]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm/memcg: set pos explicitly for reclaim and !reclaim
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
7c0f6ba6 71#include <linux/uaccess.h>
8697d331 72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
37d5985c
RG
80/* Active memory cgroup to use from an interrupt context */
81DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 82EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 83
f7e1cb6e 84/* Socket memory accounting disabled? */
0f0cace3 85static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 86
04823c83 87/* Kernel memory accounting disabled? */
17c17367 88static bool cgroup_memory_nokmem __ro_after_init;
04823c83 89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
0f0cace3 92bool cgroup_memory_noswap __ro_after_init;
c077719b 93#else
eccb52e7 94#define cgroup_memory_noswap 1
2d1c4980 95#endif
c077719b 96
97b27821
TH
97#ifdef CONFIG_CGROUP_WRITEBACK
98static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
99#endif
100
7941d214
JW
101/* Whether legacy memory+swap accounting is active */
102static bool do_memsw_account(void)
103{
eccb52e7 104 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
105}
106
a0db00fc
KS
107#define THRESHOLDS_EVENTS_TARGET 128
108#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 109
bb4cc1a8
AM
110/*
111 * Cgroups above their limits are maintained in a RB-Tree, independent of
112 * their hierarchy representation
113 */
114
ef8f2327 115struct mem_cgroup_tree_per_node {
bb4cc1a8 116 struct rb_root rb_root;
fa90b2fd 117 struct rb_node *rb_rightmost;
bb4cc1a8
AM
118 spinlock_t lock;
119};
120
bb4cc1a8
AM
121struct mem_cgroup_tree {
122 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
123};
124
125static struct mem_cgroup_tree soft_limit_tree __read_mostly;
126
9490ff27
KH
127/* for OOM */
128struct mem_cgroup_eventfd_list {
129 struct list_head list;
130 struct eventfd_ctx *eventfd;
131};
2e72b634 132
79bd9814
TH
133/*
134 * cgroup_event represents events which userspace want to receive.
135 */
3bc942f3 136struct mem_cgroup_event {
79bd9814 137 /*
59b6f873 138 * memcg which the event belongs to.
79bd9814 139 */
59b6f873 140 struct mem_cgroup *memcg;
79bd9814
TH
141 /*
142 * eventfd to signal userspace about the event.
143 */
144 struct eventfd_ctx *eventfd;
145 /*
146 * Each of these stored in a list by the cgroup.
147 */
148 struct list_head list;
fba94807
TH
149 /*
150 * register_event() callback will be used to add new userspace
151 * waiter for changes related to this event. Use eventfd_signal()
152 * on eventfd to send notification to userspace.
153 */
59b6f873 154 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 155 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
156 /*
157 * unregister_event() callback will be called when userspace closes
158 * the eventfd or on cgroup removing. This callback must be set,
159 * if you want provide notification functionality.
160 */
59b6f873 161 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 162 struct eventfd_ctx *eventfd);
79bd9814
TH
163 /*
164 * All fields below needed to unregister event when
165 * userspace closes eventfd.
166 */
167 poll_table pt;
168 wait_queue_head_t *wqh;
ac6424b9 169 wait_queue_entry_t wait;
79bd9814
TH
170 struct work_struct remove;
171};
172
c0ff4b85
R
173static void mem_cgroup_threshold(struct mem_cgroup *memcg);
174static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 175
7dc74be0
DN
176/* Stuffs for move charges at task migration. */
177/*
1dfab5ab 178 * Types of charges to be moved.
7dc74be0 179 */
1dfab5ab
JW
180#define MOVE_ANON 0x1U
181#define MOVE_FILE 0x2U
182#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 183
4ffef5fe
DN
184/* "mc" and its members are protected by cgroup_mutex */
185static struct move_charge_struct {
b1dd693e 186 spinlock_t lock; /* for from, to */
264a0ae1 187 struct mm_struct *mm;
4ffef5fe
DN
188 struct mem_cgroup *from;
189 struct mem_cgroup *to;
1dfab5ab 190 unsigned long flags;
4ffef5fe 191 unsigned long precharge;
854ffa8d 192 unsigned long moved_charge;
483c30b5 193 unsigned long moved_swap;
8033b97c
DN
194 struct task_struct *moving_task; /* a task moving charges */
195 wait_queue_head_t waitq; /* a waitq for other context */
196} mc = {
2bd9bb20 197 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
198 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
199};
4ffef5fe 200
4e416953
BS
201/*
202 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
203 * limit reclaim to prevent infinite loops, if they ever occur.
204 */
a0db00fc 205#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 206#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 207
8c7c6e34 208/* for encoding cft->private value on file */
86ae53e1
GC
209enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
510fc4e1 213 _KMEM,
d55f90bf 214 _TCP,
86ae53e1
GC
215};
216
a0db00fc
KS
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 219#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 220/* Used for OOM notifier */
9490ff27 221#define OOM_CONTROL (0)
8c7c6e34 222
b05706f1
KT
223/*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228#define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233#define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
a4ebf1b6 238static inline bool task_is_dying(void)
7775face
TH
239{
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242}
243
70ddf637
AV
244/* Some nice accessors for the vmpressure. */
245struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246{
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250}
251
9647875b 252struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 253{
9647875b 254 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
255}
256
84c07d11 257#ifdef CONFIG_MEMCG_KMEM
0764db9b 258static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 259
4d5c8aed
RG
260bool mem_cgroup_kmem_disabled(void)
261{
262 return cgroup_memory_nokmem;
263}
264
f1286fae
MS
265static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
266 unsigned int nr_pages);
c1a660de 267
bf4f0599
RG
268static void obj_cgroup_release(struct percpu_ref *ref)
269{
270 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
271 unsigned int nr_bytes;
272 unsigned int nr_pages;
273 unsigned long flags;
274
275 /*
276 * At this point all allocated objects are freed, and
277 * objcg->nr_charged_bytes can't have an arbitrary byte value.
278 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
279 *
280 * The following sequence can lead to it:
281 * 1) CPU0: objcg == stock->cached_objcg
282 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
283 * PAGE_SIZE bytes are charged
284 * 3) CPU1: a process from another memcg is allocating something,
285 * the stock if flushed,
286 * objcg->nr_charged_bytes = PAGE_SIZE - 92
287 * 5) CPU0: we do release this object,
288 * 92 bytes are added to stock->nr_bytes
289 * 6) CPU0: stock is flushed,
290 * 92 bytes are added to objcg->nr_charged_bytes
291 *
292 * In the result, nr_charged_bytes == PAGE_SIZE.
293 * This page will be uncharged in obj_cgroup_release().
294 */
295 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
296 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
297 nr_pages = nr_bytes >> PAGE_SHIFT;
298
bf4f0599 299 if (nr_pages)
f1286fae 300 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 301
0764db9b 302 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 303 list_del(&objcg->list);
0764db9b 304 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
305
306 percpu_ref_exit(ref);
307 kfree_rcu(objcg, rcu);
308}
309
310static struct obj_cgroup *obj_cgroup_alloc(void)
311{
312 struct obj_cgroup *objcg;
313 int ret;
314
315 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
316 if (!objcg)
317 return NULL;
318
319 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
320 GFP_KERNEL);
321 if (ret) {
322 kfree(objcg);
323 return NULL;
324 }
325 INIT_LIST_HEAD(&objcg->list);
326 return objcg;
327}
328
329static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
330 struct mem_cgroup *parent)
331{
332 struct obj_cgroup *objcg, *iter;
333
334 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
335
0764db9b 336 spin_lock_irq(&objcg_lock);
bf4f0599 337
9838354e
MS
338 /* 1) Ready to reparent active objcg. */
339 list_add(&objcg->list, &memcg->objcg_list);
340 /* 2) Reparent active objcg and already reparented objcgs to parent. */
341 list_for_each_entry(iter, &memcg->objcg_list, list)
342 WRITE_ONCE(iter->memcg, parent);
343 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
344 list_splice(&memcg->objcg_list, &parent->objcg_list);
345
0764db9b 346 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
347
348 percpu_ref_kill(&objcg->refcnt);
349}
350
d7f25f8a
GC
351/*
352 * A lot of the calls to the cache allocation functions are expected to be
272911a4 353 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
354 * conditional to this static branch, we'll have to allow modules that does
355 * kmem_cache_alloc and the such to see this symbol as well
356 */
ef12947c 357DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 358EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 359#endif
17cc4dfe 360
ad7fa852
TH
361/**
362 * mem_cgroup_css_from_page - css of the memcg associated with a page
363 * @page: page of interest
364 *
365 * If memcg is bound to the default hierarchy, css of the memcg associated
366 * with @page is returned. The returned css remains associated with @page
367 * until it is released.
368 *
369 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
370 * is returned.
ad7fa852
TH
371 */
372struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
373{
374 struct mem_cgroup *memcg;
375
bcfe06bf 376 memcg = page_memcg(page);
ad7fa852 377
9e10a130 378 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
379 memcg = root_mem_cgroup;
380
ad7fa852
TH
381 return &memcg->css;
382}
383
2fc04524
VD
384/**
385 * page_cgroup_ino - return inode number of the memcg a page is charged to
386 * @page: the page
387 *
388 * Look up the closest online ancestor of the memory cgroup @page is charged to
389 * and return its inode number or 0 if @page is not charged to any cgroup. It
390 * is safe to call this function without holding a reference to @page.
391 *
392 * Note, this function is inherently racy, because there is nothing to prevent
393 * the cgroup inode from getting torn down and potentially reallocated a moment
394 * after page_cgroup_ino() returns, so it only should be used by callers that
395 * do not care (such as procfs interfaces).
396 */
397ino_t page_cgroup_ino(struct page *page)
398{
399 struct mem_cgroup *memcg;
400 unsigned long ino = 0;
401
402 rcu_read_lock();
bcfe06bf 403 memcg = page_memcg_check(page);
286e04b8 404
2fc04524
VD
405 while (memcg && !(memcg->css.flags & CSS_ONLINE))
406 memcg = parent_mem_cgroup(memcg);
407 if (memcg)
408 ino = cgroup_ino(memcg->css.cgroup);
409 rcu_read_unlock();
410 return ino;
411}
412
ef8f2327
MG
413static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
414 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 415 unsigned long new_usage_in_excess)
bb4cc1a8
AM
416{
417 struct rb_node **p = &mctz->rb_root.rb_node;
418 struct rb_node *parent = NULL;
ef8f2327 419 struct mem_cgroup_per_node *mz_node;
fa90b2fd 420 bool rightmost = true;
bb4cc1a8
AM
421
422 if (mz->on_tree)
423 return;
424
425 mz->usage_in_excess = new_usage_in_excess;
426 if (!mz->usage_in_excess)
427 return;
428 while (*p) {
429 parent = *p;
ef8f2327 430 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 431 tree_node);
fa90b2fd 432 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 433 p = &(*p)->rb_left;
fa90b2fd 434 rightmost = false;
378876b0 435 } else {
bb4cc1a8 436 p = &(*p)->rb_right;
378876b0 437 }
bb4cc1a8 438 }
fa90b2fd
DB
439
440 if (rightmost)
441 mctz->rb_rightmost = &mz->tree_node;
442
bb4cc1a8
AM
443 rb_link_node(&mz->tree_node, parent, p);
444 rb_insert_color(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = true;
446}
447
ef8f2327
MG
448static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
449 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
450{
451 if (!mz->on_tree)
452 return;
fa90b2fd
DB
453
454 if (&mz->tree_node == mctz->rb_rightmost)
455 mctz->rb_rightmost = rb_prev(&mz->tree_node);
456
bb4cc1a8
AM
457 rb_erase(&mz->tree_node, &mctz->rb_root);
458 mz->on_tree = false;
459}
460
ef8f2327
MG
461static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
462 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 463{
0a31bc97
JW
464 unsigned long flags;
465
466 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 467 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 468 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
469}
470
3e32cb2e
JW
471static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
472{
473 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 474 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
475 unsigned long excess = 0;
476
477 if (nr_pages > soft_limit)
478 excess = nr_pages - soft_limit;
479
480 return excess;
481}
bb4cc1a8 482
658b69c9 483static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 484{
3e32cb2e 485 unsigned long excess;
ef8f2327
MG
486 struct mem_cgroup_per_node *mz;
487 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 488
2ab082ba 489 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
490 if (!mctz)
491 return;
bb4cc1a8
AM
492 /*
493 * Necessary to update all ancestors when hierarchy is used.
494 * because their event counter is not touched.
495 */
496 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 497 mz = memcg->nodeinfo[nid];
3e32cb2e 498 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
499 /*
500 * We have to update the tree if mz is on RB-tree or
501 * mem is over its softlimit.
502 */
503 if (excess || mz->on_tree) {
0a31bc97
JW
504 unsigned long flags;
505
506 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
507 /* if on-tree, remove it */
508 if (mz->on_tree)
cf2c8127 509 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
510 /*
511 * Insert again. mz->usage_in_excess will be updated.
512 * If excess is 0, no tree ops.
513 */
cf2c8127 514 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 515 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
516 }
517 }
518}
519
520static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
521{
ef8f2327
MG
522 struct mem_cgroup_tree_per_node *mctz;
523 struct mem_cgroup_per_node *mz;
524 int nid;
bb4cc1a8 525
e231875b 526 for_each_node(nid) {
a3747b53 527 mz = memcg->nodeinfo[nid];
2ab082ba 528 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
529 if (mctz)
530 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
531 }
532}
533
ef8f2327
MG
534static struct mem_cgroup_per_node *
535__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 536{
ef8f2327 537 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
538
539retry:
540 mz = NULL;
fa90b2fd 541 if (!mctz->rb_rightmost)
bb4cc1a8
AM
542 goto done; /* Nothing to reclaim from */
543
fa90b2fd
DB
544 mz = rb_entry(mctz->rb_rightmost,
545 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
546 /*
547 * Remove the node now but someone else can add it back,
548 * we will to add it back at the end of reclaim to its correct
549 * position in the tree.
550 */
cf2c8127 551 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 552 if (!soft_limit_excess(mz->memcg) ||
8965aa28 553 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
554 goto retry;
555done:
556 return mz;
557}
558
ef8f2327
MG
559static struct mem_cgroup_per_node *
560mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 561{
ef8f2327 562 struct mem_cgroup_per_node *mz;
bb4cc1a8 563
0a31bc97 564 spin_lock_irq(&mctz->lock);
bb4cc1a8 565 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 566 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
567 return mz;
568}
569
11192d9c
SB
570/*
571 * memcg and lruvec stats flushing
572 *
573 * Many codepaths leading to stats update or read are performance sensitive and
574 * adding stats flushing in such codepaths is not desirable. So, to optimize the
575 * flushing the kernel does:
576 *
577 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
578 * rstat update tree grow unbounded.
579 *
580 * 2) Flush the stats synchronously on reader side only when there are more than
581 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
582 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
583 * only for 2 seconds due to (1).
584 */
585static void flush_memcg_stats_dwork(struct work_struct *w);
586static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
587static DEFINE_SPINLOCK(stats_flush_lock);
588static DEFINE_PER_CPU(unsigned int, stats_updates);
589static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
590static u64 flush_next_time;
591
592#define FLUSH_TIME (2UL*HZ)
11192d9c 593
be3e67b5
SAS
594/*
595 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
596 * not rely on this as part of an acquired spinlock_t lock. These functions are
597 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
598 * is sufficient.
599 */
600static void memcg_stats_lock(void)
601{
602#ifdef CONFIG_PREEMPT_RT
603 preempt_disable();
604#else
605 VM_BUG_ON(!irqs_disabled());
606#endif
607}
608
609static void __memcg_stats_lock(void)
610{
611#ifdef CONFIG_PREEMPT_RT
612 preempt_disable();
613#endif
614}
615
616static void memcg_stats_unlock(void)
617{
618#ifdef CONFIG_PREEMPT_RT
619 preempt_enable();
620#endif
621}
622
5b3be698 623static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 624{
5b3be698
SB
625 unsigned int x;
626
11192d9c 627 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
628
629 x = __this_cpu_add_return(stats_updates, abs(val));
630 if (x > MEMCG_CHARGE_BATCH) {
631 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
632 __this_cpu_write(stats_updates, 0);
633 }
11192d9c
SB
634}
635
636static void __mem_cgroup_flush_stats(void)
637{
fd25a9e0
SB
638 unsigned long flag;
639
640 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
641 return;
642
9b301615 643 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
11192d9c
SB
644 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
645 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 646 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
647}
648
649void mem_cgroup_flush_stats(void)
650{
651 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
652 __mem_cgroup_flush_stats();
653}
654
9b301615
SB
655void mem_cgroup_flush_stats_delayed(void)
656{
657 if (time_after64(jiffies_64, flush_next_time))
658 mem_cgroup_flush_stats();
659}
660
11192d9c
SB
661static void flush_memcg_stats_dwork(struct work_struct *w)
662{
5b3be698 663 __mem_cgroup_flush_stats();
9b301615 664 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
665}
666
db9adbcb
JW
667/**
668 * __mod_memcg_state - update cgroup memory statistics
669 * @memcg: the memory cgroup
670 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
671 * @val: delta to add to the counter, can be negative
672 */
673void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
674{
db9adbcb
JW
675 if (mem_cgroup_disabled())
676 return;
677
2d146aa3 678 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 679 memcg_rstat_updated(memcg, val);
db9adbcb
JW
680}
681
2d146aa3 682/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
683static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
684{
685 long x = 0;
686 int cpu;
687
688 for_each_possible_cpu(cpu)
2d146aa3 689 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
690#ifdef CONFIG_SMP
691 if (x < 0)
692 x = 0;
693#endif
694 return x;
695}
696
eedc4e5a
RG
697void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
698 int val)
db9adbcb
JW
699{
700 struct mem_cgroup_per_node *pn;
42a30035 701 struct mem_cgroup *memcg;
db9adbcb 702
db9adbcb 703 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 704 memcg = pn->memcg;
db9adbcb 705
be3e67b5
SAS
706 /*
707 * The caller from rmap relay on disabled preemption becase they never
708 * update their counter from in-interrupt context. For these two
709 * counters we check that the update is never performed from an
710 * interrupt context while other caller need to have disabled interrupt.
711 */
712 __memcg_stats_lock();
713 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
714 switch (idx) {
715 case NR_ANON_MAPPED:
716 case NR_FILE_MAPPED:
717 case NR_ANON_THPS:
718 case NR_SHMEM_PMDMAPPED:
719 case NR_FILE_PMDMAPPED:
720 WARN_ON_ONCE(!in_task());
721 break;
722 default:
723 WARN_ON_ONCE(!irqs_disabled());
724 }
725 }
726
db9adbcb 727 /* Update memcg */
11192d9c 728 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 729
b4c46484 730 /* Update lruvec */
7e1c0d6f 731 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 732
5b3be698 733 memcg_rstat_updated(memcg, val);
be3e67b5 734 memcg_stats_unlock();
db9adbcb
JW
735}
736
eedc4e5a
RG
737/**
738 * __mod_lruvec_state - update lruvec memory statistics
739 * @lruvec: the lruvec
740 * @idx: the stat item
741 * @val: delta to add to the counter, can be negative
742 *
743 * The lruvec is the intersection of the NUMA node and a cgroup. This
744 * function updates the all three counters that are affected by a
745 * change of state at this level: per-node, per-cgroup, per-lruvec.
746 */
747void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
748 int val)
749{
750 /* Update node */
751 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
752
753 /* Update memcg and lruvec */
754 if (!mem_cgroup_disabled())
755 __mod_memcg_lruvec_state(lruvec, idx, val);
756}
757
c47d5032
SB
758void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
759 int val)
760{
761 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 762 struct mem_cgroup *memcg;
c47d5032
SB
763 pg_data_t *pgdat = page_pgdat(page);
764 struct lruvec *lruvec;
765
b4e0b68f
MS
766 rcu_read_lock();
767 memcg = page_memcg(head);
c47d5032 768 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 769 if (!memcg) {
b4e0b68f 770 rcu_read_unlock();
c47d5032
SB
771 __mod_node_page_state(pgdat, idx, val);
772 return;
773 }
774
d635a69d 775 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 776 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 777 rcu_read_unlock();
c47d5032 778}
f0c0c115 779EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 780
da3ceeff 781void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 782{
4f103c63 783 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
784 struct mem_cgroup *memcg;
785 struct lruvec *lruvec;
786
787 rcu_read_lock();
4f103c63 788 memcg = mem_cgroup_from_obj(p);
ec9f0238 789
8faeb1ff
MS
790 /*
791 * Untracked pages have no memcg, no lruvec. Update only the
792 * node. If we reparent the slab objects to the root memcg,
793 * when we free the slab object, we need to update the per-memcg
794 * vmstats to keep it correct for the root memcg.
795 */
796 if (!memcg) {
ec9f0238
RG
797 __mod_node_page_state(pgdat, idx, val);
798 } else {
867e5e1d 799 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
800 __mod_lruvec_state(lruvec, idx, val);
801 }
802 rcu_read_unlock();
803}
804
db9adbcb
JW
805/**
806 * __count_memcg_events - account VM events in a cgroup
807 * @memcg: the memory cgroup
808 * @idx: the event item
f0953a1b 809 * @count: the number of events that occurred
db9adbcb
JW
810 */
811void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
812 unsigned long count)
813{
db9adbcb
JW
814 if (mem_cgroup_disabled())
815 return;
816
be3e67b5 817 memcg_stats_lock();
2d146aa3 818 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
5b3be698 819 memcg_rstat_updated(memcg, count);
be3e67b5 820 memcg_stats_unlock();
db9adbcb
JW
821}
822
42a30035 823static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 824{
2d146aa3 825 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
826}
827
42a30035
JW
828static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
829{
815744d7
JW
830 long x = 0;
831 int cpu;
832
833 for_each_possible_cpu(cpu)
2d146aa3 834 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 835 return x;
42a30035
JW
836}
837
c0ff4b85 838static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 839 int nr_pages)
d52aa412 840{
e401f176
KH
841 /* pagein of a big page is an event. So, ignore page size */
842 if (nr_pages > 0)
c9019e9b 843 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 844 else {
c9019e9b 845 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
846 nr_pages = -nr_pages; /* for event */
847 }
e401f176 848
871789d4 849 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
850}
851
f53d7ce3
JW
852static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
853 enum mem_cgroup_events_target target)
7a159cc9
JW
854{
855 unsigned long val, next;
856
871789d4
CD
857 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
858 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 859 /* from time_after() in jiffies.h */
6a1a8b80 860 if ((long)(next - val) < 0) {
f53d7ce3
JW
861 switch (target) {
862 case MEM_CGROUP_TARGET_THRESH:
863 next = val + THRESHOLDS_EVENTS_TARGET;
864 break;
bb4cc1a8
AM
865 case MEM_CGROUP_TARGET_SOFTLIMIT:
866 next = val + SOFTLIMIT_EVENTS_TARGET;
867 break;
f53d7ce3
JW
868 default:
869 break;
870 }
871789d4 871 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 872 return true;
7a159cc9 873 }
f53d7ce3 874 return false;
d2265e6f
KH
875}
876
877/*
878 * Check events in order.
879 *
880 */
8e88bd2d 881static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 882{
2343e88d
SAS
883 if (IS_ENABLED(CONFIG_PREEMPT_RT))
884 return;
885
d2265e6f 886 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 889 bool do_softlimit;
f53d7ce3 890
bb4cc1a8
AM
891 do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 893 mem_cgroup_threshold(memcg);
bb4cc1a8 894 if (unlikely(do_softlimit))
8e88bd2d 895 mem_cgroup_update_tree(memcg, nid);
0a31bc97 896 }
d2265e6f
KH
897}
898
cf475ad2 899struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 900{
31a78f23
BS
901 /*
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
905 */
906 if (unlikely(!p))
907 return NULL;
908
073219e9 909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 910}
33398cf2 911EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 912
04f94e3f
DS
913static __always_inline struct mem_cgroup *active_memcg(void)
914{
55a68c82 915 if (!in_task())
04f94e3f
DS
916 return this_cpu_read(int_active_memcg);
917 else
918 return current->active_memcg;
919}
920
d46eb14b
SB
921/**
922 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
923 * @mm: mm from which memcg should be extracted. It can be NULL.
924 *
04f94e3f
DS
925 * Obtain a reference on mm->memcg and returns it if successful. If mm
926 * is NULL, then the memcg is chosen as follows:
927 * 1) The active memcg, if set.
928 * 2) current->mm->memcg, if available
929 * 3) root memcg
930 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
931 */
932struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 933{
d46eb14b
SB
934 struct mem_cgroup *memcg;
935
936 if (mem_cgroup_disabled())
937 return NULL;
0b7f569e 938
2884b6b7
MS
939 /*
940 * Page cache insertions can happen without an
941 * actual mm context, e.g. during disk probing
942 * on boot, loopback IO, acct() writes etc.
943 *
944 * No need to css_get on root memcg as the reference
945 * counting is disabled on the root level in the
946 * cgroup core. See CSS_NO_REF.
947 */
04f94e3f
DS
948 if (unlikely(!mm)) {
949 memcg = active_memcg();
950 if (unlikely(memcg)) {
951 /* remote memcg must hold a ref */
952 css_get(&memcg->css);
953 return memcg;
954 }
955 mm = current->mm;
956 if (unlikely(!mm))
957 return root_mem_cgroup;
958 }
2884b6b7 959
54595fe2
KH
960 rcu_read_lock();
961 do {
2884b6b7
MS
962 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
963 if (unlikely(!memcg))
df381975 964 memcg = root_mem_cgroup;
00d484f3 965 } while (!css_tryget(&memcg->css));
54595fe2 966 rcu_read_unlock();
c0ff4b85 967 return memcg;
54595fe2 968}
d46eb14b
SB
969EXPORT_SYMBOL(get_mem_cgroup_from_mm);
970
4127c650
RG
971static __always_inline bool memcg_kmem_bypass(void)
972{
973 /* Allow remote memcg charging from any context. */
974 if (unlikely(active_memcg()))
975 return false;
976
977 /* Memcg to charge can't be determined. */
6126891c 978 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
979 return true;
980
981 return false;
982}
983
5660048c
JW
984/**
985 * mem_cgroup_iter - iterate over memory cgroup hierarchy
986 * @root: hierarchy root
987 * @prev: previously returned memcg, NULL on first invocation
988 * @reclaim: cookie for shared reclaim walks, NULL for full walks
989 *
990 * Returns references to children of the hierarchy below @root, or
991 * @root itself, or %NULL after a full round-trip.
992 *
993 * Caller must pass the return value in @prev on subsequent
994 * invocations for reference counting, or use mem_cgroup_iter_break()
995 * to cancel a hierarchy walk before the round-trip is complete.
996 *
05bdc520
ML
997 * Reclaimers can specify a node in @reclaim to divide up the memcgs
998 * in the hierarchy among all concurrent reclaimers operating on the
999 * same node.
5660048c 1000 */
694fbc0f 1001struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1002 struct mem_cgroup *prev,
694fbc0f 1003 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1004{
3f649ab7 1005 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1006 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1007 struct mem_cgroup *memcg = NULL;
5ac8fb31 1008 struct mem_cgroup *pos = NULL;
711d3d2c 1009
694fbc0f
AM
1010 if (mem_cgroup_disabled())
1011 return NULL;
5660048c 1012
9f3a0d09
JW
1013 if (!root)
1014 root = root_mem_cgroup;
7d74b06f 1015
542f85f9 1016 rcu_read_lock();
5f578161 1017
5ac8fb31 1018 if (reclaim) {
ef8f2327 1019 struct mem_cgroup_per_node *mz;
5ac8fb31 1020
a3747b53 1021 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1022 iter = &mz->iter;
5ac8fb31
JW
1023
1024 if (prev && reclaim->generation != iter->generation)
1025 goto out_unlock;
1026
6df38689 1027 while (1) {
4db0c3c2 1028 pos = READ_ONCE(iter->position);
6df38689
VD
1029 if (!pos || css_tryget(&pos->css))
1030 break;
5ac8fb31 1031 /*
6df38689
VD
1032 * css reference reached zero, so iter->position will
1033 * be cleared by ->css_released. However, we should not
1034 * rely on this happening soon, because ->css_released
1035 * is called from a work queue, and by busy-waiting we
1036 * might block it. So we clear iter->position right
1037 * away.
5ac8fb31 1038 */
6df38689
VD
1039 (void)cmpxchg(&iter->position, pos, NULL);
1040 }
89d8330c
WY
1041 } else if (prev) {
1042 pos = prev;
5ac8fb31
JW
1043 }
1044
1045 if (pos)
1046 css = &pos->css;
1047
1048 for (;;) {
1049 css = css_next_descendant_pre(css, &root->css);
1050 if (!css) {
1051 /*
1052 * Reclaimers share the hierarchy walk, and a
1053 * new one might jump in right at the end of
1054 * the hierarchy - make sure they see at least
1055 * one group and restart from the beginning.
1056 */
1057 if (!prev)
1058 continue;
1059 break;
527a5ec9 1060 }
7d74b06f 1061
5ac8fb31
JW
1062 /*
1063 * Verify the css and acquire a reference. The root
1064 * is provided by the caller, so we know it's alive
1065 * and kicking, and don't take an extra reference.
1066 */
41555dad
WY
1067 if (css == &root->css || css_tryget(css)) {
1068 memcg = mem_cgroup_from_css(css);
0b8f73e1 1069 break;
41555dad 1070 }
9f3a0d09 1071 }
5ac8fb31
JW
1072
1073 if (reclaim) {
5ac8fb31 1074 /*
6df38689
VD
1075 * The position could have already been updated by a competing
1076 * thread, so check that the value hasn't changed since we read
1077 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1078 */
6df38689
VD
1079 (void)cmpxchg(&iter->position, pos, memcg);
1080
5ac8fb31
JW
1081 if (pos)
1082 css_put(&pos->css);
1083
1084 if (!memcg)
1085 iter->generation++;
1086 else if (!prev)
1087 reclaim->generation = iter->generation;
9f3a0d09 1088 }
5ac8fb31 1089
542f85f9
MH
1090out_unlock:
1091 rcu_read_unlock();
c40046f3
MH
1092 if (prev && prev != root)
1093 css_put(&prev->css);
1094
9f3a0d09 1095 return memcg;
14067bb3 1096}
7d74b06f 1097
5660048c
JW
1098/**
1099 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1100 * @root: hierarchy root
1101 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1102 */
1103void mem_cgroup_iter_break(struct mem_cgroup *root,
1104 struct mem_cgroup *prev)
9f3a0d09
JW
1105{
1106 if (!root)
1107 root = root_mem_cgroup;
1108 if (prev && prev != root)
1109 css_put(&prev->css);
1110}
7d74b06f 1111
54a83d6b
MC
1112static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1113 struct mem_cgroup *dead_memcg)
6df38689 1114{
6df38689 1115 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1116 struct mem_cgroup_per_node *mz;
1117 int nid;
6df38689 1118
54a83d6b 1119 for_each_node(nid) {
a3747b53 1120 mz = from->nodeinfo[nid];
9da83f3f
YS
1121 iter = &mz->iter;
1122 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1123 }
1124}
1125
54a83d6b
MC
1126static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1127{
1128 struct mem_cgroup *memcg = dead_memcg;
1129 struct mem_cgroup *last;
1130
1131 do {
1132 __invalidate_reclaim_iterators(memcg, dead_memcg);
1133 last = memcg;
1134 } while ((memcg = parent_mem_cgroup(memcg)));
1135
1136 /*
1137 * When cgruop1 non-hierarchy mode is used,
1138 * parent_mem_cgroup() does not walk all the way up to the
1139 * cgroup root (root_mem_cgroup). So we have to handle
1140 * dead_memcg from cgroup root separately.
1141 */
1142 if (last != root_mem_cgroup)
1143 __invalidate_reclaim_iterators(root_mem_cgroup,
1144 dead_memcg);
1145}
1146
7c5f64f8
VD
1147/**
1148 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1149 * @memcg: hierarchy root
1150 * @fn: function to call for each task
1151 * @arg: argument passed to @fn
1152 *
1153 * This function iterates over tasks attached to @memcg or to any of its
1154 * descendants and calls @fn for each task. If @fn returns a non-zero
1155 * value, the function breaks the iteration loop and returns the value.
1156 * Otherwise, it will iterate over all tasks and return 0.
1157 *
1158 * This function must not be called for the root memory cgroup.
1159 */
1160int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1161 int (*fn)(struct task_struct *, void *), void *arg)
1162{
1163 struct mem_cgroup *iter;
1164 int ret = 0;
1165
1166 BUG_ON(memcg == root_mem_cgroup);
1167
1168 for_each_mem_cgroup_tree(iter, memcg) {
1169 struct css_task_iter it;
1170 struct task_struct *task;
1171
f168a9a5 1172 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1173 while (!ret && (task = css_task_iter_next(&it)))
1174 ret = fn(task, arg);
1175 css_task_iter_end(&it);
1176 if (ret) {
1177 mem_cgroup_iter_break(memcg, iter);
1178 break;
1179 }
1180 }
1181 return ret;
1182}
1183
6168d0da 1184#ifdef CONFIG_DEBUG_VM
e809c3fe 1185void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1186{
1187 struct mem_cgroup *memcg;
1188
1189 if (mem_cgroup_disabled())
1190 return;
1191
e809c3fe 1192 memcg = folio_memcg(folio);
6168d0da
AS
1193
1194 if (!memcg)
e809c3fe 1195 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
6168d0da 1196 else
e809c3fe 1197 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1198}
1199#endif
1200
6168d0da 1201/**
e809c3fe
MWO
1202 * folio_lruvec_lock - Lock the lruvec for a folio.
1203 * @folio: Pointer to the folio.
6168d0da 1204 *
d7e3aba5 1205 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1206 * - folio locked
1207 * - folio_test_lru false
1208 * - folio_memcg_lock()
1209 * - folio frozen (refcount of 0)
1210 *
1211 * Return: The lruvec this folio is on with its lock held.
6168d0da 1212 */
e809c3fe 1213struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1214{
e809c3fe 1215 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1216
6168d0da 1217 spin_lock(&lruvec->lru_lock);
e809c3fe 1218 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1219
1220 return lruvec;
1221}
1222
e809c3fe
MWO
1223/**
1224 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1225 * @folio: Pointer to the folio.
1226 *
1227 * These functions are safe to use under any of the following conditions:
1228 * - folio locked
1229 * - folio_test_lru false
1230 * - folio_memcg_lock()
1231 * - folio frozen (refcount of 0)
1232 *
1233 * Return: The lruvec this folio is on with its lock held and interrupts
1234 * disabled.
1235 */
1236struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1237{
e809c3fe 1238 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1239
6168d0da 1240 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1241 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1242
1243 return lruvec;
1244}
1245
e809c3fe
MWO
1246/**
1247 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1248 * @folio: Pointer to the folio.
1249 * @flags: Pointer to irqsave flags.
1250 *
1251 * These functions are safe to use under any of the following conditions:
1252 * - folio locked
1253 * - folio_test_lru false
1254 * - folio_memcg_lock()
1255 * - folio frozen (refcount of 0)
1256 *
1257 * Return: The lruvec this folio is on with its lock held and interrupts
1258 * disabled.
1259 */
1260struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1261 unsigned long *flags)
6168d0da 1262{
e809c3fe 1263 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1264
6168d0da 1265 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1266 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1267
1268 return lruvec;
1269}
1270
925b7673 1271/**
fa9add64
HD
1272 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1273 * @lruvec: mem_cgroup per zone lru vector
1274 * @lru: index of lru list the page is sitting on
b4536f0c 1275 * @zid: zone id of the accounted pages
fa9add64 1276 * @nr_pages: positive when adding or negative when removing
925b7673 1277 *
ca707239 1278 * This function must be called under lru_lock, just before a page is added
07ca7606 1279 * to or just after a page is removed from an lru list.
3f58a829 1280 */
fa9add64 1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1282 int zid, int nr_pages)
3f58a829 1283{
ef8f2327 1284 struct mem_cgroup_per_node *mz;
fa9add64 1285 unsigned long *lru_size;
ca707239 1286 long size;
3f58a829
MK
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
ef8f2327 1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1292 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
b4536f0c
MH
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
08e552c6 1307}
544122e5 1308
19942822 1309/**
9d11ea9f 1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1311 * @memcg: the memory cgroup
19942822 1312 *
9d11ea9f 1313 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1314 * pages.
19942822 1315 */
c0ff4b85 1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1317{
3e32cb2e
JW
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
9d11ea9f 1321
3e32cb2e 1322 count = page_counter_read(&memcg->memory);
bbec2e15 1323 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1324 if (count < limit)
1325 margin = limit - count;
1326
7941d214 1327 if (do_memsw_account()) {
3e32cb2e 1328 count = page_counter_read(&memcg->memsw);
bbec2e15 1329 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1330 if (count < limit)
3e32cb2e 1331 margin = min(margin, limit - count);
cbedbac3
LR
1332 else
1333 margin = 0;
3e32cb2e
JW
1334 }
1335
1336 return margin;
19942822
JW
1337}
1338
32047e2a 1339/*
bdcbb659 1340 * A routine for checking "mem" is under move_account() or not.
32047e2a 1341 *
bdcbb659
QH
1342 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343 * moving cgroups. This is for waiting at high-memory pressure
1344 * caused by "move".
32047e2a 1345 */
c0ff4b85 1346static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1347{
2bd9bb20
KH
1348 struct mem_cgroup *from;
1349 struct mem_cgroup *to;
4b534334 1350 bool ret = false;
2bd9bb20
KH
1351 /*
1352 * Unlike task_move routines, we access mc.to, mc.from not under
1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1354 */
1355 spin_lock(&mc.lock);
1356 from = mc.from;
1357 to = mc.to;
1358 if (!from)
1359 goto unlock;
3e92041d 1360
2314b42d
JW
1361 ret = mem_cgroup_is_descendant(from, memcg) ||
1362 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1363unlock:
1364 spin_unlock(&mc.lock);
4b534334
KH
1365 return ret;
1366}
1367
c0ff4b85 1368static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1369{
1370 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1371 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1372 DEFINE_WAIT(wait);
1373 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1374 /* moving charge context might have finished. */
1375 if (mc.moving_task)
1376 schedule();
1377 finish_wait(&mc.waitq, &wait);
1378 return true;
1379 }
1380 }
1381 return false;
1382}
1383
5f9a4f4a
MS
1384struct memory_stat {
1385 const char *name;
5f9a4f4a
MS
1386 unsigned int idx;
1387};
1388
57b2847d 1389static const struct memory_stat memory_stats[] = {
fff66b79
MS
1390 { "anon", NR_ANON_MAPPED },
1391 { "file", NR_FILE_PAGES },
a8c49af3 1392 { "kernel", MEMCG_KMEM },
fff66b79
MS
1393 { "kernel_stack", NR_KERNEL_STACK_KB },
1394 { "pagetables", NR_PAGETABLE },
1395 { "percpu", MEMCG_PERCPU_B },
1396 { "sock", MEMCG_SOCK },
4e5aa1f4 1397 { "vmalloc", MEMCG_VMALLOC },
fff66b79
MS
1398 { "shmem", NR_SHMEM },
1399 { "file_mapped", NR_FILE_MAPPED },
1400 { "file_dirty", NR_FILE_DIRTY },
1401 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1402#ifdef CONFIG_SWAP
1403 { "swapcached", NR_SWAPCACHE },
1404#endif
5f9a4f4a 1405#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1406 { "anon_thp", NR_ANON_THPS },
1407 { "file_thp", NR_FILE_THPS },
1408 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1409#endif
fff66b79
MS
1410 { "inactive_anon", NR_INACTIVE_ANON },
1411 { "active_anon", NR_ACTIVE_ANON },
1412 { "inactive_file", NR_INACTIVE_FILE },
1413 { "active_file", NR_ACTIVE_FILE },
1414 { "unevictable", NR_UNEVICTABLE },
1415 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1416 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1417
1418 /* The memory events */
fff66b79
MS
1419 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1420 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1421 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1422 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1423 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1424 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1425 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1426};
1427
fff66b79
MS
1428/* Translate stat items to the correct unit for memory.stat output */
1429static int memcg_page_state_unit(int item)
1430{
1431 switch (item) {
1432 case MEMCG_PERCPU_B:
1433 case NR_SLAB_RECLAIMABLE_B:
1434 case NR_SLAB_UNRECLAIMABLE_B:
1435 case WORKINGSET_REFAULT_ANON:
1436 case WORKINGSET_REFAULT_FILE:
1437 case WORKINGSET_ACTIVATE_ANON:
1438 case WORKINGSET_ACTIVATE_FILE:
1439 case WORKINGSET_RESTORE_ANON:
1440 case WORKINGSET_RESTORE_FILE:
1441 case WORKINGSET_NODERECLAIM:
1442 return 1;
1443 case NR_KERNEL_STACK_KB:
1444 return SZ_1K;
1445 default:
1446 return PAGE_SIZE;
1447 }
1448}
1449
1450static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1451 int item)
1452{
1453 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1454}
1455
c8713d0b
JW
1456static char *memory_stat_format(struct mem_cgroup *memcg)
1457{
1458 struct seq_buf s;
1459 int i;
71cd3113 1460
c8713d0b
JW
1461 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1462 if (!s.buffer)
1463 return NULL;
1464
1465 /*
1466 * Provide statistics on the state of the memory subsystem as
1467 * well as cumulative event counters that show past behavior.
1468 *
1469 * This list is ordered following a combination of these gradients:
1470 * 1) generic big picture -> specifics and details
1471 * 2) reflecting userspace activity -> reflecting kernel heuristics
1472 *
1473 * Current memory state:
1474 */
fd25a9e0 1475 mem_cgroup_flush_stats();
c8713d0b 1476
5f9a4f4a
MS
1477 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1478 u64 size;
c8713d0b 1479
fff66b79 1480 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1481 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1482
5f9a4f4a 1483 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1484 size += memcg_page_state_output(memcg,
1485 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1486 seq_buf_printf(&s, "slab %llu\n", size);
1487 }
1488 }
c8713d0b
JW
1489
1490 /* Accumulated memory events */
1491
ebc5d83d
KK
1492 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1493 memcg_events(memcg, PGFAULT));
1494 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1495 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1496 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1497 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1498 seq_buf_printf(&s, "pgscan %lu\n",
1499 memcg_events(memcg, PGSCAN_KSWAPD) +
1500 memcg_events(memcg, PGSCAN_DIRECT));
1501 seq_buf_printf(&s, "pgsteal %lu\n",
1502 memcg_events(memcg, PGSTEAL_KSWAPD) +
1503 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1504 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1505 memcg_events(memcg, PGACTIVATE));
1506 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1507 memcg_events(memcg, PGDEACTIVATE));
1508 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1509 memcg_events(memcg, PGLAZYFREE));
1510 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1511 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1512
1513#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1514 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1515 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1516 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1517 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1518#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1519
1520 /* The above should easily fit into one page */
1521 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1522
1523 return s.buffer;
1524}
71cd3113 1525
58cf188e 1526#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1527/**
f0c867d9 1528 * mem_cgroup_print_oom_context: Print OOM information relevant to
1529 * memory controller.
e222432b
BS
1530 * @memcg: The memory cgroup that went over limit
1531 * @p: Task that is going to be killed
1532 *
1533 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1534 * enabled
1535 */
f0c867d9 1536void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1537{
e222432b
BS
1538 rcu_read_lock();
1539
f0c867d9 1540 if (memcg) {
1541 pr_cont(",oom_memcg=");
1542 pr_cont_cgroup_path(memcg->css.cgroup);
1543 } else
1544 pr_cont(",global_oom");
2415b9f5 1545 if (p) {
f0c867d9 1546 pr_cont(",task_memcg=");
2415b9f5 1547 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1548 }
e222432b 1549 rcu_read_unlock();
f0c867d9 1550}
1551
1552/**
1553 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1554 * memory controller.
1555 * @memcg: The memory cgroup that went over limit
1556 */
1557void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1558{
c8713d0b 1559 char *buf;
e222432b 1560
3e32cb2e
JW
1561 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1562 K((u64)page_counter_read(&memcg->memory)),
15b42562 1563 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1564 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1565 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1566 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1567 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1568 else {
1569 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1570 K((u64)page_counter_read(&memcg->memsw)),
1571 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1572 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1573 K((u64)page_counter_read(&memcg->kmem)),
1574 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1575 }
c8713d0b
JW
1576
1577 pr_info("Memory cgroup stats for ");
1578 pr_cont_cgroup_path(memcg->css.cgroup);
1579 pr_cont(":");
1580 buf = memory_stat_format(memcg);
1581 if (!buf)
1582 return;
1583 pr_info("%s", buf);
1584 kfree(buf);
e222432b
BS
1585}
1586
a63d83f4
DR
1587/*
1588 * Return the memory (and swap, if configured) limit for a memcg.
1589 */
bbec2e15 1590unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1591{
8d387a5f
WL
1592 unsigned long max = READ_ONCE(memcg->memory.max);
1593
1594 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1595 if (mem_cgroup_swappiness(memcg))
1596 max += min(READ_ONCE(memcg->swap.max),
1597 (unsigned long)total_swap_pages);
1598 } else { /* v1 */
1599 if (mem_cgroup_swappiness(memcg)) {
1600 /* Calculate swap excess capacity from memsw limit */
1601 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1602
1603 max += min(swap, (unsigned long)total_swap_pages);
1604 }
9a5a8f19 1605 }
bbec2e15 1606 return max;
a63d83f4
DR
1607}
1608
9783aa99
CD
1609unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1610{
1611 return page_counter_read(&memcg->memory);
1612}
1613
b6e6edcf 1614static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1615 int order)
9cbb78bb 1616{
6e0fc46d
DR
1617 struct oom_control oc = {
1618 .zonelist = NULL,
1619 .nodemask = NULL,
2a966b77 1620 .memcg = memcg,
6e0fc46d
DR
1621 .gfp_mask = gfp_mask,
1622 .order = order,
6e0fc46d 1623 };
1378b37d 1624 bool ret = true;
9cbb78bb 1625
7775face
TH
1626 if (mutex_lock_killable(&oom_lock))
1627 return true;
1378b37d
YS
1628
1629 if (mem_cgroup_margin(memcg) >= (1 << order))
1630 goto unlock;
1631
7775face
TH
1632 /*
1633 * A few threads which were not waiting at mutex_lock_killable() can
1634 * fail to bail out. Therefore, check again after holding oom_lock.
1635 */
a4ebf1b6 1636 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1637
1638unlock:
dc56401f 1639 mutex_unlock(&oom_lock);
7c5f64f8 1640 return ret;
9cbb78bb
DR
1641}
1642
0608f43d 1643static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1644 pg_data_t *pgdat,
0608f43d
AM
1645 gfp_t gfp_mask,
1646 unsigned long *total_scanned)
1647{
1648 struct mem_cgroup *victim = NULL;
1649 int total = 0;
1650 int loop = 0;
1651 unsigned long excess;
1652 unsigned long nr_scanned;
1653 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1654 .pgdat = pgdat,
0608f43d
AM
1655 };
1656
3e32cb2e 1657 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1658
1659 while (1) {
1660 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1661 if (!victim) {
1662 loop++;
1663 if (loop >= 2) {
1664 /*
1665 * If we have not been able to reclaim
1666 * anything, it might because there are
1667 * no reclaimable pages under this hierarchy
1668 */
1669 if (!total)
1670 break;
1671 /*
1672 * We want to do more targeted reclaim.
1673 * excess >> 2 is not to excessive so as to
1674 * reclaim too much, nor too less that we keep
1675 * coming back to reclaim from this cgroup
1676 */
1677 if (total >= (excess >> 2) ||
1678 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1679 break;
1680 }
1681 continue;
1682 }
a9dd0a83 1683 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1684 pgdat, &nr_scanned);
0608f43d 1685 *total_scanned += nr_scanned;
3e32cb2e 1686 if (!soft_limit_excess(root_memcg))
0608f43d 1687 break;
6d61ef40 1688 }
0608f43d
AM
1689 mem_cgroup_iter_break(root_memcg, victim);
1690 return total;
6d61ef40
BS
1691}
1692
0056f4e6
JW
1693#ifdef CONFIG_LOCKDEP
1694static struct lockdep_map memcg_oom_lock_dep_map = {
1695 .name = "memcg_oom_lock",
1696};
1697#endif
1698
fb2a6fc5
JW
1699static DEFINE_SPINLOCK(memcg_oom_lock);
1700
867578cb
KH
1701/*
1702 * Check OOM-Killer is already running under our hierarchy.
1703 * If someone is running, return false.
1704 */
fb2a6fc5 1705static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1706{
79dfdacc 1707 struct mem_cgroup *iter, *failed = NULL;
a636b327 1708
fb2a6fc5
JW
1709 spin_lock(&memcg_oom_lock);
1710
9f3a0d09 1711 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1712 if (iter->oom_lock) {
79dfdacc
MH
1713 /*
1714 * this subtree of our hierarchy is already locked
1715 * so we cannot give a lock.
1716 */
79dfdacc 1717 failed = iter;
9f3a0d09
JW
1718 mem_cgroup_iter_break(memcg, iter);
1719 break;
23751be0
JW
1720 } else
1721 iter->oom_lock = true;
7d74b06f 1722 }
867578cb 1723
fb2a6fc5
JW
1724 if (failed) {
1725 /*
1726 * OK, we failed to lock the whole subtree so we have
1727 * to clean up what we set up to the failing subtree
1728 */
1729 for_each_mem_cgroup_tree(iter, memcg) {
1730 if (iter == failed) {
1731 mem_cgroup_iter_break(memcg, iter);
1732 break;
1733 }
1734 iter->oom_lock = false;
79dfdacc 1735 }
0056f4e6
JW
1736 } else
1737 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1738
1739 spin_unlock(&memcg_oom_lock);
1740
1741 return !failed;
a636b327 1742}
0b7f569e 1743
fb2a6fc5 1744static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1745{
7d74b06f
KH
1746 struct mem_cgroup *iter;
1747
fb2a6fc5 1748 spin_lock(&memcg_oom_lock);
5facae4f 1749 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1750 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1751 iter->oom_lock = false;
fb2a6fc5 1752 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1753}
1754
c0ff4b85 1755static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1756{
1757 struct mem_cgroup *iter;
1758
c2b42d3c 1759 spin_lock(&memcg_oom_lock);
c0ff4b85 1760 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1761 iter->under_oom++;
1762 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1763}
1764
c0ff4b85 1765static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1766{
1767 struct mem_cgroup *iter;
1768
867578cb 1769 /*
f0953a1b 1770 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1771 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1772 */
c2b42d3c 1773 spin_lock(&memcg_oom_lock);
c0ff4b85 1774 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1775 if (iter->under_oom > 0)
1776 iter->under_oom--;
1777 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1778}
1779
867578cb
KH
1780static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1781
dc98df5a 1782struct oom_wait_info {
d79154bb 1783 struct mem_cgroup *memcg;
ac6424b9 1784 wait_queue_entry_t wait;
dc98df5a
KH
1785};
1786
ac6424b9 1787static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1788 unsigned mode, int sync, void *arg)
1789{
d79154bb
HD
1790 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1791 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1792 struct oom_wait_info *oom_wait_info;
1793
1794 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1795 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1796
2314b42d
JW
1797 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1798 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1799 return 0;
dc98df5a
KH
1800 return autoremove_wake_function(wait, mode, sync, arg);
1801}
1802
c0ff4b85 1803static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1804{
c2b42d3c
TH
1805 /*
1806 * For the following lockless ->under_oom test, the only required
1807 * guarantee is that it must see the state asserted by an OOM when
1808 * this function is called as a result of userland actions
1809 * triggered by the notification of the OOM. This is trivially
1810 * achieved by invoking mem_cgroup_mark_under_oom() before
1811 * triggering notification.
1812 */
1813 if (memcg && memcg->under_oom)
f4b90b70 1814 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1815}
1816
becdf89d
SB
1817/*
1818 * Returns true if successfully killed one or more processes. Though in some
1819 * corner cases it can return true even without killing any process.
1820 */
1821static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1822{
becdf89d 1823 bool locked, ret;
7056d3a3 1824
29ef680a 1825 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1826 return false;
29ef680a 1827
7a1adfdd
RG
1828 memcg_memory_event(memcg, MEMCG_OOM);
1829
867578cb 1830 /*
49426420
JW
1831 * We are in the middle of the charge context here, so we
1832 * don't want to block when potentially sitting on a callstack
1833 * that holds all kinds of filesystem and mm locks.
1834 *
29ef680a
MH
1835 * cgroup1 allows disabling the OOM killer and waiting for outside
1836 * handling until the charge can succeed; remember the context and put
1837 * the task to sleep at the end of the page fault when all locks are
1838 * released.
49426420 1839 *
29ef680a
MH
1840 * On the other hand, in-kernel OOM killer allows for an async victim
1841 * memory reclaim (oom_reaper) and that means that we are not solely
1842 * relying on the oom victim to make a forward progress and we can
1843 * invoke the oom killer here.
1844 *
1845 * Please note that mem_cgroup_out_of_memory might fail to find a
1846 * victim and then we have to bail out from the charge path.
867578cb 1847 */
29ef680a 1848 if (memcg->oom_kill_disable) {
becdf89d
SB
1849 if (current->in_user_fault) {
1850 css_get(&memcg->css);
1851 current->memcg_in_oom = memcg;
1852 current->memcg_oom_gfp_mask = mask;
1853 current->memcg_oom_order = order;
1854 }
1855 return false;
29ef680a
MH
1856 }
1857
7056d3a3
MH
1858 mem_cgroup_mark_under_oom(memcg);
1859
1860 locked = mem_cgroup_oom_trylock(memcg);
1861
1862 if (locked)
1863 mem_cgroup_oom_notify(memcg);
1864
1865 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1866 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1867
1868 if (locked)
1869 mem_cgroup_oom_unlock(memcg);
29ef680a 1870
7056d3a3 1871 return ret;
3812c8c8
JW
1872}
1873
1874/**
1875 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1876 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1877 *
49426420
JW
1878 * This has to be called at the end of a page fault if the memcg OOM
1879 * handler was enabled.
3812c8c8 1880 *
49426420 1881 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1882 * sleep on a waitqueue until the userspace task resolves the
1883 * situation. Sleeping directly in the charge context with all kinds
1884 * of locks held is not a good idea, instead we remember an OOM state
1885 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1886 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1887 *
1888 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1889 * completed, %false otherwise.
3812c8c8 1890 */
49426420 1891bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1892{
626ebc41 1893 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1894 struct oom_wait_info owait;
49426420 1895 bool locked;
3812c8c8
JW
1896
1897 /* OOM is global, do not handle */
3812c8c8 1898 if (!memcg)
49426420 1899 return false;
3812c8c8 1900
7c5f64f8 1901 if (!handle)
49426420 1902 goto cleanup;
3812c8c8
JW
1903
1904 owait.memcg = memcg;
1905 owait.wait.flags = 0;
1906 owait.wait.func = memcg_oom_wake_function;
1907 owait.wait.private = current;
2055da97 1908 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1909
3812c8c8 1910 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1911 mem_cgroup_mark_under_oom(memcg);
1912
1913 locked = mem_cgroup_oom_trylock(memcg);
1914
1915 if (locked)
1916 mem_cgroup_oom_notify(memcg);
1917
1918 if (locked && !memcg->oom_kill_disable) {
1919 mem_cgroup_unmark_under_oom(memcg);
1920 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1921 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1922 current->memcg_oom_order);
49426420 1923 } else {
3812c8c8 1924 schedule();
49426420
JW
1925 mem_cgroup_unmark_under_oom(memcg);
1926 finish_wait(&memcg_oom_waitq, &owait.wait);
1927 }
1928
1929 if (locked) {
fb2a6fc5
JW
1930 mem_cgroup_oom_unlock(memcg);
1931 /*
1932 * There is no guarantee that an OOM-lock contender
1933 * sees the wakeups triggered by the OOM kill
f0953a1b 1934 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1935 */
1936 memcg_oom_recover(memcg);
1937 }
49426420 1938cleanup:
626ebc41 1939 current->memcg_in_oom = NULL;
3812c8c8 1940 css_put(&memcg->css);
867578cb 1941 return true;
0b7f569e
KH
1942}
1943
3d8b38eb
RG
1944/**
1945 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1946 * @victim: task to be killed by the OOM killer
1947 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1948 *
1949 * Returns a pointer to a memory cgroup, which has to be cleaned up
1950 * by killing all belonging OOM-killable tasks.
1951 *
1952 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1953 */
1954struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1955 struct mem_cgroup *oom_domain)
1956{
1957 struct mem_cgroup *oom_group = NULL;
1958 struct mem_cgroup *memcg;
1959
1960 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1961 return NULL;
1962
1963 if (!oom_domain)
1964 oom_domain = root_mem_cgroup;
1965
1966 rcu_read_lock();
1967
1968 memcg = mem_cgroup_from_task(victim);
1969 if (memcg == root_mem_cgroup)
1970 goto out;
1971
48fe267c
RG
1972 /*
1973 * If the victim task has been asynchronously moved to a different
1974 * memory cgroup, we might end up killing tasks outside oom_domain.
1975 * In this case it's better to ignore memory.group.oom.
1976 */
1977 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1978 goto out;
1979
3d8b38eb
RG
1980 /*
1981 * Traverse the memory cgroup hierarchy from the victim task's
1982 * cgroup up to the OOMing cgroup (or root) to find the
1983 * highest-level memory cgroup with oom.group set.
1984 */
1985 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1986 if (memcg->oom_group)
1987 oom_group = memcg;
1988
1989 if (memcg == oom_domain)
1990 break;
1991 }
1992
1993 if (oom_group)
1994 css_get(&oom_group->css);
1995out:
1996 rcu_read_unlock();
1997
1998 return oom_group;
1999}
2000
2001void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2002{
2003 pr_info("Tasks in ");
2004 pr_cont_cgroup_path(memcg->css.cgroup);
2005 pr_cont(" are going to be killed due to memory.oom.group set\n");
2006}
2007
d7365e78 2008/**
f70ad448
MWO
2009 * folio_memcg_lock - Bind a folio to its memcg.
2010 * @folio: The folio.
32047e2a 2011 *
f70ad448 2012 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2013 * another cgroup.
2014 *
f70ad448
MWO
2015 * It ensures lifetime of the bound memcg. The caller is responsible
2016 * for the lifetime of the folio.
d69b042f 2017 */
f70ad448 2018void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2019{
2020 struct mem_cgroup *memcg;
6de22619 2021 unsigned long flags;
89c06bd5 2022
6de22619
JW
2023 /*
2024 * The RCU lock is held throughout the transaction. The fast
2025 * path can get away without acquiring the memcg->move_lock
2026 * because page moving starts with an RCU grace period.
739f79fc 2027 */
d7365e78
JW
2028 rcu_read_lock();
2029
2030 if (mem_cgroup_disabled())
1c824a68 2031 return;
89c06bd5 2032again:
f70ad448 2033 memcg = folio_memcg(folio);
29833315 2034 if (unlikely(!memcg))
1c824a68 2035 return;
d7365e78 2036
20ad50d6
AS
2037#ifdef CONFIG_PROVE_LOCKING
2038 local_irq_save(flags);
2039 might_lock(&memcg->move_lock);
2040 local_irq_restore(flags);
2041#endif
2042
bdcbb659 2043 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2044 return;
89c06bd5 2045
6de22619 2046 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2047 if (memcg != folio_memcg(folio)) {
6de22619 2048 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2049 goto again;
2050 }
6de22619
JW
2051
2052 /*
1c824a68
JW
2053 * When charge migration first begins, we can have multiple
2054 * critical sections holding the fast-path RCU lock and one
2055 * holding the slowpath move_lock. Track the task who has the
2056 * move_lock for unlock_page_memcg().
6de22619
JW
2057 */
2058 memcg->move_lock_task = current;
2059 memcg->move_lock_flags = flags;
89c06bd5 2060}
f70ad448
MWO
2061
2062void lock_page_memcg(struct page *page)
2063{
2064 folio_memcg_lock(page_folio(page));
2065}
89c06bd5 2066
f70ad448 2067static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2068{
6de22619
JW
2069 if (memcg && memcg->move_lock_task == current) {
2070 unsigned long flags = memcg->move_lock_flags;
2071
2072 memcg->move_lock_task = NULL;
2073 memcg->move_lock_flags = 0;
2074
2075 spin_unlock_irqrestore(&memcg->move_lock, flags);
2076 }
89c06bd5 2077
d7365e78 2078 rcu_read_unlock();
89c06bd5 2079}
739f79fc
JW
2080
2081/**
f70ad448
MWO
2082 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2083 * @folio: The folio.
2084 *
2085 * This releases the binding created by folio_memcg_lock(). This does
2086 * not change the accounting of this folio to its memcg, but it does
2087 * permit others to change it.
739f79fc 2088 */
f70ad448 2089void folio_memcg_unlock(struct folio *folio)
739f79fc 2090{
f70ad448
MWO
2091 __folio_memcg_unlock(folio_memcg(folio));
2092}
9da7b521 2093
f70ad448
MWO
2094void unlock_page_memcg(struct page *page)
2095{
2096 folio_memcg_unlock(page_folio(page));
739f79fc 2097}
89c06bd5 2098
fead2b86 2099struct memcg_stock_pcp {
56751146 2100 local_lock_t stock_lock;
fead2b86
MH
2101 struct mem_cgroup *cached; /* this never be root cgroup */
2102 unsigned int nr_pages;
2103
bf4f0599
RG
2104#ifdef CONFIG_MEMCG_KMEM
2105 struct obj_cgroup *cached_objcg;
68ac5b3c 2106 struct pglist_data *cached_pgdat;
bf4f0599 2107 unsigned int nr_bytes;
68ac5b3c
WL
2108 int nr_slab_reclaimable_b;
2109 int nr_slab_unreclaimable_b;
bf4f0599
RG
2110#endif
2111
cdec2e42 2112 struct work_struct work;
26fe6168 2113 unsigned long flags;
a0db00fc 2114#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2115};
56751146
SAS
2116static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2117 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2118};
9f50fad6 2119static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2120
bf4f0599 2121#ifdef CONFIG_MEMCG_KMEM
56751146 2122static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2123static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2124 struct mem_cgroup *root_memcg);
a8c49af3 2125static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2126
2127#else
56751146 2128static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2129{
56751146 2130 return NULL;
bf4f0599
RG
2131}
2132static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2133 struct mem_cgroup *root_memcg)
2134{
2135 return false;
2136}
a8c49af3
YA
2137static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2138{
2139}
bf4f0599
RG
2140#endif
2141
a0956d54
SS
2142/**
2143 * consume_stock: Try to consume stocked charge on this cpu.
2144 * @memcg: memcg to consume from.
2145 * @nr_pages: how many pages to charge.
2146 *
2147 * The charges will only happen if @memcg matches the current cpu's memcg
2148 * stock, and at least @nr_pages are available in that stock. Failure to
2149 * service an allocation will refill the stock.
2150 *
2151 * returns true if successful, false otherwise.
cdec2e42 2152 */
a0956d54 2153static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2154{
2155 struct memcg_stock_pcp *stock;
db2ba40c 2156 unsigned long flags;
3e32cb2e 2157 bool ret = false;
cdec2e42 2158
a983b5eb 2159 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2160 return ret;
a0956d54 2161
56751146 2162 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2163
2164 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2165 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2166 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2167 ret = true;
2168 }
db2ba40c 2169
56751146 2170 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2171
cdec2e42
KH
2172 return ret;
2173}
2174
2175/*
3e32cb2e 2176 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2177 */
2178static void drain_stock(struct memcg_stock_pcp *stock)
2179{
2180 struct mem_cgroup *old = stock->cached;
2181
1a3e1f40
JW
2182 if (!old)
2183 return;
2184
11c9ea4e 2185 if (stock->nr_pages) {
3e32cb2e 2186 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2187 if (do_memsw_account())
3e32cb2e 2188 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2189 stock->nr_pages = 0;
cdec2e42 2190 }
1a3e1f40
JW
2191
2192 css_put(&old->css);
cdec2e42 2193 stock->cached = NULL;
cdec2e42
KH
2194}
2195
cdec2e42
KH
2196static void drain_local_stock(struct work_struct *dummy)
2197{
db2ba40c 2198 struct memcg_stock_pcp *stock;
56751146 2199 struct obj_cgroup *old = NULL;
db2ba40c
JW
2200 unsigned long flags;
2201
72f0184c 2202 /*
5c49cf9a
MH
2203 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2204 * drain_stock races is that we always operate on local CPU stock
2205 * here with IRQ disabled
72f0184c 2206 */
56751146 2207 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2208
2209 stock = this_cpu_ptr(&memcg_stock);
56751146 2210 old = drain_obj_stock(stock);
cdec2e42 2211 drain_stock(stock);
26fe6168 2212 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2213
56751146
SAS
2214 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2215 if (old)
2216 obj_cgroup_put(old);
cdec2e42
KH
2217}
2218
2219/*
3e32cb2e 2220 * Cache charges(val) to local per_cpu area.
320cc51d 2221 * This will be consumed by consume_stock() function, later.
cdec2e42 2222 */
af9a3b69 2223static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2224{
db2ba40c 2225 struct memcg_stock_pcp *stock;
cdec2e42 2226
db2ba40c 2227 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2228 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2229 drain_stock(stock);
1a3e1f40 2230 css_get(&memcg->css);
c0ff4b85 2231 stock->cached = memcg;
cdec2e42 2232 }
11c9ea4e 2233 stock->nr_pages += nr_pages;
db2ba40c 2234
a983b5eb 2235 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2236 drain_stock(stock);
af9a3b69
JW
2237}
2238
2239static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2240{
2241 unsigned long flags;
475d0487 2242
56751146 2243 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2244 __refill_stock(memcg, nr_pages);
56751146 2245 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2246}
2247
2248/*
c0ff4b85 2249 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2250 * of the hierarchy under it.
cdec2e42 2251 */
6d3d6aa2 2252static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2253{
26fe6168 2254 int cpu, curcpu;
d38144b7 2255
6d3d6aa2
JW
2256 /* If someone's already draining, avoid adding running more workers. */
2257 if (!mutex_trylock(&percpu_charge_mutex))
2258 return;
72f0184c
MH
2259 /*
2260 * Notify other cpus that system-wide "drain" is running
2261 * We do not care about races with the cpu hotplug because cpu down
2262 * as well as workers from this path always operate on the local
2263 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2264 */
0790ed62
SAS
2265 migrate_disable();
2266 curcpu = smp_processor_id();
cdec2e42
KH
2267 for_each_online_cpu(cpu) {
2268 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2269 struct mem_cgroup *memcg;
e1a366be 2270 bool flush = false;
26fe6168 2271
e1a366be 2272 rcu_read_lock();
c0ff4b85 2273 memcg = stock->cached;
e1a366be
RG
2274 if (memcg && stock->nr_pages &&
2275 mem_cgroup_is_descendant(memcg, root_memcg))
2276 flush = true;
27fb0956 2277 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2278 flush = true;
e1a366be
RG
2279 rcu_read_unlock();
2280
2281 if (flush &&
2282 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2283 if (cpu == curcpu)
2284 drain_local_stock(&stock->work);
2285 else
2286 schedule_work_on(cpu, &stock->work);
2287 }
cdec2e42 2288 }
0790ed62 2289 migrate_enable();
9f50fad6 2290 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2291}
2292
2cd21c89
JW
2293static int memcg_hotplug_cpu_dead(unsigned int cpu)
2294{
2295 struct memcg_stock_pcp *stock;
a3d4c05a 2296
2cd21c89
JW
2297 stock = &per_cpu(memcg_stock, cpu);
2298 drain_stock(stock);
a3d4c05a 2299
308167fc 2300 return 0;
cdec2e42
KH
2301}
2302
b3ff9291
CD
2303static unsigned long reclaim_high(struct mem_cgroup *memcg,
2304 unsigned int nr_pages,
2305 gfp_t gfp_mask)
f7e1cb6e 2306{
b3ff9291
CD
2307 unsigned long nr_reclaimed = 0;
2308
f7e1cb6e 2309 do {
e22c6ed9
JW
2310 unsigned long pflags;
2311
d1663a90
JK
2312 if (page_counter_read(&memcg->memory) <=
2313 READ_ONCE(memcg->memory.high))
f7e1cb6e 2314 continue;
e22c6ed9 2315
e27be240 2316 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2317
2318 psi_memstall_enter(&pflags);
b3ff9291
CD
2319 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2320 gfp_mask, true);
e22c6ed9 2321 psi_memstall_leave(&pflags);
4bf17307
CD
2322 } while ((memcg = parent_mem_cgroup(memcg)) &&
2323 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2324
2325 return nr_reclaimed;
f7e1cb6e
JW
2326}
2327
2328static void high_work_func(struct work_struct *work)
2329{
2330 struct mem_cgroup *memcg;
2331
2332 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2333 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2334}
2335
0e4b01df
CD
2336/*
2337 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2338 * enough to still cause a significant slowdown in most cases, while still
2339 * allowing diagnostics and tracing to proceed without becoming stuck.
2340 */
2341#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2342
2343/*
2344 * When calculating the delay, we use these either side of the exponentiation to
2345 * maintain precision and scale to a reasonable number of jiffies (see the table
2346 * below.
2347 *
2348 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2349 * overage ratio to a delay.
ac5ddd0f 2350 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2351 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2352 * to produce a reasonable delay curve.
2353 *
2354 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2355 * reasonable delay curve compared to precision-adjusted overage, not
2356 * penalising heavily at first, but still making sure that growth beyond the
2357 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2358 * example, with a high of 100 megabytes:
2359 *
2360 * +-------+------------------------+
2361 * | usage | time to allocate in ms |
2362 * +-------+------------------------+
2363 * | 100M | 0 |
2364 * | 101M | 6 |
2365 * | 102M | 25 |
2366 * | 103M | 57 |
2367 * | 104M | 102 |
2368 * | 105M | 159 |
2369 * | 106M | 230 |
2370 * | 107M | 313 |
2371 * | 108M | 409 |
2372 * | 109M | 518 |
2373 * | 110M | 639 |
2374 * | 111M | 774 |
2375 * | 112M | 921 |
2376 * | 113M | 1081 |
2377 * | 114M | 1254 |
2378 * | 115M | 1439 |
2379 * | 116M | 1638 |
2380 * | 117M | 1849 |
2381 * | 118M | 2000 |
2382 * | 119M | 2000 |
2383 * | 120M | 2000 |
2384 * +-------+------------------------+
2385 */
2386 #define MEMCG_DELAY_PRECISION_SHIFT 20
2387 #define MEMCG_DELAY_SCALING_SHIFT 14
2388
8a5dbc65 2389static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2390{
8a5dbc65 2391 u64 overage;
b23afb93 2392
8a5dbc65
JK
2393 if (usage <= high)
2394 return 0;
e26733e0 2395
8a5dbc65
JK
2396 /*
2397 * Prevent division by 0 in overage calculation by acting as if
2398 * it was a threshold of 1 page
2399 */
2400 high = max(high, 1UL);
9b8b1754 2401
8a5dbc65
JK
2402 overage = usage - high;
2403 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2404 return div64_u64(overage, high);
2405}
e26733e0 2406
8a5dbc65
JK
2407static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2408{
2409 u64 overage, max_overage = 0;
e26733e0 2410
8a5dbc65
JK
2411 do {
2412 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2413 READ_ONCE(memcg->memory.high));
8a5dbc65 2414 max_overage = max(overage, max_overage);
e26733e0
CD
2415 } while ((memcg = parent_mem_cgroup(memcg)) &&
2416 !mem_cgroup_is_root(memcg));
2417
8a5dbc65
JK
2418 return max_overage;
2419}
2420
4b82ab4f
JK
2421static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2422{
2423 u64 overage, max_overage = 0;
2424
2425 do {
2426 overage = calculate_overage(page_counter_read(&memcg->swap),
2427 READ_ONCE(memcg->swap.high));
2428 if (overage)
2429 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2430 max_overage = max(overage, max_overage);
2431 } while ((memcg = parent_mem_cgroup(memcg)) &&
2432 !mem_cgroup_is_root(memcg));
2433
2434 return max_overage;
2435}
2436
8a5dbc65
JK
2437/*
2438 * Get the number of jiffies that we should penalise a mischievous cgroup which
2439 * is exceeding its memory.high by checking both it and its ancestors.
2440 */
2441static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2442 unsigned int nr_pages,
2443 u64 max_overage)
2444{
2445 unsigned long penalty_jiffies;
2446
e26733e0
CD
2447 if (!max_overage)
2448 return 0;
0e4b01df
CD
2449
2450 /*
0e4b01df
CD
2451 * We use overage compared to memory.high to calculate the number of
2452 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2453 * fairly lenient on small overages, and increasingly harsh when the
2454 * memcg in question makes it clear that it has no intention of stopping
2455 * its crazy behaviour, so we exponentially increase the delay based on
2456 * overage amount.
2457 */
e26733e0
CD
2458 penalty_jiffies = max_overage * max_overage * HZ;
2459 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2460 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2461
2462 /*
2463 * Factor in the task's own contribution to the overage, such that four
2464 * N-sized allocations are throttled approximately the same as one
2465 * 4N-sized allocation.
2466 *
2467 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2468 * larger the current charge patch is than that.
2469 */
ff144e69 2470 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2471}
2472
2473/*
2474 * Scheduled by try_charge() to be executed from the userland return path
2475 * and reclaims memory over the high limit.
2476 */
2477void mem_cgroup_handle_over_high(void)
2478{
2479 unsigned long penalty_jiffies;
2480 unsigned long pflags;
b3ff9291 2481 unsigned long nr_reclaimed;
e26733e0 2482 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2483 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2484 struct mem_cgroup *memcg;
b3ff9291 2485 bool in_retry = false;
e26733e0
CD
2486
2487 if (likely(!nr_pages))
2488 return;
2489
2490 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2491 current->memcg_nr_pages_over_high = 0;
2492
b3ff9291
CD
2493retry_reclaim:
2494 /*
2495 * The allocating task should reclaim at least the batch size, but for
2496 * subsequent retries we only want to do what's necessary to prevent oom
2497 * or breaching resource isolation.
2498 *
2499 * This is distinct from memory.max or page allocator behaviour because
2500 * memory.high is currently batched, whereas memory.max and the page
2501 * allocator run every time an allocation is made.
2502 */
2503 nr_reclaimed = reclaim_high(memcg,
2504 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2505 GFP_KERNEL);
2506
e26733e0
CD
2507 /*
2508 * memory.high is breached and reclaim is unable to keep up. Throttle
2509 * allocators proactively to slow down excessive growth.
2510 */
8a5dbc65
JK
2511 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2512 mem_find_max_overage(memcg));
0e4b01df 2513
4b82ab4f
JK
2514 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2515 swap_find_max_overage(memcg));
2516
ff144e69
JK
2517 /*
2518 * Clamp the max delay per usermode return so as to still keep the
2519 * application moving forwards and also permit diagnostics, albeit
2520 * extremely slowly.
2521 */
2522 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2523
0e4b01df
CD
2524 /*
2525 * Don't sleep if the amount of jiffies this memcg owes us is so low
2526 * that it's not even worth doing, in an attempt to be nice to those who
2527 * go only a small amount over their memory.high value and maybe haven't
2528 * been aggressively reclaimed enough yet.
2529 */
2530 if (penalty_jiffies <= HZ / 100)
2531 goto out;
2532
b3ff9291
CD
2533 /*
2534 * If reclaim is making forward progress but we're still over
2535 * memory.high, we want to encourage that rather than doing allocator
2536 * throttling.
2537 */
2538 if (nr_reclaimed || nr_retries--) {
2539 in_retry = true;
2540 goto retry_reclaim;
2541 }
2542
0e4b01df
CD
2543 /*
2544 * If we exit early, we're guaranteed to die (since
2545 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2546 * need to account for any ill-begotten jiffies to pay them off later.
2547 */
2548 psi_memstall_enter(&pflags);
2549 schedule_timeout_killable(penalty_jiffies);
2550 psi_memstall_leave(&pflags);
2551
2552out:
2553 css_put(&memcg->css);
b23afb93
TH
2554}
2555
c5c8b16b
MS
2556static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2557 unsigned int nr_pages)
8a9f3ccd 2558{
a983b5eb 2559 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2560 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2561 struct mem_cgroup *mem_over_limit;
3e32cb2e 2562 struct page_counter *counter;
6539cc05 2563 unsigned long nr_reclaimed;
a4ebf1b6 2564 bool passed_oom = false;
b70a2a21
JW
2565 bool may_swap = true;
2566 bool drained = false;
e22c6ed9 2567 unsigned long pflags;
a636b327 2568
6539cc05 2569retry:
b6b6cc72 2570 if (consume_stock(memcg, nr_pages))
10d53c74 2571 return 0;
8a9f3ccd 2572
7941d214 2573 if (!do_memsw_account() ||
6071ca52
JW
2574 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2575 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2576 goto done_restock;
7941d214 2577 if (do_memsw_account())
3e32cb2e
JW
2578 page_counter_uncharge(&memcg->memsw, batch);
2579 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2580 } else {
3e32cb2e 2581 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2582 may_swap = false;
3fbe7244 2583 }
7a81b88c 2584
6539cc05
JW
2585 if (batch > nr_pages) {
2586 batch = nr_pages;
2587 goto retry;
2588 }
6d61ef40 2589
89a28483
JW
2590 /*
2591 * Prevent unbounded recursion when reclaim operations need to
2592 * allocate memory. This might exceed the limits temporarily,
2593 * but we prefer facilitating memory reclaim and getting back
2594 * under the limit over triggering OOM kills in these cases.
2595 */
2596 if (unlikely(current->flags & PF_MEMALLOC))
2597 goto force;
2598
06b078fc
JW
2599 if (unlikely(task_in_memcg_oom(current)))
2600 goto nomem;
2601
d0164adc 2602 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2603 goto nomem;
4b534334 2604
e27be240 2605 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2606
e22c6ed9 2607 psi_memstall_enter(&pflags);
b70a2a21
JW
2608 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2609 gfp_mask, may_swap);
e22c6ed9 2610 psi_memstall_leave(&pflags);
6539cc05 2611
61e02c74 2612 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2613 goto retry;
28c34c29 2614
b70a2a21 2615 if (!drained) {
6d3d6aa2 2616 drain_all_stock(mem_over_limit);
b70a2a21
JW
2617 drained = true;
2618 goto retry;
2619 }
2620
28c34c29
JW
2621 if (gfp_mask & __GFP_NORETRY)
2622 goto nomem;
6539cc05
JW
2623 /*
2624 * Even though the limit is exceeded at this point, reclaim
2625 * may have been able to free some pages. Retry the charge
2626 * before killing the task.
2627 *
2628 * Only for regular pages, though: huge pages are rather
2629 * unlikely to succeed so close to the limit, and we fall back
2630 * to regular pages anyway in case of failure.
2631 */
61e02c74 2632 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2633 goto retry;
2634 /*
2635 * At task move, charge accounts can be doubly counted. So, it's
2636 * better to wait until the end of task_move if something is going on.
2637 */
2638 if (mem_cgroup_wait_acct_move(mem_over_limit))
2639 goto retry;
2640
9b130619
JW
2641 if (nr_retries--)
2642 goto retry;
2643
38d38493 2644 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2645 goto nomem;
2646
a4ebf1b6
VA
2647 /* Avoid endless loop for tasks bypassed by the oom killer */
2648 if (passed_oom && task_is_dying())
2649 goto nomem;
6539cc05 2650
29ef680a
MH
2651 /*
2652 * keep retrying as long as the memcg oom killer is able to make
2653 * a forward progress or bypass the charge if the oom killer
2654 * couldn't make any progress.
2655 */
becdf89d
SB
2656 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2657 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2658 passed_oom = true;
d977aa93 2659 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2660 goto retry;
29ef680a 2661 }
7a81b88c 2662nomem:
1461e8c2
SB
2663 /*
2664 * Memcg doesn't have a dedicated reserve for atomic
2665 * allocations. But like the global atomic pool, we need to
2666 * put the burden of reclaim on regular allocation requests
2667 * and let these go through as privileged allocations.
2668 */
2669 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2670 return -ENOMEM;
10d53c74
TH
2671force:
2672 /*
2673 * The allocation either can't fail or will lead to more memory
2674 * being freed very soon. Allow memory usage go over the limit
2675 * temporarily by force charging it.
2676 */
2677 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2678 if (do_memsw_account())
10d53c74 2679 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2680
2681 return 0;
6539cc05
JW
2682
2683done_restock:
2684 if (batch > nr_pages)
2685 refill_stock(memcg, batch - nr_pages);
b23afb93 2686
241994ed 2687 /*
b23afb93
TH
2688 * If the hierarchy is above the normal consumption range, schedule
2689 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2690 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2691 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2692 * not recorded as it most likely matches current's and won't
2693 * change in the meantime. As high limit is checked again before
2694 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2695 */
2696 do {
4b82ab4f
JK
2697 bool mem_high, swap_high;
2698
2699 mem_high = page_counter_read(&memcg->memory) >
2700 READ_ONCE(memcg->memory.high);
2701 swap_high = page_counter_read(&memcg->swap) >
2702 READ_ONCE(memcg->swap.high);
2703
2704 /* Don't bother a random interrupted task */
086f694a 2705 if (!in_task()) {
4b82ab4f 2706 if (mem_high) {
f7e1cb6e
JW
2707 schedule_work(&memcg->high_work);
2708 break;
2709 }
4b82ab4f
JK
2710 continue;
2711 }
2712
2713 if (mem_high || swap_high) {
2714 /*
2715 * The allocating tasks in this cgroup will need to do
2716 * reclaim or be throttled to prevent further growth
2717 * of the memory or swap footprints.
2718 *
2719 * Target some best-effort fairness between the tasks,
2720 * and distribute reclaim work and delay penalties
2721 * based on how much each task is actually allocating.
2722 */
9516a18a 2723 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2724 set_notify_resume(current);
2725 break;
2726 }
241994ed 2727 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2728
c9afe31e
SB
2729 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2730 !(current->flags & PF_MEMALLOC) &&
2731 gfpflags_allow_blocking(gfp_mask)) {
2732 mem_cgroup_handle_over_high();
2733 }
10d53c74 2734 return 0;
7a81b88c 2735}
8a9f3ccd 2736
c5c8b16b
MS
2737static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2738 unsigned int nr_pages)
2739{
2740 if (mem_cgroup_is_root(memcg))
2741 return 0;
2742
2743 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2744}
2745
58056f77 2746static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2747{
ce00a967
JW
2748 if (mem_cgroup_is_root(memcg))
2749 return;
2750
3e32cb2e 2751 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2752 if (do_memsw_account())
3e32cb2e 2753 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2754}
2755
118f2875 2756static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2757{
118f2875 2758 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2759 /*
a5eb011a 2760 * Any of the following ensures page's memcg stability:
0a31bc97 2761 *
a0b5b414
JW
2762 * - the page lock
2763 * - LRU isolation
2764 * - lock_page_memcg()
2765 * - exclusive reference
0a31bc97 2766 */
118f2875 2767 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2768}
66e1707b 2769
84c07d11 2770#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2771/*
2772 * The allocated objcg pointers array is not accounted directly.
2773 * Moreover, it should not come from DMA buffer and is not readily
2774 * reclaimable. So those GFP bits should be masked off.
2775 */
2776#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2777
a7ebf564
WL
2778/*
2779 * mod_objcg_mlstate() may be called with irq enabled, so
2780 * mod_memcg_lruvec_state() should be used.
2781 */
2782static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2783 struct pglist_data *pgdat,
2784 enum node_stat_item idx, int nr)
2785{
2786 struct mem_cgroup *memcg;
2787 struct lruvec *lruvec;
2788
2789 rcu_read_lock();
2790 memcg = obj_cgroup_memcg(objcg);
2791 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2792 mod_memcg_lruvec_state(lruvec, idx, nr);
2793 rcu_read_unlock();
2794}
2795
4b5f8d9a
VB
2796int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2797 gfp_t gfp, bool new_slab)
10befea9 2798{
4b5f8d9a 2799 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2800 unsigned long memcg_data;
10befea9
RG
2801 void *vec;
2802
41eb5df1 2803 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2804 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2805 slab_nid(slab));
10befea9
RG
2806 if (!vec)
2807 return -ENOMEM;
2808
2e9bd483 2809 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2810 if (new_slab) {
2e9bd483 2811 /*
4b5f8d9a
VB
2812 * If the slab is brand new and nobody can yet access its
2813 * memcg_data, no synchronization is required and memcg_data can
2814 * be simply assigned.
2e9bd483 2815 */
4b5f8d9a
VB
2816 slab->memcg_data = memcg_data;
2817 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2818 /*
4b5f8d9a
VB
2819 * If the slab is already in use, somebody can allocate and
2820 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2821 * objcg vector should be reused.
2822 */
10befea9 2823 kfree(vec);
2e9bd483
RG
2824 return 0;
2825 }
10befea9 2826
2e9bd483 2827 kmemleak_not_leak(vec);
10befea9
RG
2828 return 0;
2829}
2830
8380ce47
RG
2831/*
2832 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2833 *
bcfe06bf
RG
2834 * A passed kernel object can be a slab object or a generic kernel page, so
2835 * different mechanisms for getting the memory cgroup pointer should be used.
2836 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2837 * can not know for sure how the kernel object is implemented.
2838 * mem_cgroup_from_obj() can be safely used in such cases.
2839 *
8380ce47
RG
2840 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2841 * cgroup_mutex, etc.
2842 */
2843struct mem_cgroup *mem_cgroup_from_obj(void *p)
2844{
4b5f8d9a 2845 struct folio *folio;
8380ce47
RG
2846
2847 if (mem_cgroup_disabled())
2848 return NULL;
2849
4b5f8d9a 2850 folio = virt_to_folio(p);
8380ce47
RG
2851
2852 /*
9855609b
RG
2853 * Slab objects are accounted individually, not per-page.
2854 * Memcg membership data for each individual object is saved in
4b5f8d9a 2855 * slab->memcg_data.
8380ce47 2856 */
4b5f8d9a
VB
2857 if (folio_test_slab(folio)) {
2858 struct obj_cgroup **objcgs;
2859 struct slab *slab;
9855609b
RG
2860 unsigned int off;
2861
4b5f8d9a
VB
2862 slab = folio_slab(folio);
2863 objcgs = slab_objcgs(slab);
2864 if (!objcgs)
2865 return NULL;
2866
2867 off = obj_to_index(slab->slab_cache, slab, p);
2868 if (objcgs[off])
2869 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2870
2871 return NULL;
9855609b 2872 }
8380ce47 2873
bcfe06bf 2874 /*
4b5f8d9a
VB
2875 * page_memcg_check() is used here, because in theory we can encounter
2876 * a folio where the slab flag has been cleared already, but
2877 * slab->memcg_data has not been freed yet
bcfe06bf
RG
2878 * page_memcg_check(page) will guarantee that a proper memory
2879 * cgroup pointer or NULL will be returned.
2880 */
4b5f8d9a 2881 return page_memcg_check(folio_page(folio, 0));
8380ce47
RG
2882}
2883
bf4f0599
RG
2884__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2885{
2886 struct obj_cgroup *objcg = NULL;
2887 struct mem_cgroup *memcg;
2888
279c3393
RG
2889 if (memcg_kmem_bypass())
2890 return NULL;
2891
bf4f0599 2892 rcu_read_lock();
37d5985c
RG
2893 if (unlikely(active_memcg()))
2894 memcg = active_memcg();
bf4f0599
RG
2895 else
2896 memcg = mem_cgroup_from_task(current);
2897
2898 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2899 objcg = rcu_dereference(memcg->objcg);
2900 if (objcg && obj_cgroup_tryget(objcg))
2901 break;
2f7659a3 2902 objcg = NULL;
bf4f0599
RG
2903 }
2904 rcu_read_unlock();
2905
2906 return objcg;
2907}
2908
a8c49af3
YA
2909static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2910{
2911 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2912 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2913 if (nr_pages > 0)
2914 page_counter_charge(&memcg->kmem, nr_pages);
2915 else
2916 page_counter_uncharge(&memcg->kmem, -nr_pages);
2917 }
2918}
2919
2920
f1286fae
MS
2921/*
2922 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2923 * @objcg: object cgroup to uncharge
2924 * @nr_pages: number of pages to uncharge
2925 */
e74d2259
MS
2926static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2927 unsigned int nr_pages)
2928{
2929 struct mem_cgroup *memcg;
2930
2931 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2932
a8c49af3 2933 memcg_account_kmem(memcg, -nr_pages);
f1286fae 2934 refill_stock(memcg, nr_pages);
e74d2259 2935
e74d2259 2936 css_put(&memcg->css);
e74d2259
MS
2937}
2938
f1286fae
MS
2939/*
2940 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2941 * @objcg: object cgroup to charge
45264778 2942 * @gfp: reclaim mode
92d0510c 2943 * @nr_pages: number of pages to charge
45264778
VD
2944 *
2945 * Returns 0 on success, an error code on failure.
2946 */
f1286fae
MS
2947static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2948 unsigned int nr_pages)
7ae1e1d0 2949{
f1286fae 2950 struct mem_cgroup *memcg;
7ae1e1d0
GC
2951 int ret;
2952
f1286fae
MS
2953 memcg = get_mem_cgroup_from_objcg(objcg);
2954
c5c8b16b 2955 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 2956 if (ret)
f1286fae 2957 goto out;
52c29b04 2958
a8c49af3 2959 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
2960out:
2961 css_put(&memcg->css);
4b13f64d 2962
f1286fae 2963 return ret;
4b13f64d
RG
2964}
2965
45264778 2966/**
f4b00eab 2967 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2968 * @page: page to charge
2969 * @gfp: reclaim mode
2970 * @order: allocation order
2971 *
2972 * Returns 0 on success, an error code on failure.
2973 */
f4b00eab 2974int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2975{
b4e0b68f 2976 struct obj_cgroup *objcg;
fcff7d7e 2977 int ret = 0;
7ae1e1d0 2978
b4e0b68f
MS
2979 objcg = get_obj_cgroup_from_current();
2980 if (objcg) {
2981 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 2982 if (!ret) {
b4e0b68f 2983 page->memcg_data = (unsigned long)objcg |
18b2db3b 2984 MEMCG_DATA_KMEM;
1a3e1f40 2985 return 0;
4d96ba35 2986 }
b4e0b68f 2987 obj_cgroup_put(objcg);
c4159a75 2988 }
d05e83a6 2989 return ret;
7ae1e1d0 2990}
49a18eae 2991
45264778 2992/**
f4b00eab 2993 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2994 * @page: page to uncharge
2995 * @order: allocation order
2996 */
f4b00eab 2997void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2998{
1b7e4464 2999 struct folio *folio = page_folio(page);
b4e0b68f 3000 struct obj_cgroup *objcg;
f3ccb2c4 3001 unsigned int nr_pages = 1 << order;
7ae1e1d0 3002
1b7e4464 3003 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3004 return;
3005
1b7e4464 3006 objcg = __folio_objcg(folio);
b4e0b68f 3007 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3008 folio->memcg_data = 0;
b4e0b68f 3009 obj_cgroup_put(objcg);
60d3fd32 3010}
bf4f0599 3011
68ac5b3c
WL
3012void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3013 enum node_stat_item idx, int nr)
3014{
fead2b86 3015 struct memcg_stock_pcp *stock;
56751146 3016 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3017 unsigned long flags;
3018 int *bytes;
3019
56751146 3020 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3021 stock = this_cpu_ptr(&memcg_stock);
3022
68ac5b3c
WL
3023 /*
3024 * Save vmstat data in stock and skip vmstat array update unless
3025 * accumulating over a page of vmstat data or when pgdat or idx
3026 * changes.
3027 */
3028 if (stock->cached_objcg != objcg) {
56751146 3029 old = drain_obj_stock(stock);
68ac5b3c
WL
3030 obj_cgroup_get(objcg);
3031 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3032 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3033 stock->cached_objcg = objcg;
3034 stock->cached_pgdat = pgdat;
3035 } else if (stock->cached_pgdat != pgdat) {
3036 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3037 struct pglist_data *oldpg = stock->cached_pgdat;
3038
68ac5b3c 3039 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3040 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3041 stock->nr_slab_reclaimable_b);
3042 stock->nr_slab_reclaimable_b = 0;
3043 }
3044 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3045 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3046 stock->nr_slab_unreclaimable_b);
3047 stock->nr_slab_unreclaimable_b = 0;
3048 }
3049 stock->cached_pgdat = pgdat;
3050 }
3051
3052 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3053 : &stock->nr_slab_unreclaimable_b;
3054 /*
3055 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3056 * cached locally at least once before pushing it out.
3057 */
3058 if (!*bytes) {
3059 *bytes = nr;
3060 nr = 0;
3061 } else {
3062 *bytes += nr;
3063 if (abs(*bytes) > PAGE_SIZE) {
3064 nr = *bytes;
3065 *bytes = 0;
3066 } else {
3067 nr = 0;
3068 }
3069 }
3070 if (nr)
3071 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3072
56751146
SAS
3073 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3074 if (old)
3075 obj_cgroup_put(old);
68ac5b3c
WL
3076}
3077
bf4f0599
RG
3078static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3079{
fead2b86 3080 struct memcg_stock_pcp *stock;
bf4f0599
RG
3081 unsigned long flags;
3082 bool ret = false;
3083
56751146 3084 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3085
3086 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3087 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3088 stock->nr_bytes -= nr_bytes;
3089 ret = true;
3090 }
3091
56751146 3092 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3093
3094 return ret;
3095}
3096
56751146 3097static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3098{
3099 struct obj_cgroup *old = stock->cached_objcg;
3100
3101 if (!old)
56751146 3102 return NULL;
bf4f0599
RG
3103
3104 if (stock->nr_bytes) {
3105 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3106 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3107
af9a3b69
JW
3108 if (nr_pages) {
3109 struct mem_cgroup *memcg;
3110
3111 memcg = get_mem_cgroup_from_objcg(old);
3112
3113 memcg_account_kmem(memcg, -nr_pages);
3114 __refill_stock(memcg, nr_pages);
3115
3116 css_put(&memcg->css);
3117 }
bf4f0599
RG
3118
3119 /*
3120 * The leftover is flushed to the centralized per-memcg value.
3121 * On the next attempt to refill obj stock it will be moved
3122 * to a per-cpu stock (probably, on an other CPU), see
3123 * refill_obj_stock().
3124 *
3125 * How often it's flushed is a trade-off between the memory
3126 * limit enforcement accuracy and potential CPU contention,
3127 * so it might be changed in the future.
3128 */
3129 atomic_add(nr_bytes, &old->nr_charged_bytes);
3130 stock->nr_bytes = 0;
3131 }
3132
68ac5b3c
WL
3133 /*
3134 * Flush the vmstat data in current stock
3135 */
3136 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3137 if (stock->nr_slab_reclaimable_b) {
3138 mod_objcg_mlstate(old, stock->cached_pgdat,
3139 NR_SLAB_RECLAIMABLE_B,
3140 stock->nr_slab_reclaimable_b);
3141 stock->nr_slab_reclaimable_b = 0;
3142 }
3143 if (stock->nr_slab_unreclaimable_b) {
3144 mod_objcg_mlstate(old, stock->cached_pgdat,
3145 NR_SLAB_UNRECLAIMABLE_B,
3146 stock->nr_slab_unreclaimable_b);
3147 stock->nr_slab_unreclaimable_b = 0;
3148 }
3149 stock->cached_pgdat = NULL;
3150 }
3151
bf4f0599 3152 stock->cached_objcg = NULL;
56751146
SAS
3153 /*
3154 * The `old' objects needs to be released by the caller via
3155 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3156 */
3157 return old;
bf4f0599
RG
3158}
3159
3160static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3161 struct mem_cgroup *root_memcg)
3162{
3163 struct mem_cgroup *memcg;
3164
fead2b86
MH
3165 if (stock->cached_objcg) {
3166 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3167 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3168 return true;
3169 }
3170
3171 return false;
3172}
3173
5387c904
WL
3174static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3175 bool allow_uncharge)
bf4f0599 3176{
fead2b86 3177 struct memcg_stock_pcp *stock;
56751146 3178 struct obj_cgroup *old = NULL;
bf4f0599 3179 unsigned long flags;
5387c904 3180 unsigned int nr_pages = 0;
bf4f0599 3181
56751146 3182 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3183
3184 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3185 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3186 old = drain_obj_stock(stock);
bf4f0599
RG
3187 obj_cgroup_get(objcg);
3188 stock->cached_objcg = objcg;
5387c904
WL
3189 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3190 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3191 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3192 }
3193 stock->nr_bytes += nr_bytes;
3194
5387c904
WL
3195 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3196 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3197 stock->nr_bytes &= (PAGE_SIZE - 1);
3198 }
bf4f0599 3199
56751146
SAS
3200 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3201 if (old)
3202 obj_cgroup_put(old);
5387c904
WL
3203
3204 if (nr_pages)
3205 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3206}
3207
3208int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3209{
bf4f0599
RG
3210 unsigned int nr_pages, nr_bytes;
3211 int ret;
3212
3213 if (consume_obj_stock(objcg, size))
3214 return 0;
3215
3216 /*
5387c904 3217 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3218 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3219 * flushing objcg->nr_charged_bytes requires two atomic
3220 * operations, and objcg->nr_charged_bytes can't be big.
3221 * The shared objcg->nr_charged_bytes can also become a
3222 * performance bottleneck if all tasks of the same memcg are
3223 * trying to update it. So it's better to ignore it and try
3224 * grab some new pages. The stock's nr_bytes will be flushed to
3225 * objcg->nr_charged_bytes later on when objcg changes.
3226 *
3227 * The stock's nr_bytes may contain enough pre-charged bytes
3228 * to allow one less page from being charged, but we can't rely
3229 * on the pre-charged bytes not being changed outside of
3230 * consume_obj_stock() or refill_obj_stock(). So ignore those
3231 * pre-charged bytes as well when charging pages. To avoid a
3232 * page uncharge right after a page charge, we set the
3233 * allow_uncharge flag to false when calling refill_obj_stock()
3234 * to temporarily allow the pre-charged bytes to exceed the page
3235 * size limit. The maximum reachable value of the pre-charged
3236 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3237 * race.
bf4f0599 3238 */
bf4f0599
RG
3239 nr_pages = size >> PAGE_SHIFT;
3240 nr_bytes = size & (PAGE_SIZE - 1);
3241
3242 if (nr_bytes)
3243 nr_pages += 1;
3244
e74d2259 3245 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3246 if (!ret && nr_bytes)
5387c904 3247 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3248
bf4f0599
RG
3249 return ret;
3250}
3251
3252void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3253{
5387c904 3254 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3255}
3256
84c07d11 3257#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3258
ca3e0214 3259/*
be6c8982 3260 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3261 */
be6c8982 3262void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3263{
1b7e4464
MWO
3264 struct folio *folio = page_folio(head);
3265 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3266 int i;
ca3e0214 3267
be6c8982 3268 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3269 return;
b070e65c 3270
be6c8982 3271 for (i = 1; i < nr; i++)
1b7e4464 3272 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3273
1b7e4464
MWO
3274 if (folio_memcg_kmem(folio))
3275 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3276 else
3277 css_get_many(&memcg->css, nr - 1);
ca3e0214 3278}
ca3e0214 3279
c255a458 3280#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3281/**
3282 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3283 * @entry: swap entry to be moved
3284 * @from: mem_cgroup which the entry is moved from
3285 * @to: mem_cgroup which the entry is moved to
3286 *
3287 * It succeeds only when the swap_cgroup's record for this entry is the same
3288 * as the mem_cgroup's id of @from.
3289 *
3290 * Returns 0 on success, -EINVAL on failure.
3291 *
3e32cb2e 3292 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3293 * both res and memsw, and called css_get().
3294 */
3295static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3296 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3297{
3298 unsigned short old_id, new_id;
3299
34c00c31
LZ
3300 old_id = mem_cgroup_id(from);
3301 new_id = mem_cgroup_id(to);
02491447
DN
3302
3303 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3304 mod_memcg_state(from, MEMCG_SWAP, -1);
3305 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3306 return 0;
3307 }
3308 return -EINVAL;
3309}
3310#else
3311static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3312 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3313{
3314 return -EINVAL;
3315}
8c7c6e34 3316#endif
d13d1443 3317
bbec2e15 3318static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3319
bbec2e15
RG
3320static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3321 unsigned long max, bool memsw)
628f4235 3322{
3e32cb2e 3323 bool enlarge = false;
bb4a7ea2 3324 bool drained = false;
3e32cb2e 3325 int ret;
c054a78c
YZ
3326 bool limits_invariant;
3327 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3328
3e32cb2e 3329 do {
628f4235
KH
3330 if (signal_pending(current)) {
3331 ret = -EINTR;
3332 break;
3333 }
3e32cb2e 3334
bbec2e15 3335 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3336 /*
3337 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3338 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3339 */
15b42562 3340 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3341 max <= memcg->memsw.max;
c054a78c 3342 if (!limits_invariant) {
bbec2e15 3343 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3344 ret = -EINVAL;
8c7c6e34
KH
3345 break;
3346 }
bbec2e15 3347 if (max > counter->max)
3e32cb2e 3348 enlarge = true;
bbec2e15
RG
3349 ret = page_counter_set_max(counter, max);
3350 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3351
3352 if (!ret)
3353 break;
3354
bb4a7ea2
SB
3355 if (!drained) {
3356 drain_all_stock(memcg);
3357 drained = true;
3358 continue;
3359 }
3360
1ab5c056
AR
3361 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3362 GFP_KERNEL, !memsw)) {
3363 ret = -EBUSY;
3364 break;
3365 }
3366 } while (true);
3e32cb2e 3367
3c11ecf4
KH
3368 if (!ret && enlarge)
3369 memcg_oom_recover(memcg);
3e32cb2e 3370
628f4235
KH
3371 return ret;
3372}
3373
ef8f2327 3374unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3375 gfp_t gfp_mask,
3376 unsigned long *total_scanned)
3377{
3378 unsigned long nr_reclaimed = 0;
ef8f2327 3379 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3380 unsigned long reclaimed;
3381 int loop = 0;
ef8f2327 3382 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3383 unsigned long excess;
0608f43d
AM
3384
3385 if (order > 0)
3386 return 0;
3387
2ab082ba 3388 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3389
3390 /*
3391 * Do not even bother to check the largest node if the root
3392 * is empty. Do it lockless to prevent lock bouncing. Races
3393 * are acceptable as soft limit is best effort anyway.
3394 */
bfc7228b 3395 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3396 return 0;
3397
0608f43d
AM
3398 /*
3399 * This loop can run a while, specially if mem_cgroup's continuously
3400 * keep exceeding their soft limit and putting the system under
3401 * pressure
3402 */
3403 do {
3404 if (next_mz)
3405 mz = next_mz;
3406 else
3407 mz = mem_cgroup_largest_soft_limit_node(mctz);
3408 if (!mz)
3409 break;
3410
ef8f2327 3411 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3412 gfp_mask, total_scanned);
0608f43d 3413 nr_reclaimed += reclaimed;
0a31bc97 3414 spin_lock_irq(&mctz->lock);
0608f43d
AM
3415
3416 /*
3417 * If we failed to reclaim anything from this memory cgroup
3418 * it is time to move on to the next cgroup
3419 */
3420 next_mz = NULL;
bc2f2e7f
VD
3421 if (!reclaimed)
3422 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3423
3e32cb2e 3424 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3425 /*
3426 * One school of thought says that we should not add
3427 * back the node to the tree if reclaim returns 0.
3428 * But our reclaim could return 0, simply because due
3429 * to priority we are exposing a smaller subset of
3430 * memory to reclaim from. Consider this as a longer
3431 * term TODO.
3432 */
3433 /* If excess == 0, no tree ops */
cf2c8127 3434 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3435 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3436 css_put(&mz->memcg->css);
3437 loop++;
3438 /*
3439 * Could not reclaim anything and there are no more
3440 * mem cgroups to try or we seem to be looping without
3441 * reclaiming anything.
3442 */
3443 if (!nr_reclaimed &&
3444 (next_mz == NULL ||
3445 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3446 break;
3447 } while (!nr_reclaimed);
3448 if (next_mz)
3449 css_put(&next_mz->memcg->css);
3450 return nr_reclaimed;
3451}
3452
c26251f9 3453/*
51038171 3454 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3455 *
3456 * Caller is responsible for holding css reference for memcg.
3457 */
3458static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3459{
d977aa93 3460 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3461
c1e862c1
KH
3462 /* we call try-to-free pages for make this cgroup empty */
3463 lru_add_drain_all();
d12c60f6
JS
3464
3465 drain_all_stock(memcg);
3466
f817ed48 3467 /* try to free all pages in this cgroup */
3e32cb2e 3468 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3469 if (signal_pending(current))
3470 return -EINTR;
3471
69392a40 3472 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true))
f817ed48 3473 nr_retries--;
f817ed48 3474 }
ab5196c2
MH
3475
3476 return 0;
cc847582
KH
3477}
3478
6770c64e
TH
3479static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3480 char *buf, size_t nbytes,
3481 loff_t off)
c1e862c1 3482{
6770c64e 3483 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3484
d8423011
MH
3485 if (mem_cgroup_is_root(memcg))
3486 return -EINVAL;
6770c64e 3487 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3488}
3489
182446d0
TH
3490static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3491 struct cftype *cft)
18f59ea7 3492{
bef8620c 3493 return 1;
18f59ea7
BS
3494}
3495
182446d0
TH
3496static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3497 struct cftype *cft, u64 val)
18f59ea7 3498{
bef8620c 3499 if (val == 1)
0b8f73e1 3500 return 0;
567fb435 3501
bef8620c
RG
3502 pr_warn_once("Non-hierarchical mode is deprecated. "
3503 "Please report your usecase to linux-mm@kvack.org if you "
3504 "depend on this functionality.\n");
567fb435 3505
bef8620c 3506 return -EINVAL;
18f59ea7
BS
3507}
3508
6f646156 3509static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3510{
42a30035 3511 unsigned long val;
ce00a967 3512
3e32cb2e 3513 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3514 mem_cgroup_flush_stats();
0d1c2072 3515 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3516 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3517 if (swap)
3518 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3519 } else {
ce00a967 3520 if (!swap)
3e32cb2e 3521 val = page_counter_read(&memcg->memory);
ce00a967 3522 else
3e32cb2e 3523 val = page_counter_read(&memcg->memsw);
ce00a967 3524 }
c12176d3 3525 return val;
ce00a967
JW
3526}
3527
3e32cb2e
JW
3528enum {
3529 RES_USAGE,
3530 RES_LIMIT,
3531 RES_MAX_USAGE,
3532 RES_FAILCNT,
3533 RES_SOFT_LIMIT,
3534};
ce00a967 3535
791badbd 3536static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3537 struct cftype *cft)
8cdea7c0 3538{
182446d0 3539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3540 struct page_counter *counter;
af36f906 3541
3e32cb2e 3542 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3543 case _MEM:
3e32cb2e
JW
3544 counter = &memcg->memory;
3545 break;
8c7c6e34 3546 case _MEMSWAP:
3e32cb2e
JW
3547 counter = &memcg->memsw;
3548 break;
510fc4e1 3549 case _KMEM:
3e32cb2e 3550 counter = &memcg->kmem;
510fc4e1 3551 break;
d55f90bf 3552 case _TCP:
0db15298 3553 counter = &memcg->tcpmem;
d55f90bf 3554 break;
8c7c6e34
KH
3555 default:
3556 BUG();
8c7c6e34 3557 }
3e32cb2e
JW
3558
3559 switch (MEMFILE_ATTR(cft->private)) {
3560 case RES_USAGE:
3561 if (counter == &memcg->memory)
c12176d3 3562 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3563 if (counter == &memcg->memsw)
c12176d3 3564 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3565 return (u64)page_counter_read(counter) * PAGE_SIZE;
3566 case RES_LIMIT:
bbec2e15 3567 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3568 case RES_MAX_USAGE:
3569 return (u64)counter->watermark * PAGE_SIZE;
3570 case RES_FAILCNT:
3571 return counter->failcnt;
3572 case RES_SOFT_LIMIT:
3573 return (u64)memcg->soft_limit * PAGE_SIZE;
3574 default:
3575 BUG();
3576 }
8cdea7c0 3577}
510fc4e1 3578
84c07d11 3579#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3580static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3581{
bf4f0599 3582 struct obj_cgroup *objcg;
d6441637 3583
b313aeee
VD
3584 if (cgroup_memory_nokmem)
3585 return 0;
3586
da0efe30
MS
3587 if (unlikely(mem_cgroup_is_root(memcg)))
3588 return 0;
d6441637 3589
bf4f0599 3590 objcg = obj_cgroup_alloc();
f9c69d63 3591 if (!objcg)
bf4f0599 3592 return -ENOMEM;
f9c69d63 3593
bf4f0599
RG
3594 objcg->memcg = memcg;
3595 rcu_assign_pointer(memcg->objcg, objcg);
3596
d648bcc7
RG
3597 static_branch_enable(&memcg_kmem_enabled_key);
3598
f9c69d63 3599 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3600
3601 return 0;
d6441637
VD
3602}
3603
8e0a8912
JW
3604static void memcg_offline_kmem(struct mem_cgroup *memcg)
3605{
64268868 3606 struct mem_cgroup *parent;
8e0a8912 3607
da0efe30
MS
3608 if (cgroup_memory_nokmem)
3609 return;
3610
3611 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3612 return;
9855609b 3613
8e0a8912
JW
3614 parent = parent_mem_cgroup(memcg);
3615 if (!parent)
3616 parent = root_mem_cgroup;
3617
bf4f0599 3618 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3619
8e0a8912 3620 /*
64268868
MS
3621 * After we have finished memcg_reparent_objcgs(), all list_lrus
3622 * corresponding to this cgroup are guaranteed to remain empty.
3623 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3624 * memcg_reparent_list_lrus().
8e0a8912 3625 */
1f391eb2 3626 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3627}
d6441637 3628#else
0b8f73e1 3629static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3630{
3631 return 0;
3632}
3633static void memcg_offline_kmem(struct mem_cgroup *memcg)
3634{
3635}
84c07d11 3636#endif /* CONFIG_MEMCG_KMEM */
127424c8 3637
bbec2e15 3638static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3639{
3640 int ret;
3641
bbec2e15 3642 mutex_lock(&memcg_max_mutex);
d55f90bf 3643
bbec2e15 3644 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3645 if (ret)
3646 goto out;
3647
0db15298 3648 if (!memcg->tcpmem_active) {
d55f90bf
VD
3649 /*
3650 * The active flag needs to be written after the static_key
3651 * update. This is what guarantees that the socket activation
2d758073
JW
3652 * function is the last one to run. See mem_cgroup_sk_alloc()
3653 * for details, and note that we don't mark any socket as
3654 * belonging to this memcg until that flag is up.
d55f90bf
VD
3655 *
3656 * We need to do this, because static_keys will span multiple
3657 * sites, but we can't control their order. If we mark a socket
3658 * as accounted, but the accounting functions are not patched in
3659 * yet, we'll lose accounting.
3660 *
2d758073 3661 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3662 * because when this value change, the code to process it is not
3663 * patched in yet.
3664 */
3665 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3666 memcg->tcpmem_active = true;
d55f90bf
VD
3667 }
3668out:
bbec2e15 3669 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3670 return ret;
3671}
d55f90bf 3672
628f4235
KH
3673/*
3674 * The user of this function is...
3675 * RES_LIMIT.
3676 */
451af504
TH
3677static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3678 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3679{
451af504 3680 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3681 unsigned long nr_pages;
628f4235
KH
3682 int ret;
3683
451af504 3684 buf = strstrip(buf);
650c5e56 3685 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3686 if (ret)
3687 return ret;
af36f906 3688
3e32cb2e 3689 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3690 case RES_LIMIT:
4b3bde4c
BS
3691 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3692 ret = -EINVAL;
3693 break;
3694 }
3e32cb2e
JW
3695 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3696 case _MEM:
bbec2e15 3697 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3698 break;
3e32cb2e 3699 case _MEMSWAP:
bbec2e15 3700 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3701 break;
3e32cb2e 3702 case _KMEM:
58056f77
SB
3703 /* kmem.limit_in_bytes is deprecated. */
3704 ret = -EOPNOTSUPP;
3e32cb2e 3705 break;
d55f90bf 3706 case _TCP:
bbec2e15 3707 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3708 break;
3e32cb2e 3709 }
296c81d8 3710 break;
3e32cb2e 3711 case RES_SOFT_LIMIT:
2343e88d
SAS
3712 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3713 ret = -EOPNOTSUPP;
3714 } else {
3715 memcg->soft_limit = nr_pages;
3716 ret = 0;
3717 }
628f4235
KH
3718 break;
3719 }
451af504 3720 return ret ?: nbytes;
8cdea7c0
BS
3721}
3722
6770c64e
TH
3723static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3724 size_t nbytes, loff_t off)
c84872e1 3725{
6770c64e 3726 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3727 struct page_counter *counter;
c84872e1 3728
3e32cb2e
JW
3729 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3730 case _MEM:
3731 counter = &memcg->memory;
3732 break;
3733 case _MEMSWAP:
3734 counter = &memcg->memsw;
3735 break;
3736 case _KMEM:
3737 counter = &memcg->kmem;
3738 break;
d55f90bf 3739 case _TCP:
0db15298 3740 counter = &memcg->tcpmem;
d55f90bf 3741 break;
3e32cb2e
JW
3742 default:
3743 BUG();
3744 }
af36f906 3745
3e32cb2e 3746 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3747 case RES_MAX_USAGE:
3e32cb2e 3748 page_counter_reset_watermark(counter);
29f2a4da
PE
3749 break;
3750 case RES_FAILCNT:
3e32cb2e 3751 counter->failcnt = 0;
29f2a4da 3752 break;
3e32cb2e
JW
3753 default:
3754 BUG();
29f2a4da 3755 }
f64c3f54 3756
6770c64e 3757 return nbytes;
c84872e1
PE
3758}
3759
182446d0 3760static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3761 struct cftype *cft)
3762{
182446d0 3763 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3764}
3765
02491447 3766#ifdef CONFIG_MMU
182446d0 3767static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3768 struct cftype *cft, u64 val)
3769{
182446d0 3770 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3771
1dfab5ab 3772 if (val & ~MOVE_MASK)
7dc74be0 3773 return -EINVAL;
ee5e8472 3774
7dc74be0 3775 /*
ee5e8472
GC
3776 * No kind of locking is needed in here, because ->can_attach() will
3777 * check this value once in the beginning of the process, and then carry
3778 * on with stale data. This means that changes to this value will only
3779 * affect task migrations starting after the change.
7dc74be0 3780 */
c0ff4b85 3781 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3782 return 0;
3783}
02491447 3784#else
182446d0 3785static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3786 struct cftype *cft, u64 val)
3787{
3788 return -ENOSYS;
3789}
3790#endif
7dc74be0 3791
406eb0c9 3792#ifdef CONFIG_NUMA
113b7dfd
JW
3793
3794#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3795#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3796#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3797
3798static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3799 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3800{
867e5e1d 3801 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3802 unsigned long nr = 0;
3803 enum lru_list lru;
3804
3805 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3806
3807 for_each_lru(lru) {
3808 if (!(BIT(lru) & lru_mask))
3809 continue;
dd8657b6
SB
3810 if (tree)
3811 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3812 else
3813 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3814 }
3815 return nr;
3816}
3817
3818static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3819 unsigned int lru_mask,
3820 bool tree)
113b7dfd
JW
3821{
3822 unsigned long nr = 0;
3823 enum lru_list lru;
3824
3825 for_each_lru(lru) {
3826 if (!(BIT(lru) & lru_mask))
3827 continue;
dd8657b6
SB
3828 if (tree)
3829 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3830 else
3831 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3832 }
3833 return nr;
3834}
3835
2da8ca82 3836static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3837{
25485de6
GT
3838 struct numa_stat {
3839 const char *name;
3840 unsigned int lru_mask;
3841 };
3842
3843 static const struct numa_stat stats[] = {
3844 { "total", LRU_ALL },
3845 { "file", LRU_ALL_FILE },
3846 { "anon", LRU_ALL_ANON },
3847 { "unevictable", BIT(LRU_UNEVICTABLE) },
3848 };
3849 const struct numa_stat *stat;
406eb0c9 3850 int nid;
aa9694bb 3851 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3852
fd25a9e0 3853 mem_cgroup_flush_stats();
2d146aa3 3854
25485de6 3855 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3856 seq_printf(m, "%s=%lu", stat->name,
3857 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3858 false));
3859 for_each_node_state(nid, N_MEMORY)
3860 seq_printf(m, " N%d=%lu", nid,
3861 mem_cgroup_node_nr_lru_pages(memcg, nid,
3862 stat->lru_mask, false));
25485de6 3863 seq_putc(m, '\n');
406eb0c9 3864 }
406eb0c9 3865
071aee13 3866 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3867
3868 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3869 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3870 true));
3871 for_each_node_state(nid, N_MEMORY)
3872 seq_printf(m, " N%d=%lu", nid,
3873 mem_cgroup_node_nr_lru_pages(memcg, nid,
3874 stat->lru_mask, true));
071aee13 3875 seq_putc(m, '\n');
406eb0c9 3876 }
406eb0c9 3877
406eb0c9
YH
3878 return 0;
3879}
3880#endif /* CONFIG_NUMA */
3881
c8713d0b 3882static const unsigned int memcg1_stats[] = {
0d1c2072 3883 NR_FILE_PAGES,
be5d0a74 3884 NR_ANON_MAPPED,
468c3982
JW
3885#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3886 NR_ANON_THPS,
3887#endif
c8713d0b
JW
3888 NR_SHMEM,
3889 NR_FILE_MAPPED,
3890 NR_FILE_DIRTY,
3891 NR_WRITEBACK,
3892 MEMCG_SWAP,
3893};
3894
3895static const char *const memcg1_stat_names[] = {
3896 "cache",
3897 "rss",
468c3982 3898#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3899 "rss_huge",
468c3982 3900#endif
c8713d0b
JW
3901 "shmem",
3902 "mapped_file",
3903 "dirty",
3904 "writeback",
3905 "swap",
3906};
3907
df0e53d0 3908/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3909static const unsigned int memcg1_events[] = {
df0e53d0
JW
3910 PGPGIN,
3911 PGPGOUT,
3912 PGFAULT,
3913 PGMAJFAULT,
3914};
3915
2da8ca82 3916static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3917{
aa9694bb 3918 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3919 unsigned long memory, memsw;
af7c4b0e
JW
3920 struct mem_cgroup *mi;
3921 unsigned int i;
406eb0c9 3922
71cd3113 3923 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3924
fd25a9e0 3925 mem_cgroup_flush_stats();
2d146aa3 3926
71cd3113 3927 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3928 unsigned long nr;
3929
71cd3113 3930 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3931 continue;
468c3982 3932 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3933 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3934 }
7b854121 3935
df0e53d0 3936 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3937 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3938 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3939
3940 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3941 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3942 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3943 PAGE_SIZE);
af7c4b0e 3944
14067bb3 3945 /* Hierarchical information */
3e32cb2e
JW
3946 memory = memsw = PAGE_COUNTER_MAX;
3947 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3948 memory = min(memory, READ_ONCE(mi->memory.max));
3949 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3950 }
3e32cb2e
JW
3951 seq_printf(m, "hierarchical_memory_limit %llu\n",
3952 (u64)memory * PAGE_SIZE);
7941d214 3953 if (do_memsw_account())
3e32cb2e
JW
3954 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3955 (u64)memsw * PAGE_SIZE);
7f016ee8 3956
8de7ecc6 3957 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 3958 unsigned long nr;
3959
71cd3113 3960 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3961 continue;
7de2e9f1 3962 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 3963 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 3964 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
3965 }
3966
8de7ecc6 3967 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3968 seq_printf(m, "total_%s %llu\n",
3969 vm_event_name(memcg1_events[i]),
dd923990 3970 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3971
8de7ecc6 3972 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3973 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3974 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3975 PAGE_SIZE);
14067bb3 3976
7f016ee8 3977#ifdef CONFIG_DEBUG_VM
7f016ee8 3978 {
ef8f2327
MG
3979 pg_data_t *pgdat;
3980 struct mem_cgroup_per_node *mz;
1431d4d1
JW
3981 unsigned long anon_cost = 0;
3982 unsigned long file_cost = 0;
7f016ee8 3983
ef8f2327 3984 for_each_online_pgdat(pgdat) {
a3747b53 3985 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 3986
1431d4d1
JW
3987 anon_cost += mz->lruvec.anon_cost;
3988 file_cost += mz->lruvec.file_cost;
ef8f2327 3989 }
1431d4d1
JW
3990 seq_printf(m, "anon_cost %lu\n", anon_cost);
3991 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
3992 }
3993#endif
3994
d2ceb9b7
KH
3995 return 0;
3996}
3997
182446d0
TH
3998static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3999 struct cftype *cft)
a7885eb8 4000{
182446d0 4001 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4002
1f4c025b 4003 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4004}
4005
182446d0
TH
4006static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4007 struct cftype *cft, u64 val)
a7885eb8 4008{
182446d0 4009 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4010
37bc3cb9 4011 if (val > 200)
a7885eb8
KM
4012 return -EINVAL;
4013
a4792030 4014 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4015 memcg->swappiness = val;
4016 else
4017 vm_swappiness = val;
068b38c1 4018
a7885eb8
KM
4019 return 0;
4020}
4021
2e72b634
KS
4022static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4023{
4024 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4025 unsigned long usage;
2e72b634
KS
4026 int i;
4027
4028 rcu_read_lock();
4029 if (!swap)
2c488db2 4030 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4031 else
2c488db2 4032 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4033
4034 if (!t)
4035 goto unlock;
4036
ce00a967 4037 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4038
4039 /*
748dad36 4040 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4041 * If it's not true, a threshold was crossed after last
4042 * call of __mem_cgroup_threshold().
4043 */
5407a562 4044 i = t->current_threshold;
2e72b634
KS
4045
4046 /*
4047 * Iterate backward over array of thresholds starting from
4048 * current_threshold and check if a threshold is crossed.
4049 * If none of thresholds below usage is crossed, we read
4050 * only one element of the array here.
4051 */
4052 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4053 eventfd_signal(t->entries[i].eventfd, 1);
4054
4055 /* i = current_threshold + 1 */
4056 i++;
4057
4058 /*
4059 * Iterate forward over array of thresholds starting from
4060 * current_threshold+1 and check if a threshold is crossed.
4061 * If none of thresholds above usage is crossed, we read
4062 * only one element of the array here.
4063 */
4064 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4065 eventfd_signal(t->entries[i].eventfd, 1);
4066
4067 /* Update current_threshold */
5407a562 4068 t->current_threshold = i - 1;
2e72b634
KS
4069unlock:
4070 rcu_read_unlock();
4071}
4072
4073static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4074{
ad4ca5f4
KS
4075 while (memcg) {
4076 __mem_cgroup_threshold(memcg, false);
7941d214 4077 if (do_memsw_account())
ad4ca5f4
KS
4078 __mem_cgroup_threshold(memcg, true);
4079
4080 memcg = parent_mem_cgroup(memcg);
4081 }
2e72b634
KS
4082}
4083
4084static int compare_thresholds(const void *a, const void *b)
4085{
4086 const struct mem_cgroup_threshold *_a = a;
4087 const struct mem_cgroup_threshold *_b = b;
4088
2bff24a3
GT
4089 if (_a->threshold > _b->threshold)
4090 return 1;
4091
4092 if (_a->threshold < _b->threshold)
4093 return -1;
4094
4095 return 0;
2e72b634
KS
4096}
4097
c0ff4b85 4098static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4099{
4100 struct mem_cgroup_eventfd_list *ev;
4101
2bcf2e92
MH
4102 spin_lock(&memcg_oom_lock);
4103
c0ff4b85 4104 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4105 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4106
4107 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4108 return 0;
4109}
4110
c0ff4b85 4111static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4112{
7d74b06f
KH
4113 struct mem_cgroup *iter;
4114
c0ff4b85 4115 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4116 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4117}
4118
59b6f873 4119static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4120 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4121{
2c488db2
KS
4122 struct mem_cgroup_thresholds *thresholds;
4123 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4124 unsigned long threshold;
4125 unsigned long usage;
2c488db2 4126 int i, size, ret;
2e72b634 4127
650c5e56 4128 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4129 if (ret)
4130 return ret;
4131
4132 mutex_lock(&memcg->thresholds_lock);
2c488db2 4133
05b84301 4134 if (type == _MEM) {
2c488db2 4135 thresholds = &memcg->thresholds;
ce00a967 4136 usage = mem_cgroup_usage(memcg, false);
05b84301 4137 } else if (type == _MEMSWAP) {
2c488db2 4138 thresholds = &memcg->memsw_thresholds;
ce00a967 4139 usage = mem_cgroup_usage(memcg, true);
05b84301 4140 } else
2e72b634
KS
4141 BUG();
4142
2e72b634 4143 /* Check if a threshold crossed before adding a new one */
2c488db2 4144 if (thresholds->primary)
2e72b634
KS
4145 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4146
2c488db2 4147 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4148
4149 /* Allocate memory for new array of thresholds */
67b8046f 4150 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4151 if (!new) {
2e72b634
KS
4152 ret = -ENOMEM;
4153 goto unlock;
4154 }
2c488db2 4155 new->size = size;
2e72b634
KS
4156
4157 /* Copy thresholds (if any) to new array */
e90342e6
GS
4158 if (thresholds->primary)
4159 memcpy(new->entries, thresholds->primary->entries,
4160 flex_array_size(new, entries, size - 1));
2c488db2 4161
2e72b634 4162 /* Add new threshold */
2c488db2
KS
4163 new->entries[size - 1].eventfd = eventfd;
4164 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4165
4166 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4167 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4168 compare_thresholds, NULL);
4169
4170 /* Find current threshold */
2c488db2 4171 new->current_threshold = -1;
2e72b634 4172 for (i = 0; i < size; i++) {
748dad36 4173 if (new->entries[i].threshold <= usage) {
2e72b634 4174 /*
2c488db2
KS
4175 * new->current_threshold will not be used until
4176 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4177 * it here.
4178 */
2c488db2 4179 ++new->current_threshold;
748dad36
SZ
4180 } else
4181 break;
2e72b634
KS
4182 }
4183
2c488db2
KS
4184 /* Free old spare buffer and save old primary buffer as spare */
4185 kfree(thresholds->spare);
4186 thresholds->spare = thresholds->primary;
4187
4188 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4189
907860ed 4190 /* To be sure that nobody uses thresholds */
2e72b634
KS
4191 synchronize_rcu();
4192
2e72b634
KS
4193unlock:
4194 mutex_unlock(&memcg->thresholds_lock);
4195
4196 return ret;
4197}
4198
59b6f873 4199static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4200 struct eventfd_ctx *eventfd, const char *args)
4201{
59b6f873 4202 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4203}
4204
59b6f873 4205static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4206 struct eventfd_ctx *eventfd, const char *args)
4207{
59b6f873 4208 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4209}
4210
59b6f873 4211static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4212 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4213{
2c488db2
KS
4214 struct mem_cgroup_thresholds *thresholds;
4215 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4216 unsigned long usage;
7d36665a 4217 int i, j, size, entries;
2e72b634
KS
4218
4219 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4220
4221 if (type == _MEM) {
2c488db2 4222 thresholds = &memcg->thresholds;
ce00a967 4223 usage = mem_cgroup_usage(memcg, false);
05b84301 4224 } else if (type == _MEMSWAP) {
2c488db2 4225 thresholds = &memcg->memsw_thresholds;
ce00a967 4226 usage = mem_cgroup_usage(memcg, true);
05b84301 4227 } else
2e72b634
KS
4228 BUG();
4229
371528ca
AV
4230 if (!thresholds->primary)
4231 goto unlock;
4232
2e72b634
KS
4233 /* Check if a threshold crossed before removing */
4234 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4235
4236 /* Calculate new number of threshold */
7d36665a 4237 size = entries = 0;
2c488db2
KS
4238 for (i = 0; i < thresholds->primary->size; i++) {
4239 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4240 size++;
7d36665a
CX
4241 else
4242 entries++;
2e72b634
KS
4243 }
4244
2c488db2 4245 new = thresholds->spare;
907860ed 4246
7d36665a
CX
4247 /* If no items related to eventfd have been cleared, nothing to do */
4248 if (!entries)
4249 goto unlock;
4250
2e72b634
KS
4251 /* Set thresholds array to NULL if we don't have thresholds */
4252 if (!size) {
2c488db2
KS
4253 kfree(new);
4254 new = NULL;
907860ed 4255 goto swap_buffers;
2e72b634
KS
4256 }
4257
2c488db2 4258 new->size = size;
2e72b634
KS
4259
4260 /* Copy thresholds and find current threshold */
2c488db2
KS
4261 new->current_threshold = -1;
4262 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4263 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4264 continue;
4265
2c488db2 4266 new->entries[j] = thresholds->primary->entries[i];
748dad36 4267 if (new->entries[j].threshold <= usage) {
2e72b634 4268 /*
2c488db2 4269 * new->current_threshold will not be used
2e72b634
KS
4270 * until rcu_assign_pointer(), so it's safe to increment
4271 * it here.
4272 */
2c488db2 4273 ++new->current_threshold;
2e72b634
KS
4274 }
4275 j++;
4276 }
4277
907860ed 4278swap_buffers:
2c488db2
KS
4279 /* Swap primary and spare array */
4280 thresholds->spare = thresholds->primary;
8c757763 4281
2c488db2 4282 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4283
907860ed 4284 /* To be sure that nobody uses thresholds */
2e72b634 4285 synchronize_rcu();
6611d8d7
MC
4286
4287 /* If all events are unregistered, free the spare array */
4288 if (!new) {
4289 kfree(thresholds->spare);
4290 thresholds->spare = NULL;
4291 }
371528ca 4292unlock:
2e72b634 4293 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4294}
c1e862c1 4295
59b6f873 4296static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4297 struct eventfd_ctx *eventfd)
4298{
59b6f873 4299 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4300}
4301
59b6f873 4302static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4303 struct eventfd_ctx *eventfd)
4304{
59b6f873 4305 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4306}
4307
59b6f873 4308static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4309 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4310{
9490ff27 4311 struct mem_cgroup_eventfd_list *event;
9490ff27 4312
9490ff27
KH
4313 event = kmalloc(sizeof(*event), GFP_KERNEL);
4314 if (!event)
4315 return -ENOMEM;
4316
1af8efe9 4317 spin_lock(&memcg_oom_lock);
9490ff27
KH
4318
4319 event->eventfd = eventfd;
4320 list_add(&event->list, &memcg->oom_notify);
4321
4322 /* already in OOM ? */
c2b42d3c 4323 if (memcg->under_oom)
9490ff27 4324 eventfd_signal(eventfd, 1);
1af8efe9 4325 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4326
4327 return 0;
4328}
4329
59b6f873 4330static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4331 struct eventfd_ctx *eventfd)
9490ff27 4332{
9490ff27 4333 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4334
1af8efe9 4335 spin_lock(&memcg_oom_lock);
9490ff27 4336
c0ff4b85 4337 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4338 if (ev->eventfd == eventfd) {
4339 list_del(&ev->list);
4340 kfree(ev);
4341 }
4342 }
4343
1af8efe9 4344 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4345}
4346
2da8ca82 4347static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4348{
aa9694bb 4349 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4350
791badbd 4351 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4352 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4353 seq_printf(sf, "oom_kill %lu\n",
4354 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4355 return 0;
4356}
4357
182446d0 4358static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4359 struct cftype *cft, u64 val)
4360{
182446d0 4361 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4362
4363 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4364 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4365 return -EINVAL;
4366
c0ff4b85 4367 memcg->oom_kill_disable = val;
4d845ebf 4368 if (!val)
c0ff4b85 4369 memcg_oom_recover(memcg);
3dae7fec 4370
3c11ecf4
KH
4371 return 0;
4372}
4373
52ebea74
TH
4374#ifdef CONFIG_CGROUP_WRITEBACK
4375
3a8e9ac8
TH
4376#include <trace/events/writeback.h>
4377
841710aa
TH
4378static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4379{
4380 return wb_domain_init(&memcg->cgwb_domain, gfp);
4381}
4382
4383static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4384{
4385 wb_domain_exit(&memcg->cgwb_domain);
4386}
4387
2529bb3a
TH
4388static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4389{
4390 wb_domain_size_changed(&memcg->cgwb_domain);
4391}
4392
841710aa
TH
4393struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4394{
4395 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4396
4397 if (!memcg->css.parent)
4398 return NULL;
4399
4400 return &memcg->cgwb_domain;
4401}
4402
c2aa723a
TH
4403/**
4404 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4405 * @wb: bdi_writeback in question
c5edf9cd
TH
4406 * @pfilepages: out parameter for number of file pages
4407 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4408 * @pdirty: out parameter for number of dirty pages
4409 * @pwriteback: out parameter for number of pages under writeback
4410 *
c5edf9cd
TH
4411 * Determine the numbers of file, headroom, dirty, and writeback pages in
4412 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4413 * is a bit more involved.
c2aa723a 4414 *
c5edf9cd
TH
4415 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4416 * headroom is calculated as the lowest headroom of itself and the
4417 * ancestors. Note that this doesn't consider the actual amount of
4418 * available memory in the system. The caller should further cap
4419 * *@pheadroom accordingly.
c2aa723a 4420 */
c5edf9cd
TH
4421void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4422 unsigned long *pheadroom, unsigned long *pdirty,
4423 unsigned long *pwriteback)
c2aa723a
TH
4424{
4425 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4426 struct mem_cgroup *parent;
c2aa723a 4427
fd25a9e0 4428 mem_cgroup_flush_stats();
c2aa723a 4429
2d146aa3
JW
4430 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4431 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4432 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4433 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4434
2d146aa3 4435 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4436 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4437 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4438 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4439 unsigned long used = page_counter_read(&memcg->memory);
4440
c5edf9cd 4441 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4442 memcg = parent;
4443 }
c2aa723a
TH
4444}
4445
97b27821
TH
4446/*
4447 * Foreign dirty flushing
4448 *
4449 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4450 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4451 * deliberate design decision because honoring per-page ownership in the
4452 * writeback path is complicated, may lead to higher CPU and IO overheads
4453 * and deemed unnecessary given that write-sharing an inode across
4454 * different cgroups isn't a common use-case.
4455 *
4456 * Combined with inode majority-writer ownership switching, this works well
4457 * enough in most cases but there are some pathological cases. For
4458 * example, let's say there are two cgroups A and B which keep writing to
4459 * different but confined parts of the same inode. B owns the inode and
4460 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4461 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4462 * triggering background writeback. A will be slowed down without a way to
4463 * make writeback of the dirty pages happen.
4464 *
f0953a1b 4465 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4466 * severely throttled after making some progress after each
f0953a1b 4467 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4468 * completely idle.
4469 *
4470 * Solving this problem completely requires matching the ownership tracking
4471 * granularities between memcg and writeback in either direction. However,
4472 * the more egregious behaviors can be avoided by simply remembering the
4473 * most recent foreign dirtying events and initiating remote flushes on
4474 * them when local writeback isn't enough to keep the memory clean enough.
4475 *
4476 * The following two functions implement such mechanism. When a foreign
4477 * page - a page whose memcg and writeback ownerships don't match - is
4478 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4479 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4480 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4481 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4482 * foreign bdi_writebacks which haven't expired. Both the numbers of
4483 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4484 * limited to MEMCG_CGWB_FRN_CNT.
4485 *
4486 * The mechanism only remembers IDs and doesn't hold any object references.
4487 * As being wrong occasionally doesn't matter, updates and accesses to the
4488 * records are lockless and racy.
4489 */
9d8053fc 4490void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4491 struct bdi_writeback *wb)
4492{
9d8053fc 4493 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4494 struct memcg_cgwb_frn *frn;
4495 u64 now = get_jiffies_64();
4496 u64 oldest_at = now;
4497 int oldest = -1;
4498 int i;
4499
9d8053fc 4500 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4501
97b27821
TH
4502 /*
4503 * Pick the slot to use. If there is already a slot for @wb, keep
4504 * using it. If not replace the oldest one which isn't being
4505 * written out.
4506 */
4507 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4508 frn = &memcg->cgwb_frn[i];
4509 if (frn->bdi_id == wb->bdi->id &&
4510 frn->memcg_id == wb->memcg_css->id)
4511 break;
4512 if (time_before64(frn->at, oldest_at) &&
4513 atomic_read(&frn->done.cnt) == 1) {
4514 oldest = i;
4515 oldest_at = frn->at;
4516 }
4517 }
4518
4519 if (i < MEMCG_CGWB_FRN_CNT) {
4520 /*
4521 * Re-using an existing one. Update timestamp lazily to
4522 * avoid making the cacheline hot. We want them to be
4523 * reasonably up-to-date and significantly shorter than
4524 * dirty_expire_interval as that's what expires the record.
4525 * Use the shorter of 1s and dirty_expire_interval / 8.
4526 */
4527 unsigned long update_intv =
4528 min_t(unsigned long, HZ,
4529 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4530
4531 if (time_before64(frn->at, now - update_intv))
4532 frn->at = now;
4533 } else if (oldest >= 0) {
4534 /* replace the oldest free one */
4535 frn = &memcg->cgwb_frn[oldest];
4536 frn->bdi_id = wb->bdi->id;
4537 frn->memcg_id = wb->memcg_css->id;
4538 frn->at = now;
4539 }
4540}
4541
4542/* issue foreign writeback flushes for recorded foreign dirtying events */
4543void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4544{
4545 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4546 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4547 u64 now = jiffies_64;
4548 int i;
4549
4550 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4551 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4552
4553 /*
4554 * If the record is older than dirty_expire_interval,
4555 * writeback on it has already started. No need to kick it
4556 * off again. Also, don't start a new one if there's
4557 * already one in flight.
4558 */
4559 if (time_after64(frn->at, now - intv) &&
4560 atomic_read(&frn->done.cnt) == 1) {
4561 frn->at = 0;
3a8e9ac8 4562 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4563 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4564 WB_REASON_FOREIGN_FLUSH,
4565 &frn->done);
4566 }
4567 }
4568}
4569
841710aa
TH
4570#else /* CONFIG_CGROUP_WRITEBACK */
4571
4572static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4573{
4574 return 0;
4575}
4576
4577static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4578{
4579}
4580
2529bb3a
TH
4581static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4582{
4583}
4584
52ebea74
TH
4585#endif /* CONFIG_CGROUP_WRITEBACK */
4586
3bc942f3
TH
4587/*
4588 * DO NOT USE IN NEW FILES.
4589 *
4590 * "cgroup.event_control" implementation.
4591 *
4592 * This is way over-engineered. It tries to support fully configurable
4593 * events for each user. Such level of flexibility is completely
4594 * unnecessary especially in the light of the planned unified hierarchy.
4595 *
4596 * Please deprecate this and replace with something simpler if at all
4597 * possible.
4598 */
4599
79bd9814
TH
4600/*
4601 * Unregister event and free resources.
4602 *
4603 * Gets called from workqueue.
4604 */
3bc942f3 4605static void memcg_event_remove(struct work_struct *work)
79bd9814 4606{
3bc942f3
TH
4607 struct mem_cgroup_event *event =
4608 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4609 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4610
4611 remove_wait_queue(event->wqh, &event->wait);
4612
59b6f873 4613 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4614
4615 /* Notify userspace the event is going away. */
4616 eventfd_signal(event->eventfd, 1);
4617
4618 eventfd_ctx_put(event->eventfd);
4619 kfree(event);
59b6f873 4620 css_put(&memcg->css);
79bd9814
TH
4621}
4622
4623/*
a9a08845 4624 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4625 *
4626 * Called with wqh->lock held and interrupts disabled.
4627 */
ac6424b9 4628static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4629 int sync, void *key)
79bd9814 4630{
3bc942f3
TH
4631 struct mem_cgroup_event *event =
4632 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4633 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4634 __poll_t flags = key_to_poll(key);
79bd9814 4635
a9a08845 4636 if (flags & EPOLLHUP) {
79bd9814
TH
4637 /*
4638 * If the event has been detached at cgroup removal, we
4639 * can simply return knowing the other side will cleanup
4640 * for us.
4641 *
4642 * We can't race against event freeing since the other
4643 * side will require wqh->lock via remove_wait_queue(),
4644 * which we hold.
4645 */
fba94807 4646 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4647 if (!list_empty(&event->list)) {
4648 list_del_init(&event->list);
4649 /*
4650 * We are in atomic context, but cgroup_event_remove()
4651 * may sleep, so we have to call it in workqueue.
4652 */
4653 schedule_work(&event->remove);
4654 }
fba94807 4655 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4656 }
4657
4658 return 0;
4659}
4660
3bc942f3 4661static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4662 wait_queue_head_t *wqh, poll_table *pt)
4663{
3bc942f3
TH
4664 struct mem_cgroup_event *event =
4665 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4666
4667 event->wqh = wqh;
4668 add_wait_queue(wqh, &event->wait);
4669}
4670
4671/*
3bc942f3
TH
4672 * DO NOT USE IN NEW FILES.
4673 *
79bd9814
TH
4674 * Parse input and register new cgroup event handler.
4675 *
4676 * Input must be in format '<event_fd> <control_fd> <args>'.
4677 * Interpretation of args is defined by control file implementation.
4678 */
451af504
TH
4679static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4680 char *buf, size_t nbytes, loff_t off)
79bd9814 4681{
451af504 4682 struct cgroup_subsys_state *css = of_css(of);
fba94807 4683 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4684 struct mem_cgroup_event *event;
79bd9814
TH
4685 struct cgroup_subsys_state *cfile_css;
4686 unsigned int efd, cfd;
4687 struct fd efile;
4688 struct fd cfile;
fba94807 4689 const char *name;
79bd9814
TH
4690 char *endp;
4691 int ret;
4692
2343e88d
SAS
4693 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4694 return -EOPNOTSUPP;
4695
451af504
TH
4696 buf = strstrip(buf);
4697
4698 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4699 if (*endp != ' ')
4700 return -EINVAL;
451af504 4701 buf = endp + 1;
79bd9814 4702
451af504 4703 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4704 if ((*endp != ' ') && (*endp != '\0'))
4705 return -EINVAL;
451af504 4706 buf = endp + 1;
79bd9814
TH
4707
4708 event = kzalloc(sizeof(*event), GFP_KERNEL);
4709 if (!event)
4710 return -ENOMEM;
4711
59b6f873 4712 event->memcg = memcg;
79bd9814 4713 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4714 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4715 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4716 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4717
4718 efile = fdget(efd);
4719 if (!efile.file) {
4720 ret = -EBADF;
4721 goto out_kfree;
4722 }
4723
4724 event->eventfd = eventfd_ctx_fileget(efile.file);
4725 if (IS_ERR(event->eventfd)) {
4726 ret = PTR_ERR(event->eventfd);
4727 goto out_put_efile;
4728 }
4729
4730 cfile = fdget(cfd);
4731 if (!cfile.file) {
4732 ret = -EBADF;
4733 goto out_put_eventfd;
4734 }
4735
4736 /* the process need read permission on control file */
4737 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4738 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4739 if (ret < 0)
4740 goto out_put_cfile;
4741
fba94807
TH
4742 /*
4743 * Determine the event callbacks and set them in @event. This used
4744 * to be done via struct cftype but cgroup core no longer knows
4745 * about these events. The following is crude but the whole thing
4746 * is for compatibility anyway.
3bc942f3
TH
4747 *
4748 * DO NOT ADD NEW FILES.
fba94807 4749 */
b583043e 4750 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4751
4752 if (!strcmp(name, "memory.usage_in_bytes")) {
4753 event->register_event = mem_cgroup_usage_register_event;
4754 event->unregister_event = mem_cgroup_usage_unregister_event;
4755 } else if (!strcmp(name, "memory.oom_control")) {
4756 event->register_event = mem_cgroup_oom_register_event;
4757 event->unregister_event = mem_cgroup_oom_unregister_event;
4758 } else if (!strcmp(name, "memory.pressure_level")) {
4759 event->register_event = vmpressure_register_event;
4760 event->unregister_event = vmpressure_unregister_event;
4761 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4762 event->register_event = memsw_cgroup_usage_register_event;
4763 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4764 } else {
4765 ret = -EINVAL;
4766 goto out_put_cfile;
4767 }
4768
79bd9814 4769 /*
b5557c4c
TH
4770 * Verify @cfile should belong to @css. Also, remaining events are
4771 * automatically removed on cgroup destruction but the removal is
4772 * asynchronous, so take an extra ref on @css.
79bd9814 4773 */
b583043e 4774 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4775 &memory_cgrp_subsys);
79bd9814 4776 ret = -EINVAL;
5a17f543 4777 if (IS_ERR(cfile_css))
79bd9814 4778 goto out_put_cfile;
5a17f543
TH
4779 if (cfile_css != css) {
4780 css_put(cfile_css);
79bd9814 4781 goto out_put_cfile;
5a17f543 4782 }
79bd9814 4783
451af504 4784 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4785 if (ret)
4786 goto out_put_css;
4787
9965ed17 4788 vfs_poll(efile.file, &event->pt);
79bd9814 4789
4ba9515d 4790 spin_lock_irq(&memcg->event_list_lock);
fba94807 4791 list_add(&event->list, &memcg->event_list);
4ba9515d 4792 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4793
4794 fdput(cfile);
4795 fdput(efile);
4796
451af504 4797 return nbytes;
79bd9814
TH
4798
4799out_put_css:
b5557c4c 4800 css_put(css);
79bd9814
TH
4801out_put_cfile:
4802 fdput(cfile);
4803out_put_eventfd:
4804 eventfd_ctx_put(event->eventfd);
4805out_put_efile:
4806 fdput(efile);
4807out_kfree:
4808 kfree(event);
4809
4810 return ret;
4811}
4812
c29b5b3d
MS
4813#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4814static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4815{
4816 /*
4817 * Deprecated.
4818 * Please, take a look at tools/cgroup/slabinfo.py .
4819 */
4820 return 0;
4821}
4822#endif
4823
241994ed 4824static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4825 {
0eea1030 4826 .name = "usage_in_bytes",
8c7c6e34 4827 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4828 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4829 },
c84872e1
PE
4830 {
4831 .name = "max_usage_in_bytes",
8c7c6e34 4832 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4833 .write = mem_cgroup_reset,
791badbd 4834 .read_u64 = mem_cgroup_read_u64,
c84872e1 4835 },
8cdea7c0 4836 {
0eea1030 4837 .name = "limit_in_bytes",
8c7c6e34 4838 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4839 .write = mem_cgroup_write,
791badbd 4840 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4841 },
296c81d8
BS
4842 {
4843 .name = "soft_limit_in_bytes",
4844 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4845 .write = mem_cgroup_write,
791badbd 4846 .read_u64 = mem_cgroup_read_u64,
296c81d8 4847 },
8cdea7c0
BS
4848 {
4849 .name = "failcnt",
8c7c6e34 4850 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4851 .write = mem_cgroup_reset,
791badbd 4852 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4853 },
d2ceb9b7
KH
4854 {
4855 .name = "stat",
2da8ca82 4856 .seq_show = memcg_stat_show,
d2ceb9b7 4857 },
c1e862c1
KH
4858 {
4859 .name = "force_empty",
6770c64e 4860 .write = mem_cgroup_force_empty_write,
c1e862c1 4861 },
18f59ea7
BS
4862 {
4863 .name = "use_hierarchy",
4864 .write_u64 = mem_cgroup_hierarchy_write,
4865 .read_u64 = mem_cgroup_hierarchy_read,
4866 },
79bd9814 4867 {
3bc942f3 4868 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4869 .write = memcg_write_event_control,
7dbdb199 4870 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4871 },
a7885eb8
KM
4872 {
4873 .name = "swappiness",
4874 .read_u64 = mem_cgroup_swappiness_read,
4875 .write_u64 = mem_cgroup_swappiness_write,
4876 },
7dc74be0
DN
4877 {
4878 .name = "move_charge_at_immigrate",
4879 .read_u64 = mem_cgroup_move_charge_read,
4880 .write_u64 = mem_cgroup_move_charge_write,
4881 },
9490ff27
KH
4882 {
4883 .name = "oom_control",
2da8ca82 4884 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4885 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4886 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4887 },
70ddf637
AV
4888 {
4889 .name = "pressure_level",
70ddf637 4890 },
406eb0c9
YH
4891#ifdef CONFIG_NUMA
4892 {
4893 .name = "numa_stat",
2da8ca82 4894 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4895 },
4896#endif
510fc4e1
GC
4897 {
4898 .name = "kmem.limit_in_bytes",
4899 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4900 .write = mem_cgroup_write,
791badbd 4901 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4902 },
4903 {
4904 .name = "kmem.usage_in_bytes",
4905 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4906 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4907 },
4908 {
4909 .name = "kmem.failcnt",
4910 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4911 .write = mem_cgroup_reset,
791badbd 4912 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4913 },
4914 {
4915 .name = "kmem.max_usage_in_bytes",
4916 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4917 .write = mem_cgroup_reset,
791badbd 4918 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4919 },
a87425a3
YS
4920#if defined(CONFIG_MEMCG_KMEM) && \
4921 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4922 {
4923 .name = "kmem.slabinfo",
c29b5b3d 4924 .seq_show = mem_cgroup_slab_show,
749c5415
GC
4925 },
4926#endif
d55f90bf
VD
4927 {
4928 .name = "kmem.tcp.limit_in_bytes",
4929 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4930 .write = mem_cgroup_write,
4931 .read_u64 = mem_cgroup_read_u64,
4932 },
4933 {
4934 .name = "kmem.tcp.usage_in_bytes",
4935 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4936 .read_u64 = mem_cgroup_read_u64,
4937 },
4938 {
4939 .name = "kmem.tcp.failcnt",
4940 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4941 .write = mem_cgroup_reset,
4942 .read_u64 = mem_cgroup_read_u64,
4943 },
4944 {
4945 .name = "kmem.tcp.max_usage_in_bytes",
4946 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4947 .write = mem_cgroup_reset,
4948 .read_u64 = mem_cgroup_read_u64,
4949 },
6bc10349 4950 { }, /* terminate */
af36f906 4951};
8c7c6e34 4952
73f576c0
JW
4953/*
4954 * Private memory cgroup IDR
4955 *
4956 * Swap-out records and page cache shadow entries need to store memcg
4957 * references in constrained space, so we maintain an ID space that is
4958 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4959 * memory-controlled cgroups to 64k.
4960 *
b8f2935f 4961 * However, there usually are many references to the offline CSS after
73f576c0
JW
4962 * the cgroup has been destroyed, such as page cache or reclaimable
4963 * slab objects, that don't need to hang on to the ID. We want to keep
4964 * those dead CSS from occupying IDs, or we might quickly exhaust the
4965 * relatively small ID space and prevent the creation of new cgroups
4966 * even when there are much fewer than 64k cgroups - possibly none.
4967 *
4968 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4969 * be freed and recycled when it's no longer needed, which is usually
4970 * when the CSS is offlined.
4971 *
4972 * The only exception to that are records of swapped out tmpfs/shmem
4973 * pages that need to be attributed to live ancestors on swapin. But
4974 * those references are manageable from userspace.
4975 */
4976
4977static DEFINE_IDR(mem_cgroup_idr);
4978
7e97de0b
KT
4979static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4980{
4981 if (memcg->id.id > 0) {
4982 idr_remove(&mem_cgroup_idr, memcg->id.id);
4983 memcg->id.id = 0;
4984 }
4985}
4986
c1514c0a
VF
4987static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4988 unsigned int n)
73f576c0 4989{
1c2d479a 4990 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4991}
4992
615d66c3 4993static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4994{
1c2d479a 4995 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4996 mem_cgroup_id_remove(memcg);
73f576c0
JW
4997
4998 /* Memcg ID pins CSS */
4999 css_put(&memcg->css);
5000 }
5001}
5002
615d66c3
VD
5003static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5004{
5005 mem_cgroup_id_put_many(memcg, 1);
5006}
5007
73f576c0
JW
5008/**
5009 * mem_cgroup_from_id - look up a memcg from a memcg id
5010 * @id: the memcg id to look up
5011 *
5012 * Caller must hold rcu_read_lock().
5013 */
5014struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5015{
5016 WARN_ON_ONCE(!rcu_read_lock_held());
5017 return idr_find(&mem_cgroup_idr, id);
5018}
5019
ef8f2327 5020static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5021{
5022 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5023
5024 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5025 if (!pn)
5026 return 1;
1ecaab2b 5027
7e1c0d6f
SB
5028 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5029 GFP_KERNEL_ACCOUNT);
5030 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5031 kfree(pn);
5032 return 1;
5033 }
5034
ef8f2327 5035 lruvec_init(&pn->lruvec);
ef8f2327
MG
5036 pn->memcg = memcg;
5037
54f72fe0 5038 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5039 return 0;
5040}
5041
ef8f2327 5042static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5043{
00f3ca2c
JW
5044 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5045
4eaf431f
MH
5046 if (!pn)
5047 return;
5048
7e1c0d6f 5049 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5050 kfree(pn);
1ecaab2b
KH
5051}
5052
40e952f9 5053static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5054{
c8b2a36f 5055 int node;
59927fb9 5056
c8b2a36f 5057 for_each_node(node)
ef8f2327 5058 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5059 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5060 kfree(memcg);
59927fb9 5061}
3afe36b1 5062
40e952f9
TE
5063static void mem_cgroup_free(struct mem_cgroup *memcg)
5064{
5065 memcg_wb_domain_exit(memcg);
5066 __mem_cgroup_free(memcg);
5067}
5068
0b8f73e1 5069static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5070{
d142e3e6 5071 struct mem_cgroup *memcg;
6d12e2d8 5072 int node;
97b27821 5073 int __maybe_unused i;
11d67612 5074 long error = -ENOMEM;
8cdea7c0 5075
06b2c3b0 5076 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5077 if (!memcg)
11d67612 5078 return ERR_PTR(error);
0b8f73e1 5079
73f576c0 5080 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5081 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5082 if (memcg->id.id < 0) {
5083 error = memcg->id.id;
73f576c0 5084 goto fail;
11d67612 5085 }
73f576c0 5086
3e38e0aa
RG
5087 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5088 GFP_KERNEL_ACCOUNT);
871789d4 5089 if (!memcg->vmstats_percpu)
0b8f73e1 5090 goto fail;
78fb7466 5091
3ed28fa1 5092 for_each_node(node)
ef8f2327 5093 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5094 goto fail;
f64c3f54 5095
0b8f73e1
JW
5096 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5097 goto fail;
28dbc4b6 5098
f7e1cb6e 5099 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5100 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5101 mutex_init(&memcg->thresholds_lock);
5102 spin_lock_init(&memcg->move_lock);
70ddf637 5103 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5104 INIT_LIST_HEAD(&memcg->event_list);
5105 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5106 memcg->socket_pressure = jiffies;
84c07d11 5107#ifdef CONFIG_MEMCG_KMEM
900a38f0 5108 memcg->kmemcg_id = -1;
bf4f0599 5109 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5110#endif
52ebea74
TH
5111#ifdef CONFIG_CGROUP_WRITEBACK
5112 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5113 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5114 memcg->cgwb_frn[i].done =
5115 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5116#endif
5117#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5118 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5119 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5120 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5121#endif
73f576c0 5122 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5123 return memcg;
5124fail:
7e97de0b 5125 mem_cgroup_id_remove(memcg);
40e952f9 5126 __mem_cgroup_free(memcg);
11d67612 5127 return ERR_PTR(error);
d142e3e6
GC
5128}
5129
0b8f73e1
JW
5130static struct cgroup_subsys_state * __ref
5131mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5132{
0b8f73e1 5133 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5134 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5135
b87d8cef 5136 old_memcg = set_active_memcg(parent);
0b8f73e1 5137 memcg = mem_cgroup_alloc();
b87d8cef 5138 set_active_memcg(old_memcg);
11d67612
YS
5139 if (IS_ERR(memcg))
5140 return ERR_CAST(memcg);
d142e3e6 5141
d1663a90 5142 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5143 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5144 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5145 if (parent) {
5146 memcg->swappiness = mem_cgroup_swappiness(parent);
5147 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5148
3e32cb2e 5149 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5150 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5151 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5152 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5153 } else {
bef8620c
RG
5154 page_counter_init(&memcg->memory, NULL);
5155 page_counter_init(&memcg->swap, NULL);
5156 page_counter_init(&memcg->kmem, NULL);
5157 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5158
0b8f73e1
JW
5159 root_mem_cgroup = memcg;
5160 return &memcg->css;
5161 }
5162
f7e1cb6e 5163 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5164 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5165
0b8f73e1 5166 return &memcg->css;
0b8f73e1
JW
5167}
5168
73f576c0 5169static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5170{
58fa2a55
VD
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5172
da0efe30
MS
5173 if (memcg_online_kmem(memcg))
5174 goto remove_id;
5175
0a4465d3 5176 /*
e4262c4f 5177 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5178 * by the time the maps are allocated. So, we allocate maps
5179 * here, when for_each_mem_cgroup() can't skip it.
5180 */
da0efe30
MS
5181 if (alloc_shrinker_info(memcg))
5182 goto offline_kmem;
0a4465d3 5183
73f576c0 5184 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5185 refcount_set(&memcg->id.ref, 1);
73f576c0 5186 css_get(css);
aa48e47e
SB
5187
5188 if (unlikely(mem_cgroup_is_root(memcg)))
5189 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5190 2UL*HZ);
2f7dd7a4 5191 return 0;
da0efe30
MS
5192offline_kmem:
5193 memcg_offline_kmem(memcg);
5194remove_id:
5195 mem_cgroup_id_remove(memcg);
5196 return -ENOMEM;
8cdea7c0
BS
5197}
5198
eb95419b 5199static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5200{
eb95419b 5201 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5202 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5203
5204 /*
5205 * Unregister events and notify userspace.
5206 * Notify userspace about cgroup removing only after rmdir of cgroup
5207 * directory to avoid race between userspace and kernelspace.
5208 */
4ba9515d 5209 spin_lock_irq(&memcg->event_list_lock);
fba94807 5210 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5211 list_del_init(&event->list);
5212 schedule_work(&event->remove);
5213 }
4ba9515d 5214 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5215
bf8d5d52 5216 page_counter_set_min(&memcg->memory, 0);
23067153 5217 page_counter_set_low(&memcg->memory, 0);
63677c74 5218
567e9ab2 5219 memcg_offline_kmem(memcg);
a178015c 5220 reparent_shrinker_deferred(memcg);
52ebea74 5221 wb_memcg_offline(memcg);
73f576c0 5222
591edfb1
RG
5223 drain_all_stock(memcg);
5224
73f576c0 5225 mem_cgroup_id_put(memcg);
df878fb0
KH
5226}
5227
6df38689
VD
5228static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5229{
5230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5231
5232 invalidate_reclaim_iterators(memcg);
5233}
5234
eb95419b 5235static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5236{
eb95419b 5237 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5238 int __maybe_unused i;
c268e994 5239
97b27821
TH
5240#ifdef CONFIG_CGROUP_WRITEBACK
5241 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5242 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5243#endif
f7e1cb6e 5244 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5245 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5246
0db15298 5247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5248 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5249
0b8f73e1
JW
5250 vmpressure_cleanup(&memcg->vmpressure);
5251 cancel_work_sync(&memcg->high_work);
5252 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5253 free_shrinker_info(memcg);
0b8f73e1 5254 mem_cgroup_free(memcg);
8cdea7c0
BS
5255}
5256
1ced953b
TH
5257/**
5258 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5259 * @css: the target css
5260 *
5261 * Reset the states of the mem_cgroup associated with @css. This is
5262 * invoked when the userland requests disabling on the default hierarchy
5263 * but the memcg is pinned through dependency. The memcg should stop
5264 * applying policies and should revert to the vanilla state as it may be
5265 * made visible again.
5266 *
5267 * The current implementation only resets the essential configurations.
5268 * This needs to be expanded to cover all the visible parts.
5269 */
5270static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5271{
5272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5273
bbec2e15
RG
5274 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5275 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5276 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5277 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5278 page_counter_set_min(&memcg->memory, 0);
23067153 5279 page_counter_set_low(&memcg->memory, 0);
d1663a90 5280 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5281 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5282 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5283 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5284}
5285
2d146aa3
JW
5286static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5287{
5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5289 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5290 struct memcg_vmstats_percpu *statc;
5291 long delta, v;
7e1c0d6f 5292 int i, nid;
2d146aa3
JW
5293
5294 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5295
5296 for (i = 0; i < MEMCG_NR_STAT; i++) {
5297 /*
5298 * Collect the aggregated propagation counts of groups
5299 * below us. We're in a per-cpu loop here and this is
5300 * a global counter, so the first cycle will get them.
5301 */
5302 delta = memcg->vmstats.state_pending[i];
5303 if (delta)
5304 memcg->vmstats.state_pending[i] = 0;
5305
5306 /* Add CPU changes on this level since the last flush */
5307 v = READ_ONCE(statc->state[i]);
5308 if (v != statc->state_prev[i]) {
5309 delta += v - statc->state_prev[i];
5310 statc->state_prev[i] = v;
5311 }
5312
5313 if (!delta)
5314 continue;
5315
5316 /* Aggregate counts on this level and propagate upwards */
5317 memcg->vmstats.state[i] += delta;
5318 if (parent)
5319 parent->vmstats.state_pending[i] += delta;
5320 }
5321
5322 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5323 delta = memcg->vmstats.events_pending[i];
5324 if (delta)
5325 memcg->vmstats.events_pending[i] = 0;
5326
5327 v = READ_ONCE(statc->events[i]);
5328 if (v != statc->events_prev[i]) {
5329 delta += v - statc->events_prev[i];
5330 statc->events_prev[i] = v;
5331 }
5332
5333 if (!delta)
5334 continue;
5335
5336 memcg->vmstats.events[i] += delta;
5337 if (parent)
5338 parent->vmstats.events_pending[i] += delta;
5339 }
7e1c0d6f
SB
5340
5341 for_each_node_state(nid, N_MEMORY) {
5342 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5343 struct mem_cgroup_per_node *ppn = NULL;
5344 struct lruvec_stats_percpu *lstatc;
5345
5346 if (parent)
5347 ppn = parent->nodeinfo[nid];
5348
5349 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5350
5351 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5352 delta = pn->lruvec_stats.state_pending[i];
5353 if (delta)
5354 pn->lruvec_stats.state_pending[i] = 0;
5355
5356 v = READ_ONCE(lstatc->state[i]);
5357 if (v != lstatc->state_prev[i]) {
5358 delta += v - lstatc->state_prev[i];
5359 lstatc->state_prev[i] = v;
5360 }
5361
5362 if (!delta)
5363 continue;
5364
5365 pn->lruvec_stats.state[i] += delta;
5366 if (ppn)
5367 ppn->lruvec_stats.state_pending[i] += delta;
5368 }
5369 }
2d146aa3
JW
5370}
5371
02491447 5372#ifdef CONFIG_MMU
7dc74be0 5373/* Handlers for move charge at task migration. */
854ffa8d 5374static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5375{
05b84301 5376 int ret;
9476db97 5377
d0164adc
MG
5378 /* Try a single bulk charge without reclaim first, kswapd may wake */
5379 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5380 if (!ret) {
854ffa8d 5381 mc.precharge += count;
854ffa8d
DN
5382 return ret;
5383 }
9476db97 5384
3674534b 5385 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5386 while (count--) {
3674534b 5387 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5388 if (ret)
38c5d72f 5389 return ret;
854ffa8d 5390 mc.precharge++;
9476db97 5391 cond_resched();
854ffa8d 5392 }
9476db97 5393 return 0;
4ffef5fe
DN
5394}
5395
4ffef5fe
DN
5396union mc_target {
5397 struct page *page;
02491447 5398 swp_entry_t ent;
4ffef5fe
DN
5399};
5400
4ffef5fe 5401enum mc_target_type {
8d32ff84 5402 MC_TARGET_NONE = 0,
4ffef5fe 5403 MC_TARGET_PAGE,
02491447 5404 MC_TARGET_SWAP,
c733a828 5405 MC_TARGET_DEVICE,
4ffef5fe
DN
5406};
5407
90254a65
DN
5408static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5409 unsigned long addr, pte_t ptent)
4ffef5fe 5410{
25b2995a 5411 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5412
90254a65
DN
5413 if (!page || !page_mapped(page))
5414 return NULL;
5415 if (PageAnon(page)) {
1dfab5ab 5416 if (!(mc.flags & MOVE_ANON))
90254a65 5417 return NULL;
1dfab5ab
JW
5418 } else {
5419 if (!(mc.flags & MOVE_FILE))
5420 return NULL;
5421 }
90254a65
DN
5422 if (!get_page_unless_zero(page))
5423 return NULL;
5424
5425 return page;
5426}
5427
c733a828 5428#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5429static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5430 pte_t ptent, swp_entry_t *entry)
90254a65 5431{
90254a65
DN
5432 struct page *page = NULL;
5433 swp_entry_t ent = pte_to_swp_entry(ptent);
5434
9a137153 5435 if (!(mc.flags & MOVE_ANON))
90254a65 5436 return NULL;
c733a828
JG
5437
5438 /*
27674ef6
CH
5439 * Handle device private pages that are not accessible by the CPU, but
5440 * stored as special swap entries in the page table.
c733a828
JG
5441 */
5442 if (is_device_private_entry(ent)) {
af5cdaf8 5443 page = pfn_swap_entry_to_page(ent);
27674ef6 5444 if (!get_page_unless_zero(page))
c733a828
JG
5445 return NULL;
5446 return page;
5447 }
5448
9a137153
RC
5449 if (non_swap_entry(ent))
5450 return NULL;
5451
4b91355e
KH
5452 /*
5453 * Because lookup_swap_cache() updates some statistics counter,
5454 * we call find_get_page() with swapper_space directly.
5455 */
f6ab1f7f 5456 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5457 entry->val = ent.val;
90254a65
DN
5458
5459 return page;
5460}
4b91355e
KH
5461#else
5462static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5463 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5464{
5465 return NULL;
5466}
5467#endif
90254a65 5468
87946a72 5469static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5470 unsigned long addr, pte_t ptent)
87946a72 5471{
87946a72
DN
5472 if (!vma->vm_file) /* anonymous vma */
5473 return NULL;
1dfab5ab 5474 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5475 return NULL;
5476
87946a72 5477 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5478 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5479 return find_get_incore_page(vma->vm_file->f_mapping,
5480 linear_page_index(vma, addr));
87946a72
DN
5481}
5482
b1b0deab
CG
5483/**
5484 * mem_cgroup_move_account - move account of the page
5485 * @page: the page
25843c2b 5486 * @compound: charge the page as compound or small page
b1b0deab
CG
5487 * @from: mem_cgroup which the page is moved from.
5488 * @to: mem_cgroup which the page is moved to. @from != @to.
5489 *
3ac808fd 5490 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5491 *
5492 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5493 * from old cgroup.
5494 */
5495static int mem_cgroup_move_account(struct page *page,
f627c2f5 5496 bool compound,
b1b0deab
CG
5497 struct mem_cgroup *from,
5498 struct mem_cgroup *to)
5499{
fcce4672 5500 struct folio *folio = page_folio(page);
ae8af438
KK
5501 struct lruvec *from_vec, *to_vec;
5502 struct pglist_data *pgdat;
fcce4672 5503 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5504 int nid, ret;
b1b0deab
CG
5505
5506 VM_BUG_ON(from == to);
fcce4672 5507 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5508 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5509
5510 /*
6a93ca8f 5511 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5512 * page's memory cgroup of its source page while we change it.
b1b0deab 5513 */
f627c2f5 5514 ret = -EBUSY;
fcce4672 5515 if (!folio_trylock(folio))
b1b0deab
CG
5516 goto out;
5517
5518 ret = -EINVAL;
fcce4672 5519 if (folio_memcg(folio) != from)
b1b0deab
CG
5520 goto out_unlock;
5521
fcce4672 5522 pgdat = folio_pgdat(folio);
867e5e1d
JW
5523 from_vec = mem_cgroup_lruvec(from, pgdat);
5524 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5525
fcce4672 5526 folio_memcg_lock(folio);
b1b0deab 5527
fcce4672
MWO
5528 if (folio_test_anon(folio)) {
5529 if (folio_mapped(folio)) {
be5d0a74
JW
5530 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5531 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5532 if (folio_test_transhuge(folio)) {
69473e5d
MS
5533 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5534 -nr_pages);
5535 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5536 nr_pages);
468c3982 5537 }
be5d0a74
JW
5538 }
5539 } else {
0d1c2072
JW
5540 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5541 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5542
fcce4672 5543 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5544 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5545 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5546 }
5547
fcce4672 5548 if (folio_mapped(folio)) {
49e50d27
JW
5549 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5550 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5551 }
b1b0deab 5552
fcce4672
MWO
5553 if (folio_test_dirty(folio)) {
5554 struct address_space *mapping = folio_mapping(folio);
c4843a75 5555
f56753ac 5556 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5557 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5558 -nr_pages);
5559 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5560 nr_pages);
5561 }
c4843a75
GT
5562 }
5563 }
5564
fcce4672 5565 if (folio_test_writeback(folio)) {
ae8af438
KK
5566 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5567 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5568 }
5569
5570 /*
abb242f5
JW
5571 * All state has been migrated, let's switch to the new memcg.
5572 *
bcfe06bf 5573 * It is safe to change page's memcg here because the page
abb242f5
JW
5574 * is referenced, charged, isolated, and locked: we can't race
5575 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5576 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5577 *
5578 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5579 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5580 * new memcg that isn't locked, the above state can change
5581 * concurrently again. Make sure we're truly done with it.
b1b0deab 5582 */
abb242f5 5583 smp_mb();
b1b0deab 5584
1a3e1f40
JW
5585 css_get(&to->css);
5586 css_put(&from->css);
5587
fcce4672 5588 folio->memcg_data = (unsigned long)to;
87eaceb3 5589
f70ad448 5590 __folio_memcg_unlock(from);
b1b0deab
CG
5591
5592 ret = 0;
fcce4672 5593 nid = folio_nid(folio);
b1b0deab
CG
5594
5595 local_irq_disable();
6e0110c2 5596 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5597 memcg_check_events(to, nid);
6e0110c2 5598 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5599 memcg_check_events(from, nid);
b1b0deab
CG
5600 local_irq_enable();
5601out_unlock:
fcce4672 5602 folio_unlock(folio);
b1b0deab
CG
5603out:
5604 return ret;
5605}
5606
7cf7806c
LR
5607/**
5608 * get_mctgt_type - get target type of moving charge
5609 * @vma: the vma the pte to be checked belongs
5610 * @addr: the address corresponding to the pte to be checked
5611 * @ptent: the pte to be checked
5612 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5613 *
5614 * Returns
5615 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5616 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5617 * move charge. if @target is not NULL, the page is stored in target->page
5618 * with extra refcnt got(Callers should handle it).
5619 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5620 * target for charge migration. if @target is not NULL, the entry is stored
5621 * in target->ent.
25b2995a
CH
5622 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5623 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5624 * For now we such page is charge like a regular page would be as for all
5625 * intent and purposes it is just special memory taking the place of a
5626 * regular page.
c733a828
JG
5627 *
5628 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5629 *
5630 * Called with pte lock held.
5631 */
5632
8d32ff84 5633static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5634 unsigned long addr, pte_t ptent, union mc_target *target)
5635{
5636 struct page *page = NULL;
8d32ff84 5637 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5638 swp_entry_t ent = { .val = 0 };
5639
5640 if (pte_present(ptent))
5641 page = mc_handle_present_pte(vma, addr, ptent);
5642 else if (is_swap_pte(ptent))
48406ef8 5643 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5644 else if (pte_none(ptent))
48384b0b 5645 page = mc_handle_file_pte(vma, addr, ptent);
90254a65
DN
5646
5647 if (!page && !ent.val)
8d32ff84 5648 return ret;
02491447 5649 if (page) {
02491447 5650 /*
0a31bc97 5651 * Do only loose check w/o serialization.
1306a85a 5652 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5653 * not under LRU exclusion.
02491447 5654 */
bcfe06bf 5655 if (page_memcg(page) == mc.from) {
02491447 5656 ret = MC_TARGET_PAGE;
25b2995a 5657 if (is_device_private_page(page))
c733a828 5658 ret = MC_TARGET_DEVICE;
02491447
DN
5659 if (target)
5660 target->page = page;
5661 }
5662 if (!ret || !target)
5663 put_page(page);
5664 }
3e14a57b
HY
5665 /*
5666 * There is a swap entry and a page doesn't exist or isn't charged.
5667 * But we cannot move a tail-page in a THP.
5668 */
5669 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5670 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5671 ret = MC_TARGET_SWAP;
5672 if (target)
5673 target->ent = ent;
4ffef5fe 5674 }
4ffef5fe
DN
5675 return ret;
5676}
5677
12724850
NH
5678#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5679/*
d6810d73
HY
5680 * We don't consider PMD mapped swapping or file mapped pages because THP does
5681 * not support them for now.
12724850
NH
5682 * Caller should make sure that pmd_trans_huge(pmd) is true.
5683 */
5684static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5685 unsigned long addr, pmd_t pmd, union mc_target *target)
5686{
5687 struct page *page = NULL;
12724850
NH
5688 enum mc_target_type ret = MC_TARGET_NONE;
5689
84c3fc4e
ZY
5690 if (unlikely(is_swap_pmd(pmd))) {
5691 VM_BUG_ON(thp_migration_supported() &&
5692 !is_pmd_migration_entry(pmd));
5693 return ret;
5694 }
12724850 5695 page = pmd_page(pmd);
309381fe 5696 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5697 if (!(mc.flags & MOVE_ANON))
12724850 5698 return ret;
bcfe06bf 5699 if (page_memcg(page) == mc.from) {
12724850
NH
5700 ret = MC_TARGET_PAGE;
5701 if (target) {
5702 get_page(page);
5703 target->page = page;
5704 }
5705 }
5706 return ret;
5707}
5708#else
5709static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5710 unsigned long addr, pmd_t pmd, union mc_target *target)
5711{
5712 return MC_TARGET_NONE;
5713}
5714#endif
5715
4ffef5fe
DN
5716static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5717 unsigned long addr, unsigned long end,
5718 struct mm_walk *walk)
5719{
26bcd64a 5720 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5721 pte_t *pte;
5722 spinlock_t *ptl;
5723
b6ec57f4
KS
5724 ptl = pmd_trans_huge_lock(pmd, vma);
5725 if (ptl) {
c733a828
JG
5726 /*
5727 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5728 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5729 * this might change.
c733a828 5730 */
12724850
NH
5731 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5732 mc.precharge += HPAGE_PMD_NR;
bf929152 5733 spin_unlock(ptl);
1a5a9906 5734 return 0;
12724850 5735 }
03319327 5736
45f83cef
AA
5737 if (pmd_trans_unstable(pmd))
5738 return 0;
4ffef5fe
DN
5739 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5740 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5741 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5742 mc.precharge++; /* increment precharge temporarily */
5743 pte_unmap_unlock(pte - 1, ptl);
5744 cond_resched();
5745
7dc74be0
DN
5746 return 0;
5747}
5748
7b86ac33
CH
5749static const struct mm_walk_ops precharge_walk_ops = {
5750 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5751};
5752
4ffef5fe
DN
5753static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5754{
5755 unsigned long precharge;
4ffef5fe 5756
d8ed45c5 5757 mmap_read_lock(mm);
7b86ac33 5758 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5759 mmap_read_unlock(mm);
4ffef5fe
DN
5760
5761 precharge = mc.precharge;
5762 mc.precharge = 0;
5763
5764 return precharge;
5765}
5766
4ffef5fe
DN
5767static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5768{
dfe076b0
DN
5769 unsigned long precharge = mem_cgroup_count_precharge(mm);
5770
5771 VM_BUG_ON(mc.moving_task);
5772 mc.moving_task = current;
5773 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5774}
5775
dfe076b0
DN
5776/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5777static void __mem_cgroup_clear_mc(void)
4ffef5fe 5778{
2bd9bb20
KH
5779 struct mem_cgroup *from = mc.from;
5780 struct mem_cgroup *to = mc.to;
5781
4ffef5fe 5782 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5783 if (mc.precharge) {
00501b53 5784 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5785 mc.precharge = 0;
5786 }
5787 /*
5788 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5789 * we must uncharge here.
5790 */
5791 if (mc.moved_charge) {
00501b53 5792 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5793 mc.moved_charge = 0;
4ffef5fe 5794 }
483c30b5
DN
5795 /* we must fixup refcnts and charges */
5796 if (mc.moved_swap) {
483c30b5 5797 /* uncharge swap account from the old cgroup */
ce00a967 5798 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5799 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5800
615d66c3
VD
5801 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5802
05b84301 5803 /*
3e32cb2e
JW
5804 * we charged both to->memory and to->memsw, so we
5805 * should uncharge to->memory.
05b84301 5806 */
ce00a967 5807 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5808 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5809
483c30b5
DN
5810 mc.moved_swap = 0;
5811 }
dfe076b0
DN
5812 memcg_oom_recover(from);
5813 memcg_oom_recover(to);
5814 wake_up_all(&mc.waitq);
5815}
5816
5817static void mem_cgroup_clear_mc(void)
5818{
264a0ae1
TH
5819 struct mm_struct *mm = mc.mm;
5820
dfe076b0
DN
5821 /*
5822 * we must clear moving_task before waking up waiters at the end of
5823 * task migration.
5824 */
5825 mc.moving_task = NULL;
5826 __mem_cgroup_clear_mc();
2bd9bb20 5827 spin_lock(&mc.lock);
4ffef5fe
DN
5828 mc.from = NULL;
5829 mc.to = NULL;
264a0ae1 5830 mc.mm = NULL;
2bd9bb20 5831 spin_unlock(&mc.lock);
264a0ae1
TH
5832
5833 mmput(mm);
4ffef5fe
DN
5834}
5835
1f7dd3e5 5836static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5837{
1f7dd3e5 5838 struct cgroup_subsys_state *css;
eed67d75 5839 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5840 struct mem_cgroup *from;
4530eddb 5841 struct task_struct *leader, *p;
9f2115f9 5842 struct mm_struct *mm;
1dfab5ab 5843 unsigned long move_flags;
9f2115f9 5844 int ret = 0;
7dc74be0 5845
1f7dd3e5
TH
5846 /* charge immigration isn't supported on the default hierarchy */
5847 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5848 return 0;
5849
4530eddb
TH
5850 /*
5851 * Multi-process migrations only happen on the default hierarchy
5852 * where charge immigration is not used. Perform charge
5853 * immigration if @tset contains a leader and whine if there are
5854 * multiple.
5855 */
5856 p = NULL;
1f7dd3e5 5857 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5858 WARN_ON_ONCE(p);
5859 p = leader;
1f7dd3e5 5860 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5861 }
5862 if (!p)
5863 return 0;
5864
1f7dd3e5 5865 /*
f0953a1b 5866 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5867 * tunable will only affect upcoming migrations, not the current one.
5868 * So we need to save it, and keep it going.
5869 */
5870 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5871 if (!move_flags)
5872 return 0;
5873
9f2115f9
TH
5874 from = mem_cgroup_from_task(p);
5875
5876 VM_BUG_ON(from == memcg);
5877
5878 mm = get_task_mm(p);
5879 if (!mm)
5880 return 0;
5881 /* We move charges only when we move a owner of the mm */
5882 if (mm->owner == p) {
5883 VM_BUG_ON(mc.from);
5884 VM_BUG_ON(mc.to);
5885 VM_BUG_ON(mc.precharge);
5886 VM_BUG_ON(mc.moved_charge);
5887 VM_BUG_ON(mc.moved_swap);
5888
5889 spin_lock(&mc.lock);
264a0ae1 5890 mc.mm = mm;
9f2115f9
TH
5891 mc.from = from;
5892 mc.to = memcg;
5893 mc.flags = move_flags;
5894 spin_unlock(&mc.lock);
5895 /* We set mc.moving_task later */
5896
5897 ret = mem_cgroup_precharge_mc(mm);
5898 if (ret)
5899 mem_cgroup_clear_mc();
264a0ae1
TH
5900 } else {
5901 mmput(mm);
7dc74be0
DN
5902 }
5903 return ret;
5904}
5905
1f7dd3e5 5906static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5907{
4e2f245d
JW
5908 if (mc.to)
5909 mem_cgroup_clear_mc();
7dc74be0
DN
5910}
5911
4ffef5fe
DN
5912static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5913 unsigned long addr, unsigned long end,
5914 struct mm_walk *walk)
7dc74be0 5915{
4ffef5fe 5916 int ret = 0;
26bcd64a 5917 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5918 pte_t *pte;
5919 spinlock_t *ptl;
12724850
NH
5920 enum mc_target_type target_type;
5921 union mc_target target;
5922 struct page *page;
4ffef5fe 5923
b6ec57f4
KS
5924 ptl = pmd_trans_huge_lock(pmd, vma);
5925 if (ptl) {
62ade86a 5926 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5927 spin_unlock(ptl);
12724850
NH
5928 return 0;
5929 }
5930 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5931 if (target_type == MC_TARGET_PAGE) {
5932 page = target.page;
5933 if (!isolate_lru_page(page)) {
f627c2f5 5934 if (!mem_cgroup_move_account(page, true,
1306a85a 5935 mc.from, mc.to)) {
12724850
NH
5936 mc.precharge -= HPAGE_PMD_NR;
5937 mc.moved_charge += HPAGE_PMD_NR;
5938 }
5939 putback_lru_page(page);
5940 }
5941 put_page(page);
c733a828
JG
5942 } else if (target_type == MC_TARGET_DEVICE) {
5943 page = target.page;
5944 if (!mem_cgroup_move_account(page, true,
5945 mc.from, mc.to)) {
5946 mc.precharge -= HPAGE_PMD_NR;
5947 mc.moved_charge += HPAGE_PMD_NR;
5948 }
5949 put_page(page);
12724850 5950 }
bf929152 5951 spin_unlock(ptl);
1a5a9906 5952 return 0;
12724850
NH
5953 }
5954
45f83cef
AA
5955 if (pmd_trans_unstable(pmd))
5956 return 0;
4ffef5fe
DN
5957retry:
5958 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5959 for (; addr != end; addr += PAGE_SIZE) {
5960 pte_t ptent = *(pte++);
c733a828 5961 bool device = false;
02491447 5962 swp_entry_t ent;
4ffef5fe
DN
5963
5964 if (!mc.precharge)
5965 break;
5966
8d32ff84 5967 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5968 case MC_TARGET_DEVICE:
5969 device = true;
e4a9bc58 5970 fallthrough;
4ffef5fe
DN
5971 case MC_TARGET_PAGE:
5972 page = target.page;
53f9263b
KS
5973 /*
5974 * We can have a part of the split pmd here. Moving it
5975 * can be done but it would be too convoluted so simply
5976 * ignore such a partial THP and keep it in original
5977 * memcg. There should be somebody mapping the head.
5978 */
5979 if (PageTransCompound(page))
5980 goto put;
c733a828 5981 if (!device && isolate_lru_page(page))
4ffef5fe 5982 goto put;
f627c2f5
KS
5983 if (!mem_cgroup_move_account(page, false,
5984 mc.from, mc.to)) {
4ffef5fe 5985 mc.precharge--;
854ffa8d
DN
5986 /* we uncharge from mc.from later. */
5987 mc.moved_charge++;
4ffef5fe 5988 }
c733a828
JG
5989 if (!device)
5990 putback_lru_page(page);
8d32ff84 5991put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5992 put_page(page);
5993 break;
02491447
DN
5994 case MC_TARGET_SWAP:
5995 ent = target.ent;
e91cbb42 5996 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5997 mc.precharge--;
8d22a935
HD
5998 mem_cgroup_id_get_many(mc.to, 1);
5999 /* we fixup other refcnts and charges later. */
483c30b5
DN
6000 mc.moved_swap++;
6001 }
02491447 6002 break;
4ffef5fe
DN
6003 default:
6004 break;
6005 }
6006 }
6007 pte_unmap_unlock(pte - 1, ptl);
6008 cond_resched();
6009
6010 if (addr != end) {
6011 /*
6012 * We have consumed all precharges we got in can_attach().
6013 * We try charge one by one, but don't do any additional
6014 * charges to mc.to if we have failed in charge once in attach()
6015 * phase.
6016 */
854ffa8d 6017 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6018 if (!ret)
6019 goto retry;
6020 }
6021
6022 return ret;
6023}
6024
7b86ac33
CH
6025static const struct mm_walk_ops charge_walk_ops = {
6026 .pmd_entry = mem_cgroup_move_charge_pte_range,
6027};
6028
264a0ae1 6029static void mem_cgroup_move_charge(void)
4ffef5fe 6030{
4ffef5fe 6031 lru_add_drain_all();
312722cb 6032 /*
81f8c3a4
JW
6033 * Signal lock_page_memcg() to take the memcg's move_lock
6034 * while we're moving its pages to another memcg. Then wait
6035 * for already started RCU-only updates to finish.
312722cb
JW
6036 */
6037 atomic_inc(&mc.from->moving_account);
6038 synchronize_rcu();
dfe076b0 6039retry:
d8ed45c5 6040 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6041 /*
c1e8d7c6 6042 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6043 * waitq. So we cancel all extra charges, wake up all waiters,
6044 * and retry. Because we cancel precharges, we might not be able
6045 * to move enough charges, but moving charge is a best-effort
6046 * feature anyway, so it wouldn't be a big problem.
6047 */
6048 __mem_cgroup_clear_mc();
6049 cond_resched();
6050 goto retry;
6051 }
26bcd64a
NH
6052 /*
6053 * When we have consumed all precharges and failed in doing
6054 * additional charge, the page walk just aborts.
6055 */
7b86ac33
CH
6056 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6057 NULL);
0247f3f4 6058
d8ed45c5 6059 mmap_read_unlock(mc.mm);
312722cb 6060 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6061}
6062
264a0ae1 6063static void mem_cgroup_move_task(void)
67e465a7 6064{
264a0ae1
TH
6065 if (mc.to) {
6066 mem_cgroup_move_charge();
a433658c 6067 mem_cgroup_clear_mc();
264a0ae1 6068 }
67e465a7 6069}
5cfb80a7 6070#else /* !CONFIG_MMU */
1f7dd3e5 6071static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6072{
6073 return 0;
6074}
1f7dd3e5 6075static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6076{
6077}
264a0ae1 6078static void mem_cgroup_move_task(void)
5cfb80a7
DN
6079{
6080}
6081#endif
67e465a7 6082
677dc973
CD
6083static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6084{
6085 if (value == PAGE_COUNTER_MAX)
6086 seq_puts(m, "max\n");
6087 else
6088 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6089
6090 return 0;
6091}
6092
241994ed
JW
6093static u64 memory_current_read(struct cgroup_subsys_state *css,
6094 struct cftype *cft)
6095{
f5fc3c5d
JW
6096 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6097
6098 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6099}
6100
bf8d5d52
RG
6101static int memory_min_show(struct seq_file *m, void *v)
6102{
677dc973
CD
6103 return seq_puts_memcg_tunable(m,
6104 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6105}
6106
6107static ssize_t memory_min_write(struct kernfs_open_file *of,
6108 char *buf, size_t nbytes, loff_t off)
6109{
6110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6111 unsigned long min;
6112 int err;
6113
6114 buf = strstrip(buf);
6115 err = page_counter_memparse(buf, "max", &min);
6116 if (err)
6117 return err;
6118
6119 page_counter_set_min(&memcg->memory, min);
6120
6121 return nbytes;
6122}
6123
241994ed
JW
6124static int memory_low_show(struct seq_file *m, void *v)
6125{
677dc973
CD
6126 return seq_puts_memcg_tunable(m,
6127 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6128}
6129
6130static ssize_t memory_low_write(struct kernfs_open_file *of,
6131 char *buf, size_t nbytes, loff_t off)
6132{
6133 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6134 unsigned long low;
6135 int err;
6136
6137 buf = strstrip(buf);
d2973697 6138 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6139 if (err)
6140 return err;
6141
23067153 6142 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6143
6144 return nbytes;
6145}
6146
6147static int memory_high_show(struct seq_file *m, void *v)
6148{
d1663a90
JK
6149 return seq_puts_memcg_tunable(m,
6150 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6151}
6152
6153static ssize_t memory_high_write(struct kernfs_open_file *of,
6154 char *buf, size_t nbytes, loff_t off)
6155{
6156 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6157 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6158 bool drained = false;
241994ed
JW
6159 unsigned long high;
6160 int err;
6161
6162 buf = strstrip(buf);
d2973697 6163 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6164 if (err)
6165 return err;
6166
e82553c1
JW
6167 page_counter_set_high(&memcg->memory, high);
6168
8c8c383c
JW
6169 for (;;) {
6170 unsigned long nr_pages = page_counter_read(&memcg->memory);
6171 unsigned long reclaimed;
6172
6173 if (nr_pages <= high)
6174 break;
6175
6176 if (signal_pending(current))
6177 break;
6178
6179 if (!drained) {
6180 drain_all_stock(memcg);
6181 drained = true;
6182 continue;
6183 }
6184
6185 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6186 GFP_KERNEL, true);
6187
6188 if (!reclaimed && !nr_retries--)
6189 break;
6190 }
588083bb 6191
19ce33ac 6192 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6193 return nbytes;
6194}
6195
6196static int memory_max_show(struct seq_file *m, void *v)
6197{
677dc973
CD
6198 return seq_puts_memcg_tunable(m,
6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6200}
6201
6202static ssize_t memory_max_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6206 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6207 bool drained = false;
241994ed
JW
6208 unsigned long max;
6209 int err;
6210
6211 buf = strstrip(buf);
d2973697 6212 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6213 if (err)
6214 return err;
6215
bbec2e15 6216 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6217
6218 for (;;) {
6219 unsigned long nr_pages = page_counter_read(&memcg->memory);
6220
6221 if (nr_pages <= max)
6222 break;
6223
7249c9f0 6224 if (signal_pending(current))
b6e6edcf 6225 break;
b6e6edcf
JW
6226
6227 if (!drained) {
6228 drain_all_stock(memcg);
6229 drained = true;
6230 continue;
6231 }
6232
6233 if (nr_reclaims) {
6234 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6235 GFP_KERNEL, true))
6236 nr_reclaims--;
6237 continue;
6238 }
6239
e27be240 6240 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6241 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6242 break;
6243 }
241994ed 6244
2529bb3a 6245 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6246 return nbytes;
6247}
6248
1e577f97
SB
6249static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6250{
6251 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6252 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6253 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6254 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6255 seq_printf(m, "oom_kill %lu\n",
6256 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6257 seq_printf(m, "oom_group_kill %lu\n",
6258 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6259}
6260
241994ed
JW
6261static int memory_events_show(struct seq_file *m, void *v)
6262{
aa9694bb 6263 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6264
1e577f97
SB
6265 __memory_events_show(m, memcg->memory_events);
6266 return 0;
6267}
6268
6269static int memory_events_local_show(struct seq_file *m, void *v)
6270{
6271 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6272
1e577f97 6273 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6274 return 0;
6275}
6276
587d9f72
JW
6277static int memory_stat_show(struct seq_file *m, void *v)
6278{
aa9694bb 6279 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6280 char *buf;
1ff9e6e1 6281
c8713d0b
JW
6282 buf = memory_stat_format(memcg);
6283 if (!buf)
6284 return -ENOMEM;
6285 seq_puts(m, buf);
6286 kfree(buf);
587d9f72
JW
6287 return 0;
6288}
6289
5f9a4f4a 6290#ifdef CONFIG_NUMA
fff66b79
MS
6291static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6292 int item)
6293{
6294 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6295}
6296
5f9a4f4a
MS
6297static int memory_numa_stat_show(struct seq_file *m, void *v)
6298{
6299 int i;
6300 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6301
fd25a9e0 6302 mem_cgroup_flush_stats();
7e1c0d6f 6303
5f9a4f4a
MS
6304 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6305 int nid;
6306
6307 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6308 continue;
6309
6310 seq_printf(m, "%s", memory_stats[i].name);
6311 for_each_node_state(nid, N_MEMORY) {
6312 u64 size;
6313 struct lruvec *lruvec;
6314
6315 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6316 size = lruvec_page_state_output(lruvec,
6317 memory_stats[i].idx);
5f9a4f4a
MS
6318 seq_printf(m, " N%d=%llu", nid, size);
6319 }
6320 seq_putc(m, '\n');
6321 }
6322
6323 return 0;
6324}
6325#endif
6326
3d8b38eb
RG
6327static int memory_oom_group_show(struct seq_file *m, void *v)
6328{
aa9694bb 6329 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6330
6331 seq_printf(m, "%d\n", memcg->oom_group);
6332
6333 return 0;
6334}
6335
6336static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6337 char *buf, size_t nbytes, loff_t off)
6338{
6339 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6340 int ret, oom_group;
6341
6342 buf = strstrip(buf);
6343 if (!buf)
6344 return -EINVAL;
6345
6346 ret = kstrtoint(buf, 0, &oom_group);
6347 if (ret)
6348 return ret;
6349
6350 if (oom_group != 0 && oom_group != 1)
6351 return -EINVAL;
6352
6353 memcg->oom_group = oom_group;
6354
6355 return nbytes;
6356}
6357
241994ed
JW
6358static struct cftype memory_files[] = {
6359 {
6360 .name = "current",
f5fc3c5d 6361 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6362 .read_u64 = memory_current_read,
6363 },
bf8d5d52
RG
6364 {
6365 .name = "min",
6366 .flags = CFTYPE_NOT_ON_ROOT,
6367 .seq_show = memory_min_show,
6368 .write = memory_min_write,
6369 },
241994ed
JW
6370 {
6371 .name = "low",
6372 .flags = CFTYPE_NOT_ON_ROOT,
6373 .seq_show = memory_low_show,
6374 .write = memory_low_write,
6375 },
6376 {
6377 .name = "high",
6378 .flags = CFTYPE_NOT_ON_ROOT,
6379 .seq_show = memory_high_show,
6380 .write = memory_high_write,
6381 },
6382 {
6383 .name = "max",
6384 .flags = CFTYPE_NOT_ON_ROOT,
6385 .seq_show = memory_max_show,
6386 .write = memory_max_write,
6387 },
6388 {
6389 .name = "events",
6390 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6391 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6392 .seq_show = memory_events_show,
6393 },
1e577f97
SB
6394 {
6395 .name = "events.local",
6396 .flags = CFTYPE_NOT_ON_ROOT,
6397 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6398 .seq_show = memory_events_local_show,
6399 },
587d9f72
JW
6400 {
6401 .name = "stat",
587d9f72
JW
6402 .seq_show = memory_stat_show,
6403 },
5f9a4f4a
MS
6404#ifdef CONFIG_NUMA
6405 {
6406 .name = "numa_stat",
6407 .seq_show = memory_numa_stat_show,
6408 },
6409#endif
3d8b38eb
RG
6410 {
6411 .name = "oom.group",
6412 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6413 .seq_show = memory_oom_group_show,
6414 .write = memory_oom_group_write,
6415 },
241994ed
JW
6416 { } /* terminate */
6417};
6418
073219e9 6419struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6420 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6421 .css_online = mem_cgroup_css_online,
92fb9748 6422 .css_offline = mem_cgroup_css_offline,
6df38689 6423 .css_released = mem_cgroup_css_released,
92fb9748 6424 .css_free = mem_cgroup_css_free,
1ced953b 6425 .css_reset = mem_cgroup_css_reset,
2d146aa3 6426 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6427 .can_attach = mem_cgroup_can_attach,
6428 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6429 .post_attach = mem_cgroup_move_task,
241994ed
JW
6430 .dfl_cftypes = memory_files,
6431 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6432 .early_init = 0,
8cdea7c0 6433};
c077719b 6434
bc50bcc6
JW
6435/*
6436 * This function calculates an individual cgroup's effective
6437 * protection which is derived from its own memory.min/low, its
6438 * parent's and siblings' settings, as well as the actual memory
6439 * distribution in the tree.
6440 *
6441 * The following rules apply to the effective protection values:
6442 *
6443 * 1. At the first level of reclaim, effective protection is equal to
6444 * the declared protection in memory.min and memory.low.
6445 *
6446 * 2. To enable safe delegation of the protection configuration, at
6447 * subsequent levels the effective protection is capped to the
6448 * parent's effective protection.
6449 *
6450 * 3. To make complex and dynamic subtrees easier to configure, the
6451 * user is allowed to overcommit the declared protection at a given
6452 * level. If that is the case, the parent's effective protection is
6453 * distributed to the children in proportion to how much protection
6454 * they have declared and how much of it they are utilizing.
6455 *
6456 * This makes distribution proportional, but also work-conserving:
6457 * if one cgroup claims much more protection than it uses memory,
6458 * the unused remainder is available to its siblings.
6459 *
6460 * 4. Conversely, when the declared protection is undercommitted at a
6461 * given level, the distribution of the larger parental protection
6462 * budget is NOT proportional. A cgroup's protection from a sibling
6463 * is capped to its own memory.min/low setting.
6464 *
8a931f80
JW
6465 * 5. However, to allow protecting recursive subtrees from each other
6466 * without having to declare each individual cgroup's fixed share
6467 * of the ancestor's claim to protection, any unutilized -
6468 * "floating" - protection from up the tree is distributed in
6469 * proportion to each cgroup's *usage*. This makes the protection
6470 * neutral wrt sibling cgroups and lets them compete freely over
6471 * the shared parental protection budget, but it protects the
6472 * subtree as a whole from neighboring subtrees.
6473 *
6474 * Note that 4. and 5. are not in conflict: 4. is about protecting
6475 * against immediate siblings whereas 5. is about protecting against
6476 * neighboring subtrees.
bc50bcc6
JW
6477 */
6478static unsigned long effective_protection(unsigned long usage,
8a931f80 6479 unsigned long parent_usage,
bc50bcc6
JW
6480 unsigned long setting,
6481 unsigned long parent_effective,
6482 unsigned long siblings_protected)
6483{
6484 unsigned long protected;
8a931f80 6485 unsigned long ep;
bc50bcc6
JW
6486
6487 protected = min(usage, setting);
6488 /*
6489 * If all cgroups at this level combined claim and use more
6490 * protection then what the parent affords them, distribute
6491 * shares in proportion to utilization.
6492 *
6493 * We are using actual utilization rather than the statically
6494 * claimed protection in order to be work-conserving: claimed
6495 * but unused protection is available to siblings that would
6496 * otherwise get a smaller chunk than what they claimed.
6497 */
6498 if (siblings_protected > parent_effective)
6499 return protected * parent_effective / siblings_protected;
6500
6501 /*
6502 * Ok, utilized protection of all children is within what the
6503 * parent affords them, so we know whatever this child claims
6504 * and utilizes is effectively protected.
6505 *
6506 * If there is unprotected usage beyond this value, reclaim
6507 * will apply pressure in proportion to that amount.
6508 *
6509 * If there is unutilized protection, the cgroup will be fully
6510 * shielded from reclaim, but we do return a smaller value for
6511 * protection than what the group could enjoy in theory. This
6512 * is okay. With the overcommit distribution above, effective
6513 * protection is always dependent on how memory is actually
6514 * consumed among the siblings anyway.
6515 */
8a931f80
JW
6516 ep = protected;
6517
6518 /*
6519 * If the children aren't claiming (all of) the protection
6520 * afforded to them by the parent, distribute the remainder in
6521 * proportion to the (unprotected) memory of each cgroup. That
6522 * way, cgroups that aren't explicitly prioritized wrt each
6523 * other compete freely over the allowance, but they are
6524 * collectively protected from neighboring trees.
6525 *
6526 * We're using unprotected memory for the weight so that if
6527 * some cgroups DO claim explicit protection, we don't protect
6528 * the same bytes twice.
cd324edc
JW
6529 *
6530 * Check both usage and parent_usage against the respective
6531 * protected values. One should imply the other, but they
6532 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6533 */
6534 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6535 return ep;
cd324edc
JW
6536 if (parent_effective > siblings_protected &&
6537 parent_usage > siblings_protected &&
6538 usage > protected) {
8a931f80
JW
6539 unsigned long unclaimed;
6540
6541 unclaimed = parent_effective - siblings_protected;
6542 unclaimed *= usage - protected;
6543 unclaimed /= parent_usage - siblings_protected;
6544
6545 ep += unclaimed;
6546 }
6547
6548 return ep;
bc50bcc6
JW
6549}
6550
241994ed 6551/**
05395718 6552 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6553 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6554 * @memcg: the memory cgroup to check
6555 *
23067153
RG
6556 * WARNING: This function is not stateless! It can only be used as part
6557 * of a top-down tree iteration, not for isolated queries.
241994ed 6558 */
45c7f7e1
CD
6559void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6560 struct mem_cgroup *memcg)
241994ed 6561{
8a931f80 6562 unsigned long usage, parent_usage;
23067153
RG
6563 struct mem_cgroup *parent;
6564
241994ed 6565 if (mem_cgroup_disabled())
45c7f7e1 6566 return;
241994ed 6567
34c81057
SC
6568 if (!root)
6569 root = root_mem_cgroup;
22f7496f
YS
6570
6571 /*
6572 * Effective values of the reclaim targets are ignored so they
6573 * can be stale. Have a look at mem_cgroup_protection for more
6574 * details.
6575 * TODO: calculation should be more robust so that we do not need
6576 * that special casing.
6577 */
34c81057 6578 if (memcg == root)
45c7f7e1 6579 return;
241994ed 6580
23067153 6581 usage = page_counter_read(&memcg->memory);
bf8d5d52 6582 if (!usage)
45c7f7e1 6583 return;
bf8d5d52 6584
bf8d5d52 6585 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6586 /* No parent means a non-hierarchical mode on v1 memcg */
6587 if (!parent)
45c7f7e1 6588 return;
df2a4196 6589
bc50bcc6 6590 if (parent == root) {
c3d53200 6591 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6592 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6593 return;
bf8d5d52
RG
6594 }
6595
8a931f80
JW
6596 parent_usage = page_counter_read(&parent->memory);
6597
b3a7822e 6598 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6599 READ_ONCE(memcg->memory.min),
6600 READ_ONCE(parent->memory.emin),
b3a7822e 6601 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6602
b3a7822e 6603 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6604 READ_ONCE(memcg->memory.low),
6605 READ_ONCE(parent->memory.elow),
b3a7822e 6606 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6607}
6608
8f425e4e
MWO
6609static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6610 gfp_t gfp)
0add0c77 6611{
118f2875 6612 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6613 int ret;
6614
6615 ret = try_charge(memcg, gfp, nr_pages);
6616 if (ret)
6617 goto out;
6618
6619 css_get(&memcg->css);
118f2875 6620 commit_charge(folio, memcg);
0add0c77
SB
6621
6622 local_irq_disable();
6e0110c2 6623 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6624 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6625 local_irq_enable();
6626out:
6627 return ret;
6628}
6629
8f425e4e 6630int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6631{
0add0c77
SB
6632 struct mem_cgroup *memcg;
6633 int ret;
00501b53 6634
0add0c77 6635 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6636 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6637 css_put(&memcg->css);
2d1c4980 6638
0add0c77
SB
6639 return ret;
6640}
e993d905 6641
0add0c77
SB
6642/**
6643 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6644 * @page: page to charge
6645 * @mm: mm context of the victim
6646 * @gfp: reclaim mode
6647 * @entry: swap entry for which the page is allocated
6648 *
6649 * This function charges a page allocated for swapin. Please call this before
6650 * adding the page to the swapcache.
6651 *
6652 * Returns 0 on success. Otherwise, an error code is returned.
6653 */
6654int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6655 gfp_t gfp, swp_entry_t entry)
6656{
8f425e4e 6657 struct folio *folio = page_folio(page);
0add0c77
SB
6658 struct mem_cgroup *memcg;
6659 unsigned short id;
6660 int ret;
00501b53 6661
0add0c77
SB
6662 if (mem_cgroup_disabled())
6663 return 0;
00501b53 6664
0add0c77
SB
6665 id = lookup_swap_cgroup_id(entry);
6666 rcu_read_lock();
6667 memcg = mem_cgroup_from_id(id);
6668 if (!memcg || !css_tryget_online(&memcg->css))
6669 memcg = get_mem_cgroup_from_mm(mm);
6670 rcu_read_unlock();
00501b53 6671
8f425e4e 6672 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 6673
0add0c77
SB
6674 css_put(&memcg->css);
6675 return ret;
6676}
00501b53 6677
0add0c77
SB
6678/*
6679 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6680 * @entry: swap entry for which the page is charged
6681 *
6682 * Call this function after successfully adding the charged page to swapcache.
6683 *
6684 * Note: This function assumes the page for which swap slot is being uncharged
6685 * is order 0 page.
6686 */
6687void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6688{
cae3af62
MS
6689 /*
6690 * Cgroup1's unified memory+swap counter has been charged with the
6691 * new swapcache page, finish the transfer by uncharging the swap
6692 * slot. The swap slot would also get uncharged when it dies, but
6693 * it can stick around indefinitely and we'd count the page twice
6694 * the entire time.
6695 *
6696 * Cgroup2 has separate resource counters for memory and swap,
6697 * so this is a non-issue here. Memory and swap charge lifetimes
6698 * correspond 1:1 to page and swap slot lifetimes: we charge the
6699 * page to memory here, and uncharge swap when the slot is freed.
6700 */
0add0c77 6701 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6702 /*
6703 * The swap entry might not get freed for a long time,
6704 * let's not wait for it. The page already received a
6705 * memory+swap charge, drop the swap entry duplicate.
6706 */
0add0c77 6707 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6708 }
3fea5a49
JW
6709}
6710
a9d5adee
JG
6711struct uncharge_gather {
6712 struct mem_cgroup *memcg;
b4e0b68f 6713 unsigned long nr_memory;
a9d5adee 6714 unsigned long pgpgout;
a9d5adee 6715 unsigned long nr_kmem;
8e88bd2d 6716 int nid;
a9d5adee
JG
6717};
6718
6719static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6720{
a9d5adee
JG
6721 memset(ug, 0, sizeof(*ug));
6722}
6723
6724static void uncharge_batch(const struct uncharge_gather *ug)
6725{
747db954
JW
6726 unsigned long flags;
6727
b4e0b68f
MS
6728 if (ug->nr_memory) {
6729 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6730 if (do_memsw_account())
b4e0b68f 6731 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
6732 if (ug->nr_kmem)
6733 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 6734 memcg_oom_recover(ug->memcg);
ce00a967 6735 }
747db954
JW
6736
6737 local_irq_save(flags);
c9019e9b 6738 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6739 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 6740 memcg_check_events(ug->memcg, ug->nid);
747db954 6741 local_irq_restore(flags);
f1796544 6742
c4ed6ebf 6743 /* drop reference from uncharge_folio */
f1796544 6744 css_put(&ug->memcg->css);
a9d5adee
JG
6745}
6746
c4ed6ebf 6747static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 6748{
c4ed6ebf 6749 long nr_pages;
b4e0b68f
MS
6750 struct mem_cgroup *memcg;
6751 struct obj_cgroup *objcg;
9f762dbe 6752
c4ed6ebf 6753 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 6754
a9d5adee
JG
6755 /*
6756 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
6757 * folio memcg or objcg at this point, we have fully
6758 * exclusive access to the folio.
a9d5adee 6759 */
fead2b86 6760 if (folio_memcg_kmem(folio)) {
1b7e4464 6761 objcg = __folio_objcg(folio);
b4e0b68f
MS
6762 /*
6763 * This get matches the put at the end of the function and
6764 * kmem pages do not hold memcg references anymore.
6765 */
6766 memcg = get_mem_cgroup_from_objcg(objcg);
6767 } else {
1b7e4464 6768 memcg = __folio_memcg(folio);
b4e0b68f 6769 }
a9d5adee 6770
b4e0b68f
MS
6771 if (!memcg)
6772 return;
6773
6774 if (ug->memcg != memcg) {
a9d5adee
JG
6775 if (ug->memcg) {
6776 uncharge_batch(ug);
6777 uncharge_gather_clear(ug);
6778 }
b4e0b68f 6779 ug->memcg = memcg;
c4ed6ebf 6780 ug->nid = folio_nid(folio);
f1796544
MH
6781
6782 /* pairs with css_put in uncharge_batch */
b4e0b68f 6783 css_get(&memcg->css);
a9d5adee
JG
6784 }
6785
c4ed6ebf 6786 nr_pages = folio_nr_pages(folio);
a9d5adee 6787
fead2b86 6788 if (folio_memcg_kmem(folio)) {
b4e0b68f 6789 ug->nr_memory += nr_pages;
9f762dbe 6790 ug->nr_kmem += nr_pages;
b4e0b68f 6791
c4ed6ebf 6792 folio->memcg_data = 0;
b4e0b68f
MS
6793 obj_cgroup_put(objcg);
6794 } else {
6795 /* LRU pages aren't accounted at the root level */
6796 if (!mem_cgroup_is_root(memcg))
6797 ug->nr_memory += nr_pages;
18b2db3b 6798 ug->pgpgout++;
a9d5adee 6799
c4ed6ebf 6800 folio->memcg_data = 0;
b4e0b68f
MS
6801 }
6802
6803 css_put(&memcg->css);
747db954
JW
6804}
6805
bbc6b703 6806void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 6807{
a9d5adee
JG
6808 struct uncharge_gather ug;
6809
bbc6b703
MWO
6810 /* Don't touch folio->lru of any random page, pre-check: */
6811 if (!folio_memcg(folio))
0a31bc97
JW
6812 return;
6813
a9d5adee 6814 uncharge_gather_clear(&ug);
bbc6b703 6815 uncharge_folio(folio, &ug);
a9d5adee 6816 uncharge_batch(&ug);
747db954 6817}
0a31bc97 6818
747db954 6819/**
2c8d8f97 6820 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6821 * @page_list: list of pages to uncharge
6822 *
6823 * Uncharge a list of pages previously charged with
2c8d8f97 6824 * __mem_cgroup_charge().
747db954 6825 */
2c8d8f97 6826void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6827{
c41a40b6 6828 struct uncharge_gather ug;
c4ed6ebf 6829 struct folio *folio;
c41a40b6 6830
c41a40b6 6831 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
6832 list_for_each_entry(folio, page_list, lru)
6833 uncharge_folio(folio, &ug);
c41a40b6
MS
6834 if (ug.memcg)
6835 uncharge_batch(&ug);
0a31bc97
JW
6836}
6837
6838/**
d21bba2b
MWO
6839 * mem_cgroup_migrate - Charge a folio's replacement.
6840 * @old: Currently circulating folio.
6841 * @new: Replacement folio.
0a31bc97 6842 *
d21bba2b 6843 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 6844 * be uncharged upon free.
0a31bc97 6845 *
d21bba2b 6846 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 6847 */
d21bba2b 6848void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 6849{
29833315 6850 struct mem_cgroup *memcg;
d21bba2b 6851 long nr_pages = folio_nr_pages(new);
d93c4130 6852 unsigned long flags;
0a31bc97 6853
d21bba2b
MWO
6854 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6855 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6856 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6857 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
6858
6859 if (mem_cgroup_disabled())
6860 return;
6861
d21bba2b
MWO
6862 /* Page cache replacement: new folio already charged? */
6863 if (folio_memcg(new))
0a31bc97
JW
6864 return;
6865
d21bba2b
MWO
6866 memcg = folio_memcg(old);
6867 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 6868 if (!memcg)
0a31bc97
JW
6869 return;
6870
44b7a8d3 6871 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
6872 if (!mem_cgroup_is_root(memcg)) {
6873 page_counter_charge(&memcg->memory, nr_pages);
6874 if (do_memsw_account())
6875 page_counter_charge(&memcg->memsw, nr_pages);
6876 }
0a31bc97 6877
1a3e1f40 6878 css_get(&memcg->css);
d21bba2b 6879 commit_charge(new, memcg);
44b7a8d3 6880
d93c4130 6881 local_irq_save(flags);
6e0110c2 6882 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 6883 memcg_check_events(memcg, folio_nid(new));
d93c4130 6884 local_irq_restore(flags);
0a31bc97
JW
6885}
6886
ef12947c 6887DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6888EXPORT_SYMBOL(memcg_sockets_enabled_key);
6889
2d758073 6890void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6891{
6892 struct mem_cgroup *memcg;
6893
2d758073
JW
6894 if (!mem_cgroup_sockets_enabled)
6895 return;
6896
e876ecc6 6897 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 6898 if (!in_task())
e876ecc6
SB
6899 return;
6900
11092087
JW
6901 rcu_read_lock();
6902 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6903 if (memcg == root_mem_cgroup)
6904 goto out;
0db15298 6905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6906 goto out;
8965aa28 6907 if (css_tryget(&memcg->css))
11092087 6908 sk->sk_memcg = memcg;
f7e1cb6e 6909out:
11092087
JW
6910 rcu_read_unlock();
6911}
11092087 6912
2d758073 6913void mem_cgroup_sk_free(struct sock *sk)
11092087 6914{
2d758073
JW
6915 if (sk->sk_memcg)
6916 css_put(&sk->sk_memcg->css);
11092087
JW
6917}
6918
6919/**
6920 * mem_cgroup_charge_skmem - charge socket memory
6921 * @memcg: memcg to charge
6922 * @nr_pages: number of pages to charge
4b1327be 6923 * @gfp_mask: reclaim mode
11092087
JW
6924 *
6925 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 6926 * @memcg's configured limit, %false if it doesn't.
11092087 6927 */
4b1327be
WW
6928bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6929 gfp_t gfp_mask)
11092087 6930{
f7e1cb6e 6931 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6932 struct page_counter *fail;
f7e1cb6e 6933
0db15298
JW
6934 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6935 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6936 return true;
6937 }
0db15298 6938 memcg->tcpmem_pressure = 1;
4b1327be
WW
6939 if (gfp_mask & __GFP_NOFAIL) {
6940 page_counter_charge(&memcg->tcpmem, nr_pages);
6941 return true;
6942 }
f7e1cb6e 6943 return false;
11092087 6944 }
d886f4e4 6945
4b1327be
WW
6946 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
6947 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 6948 return true;
4b1327be 6949 }
f7e1cb6e 6950
11092087
JW
6951 return false;
6952}
6953
6954/**
6955 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6956 * @memcg: memcg to uncharge
6957 * @nr_pages: number of pages to uncharge
11092087
JW
6958 */
6959void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6960{
f7e1cb6e 6961 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6962 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6963 return;
6964 }
d886f4e4 6965
c9019e9b 6966 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6967
475d0487 6968 refill_stock(memcg, nr_pages);
11092087
JW
6969}
6970
f7e1cb6e
JW
6971static int __init cgroup_memory(char *s)
6972{
6973 char *token;
6974
6975 while ((token = strsep(&s, ",")) != NULL) {
6976 if (!*token)
6977 continue;
6978 if (!strcmp(token, "nosocket"))
6979 cgroup_memory_nosocket = true;
04823c83
VD
6980 if (!strcmp(token, "nokmem"))
6981 cgroup_memory_nokmem = true;
f7e1cb6e 6982 }
460a79e1 6983 return 1;
f7e1cb6e
JW
6984}
6985__setup("cgroup.memory=", cgroup_memory);
11092087 6986
2d11085e 6987/*
1081312f
MH
6988 * subsys_initcall() for memory controller.
6989 *
308167fc
SAS
6990 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6991 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6992 * basically everything that doesn't depend on a specific mem_cgroup structure
6993 * should be initialized from here.
2d11085e
MH
6994 */
6995static int __init mem_cgroup_init(void)
6996{
95a045f6
JW
6997 int cpu, node;
6998
f3344adf
MS
6999 /*
7000 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7001 * used for per-memcg-per-cpu caching of per-node statistics. In order
7002 * to work fine, we should make sure that the overfill threshold can't
7003 * exceed S32_MAX / PAGE_SIZE.
7004 */
7005 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7006
308167fc
SAS
7007 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7008 memcg_hotplug_cpu_dead);
95a045f6
JW
7009
7010 for_each_possible_cpu(cpu)
7011 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7012 drain_local_stock);
7013
7014 for_each_node(node) {
7015 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7016
7017 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7018 node_online(node) ? node : NUMA_NO_NODE);
7019
ef8f2327 7020 rtpn->rb_root = RB_ROOT;
fa90b2fd 7021 rtpn->rb_rightmost = NULL;
ef8f2327 7022 spin_lock_init(&rtpn->lock);
95a045f6
JW
7023 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7024 }
7025
2d11085e
MH
7026 return 0;
7027}
7028subsys_initcall(mem_cgroup_init);
21afa38e
JW
7029
7030#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7031static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7032{
1c2d479a 7033 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7034 /*
7035 * The root cgroup cannot be destroyed, so it's refcount must
7036 * always be >= 1.
7037 */
7038 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7039 VM_BUG_ON(1);
7040 break;
7041 }
7042 memcg = parent_mem_cgroup(memcg);
7043 if (!memcg)
7044 memcg = root_mem_cgroup;
7045 }
7046 return memcg;
7047}
7048
21afa38e
JW
7049/**
7050 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7051 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7052 * @entry: swap entry to move the charge to
7053 *
3ecb0087 7054 * Transfer the memsw charge of @folio to @entry.
21afa38e 7055 */
3ecb0087 7056void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7057{
1f47b61f 7058 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7059 unsigned int nr_entries;
21afa38e
JW
7060 unsigned short oldid;
7061
3ecb0087
MWO
7062 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7063 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7064
76358ab5
AS
7065 if (mem_cgroup_disabled())
7066 return;
7067
2d1c4980 7068 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7069 return;
7070
3ecb0087 7071 memcg = folio_memcg(folio);
21afa38e 7072
3ecb0087 7073 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7074 if (!memcg)
7075 return;
7076
1f47b61f
VD
7077 /*
7078 * In case the memcg owning these pages has been offlined and doesn't
7079 * have an ID allocated to it anymore, charge the closest online
7080 * ancestor for the swap instead and transfer the memory+swap charge.
7081 */
7082 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7083 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7084 /* Get references for the tail pages, too */
7085 if (nr_entries > 1)
7086 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7087 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7088 nr_entries);
3ecb0087 7089 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7090 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7091
3ecb0087 7092 folio->memcg_data = 0;
21afa38e
JW
7093
7094 if (!mem_cgroup_is_root(memcg))
d6810d73 7095 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7096
2d1c4980 7097 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7098 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7099 page_counter_charge(&swap_memcg->memsw, nr_entries);
7100 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7101 }
7102
ce9ce665
SAS
7103 /*
7104 * Interrupts should be disabled here because the caller holds the
b93b0163 7105 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7106 * important here to have the interrupts disabled because it is the
b93b0163 7107 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7108 */
be3e67b5 7109 memcg_stats_lock();
6e0110c2 7110 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7111 memcg_stats_unlock();
3ecb0087 7112 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7113
1a3e1f40 7114 css_put(&memcg->css);
21afa38e
JW
7115}
7116
38d8b4e6 7117/**
01c4b28c 7118 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7119 * @page: page being added to swap
7120 * @entry: swap entry to charge
7121 *
38d8b4e6 7122 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7123 *
7124 * Returns 0 on success, -ENOMEM on failure.
7125 */
01c4b28c 7126int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7127{
6c357848 7128 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7129 struct page_counter *counter;
38d8b4e6 7130 struct mem_cgroup *memcg;
37e84351
VD
7131 unsigned short oldid;
7132
2d1c4980 7133 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7134 return 0;
7135
bcfe06bf 7136 memcg = page_memcg(page);
37e84351 7137
a4055888 7138 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7139 if (!memcg)
7140 return 0;
7141
f3a53a3a
TH
7142 if (!entry.val) {
7143 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7144 return 0;
f3a53a3a 7145 }
bb98f2c5 7146
1f47b61f
VD
7147 memcg = mem_cgroup_id_get_online(memcg);
7148
2d1c4980 7149 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7150 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7151 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7152 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7153 mem_cgroup_id_put(memcg);
37e84351 7154 return -ENOMEM;
1f47b61f 7155 }
37e84351 7156
38d8b4e6
HY
7157 /* Get references for the tail pages, too */
7158 if (nr_pages > 1)
7159 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7160 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7161 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7162 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7163
37e84351
VD
7164 return 0;
7165}
7166
21afa38e 7167/**
01c4b28c 7168 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7169 * @entry: swap entry to uncharge
38d8b4e6 7170 * @nr_pages: the amount of swap space to uncharge
21afa38e 7171 */
01c4b28c 7172void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7173{
7174 struct mem_cgroup *memcg;
7175 unsigned short id;
7176
38d8b4e6 7177 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7178 rcu_read_lock();
adbe427b 7179 memcg = mem_cgroup_from_id(id);
21afa38e 7180 if (memcg) {
2d1c4980 7181 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7183 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7184 else
38d8b4e6 7185 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7186 }
c9019e9b 7187 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7188 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7189 }
7190 rcu_read_unlock();
7191}
7192
d8b38438
VD
7193long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7194{
7195 long nr_swap_pages = get_nr_swap_pages();
7196
eccb52e7 7197 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7198 return nr_swap_pages;
7199 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7200 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7201 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7202 page_counter_read(&memcg->swap));
7203 return nr_swap_pages;
7204}
7205
5ccc5aba
VD
7206bool mem_cgroup_swap_full(struct page *page)
7207{
7208 struct mem_cgroup *memcg;
7209
7210 VM_BUG_ON_PAGE(!PageLocked(page), page);
7211
7212 if (vm_swap_full())
7213 return true;
eccb52e7 7214 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7215 return false;
7216
bcfe06bf 7217 memcg = page_memcg(page);
5ccc5aba
VD
7218 if (!memcg)
7219 return false;
7220
4b82ab4f
JK
7221 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7222 unsigned long usage = page_counter_read(&memcg->swap);
7223
7224 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7225 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7226 return true;
4b82ab4f 7227 }
5ccc5aba
VD
7228
7229 return false;
7230}
7231
eccb52e7 7232static int __init setup_swap_account(char *s)
21afa38e
JW
7233{
7234 if (!strcmp(s, "1"))
5ab92901 7235 cgroup_memory_noswap = false;
21afa38e 7236 else if (!strcmp(s, "0"))
5ab92901 7237 cgroup_memory_noswap = true;
21afa38e
JW
7238 return 1;
7239}
eccb52e7 7240__setup("swapaccount=", setup_swap_account);
21afa38e 7241
37e84351
VD
7242static u64 swap_current_read(struct cgroup_subsys_state *css,
7243 struct cftype *cft)
7244{
7245 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7246
7247 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7248}
7249
4b82ab4f
JK
7250static int swap_high_show(struct seq_file *m, void *v)
7251{
7252 return seq_puts_memcg_tunable(m,
7253 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7254}
7255
7256static ssize_t swap_high_write(struct kernfs_open_file *of,
7257 char *buf, size_t nbytes, loff_t off)
7258{
7259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7260 unsigned long high;
7261 int err;
7262
7263 buf = strstrip(buf);
7264 err = page_counter_memparse(buf, "max", &high);
7265 if (err)
7266 return err;
7267
7268 page_counter_set_high(&memcg->swap, high);
7269
7270 return nbytes;
7271}
7272
37e84351
VD
7273static int swap_max_show(struct seq_file *m, void *v)
7274{
677dc973
CD
7275 return seq_puts_memcg_tunable(m,
7276 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7277}
7278
7279static ssize_t swap_max_write(struct kernfs_open_file *of,
7280 char *buf, size_t nbytes, loff_t off)
7281{
7282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7283 unsigned long max;
7284 int err;
7285
7286 buf = strstrip(buf);
7287 err = page_counter_memparse(buf, "max", &max);
7288 if (err)
7289 return err;
7290
be09102b 7291 xchg(&memcg->swap.max, max);
37e84351
VD
7292
7293 return nbytes;
7294}
7295
f3a53a3a
TH
7296static int swap_events_show(struct seq_file *m, void *v)
7297{
aa9694bb 7298 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7299
4b82ab4f
JK
7300 seq_printf(m, "high %lu\n",
7301 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7302 seq_printf(m, "max %lu\n",
7303 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7304 seq_printf(m, "fail %lu\n",
7305 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7306
7307 return 0;
7308}
7309
37e84351
VD
7310static struct cftype swap_files[] = {
7311 {
7312 .name = "swap.current",
7313 .flags = CFTYPE_NOT_ON_ROOT,
7314 .read_u64 = swap_current_read,
7315 },
4b82ab4f
JK
7316 {
7317 .name = "swap.high",
7318 .flags = CFTYPE_NOT_ON_ROOT,
7319 .seq_show = swap_high_show,
7320 .write = swap_high_write,
7321 },
37e84351
VD
7322 {
7323 .name = "swap.max",
7324 .flags = CFTYPE_NOT_ON_ROOT,
7325 .seq_show = swap_max_show,
7326 .write = swap_max_write,
7327 },
f3a53a3a
TH
7328 {
7329 .name = "swap.events",
7330 .flags = CFTYPE_NOT_ON_ROOT,
7331 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7332 .seq_show = swap_events_show,
7333 },
37e84351
VD
7334 { } /* terminate */
7335};
7336
eccb52e7 7337static struct cftype memsw_files[] = {
21afa38e
JW
7338 {
7339 .name = "memsw.usage_in_bytes",
7340 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7341 .read_u64 = mem_cgroup_read_u64,
7342 },
7343 {
7344 .name = "memsw.max_usage_in_bytes",
7345 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7346 .write = mem_cgroup_reset,
7347 .read_u64 = mem_cgroup_read_u64,
7348 },
7349 {
7350 .name = "memsw.limit_in_bytes",
7351 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7352 .write = mem_cgroup_write,
7353 .read_u64 = mem_cgroup_read_u64,
7354 },
7355 {
7356 .name = "memsw.failcnt",
7357 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7358 .write = mem_cgroup_reset,
7359 .read_u64 = mem_cgroup_read_u64,
7360 },
7361 { }, /* terminate */
7362};
7363
82ff165c
BS
7364/*
7365 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7366 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7367 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7368 * boot parameter. This may result in premature OOPS inside
7369 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7370 */
21afa38e
JW
7371static int __init mem_cgroup_swap_init(void)
7372{
2d1c4980
JW
7373 /* No memory control -> no swap control */
7374 if (mem_cgroup_disabled())
7375 cgroup_memory_noswap = true;
7376
7377 if (cgroup_memory_noswap)
eccb52e7
JW
7378 return 0;
7379
7380 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7381 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7382
21afa38e
JW
7383 return 0;
7384}
82ff165c 7385core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7386
7387#endif /* CONFIG_MEMCG_SWAP */