]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: Introduce page memcg flags
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
37d5985c
RG
76/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
f7e1cb6e
JW
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
04823c83
VD
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
21afa38e 85/* Whether the swap controller is active */
c255a458 86#ifdef CONFIG_MEMCG_SWAP
eccb52e7 87bool cgroup_memory_noswap __read_mostly;
c077719b 88#else
eccb52e7 89#define cgroup_memory_noswap 1
2d1c4980 90#endif
c077719b 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
eccb52e7 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
510fc4e1 208 _KMEM,
d55f90bf 209 _TCP,
86ae53e1
GC
210};
211
a0db00fc
KS
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 214#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
8c7c6e34 217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
7775face
TH
233static inline bool should_force_charge(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
253extern spinlock_t css_set_lock;
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
55007d84 345/*
9855609b 346 * This will be used as a shrinker list's index.
b8627835
LZ
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
55007d84 352 *
dbcf73e2
VD
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
55007d84 355 */
dbcf73e2
VD
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
749c5415 358
05257a1a
VD
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
55007d84
GC
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
b8627835 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
b8627835 385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 386
d7f25f8a
GC
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
272911a4 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
ef12947c 393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 394EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 395#endif
17cc4dfe 396
0a4465d3
KT
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
86daf94e 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
86daf94e 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 497 goto unlock;
75866af6 498 }
0a4465d3
KT
499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
fae91d6d
KT
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
fae91d6d
KT
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
ad7fa852
TH
521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
ad7fa852
TH
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
bcfe06bf 536 memcg = page_memcg(page);
ad7fa852 537
9e10a130 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
539 memcg = root_mem_cgroup;
540
ad7fa852
TH
541 return &memcg->css;
542}
543
2fc04524
VD
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
bcfe06bf 563 memcg = page_memcg_check(page);
286e04b8 564
2fc04524
VD
565 while (memcg && !(memcg->css.flags & CSS_ONLINE))
566 memcg = parent_mem_cgroup(memcg);
567 if (memcg)
568 ino = cgroup_ino(memcg->css.cgroup);
569 rcu_read_unlock();
570 return ino;
571}
572
ef8f2327
MG
573static struct mem_cgroup_per_node *
574mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 575{
97a6c37b 576 int nid = page_to_nid(page);
f64c3f54 577
ef8f2327 578 return memcg->nodeinfo[nid];
f64c3f54
BS
579}
580
ef8f2327
MG
581static struct mem_cgroup_tree_per_node *
582soft_limit_tree_node(int nid)
bb4cc1a8 583{
ef8f2327 584 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
585}
586
ef8f2327 587static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
588soft_limit_tree_from_page(struct page *page)
589{
590 int nid = page_to_nid(page);
bb4cc1a8 591
ef8f2327 592 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
593}
594
ef8f2327
MG
595static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
596 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 597 unsigned long new_usage_in_excess)
bb4cc1a8
AM
598{
599 struct rb_node **p = &mctz->rb_root.rb_node;
600 struct rb_node *parent = NULL;
ef8f2327 601 struct mem_cgroup_per_node *mz_node;
fa90b2fd 602 bool rightmost = true;
bb4cc1a8
AM
603
604 if (mz->on_tree)
605 return;
606
607 mz->usage_in_excess = new_usage_in_excess;
608 if (!mz->usage_in_excess)
609 return;
610 while (*p) {
611 parent = *p;
ef8f2327 612 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 613 tree_node);
fa90b2fd 614 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 615 p = &(*p)->rb_left;
fa90b2fd
DB
616 rightmost = false;
617 }
618
bb4cc1a8
AM
619 /*
620 * We can't avoid mem cgroups that are over their soft
621 * limit by the same amount
622 */
623 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
624 p = &(*p)->rb_right;
625 }
fa90b2fd
DB
626
627 if (rightmost)
628 mctz->rb_rightmost = &mz->tree_node;
629
bb4cc1a8
AM
630 rb_link_node(&mz->tree_node, parent, p);
631 rb_insert_color(&mz->tree_node, &mctz->rb_root);
632 mz->on_tree = true;
633}
634
ef8f2327
MG
635static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
636 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
637{
638 if (!mz->on_tree)
639 return;
fa90b2fd
DB
640
641 if (&mz->tree_node == mctz->rb_rightmost)
642 mctz->rb_rightmost = rb_prev(&mz->tree_node);
643
bb4cc1a8
AM
644 rb_erase(&mz->tree_node, &mctz->rb_root);
645 mz->on_tree = false;
646}
647
ef8f2327
MG
648static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
649 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 650{
0a31bc97
JW
651 unsigned long flags;
652
653 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 654 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 655 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
656}
657
3e32cb2e
JW
658static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
659{
660 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 661 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
662 unsigned long excess = 0;
663
664 if (nr_pages > soft_limit)
665 excess = nr_pages - soft_limit;
666
667 return excess;
668}
bb4cc1a8
AM
669
670static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
671{
3e32cb2e 672 unsigned long excess;
ef8f2327
MG
673 struct mem_cgroup_per_node *mz;
674 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 675
e231875b 676 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
677 if (!mctz)
678 return;
bb4cc1a8
AM
679 /*
680 * Necessary to update all ancestors when hierarchy is used.
681 * because their event counter is not touched.
682 */
683 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 684 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 685 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
686 /*
687 * We have to update the tree if mz is on RB-tree or
688 * mem is over its softlimit.
689 */
690 if (excess || mz->on_tree) {
0a31bc97
JW
691 unsigned long flags;
692
693 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
694 /* if on-tree, remove it */
695 if (mz->on_tree)
cf2c8127 696 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
697 /*
698 * Insert again. mz->usage_in_excess will be updated.
699 * If excess is 0, no tree ops.
700 */
cf2c8127 701 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 702 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
703 }
704 }
705}
706
707static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
708{
ef8f2327
MG
709 struct mem_cgroup_tree_per_node *mctz;
710 struct mem_cgroup_per_node *mz;
711 int nid;
bb4cc1a8 712
e231875b 713 for_each_node(nid) {
ef8f2327
MG
714 mz = mem_cgroup_nodeinfo(memcg, nid);
715 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
716 if (mctz)
717 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
718 }
719}
720
ef8f2327
MG
721static struct mem_cgroup_per_node *
722__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 723{
ef8f2327 724 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
725
726retry:
727 mz = NULL;
fa90b2fd 728 if (!mctz->rb_rightmost)
bb4cc1a8
AM
729 goto done; /* Nothing to reclaim from */
730
fa90b2fd
DB
731 mz = rb_entry(mctz->rb_rightmost,
732 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
733 /*
734 * Remove the node now but someone else can add it back,
735 * we will to add it back at the end of reclaim to its correct
736 * position in the tree.
737 */
cf2c8127 738 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 739 if (!soft_limit_excess(mz->memcg) ||
8965aa28 740 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
741 goto retry;
742done:
743 return mz;
744}
745
ef8f2327
MG
746static struct mem_cgroup_per_node *
747mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 748{
ef8f2327 749 struct mem_cgroup_per_node *mz;
bb4cc1a8 750
0a31bc97 751 spin_lock_irq(&mctz->lock);
bb4cc1a8 752 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 753 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
754 return mz;
755}
756
db9adbcb
JW
757/**
758 * __mod_memcg_state - update cgroup memory statistics
759 * @memcg: the memory cgroup
760 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
761 * @val: delta to add to the counter, can be negative
762 */
763void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
764{
ea426c2a 765 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
766
767 if (mem_cgroup_disabled())
768 return;
769
772616b0 770 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
771 threshold <<= PAGE_SHIFT;
772
db9adbcb 773 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 774 if (unlikely(abs(x) > threshold)) {
42a30035
JW
775 struct mem_cgroup *mi;
776
766a4c19
YS
777 /*
778 * Batch local counters to keep them in sync with
779 * the hierarchical ones.
780 */
781 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
782 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
784 x = 0;
785 }
786 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
787}
788
42a30035
JW
789static struct mem_cgroup_per_node *
790parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
791{
792 struct mem_cgroup *parent;
793
794 parent = parent_mem_cgroup(pn->memcg);
795 if (!parent)
796 return NULL;
797 return mem_cgroup_nodeinfo(parent, nid);
798}
799
eedc4e5a
RG
800void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
801 int val)
db9adbcb
JW
802{
803 struct mem_cgroup_per_node *pn;
42a30035 804 struct mem_cgroup *memcg;
ea426c2a 805 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 806
db9adbcb 807 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 808 memcg = pn->memcg;
db9adbcb
JW
809
810 /* Update memcg */
42a30035 811 __mod_memcg_state(memcg, idx, val);
db9adbcb 812
b4c46484
RG
813 /* Update lruvec */
814 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
815
ea426c2a
RG
816 if (vmstat_item_in_bytes(idx))
817 threshold <<= PAGE_SHIFT;
818
db9adbcb 819 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 820 if (unlikely(abs(x) > threshold)) {
eedc4e5a 821 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
822 struct mem_cgroup_per_node *pi;
823
42a30035
JW
824 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
825 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
826 x = 0;
827 }
828 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
829}
830
eedc4e5a
RG
831/**
832 * __mod_lruvec_state - update lruvec memory statistics
833 * @lruvec: the lruvec
834 * @idx: the stat item
835 * @val: delta to add to the counter, can be negative
836 *
837 * The lruvec is the intersection of the NUMA node and a cgroup. This
838 * function updates the all three counters that are affected by a
839 * change of state at this level: per-node, per-cgroup, per-lruvec.
840 */
841void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
842 int val)
843{
844 /* Update node */
845 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
846
847 /* Update memcg and lruvec */
848 if (!mem_cgroup_disabled())
849 __mod_memcg_lruvec_state(lruvec, idx, val);
850}
851
ec9f0238
RG
852void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
853{
4f103c63 854 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
855 struct mem_cgroup *memcg;
856 struct lruvec *lruvec;
857
858 rcu_read_lock();
4f103c63 859 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
860
861 /* Untracked pages have no memcg, no lruvec. Update only the node */
862 if (!memcg || memcg == root_mem_cgroup) {
863 __mod_node_page_state(pgdat, idx, val);
864 } else {
867e5e1d 865 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
866 __mod_lruvec_state(lruvec, idx, val);
867 }
868 rcu_read_unlock();
869}
870
8380ce47
RG
871void mod_memcg_obj_state(void *p, int idx, int val)
872{
873 struct mem_cgroup *memcg;
874
875 rcu_read_lock();
876 memcg = mem_cgroup_from_obj(p);
877 if (memcg)
878 mod_memcg_state(memcg, idx, val);
879 rcu_read_unlock();
880}
881
db9adbcb
JW
882/**
883 * __count_memcg_events - account VM events in a cgroup
884 * @memcg: the memory cgroup
885 * @idx: the event item
886 * @count: the number of events that occured
887 */
888void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
889 unsigned long count)
890{
891 unsigned long x;
892
893 if (mem_cgroup_disabled())
894 return;
895
896 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
897 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
898 struct mem_cgroup *mi;
899
766a4c19
YS
900 /*
901 * Batch local counters to keep them in sync with
902 * the hierarchical ones.
903 */
904 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
905 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
906 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
907 x = 0;
908 }
909 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
910}
911
42a30035 912static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 913{
871789d4 914 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
915}
916
42a30035
JW
917static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
918{
815744d7
JW
919 long x = 0;
920 int cpu;
921
922 for_each_possible_cpu(cpu)
923 x += per_cpu(memcg->vmstats_local->events[event], cpu);
924 return x;
42a30035
JW
925}
926
c0ff4b85 927static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 928 struct page *page,
3fba69a5 929 int nr_pages)
d52aa412 930{
e401f176
KH
931 /* pagein of a big page is an event. So, ignore page size */
932 if (nr_pages > 0)
c9019e9b 933 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 934 else {
c9019e9b 935 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
936 nr_pages = -nr_pages; /* for event */
937 }
e401f176 938
871789d4 939 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
940}
941
f53d7ce3
JW
942static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
943 enum mem_cgroup_events_target target)
7a159cc9
JW
944{
945 unsigned long val, next;
946
871789d4
CD
947 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
948 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 949 /* from time_after() in jiffies.h */
6a1a8b80 950 if ((long)(next - val) < 0) {
f53d7ce3
JW
951 switch (target) {
952 case MEM_CGROUP_TARGET_THRESH:
953 next = val + THRESHOLDS_EVENTS_TARGET;
954 break;
bb4cc1a8
AM
955 case MEM_CGROUP_TARGET_SOFTLIMIT:
956 next = val + SOFTLIMIT_EVENTS_TARGET;
957 break;
f53d7ce3
JW
958 default:
959 break;
960 }
871789d4 961 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 962 return true;
7a159cc9 963 }
f53d7ce3 964 return false;
d2265e6f
KH
965}
966
967/*
968 * Check events in order.
969 *
970 */
c0ff4b85 971static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
972{
973 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
974 if (unlikely(mem_cgroup_event_ratelimit(memcg,
975 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 976 bool do_softlimit;
f53d7ce3 977
bb4cc1a8
AM
978 do_softlimit = mem_cgroup_event_ratelimit(memcg,
979 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 980 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
981 if (unlikely(do_softlimit))
982 mem_cgroup_update_tree(memcg, page);
0a31bc97 983 }
d2265e6f
KH
984}
985
cf475ad2 986struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 987{
31a78f23
BS
988 /*
989 * mm_update_next_owner() may clear mm->owner to NULL
990 * if it races with swapoff, page migration, etc.
991 * So this can be called with p == NULL.
992 */
993 if (unlikely(!p))
994 return NULL;
995
073219e9 996 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 997}
33398cf2 998EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 999
d46eb14b
SB
1000/**
1001 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1002 * @mm: mm from which memcg should be extracted. It can be NULL.
1003 *
1004 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1005 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1006 * returned.
1007 */
1008struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1009{
d46eb14b
SB
1010 struct mem_cgroup *memcg;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
0b7f569e 1014
54595fe2
KH
1015 rcu_read_lock();
1016 do {
6f6acb00
MH
1017 /*
1018 * Page cache insertions can happen withou an
1019 * actual mm context, e.g. during disk probing
1020 * on boot, loopback IO, acct() writes etc.
1021 */
1022 if (unlikely(!mm))
df381975 1023 memcg = root_mem_cgroup;
6f6acb00
MH
1024 else {
1025 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1026 if (unlikely(!memcg))
1027 memcg = root_mem_cgroup;
1028 }
00d484f3 1029 } while (!css_tryget(&memcg->css));
54595fe2 1030 rcu_read_unlock();
c0ff4b85 1031 return memcg;
54595fe2 1032}
d46eb14b
SB
1033EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1034
f745c6f5
SB
1035/**
1036 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1037 * @page: page from which memcg should be extracted.
1038 *
1039 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1040 * root_mem_cgroup is returned.
1041 */
1042struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1043{
bcfe06bf 1044 struct mem_cgroup *memcg = page_memcg(page);
f745c6f5
SB
1045
1046 if (mem_cgroup_disabled())
1047 return NULL;
1048
1049 rcu_read_lock();
8965aa28
SB
1050 /* Page should not get uncharged and freed memcg under us. */
1051 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1052 memcg = root_mem_cgroup;
1053 rcu_read_unlock();
1054 return memcg;
1055}
1056EXPORT_SYMBOL(get_mem_cgroup_from_page);
1057
37d5985c 1058static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1059{
37d5985c
RG
1060 if (in_interrupt())
1061 return this_cpu_read(int_active_memcg);
1062 else
1063 return current->active_memcg;
1064}
279c3393 1065
37d5985c
RG
1066static __always_inline struct mem_cgroup *get_active_memcg(void)
1067{
1068 struct mem_cgroup *memcg;
d46eb14b 1069
37d5985c
RG
1070 rcu_read_lock();
1071 memcg = active_memcg();
1072 if (memcg) {
8965aa28 1073 /* current->active_memcg must hold a ref. */
37d5985c 1074 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1075 memcg = root_mem_cgroup;
1076 else
d46eb14b 1077 memcg = current->active_memcg;
d46eb14b 1078 }
37d5985c
RG
1079 rcu_read_unlock();
1080
1081 return memcg;
1082}
1083
4127c650
RG
1084static __always_inline bool memcg_kmem_bypass(void)
1085{
1086 /* Allow remote memcg charging from any context. */
1087 if (unlikely(active_memcg()))
1088 return false;
1089
1090 /* Memcg to charge can't be determined. */
1091 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1092 return true;
1093
1094 return false;
1095}
1096
37d5985c
RG
1097/**
1098 * If active memcg is set, do not fallback to current->mm->memcg.
1099 */
1100static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1101{
1102 if (memcg_kmem_bypass())
1103 return NULL;
1104
1105 if (unlikely(active_memcg()))
1106 return get_active_memcg();
1107
d46eb14b
SB
1108 return get_mem_cgroup_from_mm(current->mm);
1109}
54595fe2 1110
5660048c
JW
1111/**
1112 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1113 * @root: hierarchy root
1114 * @prev: previously returned memcg, NULL on first invocation
1115 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1116 *
1117 * Returns references to children of the hierarchy below @root, or
1118 * @root itself, or %NULL after a full round-trip.
1119 *
1120 * Caller must pass the return value in @prev on subsequent
1121 * invocations for reference counting, or use mem_cgroup_iter_break()
1122 * to cancel a hierarchy walk before the round-trip is complete.
1123 *
05bdc520
ML
1124 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1125 * in the hierarchy among all concurrent reclaimers operating on the
1126 * same node.
5660048c 1127 */
694fbc0f 1128struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1129 struct mem_cgroup *prev,
694fbc0f 1130 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1131{
3f649ab7 1132 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1133 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1134 struct mem_cgroup *memcg = NULL;
5ac8fb31 1135 struct mem_cgroup *pos = NULL;
711d3d2c 1136
694fbc0f
AM
1137 if (mem_cgroup_disabled())
1138 return NULL;
5660048c 1139
9f3a0d09
JW
1140 if (!root)
1141 root = root_mem_cgroup;
7d74b06f 1142
9f3a0d09 1143 if (prev && !reclaim)
5ac8fb31 1144 pos = prev;
14067bb3 1145
9f3a0d09
JW
1146 if (!root->use_hierarchy && root != root_mem_cgroup) {
1147 if (prev)
5ac8fb31 1148 goto out;
694fbc0f 1149 return root;
9f3a0d09 1150 }
14067bb3 1151
542f85f9 1152 rcu_read_lock();
5f578161 1153
5ac8fb31 1154 if (reclaim) {
ef8f2327 1155 struct mem_cgroup_per_node *mz;
5ac8fb31 1156
ef8f2327 1157 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1158 iter = &mz->iter;
5ac8fb31
JW
1159
1160 if (prev && reclaim->generation != iter->generation)
1161 goto out_unlock;
1162
6df38689 1163 while (1) {
4db0c3c2 1164 pos = READ_ONCE(iter->position);
6df38689
VD
1165 if (!pos || css_tryget(&pos->css))
1166 break;
5ac8fb31 1167 /*
6df38689
VD
1168 * css reference reached zero, so iter->position will
1169 * be cleared by ->css_released. However, we should not
1170 * rely on this happening soon, because ->css_released
1171 * is called from a work queue, and by busy-waiting we
1172 * might block it. So we clear iter->position right
1173 * away.
5ac8fb31 1174 */
6df38689
VD
1175 (void)cmpxchg(&iter->position, pos, NULL);
1176 }
5ac8fb31
JW
1177 }
1178
1179 if (pos)
1180 css = &pos->css;
1181
1182 for (;;) {
1183 css = css_next_descendant_pre(css, &root->css);
1184 if (!css) {
1185 /*
1186 * Reclaimers share the hierarchy walk, and a
1187 * new one might jump in right at the end of
1188 * the hierarchy - make sure they see at least
1189 * one group and restart from the beginning.
1190 */
1191 if (!prev)
1192 continue;
1193 break;
527a5ec9 1194 }
7d74b06f 1195
5ac8fb31
JW
1196 /*
1197 * Verify the css and acquire a reference. The root
1198 * is provided by the caller, so we know it's alive
1199 * and kicking, and don't take an extra reference.
1200 */
1201 memcg = mem_cgroup_from_css(css);
14067bb3 1202
5ac8fb31
JW
1203 if (css == &root->css)
1204 break;
14067bb3 1205
0b8f73e1
JW
1206 if (css_tryget(css))
1207 break;
9f3a0d09 1208
5ac8fb31 1209 memcg = NULL;
9f3a0d09 1210 }
5ac8fb31
JW
1211
1212 if (reclaim) {
5ac8fb31 1213 /*
6df38689
VD
1214 * The position could have already been updated by a competing
1215 * thread, so check that the value hasn't changed since we read
1216 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1217 */
6df38689
VD
1218 (void)cmpxchg(&iter->position, pos, memcg);
1219
5ac8fb31
JW
1220 if (pos)
1221 css_put(&pos->css);
1222
1223 if (!memcg)
1224 iter->generation++;
1225 else if (!prev)
1226 reclaim->generation = iter->generation;
9f3a0d09 1227 }
5ac8fb31 1228
542f85f9
MH
1229out_unlock:
1230 rcu_read_unlock();
5ac8fb31 1231out:
c40046f3
MH
1232 if (prev && prev != root)
1233 css_put(&prev->css);
1234
9f3a0d09 1235 return memcg;
14067bb3 1236}
7d74b06f 1237
5660048c
JW
1238/**
1239 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1240 * @root: hierarchy root
1241 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1242 */
1243void mem_cgroup_iter_break(struct mem_cgroup *root,
1244 struct mem_cgroup *prev)
9f3a0d09
JW
1245{
1246 if (!root)
1247 root = root_mem_cgroup;
1248 if (prev && prev != root)
1249 css_put(&prev->css);
1250}
7d74b06f 1251
54a83d6b
MC
1252static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1253 struct mem_cgroup *dead_memcg)
6df38689 1254{
6df38689 1255 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1256 struct mem_cgroup_per_node *mz;
1257 int nid;
6df38689 1258
54a83d6b
MC
1259 for_each_node(nid) {
1260 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1261 iter = &mz->iter;
1262 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1263 }
1264}
1265
54a83d6b
MC
1266static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1267{
1268 struct mem_cgroup *memcg = dead_memcg;
1269 struct mem_cgroup *last;
1270
1271 do {
1272 __invalidate_reclaim_iterators(memcg, dead_memcg);
1273 last = memcg;
1274 } while ((memcg = parent_mem_cgroup(memcg)));
1275
1276 /*
1277 * When cgruop1 non-hierarchy mode is used,
1278 * parent_mem_cgroup() does not walk all the way up to the
1279 * cgroup root (root_mem_cgroup). So we have to handle
1280 * dead_memcg from cgroup root separately.
1281 */
1282 if (last != root_mem_cgroup)
1283 __invalidate_reclaim_iterators(root_mem_cgroup,
1284 dead_memcg);
1285}
1286
7c5f64f8
VD
1287/**
1288 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1289 * @memcg: hierarchy root
1290 * @fn: function to call for each task
1291 * @arg: argument passed to @fn
1292 *
1293 * This function iterates over tasks attached to @memcg or to any of its
1294 * descendants and calls @fn for each task. If @fn returns a non-zero
1295 * value, the function breaks the iteration loop and returns the value.
1296 * Otherwise, it will iterate over all tasks and return 0.
1297 *
1298 * This function must not be called for the root memory cgroup.
1299 */
1300int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 int (*fn)(struct task_struct *, void *), void *arg)
1302{
1303 struct mem_cgroup *iter;
1304 int ret = 0;
1305
1306 BUG_ON(memcg == root_mem_cgroup);
1307
1308 for_each_mem_cgroup_tree(iter, memcg) {
1309 struct css_task_iter it;
1310 struct task_struct *task;
1311
f168a9a5 1312 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1313 while (!ret && (task = css_task_iter_next(&it)))
1314 ret = fn(task, arg);
1315 css_task_iter_end(&it);
1316 if (ret) {
1317 mem_cgroup_iter_break(memcg, iter);
1318 break;
1319 }
1320 }
1321 return ret;
1322}
1323
925b7673 1324/**
dfe0e773 1325 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1326 * @page: the page
f144c390 1327 * @pgdat: pgdat of the page
dfe0e773 1328 *
a0b5b414
JW
1329 * This function relies on page->mem_cgroup being stable - see the
1330 * access rules in commit_charge().
925b7673 1331 */
599d0c95 1332struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1333{
ef8f2327 1334 struct mem_cgroup_per_node *mz;
925b7673 1335 struct mem_cgroup *memcg;
bea8c150 1336 struct lruvec *lruvec;
6d12e2d8 1337
bea8c150 1338 if (mem_cgroup_disabled()) {
867e5e1d 1339 lruvec = &pgdat->__lruvec;
bea8c150
HD
1340 goto out;
1341 }
925b7673 1342
bcfe06bf 1343 memcg = page_memcg(page);
7512102c 1344 /*
dfe0e773 1345 * Swapcache readahead pages are added to the LRU - and
29833315 1346 * possibly migrated - before they are charged.
7512102c 1347 */
29833315
JW
1348 if (!memcg)
1349 memcg = root_mem_cgroup;
7512102c 1350
ef8f2327 1351 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1352 lruvec = &mz->lruvec;
1353out:
1354 /*
1355 * Since a node can be onlined after the mem_cgroup was created,
1356 * we have to be prepared to initialize lruvec->zone here;
1357 * and if offlined then reonlined, we need to reinitialize it.
1358 */
599d0c95
MG
1359 if (unlikely(lruvec->pgdat != pgdat))
1360 lruvec->pgdat = pgdat;
bea8c150 1361 return lruvec;
08e552c6 1362}
b69408e8 1363
925b7673 1364/**
fa9add64
HD
1365 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1366 * @lruvec: mem_cgroup per zone lru vector
1367 * @lru: index of lru list the page is sitting on
b4536f0c 1368 * @zid: zone id of the accounted pages
fa9add64 1369 * @nr_pages: positive when adding or negative when removing
925b7673 1370 *
ca707239
HD
1371 * This function must be called under lru_lock, just before a page is added
1372 * to or just after a page is removed from an lru list (that ordering being
1373 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1374 */
fa9add64 1375void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1376 int zid, int nr_pages)
3f58a829 1377{
ef8f2327 1378 struct mem_cgroup_per_node *mz;
fa9add64 1379 unsigned long *lru_size;
ca707239 1380 long size;
3f58a829
MK
1381
1382 if (mem_cgroup_disabled())
1383 return;
1384
ef8f2327 1385 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1386 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1387
1388 if (nr_pages < 0)
1389 *lru_size += nr_pages;
1390
1391 size = *lru_size;
b4536f0c
MH
1392 if (WARN_ONCE(size < 0,
1393 "%s(%p, %d, %d): lru_size %ld\n",
1394 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1395 VM_BUG_ON(1);
1396 *lru_size = 0;
1397 }
1398
1399 if (nr_pages > 0)
1400 *lru_size += nr_pages;
08e552c6 1401}
544122e5 1402
19942822 1403/**
9d11ea9f 1404 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1405 * @memcg: the memory cgroup
19942822 1406 *
9d11ea9f 1407 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1408 * pages.
19942822 1409 */
c0ff4b85 1410static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1411{
3e32cb2e
JW
1412 unsigned long margin = 0;
1413 unsigned long count;
1414 unsigned long limit;
9d11ea9f 1415
3e32cb2e 1416 count = page_counter_read(&memcg->memory);
bbec2e15 1417 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1418 if (count < limit)
1419 margin = limit - count;
1420
7941d214 1421 if (do_memsw_account()) {
3e32cb2e 1422 count = page_counter_read(&memcg->memsw);
bbec2e15 1423 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1424 if (count < limit)
3e32cb2e 1425 margin = min(margin, limit - count);
cbedbac3
LR
1426 else
1427 margin = 0;
3e32cb2e
JW
1428 }
1429
1430 return margin;
19942822
JW
1431}
1432
32047e2a 1433/*
bdcbb659 1434 * A routine for checking "mem" is under move_account() or not.
32047e2a 1435 *
bdcbb659
QH
1436 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1437 * moving cgroups. This is for waiting at high-memory pressure
1438 * caused by "move".
32047e2a 1439 */
c0ff4b85 1440static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1441{
2bd9bb20
KH
1442 struct mem_cgroup *from;
1443 struct mem_cgroup *to;
4b534334 1444 bool ret = false;
2bd9bb20
KH
1445 /*
1446 * Unlike task_move routines, we access mc.to, mc.from not under
1447 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1448 */
1449 spin_lock(&mc.lock);
1450 from = mc.from;
1451 to = mc.to;
1452 if (!from)
1453 goto unlock;
3e92041d 1454
2314b42d
JW
1455 ret = mem_cgroup_is_descendant(from, memcg) ||
1456 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1457unlock:
1458 spin_unlock(&mc.lock);
4b534334
KH
1459 return ret;
1460}
1461
c0ff4b85 1462static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1463{
1464 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1465 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1466 DEFINE_WAIT(wait);
1467 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1468 /* moving charge context might have finished. */
1469 if (mc.moving_task)
1470 schedule();
1471 finish_wait(&mc.waitq, &wait);
1472 return true;
1473 }
1474 }
1475 return false;
1476}
1477
5f9a4f4a
MS
1478struct memory_stat {
1479 const char *name;
1480 unsigned int ratio;
1481 unsigned int idx;
1482};
1483
1484static struct memory_stat memory_stats[] = {
1485 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1486 { "file", PAGE_SIZE, NR_FILE_PAGES },
1487 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1488 { "percpu", 1, MEMCG_PERCPU_B },
1489 { "sock", PAGE_SIZE, MEMCG_SOCK },
1490 { "shmem", PAGE_SIZE, NR_SHMEM },
1491 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1492 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1493 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1494#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1495 /*
1496 * The ratio will be initialized in memory_stats_init(). Because
1497 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1498 * constant(e.g. powerpc).
1499 */
1500 { "anon_thp", 0, NR_ANON_THPS },
1501#endif
1502 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1503 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1504 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1505 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1506 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1507
1508 /*
1509 * Note: The slab_reclaimable and slab_unreclaimable must be
1510 * together and slab_reclaimable must be in front.
1511 */
1512 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1513 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1514
1515 /* The memory events */
1516 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1517 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1518 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1519 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1520 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1521 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1522 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1523};
1524
1525static int __init memory_stats_init(void)
1526{
1527 int i;
1528
1529 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 if (memory_stats[i].idx == NR_ANON_THPS)
1532 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1533#endif
1534 VM_BUG_ON(!memory_stats[i].ratio);
1535 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1536 }
1537
1538 return 0;
1539}
1540pure_initcall(memory_stats_init);
1541
c8713d0b
JW
1542static char *memory_stat_format(struct mem_cgroup *memcg)
1543{
1544 struct seq_buf s;
1545 int i;
71cd3113 1546
c8713d0b
JW
1547 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1548 if (!s.buffer)
1549 return NULL;
1550
1551 /*
1552 * Provide statistics on the state of the memory subsystem as
1553 * well as cumulative event counters that show past behavior.
1554 *
1555 * This list is ordered following a combination of these gradients:
1556 * 1) generic big picture -> specifics and details
1557 * 2) reflecting userspace activity -> reflecting kernel heuristics
1558 *
1559 * Current memory state:
1560 */
1561
5f9a4f4a
MS
1562 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1563 u64 size;
c8713d0b 1564
5f9a4f4a
MS
1565 size = memcg_page_state(memcg, memory_stats[i].idx);
1566 size *= memory_stats[i].ratio;
1567 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1568
5f9a4f4a
MS
1569 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1570 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1571 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1572 seq_buf_printf(&s, "slab %llu\n", size);
1573 }
1574 }
c8713d0b
JW
1575
1576 /* Accumulated memory events */
1577
ebc5d83d
KK
1578 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1579 memcg_events(memcg, PGFAULT));
1580 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1581 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1582 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1583 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1584 seq_buf_printf(&s, "pgscan %lu\n",
1585 memcg_events(memcg, PGSCAN_KSWAPD) +
1586 memcg_events(memcg, PGSCAN_DIRECT));
1587 seq_buf_printf(&s, "pgsteal %lu\n",
1588 memcg_events(memcg, PGSTEAL_KSWAPD) +
1589 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1591 memcg_events(memcg, PGACTIVATE));
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1593 memcg_events(memcg, PGDEACTIVATE));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1595 memcg_events(memcg, PGLAZYFREE));
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1597 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1598
1599#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1600 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1601 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1603 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1604#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1605
1606 /* The above should easily fit into one page */
1607 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1608
1609 return s.buffer;
1610}
71cd3113 1611
58cf188e 1612#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1613/**
f0c867d9 1614 * mem_cgroup_print_oom_context: Print OOM information relevant to
1615 * memory controller.
e222432b
BS
1616 * @memcg: The memory cgroup that went over limit
1617 * @p: Task that is going to be killed
1618 *
1619 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1620 * enabled
1621 */
f0c867d9 1622void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1623{
e222432b
BS
1624 rcu_read_lock();
1625
f0c867d9 1626 if (memcg) {
1627 pr_cont(",oom_memcg=");
1628 pr_cont_cgroup_path(memcg->css.cgroup);
1629 } else
1630 pr_cont(",global_oom");
2415b9f5 1631 if (p) {
f0c867d9 1632 pr_cont(",task_memcg=");
2415b9f5 1633 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1634 }
e222432b 1635 rcu_read_unlock();
f0c867d9 1636}
1637
1638/**
1639 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1640 * memory controller.
1641 * @memcg: The memory cgroup that went over limit
1642 */
1643void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1644{
c8713d0b 1645 char *buf;
e222432b 1646
3e32cb2e
JW
1647 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1648 K((u64)page_counter_read(&memcg->memory)),
15b42562 1649 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1650 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1651 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1652 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1653 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1654 else {
1655 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1656 K((u64)page_counter_read(&memcg->memsw)),
1657 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1658 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1659 K((u64)page_counter_read(&memcg->kmem)),
1660 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1661 }
c8713d0b
JW
1662
1663 pr_info("Memory cgroup stats for ");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 pr_cont(":");
1666 buf = memory_stat_format(memcg);
1667 if (!buf)
1668 return;
1669 pr_info("%s", buf);
1670 kfree(buf);
e222432b
BS
1671}
1672
a63d83f4
DR
1673/*
1674 * Return the memory (and swap, if configured) limit for a memcg.
1675 */
bbec2e15 1676unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1677{
8d387a5f
WL
1678 unsigned long max = READ_ONCE(memcg->memory.max);
1679
1680 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1681 if (mem_cgroup_swappiness(memcg))
1682 max += min(READ_ONCE(memcg->swap.max),
1683 (unsigned long)total_swap_pages);
1684 } else { /* v1 */
1685 if (mem_cgroup_swappiness(memcg)) {
1686 /* Calculate swap excess capacity from memsw limit */
1687 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1688
1689 max += min(swap, (unsigned long)total_swap_pages);
1690 }
9a5a8f19 1691 }
bbec2e15 1692 return max;
a63d83f4
DR
1693}
1694
9783aa99
CD
1695unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1696{
1697 return page_counter_read(&memcg->memory);
1698}
1699
b6e6edcf 1700static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1701 int order)
9cbb78bb 1702{
6e0fc46d
DR
1703 struct oom_control oc = {
1704 .zonelist = NULL,
1705 .nodemask = NULL,
2a966b77 1706 .memcg = memcg,
6e0fc46d
DR
1707 .gfp_mask = gfp_mask,
1708 .order = order,
6e0fc46d 1709 };
1378b37d 1710 bool ret = true;
9cbb78bb 1711
7775face
TH
1712 if (mutex_lock_killable(&oom_lock))
1713 return true;
1378b37d
YS
1714
1715 if (mem_cgroup_margin(memcg) >= (1 << order))
1716 goto unlock;
1717
7775face
TH
1718 /*
1719 * A few threads which were not waiting at mutex_lock_killable() can
1720 * fail to bail out. Therefore, check again after holding oom_lock.
1721 */
1722 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1723
1724unlock:
dc56401f 1725 mutex_unlock(&oom_lock);
7c5f64f8 1726 return ret;
9cbb78bb
DR
1727}
1728
0608f43d 1729static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1730 pg_data_t *pgdat,
0608f43d
AM
1731 gfp_t gfp_mask,
1732 unsigned long *total_scanned)
1733{
1734 struct mem_cgroup *victim = NULL;
1735 int total = 0;
1736 int loop = 0;
1737 unsigned long excess;
1738 unsigned long nr_scanned;
1739 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1740 .pgdat = pgdat,
0608f43d
AM
1741 };
1742
3e32cb2e 1743 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1744
1745 while (1) {
1746 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1747 if (!victim) {
1748 loop++;
1749 if (loop >= 2) {
1750 /*
1751 * If we have not been able to reclaim
1752 * anything, it might because there are
1753 * no reclaimable pages under this hierarchy
1754 */
1755 if (!total)
1756 break;
1757 /*
1758 * We want to do more targeted reclaim.
1759 * excess >> 2 is not to excessive so as to
1760 * reclaim too much, nor too less that we keep
1761 * coming back to reclaim from this cgroup
1762 */
1763 if (total >= (excess >> 2) ||
1764 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1765 break;
1766 }
1767 continue;
1768 }
a9dd0a83 1769 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1770 pgdat, &nr_scanned);
0608f43d 1771 *total_scanned += nr_scanned;
3e32cb2e 1772 if (!soft_limit_excess(root_memcg))
0608f43d 1773 break;
6d61ef40 1774 }
0608f43d
AM
1775 mem_cgroup_iter_break(root_memcg, victim);
1776 return total;
6d61ef40
BS
1777}
1778
0056f4e6
JW
1779#ifdef CONFIG_LOCKDEP
1780static struct lockdep_map memcg_oom_lock_dep_map = {
1781 .name = "memcg_oom_lock",
1782};
1783#endif
1784
fb2a6fc5
JW
1785static DEFINE_SPINLOCK(memcg_oom_lock);
1786
867578cb
KH
1787/*
1788 * Check OOM-Killer is already running under our hierarchy.
1789 * If someone is running, return false.
1790 */
fb2a6fc5 1791static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1792{
79dfdacc 1793 struct mem_cgroup *iter, *failed = NULL;
a636b327 1794
fb2a6fc5
JW
1795 spin_lock(&memcg_oom_lock);
1796
9f3a0d09 1797 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1798 if (iter->oom_lock) {
79dfdacc
MH
1799 /*
1800 * this subtree of our hierarchy is already locked
1801 * so we cannot give a lock.
1802 */
79dfdacc 1803 failed = iter;
9f3a0d09
JW
1804 mem_cgroup_iter_break(memcg, iter);
1805 break;
23751be0
JW
1806 } else
1807 iter->oom_lock = true;
7d74b06f 1808 }
867578cb 1809
fb2a6fc5
JW
1810 if (failed) {
1811 /*
1812 * OK, we failed to lock the whole subtree so we have
1813 * to clean up what we set up to the failing subtree
1814 */
1815 for_each_mem_cgroup_tree(iter, memcg) {
1816 if (iter == failed) {
1817 mem_cgroup_iter_break(memcg, iter);
1818 break;
1819 }
1820 iter->oom_lock = false;
79dfdacc 1821 }
0056f4e6
JW
1822 } else
1823 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1824
1825 spin_unlock(&memcg_oom_lock);
1826
1827 return !failed;
a636b327 1828}
0b7f569e 1829
fb2a6fc5 1830static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1831{
7d74b06f
KH
1832 struct mem_cgroup *iter;
1833
fb2a6fc5 1834 spin_lock(&memcg_oom_lock);
5facae4f 1835 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1836 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1837 iter->oom_lock = false;
fb2a6fc5 1838 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1839}
1840
c0ff4b85 1841static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1842{
1843 struct mem_cgroup *iter;
1844
c2b42d3c 1845 spin_lock(&memcg_oom_lock);
c0ff4b85 1846 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1847 iter->under_oom++;
1848 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1849}
1850
c0ff4b85 1851static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1852{
1853 struct mem_cgroup *iter;
1854
867578cb 1855 /*
7a52d4d8
ML
1856 * Be careful about under_oom underflows becase a child memcg
1857 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1858 */
c2b42d3c 1859 spin_lock(&memcg_oom_lock);
c0ff4b85 1860 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1861 if (iter->under_oom > 0)
1862 iter->under_oom--;
1863 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1864}
1865
867578cb
KH
1866static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1867
dc98df5a 1868struct oom_wait_info {
d79154bb 1869 struct mem_cgroup *memcg;
ac6424b9 1870 wait_queue_entry_t wait;
dc98df5a
KH
1871};
1872
ac6424b9 1873static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1874 unsigned mode, int sync, void *arg)
1875{
d79154bb
HD
1876 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1877 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1878 struct oom_wait_info *oom_wait_info;
1879
1880 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1881 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1882
2314b42d
JW
1883 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1884 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1885 return 0;
dc98df5a
KH
1886 return autoremove_wake_function(wait, mode, sync, arg);
1887}
1888
c0ff4b85 1889static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1890{
c2b42d3c
TH
1891 /*
1892 * For the following lockless ->under_oom test, the only required
1893 * guarantee is that it must see the state asserted by an OOM when
1894 * this function is called as a result of userland actions
1895 * triggered by the notification of the OOM. This is trivially
1896 * achieved by invoking mem_cgroup_mark_under_oom() before
1897 * triggering notification.
1898 */
1899 if (memcg && memcg->under_oom)
f4b90b70 1900 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1901}
1902
29ef680a
MH
1903enum oom_status {
1904 OOM_SUCCESS,
1905 OOM_FAILED,
1906 OOM_ASYNC,
1907 OOM_SKIPPED
1908};
1909
1910static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1911{
7056d3a3
MH
1912 enum oom_status ret;
1913 bool locked;
1914
29ef680a
MH
1915 if (order > PAGE_ALLOC_COSTLY_ORDER)
1916 return OOM_SKIPPED;
1917
7a1adfdd
RG
1918 memcg_memory_event(memcg, MEMCG_OOM);
1919
867578cb 1920 /*
49426420
JW
1921 * We are in the middle of the charge context here, so we
1922 * don't want to block when potentially sitting on a callstack
1923 * that holds all kinds of filesystem and mm locks.
1924 *
29ef680a
MH
1925 * cgroup1 allows disabling the OOM killer and waiting for outside
1926 * handling until the charge can succeed; remember the context and put
1927 * the task to sleep at the end of the page fault when all locks are
1928 * released.
49426420 1929 *
29ef680a
MH
1930 * On the other hand, in-kernel OOM killer allows for an async victim
1931 * memory reclaim (oom_reaper) and that means that we are not solely
1932 * relying on the oom victim to make a forward progress and we can
1933 * invoke the oom killer here.
1934 *
1935 * Please note that mem_cgroup_out_of_memory might fail to find a
1936 * victim and then we have to bail out from the charge path.
867578cb 1937 */
29ef680a
MH
1938 if (memcg->oom_kill_disable) {
1939 if (!current->in_user_fault)
1940 return OOM_SKIPPED;
1941 css_get(&memcg->css);
1942 current->memcg_in_oom = memcg;
1943 current->memcg_oom_gfp_mask = mask;
1944 current->memcg_oom_order = order;
1945
1946 return OOM_ASYNC;
1947 }
1948
7056d3a3
MH
1949 mem_cgroup_mark_under_oom(memcg);
1950
1951 locked = mem_cgroup_oom_trylock(memcg);
1952
1953 if (locked)
1954 mem_cgroup_oom_notify(memcg);
1955
1956 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1957 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1958 ret = OOM_SUCCESS;
1959 else
1960 ret = OOM_FAILED;
1961
1962 if (locked)
1963 mem_cgroup_oom_unlock(memcg);
29ef680a 1964
7056d3a3 1965 return ret;
3812c8c8
JW
1966}
1967
1968/**
1969 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1970 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1971 *
49426420
JW
1972 * This has to be called at the end of a page fault if the memcg OOM
1973 * handler was enabled.
3812c8c8 1974 *
49426420 1975 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1976 * sleep on a waitqueue until the userspace task resolves the
1977 * situation. Sleeping directly in the charge context with all kinds
1978 * of locks held is not a good idea, instead we remember an OOM state
1979 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1980 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1981 *
1982 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1983 * completed, %false otherwise.
3812c8c8 1984 */
49426420 1985bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1986{
626ebc41 1987 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1988 struct oom_wait_info owait;
49426420 1989 bool locked;
3812c8c8
JW
1990
1991 /* OOM is global, do not handle */
3812c8c8 1992 if (!memcg)
49426420 1993 return false;
3812c8c8 1994
7c5f64f8 1995 if (!handle)
49426420 1996 goto cleanup;
3812c8c8
JW
1997
1998 owait.memcg = memcg;
1999 owait.wait.flags = 0;
2000 owait.wait.func = memcg_oom_wake_function;
2001 owait.wait.private = current;
2055da97 2002 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2003
3812c8c8 2004 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2005 mem_cgroup_mark_under_oom(memcg);
2006
2007 locked = mem_cgroup_oom_trylock(memcg);
2008
2009 if (locked)
2010 mem_cgroup_oom_notify(memcg);
2011
2012 if (locked && !memcg->oom_kill_disable) {
2013 mem_cgroup_unmark_under_oom(memcg);
2014 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2015 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2016 current->memcg_oom_order);
49426420 2017 } else {
3812c8c8 2018 schedule();
49426420
JW
2019 mem_cgroup_unmark_under_oom(memcg);
2020 finish_wait(&memcg_oom_waitq, &owait.wait);
2021 }
2022
2023 if (locked) {
fb2a6fc5
JW
2024 mem_cgroup_oom_unlock(memcg);
2025 /*
2026 * There is no guarantee that an OOM-lock contender
2027 * sees the wakeups triggered by the OOM kill
2028 * uncharges. Wake any sleepers explicitely.
2029 */
2030 memcg_oom_recover(memcg);
2031 }
49426420 2032cleanup:
626ebc41 2033 current->memcg_in_oom = NULL;
3812c8c8 2034 css_put(&memcg->css);
867578cb 2035 return true;
0b7f569e
KH
2036}
2037
3d8b38eb
RG
2038/**
2039 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2040 * @victim: task to be killed by the OOM killer
2041 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2042 *
2043 * Returns a pointer to a memory cgroup, which has to be cleaned up
2044 * by killing all belonging OOM-killable tasks.
2045 *
2046 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2047 */
2048struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2049 struct mem_cgroup *oom_domain)
2050{
2051 struct mem_cgroup *oom_group = NULL;
2052 struct mem_cgroup *memcg;
2053
2054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2055 return NULL;
2056
2057 if (!oom_domain)
2058 oom_domain = root_mem_cgroup;
2059
2060 rcu_read_lock();
2061
2062 memcg = mem_cgroup_from_task(victim);
2063 if (memcg == root_mem_cgroup)
2064 goto out;
2065
48fe267c
RG
2066 /*
2067 * If the victim task has been asynchronously moved to a different
2068 * memory cgroup, we might end up killing tasks outside oom_domain.
2069 * In this case it's better to ignore memory.group.oom.
2070 */
2071 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2072 goto out;
2073
3d8b38eb
RG
2074 /*
2075 * Traverse the memory cgroup hierarchy from the victim task's
2076 * cgroup up to the OOMing cgroup (or root) to find the
2077 * highest-level memory cgroup with oom.group set.
2078 */
2079 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2080 if (memcg->oom_group)
2081 oom_group = memcg;
2082
2083 if (memcg == oom_domain)
2084 break;
2085 }
2086
2087 if (oom_group)
2088 css_get(&oom_group->css);
2089out:
2090 rcu_read_unlock();
2091
2092 return oom_group;
2093}
2094
2095void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2096{
2097 pr_info("Tasks in ");
2098 pr_cont_cgroup_path(memcg->css.cgroup);
2099 pr_cont(" are going to be killed due to memory.oom.group set\n");
2100}
2101
d7365e78 2102/**
bcfe06bf 2103 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2104 * @page: the page
32047e2a 2105 *
81f8c3a4 2106 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2107 * another cgroup.
2108 *
2109 * It ensures lifetime of the returned memcg. Caller is responsible
2110 * for the lifetime of the page; __unlock_page_memcg() is available
2111 * when @page might get freed inside the locked section.
d69b042f 2112 */
739f79fc 2113struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2114{
9da7b521 2115 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2116 struct mem_cgroup *memcg;
6de22619 2117 unsigned long flags;
89c06bd5 2118
6de22619
JW
2119 /*
2120 * The RCU lock is held throughout the transaction. The fast
2121 * path can get away without acquiring the memcg->move_lock
2122 * because page moving starts with an RCU grace period.
739f79fc
JW
2123 *
2124 * The RCU lock also protects the memcg from being freed when
2125 * the page state that is going to change is the only thing
2126 * preventing the page itself from being freed. E.g. writeback
2127 * doesn't hold a page reference and relies on PG_writeback to
2128 * keep off truncation, migration and so forth.
2129 */
d7365e78
JW
2130 rcu_read_lock();
2131
2132 if (mem_cgroup_disabled())
739f79fc 2133 return NULL;
89c06bd5 2134again:
bcfe06bf 2135 memcg = page_memcg(head);
29833315 2136 if (unlikely(!memcg))
739f79fc 2137 return NULL;
d7365e78 2138
bdcbb659 2139 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2140 return memcg;
89c06bd5 2141
6de22619 2142 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2143 if (memcg != page_memcg(head)) {
6de22619 2144 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2145 goto again;
2146 }
6de22619
JW
2147
2148 /*
2149 * When charge migration first begins, we can have locked and
2150 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2151 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2152 */
2153 memcg->move_lock_task = current;
2154 memcg->move_lock_flags = flags;
d7365e78 2155
739f79fc 2156 return memcg;
89c06bd5 2157}
81f8c3a4 2158EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2159
d7365e78 2160/**
739f79fc
JW
2161 * __unlock_page_memcg - unlock and unpin a memcg
2162 * @memcg: the memcg
2163 *
2164 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2165 */
739f79fc 2166void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2167{
6de22619
JW
2168 if (memcg && memcg->move_lock_task == current) {
2169 unsigned long flags = memcg->move_lock_flags;
2170
2171 memcg->move_lock_task = NULL;
2172 memcg->move_lock_flags = 0;
2173
2174 spin_unlock_irqrestore(&memcg->move_lock, flags);
2175 }
89c06bd5 2176
d7365e78 2177 rcu_read_unlock();
89c06bd5 2178}
739f79fc
JW
2179
2180/**
bcfe06bf 2181 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2182 * @page: the page
2183 */
2184void unlock_page_memcg(struct page *page)
2185{
9da7b521
JW
2186 struct page *head = compound_head(page);
2187
bcfe06bf 2188 __unlock_page_memcg(page_memcg(head));
739f79fc 2189}
81f8c3a4 2190EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2191
cdec2e42
KH
2192struct memcg_stock_pcp {
2193 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2194 unsigned int nr_pages;
bf4f0599
RG
2195
2196#ifdef CONFIG_MEMCG_KMEM
2197 struct obj_cgroup *cached_objcg;
2198 unsigned int nr_bytes;
2199#endif
2200
cdec2e42 2201 struct work_struct work;
26fe6168 2202 unsigned long flags;
a0db00fc 2203#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2204};
2205static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2206static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2207
bf4f0599
RG
2208#ifdef CONFIG_MEMCG_KMEM
2209static void drain_obj_stock(struct memcg_stock_pcp *stock);
2210static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2211 struct mem_cgroup *root_memcg);
2212
2213#else
2214static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2215{
2216}
2217static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2218 struct mem_cgroup *root_memcg)
2219{
2220 return false;
2221}
2222#endif
2223
a0956d54
SS
2224/**
2225 * consume_stock: Try to consume stocked charge on this cpu.
2226 * @memcg: memcg to consume from.
2227 * @nr_pages: how many pages to charge.
2228 *
2229 * The charges will only happen if @memcg matches the current cpu's memcg
2230 * stock, and at least @nr_pages are available in that stock. Failure to
2231 * service an allocation will refill the stock.
2232 *
2233 * returns true if successful, false otherwise.
cdec2e42 2234 */
a0956d54 2235static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2236{
2237 struct memcg_stock_pcp *stock;
db2ba40c 2238 unsigned long flags;
3e32cb2e 2239 bool ret = false;
cdec2e42 2240
a983b5eb 2241 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2242 return ret;
a0956d54 2243
db2ba40c
JW
2244 local_irq_save(flags);
2245
2246 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2247 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2248 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2249 ret = true;
2250 }
db2ba40c
JW
2251
2252 local_irq_restore(flags);
2253
cdec2e42
KH
2254 return ret;
2255}
2256
2257/*
3e32cb2e 2258 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2259 */
2260static void drain_stock(struct memcg_stock_pcp *stock)
2261{
2262 struct mem_cgroup *old = stock->cached;
2263
1a3e1f40
JW
2264 if (!old)
2265 return;
2266
11c9ea4e 2267 if (stock->nr_pages) {
3e32cb2e 2268 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2269 if (do_memsw_account())
3e32cb2e 2270 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2271 stock->nr_pages = 0;
cdec2e42 2272 }
1a3e1f40
JW
2273
2274 css_put(&old->css);
cdec2e42 2275 stock->cached = NULL;
cdec2e42
KH
2276}
2277
cdec2e42
KH
2278static void drain_local_stock(struct work_struct *dummy)
2279{
db2ba40c
JW
2280 struct memcg_stock_pcp *stock;
2281 unsigned long flags;
2282
72f0184c
MH
2283 /*
2284 * The only protection from memory hotplug vs. drain_stock races is
2285 * that we always operate on local CPU stock here with IRQ disabled
2286 */
db2ba40c
JW
2287 local_irq_save(flags);
2288
2289 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2290 drain_obj_stock(stock);
cdec2e42 2291 drain_stock(stock);
26fe6168 2292 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2293
2294 local_irq_restore(flags);
cdec2e42
KH
2295}
2296
2297/*
3e32cb2e 2298 * Cache charges(val) to local per_cpu area.
320cc51d 2299 * This will be consumed by consume_stock() function, later.
cdec2e42 2300 */
c0ff4b85 2301static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2302{
db2ba40c
JW
2303 struct memcg_stock_pcp *stock;
2304 unsigned long flags;
2305
2306 local_irq_save(flags);
cdec2e42 2307
db2ba40c 2308 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2309 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2310 drain_stock(stock);
1a3e1f40 2311 css_get(&memcg->css);
c0ff4b85 2312 stock->cached = memcg;
cdec2e42 2313 }
11c9ea4e 2314 stock->nr_pages += nr_pages;
db2ba40c 2315
a983b5eb 2316 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2317 drain_stock(stock);
2318
db2ba40c 2319 local_irq_restore(flags);
cdec2e42
KH
2320}
2321
2322/*
c0ff4b85 2323 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2324 * of the hierarchy under it.
cdec2e42 2325 */
6d3d6aa2 2326static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2327{
26fe6168 2328 int cpu, curcpu;
d38144b7 2329
6d3d6aa2
JW
2330 /* If someone's already draining, avoid adding running more workers. */
2331 if (!mutex_trylock(&percpu_charge_mutex))
2332 return;
72f0184c
MH
2333 /*
2334 * Notify other cpus that system-wide "drain" is running
2335 * We do not care about races with the cpu hotplug because cpu down
2336 * as well as workers from this path always operate on the local
2337 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2338 */
5af12d0e 2339 curcpu = get_cpu();
cdec2e42
KH
2340 for_each_online_cpu(cpu) {
2341 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2342 struct mem_cgroup *memcg;
e1a366be 2343 bool flush = false;
26fe6168 2344
e1a366be 2345 rcu_read_lock();
c0ff4b85 2346 memcg = stock->cached;
e1a366be
RG
2347 if (memcg && stock->nr_pages &&
2348 mem_cgroup_is_descendant(memcg, root_memcg))
2349 flush = true;
bf4f0599
RG
2350 if (obj_stock_flush_required(stock, root_memcg))
2351 flush = true;
e1a366be
RG
2352 rcu_read_unlock();
2353
2354 if (flush &&
2355 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2356 if (cpu == curcpu)
2357 drain_local_stock(&stock->work);
2358 else
2359 schedule_work_on(cpu, &stock->work);
2360 }
cdec2e42 2361 }
5af12d0e 2362 put_cpu();
9f50fad6 2363 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2364}
2365
308167fc 2366static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2367{
cdec2e42 2368 struct memcg_stock_pcp *stock;
42a30035 2369 struct mem_cgroup *memcg, *mi;
cdec2e42 2370
cdec2e42
KH
2371 stock = &per_cpu(memcg_stock, cpu);
2372 drain_stock(stock);
a983b5eb
JW
2373
2374 for_each_mem_cgroup(memcg) {
2375 int i;
2376
2377 for (i = 0; i < MEMCG_NR_STAT; i++) {
2378 int nid;
2379 long x;
2380
871789d4 2381 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2382 if (x)
42a30035
JW
2383 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2384 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2385
2386 if (i >= NR_VM_NODE_STAT_ITEMS)
2387 continue;
2388
2389 for_each_node(nid) {
2390 struct mem_cgroup_per_node *pn;
2391
2392 pn = mem_cgroup_nodeinfo(memcg, nid);
2393 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2394 if (x)
42a30035
JW
2395 do {
2396 atomic_long_add(x, &pn->lruvec_stat[i]);
2397 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2398 }
2399 }
2400
e27be240 2401 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2402 long x;
2403
871789d4 2404 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2405 if (x)
42a30035
JW
2406 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2407 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2408 }
2409 }
2410
308167fc 2411 return 0;
cdec2e42
KH
2412}
2413
b3ff9291
CD
2414static unsigned long reclaim_high(struct mem_cgroup *memcg,
2415 unsigned int nr_pages,
2416 gfp_t gfp_mask)
f7e1cb6e 2417{
b3ff9291
CD
2418 unsigned long nr_reclaimed = 0;
2419
f7e1cb6e 2420 do {
e22c6ed9
JW
2421 unsigned long pflags;
2422
d1663a90
JK
2423 if (page_counter_read(&memcg->memory) <=
2424 READ_ONCE(memcg->memory.high))
f7e1cb6e 2425 continue;
e22c6ed9 2426
e27be240 2427 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2428
2429 psi_memstall_enter(&pflags);
b3ff9291
CD
2430 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2431 gfp_mask, true);
e22c6ed9 2432 psi_memstall_leave(&pflags);
4bf17307
CD
2433 } while ((memcg = parent_mem_cgroup(memcg)) &&
2434 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2435
2436 return nr_reclaimed;
f7e1cb6e
JW
2437}
2438
2439static void high_work_func(struct work_struct *work)
2440{
2441 struct mem_cgroup *memcg;
2442
2443 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2444 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2445}
2446
0e4b01df
CD
2447/*
2448 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2449 * enough to still cause a significant slowdown in most cases, while still
2450 * allowing diagnostics and tracing to proceed without becoming stuck.
2451 */
2452#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2453
2454/*
2455 * When calculating the delay, we use these either side of the exponentiation to
2456 * maintain precision and scale to a reasonable number of jiffies (see the table
2457 * below.
2458 *
2459 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2460 * overage ratio to a delay.
ac5ddd0f 2461 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2462 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2463 * to produce a reasonable delay curve.
2464 *
2465 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2466 * reasonable delay curve compared to precision-adjusted overage, not
2467 * penalising heavily at first, but still making sure that growth beyond the
2468 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2469 * example, with a high of 100 megabytes:
2470 *
2471 * +-------+------------------------+
2472 * | usage | time to allocate in ms |
2473 * +-------+------------------------+
2474 * | 100M | 0 |
2475 * | 101M | 6 |
2476 * | 102M | 25 |
2477 * | 103M | 57 |
2478 * | 104M | 102 |
2479 * | 105M | 159 |
2480 * | 106M | 230 |
2481 * | 107M | 313 |
2482 * | 108M | 409 |
2483 * | 109M | 518 |
2484 * | 110M | 639 |
2485 * | 111M | 774 |
2486 * | 112M | 921 |
2487 * | 113M | 1081 |
2488 * | 114M | 1254 |
2489 * | 115M | 1439 |
2490 * | 116M | 1638 |
2491 * | 117M | 1849 |
2492 * | 118M | 2000 |
2493 * | 119M | 2000 |
2494 * | 120M | 2000 |
2495 * +-------+------------------------+
2496 */
2497 #define MEMCG_DELAY_PRECISION_SHIFT 20
2498 #define MEMCG_DELAY_SCALING_SHIFT 14
2499
8a5dbc65 2500static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2501{
8a5dbc65 2502 u64 overage;
b23afb93 2503
8a5dbc65
JK
2504 if (usage <= high)
2505 return 0;
e26733e0 2506
8a5dbc65
JK
2507 /*
2508 * Prevent division by 0 in overage calculation by acting as if
2509 * it was a threshold of 1 page
2510 */
2511 high = max(high, 1UL);
9b8b1754 2512
8a5dbc65
JK
2513 overage = usage - high;
2514 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2515 return div64_u64(overage, high);
2516}
e26733e0 2517
8a5dbc65
JK
2518static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2519{
2520 u64 overage, max_overage = 0;
e26733e0 2521
8a5dbc65
JK
2522 do {
2523 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2524 READ_ONCE(memcg->memory.high));
8a5dbc65 2525 max_overage = max(overage, max_overage);
e26733e0
CD
2526 } while ((memcg = parent_mem_cgroup(memcg)) &&
2527 !mem_cgroup_is_root(memcg));
2528
8a5dbc65
JK
2529 return max_overage;
2530}
2531
4b82ab4f
JK
2532static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2533{
2534 u64 overage, max_overage = 0;
2535
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->swap),
2538 READ_ONCE(memcg->swap.high));
2539 if (overage)
2540 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2541 max_overage = max(overage, max_overage);
2542 } while ((memcg = parent_mem_cgroup(memcg)) &&
2543 !mem_cgroup_is_root(memcg));
2544
2545 return max_overage;
2546}
2547
8a5dbc65
JK
2548/*
2549 * Get the number of jiffies that we should penalise a mischievous cgroup which
2550 * is exceeding its memory.high by checking both it and its ancestors.
2551 */
2552static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2553 unsigned int nr_pages,
2554 u64 max_overage)
2555{
2556 unsigned long penalty_jiffies;
2557
e26733e0
CD
2558 if (!max_overage)
2559 return 0;
0e4b01df
CD
2560
2561 /*
0e4b01df
CD
2562 * We use overage compared to memory.high to calculate the number of
2563 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2564 * fairly lenient on small overages, and increasingly harsh when the
2565 * memcg in question makes it clear that it has no intention of stopping
2566 * its crazy behaviour, so we exponentially increase the delay based on
2567 * overage amount.
2568 */
e26733e0
CD
2569 penalty_jiffies = max_overage * max_overage * HZ;
2570 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2571 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2572
2573 /*
2574 * Factor in the task's own contribution to the overage, such that four
2575 * N-sized allocations are throttled approximately the same as one
2576 * 4N-sized allocation.
2577 *
2578 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2579 * larger the current charge patch is than that.
2580 */
ff144e69 2581 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2582}
2583
2584/*
2585 * Scheduled by try_charge() to be executed from the userland return path
2586 * and reclaims memory over the high limit.
2587 */
2588void mem_cgroup_handle_over_high(void)
2589{
2590 unsigned long penalty_jiffies;
2591 unsigned long pflags;
b3ff9291 2592 unsigned long nr_reclaimed;
e26733e0 2593 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2594 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2595 struct mem_cgroup *memcg;
b3ff9291 2596 bool in_retry = false;
e26733e0
CD
2597
2598 if (likely(!nr_pages))
2599 return;
2600
2601 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2602 current->memcg_nr_pages_over_high = 0;
2603
b3ff9291
CD
2604retry_reclaim:
2605 /*
2606 * The allocating task should reclaim at least the batch size, but for
2607 * subsequent retries we only want to do what's necessary to prevent oom
2608 * or breaching resource isolation.
2609 *
2610 * This is distinct from memory.max or page allocator behaviour because
2611 * memory.high is currently batched, whereas memory.max and the page
2612 * allocator run every time an allocation is made.
2613 */
2614 nr_reclaimed = reclaim_high(memcg,
2615 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2616 GFP_KERNEL);
2617
e26733e0
CD
2618 /*
2619 * memory.high is breached and reclaim is unable to keep up. Throttle
2620 * allocators proactively to slow down excessive growth.
2621 */
8a5dbc65
JK
2622 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2623 mem_find_max_overage(memcg));
0e4b01df 2624
4b82ab4f
JK
2625 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2626 swap_find_max_overage(memcg));
2627
ff144e69
JK
2628 /*
2629 * Clamp the max delay per usermode return so as to still keep the
2630 * application moving forwards and also permit diagnostics, albeit
2631 * extremely slowly.
2632 */
2633 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2634
0e4b01df
CD
2635 /*
2636 * Don't sleep if the amount of jiffies this memcg owes us is so low
2637 * that it's not even worth doing, in an attempt to be nice to those who
2638 * go only a small amount over their memory.high value and maybe haven't
2639 * been aggressively reclaimed enough yet.
2640 */
2641 if (penalty_jiffies <= HZ / 100)
2642 goto out;
2643
b3ff9291
CD
2644 /*
2645 * If reclaim is making forward progress but we're still over
2646 * memory.high, we want to encourage that rather than doing allocator
2647 * throttling.
2648 */
2649 if (nr_reclaimed || nr_retries--) {
2650 in_retry = true;
2651 goto retry_reclaim;
2652 }
2653
0e4b01df
CD
2654 /*
2655 * If we exit early, we're guaranteed to die (since
2656 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2657 * need to account for any ill-begotten jiffies to pay them off later.
2658 */
2659 psi_memstall_enter(&pflags);
2660 schedule_timeout_killable(penalty_jiffies);
2661 psi_memstall_leave(&pflags);
2662
2663out:
2664 css_put(&memcg->css);
b23afb93
TH
2665}
2666
00501b53
JW
2667static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2668 unsigned int nr_pages)
8a9f3ccd 2669{
a983b5eb 2670 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2671 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2672 struct mem_cgroup *mem_over_limit;
3e32cb2e 2673 struct page_counter *counter;
e22c6ed9 2674 enum oom_status oom_status;
6539cc05 2675 unsigned long nr_reclaimed;
b70a2a21
JW
2676 bool may_swap = true;
2677 bool drained = false;
e22c6ed9 2678 unsigned long pflags;
a636b327 2679
ce00a967 2680 if (mem_cgroup_is_root(memcg))
10d53c74 2681 return 0;
6539cc05 2682retry:
b6b6cc72 2683 if (consume_stock(memcg, nr_pages))
10d53c74 2684 return 0;
8a9f3ccd 2685
7941d214 2686 if (!do_memsw_account() ||
6071ca52
JW
2687 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2688 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2689 goto done_restock;
7941d214 2690 if (do_memsw_account())
3e32cb2e
JW
2691 page_counter_uncharge(&memcg->memsw, batch);
2692 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2693 } else {
3e32cb2e 2694 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2695 may_swap = false;
3fbe7244 2696 }
7a81b88c 2697
6539cc05
JW
2698 if (batch > nr_pages) {
2699 batch = nr_pages;
2700 goto retry;
2701 }
6d61ef40 2702
869712fd
JW
2703 /*
2704 * Memcg doesn't have a dedicated reserve for atomic
2705 * allocations. But like the global atomic pool, we need to
2706 * put the burden of reclaim on regular allocation requests
2707 * and let these go through as privileged allocations.
2708 */
2709 if (gfp_mask & __GFP_ATOMIC)
2710 goto force;
2711
06b078fc
JW
2712 /*
2713 * Unlike in global OOM situations, memcg is not in a physical
2714 * memory shortage. Allow dying and OOM-killed tasks to
2715 * bypass the last charges so that they can exit quickly and
2716 * free their memory.
2717 */
7775face 2718 if (unlikely(should_force_charge()))
10d53c74 2719 goto force;
06b078fc 2720
89a28483
JW
2721 /*
2722 * Prevent unbounded recursion when reclaim operations need to
2723 * allocate memory. This might exceed the limits temporarily,
2724 * but we prefer facilitating memory reclaim and getting back
2725 * under the limit over triggering OOM kills in these cases.
2726 */
2727 if (unlikely(current->flags & PF_MEMALLOC))
2728 goto force;
2729
06b078fc
JW
2730 if (unlikely(task_in_memcg_oom(current)))
2731 goto nomem;
2732
d0164adc 2733 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2734 goto nomem;
4b534334 2735
e27be240 2736 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2737
e22c6ed9 2738 psi_memstall_enter(&pflags);
b70a2a21
JW
2739 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2740 gfp_mask, may_swap);
e22c6ed9 2741 psi_memstall_leave(&pflags);
6539cc05 2742
61e02c74 2743 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2744 goto retry;
28c34c29 2745
b70a2a21 2746 if (!drained) {
6d3d6aa2 2747 drain_all_stock(mem_over_limit);
b70a2a21
JW
2748 drained = true;
2749 goto retry;
2750 }
2751
28c34c29
JW
2752 if (gfp_mask & __GFP_NORETRY)
2753 goto nomem;
6539cc05
JW
2754 /*
2755 * Even though the limit is exceeded at this point, reclaim
2756 * may have been able to free some pages. Retry the charge
2757 * before killing the task.
2758 *
2759 * Only for regular pages, though: huge pages are rather
2760 * unlikely to succeed so close to the limit, and we fall back
2761 * to regular pages anyway in case of failure.
2762 */
61e02c74 2763 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2764 goto retry;
2765 /*
2766 * At task move, charge accounts can be doubly counted. So, it's
2767 * better to wait until the end of task_move if something is going on.
2768 */
2769 if (mem_cgroup_wait_acct_move(mem_over_limit))
2770 goto retry;
2771
9b130619
JW
2772 if (nr_retries--)
2773 goto retry;
2774
38d38493 2775 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2776 goto nomem;
2777
06b078fc 2778 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2779 goto force;
06b078fc 2780
6539cc05 2781 if (fatal_signal_pending(current))
10d53c74 2782 goto force;
6539cc05 2783
29ef680a
MH
2784 /*
2785 * keep retrying as long as the memcg oom killer is able to make
2786 * a forward progress or bypass the charge if the oom killer
2787 * couldn't make any progress.
2788 */
2789 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2790 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2791 switch (oom_status) {
2792 case OOM_SUCCESS:
d977aa93 2793 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2794 goto retry;
2795 case OOM_FAILED:
2796 goto force;
2797 default:
2798 goto nomem;
2799 }
7a81b88c 2800nomem:
6d1fdc48 2801 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2802 return -ENOMEM;
10d53c74
TH
2803force:
2804 /*
2805 * The allocation either can't fail or will lead to more memory
2806 * being freed very soon. Allow memory usage go over the limit
2807 * temporarily by force charging it.
2808 */
2809 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2810 if (do_memsw_account())
10d53c74 2811 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2812
2813 return 0;
6539cc05
JW
2814
2815done_restock:
2816 if (batch > nr_pages)
2817 refill_stock(memcg, batch - nr_pages);
b23afb93 2818
241994ed 2819 /*
b23afb93
TH
2820 * If the hierarchy is above the normal consumption range, schedule
2821 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2822 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2823 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2824 * not recorded as it most likely matches current's and won't
2825 * change in the meantime. As high limit is checked again before
2826 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2827 */
2828 do {
4b82ab4f
JK
2829 bool mem_high, swap_high;
2830
2831 mem_high = page_counter_read(&memcg->memory) >
2832 READ_ONCE(memcg->memory.high);
2833 swap_high = page_counter_read(&memcg->swap) >
2834 READ_ONCE(memcg->swap.high);
2835
2836 /* Don't bother a random interrupted task */
2837 if (in_interrupt()) {
2838 if (mem_high) {
f7e1cb6e
JW
2839 schedule_work(&memcg->high_work);
2840 break;
2841 }
4b82ab4f
JK
2842 continue;
2843 }
2844
2845 if (mem_high || swap_high) {
2846 /*
2847 * The allocating tasks in this cgroup will need to do
2848 * reclaim or be throttled to prevent further growth
2849 * of the memory or swap footprints.
2850 *
2851 * Target some best-effort fairness between the tasks,
2852 * and distribute reclaim work and delay penalties
2853 * based on how much each task is actually allocating.
2854 */
9516a18a 2855 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2856 set_notify_resume(current);
2857 break;
2858 }
241994ed 2859 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2860
2861 return 0;
7a81b88c 2862}
8a9f3ccd 2863
f0e45fb4 2864#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2865static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2866{
ce00a967
JW
2867 if (mem_cgroup_is_root(memcg))
2868 return;
2869
3e32cb2e 2870 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2871 if (do_memsw_account())
3e32cb2e 2872 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2873}
f0e45fb4 2874#endif
d01dd17f 2875
d9eb1ea2 2876static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2877{
bcfe06bf 2878 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2879 /*
a0b5b414 2880 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2881 *
a0b5b414
JW
2882 * - the page lock
2883 * - LRU isolation
2884 * - lock_page_memcg()
2885 * - exclusive reference
0a31bc97 2886 */
bcfe06bf 2887 page->memcg_data = (unsigned long)memcg;
7a81b88c 2888}
66e1707b 2889
84c07d11 2890#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2891int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2892 gfp_t gfp)
2893{
2894 unsigned int objects = objs_per_slab_page(s, page);
2895 void *vec;
2896
2897 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2898 page_to_nid(page));
2899 if (!vec)
2900 return -ENOMEM;
2901
270c6a71 2902 if (!set_page_objcgs(page, vec))
10befea9
RG
2903 kfree(vec);
2904 else
2905 kmemleak_not_leak(vec);
2906
2907 return 0;
2908}
2909
8380ce47
RG
2910/*
2911 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2912 *
bcfe06bf
RG
2913 * A passed kernel object can be a slab object or a generic kernel page, so
2914 * different mechanisms for getting the memory cgroup pointer should be used.
2915 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2916 * can not know for sure how the kernel object is implemented.
2917 * mem_cgroup_from_obj() can be safely used in such cases.
2918 *
8380ce47
RG
2919 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2920 * cgroup_mutex, etc.
2921 */
2922struct mem_cgroup *mem_cgroup_from_obj(void *p)
2923{
2924 struct page *page;
2925
2926 if (mem_cgroup_disabled())
2927 return NULL;
2928
2929 page = virt_to_head_page(p);
2930
2931 /*
9855609b
RG
2932 * Slab objects are accounted individually, not per-page.
2933 * Memcg membership data for each individual object is saved in
2934 * the page->obj_cgroups.
8380ce47 2935 */
270c6a71 2936 if (page_objcgs_check(page)) {
9855609b
RG
2937 struct obj_cgroup *objcg;
2938 unsigned int off;
2939
2940 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2941 objcg = page_objcgs(page)[off];
10befea9
RG
2942 if (objcg)
2943 return obj_cgroup_memcg(objcg);
2944
2945 return NULL;
9855609b 2946 }
8380ce47 2947
bcfe06bf
RG
2948 /*
2949 * page_memcg_check() is used here, because page_has_obj_cgroups()
2950 * check above could fail because the object cgroups vector wasn't set
2951 * at that moment, but it can be set concurrently.
2952 * page_memcg_check(page) will guarantee that a proper memory
2953 * cgroup pointer or NULL will be returned.
2954 */
2955 return page_memcg_check(page);
8380ce47
RG
2956}
2957
bf4f0599
RG
2958__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2959{
2960 struct obj_cgroup *objcg = NULL;
2961 struct mem_cgroup *memcg;
2962
279c3393
RG
2963 if (memcg_kmem_bypass())
2964 return NULL;
2965
bf4f0599 2966 rcu_read_lock();
37d5985c
RG
2967 if (unlikely(active_memcg()))
2968 memcg = active_memcg();
bf4f0599
RG
2969 else
2970 memcg = mem_cgroup_from_task(current);
2971
2972 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2973 objcg = rcu_dereference(memcg->objcg);
2974 if (objcg && obj_cgroup_tryget(objcg))
2975 break;
2976 }
2977 rcu_read_unlock();
2978
2979 return objcg;
2980}
2981
f3bb3043 2982static int memcg_alloc_cache_id(void)
55007d84 2983{
f3bb3043
VD
2984 int id, size;
2985 int err;
2986
dbcf73e2 2987 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2988 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2989 if (id < 0)
2990 return id;
55007d84 2991
dbcf73e2 2992 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2993 return id;
2994
2995 /*
2996 * There's no space for the new id in memcg_caches arrays,
2997 * so we have to grow them.
2998 */
05257a1a 2999 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3000
3001 size = 2 * (id + 1);
55007d84
GC
3002 if (size < MEMCG_CACHES_MIN_SIZE)
3003 size = MEMCG_CACHES_MIN_SIZE;
3004 else if (size > MEMCG_CACHES_MAX_SIZE)
3005 size = MEMCG_CACHES_MAX_SIZE;
3006
9855609b 3007 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3008 if (!err)
3009 memcg_nr_cache_ids = size;
3010
3011 up_write(&memcg_cache_ids_sem);
3012
f3bb3043 3013 if (err) {
dbcf73e2 3014 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3015 return err;
3016 }
3017 return id;
3018}
3019
3020static void memcg_free_cache_id(int id)
3021{
dbcf73e2 3022 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3023}
3024
45264778 3025/**
4b13f64d 3026 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3027 * @memcg: memory cgroup to charge
45264778 3028 * @gfp: reclaim mode
92d0510c 3029 * @nr_pages: number of pages to charge
45264778
VD
3030 *
3031 * Returns 0 on success, an error code on failure.
3032 */
4b13f64d
RG
3033int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3034 unsigned int nr_pages)
7ae1e1d0 3035{
f3ccb2c4 3036 struct page_counter *counter;
7ae1e1d0
GC
3037 int ret;
3038
f3ccb2c4 3039 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3040 if (ret)
f3ccb2c4 3041 return ret;
52c29b04
JW
3042
3043 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3044 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3045
3046 /*
3047 * Enforce __GFP_NOFAIL allocation because callers are not
3048 * prepared to see failures and likely do not have any failure
3049 * handling code.
3050 */
3051 if (gfp & __GFP_NOFAIL) {
3052 page_counter_charge(&memcg->kmem, nr_pages);
3053 return 0;
3054 }
52c29b04
JW
3055 cancel_charge(memcg, nr_pages);
3056 return -ENOMEM;
7ae1e1d0 3057 }
f3ccb2c4 3058 return 0;
7ae1e1d0
GC
3059}
3060
4b13f64d
RG
3061/**
3062 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3063 * @memcg: memcg to uncharge
3064 * @nr_pages: number of pages to uncharge
3065 */
3066void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3067{
3068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3069 page_counter_uncharge(&memcg->kmem, nr_pages);
3070
3071 page_counter_uncharge(&memcg->memory, nr_pages);
3072 if (do_memsw_account())
3073 page_counter_uncharge(&memcg->memsw, nr_pages);
3074}
3075
45264778 3076/**
f4b00eab 3077 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3078 * @page: page to charge
3079 * @gfp: reclaim mode
3080 * @order: allocation order
3081 *
3082 * Returns 0 on success, an error code on failure.
3083 */
f4b00eab 3084int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3085{
f3ccb2c4 3086 struct mem_cgroup *memcg;
fcff7d7e 3087 int ret = 0;
7ae1e1d0 3088
d46eb14b 3089 memcg = get_mem_cgroup_from_current();
279c3393 3090 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3091 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3092 if (!ret) {
bcfe06bf 3093 page->memcg_data = (unsigned long)memcg;
c4159a75 3094 __SetPageKmemcg(page);
1a3e1f40 3095 return 0;
4d96ba35 3096 }
279c3393 3097 css_put(&memcg->css);
c4159a75 3098 }
d05e83a6 3099 return ret;
7ae1e1d0 3100}
49a18eae 3101
45264778 3102/**
f4b00eab 3103 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3104 * @page: page to uncharge
3105 * @order: allocation order
3106 */
f4b00eab 3107void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3108{
bcfe06bf 3109 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3110 unsigned int nr_pages = 1 << order;
7ae1e1d0 3111
7ae1e1d0
GC
3112 if (!memcg)
3113 return;
3114
309381fe 3115 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3116 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3117 page->memcg_data = 0;
1a3e1f40 3118 css_put(&memcg->css);
c4159a75
VD
3119
3120 /* slab pages do not have PageKmemcg flag set */
3121 if (PageKmemcg(page))
3122 __ClearPageKmemcg(page);
60d3fd32 3123}
bf4f0599
RG
3124
3125static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3126{
3127 struct memcg_stock_pcp *stock;
3128 unsigned long flags;
3129 bool ret = false;
3130
3131 local_irq_save(flags);
3132
3133 stock = this_cpu_ptr(&memcg_stock);
3134 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3135 stock->nr_bytes -= nr_bytes;
3136 ret = true;
3137 }
3138
3139 local_irq_restore(flags);
3140
3141 return ret;
3142}
3143
3144static void drain_obj_stock(struct memcg_stock_pcp *stock)
3145{
3146 struct obj_cgroup *old = stock->cached_objcg;
3147
3148 if (!old)
3149 return;
3150
3151 if (stock->nr_bytes) {
3152 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3153 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3154
3155 if (nr_pages) {
3156 rcu_read_lock();
3157 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3158 rcu_read_unlock();
3159 }
3160
3161 /*
3162 * The leftover is flushed to the centralized per-memcg value.
3163 * On the next attempt to refill obj stock it will be moved
3164 * to a per-cpu stock (probably, on an other CPU), see
3165 * refill_obj_stock().
3166 *
3167 * How often it's flushed is a trade-off between the memory
3168 * limit enforcement accuracy and potential CPU contention,
3169 * so it might be changed in the future.
3170 */
3171 atomic_add(nr_bytes, &old->nr_charged_bytes);
3172 stock->nr_bytes = 0;
3173 }
3174
3175 obj_cgroup_put(old);
3176 stock->cached_objcg = NULL;
3177}
3178
3179static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3180 struct mem_cgroup *root_memcg)
3181{
3182 struct mem_cgroup *memcg;
3183
3184 if (stock->cached_objcg) {
3185 memcg = obj_cgroup_memcg(stock->cached_objcg);
3186 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3187 return true;
3188 }
3189
3190 return false;
3191}
3192
3193static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3194{
3195 struct memcg_stock_pcp *stock;
3196 unsigned long flags;
3197
3198 local_irq_save(flags);
3199
3200 stock = this_cpu_ptr(&memcg_stock);
3201 if (stock->cached_objcg != objcg) { /* reset if necessary */
3202 drain_obj_stock(stock);
3203 obj_cgroup_get(objcg);
3204 stock->cached_objcg = objcg;
3205 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3206 }
3207 stock->nr_bytes += nr_bytes;
3208
3209 if (stock->nr_bytes > PAGE_SIZE)
3210 drain_obj_stock(stock);
3211
3212 local_irq_restore(flags);
3213}
3214
3215int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3216{
3217 struct mem_cgroup *memcg;
3218 unsigned int nr_pages, nr_bytes;
3219 int ret;
3220
3221 if (consume_obj_stock(objcg, size))
3222 return 0;
3223
3224 /*
3225 * In theory, memcg->nr_charged_bytes can have enough
3226 * pre-charged bytes to satisfy the allocation. However,
3227 * flushing memcg->nr_charged_bytes requires two atomic
3228 * operations, and memcg->nr_charged_bytes can't be big,
3229 * so it's better to ignore it and try grab some new pages.
3230 * memcg->nr_charged_bytes will be flushed in
3231 * refill_obj_stock(), called from this function or
3232 * independently later.
3233 */
3234 rcu_read_lock();
3235 memcg = obj_cgroup_memcg(objcg);
3236 css_get(&memcg->css);
3237 rcu_read_unlock();
3238
3239 nr_pages = size >> PAGE_SHIFT;
3240 nr_bytes = size & (PAGE_SIZE - 1);
3241
3242 if (nr_bytes)
3243 nr_pages += 1;
3244
3245 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3246 if (!ret && nr_bytes)
3247 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3248
3249 css_put(&memcg->css);
3250 return ret;
3251}
3252
3253void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254{
3255 refill_obj_stock(objcg, size);
3256}
3257
84c07d11 3258#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3259
ca3e0214
KH
3260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3261
ca3e0214
KH
3262/*
3263 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3264 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3265 */
e94c8a9c 3266void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3267{
bcfe06bf 3268 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3269 int i;
ca3e0214 3270
3d37c4a9
KH
3271 if (mem_cgroup_disabled())
3272 return;
b070e65c 3273
1a3e1f40
JW
3274 for (i = 1; i < HPAGE_PMD_NR; i++) {
3275 css_get(&memcg->css);
bcfe06bf 3276 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3277 }
ca3e0214 3278}
12d27107 3279#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3280
c255a458 3281#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3282/**
3283 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3284 * @entry: swap entry to be moved
3285 * @from: mem_cgroup which the entry is moved from
3286 * @to: mem_cgroup which the entry is moved to
3287 *
3288 * It succeeds only when the swap_cgroup's record for this entry is the same
3289 * as the mem_cgroup's id of @from.
3290 *
3291 * Returns 0 on success, -EINVAL on failure.
3292 *
3e32cb2e 3293 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3294 * both res and memsw, and called css_get().
3295 */
3296static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3297 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3298{
3299 unsigned short old_id, new_id;
3300
34c00c31
LZ
3301 old_id = mem_cgroup_id(from);
3302 new_id = mem_cgroup_id(to);
02491447
DN
3303
3304 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3305 mod_memcg_state(from, MEMCG_SWAP, -1);
3306 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3307 return 0;
3308 }
3309 return -EINVAL;
3310}
3311#else
3312static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3313 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3314{
3315 return -EINVAL;
3316}
8c7c6e34 3317#endif
d13d1443 3318
bbec2e15 3319static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3320
bbec2e15
RG
3321static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3322 unsigned long max, bool memsw)
628f4235 3323{
3e32cb2e 3324 bool enlarge = false;
bb4a7ea2 3325 bool drained = false;
3e32cb2e 3326 int ret;
c054a78c
YZ
3327 bool limits_invariant;
3328 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3329
3e32cb2e 3330 do {
628f4235
KH
3331 if (signal_pending(current)) {
3332 ret = -EINTR;
3333 break;
3334 }
3e32cb2e 3335
bbec2e15 3336 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3337 /*
3338 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3339 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3340 */
15b42562 3341 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3342 max <= memcg->memsw.max;
c054a78c 3343 if (!limits_invariant) {
bbec2e15 3344 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3345 ret = -EINVAL;
8c7c6e34
KH
3346 break;
3347 }
bbec2e15 3348 if (max > counter->max)
3e32cb2e 3349 enlarge = true;
bbec2e15
RG
3350 ret = page_counter_set_max(counter, max);
3351 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3352
3353 if (!ret)
3354 break;
3355
bb4a7ea2
SB
3356 if (!drained) {
3357 drain_all_stock(memcg);
3358 drained = true;
3359 continue;
3360 }
3361
1ab5c056
AR
3362 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3363 GFP_KERNEL, !memsw)) {
3364 ret = -EBUSY;
3365 break;
3366 }
3367 } while (true);
3e32cb2e 3368
3c11ecf4
KH
3369 if (!ret && enlarge)
3370 memcg_oom_recover(memcg);
3e32cb2e 3371
628f4235
KH
3372 return ret;
3373}
3374
ef8f2327 3375unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3376 gfp_t gfp_mask,
3377 unsigned long *total_scanned)
3378{
3379 unsigned long nr_reclaimed = 0;
ef8f2327 3380 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3381 unsigned long reclaimed;
3382 int loop = 0;
ef8f2327 3383 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3384 unsigned long excess;
0608f43d
AM
3385 unsigned long nr_scanned;
3386
3387 if (order > 0)
3388 return 0;
3389
ef8f2327 3390 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3391
3392 /*
3393 * Do not even bother to check the largest node if the root
3394 * is empty. Do it lockless to prevent lock bouncing. Races
3395 * are acceptable as soft limit is best effort anyway.
3396 */
bfc7228b 3397 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3398 return 0;
3399
0608f43d
AM
3400 /*
3401 * This loop can run a while, specially if mem_cgroup's continuously
3402 * keep exceeding their soft limit and putting the system under
3403 * pressure
3404 */
3405 do {
3406 if (next_mz)
3407 mz = next_mz;
3408 else
3409 mz = mem_cgroup_largest_soft_limit_node(mctz);
3410 if (!mz)
3411 break;
3412
3413 nr_scanned = 0;
ef8f2327 3414 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3415 gfp_mask, &nr_scanned);
3416 nr_reclaimed += reclaimed;
3417 *total_scanned += nr_scanned;
0a31bc97 3418 spin_lock_irq(&mctz->lock);
bc2f2e7f 3419 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3420
3421 /*
3422 * If we failed to reclaim anything from this memory cgroup
3423 * it is time to move on to the next cgroup
3424 */
3425 next_mz = NULL;
bc2f2e7f
VD
3426 if (!reclaimed)
3427 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3428
3e32cb2e 3429 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3430 /*
3431 * One school of thought says that we should not add
3432 * back the node to the tree if reclaim returns 0.
3433 * But our reclaim could return 0, simply because due
3434 * to priority we are exposing a smaller subset of
3435 * memory to reclaim from. Consider this as a longer
3436 * term TODO.
3437 */
3438 /* If excess == 0, no tree ops */
cf2c8127 3439 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3440 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3441 css_put(&mz->memcg->css);
3442 loop++;
3443 /*
3444 * Could not reclaim anything and there are no more
3445 * mem cgroups to try or we seem to be looping without
3446 * reclaiming anything.
3447 */
3448 if (!nr_reclaimed &&
3449 (next_mz == NULL ||
3450 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3451 break;
3452 } while (!nr_reclaimed);
3453 if (next_mz)
3454 css_put(&next_mz->memcg->css);
3455 return nr_reclaimed;
3456}
3457
ea280e7b
TH
3458/*
3459 * Test whether @memcg has children, dead or alive. Note that this
3460 * function doesn't care whether @memcg has use_hierarchy enabled and
3461 * returns %true if there are child csses according to the cgroup
b8f2935f 3462 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3463 */
b5f99b53
GC
3464static inline bool memcg_has_children(struct mem_cgroup *memcg)
3465{
ea280e7b
TH
3466 bool ret;
3467
ea280e7b
TH
3468 rcu_read_lock();
3469 ret = css_next_child(NULL, &memcg->css);
3470 rcu_read_unlock();
3471 return ret;
b5f99b53
GC
3472}
3473
c26251f9 3474/*
51038171 3475 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3476 *
3477 * Caller is responsible for holding css reference for memcg.
3478 */
3479static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3480{
d977aa93 3481 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3482
c1e862c1
KH
3483 /* we call try-to-free pages for make this cgroup empty */
3484 lru_add_drain_all();
d12c60f6
JS
3485
3486 drain_all_stock(memcg);
3487
f817ed48 3488 /* try to free all pages in this cgroup */
3e32cb2e 3489 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3490 int progress;
c1e862c1 3491
c26251f9
MH
3492 if (signal_pending(current))
3493 return -EINTR;
3494
b70a2a21
JW
3495 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3496 GFP_KERNEL, true);
c1e862c1 3497 if (!progress) {
f817ed48 3498 nr_retries--;
c1e862c1 3499 /* maybe some writeback is necessary */
8aa7e847 3500 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3501 }
f817ed48
KH
3502
3503 }
ab5196c2
MH
3504
3505 return 0;
cc847582
KH
3506}
3507
6770c64e
TH
3508static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3509 char *buf, size_t nbytes,
3510 loff_t off)
c1e862c1 3511{
6770c64e 3512 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3513
d8423011
MH
3514 if (mem_cgroup_is_root(memcg))
3515 return -EINVAL;
6770c64e 3516 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3517}
3518
182446d0
TH
3519static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3520 struct cftype *cft)
18f59ea7 3521{
182446d0 3522 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3523}
3524
182446d0
TH
3525static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3526 struct cftype *cft, u64 val)
18f59ea7
BS
3527{
3528 int retval = 0;
182446d0 3529 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3530 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3531
567fb435 3532 if (memcg->use_hierarchy == val)
0b8f73e1 3533 return 0;
567fb435 3534
18f59ea7 3535 /*
af901ca1 3536 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3537 * in the child subtrees. If it is unset, then the change can
3538 * occur, provided the current cgroup has no children.
3539 *
3540 * For the root cgroup, parent_mem is NULL, we allow value to be
3541 * set if there are no children.
3542 */
c0ff4b85 3543 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3544 (val == 1 || val == 0)) {
ea280e7b 3545 if (!memcg_has_children(memcg))
c0ff4b85 3546 memcg->use_hierarchy = val;
18f59ea7
BS
3547 else
3548 retval = -EBUSY;
3549 } else
3550 retval = -EINVAL;
567fb435 3551
18f59ea7
BS
3552 return retval;
3553}
3554
6f646156 3555static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3556{
42a30035 3557 unsigned long val;
ce00a967 3558
3e32cb2e 3559 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3560 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3561 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3562 if (swap)
3563 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3564 } else {
ce00a967 3565 if (!swap)
3e32cb2e 3566 val = page_counter_read(&memcg->memory);
ce00a967 3567 else
3e32cb2e 3568 val = page_counter_read(&memcg->memsw);
ce00a967 3569 }
c12176d3 3570 return val;
ce00a967
JW
3571}
3572
3e32cb2e
JW
3573enum {
3574 RES_USAGE,
3575 RES_LIMIT,
3576 RES_MAX_USAGE,
3577 RES_FAILCNT,
3578 RES_SOFT_LIMIT,
3579};
ce00a967 3580
791badbd 3581static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3582 struct cftype *cft)
8cdea7c0 3583{
182446d0 3584 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3585 struct page_counter *counter;
af36f906 3586
3e32cb2e 3587 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3588 case _MEM:
3e32cb2e
JW
3589 counter = &memcg->memory;
3590 break;
8c7c6e34 3591 case _MEMSWAP:
3e32cb2e
JW
3592 counter = &memcg->memsw;
3593 break;
510fc4e1 3594 case _KMEM:
3e32cb2e 3595 counter = &memcg->kmem;
510fc4e1 3596 break;
d55f90bf 3597 case _TCP:
0db15298 3598 counter = &memcg->tcpmem;
d55f90bf 3599 break;
8c7c6e34
KH
3600 default:
3601 BUG();
8c7c6e34 3602 }
3e32cb2e
JW
3603
3604 switch (MEMFILE_ATTR(cft->private)) {
3605 case RES_USAGE:
3606 if (counter == &memcg->memory)
c12176d3 3607 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3608 if (counter == &memcg->memsw)
c12176d3 3609 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3610 return (u64)page_counter_read(counter) * PAGE_SIZE;
3611 case RES_LIMIT:
bbec2e15 3612 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3613 case RES_MAX_USAGE:
3614 return (u64)counter->watermark * PAGE_SIZE;
3615 case RES_FAILCNT:
3616 return counter->failcnt;
3617 case RES_SOFT_LIMIT:
3618 return (u64)memcg->soft_limit * PAGE_SIZE;
3619 default:
3620 BUG();
3621 }
8cdea7c0 3622}
510fc4e1 3623
4a87e2a2 3624static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3625{
4a87e2a2 3626 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3627 struct mem_cgroup *mi;
3628 int node, cpu, i;
c350a99e
RG
3629
3630 for_each_online_cpu(cpu)
4a87e2a2 3631 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3632 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3633
3634 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3635 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3636 atomic_long_add(stat[i], &mi->vmstats[i]);
3637
3638 for_each_node(node) {
3639 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3640 struct mem_cgroup_per_node *pi;
3641
4a87e2a2 3642 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3643 stat[i] = 0;
3644
3645 for_each_online_cpu(cpu)
4a87e2a2 3646 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3647 stat[i] += per_cpu(
3648 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3649
3650 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3651 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3652 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3653 }
3654}
3655
bb65f89b
RG
3656static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3657{
3658 unsigned long events[NR_VM_EVENT_ITEMS];
3659 struct mem_cgroup *mi;
3660 int cpu, i;
3661
3662 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3663 events[i] = 0;
3664
3665 for_each_online_cpu(cpu)
3666 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3667 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3668 cpu);
bb65f89b
RG
3669
3670 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3671 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3672 atomic_long_add(events[i], &mi->vmevents[i]);
3673}
3674
84c07d11 3675#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3676static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3677{
bf4f0599 3678 struct obj_cgroup *objcg;
d6441637
VD
3679 int memcg_id;
3680
b313aeee
VD
3681 if (cgroup_memory_nokmem)
3682 return 0;
3683
2a4db7eb 3684 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3685 BUG_ON(memcg->kmem_state);
d6441637 3686
f3bb3043 3687 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3688 if (memcg_id < 0)
3689 return memcg_id;
d6441637 3690
bf4f0599
RG
3691 objcg = obj_cgroup_alloc();
3692 if (!objcg) {
3693 memcg_free_cache_id(memcg_id);
3694 return -ENOMEM;
3695 }
3696 objcg->memcg = memcg;
3697 rcu_assign_pointer(memcg->objcg, objcg);
3698
d648bcc7
RG
3699 static_branch_enable(&memcg_kmem_enabled_key);
3700
d6441637 3701 /*
567e9ab2 3702 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3703 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3704 * guarantee no one starts accounting before all call sites are
3705 * patched.
3706 */
900a38f0 3707 memcg->kmemcg_id = memcg_id;
567e9ab2 3708 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3709
3710 return 0;
d6441637
VD
3711}
3712
8e0a8912
JW
3713static void memcg_offline_kmem(struct mem_cgroup *memcg)
3714{
3715 struct cgroup_subsys_state *css;
3716 struct mem_cgroup *parent, *child;
3717 int kmemcg_id;
3718
3719 if (memcg->kmem_state != KMEM_ONLINE)
3720 return;
9855609b 3721
8e0a8912
JW
3722 memcg->kmem_state = KMEM_ALLOCATED;
3723
8e0a8912
JW
3724 parent = parent_mem_cgroup(memcg);
3725 if (!parent)
3726 parent = root_mem_cgroup;
3727
bf4f0599 3728 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3729
3730 kmemcg_id = memcg->kmemcg_id;
3731 BUG_ON(kmemcg_id < 0);
3732
8e0a8912
JW
3733 /*
3734 * Change kmemcg_id of this cgroup and all its descendants to the
3735 * parent's id, and then move all entries from this cgroup's list_lrus
3736 * to ones of the parent. After we have finished, all list_lrus
3737 * corresponding to this cgroup are guaranteed to remain empty. The
3738 * ordering is imposed by list_lru_node->lock taken by
3739 * memcg_drain_all_list_lrus().
3740 */
3a06bb78 3741 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3742 css_for_each_descendant_pre(css, &memcg->css) {
3743 child = mem_cgroup_from_css(css);
3744 BUG_ON(child->kmemcg_id != kmemcg_id);
3745 child->kmemcg_id = parent->kmemcg_id;
3746 if (!memcg->use_hierarchy)
3747 break;
3748 }
3a06bb78
TH
3749 rcu_read_unlock();
3750
9bec5c35 3751 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3752
3753 memcg_free_cache_id(kmemcg_id);
3754}
3755
3756static void memcg_free_kmem(struct mem_cgroup *memcg)
3757{
0b8f73e1
JW
3758 /* css_alloc() failed, offlining didn't happen */
3759 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3760 memcg_offline_kmem(memcg);
8e0a8912 3761}
d6441637 3762#else
0b8f73e1 3763static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3764{
3765 return 0;
3766}
3767static void memcg_offline_kmem(struct mem_cgroup *memcg)
3768{
3769}
3770static void memcg_free_kmem(struct mem_cgroup *memcg)
3771{
3772}
84c07d11 3773#endif /* CONFIG_MEMCG_KMEM */
127424c8 3774
bbec2e15
RG
3775static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3776 unsigned long max)
d6441637 3777{
b313aeee 3778 int ret;
127424c8 3779
bbec2e15
RG
3780 mutex_lock(&memcg_max_mutex);
3781 ret = page_counter_set_max(&memcg->kmem, max);
3782 mutex_unlock(&memcg_max_mutex);
127424c8 3783 return ret;
d6441637 3784}
510fc4e1 3785
bbec2e15 3786static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3787{
3788 int ret;
3789
bbec2e15 3790 mutex_lock(&memcg_max_mutex);
d55f90bf 3791
bbec2e15 3792 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3793 if (ret)
3794 goto out;
3795
0db15298 3796 if (!memcg->tcpmem_active) {
d55f90bf
VD
3797 /*
3798 * The active flag needs to be written after the static_key
3799 * update. This is what guarantees that the socket activation
2d758073
JW
3800 * function is the last one to run. See mem_cgroup_sk_alloc()
3801 * for details, and note that we don't mark any socket as
3802 * belonging to this memcg until that flag is up.
d55f90bf
VD
3803 *
3804 * We need to do this, because static_keys will span multiple
3805 * sites, but we can't control their order. If we mark a socket
3806 * as accounted, but the accounting functions are not patched in
3807 * yet, we'll lose accounting.
3808 *
2d758073 3809 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3810 * because when this value change, the code to process it is not
3811 * patched in yet.
3812 */
3813 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3814 memcg->tcpmem_active = true;
d55f90bf
VD
3815 }
3816out:
bbec2e15 3817 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3818 return ret;
3819}
d55f90bf 3820
628f4235
KH
3821/*
3822 * The user of this function is...
3823 * RES_LIMIT.
3824 */
451af504
TH
3825static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3826 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3827{
451af504 3828 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3829 unsigned long nr_pages;
628f4235
KH
3830 int ret;
3831
451af504 3832 buf = strstrip(buf);
650c5e56 3833 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3834 if (ret)
3835 return ret;
af36f906 3836
3e32cb2e 3837 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3838 case RES_LIMIT:
4b3bde4c
BS
3839 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3840 ret = -EINVAL;
3841 break;
3842 }
3e32cb2e
JW
3843 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3844 case _MEM:
bbec2e15 3845 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3846 break;
3e32cb2e 3847 case _MEMSWAP:
bbec2e15 3848 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3849 break;
3e32cb2e 3850 case _KMEM:
0158115f
MH
3851 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3852 "Please report your usecase to linux-mm@kvack.org if you "
3853 "depend on this functionality.\n");
bbec2e15 3854 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3855 break;
d55f90bf 3856 case _TCP:
bbec2e15 3857 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3858 break;
3e32cb2e 3859 }
296c81d8 3860 break;
3e32cb2e
JW
3861 case RES_SOFT_LIMIT:
3862 memcg->soft_limit = nr_pages;
3863 ret = 0;
628f4235
KH
3864 break;
3865 }
451af504 3866 return ret ?: nbytes;
8cdea7c0
BS
3867}
3868
6770c64e
TH
3869static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3870 size_t nbytes, loff_t off)
c84872e1 3871{
6770c64e 3872 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3873 struct page_counter *counter;
c84872e1 3874
3e32cb2e
JW
3875 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3876 case _MEM:
3877 counter = &memcg->memory;
3878 break;
3879 case _MEMSWAP:
3880 counter = &memcg->memsw;
3881 break;
3882 case _KMEM:
3883 counter = &memcg->kmem;
3884 break;
d55f90bf 3885 case _TCP:
0db15298 3886 counter = &memcg->tcpmem;
d55f90bf 3887 break;
3e32cb2e
JW
3888 default:
3889 BUG();
3890 }
af36f906 3891
3e32cb2e 3892 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3893 case RES_MAX_USAGE:
3e32cb2e 3894 page_counter_reset_watermark(counter);
29f2a4da
PE
3895 break;
3896 case RES_FAILCNT:
3e32cb2e 3897 counter->failcnt = 0;
29f2a4da 3898 break;
3e32cb2e
JW
3899 default:
3900 BUG();
29f2a4da 3901 }
f64c3f54 3902
6770c64e 3903 return nbytes;
c84872e1
PE
3904}
3905
182446d0 3906static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3907 struct cftype *cft)
3908{
182446d0 3909 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3910}
3911
02491447 3912#ifdef CONFIG_MMU
182446d0 3913static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3914 struct cftype *cft, u64 val)
3915{
182446d0 3916 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3917
1dfab5ab 3918 if (val & ~MOVE_MASK)
7dc74be0 3919 return -EINVAL;
ee5e8472 3920
7dc74be0 3921 /*
ee5e8472
GC
3922 * No kind of locking is needed in here, because ->can_attach() will
3923 * check this value once in the beginning of the process, and then carry
3924 * on with stale data. This means that changes to this value will only
3925 * affect task migrations starting after the change.
7dc74be0 3926 */
c0ff4b85 3927 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3928 return 0;
3929}
02491447 3930#else
182446d0 3931static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3932 struct cftype *cft, u64 val)
3933{
3934 return -ENOSYS;
3935}
3936#endif
7dc74be0 3937
406eb0c9 3938#ifdef CONFIG_NUMA
113b7dfd
JW
3939
3940#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3941#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3942#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3943
3944static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3945 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3946{
867e5e1d 3947 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3948 unsigned long nr = 0;
3949 enum lru_list lru;
3950
3951 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3952
3953 for_each_lru(lru) {
3954 if (!(BIT(lru) & lru_mask))
3955 continue;
dd8657b6
SB
3956 if (tree)
3957 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3958 else
3959 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3960 }
3961 return nr;
3962}
3963
3964static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3965 unsigned int lru_mask,
3966 bool tree)
113b7dfd
JW
3967{
3968 unsigned long nr = 0;
3969 enum lru_list lru;
3970
3971 for_each_lru(lru) {
3972 if (!(BIT(lru) & lru_mask))
3973 continue;
dd8657b6
SB
3974 if (tree)
3975 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3976 else
3977 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3978 }
3979 return nr;
3980}
3981
2da8ca82 3982static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3983{
25485de6
GT
3984 struct numa_stat {
3985 const char *name;
3986 unsigned int lru_mask;
3987 };
3988
3989 static const struct numa_stat stats[] = {
3990 { "total", LRU_ALL },
3991 { "file", LRU_ALL_FILE },
3992 { "anon", LRU_ALL_ANON },
3993 { "unevictable", BIT(LRU_UNEVICTABLE) },
3994 };
3995 const struct numa_stat *stat;
406eb0c9 3996 int nid;
aa9694bb 3997 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3998
25485de6 3999 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4000 seq_printf(m, "%s=%lu", stat->name,
4001 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4002 false));
4003 for_each_node_state(nid, N_MEMORY)
4004 seq_printf(m, " N%d=%lu", nid,
4005 mem_cgroup_node_nr_lru_pages(memcg, nid,
4006 stat->lru_mask, false));
25485de6 4007 seq_putc(m, '\n');
406eb0c9 4008 }
406eb0c9 4009
071aee13 4010 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4011
4012 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4013 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4014 true));
4015 for_each_node_state(nid, N_MEMORY)
4016 seq_printf(m, " N%d=%lu", nid,
4017 mem_cgroup_node_nr_lru_pages(memcg, nid,
4018 stat->lru_mask, true));
071aee13 4019 seq_putc(m, '\n');
406eb0c9 4020 }
406eb0c9 4021
406eb0c9
YH
4022 return 0;
4023}
4024#endif /* CONFIG_NUMA */
4025
c8713d0b 4026static const unsigned int memcg1_stats[] = {
0d1c2072 4027 NR_FILE_PAGES,
be5d0a74 4028 NR_ANON_MAPPED,
468c3982
JW
4029#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4030 NR_ANON_THPS,
4031#endif
c8713d0b
JW
4032 NR_SHMEM,
4033 NR_FILE_MAPPED,
4034 NR_FILE_DIRTY,
4035 NR_WRITEBACK,
4036 MEMCG_SWAP,
4037};
4038
4039static const char *const memcg1_stat_names[] = {
4040 "cache",
4041 "rss",
468c3982 4042#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4043 "rss_huge",
468c3982 4044#endif
c8713d0b
JW
4045 "shmem",
4046 "mapped_file",
4047 "dirty",
4048 "writeback",
4049 "swap",
4050};
4051
df0e53d0 4052/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4053static const unsigned int memcg1_events[] = {
df0e53d0
JW
4054 PGPGIN,
4055 PGPGOUT,
4056 PGFAULT,
4057 PGMAJFAULT,
4058};
4059
2da8ca82 4060static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4061{
aa9694bb 4062 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4063 unsigned long memory, memsw;
af7c4b0e
JW
4064 struct mem_cgroup *mi;
4065 unsigned int i;
406eb0c9 4066
71cd3113 4067 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4068
71cd3113 4069 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4070 unsigned long nr;
4071
71cd3113 4072 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4073 continue;
468c3982
JW
4074 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4075#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4076 if (memcg1_stats[i] == NR_ANON_THPS)
4077 nr *= HPAGE_PMD_NR;
4078#endif
4079 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4080 }
7b854121 4081
df0e53d0 4082 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4083 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4084 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4085
4086 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4087 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4088 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4089 PAGE_SIZE);
af7c4b0e 4090
14067bb3 4091 /* Hierarchical information */
3e32cb2e
JW
4092 memory = memsw = PAGE_COUNTER_MAX;
4093 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4094 memory = min(memory, READ_ONCE(mi->memory.max));
4095 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4096 }
3e32cb2e
JW
4097 seq_printf(m, "hierarchical_memory_limit %llu\n",
4098 (u64)memory * PAGE_SIZE);
7941d214 4099 if (do_memsw_account())
3e32cb2e
JW
4100 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4101 (u64)memsw * PAGE_SIZE);
7f016ee8 4102
8de7ecc6 4103 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4104 unsigned long nr;
4105
71cd3113 4106 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4107 continue;
7de2e9f1 4108 nr = memcg_page_state(memcg, memcg1_stats[i]);
4109#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4110 if (memcg1_stats[i] == NR_ANON_THPS)
4111 nr *= HPAGE_PMD_NR;
4112#endif
8de7ecc6 4113 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4114 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4115 }
4116
8de7ecc6 4117 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4118 seq_printf(m, "total_%s %llu\n",
4119 vm_event_name(memcg1_events[i]),
dd923990 4120 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4121
8de7ecc6 4122 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4123 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4124 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4125 PAGE_SIZE);
14067bb3 4126
7f016ee8 4127#ifdef CONFIG_DEBUG_VM
7f016ee8 4128 {
ef8f2327
MG
4129 pg_data_t *pgdat;
4130 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4131 unsigned long anon_cost = 0;
4132 unsigned long file_cost = 0;
7f016ee8 4133
ef8f2327
MG
4134 for_each_online_pgdat(pgdat) {
4135 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4136
1431d4d1
JW
4137 anon_cost += mz->lruvec.anon_cost;
4138 file_cost += mz->lruvec.file_cost;
ef8f2327 4139 }
1431d4d1
JW
4140 seq_printf(m, "anon_cost %lu\n", anon_cost);
4141 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4142 }
4143#endif
4144
d2ceb9b7
KH
4145 return 0;
4146}
4147
182446d0
TH
4148static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4149 struct cftype *cft)
a7885eb8 4150{
182446d0 4151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4152
1f4c025b 4153 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4154}
4155
182446d0
TH
4156static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4157 struct cftype *cft, u64 val)
a7885eb8 4158{
182446d0 4159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4160
3dae7fec 4161 if (val > 100)
a7885eb8
KM
4162 return -EINVAL;
4163
14208b0e 4164 if (css->parent)
3dae7fec
JW
4165 memcg->swappiness = val;
4166 else
4167 vm_swappiness = val;
068b38c1 4168
a7885eb8
KM
4169 return 0;
4170}
4171
2e72b634
KS
4172static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4173{
4174 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4175 unsigned long usage;
2e72b634
KS
4176 int i;
4177
4178 rcu_read_lock();
4179 if (!swap)
2c488db2 4180 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4181 else
2c488db2 4182 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4183
4184 if (!t)
4185 goto unlock;
4186
ce00a967 4187 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4188
4189 /*
748dad36 4190 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4191 * If it's not true, a threshold was crossed after last
4192 * call of __mem_cgroup_threshold().
4193 */
5407a562 4194 i = t->current_threshold;
2e72b634
KS
4195
4196 /*
4197 * Iterate backward over array of thresholds starting from
4198 * current_threshold and check if a threshold is crossed.
4199 * If none of thresholds below usage is crossed, we read
4200 * only one element of the array here.
4201 */
4202 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4203 eventfd_signal(t->entries[i].eventfd, 1);
4204
4205 /* i = current_threshold + 1 */
4206 i++;
4207
4208 /*
4209 * Iterate forward over array of thresholds starting from
4210 * current_threshold+1 and check if a threshold is crossed.
4211 * If none of thresholds above usage is crossed, we read
4212 * only one element of the array here.
4213 */
4214 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4215 eventfd_signal(t->entries[i].eventfd, 1);
4216
4217 /* Update current_threshold */
5407a562 4218 t->current_threshold = i - 1;
2e72b634
KS
4219unlock:
4220 rcu_read_unlock();
4221}
4222
4223static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4224{
ad4ca5f4
KS
4225 while (memcg) {
4226 __mem_cgroup_threshold(memcg, false);
7941d214 4227 if (do_memsw_account())
ad4ca5f4
KS
4228 __mem_cgroup_threshold(memcg, true);
4229
4230 memcg = parent_mem_cgroup(memcg);
4231 }
2e72b634
KS
4232}
4233
4234static int compare_thresholds(const void *a, const void *b)
4235{
4236 const struct mem_cgroup_threshold *_a = a;
4237 const struct mem_cgroup_threshold *_b = b;
4238
2bff24a3
GT
4239 if (_a->threshold > _b->threshold)
4240 return 1;
4241
4242 if (_a->threshold < _b->threshold)
4243 return -1;
4244
4245 return 0;
2e72b634
KS
4246}
4247
c0ff4b85 4248static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4249{
4250 struct mem_cgroup_eventfd_list *ev;
4251
2bcf2e92
MH
4252 spin_lock(&memcg_oom_lock);
4253
c0ff4b85 4254 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4255 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4256
4257 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4258 return 0;
4259}
4260
c0ff4b85 4261static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4262{
7d74b06f
KH
4263 struct mem_cgroup *iter;
4264
c0ff4b85 4265 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4266 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4267}
4268
59b6f873 4269static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4270 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4271{
2c488db2
KS
4272 struct mem_cgroup_thresholds *thresholds;
4273 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4274 unsigned long threshold;
4275 unsigned long usage;
2c488db2 4276 int i, size, ret;
2e72b634 4277
650c5e56 4278 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4279 if (ret)
4280 return ret;
4281
4282 mutex_lock(&memcg->thresholds_lock);
2c488db2 4283
05b84301 4284 if (type == _MEM) {
2c488db2 4285 thresholds = &memcg->thresholds;
ce00a967 4286 usage = mem_cgroup_usage(memcg, false);
05b84301 4287 } else if (type == _MEMSWAP) {
2c488db2 4288 thresholds = &memcg->memsw_thresholds;
ce00a967 4289 usage = mem_cgroup_usage(memcg, true);
05b84301 4290 } else
2e72b634
KS
4291 BUG();
4292
2e72b634 4293 /* Check if a threshold crossed before adding a new one */
2c488db2 4294 if (thresholds->primary)
2e72b634
KS
4295 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4296
2c488db2 4297 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4298
4299 /* Allocate memory for new array of thresholds */
67b8046f 4300 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4301 if (!new) {
2e72b634
KS
4302 ret = -ENOMEM;
4303 goto unlock;
4304 }
2c488db2 4305 new->size = size;
2e72b634
KS
4306
4307 /* Copy thresholds (if any) to new array */
e90342e6
GS
4308 if (thresholds->primary)
4309 memcpy(new->entries, thresholds->primary->entries,
4310 flex_array_size(new, entries, size - 1));
2c488db2 4311
2e72b634 4312 /* Add new threshold */
2c488db2
KS
4313 new->entries[size - 1].eventfd = eventfd;
4314 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4315
4316 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4317 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4318 compare_thresholds, NULL);
4319
4320 /* Find current threshold */
2c488db2 4321 new->current_threshold = -1;
2e72b634 4322 for (i = 0; i < size; i++) {
748dad36 4323 if (new->entries[i].threshold <= usage) {
2e72b634 4324 /*
2c488db2
KS
4325 * new->current_threshold will not be used until
4326 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4327 * it here.
4328 */
2c488db2 4329 ++new->current_threshold;
748dad36
SZ
4330 } else
4331 break;
2e72b634
KS
4332 }
4333
2c488db2
KS
4334 /* Free old spare buffer and save old primary buffer as spare */
4335 kfree(thresholds->spare);
4336 thresholds->spare = thresholds->primary;
4337
4338 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4339
907860ed 4340 /* To be sure that nobody uses thresholds */
2e72b634
KS
4341 synchronize_rcu();
4342
2e72b634
KS
4343unlock:
4344 mutex_unlock(&memcg->thresholds_lock);
4345
4346 return ret;
4347}
4348
59b6f873 4349static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4350 struct eventfd_ctx *eventfd, const char *args)
4351{
59b6f873 4352 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4353}
4354
59b6f873 4355static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4356 struct eventfd_ctx *eventfd, const char *args)
4357{
59b6f873 4358 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4359}
4360
59b6f873 4361static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4362 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4363{
2c488db2
KS
4364 struct mem_cgroup_thresholds *thresholds;
4365 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4366 unsigned long usage;
7d36665a 4367 int i, j, size, entries;
2e72b634
KS
4368
4369 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4370
4371 if (type == _MEM) {
2c488db2 4372 thresholds = &memcg->thresholds;
ce00a967 4373 usage = mem_cgroup_usage(memcg, false);
05b84301 4374 } else if (type == _MEMSWAP) {
2c488db2 4375 thresholds = &memcg->memsw_thresholds;
ce00a967 4376 usage = mem_cgroup_usage(memcg, true);
05b84301 4377 } else
2e72b634
KS
4378 BUG();
4379
371528ca
AV
4380 if (!thresholds->primary)
4381 goto unlock;
4382
2e72b634
KS
4383 /* Check if a threshold crossed before removing */
4384 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4385
4386 /* Calculate new number of threshold */
7d36665a 4387 size = entries = 0;
2c488db2
KS
4388 for (i = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4390 size++;
7d36665a
CX
4391 else
4392 entries++;
2e72b634
KS
4393 }
4394
2c488db2 4395 new = thresholds->spare;
907860ed 4396
7d36665a
CX
4397 /* If no items related to eventfd have been cleared, nothing to do */
4398 if (!entries)
4399 goto unlock;
4400
2e72b634
KS
4401 /* Set thresholds array to NULL if we don't have thresholds */
4402 if (!size) {
2c488db2
KS
4403 kfree(new);
4404 new = NULL;
907860ed 4405 goto swap_buffers;
2e72b634
KS
4406 }
4407
2c488db2 4408 new->size = size;
2e72b634
KS
4409
4410 /* Copy thresholds and find current threshold */
2c488db2
KS
4411 new->current_threshold = -1;
4412 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4413 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4414 continue;
4415
2c488db2 4416 new->entries[j] = thresholds->primary->entries[i];
748dad36 4417 if (new->entries[j].threshold <= usage) {
2e72b634 4418 /*
2c488db2 4419 * new->current_threshold will not be used
2e72b634
KS
4420 * until rcu_assign_pointer(), so it's safe to increment
4421 * it here.
4422 */
2c488db2 4423 ++new->current_threshold;
2e72b634
KS
4424 }
4425 j++;
4426 }
4427
907860ed 4428swap_buffers:
2c488db2
KS
4429 /* Swap primary and spare array */
4430 thresholds->spare = thresholds->primary;
8c757763 4431
2c488db2 4432 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4433
907860ed 4434 /* To be sure that nobody uses thresholds */
2e72b634 4435 synchronize_rcu();
6611d8d7
MC
4436
4437 /* If all events are unregistered, free the spare array */
4438 if (!new) {
4439 kfree(thresholds->spare);
4440 thresholds->spare = NULL;
4441 }
371528ca 4442unlock:
2e72b634 4443 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4444}
c1e862c1 4445
59b6f873 4446static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4447 struct eventfd_ctx *eventfd)
4448{
59b6f873 4449 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4450}
4451
59b6f873 4452static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4453 struct eventfd_ctx *eventfd)
4454{
59b6f873 4455 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4456}
4457
59b6f873 4458static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4459 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4460{
9490ff27 4461 struct mem_cgroup_eventfd_list *event;
9490ff27 4462
9490ff27
KH
4463 event = kmalloc(sizeof(*event), GFP_KERNEL);
4464 if (!event)
4465 return -ENOMEM;
4466
1af8efe9 4467 spin_lock(&memcg_oom_lock);
9490ff27
KH
4468
4469 event->eventfd = eventfd;
4470 list_add(&event->list, &memcg->oom_notify);
4471
4472 /* already in OOM ? */
c2b42d3c 4473 if (memcg->under_oom)
9490ff27 4474 eventfd_signal(eventfd, 1);
1af8efe9 4475 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4476
4477 return 0;
4478}
4479
59b6f873 4480static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4481 struct eventfd_ctx *eventfd)
9490ff27 4482{
9490ff27 4483 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4484
1af8efe9 4485 spin_lock(&memcg_oom_lock);
9490ff27 4486
c0ff4b85 4487 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4488 if (ev->eventfd == eventfd) {
4489 list_del(&ev->list);
4490 kfree(ev);
4491 }
4492 }
4493
1af8efe9 4494 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4495}
4496
2da8ca82 4497static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4498{
aa9694bb 4499 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4500
791badbd 4501 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4502 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4503 seq_printf(sf, "oom_kill %lu\n",
4504 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4505 return 0;
4506}
4507
182446d0 4508static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4509 struct cftype *cft, u64 val)
4510{
182446d0 4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4512
4513 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4514 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4515 return -EINVAL;
4516
c0ff4b85 4517 memcg->oom_kill_disable = val;
4d845ebf 4518 if (!val)
c0ff4b85 4519 memcg_oom_recover(memcg);
3dae7fec 4520
3c11ecf4
KH
4521 return 0;
4522}
4523
52ebea74
TH
4524#ifdef CONFIG_CGROUP_WRITEBACK
4525
3a8e9ac8
TH
4526#include <trace/events/writeback.h>
4527
841710aa
TH
4528static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4529{
4530 return wb_domain_init(&memcg->cgwb_domain, gfp);
4531}
4532
4533static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4534{
4535 wb_domain_exit(&memcg->cgwb_domain);
4536}
4537
2529bb3a
TH
4538static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4539{
4540 wb_domain_size_changed(&memcg->cgwb_domain);
4541}
4542
841710aa
TH
4543struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546
4547 if (!memcg->css.parent)
4548 return NULL;
4549
4550 return &memcg->cgwb_domain;
4551}
4552
0b3d6e6f
GT
4553/*
4554 * idx can be of type enum memcg_stat_item or node_stat_item.
4555 * Keep in sync with memcg_exact_page().
4556 */
4557static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4558{
871789d4 4559 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4560 int cpu;
4561
4562 for_each_online_cpu(cpu)
871789d4 4563 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4564 if (x < 0)
4565 x = 0;
4566 return x;
4567}
4568
c2aa723a
TH
4569/**
4570 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4571 * @wb: bdi_writeback in question
c5edf9cd
TH
4572 * @pfilepages: out parameter for number of file pages
4573 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4574 * @pdirty: out parameter for number of dirty pages
4575 * @pwriteback: out parameter for number of pages under writeback
4576 *
c5edf9cd
TH
4577 * Determine the numbers of file, headroom, dirty, and writeback pages in
4578 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4579 * is a bit more involved.
c2aa723a 4580 *
c5edf9cd
TH
4581 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4582 * headroom is calculated as the lowest headroom of itself and the
4583 * ancestors. Note that this doesn't consider the actual amount of
4584 * available memory in the system. The caller should further cap
4585 * *@pheadroom accordingly.
c2aa723a 4586 */
c5edf9cd
TH
4587void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4588 unsigned long *pheadroom, unsigned long *pdirty,
4589 unsigned long *pwriteback)
c2aa723a
TH
4590{
4591 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4592 struct mem_cgroup *parent;
c2aa723a 4593
0b3d6e6f 4594 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4595
0b3d6e6f 4596 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4597 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4598 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4599 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4600
c2aa723a 4601 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4602 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4603 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4604 unsigned long used = page_counter_read(&memcg->memory);
4605
c5edf9cd 4606 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4607 memcg = parent;
4608 }
c2aa723a
TH
4609}
4610
97b27821
TH
4611/*
4612 * Foreign dirty flushing
4613 *
4614 * There's an inherent mismatch between memcg and writeback. The former
4615 * trackes ownership per-page while the latter per-inode. This was a
4616 * deliberate design decision because honoring per-page ownership in the
4617 * writeback path is complicated, may lead to higher CPU and IO overheads
4618 * and deemed unnecessary given that write-sharing an inode across
4619 * different cgroups isn't a common use-case.
4620 *
4621 * Combined with inode majority-writer ownership switching, this works well
4622 * enough in most cases but there are some pathological cases. For
4623 * example, let's say there are two cgroups A and B which keep writing to
4624 * different but confined parts of the same inode. B owns the inode and
4625 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4626 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4627 * triggering background writeback. A will be slowed down without a way to
4628 * make writeback of the dirty pages happen.
4629 *
4630 * Conditions like the above can lead to a cgroup getting repatedly and
4631 * severely throttled after making some progress after each
4632 * dirty_expire_interval while the underyling IO device is almost
4633 * completely idle.
4634 *
4635 * Solving this problem completely requires matching the ownership tracking
4636 * granularities between memcg and writeback in either direction. However,
4637 * the more egregious behaviors can be avoided by simply remembering the
4638 * most recent foreign dirtying events and initiating remote flushes on
4639 * them when local writeback isn't enough to keep the memory clean enough.
4640 *
4641 * The following two functions implement such mechanism. When a foreign
4642 * page - a page whose memcg and writeback ownerships don't match - is
4643 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4644 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4645 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4646 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4647 * foreign bdi_writebacks which haven't expired. Both the numbers of
4648 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4649 * limited to MEMCG_CGWB_FRN_CNT.
4650 *
4651 * The mechanism only remembers IDs and doesn't hold any object references.
4652 * As being wrong occasionally doesn't matter, updates and accesses to the
4653 * records are lockless and racy.
4654 */
4655void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4656 struct bdi_writeback *wb)
4657{
bcfe06bf 4658 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4659 struct memcg_cgwb_frn *frn;
4660 u64 now = get_jiffies_64();
4661 u64 oldest_at = now;
4662 int oldest = -1;
4663 int i;
4664
3a8e9ac8
TH
4665 trace_track_foreign_dirty(page, wb);
4666
97b27821
TH
4667 /*
4668 * Pick the slot to use. If there is already a slot for @wb, keep
4669 * using it. If not replace the oldest one which isn't being
4670 * written out.
4671 */
4672 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4673 frn = &memcg->cgwb_frn[i];
4674 if (frn->bdi_id == wb->bdi->id &&
4675 frn->memcg_id == wb->memcg_css->id)
4676 break;
4677 if (time_before64(frn->at, oldest_at) &&
4678 atomic_read(&frn->done.cnt) == 1) {
4679 oldest = i;
4680 oldest_at = frn->at;
4681 }
4682 }
4683
4684 if (i < MEMCG_CGWB_FRN_CNT) {
4685 /*
4686 * Re-using an existing one. Update timestamp lazily to
4687 * avoid making the cacheline hot. We want them to be
4688 * reasonably up-to-date and significantly shorter than
4689 * dirty_expire_interval as that's what expires the record.
4690 * Use the shorter of 1s and dirty_expire_interval / 8.
4691 */
4692 unsigned long update_intv =
4693 min_t(unsigned long, HZ,
4694 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4695
4696 if (time_before64(frn->at, now - update_intv))
4697 frn->at = now;
4698 } else if (oldest >= 0) {
4699 /* replace the oldest free one */
4700 frn = &memcg->cgwb_frn[oldest];
4701 frn->bdi_id = wb->bdi->id;
4702 frn->memcg_id = wb->memcg_css->id;
4703 frn->at = now;
4704 }
4705}
4706
4707/* issue foreign writeback flushes for recorded foreign dirtying events */
4708void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4709{
4710 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4711 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4712 u64 now = jiffies_64;
4713 int i;
4714
4715 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4716 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4717
4718 /*
4719 * If the record is older than dirty_expire_interval,
4720 * writeback on it has already started. No need to kick it
4721 * off again. Also, don't start a new one if there's
4722 * already one in flight.
4723 */
4724 if (time_after64(frn->at, now - intv) &&
4725 atomic_read(&frn->done.cnt) == 1) {
4726 frn->at = 0;
3a8e9ac8 4727 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4728 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4729 WB_REASON_FOREIGN_FLUSH,
4730 &frn->done);
4731 }
4732 }
4733}
4734
841710aa
TH
4735#else /* CONFIG_CGROUP_WRITEBACK */
4736
4737static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4738{
4739 return 0;
4740}
4741
4742static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4743{
4744}
4745
2529bb3a
TH
4746static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4747{
4748}
4749
52ebea74
TH
4750#endif /* CONFIG_CGROUP_WRITEBACK */
4751
3bc942f3
TH
4752/*
4753 * DO NOT USE IN NEW FILES.
4754 *
4755 * "cgroup.event_control" implementation.
4756 *
4757 * This is way over-engineered. It tries to support fully configurable
4758 * events for each user. Such level of flexibility is completely
4759 * unnecessary especially in the light of the planned unified hierarchy.
4760 *
4761 * Please deprecate this and replace with something simpler if at all
4762 * possible.
4763 */
4764
79bd9814
TH
4765/*
4766 * Unregister event and free resources.
4767 *
4768 * Gets called from workqueue.
4769 */
3bc942f3 4770static void memcg_event_remove(struct work_struct *work)
79bd9814 4771{
3bc942f3
TH
4772 struct mem_cgroup_event *event =
4773 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4774 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4775
4776 remove_wait_queue(event->wqh, &event->wait);
4777
59b6f873 4778 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4779
4780 /* Notify userspace the event is going away. */
4781 eventfd_signal(event->eventfd, 1);
4782
4783 eventfd_ctx_put(event->eventfd);
4784 kfree(event);
59b6f873 4785 css_put(&memcg->css);
79bd9814
TH
4786}
4787
4788/*
a9a08845 4789 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4790 *
4791 * Called with wqh->lock held and interrupts disabled.
4792 */
ac6424b9 4793static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4794 int sync, void *key)
79bd9814 4795{
3bc942f3
TH
4796 struct mem_cgroup_event *event =
4797 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4798 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4799 __poll_t flags = key_to_poll(key);
79bd9814 4800
a9a08845 4801 if (flags & EPOLLHUP) {
79bd9814
TH
4802 /*
4803 * If the event has been detached at cgroup removal, we
4804 * can simply return knowing the other side will cleanup
4805 * for us.
4806 *
4807 * We can't race against event freeing since the other
4808 * side will require wqh->lock via remove_wait_queue(),
4809 * which we hold.
4810 */
fba94807 4811 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4812 if (!list_empty(&event->list)) {
4813 list_del_init(&event->list);
4814 /*
4815 * We are in atomic context, but cgroup_event_remove()
4816 * may sleep, so we have to call it in workqueue.
4817 */
4818 schedule_work(&event->remove);
4819 }
fba94807 4820 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4821 }
4822
4823 return 0;
4824}
4825
3bc942f3 4826static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4827 wait_queue_head_t *wqh, poll_table *pt)
4828{
3bc942f3
TH
4829 struct mem_cgroup_event *event =
4830 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4831
4832 event->wqh = wqh;
4833 add_wait_queue(wqh, &event->wait);
4834}
4835
4836/*
3bc942f3
TH
4837 * DO NOT USE IN NEW FILES.
4838 *
79bd9814
TH
4839 * Parse input and register new cgroup event handler.
4840 *
4841 * Input must be in format '<event_fd> <control_fd> <args>'.
4842 * Interpretation of args is defined by control file implementation.
4843 */
451af504
TH
4844static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4845 char *buf, size_t nbytes, loff_t off)
79bd9814 4846{
451af504 4847 struct cgroup_subsys_state *css = of_css(of);
fba94807 4848 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4849 struct mem_cgroup_event *event;
79bd9814
TH
4850 struct cgroup_subsys_state *cfile_css;
4851 unsigned int efd, cfd;
4852 struct fd efile;
4853 struct fd cfile;
fba94807 4854 const char *name;
79bd9814
TH
4855 char *endp;
4856 int ret;
4857
451af504
TH
4858 buf = strstrip(buf);
4859
4860 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4861 if (*endp != ' ')
4862 return -EINVAL;
451af504 4863 buf = endp + 1;
79bd9814 4864
451af504 4865 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4866 if ((*endp != ' ') && (*endp != '\0'))
4867 return -EINVAL;
451af504 4868 buf = endp + 1;
79bd9814
TH
4869
4870 event = kzalloc(sizeof(*event), GFP_KERNEL);
4871 if (!event)
4872 return -ENOMEM;
4873
59b6f873 4874 event->memcg = memcg;
79bd9814 4875 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4876 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4877 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4878 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4879
4880 efile = fdget(efd);
4881 if (!efile.file) {
4882 ret = -EBADF;
4883 goto out_kfree;
4884 }
4885
4886 event->eventfd = eventfd_ctx_fileget(efile.file);
4887 if (IS_ERR(event->eventfd)) {
4888 ret = PTR_ERR(event->eventfd);
4889 goto out_put_efile;
4890 }
4891
4892 cfile = fdget(cfd);
4893 if (!cfile.file) {
4894 ret = -EBADF;
4895 goto out_put_eventfd;
4896 }
4897
4898 /* the process need read permission on control file */
4899 /* AV: shouldn't we check that it's been opened for read instead? */
4900 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4901 if (ret < 0)
4902 goto out_put_cfile;
4903
fba94807
TH
4904 /*
4905 * Determine the event callbacks and set them in @event. This used
4906 * to be done via struct cftype but cgroup core no longer knows
4907 * about these events. The following is crude but the whole thing
4908 * is for compatibility anyway.
3bc942f3
TH
4909 *
4910 * DO NOT ADD NEW FILES.
fba94807 4911 */
b583043e 4912 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4913
4914 if (!strcmp(name, "memory.usage_in_bytes")) {
4915 event->register_event = mem_cgroup_usage_register_event;
4916 event->unregister_event = mem_cgroup_usage_unregister_event;
4917 } else if (!strcmp(name, "memory.oom_control")) {
4918 event->register_event = mem_cgroup_oom_register_event;
4919 event->unregister_event = mem_cgroup_oom_unregister_event;
4920 } else if (!strcmp(name, "memory.pressure_level")) {
4921 event->register_event = vmpressure_register_event;
4922 event->unregister_event = vmpressure_unregister_event;
4923 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4924 event->register_event = memsw_cgroup_usage_register_event;
4925 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4926 } else {
4927 ret = -EINVAL;
4928 goto out_put_cfile;
4929 }
4930
79bd9814 4931 /*
b5557c4c
TH
4932 * Verify @cfile should belong to @css. Also, remaining events are
4933 * automatically removed on cgroup destruction but the removal is
4934 * asynchronous, so take an extra ref on @css.
79bd9814 4935 */
b583043e 4936 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4937 &memory_cgrp_subsys);
79bd9814 4938 ret = -EINVAL;
5a17f543 4939 if (IS_ERR(cfile_css))
79bd9814 4940 goto out_put_cfile;
5a17f543
TH
4941 if (cfile_css != css) {
4942 css_put(cfile_css);
79bd9814 4943 goto out_put_cfile;
5a17f543 4944 }
79bd9814 4945
451af504 4946 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4947 if (ret)
4948 goto out_put_css;
4949
9965ed17 4950 vfs_poll(efile.file, &event->pt);
79bd9814 4951
fba94807
TH
4952 spin_lock(&memcg->event_list_lock);
4953 list_add(&event->list, &memcg->event_list);
4954 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4955
4956 fdput(cfile);
4957 fdput(efile);
4958
451af504 4959 return nbytes;
79bd9814
TH
4960
4961out_put_css:
b5557c4c 4962 css_put(css);
79bd9814
TH
4963out_put_cfile:
4964 fdput(cfile);
4965out_put_eventfd:
4966 eventfd_ctx_put(event->eventfd);
4967out_put_efile:
4968 fdput(efile);
4969out_kfree:
4970 kfree(event);
4971
4972 return ret;
4973}
4974
241994ed 4975static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4976 {
0eea1030 4977 .name = "usage_in_bytes",
8c7c6e34 4978 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4979 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4980 },
c84872e1
PE
4981 {
4982 .name = "max_usage_in_bytes",
8c7c6e34 4983 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4984 .write = mem_cgroup_reset,
791badbd 4985 .read_u64 = mem_cgroup_read_u64,
c84872e1 4986 },
8cdea7c0 4987 {
0eea1030 4988 .name = "limit_in_bytes",
8c7c6e34 4989 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4990 .write = mem_cgroup_write,
791badbd 4991 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4992 },
296c81d8
BS
4993 {
4994 .name = "soft_limit_in_bytes",
4995 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4996 .write = mem_cgroup_write,
791badbd 4997 .read_u64 = mem_cgroup_read_u64,
296c81d8 4998 },
8cdea7c0
BS
4999 {
5000 .name = "failcnt",
8c7c6e34 5001 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5002 .write = mem_cgroup_reset,
791badbd 5003 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5004 },
d2ceb9b7
KH
5005 {
5006 .name = "stat",
2da8ca82 5007 .seq_show = memcg_stat_show,
d2ceb9b7 5008 },
c1e862c1
KH
5009 {
5010 .name = "force_empty",
6770c64e 5011 .write = mem_cgroup_force_empty_write,
c1e862c1 5012 },
18f59ea7
BS
5013 {
5014 .name = "use_hierarchy",
5015 .write_u64 = mem_cgroup_hierarchy_write,
5016 .read_u64 = mem_cgroup_hierarchy_read,
5017 },
79bd9814 5018 {
3bc942f3 5019 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5020 .write = memcg_write_event_control,
7dbdb199 5021 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5022 },
a7885eb8
KM
5023 {
5024 .name = "swappiness",
5025 .read_u64 = mem_cgroup_swappiness_read,
5026 .write_u64 = mem_cgroup_swappiness_write,
5027 },
7dc74be0
DN
5028 {
5029 .name = "move_charge_at_immigrate",
5030 .read_u64 = mem_cgroup_move_charge_read,
5031 .write_u64 = mem_cgroup_move_charge_write,
5032 },
9490ff27
KH
5033 {
5034 .name = "oom_control",
2da8ca82 5035 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5036 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5037 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5038 },
70ddf637
AV
5039 {
5040 .name = "pressure_level",
70ddf637 5041 },
406eb0c9
YH
5042#ifdef CONFIG_NUMA
5043 {
5044 .name = "numa_stat",
2da8ca82 5045 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5046 },
5047#endif
510fc4e1
GC
5048 {
5049 .name = "kmem.limit_in_bytes",
5050 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5051 .write = mem_cgroup_write,
791badbd 5052 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5053 },
5054 {
5055 .name = "kmem.usage_in_bytes",
5056 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5057 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5058 },
5059 {
5060 .name = "kmem.failcnt",
5061 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5062 .write = mem_cgroup_reset,
791badbd 5063 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5064 },
5065 {
5066 .name = "kmem.max_usage_in_bytes",
5067 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5068 .write = mem_cgroup_reset,
791badbd 5069 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5070 },
a87425a3
YS
5071#if defined(CONFIG_MEMCG_KMEM) && \
5072 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5073 {
5074 .name = "kmem.slabinfo",
b047501c 5075 .seq_show = memcg_slab_show,
749c5415
GC
5076 },
5077#endif
d55f90bf
VD
5078 {
5079 .name = "kmem.tcp.limit_in_bytes",
5080 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5081 .write = mem_cgroup_write,
5082 .read_u64 = mem_cgroup_read_u64,
5083 },
5084 {
5085 .name = "kmem.tcp.usage_in_bytes",
5086 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5087 .read_u64 = mem_cgroup_read_u64,
5088 },
5089 {
5090 .name = "kmem.tcp.failcnt",
5091 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5092 .write = mem_cgroup_reset,
5093 .read_u64 = mem_cgroup_read_u64,
5094 },
5095 {
5096 .name = "kmem.tcp.max_usage_in_bytes",
5097 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5098 .write = mem_cgroup_reset,
5099 .read_u64 = mem_cgroup_read_u64,
5100 },
6bc10349 5101 { }, /* terminate */
af36f906 5102};
8c7c6e34 5103
73f576c0
JW
5104/*
5105 * Private memory cgroup IDR
5106 *
5107 * Swap-out records and page cache shadow entries need to store memcg
5108 * references in constrained space, so we maintain an ID space that is
5109 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5110 * memory-controlled cgroups to 64k.
5111 *
b8f2935f 5112 * However, there usually are many references to the offline CSS after
73f576c0
JW
5113 * the cgroup has been destroyed, such as page cache or reclaimable
5114 * slab objects, that don't need to hang on to the ID. We want to keep
5115 * those dead CSS from occupying IDs, or we might quickly exhaust the
5116 * relatively small ID space and prevent the creation of new cgroups
5117 * even when there are much fewer than 64k cgroups - possibly none.
5118 *
5119 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5120 * be freed and recycled when it's no longer needed, which is usually
5121 * when the CSS is offlined.
5122 *
5123 * The only exception to that are records of swapped out tmpfs/shmem
5124 * pages that need to be attributed to live ancestors on swapin. But
5125 * those references are manageable from userspace.
5126 */
5127
5128static DEFINE_IDR(mem_cgroup_idr);
5129
7e97de0b
KT
5130static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5131{
5132 if (memcg->id.id > 0) {
5133 idr_remove(&mem_cgroup_idr, memcg->id.id);
5134 memcg->id.id = 0;
5135 }
5136}
5137
c1514c0a
VF
5138static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5139 unsigned int n)
73f576c0 5140{
1c2d479a 5141 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5142}
5143
615d66c3 5144static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5145{
1c2d479a 5146 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5147 mem_cgroup_id_remove(memcg);
73f576c0
JW
5148
5149 /* Memcg ID pins CSS */
5150 css_put(&memcg->css);
5151 }
5152}
5153
615d66c3
VD
5154static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5155{
5156 mem_cgroup_id_put_many(memcg, 1);
5157}
5158
73f576c0
JW
5159/**
5160 * mem_cgroup_from_id - look up a memcg from a memcg id
5161 * @id: the memcg id to look up
5162 *
5163 * Caller must hold rcu_read_lock().
5164 */
5165struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5166{
5167 WARN_ON_ONCE(!rcu_read_lock_held());
5168 return idr_find(&mem_cgroup_idr, id);
5169}
5170
ef8f2327 5171static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5172{
5173 struct mem_cgroup_per_node *pn;
ef8f2327 5174 int tmp = node;
1ecaab2b
KH
5175 /*
5176 * This routine is called against possible nodes.
5177 * But it's BUG to call kmalloc() against offline node.
5178 *
5179 * TODO: this routine can waste much memory for nodes which will
5180 * never be onlined. It's better to use memory hotplug callback
5181 * function.
5182 */
41e3355d
KH
5183 if (!node_state(node, N_NORMAL_MEMORY))
5184 tmp = -1;
17295c88 5185 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5186 if (!pn)
5187 return 1;
1ecaab2b 5188
3e38e0aa
RG
5189 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5190 GFP_KERNEL_ACCOUNT);
815744d7
JW
5191 if (!pn->lruvec_stat_local) {
5192 kfree(pn);
5193 return 1;
5194 }
5195
3e38e0aa
RG
5196 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5197 GFP_KERNEL_ACCOUNT);
a983b5eb 5198 if (!pn->lruvec_stat_cpu) {
815744d7 5199 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5200 kfree(pn);
5201 return 1;
5202 }
5203
ef8f2327
MG
5204 lruvec_init(&pn->lruvec);
5205 pn->usage_in_excess = 0;
5206 pn->on_tree = false;
5207 pn->memcg = memcg;
5208
54f72fe0 5209 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5210 return 0;
5211}
5212
ef8f2327 5213static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5214{
00f3ca2c
JW
5215 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5216
4eaf431f
MH
5217 if (!pn)
5218 return;
5219
a983b5eb 5220 free_percpu(pn->lruvec_stat_cpu);
815744d7 5221 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5222 kfree(pn);
1ecaab2b
KH
5223}
5224
40e952f9 5225static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5226{
c8b2a36f 5227 int node;
59927fb9 5228
c8b2a36f 5229 for_each_node(node)
ef8f2327 5230 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5231 free_percpu(memcg->vmstats_percpu);
815744d7 5232 free_percpu(memcg->vmstats_local);
8ff69e2c 5233 kfree(memcg);
59927fb9 5234}
3afe36b1 5235
40e952f9
TE
5236static void mem_cgroup_free(struct mem_cgroup *memcg)
5237{
5238 memcg_wb_domain_exit(memcg);
7961eee3
SB
5239 /*
5240 * Flush percpu vmstats and vmevents to guarantee the value correctness
5241 * on parent's and all ancestor levels.
5242 */
4a87e2a2 5243 memcg_flush_percpu_vmstats(memcg);
7961eee3 5244 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5245 __mem_cgroup_free(memcg);
5246}
5247
0b8f73e1 5248static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5249{
d142e3e6 5250 struct mem_cgroup *memcg;
b9726c26 5251 unsigned int size;
6d12e2d8 5252 int node;
97b27821 5253 int __maybe_unused i;
11d67612 5254 long error = -ENOMEM;
8cdea7c0 5255
0b8f73e1
JW
5256 size = sizeof(struct mem_cgroup);
5257 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5258
5259 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5260 if (!memcg)
11d67612 5261 return ERR_PTR(error);
0b8f73e1 5262
73f576c0
JW
5263 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5264 1, MEM_CGROUP_ID_MAX,
5265 GFP_KERNEL);
11d67612
YS
5266 if (memcg->id.id < 0) {
5267 error = memcg->id.id;
73f576c0 5268 goto fail;
11d67612 5269 }
73f576c0 5270
3e38e0aa
RG
5271 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5272 GFP_KERNEL_ACCOUNT);
815744d7
JW
5273 if (!memcg->vmstats_local)
5274 goto fail;
5275
3e38e0aa
RG
5276 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
871789d4 5278 if (!memcg->vmstats_percpu)
0b8f73e1 5279 goto fail;
78fb7466 5280
3ed28fa1 5281 for_each_node(node)
ef8f2327 5282 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5283 goto fail;
f64c3f54 5284
0b8f73e1
JW
5285 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5286 goto fail;
28dbc4b6 5287
f7e1cb6e 5288 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5289 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5290 mutex_init(&memcg->thresholds_lock);
5291 spin_lock_init(&memcg->move_lock);
70ddf637 5292 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5293 INIT_LIST_HEAD(&memcg->event_list);
5294 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5295 memcg->socket_pressure = jiffies;
84c07d11 5296#ifdef CONFIG_MEMCG_KMEM
900a38f0 5297 memcg->kmemcg_id = -1;
bf4f0599 5298 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5299#endif
52ebea74
TH
5300#ifdef CONFIG_CGROUP_WRITEBACK
5301 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5302 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5303 memcg->cgwb_frn[i].done =
5304 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5305#endif
5306#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5307 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5308 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5309 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5310#endif
73f576c0 5311 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5312 return memcg;
5313fail:
7e97de0b 5314 mem_cgroup_id_remove(memcg);
40e952f9 5315 __mem_cgroup_free(memcg);
11d67612 5316 return ERR_PTR(error);
d142e3e6
GC
5317}
5318
0b8f73e1
JW
5319static struct cgroup_subsys_state * __ref
5320mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5321{
0b8f73e1 5322 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5323 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5324 long error = -ENOMEM;
d142e3e6 5325
b87d8cef 5326 old_memcg = set_active_memcg(parent);
0b8f73e1 5327 memcg = mem_cgroup_alloc();
b87d8cef 5328 set_active_memcg(old_memcg);
11d67612
YS
5329 if (IS_ERR(memcg))
5330 return ERR_CAST(memcg);
d142e3e6 5331
d1663a90 5332 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5333 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5334 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5335 if (parent) {
5336 memcg->swappiness = mem_cgroup_swappiness(parent);
5337 memcg->oom_kill_disable = parent->oom_kill_disable;
5338 }
8de15e92
RG
5339 if (!parent) {
5340 page_counter_init(&memcg->memory, NULL);
5341 page_counter_init(&memcg->swap, NULL);
5342 page_counter_init(&memcg->kmem, NULL);
5343 page_counter_init(&memcg->tcpmem, NULL);
5344 } else if (parent->use_hierarchy) {
0b8f73e1 5345 memcg->use_hierarchy = true;
3e32cb2e 5346 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5347 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5348 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5349 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5350 } else {
8de15e92
RG
5351 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5352 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5353 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5354 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
8c7f6edb
TH
5355 /*
5356 * Deeper hierachy with use_hierarchy == false doesn't make
5357 * much sense so let cgroup subsystem know about this
5358 * unfortunate state in our controller.
5359 */
d142e3e6 5360 if (parent != root_mem_cgroup)
073219e9 5361 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5362 }
d6441637 5363
0b8f73e1
JW
5364 /* The following stuff does not apply to the root */
5365 if (!parent) {
5366 root_mem_cgroup = memcg;
5367 return &memcg->css;
5368 }
5369
b313aeee 5370 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5371 if (error)
5372 goto fail;
127424c8 5373
f7e1cb6e 5374 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5375 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5376
0b8f73e1
JW
5377 return &memcg->css;
5378fail:
7e97de0b 5379 mem_cgroup_id_remove(memcg);
0b8f73e1 5380 mem_cgroup_free(memcg);
11d67612 5381 return ERR_PTR(error);
0b8f73e1
JW
5382}
5383
73f576c0 5384static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5385{
58fa2a55
VD
5386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5387
0a4465d3
KT
5388 /*
5389 * A memcg must be visible for memcg_expand_shrinker_maps()
5390 * by the time the maps are allocated. So, we allocate maps
5391 * here, when for_each_mem_cgroup() can't skip it.
5392 */
5393 if (memcg_alloc_shrinker_maps(memcg)) {
5394 mem_cgroup_id_remove(memcg);
5395 return -ENOMEM;
5396 }
5397
73f576c0 5398 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5399 refcount_set(&memcg->id.ref, 1);
73f576c0 5400 css_get(css);
2f7dd7a4 5401 return 0;
8cdea7c0
BS
5402}
5403
eb95419b 5404static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5405{
eb95419b 5406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5407 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5408
5409 /*
5410 * Unregister events and notify userspace.
5411 * Notify userspace about cgroup removing only after rmdir of cgroup
5412 * directory to avoid race between userspace and kernelspace.
5413 */
fba94807
TH
5414 spin_lock(&memcg->event_list_lock);
5415 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5416 list_del_init(&event->list);
5417 schedule_work(&event->remove);
5418 }
fba94807 5419 spin_unlock(&memcg->event_list_lock);
ec64f515 5420
bf8d5d52 5421 page_counter_set_min(&memcg->memory, 0);
23067153 5422 page_counter_set_low(&memcg->memory, 0);
63677c74 5423
567e9ab2 5424 memcg_offline_kmem(memcg);
52ebea74 5425 wb_memcg_offline(memcg);
73f576c0 5426
591edfb1
RG
5427 drain_all_stock(memcg);
5428
73f576c0 5429 mem_cgroup_id_put(memcg);
df878fb0
KH
5430}
5431
6df38689
VD
5432static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5433{
5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5435
5436 invalidate_reclaim_iterators(memcg);
5437}
5438
eb95419b 5439static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5440{
eb95419b 5441 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5442 int __maybe_unused i;
c268e994 5443
97b27821
TH
5444#ifdef CONFIG_CGROUP_WRITEBACK
5445 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5446 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5447#endif
f7e1cb6e 5448 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5449 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5450
0db15298 5451 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5452 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5453
0b8f73e1
JW
5454 vmpressure_cleanup(&memcg->vmpressure);
5455 cancel_work_sync(&memcg->high_work);
5456 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5457 memcg_free_shrinker_maps(memcg);
d886f4e4 5458 memcg_free_kmem(memcg);
0b8f73e1 5459 mem_cgroup_free(memcg);
8cdea7c0
BS
5460}
5461
1ced953b
TH
5462/**
5463 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5464 * @css: the target css
5465 *
5466 * Reset the states of the mem_cgroup associated with @css. This is
5467 * invoked when the userland requests disabling on the default hierarchy
5468 * but the memcg is pinned through dependency. The memcg should stop
5469 * applying policies and should revert to the vanilla state as it may be
5470 * made visible again.
5471 *
5472 * The current implementation only resets the essential configurations.
5473 * This needs to be expanded to cover all the visible parts.
5474 */
5475static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5476{
5477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5478
bbec2e15
RG
5479 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5480 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5481 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5482 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5483 page_counter_set_min(&memcg->memory, 0);
23067153 5484 page_counter_set_low(&memcg->memory, 0);
d1663a90 5485 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5486 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5487 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5488 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5489}
5490
02491447 5491#ifdef CONFIG_MMU
7dc74be0 5492/* Handlers for move charge at task migration. */
854ffa8d 5493static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5494{
05b84301 5495 int ret;
9476db97 5496
d0164adc
MG
5497 /* Try a single bulk charge without reclaim first, kswapd may wake */
5498 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5499 if (!ret) {
854ffa8d 5500 mc.precharge += count;
854ffa8d
DN
5501 return ret;
5502 }
9476db97 5503
3674534b 5504 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5505 while (count--) {
3674534b 5506 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5507 if (ret)
38c5d72f 5508 return ret;
854ffa8d 5509 mc.precharge++;
9476db97 5510 cond_resched();
854ffa8d 5511 }
9476db97 5512 return 0;
4ffef5fe
DN
5513}
5514
4ffef5fe
DN
5515union mc_target {
5516 struct page *page;
02491447 5517 swp_entry_t ent;
4ffef5fe
DN
5518};
5519
4ffef5fe 5520enum mc_target_type {
8d32ff84 5521 MC_TARGET_NONE = 0,
4ffef5fe 5522 MC_TARGET_PAGE,
02491447 5523 MC_TARGET_SWAP,
c733a828 5524 MC_TARGET_DEVICE,
4ffef5fe
DN
5525};
5526
90254a65
DN
5527static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5528 unsigned long addr, pte_t ptent)
4ffef5fe 5529{
25b2995a 5530 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5531
90254a65
DN
5532 if (!page || !page_mapped(page))
5533 return NULL;
5534 if (PageAnon(page)) {
1dfab5ab 5535 if (!(mc.flags & MOVE_ANON))
90254a65 5536 return NULL;
1dfab5ab
JW
5537 } else {
5538 if (!(mc.flags & MOVE_FILE))
5539 return NULL;
5540 }
90254a65
DN
5541 if (!get_page_unless_zero(page))
5542 return NULL;
5543
5544 return page;
5545}
5546
c733a828 5547#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5548static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5549 pte_t ptent, swp_entry_t *entry)
90254a65 5550{
90254a65
DN
5551 struct page *page = NULL;
5552 swp_entry_t ent = pte_to_swp_entry(ptent);
5553
9a137153 5554 if (!(mc.flags & MOVE_ANON))
90254a65 5555 return NULL;
c733a828
JG
5556
5557 /*
5558 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5559 * a device and because they are not accessible by CPU they are store
5560 * as special swap entry in the CPU page table.
5561 */
5562 if (is_device_private_entry(ent)) {
5563 page = device_private_entry_to_page(ent);
5564 /*
5565 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5566 * a refcount of 1 when free (unlike normal page)
5567 */
5568 if (!page_ref_add_unless(page, 1, 1))
5569 return NULL;
5570 return page;
5571 }
5572
9a137153
RC
5573 if (non_swap_entry(ent))
5574 return NULL;
5575
4b91355e
KH
5576 /*
5577 * Because lookup_swap_cache() updates some statistics counter,
5578 * we call find_get_page() with swapper_space directly.
5579 */
f6ab1f7f 5580 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5581 entry->val = ent.val;
90254a65
DN
5582
5583 return page;
5584}
4b91355e
KH
5585#else
5586static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5587 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5588{
5589 return NULL;
5590}
5591#endif
90254a65 5592
87946a72
DN
5593static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5594 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5595{
87946a72
DN
5596 if (!vma->vm_file) /* anonymous vma */
5597 return NULL;
1dfab5ab 5598 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5599 return NULL;
5600
87946a72 5601 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5602 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5603 return find_get_incore_page(vma->vm_file->f_mapping,
5604 linear_page_index(vma, addr));
87946a72
DN
5605}
5606
b1b0deab
CG
5607/**
5608 * mem_cgroup_move_account - move account of the page
5609 * @page: the page
25843c2b 5610 * @compound: charge the page as compound or small page
b1b0deab
CG
5611 * @from: mem_cgroup which the page is moved from.
5612 * @to: mem_cgroup which the page is moved to. @from != @to.
5613 *
3ac808fd 5614 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5615 *
5616 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5617 * from old cgroup.
5618 */
5619static int mem_cgroup_move_account(struct page *page,
f627c2f5 5620 bool compound,
b1b0deab
CG
5621 struct mem_cgroup *from,
5622 struct mem_cgroup *to)
5623{
ae8af438
KK
5624 struct lruvec *from_vec, *to_vec;
5625 struct pglist_data *pgdat;
6c357848 5626 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5627 int ret;
5628
5629 VM_BUG_ON(from == to);
5630 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5631 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5632
5633 /*
6a93ca8f 5634 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5635 * page's memory cgroup of its source page while we change it.
b1b0deab 5636 */
f627c2f5 5637 ret = -EBUSY;
b1b0deab
CG
5638 if (!trylock_page(page))
5639 goto out;
5640
5641 ret = -EINVAL;
bcfe06bf 5642 if (page_memcg(page) != from)
b1b0deab
CG
5643 goto out_unlock;
5644
ae8af438 5645 pgdat = page_pgdat(page);
867e5e1d
JW
5646 from_vec = mem_cgroup_lruvec(from, pgdat);
5647 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5648
abb242f5 5649 lock_page_memcg(page);
b1b0deab 5650
be5d0a74
JW
5651 if (PageAnon(page)) {
5652 if (page_mapped(page)) {
5653 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5654 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5655 if (PageTransHuge(page)) {
5656 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5657 -nr_pages);
5658 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5659 nr_pages);
5660 }
5661
be5d0a74
JW
5662 }
5663 } else {
0d1c2072
JW
5664 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5665 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5666
5667 if (PageSwapBacked(page)) {
5668 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5669 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5670 }
5671
49e50d27
JW
5672 if (page_mapped(page)) {
5673 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5674 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5675 }
b1b0deab 5676
49e50d27
JW
5677 if (PageDirty(page)) {
5678 struct address_space *mapping = page_mapping(page);
c4843a75 5679
f56753ac 5680 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5681 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5682 -nr_pages);
5683 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5684 nr_pages);
5685 }
c4843a75
GT
5686 }
5687 }
5688
b1b0deab 5689 if (PageWriteback(page)) {
ae8af438
KK
5690 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5691 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5692 }
5693
5694 /*
abb242f5
JW
5695 * All state has been migrated, let's switch to the new memcg.
5696 *
bcfe06bf 5697 * It is safe to change page's memcg here because the page
abb242f5
JW
5698 * is referenced, charged, isolated, and locked: we can't race
5699 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5700 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5701 *
5702 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5703 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5704 * new memcg that isn't locked, the above state can change
5705 * concurrently again. Make sure we're truly done with it.
b1b0deab 5706 */
abb242f5 5707 smp_mb();
b1b0deab 5708
1a3e1f40
JW
5709 css_get(&to->css);
5710 css_put(&from->css);
5711
bcfe06bf 5712 page->memcg_data = (unsigned long)to;
87eaceb3 5713
abb242f5 5714 __unlock_page_memcg(from);
b1b0deab
CG
5715
5716 ret = 0;
5717
5718 local_irq_disable();
3fba69a5 5719 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5720 memcg_check_events(to, page);
3fba69a5 5721 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5722 memcg_check_events(from, page);
5723 local_irq_enable();
5724out_unlock:
5725 unlock_page(page);
5726out:
5727 return ret;
5728}
5729
7cf7806c
LR
5730/**
5731 * get_mctgt_type - get target type of moving charge
5732 * @vma: the vma the pte to be checked belongs
5733 * @addr: the address corresponding to the pte to be checked
5734 * @ptent: the pte to be checked
5735 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5736 *
5737 * Returns
5738 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5739 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5740 * move charge. if @target is not NULL, the page is stored in target->page
5741 * with extra refcnt got(Callers should handle it).
5742 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5743 * target for charge migration. if @target is not NULL, the entry is stored
5744 * in target->ent.
25b2995a
CH
5745 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5746 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5747 * For now we such page is charge like a regular page would be as for all
5748 * intent and purposes it is just special memory taking the place of a
5749 * regular page.
c733a828
JG
5750 *
5751 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5752 *
5753 * Called with pte lock held.
5754 */
5755
8d32ff84 5756static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5757 unsigned long addr, pte_t ptent, union mc_target *target)
5758{
5759 struct page *page = NULL;
8d32ff84 5760 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5761 swp_entry_t ent = { .val = 0 };
5762
5763 if (pte_present(ptent))
5764 page = mc_handle_present_pte(vma, addr, ptent);
5765 else if (is_swap_pte(ptent))
48406ef8 5766 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5767 else if (pte_none(ptent))
87946a72 5768 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5769
5770 if (!page && !ent.val)
8d32ff84 5771 return ret;
02491447 5772 if (page) {
02491447 5773 /*
0a31bc97 5774 * Do only loose check w/o serialization.
1306a85a 5775 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5776 * not under LRU exclusion.
02491447 5777 */
bcfe06bf 5778 if (page_memcg(page) == mc.from) {
02491447 5779 ret = MC_TARGET_PAGE;
25b2995a 5780 if (is_device_private_page(page))
c733a828 5781 ret = MC_TARGET_DEVICE;
02491447
DN
5782 if (target)
5783 target->page = page;
5784 }
5785 if (!ret || !target)
5786 put_page(page);
5787 }
3e14a57b
HY
5788 /*
5789 * There is a swap entry and a page doesn't exist or isn't charged.
5790 * But we cannot move a tail-page in a THP.
5791 */
5792 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5793 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5794 ret = MC_TARGET_SWAP;
5795 if (target)
5796 target->ent = ent;
4ffef5fe 5797 }
4ffef5fe
DN
5798 return ret;
5799}
5800
12724850
NH
5801#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5802/*
d6810d73
HY
5803 * We don't consider PMD mapped swapping or file mapped pages because THP does
5804 * not support them for now.
12724850
NH
5805 * Caller should make sure that pmd_trans_huge(pmd) is true.
5806 */
5807static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5808 unsigned long addr, pmd_t pmd, union mc_target *target)
5809{
5810 struct page *page = NULL;
12724850
NH
5811 enum mc_target_type ret = MC_TARGET_NONE;
5812
84c3fc4e
ZY
5813 if (unlikely(is_swap_pmd(pmd))) {
5814 VM_BUG_ON(thp_migration_supported() &&
5815 !is_pmd_migration_entry(pmd));
5816 return ret;
5817 }
12724850 5818 page = pmd_page(pmd);
309381fe 5819 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5820 if (!(mc.flags & MOVE_ANON))
12724850 5821 return ret;
bcfe06bf 5822 if (page_memcg(page) == mc.from) {
12724850
NH
5823 ret = MC_TARGET_PAGE;
5824 if (target) {
5825 get_page(page);
5826 target->page = page;
5827 }
5828 }
5829 return ret;
5830}
5831#else
5832static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5833 unsigned long addr, pmd_t pmd, union mc_target *target)
5834{
5835 return MC_TARGET_NONE;
5836}
5837#endif
5838
4ffef5fe
DN
5839static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5840 unsigned long addr, unsigned long end,
5841 struct mm_walk *walk)
5842{
26bcd64a 5843 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5844 pte_t *pte;
5845 spinlock_t *ptl;
5846
b6ec57f4
KS
5847 ptl = pmd_trans_huge_lock(pmd, vma);
5848 if (ptl) {
c733a828
JG
5849 /*
5850 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5851 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5852 * this might change.
c733a828 5853 */
12724850
NH
5854 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5855 mc.precharge += HPAGE_PMD_NR;
bf929152 5856 spin_unlock(ptl);
1a5a9906 5857 return 0;
12724850 5858 }
03319327 5859
45f83cef
AA
5860 if (pmd_trans_unstable(pmd))
5861 return 0;
4ffef5fe
DN
5862 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5863 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5864 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5865 mc.precharge++; /* increment precharge temporarily */
5866 pte_unmap_unlock(pte - 1, ptl);
5867 cond_resched();
5868
7dc74be0
DN
5869 return 0;
5870}
5871
7b86ac33
CH
5872static const struct mm_walk_ops precharge_walk_ops = {
5873 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5874};
5875
4ffef5fe
DN
5876static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5877{
5878 unsigned long precharge;
4ffef5fe 5879
d8ed45c5 5880 mmap_read_lock(mm);
7b86ac33 5881 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5882 mmap_read_unlock(mm);
4ffef5fe
DN
5883
5884 precharge = mc.precharge;
5885 mc.precharge = 0;
5886
5887 return precharge;
5888}
5889
4ffef5fe
DN
5890static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5891{
dfe076b0
DN
5892 unsigned long precharge = mem_cgroup_count_precharge(mm);
5893
5894 VM_BUG_ON(mc.moving_task);
5895 mc.moving_task = current;
5896 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5897}
5898
dfe076b0
DN
5899/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5900static void __mem_cgroup_clear_mc(void)
4ffef5fe 5901{
2bd9bb20
KH
5902 struct mem_cgroup *from = mc.from;
5903 struct mem_cgroup *to = mc.to;
5904
4ffef5fe 5905 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5906 if (mc.precharge) {
00501b53 5907 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5908 mc.precharge = 0;
5909 }
5910 /*
5911 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5912 * we must uncharge here.
5913 */
5914 if (mc.moved_charge) {
00501b53 5915 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5916 mc.moved_charge = 0;
4ffef5fe 5917 }
483c30b5
DN
5918 /* we must fixup refcnts and charges */
5919 if (mc.moved_swap) {
483c30b5 5920 /* uncharge swap account from the old cgroup */
ce00a967 5921 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5922 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5923
615d66c3
VD
5924 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5925
05b84301 5926 /*
3e32cb2e
JW
5927 * we charged both to->memory and to->memsw, so we
5928 * should uncharge to->memory.
05b84301 5929 */
ce00a967 5930 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5931 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5932
483c30b5
DN
5933 mc.moved_swap = 0;
5934 }
dfe076b0
DN
5935 memcg_oom_recover(from);
5936 memcg_oom_recover(to);
5937 wake_up_all(&mc.waitq);
5938}
5939
5940static void mem_cgroup_clear_mc(void)
5941{
264a0ae1
TH
5942 struct mm_struct *mm = mc.mm;
5943
dfe076b0
DN
5944 /*
5945 * we must clear moving_task before waking up waiters at the end of
5946 * task migration.
5947 */
5948 mc.moving_task = NULL;
5949 __mem_cgroup_clear_mc();
2bd9bb20 5950 spin_lock(&mc.lock);
4ffef5fe
DN
5951 mc.from = NULL;
5952 mc.to = NULL;
264a0ae1 5953 mc.mm = NULL;
2bd9bb20 5954 spin_unlock(&mc.lock);
264a0ae1
TH
5955
5956 mmput(mm);
4ffef5fe
DN
5957}
5958
1f7dd3e5 5959static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5960{
1f7dd3e5 5961 struct cgroup_subsys_state *css;
eed67d75 5962 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5963 struct mem_cgroup *from;
4530eddb 5964 struct task_struct *leader, *p;
9f2115f9 5965 struct mm_struct *mm;
1dfab5ab 5966 unsigned long move_flags;
9f2115f9 5967 int ret = 0;
7dc74be0 5968
1f7dd3e5
TH
5969 /* charge immigration isn't supported on the default hierarchy */
5970 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5971 return 0;
5972
4530eddb
TH
5973 /*
5974 * Multi-process migrations only happen on the default hierarchy
5975 * where charge immigration is not used. Perform charge
5976 * immigration if @tset contains a leader and whine if there are
5977 * multiple.
5978 */
5979 p = NULL;
1f7dd3e5 5980 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5981 WARN_ON_ONCE(p);
5982 p = leader;
1f7dd3e5 5983 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5984 }
5985 if (!p)
5986 return 0;
5987
1f7dd3e5
TH
5988 /*
5989 * We are now commited to this value whatever it is. Changes in this
5990 * tunable will only affect upcoming migrations, not the current one.
5991 * So we need to save it, and keep it going.
5992 */
5993 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5994 if (!move_flags)
5995 return 0;
5996
9f2115f9
TH
5997 from = mem_cgroup_from_task(p);
5998
5999 VM_BUG_ON(from == memcg);
6000
6001 mm = get_task_mm(p);
6002 if (!mm)
6003 return 0;
6004 /* We move charges only when we move a owner of the mm */
6005 if (mm->owner == p) {
6006 VM_BUG_ON(mc.from);
6007 VM_BUG_ON(mc.to);
6008 VM_BUG_ON(mc.precharge);
6009 VM_BUG_ON(mc.moved_charge);
6010 VM_BUG_ON(mc.moved_swap);
6011
6012 spin_lock(&mc.lock);
264a0ae1 6013 mc.mm = mm;
9f2115f9
TH
6014 mc.from = from;
6015 mc.to = memcg;
6016 mc.flags = move_flags;
6017 spin_unlock(&mc.lock);
6018 /* We set mc.moving_task later */
6019
6020 ret = mem_cgroup_precharge_mc(mm);
6021 if (ret)
6022 mem_cgroup_clear_mc();
264a0ae1
TH
6023 } else {
6024 mmput(mm);
7dc74be0
DN
6025 }
6026 return ret;
6027}
6028
1f7dd3e5 6029static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6030{
4e2f245d
JW
6031 if (mc.to)
6032 mem_cgroup_clear_mc();
7dc74be0
DN
6033}
6034
4ffef5fe
DN
6035static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6036 unsigned long addr, unsigned long end,
6037 struct mm_walk *walk)
7dc74be0 6038{
4ffef5fe 6039 int ret = 0;
26bcd64a 6040 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6041 pte_t *pte;
6042 spinlock_t *ptl;
12724850
NH
6043 enum mc_target_type target_type;
6044 union mc_target target;
6045 struct page *page;
4ffef5fe 6046
b6ec57f4
KS
6047 ptl = pmd_trans_huge_lock(pmd, vma);
6048 if (ptl) {
62ade86a 6049 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6050 spin_unlock(ptl);
12724850
NH
6051 return 0;
6052 }
6053 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6054 if (target_type == MC_TARGET_PAGE) {
6055 page = target.page;
6056 if (!isolate_lru_page(page)) {
f627c2f5 6057 if (!mem_cgroup_move_account(page, true,
1306a85a 6058 mc.from, mc.to)) {
12724850
NH
6059 mc.precharge -= HPAGE_PMD_NR;
6060 mc.moved_charge += HPAGE_PMD_NR;
6061 }
6062 putback_lru_page(page);
6063 }
6064 put_page(page);
c733a828
JG
6065 } else if (target_type == MC_TARGET_DEVICE) {
6066 page = target.page;
6067 if (!mem_cgroup_move_account(page, true,
6068 mc.from, mc.to)) {
6069 mc.precharge -= HPAGE_PMD_NR;
6070 mc.moved_charge += HPAGE_PMD_NR;
6071 }
6072 put_page(page);
12724850 6073 }
bf929152 6074 spin_unlock(ptl);
1a5a9906 6075 return 0;
12724850
NH
6076 }
6077
45f83cef
AA
6078 if (pmd_trans_unstable(pmd))
6079 return 0;
4ffef5fe
DN
6080retry:
6081 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6082 for (; addr != end; addr += PAGE_SIZE) {
6083 pte_t ptent = *(pte++);
c733a828 6084 bool device = false;
02491447 6085 swp_entry_t ent;
4ffef5fe
DN
6086
6087 if (!mc.precharge)
6088 break;
6089
8d32ff84 6090 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6091 case MC_TARGET_DEVICE:
6092 device = true;
e4a9bc58 6093 fallthrough;
4ffef5fe
DN
6094 case MC_TARGET_PAGE:
6095 page = target.page;
53f9263b
KS
6096 /*
6097 * We can have a part of the split pmd here. Moving it
6098 * can be done but it would be too convoluted so simply
6099 * ignore such a partial THP and keep it in original
6100 * memcg. There should be somebody mapping the head.
6101 */
6102 if (PageTransCompound(page))
6103 goto put;
c733a828 6104 if (!device && isolate_lru_page(page))
4ffef5fe 6105 goto put;
f627c2f5
KS
6106 if (!mem_cgroup_move_account(page, false,
6107 mc.from, mc.to)) {
4ffef5fe 6108 mc.precharge--;
854ffa8d
DN
6109 /* we uncharge from mc.from later. */
6110 mc.moved_charge++;
4ffef5fe 6111 }
c733a828
JG
6112 if (!device)
6113 putback_lru_page(page);
8d32ff84 6114put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6115 put_page(page);
6116 break;
02491447
DN
6117 case MC_TARGET_SWAP:
6118 ent = target.ent;
e91cbb42 6119 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6120 mc.precharge--;
8d22a935
HD
6121 mem_cgroup_id_get_many(mc.to, 1);
6122 /* we fixup other refcnts and charges later. */
483c30b5
DN
6123 mc.moved_swap++;
6124 }
02491447 6125 break;
4ffef5fe
DN
6126 default:
6127 break;
6128 }
6129 }
6130 pte_unmap_unlock(pte - 1, ptl);
6131 cond_resched();
6132
6133 if (addr != end) {
6134 /*
6135 * We have consumed all precharges we got in can_attach().
6136 * We try charge one by one, but don't do any additional
6137 * charges to mc.to if we have failed in charge once in attach()
6138 * phase.
6139 */
854ffa8d 6140 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6141 if (!ret)
6142 goto retry;
6143 }
6144
6145 return ret;
6146}
6147
7b86ac33
CH
6148static const struct mm_walk_ops charge_walk_ops = {
6149 .pmd_entry = mem_cgroup_move_charge_pte_range,
6150};
6151
264a0ae1 6152static void mem_cgroup_move_charge(void)
4ffef5fe 6153{
4ffef5fe 6154 lru_add_drain_all();
312722cb 6155 /*
81f8c3a4
JW
6156 * Signal lock_page_memcg() to take the memcg's move_lock
6157 * while we're moving its pages to another memcg. Then wait
6158 * for already started RCU-only updates to finish.
312722cb
JW
6159 */
6160 atomic_inc(&mc.from->moving_account);
6161 synchronize_rcu();
dfe076b0 6162retry:
d8ed45c5 6163 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6164 /*
c1e8d7c6 6165 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6166 * waitq. So we cancel all extra charges, wake up all waiters,
6167 * and retry. Because we cancel precharges, we might not be able
6168 * to move enough charges, but moving charge is a best-effort
6169 * feature anyway, so it wouldn't be a big problem.
6170 */
6171 __mem_cgroup_clear_mc();
6172 cond_resched();
6173 goto retry;
6174 }
26bcd64a
NH
6175 /*
6176 * When we have consumed all precharges and failed in doing
6177 * additional charge, the page walk just aborts.
6178 */
7b86ac33
CH
6179 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6180 NULL);
0247f3f4 6181
d8ed45c5 6182 mmap_read_unlock(mc.mm);
312722cb 6183 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6184}
6185
264a0ae1 6186static void mem_cgroup_move_task(void)
67e465a7 6187{
264a0ae1
TH
6188 if (mc.to) {
6189 mem_cgroup_move_charge();
a433658c 6190 mem_cgroup_clear_mc();
264a0ae1 6191 }
67e465a7 6192}
5cfb80a7 6193#else /* !CONFIG_MMU */
1f7dd3e5 6194static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6195{
6196 return 0;
6197}
1f7dd3e5 6198static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6199{
6200}
264a0ae1 6201static void mem_cgroup_move_task(void)
5cfb80a7
DN
6202{
6203}
6204#endif
67e465a7 6205
f00baae7
TH
6206/*
6207 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6208 * to verify whether we're attached to the default hierarchy on each mount
6209 * attempt.
f00baae7 6210 */
eb95419b 6211static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6212{
6213 /*
aa6ec29b 6214 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6215 * guarantees that @root doesn't have any children, so turning it
6216 * on for the root memcg is enough.
6217 */
9e10a130 6218 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6219 root_mem_cgroup->use_hierarchy = true;
6220 else
6221 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6222}
6223
677dc973
CD
6224static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6225{
6226 if (value == PAGE_COUNTER_MAX)
6227 seq_puts(m, "max\n");
6228 else
6229 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6230
6231 return 0;
6232}
6233
241994ed
JW
6234static u64 memory_current_read(struct cgroup_subsys_state *css,
6235 struct cftype *cft)
6236{
f5fc3c5d
JW
6237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6238
6239 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6240}
6241
bf8d5d52
RG
6242static int memory_min_show(struct seq_file *m, void *v)
6243{
677dc973
CD
6244 return seq_puts_memcg_tunable(m,
6245 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6246}
6247
6248static ssize_t memory_min_write(struct kernfs_open_file *of,
6249 char *buf, size_t nbytes, loff_t off)
6250{
6251 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6252 unsigned long min;
6253 int err;
6254
6255 buf = strstrip(buf);
6256 err = page_counter_memparse(buf, "max", &min);
6257 if (err)
6258 return err;
6259
6260 page_counter_set_min(&memcg->memory, min);
6261
6262 return nbytes;
6263}
6264
241994ed
JW
6265static int memory_low_show(struct seq_file *m, void *v)
6266{
677dc973
CD
6267 return seq_puts_memcg_tunable(m,
6268 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6269}
6270
6271static ssize_t memory_low_write(struct kernfs_open_file *of,
6272 char *buf, size_t nbytes, loff_t off)
6273{
6274 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6275 unsigned long low;
6276 int err;
6277
6278 buf = strstrip(buf);
d2973697 6279 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6280 if (err)
6281 return err;
6282
23067153 6283 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6284
6285 return nbytes;
6286}
6287
6288static int memory_high_show(struct seq_file *m, void *v)
6289{
d1663a90
JK
6290 return seq_puts_memcg_tunable(m,
6291 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6292}
6293
6294static ssize_t memory_high_write(struct kernfs_open_file *of,
6295 char *buf, size_t nbytes, loff_t off)
6296{
6297 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6298 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6299 bool drained = false;
241994ed
JW
6300 unsigned long high;
6301 int err;
6302
6303 buf = strstrip(buf);
d2973697 6304 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6305 if (err)
6306 return err;
6307
8c8c383c
JW
6308 for (;;) {
6309 unsigned long nr_pages = page_counter_read(&memcg->memory);
6310 unsigned long reclaimed;
6311
6312 if (nr_pages <= high)
6313 break;
6314
6315 if (signal_pending(current))
6316 break;
6317
6318 if (!drained) {
6319 drain_all_stock(memcg);
6320 drained = true;
6321 continue;
6322 }
6323
6324 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6325 GFP_KERNEL, true);
6326
6327 if (!reclaimed && !nr_retries--)
6328 break;
6329 }
588083bb 6330
536d3bf2
RG
6331 page_counter_set_high(&memcg->memory, high);
6332
19ce33ac
JW
6333 memcg_wb_domain_size_changed(memcg);
6334
241994ed
JW
6335 return nbytes;
6336}
6337
6338static int memory_max_show(struct seq_file *m, void *v)
6339{
677dc973
CD
6340 return seq_puts_memcg_tunable(m,
6341 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6342}
6343
6344static ssize_t memory_max_write(struct kernfs_open_file *of,
6345 char *buf, size_t nbytes, loff_t off)
6346{
6347 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6348 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6349 bool drained = false;
241994ed
JW
6350 unsigned long max;
6351 int err;
6352
6353 buf = strstrip(buf);
d2973697 6354 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6355 if (err)
6356 return err;
6357
bbec2e15 6358 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6359
6360 for (;;) {
6361 unsigned long nr_pages = page_counter_read(&memcg->memory);
6362
6363 if (nr_pages <= max)
6364 break;
6365
7249c9f0 6366 if (signal_pending(current))
b6e6edcf 6367 break;
b6e6edcf
JW
6368
6369 if (!drained) {
6370 drain_all_stock(memcg);
6371 drained = true;
6372 continue;
6373 }
6374
6375 if (nr_reclaims) {
6376 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6377 GFP_KERNEL, true))
6378 nr_reclaims--;
6379 continue;
6380 }
6381
e27be240 6382 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6383 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6384 break;
6385 }
241994ed 6386
2529bb3a 6387 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6388 return nbytes;
6389}
6390
1e577f97
SB
6391static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6392{
6393 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6394 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6395 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6396 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6397 seq_printf(m, "oom_kill %lu\n",
6398 atomic_long_read(&events[MEMCG_OOM_KILL]));
6399}
6400
241994ed
JW
6401static int memory_events_show(struct seq_file *m, void *v)
6402{
aa9694bb 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6404
1e577f97
SB
6405 __memory_events_show(m, memcg->memory_events);
6406 return 0;
6407}
6408
6409static int memory_events_local_show(struct seq_file *m, void *v)
6410{
6411 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6412
1e577f97 6413 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6414 return 0;
6415}
6416
587d9f72
JW
6417static int memory_stat_show(struct seq_file *m, void *v)
6418{
aa9694bb 6419 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6420 char *buf;
1ff9e6e1 6421
c8713d0b
JW
6422 buf = memory_stat_format(memcg);
6423 if (!buf)
6424 return -ENOMEM;
6425 seq_puts(m, buf);
6426 kfree(buf);
587d9f72
JW
6427 return 0;
6428}
6429
5f9a4f4a
MS
6430#ifdef CONFIG_NUMA
6431static int memory_numa_stat_show(struct seq_file *m, void *v)
6432{
6433 int i;
6434 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6435
6436 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6437 int nid;
6438
6439 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6440 continue;
6441
6442 seq_printf(m, "%s", memory_stats[i].name);
6443 for_each_node_state(nid, N_MEMORY) {
6444 u64 size;
6445 struct lruvec *lruvec;
6446
6447 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6448 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6449 size *= memory_stats[i].ratio;
6450 seq_printf(m, " N%d=%llu", nid, size);
6451 }
6452 seq_putc(m, '\n');
6453 }
6454
6455 return 0;
6456}
6457#endif
6458
3d8b38eb
RG
6459static int memory_oom_group_show(struct seq_file *m, void *v)
6460{
aa9694bb 6461 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6462
6463 seq_printf(m, "%d\n", memcg->oom_group);
6464
6465 return 0;
6466}
6467
6468static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6469 char *buf, size_t nbytes, loff_t off)
6470{
6471 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6472 int ret, oom_group;
6473
6474 buf = strstrip(buf);
6475 if (!buf)
6476 return -EINVAL;
6477
6478 ret = kstrtoint(buf, 0, &oom_group);
6479 if (ret)
6480 return ret;
6481
6482 if (oom_group != 0 && oom_group != 1)
6483 return -EINVAL;
6484
6485 memcg->oom_group = oom_group;
6486
6487 return nbytes;
6488}
6489
241994ed
JW
6490static struct cftype memory_files[] = {
6491 {
6492 .name = "current",
f5fc3c5d 6493 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6494 .read_u64 = memory_current_read,
6495 },
bf8d5d52
RG
6496 {
6497 .name = "min",
6498 .flags = CFTYPE_NOT_ON_ROOT,
6499 .seq_show = memory_min_show,
6500 .write = memory_min_write,
6501 },
241994ed
JW
6502 {
6503 .name = "low",
6504 .flags = CFTYPE_NOT_ON_ROOT,
6505 .seq_show = memory_low_show,
6506 .write = memory_low_write,
6507 },
6508 {
6509 .name = "high",
6510 .flags = CFTYPE_NOT_ON_ROOT,
6511 .seq_show = memory_high_show,
6512 .write = memory_high_write,
6513 },
6514 {
6515 .name = "max",
6516 .flags = CFTYPE_NOT_ON_ROOT,
6517 .seq_show = memory_max_show,
6518 .write = memory_max_write,
6519 },
6520 {
6521 .name = "events",
6522 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6523 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6524 .seq_show = memory_events_show,
6525 },
1e577f97
SB
6526 {
6527 .name = "events.local",
6528 .flags = CFTYPE_NOT_ON_ROOT,
6529 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6530 .seq_show = memory_events_local_show,
6531 },
587d9f72
JW
6532 {
6533 .name = "stat",
587d9f72
JW
6534 .seq_show = memory_stat_show,
6535 },
5f9a4f4a
MS
6536#ifdef CONFIG_NUMA
6537 {
6538 .name = "numa_stat",
6539 .seq_show = memory_numa_stat_show,
6540 },
6541#endif
3d8b38eb
RG
6542 {
6543 .name = "oom.group",
6544 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6545 .seq_show = memory_oom_group_show,
6546 .write = memory_oom_group_write,
6547 },
241994ed
JW
6548 { } /* terminate */
6549};
6550
073219e9 6551struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6552 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6553 .css_online = mem_cgroup_css_online,
92fb9748 6554 .css_offline = mem_cgroup_css_offline,
6df38689 6555 .css_released = mem_cgroup_css_released,
92fb9748 6556 .css_free = mem_cgroup_css_free,
1ced953b 6557 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6558 .can_attach = mem_cgroup_can_attach,
6559 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6560 .post_attach = mem_cgroup_move_task,
f00baae7 6561 .bind = mem_cgroup_bind,
241994ed
JW
6562 .dfl_cftypes = memory_files,
6563 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6564 .early_init = 0,
8cdea7c0 6565};
c077719b 6566
bc50bcc6
JW
6567/*
6568 * This function calculates an individual cgroup's effective
6569 * protection which is derived from its own memory.min/low, its
6570 * parent's and siblings' settings, as well as the actual memory
6571 * distribution in the tree.
6572 *
6573 * The following rules apply to the effective protection values:
6574 *
6575 * 1. At the first level of reclaim, effective protection is equal to
6576 * the declared protection in memory.min and memory.low.
6577 *
6578 * 2. To enable safe delegation of the protection configuration, at
6579 * subsequent levels the effective protection is capped to the
6580 * parent's effective protection.
6581 *
6582 * 3. To make complex and dynamic subtrees easier to configure, the
6583 * user is allowed to overcommit the declared protection at a given
6584 * level. If that is the case, the parent's effective protection is
6585 * distributed to the children in proportion to how much protection
6586 * they have declared and how much of it they are utilizing.
6587 *
6588 * This makes distribution proportional, but also work-conserving:
6589 * if one cgroup claims much more protection than it uses memory,
6590 * the unused remainder is available to its siblings.
6591 *
6592 * 4. Conversely, when the declared protection is undercommitted at a
6593 * given level, the distribution of the larger parental protection
6594 * budget is NOT proportional. A cgroup's protection from a sibling
6595 * is capped to its own memory.min/low setting.
6596 *
8a931f80
JW
6597 * 5. However, to allow protecting recursive subtrees from each other
6598 * without having to declare each individual cgroup's fixed share
6599 * of the ancestor's claim to protection, any unutilized -
6600 * "floating" - protection from up the tree is distributed in
6601 * proportion to each cgroup's *usage*. This makes the protection
6602 * neutral wrt sibling cgroups and lets them compete freely over
6603 * the shared parental protection budget, but it protects the
6604 * subtree as a whole from neighboring subtrees.
6605 *
6606 * Note that 4. and 5. are not in conflict: 4. is about protecting
6607 * against immediate siblings whereas 5. is about protecting against
6608 * neighboring subtrees.
bc50bcc6
JW
6609 */
6610static unsigned long effective_protection(unsigned long usage,
8a931f80 6611 unsigned long parent_usage,
bc50bcc6
JW
6612 unsigned long setting,
6613 unsigned long parent_effective,
6614 unsigned long siblings_protected)
6615{
6616 unsigned long protected;
8a931f80 6617 unsigned long ep;
bc50bcc6
JW
6618
6619 protected = min(usage, setting);
6620 /*
6621 * If all cgroups at this level combined claim and use more
6622 * protection then what the parent affords them, distribute
6623 * shares in proportion to utilization.
6624 *
6625 * We are using actual utilization rather than the statically
6626 * claimed protection in order to be work-conserving: claimed
6627 * but unused protection is available to siblings that would
6628 * otherwise get a smaller chunk than what they claimed.
6629 */
6630 if (siblings_protected > parent_effective)
6631 return protected * parent_effective / siblings_protected;
6632
6633 /*
6634 * Ok, utilized protection of all children is within what the
6635 * parent affords them, so we know whatever this child claims
6636 * and utilizes is effectively protected.
6637 *
6638 * If there is unprotected usage beyond this value, reclaim
6639 * will apply pressure in proportion to that amount.
6640 *
6641 * If there is unutilized protection, the cgroup will be fully
6642 * shielded from reclaim, but we do return a smaller value for
6643 * protection than what the group could enjoy in theory. This
6644 * is okay. With the overcommit distribution above, effective
6645 * protection is always dependent on how memory is actually
6646 * consumed among the siblings anyway.
6647 */
8a931f80
JW
6648 ep = protected;
6649
6650 /*
6651 * If the children aren't claiming (all of) the protection
6652 * afforded to them by the parent, distribute the remainder in
6653 * proportion to the (unprotected) memory of each cgroup. That
6654 * way, cgroups that aren't explicitly prioritized wrt each
6655 * other compete freely over the allowance, but they are
6656 * collectively protected from neighboring trees.
6657 *
6658 * We're using unprotected memory for the weight so that if
6659 * some cgroups DO claim explicit protection, we don't protect
6660 * the same bytes twice.
cd324edc
JW
6661 *
6662 * Check both usage and parent_usage against the respective
6663 * protected values. One should imply the other, but they
6664 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6665 */
6666 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6667 return ep;
cd324edc
JW
6668 if (parent_effective > siblings_protected &&
6669 parent_usage > siblings_protected &&
6670 usage > protected) {
8a931f80
JW
6671 unsigned long unclaimed;
6672
6673 unclaimed = parent_effective - siblings_protected;
6674 unclaimed *= usage - protected;
6675 unclaimed /= parent_usage - siblings_protected;
6676
6677 ep += unclaimed;
6678 }
6679
6680 return ep;
bc50bcc6
JW
6681}
6682
241994ed 6683/**
bf8d5d52 6684 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6685 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6686 * @memcg: the memory cgroup to check
6687 *
23067153
RG
6688 * WARNING: This function is not stateless! It can only be used as part
6689 * of a top-down tree iteration, not for isolated queries.
241994ed 6690 */
45c7f7e1
CD
6691void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6692 struct mem_cgroup *memcg)
241994ed 6693{
8a931f80 6694 unsigned long usage, parent_usage;
23067153
RG
6695 struct mem_cgroup *parent;
6696
241994ed 6697 if (mem_cgroup_disabled())
45c7f7e1 6698 return;
241994ed 6699
34c81057
SC
6700 if (!root)
6701 root = root_mem_cgroup;
22f7496f
YS
6702
6703 /*
6704 * Effective values of the reclaim targets are ignored so they
6705 * can be stale. Have a look at mem_cgroup_protection for more
6706 * details.
6707 * TODO: calculation should be more robust so that we do not need
6708 * that special casing.
6709 */
34c81057 6710 if (memcg == root)
45c7f7e1 6711 return;
241994ed 6712
23067153 6713 usage = page_counter_read(&memcg->memory);
bf8d5d52 6714 if (!usage)
45c7f7e1 6715 return;
bf8d5d52 6716
bf8d5d52 6717 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6718 /* No parent means a non-hierarchical mode on v1 memcg */
6719 if (!parent)
45c7f7e1 6720 return;
df2a4196 6721
bc50bcc6 6722 if (parent == root) {
c3d53200 6723 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6724 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6725 return;
bf8d5d52
RG
6726 }
6727
8a931f80
JW
6728 parent_usage = page_counter_read(&parent->memory);
6729
b3a7822e 6730 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6731 READ_ONCE(memcg->memory.min),
6732 READ_ONCE(parent->memory.emin),
b3a7822e 6733 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6734
b3a7822e 6735 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6736 READ_ONCE(memcg->memory.low),
6737 READ_ONCE(parent->memory.elow),
b3a7822e 6738 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6739}
6740
00501b53 6741/**
f0e45fb4 6742 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6743 * @page: page to charge
6744 * @mm: mm context of the victim
6745 * @gfp_mask: reclaim mode
00501b53
JW
6746 *
6747 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6748 * pages according to @gfp_mask if necessary.
6749 *
f0e45fb4 6750 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6751 */
d9eb1ea2 6752int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6753{
6c357848 6754 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6755 struct mem_cgroup *memcg = NULL;
00501b53
JW
6756 int ret = 0;
6757
6758 if (mem_cgroup_disabled())
6759 goto out;
6760
6761 if (PageSwapCache(page)) {
2d1c4980
JW
6762 swp_entry_t ent = { .val = page_private(page), };
6763 unsigned short id;
6764
00501b53
JW
6765 /*
6766 * Every swap fault against a single page tries to charge the
6767 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6768 * already charged pages, too. page and memcg binding is
6769 * protected by the page lock, which serializes swap cache
6770 * removal, which in turn serializes uncharging.
00501b53 6771 */
e993d905 6772 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6773 if (page_memcg(compound_head(page)))
00501b53 6774 goto out;
e993d905 6775
2d1c4980
JW
6776 id = lookup_swap_cgroup_id(ent);
6777 rcu_read_lock();
6778 memcg = mem_cgroup_from_id(id);
6779 if (memcg && !css_tryget_online(&memcg->css))
6780 memcg = NULL;
6781 rcu_read_unlock();
00501b53
JW
6782 }
6783
00501b53
JW
6784 if (!memcg)
6785 memcg = get_mem_cgroup_from_mm(mm);
6786
6787 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6788 if (ret)
6789 goto out_put;
00501b53 6790
1a3e1f40 6791 css_get(&memcg->css);
d9eb1ea2 6792 commit_charge(page, memcg);
6abb5a86 6793
6abb5a86 6794 local_irq_disable();
3fba69a5 6795 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6796 memcg_check_events(memcg, page);
6797 local_irq_enable();
00501b53 6798
2d1c4980 6799 if (PageSwapCache(page)) {
00501b53
JW
6800 swp_entry_t entry = { .val = page_private(page) };
6801 /*
6802 * The swap entry might not get freed for a long time,
6803 * let's not wait for it. The page already received a
6804 * memory+swap charge, drop the swap entry duplicate.
6805 */
38d8b4e6 6806 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6807 }
00501b53 6808
f0e45fb4
JW
6809out_put:
6810 css_put(&memcg->css);
6811out:
6812 return ret;
3fea5a49
JW
6813}
6814
a9d5adee
JG
6815struct uncharge_gather {
6816 struct mem_cgroup *memcg;
9f762dbe 6817 unsigned long nr_pages;
a9d5adee 6818 unsigned long pgpgout;
a9d5adee 6819 unsigned long nr_kmem;
a9d5adee
JG
6820 struct page *dummy_page;
6821};
6822
6823static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6824{
a9d5adee
JG
6825 memset(ug, 0, sizeof(*ug));
6826}
6827
6828static void uncharge_batch(const struct uncharge_gather *ug)
6829{
747db954
JW
6830 unsigned long flags;
6831
a9d5adee 6832 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6833 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6834 if (do_memsw_account())
9f762dbe 6835 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6836 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6837 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6838 memcg_oom_recover(ug->memcg);
ce00a967 6839 }
747db954
JW
6840
6841 local_irq_save(flags);
c9019e9b 6842 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6843 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6844 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6845 local_irq_restore(flags);
f1796544
MH
6846
6847 /* drop reference from uncharge_page */
6848 css_put(&ug->memcg->css);
a9d5adee
JG
6849}
6850
6851static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6852{
9f762dbe
JW
6853 unsigned long nr_pages;
6854
a9d5adee 6855 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6856
bcfe06bf 6857 if (!page_memcg(page))
a9d5adee
JG
6858 return;
6859
6860 /*
6861 * Nobody should be changing or seriously looking at
bcfe06bf 6862 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6863 * exclusive access to the page.
6864 */
6865
bcfe06bf 6866 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6867 if (ug->memcg) {
6868 uncharge_batch(ug);
6869 uncharge_gather_clear(ug);
6870 }
bcfe06bf 6871 ug->memcg = page_memcg(page);
f1796544
MH
6872
6873 /* pairs with css_put in uncharge_batch */
6874 css_get(&ug->memcg->css);
a9d5adee
JG
6875 }
6876
9f762dbe
JW
6877 nr_pages = compound_nr(page);
6878 ug->nr_pages += nr_pages;
a9d5adee 6879
9f762dbe 6880 if (!PageKmemcg(page)) {
a9d5adee
JG
6881 ug->pgpgout++;
6882 } else {
9f762dbe 6883 ug->nr_kmem += nr_pages;
a9d5adee
JG
6884 __ClearPageKmemcg(page);
6885 }
6886
6887 ug->dummy_page = page;
bcfe06bf 6888 page->memcg_data = 0;
1a3e1f40 6889 css_put(&ug->memcg->css);
747db954
JW
6890}
6891
6892static void uncharge_list(struct list_head *page_list)
6893{
a9d5adee 6894 struct uncharge_gather ug;
747db954 6895 struct list_head *next;
a9d5adee
JG
6896
6897 uncharge_gather_clear(&ug);
747db954 6898
8b592656
JW
6899 /*
6900 * Note that the list can be a single page->lru; hence the
6901 * do-while loop instead of a simple list_for_each_entry().
6902 */
747db954
JW
6903 next = page_list->next;
6904 do {
a9d5adee
JG
6905 struct page *page;
6906
747db954
JW
6907 page = list_entry(next, struct page, lru);
6908 next = page->lru.next;
6909
a9d5adee 6910 uncharge_page(page, &ug);
747db954
JW
6911 } while (next != page_list);
6912
a9d5adee
JG
6913 if (ug.memcg)
6914 uncharge_batch(&ug);
747db954
JW
6915}
6916
0a31bc97
JW
6917/**
6918 * mem_cgroup_uncharge - uncharge a page
6919 * @page: page to uncharge
6920 *
f0e45fb4 6921 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6922 */
6923void mem_cgroup_uncharge(struct page *page)
6924{
a9d5adee
JG
6925 struct uncharge_gather ug;
6926
0a31bc97
JW
6927 if (mem_cgroup_disabled())
6928 return;
6929
747db954 6930 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6931 if (!page_memcg(page))
0a31bc97
JW
6932 return;
6933
a9d5adee
JG
6934 uncharge_gather_clear(&ug);
6935 uncharge_page(page, &ug);
6936 uncharge_batch(&ug);
747db954 6937}
0a31bc97 6938
747db954
JW
6939/**
6940 * mem_cgroup_uncharge_list - uncharge a list of page
6941 * @page_list: list of pages to uncharge
6942 *
6943 * Uncharge a list of pages previously charged with
f0e45fb4 6944 * mem_cgroup_charge().
747db954
JW
6945 */
6946void mem_cgroup_uncharge_list(struct list_head *page_list)
6947{
6948 if (mem_cgroup_disabled())
6949 return;
0a31bc97 6950
747db954
JW
6951 if (!list_empty(page_list))
6952 uncharge_list(page_list);
0a31bc97
JW
6953}
6954
6955/**
6a93ca8f
JW
6956 * mem_cgroup_migrate - charge a page's replacement
6957 * @oldpage: currently circulating page
6958 * @newpage: replacement page
0a31bc97 6959 *
6a93ca8f
JW
6960 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6961 * be uncharged upon free.
0a31bc97
JW
6962 *
6963 * Both pages must be locked, @newpage->mapping must be set up.
6964 */
6a93ca8f 6965void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6966{
29833315 6967 struct mem_cgroup *memcg;
44b7a8d3 6968 unsigned int nr_pages;
d93c4130 6969 unsigned long flags;
0a31bc97
JW
6970
6971 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6972 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6973 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6974 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6975 newpage);
0a31bc97
JW
6976
6977 if (mem_cgroup_disabled())
6978 return;
6979
6980 /* Page cache replacement: new page already charged? */
bcfe06bf 6981 if (page_memcg(newpage))
0a31bc97
JW
6982 return;
6983
45637bab 6984 /* Swapcache readahead pages can get replaced before being charged */
bcfe06bf 6985 memcg = page_memcg(oldpage);
29833315 6986 if (!memcg)
0a31bc97
JW
6987 return;
6988
44b7a8d3 6989 /* Force-charge the new page. The old one will be freed soon */
6c357848 6990 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6991
6992 page_counter_charge(&memcg->memory, nr_pages);
6993 if (do_memsw_account())
6994 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6995
1a3e1f40 6996 css_get(&memcg->css);
d9eb1ea2 6997 commit_charge(newpage, memcg);
44b7a8d3 6998
d93c4130 6999 local_irq_save(flags);
3fba69a5 7000 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 7001 memcg_check_events(memcg, newpage);
d93c4130 7002 local_irq_restore(flags);
0a31bc97
JW
7003}
7004
ef12947c 7005DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7006EXPORT_SYMBOL(memcg_sockets_enabled_key);
7007
2d758073 7008void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7009{
7010 struct mem_cgroup *memcg;
7011
2d758073
JW
7012 if (!mem_cgroup_sockets_enabled)
7013 return;
7014
e876ecc6
SB
7015 /* Do not associate the sock with unrelated interrupted task's memcg. */
7016 if (in_interrupt())
7017 return;
7018
11092087
JW
7019 rcu_read_lock();
7020 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7021 if (memcg == root_mem_cgroup)
7022 goto out;
0db15298 7023 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7024 goto out;
8965aa28 7025 if (css_tryget(&memcg->css))
11092087 7026 sk->sk_memcg = memcg;
f7e1cb6e 7027out:
11092087
JW
7028 rcu_read_unlock();
7029}
11092087 7030
2d758073 7031void mem_cgroup_sk_free(struct sock *sk)
11092087 7032{
2d758073
JW
7033 if (sk->sk_memcg)
7034 css_put(&sk->sk_memcg->css);
11092087
JW
7035}
7036
7037/**
7038 * mem_cgroup_charge_skmem - charge socket memory
7039 * @memcg: memcg to charge
7040 * @nr_pages: number of pages to charge
7041 *
7042 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7043 * @memcg's configured limit, %false if the charge had to be forced.
7044 */
7045bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7046{
f7e1cb6e 7047 gfp_t gfp_mask = GFP_KERNEL;
11092087 7048
f7e1cb6e 7049 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7050 struct page_counter *fail;
f7e1cb6e 7051
0db15298
JW
7052 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7053 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7054 return true;
7055 }
0db15298
JW
7056 page_counter_charge(&memcg->tcpmem, nr_pages);
7057 memcg->tcpmem_pressure = 1;
f7e1cb6e 7058 return false;
11092087 7059 }
d886f4e4 7060
f7e1cb6e
JW
7061 /* Don't block in the packet receive path */
7062 if (in_softirq())
7063 gfp_mask = GFP_NOWAIT;
7064
c9019e9b 7065 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7066
f7e1cb6e
JW
7067 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7068 return true;
7069
7070 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7071 return false;
7072}
7073
7074/**
7075 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7076 * @memcg: memcg to uncharge
7077 * @nr_pages: number of pages to uncharge
11092087
JW
7078 */
7079void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7080{
f7e1cb6e 7081 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7082 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7083 return;
7084 }
d886f4e4 7085
c9019e9b 7086 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7087
475d0487 7088 refill_stock(memcg, nr_pages);
11092087
JW
7089}
7090
f7e1cb6e
JW
7091static int __init cgroup_memory(char *s)
7092{
7093 char *token;
7094
7095 while ((token = strsep(&s, ",")) != NULL) {
7096 if (!*token)
7097 continue;
7098 if (!strcmp(token, "nosocket"))
7099 cgroup_memory_nosocket = true;
04823c83
VD
7100 if (!strcmp(token, "nokmem"))
7101 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7102 }
7103 return 0;
7104}
7105__setup("cgroup.memory=", cgroup_memory);
11092087 7106
2d11085e 7107/*
1081312f
MH
7108 * subsys_initcall() for memory controller.
7109 *
308167fc
SAS
7110 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7111 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7112 * basically everything that doesn't depend on a specific mem_cgroup structure
7113 * should be initialized from here.
2d11085e
MH
7114 */
7115static int __init mem_cgroup_init(void)
7116{
95a045f6
JW
7117 int cpu, node;
7118
308167fc
SAS
7119 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7120 memcg_hotplug_cpu_dead);
95a045f6
JW
7121
7122 for_each_possible_cpu(cpu)
7123 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7124 drain_local_stock);
7125
7126 for_each_node(node) {
7127 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7128
7129 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7130 node_online(node) ? node : NUMA_NO_NODE);
7131
ef8f2327 7132 rtpn->rb_root = RB_ROOT;
fa90b2fd 7133 rtpn->rb_rightmost = NULL;
ef8f2327 7134 spin_lock_init(&rtpn->lock);
95a045f6
JW
7135 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7136 }
7137
2d11085e
MH
7138 return 0;
7139}
7140subsys_initcall(mem_cgroup_init);
21afa38e
JW
7141
7142#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7143static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7144{
1c2d479a 7145 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7146 /*
7147 * The root cgroup cannot be destroyed, so it's refcount must
7148 * always be >= 1.
7149 */
7150 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7151 VM_BUG_ON(1);
7152 break;
7153 }
7154 memcg = parent_mem_cgroup(memcg);
7155 if (!memcg)
7156 memcg = root_mem_cgroup;
7157 }
7158 return memcg;
7159}
7160
21afa38e
JW
7161/**
7162 * mem_cgroup_swapout - transfer a memsw charge to swap
7163 * @page: page whose memsw charge to transfer
7164 * @entry: swap entry to move the charge to
7165 *
7166 * Transfer the memsw charge of @page to @entry.
7167 */
7168void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7169{
1f47b61f 7170 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7171 unsigned int nr_entries;
21afa38e
JW
7172 unsigned short oldid;
7173
7174 VM_BUG_ON_PAGE(PageLRU(page), page);
7175 VM_BUG_ON_PAGE(page_count(page), page);
7176
2d1c4980 7177 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7178 return;
7179
bcfe06bf 7180 memcg = page_memcg(page);
21afa38e
JW
7181
7182 /* Readahead page, never charged */
7183 if (!memcg)
7184 return;
7185
1f47b61f
VD
7186 /*
7187 * In case the memcg owning these pages has been offlined and doesn't
7188 * have an ID allocated to it anymore, charge the closest online
7189 * ancestor for the swap instead and transfer the memory+swap charge.
7190 */
7191 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7192 nr_entries = thp_nr_pages(page);
d6810d73
HY
7193 /* Get references for the tail pages, too */
7194 if (nr_entries > 1)
7195 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7196 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7197 nr_entries);
21afa38e 7198 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7199 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7200
bcfe06bf 7201 page->memcg_data = 0;
21afa38e
JW
7202
7203 if (!mem_cgroup_is_root(memcg))
d6810d73 7204 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7205
2d1c4980 7206 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7207 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7208 page_counter_charge(&swap_memcg->memsw, nr_entries);
7209 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7210 }
7211
ce9ce665
SAS
7212 /*
7213 * Interrupts should be disabled here because the caller holds the
b93b0163 7214 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7215 * important here to have the interrupts disabled because it is the
b93b0163 7216 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7217 */
7218 VM_BUG_ON(!irqs_disabled());
3fba69a5 7219 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7220 memcg_check_events(memcg, page);
73f576c0 7221
1a3e1f40 7222 css_put(&memcg->css);
21afa38e
JW
7223}
7224
38d8b4e6
HY
7225/**
7226 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7227 * @page: page being added to swap
7228 * @entry: swap entry to charge
7229 *
38d8b4e6 7230 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7231 *
7232 * Returns 0 on success, -ENOMEM on failure.
7233 */
7234int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7235{
6c357848 7236 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7237 struct page_counter *counter;
38d8b4e6 7238 struct mem_cgroup *memcg;
37e84351
VD
7239 unsigned short oldid;
7240
2d1c4980 7241 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7242 return 0;
7243
bcfe06bf 7244 memcg = page_memcg(page);
37e84351
VD
7245
7246 /* Readahead page, never charged */
7247 if (!memcg)
7248 return 0;
7249
f3a53a3a
TH
7250 if (!entry.val) {
7251 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7252 return 0;
f3a53a3a 7253 }
bb98f2c5 7254
1f47b61f
VD
7255 memcg = mem_cgroup_id_get_online(memcg);
7256
2d1c4980 7257 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7258 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7259 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7260 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7261 mem_cgroup_id_put(memcg);
37e84351 7262 return -ENOMEM;
1f47b61f 7263 }
37e84351 7264
38d8b4e6
HY
7265 /* Get references for the tail pages, too */
7266 if (nr_pages > 1)
7267 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7268 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7269 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7270 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7271
37e84351
VD
7272 return 0;
7273}
7274
21afa38e 7275/**
38d8b4e6 7276 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7277 * @entry: swap entry to uncharge
38d8b4e6 7278 * @nr_pages: the amount of swap space to uncharge
21afa38e 7279 */
38d8b4e6 7280void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7281{
7282 struct mem_cgroup *memcg;
7283 unsigned short id;
7284
38d8b4e6 7285 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7286 rcu_read_lock();
adbe427b 7287 memcg = mem_cgroup_from_id(id);
21afa38e 7288 if (memcg) {
2d1c4980 7289 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7290 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7291 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7292 else
38d8b4e6 7293 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7294 }
c9019e9b 7295 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7296 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7297 }
7298 rcu_read_unlock();
7299}
7300
d8b38438
VD
7301long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7302{
7303 long nr_swap_pages = get_nr_swap_pages();
7304
eccb52e7 7305 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7306 return nr_swap_pages;
7307 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7308 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7309 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7310 page_counter_read(&memcg->swap));
7311 return nr_swap_pages;
7312}
7313
5ccc5aba
VD
7314bool mem_cgroup_swap_full(struct page *page)
7315{
7316 struct mem_cgroup *memcg;
7317
7318 VM_BUG_ON_PAGE(!PageLocked(page), page);
7319
7320 if (vm_swap_full())
7321 return true;
eccb52e7 7322 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7323 return false;
7324
bcfe06bf 7325 memcg = page_memcg(page);
5ccc5aba
VD
7326 if (!memcg)
7327 return false;
7328
4b82ab4f
JK
7329 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7330 unsigned long usage = page_counter_read(&memcg->swap);
7331
7332 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7333 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7334 return true;
4b82ab4f 7335 }
5ccc5aba
VD
7336
7337 return false;
7338}
7339
eccb52e7 7340static int __init setup_swap_account(char *s)
21afa38e
JW
7341{
7342 if (!strcmp(s, "1"))
eccb52e7 7343 cgroup_memory_noswap = 0;
21afa38e 7344 else if (!strcmp(s, "0"))
eccb52e7 7345 cgroup_memory_noswap = 1;
21afa38e
JW
7346 return 1;
7347}
eccb52e7 7348__setup("swapaccount=", setup_swap_account);
21afa38e 7349
37e84351
VD
7350static u64 swap_current_read(struct cgroup_subsys_state *css,
7351 struct cftype *cft)
7352{
7353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7354
7355 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7356}
7357
4b82ab4f
JK
7358static int swap_high_show(struct seq_file *m, void *v)
7359{
7360 return seq_puts_memcg_tunable(m,
7361 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7362}
7363
7364static ssize_t swap_high_write(struct kernfs_open_file *of,
7365 char *buf, size_t nbytes, loff_t off)
7366{
7367 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7368 unsigned long high;
7369 int err;
7370
7371 buf = strstrip(buf);
7372 err = page_counter_memparse(buf, "max", &high);
7373 if (err)
7374 return err;
7375
7376 page_counter_set_high(&memcg->swap, high);
7377
7378 return nbytes;
7379}
7380
37e84351
VD
7381static int swap_max_show(struct seq_file *m, void *v)
7382{
677dc973
CD
7383 return seq_puts_memcg_tunable(m,
7384 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7385}
7386
7387static ssize_t swap_max_write(struct kernfs_open_file *of,
7388 char *buf, size_t nbytes, loff_t off)
7389{
7390 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7391 unsigned long max;
7392 int err;
7393
7394 buf = strstrip(buf);
7395 err = page_counter_memparse(buf, "max", &max);
7396 if (err)
7397 return err;
7398
be09102b 7399 xchg(&memcg->swap.max, max);
37e84351
VD
7400
7401 return nbytes;
7402}
7403
f3a53a3a
TH
7404static int swap_events_show(struct seq_file *m, void *v)
7405{
aa9694bb 7406 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7407
4b82ab4f
JK
7408 seq_printf(m, "high %lu\n",
7409 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7410 seq_printf(m, "max %lu\n",
7411 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7412 seq_printf(m, "fail %lu\n",
7413 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7414
7415 return 0;
7416}
7417
37e84351
VD
7418static struct cftype swap_files[] = {
7419 {
7420 .name = "swap.current",
7421 .flags = CFTYPE_NOT_ON_ROOT,
7422 .read_u64 = swap_current_read,
7423 },
4b82ab4f
JK
7424 {
7425 .name = "swap.high",
7426 .flags = CFTYPE_NOT_ON_ROOT,
7427 .seq_show = swap_high_show,
7428 .write = swap_high_write,
7429 },
37e84351
VD
7430 {
7431 .name = "swap.max",
7432 .flags = CFTYPE_NOT_ON_ROOT,
7433 .seq_show = swap_max_show,
7434 .write = swap_max_write,
7435 },
f3a53a3a
TH
7436 {
7437 .name = "swap.events",
7438 .flags = CFTYPE_NOT_ON_ROOT,
7439 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7440 .seq_show = swap_events_show,
7441 },
37e84351
VD
7442 { } /* terminate */
7443};
7444
eccb52e7 7445static struct cftype memsw_files[] = {
21afa38e
JW
7446 {
7447 .name = "memsw.usage_in_bytes",
7448 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7449 .read_u64 = mem_cgroup_read_u64,
7450 },
7451 {
7452 .name = "memsw.max_usage_in_bytes",
7453 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7454 .write = mem_cgroup_reset,
7455 .read_u64 = mem_cgroup_read_u64,
7456 },
7457 {
7458 .name = "memsw.limit_in_bytes",
7459 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7460 .write = mem_cgroup_write,
7461 .read_u64 = mem_cgroup_read_u64,
7462 },
7463 {
7464 .name = "memsw.failcnt",
7465 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7466 .write = mem_cgroup_reset,
7467 .read_u64 = mem_cgroup_read_u64,
7468 },
7469 { }, /* terminate */
7470};
7471
82ff165c
BS
7472/*
7473 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7474 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7475 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7476 * boot parameter. This may result in premature OOPS inside
7477 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7478 */
21afa38e
JW
7479static int __init mem_cgroup_swap_init(void)
7480{
2d1c4980
JW
7481 /* No memory control -> no swap control */
7482 if (mem_cgroup_disabled())
7483 cgroup_memory_noswap = true;
7484
7485 if (cgroup_memory_noswap)
eccb52e7
JW
7486 return 0;
7487
7488 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7489 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7490
21afa38e
JW
7491 return 0;
7492}
82ff165c 7493core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7494
7495#endif /* CONFIG_MEMCG_SWAP */