]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: page_idle_get_page() does not need lru_lock
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
37d5985c
RG
76/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
f7e1cb6e
JW
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
04823c83
VD
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
21afa38e 85/* Whether the swap controller is active */
c255a458 86#ifdef CONFIG_MEMCG_SWAP
eccb52e7 87bool cgroup_memory_noswap __read_mostly;
c077719b 88#else
eccb52e7 89#define cgroup_memory_noswap 1
2d1c4980 90#endif
c077719b 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
eccb52e7 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
510fc4e1 208 _KMEM,
d55f90bf 209 _TCP,
86ae53e1
GC
210};
211
a0db00fc
KS
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 214#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
8c7c6e34 217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
7775face
TH
233static inline bool should_force_charge(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
253extern spinlock_t css_set_lock;
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
55007d84 345/*
9855609b 346 * This will be used as a shrinker list's index.
b8627835
LZ
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
55007d84 352 *
dbcf73e2
VD
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
55007d84 355 */
dbcf73e2
VD
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
749c5415 358
05257a1a
VD
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
55007d84
GC
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
b8627835 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
b8627835 385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 386
d7f25f8a
GC
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
272911a4 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
ef12947c 393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 394EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 395#endif
17cc4dfe 396
0a4465d3
KT
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
86daf94e 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
86daf94e 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 497 goto unlock;
75866af6 498 }
0a4465d3
KT
499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
fae91d6d
KT
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
fae91d6d
KT
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
ad7fa852
TH
521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
ad7fa852
TH
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
ad7fa852
TH
536 memcg = page->mem_cgroup;
537
9e10a130 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
539 memcg = root_mem_cgroup;
540
ad7fa852
TH
541 return &memcg->css;
542}
543
2fc04524
VD
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
9855609b 563 memcg = page->mem_cgroup;
286e04b8 564
9855609b
RG
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
286e04b8 573
2fc04524
VD
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580}
581
ef8f2327
MG
582static struct mem_cgroup_per_node *
583mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 584{
97a6c37b 585 int nid = page_to_nid(page);
f64c3f54 586
ef8f2327 587 return memcg->nodeinfo[nid];
f64c3f54
BS
588}
589
ef8f2327
MG
590static struct mem_cgroup_tree_per_node *
591soft_limit_tree_node(int nid)
bb4cc1a8 592{
ef8f2327 593 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
594}
595
ef8f2327 596static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
597soft_limit_tree_from_page(struct page *page)
598{
599 int nid = page_to_nid(page);
bb4cc1a8 600
ef8f2327 601 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
602}
603
ef8f2327
MG
604static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 606 unsigned long new_usage_in_excess)
bb4cc1a8
AM
607{
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
ef8f2327 610 struct mem_cgroup_per_node *mz_node;
fa90b2fd 611 bool rightmost = true;
bb4cc1a8
AM
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
ef8f2327 621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 622 tree_node);
fa90b2fd 623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 624 p = &(*p)->rb_left;
fa90b2fd 625 rightmost = false;
378876b0 626 } else {
bb4cc1a8 627 p = &(*p)->rb_right;
378876b0 628 }
bb4cc1a8 629 }
fa90b2fd
DB
630
631 if (rightmost)
632 mctz->rb_rightmost = &mz->tree_node;
633
bb4cc1a8
AM
634 rb_link_node(&mz->tree_node, parent, p);
635 rb_insert_color(&mz->tree_node, &mctz->rb_root);
636 mz->on_tree = true;
637}
638
ef8f2327
MG
639static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
640 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
641{
642 if (!mz->on_tree)
643 return;
fa90b2fd
DB
644
645 if (&mz->tree_node == mctz->rb_rightmost)
646 mctz->rb_rightmost = rb_prev(&mz->tree_node);
647
bb4cc1a8
AM
648 rb_erase(&mz->tree_node, &mctz->rb_root);
649 mz->on_tree = false;
650}
651
ef8f2327
MG
652static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
653 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 654{
0a31bc97
JW
655 unsigned long flags;
656
657 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 658 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 659 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
660}
661
3e32cb2e
JW
662static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
663{
664 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 665 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
666 unsigned long excess = 0;
667
668 if (nr_pages > soft_limit)
669 excess = nr_pages - soft_limit;
670
671 return excess;
672}
bb4cc1a8
AM
673
674static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
675{
3e32cb2e 676 unsigned long excess;
ef8f2327
MG
677 struct mem_cgroup_per_node *mz;
678 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 679
e231875b 680 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
681 if (!mctz)
682 return;
bb4cc1a8
AM
683 /*
684 * Necessary to update all ancestors when hierarchy is used.
685 * because their event counter is not touched.
686 */
687 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 688 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 689 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
690 /*
691 * We have to update the tree if mz is on RB-tree or
692 * mem is over its softlimit.
693 */
694 if (excess || mz->on_tree) {
0a31bc97
JW
695 unsigned long flags;
696
697 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
698 /* if on-tree, remove it */
699 if (mz->on_tree)
cf2c8127 700 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
701 /*
702 * Insert again. mz->usage_in_excess will be updated.
703 * If excess is 0, no tree ops.
704 */
cf2c8127 705 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707 }
708 }
709}
710
711static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
712{
ef8f2327
MG
713 struct mem_cgroup_tree_per_node *mctz;
714 struct mem_cgroup_per_node *mz;
715 int nid;
bb4cc1a8 716
e231875b 717 for_each_node(nid) {
ef8f2327
MG
718 mz = mem_cgroup_nodeinfo(memcg, nid);
719 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
720 if (mctz)
721 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
722 }
723}
724
ef8f2327
MG
725static struct mem_cgroup_per_node *
726__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 727{
ef8f2327 728 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
729
730retry:
731 mz = NULL;
fa90b2fd 732 if (!mctz->rb_rightmost)
bb4cc1a8
AM
733 goto done; /* Nothing to reclaim from */
734
fa90b2fd
DB
735 mz = rb_entry(mctz->rb_rightmost,
736 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
737 /*
738 * Remove the node now but someone else can add it back,
739 * we will to add it back at the end of reclaim to its correct
740 * position in the tree.
741 */
cf2c8127 742 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 743 if (!soft_limit_excess(mz->memcg) ||
8965aa28 744 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
745 goto retry;
746done:
747 return mz;
748}
749
ef8f2327
MG
750static struct mem_cgroup_per_node *
751mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 752{
ef8f2327 753 struct mem_cgroup_per_node *mz;
bb4cc1a8 754
0a31bc97 755 spin_lock_irq(&mctz->lock);
bb4cc1a8 756 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 757 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
758 return mz;
759}
760
db9adbcb
JW
761/**
762 * __mod_memcg_state - update cgroup memory statistics
763 * @memcg: the memory cgroup
764 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
765 * @val: delta to add to the counter, can be negative
766 */
767void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
768{
ea426c2a 769 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
770
771 if (mem_cgroup_disabled())
772 return;
773
772616b0 774 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
775 threshold <<= PAGE_SHIFT;
776
db9adbcb 777 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 778 if (unlikely(abs(x) > threshold)) {
42a30035
JW
779 struct mem_cgroup *mi;
780
766a4c19
YS
781 /*
782 * Batch local counters to keep them in sync with
783 * the hierarchical ones.
784 */
785 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
788 x = 0;
789 }
790 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
791}
792
42a30035
JW
793static struct mem_cgroup_per_node *
794parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
795{
796 struct mem_cgroup *parent;
797
798 parent = parent_mem_cgroup(pn->memcg);
799 if (!parent)
800 return NULL;
801 return mem_cgroup_nodeinfo(parent, nid);
802}
803
eedc4e5a
RG
804void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805 int val)
db9adbcb
JW
806{
807 struct mem_cgroup_per_node *pn;
42a30035 808 struct mem_cgroup *memcg;
ea426c2a 809 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 810
db9adbcb 811 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 812 memcg = pn->memcg;
db9adbcb
JW
813
814 /* Update memcg */
42a30035 815 __mod_memcg_state(memcg, idx, val);
db9adbcb 816
b4c46484
RG
817 /* Update lruvec */
818 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
819
ea426c2a
RG
820 if (vmstat_item_in_bytes(idx))
821 threshold <<= PAGE_SHIFT;
822
db9adbcb 823 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 824 if (unlikely(abs(x) > threshold)) {
eedc4e5a 825 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
826 struct mem_cgroup_per_node *pi;
827
42a30035
JW
828 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
829 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
830 x = 0;
831 }
832 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
833}
834
eedc4e5a
RG
835/**
836 * __mod_lruvec_state - update lruvec memory statistics
837 * @lruvec: the lruvec
838 * @idx: the stat item
839 * @val: delta to add to the counter, can be negative
840 *
841 * The lruvec is the intersection of the NUMA node and a cgroup. This
842 * function updates the all three counters that are affected by a
843 * change of state at this level: per-node, per-cgroup, per-lruvec.
844 */
845void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
846 int val)
847{
848 /* Update node */
849 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
850
851 /* Update memcg and lruvec */
852 if (!mem_cgroup_disabled())
853 __mod_memcg_lruvec_state(lruvec, idx, val);
854}
855
c47d5032
SB
856void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
857 int val)
858{
859 struct page *head = compound_head(page); /* rmap on tail pages */
860 pg_data_t *pgdat = page_pgdat(page);
861 struct lruvec *lruvec;
862
863 /* Untracked pages have no memcg, no lruvec. Update only the node */
864 if (!head->mem_cgroup) {
865 __mod_node_page_state(pgdat, idx, val);
866 return;
867 }
868
869 lruvec = mem_cgroup_lruvec(head->mem_cgroup, pgdat);
870 __mod_lruvec_state(lruvec, idx, val);
871}
f0c0c115 872EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 873
da3ceeff 874void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 875{
4f103c63 876 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
877 struct mem_cgroup *memcg;
878 struct lruvec *lruvec;
879
880 rcu_read_lock();
4f103c63 881 memcg = mem_cgroup_from_obj(p);
ec9f0238 882
8faeb1ff
MS
883 /*
884 * Untracked pages have no memcg, no lruvec. Update only the
885 * node. If we reparent the slab objects to the root memcg,
886 * when we free the slab object, we need to update the per-memcg
887 * vmstats to keep it correct for the root memcg.
888 */
889 if (!memcg) {
ec9f0238
RG
890 __mod_node_page_state(pgdat, idx, val);
891 } else {
867e5e1d 892 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
893 __mod_lruvec_state(lruvec, idx, val);
894 }
895 rcu_read_unlock();
896}
897
db9adbcb
JW
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
902 * @count: the number of events that occured
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
907 unsigned long x;
908
909 if (mem_cgroup_disabled())
910 return;
911
912 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
913 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
914 struct mem_cgroup *mi;
915
766a4c19
YS
916 /*
917 * Batch local counters to keep them in sync with
918 * the hierarchical ones.
919 */
920 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
921 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
922 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
923 x = 0;
924 }
925 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
926}
927
42a30035 928static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 929{
871789d4 930 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
931}
932
42a30035
JW
933static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
934{
815744d7
JW
935 long x = 0;
936 int cpu;
937
938 for_each_possible_cpu(cpu)
939 x += per_cpu(memcg->vmstats_local->events[event], cpu);
940 return x;
42a30035
JW
941}
942
c0ff4b85 943static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 944 struct page *page,
3fba69a5 945 int nr_pages)
d52aa412 946{
e401f176
KH
947 /* pagein of a big page is an event. So, ignore page size */
948 if (nr_pages > 0)
c9019e9b 949 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 950 else {
c9019e9b 951 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
952 nr_pages = -nr_pages; /* for event */
953 }
e401f176 954
871789d4 955 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
956}
957
f53d7ce3
JW
958static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
959 enum mem_cgroup_events_target target)
7a159cc9
JW
960{
961 unsigned long val, next;
962
871789d4
CD
963 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
964 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 965 /* from time_after() in jiffies.h */
6a1a8b80 966 if ((long)(next - val) < 0) {
f53d7ce3
JW
967 switch (target) {
968 case MEM_CGROUP_TARGET_THRESH:
969 next = val + THRESHOLDS_EVENTS_TARGET;
970 break;
bb4cc1a8
AM
971 case MEM_CGROUP_TARGET_SOFTLIMIT:
972 next = val + SOFTLIMIT_EVENTS_TARGET;
973 break;
f53d7ce3
JW
974 default:
975 break;
976 }
871789d4 977 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 978 return true;
7a159cc9 979 }
f53d7ce3 980 return false;
d2265e6f
KH
981}
982
983/*
984 * Check events in order.
985 *
986 */
c0ff4b85 987static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
988{
989 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 992 bool do_softlimit;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 996 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
997 if (unlikely(do_softlimit))
998 mem_cgroup_update_tree(memcg, page);
0a31bc97 999 }
d2265e6f
KH
1000}
1001
cf475ad2 1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1003{
31a78f23
BS
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
073219e9 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1013}
33398cf2 1014EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1015
d46eb14b
SB
1016/**
1017 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1018 * @mm: mm from which memcg should be extracted. It can be NULL.
1019 *
1020 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1021 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1022 * returned.
1023 */
1024struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1025{
d46eb14b
SB
1026 struct mem_cgroup *memcg;
1027
1028 if (mem_cgroup_disabled())
1029 return NULL;
0b7f569e 1030
54595fe2
KH
1031 rcu_read_lock();
1032 do {
6f6acb00
MH
1033 /*
1034 * Page cache insertions can happen withou an
1035 * actual mm context, e.g. during disk probing
1036 * on boot, loopback IO, acct() writes etc.
1037 */
1038 if (unlikely(!mm))
df381975 1039 memcg = root_mem_cgroup;
6f6acb00
MH
1040 else {
1041 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042 if (unlikely(!memcg))
1043 memcg = root_mem_cgroup;
1044 }
00d484f3 1045 } while (!css_tryget(&memcg->css));
54595fe2 1046 rcu_read_unlock();
c0ff4b85 1047 return memcg;
54595fe2 1048}
d46eb14b
SB
1049EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1050
f745c6f5
SB
1051/**
1052 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1053 * @page: page from which memcg should be extracted.
1054 *
1055 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1056 * root_mem_cgroup is returned.
1057 */
1058struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1059{
1060 struct mem_cgroup *memcg = page->mem_cgroup;
1061
1062 if (mem_cgroup_disabled())
1063 return NULL;
1064
1065 rcu_read_lock();
8965aa28
SB
1066 /* Page should not get uncharged and freed memcg under us. */
1067 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1068 memcg = root_mem_cgroup;
1069 rcu_read_unlock();
1070 return memcg;
1071}
1072EXPORT_SYMBOL(get_mem_cgroup_from_page);
1073
37d5985c 1074static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1075{
37d5985c
RG
1076 if (in_interrupt())
1077 return this_cpu_read(int_active_memcg);
1078 else
1079 return current->active_memcg;
1080}
279c3393 1081
37d5985c
RG
1082static __always_inline struct mem_cgroup *get_active_memcg(void)
1083{
1084 struct mem_cgroup *memcg;
d46eb14b 1085
37d5985c
RG
1086 rcu_read_lock();
1087 memcg = active_memcg();
1088 if (memcg) {
8965aa28 1089 /* current->active_memcg must hold a ref. */
37d5985c 1090 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1091 memcg = root_mem_cgroup;
1092 else
d46eb14b 1093 memcg = current->active_memcg;
d46eb14b 1094 }
37d5985c
RG
1095 rcu_read_unlock();
1096
1097 return memcg;
1098}
1099
4127c650
RG
1100static __always_inline bool memcg_kmem_bypass(void)
1101{
1102 /* Allow remote memcg charging from any context. */
1103 if (unlikely(active_memcg()))
1104 return false;
1105
1106 /* Memcg to charge can't be determined. */
1107 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1108 return true;
1109
1110 return false;
1111}
1112
37d5985c
RG
1113/**
1114 * If active memcg is set, do not fallback to current->mm->memcg.
1115 */
1116static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1117{
1118 if (memcg_kmem_bypass())
1119 return NULL;
1120
1121 if (unlikely(active_memcg()))
1122 return get_active_memcg();
1123
d46eb14b
SB
1124 return get_mem_cgroup_from_mm(current->mm);
1125}
54595fe2 1126
5660048c
JW
1127/**
1128 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1129 * @root: hierarchy root
1130 * @prev: previously returned memcg, NULL on first invocation
1131 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1132 *
1133 * Returns references to children of the hierarchy below @root, or
1134 * @root itself, or %NULL after a full round-trip.
1135 *
1136 * Caller must pass the return value in @prev on subsequent
1137 * invocations for reference counting, or use mem_cgroup_iter_break()
1138 * to cancel a hierarchy walk before the round-trip is complete.
1139 *
05bdc520
ML
1140 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1141 * in the hierarchy among all concurrent reclaimers operating on the
1142 * same node.
5660048c 1143 */
694fbc0f 1144struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1145 struct mem_cgroup *prev,
694fbc0f 1146 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1147{
3f649ab7 1148 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1149 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1150 struct mem_cgroup *memcg = NULL;
5ac8fb31 1151 struct mem_cgroup *pos = NULL;
711d3d2c 1152
694fbc0f
AM
1153 if (mem_cgroup_disabled())
1154 return NULL;
5660048c 1155
9f3a0d09
JW
1156 if (!root)
1157 root = root_mem_cgroup;
7d74b06f 1158
9f3a0d09 1159 if (prev && !reclaim)
5ac8fb31 1160 pos = prev;
14067bb3 1161
542f85f9 1162 rcu_read_lock();
5f578161 1163
5ac8fb31 1164 if (reclaim) {
ef8f2327 1165 struct mem_cgroup_per_node *mz;
5ac8fb31 1166
ef8f2327 1167 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1168 iter = &mz->iter;
5ac8fb31
JW
1169
1170 if (prev && reclaim->generation != iter->generation)
1171 goto out_unlock;
1172
6df38689 1173 while (1) {
4db0c3c2 1174 pos = READ_ONCE(iter->position);
6df38689
VD
1175 if (!pos || css_tryget(&pos->css))
1176 break;
5ac8fb31 1177 /*
6df38689
VD
1178 * css reference reached zero, so iter->position will
1179 * be cleared by ->css_released. However, we should not
1180 * rely on this happening soon, because ->css_released
1181 * is called from a work queue, and by busy-waiting we
1182 * might block it. So we clear iter->position right
1183 * away.
5ac8fb31 1184 */
6df38689
VD
1185 (void)cmpxchg(&iter->position, pos, NULL);
1186 }
5ac8fb31
JW
1187 }
1188
1189 if (pos)
1190 css = &pos->css;
1191
1192 for (;;) {
1193 css = css_next_descendant_pre(css, &root->css);
1194 if (!css) {
1195 /*
1196 * Reclaimers share the hierarchy walk, and a
1197 * new one might jump in right at the end of
1198 * the hierarchy - make sure they see at least
1199 * one group and restart from the beginning.
1200 */
1201 if (!prev)
1202 continue;
1203 break;
527a5ec9 1204 }
7d74b06f 1205
5ac8fb31
JW
1206 /*
1207 * Verify the css and acquire a reference. The root
1208 * is provided by the caller, so we know it's alive
1209 * and kicking, and don't take an extra reference.
1210 */
1211 memcg = mem_cgroup_from_css(css);
14067bb3 1212
5ac8fb31
JW
1213 if (css == &root->css)
1214 break;
14067bb3 1215
0b8f73e1
JW
1216 if (css_tryget(css))
1217 break;
9f3a0d09 1218
5ac8fb31 1219 memcg = NULL;
9f3a0d09 1220 }
5ac8fb31
JW
1221
1222 if (reclaim) {
5ac8fb31 1223 /*
6df38689
VD
1224 * The position could have already been updated by a competing
1225 * thread, so check that the value hasn't changed since we read
1226 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1227 */
6df38689
VD
1228 (void)cmpxchg(&iter->position, pos, memcg);
1229
5ac8fb31
JW
1230 if (pos)
1231 css_put(&pos->css);
1232
1233 if (!memcg)
1234 iter->generation++;
1235 else if (!prev)
1236 reclaim->generation = iter->generation;
9f3a0d09 1237 }
5ac8fb31 1238
542f85f9
MH
1239out_unlock:
1240 rcu_read_unlock();
c40046f3
MH
1241 if (prev && prev != root)
1242 css_put(&prev->css);
1243
9f3a0d09 1244 return memcg;
14067bb3 1245}
7d74b06f 1246
5660048c
JW
1247/**
1248 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1249 * @root: hierarchy root
1250 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1251 */
1252void mem_cgroup_iter_break(struct mem_cgroup *root,
1253 struct mem_cgroup *prev)
9f3a0d09
JW
1254{
1255 if (!root)
1256 root = root_mem_cgroup;
1257 if (prev && prev != root)
1258 css_put(&prev->css);
1259}
7d74b06f 1260
54a83d6b
MC
1261static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1262 struct mem_cgroup *dead_memcg)
6df38689 1263{
6df38689 1264 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1265 struct mem_cgroup_per_node *mz;
1266 int nid;
6df38689 1267
54a83d6b
MC
1268 for_each_node(nid) {
1269 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1270 iter = &mz->iter;
1271 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1272 }
1273}
1274
54a83d6b
MC
1275static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1276{
1277 struct mem_cgroup *memcg = dead_memcg;
1278 struct mem_cgroup *last;
1279
1280 do {
1281 __invalidate_reclaim_iterators(memcg, dead_memcg);
1282 last = memcg;
1283 } while ((memcg = parent_mem_cgroup(memcg)));
1284
1285 /*
1286 * When cgruop1 non-hierarchy mode is used,
1287 * parent_mem_cgroup() does not walk all the way up to the
1288 * cgroup root (root_mem_cgroup). So we have to handle
1289 * dead_memcg from cgroup root separately.
1290 */
1291 if (last != root_mem_cgroup)
1292 __invalidate_reclaim_iterators(root_mem_cgroup,
1293 dead_memcg);
1294}
1295
7c5f64f8
VD
1296/**
1297 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1298 * @memcg: hierarchy root
1299 * @fn: function to call for each task
1300 * @arg: argument passed to @fn
1301 *
1302 * This function iterates over tasks attached to @memcg or to any of its
1303 * descendants and calls @fn for each task. If @fn returns a non-zero
1304 * value, the function breaks the iteration loop and returns the value.
1305 * Otherwise, it will iterate over all tasks and return 0.
1306 *
1307 * This function must not be called for the root memory cgroup.
1308 */
1309int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1310 int (*fn)(struct task_struct *, void *), void *arg)
1311{
1312 struct mem_cgroup *iter;
1313 int ret = 0;
1314
1315 BUG_ON(memcg == root_mem_cgroup);
1316
1317 for_each_mem_cgroup_tree(iter, memcg) {
1318 struct css_task_iter it;
1319 struct task_struct *task;
1320
f168a9a5 1321 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1322 while (!ret && (task = css_task_iter_next(&it)))
1323 ret = fn(task, arg);
1324 css_task_iter_end(&it);
1325 if (ret) {
1326 mem_cgroup_iter_break(memcg, iter);
1327 break;
1328 }
1329 }
1330 return ret;
1331}
1332
925b7673 1333/**
dfe0e773 1334 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1335 * @page: the page
f144c390 1336 * @pgdat: pgdat of the page
dfe0e773 1337 *
a5eb011a 1338 * This function relies on page's memcg being stable - see the
a0b5b414 1339 * access rules in commit_charge().
925b7673 1340 */
599d0c95 1341struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1342{
ef8f2327 1343 struct mem_cgroup_per_node *mz;
925b7673 1344 struct mem_cgroup *memcg;
bea8c150 1345 struct lruvec *lruvec;
6d12e2d8 1346
bea8c150 1347 if (mem_cgroup_disabled()) {
867e5e1d 1348 lruvec = &pgdat->__lruvec;
bea8c150
HD
1349 goto out;
1350 }
925b7673 1351
1306a85a 1352 memcg = page->mem_cgroup;
7512102c 1353 /*
dfe0e773 1354 * Swapcache readahead pages are added to the LRU - and
29833315 1355 * possibly migrated - before they are charged.
7512102c 1356 */
29833315
JW
1357 if (!memcg)
1358 memcg = root_mem_cgroup;
7512102c 1359
ef8f2327 1360 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1361 lruvec = &mz->lruvec;
1362out:
1363 /*
1364 * Since a node can be onlined after the mem_cgroup was created,
1365 * we have to be prepared to initialize lruvec->zone here;
1366 * and if offlined then reonlined, we need to reinitialize it.
1367 */
599d0c95
MG
1368 if (unlikely(lruvec->pgdat != pgdat))
1369 lruvec->pgdat = pgdat;
bea8c150 1370 return lruvec;
08e552c6 1371}
b69408e8 1372
925b7673 1373/**
fa9add64
HD
1374 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1375 * @lruvec: mem_cgroup per zone lru vector
1376 * @lru: index of lru list the page is sitting on
b4536f0c 1377 * @zid: zone id of the accounted pages
fa9add64 1378 * @nr_pages: positive when adding or negative when removing
925b7673 1379 *
ca707239
HD
1380 * This function must be called under lru_lock, just before a page is added
1381 * to or just after a page is removed from an lru list (that ordering being
1382 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1383 */
fa9add64 1384void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1385 int zid, int nr_pages)
3f58a829 1386{
ef8f2327 1387 struct mem_cgroup_per_node *mz;
fa9add64 1388 unsigned long *lru_size;
ca707239 1389 long size;
3f58a829
MK
1390
1391 if (mem_cgroup_disabled())
1392 return;
1393
ef8f2327 1394 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1395 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1396
1397 if (nr_pages < 0)
1398 *lru_size += nr_pages;
1399
1400 size = *lru_size;
b4536f0c
MH
1401 if (WARN_ONCE(size < 0,
1402 "%s(%p, %d, %d): lru_size %ld\n",
1403 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1404 VM_BUG_ON(1);
1405 *lru_size = 0;
1406 }
1407
1408 if (nr_pages > 0)
1409 *lru_size += nr_pages;
08e552c6 1410}
544122e5 1411
19942822 1412/**
9d11ea9f 1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1414 * @memcg: the memory cgroup
19942822 1415 *
9d11ea9f 1416 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1417 * pages.
19942822 1418 */
c0ff4b85 1419static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1420{
3e32cb2e
JW
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
9d11ea9f 1424
3e32cb2e 1425 count = page_counter_read(&memcg->memory);
bbec2e15 1426 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1427 if (count < limit)
1428 margin = limit - count;
1429
7941d214 1430 if (do_memsw_account()) {
3e32cb2e 1431 count = page_counter_read(&memcg->memsw);
bbec2e15 1432 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1433 if (count < limit)
3e32cb2e 1434 margin = min(margin, limit - count);
cbedbac3
LR
1435 else
1436 margin = 0;
3e32cb2e
JW
1437 }
1438
1439 return margin;
19942822
JW
1440}
1441
32047e2a 1442/*
bdcbb659 1443 * A routine for checking "mem" is under move_account() or not.
32047e2a 1444 *
bdcbb659
QH
1445 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1446 * moving cgroups. This is for waiting at high-memory pressure
1447 * caused by "move".
32047e2a 1448 */
c0ff4b85 1449static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1450{
2bd9bb20
KH
1451 struct mem_cgroup *from;
1452 struct mem_cgroup *to;
4b534334 1453 bool ret = false;
2bd9bb20
KH
1454 /*
1455 * Unlike task_move routines, we access mc.to, mc.from not under
1456 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1457 */
1458 spin_lock(&mc.lock);
1459 from = mc.from;
1460 to = mc.to;
1461 if (!from)
1462 goto unlock;
3e92041d 1463
2314b42d
JW
1464 ret = mem_cgroup_is_descendant(from, memcg) ||
1465 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1466unlock:
1467 spin_unlock(&mc.lock);
4b534334
KH
1468 return ret;
1469}
1470
c0ff4b85 1471static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1472{
1473 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1474 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1475 DEFINE_WAIT(wait);
1476 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1477 /* moving charge context might have finished. */
1478 if (mc.moving_task)
1479 schedule();
1480 finish_wait(&mc.waitq, &wait);
1481 return true;
1482 }
1483 }
1484 return false;
1485}
1486
5f9a4f4a
MS
1487struct memory_stat {
1488 const char *name;
1489 unsigned int ratio;
1490 unsigned int idx;
1491};
1492
1493static struct memory_stat memory_stats[] = {
1494 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1495 { "file", PAGE_SIZE, NR_FILE_PAGES },
1496 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
f0c0c115 1497 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
5f9a4f4a
MS
1498 { "percpu", 1, MEMCG_PERCPU_B },
1499 { "sock", PAGE_SIZE, MEMCG_SOCK },
1500 { "shmem", PAGE_SIZE, NR_SHMEM },
1501 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1502 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1503 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1505 /*
1506 * The ratio will be initialized in memory_stats_init(). Because
1507 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1508 * constant(e.g. powerpc).
1509 */
1510 { "anon_thp", 0, NR_ANON_THPS },
b8eddff8
JW
1511 { "file_thp", 0, NR_FILE_THPS },
1512 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1513#endif
1514 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1515 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1516 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1517 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1518 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1519
1520 /*
1521 * Note: The slab_reclaimable and slab_unreclaimable must be
1522 * together and slab_reclaimable must be in front.
1523 */
1524 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1525 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1526
1527 /* The memory events */
1528 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1529 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1530 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1531 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1532 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1533 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1534 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1535};
1536
1537static int __init memory_stats_init(void)
1538{
1539 int i;
1540
1541 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1542#ifdef CONFIG_TRANSPARENT_HUGEPAGE
b8eddff8
JW
1543 if (memory_stats[i].idx == NR_ANON_THPS ||
1544 memory_stats[i].idx == NR_FILE_THPS ||
1545 memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1546 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1547#endif
1548 VM_BUG_ON(!memory_stats[i].ratio);
1549 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1550 }
1551
1552 return 0;
1553}
1554pure_initcall(memory_stats_init);
1555
c8713d0b
JW
1556static char *memory_stat_format(struct mem_cgroup *memcg)
1557{
1558 struct seq_buf s;
1559 int i;
71cd3113 1560
c8713d0b
JW
1561 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1562 if (!s.buffer)
1563 return NULL;
1564
1565 /*
1566 * Provide statistics on the state of the memory subsystem as
1567 * well as cumulative event counters that show past behavior.
1568 *
1569 * This list is ordered following a combination of these gradients:
1570 * 1) generic big picture -> specifics and details
1571 * 2) reflecting userspace activity -> reflecting kernel heuristics
1572 *
1573 * Current memory state:
1574 */
1575
5f9a4f4a
MS
1576 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1577 u64 size;
c8713d0b 1578
5f9a4f4a
MS
1579 size = memcg_page_state(memcg, memory_stats[i].idx);
1580 size *= memory_stats[i].ratio;
1581 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1582
5f9a4f4a
MS
1583 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1584 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1585 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1586 seq_buf_printf(&s, "slab %llu\n", size);
1587 }
1588 }
c8713d0b
JW
1589
1590 /* Accumulated memory events */
1591
ebc5d83d
KK
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1593 memcg_events(memcg, PGFAULT));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1595 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1597 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1598 seq_buf_printf(&s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT));
1601 seq_buf_printf(&s, "pgsteal %lu\n",
1602 memcg_events(memcg, PGSTEAL_KSWAPD) +
1603 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1605 memcg_events(memcg, PGACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1607 memcg_events(memcg, PGDEACTIVATE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1609 memcg_events(memcg, PGLAZYFREE));
1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1611 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1612
1613#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1615 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1617 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1618#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1619
1620 /* The above should easily fit into one page */
1621 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1622
1623 return s.buffer;
1624}
71cd3113 1625
58cf188e 1626#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1627/**
f0c867d9 1628 * mem_cgroup_print_oom_context: Print OOM information relevant to
1629 * memory controller.
e222432b
BS
1630 * @memcg: The memory cgroup that went over limit
1631 * @p: Task that is going to be killed
1632 *
1633 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1634 * enabled
1635 */
f0c867d9 1636void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1637{
e222432b
BS
1638 rcu_read_lock();
1639
f0c867d9 1640 if (memcg) {
1641 pr_cont(",oom_memcg=");
1642 pr_cont_cgroup_path(memcg->css.cgroup);
1643 } else
1644 pr_cont(",global_oom");
2415b9f5 1645 if (p) {
f0c867d9 1646 pr_cont(",task_memcg=");
2415b9f5 1647 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1648 }
e222432b 1649 rcu_read_unlock();
f0c867d9 1650}
1651
1652/**
1653 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 */
1657void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1658{
c8713d0b 1659 char *buf;
e222432b 1660
3e32cb2e
JW
1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->memory)),
15b42562 1663 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1664 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1665 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1667 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1668 else {
1669 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->memsw)),
1671 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->kmem)),
1674 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1675 }
c8713d0b
JW
1676
1677 pr_info("Memory cgroup stats for ");
1678 pr_cont_cgroup_path(memcg->css.cgroup);
1679 pr_cont(":");
1680 buf = memory_stat_format(memcg);
1681 if (!buf)
1682 return;
1683 pr_info("%s", buf);
1684 kfree(buf);
e222432b
BS
1685}
1686
a63d83f4
DR
1687/*
1688 * Return the memory (and swap, if configured) limit for a memcg.
1689 */
bbec2e15 1690unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1691{
8d387a5f
WL
1692 unsigned long max = READ_ONCE(memcg->memory.max);
1693
1694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1695 if (mem_cgroup_swappiness(memcg))
1696 max += min(READ_ONCE(memcg->swap.max),
1697 (unsigned long)total_swap_pages);
1698 } else { /* v1 */
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
9a5a8f19 1705 }
bbec2e15 1706 return max;
a63d83f4
DR
1707}
1708
9783aa99
CD
1709unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1710{
1711 return page_counter_read(&memcg->memory);
1712}
1713
b6e6edcf 1714static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1715 int order)
9cbb78bb 1716{
6e0fc46d
DR
1717 struct oom_control oc = {
1718 .zonelist = NULL,
1719 .nodemask = NULL,
2a966b77 1720 .memcg = memcg,
6e0fc46d
DR
1721 .gfp_mask = gfp_mask,
1722 .order = order,
6e0fc46d 1723 };
1378b37d 1724 bool ret = true;
9cbb78bb 1725
7775face
TH
1726 if (mutex_lock_killable(&oom_lock))
1727 return true;
1378b37d
YS
1728
1729 if (mem_cgroup_margin(memcg) >= (1 << order))
1730 goto unlock;
1731
7775face
TH
1732 /*
1733 * A few threads which were not waiting at mutex_lock_killable() can
1734 * fail to bail out. Therefore, check again after holding oom_lock.
1735 */
1736 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1737
1738unlock:
dc56401f 1739 mutex_unlock(&oom_lock);
7c5f64f8 1740 return ret;
9cbb78bb
DR
1741}
1742
0608f43d 1743static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1744 pg_data_t *pgdat,
0608f43d
AM
1745 gfp_t gfp_mask,
1746 unsigned long *total_scanned)
1747{
1748 struct mem_cgroup *victim = NULL;
1749 int total = 0;
1750 int loop = 0;
1751 unsigned long excess;
1752 unsigned long nr_scanned;
1753 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1754 .pgdat = pgdat,
0608f43d
AM
1755 };
1756
3e32cb2e 1757 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1758
1759 while (1) {
1760 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1761 if (!victim) {
1762 loop++;
1763 if (loop >= 2) {
1764 /*
1765 * If we have not been able to reclaim
1766 * anything, it might because there are
1767 * no reclaimable pages under this hierarchy
1768 */
1769 if (!total)
1770 break;
1771 /*
1772 * We want to do more targeted reclaim.
1773 * excess >> 2 is not to excessive so as to
1774 * reclaim too much, nor too less that we keep
1775 * coming back to reclaim from this cgroup
1776 */
1777 if (total >= (excess >> 2) ||
1778 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1779 break;
1780 }
1781 continue;
1782 }
a9dd0a83 1783 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1784 pgdat, &nr_scanned);
0608f43d 1785 *total_scanned += nr_scanned;
3e32cb2e 1786 if (!soft_limit_excess(root_memcg))
0608f43d 1787 break;
6d61ef40 1788 }
0608f43d
AM
1789 mem_cgroup_iter_break(root_memcg, victim);
1790 return total;
6d61ef40
BS
1791}
1792
0056f4e6
JW
1793#ifdef CONFIG_LOCKDEP
1794static struct lockdep_map memcg_oom_lock_dep_map = {
1795 .name = "memcg_oom_lock",
1796};
1797#endif
1798
fb2a6fc5
JW
1799static DEFINE_SPINLOCK(memcg_oom_lock);
1800
867578cb
KH
1801/*
1802 * Check OOM-Killer is already running under our hierarchy.
1803 * If someone is running, return false.
1804 */
fb2a6fc5 1805static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1806{
79dfdacc 1807 struct mem_cgroup *iter, *failed = NULL;
a636b327 1808
fb2a6fc5
JW
1809 spin_lock(&memcg_oom_lock);
1810
9f3a0d09 1811 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1812 if (iter->oom_lock) {
79dfdacc
MH
1813 /*
1814 * this subtree of our hierarchy is already locked
1815 * so we cannot give a lock.
1816 */
79dfdacc 1817 failed = iter;
9f3a0d09
JW
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
23751be0
JW
1820 } else
1821 iter->oom_lock = true;
7d74b06f 1822 }
867578cb 1823
fb2a6fc5
JW
1824 if (failed) {
1825 /*
1826 * OK, we failed to lock the whole subtree so we have
1827 * to clean up what we set up to the failing subtree
1828 */
1829 for_each_mem_cgroup_tree(iter, memcg) {
1830 if (iter == failed) {
1831 mem_cgroup_iter_break(memcg, iter);
1832 break;
1833 }
1834 iter->oom_lock = false;
79dfdacc 1835 }
0056f4e6
JW
1836 } else
1837 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1838
1839 spin_unlock(&memcg_oom_lock);
1840
1841 return !failed;
a636b327 1842}
0b7f569e 1843
fb2a6fc5 1844static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1845{
7d74b06f
KH
1846 struct mem_cgroup *iter;
1847
fb2a6fc5 1848 spin_lock(&memcg_oom_lock);
5facae4f 1849 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1850 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1851 iter->oom_lock = false;
fb2a6fc5 1852 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1853}
1854
c0ff4b85 1855static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1856{
1857 struct mem_cgroup *iter;
1858
c2b42d3c 1859 spin_lock(&memcg_oom_lock);
c0ff4b85 1860 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1861 iter->under_oom++;
1862 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1863}
1864
c0ff4b85 1865static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1866{
1867 struct mem_cgroup *iter;
1868
867578cb 1869 /*
7a52d4d8
ML
1870 * Be careful about under_oom underflows becase a child memcg
1871 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1872 */
c2b42d3c 1873 spin_lock(&memcg_oom_lock);
c0ff4b85 1874 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1875 if (iter->under_oom > 0)
1876 iter->under_oom--;
1877 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1878}
1879
867578cb
KH
1880static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1881
dc98df5a 1882struct oom_wait_info {
d79154bb 1883 struct mem_cgroup *memcg;
ac6424b9 1884 wait_queue_entry_t wait;
dc98df5a
KH
1885};
1886
ac6424b9 1887static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1888 unsigned mode, int sync, void *arg)
1889{
d79154bb
HD
1890 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1891 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1892 struct oom_wait_info *oom_wait_info;
1893
1894 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1895 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1896
2314b42d
JW
1897 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1898 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1899 return 0;
dc98df5a
KH
1900 return autoremove_wake_function(wait, mode, sync, arg);
1901}
1902
c0ff4b85 1903static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1904{
c2b42d3c
TH
1905 /*
1906 * For the following lockless ->under_oom test, the only required
1907 * guarantee is that it must see the state asserted by an OOM when
1908 * this function is called as a result of userland actions
1909 * triggered by the notification of the OOM. This is trivially
1910 * achieved by invoking mem_cgroup_mark_under_oom() before
1911 * triggering notification.
1912 */
1913 if (memcg && memcg->under_oom)
f4b90b70 1914 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1915}
1916
29ef680a
MH
1917enum oom_status {
1918 OOM_SUCCESS,
1919 OOM_FAILED,
1920 OOM_ASYNC,
1921 OOM_SKIPPED
1922};
1923
1924static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1925{
7056d3a3
MH
1926 enum oom_status ret;
1927 bool locked;
1928
29ef680a
MH
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return OOM_SKIPPED;
1931
7a1adfdd
RG
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
867578cb 1934 /*
49426420
JW
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
29ef680a
MH
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
49426420 1943 *
29ef680a
MH
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
867578cb 1951 */
29ef680a
MH
1952 if (memcg->oom_kill_disable) {
1953 if (!current->in_user_fault)
1954 return OOM_SKIPPED;
1955 css_get(&memcg->css);
1956 current->memcg_in_oom = memcg;
1957 current->memcg_oom_gfp_mask = mask;
1958 current->memcg_oom_order = order;
1959
1960 return OOM_ASYNC;
1961 }
1962
7056d3a3
MH
1963 mem_cgroup_mark_under_oom(memcg);
1964
1965 locked = mem_cgroup_oom_trylock(memcg);
1966
1967 if (locked)
1968 mem_cgroup_oom_notify(memcg);
1969
1970 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1971 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1972 ret = OOM_SUCCESS;
1973 else
1974 ret = OOM_FAILED;
1975
1976 if (locked)
1977 mem_cgroup_oom_unlock(memcg);
29ef680a 1978
7056d3a3 1979 return ret;
3812c8c8
JW
1980}
1981
1982/**
1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1984 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1985 *
49426420
JW
1986 * This has to be called at the end of a page fault if the memcg OOM
1987 * handler was enabled.
3812c8c8 1988 *
49426420 1989 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1990 * sleep on a waitqueue until the userspace task resolves the
1991 * situation. Sleeping directly in the charge context with all kinds
1992 * of locks held is not a good idea, instead we remember an OOM state
1993 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1994 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1995 *
1996 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1997 * completed, %false otherwise.
3812c8c8 1998 */
49426420 1999bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2000{
626ebc41 2001 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2002 struct oom_wait_info owait;
49426420 2003 bool locked;
3812c8c8
JW
2004
2005 /* OOM is global, do not handle */
3812c8c8 2006 if (!memcg)
49426420 2007 return false;
3812c8c8 2008
7c5f64f8 2009 if (!handle)
49426420 2010 goto cleanup;
3812c8c8
JW
2011
2012 owait.memcg = memcg;
2013 owait.wait.flags = 0;
2014 owait.wait.func = memcg_oom_wake_function;
2015 owait.wait.private = current;
2055da97 2016 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2017
3812c8c8 2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2019 mem_cgroup_mark_under_oom(memcg);
2020
2021 locked = mem_cgroup_oom_trylock(memcg);
2022
2023 if (locked)
2024 mem_cgroup_oom_notify(memcg);
2025
2026 if (locked && !memcg->oom_kill_disable) {
2027 mem_cgroup_unmark_under_oom(memcg);
2028 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2029 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2030 current->memcg_oom_order);
49426420 2031 } else {
3812c8c8 2032 schedule();
49426420
JW
2033 mem_cgroup_unmark_under_oom(memcg);
2034 finish_wait(&memcg_oom_waitq, &owait.wait);
2035 }
2036
2037 if (locked) {
fb2a6fc5
JW
2038 mem_cgroup_oom_unlock(memcg);
2039 /*
2040 * There is no guarantee that an OOM-lock contender
2041 * sees the wakeups triggered by the OOM kill
2042 * uncharges. Wake any sleepers explicitely.
2043 */
2044 memcg_oom_recover(memcg);
2045 }
49426420 2046cleanup:
626ebc41 2047 current->memcg_in_oom = NULL;
3812c8c8 2048 css_put(&memcg->css);
867578cb 2049 return true;
0b7f569e
KH
2050}
2051
3d8b38eb
RG
2052/**
2053 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2054 * @victim: task to be killed by the OOM killer
2055 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2056 *
2057 * Returns a pointer to a memory cgroup, which has to be cleaned up
2058 * by killing all belonging OOM-killable tasks.
2059 *
2060 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2061 */
2062struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2063 struct mem_cgroup *oom_domain)
2064{
2065 struct mem_cgroup *oom_group = NULL;
2066 struct mem_cgroup *memcg;
2067
2068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2069 return NULL;
2070
2071 if (!oom_domain)
2072 oom_domain = root_mem_cgroup;
2073
2074 rcu_read_lock();
2075
2076 memcg = mem_cgroup_from_task(victim);
2077 if (memcg == root_mem_cgroup)
2078 goto out;
2079
48fe267c
RG
2080 /*
2081 * If the victim task has been asynchronously moved to a different
2082 * memory cgroup, we might end up killing tasks outside oom_domain.
2083 * In this case it's better to ignore memory.group.oom.
2084 */
2085 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2086 goto out;
2087
3d8b38eb
RG
2088 /*
2089 * Traverse the memory cgroup hierarchy from the victim task's
2090 * cgroup up to the OOMing cgroup (or root) to find the
2091 * highest-level memory cgroup with oom.group set.
2092 */
2093 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2094 if (memcg->oom_group)
2095 oom_group = memcg;
2096
2097 if (memcg == oom_domain)
2098 break;
2099 }
2100
2101 if (oom_group)
2102 css_get(&oom_group->css);
2103out:
2104 rcu_read_unlock();
2105
2106 return oom_group;
2107}
2108
2109void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2110{
2111 pr_info("Tasks in ");
2112 pr_cont_cgroup_path(memcg->css.cgroup);
2113 pr_cont(" are going to be killed due to memory.oom.group set\n");
2114}
2115
d7365e78 2116/**
81f8c3a4
JW
2117 * lock_page_memcg - lock a page->mem_cgroup binding
2118 * @page: the page
32047e2a 2119 *
81f8c3a4 2120 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2121 * another cgroup.
2122 *
2123 * It ensures lifetime of the returned memcg. Caller is responsible
2124 * for the lifetime of the page; __unlock_page_memcg() is available
2125 * when @page might get freed inside the locked section.
d69b042f 2126 */
739f79fc 2127struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2128{
9da7b521 2129 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2130 struct mem_cgroup *memcg;
6de22619 2131 unsigned long flags;
89c06bd5 2132
6de22619
JW
2133 /*
2134 * The RCU lock is held throughout the transaction. The fast
2135 * path can get away without acquiring the memcg->move_lock
2136 * because page moving starts with an RCU grace period.
739f79fc
JW
2137 *
2138 * The RCU lock also protects the memcg from being freed when
2139 * the page state that is going to change is the only thing
2140 * preventing the page itself from being freed. E.g. writeback
2141 * doesn't hold a page reference and relies on PG_writeback to
2142 * keep off truncation, migration and so forth.
2143 */
d7365e78
JW
2144 rcu_read_lock();
2145
2146 if (mem_cgroup_disabled())
739f79fc 2147 return NULL;
89c06bd5 2148again:
9da7b521 2149 memcg = head->mem_cgroup;
29833315 2150 if (unlikely(!memcg))
739f79fc 2151 return NULL;
d7365e78 2152
bdcbb659 2153 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2154 return memcg;
89c06bd5 2155
6de22619 2156 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2157 if (memcg != head->mem_cgroup) {
6de22619 2158 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2159 goto again;
2160 }
6de22619
JW
2161
2162 /*
2163 * When charge migration first begins, we can have locked and
2164 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2165 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2166 */
2167 memcg->move_lock_task = current;
2168 memcg->move_lock_flags = flags;
d7365e78 2169
739f79fc 2170 return memcg;
89c06bd5 2171}
81f8c3a4 2172EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2173
d7365e78 2174/**
739f79fc
JW
2175 * __unlock_page_memcg - unlock and unpin a memcg
2176 * @memcg: the memcg
2177 *
2178 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2179 */
739f79fc 2180void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2181{
6de22619
JW
2182 if (memcg && memcg->move_lock_task == current) {
2183 unsigned long flags = memcg->move_lock_flags;
2184
2185 memcg->move_lock_task = NULL;
2186 memcg->move_lock_flags = 0;
2187
2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 }
89c06bd5 2190
d7365e78 2191 rcu_read_unlock();
89c06bd5 2192}
739f79fc
JW
2193
2194/**
2195 * unlock_page_memcg - unlock a page->mem_cgroup binding
2196 * @page: the page
2197 */
2198void unlock_page_memcg(struct page *page)
2199{
9da7b521
JW
2200 struct page *head = compound_head(page);
2201
2202 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2203}
81f8c3a4 2204EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2205
cdec2e42
KH
2206struct memcg_stock_pcp {
2207 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2208 unsigned int nr_pages;
bf4f0599
RG
2209
2210#ifdef CONFIG_MEMCG_KMEM
2211 struct obj_cgroup *cached_objcg;
2212 unsigned int nr_bytes;
2213#endif
2214
cdec2e42 2215 struct work_struct work;
26fe6168 2216 unsigned long flags;
a0db00fc 2217#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2218};
2219static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2220static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2221
bf4f0599
RG
2222#ifdef CONFIG_MEMCG_KMEM
2223static void drain_obj_stock(struct memcg_stock_pcp *stock);
2224static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2225 struct mem_cgroup *root_memcg);
2226
2227#else
2228static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2229{
2230}
2231static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2232 struct mem_cgroup *root_memcg)
2233{
2234 return false;
2235}
2236#endif
2237
a0956d54
SS
2238/**
2239 * consume_stock: Try to consume stocked charge on this cpu.
2240 * @memcg: memcg to consume from.
2241 * @nr_pages: how many pages to charge.
2242 *
2243 * The charges will only happen if @memcg matches the current cpu's memcg
2244 * stock, and at least @nr_pages are available in that stock. Failure to
2245 * service an allocation will refill the stock.
2246 *
2247 * returns true if successful, false otherwise.
cdec2e42 2248 */
a0956d54 2249static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2250{
2251 struct memcg_stock_pcp *stock;
db2ba40c 2252 unsigned long flags;
3e32cb2e 2253 bool ret = false;
cdec2e42 2254
a983b5eb 2255 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2256 return ret;
a0956d54 2257
db2ba40c
JW
2258 local_irq_save(flags);
2259
2260 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2261 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2262 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2263 ret = true;
2264 }
db2ba40c
JW
2265
2266 local_irq_restore(flags);
2267
cdec2e42
KH
2268 return ret;
2269}
2270
2271/*
3e32cb2e 2272 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2273 */
2274static void drain_stock(struct memcg_stock_pcp *stock)
2275{
2276 struct mem_cgroup *old = stock->cached;
2277
1a3e1f40
JW
2278 if (!old)
2279 return;
2280
11c9ea4e 2281 if (stock->nr_pages) {
3e32cb2e 2282 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2283 if (do_memsw_account())
3e32cb2e 2284 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2285 stock->nr_pages = 0;
cdec2e42 2286 }
1a3e1f40
JW
2287
2288 css_put(&old->css);
cdec2e42 2289 stock->cached = NULL;
cdec2e42
KH
2290}
2291
cdec2e42
KH
2292static void drain_local_stock(struct work_struct *dummy)
2293{
db2ba40c
JW
2294 struct memcg_stock_pcp *stock;
2295 unsigned long flags;
2296
72f0184c
MH
2297 /*
2298 * The only protection from memory hotplug vs. drain_stock races is
2299 * that we always operate on local CPU stock here with IRQ disabled
2300 */
db2ba40c
JW
2301 local_irq_save(flags);
2302
2303 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2304 drain_obj_stock(stock);
cdec2e42 2305 drain_stock(stock);
26fe6168 2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2307
2308 local_irq_restore(flags);
cdec2e42
KH
2309}
2310
2311/*
3e32cb2e 2312 * Cache charges(val) to local per_cpu area.
320cc51d 2313 * This will be consumed by consume_stock() function, later.
cdec2e42 2314 */
c0ff4b85 2315static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2316{
db2ba40c
JW
2317 struct memcg_stock_pcp *stock;
2318 unsigned long flags;
2319
2320 local_irq_save(flags);
cdec2e42 2321
db2ba40c 2322 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2323 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2324 drain_stock(stock);
1a3e1f40 2325 css_get(&memcg->css);
c0ff4b85 2326 stock->cached = memcg;
cdec2e42 2327 }
11c9ea4e 2328 stock->nr_pages += nr_pages;
db2ba40c 2329
a983b5eb 2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2331 drain_stock(stock);
2332
db2ba40c 2333 local_irq_restore(flags);
cdec2e42
KH
2334}
2335
2336/*
c0ff4b85 2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2338 * of the hierarchy under it.
cdec2e42 2339 */
6d3d6aa2 2340static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2341{
26fe6168 2342 int cpu, curcpu;
d38144b7 2343
6d3d6aa2
JW
2344 /* If someone's already draining, avoid adding running more workers. */
2345 if (!mutex_trylock(&percpu_charge_mutex))
2346 return;
72f0184c
MH
2347 /*
2348 * Notify other cpus that system-wide "drain" is running
2349 * We do not care about races with the cpu hotplug because cpu down
2350 * as well as workers from this path always operate on the local
2351 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2352 */
5af12d0e 2353 curcpu = get_cpu();
cdec2e42
KH
2354 for_each_online_cpu(cpu) {
2355 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2356 struct mem_cgroup *memcg;
e1a366be 2357 bool flush = false;
26fe6168 2358
e1a366be 2359 rcu_read_lock();
c0ff4b85 2360 memcg = stock->cached;
e1a366be
RG
2361 if (memcg && stock->nr_pages &&
2362 mem_cgroup_is_descendant(memcg, root_memcg))
2363 flush = true;
bf4f0599
RG
2364 if (obj_stock_flush_required(stock, root_memcg))
2365 flush = true;
e1a366be
RG
2366 rcu_read_unlock();
2367
2368 if (flush &&
2369 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2370 if (cpu == curcpu)
2371 drain_local_stock(&stock->work);
2372 else
2373 schedule_work_on(cpu, &stock->work);
2374 }
cdec2e42 2375 }
5af12d0e 2376 put_cpu();
9f50fad6 2377 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2378}
2379
308167fc 2380static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2381{
cdec2e42 2382 struct memcg_stock_pcp *stock;
42a30035 2383 struct mem_cgroup *memcg, *mi;
cdec2e42 2384
cdec2e42
KH
2385 stock = &per_cpu(memcg_stock, cpu);
2386 drain_stock(stock);
a983b5eb
JW
2387
2388 for_each_mem_cgroup(memcg) {
2389 int i;
2390
2391 for (i = 0; i < MEMCG_NR_STAT; i++) {
2392 int nid;
2393 long x;
2394
871789d4 2395 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2396 if (x)
42a30035
JW
2397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2398 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2399
2400 if (i >= NR_VM_NODE_STAT_ITEMS)
2401 continue;
2402
2403 for_each_node(nid) {
2404 struct mem_cgroup_per_node *pn;
2405
2406 pn = mem_cgroup_nodeinfo(memcg, nid);
2407 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2408 if (x)
42a30035
JW
2409 do {
2410 atomic_long_add(x, &pn->lruvec_stat[i]);
2411 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2412 }
2413 }
2414
e27be240 2415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2416 long x;
2417
871789d4 2418 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2419 if (x)
42a30035
JW
2420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2421 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2422 }
2423 }
2424
308167fc 2425 return 0;
cdec2e42
KH
2426}
2427
b3ff9291
CD
2428static unsigned long reclaim_high(struct mem_cgroup *memcg,
2429 unsigned int nr_pages,
2430 gfp_t gfp_mask)
f7e1cb6e 2431{
b3ff9291
CD
2432 unsigned long nr_reclaimed = 0;
2433
f7e1cb6e 2434 do {
e22c6ed9
JW
2435 unsigned long pflags;
2436
d1663a90
JK
2437 if (page_counter_read(&memcg->memory) <=
2438 READ_ONCE(memcg->memory.high))
f7e1cb6e 2439 continue;
e22c6ed9 2440
e27be240 2441 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2442
2443 psi_memstall_enter(&pflags);
b3ff9291
CD
2444 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2445 gfp_mask, true);
e22c6ed9 2446 psi_memstall_leave(&pflags);
4bf17307
CD
2447 } while ((memcg = parent_mem_cgroup(memcg)) &&
2448 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2449
2450 return nr_reclaimed;
f7e1cb6e
JW
2451}
2452
2453static void high_work_func(struct work_struct *work)
2454{
2455 struct mem_cgroup *memcg;
2456
2457 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2458 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2459}
2460
0e4b01df
CD
2461/*
2462 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2463 * enough to still cause a significant slowdown in most cases, while still
2464 * allowing diagnostics and tracing to proceed without becoming stuck.
2465 */
2466#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2467
2468/*
2469 * When calculating the delay, we use these either side of the exponentiation to
2470 * maintain precision and scale to a reasonable number of jiffies (see the table
2471 * below.
2472 *
2473 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2474 * overage ratio to a delay.
ac5ddd0f 2475 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2476 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2477 * to produce a reasonable delay curve.
2478 *
2479 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2480 * reasonable delay curve compared to precision-adjusted overage, not
2481 * penalising heavily at first, but still making sure that growth beyond the
2482 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2483 * example, with a high of 100 megabytes:
2484 *
2485 * +-------+------------------------+
2486 * | usage | time to allocate in ms |
2487 * +-------+------------------------+
2488 * | 100M | 0 |
2489 * | 101M | 6 |
2490 * | 102M | 25 |
2491 * | 103M | 57 |
2492 * | 104M | 102 |
2493 * | 105M | 159 |
2494 * | 106M | 230 |
2495 * | 107M | 313 |
2496 * | 108M | 409 |
2497 * | 109M | 518 |
2498 * | 110M | 639 |
2499 * | 111M | 774 |
2500 * | 112M | 921 |
2501 * | 113M | 1081 |
2502 * | 114M | 1254 |
2503 * | 115M | 1439 |
2504 * | 116M | 1638 |
2505 * | 117M | 1849 |
2506 * | 118M | 2000 |
2507 * | 119M | 2000 |
2508 * | 120M | 2000 |
2509 * +-------+------------------------+
2510 */
2511 #define MEMCG_DELAY_PRECISION_SHIFT 20
2512 #define MEMCG_DELAY_SCALING_SHIFT 14
2513
8a5dbc65 2514static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2515{
8a5dbc65 2516 u64 overage;
b23afb93 2517
8a5dbc65
JK
2518 if (usage <= high)
2519 return 0;
e26733e0 2520
8a5dbc65
JK
2521 /*
2522 * Prevent division by 0 in overage calculation by acting as if
2523 * it was a threshold of 1 page
2524 */
2525 high = max(high, 1UL);
9b8b1754 2526
8a5dbc65
JK
2527 overage = usage - high;
2528 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2529 return div64_u64(overage, high);
2530}
e26733e0 2531
8a5dbc65
JK
2532static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2533{
2534 u64 overage, max_overage = 0;
e26733e0 2535
8a5dbc65
JK
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2538 READ_ONCE(memcg->memory.high));
8a5dbc65 2539 max_overage = max(overage, max_overage);
e26733e0
CD
2540 } while ((memcg = parent_mem_cgroup(memcg)) &&
2541 !mem_cgroup_is_root(memcg));
2542
8a5dbc65
JK
2543 return max_overage;
2544}
2545
4b82ab4f
JK
2546static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2547{
2548 u64 overage, max_overage = 0;
2549
2550 do {
2551 overage = calculate_overage(page_counter_read(&memcg->swap),
2552 READ_ONCE(memcg->swap.high));
2553 if (overage)
2554 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2555 max_overage = max(overage, max_overage);
2556 } while ((memcg = parent_mem_cgroup(memcg)) &&
2557 !mem_cgroup_is_root(memcg));
2558
2559 return max_overage;
2560}
2561
8a5dbc65
JK
2562/*
2563 * Get the number of jiffies that we should penalise a mischievous cgroup which
2564 * is exceeding its memory.high by checking both it and its ancestors.
2565 */
2566static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2567 unsigned int nr_pages,
2568 u64 max_overage)
2569{
2570 unsigned long penalty_jiffies;
2571
e26733e0
CD
2572 if (!max_overage)
2573 return 0;
0e4b01df
CD
2574
2575 /*
0e4b01df
CD
2576 * We use overage compared to memory.high to calculate the number of
2577 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2578 * fairly lenient on small overages, and increasingly harsh when the
2579 * memcg in question makes it clear that it has no intention of stopping
2580 * its crazy behaviour, so we exponentially increase the delay based on
2581 * overage amount.
2582 */
e26733e0
CD
2583 penalty_jiffies = max_overage * max_overage * HZ;
2584 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2585 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2586
2587 /*
2588 * Factor in the task's own contribution to the overage, such that four
2589 * N-sized allocations are throttled approximately the same as one
2590 * 4N-sized allocation.
2591 *
2592 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2593 * larger the current charge patch is than that.
2594 */
ff144e69 2595 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2596}
2597
2598/*
2599 * Scheduled by try_charge() to be executed from the userland return path
2600 * and reclaims memory over the high limit.
2601 */
2602void mem_cgroup_handle_over_high(void)
2603{
2604 unsigned long penalty_jiffies;
2605 unsigned long pflags;
b3ff9291 2606 unsigned long nr_reclaimed;
e26733e0 2607 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2608 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2609 struct mem_cgroup *memcg;
b3ff9291 2610 bool in_retry = false;
e26733e0
CD
2611
2612 if (likely(!nr_pages))
2613 return;
2614
2615 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2616 current->memcg_nr_pages_over_high = 0;
2617
b3ff9291
CD
2618retry_reclaim:
2619 /*
2620 * The allocating task should reclaim at least the batch size, but for
2621 * subsequent retries we only want to do what's necessary to prevent oom
2622 * or breaching resource isolation.
2623 *
2624 * This is distinct from memory.max or page allocator behaviour because
2625 * memory.high is currently batched, whereas memory.max and the page
2626 * allocator run every time an allocation is made.
2627 */
2628 nr_reclaimed = reclaim_high(memcg,
2629 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2630 GFP_KERNEL);
2631
e26733e0
CD
2632 /*
2633 * memory.high is breached and reclaim is unable to keep up. Throttle
2634 * allocators proactively to slow down excessive growth.
2635 */
8a5dbc65
JK
2636 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2637 mem_find_max_overage(memcg));
0e4b01df 2638
4b82ab4f
JK
2639 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2640 swap_find_max_overage(memcg));
2641
ff144e69
JK
2642 /*
2643 * Clamp the max delay per usermode return so as to still keep the
2644 * application moving forwards and also permit diagnostics, albeit
2645 * extremely slowly.
2646 */
2647 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2648
0e4b01df
CD
2649 /*
2650 * Don't sleep if the amount of jiffies this memcg owes us is so low
2651 * that it's not even worth doing, in an attempt to be nice to those who
2652 * go only a small amount over their memory.high value and maybe haven't
2653 * been aggressively reclaimed enough yet.
2654 */
2655 if (penalty_jiffies <= HZ / 100)
2656 goto out;
2657
b3ff9291
CD
2658 /*
2659 * If reclaim is making forward progress but we're still over
2660 * memory.high, we want to encourage that rather than doing allocator
2661 * throttling.
2662 */
2663 if (nr_reclaimed || nr_retries--) {
2664 in_retry = true;
2665 goto retry_reclaim;
2666 }
2667
0e4b01df
CD
2668 /*
2669 * If we exit early, we're guaranteed to die (since
2670 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2671 * need to account for any ill-begotten jiffies to pay them off later.
2672 */
2673 psi_memstall_enter(&pflags);
2674 schedule_timeout_killable(penalty_jiffies);
2675 psi_memstall_leave(&pflags);
2676
2677out:
2678 css_put(&memcg->css);
b23afb93
TH
2679}
2680
00501b53
JW
2681static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2682 unsigned int nr_pages)
8a9f3ccd 2683{
a983b5eb 2684 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2685 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2686 struct mem_cgroup *mem_over_limit;
3e32cb2e 2687 struct page_counter *counter;
e22c6ed9 2688 enum oom_status oom_status;
6539cc05 2689 unsigned long nr_reclaimed;
b70a2a21
JW
2690 bool may_swap = true;
2691 bool drained = false;
e22c6ed9 2692 unsigned long pflags;
a636b327 2693
ce00a967 2694 if (mem_cgroup_is_root(memcg))
10d53c74 2695 return 0;
6539cc05 2696retry:
b6b6cc72 2697 if (consume_stock(memcg, nr_pages))
10d53c74 2698 return 0;
8a9f3ccd 2699
7941d214 2700 if (!do_memsw_account() ||
6071ca52
JW
2701 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2702 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2703 goto done_restock;
7941d214 2704 if (do_memsw_account())
3e32cb2e
JW
2705 page_counter_uncharge(&memcg->memsw, batch);
2706 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2707 } else {
3e32cb2e 2708 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2709 may_swap = false;
3fbe7244 2710 }
7a81b88c 2711
6539cc05
JW
2712 if (batch > nr_pages) {
2713 batch = nr_pages;
2714 goto retry;
2715 }
6d61ef40 2716
869712fd
JW
2717 /*
2718 * Memcg doesn't have a dedicated reserve for atomic
2719 * allocations. But like the global atomic pool, we need to
2720 * put the burden of reclaim on regular allocation requests
2721 * and let these go through as privileged allocations.
2722 */
2723 if (gfp_mask & __GFP_ATOMIC)
2724 goto force;
2725
06b078fc
JW
2726 /*
2727 * Unlike in global OOM situations, memcg is not in a physical
2728 * memory shortage. Allow dying and OOM-killed tasks to
2729 * bypass the last charges so that they can exit quickly and
2730 * free their memory.
2731 */
7775face 2732 if (unlikely(should_force_charge()))
10d53c74 2733 goto force;
06b078fc 2734
89a28483
JW
2735 /*
2736 * Prevent unbounded recursion when reclaim operations need to
2737 * allocate memory. This might exceed the limits temporarily,
2738 * but we prefer facilitating memory reclaim and getting back
2739 * under the limit over triggering OOM kills in these cases.
2740 */
2741 if (unlikely(current->flags & PF_MEMALLOC))
2742 goto force;
2743
06b078fc
JW
2744 if (unlikely(task_in_memcg_oom(current)))
2745 goto nomem;
2746
d0164adc 2747 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2748 goto nomem;
4b534334 2749
e27be240 2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2751
e22c6ed9 2752 psi_memstall_enter(&pflags);
b70a2a21
JW
2753 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2754 gfp_mask, may_swap);
e22c6ed9 2755 psi_memstall_leave(&pflags);
6539cc05 2756
61e02c74 2757 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2758 goto retry;
28c34c29 2759
b70a2a21 2760 if (!drained) {
6d3d6aa2 2761 drain_all_stock(mem_over_limit);
b70a2a21
JW
2762 drained = true;
2763 goto retry;
2764 }
2765
28c34c29
JW
2766 if (gfp_mask & __GFP_NORETRY)
2767 goto nomem;
6539cc05
JW
2768 /*
2769 * Even though the limit is exceeded at this point, reclaim
2770 * may have been able to free some pages. Retry the charge
2771 * before killing the task.
2772 *
2773 * Only for regular pages, though: huge pages are rather
2774 * unlikely to succeed so close to the limit, and we fall back
2775 * to regular pages anyway in case of failure.
2776 */
61e02c74 2777 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2778 goto retry;
2779 /*
2780 * At task move, charge accounts can be doubly counted. So, it's
2781 * better to wait until the end of task_move if something is going on.
2782 */
2783 if (mem_cgroup_wait_acct_move(mem_over_limit))
2784 goto retry;
2785
9b130619
JW
2786 if (nr_retries--)
2787 goto retry;
2788
38d38493 2789 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2790 goto nomem;
2791
06b078fc 2792 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2793 goto force;
06b078fc 2794
6539cc05 2795 if (fatal_signal_pending(current))
10d53c74 2796 goto force;
6539cc05 2797
29ef680a
MH
2798 /*
2799 * keep retrying as long as the memcg oom killer is able to make
2800 * a forward progress or bypass the charge if the oom killer
2801 * couldn't make any progress.
2802 */
2803 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2804 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2805 switch (oom_status) {
2806 case OOM_SUCCESS:
d977aa93 2807 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2808 goto retry;
2809 case OOM_FAILED:
2810 goto force;
2811 default:
2812 goto nomem;
2813 }
7a81b88c 2814nomem:
6d1fdc48 2815 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2816 return -ENOMEM;
10d53c74
TH
2817force:
2818 /*
2819 * The allocation either can't fail or will lead to more memory
2820 * being freed very soon. Allow memory usage go over the limit
2821 * temporarily by force charging it.
2822 */
2823 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2824 if (do_memsw_account())
10d53c74 2825 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2826
2827 return 0;
6539cc05
JW
2828
2829done_restock:
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
b23afb93 2832
241994ed 2833 /*
b23afb93
TH
2834 * If the hierarchy is above the normal consumption range, schedule
2835 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2836 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2837 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2838 * not recorded as it most likely matches current's and won't
2839 * change in the meantime. As high limit is checked again before
2840 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2841 */
2842 do {
4b82ab4f
JK
2843 bool mem_high, swap_high;
2844
2845 mem_high = page_counter_read(&memcg->memory) >
2846 READ_ONCE(memcg->memory.high);
2847 swap_high = page_counter_read(&memcg->swap) >
2848 READ_ONCE(memcg->swap.high);
2849
2850 /* Don't bother a random interrupted task */
2851 if (in_interrupt()) {
2852 if (mem_high) {
f7e1cb6e
JW
2853 schedule_work(&memcg->high_work);
2854 break;
2855 }
4b82ab4f
JK
2856 continue;
2857 }
2858
2859 if (mem_high || swap_high) {
2860 /*
2861 * The allocating tasks in this cgroup will need to do
2862 * reclaim or be throttled to prevent further growth
2863 * of the memory or swap footprints.
2864 *
2865 * Target some best-effort fairness between the tasks,
2866 * and distribute reclaim work and delay penalties
2867 * based on how much each task is actually allocating.
2868 */
9516a18a 2869 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2870 set_notify_resume(current);
2871 break;
2872 }
241994ed 2873 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2874
2875 return 0;
7a81b88c 2876}
8a9f3ccd 2877
f0e45fb4 2878#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2879static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2880{
ce00a967
JW
2881 if (mem_cgroup_is_root(memcg))
2882 return;
2883
3e32cb2e 2884 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2885 if (do_memsw_account())
3e32cb2e 2886 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2887}
f0e45fb4 2888#endif
d01dd17f 2889
d9eb1ea2 2890static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2891{
1306a85a 2892 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2893 /*
a5eb011a 2894 * Any of the following ensures page's memcg stability:
0a31bc97 2895 *
a0b5b414
JW
2896 * - the page lock
2897 * - LRU isolation
2898 * - lock_page_memcg()
2899 * - exclusive reference
0a31bc97 2900 */
1306a85a 2901 page->mem_cgroup = memcg;
7a81b88c 2902}
66e1707b 2903
84c07d11 2904#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2905int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2906 gfp_t gfp)
2907{
2908 unsigned int objects = objs_per_slab_page(s, page);
2909 void *vec;
2910
2911 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2912 page_to_nid(page));
2913 if (!vec)
2914 return -ENOMEM;
2915
2916 if (cmpxchg(&page->obj_cgroups, NULL,
2917 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2918 kfree(vec);
2919 else
2920 kmemleak_not_leak(vec);
2921
2922 return 0;
2923}
2924
8380ce47
RG
2925/*
2926 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931struct mem_cgroup *mem_cgroup_from_obj(void *p)
2932{
2933 struct page *page;
2934
2935 if (mem_cgroup_disabled())
2936 return NULL;
2937
2938 page = virt_to_head_page(p);
2939
19b629c9
RG
2940 /*
2941 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2942 * or a pointer to obj_cgroup vector. In the latter case the lowest
2943 * bit of the pointer is set.
2944 * The page->mem_cgroup pointer can be asynchronously changed
2945 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2946 * from a valid memcg pointer to objcg vector or back.
2947 */
2948 if (!page->mem_cgroup)
2949 return NULL;
2950
8380ce47 2951 /*
9855609b
RG
2952 * Slab objects are accounted individually, not per-page.
2953 * Memcg membership data for each individual object is saved in
2954 * the page->obj_cgroups.
8380ce47 2955 */
9855609b
RG
2956 if (page_has_obj_cgroups(page)) {
2957 struct obj_cgroup *objcg;
2958 unsigned int off;
2959
2960 off = obj_to_index(page->slab_cache, page, p);
2961 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2962 if (objcg)
2963 return obj_cgroup_memcg(objcg);
2964
2965 return NULL;
9855609b 2966 }
8380ce47
RG
2967
2968 /* All other pages use page->mem_cgroup */
2969 return page->mem_cgroup;
2970}
2971
bf4f0599
RG
2972__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2973{
2974 struct obj_cgroup *objcg = NULL;
2975 struct mem_cgroup *memcg;
2976
279c3393
RG
2977 if (memcg_kmem_bypass())
2978 return NULL;
2979
bf4f0599 2980 rcu_read_lock();
37d5985c
RG
2981 if (unlikely(active_memcg()))
2982 memcg = active_memcg();
bf4f0599
RG
2983 else
2984 memcg = mem_cgroup_from_task(current);
2985
2986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2987 objcg = rcu_dereference(memcg->objcg);
2988 if (objcg && obj_cgroup_tryget(objcg))
2989 break;
2f7659a3 2990 objcg = NULL;
bf4f0599
RG
2991 }
2992 rcu_read_unlock();
2993
2994 return objcg;
2995}
2996
f3bb3043 2997static int memcg_alloc_cache_id(void)
55007d84 2998{
f3bb3043
VD
2999 int id, size;
3000 int err;
3001
dbcf73e2 3002 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3003 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3004 if (id < 0)
3005 return id;
55007d84 3006
dbcf73e2 3007 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3008 return id;
3009
3010 /*
3011 * There's no space for the new id in memcg_caches arrays,
3012 * so we have to grow them.
3013 */
05257a1a 3014 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3015
3016 size = 2 * (id + 1);
55007d84
GC
3017 if (size < MEMCG_CACHES_MIN_SIZE)
3018 size = MEMCG_CACHES_MIN_SIZE;
3019 else if (size > MEMCG_CACHES_MAX_SIZE)
3020 size = MEMCG_CACHES_MAX_SIZE;
3021
9855609b 3022 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3023 if (!err)
3024 memcg_nr_cache_ids = size;
3025
3026 up_write(&memcg_cache_ids_sem);
3027
f3bb3043 3028 if (err) {
dbcf73e2 3029 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3030 return err;
3031 }
3032 return id;
3033}
3034
3035static void memcg_free_cache_id(int id)
3036{
dbcf73e2 3037 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3038}
3039
45264778 3040/**
4b13f64d 3041 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3042 * @memcg: memory cgroup to charge
45264778 3043 * @gfp: reclaim mode
92d0510c 3044 * @nr_pages: number of pages to charge
45264778
VD
3045 *
3046 * Returns 0 on success, an error code on failure.
3047 */
4b13f64d
RG
3048int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3049 unsigned int nr_pages)
7ae1e1d0 3050{
f3ccb2c4 3051 struct page_counter *counter;
7ae1e1d0
GC
3052 int ret;
3053
f3ccb2c4 3054 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3055 if (ret)
f3ccb2c4 3056 return ret;
52c29b04
JW
3057
3058 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3059 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3060
3061 /*
3062 * Enforce __GFP_NOFAIL allocation because callers are not
3063 * prepared to see failures and likely do not have any failure
3064 * handling code.
3065 */
3066 if (gfp & __GFP_NOFAIL) {
3067 page_counter_charge(&memcg->kmem, nr_pages);
3068 return 0;
3069 }
52c29b04
JW
3070 cancel_charge(memcg, nr_pages);
3071 return -ENOMEM;
7ae1e1d0 3072 }
f3ccb2c4 3073 return 0;
7ae1e1d0
GC
3074}
3075
4b13f64d
RG
3076/**
3077 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3078 * @memcg: memcg to uncharge
3079 * @nr_pages: number of pages to uncharge
3080 */
3081void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3082{
3083 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3084 page_counter_uncharge(&memcg->kmem, nr_pages);
3085
3086 page_counter_uncharge(&memcg->memory, nr_pages);
3087 if (do_memsw_account())
3088 page_counter_uncharge(&memcg->memsw, nr_pages);
3089}
3090
45264778 3091/**
f4b00eab 3092 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3093 * @page: page to charge
3094 * @gfp: reclaim mode
3095 * @order: allocation order
3096 *
3097 * Returns 0 on success, an error code on failure.
3098 */
f4b00eab 3099int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3100{
f3ccb2c4 3101 struct mem_cgroup *memcg;
fcff7d7e 3102 int ret = 0;
7ae1e1d0 3103
d46eb14b 3104 memcg = get_mem_cgroup_from_current();
279c3393 3105 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3106 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3107 if (!ret) {
3108 page->mem_cgroup = memcg;
c4159a75 3109 __SetPageKmemcg(page);
1a3e1f40 3110 return 0;
4d96ba35 3111 }
279c3393 3112 css_put(&memcg->css);
c4159a75 3113 }
d05e83a6 3114 return ret;
7ae1e1d0 3115}
49a18eae 3116
45264778 3117/**
f4b00eab 3118 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3119 * @page: page to uncharge
3120 * @order: allocation order
3121 */
f4b00eab 3122void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3123{
1306a85a 3124 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3125 unsigned int nr_pages = 1 << order;
7ae1e1d0 3126
7ae1e1d0
GC
3127 if (!memcg)
3128 return;
3129
309381fe 3130 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3131 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3132 page->mem_cgroup = NULL;
1a3e1f40 3133 css_put(&memcg->css);
c4159a75
VD
3134
3135 /* slab pages do not have PageKmemcg flag set */
3136 if (PageKmemcg(page))
3137 __ClearPageKmemcg(page);
60d3fd32 3138}
bf4f0599
RG
3139
3140static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3141{
3142 struct memcg_stock_pcp *stock;
3143 unsigned long flags;
3144 bool ret = false;
3145
3146 local_irq_save(flags);
3147
3148 stock = this_cpu_ptr(&memcg_stock);
3149 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3150 stock->nr_bytes -= nr_bytes;
3151 ret = true;
3152 }
3153
3154 local_irq_restore(flags);
3155
3156 return ret;
3157}
3158
3159static void drain_obj_stock(struct memcg_stock_pcp *stock)
3160{
3161 struct obj_cgroup *old = stock->cached_objcg;
3162
3163 if (!old)
3164 return;
3165
3166 if (stock->nr_bytes) {
3167 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3168 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3169
3170 if (nr_pages) {
3171 rcu_read_lock();
3172 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3173 rcu_read_unlock();
3174 }
3175
3176 /*
3177 * The leftover is flushed to the centralized per-memcg value.
3178 * On the next attempt to refill obj stock it will be moved
3179 * to a per-cpu stock (probably, on an other CPU), see
3180 * refill_obj_stock().
3181 *
3182 * How often it's flushed is a trade-off between the memory
3183 * limit enforcement accuracy and potential CPU contention,
3184 * so it might be changed in the future.
3185 */
3186 atomic_add(nr_bytes, &old->nr_charged_bytes);
3187 stock->nr_bytes = 0;
3188 }
3189
3190 obj_cgroup_put(old);
3191 stock->cached_objcg = NULL;
3192}
3193
3194static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3195 struct mem_cgroup *root_memcg)
3196{
3197 struct mem_cgroup *memcg;
3198
3199 if (stock->cached_objcg) {
3200 memcg = obj_cgroup_memcg(stock->cached_objcg);
3201 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3202 return true;
3203 }
3204
3205 return false;
3206}
3207
3208static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3209{
3210 struct memcg_stock_pcp *stock;
3211 unsigned long flags;
3212
3213 local_irq_save(flags);
3214
3215 stock = this_cpu_ptr(&memcg_stock);
3216 if (stock->cached_objcg != objcg) { /* reset if necessary */
3217 drain_obj_stock(stock);
3218 obj_cgroup_get(objcg);
3219 stock->cached_objcg = objcg;
3220 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3221 }
3222 stock->nr_bytes += nr_bytes;
3223
3224 if (stock->nr_bytes > PAGE_SIZE)
3225 drain_obj_stock(stock);
3226
3227 local_irq_restore(flags);
3228}
3229
3230int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3231{
3232 struct mem_cgroup *memcg;
3233 unsigned int nr_pages, nr_bytes;
3234 int ret;
3235
3236 if (consume_obj_stock(objcg, size))
3237 return 0;
3238
3239 /*
3240 * In theory, memcg->nr_charged_bytes can have enough
3241 * pre-charged bytes to satisfy the allocation. However,
3242 * flushing memcg->nr_charged_bytes requires two atomic
3243 * operations, and memcg->nr_charged_bytes can't be big,
3244 * so it's better to ignore it and try grab some new pages.
3245 * memcg->nr_charged_bytes will be flushed in
3246 * refill_obj_stock(), called from this function or
3247 * independently later.
3248 */
3249 rcu_read_lock();
eefbfa7f 3250retry:
bf4f0599 3251 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3252 if (unlikely(!css_tryget(&memcg->css)))
3253 goto retry;
bf4f0599
RG
3254 rcu_read_unlock();
3255
3256 nr_pages = size >> PAGE_SHIFT;
3257 nr_bytes = size & (PAGE_SIZE - 1);
3258
3259 if (nr_bytes)
3260 nr_pages += 1;
3261
3262 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3263 if (!ret && nr_bytes)
3264 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3265
3266 css_put(&memcg->css);
3267 return ret;
3268}
3269
3270void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3271{
3272 refill_obj_stock(objcg, size);
3273}
3274
84c07d11 3275#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3276
ca3e0214
KH
3277#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3278
ca3e0214
KH
3279/*
3280 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3281 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3282 */
e94c8a9c 3283void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3284{
1a3e1f40 3285 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3286 int i;
ca3e0214 3287
3d37c4a9
KH
3288 if (mem_cgroup_disabled())
3289 return;
b070e65c 3290
1a3e1f40
JW
3291 for (i = 1; i < HPAGE_PMD_NR; i++) {
3292 css_get(&memcg->css);
3293 head[i].mem_cgroup = memcg;
3294 }
ca3e0214 3295}
12d27107 3296#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3297
c255a458 3298#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3299/**
3300 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3301 * @entry: swap entry to be moved
3302 * @from: mem_cgroup which the entry is moved from
3303 * @to: mem_cgroup which the entry is moved to
3304 *
3305 * It succeeds only when the swap_cgroup's record for this entry is the same
3306 * as the mem_cgroup's id of @from.
3307 *
3308 * Returns 0 on success, -EINVAL on failure.
3309 *
3e32cb2e 3310 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3311 * both res and memsw, and called css_get().
3312 */
3313static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3314 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3315{
3316 unsigned short old_id, new_id;
3317
34c00c31
LZ
3318 old_id = mem_cgroup_id(from);
3319 new_id = mem_cgroup_id(to);
02491447
DN
3320
3321 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3322 mod_memcg_state(from, MEMCG_SWAP, -1);
3323 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3324 return 0;
3325 }
3326 return -EINVAL;
3327}
3328#else
3329static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3330 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3331{
3332 return -EINVAL;
3333}
8c7c6e34 3334#endif
d13d1443 3335
bbec2e15 3336static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3337
bbec2e15
RG
3338static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3339 unsigned long max, bool memsw)
628f4235 3340{
3e32cb2e 3341 bool enlarge = false;
bb4a7ea2 3342 bool drained = false;
3e32cb2e 3343 int ret;
c054a78c
YZ
3344 bool limits_invariant;
3345 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3346
3e32cb2e 3347 do {
628f4235
KH
3348 if (signal_pending(current)) {
3349 ret = -EINTR;
3350 break;
3351 }
3e32cb2e 3352
bbec2e15 3353 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3354 /*
3355 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3356 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3357 */
15b42562 3358 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3359 max <= memcg->memsw.max;
c054a78c 3360 if (!limits_invariant) {
bbec2e15 3361 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3362 ret = -EINVAL;
8c7c6e34
KH
3363 break;
3364 }
bbec2e15 3365 if (max > counter->max)
3e32cb2e 3366 enlarge = true;
bbec2e15
RG
3367 ret = page_counter_set_max(counter, max);
3368 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3369
3370 if (!ret)
3371 break;
3372
bb4a7ea2
SB
3373 if (!drained) {
3374 drain_all_stock(memcg);
3375 drained = true;
3376 continue;
3377 }
3378
1ab5c056
AR
3379 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3380 GFP_KERNEL, !memsw)) {
3381 ret = -EBUSY;
3382 break;
3383 }
3384 } while (true);
3e32cb2e 3385
3c11ecf4
KH
3386 if (!ret && enlarge)
3387 memcg_oom_recover(memcg);
3e32cb2e 3388
628f4235
KH
3389 return ret;
3390}
3391
ef8f2327 3392unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3393 gfp_t gfp_mask,
3394 unsigned long *total_scanned)
3395{
3396 unsigned long nr_reclaimed = 0;
ef8f2327 3397 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3398 unsigned long reclaimed;
3399 int loop = 0;
ef8f2327 3400 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3401 unsigned long excess;
0608f43d
AM
3402 unsigned long nr_scanned;
3403
3404 if (order > 0)
3405 return 0;
3406
ef8f2327 3407 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3408
3409 /*
3410 * Do not even bother to check the largest node if the root
3411 * is empty. Do it lockless to prevent lock bouncing. Races
3412 * are acceptable as soft limit is best effort anyway.
3413 */
bfc7228b 3414 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3415 return 0;
3416
0608f43d
AM
3417 /*
3418 * This loop can run a while, specially if mem_cgroup's continuously
3419 * keep exceeding their soft limit and putting the system under
3420 * pressure
3421 */
3422 do {
3423 if (next_mz)
3424 mz = next_mz;
3425 else
3426 mz = mem_cgroup_largest_soft_limit_node(mctz);
3427 if (!mz)
3428 break;
3429
3430 nr_scanned = 0;
ef8f2327 3431 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3432 gfp_mask, &nr_scanned);
3433 nr_reclaimed += reclaimed;
3434 *total_scanned += nr_scanned;
0a31bc97 3435 spin_lock_irq(&mctz->lock);
bc2f2e7f 3436 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3437
3438 /*
3439 * If we failed to reclaim anything from this memory cgroup
3440 * it is time to move on to the next cgroup
3441 */
3442 next_mz = NULL;
bc2f2e7f
VD
3443 if (!reclaimed)
3444 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3445
3e32cb2e 3446 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3447 /*
3448 * One school of thought says that we should not add
3449 * back the node to the tree if reclaim returns 0.
3450 * But our reclaim could return 0, simply because due
3451 * to priority we are exposing a smaller subset of
3452 * memory to reclaim from. Consider this as a longer
3453 * term TODO.
3454 */
3455 /* If excess == 0, no tree ops */
cf2c8127 3456 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3457 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3458 css_put(&mz->memcg->css);
3459 loop++;
3460 /*
3461 * Could not reclaim anything and there are no more
3462 * mem cgroups to try or we seem to be looping without
3463 * reclaiming anything.
3464 */
3465 if (!nr_reclaimed &&
3466 (next_mz == NULL ||
3467 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3468 break;
3469 } while (!nr_reclaimed);
3470 if (next_mz)
3471 css_put(&next_mz->memcg->css);
3472 return nr_reclaimed;
3473}
3474
c26251f9 3475/*
51038171 3476 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3477 *
3478 * Caller is responsible for holding css reference for memcg.
3479 */
3480static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3481{
d977aa93 3482 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3483
c1e862c1
KH
3484 /* we call try-to-free pages for make this cgroup empty */
3485 lru_add_drain_all();
d12c60f6
JS
3486
3487 drain_all_stock(memcg);
3488
f817ed48 3489 /* try to free all pages in this cgroup */
3e32cb2e 3490 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3491 int progress;
c1e862c1 3492
c26251f9
MH
3493 if (signal_pending(current))
3494 return -EINTR;
3495
b70a2a21
JW
3496 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3497 GFP_KERNEL, true);
c1e862c1 3498 if (!progress) {
f817ed48 3499 nr_retries--;
c1e862c1 3500 /* maybe some writeback is necessary */
8aa7e847 3501 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3502 }
f817ed48
KH
3503
3504 }
ab5196c2
MH
3505
3506 return 0;
cc847582
KH
3507}
3508
6770c64e
TH
3509static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3510 char *buf, size_t nbytes,
3511 loff_t off)
c1e862c1 3512{
6770c64e 3513 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3514
d8423011
MH
3515 if (mem_cgroup_is_root(memcg))
3516 return -EINVAL;
6770c64e 3517 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3518}
3519
182446d0
TH
3520static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3521 struct cftype *cft)
18f59ea7 3522{
bef8620c 3523 return 1;
18f59ea7
BS
3524}
3525
182446d0
TH
3526static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3527 struct cftype *cft, u64 val)
18f59ea7 3528{
bef8620c 3529 if (val == 1)
0b8f73e1 3530 return 0;
567fb435 3531
bef8620c
RG
3532 pr_warn_once("Non-hierarchical mode is deprecated. "
3533 "Please report your usecase to linux-mm@kvack.org if you "
3534 "depend on this functionality.\n");
567fb435 3535
bef8620c 3536 return -EINVAL;
18f59ea7
BS
3537}
3538
6f646156 3539static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3540{
42a30035 3541 unsigned long val;
ce00a967 3542
3e32cb2e 3543 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3544 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3545 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3546 if (swap)
3547 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3548 } else {
ce00a967 3549 if (!swap)
3e32cb2e 3550 val = page_counter_read(&memcg->memory);
ce00a967 3551 else
3e32cb2e 3552 val = page_counter_read(&memcg->memsw);
ce00a967 3553 }
c12176d3 3554 return val;
ce00a967
JW
3555}
3556
3e32cb2e
JW
3557enum {
3558 RES_USAGE,
3559 RES_LIMIT,
3560 RES_MAX_USAGE,
3561 RES_FAILCNT,
3562 RES_SOFT_LIMIT,
3563};
ce00a967 3564
791badbd 3565static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3566 struct cftype *cft)
8cdea7c0 3567{
182446d0 3568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3569 struct page_counter *counter;
af36f906 3570
3e32cb2e 3571 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3572 case _MEM:
3e32cb2e
JW
3573 counter = &memcg->memory;
3574 break;
8c7c6e34 3575 case _MEMSWAP:
3e32cb2e
JW
3576 counter = &memcg->memsw;
3577 break;
510fc4e1 3578 case _KMEM:
3e32cb2e 3579 counter = &memcg->kmem;
510fc4e1 3580 break;
d55f90bf 3581 case _TCP:
0db15298 3582 counter = &memcg->tcpmem;
d55f90bf 3583 break;
8c7c6e34
KH
3584 default:
3585 BUG();
8c7c6e34 3586 }
3e32cb2e
JW
3587
3588 switch (MEMFILE_ATTR(cft->private)) {
3589 case RES_USAGE:
3590 if (counter == &memcg->memory)
c12176d3 3591 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3592 if (counter == &memcg->memsw)
c12176d3 3593 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3594 return (u64)page_counter_read(counter) * PAGE_SIZE;
3595 case RES_LIMIT:
bbec2e15 3596 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3597 case RES_MAX_USAGE:
3598 return (u64)counter->watermark * PAGE_SIZE;
3599 case RES_FAILCNT:
3600 return counter->failcnt;
3601 case RES_SOFT_LIMIT:
3602 return (u64)memcg->soft_limit * PAGE_SIZE;
3603 default:
3604 BUG();
3605 }
8cdea7c0 3606}
510fc4e1 3607
4a87e2a2 3608static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3609{
4a87e2a2 3610 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3611 struct mem_cgroup *mi;
3612 int node, cpu, i;
c350a99e
RG
3613
3614 for_each_online_cpu(cpu)
4a87e2a2 3615 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3616 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3617
3618 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3619 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3620 atomic_long_add(stat[i], &mi->vmstats[i]);
3621
3622 for_each_node(node) {
3623 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3624 struct mem_cgroup_per_node *pi;
3625
4a87e2a2 3626 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3627 stat[i] = 0;
3628
3629 for_each_online_cpu(cpu)
4a87e2a2 3630 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3631 stat[i] += per_cpu(
3632 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3633
3634 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3635 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3636 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3637 }
3638}
3639
bb65f89b
RG
3640static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3641{
3642 unsigned long events[NR_VM_EVENT_ITEMS];
3643 struct mem_cgroup *mi;
3644 int cpu, i;
3645
3646 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3647 events[i] = 0;
3648
3649 for_each_online_cpu(cpu)
3650 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3651 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3652 cpu);
bb65f89b
RG
3653
3654 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3655 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3656 atomic_long_add(events[i], &mi->vmevents[i]);
3657}
3658
84c07d11 3659#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3660static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3661{
bf4f0599 3662 struct obj_cgroup *objcg;
d6441637
VD
3663 int memcg_id;
3664
b313aeee
VD
3665 if (cgroup_memory_nokmem)
3666 return 0;
3667
2a4db7eb 3668 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3669 BUG_ON(memcg->kmem_state);
d6441637 3670
f3bb3043 3671 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3672 if (memcg_id < 0)
3673 return memcg_id;
d6441637 3674
bf4f0599
RG
3675 objcg = obj_cgroup_alloc();
3676 if (!objcg) {
3677 memcg_free_cache_id(memcg_id);
3678 return -ENOMEM;
3679 }
3680 objcg->memcg = memcg;
3681 rcu_assign_pointer(memcg->objcg, objcg);
3682
d648bcc7
RG
3683 static_branch_enable(&memcg_kmem_enabled_key);
3684
900a38f0 3685 memcg->kmemcg_id = memcg_id;
567e9ab2 3686 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3687
3688 return 0;
d6441637
VD
3689}
3690
8e0a8912
JW
3691static void memcg_offline_kmem(struct mem_cgroup *memcg)
3692{
3693 struct cgroup_subsys_state *css;
3694 struct mem_cgroup *parent, *child;
3695 int kmemcg_id;
3696
3697 if (memcg->kmem_state != KMEM_ONLINE)
3698 return;
9855609b 3699
8e0a8912
JW
3700 memcg->kmem_state = KMEM_ALLOCATED;
3701
8e0a8912
JW
3702 parent = parent_mem_cgroup(memcg);
3703 if (!parent)
3704 parent = root_mem_cgroup;
3705
bf4f0599 3706 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3707
3708 kmemcg_id = memcg->kmemcg_id;
3709 BUG_ON(kmemcg_id < 0);
3710
8e0a8912
JW
3711 /*
3712 * Change kmemcg_id of this cgroup and all its descendants to the
3713 * parent's id, and then move all entries from this cgroup's list_lrus
3714 * to ones of the parent. After we have finished, all list_lrus
3715 * corresponding to this cgroup are guaranteed to remain empty. The
3716 * ordering is imposed by list_lru_node->lock taken by
3717 * memcg_drain_all_list_lrus().
3718 */
3a06bb78 3719 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3720 css_for_each_descendant_pre(css, &memcg->css) {
3721 child = mem_cgroup_from_css(css);
3722 BUG_ON(child->kmemcg_id != kmemcg_id);
3723 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3724 }
3a06bb78
TH
3725 rcu_read_unlock();
3726
9bec5c35 3727 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3728
3729 memcg_free_cache_id(kmemcg_id);
3730}
3731
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
0b8f73e1
JW
3734 /* css_alloc() failed, offlining didn't happen */
3735 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3736 memcg_offline_kmem(memcg);
8e0a8912 3737}
d6441637 3738#else
0b8f73e1 3739static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3740{
3741 return 0;
3742}
3743static void memcg_offline_kmem(struct mem_cgroup *memcg)
3744{
3745}
3746static void memcg_free_kmem(struct mem_cgroup *memcg)
3747{
3748}
84c07d11 3749#endif /* CONFIG_MEMCG_KMEM */
127424c8 3750
bbec2e15
RG
3751static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3752 unsigned long max)
d6441637 3753{
b313aeee 3754 int ret;
127424c8 3755
bbec2e15
RG
3756 mutex_lock(&memcg_max_mutex);
3757 ret = page_counter_set_max(&memcg->kmem, max);
3758 mutex_unlock(&memcg_max_mutex);
127424c8 3759 return ret;
d6441637 3760}
510fc4e1 3761
bbec2e15 3762static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3763{
3764 int ret;
3765
bbec2e15 3766 mutex_lock(&memcg_max_mutex);
d55f90bf 3767
bbec2e15 3768 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3769 if (ret)
3770 goto out;
3771
0db15298 3772 if (!memcg->tcpmem_active) {
d55f90bf
VD
3773 /*
3774 * The active flag needs to be written after the static_key
3775 * update. This is what guarantees that the socket activation
2d758073
JW
3776 * function is the last one to run. See mem_cgroup_sk_alloc()
3777 * for details, and note that we don't mark any socket as
3778 * belonging to this memcg until that flag is up.
d55f90bf
VD
3779 *
3780 * We need to do this, because static_keys will span multiple
3781 * sites, but we can't control their order. If we mark a socket
3782 * as accounted, but the accounting functions are not patched in
3783 * yet, we'll lose accounting.
3784 *
2d758073 3785 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3786 * because when this value change, the code to process it is not
3787 * patched in yet.
3788 */
3789 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3790 memcg->tcpmem_active = true;
d55f90bf
VD
3791 }
3792out:
bbec2e15 3793 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3794 return ret;
3795}
d55f90bf 3796
628f4235
KH
3797/*
3798 * The user of this function is...
3799 * RES_LIMIT.
3800 */
451af504
TH
3801static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3802 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3803{
451af504 3804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3805 unsigned long nr_pages;
628f4235
KH
3806 int ret;
3807
451af504 3808 buf = strstrip(buf);
650c5e56 3809 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3810 if (ret)
3811 return ret;
af36f906 3812
3e32cb2e 3813 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3814 case RES_LIMIT:
4b3bde4c
BS
3815 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3816 ret = -EINVAL;
3817 break;
3818 }
3e32cb2e
JW
3819 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3820 case _MEM:
bbec2e15 3821 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3822 break;
3e32cb2e 3823 case _MEMSWAP:
bbec2e15 3824 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3825 break;
3e32cb2e 3826 case _KMEM:
0158115f
MH
3827 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3828 "Please report your usecase to linux-mm@kvack.org if you "
3829 "depend on this functionality.\n");
bbec2e15 3830 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3831 break;
d55f90bf 3832 case _TCP:
bbec2e15 3833 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3834 break;
3e32cb2e 3835 }
296c81d8 3836 break;
3e32cb2e
JW
3837 case RES_SOFT_LIMIT:
3838 memcg->soft_limit = nr_pages;
3839 ret = 0;
628f4235
KH
3840 break;
3841 }
451af504 3842 return ret ?: nbytes;
8cdea7c0
BS
3843}
3844
6770c64e
TH
3845static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3846 size_t nbytes, loff_t off)
c84872e1 3847{
6770c64e 3848 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3849 struct page_counter *counter;
c84872e1 3850
3e32cb2e
JW
3851 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3852 case _MEM:
3853 counter = &memcg->memory;
3854 break;
3855 case _MEMSWAP:
3856 counter = &memcg->memsw;
3857 break;
3858 case _KMEM:
3859 counter = &memcg->kmem;
3860 break;
d55f90bf 3861 case _TCP:
0db15298 3862 counter = &memcg->tcpmem;
d55f90bf 3863 break;
3e32cb2e
JW
3864 default:
3865 BUG();
3866 }
af36f906 3867
3e32cb2e 3868 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3869 case RES_MAX_USAGE:
3e32cb2e 3870 page_counter_reset_watermark(counter);
29f2a4da
PE
3871 break;
3872 case RES_FAILCNT:
3e32cb2e 3873 counter->failcnt = 0;
29f2a4da 3874 break;
3e32cb2e
JW
3875 default:
3876 BUG();
29f2a4da 3877 }
f64c3f54 3878
6770c64e 3879 return nbytes;
c84872e1
PE
3880}
3881
182446d0 3882static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3883 struct cftype *cft)
3884{
182446d0 3885 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3886}
3887
02491447 3888#ifdef CONFIG_MMU
182446d0 3889static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3890 struct cftype *cft, u64 val)
3891{
182446d0 3892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3893
1dfab5ab 3894 if (val & ~MOVE_MASK)
7dc74be0 3895 return -EINVAL;
ee5e8472 3896
7dc74be0 3897 /*
ee5e8472
GC
3898 * No kind of locking is needed in here, because ->can_attach() will
3899 * check this value once in the beginning of the process, and then carry
3900 * on with stale data. This means that changes to this value will only
3901 * affect task migrations starting after the change.
7dc74be0 3902 */
c0ff4b85 3903 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3904 return 0;
3905}
02491447 3906#else
182446d0 3907static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3908 struct cftype *cft, u64 val)
3909{
3910 return -ENOSYS;
3911}
3912#endif
7dc74be0 3913
406eb0c9 3914#ifdef CONFIG_NUMA
113b7dfd
JW
3915
3916#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3917#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3918#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3919
3920static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3921 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3922{
867e5e1d 3923 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3924 unsigned long nr = 0;
3925 enum lru_list lru;
3926
3927 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3928
3929 for_each_lru(lru) {
3930 if (!(BIT(lru) & lru_mask))
3931 continue;
dd8657b6
SB
3932 if (tree)
3933 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3934 else
3935 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3936 }
3937 return nr;
3938}
3939
3940static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3941 unsigned int lru_mask,
3942 bool tree)
113b7dfd
JW
3943{
3944 unsigned long nr = 0;
3945 enum lru_list lru;
3946
3947 for_each_lru(lru) {
3948 if (!(BIT(lru) & lru_mask))
3949 continue;
dd8657b6
SB
3950 if (tree)
3951 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3952 else
3953 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3954 }
3955 return nr;
3956}
3957
2da8ca82 3958static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3959{
25485de6
GT
3960 struct numa_stat {
3961 const char *name;
3962 unsigned int lru_mask;
3963 };
3964
3965 static const struct numa_stat stats[] = {
3966 { "total", LRU_ALL },
3967 { "file", LRU_ALL_FILE },
3968 { "anon", LRU_ALL_ANON },
3969 { "unevictable", BIT(LRU_UNEVICTABLE) },
3970 };
3971 const struct numa_stat *stat;
406eb0c9 3972 int nid;
aa9694bb 3973 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3974
25485de6 3975 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3976 seq_printf(m, "%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 false));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, false));
25485de6 3983 seq_putc(m, '\n');
406eb0c9 3984 }
406eb0c9 3985
071aee13 3986 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3987
3988 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3989 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3990 true));
3991 for_each_node_state(nid, N_MEMORY)
3992 seq_printf(m, " N%d=%lu", nid,
3993 mem_cgroup_node_nr_lru_pages(memcg, nid,
3994 stat->lru_mask, true));
071aee13 3995 seq_putc(m, '\n');
406eb0c9 3996 }
406eb0c9 3997
406eb0c9
YH
3998 return 0;
3999}
4000#endif /* CONFIG_NUMA */
4001
c8713d0b 4002static const unsigned int memcg1_stats[] = {
0d1c2072 4003 NR_FILE_PAGES,
be5d0a74 4004 NR_ANON_MAPPED,
468c3982
JW
4005#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4006 NR_ANON_THPS,
4007#endif
c8713d0b
JW
4008 NR_SHMEM,
4009 NR_FILE_MAPPED,
4010 NR_FILE_DIRTY,
4011 NR_WRITEBACK,
4012 MEMCG_SWAP,
4013};
4014
4015static const char *const memcg1_stat_names[] = {
4016 "cache",
4017 "rss",
468c3982 4018#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4019 "rss_huge",
468c3982 4020#endif
c8713d0b
JW
4021 "shmem",
4022 "mapped_file",
4023 "dirty",
4024 "writeback",
4025 "swap",
4026};
4027
df0e53d0 4028/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4029static const unsigned int memcg1_events[] = {
df0e53d0
JW
4030 PGPGIN,
4031 PGPGOUT,
4032 PGFAULT,
4033 PGMAJFAULT,
4034};
4035
2da8ca82 4036static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4037{
aa9694bb 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4039 unsigned long memory, memsw;
af7c4b0e
JW
4040 struct mem_cgroup *mi;
4041 unsigned int i;
406eb0c9 4042
71cd3113 4043 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4044
71cd3113 4045 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4046 unsigned long nr;
4047
71cd3113 4048 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4049 continue;
468c3982
JW
4050 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 if (memcg1_stats[i] == NR_ANON_THPS)
4053 nr *= HPAGE_PMD_NR;
4054#endif
4055 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4056 }
7b854121 4057
df0e53d0 4058 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4059 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4060 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4061
4062 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4063 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4064 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4065 PAGE_SIZE);
af7c4b0e 4066
14067bb3 4067 /* Hierarchical information */
3e32cb2e
JW
4068 memory = memsw = PAGE_COUNTER_MAX;
4069 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4070 memory = min(memory, READ_ONCE(mi->memory.max));
4071 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4072 }
3e32cb2e
JW
4073 seq_printf(m, "hierarchical_memory_limit %llu\n",
4074 (u64)memory * PAGE_SIZE);
7941d214 4075 if (do_memsw_account())
3e32cb2e
JW
4076 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4077 (u64)memsw * PAGE_SIZE);
7f016ee8 4078
8de7ecc6 4079 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4080 unsigned long nr;
4081
71cd3113 4082 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4083 continue;
7de2e9f1 4084 nr = memcg_page_state(memcg, memcg1_stats[i]);
4085#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4086 if (memcg1_stats[i] == NR_ANON_THPS)
4087 nr *= HPAGE_PMD_NR;
4088#endif
8de7ecc6 4089 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4090 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4091 }
4092
8de7ecc6 4093 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4094 seq_printf(m, "total_%s %llu\n",
4095 vm_event_name(memcg1_events[i]),
dd923990 4096 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4097
8de7ecc6 4098 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4099 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4100 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4101 PAGE_SIZE);
14067bb3 4102
7f016ee8 4103#ifdef CONFIG_DEBUG_VM
7f016ee8 4104 {
ef8f2327
MG
4105 pg_data_t *pgdat;
4106 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4107 unsigned long anon_cost = 0;
4108 unsigned long file_cost = 0;
7f016ee8 4109
ef8f2327
MG
4110 for_each_online_pgdat(pgdat) {
4111 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4112
1431d4d1
JW
4113 anon_cost += mz->lruvec.anon_cost;
4114 file_cost += mz->lruvec.file_cost;
ef8f2327 4115 }
1431d4d1
JW
4116 seq_printf(m, "anon_cost %lu\n", anon_cost);
4117 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4118 }
4119#endif
4120
d2ceb9b7
KH
4121 return 0;
4122}
4123
182446d0
TH
4124static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4125 struct cftype *cft)
a7885eb8 4126{
182446d0 4127 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4128
1f4c025b 4129 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4130}
4131
182446d0
TH
4132static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4133 struct cftype *cft, u64 val)
a7885eb8 4134{
182446d0 4135 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4136
3dae7fec 4137 if (val > 100)
a7885eb8
KM
4138 return -EINVAL;
4139
14208b0e 4140 if (css->parent)
3dae7fec
JW
4141 memcg->swappiness = val;
4142 else
4143 vm_swappiness = val;
068b38c1 4144
a7885eb8
KM
4145 return 0;
4146}
4147
2e72b634
KS
4148static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4149{
4150 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4151 unsigned long usage;
2e72b634
KS
4152 int i;
4153
4154 rcu_read_lock();
4155 if (!swap)
2c488db2 4156 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4157 else
2c488db2 4158 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4159
4160 if (!t)
4161 goto unlock;
4162
ce00a967 4163 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4164
4165 /*
748dad36 4166 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4167 * If it's not true, a threshold was crossed after last
4168 * call of __mem_cgroup_threshold().
4169 */
5407a562 4170 i = t->current_threshold;
2e72b634
KS
4171
4172 /*
4173 * Iterate backward over array of thresholds starting from
4174 * current_threshold and check if a threshold is crossed.
4175 * If none of thresholds below usage is crossed, we read
4176 * only one element of the array here.
4177 */
4178 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4179 eventfd_signal(t->entries[i].eventfd, 1);
4180
4181 /* i = current_threshold + 1 */
4182 i++;
4183
4184 /*
4185 * Iterate forward over array of thresholds starting from
4186 * current_threshold+1 and check if a threshold is crossed.
4187 * If none of thresholds above usage is crossed, we read
4188 * only one element of the array here.
4189 */
4190 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4191 eventfd_signal(t->entries[i].eventfd, 1);
4192
4193 /* Update current_threshold */
5407a562 4194 t->current_threshold = i - 1;
2e72b634
KS
4195unlock:
4196 rcu_read_unlock();
4197}
4198
4199static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4200{
ad4ca5f4
KS
4201 while (memcg) {
4202 __mem_cgroup_threshold(memcg, false);
7941d214 4203 if (do_memsw_account())
ad4ca5f4
KS
4204 __mem_cgroup_threshold(memcg, true);
4205
4206 memcg = parent_mem_cgroup(memcg);
4207 }
2e72b634
KS
4208}
4209
4210static int compare_thresholds(const void *a, const void *b)
4211{
4212 const struct mem_cgroup_threshold *_a = a;
4213 const struct mem_cgroup_threshold *_b = b;
4214
2bff24a3
GT
4215 if (_a->threshold > _b->threshold)
4216 return 1;
4217
4218 if (_a->threshold < _b->threshold)
4219 return -1;
4220
4221 return 0;
2e72b634
KS
4222}
4223
c0ff4b85 4224static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4225{
4226 struct mem_cgroup_eventfd_list *ev;
4227
2bcf2e92
MH
4228 spin_lock(&memcg_oom_lock);
4229
c0ff4b85 4230 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4231 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4232
4233 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4234 return 0;
4235}
4236
c0ff4b85 4237static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4238{
7d74b06f
KH
4239 struct mem_cgroup *iter;
4240
c0ff4b85 4241 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4242 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4243}
4244
59b6f873 4245static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4246 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4247{
2c488db2
KS
4248 struct mem_cgroup_thresholds *thresholds;
4249 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4250 unsigned long threshold;
4251 unsigned long usage;
2c488db2 4252 int i, size, ret;
2e72b634 4253
650c5e56 4254 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4255 if (ret)
4256 return ret;
4257
4258 mutex_lock(&memcg->thresholds_lock);
2c488db2 4259
05b84301 4260 if (type == _MEM) {
2c488db2 4261 thresholds = &memcg->thresholds;
ce00a967 4262 usage = mem_cgroup_usage(memcg, false);
05b84301 4263 } else if (type == _MEMSWAP) {
2c488db2 4264 thresholds = &memcg->memsw_thresholds;
ce00a967 4265 usage = mem_cgroup_usage(memcg, true);
05b84301 4266 } else
2e72b634
KS
4267 BUG();
4268
2e72b634 4269 /* Check if a threshold crossed before adding a new one */
2c488db2 4270 if (thresholds->primary)
2e72b634
KS
4271 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4272
2c488db2 4273 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4274
4275 /* Allocate memory for new array of thresholds */
67b8046f 4276 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4277 if (!new) {
2e72b634
KS
4278 ret = -ENOMEM;
4279 goto unlock;
4280 }
2c488db2 4281 new->size = size;
2e72b634
KS
4282
4283 /* Copy thresholds (if any) to new array */
e90342e6
GS
4284 if (thresholds->primary)
4285 memcpy(new->entries, thresholds->primary->entries,
4286 flex_array_size(new, entries, size - 1));
2c488db2 4287
2e72b634 4288 /* Add new threshold */
2c488db2
KS
4289 new->entries[size - 1].eventfd = eventfd;
4290 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4291
4292 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4293 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4294 compare_thresholds, NULL);
4295
4296 /* Find current threshold */
2c488db2 4297 new->current_threshold = -1;
2e72b634 4298 for (i = 0; i < size; i++) {
748dad36 4299 if (new->entries[i].threshold <= usage) {
2e72b634 4300 /*
2c488db2
KS
4301 * new->current_threshold will not be used until
4302 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4303 * it here.
4304 */
2c488db2 4305 ++new->current_threshold;
748dad36
SZ
4306 } else
4307 break;
2e72b634
KS
4308 }
4309
2c488db2
KS
4310 /* Free old spare buffer and save old primary buffer as spare */
4311 kfree(thresholds->spare);
4312 thresholds->spare = thresholds->primary;
4313
4314 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4315
907860ed 4316 /* To be sure that nobody uses thresholds */
2e72b634
KS
4317 synchronize_rcu();
4318
2e72b634
KS
4319unlock:
4320 mutex_unlock(&memcg->thresholds_lock);
4321
4322 return ret;
4323}
4324
59b6f873 4325static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4326 struct eventfd_ctx *eventfd, const char *args)
4327{
59b6f873 4328 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4329}
4330
59b6f873 4331static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4332 struct eventfd_ctx *eventfd, const char *args)
4333{
59b6f873 4334 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4335}
4336
59b6f873 4337static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4338 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4339{
2c488db2
KS
4340 struct mem_cgroup_thresholds *thresholds;
4341 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4342 unsigned long usage;
7d36665a 4343 int i, j, size, entries;
2e72b634
KS
4344
4345 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4346
4347 if (type == _MEM) {
2c488db2 4348 thresholds = &memcg->thresholds;
ce00a967 4349 usage = mem_cgroup_usage(memcg, false);
05b84301 4350 } else if (type == _MEMSWAP) {
2c488db2 4351 thresholds = &memcg->memsw_thresholds;
ce00a967 4352 usage = mem_cgroup_usage(memcg, true);
05b84301 4353 } else
2e72b634
KS
4354 BUG();
4355
371528ca
AV
4356 if (!thresholds->primary)
4357 goto unlock;
4358
2e72b634
KS
4359 /* Check if a threshold crossed before removing */
4360 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4361
4362 /* Calculate new number of threshold */
7d36665a 4363 size = entries = 0;
2c488db2
KS
4364 for (i = 0; i < thresholds->primary->size; i++) {
4365 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4366 size++;
7d36665a
CX
4367 else
4368 entries++;
2e72b634
KS
4369 }
4370
2c488db2 4371 new = thresholds->spare;
907860ed 4372
7d36665a
CX
4373 /* If no items related to eventfd have been cleared, nothing to do */
4374 if (!entries)
4375 goto unlock;
4376
2e72b634
KS
4377 /* Set thresholds array to NULL if we don't have thresholds */
4378 if (!size) {
2c488db2
KS
4379 kfree(new);
4380 new = NULL;
907860ed 4381 goto swap_buffers;
2e72b634
KS
4382 }
4383
2c488db2 4384 new->size = size;
2e72b634
KS
4385
4386 /* Copy thresholds and find current threshold */
2c488db2
KS
4387 new->current_threshold = -1;
4388 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4389 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4390 continue;
4391
2c488db2 4392 new->entries[j] = thresholds->primary->entries[i];
748dad36 4393 if (new->entries[j].threshold <= usage) {
2e72b634 4394 /*
2c488db2 4395 * new->current_threshold will not be used
2e72b634
KS
4396 * until rcu_assign_pointer(), so it's safe to increment
4397 * it here.
4398 */
2c488db2 4399 ++new->current_threshold;
2e72b634
KS
4400 }
4401 j++;
4402 }
4403
907860ed 4404swap_buffers:
2c488db2
KS
4405 /* Swap primary and spare array */
4406 thresholds->spare = thresholds->primary;
8c757763 4407
2c488db2 4408 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4409
907860ed 4410 /* To be sure that nobody uses thresholds */
2e72b634 4411 synchronize_rcu();
6611d8d7
MC
4412
4413 /* If all events are unregistered, free the spare array */
4414 if (!new) {
4415 kfree(thresholds->spare);
4416 thresholds->spare = NULL;
4417 }
371528ca 4418unlock:
2e72b634 4419 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4420}
c1e862c1 4421
59b6f873 4422static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4423 struct eventfd_ctx *eventfd)
4424{
59b6f873 4425 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4426}
4427
59b6f873 4428static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4429 struct eventfd_ctx *eventfd)
4430{
59b6f873 4431 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4432}
4433
59b6f873 4434static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4435 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4436{
9490ff27 4437 struct mem_cgroup_eventfd_list *event;
9490ff27 4438
9490ff27
KH
4439 event = kmalloc(sizeof(*event), GFP_KERNEL);
4440 if (!event)
4441 return -ENOMEM;
4442
1af8efe9 4443 spin_lock(&memcg_oom_lock);
9490ff27
KH
4444
4445 event->eventfd = eventfd;
4446 list_add(&event->list, &memcg->oom_notify);
4447
4448 /* already in OOM ? */
c2b42d3c 4449 if (memcg->under_oom)
9490ff27 4450 eventfd_signal(eventfd, 1);
1af8efe9 4451 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4452
4453 return 0;
4454}
4455
59b6f873 4456static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4457 struct eventfd_ctx *eventfd)
9490ff27 4458{
9490ff27 4459 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4460
1af8efe9 4461 spin_lock(&memcg_oom_lock);
9490ff27 4462
c0ff4b85 4463 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4464 if (ev->eventfd == eventfd) {
4465 list_del(&ev->list);
4466 kfree(ev);
4467 }
4468 }
4469
1af8efe9 4470 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4471}
4472
2da8ca82 4473static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4474{
aa9694bb 4475 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4476
791badbd 4477 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4478 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4479 seq_printf(sf, "oom_kill %lu\n",
4480 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4481 return 0;
4482}
4483
182446d0 4484static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4485 struct cftype *cft, u64 val)
4486{
182446d0 4487 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4488
4489 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4490 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4491 return -EINVAL;
4492
c0ff4b85 4493 memcg->oom_kill_disable = val;
4d845ebf 4494 if (!val)
c0ff4b85 4495 memcg_oom_recover(memcg);
3dae7fec 4496
3c11ecf4
KH
4497 return 0;
4498}
4499
52ebea74
TH
4500#ifdef CONFIG_CGROUP_WRITEBACK
4501
3a8e9ac8
TH
4502#include <trace/events/writeback.h>
4503
841710aa
TH
4504static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4505{
4506 return wb_domain_init(&memcg->cgwb_domain, gfp);
4507}
4508
4509static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4510{
4511 wb_domain_exit(&memcg->cgwb_domain);
4512}
4513
2529bb3a
TH
4514static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4515{
4516 wb_domain_size_changed(&memcg->cgwb_domain);
4517}
4518
841710aa
TH
4519struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4520{
4521 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4522
4523 if (!memcg->css.parent)
4524 return NULL;
4525
4526 return &memcg->cgwb_domain;
4527}
4528
0b3d6e6f
GT
4529/*
4530 * idx can be of type enum memcg_stat_item or node_stat_item.
4531 * Keep in sync with memcg_exact_page().
4532 */
4533static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4534{
871789d4 4535 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4536 int cpu;
4537
4538 for_each_online_cpu(cpu)
871789d4 4539 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4540 if (x < 0)
4541 x = 0;
4542 return x;
4543}
4544
c2aa723a
TH
4545/**
4546 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4547 * @wb: bdi_writeback in question
c5edf9cd
TH
4548 * @pfilepages: out parameter for number of file pages
4549 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4550 * @pdirty: out parameter for number of dirty pages
4551 * @pwriteback: out parameter for number of pages under writeback
4552 *
c5edf9cd
TH
4553 * Determine the numbers of file, headroom, dirty, and writeback pages in
4554 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4555 * is a bit more involved.
c2aa723a 4556 *
c5edf9cd
TH
4557 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4558 * headroom is calculated as the lowest headroom of itself and the
4559 * ancestors. Note that this doesn't consider the actual amount of
4560 * available memory in the system. The caller should further cap
4561 * *@pheadroom accordingly.
c2aa723a 4562 */
c5edf9cd
TH
4563void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4564 unsigned long *pheadroom, unsigned long *pdirty,
4565 unsigned long *pwriteback)
c2aa723a
TH
4566{
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4568 struct mem_cgroup *parent;
c2aa723a 4569
0b3d6e6f 4570 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4571
0b3d6e6f 4572 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4573 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4574 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4575 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4576
c2aa723a 4577 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4578 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4579 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4580 unsigned long used = page_counter_read(&memcg->memory);
4581
c5edf9cd 4582 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4583 memcg = parent;
4584 }
c2aa723a
TH
4585}
4586
97b27821
TH
4587/*
4588 * Foreign dirty flushing
4589 *
4590 * There's an inherent mismatch between memcg and writeback. The former
4591 * trackes ownership per-page while the latter per-inode. This was a
4592 * deliberate design decision because honoring per-page ownership in the
4593 * writeback path is complicated, may lead to higher CPU and IO overheads
4594 * and deemed unnecessary given that write-sharing an inode across
4595 * different cgroups isn't a common use-case.
4596 *
4597 * Combined with inode majority-writer ownership switching, this works well
4598 * enough in most cases but there are some pathological cases. For
4599 * example, let's say there are two cgroups A and B which keep writing to
4600 * different but confined parts of the same inode. B owns the inode and
4601 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4602 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4603 * triggering background writeback. A will be slowed down without a way to
4604 * make writeback of the dirty pages happen.
4605 *
4606 * Conditions like the above can lead to a cgroup getting repatedly and
4607 * severely throttled after making some progress after each
4608 * dirty_expire_interval while the underyling IO device is almost
4609 * completely idle.
4610 *
4611 * Solving this problem completely requires matching the ownership tracking
4612 * granularities between memcg and writeback in either direction. However,
4613 * the more egregious behaviors can be avoided by simply remembering the
4614 * most recent foreign dirtying events and initiating remote flushes on
4615 * them when local writeback isn't enough to keep the memory clean enough.
4616 *
4617 * The following two functions implement such mechanism. When a foreign
4618 * page - a page whose memcg and writeback ownerships don't match - is
4619 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4620 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4621 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4622 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4623 * foreign bdi_writebacks which haven't expired. Both the numbers of
4624 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4625 * limited to MEMCG_CGWB_FRN_CNT.
4626 *
4627 * The mechanism only remembers IDs and doesn't hold any object references.
4628 * As being wrong occasionally doesn't matter, updates and accesses to the
4629 * records are lockless and racy.
4630 */
4631void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4632 struct bdi_writeback *wb)
4633{
4634 struct mem_cgroup *memcg = page->mem_cgroup;
4635 struct memcg_cgwb_frn *frn;
4636 u64 now = get_jiffies_64();
4637 u64 oldest_at = now;
4638 int oldest = -1;
4639 int i;
4640
3a8e9ac8
TH
4641 trace_track_foreign_dirty(page, wb);
4642
97b27821
TH
4643 /*
4644 * Pick the slot to use. If there is already a slot for @wb, keep
4645 * using it. If not replace the oldest one which isn't being
4646 * written out.
4647 */
4648 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4649 frn = &memcg->cgwb_frn[i];
4650 if (frn->bdi_id == wb->bdi->id &&
4651 frn->memcg_id == wb->memcg_css->id)
4652 break;
4653 if (time_before64(frn->at, oldest_at) &&
4654 atomic_read(&frn->done.cnt) == 1) {
4655 oldest = i;
4656 oldest_at = frn->at;
4657 }
4658 }
4659
4660 if (i < MEMCG_CGWB_FRN_CNT) {
4661 /*
4662 * Re-using an existing one. Update timestamp lazily to
4663 * avoid making the cacheline hot. We want them to be
4664 * reasonably up-to-date and significantly shorter than
4665 * dirty_expire_interval as that's what expires the record.
4666 * Use the shorter of 1s and dirty_expire_interval / 8.
4667 */
4668 unsigned long update_intv =
4669 min_t(unsigned long, HZ,
4670 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4671
4672 if (time_before64(frn->at, now - update_intv))
4673 frn->at = now;
4674 } else if (oldest >= 0) {
4675 /* replace the oldest free one */
4676 frn = &memcg->cgwb_frn[oldest];
4677 frn->bdi_id = wb->bdi->id;
4678 frn->memcg_id = wb->memcg_css->id;
4679 frn->at = now;
4680 }
4681}
4682
4683/* issue foreign writeback flushes for recorded foreign dirtying events */
4684void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4685{
4686 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4687 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4688 u64 now = jiffies_64;
4689 int i;
4690
4691 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4692 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4693
4694 /*
4695 * If the record is older than dirty_expire_interval,
4696 * writeback on it has already started. No need to kick it
4697 * off again. Also, don't start a new one if there's
4698 * already one in flight.
4699 */
4700 if (time_after64(frn->at, now - intv) &&
4701 atomic_read(&frn->done.cnt) == 1) {
4702 frn->at = 0;
3a8e9ac8 4703 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4704 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4705 WB_REASON_FOREIGN_FLUSH,
4706 &frn->done);
4707 }
4708 }
4709}
4710
841710aa
TH
4711#else /* CONFIG_CGROUP_WRITEBACK */
4712
4713static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4714{
4715 return 0;
4716}
4717
4718static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4719{
4720}
4721
2529bb3a
TH
4722static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4723{
4724}
4725
52ebea74
TH
4726#endif /* CONFIG_CGROUP_WRITEBACK */
4727
3bc942f3
TH
4728/*
4729 * DO NOT USE IN NEW FILES.
4730 *
4731 * "cgroup.event_control" implementation.
4732 *
4733 * This is way over-engineered. It tries to support fully configurable
4734 * events for each user. Such level of flexibility is completely
4735 * unnecessary especially in the light of the planned unified hierarchy.
4736 *
4737 * Please deprecate this and replace with something simpler if at all
4738 * possible.
4739 */
4740
79bd9814
TH
4741/*
4742 * Unregister event and free resources.
4743 *
4744 * Gets called from workqueue.
4745 */
3bc942f3 4746static void memcg_event_remove(struct work_struct *work)
79bd9814 4747{
3bc942f3
TH
4748 struct mem_cgroup_event *event =
4749 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4750 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4751
4752 remove_wait_queue(event->wqh, &event->wait);
4753
59b6f873 4754 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4755
4756 /* Notify userspace the event is going away. */
4757 eventfd_signal(event->eventfd, 1);
4758
4759 eventfd_ctx_put(event->eventfd);
4760 kfree(event);
59b6f873 4761 css_put(&memcg->css);
79bd9814
TH
4762}
4763
4764/*
a9a08845 4765 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4766 *
4767 * Called with wqh->lock held and interrupts disabled.
4768 */
ac6424b9 4769static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4770 int sync, void *key)
79bd9814 4771{
3bc942f3
TH
4772 struct mem_cgroup_event *event =
4773 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4774 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4775 __poll_t flags = key_to_poll(key);
79bd9814 4776
a9a08845 4777 if (flags & EPOLLHUP) {
79bd9814
TH
4778 /*
4779 * If the event has been detached at cgroup removal, we
4780 * can simply return knowing the other side will cleanup
4781 * for us.
4782 *
4783 * We can't race against event freeing since the other
4784 * side will require wqh->lock via remove_wait_queue(),
4785 * which we hold.
4786 */
fba94807 4787 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4788 if (!list_empty(&event->list)) {
4789 list_del_init(&event->list);
4790 /*
4791 * We are in atomic context, but cgroup_event_remove()
4792 * may sleep, so we have to call it in workqueue.
4793 */
4794 schedule_work(&event->remove);
4795 }
fba94807 4796 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4797 }
4798
4799 return 0;
4800}
4801
3bc942f3 4802static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4803 wait_queue_head_t *wqh, poll_table *pt)
4804{
3bc942f3
TH
4805 struct mem_cgroup_event *event =
4806 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4807
4808 event->wqh = wqh;
4809 add_wait_queue(wqh, &event->wait);
4810}
4811
4812/*
3bc942f3
TH
4813 * DO NOT USE IN NEW FILES.
4814 *
79bd9814
TH
4815 * Parse input and register new cgroup event handler.
4816 *
4817 * Input must be in format '<event_fd> <control_fd> <args>'.
4818 * Interpretation of args is defined by control file implementation.
4819 */
451af504
TH
4820static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4821 char *buf, size_t nbytes, loff_t off)
79bd9814 4822{
451af504 4823 struct cgroup_subsys_state *css = of_css(of);
fba94807 4824 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4825 struct mem_cgroup_event *event;
79bd9814
TH
4826 struct cgroup_subsys_state *cfile_css;
4827 unsigned int efd, cfd;
4828 struct fd efile;
4829 struct fd cfile;
fba94807 4830 const char *name;
79bd9814
TH
4831 char *endp;
4832 int ret;
4833
451af504
TH
4834 buf = strstrip(buf);
4835
4836 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4837 if (*endp != ' ')
4838 return -EINVAL;
451af504 4839 buf = endp + 1;
79bd9814 4840
451af504 4841 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4842 if ((*endp != ' ') && (*endp != '\0'))
4843 return -EINVAL;
451af504 4844 buf = endp + 1;
79bd9814
TH
4845
4846 event = kzalloc(sizeof(*event), GFP_KERNEL);
4847 if (!event)
4848 return -ENOMEM;
4849
59b6f873 4850 event->memcg = memcg;
79bd9814 4851 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4852 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4853 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4854 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4855
4856 efile = fdget(efd);
4857 if (!efile.file) {
4858 ret = -EBADF;
4859 goto out_kfree;
4860 }
4861
4862 event->eventfd = eventfd_ctx_fileget(efile.file);
4863 if (IS_ERR(event->eventfd)) {
4864 ret = PTR_ERR(event->eventfd);
4865 goto out_put_efile;
4866 }
4867
4868 cfile = fdget(cfd);
4869 if (!cfile.file) {
4870 ret = -EBADF;
4871 goto out_put_eventfd;
4872 }
4873
4874 /* the process need read permission on control file */
4875 /* AV: shouldn't we check that it's been opened for read instead? */
4876 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4877 if (ret < 0)
4878 goto out_put_cfile;
4879
fba94807
TH
4880 /*
4881 * Determine the event callbacks and set them in @event. This used
4882 * to be done via struct cftype but cgroup core no longer knows
4883 * about these events. The following is crude but the whole thing
4884 * is for compatibility anyway.
3bc942f3
TH
4885 *
4886 * DO NOT ADD NEW FILES.
fba94807 4887 */
b583043e 4888 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4889
4890 if (!strcmp(name, "memory.usage_in_bytes")) {
4891 event->register_event = mem_cgroup_usage_register_event;
4892 event->unregister_event = mem_cgroup_usage_unregister_event;
4893 } else if (!strcmp(name, "memory.oom_control")) {
4894 event->register_event = mem_cgroup_oom_register_event;
4895 event->unregister_event = mem_cgroup_oom_unregister_event;
4896 } else if (!strcmp(name, "memory.pressure_level")) {
4897 event->register_event = vmpressure_register_event;
4898 event->unregister_event = vmpressure_unregister_event;
4899 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4900 event->register_event = memsw_cgroup_usage_register_event;
4901 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4902 } else {
4903 ret = -EINVAL;
4904 goto out_put_cfile;
4905 }
4906
79bd9814 4907 /*
b5557c4c
TH
4908 * Verify @cfile should belong to @css. Also, remaining events are
4909 * automatically removed on cgroup destruction but the removal is
4910 * asynchronous, so take an extra ref on @css.
79bd9814 4911 */
b583043e 4912 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4913 &memory_cgrp_subsys);
79bd9814 4914 ret = -EINVAL;
5a17f543 4915 if (IS_ERR(cfile_css))
79bd9814 4916 goto out_put_cfile;
5a17f543
TH
4917 if (cfile_css != css) {
4918 css_put(cfile_css);
79bd9814 4919 goto out_put_cfile;
5a17f543 4920 }
79bd9814 4921
451af504 4922 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4923 if (ret)
4924 goto out_put_css;
4925
9965ed17 4926 vfs_poll(efile.file, &event->pt);
79bd9814 4927
fba94807
TH
4928 spin_lock(&memcg->event_list_lock);
4929 list_add(&event->list, &memcg->event_list);
4930 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4931
4932 fdput(cfile);
4933 fdput(efile);
4934
451af504 4935 return nbytes;
79bd9814
TH
4936
4937out_put_css:
b5557c4c 4938 css_put(css);
79bd9814
TH
4939out_put_cfile:
4940 fdput(cfile);
4941out_put_eventfd:
4942 eventfd_ctx_put(event->eventfd);
4943out_put_efile:
4944 fdput(efile);
4945out_kfree:
4946 kfree(event);
4947
4948 return ret;
4949}
4950
241994ed 4951static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4952 {
0eea1030 4953 .name = "usage_in_bytes",
8c7c6e34 4954 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4955 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4956 },
c84872e1
PE
4957 {
4958 .name = "max_usage_in_bytes",
8c7c6e34 4959 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4960 .write = mem_cgroup_reset,
791badbd 4961 .read_u64 = mem_cgroup_read_u64,
c84872e1 4962 },
8cdea7c0 4963 {
0eea1030 4964 .name = "limit_in_bytes",
8c7c6e34 4965 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4966 .write = mem_cgroup_write,
791badbd 4967 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4968 },
296c81d8
BS
4969 {
4970 .name = "soft_limit_in_bytes",
4971 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4972 .write = mem_cgroup_write,
791badbd 4973 .read_u64 = mem_cgroup_read_u64,
296c81d8 4974 },
8cdea7c0
BS
4975 {
4976 .name = "failcnt",
8c7c6e34 4977 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4978 .write = mem_cgroup_reset,
791badbd 4979 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4980 },
d2ceb9b7
KH
4981 {
4982 .name = "stat",
2da8ca82 4983 .seq_show = memcg_stat_show,
d2ceb9b7 4984 },
c1e862c1
KH
4985 {
4986 .name = "force_empty",
6770c64e 4987 .write = mem_cgroup_force_empty_write,
c1e862c1 4988 },
18f59ea7
BS
4989 {
4990 .name = "use_hierarchy",
4991 .write_u64 = mem_cgroup_hierarchy_write,
4992 .read_u64 = mem_cgroup_hierarchy_read,
4993 },
79bd9814 4994 {
3bc942f3 4995 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4996 .write = memcg_write_event_control,
7dbdb199 4997 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4998 },
a7885eb8
KM
4999 {
5000 .name = "swappiness",
5001 .read_u64 = mem_cgroup_swappiness_read,
5002 .write_u64 = mem_cgroup_swappiness_write,
5003 },
7dc74be0
DN
5004 {
5005 .name = "move_charge_at_immigrate",
5006 .read_u64 = mem_cgroup_move_charge_read,
5007 .write_u64 = mem_cgroup_move_charge_write,
5008 },
9490ff27
KH
5009 {
5010 .name = "oom_control",
2da8ca82 5011 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5012 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5013 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5014 },
70ddf637
AV
5015 {
5016 .name = "pressure_level",
70ddf637 5017 },
406eb0c9
YH
5018#ifdef CONFIG_NUMA
5019 {
5020 .name = "numa_stat",
2da8ca82 5021 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5022 },
5023#endif
510fc4e1
GC
5024 {
5025 .name = "kmem.limit_in_bytes",
5026 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5027 .write = mem_cgroup_write,
791badbd 5028 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5029 },
5030 {
5031 .name = "kmem.usage_in_bytes",
5032 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5033 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5034 },
5035 {
5036 .name = "kmem.failcnt",
5037 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5038 .write = mem_cgroup_reset,
791badbd 5039 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5040 },
5041 {
5042 .name = "kmem.max_usage_in_bytes",
5043 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5044 .write = mem_cgroup_reset,
791badbd 5045 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5046 },
a87425a3
YS
5047#if defined(CONFIG_MEMCG_KMEM) && \
5048 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5049 {
5050 .name = "kmem.slabinfo",
b047501c 5051 .seq_show = memcg_slab_show,
749c5415
GC
5052 },
5053#endif
d55f90bf
VD
5054 {
5055 .name = "kmem.tcp.limit_in_bytes",
5056 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5057 .write = mem_cgroup_write,
5058 .read_u64 = mem_cgroup_read_u64,
5059 },
5060 {
5061 .name = "kmem.tcp.usage_in_bytes",
5062 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5063 .read_u64 = mem_cgroup_read_u64,
5064 },
5065 {
5066 .name = "kmem.tcp.failcnt",
5067 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5068 .write = mem_cgroup_reset,
5069 .read_u64 = mem_cgroup_read_u64,
5070 },
5071 {
5072 .name = "kmem.tcp.max_usage_in_bytes",
5073 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5074 .write = mem_cgroup_reset,
5075 .read_u64 = mem_cgroup_read_u64,
5076 },
6bc10349 5077 { }, /* terminate */
af36f906 5078};
8c7c6e34 5079
73f576c0
JW
5080/*
5081 * Private memory cgroup IDR
5082 *
5083 * Swap-out records and page cache shadow entries need to store memcg
5084 * references in constrained space, so we maintain an ID space that is
5085 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5086 * memory-controlled cgroups to 64k.
5087 *
b8f2935f 5088 * However, there usually are many references to the offline CSS after
73f576c0
JW
5089 * the cgroup has been destroyed, such as page cache or reclaimable
5090 * slab objects, that don't need to hang on to the ID. We want to keep
5091 * those dead CSS from occupying IDs, or we might quickly exhaust the
5092 * relatively small ID space and prevent the creation of new cgroups
5093 * even when there are much fewer than 64k cgroups - possibly none.
5094 *
5095 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5096 * be freed and recycled when it's no longer needed, which is usually
5097 * when the CSS is offlined.
5098 *
5099 * The only exception to that are records of swapped out tmpfs/shmem
5100 * pages that need to be attributed to live ancestors on swapin. But
5101 * those references are manageable from userspace.
5102 */
5103
5104static DEFINE_IDR(mem_cgroup_idr);
5105
7e97de0b
KT
5106static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5107{
5108 if (memcg->id.id > 0) {
5109 idr_remove(&mem_cgroup_idr, memcg->id.id);
5110 memcg->id.id = 0;
5111 }
5112}
5113
c1514c0a
VF
5114static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5115 unsigned int n)
73f576c0 5116{
1c2d479a 5117 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5118}
5119
615d66c3 5120static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5121{
1c2d479a 5122 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5123 mem_cgroup_id_remove(memcg);
73f576c0
JW
5124
5125 /* Memcg ID pins CSS */
5126 css_put(&memcg->css);
5127 }
5128}
5129
615d66c3
VD
5130static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5131{
5132 mem_cgroup_id_put_many(memcg, 1);
5133}
5134
73f576c0
JW
5135/**
5136 * mem_cgroup_from_id - look up a memcg from a memcg id
5137 * @id: the memcg id to look up
5138 *
5139 * Caller must hold rcu_read_lock().
5140 */
5141struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5142{
5143 WARN_ON_ONCE(!rcu_read_lock_held());
5144 return idr_find(&mem_cgroup_idr, id);
5145}
5146
ef8f2327 5147static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5148{
5149 struct mem_cgroup_per_node *pn;
ef8f2327 5150 int tmp = node;
1ecaab2b
KH
5151 /*
5152 * This routine is called against possible nodes.
5153 * But it's BUG to call kmalloc() against offline node.
5154 *
5155 * TODO: this routine can waste much memory for nodes which will
5156 * never be onlined. It's better to use memory hotplug callback
5157 * function.
5158 */
41e3355d
KH
5159 if (!node_state(node, N_NORMAL_MEMORY))
5160 tmp = -1;
17295c88 5161 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5162 if (!pn)
5163 return 1;
1ecaab2b 5164
3e38e0aa
RG
5165 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5166 GFP_KERNEL_ACCOUNT);
815744d7
JW
5167 if (!pn->lruvec_stat_local) {
5168 kfree(pn);
5169 return 1;
5170 }
5171
3e38e0aa
RG
5172 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5173 GFP_KERNEL_ACCOUNT);
a983b5eb 5174 if (!pn->lruvec_stat_cpu) {
815744d7 5175 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5176 kfree(pn);
5177 return 1;
5178 }
5179
ef8f2327
MG
5180 lruvec_init(&pn->lruvec);
5181 pn->usage_in_excess = 0;
5182 pn->on_tree = false;
5183 pn->memcg = memcg;
5184
54f72fe0 5185 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5186 return 0;
5187}
5188
ef8f2327 5189static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5190{
00f3ca2c
JW
5191 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5192
4eaf431f
MH
5193 if (!pn)
5194 return;
5195
a983b5eb 5196 free_percpu(pn->lruvec_stat_cpu);
815744d7 5197 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5198 kfree(pn);
1ecaab2b
KH
5199}
5200
40e952f9 5201static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5202{
c8b2a36f 5203 int node;
59927fb9 5204
c8b2a36f 5205 for_each_node(node)
ef8f2327 5206 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5207 free_percpu(memcg->vmstats_percpu);
815744d7 5208 free_percpu(memcg->vmstats_local);
8ff69e2c 5209 kfree(memcg);
59927fb9 5210}
3afe36b1 5211
40e952f9
TE
5212static void mem_cgroup_free(struct mem_cgroup *memcg)
5213{
5214 memcg_wb_domain_exit(memcg);
7961eee3
SB
5215 /*
5216 * Flush percpu vmstats and vmevents to guarantee the value correctness
5217 * on parent's and all ancestor levels.
5218 */
4a87e2a2 5219 memcg_flush_percpu_vmstats(memcg);
7961eee3 5220 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5221 __mem_cgroup_free(memcg);
5222}
5223
0b8f73e1 5224static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5225{
d142e3e6 5226 struct mem_cgroup *memcg;
b9726c26 5227 unsigned int size;
6d12e2d8 5228 int node;
97b27821 5229 int __maybe_unused i;
11d67612 5230 long error = -ENOMEM;
8cdea7c0 5231
0b8f73e1
JW
5232 size = sizeof(struct mem_cgroup);
5233 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5234
5235 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5236 if (!memcg)
11d67612 5237 return ERR_PTR(error);
0b8f73e1 5238
73f576c0
JW
5239 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5240 1, MEM_CGROUP_ID_MAX,
5241 GFP_KERNEL);
11d67612
YS
5242 if (memcg->id.id < 0) {
5243 error = memcg->id.id;
73f576c0 5244 goto fail;
11d67612 5245 }
73f576c0 5246
3e38e0aa
RG
5247 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5248 GFP_KERNEL_ACCOUNT);
815744d7
JW
5249 if (!memcg->vmstats_local)
5250 goto fail;
5251
3e38e0aa
RG
5252 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5253 GFP_KERNEL_ACCOUNT);
871789d4 5254 if (!memcg->vmstats_percpu)
0b8f73e1 5255 goto fail;
78fb7466 5256
3ed28fa1 5257 for_each_node(node)
ef8f2327 5258 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5259 goto fail;
f64c3f54 5260
0b8f73e1
JW
5261 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5262 goto fail;
28dbc4b6 5263
f7e1cb6e 5264 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5265 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5266 mutex_init(&memcg->thresholds_lock);
5267 spin_lock_init(&memcg->move_lock);
70ddf637 5268 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5269 INIT_LIST_HEAD(&memcg->event_list);
5270 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5271 memcg->socket_pressure = jiffies;
84c07d11 5272#ifdef CONFIG_MEMCG_KMEM
900a38f0 5273 memcg->kmemcg_id = -1;
bf4f0599 5274 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5275#endif
52ebea74
TH
5276#ifdef CONFIG_CGROUP_WRITEBACK
5277 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5278 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5279 memcg->cgwb_frn[i].done =
5280 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5281#endif
5282#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5284 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5285 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5286#endif
73f576c0 5287 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5288 return memcg;
5289fail:
7e97de0b 5290 mem_cgroup_id_remove(memcg);
40e952f9 5291 __mem_cgroup_free(memcg);
11d67612 5292 return ERR_PTR(error);
d142e3e6
GC
5293}
5294
0b8f73e1
JW
5295static struct cgroup_subsys_state * __ref
5296mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5297{
0b8f73e1 5298 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5299 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5300 long error = -ENOMEM;
d142e3e6 5301
b87d8cef 5302 old_memcg = set_active_memcg(parent);
0b8f73e1 5303 memcg = mem_cgroup_alloc();
b87d8cef 5304 set_active_memcg(old_memcg);
11d67612
YS
5305 if (IS_ERR(memcg))
5306 return ERR_CAST(memcg);
d142e3e6 5307
d1663a90 5308 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5309 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5310 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5311 if (parent) {
5312 memcg->swappiness = mem_cgroup_swappiness(parent);
5313 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5314
3e32cb2e 5315 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5316 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5317 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5318 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5319 } else {
bef8620c
RG
5320 page_counter_init(&memcg->memory, NULL);
5321 page_counter_init(&memcg->swap, NULL);
5322 page_counter_init(&memcg->kmem, NULL);
5323 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5324
0b8f73e1
JW
5325 root_mem_cgroup = memcg;
5326 return &memcg->css;
5327 }
5328
bef8620c 5329 /* The following stuff does not apply to the root */
b313aeee 5330 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5331 if (error)
5332 goto fail;
127424c8 5333
f7e1cb6e 5334 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5335 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5336
0b8f73e1
JW
5337 return &memcg->css;
5338fail:
7e97de0b 5339 mem_cgroup_id_remove(memcg);
0b8f73e1 5340 mem_cgroup_free(memcg);
11d67612 5341 return ERR_PTR(error);
0b8f73e1
JW
5342}
5343
73f576c0 5344static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5345{
58fa2a55
VD
5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5347
0a4465d3
KT
5348 /*
5349 * A memcg must be visible for memcg_expand_shrinker_maps()
5350 * by the time the maps are allocated. So, we allocate maps
5351 * here, when for_each_mem_cgroup() can't skip it.
5352 */
5353 if (memcg_alloc_shrinker_maps(memcg)) {
5354 mem_cgroup_id_remove(memcg);
5355 return -ENOMEM;
5356 }
5357
73f576c0 5358 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5359 refcount_set(&memcg->id.ref, 1);
73f576c0 5360 css_get(css);
2f7dd7a4 5361 return 0;
8cdea7c0
BS
5362}
5363
eb95419b 5364static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5365{
eb95419b 5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5367 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5368
5369 /*
5370 * Unregister events and notify userspace.
5371 * Notify userspace about cgroup removing only after rmdir of cgroup
5372 * directory to avoid race between userspace and kernelspace.
5373 */
fba94807
TH
5374 spin_lock(&memcg->event_list_lock);
5375 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5376 list_del_init(&event->list);
5377 schedule_work(&event->remove);
5378 }
fba94807 5379 spin_unlock(&memcg->event_list_lock);
ec64f515 5380
bf8d5d52 5381 page_counter_set_min(&memcg->memory, 0);
23067153 5382 page_counter_set_low(&memcg->memory, 0);
63677c74 5383
567e9ab2 5384 memcg_offline_kmem(memcg);
52ebea74 5385 wb_memcg_offline(memcg);
73f576c0 5386
591edfb1
RG
5387 drain_all_stock(memcg);
5388
73f576c0 5389 mem_cgroup_id_put(memcg);
df878fb0
KH
5390}
5391
6df38689
VD
5392static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5393{
5394 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5395
5396 invalidate_reclaim_iterators(memcg);
5397}
5398
eb95419b 5399static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5400{
eb95419b 5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5402 int __maybe_unused i;
c268e994 5403
97b27821
TH
5404#ifdef CONFIG_CGROUP_WRITEBACK
5405 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5406 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5407#endif
f7e1cb6e 5408 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5409 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5410
0db15298 5411 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5412 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5413
0b8f73e1
JW
5414 vmpressure_cleanup(&memcg->vmpressure);
5415 cancel_work_sync(&memcg->high_work);
5416 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5417 memcg_free_shrinker_maps(memcg);
d886f4e4 5418 memcg_free_kmem(memcg);
0b8f73e1 5419 mem_cgroup_free(memcg);
8cdea7c0
BS
5420}
5421
1ced953b
TH
5422/**
5423 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5424 * @css: the target css
5425 *
5426 * Reset the states of the mem_cgroup associated with @css. This is
5427 * invoked when the userland requests disabling on the default hierarchy
5428 * but the memcg is pinned through dependency. The memcg should stop
5429 * applying policies and should revert to the vanilla state as it may be
5430 * made visible again.
5431 *
5432 * The current implementation only resets the essential configurations.
5433 * This needs to be expanded to cover all the visible parts.
5434 */
5435static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5438
bbec2e15
RG
5439 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5440 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5441 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5442 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5443 page_counter_set_min(&memcg->memory, 0);
23067153 5444 page_counter_set_low(&memcg->memory, 0);
d1663a90 5445 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5446 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5447 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5448 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5449}
5450
02491447 5451#ifdef CONFIG_MMU
7dc74be0 5452/* Handlers for move charge at task migration. */
854ffa8d 5453static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5454{
05b84301 5455 int ret;
9476db97 5456
d0164adc
MG
5457 /* Try a single bulk charge without reclaim first, kswapd may wake */
5458 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5459 if (!ret) {
854ffa8d 5460 mc.precharge += count;
854ffa8d
DN
5461 return ret;
5462 }
9476db97 5463
3674534b 5464 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5465 while (count--) {
3674534b 5466 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5467 if (ret)
38c5d72f 5468 return ret;
854ffa8d 5469 mc.precharge++;
9476db97 5470 cond_resched();
854ffa8d 5471 }
9476db97 5472 return 0;
4ffef5fe
DN
5473}
5474
4ffef5fe
DN
5475union mc_target {
5476 struct page *page;
02491447 5477 swp_entry_t ent;
4ffef5fe
DN
5478};
5479
4ffef5fe 5480enum mc_target_type {
8d32ff84 5481 MC_TARGET_NONE = 0,
4ffef5fe 5482 MC_TARGET_PAGE,
02491447 5483 MC_TARGET_SWAP,
c733a828 5484 MC_TARGET_DEVICE,
4ffef5fe
DN
5485};
5486
90254a65
DN
5487static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5488 unsigned long addr, pte_t ptent)
4ffef5fe 5489{
25b2995a 5490 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5491
90254a65
DN
5492 if (!page || !page_mapped(page))
5493 return NULL;
5494 if (PageAnon(page)) {
1dfab5ab 5495 if (!(mc.flags & MOVE_ANON))
90254a65 5496 return NULL;
1dfab5ab
JW
5497 } else {
5498 if (!(mc.flags & MOVE_FILE))
5499 return NULL;
5500 }
90254a65
DN
5501 if (!get_page_unless_zero(page))
5502 return NULL;
5503
5504 return page;
5505}
5506
c733a828 5507#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5508static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5509 pte_t ptent, swp_entry_t *entry)
90254a65 5510{
90254a65
DN
5511 struct page *page = NULL;
5512 swp_entry_t ent = pte_to_swp_entry(ptent);
5513
9a137153 5514 if (!(mc.flags & MOVE_ANON))
90254a65 5515 return NULL;
c733a828
JG
5516
5517 /*
5518 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5519 * a device and because they are not accessible by CPU they are store
5520 * as special swap entry in the CPU page table.
5521 */
5522 if (is_device_private_entry(ent)) {
5523 page = device_private_entry_to_page(ent);
5524 /*
5525 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5526 * a refcount of 1 when free (unlike normal page)
5527 */
5528 if (!page_ref_add_unless(page, 1, 1))
5529 return NULL;
5530 return page;
5531 }
5532
9a137153
RC
5533 if (non_swap_entry(ent))
5534 return NULL;
5535
4b91355e
KH
5536 /*
5537 * Because lookup_swap_cache() updates some statistics counter,
5538 * we call find_get_page() with swapper_space directly.
5539 */
f6ab1f7f 5540 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5541 entry->val = ent.val;
90254a65
DN
5542
5543 return page;
5544}
4b91355e
KH
5545#else
5546static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5547 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5548{
5549 return NULL;
5550}
5551#endif
90254a65 5552
87946a72
DN
5553static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5554 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5555{
87946a72
DN
5556 if (!vma->vm_file) /* anonymous vma */
5557 return NULL;
1dfab5ab 5558 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5559 return NULL;
5560
87946a72 5561 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5562 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5563 return find_get_incore_page(vma->vm_file->f_mapping,
5564 linear_page_index(vma, addr));
87946a72
DN
5565}
5566
b1b0deab
CG
5567/**
5568 * mem_cgroup_move_account - move account of the page
5569 * @page: the page
25843c2b 5570 * @compound: charge the page as compound or small page
b1b0deab
CG
5571 * @from: mem_cgroup which the page is moved from.
5572 * @to: mem_cgroup which the page is moved to. @from != @to.
5573 *
3ac808fd 5574 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5575 *
5576 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5577 * from old cgroup.
5578 */
5579static int mem_cgroup_move_account(struct page *page,
f627c2f5 5580 bool compound,
b1b0deab
CG
5581 struct mem_cgroup *from,
5582 struct mem_cgroup *to)
5583{
ae8af438
KK
5584 struct lruvec *from_vec, *to_vec;
5585 struct pglist_data *pgdat;
6c357848 5586 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5587 int ret;
5588
5589 VM_BUG_ON(from == to);
5590 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5591 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5592
5593 /*
6a93ca8f 5594 * Prevent mem_cgroup_migrate() from looking at
45637bab 5595 * page->mem_cgroup of its source page while we change it.
b1b0deab 5596 */
f627c2f5 5597 ret = -EBUSY;
b1b0deab
CG
5598 if (!trylock_page(page))
5599 goto out;
5600
5601 ret = -EINVAL;
5602 if (page->mem_cgroup != from)
5603 goto out_unlock;
5604
ae8af438 5605 pgdat = page_pgdat(page);
867e5e1d
JW
5606 from_vec = mem_cgroup_lruvec(from, pgdat);
5607 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5608
abb242f5 5609 lock_page_memcg(page);
b1b0deab 5610
be5d0a74
JW
5611 if (PageAnon(page)) {
5612 if (page_mapped(page)) {
5613 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5614 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5615 if (PageTransHuge(page)) {
5616 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5617 -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5619 nr_pages);
5620 }
5621
be5d0a74
JW
5622 }
5623 } else {
0d1c2072
JW
5624 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5625 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5626
5627 if (PageSwapBacked(page)) {
5628 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5629 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5630 }
5631
49e50d27
JW
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5635 }
b1b0deab 5636
49e50d27
JW
5637 if (PageDirty(page)) {
5638 struct address_space *mapping = page_mapping(page);
c4843a75 5639
f56753ac 5640 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5641 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5642 -nr_pages);
5643 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5644 nr_pages);
5645 }
c4843a75
GT
5646 }
5647 }
5648
b1b0deab 5649 if (PageWriteback(page)) {
ae8af438
KK
5650 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5651 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5652 }
5653
5654 /*
abb242f5
JW
5655 * All state has been migrated, let's switch to the new memcg.
5656 *
b1b0deab 5657 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5658 * is referenced, charged, isolated, and locked: we can't race
5659 * with (un)charging, migration, LRU putback, or anything else
5660 * that would rely on a stable page->mem_cgroup.
5661 *
5662 * Note that lock_page_memcg is a memcg lock, not a page lock,
5663 * to save space. As soon as we switch page->mem_cgroup to a
5664 * new memcg that isn't locked, the above state can change
5665 * concurrently again. Make sure we're truly done with it.
b1b0deab 5666 */
abb242f5 5667 smp_mb();
b1b0deab 5668
1a3e1f40
JW
5669 css_get(&to->css);
5670 css_put(&from->css);
5671
5672 page->mem_cgroup = to;
87eaceb3 5673
abb242f5 5674 __unlock_page_memcg(from);
b1b0deab
CG
5675
5676 ret = 0;
5677
5678 local_irq_disable();
3fba69a5 5679 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5680 memcg_check_events(to, page);
3fba69a5 5681 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5682 memcg_check_events(from, page);
5683 local_irq_enable();
5684out_unlock:
5685 unlock_page(page);
5686out:
5687 return ret;
5688}
5689
7cf7806c
LR
5690/**
5691 * get_mctgt_type - get target type of moving charge
5692 * @vma: the vma the pte to be checked belongs
5693 * @addr: the address corresponding to the pte to be checked
5694 * @ptent: the pte to be checked
5695 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5696 *
5697 * Returns
5698 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5699 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5700 * move charge. if @target is not NULL, the page is stored in target->page
5701 * with extra refcnt got(Callers should handle it).
5702 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5703 * target for charge migration. if @target is not NULL, the entry is stored
5704 * in target->ent.
25b2995a
CH
5705 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5706 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5707 * For now we such page is charge like a regular page would be as for all
5708 * intent and purposes it is just special memory taking the place of a
5709 * regular page.
c733a828
JG
5710 *
5711 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5712 *
5713 * Called with pte lock held.
5714 */
5715
8d32ff84 5716static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5717 unsigned long addr, pte_t ptent, union mc_target *target)
5718{
5719 struct page *page = NULL;
8d32ff84 5720 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5721 swp_entry_t ent = { .val = 0 };
5722
5723 if (pte_present(ptent))
5724 page = mc_handle_present_pte(vma, addr, ptent);
5725 else if (is_swap_pte(ptent))
48406ef8 5726 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5727 else if (pte_none(ptent))
87946a72 5728 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5729
5730 if (!page && !ent.val)
8d32ff84 5731 return ret;
02491447 5732 if (page) {
02491447 5733 /*
0a31bc97 5734 * Do only loose check w/o serialization.
1306a85a 5735 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5736 * not under LRU exclusion.
02491447 5737 */
1306a85a 5738 if (page->mem_cgroup == mc.from) {
02491447 5739 ret = MC_TARGET_PAGE;
25b2995a 5740 if (is_device_private_page(page))
c733a828 5741 ret = MC_TARGET_DEVICE;
02491447
DN
5742 if (target)
5743 target->page = page;
5744 }
5745 if (!ret || !target)
5746 put_page(page);
5747 }
3e14a57b
HY
5748 /*
5749 * There is a swap entry and a page doesn't exist or isn't charged.
5750 * But we cannot move a tail-page in a THP.
5751 */
5752 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5753 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5754 ret = MC_TARGET_SWAP;
5755 if (target)
5756 target->ent = ent;
4ffef5fe 5757 }
4ffef5fe
DN
5758 return ret;
5759}
5760
12724850
NH
5761#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762/*
d6810d73
HY
5763 * We don't consider PMD mapped swapping or file mapped pages because THP does
5764 * not support them for now.
12724850
NH
5765 * Caller should make sure that pmd_trans_huge(pmd) is true.
5766 */
5767static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5768 unsigned long addr, pmd_t pmd, union mc_target *target)
5769{
5770 struct page *page = NULL;
12724850
NH
5771 enum mc_target_type ret = MC_TARGET_NONE;
5772
84c3fc4e
ZY
5773 if (unlikely(is_swap_pmd(pmd))) {
5774 VM_BUG_ON(thp_migration_supported() &&
5775 !is_pmd_migration_entry(pmd));
5776 return ret;
5777 }
12724850 5778 page = pmd_page(pmd);
309381fe 5779 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5780 if (!(mc.flags & MOVE_ANON))
12724850 5781 return ret;
1306a85a 5782 if (page->mem_cgroup == mc.from) {
12724850
NH
5783 ret = MC_TARGET_PAGE;
5784 if (target) {
5785 get_page(page);
5786 target->page = page;
5787 }
5788 }
5789 return ret;
5790}
5791#else
5792static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5793 unsigned long addr, pmd_t pmd, union mc_target *target)
5794{
5795 return MC_TARGET_NONE;
5796}
5797#endif
5798
4ffef5fe
DN
5799static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5800 unsigned long addr, unsigned long end,
5801 struct mm_walk *walk)
5802{
26bcd64a 5803 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5804 pte_t *pte;
5805 spinlock_t *ptl;
5806
b6ec57f4
KS
5807 ptl = pmd_trans_huge_lock(pmd, vma);
5808 if (ptl) {
c733a828
JG
5809 /*
5810 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5811 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5812 * this might change.
c733a828 5813 */
12724850
NH
5814 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5815 mc.precharge += HPAGE_PMD_NR;
bf929152 5816 spin_unlock(ptl);
1a5a9906 5817 return 0;
12724850 5818 }
03319327 5819
45f83cef
AA
5820 if (pmd_trans_unstable(pmd))
5821 return 0;
4ffef5fe
DN
5822 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5823 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5824 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5825 mc.precharge++; /* increment precharge temporarily */
5826 pte_unmap_unlock(pte - 1, ptl);
5827 cond_resched();
5828
7dc74be0
DN
5829 return 0;
5830}
5831
7b86ac33
CH
5832static const struct mm_walk_ops precharge_walk_ops = {
5833 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5834};
5835
4ffef5fe
DN
5836static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5837{
5838 unsigned long precharge;
4ffef5fe 5839
d8ed45c5 5840 mmap_read_lock(mm);
7b86ac33 5841 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5842 mmap_read_unlock(mm);
4ffef5fe
DN
5843
5844 precharge = mc.precharge;
5845 mc.precharge = 0;
5846
5847 return precharge;
5848}
5849
4ffef5fe
DN
5850static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5851{
dfe076b0
DN
5852 unsigned long precharge = mem_cgroup_count_precharge(mm);
5853
5854 VM_BUG_ON(mc.moving_task);
5855 mc.moving_task = current;
5856 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5857}
5858
dfe076b0
DN
5859/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5860static void __mem_cgroup_clear_mc(void)
4ffef5fe 5861{
2bd9bb20
KH
5862 struct mem_cgroup *from = mc.from;
5863 struct mem_cgroup *to = mc.to;
5864
4ffef5fe 5865 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5866 if (mc.precharge) {
00501b53 5867 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5868 mc.precharge = 0;
5869 }
5870 /*
5871 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5872 * we must uncharge here.
5873 */
5874 if (mc.moved_charge) {
00501b53 5875 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5876 mc.moved_charge = 0;
4ffef5fe 5877 }
483c30b5
DN
5878 /* we must fixup refcnts and charges */
5879 if (mc.moved_swap) {
483c30b5 5880 /* uncharge swap account from the old cgroup */
ce00a967 5881 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5882 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5883
615d66c3
VD
5884 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5885
05b84301 5886 /*
3e32cb2e
JW
5887 * we charged both to->memory and to->memsw, so we
5888 * should uncharge to->memory.
05b84301 5889 */
ce00a967 5890 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5891 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5892
483c30b5
DN
5893 mc.moved_swap = 0;
5894 }
dfe076b0
DN
5895 memcg_oom_recover(from);
5896 memcg_oom_recover(to);
5897 wake_up_all(&mc.waitq);
5898}
5899
5900static void mem_cgroup_clear_mc(void)
5901{
264a0ae1
TH
5902 struct mm_struct *mm = mc.mm;
5903
dfe076b0
DN
5904 /*
5905 * we must clear moving_task before waking up waiters at the end of
5906 * task migration.
5907 */
5908 mc.moving_task = NULL;
5909 __mem_cgroup_clear_mc();
2bd9bb20 5910 spin_lock(&mc.lock);
4ffef5fe
DN
5911 mc.from = NULL;
5912 mc.to = NULL;
264a0ae1 5913 mc.mm = NULL;
2bd9bb20 5914 spin_unlock(&mc.lock);
264a0ae1
TH
5915
5916 mmput(mm);
4ffef5fe
DN
5917}
5918
1f7dd3e5 5919static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5920{
1f7dd3e5 5921 struct cgroup_subsys_state *css;
eed67d75 5922 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5923 struct mem_cgroup *from;
4530eddb 5924 struct task_struct *leader, *p;
9f2115f9 5925 struct mm_struct *mm;
1dfab5ab 5926 unsigned long move_flags;
9f2115f9 5927 int ret = 0;
7dc74be0 5928
1f7dd3e5
TH
5929 /* charge immigration isn't supported on the default hierarchy */
5930 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5931 return 0;
5932
4530eddb
TH
5933 /*
5934 * Multi-process migrations only happen on the default hierarchy
5935 * where charge immigration is not used. Perform charge
5936 * immigration if @tset contains a leader and whine if there are
5937 * multiple.
5938 */
5939 p = NULL;
1f7dd3e5 5940 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5941 WARN_ON_ONCE(p);
5942 p = leader;
1f7dd3e5 5943 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5944 }
5945 if (!p)
5946 return 0;
5947
1f7dd3e5
TH
5948 /*
5949 * We are now commited to this value whatever it is. Changes in this
5950 * tunable will only affect upcoming migrations, not the current one.
5951 * So we need to save it, and keep it going.
5952 */
5953 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5954 if (!move_flags)
5955 return 0;
5956
9f2115f9
TH
5957 from = mem_cgroup_from_task(p);
5958
5959 VM_BUG_ON(from == memcg);
5960
5961 mm = get_task_mm(p);
5962 if (!mm)
5963 return 0;
5964 /* We move charges only when we move a owner of the mm */
5965 if (mm->owner == p) {
5966 VM_BUG_ON(mc.from);
5967 VM_BUG_ON(mc.to);
5968 VM_BUG_ON(mc.precharge);
5969 VM_BUG_ON(mc.moved_charge);
5970 VM_BUG_ON(mc.moved_swap);
5971
5972 spin_lock(&mc.lock);
264a0ae1 5973 mc.mm = mm;
9f2115f9
TH
5974 mc.from = from;
5975 mc.to = memcg;
5976 mc.flags = move_flags;
5977 spin_unlock(&mc.lock);
5978 /* We set mc.moving_task later */
5979
5980 ret = mem_cgroup_precharge_mc(mm);
5981 if (ret)
5982 mem_cgroup_clear_mc();
264a0ae1
TH
5983 } else {
5984 mmput(mm);
7dc74be0
DN
5985 }
5986 return ret;
5987}
5988
1f7dd3e5 5989static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5990{
4e2f245d
JW
5991 if (mc.to)
5992 mem_cgroup_clear_mc();
7dc74be0
DN
5993}
5994
4ffef5fe
DN
5995static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5996 unsigned long addr, unsigned long end,
5997 struct mm_walk *walk)
7dc74be0 5998{
4ffef5fe 5999 int ret = 0;
26bcd64a 6000 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6001 pte_t *pte;
6002 spinlock_t *ptl;
12724850
NH
6003 enum mc_target_type target_type;
6004 union mc_target target;
6005 struct page *page;
4ffef5fe 6006
b6ec57f4
KS
6007 ptl = pmd_trans_huge_lock(pmd, vma);
6008 if (ptl) {
62ade86a 6009 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6010 spin_unlock(ptl);
12724850
NH
6011 return 0;
6012 }
6013 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6014 if (target_type == MC_TARGET_PAGE) {
6015 page = target.page;
6016 if (!isolate_lru_page(page)) {
f627c2f5 6017 if (!mem_cgroup_move_account(page, true,
1306a85a 6018 mc.from, mc.to)) {
12724850
NH
6019 mc.precharge -= HPAGE_PMD_NR;
6020 mc.moved_charge += HPAGE_PMD_NR;
6021 }
6022 putback_lru_page(page);
6023 }
6024 put_page(page);
c733a828
JG
6025 } else if (target_type == MC_TARGET_DEVICE) {
6026 page = target.page;
6027 if (!mem_cgroup_move_account(page, true,
6028 mc.from, mc.to)) {
6029 mc.precharge -= HPAGE_PMD_NR;
6030 mc.moved_charge += HPAGE_PMD_NR;
6031 }
6032 put_page(page);
12724850 6033 }
bf929152 6034 spin_unlock(ptl);
1a5a9906 6035 return 0;
12724850
NH
6036 }
6037
45f83cef
AA
6038 if (pmd_trans_unstable(pmd))
6039 return 0;
4ffef5fe
DN
6040retry:
6041 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6042 for (; addr != end; addr += PAGE_SIZE) {
6043 pte_t ptent = *(pte++);
c733a828 6044 bool device = false;
02491447 6045 swp_entry_t ent;
4ffef5fe
DN
6046
6047 if (!mc.precharge)
6048 break;
6049
8d32ff84 6050 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6051 case MC_TARGET_DEVICE:
6052 device = true;
e4a9bc58 6053 fallthrough;
4ffef5fe
DN
6054 case MC_TARGET_PAGE:
6055 page = target.page;
53f9263b
KS
6056 /*
6057 * We can have a part of the split pmd here. Moving it
6058 * can be done but it would be too convoluted so simply
6059 * ignore such a partial THP and keep it in original
6060 * memcg. There should be somebody mapping the head.
6061 */
6062 if (PageTransCompound(page))
6063 goto put;
c733a828 6064 if (!device && isolate_lru_page(page))
4ffef5fe 6065 goto put;
f627c2f5
KS
6066 if (!mem_cgroup_move_account(page, false,
6067 mc.from, mc.to)) {
4ffef5fe 6068 mc.precharge--;
854ffa8d
DN
6069 /* we uncharge from mc.from later. */
6070 mc.moved_charge++;
4ffef5fe 6071 }
c733a828
JG
6072 if (!device)
6073 putback_lru_page(page);
8d32ff84 6074put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6075 put_page(page);
6076 break;
02491447
DN
6077 case MC_TARGET_SWAP:
6078 ent = target.ent;
e91cbb42 6079 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6080 mc.precharge--;
8d22a935
HD
6081 mem_cgroup_id_get_many(mc.to, 1);
6082 /* we fixup other refcnts and charges later. */
483c30b5
DN
6083 mc.moved_swap++;
6084 }
02491447 6085 break;
4ffef5fe
DN
6086 default:
6087 break;
6088 }
6089 }
6090 pte_unmap_unlock(pte - 1, ptl);
6091 cond_resched();
6092
6093 if (addr != end) {
6094 /*
6095 * We have consumed all precharges we got in can_attach().
6096 * We try charge one by one, but don't do any additional
6097 * charges to mc.to if we have failed in charge once in attach()
6098 * phase.
6099 */
854ffa8d 6100 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6101 if (!ret)
6102 goto retry;
6103 }
6104
6105 return ret;
6106}
6107
7b86ac33
CH
6108static const struct mm_walk_ops charge_walk_ops = {
6109 .pmd_entry = mem_cgroup_move_charge_pte_range,
6110};
6111
264a0ae1 6112static void mem_cgroup_move_charge(void)
4ffef5fe 6113{
4ffef5fe 6114 lru_add_drain_all();
312722cb 6115 /*
81f8c3a4
JW
6116 * Signal lock_page_memcg() to take the memcg's move_lock
6117 * while we're moving its pages to another memcg. Then wait
6118 * for already started RCU-only updates to finish.
312722cb
JW
6119 */
6120 atomic_inc(&mc.from->moving_account);
6121 synchronize_rcu();
dfe076b0 6122retry:
d8ed45c5 6123 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6124 /*
c1e8d7c6 6125 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6126 * waitq. So we cancel all extra charges, wake up all waiters,
6127 * and retry. Because we cancel precharges, we might not be able
6128 * to move enough charges, but moving charge is a best-effort
6129 * feature anyway, so it wouldn't be a big problem.
6130 */
6131 __mem_cgroup_clear_mc();
6132 cond_resched();
6133 goto retry;
6134 }
26bcd64a
NH
6135 /*
6136 * When we have consumed all precharges and failed in doing
6137 * additional charge, the page walk just aborts.
6138 */
7b86ac33
CH
6139 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6140 NULL);
0247f3f4 6141
d8ed45c5 6142 mmap_read_unlock(mc.mm);
312722cb 6143 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6144}
6145
264a0ae1 6146static void mem_cgroup_move_task(void)
67e465a7 6147{
264a0ae1
TH
6148 if (mc.to) {
6149 mem_cgroup_move_charge();
a433658c 6150 mem_cgroup_clear_mc();
264a0ae1 6151 }
67e465a7 6152}
5cfb80a7 6153#else /* !CONFIG_MMU */
1f7dd3e5 6154static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6155{
6156 return 0;
6157}
1f7dd3e5 6158static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6159{
6160}
264a0ae1 6161static void mem_cgroup_move_task(void)
5cfb80a7
DN
6162{
6163}
6164#endif
67e465a7 6165
677dc973
CD
6166static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6167{
6168 if (value == PAGE_COUNTER_MAX)
6169 seq_puts(m, "max\n");
6170 else
6171 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6172
6173 return 0;
6174}
6175
241994ed
JW
6176static u64 memory_current_read(struct cgroup_subsys_state *css,
6177 struct cftype *cft)
6178{
f5fc3c5d
JW
6179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6180
6181 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6182}
6183
bf8d5d52
RG
6184static int memory_min_show(struct seq_file *m, void *v)
6185{
677dc973
CD
6186 return seq_puts_memcg_tunable(m,
6187 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6188}
6189
6190static ssize_t memory_min_write(struct kernfs_open_file *of,
6191 char *buf, size_t nbytes, loff_t off)
6192{
6193 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6194 unsigned long min;
6195 int err;
6196
6197 buf = strstrip(buf);
6198 err = page_counter_memparse(buf, "max", &min);
6199 if (err)
6200 return err;
6201
6202 page_counter_set_min(&memcg->memory, min);
6203
6204 return nbytes;
6205}
6206
241994ed
JW
6207static int memory_low_show(struct seq_file *m, void *v)
6208{
677dc973
CD
6209 return seq_puts_memcg_tunable(m,
6210 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6211}
6212
6213static ssize_t memory_low_write(struct kernfs_open_file *of,
6214 char *buf, size_t nbytes, loff_t off)
6215{
6216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6217 unsigned long low;
6218 int err;
6219
6220 buf = strstrip(buf);
d2973697 6221 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6222 if (err)
6223 return err;
6224
23067153 6225 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6226
6227 return nbytes;
6228}
6229
6230static int memory_high_show(struct seq_file *m, void *v)
6231{
d1663a90
JK
6232 return seq_puts_memcg_tunable(m,
6233 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6234}
6235
6236static ssize_t memory_high_write(struct kernfs_open_file *of,
6237 char *buf, size_t nbytes, loff_t off)
6238{
6239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6240 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6241 bool drained = false;
241994ed
JW
6242 unsigned long high;
6243 int err;
6244
6245 buf = strstrip(buf);
d2973697 6246 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6247 if (err)
6248 return err;
6249
8c8c383c
JW
6250 for (;;) {
6251 unsigned long nr_pages = page_counter_read(&memcg->memory);
6252 unsigned long reclaimed;
6253
6254 if (nr_pages <= high)
6255 break;
6256
6257 if (signal_pending(current))
6258 break;
6259
6260 if (!drained) {
6261 drain_all_stock(memcg);
6262 drained = true;
6263 continue;
6264 }
6265
6266 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6267 GFP_KERNEL, true);
6268
6269 if (!reclaimed && !nr_retries--)
6270 break;
6271 }
588083bb 6272
536d3bf2
RG
6273 page_counter_set_high(&memcg->memory, high);
6274
19ce33ac
JW
6275 memcg_wb_domain_size_changed(memcg);
6276
241994ed
JW
6277 return nbytes;
6278}
6279
6280static int memory_max_show(struct seq_file *m, void *v)
6281{
677dc973
CD
6282 return seq_puts_memcg_tunable(m,
6283 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6284}
6285
6286static ssize_t memory_max_write(struct kernfs_open_file *of,
6287 char *buf, size_t nbytes, loff_t off)
6288{
6289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6290 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6291 bool drained = false;
241994ed
JW
6292 unsigned long max;
6293 int err;
6294
6295 buf = strstrip(buf);
d2973697 6296 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6297 if (err)
6298 return err;
6299
bbec2e15 6300 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6301
6302 for (;;) {
6303 unsigned long nr_pages = page_counter_read(&memcg->memory);
6304
6305 if (nr_pages <= max)
6306 break;
6307
7249c9f0 6308 if (signal_pending(current))
b6e6edcf 6309 break;
b6e6edcf
JW
6310
6311 if (!drained) {
6312 drain_all_stock(memcg);
6313 drained = true;
6314 continue;
6315 }
6316
6317 if (nr_reclaims) {
6318 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6319 GFP_KERNEL, true))
6320 nr_reclaims--;
6321 continue;
6322 }
6323
e27be240 6324 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6325 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6326 break;
6327 }
241994ed 6328
2529bb3a 6329 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6330 return nbytes;
6331}
6332
1e577f97
SB
6333static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6334{
6335 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6336 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6337 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6338 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6339 seq_printf(m, "oom_kill %lu\n",
6340 atomic_long_read(&events[MEMCG_OOM_KILL]));
6341}
6342
241994ed
JW
6343static int memory_events_show(struct seq_file *m, void *v)
6344{
aa9694bb 6345 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6346
1e577f97
SB
6347 __memory_events_show(m, memcg->memory_events);
6348 return 0;
6349}
6350
6351static int memory_events_local_show(struct seq_file *m, void *v)
6352{
6353 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6354
1e577f97 6355 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6356 return 0;
6357}
6358
587d9f72
JW
6359static int memory_stat_show(struct seq_file *m, void *v)
6360{
aa9694bb 6361 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6362 char *buf;
1ff9e6e1 6363
c8713d0b
JW
6364 buf = memory_stat_format(memcg);
6365 if (!buf)
6366 return -ENOMEM;
6367 seq_puts(m, buf);
6368 kfree(buf);
587d9f72
JW
6369 return 0;
6370}
6371
5f9a4f4a
MS
6372#ifdef CONFIG_NUMA
6373static int memory_numa_stat_show(struct seq_file *m, void *v)
6374{
6375 int i;
6376 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6377
6378 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6379 int nid;
6380
6381 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6382 continue;
6383
6384 seq_printf(m, "%s", memory_stats[i].name);
6385 for_each_node_state(nid, N_MEMORY) {
6386 u64 size;
6387 struct lruvec *lruvec;
6388
6389 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6390 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6391 size *= memory_stats[i].ratio;
6392 seq_printf(m, " N%d=%llu", nid, size);
6393 }
6394 seq_putc(m, '\n');
6395 }
6396
6397 return 0;
6398}
6399#endif
6400
3d8b38eb
RG
6401static int memory_oom_group_show(struct seq_file *m, void *v)
6402{
aa9694bb 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6404
6405 seq_printf(m, "%d\n", memcg->oom_group);
6406
6407 return 0;
6408}
6409
6410static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6411 char *buf, size_t nbytes, loff_t off)
6412{
6413 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6414 int ret, oom_group;
6415
6416 buf = strstrip(buf);
6417 if (!buf)
6418 return -EINVAL;
6419
6420 ret = kstrtoint(buf, 0, &oom_group);
6421 if (ret)
6422 return ret;
6423
6424 if (oom_group != 0 && oom_group != 1)
6425 return -EINVAL;
6426
6427 memcg->oom_group = oom_group;
6428
6429 return nbytes;
6430}
6431
241994ed
JW
6432static struct cftype memory_files[] = {
6433 {
6434 .name = "current",
f5fc3c5d 6435 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6436 .read_u64 = memory_current_read,
6437 },
bf8d5d52
RG
6438 {
6439 .name = "min",
6440 .flags = CFTYPE_NOT_ON_ROOT,
6441 .seq_show = memory_min_show,
6442 .write = memory_min_write,
6443 },
241994ed
JW
6444 {
6445 .name = "low",
6446 .flags = CFTYPE_NOT_ON_ROOT,
6447 .seq_show = memory_low_show,
6448 .write = memory_low_write,
6449 },
6450 {
6451 .name = "high",
6452 .flags = CFTYPE_NOT_ON_ROOT,
6453 .seq_show = memory_high_show,
6454 .write = memory_high_write,
6455 },
6456 {
6457 .name = "max",
6458 .flags = CFTYPE_NOT_ON_ROOT,
6459 .seq_show = memory_max_show,
6460 .write = memory_max_write,
6461 },
6462 {
6463 .name = "events",
6464 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6465 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6466 .seq_show = memory_events_show,
6467 },
1e577f97
SB
6468 {
6469 .name = "events.local",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6472 .seq_show = memory_events_local_show,
6473 },
587d9f72
JW
6474 {
6475 .name = "stat",
587d9f72
JW
6476 .seq_show = memory_stat_show,
6477 },
5f9a4f4a
MS
6478#ifdef CONFIG_NUMA
6479 {
6480 .name = "numa_stat",
6481 .seq_show = memory_numa_stat_show,
6482 },
6483#endif
3d8b38eb
RG
6484 {
6485 .name = "oom.group",
6486 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6487 .seq_show = memory_oom_group_show,
6488 .write = memory_oom_group_write,
6489 },
241994ed
JW
6490 { } /* terminate */
6491};
6492
073219e9 6493struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6494 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6495 .css_online = mem_cgroup_css_online,
92fb9748 6496 .css_offline = mem_cgroup_css_offline,
6df38689 6497 .css_released = mem_cgroup_css_released,
92fb9748 6498 .css_free = mem_cgroup_css_free,
1ced953b 6499 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6500 .can_attach = mem_cgroup_can_attach,
6501 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6502 .post_attach = mem_cgroup_move_task,
241994ed
JW
6503 .dfl_cftypes = memory_files,
6504 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6505 .early_init = 0,
8cdea7c0 6506};
c077719b 6507
bc50bcc6
JW
6508/*
6509 * This function calculates an individual cgroup's effective
6510 * protection which is derived from its own memory.min/low, its
6511 * parent's and siblings' settings, as well as the actual memory
6512 * distribution in the tree.
6513 *
6514 * The following rules apply to the effective protection values:
6515 *
6516 * 1. At the first level of reclaim, effective protection is equal to
6517 * the declared protection in memory.min and memory.low.
6518 *
6519 * 2. To enable safe delegation of the protection configuration, at
6520 * subsequent levels the effective protection is capped to the
6521 * parent's effective protection.
6522 *
6523 * 3. To make complex and dynamic subtrees easier to configure, the
6524 * user is allowed to overcommit the declared protection at a given
6525 * level. If that is the case, the parent's effective protection is
6526 * distributed to the children in proportion to how much protection
6527 * they have declared and how much of it they are utilizing.
6528 *
6529 * This makes distribution proportional, but also work-conserving:
6530 * if one cgroup claims much more protection than it uses memory,
6531 * the unused remainder is available to its siblings.
6532 *
6533 * 4. Conversely, when the declared protection is undercommitted at a
6534 * given level, the distribution of the larger parental protection
6535 * budget is NOT proportional. A cgroup's protection from a sibling
6536 * is capped to its own memory.min/low setting.
6537 *
8a931f80
JW
6538 * 5. However, to allow protecting recursive subtrees from each other
6539 * without having to declare each individual cgroup's fixed share
6540 * of the ancestor's claim to protection, any unutilized -
6541 * "floating" - protection from up the tree is distributed in
6542 * proportion to each cgroup's *usage*. This makes the protection
6543 * neutral wrt sibling cgroups and lets them compete freely over
6544 * the shared parental protection budget, but it protects the
6545 * subtree as a whole from neighboring subtrees.
6546 *
6547 * Note that 4. and 5. are not in conflict: 4. is about protecting
6548 * against immediate siblings whereas 5. is about protecting against
6549 * neighboring subtrees.
bc50bcc6
JW
6550 */
6551static unsigned long effective_protection(unsigned long usage,
8a931f80 6552 unsigned long parent_usage,
bc50bcc6
JW
6553 unsigned long setting,
6554 unsigned long parent_effective,
6555 unsigned long siblings_protected)
6556{
6557 unsigned long protected;
8a931f80 6558 unsigned long ep;
bc50bcc6
JW
6559
6560 protected = min(usage, setting);
6561 /*
6562 * If all cgroups at this level combined claim and use more
6563 * protection then what the parent affords them, distribute
6564 * shares in proportion to utilization.
6565 *
6566 * We are using actual utilization rather than the statically
6567 * claimed protection in order to be work-conserving: claimed
6568 * but unused protection is available to siblings that would
6569 * otherwise get a smaller chunk than what they claimed.
6570 */
6571 if (siblings_protected > parent_effective)
6572 return protected * parent_effective / siblings_protected;
6573
6574 /*
6575 * Ok, utilized protection of all children is within what the
6576 * parent affords them, so we know whatever this child claims
6577 * and utilizes is effectively protected.
6578 *
6579 * If there is unprotected usage beyond this value, reclaim
6580 * will apply pressure in proportion to that amount.
6581 *
6582 * If there is unutilized protection, the cgroup will be fully
6583 * shielded from reclaim, but we do return a smaller value for
6584 * protection than what the group could enjoy in theory. This
6585 * is okay. With the overcommit distribution above, effective
6586 * protection is always dependent on how memory is actually
6587 * consumed among the siblings anyway.
6588 */
8a931f80
JW
6589 ep = protected;
6590
6591 /*
6592 * If the children aren't claiming (all of) the protection
6593 * afforded to them by the parent, distribute the remainder in
6594 * proportion to the (unprotected) memory of each cgroup. That
6595 * way, cgroups that aren't explicitly prioritized wrt each
6596 * other compete freely over the allowance, but they are
6597 * collectively protected from neighboring trees.
6598 *
6599 * We're using unprotected memory for the weight so that if
6600 * some cgroups DO claim explicit protection, we don't protect
6601 * the same bytes twice.
cd324edc
JW
6602 *
6603 * Check both usage and parent_usage against the respective
6604 * protected values. One should imply the other, but they
6605 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6606 */
6607 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6608 return ep;
cd324edc
JW
6609 if (parent_effective > siblings_protected &&
6610 parent_usage > siblings_protected &&
6611 usage > protected) {
8a931f80
JW
6612 unsigned long unclaimed;
6613
6614 unclaimed = parent_effective - siblings_protected;
6615 unclaimed *= usage - protected;
6616 unclaimed /= parent_usage - siblings_protected;
6617
6618 ep += unclaimed;
6619 }
6620
6621 return ep;
bc50bcc6
JW
6622}
6623
241994ed 6624/**
bf8d5d52 6625 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6626 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6627 * @memcg: the memory cgroup to check
6628 *
23067153
RG
6629 * WARNING: This function is not stateless! It can only be used as part
6630 * of a top-down tree iteration, not for isolated queries.
241994ed 6631 */
45c7f7e1
CD
6632void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6633 struct mem_cgroup *memcg)
241994ed 6634{
8a931f80 6635 unsigned long usage, parent_usage;
23067153
RG
6636 struct mem_cgroup *parent;
6637
241994ed 6638 if (mem_cgroup_disabled())
45c7f7e1 6639 return;
241994ed 6640
34c81057
SC
6641 if (!root)
6642 root = root_mem_cgroup;
22f7496f
YS
6643
6644 /*
6645 * Effective values of the reclaim targets are ignored so they
6646 * can be stale. Have a look at mem_cgroup_protection for more
6647 * details.
6648 * TODO: calculation should be more robust so that we do not need
6649 * that special casing.
6650 */
34c81057 6651 if (memcg == root)
45c7f7e1 6652 return;
241994ed 6653
23067153 6654 usage = page_counter_read(&memcg->memory);
bf8d5d52 6655 if (!usage)
45c7f7e1 6656 return;
bf8d5d52 6657
bf8d5d52 6658 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6659 /* No parent means a non-hierarchical mode on v1 memcg */
6660 if (!parent)
45c7f7e1 6661 return;
df2a4196 6662
bc50bcc6 6663 if (parent == root) {
c3d53200 6664 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6665 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6666 return;
bf8d5d52
RG
6667 }
6668
8a931f80
JW
6669 parent_usage = page_counter_read(&parent->memory);
6670
b3a7822e 6671 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6672 READ_ONCE(memcg->memory.min),
6673 READ_ONCE(parent->memory.emin),
b3a7822e 6674 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6675
b3a7822e 6676 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6677 READ_ONCE(memcg->memory.low),
6678 READ_ONCE(parent->memory.elow),
b3a7822e 6679 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6680}
6681
00501b53 6682/**
f0e45fb4 6683 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6684 * @page: page to charge
6685 * @mm: mm context of the victim
6686 * @gfp_mask: reclaim mode
00501b53
JW
6687 *
6688 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6689 * pages according to @gfp_mask if necessary.
6690 *
f0e45fb4 6691 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6692 */
d9eb1ea2 6693int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6694{
6c357848 6695 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6696 struct mem_cgroup *memcg = NULL;
00501b53
JW
6697 int ret = 0;
6698
6699 if (mem_cgroup_disabled())
6700 goto out;
6701
6702 if (PageSwapCache(page)) {
2d1c4980
JW
6703 swp_entry_t ent = { .val = page_private(page), };
6704 unsigned short id;
6705
00501b53
JW
6706 /*
6707 * Every swap fault against a single page tries to charge the
6708 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6709 * already charged pages, too. page->mem_cgroup is protected
6710 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6711 * in turn serializes uncharging.
6712 */
e993d905 6713 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6714 if (compound_head(page)->mem_cgroup)
00501b53 6715 goto out;
e993d905 6716
2d1c4980
JW
6717 id = lookup_swap_cgroup_id(ent);
6718 rcu_read_lock();
6719 memcg = mem_cgroup_from_id(id);
6720 if (memcg && !css_tryget_online(&memcg->css))
6721 memcg = NULL;
6722 rcu_read_unlock();
00501b53
JW
6723 }
6724
00501b53
JW
6725 if (!memcg)
6726 memcg = get_mem_cgroup_from_mm(mm);
6727
6728 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6729 if (ret)
6730 goto out_put;
00501b53 6731
1a3e1f40 6732 css_get(&memcg->css);
d9eb1ea2 6733 commit_charge(page, memcg);
6abb5a86 6734
6abb5a86 6735 local_irq_disable();
3fba69a5 6736 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6737 memcg_check_events(memcg, page);
6738 local_irq_enable();
00501b53 6739
2d1c4980 6740 if (PageSwapCache(page)) {
00501b53
JW
6741 swp_entry_t entry = { .val = page_private(page) };
6742 /*
6743 * The swap entry might not get freed for a long time,
6744 * let's not wait for it. The page already received a
6745 * memory+swap charge, drop the swap entry duplicate.
6746 */
38d8b4e6 6747 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6748 }
00501b53 6749
f0e45fb4
JW
6750out_put:
6751 css_put(&memcg->css);
6752out:
6753 return ret;
3fea5a49
JW
6754}
6755
a9d5adee
JG
6756struct uncharge_gather {
6757 struct mem_cgroup *memcg;
9f762dbe 6758 unsigned long nr_pages;
a9d5adee 6759 unsigned long pgpgout;
a9d5adee 6760 unsigned long nr_kmem;
a9d5adee
JG
6761 struct page *dummy_page;
6762};
6763
6764static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6765{
a9d5adee
JG
6766 memset(ug, 0, sizeof(*ug));
6767}
6768
6769static void uncharge_batch(const struct uncharge_gather *ug)
6770{
747db954
JW
6771 unsigned long flags;
6772
a9d5adee 6773 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6774 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6775 if (do_memsw_account())
9f762dbe 6776 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6777 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6778 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6779 memcg_oom_recover(ug->memcg);
ce00a967 6780 }
747db954
JW
6781
6782 local_irq_save(flags);
c9019e9b 6783 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6784 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6785 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6786 local_irq_restore(flags);
f1796544
MH
6787
6788 /* drop reference from uncharge_page */
6789 css_put(&ug->memcg->css);
a9d5adee
JG
6790}
6791
6792static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6793{
9f762dbe
JW
6794 unsigned long nr_pages;
6795
a9d5adee 6796 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6797
6798 if (!page->mem_cgroup)
6799 return;
6800
6801 /*
6802 * Nobody should be changing or seriously looking at
6803 * page->mem_cgroup at this point, we have fully
6804 * exclusive access to the page.
6805 */
6806
6807 if (ug->memcg != page->mem_cgroup) {
6808 if (ug->memcg) {
6809 uncharge_batch(ug);
6810 uncharge_gather_clear(ug);
6811 }
6812 ug->memcg = page->mem_cgroup;
f1796544
MH
6813
6814 /* pairs with css_put in uncharge_batch */
6815 css_get(&ug->memcg->css);
a9d5adee
JG
6816 }
6817
9f762dbe
JW
6818 nr_pages = compound_nr(page);
6819 ug->nr_pages += nr_pages;
a9d5adee 6820
9f762dbe 6821 if (!PageKmemcg(page)) {
a9d5adee
JG
6822 ug->pgpgout++;
6823 } else {
9f762dbe 6824 ug->nr_kmem += nr_pages;
a9d5adee
JG
6825 __ClearPageKmemcg(page);
6826 }
6827
6828 ug->dummy_page = page;
6829 page->mem_cgroup = NULL;
1a3e1f40 6830 css_put(&ug->memcg->css);
747db954
JW
6831}
6832
6833static void uncharge_list(struct list_head *page_list)
6834{
a9d5adee 6835 struct uncharge_gather ug;
747db954 6836 struct list_head *next;
a9d5adee
JG
6837
6838 uncharge_gather_clear(&ug);
747db954 6839
8b592656
JW
6840 /*
6841 * Note that the list can be a single page->lru; hence the
6842 * do-while loop instead of a simple list_for_each_entry().
6843 */
747db954
JW
6844 next = page_list->next;
6845 do {
a9d5adee
JG
6846 struct page *page;
6847
747db954
JW
6848 page = list_entry(next, struct page, lru);
6849 next = page->lru.next;
6850
a9d5adee 6851 uncharge_page(page, &ug);
747db954
JW
6852 } while (next != page_list);
6853
a9d5adee
JG
6854 if (ug.memcg)
6855 uncharge_batch(&ug);
747db954
JW
6856}
6857
0a31bc97
JW
6858/**
6859 * mem_cgroup_uncharge - uncharge a page
6860 * @page: page to uncharge
6861 *
f0e45fb4 6862 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6863 */
6864void mem_cgroup_uncharge(struct page *page)
6865{
a9d5adee
JG
6866 struct uncharge_gather ug;
6867
0a31bc97
JW
6868 if (mem_cgroup_disabled())
6869 return;
6870
747db954 6871 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6872 if (!page->mem_cgroup)
0a31bc97
JW
6873 return;
6874
a9d5adee
JG
6875 uncharge_gather_clear(&ug);
6876 uncharge_page(page, &ug);
6877 uncharge_batch(&ug);
747db954 6878}
0a31bc97 6879
747db954
JW
6880/**
6881 * mem_cgroup_uncharge_list - uncharge a list of page
6882 * @page_list: list of pages to uncharge
6883 *
6884 * Uncharge a list of pages previously charged with
f0e45fb4 6885 * mem_cgroup_charge().
747db954
JW
6886 */
6887void mem_cgroup_uncharge_list(struct list_head *page_list)
6888{
6889 if (mem_cgroup_disabled())
6890 return;
0a31bc97 6891
747db954
JW
6892 if (!list_empty(page_list))
6893 uncharge_list(page_list);
0a31bc97
JW
6894}
6895
6896/**
6a93ca8f
JW
6897 * mem_cgroup_migrate - charge a page's replacement
6898 * @oldpage: currently circulating page
6899 * @newpage: replacement page
0a31bc97 6900 *
6a93ca8f
JW
6901 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6902 * be uncharged upon free.
0a31bc97
JW
6903 *
6904 * Both pages must be locked, @newpage->mapping must be set up.
6905 */
6a93ca8f 6906void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6907{
29833315 6908 struct mem_cgroup *memcg;
44b7a8d3 6909 unsigned int nr_pages;
d93c4130 6910 unsigned long flags;
0a31bc97
JW
6911
6912 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6913 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6914 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6915 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6916 newpage);
0a31bc97
JW
6917
6918 if (mem_cgroup_disabled())
6919 return;
6920
6921 /* Page cache replacement: new page already charged? */
1306a85a 6922 if (newpage->mem_cgroup)
0a31bc97
JW
6923 return;
6924
1306a85a 6925 memcg = oldpage->mem_cgroup;
29833315 6926 if (!memcg)
0a31bc97
JW
6927 return;
6928
44b7a8d3 6929 /* Force-charge the new page. The old one will be freed soon */
6c357848 6930 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6931
6932 page_counter_charge(&memcg->memory, nr_pages);
6933 if (do_memsw_account())
6934 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6935
1a3e1f40 6936 css_get(&memcg->css);
d9eb1ea2 6937 commit_charge(newpage, memcg);
44b7a8d3 6938
d93c4130 6939 local_irq_save(flags);
3fba69a5 6940 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6941 memcg_check_events(memcg, newpage);
d93c4130 6942 local_irq_restore(flags);
0a31bc97
JW
6943}
6944
ef12947c 6945DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6946EXPORT_SYMBOL(memcg_sockets_enabled_key);
6947
2d758073 6948void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6949{
6950 struct mem_cgroup *memcg;
6951
2d758073
JW
6952 if (!mem_cgroup_sockets_enabled)
6953 return;
6954
e876ecc6
SB
6955 /* Do not associate the sock with unrelated interrupted task's memcg. */
6956 if (in_interrupt())
6957 return;
6958
11092087
JW
6959 rcu_read_lock();
6960 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6961 if (memcg == root_mem_cgroup)
6962 goto out;
0db15298 6963 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6964 goto out;
8965aa28 6965 if (css_tryget(&memcg->css))
11092087 6966 sk->sk_memcg = memcg;
f7e1cb6e 6967out:
11092087
JW
6968 rcu_read_unlock();
6969}
11092087 6970
2d758073 6971void mem_cgroup_sk_free(struct sock *sk)
11092087 6972{
2d758073
JW
6973 if (sk->sk_memcg)
6974 css_put(&sk->sk_memcg->css);
11092087
JW
6975}
6976
6977/**
6978 * mem_cgroup_charge_skmem - charge socket memory
6979 * @memcg: memcg to charge
6980 * @nr_pages: number of pages to charge
6981 *
6982 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6983 * @memcg's configured limit, %false if the charge had to be forced.
6984 */
6985bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6986{
f7e1cb6e 6987 gfp_t gfp_mask = GFP_KERNEL;
11092087 6988
f7e1cb6e 6989 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6990 struct page_counter *fail;
f7e1cb6e 6991
0db15298
JW
6992 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6993 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6994 return true;
6995 }
0db15298
JW
6996 page_counter_charge(&memcg->tcpmem, nr_pages);
6997 memcg->tcpmem_pressure = 1;
f7e1cb6e 6998 return false;
11092087 6999 }
d886f4e4 7000
f7e1cb6e
JW
7001 /* Don't block in the packet receive path */
7002 if (in_softirq())
7003 gfp_mask = GFP_NOWAIT;
7004
c9019e9b 7005 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7006
f7e1cb6e
JW
7007 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7008 return true;
7009
7010 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7011 return false;
7012}
7013
7014/**
7015 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7016 * @memcg: memcg to uncharge
7017 * @nr_pages: number of pages to uncharge
11092087
JW
7018 */
7019void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7020{
f7e1cb6e 7021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7022 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7023 return;
7024 }
d886f4e4 7025
c9019e9b 7026 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7027
475d0487 7028 refill_stock(memcg, nr_pages);
11092087
JW
7029}
7030
f7e1cb6e
JW
7031static int __init cgroup_memory(char *s)
7032{
7033 char *token;
7034
7035 while ((token = strsep(&s, ",")) != NULL) {
7036 if (!*token)
7037 continue;
7038 if (!strcmp(token, "nosocket"))
7039 cgroup_memory_nosocket = true;
04823c83
VD
7040 if (!strcmp(token, "nokmem"))
7041 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7042 }
7043 return 0;
7044}
7045__setup("cgroup.memory=", cgroup_memory);
11092087 7046
2d11085e 7047/*
1081312f
MH
7048 * subsys_initcall() for memory controller.
7049 *
308167fc
SAS
7050 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7051 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7052 * basically everything that doesn't depend on a specific mem_cgroup structure
7053 * should be initialized from here.
2d11085e
MH
7054 */
7055static int __init mem_cgroup_init(void)
7056{
95a045f6
JW
7057 int cpu, node;
7058
308167fc
SAS
7059 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7060 memcg_hotplug_cpu_dead);
95a045f6
JW
7061
7062 for_each_possible_cpu(cpu)
7063 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7064 drain_local_stock);
7065
7066 for_each_node(node) {
7067 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7068
7069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7070 node_online(node) ? node : NUMA_NO_NODE);
7071
ef8f2327 7072 rtpn->rb_root = RB_ROOT;
fa90b2fd 7073 rtpn->rb_rightmost = NULL;
ef8f2327 7074 spin_lock_init(&rtpn->lock);
95a045f6
JW
7075 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7076 }
7077
2d11085e
MH
7078 return 0;
7079}
7080subsys_initcall(mem_cgroup_init);
21afa38e
JW
7081
7082#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7083static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7084{
1c2d479a 7085 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7086 /*
7087 * The root cgroup cannot be destroyed, so it's refcount must
7088 * always be >= 1.
7089 */
7090 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7091 VM_BUG_ON(1);
7092 break;
7093 }
7094 memcg = parent_mem_cgroup(memcg);
7095 if (!memcg)
7096 memcg = root_mem_cgroup;
7097 }
7098 return memcg;
7099}
7100
21afa38e
JW
7101/**
7102 * mem_cgroup_swapout - transfer a memsw charge to swap
7103 * @page: page whose memsw charge to transfer
7104 * @entry: swap entry to move the charge to
7105 *
7106 * Transfer the memsw charge of @page to @entry.
7107 */
7108void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7109{
1f47b61f 7110 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7111 unsigned int nr_entries;
21afa38e
JW
7112 unsigned short oldid;
7113
7114 VM_BUG_ON_PAGE(PageLRU(page), page);
7115 VM_BUG_ON_PAGE(page_count(page), page);
7116
2d1c4980 7117 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7118 return;
7119
7120 memcg = page->mem_cgroup;
7121
7122 /* Readahead page, never charged */
7123 if (!memcg)
7124 return;
7125
1f47b61f
VD
7126 /*
7127 * In case the memcg owning these pages has been offlined and doesn't
7128 * have an ID allocated to it anymore, charge the closest online
7129 * ancestor for the swap instead and transfer the memory+swap charge.
7130 */
7131 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7132 nr_entries = thp_nr_pages(page);
d6810d73
HY
7133 /* Get references for the tail pages, too */
7134 if (nr_entries > 1)
7135 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7136 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7137 nr_entries);
21afa38e 7138 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7139 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7140
7141 page->mem_cgroup = NULL;
7142
7143 if (!mem_cgroup_is_root(memcg))
d6810d73 7144 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7145
2d1c4980 7146 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7147 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7148 page_counter_charge(&swap_memcg->memsw, nr_entries);
7149 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7150 }
7151
ce9ce665
SAS
7152 /*
7153 * Interrupts should be disabled here because the caller holds the
b93b0163 7154 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7155 * important here to have the interrupts disabled because it is the
b93b0163 7156 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7157 */
7158 VM_BUG_ON(!irqs_disabled());
3fba69a5 7159 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7160 memcg_check_events(memcg, page);
73f576c0 7161
1a3e1f40 7162 css_put(&memcg->css);
21afa38e
JW
7163}
7164
38d8b4e6
HY
7165/**
7166 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7167 * @page: page being added to swap
7168 * @entry: swap entry to charge
7169 *
38d8b4e6 7170 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7171 *
7172 * Returns 0 on success, -ENOMEM on failure.
7173 */
7174int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7175{
6c357848 7176 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7177 struct page_counter *counter;
38d8b4e6 7178 struct mem_cgroup *memcg;
37e84351
VD
7179 unsigned short oldid;
7180
2d1c4980 7181 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7182 return 0;
7183
7184 memcg = page->mem_cgroup;
7185
7186 /* Readahead page, never charged */
7187 if (!memcg)
7188 return 0;
7189
f3a53a3a
TH
7190 if (!entry.val) {
7191 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7192 return 0;
f3a53a3a 7193 }
bb98f2c5 7194
1f47b61f
VD
7195 memcg = mem_cgroup_id_get_online(memcg);
7196
2d1c4980 7197 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7198 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7199 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7200 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7201 mem_cgroup_id_put(memcg);
37e84351 7202 return -ENOMEM;
1f47b61f 7203 }
37e84351 7204
38d8b4e6
HY
7205 /* Get references for the tail pages, too */
7206 if (nr_pages > 1)
7207 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7208 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7209 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7210 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7211
37e84351
VD
7212 return 0;
7213}
7214
21afa38e 7215/**
38d8b4e6 7216 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7217 * @entry: swap entry to uncharge
38d8b4e6 7218 * @nr_pages: the amount of swap space to uncharge
21afa38e 7219 */
38d8b4e6 7220void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7221{
7222 struct mem_cgroup *memcg;
7223 unsigned short id;
7224
38d8b4e6 7225 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7226 rcu_read_lock();
adbe427b 7227 memcg = mem_cgroup_from_id(id);
21afa38e 7228 if (memcg) {
2d1c4980 7229 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7230 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7231 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7232 else
38d8b4e6 7233 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7234 }
c9019e9b 7235 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7236 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7237 }
7238 rcu_read_unlock();
7239}
7240
d8b38438
VD
7241long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7242{
7243 long nr_swap_pages = get_nr_swap_pages();
7244
eccb52e7 7245 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7246 return nr_swap_pages;
7247 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7248 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7249 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7250 page_counter_read(&memcg->swap));
7251 return nr_swap_pages;
7252}
7253
5ccc5aba
VD
7254bool mem_cgroup_swap_full(struct page *page)
7255{
7256 struct mem_cgroup *memcg;
7257
7258 VM_BUG_ON_PAGE(!PageLocked(page), page);
7259
7260 if (vm_swap_full())
7261 return true;
eccb52e7 7262 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7263 return false;
7264
7265 memcg = page->mem_cgroup;
7266 if (!memcg)
7267 return false;
7268
4b82ab4f
JK
7269 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7270 unsigned long usage = page_counter_read(&memcg->swap);
7271
7272 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7273 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7274 return true;
4b82ab4f 7275 }
5ccc5aba
VD
7276
7277 return false;
7278}
7279
eccb52e7 7280static int __init setup_swap_account(char *s)
21afa38e
JW
7281{
7282 if (!strcmp(s, "1"))
5ab92901 7283 cgroup_memory_noswap = false;
21afa38e 7284 else if (!strcmp(s, "0"))
5ab92901 7285 cgroup_memory_noswap = true;
21afa38e
JW
7286 return 1;
7287}
eccb52e7 7288__setup("swapaccount=", setup_swap_account);
21afa38e 7289
37e84351
VD
7290static u64 swap_current_read(struct cgroup_subsys_state *css,
7291 struct cftype *cft)
7292{
7293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7294
7295 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7296}
7297
4b82ab4f
JK
7298static int swap_high_show(struct seq_file *m, void *v)
7299{
7300 return seq_puts_memcg_tunable(m,
7301 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7302}
7303
7304static ssize_t swap_high_write(struct kernfs_open_file *of,
7305 char *buf, size_t nbytes, loff_t off)
7306{
7307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7308 unsigned long high;
7309 int err;
7310
7311 buf = strstrip(buf);
7312 err = page_counter_memparse(buf, "max", &high);
7313 if (err)
7314 return err;
7315
7316 page_counter_set_high(&memcg->swap, high);
7317
7318 return nbytes;
7319}
7320
37e84351
VD
7321static int swap_max_show(struct seq_file *m, void *v)
7322{
677dc973
CD
7323 return seq_puts_memcg_tunable(m,
7324 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7325}
7326
7327static ssize_t swap_max_write(struct kernfs_open_file *of,
7328 char *buf, size_t nbytes, loff_t off)
7329{
7330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7331 unsigned long max;
7332 int err;
7333
7334 buf = strstrip(buf);
7335 err = page_counter_memparse(buf, "max", &max);
7336 if (err)
7337 return err;
7338
be09102b 7339 xchg(&memcg->swap.max, max);
37e84351
VD
7340
7341 return nbytes;
7342}
7343
f3a53a3a
TH
7344static int swap_events_show(struct seq_file *m, void *v)
7345{
aa9694bb 7346 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7347
4b82ab4f
JK
7348 seq_printf(m, "high %lu\n",
7349 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7350 seq_printf(m, "max %lu\n",
7351 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7352 seq_printf(m, "fail %lu\n",
7353 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7354
7355 return 0;
7356}
7357
37e84351
VD
7358static struct cftype swap_files[] = {
7359 {
7360 .name = "swap.current",
7361 .flags = CFTYPE_NOT_ON_ROOT,
7362 .read_u64 = swap_current_read,
7363 },
4b82ab4f
JK
7364 {
7365 .name = "swap.high",
7366 .flags = CFTYPE_NOT_ON_ROOT,
7367 .seq_show = swap_high_show,
7368 .write = swap_high_write,
7369 },
37e84351
VD
7370 {
7371 .name = "swap.max",
7372 .flags = CFTYPE_NOT_ON_ROOT,
7373 .seq_show = swap_max_show,
7374 .write = swap_max_write,
7375 },
f3a53a3a
TH
7376 {
7377 .name = "swap.events",
7378 .flags = CFTYPE_NOT_ON_ROOT,
7379 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7380 .seq_show = swap_events_show,
7381 },
37e84351
VD
7382 { } /* terminate */
7383};
7384
eccb52e7 7385static struct cftype memsw_files[] = {
21afa38e
JW
7386 {
7387 .name = "memsw.usage_in_bytes",
7388 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7389 .read_u64 = mem_cgroup_read_u64,
7390 },
7391 {
7392 .name = "memsw.max_usage_in_bytes",
7393 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7394 .write = mem_cgroup_reset,
7395 .read_u64 = mem_cgroup_read_u64,
7396 },
7397 {
7398 .name = "memsw.limit_in_bytes",
7399 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7400 .write = mem_cgroup_write,
7401 .read_u64 = mem_cgroup_read_u64,
7402 },
7403 {
7404 .name = "memsw.failcnt",
7405 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7406 .write = mem_cgroup_reset,
7407 .read_u64 = mem_cgroup_read_u64,
7408 },
7409 { }, /* terminate */
7410};
7411
82ff165c
BS
7412/*
7413 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7414 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7415 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7416 * boot parameter. This may result in premature OOPS inside
7417 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7418 */
21afa38e
JW
7419static int __init mem_cgroup_swap_init(void)
7420{
2d1c4980
JW
7421 /* No memory control -> no swap control */
7422 if (mem_cgroup_disabled())
7423 cgroup_memory_noswap = true;
7424
7425 if (cgroup_memory_noswap)
eccb52e7
JW
7426 return 0;
7427
7428 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7429 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7430
21afa38e
JW
7431 return 0;
7432}
82ff165c 7433core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7434
7435#endif /* CONFIG_MEMCG_SWAP */