_sock_keys(struct mem_cgroup *memcg)
582{
583}
584#endif
585
a8964b9b 586#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
587/*
588 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
589 * There are two main reasons for not using the css_id for this:
590 * 1) this works better in sparse environments, where we have a lot of memcgs,
591 * but only a few kmem-limited. Or also, if we have, for instance, 200
592 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
593 * 200 entry array for that.
594 *
595 * 2) In order not to violate the cgroup API, we would like to do all memory
596 * allocation in ->create(). At that point, we haven't yet allocated the
597 * css_id. Having a separate index prevents us from messing with the cgroup
598 * core for this
599 *
600 * The current size of the caches array is stored in
601 * memcg_limited_groups_array_size. It will double each time we have to
602 * increase it.
603 */
604static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
605int memcg_limited_groups_array_size;
606
55007d84
GC
607/*
608 * MIN_SIZE is different than 1, because we would like to avoid going through
609 * the alloc/free process all the time. In a small machine, 4 kmem-limited
610 * cgroups is a reasonable guess. In the future, it could be a parameter or
611 * tunable, but that is strictly not necessary.
612 *
613 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
614 * this constant directly from cgroup, but it is understandable that this is
615 * better kept as an internal representation in cgroup.c. In any case, the
616 * css_id space is not getting any smaller, and we don't have to necessarily
617 * increase ours as well if it increases.
618 */
619#define MEMCG_CACHES_MIN_SIZE 4
620#define MEMCG_CACHES_MAX_SIZE 65535
621
d7f25f8a
GC
622/*
623 * A lot of the calls to the cache allocation functions are expected to be
624 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
625 * conditional to this static branch, we'll have to allow modules that does
626 * kmem_cache_alloc and the such to see this symbol as well
627 */
a8964b9b 628struct static_key memcg_kmem_enabled_key;
d7f25f8a 629EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
630
631static void disarm_kmem_keys(struct mem_cgroup *memcg)
632{
55007d84 633 if (memcg_kmem_is_active(memcg)) {
a8964b9b 634 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
635 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
636 }
bea207c8
GC
637 /*
638 * This check can't live in kmem destruction function,
639 * since the charges will outlive the cgroup
640 */
641 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
642}
643#else
644static void disarm_kmem_keys(struct mem_cgroup *memcg)
645{
646}
647#endif /* CONFIG_MEMCG_KMEM */
648
649static void disarm_static_keys(struct mem_cgroup *memcg)
650{
651 disarm_sock_keys(memcg);
652 disarm_kmem_keys(memcg);
653}
654
c0ff4b85 655static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 656
f64c3f54 657static struct mem_cgroup_per_zone *
c0ff4b85 658mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 659{
45cf7ebd 660 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 661 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
662}
663
c0ff4b85 664struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 665{
c0ff4b85 666 return &memcg->css;
d324236b
WF
667}
668
f64c3f54 669static struct mem_cgroup_per_zone *
c0ff4b85 670page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 671{
97a6c37b
JW
672 int nid = page_to_nid(page);
673 int zid = page_zonenum(page);
f64c3f54 674
c0ff4b85 675 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
676}
677
678static struct mem_cgroup_tree_per_zone *
679soft_limit_tree_node_zone(int nid, int zid)
680{
681 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
682}
683
684static struct mem_cgroup_tree_per_zone *
685soft_limit_tree_from_page(struct page *page)
686{
687 int nid = page_to_nid(page);
688 int zid = page_zonenum(page);
689
690 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
691}
692
693static void
c0ff4b85 694__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 695 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
696 struct mem_cgroup_tree_per_zone *mctz,
697 unsigned long long new_usage_in_excess)
f64c3f54
BS
698{
699 struct rb_node **p = &mctz->rb_root.rb_node;
700 struct rb_node *parent = NULL;
701 struct mem_cgroup_per_zone *mz_node;
702
703 if (mz->on_tree)
704 return;
705
ef8745c1
KH
706 mz->usage_in_excess = new_usage_in_excess;
707 if (!mz->usage_in_excess)
708 return;
f64c3f54
BS
709 while (*p) {
710 parent = *p;
711 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
712 tree_node);
713 if (mz->usage_in_excess < mz_node->usage_in_excess)
714 p = &(*p)->rb_left;
715 /*
716 * We can't avoid mem cgroups that are over their soft
717 * limit by the same amount
718 */
719 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
720 p = &(*p)->rb_right;
721 }
722 rb_link_node(&mz->tree_node, parent, p);
723 rb_insert_color(&mz->tree_node, &mctz->rb_root);
724 mz->on_tree = true;
4e416953
BS
725}
726
727static void
c0ff4b85 728__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
729 struct mem_cgroup_per_zone *mz,
730 struct mem_cgroup_tree_per_zone *mctz)
731{
732 if (!mz->on_tree)
733 return;
734 rb_erase(&mz->tree_node, &mctz->rb_root);
735 mz->on_tree = false;
736}
737
f64c3f54 738static void
c0ff4b85 739mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
740 struct mem_cgroup_per_zone *mz,
741 struct mem_cgroup_tree_per_zone *mctz)
742{
743 spin_lock(&mctz->lock);
c0ff4b85 744 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
745 spin_unlock(&mctz->lock);
746}
747
f64c3f54 748
c0ff4b85 749static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 750{
ef8745c1 751 unsigned long long excess;
f64c3f54
BS
752 struct mem_cgroup_per_zone *mz;
753 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
754 int nid = page_to_nid(page);
755 int zid = page_zonenum(page);
f64c3f54
BS
756 mctz = soft_limit_tree_from_page(page);
757
758 /*
4e649152
KH
759 * Necessary to update all ancestors when hierarchy is used.
760 * because their event counter is not touched.
f64c3f54 761 */
c0ff4b85
R
762 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
763 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
764 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
765 /*
766 * We have to update the tree if mz is on RB-tree or
767 * mem is over its softlimit.
768 */
ef8745c1 769 if (excess || mz->on_tree) {
4e649152
KH
770 spin_lock(&mctz->lock);
771 /* if on-tree, remove it */
772 if (mz->on_tree)
c0ff4b85 773 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 774 /*
ef8745c1
KH
775 * Insert again. mz->usage_in_excess will be updated.
776 * If excess is 0, no tree ops.
4e649152 777 */
c0ff4b85 778 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
779 spin_unlock(&mctz->lock);
780 }
f64c3f54
BS
781 }
782}
783
c0ff4b85 784static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
785{
786 int node, zone;
787 struct mem_cgroup_per_zone *mz;
788 struct mem_cgroup_tree_per_zone *mctz;
789
3ed28fa1 790 for_each_node(node) {
f64c3f54 791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 792 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 793 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 794 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
795 }
796 }
797}
798
4e416953
BS
799static struct mem_cgroup_per_zone *
800__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
801{
802 struct rb_node *rightmost = NULL;
26251eaf 803 struct mem_cgroup_per_zone *mz;
4e416953
BS
804
805retry:
26251eaf 806 mz = NULL;
4e416953
BS
807 rightmost = rb_last(&mctz->rb_root);
808 if (!rightmost)
809 goto done; /* Nothing to reclaim from */
810
811 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
812 /*
813 * Remove the node now but someone else can add it back,
814 * we will to add it back at the end of reclaim to its correct
815 * position in the tree.
816 */
d79154bb
HD
817 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
818 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
819 !css_tryget(&mz->memcg->css))
4e416953
BS
820 goto retry;
821done:
822 return mz;
823}
824
825static struct mem_cgroup_per_zone *
826mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827{
828 struct mem_cgroup_per_zone *mz;
829
830 spin_lock(&mctz->lock);
831 mz = __mem_cgroup_largest_soft_limit_node(mctz);
832 spin_unlock(&mctz->lock);
833 return mz;
834}
835
711d3d2c
KH
836/*
837 * Implementation Note: reading percpu statistics for memcg.
838 *
839 * Both of vmstat[] and percpu_counter has threshold and do periodic
840 * synchronization to implement "quick" read. There are trade-off between
841 * reading cost and precision of value. Then, we may have a chance to implement
842 * a periodic synchronizion of counter in memcg's counter.
843 *
844 * But this _read() function is used for user interface now. The user accounts
845 * memory usage by memory cgroup and he _always_ requires exact value because
846 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
847 * have to visit all online cpus and make sum. So, for now, unnecessary
848 * synchronization is not implemented. (just implemented for cpu hotplug)
849 *
850 * If there are kernel internal actions which can make use of some not-exact
851 * value, and reading all cpu value can be performance bottleneck in some
852 * common workload, threashold and synchonization as vmstat[] should be
853 * implemented.
854 */
c0ff4b85 855static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 856 enum mem_cgroup_stat_index idx)
c62b1a3b 857{
7a159cc9 858 long val = 0;
c62b1a3b 859 int cpu;
c62b1a3b 860
711d3d2c
KH
861 get_online_cpus();
862 for_each_online_cpu(cpu)
c0ff4b85 863 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 864#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
865 spin_lock(&memcg->pcp_counter_lock);
866 val += memcg->nocpu_base.count[idx];
867 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
868#endif
869 put_online_cpus();
c62b1a3b
KH
870 return val;
871}
872
c0ff4b85 873static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
874 bool charge)
875{
876 int val = (charge) ? 1 : -1;
bff6bb83 877 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
878}
879
c0ff4b85 880static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
881 enum mem_cgroup_events_index idx)
882{
883 unsigned long val = 0;
884 int cpu;
885
886 for_each_online_cpu(cpu)
c0ff4b85 887 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 888#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
889 spin_lock(&memcg->pcp_counter_lock);
890 val += memcg->nocpu_base.events[idx];
891 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
892#endif
893 return val;
894}
895
c0ff4b85 896static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 897 bool anon, int nr_pages)
d52aa412 898{
c62b1a3b
KH
899 preempt_disable();
900
b2402857
KH
901 /*
902 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
903 * counted as CACHE even if it's on ANON LRU.
904 */
905 if (anon)
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 907 nr_pages);
d52aa412 908 else
b2402857 909 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 910 nr_pages);
55e462b0 911
e401f176
KH
912 /* pagein of a big page is an event. So, ignore page size */
913 if (nr_pages > 0)
c0ff4b85 914 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 915 else {
c0ff4b85 916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
917 nr_pages = -nr_pages; /* for event */
918 }
e401f176 919
13114716 920 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 921
c62b1a3b 922 preempt_enable();
6d12e2d8
KH
923}
924
bb2a0de9 925unsigned long
4d7dcca2 926mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
927{
928 struct mem_cgroup_per_zone *mz;
929
930 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
931 return mz->lru_size[lru];
932}
933
934static unsigned long
c0ff4b85 935mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 936 unsigned int lru_mask)
889976db
YH
937{
938 struct mem_cgroup_per_zone *mz;
f156ab93 939 enum lru_list lru;
bb2a0de9
KH
940 unsigned long ret = 0;
941
c0ff4b85 942 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 943
f156ab93
HD
944 for_each_lru(lru) {
945 if (BIT(lru) & lru_mask)
946 ret += mz->lru_size[lru];
bb2a0de9
KH
947 }
948 return ret;
949}
950
951static unsigned long
c0ff4b85 952mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
953 int nid, unsigned int lru_mask)
954{
889976db
YH
955 u64 total = 0;
956 int zid;
957
bb2a0de9 958 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
959 total += mem_cgroup_zone_nr_lru_pages(memcg,
960 nid, zid, lru_mask);
bb2a0de9 961
889976db
YH
962 return total;
963}
bb2a0de9 964
c0ff4b85 965static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 966 unsigned int lru_mask)
6d12e2d8 967{
889976db 968 int nid;
6d12e2d8
KH
969 u64 total = 0;
970
31aaea4a 971 for_each_node_state(nid, N_MEMORY)
c0ff4b85 972 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 973 return total;
d52aa412
KH
974}
975
f53d7ce3
JW
976static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
977 enum mem_cgroup_events_target target)
7a159cc9
JW
978{
979 unsigned long val, next;
980
13114716 981 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 982 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 983 /* from time_after() in jiffies.h */
f53d7ce3
JW
984 if ((long)next - (long)val < 0) {
985 switch (target) {
986 case MEM_CGROUP_TARGET_THRESH:
987 next = val + THRESHOLDS_EVENTS_TARGET;
988 break;
989 case MEM_CGROUP_TARGET_SOFTLIMIT:
990 next = val + SOFTLIMIT_EVENTS_TARGET;
991 break;
992 case MEM_CGROUP_TARGET_NUMAINFO:
993 next = val + NUMAINFO_EVENTS_TARGET;
994 break;
995 default:
996 break;
997 }
998 __this_cpu_write(memcg->stat->targets[target], next);
999 return true;
7a159cc9 1000 }
f53d7ce3 1001 return false;
d2265e6f
KH
1002}
1003
1004/*
1005 * Check events in order.
1006 *
1007 */
c0ff4b85 1008static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1009{
4799401f 1010 preempt_disable();
d2265e6f 1011 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1014 bool do_softlimit;
1015 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1016
1017 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1018 MEM_CGROUP_TARGET_SOFTLIMIT);
1019#if MAX_NUMNODES > 1
1020 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1021 MEM_CGROUP_TARGET_NUMAINFO);
1022#endif
1023 preempt_enable();
1024
c0ff4b85 1025 mem_cgroup_threshold(memcg);
f53d7ce3 1026 if (unlikely(do_softlimit))
c0ff4b85 1027 mem_cgroup_update_tree(memcg, page);
453a9bf3 1028#if MAX_NUMNODES > 1
f53d7ce3 1029 if (unlikely(do_numainfo))
c0ff4b85 1030 atomic_inc(&memcg->numainfo_events);
453a9bf3 1031#endif
f53d7ce3
JW
1032 } else
1033 preempt_enable();
d2265e6f
KH
1034}
1035
d1a4c0b3 1036struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1037{
b2145145
WL
1038 return mem_cgroup_from_css(
1039 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1040}
1041
cf475ad2 1042struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1043{
31a78f23
BS
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
b2145145 1052 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1053}
1054
a433658c 1055struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1056{
c0ff4b85 1057 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1058
1059 if (!mm)
1060 return NULL;
54595fe2
KH
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
c0ff4b85
R
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
54595fe2 1070 break;
c0ff4b85 1071 } while (!css_tryget(&memcg->css));
54595fe2 1072 rcu_read_unlock();
c0ff4b85 1073 return memcg;
54595fe2
KH
1074}
1075
16248d8f
MH
1076/*
1077 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1078 * ref. count) or NULL if the whole root's subtree has been visited.
1079 *
1080 * helper function to be used by mem_cgroup_iter
1081 */
1082static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083 struct mem_cgroup *last_visited)
1084{
1085 struct cgroup *prev_cgroup, *next_cgroup;
1086
1087 /*
1088 * Root is not visited by cgroup iterators so it needs an
1089 * explicit visit.
1090 */
1091 if (!last_visited)
1092 return root;
1093
1094 prev_cgroup = (last_visited == root) ? NULL
1095 : last_visited->css.cgroup;
1096skip_node:
1097 next_cgroup = cgroup_next_descendant_pre(
1098 prev_cgroup, root->css.cgroup);
1099
1100 /*
1101 * Even if we found a group we have to make sure it is
1102 * alive. css && !memcg means that the groups should be
1103 * skipped and we should continue the tree walk.
1104 * last_visited css is safe to use because it is
1105 * protected by css_get and the tree walk is rcu safe.
1106 */
1107 if (next_cgroup) {
1108 struct mem_cgroup *mem = mem_cgroup_from_cont(
1109 next_cgroup);
1110 if (css_tryget(&mem->css))
1111 return mem;
1112 else {
1113 prev_cgroup = next_cgroup;
1114 goto skip_node;
1115 }
1116 }
1117
1118 return NULL;
1119}
1120
5660048c
JW
1121/**
1122 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1123 * @root: hierarchy root
1124 * @prev: previously returned memcg, NULL on first invocation
1125 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1126 *
1127 * Returns references to children of the hierarchy below @root, or
1128 * @root itself, or %NULL after a full round-trip.
1129 *
1130 * Caller must pass the return value in @prev on subsequent
1131 * invocations for reference counting, or use mem_cgroup_iter_break()
1132 * to cancel a hierarchy walk before the round-trip is complete.
1133 *
1134 * Reclaimers can specify a zone and a priority level in @reclaim to
1135 * divide up the memcgs in the hierarchy among all concurrent
1136 * reclaimers operating on the same zone and priority.
1137 */
1138struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1139 struct mem_cgroup *prev,
1140 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1141{
9f3a0d09 1142 struct mem_cgroup *memcg = NULL;
542f85f9 1143 struct mem_cgroup *last_visited = NULL;
5f578161 1144 unsigned long uninitialized_var(dead_count);
711d3d2c 1145
5660048c
JW
1146 if (mem_cgroup_disabled())
1147 return NULL;
1148
9f3a0d09
JW
1149 if (!root)
1150 root = root_mem_cgroup;
7d74b06f 1151
9f3a0d09 1152 if (prev && !reclaim)
542f85f9 1153 last_visited = prev;
14067bb3 1154
9f3a0d09
JW
1155 if (!root->use_hierarchy && root != root_mem_cgroup) {
1156 if (prev)
c40046f3 1157 goto out_css_put;
9f3a0d09
JW
1158 return root;
1159 }
14067bb3 1160
542f85f9 1161 rcu_read_lock();
9f3a0d09 1162 while (!memcg) {
527a5ec9 1163 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
711d3d2c 1164
527a5ec9
JW
1165 if (reclaim) {
1166 int nid = zone_to_nid(reclaim->zone);
1167 int zid = zone_idx(reclaim->zone);
1168 struct mem_cgroup_per_zone *mz;
1169
1170 mz = mem_cgroup_zoneinfo(root, nid, zid);
1171 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9
MH
1172 last_visited = iter->last_visited;
1173 if (prev && reclaim->generation != iter->generation) {
5f578161 1174 iter->last_visited = NULL;
542f85f9
MH
1175 goto out_unlock;
1176 }
5f578161
MH
1177
1178 /*
1179 * If the dead_count mismatches, a destruction
1180 * has happened or is happening concurrently.
1181 * If the dead_count matches, a destruction
1182 * might still happen concurrently, but since
1183 * we checked under RCU, that destruction
1184 * won't free the object until we release the
1185 * RCU reader lock. Thus, the dead_count
1186 * check verifies the pointer is still valid,
1187 * css_tryget() verifies the cgroup pointed to
1188 * is alive.
1189 */
1190 dead_count = atomic_read(&root->dead_count);
1191 smp_rmb();
1192 last_visited = iter->last_visited;
1193 if (last_visited) {
1194 if ((dead_count != iter->last_dead_count) ||
1195 !css_tryget(&last_visited->css)) {
1196 last_visited = NULL;
1197 }
1198 }
527a5ec9 1199 }
7d74b06f 1200
16248d8f 1201 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1202
527a5ec9 1203 if (reclaim) {
542f85f9
MH
1204 if (last_visited)
1205 css_put(&last_visited->css);
1206
19f39402 1207 iter->last_visited = memcg;
5f578161
MH
1208 smp_wmb();
1209 iter->last_dead_count = dead_count;
542f85f9 1210
19f39402 1211 if (!memcg)
527a5ec9
JW
1212 iter->generation++;
1213 else if (!prev && memcg)
1214 reclaim->generation = iter->generation;
1215 }
9f3a0d09 1216
19f39402 1217 if (prev && !memcg)
542f85f9 1218 goto out_unlock;
9f3a0d09 1219 }
542f85f9
MH
1220out_unlock:
1221 rcu_read_unlock();
c40046f3
MH
1222out_css_put:
1223 if (prev && prev != root)
1224 css_put(&prev->css);
1225
9f3a0d09 1226 return memcg;
14067bb3 1227}
7d74b06f 1228
5660048c
JW
1229/**
1230 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1231 * @root: hierarchy root
1232 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1233 */
1234void mem_cgroup_iter_break(struct mem_cgroup *root,
1235 struct mem_cgroup *prev)
9f3a0d09
JW
1236{
1237 if (!root)
1238 root = root_mem_cgroup;
1239 if (prev && prev != root)
1240 css_put(&prev->css);
1241}
7d74b06f 1242
9f3a0d09
JW
1243/*
1244 * Iteration constructs for visiting all cgroups (under a tree). If
1245 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1246 * be used for reference counting.
1247 */
1248#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1249 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1250 iter != NULL; \
527a5ec9 1251 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1252
9f3a0d09 1253#define for_each_mem_cgroup(iter) \
527a5ec9 1254 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1255 iter != NULL; \
527a5ec9 1256 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1257
68ae564b 1258void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1259{
c0ff4b85 1260 struct mem_cgroup *memcg;
456f998e 1261
456f998e 1262 rcu_read_lock();
c0ff4b85
R
1263 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1264 if (unlikely(!memcg))
456f998e
YH
1265 goto out;
1266
1267 switch (idx) {
456f998e 1268 case PGFAULT:
0e574a93
JW
1269 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1270 break;
1271 case PGMAJFAULT:
1272 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1273 break;
1274 default:
1275 BUG();
1276 }
1277out:
1278 rcu_read_unlock();
1279}
68ae564b 1280EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1281
925b7673
JW
1282/**
1283 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1284 * @zone: zone of the wanted lruvec
fa9add64 1285 * @memcg: memcg of the wanted lruvec
925b7673
JW
1286 *
1287 * Returns the lru list vector holding pages for the given @zone and
1288 * @mem. This can be the global zone lruvec, if the memory controller
1289 * is disabled.
1290 */
1291struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1292 struct mem_cgroup *memcg)
1293{
1294 struct mem_cgroup_per_zone *mz;
bea8c150 1295 struct lruvec *lruvec;
925b7673 1296
bea8c150
HD
1297 if (mem_cgroup_disabled()) {
1298 lruvec = &zone->lruvec;
1299 goto out;
1300 }
925b7673
JW
1301
1302 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1303 lruvec = &mz->lruvec;
1304out:
1305 /*
1306 * Since a node can be onlined after the mem_cgroup was created,
1307 * we have to be prepared to initialize lruvec->zone here;
1308 * and if offlined then reonlined, we need to reinitialize it.
1309 */
1310 if (unlikely(lruvec->zone != zone))
1311 lruvec->zone = zone;
1312 return lruvec;
925b7673
JW
1313}
1314
08e552c6
KH
1315/*
1316 * Following LRU functions are allowed to be used without PCG_LOCK.
1317 * Operations are called by routine of global LRU independently from memcg.
1318 * What we have to take care of here is validness of pc->mem_cgroup.
1319 *
1320 * Changes to pc->mem_cgroup happens when
1321 * 1. charge
1322 * 2. moving account
1323 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1324 * It is added to LRU before charge.
1325 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1326 * When moving account, the page is not on LRU. It's isolated.
1327 */
4f98a2fe 1328
925b7673 1329/**
fa9add64 1330 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1331 * @page: the page
fa9add64 1332 * @zone: zone of the page
925b7673 1333 */
fa9add64 1334struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1335{
08e552c6 1336 struct mem_cgroup_per_zone *mz;
925b7673
JW
1337 struct mem_cgroup *memcg;
1338 struct page_cgroup *pc;
bea8c150 1339 struct lruvec *lruvec;
6d12e2d8 1340
bea8c150
HD
1341 if (mem_cgroup_disabled()) {
1342 lruvec = &zone->lruvec;
1343 goto out;
1344 }
925b7673 1345
08e552c6 1346 pc = lookup_page_cgroup(page);
38c5d72f 1347 memcg = pc->mem_cgroup;
7512102c
HD
1348
1349 /*
fa9add64 1350 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1351 * an uncharged page off lru does nothing to secure
1352 * its former mem_cgroup from sudden removal.
1353 *
1354 * Our caller holds lru_lock, and PageCgroupUsed is updated
1355 * under page_cgroup lock: between them, they make all uses
1356 * of pc->mem_cgroup safe.
1357 */
fa9add64 1358 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1359 pc->mem_cgroup = memcg = root_mem_cgroup;
1360
925b7673 1361 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1362 lruvec = &mz->lruvec;
1363out:
1364 /*
1365 * Since a node can be onlined after the mem_cgroup was created,
1366 * we have to be prepared to initialize lruvec->zone here;
1367 * and if offlined then reonlined, we need to reinitialize it.
1368 */
1369 if (unlikely(lruvec->zone != zone))
1370 lruvec->zone = zone;
1371 return lruvec;
08e552c6 1372}
b69408e8 1373
925b7673 1374/**
fa9add64
HD
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @nr_pages: positive when adding or negative when removing
925b7673 1379 *
fa9add64
HD
1380 * This function must be called when a page is added to or removed from an
1381 * lru list.
3f58a829 1382 */
fa9add64
HD
1383void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1384 int nr_pages)
3f58a829
MK
1385{
1386 struct mem_cgroup_per_zone *mz;
fa9add64 1387 unsigned long *lru_size;
3f58a829
MK
1388
1389 if (mem_cgroup_disabled())
1390 return;
1391
fa9add64
HD
1392 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1393 lru_size = mz->lru_size + lru;
1394 *lru_size += nr_pages;
1395 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1396}
544122e5 1397
3e92041d 1398/*
c0ff4b85 1399 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1400 * hierarchy subtree
1401 */
c3ac9a8a
JW
1402bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1403 struct mem_cgroup *memcg)
3e92041d 1404{
91c63734
JW
1405 if (root_memcg == memcg)
1406 return true;
3a981f48 1407 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1408 return false;
c3ac9a8a
JW
1409 return css_is_ancestor(&memcg->css, &root_memcg->css);
1410}
1411
1412static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1413 struct mem_cgroup *memcg)
1414{
1415 bool ret;
1416
91c63734 1417 rcu_read_lock();
c3ac9a8a 1418 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1419 rcu_read_unlock();
1420 return ret;
3e92041d
MH
1421}
1422
c0ff4b85 1423int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1424{
1425 int ret;
0b7f569e 1426 struct mem_cgroup *curr = NULL;
158e0a2d 1427 struct task_struct *p;
4c4a2214 1428
158e0a2d 1429 p = find_lock_task_mm(task);
de077d22
DR
1430 if (p) {
1431 curr = try_get_mem_cgroup_from_mm(p->mm);
1432 task_unlock(p);
1433 } else {
1434 /*
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1438 */
1439 task_lock(task);
1440 curr = mem_cgroup_from_task(task);
1441 if (curr)
1442 css_get(&curr->css);
1443 task_unlock(task);
1444 }
0b7f569e
KH
1445 if (!curr)
1446 return 0;
d31f56db 1447 /*
c0ff4b85 1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1449 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1452 */
c0ff4b85 1453 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1454 css_put(&curr->css);
4c4a2214
DR
1455 return ret;
1456}
1457
c56d5c7d 1458int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1459{
9b272977 1460 unsigned long inactive_ratio;
14797e23 1461 unsigned long inactive;
9b272977 1462 unsigned long active;
c772be93 1463 unsigned long gb;
14797e23 1464
4d7dcca2
HD
1465 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1467
c772be93
KM
1468 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 if (gb)
1470 inactive_ratio = int_sqrt(10 * gb);
1471 else
1472 inactive_ratio = 1;
1473
9b272977 1474 return inactive * inactive_ratio < active;
14797e23
KM
1475}
1476
6d61ef40
BS
1477#define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1479
19942822 1480/**
9d11ea9f 1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1482 * @memcg: the memory cgroup
19942822 1483 *
9d11ea9f 1484 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1485 * pages.
19942822 1486 */
c0ff4b85 1487static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1488{
9d11ea9f
JW
1489 unsigned long long margin;
1490
c0ff4b85 1491 margin = res_counter_margin(&memcg->res);
9d11ea9f 1492 if (do_swap_account)
c0ff4b85 1493 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1494 return margin >> PAGE_SHIFT;
19942822
JW
1495}
1496
1f4c025b 1497int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1498{
1499 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1500
1501 /* root ? */
1502 if (cgrp->parent == NULL)
1503 return vm_swappiness;
1504
bf1ff263 1505 return memcg->swappiness;
a7885eb8
KM
1506}
1507
619d094b
KH
1508/*
1509 * memcg->moving_account is used for checking possibility that some thread is
1510 * calling move_account(). When a thread on CPU-A starts moving pages under
1511 * a memcg, other threads should check memcg->moving_account under
1512 * rcu_read_lock(), like this:
1513 *
1514 * CPU-A CPU-B
1515 * rcu_read_lock()
1516 * memcg->moving_account+1 if (memcg->mocing_account)
1517 * take heavy locks.
1518 * synchronize_rcu() update something.
1519 * rcu_read_unlock()
1520 * start move here.
1521 */
4331f7d3
KH
1522
1523/* for quick checking without looking up memcg */
1524atomic_t memcg_moving __read_mostly;
1525
c0ff4b85 1526static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1527{
4331f7d3 1528 atomic_inc(&memcg_moving);
619d094b 1529 atomic_inc(&memcg->moving_account);
32047e2a
KH
1530 synchronize_rcu();
1531}
1532
c0ff4b85 1533static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1534{
619d094b
KH
1535 /*
1536 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1537 * We check NULL in callee rather than caller.
1538 */
4331f7d3
KH
1539 if (memcg) {
1540 atomic_dec(&memcg_moving);
619d094b 1541 atomic_dec(&memcg->moving_account);
4331f7d3 1542 }
32047e2a 1543}
619d094b 1544
32047e2a
KH
1545/*
1546 * 2 routines for checking "mem" is under move_account() or not.
1547 *
13fd1dd9
AM
1548 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1549 * is used for avoiding races in accounting. If true,
32047e2a
KH
1550 * pc->mem_cgroup may be overwritten.
1551 *
1552 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1553 * under hierarchy of moving cgroups. This is for
1554 * waiting at hith-memory prressure caused by "move".
1555 */
1556
13fd1dd9 1557static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1558{
1559 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1560 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1561}
4b534334 1562
c0ff4b85 1563static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1564{
2bd9bb20
KH
1565 struct mem_cgroup *from;
1566 struct mem_cgroup *to;
4b534334 1567 bool ret = false;
2bd9bb20
KH
1568 /*
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 */
1572 spin_lock(&mc.lock);
1573 from = mc.from;
1574 to = mc.to;
1575 if (!from)
1576 goto unlock;
3e92041d 1577
c0ff4b85
R
1578 ret = mem_cgroup_same_or_subtree(memcg, from)
1579 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1580unlock:
1581 spin_unlock(&mc.lock);
4b534334
KH
1582 return ret;
1583}
1584
c0ff4b85 1585static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1586{
1587 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1588 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1589 DEFINE_WAIT(wait);
1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 /* moving charge context might have finished. */
1592 if (mc.moving_task)
1593 schedule();
1594 finish_wait(&mc.waitq, &wait);
1595 return true;
1596 }
1597 }
1598 return false;
1599}
1600
312734c0
KH
1601/*
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1605 * see mem_cgroup_stolen(), too.
312734c0
KH
1606 */
1607static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1608 unsigned long *flags)
1609{
1610 spin_lock_irqsave(&memcg->move_lock, *flags);
1611}
1612
1613static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1614 unsigned long *flags)
1615{
1616 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1617}
1618
58cf188e 1619#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1620/**
58cf188e 1621 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1622 * @memcg: The memory cgroup that went over limit
1623 * @p: Task that is going to be killed
1624 *
1625 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1626 * enabled
1627 */
1628void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1629{
1630 struct cgroup *task_cgrp;
1631 struct cgroup *mem_cgrp;
1632 /*
1633 * Need a buffer in BSS, can't rely on allocations. The code relies
1634 * on the assumption that OOM is serialized for memory controller.
1635 * If this assumption is broken, revisit this code.
1636 */
1637 static char memcg_name[PATH_MAX];
1638 int ret;
58cf188e
SZ
1639 struct mem_cgroup *iter;
1640 unsigned int i;
e222432b 1641
58cf188e 1642 if (!p)
e222432b
BS
1643 return;
1644
e222432b
BS
1645 rcu_read_lock();
1646
1647 mem_cgrp = memcg->css.cgroup;
1648 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1649
1650 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1651 if (ret < 0) {
1652 /*
1653 * Unfortunately, we are unable to convert to a useful name
1654 * But we'll still print out the usage information
1655 */
1656 rcu_read_unlock();
1657 goto done;
1658 }
1659 rcu_read_unlock();
1660
d045197f 1661 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1662
1663 rcu_read_lock();
1664 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1665 if (ret < 0) {
1666 rcu_read_unlock();
1667 goto done;
1668 }
1669 rcu_read_unlock();
1670
1671 /*
1672 * Continues from above, so we don't need an KERN_ level
1673 */
d045197f 1674 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1675done:
1676
d045197f 1677 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1678 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1681 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1682 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1683 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1685 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1686 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1687 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1689
1690 for_each_mem_cgroup_tree(iter, memcg) {
1691 pr_info("Memory cgroup stats");
1692
1693 rcu_read_lock();
1694 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1695 if (!ret)
1696 pr_cont(" for %s", memcg_name);
1697 rcu_read_unlock();
1698 pr_cont(":");
1699
1700 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1701 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1702 continue;
1703 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1704 K(mem_cgroup_read_stat(iter, i)));
1705 }
1706
1707 for (i = 0; i < NR_LRU_LISTS; i++)
1708 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1709 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1710
1711 pr_cont("\n");
1712 }
e222432b
BS
1713}
1714
81d39c20
KH
1715/*
1716 * This function returns the number of memcg under hierarchy tree. Returns
1717 * 1(self count) if no children.
1718 */
c0ff4b85 1719static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1720{
1721 int num = 0;
7d74b06f
KH
1722 struct mem_cgroup *iter;
1723
c0ff4b85 1724 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1725 num++;
81d39c20
KH
1726 return num;
1727}
1728
a63d83f4
DR
1729/*
1730 * Return the memory (and swap, if configured) limit for a memcg.
1731 */
9cbb78bb 1732static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1733{
1734 u64 limit;
a63d83f4 1735
f3e8eb70 1736 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1737
a63d83f4 1738 /*
9a5a8f19 1739 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1740 */
9a5a8f19
MH
1741 if (mem_cgroup_swappiness(memcg)) {
1742 u64 memsw;
1743
1744 limit += total_swap_pages << PAGE_SHIFT;
1745 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1746
1747 /*
1748 * If memsw is finite and limits the amount of swap space
1749 * available to this memcg, return that limit.
1750 */
1751 limit = min(limit, memsw);
1752 }
1753
1754 return limit;
a63d83f4
DR
1755}
1756
19965460
DR
1757static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1758 int order)
9cbb78bb
DR
1759{
1760 struct mem_cgroup *iter;
1761 unsigned long chosen_points = 0;
1762 unsigned long totalpages;
1763 unsigned int points = 0;
1764 struct task_struct *chosen = NULL;
1765
876aafbf
DR
1766 /*
1767 * If current has a pending SIGKILL, then automatically select it. The
1768 * goal is to allow it to allocate so that it may quickly exit and free
1769 * its memory.
1770 */
1771 if (fatal_signal_pending(current)) {
1772 set_thread_flag(TIF_MEMDIE);
1773 return;
1774 }
1775
1776 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1777 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 struct cgroup *cgroup = iter->css.cgroup;
1780 struct cgroup_iter it;
1781 struct task_struct *task;
1782
1783 cgroup_iter_start(cgroup, &it);
1784 while ((task = cgroup_iter_next(cgroup, &it))) {
1785 switch (oom_scan_process_thread(task, totalpages, NULL,
1786 false)) {
1787 case OOM_SCAN_SELECT:
1788 if (chosen)
1789 put_task_struct(chosen);
1790 chosen = task;
1791 chosen_points = ULONG_MAX;
1792 get_task_struct(chosen);
1793 /* fall through */
1794 case OOM_SCAN_CONTINUE:
1795 continue;
1796 case OOM_SCAN_ABORT:
1797 cgroup_iter_end(cgroup, &it);
1798 mem_cgroup_iter_break(memcg, iter);
1799 if (chosen)
1800 put_task_struct(chosen);
1801 return;
1802 case OOM_SCAN_OK:
1803 break;
1804 };
1805 points = oom_badness(task, memcg, NULL, totalpages);
1806 if (points > chosen_points) {
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = points;
1811 get_task_struct(chosen);
1812 }
1813 }
1814 cgroup_iter_end(cgroup, &it);
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1822}
1823
5660048c
JW
1824static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827{
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858}
1859
4d0c066d
KH
1860/**
1861 * test_mem_cgroup_node_reclaimable
dad7557e 1862 * @memcg: the target memcg
4d0c066d
KH
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
c0ff4b85 1870static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1871 int nid, bool noswap)
1872{
c0ff4b85 1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
c0ff4b85 1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1878 return true;
1879 return false;
1880
1881}
889976db
YH
1882#if MAX_NUMNODES > 1
1883
1884/*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
c0ff4b85 1890static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1891{
1892 int nid;
453a9bf3
KH
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
c0ff4b85 1897 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1898 return;
c0ff4b85 1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1900 return;
1901
889976db 1902 /* make a nodemask where this memcg uses memory from */
31aaea4a 1903 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1904
31aaea4a 1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1906
c0ff4b85
R
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
889976db 1909 }
453a9bf3 1910
c0ff4b85
R
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1913}
1914
1915/*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
c0ff4b85 1927int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1928{
1929 int node;
1930
c0ff4b85
R
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
889976db 1933
c0ff4b85 1934 node = next_node(node, memcg->scan_nodes);
889976db 1935 if (node == MAX_NUMNODES)
c0ff4b85 1936 node = first_node(memcg->scan_nodes);
889976db
YH
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
c0ff4b85 1946 memcg->last_scanned_node = node;
889976db
YH
1947 return node;
1948}
1949
4d0c066d
KH
1950/*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
6bbda35c 1956static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1957{
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
c0ff4b85
R
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1966 nid < MAX_NUMNODES;
c0ff4b85 1967 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1968
c0ff4b85 1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
31aaea4a 1976 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1977 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1978 continue;
c0ff4b85 1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1980 return true;
1981 }
1982 return false;
1983}
1984
889976db 1985#else
c0ff4b85 1986int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1987{
1988 return 0;
1989}
4d0c066d 1990
6bbda35c 1991static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1992{
c0ff4b85 1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1994}
889976db
YH
1995#endif
1996
5660048c
JW
1997static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
6d61ef40 2001{
9f3a0d09 2002 struct mem_cgroup *victim = NULL;
5660048c 2003 int total = 0;
04046e1a 2004 int loop = 0;
9d11ea9f 2005 unsigned long excess;
185efc0f 2006 unsigned long nr_scanned;
527a5ec9
JW
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
9d11ea9f 2011
c0ff4b85 2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2013
4e416953 2014 while (1) {
527a5ec9 2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2016 if (!victim) {
04046e1a 2017 loop++;
4e416953
BS
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
5660048c 2024 if (!total)
4e416953 2025 break;
4e416953 2026 /*
25985edc 2027 * We want to do more targeted reclaim.
4e416953
BS
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
9f3a0d09 2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2034 break;
4e416953 2035 }
9f3a0d09 2036 continue;
4e416953 2037 }
5660048c 2038 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2039 continue;
5660048c
JW
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2044 break;
6d61ef40 2045 }
9f3a0d09 2046 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2047 return total;
6d61ef40
BS
2048}
2049
867578cb
KH
2050/*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
1af8efe9 2053 * Has to be called with memcg_oom_lock
867578cb 2054 */
c0ff4b85 2055static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2056{
79dfdacc 2057 struct mem_cgroup *iter, *failed = NULL;
a636b327 2058
9f3a0d09 2059 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2060 if (iter->oom_lock) {
79dfdacc
MH
2061 /*
2062 * this subtree of our hierarchy is already locked
2063 * so we cannot give a lock.
2064 */
79dfdacc 2065 failed = iter;
9f3a0d09
JW
2066 mem_cgroup_iter_break(memcg, iter);
2067 break;
23751be0
JW
2068 } else
2069 iter->oom_lock = true;
7d74b06f 2070 }
867578cb 2071
79dfdacc 2072 if (!failed)
23751be0 2073 return true;
79dfdacc
MH
2074
2075 /*
2076 * OK, we failed to lock the whole subtree so we have to clean up
2077 * what we set up to the failing subtree
2078 */
9f3a0d09 2079 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2080 if (iter == failed) {
9f3a0d09
JW
2081 mem_cgroup_iter_break(memcg, iter);
2082 break;
79dfdacc
MH
2083 }
2084 iter->oom_lock = false;
2085 }
23751be0 2086 return false;
a636b327 2087}
0b7f569e 2088
79dfdacc 2089/*
1af8efe9 2090 * Has to be called with memcg_oom_lock
79dfdacc 2091 */
c0ff4b85 2092static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2093{
7d74b06f
KH
2094 struct mem_cgroup *iter;
2095
c0ff4b85 2096 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2097 iter->oom_lock = false;
2098 return 0;
2099}
2100
c0ff4b85 2101static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2102{
2103 struct mem_cgroup *iter;
2104
c0ff4b85 2105 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2106 atomic_inc(&iter->under_oom);
2107}
2108
c0ff4b85 2109static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2110{
2111 struct mem_cgroup *iter;
2112
867578cb
KH
2113 /*
2114 * When a new child is created while the hierarchy is under oom,
2115 * mem_cgroup_oom_lock() may not be called. We have to use
2116 * atomic_add_unless() here.
2117 */
c0ff4b85 2118 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2119 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2120}
2121
1af8efe9 2122static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2123static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2124
dc98df5a 2125struct oom_wait_info {
d79154bb 2126 struct mem_cgroup *memcg;
dc98df5a
KH
2127 wait_queue_t wait;
2128};
2129
2130static int memcg_oom_wake_function(wait_queue_t *wait,
2131 unsigned mode, int sync, void *arg)
2132{
d79154bb
HD
2133 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2134 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2135 struct oom_wait_info *oom_wait_info;
2136
2137 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2138 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2139
dc98df5a 2140 /*
d79154bb 2141 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2142 * Then we can use css_is_ancestor without taking care of RCU.
2143 */
c0ff4b85
R
2144 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2145 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2146 return 0;
dc98df5a
KH
2147 return autoremove_wake_function(wait, mode, sync, arg);
2148}
2149
c0ff4b85 2150static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2151{
c0ff4b85
R
2152 /* for filtering, pass "memcg" as argument. */
2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2154}
2155
c0ff4b85 2156static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2157{
c0ff4b85
R
2158 if (memcg && atomic_read(&memcg->under_oom))
2159 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2160}
2161
867578cb
KH
2162/*
2163 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2164 */
6bbda35c
KS
2165static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2166 int order)
0b7f569e 2167{
dc98df5a 2168 struct oom_wait_info owait;
3c11ecf4 2169 bool locked, need_to_kill;
867578cb 2170
d79154bb 2171 owait.memcg = memcg;
dc98df5a
KH
2172 owait.wait.flags = 0;
2173 owait.wait.func = memcg_oom_wake_function;
2174 owait.wait.private = current;
2175 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2176 need_to_kill = true;
c0ff4b85 2177 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2178
c0ff4b85 2179 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2180 spin_lock(&memcg_oom_lock);
c0ff4b85 2181 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2182 /*
2183 * Even if signal_pending(), we can't quit charge() loop without
2184 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2185 * under OOM is always welcomed, use TASK_KILLABLE here.
2186 */
3c11ecf4 2187 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2188 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2189 need_to_kill = false;
2190 if (locked)
c0ff4b85 2191 mem_cgroup_oom_notify(memcg);
1af8efe9 2192 spin_unlock(&memcg_oom_lock);
867578cb 2193
3c11ecf4
KH
2194 if (need_to_kill) {
2195 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2196 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2197 } else {
867578cb 2198 schedule();
dc98df5a 2199 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2200 }
1af8efe9 2201 spin_lock(&memcg_oom_lock);
79dfdacc 2202 if (locked)
c0ff4b85
R
2203 mem_cgroup_oom_unlock(memcg);
2204 memcg_wakeup_oom(memcg);
1af8efe9 2205 spin_unlock(&memcg_oom_lock);
867578cb 2206
c0ff4b85 2207 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2208
867578cb
KH
2209 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2210 return false;
2211 /* Give chance to dying process */
715a5ee8 2212 schedule_timeout_uninterruptible(1);
867578cb 2213 return true;
0b7f569e
KH
2214}
2215
d69b042f
BS
2216/*
2217 * Currently used to update mapped file statistics, but the routine can be
2218 * generalized to update other statistics as well.
32047e2a
KH
2219 *
2220 * Notes: Race condition
2221 *
2222 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2223 * it tends to be costly. But considering some conditions, we doesn't need
2224 * to do so _always_.
2225 *
2226 * Considering "charge", lock_page_cgroup() is not required because all
2227 * file-stat operations happen after a page is attached to radix-tree. There
2228 * are no race with "charge".
2229 *
2230 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2231 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2232 * if there are race with "uncharge". Statistics itself is properly handled
2233 * by flags.
2234 *
2235 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2236 * small, we check mm->moving_account and detect there are possibility of race
2237 * If there is, we take a lock.
d69b042f 2238 */
26174efd 2239
89c06bd5
KH
2240void __mem_cgroup_begin_update_page_stat(struct page *page,
2241 bool *locked, unsigned long *flags)
2242{
2243 struct mem_cgroup *memcg;
2244 struct page_cgroup *pc;
2245
2246 pc = lookup_page_cgroup(page);
2247again:
2248 memcg = pc->mem_cgroup;
2249 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2250 return;
2251 /*
2252 * If this memory cgroup is not under account moving, we don't
da92c47d 2253 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2254 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2255 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2256 */
13fd1dd9 2257 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2258 return;
2259
2260 move_lock_mem_cgroup(memcg, flags);
2261 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2262 move_unlock_mem_cgroup(memcg, flags);
2263 goto again;
2264 }
2265 *locked = true;
2266}
2267
2268void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2269{
2270 struct page_cgroup *pc = lookup_page_cgroup(page);
2271
2272 /*
2273 * It's guaranteed that pc->mem_cgroup never changes while
2274 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2275 * should take move_lock_mem_cgroup().
89c06bd5
KH
2276 */
2277 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2278}
2279
2a7106f2
GT
2280void mem_cgroup_update_page_stat(struct page *page,
2281 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2282{
c0ff4b85 2283 struct mem_cgroup *memcg;
32047e2a 2284 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2285 unsigned long uninitialized_var(flags);
d69b042f 2286
cfa44946 2287 if (mem_cgroup_disabled())
d69b042f 2288 return;
89c06bd5 2289
c0ff4b85
R
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2292 return;
26174efd 2293
26174efd 2294 switch (idx) {
2a7106f2 2295 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2296 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2297 break;
2298 default:
2299 BUG();
8725d541 2300 }
d69b042f 2301
c0ff4b85 2302 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2303}
26174efd 2304
cdec2e42
KH
2305/*
2306 * size of first charge trial. "32" comes from vmscan.c's magic value.
2307 * TODO: maybe necessary to use big numbers in big irons.
2308 */
7ec99d62 2309#define CHARGE_BATCH 32U
cdec2e42
KH
2310struct memcg_stock_pcp {
2311 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2312 unsigned int nr_pages;
cdec2e42 2313 struct work_struct work;
26fe6168 2314 unsigned long flags;
a0db00fc 2315#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2316};
2317static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2318static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2319
a0956d54
SS
2320/**
2321 * consume_stock: Try to consume stocked charge on this cpu.
2322 * @memcg: memcg to consume from.
2323 * @nr_pages: how many pages to charge.
2324 *
2325 * The charges will only happen if @memcg matches the current cpu's memcg
2326 * stock, and at least @nr_pages are available in that stock. Failure to
2327 * service an allocation will refill the stock.
2328 *
2329 * returns true if successful, false otherwise.
cdec2e42 2330 */
a0956d54 2331static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2332{
2333 struct memcg_stock_pcp *stock;
2334 bool ret = true;
2335
a0956d54
SS
2336 if (nr_pages > CHARGE_BATCH)
2337 return false;
2338
cdec2e42 2339 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2340 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2341 stock->nr_pages -= nr_pages;
cdec2e42
KH
2342 else /* need to call res_counter_charge */
2343 ret = false;
2344 put_cpu_var(memcg_stock);
2345 return ret;
2346}
2347
2348/*
2349 * Returns stocks cached in percpu to res_counter and reset cached information.
2350 */
2351static void drain_stock(struct memcg_stock_pcp *stock)
2352{
2353 struct mem_cgroup *old = stock->cached;
2354
11c9ea4e
JW
2355 if (stock->nr_pages) {
2356 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2357
2358 res_counter_uncharge(&old->res, bytes);
cdec2e42 2359 if (do_swap_account)
11c9ea4e
JW
2360 res_counter_uncharge(&old->memsw, bytes);
2361 stock->nr_pages = 0;
cdec2e42
KH
2362 }
2363 stock->cached = NULL;
cdec2e42
KH
2364}
2365
2366/*
2367 * This must be called under preempt disabled or must be called by
2368 * a thread which is pinned to local cpu.
2369 */
2370static void drain_local_stock(struct work_struct *dummy)
2371{
2372 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2373 drain_stock(stock);
26fe6168 2374 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2375}
2376
e4777496
MH
2377static void __init memcg_stock_init(void)
2378{
2379 int cpu;
2380
2381 for_each_possible_cpu(cpu) {
2382 struct memcg_stock_pcp *stock =
2383 &per_cpu(memcg_stock, cpu);
2384 INIT_WORK(&stock->work, drain_local_stock);
2385 }
2386}
2387
cdec2e42
KH
2388/*
2389 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2390 * This will be consumed by consume_stock() function, later.
cdec2e42 2391 */
c0ff4b85 2392static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2393{
2394 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2395
c0ff4b85 2396 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2397 drain_stock(stock);
c0ff4b85 2398 stock->cached = memcg;
cdec2e42 2399 }
11c9ea4e 2400 stock->nr_pages += nr_pages;
cdec2e42
KH
2401 put_cpu_var(memcg_stock);
2402}
2403
2404/*
c0ff4b85 2405 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2406 * of the hierarchy under it. sync flag says whether we should block
2407 * until the work is done.
cdec2e42 2408 */
c0ff4b85 2409static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2410{
26fe6168 2411 int cpu, curcpu;
d38144b7 2412
cdec2e42 2413 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2414 get_online_cpus();
5af12d0e 2415 curcpu = get_cpu();
cdec2e42
KH
2416 for_each_online_cpu(cpu) {
2417 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2418 struct mem_cgroup *memcg;
26fe6168 2419
c0ff4b85
R
2420 memcg = stock->cached;
2421 if (!memcg || !stock->nr_pages)
26fe6168 2422 continue;
c0ff4b85 2423 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2424 continue;
d1a05b69
MH
2425 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2426 if (cpu == curcpu)
2427 drain_local_stock(&stock->work);
2428 else
2429 schedule_work_on(cpu, &stock->work);
2430 }
cdec2e42 2431 }
5af12d0e 2432 put_cpu();
d38144b7
MH
2433
2434 if (!sync)
2435 goto out;
2436
2437 for_each_online_cpu(cpu) {
2438 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2439 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2440 flush_work(&stock->work);
2441 }
2442out:
cdec2e42 2443 put_online_cpus();
d38144b7
MH
2444}
2445
2446/*
2447 * Tries to drain stocked charges in other cpus. This function is asynchronous
2448 * and just put a work per cpu for draining localy on each cpu. Caller can
2449 * expects some charges will be back to res_counter later but cannot wait for
2450 * it.
2451 */
c0ff4b85 2452static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2453{
9f50fad6
MH
2454 /*
2455 * If someone calls draining, avoid adding more kworker runs.
2456 */
2457 if (!mutex_trylock(&percpu_charge_mutex))
2458 return;
c0ff4b85 2459 drain_all_stock(root_memcg, false);
9f50fad6 2460 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2461}
2462
2463/* This is a synchronous drain interface. */
c0ff4b85 2464static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2465{
2466 /* called when force_empty is called */
9f50fad6 2467 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2468 drain_all_stock(root_memcg, true);
9f50fad6 2469 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2470}
2471
711d3d2c
KH
2472/*
2473 * This function drains percpu counter value from DEAD cpu and
2474 * move it to local cpu. Note that this function can be preempted.
2475 */
c0ff4b85 2476static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2477{
2478 int i;
2479
c0ff4b85 2480 spin_lock(&memcg->pcp_counter_lock);
6104621d 2481 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2482 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2483
c0ff4b85
R
2484 per_cpu(memcg->stat->count[i], cpu) = 0;
2485 memcg->nocpu_base.count[i] += x;
711d3d2c 2486 }
e9f8974f 2487 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2488 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2489
c0ff4b85
R
2490 per_cpu(memcg->stat->events[i], cpu) = 0;
2491 memcg->nocpu_base.events[i] += x;
e9f8974f 2492 }
c0ff4b85 2493 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2494}
2495
2496static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2497 unsigned long action,
2498 void *hcpu)
2499{
2500 int cpu = (unsigned long)hcpu;
2501 struct memcg_stock_pcp *stock;
711d3d2c 2502 struct mem_cgroup *iter;
cdec2e42 2503
619d094b 2504 if (action == CPU_ONLINE)
1489ebad 2505 return NOTIFY_OK;
1489ebad 2506
d833049b 2507 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2508 return NOTIFY_OK;
711d3d2c 2509
9f3a0d09 2510 for_each_mem_cgroup(iter)
711d3d2c
KH
2511 mem_cgroup_drain_pcp_counter(iter, cpu);
2512
cdec2e42
KH
2513 stock = &per_cpu(memcg_stock, cpu);
2514 drain_stock(stock);
2515 return NOTIFY_OK;
2516}
2517
4b534334
KH
2518
2519/* See __mem_cgroup_try_charge() for details */
2520enum {
2521 CHARGE_OK, /* success */
2522 CHARGE_RETRY, /* need to retry but retry is not bad */
2523 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2524 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2525 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2526};
2527
c0ff4b85 2528static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2529 unsigned int nr_pages, unsigned int min_pages,
2530 bool oom_check)
4b534334 2531{
7ec99d62 2532 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2533 struct mem_cgroup *mem_over_limit;
2534 struct res_counter *fail_res;
2535 unsigned long flags = 0;
2536 int ret;
2537
c0ff4b85 2538 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2539
2540 if (likely(!ret)) {
2541 if (!do_swap_account)
2542 return CHARGE_OK;
c0ff4b85 2543 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2544 if (likely(!ret))
2545 return CHARGE_OK;
2546
c0ff4b85 2547 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2548 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2549 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2550 } else
2551 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2552 /*
9221edb7
JW
2553 * Never reclaim on behalf of optional batching, retry with a
2554 * single page instead.
2555 */
4c9c5359 2556 if (nr_pages > min_pages)
4b534334
KH
2557 return CHARGE_RETRY;
2558
2559 if (!(gfp_mask & __GFP_WAIT))
2560 return CHARGE_WOULDBLOCK;
2561
4c9c5359
SS
2562 if (gfp_mask & __GFP_NORETRY)
2563 return CHARGE_NOMEM;
2564
5660048c 2565 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2566 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2567 return CHARGE_RETRY;
4b534334 2568 /*
19942822
JW
2569 * Even though the limit is exceeded at this point, reclaim
2570 * may have been able to free some pages. Retry the charge
2571 * before killing the task.
2572 *
2573 * Only for regular pages, though: huge pages are rather
2574 * unlikely to succeed so close to the limit, and we fall back
2575 * to regular pages anyway in case of failure.
4b534334 2576 */
4c9c5359 2577 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2578 return CHARGE_RETRY;
2579
2580 /*
2581 * At task move, charge accounts can be doubly counted. So, it's
2582 * better to wait until the end of task_move if something is going on.
2583 */
2584 if (mem_cgroup_wait_acct_move(mem_over_limit))
2585 return CHARGE_RETRY;
2586
2587 /* If we don't need to call oom-killer at el, return immediately */
2588 if (!oom_check)
2589 return CHARGE_NOMEM;
2590 /* check OOM */
e845e199 2591 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2592 return CHARGE_OOM_DIE;
2593
2594 return CHARGE_RETRY;
2595}
2596
f817ed48 2597/*
38c5d72f
KH
2598 * __mem_cgroup_try_charge() does
2599 * 1. detect memcg to be charged against from passed *mm and *ptr,
2600 * 2. update res_counter
2601 * 3. call memory reclaim if necessary.
2602 *
2603 * In some special case, if the task is fatal, fatal_signal_pending() or
2604 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2605 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2606 * as possible without any hazards. 2: all pages should have a valid
2607 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2608 * pointer, that is treated as a charge to root_mem_cgroup.
2609 *
2610 * So __mem_cgroup_try_charge() will return
2611 * 0 ... on success, filling *ptr with a valid memcg pointer.
2612 * -ENOMEM ... charge failure because of resource limits.
2613 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2614 *
2615 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2616 * the oom-killer can be invoked.
8a9f3ccd 2617 */
f817ed48 2618static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2619 gfp_t gfp_mask,
7ec99d62 2620 unsigned int nr_pages,
c0ff4b85 2621 struct mem_cgroup **ptr,
7ec99d62 2622 bool oom)
8a9f3ccd 2623{
7ec99d62 2624 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2625 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2626 struct mem_cgroup *memcg = NULL;
4b534334 2627 int ret;
a636b327 2628
867578cb
KH
2629 /*
2630 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2631 * in system level. So, allow to go ahead dying process in addition to
2632 * MEMDIE process.
2633 */
2634 if (unlikely(test_thread_flag(TIF_MEMDIE)
2635 || fatal_signal_pending(current)))
2636 goto bypass;
a636b327 2637
8a9f3ccd 2638 /*
3be91277
HD
2639 * We always charge the cgroup the mm_struct belongs to.
2640 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2641 * thread group leader migrates. It's possible that mm is not
24467cac 2642 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2643 */
c0ff4b85 2644 if (!*ptr && !mm)
38c5d72f 2645 *ptr = root_mem_cgroup;
f75ca962 2646again:
c0ff4b85
R
2647 if (*ptr) { /* css should be a valid one */
2648 memcg = *ptr;
c0ff4b85 2649 if (mem_cgroup_is_root(memcg))
f75ca962 2650 goto done;
a0956d54 2651 if (consume_stock(memcg, nr_pages))
f75ca962 2652 goto done;
c0ff4b85 2653 css_get(&memcg->css);
4b534334 2654 } else {
f75ca962 2655 struct task_struct *p;
54595fe2 2656
f75ca962
KH
2657 rcu_read_lock();
2658 p = rcu_dereference(mm->owner);
f75ca962 2659 /*
ebb76ce1 2660 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2661 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2662 * race with swapoff. Then, we have small risk of mis-accouning.
2663 * But such kind of mis-account by race always happens because
2664 * we don't have cgroup_mutex(). It's overkill and we allo that
2665 * small race, here.
2666 * (*) swapoff at el will charge against mm-struct not against
2667 * task-struct. So, mm->owner can be NULL.
f75ca962 2668 */
c0ff4b85 2669 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2670 if (!memcg)
2671 memcg = root_mem_cgroup;
2672 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2673 rcu_read_unlock();
2674 goto done;
2675 }
a0956d54 2676 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2677 /*
2678 * It seems dagerous to access memcg without css_get().
2679 * But considering how consume_stok works, it's not
2680 * necessary. If consume_stock success, some charges
2681 * from this memcg are cached on this cpu. So, we
2682 * don't need to call css_get()/css_tryget() before
2683 * calling consume_stock().
2684 */
2685 rcu_read_unlock();
2686 goto done;
2687 }
2688 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2689 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2690 rcu_read_unlock();
2691 goto again;
2692 }
2693 rcu_read_unlock();
2694 }
8a9f3ccd 2695
4b534334
KH
2696 do {
2697 bool oom_check;
7a81b88c 2698
4b534334 2699 /* If killed, bypass charge */
f75ca962 2700 if (fatal_signal_pending(current)) {
c0ff4b85 2701 css_put(&memcg->css);
4b534334 2702 goto bypass;
f75ca962 2703 }
6d61ef40 2704
4b534334
KH
2705 oom_check = false;
2706 if (oom && !nr_oom_retries) {
2707 oom_check = true;
2708 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2709 }
66e1707b 2710
4c9c5359
SS
2711 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2712 oom_check);
4b534334
KH
2713 switch (ret) {
2714 case CHARGE_OK:
2715 break;
2716 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2717 batch = nr_pages;
c0ff4b85
R
2718 css_put(&memcg->css);
2719 memcg = NULL;
f75ca962 2720 goto again;
4b534334 2721 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2722 css_put(&memcg->css);
4b534334
KH
2723 goto nomem;
2724 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2725 if (!oom) {
c0ff4b85 2726 css_put(&memcg->css);
867578cb 2727 goto nomem;
f75ca962 2728 }
4b534334
KH
2729 /* If oom, we never return -ENOMEM */
2730 nr_oom_retries--;
2731 break;
2732 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2733 css_put(&memcg->css);
867578cb 2734 goto bypass;
66e1707b 2735 }
4b534334
KH
2736 } while (ret != CHARGE_OK);
2737
7ec99d62 2738 if (batch > nr_pages)
c0ff4b85
R
2739 refill_stock(memcg, batch - nr_pages);
2740 css_put(&memcg->css);
0c3e73e8 2741done:
c0ff4b85 2742 *ptr = memcg;
7a81b88c
KH
2743 return 0;
2744nomem:
c0ff4b85 2745 *ptr = NULL;
7a81b88c 2746 return -ENOMEM;
867578cb 2747bypass:
38c5d72f
KH
2748 *ptr = root_mem_cgroup;
2749 return -EINTR;
7a81b88c 2750}
8a9f3ccd 2751
a3032a2c
DN
2752/*
2753 * Somemtimes we have to undo a charge we got by try_charge().
2754 * This function is for that and do uncharge, put css's refcnt.
2755 * gotten by try_charge().
2756 */
c0ff4b85 2757static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2758 unsigned int nr_pages)
a3032a2c 2759{
c0ff4b85 2760 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2761 unsigned long bytes = nr_pages * PAGE_SIZE;
2762
c0ff4b85 2763 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2764 if (do_swap_account)
c0ff4b85 2765 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2766 }
854ffa8d
DN
2767}
2768
d01dd17f
KH
2769/*
2770 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2771 * This is useful when moving usage to parent cgroup.
2772 */
2773static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2774 unsigned int nr_pages)
2775{
2776 unsigned long bytes = nr_pages * PAGE_SIZE;
2777
2778 if (mem_cgroup_is_root(memcg))
2779 return;
2780
2781 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2782 if (do_swap_account)
2783 res_counter_uncharge_until(&memcg->memsw,
2784 memcg->memsw.parent, bytes);
2785}
2786
a3b2d692
KH
2787/*
2788 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2789 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2790 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2791 * called against removed memcg.)
a3b2d692
KH
2792 */
2793static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2794{
2795 struct cgroup_subsys_state *css;
2796
2797 /* ID 0 is unused ID */
2798 if (!id)
2799 return NULL;
2800 css = css_lookup(&mem_cgroup_subsys, id);
2801 if (!css)
2802 return NULL;
b2145145 2803 return mem_cgroup_from_css(css);
a3b2d692
KH
2804}
2805
e42d9d5d 2806struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2807{
c0ff4b85 2808 struct mem_cgroup *memcg = NULL;
3c776e64 2809 struct page_cgroup *pc;
a3b2d692 2810 unsigned short id;
b5a84319
KH
2811 swp_entry_t ent;
2812
3c776e64
DN
2813 VM_BUG_ON(!PageLocked(page));
2814
3c776e64 2815 pc = lookup_page_cgroup(page);
c0bd3f63 2816 lock_page_cgroup(pc);
a3b2d692 2817 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2818 memcg = pc->mem_cgroup;
2819 if (memcg && !css_tryget(&memcg->css))
2820 memcg = NULL;
e42d9d5d 2821 } else if (PageSwapCache(page)) {
3c776e64 2822 ent.val = page_private(page);
9fb4b7cc 2823 id = lookup_swap_cgroup_id(ent);
a3b2d692 2824 rcu_read_lock();
c0ff4b85
R
2825 memcg = mem_cgroup_lookup(id);
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
a3b2d692 2828 rcu_read_unlock();
3c776e64 2829 }
c0bd3f63 2830 unlock_page_cgroup(pc);
c0ff4b85 2831 return memcg;
b5a84319
KH
2832}
2833
c0ff4b85 2834static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2835 struct page *page,
7ec99d62 2836 unsigned int nr_pages,
9ce70c02
HD
2837 enum charge_type ctype,
2838 bool lrucare)
7a81b88c 2839{
ce587e65 2840 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2841 struct zone *uninitialized_var(zone);
fa9add64 2842 struct lruvec *lruvec;
9ce70c02 2843 bool was_on_lru = false;
b2402857 2844 bool anon;
9ce70c02 2845
ca3e0214 2846 lock_page_cgroup(pc);
90deb788 2847 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2848 /*
2849 * we don't need page_cgroup_lock about tail pages, becase they are not
2850 * accessed by any other context at this point.
2851 */
9ce70c02
HD
2852
2853 /*
2854 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2855 * may already be on some other mem_cgroup's LRU. Take care of it.
2856 */
2857 if (lrucare) {
2858 zone = page_zone(page);
2859 spin_lock_irq(&zone->lru_lock);
2860 if (PageLRU(page)) {
fa9add64 2861 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2862 ClearPageLRU(page);
fa9add64 2863 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2864 was_on_lru = true;
2865 }
2866 }
2867
c0ff4b85 2868 pc->mem_cgroup = memcg;
261fb61a
KH
2869 /*
2870 * We access a page_cgroup asynchronously without lock_page_cgroup().
2871 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2872 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2873 * before USED bit, we need memory barrier here.
2874 * See mem_cgroup_add_lru_list(), etc.
2875 */
08e552c6 2876 smp_wmb();
b2402857 2877 SetPageCgroupUsed(pc);
3be91277 2878
9ce70c02
HD
2879 if (lrucare) {
2880 if (was_on_lru) {
fa9add64 2881 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2882 VM_BUG_ON(PageLRU(page));
2883 SetPageLRU(page);
fa9add64 2884 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2885 }
2886 spin_unlock_irq(&zone->lru_lock);
2887 }
2888
41326c17 2889 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2890 anon = true;
2891 else
2892 anon = false;
2893
2894 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2895 unlock_page_cgroup(pc);
9ce70c02 2896
430e4863
KH
2897 /*
2898 * "charge_statistics" updated event counter. Then, check it.
2899 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2900 * if they exceeds softlimit.
2901 */
c0ff4b85 2902 memcg_check_events(memcg, page);
7a81b88c 2903}
66e1707b 2904
7cf27982
GC
2905static DEFINE_MUTEX(set_limit_mutex);
2906
7ae1e1d0
GC
2907#ifdef CONFIG_MEMCG_KMEM
2908static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2909{
2910 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2911 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2912}
2913
1f458cbf
GC
2914/*
2915 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2916 * in the memcg_cache_params struct.
2917 */
2918static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2919{
2920 struct kmem_cache *cachep;
2921
2922 VM_BUG_ON(p->is_root_cache);
2923 cachep = p->root_cache;
2924 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2925}
2926
749c5415
GC
2927#ifdef CONFIG_SLABINFO
2928static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2929 struct seq_file *m)
2930{
2931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2932 struct memcg_cache_params *params;
2933
2934 if (!memcg_can_account_kmem(memcg))
2935 return -EIO;
2936
2937 print_slabinfo_header(m);
2938
2939 mutex_lock(&memcg->slab_caches_mutex);
2940 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2941 cache_show(memcg_params_to_cache(params), m);
2942 mutex_unlock(&memcg->slab_caches_mutex);
2943
2944 return 0;
2945}
2946#endif
2947
7ae1e1d0
GC
2948static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2949{
2950 struct res_counter *fail_res;
2951 struct mem_cgroup *_memcg;
2952 int ret = 0;
2953 bool may_oom;
2954
2955 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2956 if (ret)
2957 return ret;
2958
2959 /*
2960 * Conditions under which we can wait for the oom_killer. Those are
2961 * the same conditions tested by the core page allocator
2962 */
2963 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2964
2965 _memcg = memcg;
2966 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2967 &_memcg, may_oom);
2968
2969 if (ret == -EINTR) {
2970 /*
2971 * __mem_cgroup_try_charge() chosed to bypass to root due to
2972 * OOM kill or fatal signal. Since our only options are to
2973 * either fail the allocation or charge it to this cgroup, do
2974 * it as a temporary condition. But we can't fail. From a
2975 * kmem/slab perspective, the cache has already been selected,
2976 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2977 * our minds.
2978 *
2979 * This condition will only trigger if the task entered
2980 * memcg_charge_kmem in a sane state, but was OOM-killed during
2981 * __mem_cgroup_try_charge() above. Tasks that were already
2982 * dying when the allocation triggers should have been already
2983 * directed to the root cgroup in memcontrol.h
2984 */
2985 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2986 if (do_swap_account)
2987 res_counter_charge_nofail(&memcg->memsw, size,
2988 &fail_res);
2989 ret = 0;
2990 } else if (ret)
2991 res_counter_uncharge(&memcg->kmem, size);
2992
2993 return ret;
2994}
2995
2996static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2997{
7ae1e1d0
GC
2998 res_counter_uncharge(&memcg->res, size);
2999 if (do_swap_account)
3000 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3001
3002 /* Not down to 0 */
3003 if (res_counter_uncharge(&memcg->kmem, size))
3004 return;
3005
3006 if (memcg_kmem_test_and_clear_dead(memcg))
3007 mem_cgroup_put(memcg);
7ae1e1d0
GC
3008}
3009
2633d7a0
GC
3010void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3011{
3012 if (!memcg)
3013 return;
3014
3015 mutex_lock(&memcg->slab_caches_mutex);
3016 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3017 mutex_unlock(&memcg->slab_caches_mutex);
3018}
3019
3020/*
3021 * helper for acessing a memcg's index. It will be used as an index in the
3022 * child cache array in kmem_cache, and also to derive its name. This function
3023 * will return -1 when this is not a kmem-limited memcg.
3024 */
3025int memcg_cache_id(struct mem_cgroup *memcg)
3026{
3027 return memcg ? memcg->kmemcg_id : -1;
3028}
3029
55007d84
GC
3030/*
3031 * This ends up being protected by the set_limit mutex, during normal
3032 * operation, because that is its main call site.
3033 *
3034 * But when we create a new cache, we can call this as well if its parent
3035 * is kmem-limited. That will have to hold set_limit_mutex as well.
3036 */
3037int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3038{
3039 int num, ret;
3040
3041 num = ida_simple_get(&kmem_limited_groups,
3042 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3043 if (num < 0)
3044 return num;
3045 /*
3046 * After this point, kmem_accounted (that we test atomically in
3047 * the beginning of this conditional), is no longer 0. This
3048 * guarantees only one process will set the following boolean
3049 * to true. We don't need test_and_set because we're protected
3050 * by the set_limit_mutex anyway.
3051 */
3052 memcg_kmem_set_activated(memcg);
3053
3054 ret = memcg_update_all_caches(num+1);
3055 if (ret) {
3056 ida_simple_remove(&kmem_limited_groups, num);
3057 memcg_kmem_clear_activated(memcg);
3058 return ret;
3059 }
3060
3061 memcg->kmemcg_id = num;
3062 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3063 mutex_init(&memcg->slab_caches_mutex);
3064 return 0;
3065}
3066
3067static size_t memcg_caches_array_size(int num_groups)
3068{
3069 ssize_t size;
3070 if (num_groups <= 0)
3071 return 0;
3072
3073 size = 2 * num_groups;
3074 if (size < MEMCG_CACHES_MIN_SIZE)
3075 size = MEMCG_CACHES_MIN_SIZE;
3076 else if (size > MEMCG_CACHES_MAX_SIZE)
3077 size = MEMCG_CACHES_MAX_SIZE;
3078
3079 return size;
3080}
3081
3082/*
3083 * We should update the current array size iff all caches updates succeed. This
3084 * can only be done from the slab side. The slab mutex needs to be held when
3085 * calling this.
3086 */
3087void memcg_update_array_size(int num)
3088{
3089 if (num > memcg_limited_groups_array_size)
3090 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3091}
3092
15cf17d2
KK
3093static void kmem_cache_destroy_work_func(struct work_struct *w);
3094
55007d84
GC
3095int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3096{
3097 struct memcg_cache_params *cur_params = s->memcg_params;
3098
3099 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3100
3101 if (num_groups > memcg_limited_groups_array_size) {
3102 int i;
3103 ssize_t size = memcg_caches_array_size(num_groups);
3104
3105 size *= sizeof(void *);
3106 size += sizeof(struct memcg_cache_params);
3107
3108 s->memcg_params = kzalloc(size, GFP_KERNEL);
3109 if (!s->memcg_params) {
3110 s->memcg_params = cur_params;
3111 return -ENOMEM;
3112 }
3113
15cf17d2
KK
3114 INIT_WORK(&s->memcg_params->destroy,
3115 kmem_cache_destroy_work_func);
55007d84
GC
3116 s->memcg_params->is_root_cache = true;
3117
3118 /*
3119 * There is the chance it will be bigger than
3120 * memcg_limited_groups_array_size, if we failed an allocation
3121 * in a cache, in which case all caches updated before it, will
3122 * have a bigger array.
3123 *
3124 * But if that is the case, the data after
3125 * memcg_limited_groups_array_size is certainly unused
3126 */
3127 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3128 if (!cur_params->memcg_caches[i])
3129 continue;
3130 s->memcg_params->memcg_caches[i] =
3131 cur_params->memcg_caches[i];
3132 }
3133
3134 /*
3135 * Ideally, we would wait until all caches succeed, and only
3136 * then free the old one. But this is not worth the extra
3137 * pointer per-cache we'd have to have for this.
3138 *
3139 * It is not a big deal if some caches are left with a size
3140 * bigger than the others. And all updates will reset this
3141 * anyway.
3142 */
3143 kfree(cur_params);
3144 }
3145 return 0;
3146}
3147
943a451a
GC
3148int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3149 struct kmem_cache *root_cache)
2633d7a0
GC
3150{
3151 size_t size = sizeof(struct memcg_cache_params);
3152
3153 if (!memcg_kmem_enabled())
3154 return 0;
3155
55007d84
GC
3156 if (!memcg)
3157 size += memcg_limited_groups_array_size * sizeof(void *);
3158
2633d7a0
GC
3159 s->memcg_params = kzalloc(size, GFP_KERNEL);
3160 if (!s->memcg_params)
3161 return -ENOMEM;
3162
15cf17d2
KK
3163 INIT_WORK(&s->memcg_params->destroy,
3164 kmem_cache_destroy_work_func);
943a451a 3165 if (memcg) {
2633d7a0 3166 s->memcg_params->memcg = memcg;
943a451a 3167 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3168 } else
3169 s->memcg_params->is_root_cache = true;
3170
2633d7a0
GC
3171 return 0;
3172}
3173
3174void memcg_release_cache(struct kmem_cache *s)
3175{
d7f25f8a
GC
3176 struct kmem_cache *root;
3177 struct mem_cgroup *memcg;
3178 int id;
3179
3180 /*
3181 * This happens, for instance, when a root cache goes away before we
3182 * add any memcg.
3183 */
3184 if (!s->memcg_params)
3185 return;
3186
3187 if (s->memcg_params->is_root_cache)
3188 goto out;
3189
3190 memcg = s->memcg_params->memcg;
3191 id = memcg_cache_id(memcg);
3192
3193 root = s->memcg_params->root_cache;
3194 root->memcg_params->memcg_caches[id] = NULL;
3195 mem_cgroup_put(memcg);
3196
3197 mutex_lock(&memcg->slab_caches_mutex);
3198 list_del(&s->memcg_params->list);
3199 mutex_unlock(&memcg->slab_caches_mutex);
3200
3201out:
2633d7a0
GC
3202 kfree(s->memcg_params);
3203}
3204
0e9d92f2
GC
3205/*
3206 * During the creation a new cache, we need to disable our accounting mechanism
3207 * altogether. This is true even if we are not creating, but rather just
3208 * enqueing new caches to be created.
3209 *
3210 * This is because that process will trigger allocations; some visible, like
3211 * explicit kmallocs to auxiliary data structures, name strings and internal
3212 * cache structures; some well concealed, like INIT_WORK() that can allocate
3213 * objects during debug.
3214 *
3215 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3216 * to it. This may not be a bounded recursion: since the first cache creation
3217 * failed to complete (waiting on the allocation), we'll just try to create the
3218 * cache again, failing at the same point.
3219 *
3220 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3221 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3222 * inside the following two functions.
3223 */
3224static inline void memcg_stop_kmem_account(void)
3225{
3226 VM_BUG_ON(!current->mm);
3227 current->memcg_kmem_skip_account++;
3228}
3229
3230static inline void memcg_resume_kmem_account(void)
3231{
3232 VM_BUG_ON(!current->mm);
3233 current->memcg_kmem_skip_account--;
3234}
3235
1f458cbf
GC
3236static void kmem_cache_destroy_work_func(struct work_struct *w)
3237{
3238 struct kmem_cache *cachep;
3239 struct memcg_cache_params *p;
3240
3241 p = container_of(w, struct memcg_cache_params, destroy);
3242
3243 cachep = memcg_params_to_cache(p);
3244
22933152
GC
3245 /*
3246 * If we get down to 0 after shrink, we could delete right away.
3247 * However, memcg_release_pages() already puts us back in the workqueue
3248 * in that case. If we proceed deleting, we'll get a dangling
3249 * reference, and removing the object from the workqueue in that case
3250 * is unnecessary complication. We are not a fast path.
3251 *
3252 * Note that this case is fundamentally different from racing with
3253 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3254 * kmem_cache_shrink, not only we would be reinserting a dead cache
3255 * into the queue, but doing so from inside the worker racing to
3256 * destroy it.
3257 *
3258 * So if we aren't down to zero, we'll just schedule a worker and try
3259 * again
3260 */
3261 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3262 kmem_cache_shrink(cachep);
3263 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3264 return;
3265 } else
1f458cbf
GC
3266 kmem_cache_destroy(cachep);
3267}
3268
3269void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3270{
3271 if (!cachep->memcg_params->dead)
3272 return;
3273
22933152
GC
3274 /*
3275 * There are many ways in which we can get here.
3276 *
3277 * We can get to a memory-pressure situation while the delayed work is
3278 * still pending to run. The vmscan shrinkers can then release all
3279 * cache memory and get us to destruction. If this is the case, we'll
3280 * be executed twice, which is a bug (the second time will execute over
3281 * bogus data). In this case, cancelling the work should be fine.
3282 *
3283 * But we can also get here from the worker itself, if
3284 * kmem_cache_shrink is enough to shake all the remaining objects and
3285 * get the page count to 0. In this case, we'll deadlock if we try to
3286 * cancel the work (the worker runs with an internal lock held, which
3287 * is the same lock we would hold for cancel_work_sync().)
3288 *
3289 * Since we can't possibly know who got us here, just refrain from
3290 * running if there is already work pending
3291 */
3292 if (work_pending(&cachep->memcg_params->destroy))
3293 return;
1f458cbf
GC
3294 /*
3295 * We have to defer the actual destroying to a workqueue, because
3296 * we might currently be in a context that cannot sleep.
3297 */
3298 schedule_work(&cachep->memcg_params->destroy);
3299}
3300
d7f25f8a
GC
3301static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3302{
3303 char *name;
3304 struct dentry *dentry;
3305
3306 rcu_read_lock();
3307 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3308 rcu_read_unlock();
3309
3310 BUG_ON(dentry == NULL);
3311
3312 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3313 memcg_cache_id(memcg), dentry->d_name.name);
3314
3315 return name;
3316}
3317
3318static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3319 struct kmem_cache *s)
3320{
3321 char *name;
3322 struct kmem_cache *new;
3323
3324 name = memcg_cache_name(memcg, s);
3325 if (!name)
3326 return NULL;
3327
3328 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
943a451a 3329 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3330
d79923fa
GC
3331 if (new)
3332 new->allocflags |= __GFP_KMEMCG;
3333
d7f25f8a
GC
3334 kfree(name);
3335 return new;
3336}
3337
3338/*
3339 * This lock protects updaters, not readers. We want readers to be as fast as
3340 * they can, and they will either see NULL or a valid cache value. Our model
3341 * allow them to see NULL, in which case the root memcg will be selected.
3342 *
3343 * We need this lock because multiple allocations to the same cache from a non
3344 * will span more than one worker. Only one of them can create the cache.
3345 */
3346static DEFINE_MUTEX(memcg_cache_mutex);
3347static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3348 struct kmem_cache *cachep)
3349{
3350 struct kmem_cache *new_cachep;
3351 int idx;
3352
3353 BUG_ON(!memcg_can_account_kmem(memcg));
3354
3355 idx = memcg_cache_id(memcg);
3356
3357 mutex_lock(&memcg_cache_mutex);
3358 new_cachep = cachep->memcg_params->memcg_caches[idx];
3359 if (new_cachep)
3360 goto out;
3361
3362 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3363 if (new_cachep == NULL) {
3364 new_cachep = cachep;
3365 goto out;
3366 }
3367
3368 mem_cgroup_get(memcg);
1f458cbf 3369 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3370
3371 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3372 /*
3373 * the readers won't lock, make sure everybody sees the updated value,
3374 * so they won't put stuff in the queue again for no reason
3375 */
3376 wmb();
3377out:
3378 mutex_unlock(&memcg_cache_mutex);
3379 return new_cachep;
3380}
3381
7cf27982
GC
3382void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3383{
3384 struct kmem_cache *c;
3385 int i;
3386
3387 if (!s->memcg_params)
3388 return;
3389 if (!s->memcg_params->is_root_cache)
3390 return;
3391
3392 /*
3393 * If the cache is being destroyed, we trust that there is no one else
3394 * requesting objects from it. Even if there are, the sanity checks in
3395 * kmem_cache_destroy should caught this ill-case.
3396 *
3397 * Still, we don't want anyone else freeing memcg_caches under our
3398 * noses, which can happen if a new memcg comes to life. As usual,
3399 * we'll take the set_limit_mutex to protect ourselves against this.
3400 */
3401 mutex_lock(&set_limit_mutex);
3402 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3403 c = s->memcg_params->memcg_caches[i];
3404 if (!c)
3405 continue;
3406
3407 /*
3408 * We will now manually delete the caches, so to avoid races
3409 * we need to cancel all pending destruction workers and
3410 * proceed with destruction ourselves.
3411 *
3412 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3413 * and that could spawn the workers again: it is likely that
3414 * the cache still have active pages until this very moment.
3415 * This would lead us back to mem_cgroup_destroy_cache.
3416 *
3417 * But that will not execute at all if the "dead" flag is not
3418 * set, so flip it down to guarantee we are in control.
3419 */
3420 c->memcg_params->dead = false;
22933152 3421 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3422 kmem_cache_destroy(c);
3423 }
3424 mutex_unlock(&set_limit_mutex);
3425}
3426
d7f25f8a
GC
3427struct create_work {
3428 struct mem_cgroup *memcg;
3429 struct kmem_cache *cachep;
3430 struct work_struct work;
3431};
3432
1f458cbf
GC
3433static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3434{
3435 struct kmem_cache *cachep;
3436 struct memcg_cache_params *params;
3437
3438 if (!memcg_kmem_is_active(memcg))
3439 return;
3440
3441 mutex_lock(&memcg->slab_caches_mutex);
3442 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3443 cachep = memcg_params_to_cache(params);
3444 cachep->memcg_params->dead = true;
1f458cbf
GC
3445 schedule_work(&cachep->memcg_params->destroy);
3446 }
3447 mutex_unlock(&memcg->slab_caches_mutex);
3448}
3449
d7f25f8a
GC
3450static void memcg_create_cache_work_func(struct work_struct *w)
3451{
3452 struct create_work *cw;
3453
3454 cw = container_of(w, struct create_work, work);
3455 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3456 /* Drop the reference gotten when we enqueued. */
3457 css_put(&cw->memcg->css);
3458 kfree(cw);
3459}
3460
3461/*
3462 * Enqueue the creation of a per-memcg kmem_cache.
3463 * Called with rcu_read_lock.
3464 */
0e9d92f2
GC
3465static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3466 struct kmem_cache *cachep)
d7f25f8a
GC
3467{
3468 struct create_work *cw;
3469
3470 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3471 if (cw == NULL)
3472 return;
3473
3474 /* The corresponding put will be done in the workqueue. */
3475 if (!css_tryget(&memcg->css)) {
3476 kfree(cw);
3477 return;
3478 }
3479
3480 cw->memcg = memcg;
3481 cw->cachep = cachep;
3482
3483 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3484 schedule_work(&cw->work);
3485}
3486
0e9d92f2
GC
3487static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3488 struct kmem_cache *cachep)
3489{
3490 /*
3491 * We need to stop accounting when we kmalloc, because if the
3492 * corresponding kmalloc cache is not yet created, the first allocation
3493 * in __memcg_create_cache_enqueue will recurse.
3494 *
3495 * However, it is better to enclose the whole function. Depending on
3496 * the debugging options enabled, INIT_WORK(), for instance, can
3497 * trigger an allocation. This too, will make us recurse. Because at
3498 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3499 * the safest choice is to do it like this, wrapping the whole function.
3500 */
3501 memcg_stop_kmem_account();
3502 __memcg_create_cache_enqueue(memcg, cachep);
3503 memcg_resume_kmem_account();
3504}
d7f25f8a
GC
3505/*
3506 * Return the kmem_cache we're supposed to use for a slab allocation.
3507 * We try to use the current memcg's version of the cache.
3508 *
3509 * If the cache does not exist yet, if we are the first user of it,
3510 * we either create it immediately, if possible, or create it asynchronously
3511 * in a workqueue.
3512 * In the latter case, we will let the current allocation go through with
3513 * the original cache.
3514 *
3515 * Can't be called in interrupt context or from kernel threads.
3516 * This function needs to be called with rcu_read_lock() held.
3517 */
3518struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3519 gfp_t gfp)
3520{
3521 struct mem_cgroup *memcg;
3522 int idx;
3523
3524 VM_BUG_ON(!cachep->memcg_params);
3525 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3526
0e9d92f2
GC
3527 if (!current->mm || current->memcg_kmem_skip_account)
3528 return cachep;
3529
d7f25f8a
GC
3530 rcu_read_lock();
3531 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3532 rcu_read_unlock();
3533
3534 if (!memcg_can_account_kmem(memcg))
3535 return cachep;
3536
3537 idx = memcg_cache_id(memcg);
3538
3539 /*
3540 * barrier to mare sure we're always seeing the up to date value. The
3541 * code updating memcg_caches will issue a write barrier to match this.
3542 */
3543 read_barrier_depends();
3544 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3545 /*
3546 * If we are in a safe context (can wait, and not in interrupt
3547 * context), we could be be predictable and return right away.
3548 * This would guarantee that the allocation being performed
3549 * already belongs in the new cache.
3550 *
3551 * However, there are some clashes that can arrive from locking.
3552 * For instance, because we acquire the slab_mutex while doing
3553 * kmem_cache_dup, this means no further allocation could happen
3554 * with the slab_mutex held.
3555 *
3556 * Also, because cache creation issue get_online_cpus(), this
3557 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3558 * that ends up reversed during cpu hotplug. (cpuset allocates
3559 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3560 * better to defer everything.
3561 */
3562 memcg_create_cache_enqueue(memcg, cachep);
3563 return cachep;
3564 }
3565
3566 return cachep->memcg_params->memcg_caches[idx];
3567}
3568EXPORT_SYMBOL(__memcg_kmem_get_cache);
3569
7ae1e1d0
GC
3570/*
3571 * We need to verify if the allocation against current->mm->owner's memcg is
3572 * possible for the given order. But the page is not allocated yet, so we'll
3573 * need a further commit step to do the final arrangements.
3574 *
3575 * It is possible for the task to switch cgroups in this mean time, so at
3576 * commit time, we can't rely on task conversion any longer. We'll then use
3577 * the handle argument to return to the caller which cgroup we should commit
3578 * against. We could also return the memcg directly and avoid the pointer
3579 * passing, but a boolean return value gives better semantics considering
3580 * the compiled-out case as well.
3581 *
3582 * Returning true means the allocation is possible.
3583 */
3584bool
3585__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3586{
3587 struct mem_cgroup *memcg;
3588 int ret;
3589
3590 *_memcg = NULL;
3591 memcg = try_get_mem_cgroup_from_mm(current->mm);
3592
3593 /*
3594 * very rare case described in mem_cgroup_from_task. Unfortunately there
3595 * isn't much we can do without complicating this too much, and it would
3596 * be gfp-dependent anyway. Just let it go
3597 */
3598 if (unlikely(!memcg))
3599 return true;
3600
3601 if (!memcg_can_account_kmem(memcg)) {
3602 css_put(&memcg->css);
3603 return true;
3604 }
3605
7ae1e1d0
GC
3606 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3607 if (!ret)
3608 *_memcg = memcg;
7ae1e1d0
GC
3609
3610 css_put(&memcg->css);
3611 return (ret == 0);
3612}
3613
3614void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3615 int order)
3616{
3617 struct page_cgroup *pc;
3618
3619 VM_BUG_ON(mem_cgroup_is_root(memcg));
3620
3621 /* The page allocation failed. Revert */
3622 if (!page) {
3623 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3624 return;
3625 }
3626
3627 pc = lookup_page_cgroup(page);
3628 lock_page_cgroup(pc);
3629 pc->mem_cgroup = memcg;
3630 SetPageCgroupUsed(pc);
3631 unlock_page_cgroup(pc);
3632}
3633
3634void __memcg_kmem_uncharge_pages(struct page *page, int order)
3635{
3636 struct mem_cgroup *memcg = NULL;
3637 struct page_cgroup *pc;
3638
3639
3640 pc = lookup_page_cgroup(page);
3641 /*
3642 * Fast unlocked return. Theoretically might have changed, have to
3643 * check again after locking.
3644 */
3645 if (!PageCgroupUsed(pc))
3646 return;
3647
3648 lock_page_cgroup(pc);
3649 if (PageCgroupUsed(pc)) {
3650 memcg = pc->mem_cgroup;
3651 ClearPageCgroupUsed(pc);
3652 }
3653 unlock_page_cgroup(pc);
3654
3655 /*
3656 * We trust that only if there is a memcg associated with the page, it
3657 * is a valid allocation
3658 */
3659 if (!memcg)
3660 return;
3661
3662 VM_BUG_ON(mem_cgroup_is_root(memcg));
3663 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3664}
1f458cbf
GC
3665#else
3666static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3667{
3668}
7ae1e1d0
GC
3669#endif /* CONFIG_MEMCG_KMEM */
3670
ca3e0214
KH
3671#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3672
a0db00fc 3673#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3674/*
3675 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3676 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3677 * charge/uncharge will be never happen and move_account() is done under
3678 * compound_lock(), so we don't have to take care of races.
ca3e0214 3679 */
e94c8a9c 3680void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3681{
3682 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3683 struct page_cgroup *pc;
3684 int i;
ca3e0214 3685
3d37c4a9
KH
3686 if (mem_cgroup_disabled())
3687 return;
e94c8a9c
KH
3688 for (i = 1; i < HPAGE_PMD_NR; i++) {
3689 pc = head_pc + i;
3690 pc->mem_cgroup = head_pc->mem_cgroup;
3691 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3692 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3693 }
ca3e0214 3694}
12d27107 3695#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3696
f817ed48 3697/**
de3638d9 3698 * mem_cgroup_move_account - move account of the page
5564e88b 3699 * @page: the page
7ec99d62 3700 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3701 * @pc: page_cgroup of the page.
3702 * @from: mem_cgroup which the page is moved from.
3703 * @to: mem_cgroup which the page is moved to. @from != @to.
3704 *
3705 * The caller must confirm following.
08e552c6 3706 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3707 * - compound_lock is held when nr_pages > 1
f817ed48 3708 *
2f3479b1
KH
3709 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3710 * from old cgroup.
f817ed48 3711 */
7ec99d62
JW
3712static int mem_cgroup_move_account(struct page *page,
3713 unsigned int nr_pages,
3714 struct page_cgroup *pc,
3715 struct mem_cgroup *from,
2f3479b1 3716 struct mem_cgroup *to)
f817ed48 3717{
de3638d9
JW
3718 unsigned long flags;
3719 int ret;
b2402857 3720 bool anon = PageAnon(page);
987eba66 3721
f817ed48 3722 VM_BUG_ON(from == to);
5564e88b 3723 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3724 /*
3725 * The page is isolated from LRU. So, collapse function
3726 * will not handle this page. But page splitting can happen.
3727 * Do this check under compound_page_lock(). The caller should
3728 * hold it.
3729 */
3730 ret = -EBUSY;
7ec99d62 3731 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3732 goto out;
3733
3734 lock_page_cgroup(pc);
3735
3736 ret = -EINVAL;
3737 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3738 goto unlock;
3739
312734c0 3740 move_lock_mem_cgroup(from, &flags);
f817ed48 3741
2ff76f11 3742 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3743 /* Update mapped_file data for mem_cgroup */
3744 preempt_disable();
3745 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3746 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3747 preempt_enable();
d69b042f 3748 }
b2402857 3749 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3750
854ffa8d 3751 /* caller should have done css_get */
08e552c6 3752 pc->mem_cgroup = to;
b2402857 3753 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3754 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3755 ret = 0;
3756unlock:
57f9fd7d 3757 unlock_page_cgroup(pc);
d2265e6f
KH
3758 /*
3759 * check events
3760 */
5564e88b
JW
3761 memcg_check_events(to, page);
3762 memcg_check_events(from, page);
de3638d9 3763out:
f817ed48
KH
3764 return ret;
3765}
3766
2ef37d3f
MH
3767/**
3768 * mem_cgroup_move_parent - moves page to the parent group
3769 * @page: the page to move
3770 * @pc: page_cgroup of the page
3771 * @child: page's cgroup
3772 *
3773 * move charges to its parent or the root cgroup if the group has no
3774 * parent (aka use_hierarchy==0).
3775 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3776 * mem_cgroup_move_account fails) the failure is always temporary and
3777 * it signals a race with a page removal/uncharge or migration. In the
3778 * first case the page is on the way out and it will vanish from the LRU
3779 * on the next attempt and the call should be retried later.
3780 * Isolation from the LRU fails only if page has been isolated from
3781 * the LRU since we looked at it and that usually means either global
3782 * reclaim or migration going on. The page will either get back to the
3783 * LRU or vanish.
3784 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3785 * (!PageCgroupUsed) or moved to a different group. The page will
3786 * disappear in the next attempt.
f817ed48 3787 */
5564e88b
JW
3788static int mem_cgroup_move_parent(struct page *page,
3789 struct page_cgroup *pc,
6068bf01 3790 struct mem_cgroup *child)
f817ed48 3791{
f817ed48 3792 struct mem_cgroup *parent;
7ec99d62 3793 unsigned int nr_pages;
4be4489f 3794 unsigned long uninitialized_var(flags);
f817ed48
KH
3795 int ret;
3796
d8423011 3797 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3798
57f9fd7d
DN
3799 ret = -EBUSY;
3800 if (!get_page_unless_zero(page))
3801 goto out;
3802 if (isolate_lru_page(page))
3803 goto put;
52dbb905 3804
7ec99d62 3805 nr_pages = hpage_nr_pages(page);
08e552c6 3806
cc926f78
KH
3807 parent = parent_mem_cgroup(child);
3808 /*
3809 * If no parent, move charges to root cgroup.
3810 */
3811 if (!parent)
3812 parent = root_mem_cgroup;
f817ed48 3813
2ef37d3f
MH
3814 if (nr_pages > 1) {
3815 VM_BUG_ON(!PageTransHuge(page));
987eba66 3816 flags = compound_lock_irqsave(page);
2ef37d3f 3817 }
987eba66 3818
cc926f78 3819 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3820 pc, child, parent);
cc926f78
KH
3821 if (!ret)
3822 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3823
7ec99d62 3824 if (nr_pages > 1)
987eba66 3825 compound_unlock_irqrestore(page, flags);
08e552c6 3826 putback_lru_page(page);
57f9fd7d 3827put:
40d58138 3828 put_page(page);
57f9fd7d 3829out:
f817ed48
KH
3830 return ret;
3831}
3832
7a81b88c
KH
3833/*
3834 * Charge the memory controller for page usage.
3835 * Return
3836 * 0 if the charge was successful
3837 * < 0 if the cgroup is over its limit
3838 */
3839static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3840 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3841{
c0ff4b85 3842 struct mem_cgroup *memcg = NULL;
7ec99d62 3843 unsigned int nr_pages = 1;
8493ae43 3844 bool oom = true;
7a81b88c 3845 int ret;
ec168510 3846
37c2ac78 3847 if (PageTransHuge(page)) {
7ec99d62 3848 nr_pages <<= compound_order(page);
37c2ac78 3849 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3850 /*
3851 * Never OOM-kill a process for a huge page. The
3852 * fault handler will fall back to regular pages.
3853 */
3854 oom = false;
37c2ac78 3855 }
7a81b88c 3856
c0ff4b85 3857 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3858 if (ret == -ENOMEM)
7a81b88c 3859 return ret;
ce587e65 3860 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3861 return 0;
8a9f3ccd
BS
3862}
3863
7a81b88c
KH
3864int mem_cgroup_newpage_charge(struct page *page,
3865 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3866{
f8d66542 3867 if (mem_cgroup_disabled())
cede86ac 3868 return 0;
7a0524cf
JW
3869 VM_BUG_ON(page_mapped(page));
3870 VM_BUG_ON(page->mapping && !PageAnon(page));
3871 VM_BUG_ON(!mm);
217bc319 3872 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3873 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3874}
3875
54595fe2
KH
3876/*
3877 * While swap-in, try_charge -> commit or cancel, the page is locked.
3878 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3879 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3880 * "commit()" or removed by "cancel()"
3881 */
0435a2fd
JW
3882static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3883 struct page *page,
3884 gfp_t mask,
3885 struct mem_cgroup **memcgp)
8c7c6e34 3886{
c0ff4b85 3887 struct mem_cgroup *memcg;
90deb788 3888 struct page_cgroup *pc;
54595fe2 3889 int ret;
8c7c6e34 3890
90deb788
JW
3891 pc = lookup_page_cgroup(page);
3892 /*
3893 * Every swap fault against a single page tries to charge the
3894 * page, bail as early as possible. shmem_unuse() encounters
3895 * already charged pages, too. The USED bit is protected by
3896 * the page lock, which serializes swap cache removal, which
3897 * in turn serializes uncharging.
3898 */
3899 if (PageCgroupUsed(pc))
3900 return 0;
8c7c6e34
KH
3901 if (!do_swap_account)
3902 goto charge_cur_mm;
c0ff4b85
R
3903 memcg = try_get_mem_cgroup_from_page(page);
3904 if (!memcg)
54595fe2 3905 goto charge_cur_mm;
72835c86
JW
3906 *memcgp = memcg;
3907 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3908 css_put(&memcg->css);
38c5d72f
KH
3909 if (ret == -EINTR)
3910 ret = 0;
54595fe2 3911 return ret;
8c7c6e34 3912charge_cur_mm:
38c5d72f
KH
3913 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3914 if (ret == -EINTR)
3915 ret = 0;
3916 return ret;
8c7c6e34
KH
3917}
3918
0435a2fd
JW
3919int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3920 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3921{
3922 *memcgp = NULL;
3923 if (mem_cgroup_disabled())
3924 return 0;
bdf4f4d2
JW
3925 /*
3926 * A racing thread's fault, or swapoff, may have already
3927 * updated the pte, and even removed page from swap cache: in
3928 * those cases unuse_pte()'s pte_same() test will fail; but
3929 * there's also a KSM case which does need to charge the page.
3930 */
3931 if (!PageSwapCache(page)) {
3932 int ret;
3933
3934 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3935 if (ret == -EINTR)
3936 ret = 0;
3937 return ret;
3938 }
0435a2fd
JW
3939 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3940}
3941
827a03d2
JW
3942void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3943{
3944 if (mem_cgroup_disabled())
3945 return;
3946 if (!memcg)
3947 return;
3948 __mem_cgroup_cancel_charge(memcg, 1);
3949}
3950
83aae4c7 3951static void
72835c86 3952__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3953 enum charge_type ctype)
7a81b88c 3954{
f8d66542 3955 if (mem_cgroup_disabled())
7a81b88c 3956 return;
72835c86 3957 if (!memcg)
7a81b88c 3958 return;
5a6475a4 3959
ce587e65 3960 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3961 /*
3962 * Now swap is on-memory. This means this page may be
3963 * counted both as mem and swap....double count.
03f3c433
KH
3964 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3965 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3966 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3967 */
03f3c433 3968 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3969 swp_entry_t ent = {.val = page_private(page)};
86493009 3970 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3971 }
7a81b88c
KH
3972}
3973
72835c86
JW
3974void mem_cgroup_commit_charge_swapin(struct page *page,
3975 struct mem_cgroup *memcg)
83aae4c7 3976{
72835c86 3977 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3978 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3979}
3980
827a03d2
JW
3981int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3982 gfp_t gfp_mask)
7a81b88c 3983{
827a03d2
JW
3984 struct mem_cgroup *memcg = NULL;
3985 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3986 int ret;
3987
f8d66542 3988 if (mem_cgroup_disabled())
827a03d2
JW
3989 return 0;
3990 if (PageCompound(page))
3991 return 0;
3992
827a03d2
JW
3993 if (!PageSwapCache(page))
3994 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3995 else { /* page is swapcache/shmem */
0435a2fd
JW
3996 ret = __mem_cgroup_try_charge_swapin(mm, page,
3997 gfp_mask, &memcg);
827a03d2
JW
3998 if (!ret)
3999 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4000 }
4001 return ret;
7a81b88c
KH
4002}
4003
c0ff4b85 4004static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4005 unsigned int nr_pages,
4006 const enum charge_type ctype)
569b846d
KH
4007{
4008 struct memcg_batch_info *batch = NULL;
4009 bool uncharge_memsw = true;
7ec99d62 4010
569b846d
KH
4011 /* If swapout, usage of swap doesn't decrease */
4012 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4013 uncharge_memsw = false;
569b846d
KH
4014
4015 batch = &current->memcg_batch;
4016 /*
4017 * In usual, we do css_get() when we remember memcg pointer.
4018 * But in this case, we keep res->usage until end of a series of
4019 * uncharges. Then, it's ok to ignore memcg's refcnt.
4020 */
4021 if (!batch->memcg)
c0ff4b85 4022 batch->memcg = memcg;
3c11ecf4
KH
4023 /*
4024 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4025 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4026 * the same cgroup and we have chance to coalesce uncharges.
4027 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4028 * because we want to do uncharge as soon as possible.
4029 */
4030
4031 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4032 goto direct_uncharge;
4033
7ec99d62 4034 if (nr_pages > 1)
ec168510
AA
4035 goto direct_uncharge;
4036
569b846d
KH
4037 /*
4038 * In typical case, batch->memcg == mem. This means we can
4039 * merge a series of uncharges to an uncharge of res_counter.
4040 * If not, we uncharge res_counter ony by one.
4041 */
c0ff4b85 4042 if (batch->memcg != memcg)
569b846d
KH
4043 goto direct_uncharge;
4044 /* remember freed charge and uncharge it later */
7ffd4ca7 4045 batch->nr_pages++;
569b846d 4046 if (uncharge_memsw)
7ffd4ca7 4047 batch->memsw_nr_pages++;
569b846d
KH
4048 return;
4049direct_uncharge:
c0ff4b85 4050 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4051 if (uncharge_memsw)
c0ff4b85
R
4052 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4053 if (unlikely(batch->memcg != memcg))
4054 memcg_oom_recover(memcg);
569b846d 4055}
7a81b88c 4056
8a9f3ccd 4057/*
69029cd5 4058 * uncharge if !page_mapped(page)
8a9f3ccd 4059 */
8c7c6e34 4060static struct mem_cgroup *
0030f535
JW
4061__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4062 bool end_migration)
8a9f3ccd 4063{
c0ff4b85 4064 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4065 unsigned int nr_pages = 1;
4066 struct page_cgroup *pc;
b2402857 4067 bool anon;
8a9f3ccd 4068
f8d66542 4069 if (mem_cgroup_disabled())
8c7c6e34 4070 return NULL;
4077960e 4071
0c59b89c 4072 VM_BUG_ON(PageSwapCache(page));
d13d1443 4073
37c2ac78 4074 if (PageTransHuge(page)) {
7ec99d62 4075 nr_pages <<= compound_order(page);
37c2ac78
AA
4076 VM_BUG_ON(!PageTransHuge(page));
4077 }
8697d331 4078 /*
3c541e14 4079 * Check if our page_cgroup is valid
8697d331 4080 */
52d4b9ac 4081 pc = lookup_page_cgroup(page);
cfa44946 4082 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4083 return NULL;
b9c565d5 4084
52d4b9ac 4085 lock_page_cgroup(pc);
d13d1443 4086
c0ff4b85 4087 memcg = pc->mem_cgroup;
8c7c6e34 4088
d13d1443
KH
4089 if (!PageCgroupUsed(pc))
4090 goto unlock_out;
4091
b2402857
KH
4092 anon = PageAnon(page);
4093
d13d1443 4094 switch (ctype) {
41326c17 4095 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4096 /*
4097 * Generally PageAnon tells if it's the anon statistics to be
4098 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4099 * used before page reached the stage of being marked PageAnon.
4100 */
b2402857
KH
4101 anon = true;
4102 /* fallthrough */
8a9478ca 4103 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4104 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4105 if (page_mapped(page))
4106 goto unlock_out;
4107 /*
4108 * Pages under migration may not be uncharged. But
4109 * end_migration() /must/ be the one uncharging the
4110 * unused post-migration page and so it has to call
4111 * here with the migration bit still set. See the
4112 * res_counter handling below.
4113 */
4114 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4115 goto unlock_out;
4116 break;
4117 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4118 if (!PageAnon(page)) { /* Shared memory */
4119 if (page->mapping && !page_is_file_cache(page))
4120 goto unlock_out;
4121 } else if (page_mapped(page)) /* Anon */
4122 goto unlock_out;
4123 break;
4124 default:
4125 break;
52d4b9ac 4126 }
d13d1443 4127
b2402857 4128 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 4129
52d4b9ac 4130 ClearPageCgroupUsed(pc);
544122e5
KH
4131 /*
4132 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4133 * freed from LRU. This is safe because uncharged page is expected not
4134 * to be reused (freed soon). Exception is SwapCache, it's handled by
4135 * special functions.
4136 */
b9c565d5 4137
52d4b9ac 4138 unlock_page_cgroup(pc);
f75ca962 4139 /*
c0ff4b85 4140 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4141 * will never be freed.
4142 */
c0ff4b85 4143 memcg_check_events(memcg, page);
f75ca962 4144 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4145 mem_cgroup_swap_statistics(memcg, true);
4146 mem_cgroup_get(memcg);
f75ca962 4147 }
0030f535
JW
4148 /*
4149 * Migration does not charge the res_counter for the
4150 * replacement page, so leave it alone when phasing out the
4151 * page that is unused after the migration.
4152 */
4153 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4154 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4155
c0ff4b85 4156 return memcg;
d13d1443
KH
4157
4158unlock_out:
4159 unlock_page_cgroup(pc);
8c7c6e34 4160 return NULL;
3c541e14
BS
4161}
4162
69029cd5
KH
4163void mem_cgroup_uncharge_page(struct page *page)
4164{
52d4b9ac
KH
4165 /* early check. */
4166 if (page_mapped(page))
4167 return;
40f23a21 4168 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4169 if (PageSwapCache(page))
4170 return;
0030f535 4171 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4172}
4173
4174void mem_cgroup_uncharge_cache_page(struct page *page)
4175{
4176 VM_BUG_ON(page_mapped(page));
b7abea96 4177 VM_BUG_ON(page->mapping);
0030f535 4178 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4179}
4180
569b846d
KH
4181/*
4182 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4183 * In that cases, pages are freed continuously and we can expect pages
4184 * are in the same memcg. All these calls itself limits the number of
4185 * pages freed at once, then uncharge_start/end() is called properly.
4186 * This may be called prural(2) times in a context,
4187 */
4188
4189void mem_cgroup_uncharge_start(void)
4190{
4191 current->memcg_batch.do_batch++;
4192 /* We can do nest. */
4193 if (current->memcg_batch.do_batch == 1) {
4194 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4195 current->memcg_batch.nr_pages = 0;
4196 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4197 }
4198}
4199
4200void mem_cgroup_uncharge_end(void)
4201{
4202 struct memcg_batch_info *batch = &current->memcg_batch;
4203
4204 if (!batch->do_batch)
4205 return;
4206
4207 batch->do_batch--;
4208 if (batch->do_batch) /* If stacked, do nothing. */
4209 return;
4210
4211 if (!batch->memcg)
4212 return;
4213 /*
4214 * This "batch->memcg" is valid without any css_get/put etc...
4215 * bacause we hide charges behind us.
4216 */
7ffd4ca7
JW
4217 if (batch->nr_pages)
4218 res_counter_uncharge(&batch->memcg->res,
4219 batch->nr_pages * PAGE_SIZE);
4220 if (batch->memsw_nr_pages)
4221 res_counter_uncharge(&batch->memcg->memsw,
4222 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4223 memcg_oom_recover(batch->memcg);
569b846d
KH
4224 /* forget this pointer (for sanity check) */
4225 batch->memcg = NULL;
4226}
4227
e767e056 4228#ifdef CONFIG_SWAP
8c7c6e34 4229/*
e767e056 4230 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4231 * memcg information is recorded to swap_cgroup of "ent"
4232 */
8a9478ca
KH
4233void
4234mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4235{
4236 struct mem_cgroup *memcg;
8a9478ca
KH
4237 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4238
4239 if (!swapout) /* this was a swap cache but the swap is unused ! */
4240 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4241
0030f535 4242 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4243
f75ca962
KH
4244 /*
4245 * record memcg information, if swapout && memcg != NULL,
4246 * mem_cgroup_get() was called in uncharge().
4247 */
4248 if (do_swap_account && swapout && memcg)
a3b2d692 4249 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4250}
e767e056 4251#endif
8c7c6e34 4252
c255a458 4253#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4254/*
4255 * called from swap_entry_free(). remove record in swap_cgroup and
4256 * uncharge "memsw" account.
4257 */
4258void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4259{
8c7c6e34 4260 struct mem_cgroup *memcg;
a3b2d692 4261 unsigned short id;
8c7c6e34
KH
4262
4263 if (!do_swap_account)
4264 return;
4265
a3b2d692
KH
4266 id = swap_cgroup_record(ent, 0);
4267 rcu_read_lock();
4268 memcg = mem_cgroup_lookup(id);
8c7c6e34 4269 if (memcg) {
a3b2d692
KH
4270 /*
4271 * We uncharge this because swap is freed.
4272 * This memcg can be obsolete one. We avoid calling css_tryget
4273 */
0c3e73e8 4274 if (!mem_cgroup_is_root(memcg))
4e649152 4275 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4276 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4277 mem_cgroup_put(memcg);
4278 }
a3b2d692 4279 rcu_read_unlock();
d13d1443 4280}
02491447
DN
4281
4282/**
4283 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4284 * @entry: swap entry to be moved
4285 * @from: mem_cgroup which the entry is moved from
4286 * @to: mem_cgroup which the entry is moved to
4287 *
4288 * It succeeds only when the swap_cgroup's record for this entry is the same
4289 * as the mem_cgroup's id of @from.
4290 *
4291 * Returns 0 on success, -EINVAL on failure.
4292 *
4293 * The caller must have charged to @to, IOW, called res_counter_charge() about
4294 * both res and memsw, and called css_get().
4295 */
4296static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4297 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4298{
4299 unsigned short old_id, new_id;
4300
4301 old_id = css_id(&from->css);
4302 new_id = css_id(&to->css);
4303
4304 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4305 mem_cgroup_swap_statistics(from, false);
483c30b5 4306 mem_cgroup_swap_statistics(to, true);
02491447 4307 /*
483c30b5
DN
4308 * This function is only called from task migration context now.
4309 * It postpones res_counter and refcount handling till the end
4310 * of task migration(mem_cgroup_clear_mc()) for performance
4311 * improvement. But we cannot postpone mem_cgroup_get(to)
4312 * because if the process that has been moved to @to does
4313 * swap-in, the refcount of @to might be decreased to 0.
02491447 4314 */
02491447 4315 mem_cgroup_get(to);
02491447
DN
4316 return 0;
4317 }
4318 return -EINVAL;
4319}
4320#else
4321static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4322 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4323{
4324 return -EINVAL;
4325}
8c7c6e34 4326#endif
d13d1443 4327
ae41be37 4328/*
01b1ae63
KH
4329 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4330 * page belongs to.
ae41be37 4331 */
0030f535
JW
4332void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4333 struct mem_cgroup **memcgp)
ae41be37 4334{
c0ff4b85 4335 struct mem_cgroup *memcg = NULL;
b32967ff 4336 unsigned int nr_pages = 1;
7ec99d62 4337 struct page_cgroup *pc;
ac39cf8c 4338 enum charge_type ctype;
8869b8f6 4339
72835c86 4340 *memcgp = NULL;
56039efa 4341
f8d66542 4342 if (mem_cgroup_disabled())
0030f535 4343 return;
4077960e 4344
b32967ff
MG
4345 if (PageTransHuge(page))
4346 nr_pages <<= compound_order(page);
4347
52d4b9ac
KH
4348 pc = lookup_page_cgroup(page);
4349 lock_page_cgroup(pc);
4350 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4351 memcg = pc->mem_cgroup;
4352 css_get(&memcg->css);
ac39cf8c
AM
4353 /*
4354 * At migrating an anonymous page, its mapcount goes down
4355 * to 0 and uncharge() will be called. But, even if it's fully
4356 * unmapped, migration may fail and this page has to be
4357 * charged again. We set MIGRATION flag here and delay uncharge
4358 * until end_migration() is called
4359 *
4360 * Corner Case Thinking
4361 * A)
4362 * When the old page was mapped as Anon and it's unmap-and-freed
4363 * while migration was ongoing.
4364 * If unmap finds the old page, uncharge() of it will be delayed
4365 * until end_migration(). If unmap finds a new page, it's
4366 * uncharged when it make mapcount to be 1->0. If unmap code
4367 * finds swap_migration_entry, the new page will not be mapped
4368 * and end_migration() will find it(mapcount==0).
4369 *
4370 * B)
4371 * When the old page was mapped but migraion fails, the kernel
4372 * remaps it. A charge for it is kept by MIGRATION flag even
4373 * if mapcount goes down to 0. We can do remap successfully
4374 * without charging it again.
4375 *
4376 * C)
4377 * The "old" page is under lock_page() until the end of
4378 * migration, so, the old page itself will not be swapped-out.
4379 * If the new page is swapped out before end_migraton, our
4380 * hook to usual swap-out path will catch the event.
4381 */
4382 if (PageAnon(page))
4383 SetPageCgroupMigration(pc);
e8589cc1 4384 }
52d4b9ac 4385 unlock_page_cgroup(pc);
ac39cf8c
AM
4386 /*
4387 * If the page is not charged at this point,
4388 * we return here.
4389 */
c0ff4b85 4390 if (!memcg)
0030f535 4391 return;
01b1ae63 4392
72835c86 4393 *memcgp = memcg;
ac39cf8c
AM
4394 /*
4395 * We charge new page before it's used/mapped. So, even if unlock_page()
4396 * is called before end_migration, we can catch all events on this new
4397 * page. In the case new page is migrated but not remapped, new page's
4398 * mapcount will be finally 0 and we call uncharge in end_migration().
4399 */
ac39cf8c 4400 if (PageAnon(page))
41326c17 4401 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4402 else
62ba7442 4403 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4404 /*
4405 * The page is committed to the memcg, but it's not actually
4406 * charged to the res_counter since we plan on replacing the
4407 * old one and only one page is going to be left afterwards.
4408 */
b32967ff 4409 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4410}
8869b8f6 4411
69029cd5 4412/* remove redundant charge if migration failed*/
c0ff4b85 4413void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4414 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4415{
ac39cf8c 4416 struct page *used, *unused;
01b1ae63 4417 struct page_cgroup *pc;
b2402857 4418 bool anon;
01b1ae63 4419
c0ff4b85 4420 if (!memcg)
01b1ae63 4421 return;
b25ed609 4422
50de1dd9 4423 if (!migration_ok) {
ac39cf8c
AM
4424 used = oldpage;
4425 unused = newpage;
01b1ae63 4426 } else {
ac39cf8c 4427 used = newpage;
01b1ae63
KH
4428 unused = oldpage;
4429 }
0030f535 4430 anon = PageAnon(used);
7d188958
JW
4431 __mem_cgroup_uncharge_common(unused,
4432 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4433 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4434 true);
0030f535 4435 css_put(&memcg->css);
69029cd5 4436 /*
ac39cf8c
AM
4437 * We disallowed uncharge of pages under migration because mapcount
4438 * of the page goes down to zero, temporarly.
4439 * Clear the flag and check the page should be charged.
01b1ae63 4440 */
ac39cf8c
AM
4441 pc = lookup_page_cgroup(oldpage);
4442 lock_page_cgroup(pc);
4443 ClearPageCgroupMigration(pc);
4444 unlock_page_cgroup(pc);
ac39cf8c 4445
01b1ae63 4446 /*
ac39cf8c
AM
4447 * If a page is a file cache, radix-tree replacement is very atomic
4448 * and we can skip this check. When it was an Anon page, its mapcount
4449 * goes down to 0. But because we added MIGRATION flage, it's not
4450 * uncharged yet. There are several case but page->mapcount check
4451 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4452 * check. (see prepare_charge() also)
69029cd5 4453 */
b2402857 4454 if (anon)
ac39cf8c 4455 mem_cgroup_uncharge_page(used);
ae41be37 4456}
78fb7466 4457
ab936cbc
KH
4458/*
4459 * At replace page cache, newpage is not under any memcg but it's on
4460 * LRU. So, this function doesn't touch res_counter but handles LRU
4461 * in correct way. Both pages are locked so we cannot race with uncharge.
4462 */
4463void mem_cgroup_replace_page_cache(struct page *oldpage,
4464 struct page *newpage)
4465{
bde05d1c 4466 struct mem_cgroup *memcg = NULL;
ab936cbc 4467 struct page_cgroup *pc;
ab936cbc 4468 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4469
4470 if (mem_cgroup_disabled())
4471 return;
4472
4473 pc = lookup_page_cgroup(oldpage);
4474 /* fix accounting on old pages */
4475 lock_page_cgroup(pc);
bde05d1c
HD
4476 if (PageCgroupUsed(pc)) {
4477 memcg = pc->mem_cgroup;
4478 mem_cgroup_charge_statistics(memcg, false, -1);
4479 ClearPageCgroupUsed(pc);
4480 }
ab936cbc
KH
4481 unlock_page_cgroup(pc);
4482
bde05d1c
HD
4483 /*
4484 * When called from shmem_replace_page(), in some cases the
4485 * oldpage has already been charged, and in some cases not.
4486 */
4487 if (!memcg)
4488 return;
ab936cbc
KH
4489 /*
4490 * Even if newpage->mapping was NULL before starting replacement,
4491 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4492 * LRU while we overwrite pc->mem_cgroup.
4493 */
ce587e65 4494 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4495}
4496
f212ad7c
DN
4497#ifdef CONFIG_DEBUG_VM
4498static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4499{
4500 struct page_cgroup *pc;
4501
4502 pc = lookup_page_cgroup(page);
cfa44946
JW
4503 /*
4504 * Can be NULL while feeding pages into the page allocator for
4505 * the first time, i.e. during boot or memory hotplug;
4506 * or when mem_cgroup_disabled().
4507 */
f212ad7c
DN
4508 if (likely(pc) && PageCgroupUsed(pc))
4509 return pc;
4510 return NULL;
4511}
4512
4513bool mem_cgroup_bad_page_check(struct page *page)
4514{
4515 if (mem_cgroup_disabled())
4516 return false;
4517
4518 return lookup_page_cgroup_used(page) != NULL;
4519}
4520
4521void mem_cgroup_print_bad_page(struct page *page)
4522{
4523 struct page_cgroup *pc;
4524
4525 pc = lookup_page_cgroup_used(page);
4526 if (pc) {
d045197f
AM
4527 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4528 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4529 }
4530}
4531#endif
4532
d38d2a75 4533static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4534 unsigned long long val)
628f4235 4535{
81d39c20 4536 int retry_count;
3c11ecf4 4537 u64 memswlimit, memlimit;
628f4235 4538 int ret = 0;
81d39c20
KH
4539 int children = mem_cgroup_count_children(memcg);
4540 u64 curusage, oldusage;
3c11ecf4 4541 int enlarge;
81d39c20
KH
4542
4543 /*
4544 * For keeping hierarchical_reclaim simple, how long we should retry
4545 * is depends on callers. We set our retry-count to be function
4546 * of # of children which we should visit in this loop.
4547 */
4548 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4549
4550 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4551
3c11ecf4 4552 enlarge = 0;
8c7c6e34 4553 while (retry_count) {
628f4235
KH
4554 if (signal_pending(current)) {
4555 ret = -EINTR;
4556 break;
4557 }
8c7c6e34
KH
4558 /*
4559 * Rather than hide all in some function, I do this in
4560 * open coded manner. You see what this really does.
aaad153e 4561 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4562 */
4563 mutex_lock(&set_limit_mutex);
4564 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4565 if (memswlimit < val) {
4566 ret = -EINVAL;
4567 mutex_unlock(&set_limit_mutex);
628f4235
KH
4568 break;
4569 }
3c11ecf4
KH
4570
4571 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4572 if (memlimit < val)
4573 enlarge = 1;
4574
8c7c6e34 4575 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4576 if (!ret) {
4577 if (memswlimit == val)
4578 memcg->memsw_is_minimum = true;
4579 else
4580 memcg->memsw_is_minimum = false;
4581 }
8c7c6e34
KH
4582 mutex_unlock(&set_limit_mutex);
4583
4584 if (!ret)
4585 break;
4586
5660048c
JW
4587 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4588 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4589 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4590 /* Usage is reduced ? */
4591 if (curusage >= oldusage)
4592 retry_count--;
4593 else
4594 oldusage = curusage;
8c7c6e34 4595 }
3c11ecf4
KH
4596 if (!ret && enlarge)
4597 memcg_oom_recover(memcg);
14797e23 4598
8c7c6e34
KH
4599 return ret;
4600}
4601
338c8431
LZ
4602static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4603 unsigned long long val)
8c7c6e34 4604{
81d39c20 4605 int retry_count;
3c11ecf4 4606 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4607 int children = mem_cgroup_count_children(memcg);
4608 int ret = -EBUSY;
3c11ecf4 4609 int enlarge = 0;
8c7c6e34 4610
81d39c20
KH
4611 /* see mem_cgroup_resize_res_limit */
4612 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4613 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4614 while (retry_count) {
4615 if (signal_pending(current)) {
4616 ret = -EINTR;
4617 break;
4618 }
4619 /*
4620 * Rather than hide all in some function, I do this in
4621 * open coded manner. You see what this really does.
aaad153e 4622 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4623 */
4624 mutex_lock(&set_limit_mutex);
4625 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4626 if (memlimit > val) {
4627 ret = -EINVAL;
4628 mutex_unlock(&set_limit_mutex);
4629 break;
4630 }
3c11ecf4
KH
4631 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4632 if (memswlimit < val)
4633 enlarge = 1;
8c7c6e34 4634 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4635 if (!ret) {
4636 if (memlimit == val)
4637 memcg->memsw_is_minimum = true;
4638 else
4639 memcg->memsw_is_minimum = false;
4640 }
8c7c6e34
KH
4641 mutex_unlock(&set_limit_mutex);
4642
4643 if (!ret)
4644 break;
4645
5660048c
JW
4646 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4647 MEM_CGROUP_RECLAIM_NOSWAP |
4648 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4649 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4650 /* Usage is reduced ? */
8c7c6e34 4651 if (curusage >= oldusage)
628f4235 4652 retry_count--;
81d39c20
KH
4653 else
4654 oldusage = curusage;
628f4235 4655 }
3c11ecf4
KH
4656 if (!ret && enlarge)
4657 memcg_oom_recover(memcg);
628f4235
KH
4658 return ret;
4659}
4660
4e416953 4661unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4662 gfp_t gfp_mask,
4663 unsigned long *total_scanned)
4e416953
BS
4664{
4665 unsigned long nr_reclaimed = 0;
4666 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4667 unsigned long reclaimed;
4668 int loop = 0;
4669 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4670 unsigned long long excess;
0ae5e89c 4671 unsigned long nr_scanned;
4e416953
BS
4672
4673 if (order > 0)
4674 return 0;
4675
00918b6a 4676 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4677 /*
4678 * This loop can run a while, specially if mem_cgroup's continuously
4679 * keep exceeding their soft limit and putting the system under
4680 * pressure
4681 */
4682 do {
4683 if (next_mz)
4684 mz = next_mz;
4685 else
4686 mz = mem_cgroup_largest_soft_limit_node(mctz);
4687 if (!mz)
4688 break;
4689
0ae5e89c 4690 nr_scanned = 0;
d79154bb 4691 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4692 gfp_mask, &nr_scanned);
4e416953 4693 nr_reclaimed += reclaimed;
0ae5e89c 4694 *total_scanned += nr_scanned;
4e416953
BS
4695 spin_lock(&mctz->lock);
4696
4697 /*
4698 * If we failed to reclaim anything from this memory cgroup
4699 * it is time to move on to the next cgroup
4700 */
4701 next_mz = NULL;
4702 if (!reclaimed) {
4703 do {
4704 /*
4705 * Loop until we find yet another one.
4706 *
4707 * By the time we get the soft_limit lock
4708 * again, someone might have aded the
4709 * group back on the RB tree. Iterate to
4710 * make sure we get a different mem.
4711 * mem_cgroup_largest_soft_limit_node returns
4712 * NULL if no other cgroup is present on
4713 * the tree
4714 */
4715 next_mz =
4716 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4717 if (next_mz == mz)
d79154bb 4718 css_put(&next_mz->memcg->css);
39cc98f1 4719 else /* next_mz == NULL or other memcg */
4e416953
BS
4720 break;
4721 } while (1);
4722 }
d79154bb
HD
4723 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4724 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4725 /*
4726 * One school of thought says that we should not add
4727 * back the node to the tree if reclaim returns 0.
4728 * But our reclaim could return 0, simply because due
4729 * to priority we are exposing a smaller subset of
4730 * memory to reclaim from. Consider this as a longer
4731 * term TODO.
4732 */
ef8745c1 4733 /* If excess == 0, no tree ops */
d79154bb 4734 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4735 spin_unlock(&mctz->lock);
d79154bb 4736 css_put(&mz->memcg->css);
4e416953
BS
4737 loop++;
4738 /*
4739 * Could not reclaim anything and there are no more
4740 * mem cgroups to try or we seem to be looping without
4741 * reclaiming anything.
4742 */
4743 if (!nr_reclaimed &&
4744 (next_mz == NULL ||
4745 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4746 break;
4747 } while (!nr_reclaimed);
4748 if (next_mz)
d79154bb 4749 css_put(&next_mz->memcg->css);
4e416953
BS
4750 return nr_reclaimed;
4751}
4752
2ef37d3f
MH
4753/**
4754 * mem_cgroup_force_empty_list - clears LRU of a group
4755 * @memcg: group to clear
4756 * @node: NUMA node
4757 * @zid: zone id
4758 * @lru: lru to to clear
4759 *
3c935d18 4760 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4761 * reclaim the pages page themselves - pages are moved to the parent (or root)
4762 * group.
cc847582 4763 */
2ef37d3f 4764static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4765 int node, int zid, enum lru_list lru)
cc847582 4766{
bea8c150 4767 struct lruvec *lruvec;
2ef37d3f 4768 unsigned long flags;
072c56c1 4769 struct list_head *list;
925b7673
JW
4770 struct page *busy;
4771 struct zone *zone;
072c56c1 4772
08e552c6 4773 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4774 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4775 list = &lruvec->lists[lru];
cc847582 4776
f817ed48 4777 busy = NULL;
2ef37d3f 4778 do {
925b7673 4779 struct page_cgroup *pc;
5564e88b
JW
4780 struct page *page;
4781
08e552c6 4782 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4783 if (list_empty(list)) {
08e552c6 4784 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4785 break;
f817ed48 4786 }
925b7673
JW
4787 page = list_entry(list->prev, struct page, lru);
4788 if (busy == page) {
4789 list_move(&page->lru, list);
648bcc77 4790 busy = NULL;
08e552c6 4791 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4792 continue;
4793 }
08e552c6 4794 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4795
925b7673 4796 pc = lookup_page_cgroup(page);
5564e88b 4797
3c935d18 4798 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4799 /* found lock contention or "pc" is obsolete. */
925b7673 4800 busy = page;
f817ed48
KH
4801 cond_resched();
4802 } else
4803 busy = NULL;
2ef37d3f 4804 } while (!list_empty(list));
cc847582
KH
4805}
4806
4807/*
c26251f9
MH
4808 * make mem_cgroup's charge to be 0 if there is no task by moving
4809 * all the charges and pages to the parent.
cc847582 4810 * This enables deleting this mem_cgroup.
c26251f9
MH
4811 *
4812 * Caller is responsible for holding css reference on the memcg.
cc847582 4813 */
ab5196c2 4814static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4815{
c26251f9 4816 int node, zid;
bea207c8 4817 u64 usage;
f817ed48 4818
fce66477 4819 do {
52d4b9ac
KH
4820 /* This is for making all *used* pages to be on LRU. */
4821 lru_add_drain_all();
c0ff4b85 4822 drain_all_stock_sync(memcg);
c0ff4b85 4823 mem_cgroup_start_move(memcg);
31aaea4a 4824 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4825 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4826 enum lru_list lru;
4827 for_each_lru(lru) {
2ef37d3f 4828 mem_cgroup_force_empty_list(memcg,
f156ab93 4829 node, zid, lru);
f817ed48 4830 }
1ecaab2b 4831 }
f817ed48 4832 }
c0ff4b85
R
4833 mem_cgroup_end_move(memcg);
4834 memcg_oom_recover(memcg);
52d4b9ac 4835 cond_resched();
f817ed48 4836
2ef37d3f 4837 /*
bea207c8
GC
4838 * Kernel memory may not necessarily be trackable to a specific
4839 * process. So they are not migrated, and therefore we can't
4840 * expect their value to drop to 0 here.
4841 * Having res filled up with kmem only is enough.
4842 *
2ef37d3f
MH
4843 * This is a safety check because mem_cgroup_force_empty_list
4844 * could have raced with mem_cgroup_replace_page_cache callers
4845 * so the lru seemed empty but the page could have been added
4846 * right after the check. RES_USAGE should be safe as we always
4847 * charge before adding to the LRU.
4848 */
bea207c8
GC
4849 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4850 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4851 } while (usage > 0);
c26251f9
MH
4852}
4853
b5f99b53
GC
4854/*
4855 * This mainly exists for tests during the setting of set of use_hierarchy.
4856 * Since this is the very setting we are changing, the current hierarchy value
4857 * is meaningless
4858 */
4859static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4860{
4861 struct cgroup *pos;
4862
4863 /* bounce at first found */
4864 cgroup_for_each_child(pos, memcg->css.cgroup)
4865 return true;
4866 return false;
4867}
4868
4869/*
0999821b
GC
4870 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4871 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4872 * from mem_cgroup_count_children(), in the sense that we don't really care how
4873 * many children we have; we only need to know if we have any. It also counts
4874 * any memcg without hierarchy as infertile.
4875 */
4876static inline bool memcg_has_children(struct mem_cgroup *memcg)
4877{
4878 return memcg->use_hierarchy && __memcg_has_children(memcg);
4879}
4880
c26251f9
MH
4881/*
4882 * Reclaims as many pages from the given memcg as possible and moves
4883 * the rest to the parent.
4884 *
4885 * Caller is responsible for holding css reference for memcg.
4886 */
4887static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4888{
4889 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4890 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4891
c1e862c1 4892 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4893 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4894 return -EBUSY;
4895
c1e862c1
KH
4896 /* we call try-to-free pages for make this cgroup empty */
4897 lru_add_drain_all();
f817ed48 4898 /* try to free all pages in this cgroup */
569530fb 4899 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4900 int progress;
c1e862c1 4901
c26251f9
MH
4902 if (signal_pending(current))
4903 return -EINTR;
4904
c0ff4b85 4905 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4906 false);
c1e862c1 4907 if (!progress) {
f817ed48 4908 nr_retries--;
c1e862c1 4909 /* maybe some writeback is necessary */
8aa7e847 4910 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4911 }
f817ed48
KH
4912
4913 }
08e552c6 4914 lru_add_drain();
ab5196c2
MH
4915 mem_cgroup_reparent_charges(memcg);
4916
4917 return 0;
cc847582
KH
4918}
4919
6bbda35c 4920static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4921{
c26251f9
MH
4922 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4923 int ret;
4924
d8423011
MH
4925 if (mem_cgroup_is_root(memcg))
4926 return -EINVAL;
c26251f9
MH
4927 css_get(&memcg->css);
4928 ret = mem_cgroup_force_empty(memcg);
4929 css_put(&memcg->css);
4930
4931 return ret;
c1e862c1
KH
4932}
4933
4934
18f59ea7
BS
4935static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4936{
4937 return mem_cgroup_from_cont(cont)->use_hierarchy;
4938}
4939
4940static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4941 u64 val)
4942{
4943 int retval = 0;
c0ff4b85 4944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4945 struct cgroup *parent = cont->parent;
c0ff4b85 4946 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4947
4948 if (parent)
c0ff4b85 4949 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 4950
0999821b 4951 mutex_lock(&memcg_create_mutex);
567fb435
GC
4952
4953 if (memcg->use_hierarchy == val)
4954 goto out;
4955
18f59ea7 4956 /*
af901ca1 4957 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4958 * in the child subtrees. If it is unset, then the change can
4959 * occur, provided the current cgroup has no children.
4960 *
4961 * For the root cgroup, parent_mem is NULL, we allow value to be
4962 * set if there are no children.
4963 */
c0ff4b85 4964 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4965 (val == 1 || val == 0)) {
b5f99b53 4966 if (!__memcg_has_children(memcg))
c0ff4b85 4967 memcg->use_hierarchy = val;
18f59ea7
BS
4968 else
4969 retval = -EBUSY;
4970 } else
4971 retval = -EINVAL;
567fb435
GC
4972
4973out:
0999821b 4974 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4975
4976 return retval;
4977}
4978
0c3e73e8 4979
c0ff4b85 4980static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4981 enum mem_cgroup_stat_index idx)
0c3e73e8 4982{
7d74b06f 4983 struct mem_cgroup *iter;
7a159cc9 4984 long val = 0;
0c3e73e8 4985
7a159cc9 4986 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4987 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4988 val += mem_cgroup_read_stat(iter, idx);
4989
4990 if (val < 0) /* race ? */
4991 val = 0;
4992 return val;
0c3e73e8
BS
4993}
4994
c0ff4b85 4995static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4996{
7d74b06f 4997 u64 val;
104f3928 4998
c0ff4b85 4999 if (!mem_cgroup_is_root(memcg)) {
104f3928 5000 if (!swap)
65c64ce8 5001 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5002 else
65c64ce8 5003 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5004 }
5005
c0ff4b85
R
5006 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5007 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5008
7d74b06f 5009 if (swap)
bff6bb83 5010 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5011
5012 return val << PAGE_SHIFT;
5013}
5014
af36f906
TH
5015static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5016 struct file *file, char __user *buf,
5017 size_t nbytes, loff_t *ppos)
8cdea7c0 5018{
c0ff4b85 5019 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5020 char str[64];
104f3928 5021 u64 val;
86ae53e1
GC
5022 int name, len;
5023 enum res_type type;
8c7c6e34
KH
5024
5025 type = MEMFILE_TYPE(cft->private);
5026 name = MEMFILE_ATTR(cft->private);
af36f906 5027
8c7c6e34
KH
5028 switch (type) {
5029 case _MEM:
104f3928 5030 if (name == RES_USAGE)
c0ff4b85 5031 val = mem_cgroup_usage(memcg, false);
104f3928 5032 else
c0ff4b85 5033 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5034 break;
5035 case _MEMSWAP:
104f3928 5036 if (name == RES_USAGE)
c0ff4b85 5037 val = mem_cgroup_usage(memcg, true);
104f3928 5038 else
c0ff4b85 5039 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5040 break;
510fc4e1
GC
5041 case _KMEM:
5042 val = res_counter_read_u64(&memcg->kmem, name);
5043 break;
8c7c6e34
KH
5044 default:
5045 BUG();
8c7c6e34 5046 }
af36f906
TH
5047
5048 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5049 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5050}
510fc4e1
GC
5051
5052static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5053{
5054 int ret = -EINVAL;
5055#ifdef CONFIG_MEMCG_KMEM
5056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5057 /*
5058 * For simplicity, we won't allow this to be disabled. It also can't
5059 * be changed if the cgroup has children already, or if tasks had
5060 * already joined.
5061 *
5062 * If tasks join before we set the limit, a person looking at
5063 * kmem.usage_in_bytes will have no way to determine when it took
5064 * place, which makes the value quite meaningless.
5065 *
5066 * After it first became limited, changes in the value of the limit are
5067 * of course permitted.
510fc4e1 5068 */
0999821b 5069 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5070 mutex_lock(&set_limit_mutex);
5071 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5072 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5073 ret = -EBUSY;
5074 goto out;
5075 }
5076 ret = res_counter_set_limit(&memcg->kmem, val);
5077 VM_BUG_ON(ret);
5078
55007d84
GC
5079 ret = memcg_update_cache_sizes(memcg);
5080 if (ret) {
5081 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5082 goto out;
5083 }
692e89ab
GC
5084 static_key_slow_inc(&memcg_kmem_enabled_key);
5085 /*
5086 * setting the active bit after the inc will guarantee no one
5087 * starts accounting before all call sites are patched
5088 */
5089 memcg_kmem_set_active(memcg);
5090
7de37682
GC
5091 /*
5092 * kmem charges can outlive the cgroup. In the case of slab
5093 * pages, for instance, a page contain objects from various
5094 * processes, so it is unfeasible to migrate them away. We
5095 * need to reference count the memcg because of that.
5096 */
5097 mem_cgroup_get(memcg);
510fc4e1
GC
5098 } else
5099 ret = res_counter_set_limit(&memcg->kmem, val);
5100out:
5101 mutex_unlock(&set_limit_mutex);
0999821b 5102 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5103#endif
5104 return ret;
5105}
5106
6d043990 5107#ifdef CONFIG_MEMCG_KMEM
55007d84 5108static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5109{
55007d84 5110 int ret = 0;
510fc4e1
GC
5111 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5112 if (!parent)
55007d84
GC
5113 goto out;
5114
510fc4e1 5115 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5116 /*
5117 * When that happen, we need to disable the static branch only on those
5118 * memcgs that enabled it. To achieve this, we would be forced to
5119 * complicate the code by keeping track of which memcgs were the ones
5120 * that actually enabled limits, and which ones got it from its
5121 * parents.
5122 *
5123 * It is a lot simpler just to do static_key_slow_inc() on every child
5124 * that is accounted.
5125 */
55007d84
GC
5126 if (!memcg_kmem_is_active(memcg))
5127 goto out;
5128
5129 /*
5130 * destroy(), called if we fail, will issue static_key_slow_inc() and
5131 * mem_cgroup_put() if kmem is enabled. We have to either call them
5132 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5133 * this more consistent, since it always leads to the same destroy path
5134 */
5135 mem_cgroup_get(memcg);
5136 static_key_slow_inc(&memcg_kmem_enabled_key);
5137
5138 mutex_lock(&set_limit_mutex);
5139 ret = memcg_update_cache_sizes(memcg);
5140 mutex_unlock(&set_limit_mutex);
55007d84
GC
5141out:
5142 return ret;
510fc4e1 5143}
6d043990 5144#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5145
628f4235
KH
5146/*
5147 * The user of this function is...
5148 * RES_LIMIT.
5149 */
856c13aa
PM
5150static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5151 const char *buffer)
8cdea7c0 5152{
628f4235 5153 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5154 enum res_type type;
5155 int name;
628f4235
KH
5156 unsigned long long val;
5157 int ret;
5158
8c7c6e34
KH
5159 type = MEMFILE_TYPE(cft->private);
5160 name = MEMFILE_ATTR(cft->private);
af36f906 5161
8c7c6e34 5162 switch (name) {
628f4235 5163 case RES_LIMIT:
4b3bde4c
BS
5164 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5165 ret = -EINVAL;
5166 break;
5167 }
628f4235
KH
5168 /* This function does all necessary parse...reuse it */
5169 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5170 if (ret)
5171 break;
5172 if (type == _MEM)
628f4235 5173 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5174 else if (type == _MEMSWAP)
8c7c6e34 5175 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5176 else if (type == _KMEM)
5177 ret = memcg_update_kmem_limit(cont, val);
5178 else
5179 return -EINVAL;
628f4235 5180 break;
296c81d8
BS
5181 case RES_SOFT_LIMIT:
5182 ret = res_counter_memparse_write_strategy(buffer, &val);
5183 if (ret)
5184 break;
5185 /*
5186 * For memsw, soft limits are hard to implement in terms
5187 * of semantics, for now, we support soft limits for
5188 * control without swap
5189 */
5190 if (type == _MEM)
5191 ret = res_counter_set_soft_limit(&memcg->res, val);
5192 else
5193 ret = -EINVAL;
5194 break;
628f4235
KH
5195 default:
5196 ret = -EINVAL; /* should be BUG() ? */
5197 break;
5198 }
5199 return ret;
8cdea7c0
BS
5200}
5201
fee7b548
KH
5202static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5203 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5204{
5205 struct cgroup *cgroup;
5206 unsigned long long min_limit, min_memsw_limit, tmp;
5207
5208 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5209 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5210 cgroup = memcg->css.cgroup;
5211 if (!memcg->use_hierarchy)
5212 goto out;
5213
5214 while (cgroup->parent) {
5215 cgroup = cgroup->parent;
5216 memcg = mem_cgroup_from_cont(cgroup);
5217 if (!memcg->use_hierarchy)
5218 break;
5219 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5220 min_limit = min(min_limit, tmp);
5221 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5222 min_memsw_limit = min(min_memsw_limit, tmp);
5223 }
5224out:
5225 *mem_limit = min_limit;
5226 *memsw_limit = min_memsw_limit;
fee7b548
KH
5227}
5228
29f2a4da 5229static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5230{
af36f906 5231 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5232 int name;
5233 enum res_type type;
c84872e1 5234
8c7c6e34
KH
5235 type = MEMFILE_TYPE(event);
5236 name = MEMFILE_ATTR(event);
af36f906 5237
8c7c6e34 5238 switch (name) {
29f2a4da 5239 case RES_MAX_USAGE:
8c7c6e34 5240 if (type == _MEM)
c0ff4b85 5241 res_counter_reset_max(&memcg->res);
510fc4e1 5242 else if (type == _MEMSWAP)
c0ff4b85 5243 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5244 else if (type == _KMEM)
5245 res_counter_reset_max(&memcg->kmem);
5246 else
5247 return -EINVAL;
29f2a4da
PE
5248 break;
5249 case RES_FAILCNT:
8c7c6e34 5250 if (type == _MEM)
c0ff4b85 5251 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5252 else if (type == _MEMSWAP)
c0ff4b85 5253 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5254 else if (type == _KMEM)
5255 res_counter_reset_failcnt(&memcg->kmem);
5256 else
5257 return -EINVAL;
29f2a4da
PE
5258 break;
5259 }
f64c3f54 5260
85cc59db 5261 return 0;
c84872e1
PE
5262}
5263
7dc74be0
DN
5264static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5265 struct cftype *cft)
5266{
5267 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5268}
5269
02491447 5270#ifdef CONFIG_MMU
7dc74be0
DN
5271static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5272 struct cftype *cft, u64 val)
5273{
c0ff4b85 5274 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5275
5276 if (val >= (1 << NR_MOVE_TYPE))
5277 return -EINVAL;
ee5e8472 5278
7dc74be0 5279 /*
ee5e8472
GC
5280 * No kind of locking is needed in here, because ->can_attach() will
5281 * check this value once in the beginning of the process, and then carry
5282 * on with stale data. This means that changes to this value will only
5283 * affect task migrations starting after the change.
7dc74be0 5284 */
c0ff4b85 5285 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5286 return 0;
5287}
02491447
DN
5288#else
5289static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5290 struct cftype *cft, u64 val)
5291{
5292 return -ENOSYS;
5293}
5294#endif
7dc74be0 5295
406eb0c9 5296#ifdef CONFIG_NUMA
ab215884 5297static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5298 struct seq_file *m)
406eb0c9
YH
5299{
5300 int nid;
5301 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5302 unsigned long node_nr;
d79154bb 5303 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5304
d79154bb 5305 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5306 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5307 for_each_node_state(nid, N_MEMORY) {
d79154bb 5308 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5309 seq_printf(m, " N%d=%lu", nid, node_nr);
5310 }
5311 seq_putc(m, '\n');
5312
d79154bb 5313 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5314 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5315 for_each_node_state(nid, N_MEMORY) {
d79154bb 5316 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5317 LRU_ALL_FILE);
406eb0c9
YH
5318 seq_printf(m, " N%d=%lu", nid, node_nr);
5319 }
5320 seq_putc(m, '\n');
5321
d79154bb 5322 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5323 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5324 for_each_node_state(nid, N_MEMORY) {
d79154bb 5325 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5326 LRU_ALL_ANON);
406eb0c9
YH
5327 seq_printf(m, " N%d=%lu", nid, node_nr);
5328 }
5329 seq_putc(m, '\n');
5330
d79154bb 5331 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5332 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5333 for_each_node_state(nid, N_MEMORY) {
d79154bb 5334 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5335 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5336 seq_printf(m, " N%d=%lu", nid, node_nr);
5337 }
5338 seq_putc(m, '\n');
5339 return 0;
5340}
5341#endif /* CONFIG_NUMA */
5342
af7c4b0e
JW
5343static inline void mem_cgroup_lru_names_not_uptodate(void)
5344{
5345 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5346}
5347
ab215884 5348static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5349 struct seq_file *m)
d2ceb9b7 5350{
d79154bb 5351 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5352 struct mem_cgroup *mi;
5353 unsigned int i;
406eb0c9 5354
af7c4b0e 5355 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5356 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5357 continue;
af7c4b0e
JW
5358 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5359 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5360 }
7b854121 5361
af7c4b0e
JW
5362 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5363 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5364 mem_cgroup_read_events(memcg, i));
5365
5366 for (i = 0; i < NR_LRU_LISTS; i++)
5367 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5368 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5369
14067bb3 5370 /* Hierarchical information */
fee7b548
KH
5371 {
5372 unsigned long long limit, memsw_limit;
d79154bb 5373 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5374 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5375 if (do_swap_account)
78ccf5b5
JW
5376 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5377 memsw_limit);
fee7b548 5378 }
7f016ee8 5379
af7c4b0e
JW
5380 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5381 long long val = 0;
5382
bff6bb83 5383 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5384 continue;
af7c4b0e
JW
5385 for_each_mem_cgroup_tree(mi, memcg)
5386 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5387 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5388 }
5389
5390 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5391 unsigned long long val = 0;
5392
5393 for_each_mem_cgroup_tree(mi, memcg)
5394 val += mem_cgroup_read_events(mi, i);
5395 seq_printf(m, "total_%s %llu\n",
5396 mem_cgroup_events_names[i], val);
5397 }
5398
5399 for (i = 0; i < NR_LRU_LISTS; i++) {
5400 unsigned long long val = 0;
5401
5402 for_each_mem_cgroup_tree(mi, memcg)
5403 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5404 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5405 }
14067bb3 5406
7f016ee8 5407#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5408 {
5409 int nid, zid;
5410 struct mem_cgroup_per_zone *mz;
89abfab1 5411 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5412 unsigned long recent_rotated[2] = {0, 0};
5413 unsigned long recent_scanned[2] = {0, 0};
5414
5415 for_each_online_node(nid)
5416 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5417 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5418 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5419
89abfab1
HD
5420 recent_rotated[0] += rstat->recent_rotated[0];
5421 recent_rotated[1] += rstat->recent_rotated[1];
5422 recent_scanned[0] += rstat->recent_scanned[0];
5423 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5424 }
78ccf5b5
JW
5425 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5426 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5427 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5428 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5429 }
5430#endif
5431
d2ceb9b7
KH
5432 return 0;
5433}
5434
a7885eb8
KM
5435static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5438
1f4c025b 5439 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5440}
5441
5442static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5443 u64 val)
5444{
5445 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5446 struct mem_cgroup *parent;
068b38c1 5447
a7885eb8
KM
5448 if (val > 100)
5449 return -EINVAL;
5450
5451 if (cgrp->parent == NULL)
5452 return -EINVAL;
5453
5454 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5455
0999821b 5456 mutex_lock(&memcg_create_mutex);
068b38c1 5457
a7885eb8 5458 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5459 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5460 mutex_unlock(&memcg_create_mutex);
a7885eb8 5461 return -EINVAL;
068b38c1 5462 }
a7885eb8 5463
a7885eb8 5464 memcg->swappiness = val;
a7885eb8 5465
0999821b 5466 mutex_unlock(&memcg_create_mutex);
068b38c1 5467
a7885eb8
KM
5468 return 0;
5469}
5470
2e72b634
KS
5471static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5472{
5473 struct mem_cgroup_threshold_ary *t;
5474 u64 usage;
5475 int i;
5476
5477 rcu_read_lock();
5478 if (!swap)
2c488db2 5479 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5480 else
2c488db2 5481 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5482
5483 if (!t)
5484 goto unlock;
5485
5486 usage = mem_cgroup_usage(memcg, swap);
5487
5488 /*
748dad36 5489 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5490 * If it's not true, a threshold was crossed after last
5491 * call of __mem_cgroup_threshold().
5492 */
5407a562 5493 i = t->current_threshold;
2e72b634
KS
5494
5495 /*
5496 * Iterate backward over array of thresholds starting from
5497 * current_threshold and check if a threshold is crossed.
5498 * If none of thresholds below usage is crossed, we read
5499 * only one element of the array here.
5500 */
5501 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5502 eventfd_signal(t->entries[i].eventfd, 1);
5503
5504 /* i = current_threshold + 1 */
5505 i++;
5506
5507 /*
5508 * Iterate forward over array of thresholds starting from
5509 * current_threshold+1 and check if a threshold is crossed.
5510 * If none of thresholds above usage is crossed, we read
5511 * only one element of the array here.
5512 */
5513 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5514 eventfd_signal(t->entries[i].eventfd, 1);
5515
5516 /* Update current_threshold */
5407a562 5517 t->current_threshold = i - 1;
2e72b634
KS
5518unlock:
5519 rcu_read_unlock();
5520}
5521
5522static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5523{
ad4ca5f4
KS
5524 while (memcg) {
5525 __mem_cgroup_threshold(memcg, false);
5526 if (do_swap_account)
5527 __mem_cgroup_threshold(memcg, true);
5528
5529 memcg = parent_mem_cgroup(memcg);
5530 }
2e72b634
KS
5531}
5532
5533static int compare_thresholds(const void *a, const void *b)
5534{
5535 const struct mem_cgroup_threshold *_a = a;
5536 const struct mem_cgroup_threshold *_b = b;
5537
5538 return _a->threshold - _b->threshold;
5539}
5540
c0ff4b85 5541static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5542{
5543 struct mem_cgroup_eventfd_list *ev;
5544
c0ff4b85 5545 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5546 eventfd_signal(ev->eventfd, 1);
5547 return 0;
5548}
5549
c0ff4b85 5550static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5551{
7d74b06f
KH
5552 struct mem_cgroup *iter;
5553
c0ff4b85 5554 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5555 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5556}
5557
5558static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5559 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5560{
5561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5562 struct mem_cgroup_thresholds *thresholds;
5563 struct mem_cgroup_threshold_ary *new;
86ae53e1 5564 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5565 u64 threshold, usage;
2c488db2 5566 int i, size, ret;
2e72b634
KS
5567
5568 ret = res_counter_memparse_write_strategy(args, &threshold);
5569 if (ret)
5570 return ret;
5571
5572 mutex_lock(&memcg->thresholds_lock);
2c488db2 5573
2e72b634 5574 if (type == _MEM)
2c488db2 5575 thresholds = &memcg->thresholds;
2e72b634 5576 else if (type == _MEMSWAP)
2c488db2 5577 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5578 else
5579 BUG();
5580
5581 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5582
5583 /* Check if a threshold crossed before adding a new one */
2c488db2 5584 if (thresholds->primary)
2e72b634
KS
5585 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5586
2c488db2 5587 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5588
5589 /* Allocate memory for new array of thresholds */
2c488db2 5590 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5591 GFP_KERNEL);
2c488db2 5592 if (!new) {
2e72b634
KS
5593 ret = -ENOMEM;
5594 goto unlock;
5595 }
2c488db2 5596 new->size = size;
2e72b634
KS
5597
5598 /* Copy thresholds (if any) to new array */
2c488db2
KS
5599 if (thresholds->primary) {
5600 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5601 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5602 }
5603
2e72b634 5604 /* Add new threshold */
2c488db2
KS
5605 new->entries[size - 1].eventfd = eventfd;
5606 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5607
5608 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5609 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5610 compare_thresholds, NULL);
5611
5612 /* Find current threshold */
2c488db2 5613 new->current_threshold = -1;
2e72b634 5614 for (i = 0; i < size; i++) {
748dad36 5615 if (new->entries[i].threshold <= usage) {
2e72b634 5616 /*
2c488db2
KS
5617 * new->current_threshold will not be used until
5618 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5619 * it here.
5620 */
2c488db2 5621 ++new->current_threshold;
748dad36
SZ
5622 } else
5623 break;
2e72b634
KS
5624 }
5625
2c488db2
KS
5626 /* Free old spare buffer and save old primary buffer as spare */
5627 kfree(thresholds->spare);
5628 thresholds->spare = thresholds->primary;
5629
5630 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5631
907860ed 5632 /* To be sure that nobody uses thresholds */
2e72b634
KS
5633 synchronize_rcu();
5634
2e72b634
KS
5635unlock:
5636 mutex_unlock(&memcg->thresholds_lock);
5637
5638 return ret;
5639}
5640
907860ed 5641static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5642 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5643{
5644 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5645 struct mem_cgroup_thresholds *thresholds;
5646 struct mem_cgroup_threshold_ary *new;
86ae53e1 5647 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5648 u64 usage;
2c488db2 5649 int i, j, size;
2e72b634
KS
5650
5651 mutex_lock(&memcg->thresholds_lock);
5652 if (type == _MEM)
2c488db2 5653 thresholds = &memcg->thresholds;
2e72b634 5654 else if (type == _MEMSWAP)
2c488db2 5655 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5656 else
5657 BUG();
5658
371528ca
AV
5659 if (!thresholds->primary)
5660 goto unlock;
5661
2e72b634
KS
5662 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5663
5664 /* Check if a threshold crossed before removing */
5665 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5666
5667 /* Calculate new number of threshold */
2c488db2
KS
5668 size = 0;
5669 for (i = 0; i < thresholds->primary->size; i++) {
5670 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5671 size++;
5672 }
5673
2c488db2 5674 new = thresholds->spare;
907860ed 5675
2e72b634
KS
5676 /* Set thresholds array to NULL if we don't have thresholds */
5677 if (!size) {
2c488db2
KS
5678 kfree(new);
5679 new = NULL;
907860ed 5680 goto swap_buffers;
2e72b634
KS
5681 }
5682
2c488db2 5683 new->size = size;
2e72b634
KS
5684
5685 /* Copy thresholds and find current threshold */
2c488db2
KS
5686 new->current_threshold = -1;
5687 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5688 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5689 continue;
5690
2c488db2 5691 new->entries[j] = thresholds->primary->entries[i];
748dad36 5692 if (new->entries[j].threshold <= usage) {
2e72b634 5693 /*
2c488db2 5694 * new->current_threshold will not be used
2e72b634
KS
5695 * until rcu_assign_pointer(), so it's safe to increment
5696 * it here.
5697 */
2c488db2 5698 ++new->current_threshold;
2e72b634
KS
5699 }
5700 j++;
5701 }
5702
907860ed 5703swap_buffers:
2c488db2
KS
5704 /* Swap primary and spare array */
5705 thresholds->spare = thresholds->primary;
8c757763
SZ
5706 /* If all events are unregistered, free the spare array */
5707 if (!new) {
5708 kfree(thresholds->spare);
5709 thresholds->spare = NULL;
5710 }
5711
2c488db2 5712 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5713
907860ed 5714 /* To be sure that nobody uses thresholds */
2e72b634 5715 synchronize_rcu();
371528ca 5716unlock:
2e72b634 5717 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5718}
c1e862c1 5719
9490ff27
KH
5720static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5721 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5722{
5723 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5724 struct mem_cgroup_eventfd_list *event;
86ae53e1 5725 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5726
5727 BUG_ON(type != _OOM_TYPE);
5728 event = kmalloc(sizeof(*event), GFP_KERNEL);
5729 if (!event)
5730 return -ENOMEM;
5731
1af8efe9 5732 spin_lock(&memcg_oom_lock);
9490ff27
KH
5733
5734 event->eventfd = eventfd;
5735 list_add(&event->list, &memcg->oom_notify);
5736
5737 /* already in OOM ? */
79dfdacc 5738 if (atomic_read(&memcg->under_oom))
9490ff27 5739 eventfd_signal(eventfd, 1);
1af8efe9 5740 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5741
5742 return 0;
5743}
5744
907860ed 5745static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5746 struct cftype *cft, struct eventfd_ctx *eventfd)
5747{
c0ff4b85 5748 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5749 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5750 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5751
5752 BUG_ON(type != _OOM_TYPE);
5753
1af8efe9 5754 spin_lock(&memcg_oom_lock);
9490ff27 5755
c0ff4b85 5756 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5757 if (ev->eventfd == eventfd) {
5758 list_del(&ev->list);
5759 kfree(ev);
5760 }
5761 }
5762
1af8efe9 5763 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5764}
5765
3c11ecf4
KH
5766static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5767 struct cftype *cft, struct cgroup_map_cb *cb)
5768{
c0ff4b85 5769 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5770
c0ff4b85 5771 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5772
c0ff4b85 5773 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5774 cb->fill(cb, "under_oom", 1);
5775 else
5776 cb->fill(cb, "under_oom", 0);
5777 return 0;
5778}
5779
3c11ecf4
KH
5780static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5781 struct cftype *cft, u64 val)
5782{
c0ff4b85 5783 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5784 struct mem_cgroup *parent;
5785
5786 /* cannot set to root cgroup and only 0 and 1 are allowed */
5787 if (!cgrp->parent || !((val == 0) || (val == 1)))
5788 return -EINVAL;
5789
5790 parent = mem_cgroup_from_cont(cgrp->parent);
5791
0999821b 5792 mutex_lock(&memcg_create_mutex);
3c11ecf4 5793 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5794 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5795 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5796 return -EINVAL;
5797 }
c0ff4b85 5798 memcg->oom_kill_disable = val;
4d845ebf 5799 if (!val)
c0ff4b85 5800 memcg_oom_recover(memcg);
0999821b 5801 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5802 return 0;
5803}
5804
c255a458 5805#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5806static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5807{
55007d84
GC
5808 int ret;
5809
2633d7a0 5810 memcg->kmemcg_id = -1;
55007d84
GC
5811 ret = memcg_propagate_kmem(memcg);
5812 if (ret)
5813 return ret;
2633d7a0 5814
1d62e436 5815 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5816}
e5671dfa 5817
1d62e436 5818static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5819{
1d62e436 5820 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5821
5822 memcg_kmem_mark_dead(memcg);
5823
5824 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5825 return;
5826
5827 /*
5828 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5829 * path here, being careful not to race with memcg_uncharge_kmem: it is
5830 * possible that the charges went down to 0 between mark_dead and the
5831 * res_counter read, so in that case, we don't need the put
5832 */
5833 if (memcg_kmem_test_and_clear_dead(memcg))
5834 mem_cgroup_put(memcg);
d1a4c0b3 5835}
e5671dfa 5836#else
cbe128e3 5837static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5838{
5839 return 0;
5840}
d1a4c0b3 5841
1d62e436 5842static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5843{
5844}
e5671dfa
GC
5845#endif
5846
8cdea7c0
BS
5847static struct cftype mem_cgroup_files[] = {
5848 {
0eea1030 5849 .name = "usage_in_bytes",
8c7c6e34 5850 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5851 .read = mem_cgroup_read,
9490ff27
KH
5852 .register_event = mem_cgroup_usage_register_event,
5853 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5854 },
c84872e1
PE
5855 {
5856 .name = "max_usage_in_bytes",
8c7c6e34 5857 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5858 .trigger = mem_cgroup_reset,
af36f906 5859 .read = mem_cgroup_read,
c84872e1 5860 },
8cdea7c0 5861 {
0eea1030 5862 .name = "limit_in_bytes",
8c7c6e34 5863 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5864 .write_string = mem_cgroup_write,
af36f906 5865 .read = mem_cgroup_read,
8cdea7c0 5866 },
296c81d8
BS
5867 {
5868 .name = "soft_limit_in_bytes",
5869 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5870 .write_string = mem_cgroup_write,
af36f906 5871 .read = mem_cgroup_read,
296c81d8 5872 },
8cdea7c0
BS
5873 {
5874 .name = "failcnt",
8c7c6e34 5875 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5876 .trigger = mem_cgroup_reset,
af36f906 5877 .read = mem_cgroup_read,
8cdea7c0 5878 },
d2ceb9b7
KH
5879 {
5880 .name = "stat",
ab215884 5881 .read_seq_string = memcg_stat_show,
d2ceb9b7 5882 },
c1e862c1
KH
5883 {
5884 .name = "force_empty",
5885 .trigger = mem_cgroup_force_empty_write,
5886 },
18f59ea7
BS
5887 {
5888 .name = "use_hierarchy",
5889 .write_u64 = mem_cgroup_hierarchy_write,
5890 .read_u64 = mem_cgroup_hierarchy_read,
5891 },
a7885eb8
KM
5892 {
5893 .name = "swappiness",
5894 .read_u64 = mem_cgroup_swappiness_read,
5895 .write_u64 = mem_cgroup_swappiness_write,
5896 },
7dc74be0
DN
5897 {
5898 .name = "move_charge_at_immigrate",
5899 .read_u64 = mem_cgroup_move_charge_read,
5900 .write_u64 = mem_cgroup_move_charge_write,
5901 },
9490ff27
KH
5902 {
5903 .name = "oom_control",
3c11ecf4
KH
5904 .read_map = mem_cgroup_oom_control_read,
5905 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5906 .register_event = mem_cgroup_oom_register_event,
5907 .unregister_event = mem_cgroup_oom_unregister_event,
5908 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5909 },
406eb0c9
YH
5910#ifdef CONFIG_NUMA
5911 {
5912 .name = "numa_stat",
ab215884 5913 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5914 },
5915#endif
510fc4e1
GC
5916#ifdef CONFIG_MEMCG_KMEM
5917 {
5918 .name = "kmem.limit_in_bytes",
5919 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5920 .write_string = mem_cgroup_write,
5921 .read = mem_cgroup_read,
5922 },
5923 {
5924 .name = "kmem.usage_in_bytes",
5925 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5926 .read = mem_cgroup_read,
5927 },
5928 {
5929 .name = "kmem.failcnt",
5930 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5931 .trigger = mem_cgroup_reset,
5932 .read = mem_cgroup_read,
5933 },
5934 {
5935 .name = "kmem.max_usage_in_bytes",
5936 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5937 .trigger = mem_cgroup_reset,
5938 .read = mem_cgroup_read,
5939 },
749c5415
GC
5940#ifdef CONFIG_SLABINFO
5941 {
5942 .name = "kmem.slabinfo",
5943 .read_seq_string = mem_cgroup_slabinfo_read,
5944 },
5945#endif
8c7c6e34 5946#endif
6bc10349 5947 { }, /* terminate */
af36f906 5948};
8c7c6e34 5949
2d11085e
MH
5950#ifdef CONFIG_MEMCG_SWAP
5951static struct cftype memsw_cgroup_files[] = {
5952 {
5953 .name = "memsw.usage_in_bytes",
5954 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5955 .read = mem_cgroup_read,
5956 .register_event = mem_cgroup_usage_register_event,
5957 .unregister_event = mem_cgroup_usage_unregister_event,
5958 },
5959 {
5960 .name = "memsw.max_usage_in_bytes",
5961 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5962 .trigger = mem_cgroup_reset,
5963 .read = mem_cgroup_read,
5964 },
5965 {
5966 .name = "memsw.limit_in_bytes",
5967 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5968 .write_string = mem_cgroup_write,
5969 .read = mem_cgroup_read,
5970 },
5971 {
5972 .name = "memsw.failcnt",
5973 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5974 .trigger = mem_cgroup_reset,
5975 .read = mem_cgroup_read,
5976 },
5977 { }, /* terminate */
5978};
5979#endif
c0ff4b85 5980static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5981{
5982 struct mem_cgroup_per_node *pn;
1ecaab2b 5983 struct mem_cgroup_per_zone *mz;
41e3355d 5984 int zone, tmp = node;
1ecaab2b
KH
5985 /*
5986 * This routine is called against possible nodes.
5987 * But it's BUG to call kmalloc() against offline node.
5988 *
5989 * TODO: this routine can waste much memory for nodes which will
5990 * never be onlined. It's better to use memory hotplug callback
5991 * function.
5992 */
41e3355d
KH
5993 if (!node_state(node, N_NORMAL_MEMORY))
5994 tmp = -1;
17295c88 5995 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5996 if (!pn)
5997 return 1;
1ecaab2b 5998
1ecaab2b
KH
5999 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6000 mz = &pn->zoneinfo[zone];
bea8c150 6001 lruvec_init(&mz->lruvec);
f64c3f54 6002 mz->usage_in_excess = 0;
4e416953 6003 mz->on_tree = false;
d79154bb 6004 mz->memcg = memcg;
1ecaab2b 6005 }
0a619e58 6006 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
6007 return 0;
6008}
6009
c0ff4b85 6010static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6011{
c0ff4b85 6012 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
6013}
6014
33327948
KH
6015static struct mem_cgroup *mem_cgroup_alloc(void)
6016{
d79154bb 6017 struct mem_cgroup *memcg;
45cf7ebd 6018 size_t size = memcg_size();
33327948 6019
45cf7ebd 6020 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6021 if (size < PAGE_SIZE)
d79154bb 6022 memcg = kzalloc(size, GFP_KERNEL);
33327948 6023 else
d79154bb 6024 memcg = vzalloc(size);
33327948 6025
d79154bb 6026 if (!memcg)
e7bbcdf3
DC
6027 return NULL;
6028
d79154bb
HD
6029 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6030 if (!memcg->stat)
d2e61b8d 6031 goto out_free;
d79154bb
HD
6032 spin_lock_init(&memcg->pcp_counter_lock);
6033 return memcg;
d2e61b8d
DC
6034
6035out_free:
6036 if (size < PAGE_SIZE)
d79154bb 6037 kfree(memcg);
d2e61b8d 6038 else
d79154bb 6039 vfree(memcg);
d2e61b8d 6040 return NULL;
33327948
KH
6041}
6042
59927fb9 6043/*
c8b2a36f
GC
6044 * At destroying mem_cgroup, references from swap_cgroup can remain.
6045 * (scanning all at force_empty is too costly...)
6046 *
6047 * Instead of clearing all references at force_empty, we remember
6048 * the number of reference from swap_cgroup and free mem_cgroup when
6049 * it goes down to 0.
6050 *
6051 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6052 */
c8b2a36f
GC
6053
6054static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6055{
c8b2a36f 6056 int node;
45cf7ebd 6057 size_t size = memcg_size();
59927fb9 6058
c8b2a36f
GC
6059 mem_cgroup_remove_from_trees(memcg);
6060 free_css_id(&mem_cgroup_subsys, &memcg->css);
6061
6062 for_each_node(node)
6063 free_mem_cgroup_per_zone_info(memcg, node);
6064
6065 free_percpu(memcg->stat);
6066
3f134619
GC
6067 /*
6068 * We need to make sure that (at least for now), the jump label
6069 * destruction code runs outside of the cgroup lock. This is because
6070 * get_online_cpus(), which is called from the static_branch update,
6071 * can't be called inside the cgroup_lock. cpusets are the ones
6072 * enforcing this dependency, so if they ever change, we might as well.
6073 *
6074 * schedule_work() will guarantee this happens. Be careful if you need
6075 * to move this code around, and make sure it is outside
6076 * the cgroup_lock.
6077 */
a8964b9b 6078 disarm_static_keys(memcg);
3afe36b1
GC
6079 if (size < PAGE_SIZE)
6080 kfree(memcg);
6081 else
6082 vfree(memcg);
59927fb9 6083}
3afe36b1 6084
59927fb9 6085
8c7c6e34 6086/*
c8b2a36f
GC
6087 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6088 * but in process context. The work_freeing structure is overlaid
6089 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6090 */
c8b2a36f 6091static void free_work(struct work_struct *work)
33327948 6092{
c8b2a36f 6093 struct mem_cgroup *memcg;
08e552c6 6094
c8b2a36f
GC
6095 memcg = container_of(work, struct mem_cgroup, work_freeing);
6096 __mem_cgroup_free(memcg);
6097}
04046e1a 6098
c8b2a36f
GC
6099static void free_rcu(struct rcu_head *rcu_head)
6100{
6101 struct mem_cgroup *memcg;
08e552c6 6102
c8b2a36f
GC
6103 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6104 INIT_WORK(&memcg->work_freeing, free_work);
6105 schedule_work(&memcg->work_freeing);
33327948
KH
6106}
6107
c0ff4b85 6108static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6109{
c0ff4b85 6110 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6111}
6112
c0ff4b85 6113static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6114{
c0ff4b85
R
6115 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6116 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6117 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6118 if (parent)
6119 mem_cgroup_put(parent);
6120 }
8c7c6e34
KH
6121}
6122
c0ff4b85 6123static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6124{
c0ff4b85 6125 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6126}
6127
7bcc1bb1
DN
6128/*
6129 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6130 */
e1aab161 6131struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6132{
c0ff4b85 6133 if (!memcg->res.parent)
7bcc1bb1 6134 return NULL;
c0ff4b85 6135 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6136}
e1aab161 6137EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6138
8787a1df 6139static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6140{
6141 struct mem_cgroup_tree_per_node *rtpn;
6142 struct mem_cgroup_tree_per_zone *rtpz;
6143 int tmp, node, zone;
6144
3ed28fa1 6145 for_each_node(node) {
f64c3f54
BS
6146 tmp = node;
6147 if (!node_state(node, N_NORMAL_MEMORY))
6148 tmp = -1;
6149 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6150 BUG_ON(!rtpn);
f64c3f54
BS
6151
6152 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6153
6154 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6155 rtpz = &rtpn->rb_tree_per_zone[zone];
6156 rtpz->rb_root = RB_ROOT;
6157 spin_lock_init(&rtpz->lock);
6158 }
6159 }
f64c3f54
BS
6160}
6161
0eb253e2 6162static struct cgroup_subsys_state * __ref
92fb9748 6163mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6164{
d142e3e6 6165 struct mem_cgroup *memcg;
04046e1a 6166 long error = -ENOMEM;
6d12e2d8 6167 int node;
8cdea7c0 6168
c0ff4b85
R
6169 memcg = mem_cgroup_alloc();
6170 if (!memcg)
04046e1a 6171 return ERR_PTR(error);
78fb7466 6172
3ed28fa1 6173 for_each_node(node)
c0ff4b85 6174 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6175 goto free_out;
f64c3f54 6176
c077719b 6177 /* root ? */
28dbc4b6 6178 if (cont->parent == NULL) {
a41c58a6 6179 root_mem_cgroup = memcg;
d142e3e6
GC
6180 res_counter_init(&memcg->res, NULL);
6181 res_counter_init(&memcg->memsw, NULL);
6182 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6183 }
28dbc4b6 6184
d142e3e6
GC
6185 memcg->last_scanned_node = MAX_NUMNODES;
6186 INIT_LIST_HEAD(&memcg->oom_notify);
6187 atomic_set(&memcg->refcnt, 1);
6188 memcg->move_charge_at_immigrate = 0;
6189 mutex_init(&memcg->thresholds_lock);
6190 spin_lock_init(&memcg->move_lock);
6191
6192 return &memcg->css;
6193
6194free_out:
6195 __mem_cgroup_free(memcg);
6196 return ERR_PTR(error);
6197}
6198
6199static int
6200mem_cgroup_css_online(struct cgroup *cont)
6201{
6202 struct mem_cgroup *memcg, *parent;
6203 int error = 0;
6204
6205 if (!cont->parent)
6206 return 0;
6207
0999821b 6208 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6209 memcg = mem_cgroup_from_cont(cont);
6210 parent = mem_cgroup_from_cont(cont->parent);
6211
6212 memcg->use_hierarchy = parent->use_hierarchy;
6213 memcg->oom_kill_disable = parent->oom_kill_disable;
6214 memcg->swappiness = mem_cgroup_swappiness(parent);
6215
6216 if (parent->use_hierarchy) {
c0ff4b85
R
6217 res_counter_init(&memcg->res, &parent->res);
6218 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6219 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6220
7bcc1bb1
DN
6221 /*
6222 * We increment refcnt of the parent to ensure that we can
6223 * safely access it on res_counter_charge/uncharge.
6224 * This refcnt will be decremented when freeing this
6225 * mem_cgroup(see mem_cgroup_put).
6226 */
6227 mem_cgroup_get(parent);
18f59ea7 6228 } else {
c0ff4b85
R
6229 res_counter_init(&memcg->res, NULL);
6230 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6231 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6232 /*
6233 * Deeper hierachy with use_hierarchy == false doesn't make
6234 * much sense so let cgroup subsystem know about this
6235 * unfortunate state in our controller.
6236 */
d142e3e6 6237 if (parent != root_mem_cgroup)
8c7f6edb 6238 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6239 }
cbe128e3
GC
6240
6241 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6242 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6243 if (error) {
6244 /*
6245 * We call put now because our (and parent's) refcnts
6246 * are already in place. mem_cgroup_put() will internally
6247 * call __mem_cgroup_free, so return directly
6248 */
6249 mem_cgroup_put(memcg);
e4715f01
GC
6250 if (parent->use_hierarchy)
6251 mem_cgroup_put(parent);
cbe128e3 6252 }
d142e3e6 6253 return error;
8cdea7c0
BS
6254}
6255
5f578161
MH
6256/*
6257 * Announce all parents that a group from their hierarchy is gone.
6258 */
6259static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6260{
6261 struct mem_cgroup *parent = memcg;
6262
6263 while ((parent = parent_mem_cgroup(parent)))
6264 atomic_inc(&parent->dead_count);
6265
6266 /*
6267 * if the root memcg is not hierarchical we have to check it
6268 * explicitely.
6269 */
6270 if (!root_mem_cgroup->use_hierarchy)
6271 atomic_inc(&root_mem_cgroup->dead_count);
6272}
6273
92fb9748 6274static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6275{
c0ff4b85 6276 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6277
5f578161 6278 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6279 mem_cgroup_reparent_charges(memcg);
1f458cbf 6280 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6281}
6282
92fb9748 6283static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6284{
c0ff4b85 6285 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6286
1d62e436 6287 kmem_cgroup_destroy(memcg);
d1a4c0b3 6288
c0ff4b85 6289 mem_cgroup_put(memcg);
8cdea7c0
BS
6290}
6291
02491447 6292#ifdef CONFIG_MMU
7dc74be0 6293/* Handlers for move charge at task migration. */
854ffa8d
DN
6294#define PRECHARGE_COUNT_AT_ONCE 256
6295static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6296{
854ffa8d
DN
6297 int ret = 0;
6298 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6299 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6300
c0ff4b85 6301 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6302 mc.precharge += count;
6303 /* we don't need css_get for root */
6304 return ret;
6305 }
6306 /* try to charge at once */
6307 if (count > 1) {
6308 struct res_counter *dummy;
6309 /*
c0ff4b85 6310 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6311 * by cgroup_lock_live_cgroup() that it is not removed and we
6312 * are still under the same cgroup_mutex. So we can postpone
6313 * css_get().
6314 */
c0ff4b85 6315 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6316 goto one_by_one;
c0ff4b85 6317 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6318 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6319 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6320 goto one_by_one;
6321 }
6322 mc.precharge += count;
854ffa8d
DN
6323 return ret;
6324 }
6325one_by_one:
6326 /* fall back to one by one charge */
6327 while (count--) {
6328 if (signal_pending(current)) {
6329 ret = -EINTR;
6330 break;
6331 }
6332 if (!batch_count--) {
6333 batch_count = PRECHARGE_COUNT_AT_ONCE;
6334 cond_resched();
6335 }
c0ff4b85
R
6336 ret = __mem_cgroup_try_charge(NULL,
6337 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6338 if (ret)
854ffa8d 6339 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6340 return ret;
854ffa8d
DN
6341 mc.precharge++;
6342 }
4ffef5fe
DN
6343 return ret;
6344}
6345
6346/**
8d32ff84 6347 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6348 * @vma: the vma the pte to be checked belongs
6349 * @addr: the address corresponding to the pte to be checked
6350 * @ptent: the pte to be checked
02491447 6351 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6352 *
6353 * Returns
6354 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6355 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6356 * move charge. if @target is not NULL, the page is stored in target->page
6357 * with extra refcnt got(Callers should handle it).
02491447
DN
6358 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6359 * target for charge migration. if @target is not NULL, the entry is stored
6360 * in target->ent.
4ffef5fe
DN
6361 *
6362 * Called with pte lock held.
6363 */
4ffef5fe
DN
6364union mc_target {
6365 struct page *page;
02491447 6366 swp_entry_t ent;
4ffef5fe
DN
6367};
6368
4ffef5fe 6369enum mc_target_type {
8d32ff84 6370 MC_TARGET_NONE = 0,
4ffef5fe 6371 MC_TARGET_PAGE,
02491447 6372 MC_TARGET_SWAP,
4ffef5fe
DN
6373};
6374
90254a65
DN
6375static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6376 unsigned long addr, pte_t ptent)
4ffef5fe 6377{
90254a65 6378 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6379
90254a65
DN
6380 if (!page || !page_mapped(page))
6381 return NULL;
6382 if (PageAnon(page)) {
6383 /* we don't move shared anon */
4b91355e 6384 if (!move_anon())
90254a65 6385 return NULL;
87946a72
DN
6386 } else if (!move_file())
6387 /* we ignore mapcount for file pages */
90254a65
DN
6388 return NULL;
6389 if (!get_page_unless_zero(page))
6390 return NULL;
6391
6392 return page;
6393}
6394
4b91355e 6395#ifdef CONFIG_SWAP
90254a65
DN
6396static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6397 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6398{
90254a65
DN
6399 struct page *page = NULL;
6400 swp_entry_t ent = pte_to_swp_entry(ptent);
6401
6402 if (!move_anon() || non_swap_entry(ent))
6403 return NULL;
4b91355e
KH
6404 /*
6405 * Because lookup_swap_cache() updates some statistics counter,
6406 * we call find_get_page() with swapper_space directly.
6407 */
33806f06 6408 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6409 if (do_swap_account)
6410 entry->val = ent.val;
6411
6412 return page;
6413}
4b91355e
KH
6414#else
6415static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6416 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6417{
6418 return NULL;
6419}
6420#endif
90254a65 6421
87946a72
DN
6422static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6423 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6424{
6425 struct page *page = NULL;
87946a72
DN
6426 struct address_space *mapping;
6427 pgoff_t pgoff;
6428
6429 if (!vma->vm_file) /* anonymous vma */
6430 return NULL;
6431 if (!move_file())
6432 return NULL;
6433
87946a72
DN
6434 mapping = vma->vm_file->f_mapping;
6435 if (pte_none(ptent))
6436 pgoff = linear_page_index(vma, addr);
6437 else /* pte_file(ptent) is true */
6438 pgoff = pte_to_pgoff(ptent);
6439
6440 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6441 page = find_get_page(mapping, pgoff);
6442
6443#ifdef CONFIG_SWAP
6444 /* shmem/tmpfs may report page out on swap: account for that too. */
6445 if (radix_tree_exceptional_entry(page)) {
6446 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6447 if (do_swap_account)
aa3b1895 6448 *entry = swap;
33806f06 6449 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6450 }
aa3b1895 6451#endif
87946a72
DN
6452 return page;
6453}
6454
8d32ff84 6455static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6456 unsigned long addr, pte_t ptent, union mc_target *target)
6457{
6458 struct page *page = NULL;
6459 struct page_cgroup *pc;
8d32ff84 6460 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6461 swp_entry_t ent = { .val = 0 };
6462
6463 if (pte_present(ptent))
6464 page = mc_handle_present_pte(vma, addr, ptent);
6465 else if (is_swap_pte(ptent))
6466 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6467 else if (pte_none(ptent) || pte_file(ptent))
6468 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6469
6470 if (!page && !ent.val)
8d32ff84 6471 return ret;
02491447
DN
6472 if (page) {
6473 pc = lookup_page_cgroup(page);
6474 /*
6475 * Do only loose check w/o page_cgroup lock.
6476 * mem_cgroup_move_account() checks the pc is valid or not under
6477 * the lock.
6478 */
6479 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6480 ret = MC_TARGET_PAGE;
6481 if (target)
6482 target->page = page;
6483 }
6484 if (!ret || !target)
6485 put_page(page);
6486 }
90254a65
DN
6487 /* There is a swap entry and a page doesn't exist or isn't charged */
6488 if (ent.val && !ret &&
9fb4b7cc 6489 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6490 ret = MC_TARGET_SWAP;
6491 if (target)
6492 target->ent = ent;
4ffef5fe 6493 }
4ffef5fe
DN
6494 return ret;
6495}
6496
12724850
NH
6497#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6498/*
6499 * We don't consider swapping or file mapped pages because THP does not
6500 * support them for now.
6501 * Caller should make sure that pmd_trans_huge(pmd) is true.
6502 */
6503static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6504 unsigned long addr, pmd_t pmd, union mc_target *target)
6505{
6506 struct page *page = NULL;
6507 struct page_cgroup *pc;
6508 enum mc_target_type ret = MC_TARGET_NONE;
6509
6510 page = pmd_page(pmd);
6511 VM_BUG_ON(!page || !PageHead(page));
6512 if (!move_anon())
6513 return ret;
6514 pc = lookup_page_cgroup(page);
6515 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6516 ret = MC_TARGET_PAGE;
6517 if (target) {
6518 get_page(page);
6519 target->page = page;
6520 }
6521 }
6522 return ret;
6523}
6524#else
6525static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6526 unsigned long addr, pmd_t pmd, union mc_target *target)
6527{
6528 return MC_TARGET_NONE;
6529}
6530#endif
6531
4ffef5fe
DN
6532static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6533 unsigned long addr, unsigned long end,
6534 struct mm_walk *walk)
6535{
6536 struct vm_area_struct *vma = walk->private;
6537 pte_t *pte;
6538 spinlock_t *ptl;
6539
12724850
NH
6540 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6541 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6542 mc.precharge += HPAGE_PMD_NR;
6543 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6544 return 0;
12724850 6545 }
03319327 6546
45f83cef
AA
6547 if (pmd_trans_unstable(pmd))
6548 return 0;
4ffef5fe
DN
6549 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6550 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6551 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6552 mc.precharge++; /* increment precharge temporarily */
6553 pte_unmap_unlock(pte - 1, ptl);
6554 cond_resched();
6555
7dc74be0
DN
6556 return 0;
6557}
6558
4ffef5fe
DN
6559static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6560{
6561 unsigned long precharge;
6562 struct vm_area_struct *vma;
6563
dfe076b0 6564 down_read(&mm->mmap_sem);
4ffef5fe
DN
6565 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6566 struct mm_walk mem_cgroup_count_precharge_walk = {
6567 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6568 .mm = mm,
6569 .private = vma,
6570 };
6571 if (is_vm_hugetlb_page(vma))
6572 continue;
4ffef5fe
DN
6573 walk_page_range(vma->vm_start, vma->vm_end,
6574 &mem_cgroup_count_precharge_walk);
6575 }
dfe076b0 6576 up_read(&mm->mmap_sem);
4ffef5fe
DN
6577
6578 precharge = mc.precharge;
6579 mc.precharge = 0;
6580
6581 return precharge;
6582}
6583
4ffef5fe
DN
6584static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6585{
dfe076b0
DN
6586 unsigned long precharge = mem_cgroup_count_precharge(mm);
6587
6588 VM_BUG_ON(mc.moving_task);
6589 mc.moving_task = current;
6590 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6591}
6592
dfe076b0
DN
6593/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6594static void __mem_cgroup_clear_mc(void)
4ffef5fe 6595{
2bd9bb20
KH
6596 struct mem_cgroup *from = mc.from;
6597 struct mem_cgroup *to = mc.to;
6598
4ffef5fe 6599 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6600 if (mc.precharge) {
6601 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6602 mc.precharge = 0;
6603 }
6604 /*
6605 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6606 * we must uncharge here.
6607 */
6608 if (mc.moved_charge) {
6609 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6610 mc.moved_charge = 0;
4ffef5fe 6611 }
483c30b5
DN
6612 /* we must fixup refcnts and charges */
6613 if (mc.moved_swap) {
483c30b5
DN
6614 /* uncharge swap account from the old cgroup */
6615 if (!mem_cgroup_is_root(mc.from))
6616 res_counter_uncharge(&mc.from->memsw,
6617 PAGE_SIZE * mc.moved_swap);
6618 __mem_cgroup_put(mc.from, mc.moved_swap);
6619
6620 if (!mem_cgroup_is_root(mc.to)) {
6621 /*
6622 * we charged both to->res and to->memsw, so we should
6623 * uncharge to->res.
6624 */
6625 res_counter_uncharge(&mc.to->res,
6626 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6627 }
6628 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6629 mc.moved_swap = 0;
6630 }
dfe076b0
DN
6631 memcg_oom_recover(from);
6632 memcg_oom_recover(to);
6633 wake_up_all(&mc.waitq);
6634}
6635
6636static void mem_cgroup_clear_mc(void)
6637{
6638 struct mem_cgroup *from = mc.from;
6639
6640 /*
6641 * we must clear moving_task before waking up waiters at the end of
6642 * task migration.
6643 */
6644 mc.moving_task = NULL;
6645 __mem_cgroup_clear_mc();
2bd9bb20 6646 spin_lock(&mc.lock);
4ffef5fe
DN
6647 mc.from = NULL;
6648 mc.to = NULL;
2bd9bb20 6649 spin_unlock(&mc.lock);
32047e2a 6650 mem_cgroup_end_move(from);
4ffef5fe
DN
6651}
6652
761b3ef5
LZ
6653static int mem_cgroup_can_attach(struct cgroup *cgroup,
6654 struct cgroup_taskset *tset)
7dc74be0 6655{
2f7ee569 6656 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6657 int ret = 0;
c0ff4b85 6658 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6659 unsigned long move_charge_at_immigrate;
7dc74be0 6660
ee5e8472
GC
6661 /*
6662 * We are now commited to this value whatever it is. Changes in this
6663 * tunable will only affect upcoming migrations, not the current one.
6664 * So we need to save it, and keep it going.
6665 */
6666 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6667 if (move_charge_at_immigrate) {
7dc74be0
DN
6668 struct mm_struct *mm;
6669 struct mem_cgroup *from = mem_cgroup_from_task(p);
6670
c0ff4b85 6671 VM_BUG_ON(from == memcg);
7dc74be0
DN
6672
6673 mm = get_task_mm(p);
6674 if (!mm)
6675 return 0;
7dc74be0 6676 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6677 if (mm->owner == p) {
6678 VM_BUG_ON(mc.from);
6679 VM_BUG_ON(mc.to);
6680 VM_BUG_ON(mc.precharge);
854ffa8d 6681 VM_BUG_ON(mc.moved_charge);
483c30b5 6682 VM_BUG_ON(mc.moved_swap);
32047e2a 6683 mem_cgroup_start_move(from);
2bd9bb20 6684 spin_lock(&mc.lock);
4ffef5fe 6685 mc.from = from;
c0ff4b85 6686 mc.to = memcg;
ee5e8472 6687 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6688 spin_unlock(&mc.lock);
dfe076b0 6689 /* We set mc.moving_task later */
4ffef5fe
DN
6690
6691 ret = mem_cgroup_precharge_mc(mm);
6692 if (ret)
6693 mem_cgroup_clear_mc();
dfe076b0
DN
6694 }
6695 mmput(mm);
7dc74be0
DN
6696 }
6697 return ret;
6698}
6699
761b3ef5
LZ
6700static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6701 struct cgroup_taskset *tset)
7dc74be0 6702{
4ffef5fe 6703 mem_cgroup_clear_mc();
7dc74be0
DN
6704}
6705
4ffef5fe
DN
6706static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6707 unsigned long addr, unsigned long end,
6708 struct mm_walk *walk)
7dc74be0 6709{
4ffef5fe
DN
6710 int ret = 0;
6711 struct vm_area_struct *vma = walk->private;
6712 pte_t *pte;
6713 spinlock_t *ptl;
12724850
NH
6714 enum mc_target_type target_type;
6715 union mc_target target;
6716 struct page *page;
6717 struct page_cgroup *pc;
4ffef5fe 6718
12724850
NH
6719 /*
6720 * We don't take compound_lock() here but no race with splitting thp
6721 * happens because:
6722 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6723 * under splitting, which means there's no concurrent thp split,
6724 * - if another thread runs into split_huge_page() just after we
6725 * entered this if-block, the thread must wait for page table lock
6726 * to be unlocked in __split_huge_page_splitting(), where the main
6727 * part of thp split is not executed yet.
6728 */
6729 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6730 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6731 spin_unlock(&vma->vm_mm->page_table_lock);
6732 return 0;
6733 }
6734 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6735 if (target_type == MC_TARGET_PAGE) {
6736 page = target.page;
6737 if (!isolate_lru_page(page)) {
6738 pc = lookup_page_cgroup(page);
6739 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6740 pc, mc.from, mc.to)) {
12724850
NH
6741 mc.precharge -= HPAGE_PMD_NR;
6742 mc.moved_charge += HPAGE_PMD_NR;
6743 }
6744 putback_lru_page(page);
6745 }
6746 put_page(page);
6747 }
6748 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6749 return 0;
12724850
NH
6750 }
6751
45f83cef
AA
6752 if (pmd_trans_unstable(pmd))
6753 return 0;
4ffef5fe
DN
6754retry:
6755 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6756 for (; addr != end; addr += PAGE_SIZE) {
6757 pte_t ptent = *(pte++);
02491447 6758 swp_entry_t ent;
4ffef5fe
DN
6759
6760 if (!mc.precharge)
6761 break;
6762
8d32ff84 6763 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6764 case MC_TARGET_PAGE:
6765 page = target.page;
6766 if (isolate_lru_page(page))
6767 goto put;
6768 pc = lookup_page_cgroup(page);
7ec99d62 6769 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6770 mc.from, mc.to)) {
4ffef5fe 6771 mc.precharge--;
854ffa8d
DN
6772 /* we uncharge from mc.from later. */
6773 mc.moved_charge++;
4ffef5fe
DN
6774 }
6775 putback_lru_page(page);
8d32ff84 6776put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6777 put_page(page);
6778 break;
02491447
DN
6779 case MC_TARGET_SWAP:
6780 ent = target.ent;
e91cbb42 6781 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6782 mc.precharge--;
483c30b5
DN
6783 /* we fixup refcnts and charges later. */
6784 mc.moved_swap++;
6785 }
02491447 6786 break;
4ffef5fe
DN
6787 default:
6788 break;
6789 }
6790 }
6791 pte_unmap_unlock(pte - 1, ptl);
6792 cond_resched();
6793
6794 if (addr != end) {
6795 /*
6796 * We have consumed all precharges we got in can_attach().
6797 * We try charge one by one, but don't do any additional
6798 * charges to mc.to if we have failed in charge once in attach()
6799 * phase.
6800 */
854ffa8d 6801 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6802 if (!ret)
6803 goto retry;
6804 }
6805
6806 return ret;
6807}
6808
6809static void mem_cgroup_move_charge(struct mm_struct *mm)
6810{
6811 struct vm_area_struct *vma;
6812
6813 lru_add_drain_all();
dfe076b0
DN
6814retry:
6815 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6816 /*
6817 * Someone who are holding the mmap_sem might be waiting in
6818 * waitq. So we cancel all extra charges, wake up all waiters,
6819 * and retry. Because we cancel precharges, we might not be able
6820 * to move enough charges, but moving charge is a best-effort
6821 * feature anyway, so it wouldn't be a big problem.
6822 */
6823 __mem_cgroup_clear_mc();
6824 cond_resched();
6825 goto retry;
6826 }
4ffef5fe
DN
6827 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6828 int ret;
6829 struct mm_walk mem_cgroup_move_charge_walk = {
6830 .pmd_entry = mem_cgroup_move_charge_pte_range,
6831 .mm = mm,
6832 .private = vma,
6833 };
6834 if (is_vm_hugetlb_page(vma))
6835 continue;
4ffef5fe
DN
6836 ret = walk_page_range(vma->vm_start, vma->vm_end,
6837 &mem_cgroup_move_charge_walk);
6838 if (ret)
6839 /*
6840 * means we have consumed all precharges and failed in
6841 * doing additional charge. Just abandon here.
6842 */
6843 break;
6844 }
dfe076b0 6845 up_read(&mm->mmap_sem);
7dc74be0
DN
6846}
6847
761b3ef5
LZ
6848static void mem_cgroup_move_task(struct cgroup *cont,
6849 struct cgroup_taskset *tset)
67e465a7 6850{
2f7ee569 6851 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6852 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6853
dfe076b0 6854 if (mm) {
a433658c
KM
6855 if (mc.to)
6856 mem_cgroup_move_charge(mm);
dfe076b0
DN
6857 mmput(mm);
6858 }
a433658c
KM
6859 if (mc.to)
6860 mem_cgroup_clear_mc();
67e465a7 6861}
5cfb80a7 6862#else /* !CONFIG_MMU */
761b3ef5
LZ
6863static int mem_cgroup_can_attach(struct cgroup *cgroup,
6864 struct cgroup_taskset *tset)
5cfb80a7
DN
6865{
6866 return 0;
6867}
761b3ef5
LZ
6868static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6869 struct cgroup_taskset *tset)
5cfb80a7
DN
6870{
6871}
761b3ef5
LZ
6872static void mem_cgroup_move_task(struct cgroup *cont,
6873 struct cgroup_taskset *tset)
5cfb80a7
DN
6874{
6875}
6876#endif
67e465a7 6877
8cdea7c0
BS
6878struct cgroup_subsys mem_cgroup_subsys = {
6879 .name = "memory",
6880 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6881 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6882 .css_online = mem_cgroup_css_online,
92fb9748
TH
6883 .css_offline = mem_cgroup_css_offline,
6884 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6885 .can_attach = mem_cgroup_can_attach,
6886 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6887 .attach = mem_cgroup_move_task,
6bc10349 6888 .base_cftypes = mem_cgroup_files,
6d12e2d8 6889 .early_init = 0,
04046e1a 6890 .use_id = 1,
8cdea7c0 6891};
c077719b 6892
c255a458 6893#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6894static int __init enable_swap_account(char *s)
6895{
6896 /* consider enabled if no parameter or 1 is given */
a2c8990a 6897 if (!strcmp(s, "1"))
a42c390c 6898 really_do_swap_account = 1;
a2c8990a 6899 else if (!strcmp(s, "0"))
a42c390c
MH
6900 really_do_swap_account = 0;
6901 return 1;
6902}
a2c8990a 6903__setup("swapaccount=", enable_swap_account);
c077719b 6904
2d11085e
MH
6905static void __init memsw_file_init(void)
6906{
6acc8b02
MH
6907 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6908}
6909
6910static void __init enable_swap_cgroup(void)
6911{
6912 if (!mem_cgroup_disabled() && really_do_swap_account) {
6913 do_swap_account = 1;
6914 memsw_file_init();
6915 }
2d11085e 6916}
6acc8b02 6917
2d11085e 6918#else
6acc8b02 6919static void __init enable_swap_cgroup(void)
2d11085e
MH
6920{
6921}
c077719b 6922#endif
2d11085e
MH
6923
6924/*
1081312f
MH
6925 * subsys_initcall() for memory controller.
6926 *
6927 * Some parts like hotcpu_notifier() have to be initialized from this context
6928 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6929 * everything that doesn't depend on a specific mem_cgroup structure should
6930 * be initialized from here.
2d11085e
MH
6931 */
6932static int __init mem_cgroup_init(void)
6933{
6934 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6935 enable_swap_cgroup();
8787a1df 6936 mem_cgroup_soft_limit_tree_init();
e4777496 6937 memcg_stock_init();
2d11085e
MH
6938 return 0;
6939}
6940subsys_initcall(mem_cgroup_init);