]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
writeback: add {CONFIG|BDI_CAP|FS}_CGROUP_WRITEBACK
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
d1a4c0b3 68#include <net/tcp_memcontrol.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
a181b0e8 78#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 79static struct mem_cgroup *root_mem_cgroup __read_mostly;
56161634 80struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
8cdea7c0 81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
af7c4b0e
JW
89static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
b070e65c 92 "rss_huge",
af7c4b0e 93 "mapped_file",
c4843a75 94 "dirty",
3ea67d06 95 "writeback",
af7c4b0e
JW
96 "swap",
97};
98
af7c4b0e
JW
99static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104};
105
58cf188e
SZ
106static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112};
113
7a159cc9
JW
114/*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 122 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 123 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
124 MEM_CGROUP_NTARGETS,
125};
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
d52aa412 130struct mem_cgroup_stat_cpu {
7a159cc9 131 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 132 unsigned long events[MEMCG_NR_EVENTS];
13114716 133 unsigned long nr_page_events;
7a159cc9 134 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
135};
136
5ac8fb31
JW
137struct reclaim_iter {
138 struct mem_cgroup *position;
527a5ec9
JW
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141};
142
6d12e2d8
KH
143/*
144 * per-zone information in memory controller.
145 */
6d12e2d8 146struct mem_cgroup_per_zone {
6290df54 147 struct lruvec lruvec;
1eb49272 148 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 149
5ac8fb31 150 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 151
bb4cc1a8 152 struct rb_node tree_node; /* RB tree node */
3e32cb2e 153 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
154 /* the soft limit is exceeded*/
155 bool on_tree;
d79154bb 156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 157 /* use container_of */
6d12e2d8 158};
6d12e2d8
KH
159
160struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162};
163
bb4cc1a8
AM
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
3e32cb2e 186 unsigned long threshold;
2e72b634
KS
187};
188
9490ff27 189/* For threshold */
2e72b634 190struct mem_cgroup_threshold_ary {
748dad36 191 /* An array index points to threshold just below or equal to usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
79bd9814
TH
216/*
217 * cgroup_event represents events which userspace want to receive.
218 */
3bc942f3 219struct mem_cgroup_event {
79bd9814 220 /*
59b6f873 221 * memcg which the event belongs to.
79bd9814 222 */
59b6f873 223 struct mem_cgroup *memcg;
79bd9814
TH
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
fba94807
TH
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
59b6f873 237 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 238 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
59b6f873 244 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 245 struct eventfd_ctx *eventfd);
79bd9814
TH
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254};
255
c0ff4b85
R
256static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 258
8cdea7c0
BS
259/*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
8cdea7c0
BS
264 */
265struct mem_cgroup {
266 struct cgroup_subsys_state css;
3e32cb2e
JW
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
241994ed
JW
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
3e32cb2e 277 unsigned long soft_limit;
59927fb9 278
70ddf637
AV
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
2f7dd7a4
JW
282 /* css_online() has been completed */
283 int initialized;
284
18f59ea7
BS
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
79dfdacc
MH
289
290 bool oom_lock;
291 atomic_t under_oom;
3812c8c8 292 atomic_t oom_wakeups;
79dfdacc 293
1f4c025b 294 int swappiness;
3c11ecf4
KH
295 /* OOM-Killer disable */
296 int oom_kill_disable;
a7885eb8 297
2e72b634
KS
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds thresholds;
907860ed 303
2e72b634 304 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 305 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 306
9490ff27
KH
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
185efc0f 309
7dc74be0
DN
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
f894ffa8 314 unsigned long move_charge_at_immigrate;
619d094b
KH
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
6de22619 318 atomic_t moving_account;
312734c0 319 /* taken only while moving_account > 0 */
6de22619
JW
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
d52aa412 323 /*
c62b1a3b 324 * percpu counter.
d52aa412 325 */
3a7951b4 326 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
d1a4c0b3 333
4bd2c1ee 334#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 335 struct cg_proto tcp_mem;
d1a4c0b3 336#endif
2633d7a0 337#if defined(CONFIG_MEMCG_KMEM)
f7ce3190 338 /* Index in the kmem_cache->memcg_params.memcg_caches array */
2633d7a0 339 int kmemcg_id;
2788cf0c 340 bool kmem_acct_activated;
2a4db7eb 341 bool kmem_acct_active;
2633d7a0 342#endif
45cf7ebd
GC
343
344 int last_scanned_node;
345#if MAX_NUMNODES > 1
346 nodemask_t scan_nodes;
347 atomic_t numainfo_events;
348 atomic_t numainfo_updating;
349#endif
70ddf637 350
fba94807
TH
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
54f72fe0
JW
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
357};
358
510fc4e1 359#ifdef CONFIG_MEMCG_KMEM
cb731d6c 360bool memcg_kmem_is_active(struct mem_cgroup *memcg)
7de37682 361{
2a4db7eb 362 return memcg->kmem_acct_active;
7de37682 363}
510fc4e1
GC
364#endif
365
7dc74be0
DN
366/* Stuffs for move charges at task migration. */
367/*
1dfab5ab 368 * Types of charges to be moved.
7dc74be0 369 */
1dfab5ab
JW
370#define MOVE_ANON 0x1U
371#define MOVE_FILE 0x2U
372#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 373
4ffef5fe
DN
374/* "mc" and its members are protected by cgroup_mutex */
375static struct move_charge_struct {
b1dd693e 376 spinlock_t lock; /* for from, to */
4ffef5fe
DN
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
1dfab5ab 379 unsigned long flags;
4ffef5fe 380 unsigned long precharge;
854ffa8d 381 unsigned long moved_charge;
483c30b5 382 unsigned long moved_swap;
8033b97c
DN
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385} mc = {
2bd9bb20 386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388};
4ffef5fe 389
4e416953
BS
390/*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
a0db00fc 394#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 395#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 396
217bc319
KH
397enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 399 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
402 NR_CHARGE_TYPE,
403};
404
8c7c6e34 405/* for encoding cft->private value on file */
86ae53e1
GC
406enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
510fc4e1 410 _KMEM,
86ae53e1
GC
411};
412
a0db00fc
KS
413#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 415#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
416/* Used for OOM nofiier */
417#define OOM_CONTROL (0)
8c7c6e34 418
0999821b
GC
419/*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424static DEFINE_MUTEX(memcg_create_mutex);
425
b2145145
WL
426struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427{
a7c6d554 428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
429}
430
70ddf637
AV
431/* Some nice accessors for the vmpressure. */
432struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433{
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437}
438
439struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440{
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442}
443
7ffc0edc
MH
444static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445{
446 return (memcg == root_mem_cgroup);
447}
448
4219b2da
LZ
449/*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453#define MEM_CGROUP_ID_MAX USHRT_MAX
454
34c00c31
LZ
455static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456{
15a4c835 457 return memcg->css.id;
34c00c31
LZ
458}
459
adbe427b
VD
460/*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
34c00c31
LZ
466static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467{
468 struct cgroup_subsys_state *css;
469
7d699ddb 470 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
471 return mem_cgroup_from_css(css);
472}
473
e1aab161 474/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 475#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 476
e1aab161
GC
477void sock_update_memcg(struct sock *sk)
478{
376be5ff 479 if (mem_cgroup_sockets_enabled) {
e1aab161 480 struct mem_cgroup *memcg;
3f134619 481 struct cg_proto *cg_proto;
e1aab161
GC
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
f3f511e1
GC
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 495 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
496 return;
497 }
498
e1aab161
GC
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
3f134619 501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 502 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
3f134619 505 sk->sk_cgrp = cg_proto;
e1aab161
GC
506 }
507 rcu_read_unlock();
508 }
509}
510EXPORT_SYMBOL(sock_update_memcg);
511
512void sock_release_memcg(struct sock *sk)
513{
376be5ff 514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
5347e5ae 518 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
519 }
520}
d1a4c0b3
GC
521
522struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523{
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
2e685cad 527 return &memcg->tcp_mem;
d1a4c0b3
GC
528}
529EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 530
3f134619
GC
531#endif
532
a8964b9b 533#ifdef CONFIG_MEMCG_KMEM
55007d84 534/*
f7ce3190 535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
55007d84 541 *
dbcf73e2
VD
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
55007d84 544 */
dbcf73e2
VD
545static DEFINE_IDA(memcg_cache_ida);
546int memcg_nr_cache_ids;
749c5415 547
05257a1a
VD
548/* Protects memcg_nr_cache_ids */
549static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551void memcg_get_cache_ids(void)
552{
553 down_read(&memcg_cache_ids_sem);
554}
555
556void memcg_put_cache_ids(void)
557{
558 up_read(&memcg_cache_ids_sem);
559}
560
55007d84
GC
561/*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
b8627835 567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
571 * increase ours as well if it increases.
572 */
573#define MEMCG_CACHES_MIN_SIZE 4
b8627835 574#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 575
d7f25f8a
GC
576/*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
a8964b9b 582struct static_key memcg_kmem_enabled_key;
d7f25f8a 583EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 584
a8964b9b
GC
585#endif /* CONFIG_MEMCG_KMEM */
586
f64c3f54 587static struct mem_cgroup_per_zone *
e231875b 588mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 589{
e231875b
JZ
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
54f72fe0 593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
594}
595
c0ff4b85 596struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 597{
c0ff4b85 598 return &memcg->css;
d324236b
WF
599}
600
ad7fa852
TH
601/**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620{
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632}
633
f64c3f54 634static struct mem_cgroup_per_zone *
e231875b 635mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 636{
97a6c37b
JW
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
f64c3f54 639
e231875b 640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
641}
642
bb4cc1a8
AM
643static struct mem_cgroup_tree_per_zone *
644soft_limit_tree_node_zone(int nid, int zid)
645{
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647}
648
649static struct mem_cgroup_tree_per_zone *
650soft_limit_tree_from_page(struct page *page)
651{
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656}
657
cf2c8127
JW
658static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 660 unsigned long new_usage_in_excess)
bb4cc1a8
AM
661{
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688}
689
cf2c8127
JW
690static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
692{
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697}
698
cf2c8127
JW
699static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 701{
0a31bc97
JW
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 705 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707}
708
3e32cb2e
JW
709static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710{
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719}
bb4cc1a8
AM
720
721static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722{
3e32cb2e 723 unsigned long excess;
bb4cc1a8
AM
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 726
e231875b 727 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 733 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 734 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
0a31bc97
JW
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
743 /* if on-tree, remove it */
744 if (mz->on_tree)
cf2c8127 745 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
cf2c8127 750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 751 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
752 }
753 }
754}
755
756static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757{
bb4cc1a8 758 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
bb4cc1a8 761
e231875b
JZ
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 766 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
767 }
768 }
769}
770
771static struct mem_cgroup_per_zone *
772__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773{
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
cf2c8127 789 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 790 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 791 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
792 goto retry;
793done:
794 return mz;
795}
796
797static struct mem_cgroup_per_zone *
798mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799{
800 struct mem_cgroup_per_zone *mz;
801
0a31bc97 802 spin_lock_irq(&mctz->lock);
bb4cc1a8 803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 804 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
805 return mz;
806}
807
711d3d2c
KH
808/*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
c0ff4b85 827static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 828 enum mem_cgroup_stat_index idx)
c62b1a3b 829{
7a159cc9 830 long val = 0;
c62b1a3b 831 int cpu;
c62b1a3b 832
711d3d2c
KH
833 get_online_cpus();
834 for_each_online_cpu(cpu)
c0ff4b85 835 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 836#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
837 spin_lock(&memcg->pcp_counter_lock);
838 val += memcg->nocpu_base.count[idx];
839 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
840#endif
841 put_online_cpus();
c62b1a3b
KH
842 return val;
843}
844
c0ff4b85 845static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
846 enum mem_cgroup_events_index idx)
847{
848 unsigned long val = 0;
849 int cpu;
850
9c567512 851 get_online_cpus();
e9f8974f 852 for_each_online_cpu(cpu)
c0ff4b85 853 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 854#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
855 spin_lock(&memcg->pcp_counter_lock);
856 val += memcg->nocpu_base.events[idx];
857 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 858#endif
9c567512 859 put_online_cpus();
e9f8974f
JW
860 return val;
861}
862
c0ff4b85 863static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 864 struct page *page,
0a31bc97 865 int nr_pages)
d52aa412 866{
b2402857
KH
867 /*
868 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
869 * counted as CACHE even if it's on ANON LRU.
870 */
0a31bc97 871 if (PageAnon(page))
b2402857 872 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 873 nr_pages);
d52aa412 874 else
b2402857 875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 876 nr_pages);
55e462b0 877
b070e65c
DR
878 if (PageTransHuge(page))
879 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
880 nr_pages);
881
e401f176
KH
882 /* pagein of a big page is an event. So, ignore page size */
883 if (nr_pages > 0)
c0ff4b85 884 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 885 else {
c0ff4b85 886 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
887 nr_pages = -nr_pages; /* for event */
888 }
e401f176 889
13114716 890 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
891}
892
e231875b 893unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
894{
895 struct mem_cgroup_per_zone *mz;
896
897 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
898 return mz->lru_size[lru];
899}
900
e231875b
JZ
901static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
902 int nid,
903 unsigned int lru_mask)
bb2a0de9 904{
e231875b 905 unsigned long nr = 0;
889976db
YH
906 int zid;
907
e231875b 908 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 909
e231875b
JZ
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 struct mem_cgroup_per_zone *mz;
912 enum lru_list lru;
913
914 for_each_lru(lru) {
915 if (!(BIT(lru) & lru_mask))
916 continue;
917 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
918 nr += mz->lru_size[lru];
919 }
920 }
921 return nr;
889976db 922}
bb2a0de9 923
c0ff4b85 924static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 925 unsigned int lru_mask)
6d12e2d8 926{
e231875b 927 unsigned long nr = 0;
889976db 928 int nid;
6d12e2d8 929
31aaea4a 930 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
931 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
932 return nr;
d52aa412
KH
933}
934
f53d7ce3
JW
935static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
936 enum mem_cgroup_events_target target)
7a159cc9
JW
937{
938 unsigned long val, next;
939
13114716 940 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 941 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 942 /* from time_after() in jiffies.h */
f53d7ce3
JW
943 if ((long)next - (long)val < 0) {
944 switch (target) {
945 case MEM_CGROUP_TARGET_THRESH:
946 next = val + THRESHOLDS_EVENTS_TARGET;
947 break;
bb4cc1a8
AM
948 case MEM_CGROUP_TARGET_SOFTLIMIT:
949 next = val + SOFTLIMIT_EVENTS_TARGET;
950 break;
f53d7ce3
JW
951 case MEM_CGROUP_TARGET_NUMAINFO:
952 next = val + NUMAINFO_EVENTS_TARGET;
953 break;
954 default:
955 break;
956 }
957 __this_cpu_write(memcg->stat->targets[target], next);
958 return true;
7a159cc9 959 }
f53d7ce3 960 return false;
d2265e6f
KH
961}
962
963/*
964 * Check events in order.
965 *
966 */
c0ff4b85 967static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
968{
969 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
970 if (unlikely(mem_cgroup_event_ratelimit(memcg,
971 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 972 bool do_softlimit;
82b3f2a7 973 bool do_numainfo __maybe_unused;
f53d7ce3 974
bb4cc1a8
AM
975 do_softlimit = mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
977#if MAX_NUMNODES > 1
978 do_numainfo = mem_cgroup_event_ratelimit(memcg,
979 MEM_CGROUP_TARGET_NUMAINFO);
980#endif
c0ff4b85 981 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
982 if (unlikely(do_softlimit))
983 mem_cgroup_update_tree(memcg, page);
453a9bf3 984#if MAX_NUMNODES > 1
f53d7ce3 985 if (unlikely(do_numainfo))
c0ff4b85 986 atomic_inc(&memcg->numainfo_events);
453a9bf3 987#endif
0a31bc97 988 }
d2265e6f
KH
989}
990
cf475ad2 991struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 992{
31a78f23
BS
993 /*
994 * mm_update_next_owner() may clear mm->owner to NULL
995 * if it races with swapoff, page migration, etc.
996 * So this can be called with p == NULL.
997 */
998 if (unlikely(!p))
999 return NULL;
1000
073219e9 1001 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1002}
1003
df381975 1004static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1005{
c0ff4b85 1006 struct mem_cgroup *memcg = NULL;
0b7f569e 1007
54595fe2
KH
1008 rcu_read_lock();
1009 do {
6f6acb00
MH
1010 /*
1011 * Page cache insertions can happen withou an
1012 * actual mm context, e.g. during disk probing
1013 * on boot, loopback IO, acct() writes etc.
1014 */
1015 if (unlikely(!mm))
df381975 1016 memcg = root_mem_cgroup;
6f6acb00
MH
1017 else {
1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019 if (unlikely(!memcg))
1020 memcg = root_mem_cgroup;
1021 }
ec903c0c 1022 } while (!css_tryget_online(&memcg->css));
54595fe2 1023 rcu_read_unlock();
c0ff4b85 1024 return memcg;
54595fe2
KH
1025}
1026
5660048c
JW
1027/**
1028 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1029 * @root: hierarchy root
1030 * @prev: previously returned memcg, NULL on first invocation
1031 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1032 *
1033 * Returns references to children of the hierarchy below @root, or
1034 * @root itself, or %NULL after a full round-trip.
1035 *
1036 * Caller must pass the return value in @prev on subsequent
1037 * invocations for reference counting, or use mem_cgroup_iter_break()
1038 * to cancel a hierarchy walk before the round-trip is complete.
1039 *
1040 * Reclaimers can specify a zone and a priority level in @reclaim to
1041 * divide up the memcgs in the hierarchy among all concurrent
1042 * reclaimers operating on the same zone and priority.
1043 */
694fbc0f 1044struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1045 struct mem_cgroup *prev,
694fbc0f 1046 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1047{
5ac8fb31
JW
1048 struct reclaim_iter *uninitialized_var(iter);
1049 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1050 struct mem_cgroup *memcg = NULL;
5ac8fb31 1051 struct mem_cgroup *pos = NULL;
711d3d2c 1052
694fbc0f
AM
1053 if (mem_cgroup_disabled())
1054 return NULL;
5660048c 1055
9f3a0d09
JW
1056 if (!root)
1057 root = root_mem_cgroup;
7d74b06f 1058
9f3a0d09 1059 if (prev && !reclaim)
5ac8fb31 1060 pos = prev;
14067bb3 1061
9f3a0d09
JW
1062 if (!root->use_hierarchy && root != root_mem_cgroup) {
1063 if (prev)
5ac8fb31 1064 goto out;
694fbc0f 1065 return root;
9f3a0d09 1066 }
14067bb3 1067
542f85f9 1068 rcu_read_lock();
5f578161 1069
5ac8fb31
JW
1070 if (reclaim) {
1071 struct mem_cgroup_per_zone *mz;
1072
1073 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1074 iter = &mz->iter[reclaim->priority];
1075
1076 if (prev && reclaim->generation != iter->generation)
1077 goto out_unlock;
1078
1079 do {
4db0c3c2 1080 pos = READ_ONCE(iter->position);
5ac8fb31
JW
1081 /*
1082 * A racing update may change the position and
1083 * put the last reference, hence css_tryget(),
1084 * or retry to see the updated position.
1085 */
1086 } while (pos && !css_tryget(&pos->css));
1087 }
1088
1089 if (pos)
1090 css = &pos->css;
1091
1092 for (;;) {
1093 css = css_next_descendant_pre(css, &root->css);
1094 if (!css) {
1095 /*
1096 * Reclaimers share the hierarchy walk, and a
1097 * new one might jump in right at the end of
1098 * the hierarchy - make sure they see at least
1099 * one group and restart from the beginning.
1100 */
1101 if (!prev)
1102 continue;
1103 break;
527a5ec9 1104 }
7d74b06f 1105
5ac8fb31
JW
1106 /*
1107 * Verify the css and acquire a reference. The root
1108 * is provided by the caller, so we know it's alive
1109 * and kicking, and don't take an extra reference.
1110 */
1111 memcg = mem_cgroup_from_css(css);
14067bb3 1112
5ac8fb31
JW
1113 if (css == &root->css)
1114 break;
14067bb3 1115
b2052564 1116 if (css_tryget(css)) {
5ac8fb31
JW
1117 /*
1118 * Make sure the memcg is initialized:
1119 * mem_cgroup_css_online() orders the the
1120 * initialization against setting the flag.
1121 */
1122 if (smp_load_acquire(&memcg->initialized))
1123 break;
542f85f9 1124
5ac8fb31 1125 css_put(css);
527a5ec9 1126 }
9f3a0d09 1127
5ac8fb31 1128 memcg = NULL;
9f3a0d09 1129 }
5ac8fb31
JW
1130
1131 if (reclaim) {
1132 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1133 if (memcg)
1134 css_get(&memcg->css);
1135 if (pos)
1136 css_put(&pos->css);
1137 }
1138
1139 /*
1140 * pairs with css_tryget when dereferencing iter->position
1141 * above.
1142 */
1143 if (pos)
1144 css_put(&pos->css);
1145
1146 if (!memcg)
1147 iter->generation++;
1148 else if (!prev)
1149 reclaim->generation = iter->generation;
9f3a0d09 1150 }
5ac8fb31 1151
542f85f9
MH
1152out_unlock:
1153 rcu_read_unlock();
5ac8fb31 1154out:
c40046f3
MH
1155 if (prev && prev != root)
1156 css_put(&prev->css);
1157
9f3a0d09 1158 return memcg;
14067bb3 1159}
7d74b06f 1160
5660048c
JW
1161/**
1162 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1163 * @root: hierarchy root
1164 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1165 */
1166void mem_cgroup_iter_break(struct mem_cgroup *root,
1167 struct mem_cgroup *prev)
9f3a0d09
JW
1168{
1169 if (!root)
1170 root = root_mem_cgroup;
1171 if (prev && prev != root)
1172 css_put(&prev->css);
1173}
7d74b06f 1174
9f3a0d09
JW
1175/*
1176 * Iteration constructs for visiting all cgroups (under a tree). If
1177 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1178 * be used for reference counting.
1179 */
1180#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1181 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1182 iter != NULL; \
527a5ec9 1183 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1184
9f3a0d09 1185#define for_each_mem_cgroup(iter) \
527a5ec9 1186 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1187 iter != NULL; \
527a5ec9 1188 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1189
68ae564b 1190void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1191{
c0ff4b85 1192 struct mem_cgroup *memcg;
456f998e 1193
456f998e 1194 rcu_read_lock();
c0ff4b85
R
1195 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1196 if (unlikely(!memcg))
456f998e
YH
1197 goto out;
1198
1199 switch (idx) {
456f998e 1200 case PGFAULT:
0e574a93
JW
1201 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1202 break;
1203 case PGMAJFAULT:
1204 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1205 break;
1206 default:
1207 BUG();
1208 }
1209out:
1210 rcu_read_unlock();
1211}
68ae564b 1212EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1213
925b7673
JW
1214/**
1215 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1216 * @zone: zone of the wanted lruvec
fa9add64 1217 * @memcg: memcg of the wanted lruvec
925b7673
JW
1218 *
1219 * Returns the lru list vector holding pages for the given @zone and
1220 * @mem. This can be the global zone lruvec, if the memory controller
1221 * is disabled.
1222 */
1223struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1224 struct mem_cgroup *memcg)
1225{
1226 struct mem_cgroup_per_zone *mz;
bea8c150 1227 struct lruvec *lruvec;
925b7673 1228
bea8c150
HD
1229 if (mem_cgroup_disabled()) {
1230 lruvec = &zone->lruvec;
1231 goto out;
1232 }
925b7673 1233
e231875b 1234 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1235 lruvec = &mz->lruvec;
1236out:
1237 /*
1238 * Since a node can be onlined after the mem_cgroup was created,
1239 * we have to be prepared to initialize lruvec->zone here;
1240 * and if offlined then reonlined, we need to reinitialize it.
1241 */
1242 if (unlikely(lruvec->zone != zone))
1243 lruvec->zone = zone;
1244 return lruvec;
925b7673
JW
1245}
1246
925b7673 1247/**
dfe0e773 1248 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1249 * @page: the page
fa9add64 1250 * @zone: zone of the page
dfe0e773
JW
1251 *
1252 * This function is only safe when following the LRU page isolation
1253 * and putback protocol: the LRU lock must be held, and the page must
1254 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1255 */
fa9add64 1256struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1257{
08e552c6 1258 struct mem_cgroup_per_zone *mz;
925b7673 1259 struct mem_cgroup *memcg;
bea8c150 1260 struct lruvec *lruvec;
6d12e2d8 1261
bea8c150
HD
1262 if (mem_cgroup_disabled()) {
1263 lruvec = &zone->lruvec;
1264 goto out;
1265 }
925b7673 1266
1306a85a 1267 memcg = page->mem_cgroup;
7512102c 1268 /*
dfe0e773 1269 * Swapcache readahead pages are added to the LRU - and
29833315 1270 * possibly migrated - before they are charged.
7512102c 1271 */
29833315
JW
1272 if (!memcg)
1273 memcg = root_mem_cgroup;
7512102c 1274
e231875b 1275 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1276 lruvec = &mz->lruvec;
1277out:
1278 /*
1279 * Since a node can be onlined after the mem_cgroup was created,
1280 * we have to be prepared to initialize lruvec->zone here;
1281 * and if offlined then reonlined, we need to reinitialize it.
1282 */
1283 if (unlikely(lruvec->zone != zone))
1284 lruvec->zone = zone;
1285 return lruvec;
08e552c6 1286}
b69408e8 1287
925b7673 1288/**
fa9add64
HD
1289 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1290 * @lruvec: mem_cgroup per zone lru vector
1291 * @lru: index of lru list the page is sitting on
1292 * @nr_pages: positive when adding or negative when removing
925b7673 1293 *
fa9add64
HD
1294 * This function must be called when a page is added to or removed from an
1295 * lru list.
3f58a829 1296 */
fa9add64
HD
1297void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1298 int nr_pages)
3f58a829
MK
1299{
1300 struct mem_cgroup_per_zone *mz;
fa9add64 1301 unsigned long *lru_size;
3f58a829
MK
1302
1303 if (mem_cgroup_disabled())
1304 return;
1305
fa9add64
HD
1306 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1307 lru_size = mz->lru_size + lru;
1308 *lru_size += nr_pages;
1309 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1310}
544122e5 1311
2314b42d 1312bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1313{
2314b42d 1314 if (root == memcg)
91c63734 1315 return true;
2314b42d 1316 if (!root->use_hierarchy)
91c63734 1317 return false;
2314b42d 1318 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1319}
1320
2314b42d 1321bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1322{
2314b42d 1323 struct mem_cgroup *task_memcg;
158e0a2d 1324 struct task_struct *p;
ffbdccf5 1325 bool ret;
4c4a2214 1326
158e0a2d 1327 p = find_lock_task_mm(task);
de077d22 1328 if (p) {
2314b42d 1329 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1330 task_unlock(p);
1331 } else {
1332 /*
1333 * All threads may have already detached their mm's, but the oom
1334 * killer still needs to detect if they have already been oom
1335 * killed to prevent needlessly killing additional tasks.
1336 */
ffbdccf5 1337 rcu_read_lock();
2314b42d
JW
1338 task_memcg = mem_cgroup_from_task(task);
1339 css_get(&task_memcg->css);
ffbdccf5 1340 rcu_read_unlock();
de077d22 1341 }
2314b42d
JW
1342 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1343 css_put(&task_memcg->css);
4c4a2214
DR
1344 return ret;
1345}
1346
c56d5c7d 1347int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1348{
9b272977 1349 unsigned long inactive_ratio;
14797e23 1350 unsigned long inactive;
9b272977 1351 unsigned long active;
c772be93 1352 unsigned long gb;
14797e23 1353
4d7dcca2
HD
1354 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1355 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1356
c772be93
KM
1357 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1358 if (gb)
1359 inactive_ratio = int_sqrt(10 * gb);
1360 else
1361 inactive_ratio = 1;
1362
9b272977 1363 return inactive * inactive_ratio < active;
14797e23
KM
1364}
1365
90cbc250
VD
1366bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1367{
1368 struct mem_cgroup_per_zone *mz;
1369 struct mem_cgroup *memcg;
1370
1371 if (mem_cgroup_disabled())
1372 return true;
1373
1374 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1375 memcg = mz->memcg;
1376
1377 return !!(memcg->css.flags & CSS_ONLINE);
1378}
1379
3e32cb2e 1380#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1381 container_of(counter, struct mem_cgroup, member)
1382
19942822 1383/**
9d11ea9f 1384 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1385 * @memcg: the memory cgroup
19942822 1386 *
9d11ea9f 1387 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1388 * pages.
19942822 1389 */
c0ff4b85 1390static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1391{
3e32cb2e
JW
1392 unsigned long margin = 0;
1393 unsigned long count;
1394 unsigned long limit;
9d11ea9f 1395
3e32cb2e 1396 count = page_counter_read(&memcg->memory);
4db0c3c2 1397 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1398 if (count < limit)
1399 margin = limit - count;
1400
1401 if (do_swap_account) {
1402 count = page_counter_read(&memcg->memsw);
4db0c3c2 1403 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1404 if (count <= limit)
1405 margin = min(margin, limit - count);
1406 }
1407
1408 return margin;
19942822
JW
1409}
1410
1f4c025b 1411int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1412{
a7885eb8 1413 /* root ? */
14208b0e 1414 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1415 return vm_swappiness;
1416
bf1ff263 1417 return memcg->swappiness;
a7885eb8
KM
1418}
1419
32047e2a 1420/*
bdcbb659 1421 * A routine for checking "mem" is under move_account() or not.
32047e2a 1422 *
bdcbb659
QH
1423 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1424 * moving cgroups. This is for waiting at high-memory pressure
1425 * caused by "move".
32047e2a 1426 */
c0ff4b85 1427static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1428{
2bd9bb20
KH
1429 struct mem_cgroup *from;
1430 struct mem_cgroup *to;
4b534334 1431 bool ret = false;
2bd9bb20
KH
1432 /*
1433 * Unlike task_move routines, we access mc.to, mc.from not under
1434 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1435 */
1436 spin_lock(&mc.lock);
1437 from = mc.from;
1438 to = mc.to;
1439 if (!from)
1440 goto unlock;
3e92041d 1441
2314b42d
JW
1442 ret = mem_cgroup_is_descendant(from, memcg) ||
1443 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1444unlock:
1445 spin_unlock(&mc.lock);
4b534334
KH
1446 return ret;
1447}
1448
c0ff4b85 1449static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1450{
1451 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1452 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1453 DEFINE_WAIT(wait);
1454 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1455 /* moving charge context might have finished. */
1456 if (mc.moving_task)
1457 schedule();
1458 finish_wait(&mc.waitq, &wait);
1459 return true;
1460 }
1461 }
1462 return false;
1463}
1464
58cf188e 1465#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1466/**
58cf188e 1467 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1468 * @memcg: The memory cgroup that went over limit
1469 * @p: Task that is going to be killed
1470 *
1471 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1472 * enabled
1473 */
1474void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1475{
e61734c5 1476 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1477 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1478 struct mem_cgroup *iter;
1479 unsigned int i;
e222432b 1480
08088cb9 1481 mutex_lock(&oom_info_lock);
e222432b
BS
1482 rcu_read_lock();
1483
2415b9f5
BV
1484 if (p) {
1485 pr_info("Task in ");
1486 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1487 pr_cont(" killed as a result of limit of ");
1488 } else {
1489 pr_info("Memory limit reached of cgroup ");
1490 }
1491
e61734c5 1492 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1493 pr_cont("\n");
e222432b 1494
e222432b
BS
1495 rcu_read_unlock();
1496
3e32cb2e
JW
1497 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1498 K((u64)page_counter_read(&memcg->memory)),
1499 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1500 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1501 K((u64)page_counter_read(&memcg->memsw)),
1502 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1503 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1504 K((u64)page_counter_read(&memcg->kmem)),
1505 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1506
1507 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1508 pr_info("Memory cgroup stats for ");
1509 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1510 pr_cont(":");
1511
1512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1513 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1514 continue;
1515 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1516 K(mem_cgroup_read_stat(iter, i)));
1517 }
1518
1519 for (i = 0; i < NR_LRU_LISTS; i++)
1520 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1521 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1522
1523 pr_cont("\n");
1524 }
08088cb9 1525 mutex_unlock(&oom_info_lock);
e222432b
BS
1526}
1527
81d39c20
KH
1528/*
1529 * This function returns the number of memcg under hierarchy tree. Returns
1530 * 1(self count) if no children.
1531 */
c0ff4b85 1532static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1533{
1534 int num = 0;
7d74b06f
KH
1535 struct mem_cgroup *iter;
1536
c0ff4b85 1537 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1538 num++;
81d39c20
KH
1539 return num;
1540}
1541
a63d83f4
DR
1542/*
1543 * Return the memory (and swap, if configured) limit for a memcg.
1544 */
3e32cb2e 1545static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1546{
3e32cb2e 1547 unsigned long limit;
f3e8eb70 1548
3e32cb2e 1549 limit = memcg->memory.limit;
9a5a8f19 1550 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1551 unsigned long memsw_limit;
9a5a8f19 1552
3e32cb2e
JW
1553 memsw_limit = memcg->memsw.limit;
1554 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1555 }
9a5a8f19 1556 return limit;
a63d83f4
DR
1557}
1558
19965460
DR
1559static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 int order)
9cbb78bb
DR
1561{
1562 struct mem_cgroup *iter;
1563 unsigned long chosen_points = 0;
1564 unsigned long totalpages;
1565 unsigned int points = 0;
1566 struct task_struct *chosen = NULL;
1567
876aafbf 1568 /*
465adcf1
DR
1569 * If current has a pending SIGKILL or is exiting, then automatically
1570 * select it. The goal is to allow it to allocate so that it may
1571 * quickly exit and free its memory.
876aafbf 1572 */
d003f371 1573 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1574 mark_tsk_oom_victim(current);
876aafbf
DR
1575 return;
1576 }
1577
2415b9f5 1578 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
3e32cb2e 1579 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1580 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1581 struct css_task_iter it;
9cbb78bb
DR
1582 struct task_struct *task;
1583
72ec7029
TH
1584 css_task_iter_start(&iter->css, &it);
1585 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1586 switch (oom_scan_process_thread(task, totalpages, NULL,
1587 false)) {
1588 case OOM_SCAN_SELECT:
1589 if (chosen)
1590 put_task_struct(chosen);
1591 chosen = task;
1592 chosen_points = ULONG_MAX;
1593 get_task_struct(chosen);
1594 /* fall through */
1595 case OOM_SCAN_CONTINUE:
1596 continue;
1597 case OOM_SCAN_ABORT:
72ec7029 1598 css_task_iter_end(&it);
9cbb78bb
DR
1599 mem_cgroup_iter_break(memcg, iter);
1600 if (chosen)
1601 put_task_struct(chosen);
1602 return;
1603 case OOM_SCAN_OK:
1604 break;
1605 };
1606 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1607 if (!points || points < chosen_points)
1608 continue;
1609 /* Prefer thread group leaders for display purposes */
1610 if (points == chosen_points &&
1611 thread_group_leader(chosen))
1612 continue;
1613
1614 if (chosen)
1615 put_task_struct(chosen);
1616 chosen = task;
1617 chosen_points = points;
1618 get_task_struct(chosen);
9cbb78bb 1619 }
72ec7029 1620 css_task_iter_end(&it);
9cbb78bb
DR
1621 }
1622
1623 if (!chosen)
1624 return;
1625 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1626 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1627 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1628}
1629
ae6e71d3
MC
1630#if MAX_NUMNODES > 1
1631
4d0c066d
KH
1632/**
1633 * test_mem_cgroup_node_reclaimable
dad7557e 1634 * @memcg: the target memcg
4d0c066d
KH
1635 * @nid: the node ID to be checked.
1636 * @noswap : specify true here if the user wants flle only information.
1637 *
1638 * This function returns whether the specified memcg contains any
1639 * reclaimable pages on a node. Returns true if there are any reclaimable
1640 * pages in the node.
1641 */
c0ff4b85 1642static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1643 int nid, bool noswap)
1644{
c0ff4b85 1645 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1646 return true;
1647 if (noswap || !total_swap_pages)
1648 return false;
c0ff4b85 1649 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1650 return true;
1651 return false;
1652
1653}
889976db
YH
1654
1655/*
1656 * Always updating the nodemask is not very good - even if we have an empty
1657 * list or the wrong list here, we can start from some node and traverse all
1658 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1659 *
1660 */
c0ff4b85 1661static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1662{
1663 int nid;
453a9bf3
KH
1664 /*
1665 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1666 * pagein/pageout changes since the last update.
1667 */
c0ff4b85 1668 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1669 return;
c0ff4b85 1670 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1671 return;
1672
889976db 1673 /* make a nodemask where this memcg uses memory from */
31aaea4a 1674 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1675
31aaea4a 1676 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1677
c0ff4b85
R
1678 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1679 node_clear(nid, memcg->scan_nodes);
889976db 1680 }
453a9bf3 1681
c0ff4b85
R
1682 atomic_set(&memcg->numainfo_events, 0);
1683 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1684}
1685
1686/*
1687 * Selecting a node where we start reclaim from. Because what we need is just
1688 * reducing usage counter, start from anywhere is O,K. Considering
1689 * memory reclaim from current node, there are pros. and cons.
1690 *
1691 * Freeing memory from current node means freeing memory from a node which
1692 * we'll use or we've used. So, it may make LRU bad. And if several threads
1693 * hit limits, it will see a contention on a node. But freeing from remote
1694 * node means more costs for memory reclaim because of memory latency.
1695 *
1696 * Now, we use round-robin. Better algorithm is welcomed.
1697 */
c0ff4b85 1698int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1699{
1700 int node;
1701
c0ff4b85
R
1702 mem_cgroup_may_update_nodemask(memcg);
1703 node = memcg->last_scanned_node;
889976db 1704
c0ff4b85 1705 node = next_node(node, memcg->scan_nodes);
889976db 1706 if (node == MAX_NUMNODES)
c0ff4b85 1707 node = first_node(memcg->scan_nodes);
889976db
YH
1708 /*
1709 * We call this when we hit limit, not when pages are added to LRU.
1710 * No LRU may hold pages because all pages are UNEVICTABLE or
1711 * memcg is too small and all pages are not on LRU. In that case,
1712 * we use curret node.
1713 */
1714 if (unlikely(node == MAX_NUMNODES))
1715 node = numa_node_id();
1716
c0ff4b85 1717 memcg->last_scanned_node = node;
889976db
YH
1718 return node;
1719}
889976db 1720#else
c0ff4b85 1721int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1722{
1723 return 0;
1724}
1725#endif
1726
0608f43d
AM
1727static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 struct zone *zone,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731{
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .zone = zone,
1739 .priority = 0,
1740 };
1741
3e32cb2e 1742 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1743
1744 while (1) {
1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1746 if (!victim) {
1747 loop++;
1748 if (loop >= 2) {
1749 /*
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1753 */
1754 if (!total)
1755 break;
1756 /*
1757 * We want to do more targeted reclaim.
1758 * excess >> 2 is not to excessive so as to
1759 * reclaim too much, nor too less that we keep
1760 * coming back to reclaim from this cgroup
1761 */
1762 if (total >= (excess >> 2) ||
1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1764 break;
1765 }
1766 continue;
1767 }
0608f43d
AM
1768 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1769 zone, &nr_scanned);
1770 *total_scanned += nr_scanned;
3e32cb2e 1771 if (!soft_limit_excess(root_memcg))
0608f43d 1772 break;
6d61ef40 1773 }
0608f43d
AM
1774 mem_cgroup_iter_break(root_memcg, victim);
1775 return total;
6d61ef40
BS
1776}
1777
0056f4e6
JW
1778#ifdef CONFIG_LOCKDEP
1779static struct lockdep_map memcg_oom_lock_dep_map = {
1780 .name = "memcg_oom_lock",
1781};
1782#endif
1783
fb2a6fc5
JW
1784static DEFINE_SPINLOCK(memcg_oom_lock);
1785
867578cb
KH
1786/*
1787 * Check OOM-Killer is already running under our hierarchy.
1788 * If someone is running, return false.
1789 */
fb2a6fc5 1790static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1791{
79dfdacc 1792 struct mem_cgroup *iter, *failed = NULL;
a636b327 1793
fb2a6fc5
JW
1794 spin_lock(&memcg_oom_lock);
1795
9f3a0d09 1796 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1797 if (iter->oom_lock) {
79dfdacc
MH
1798 /*
1799 * this subtree of our hierarchy is already locked
1800 * so we cannot give a lock.
1801 */
79dfdacc 1802 failed = iter;
9f3a0d09
JW
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
23751be0
JW
1805 } else
1806 iter->oom_lock = true;
7d74b06f 1807 }
867578cb 1808
fb2a6fc5
JW
1809 if (failed) {
1810 /*
1811 * OK, we failed to lock the whole subtree so we have
1812 * to clean up what we set up to the failing subtree
1813 */
1814 for_each_mem_cgroup_tree(iter, memcg) {
1815 if (iter == failed) {
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 }
1819 iter->oom_lock = false;
79dfdacc 1820 }
0056f4e6
JW
1821 } else
1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1823
1824 spin_unlock(&memcg_oom_lock);
1825
1826 return !failed;
a636b327 1827}
0b7f569e 1828
fb2a6fc5 1829static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1830{
7d74b06f
KH
1831 struct mem_cgroup *iter;
1832
fb2a6fc5 1833 spin_lock(&memcg_oom_lock);
0056f4e6 1834 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1835 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1836 iter->oom_lock = false;
fb2a6fc5 1837 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1838}
1839
c0ff4b85 1840static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1841{
1842 struct mem_cgroup *iter;
1843
c0ff4b85 1844 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1845 atomic_inc(&iter->under_oom);
1846}
1847
c0ff4b85 1848static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1849{
1850 struct mem_cgroup *iter;
1851
867578cb
KH
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
c0ff4b85 1857 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1858 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
dc98df5a
KH
1865 wait_queue_t wait;
1866};
1867
1868static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
2314b42d
JW
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1880 return 0;
dc98df5a
KH
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882}
1883
c0ff4b85 1884static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1885{
3812c8c8 1886 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1887 /* for filtering, pass "memcg" as argument. */
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1889}
1890
c0ff4b85 1891static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1892{
c0ff4b85
R
1893 if (memcg && atomic_read(&memcg->under_oom))
1894 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1895}
1896
3812c8c8 1897static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1898{
3812c8c8
JW
1899 if (!current->memcg_oom.may_oom)
1900 return;
867578cb 1901 /*
49426420
JW
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
867578cb 1914 */
49426420
JW
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
3812c8c8
JW
1919}
1920
1921/**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1923 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1924 *
49426420
JW
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
3812c8c8 1927 *
49426420 1928 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1933 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1936 * completed, %false otherwise.
3812c8c8 1937 */
49426420 1938bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1939{
49426420 1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1941 struct oom_wait_info owait;
49426420 1942 bool locked;
3812c8c8
JW
1943
1944 /* OOM is global, do not handle */
3812c8c8 1945 if (!memcg)
49426420 1946 return false;
3812c8c8 1947
c32b3cbe 1948 if (!handle || oom_killer_disabled)
49426420 1949 goto cleanup;
3812c8c8
JW
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1956
3812c8c8 1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
3812c8c8 1971 schedule();
49426420
JW
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
fb2a6fc5
JW
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
49426420
JW
1985cleanup:
1986 current->memcg_oom.memcg = NULL;
3812c8c8 1987 css_put(&memcg->css);
867578cb 1988 return true;
0b7f569e
KH
1989}
1990
d7365e78
JW
1991/**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
32047e2a 1994 *
d7365e78
JW
1995 * This function must mark the beginning of an accounted page state
1996 * change to prevent double accounting when the page is concurrently
1997 * being moved to another memcg:
32047e2a 1998 *
6de22619 1999 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
2000 * if (TestClearPageState(page))
2001 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 2002 * mem_cgroup_end_page_stat(memcg);
d69b042f 2003 */
6de22619 2004struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
2005{
2006 struct mem_cgroup *memcg;
6de22619 2007 unsigned long flags;
89c06bd5 2008
6de22619
JW
2009 /*
2010 * The RCU lock is held throughout the transaction. The fast
2011 * path can get away without acquiring the memcg->move_lock
2012 * because page moving starts with an RCU grace period.
2013 *
2014 * The RCU lock also protects the memcg from being freed when
2015 * the page state that is going to change is the only thing
2016 * preventing the page from being uncharged.
2017 * E.g. end-writeback clearing PageWriteback(), which allows
2018 * migration to go ahead and uncharge the page before the
2019 * account transaction might be complete.
2020 */
d7365e78
JW
2021 rcu_read_lock();
2022
2023 if (mem_cgroup_disabled())
2024 return NULL;
89c06bd5 2025again:
1306a85a 2026 memcg = page->mem_cgroup;
29833315 2027 if (unlikely(!memcg))
d7365e78
JW
2028 return NULL;
2029
bdcbb659 2030 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2031 return memcg;
89c06bd5 2032
6de22619 2033 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2034 if (memcg != page->mem_cgroup) {
6de22619 2035 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2036 goto again;
2037 }
6de22619
JW
2038
2039 /*
2040 * When charge migration first begins, we can have locked and
2041 * unlocked page stat updates happening concurrently. Track
2042 * the task who has the lock for mem_cgroup_end_page_stat().
2043 */
2044 memcg->move_lock_task = current;
2045 memcg->move_lock_flags = flags;
d7365e78
JW
2046
2047 return memcg;
89c06bd5 2048}
c4843a75 2049EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 2050
d7365e78
JW
2051/**
2052 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2053 * @memcg: the memcg that was accounted against
d7365e78 2054 */
6de22619 2055void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2056{
6de22619
JW
2057 if (memcg && memcg->move_lock_task == current) {
2058 unsigned long flags = memcg->move_lock_flags;
2059
2060 memcg->move_lock_task = NULL;
2061 memcg->move_lock_flags = 0;
2062
2063 spin_unlock_irqrestore(&memcg->move_lock, flags);
2064 }
89c06bd5 2065
d7365e78 2066 rcu_read_unlock();
89c06bd5 2067}
c4843a75 2068EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 2069
d7365e78
JW
2070/**
2071 * mem_cgroup_update_page_stat - update page state statistics
2072 * @memcg: memcg to account against
2073 * @idx: page state item to account
2074 * @val: number of pages (positive or negative)
2075 *
2076 * See mem_cgroup_begin_page_stat() for locking requirements.
2077 */
2078void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2079 enum mem_cgroup_stat_index idx, int val)
d69b042f 2080{
658b72c5 2081 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2082
d7365e78
JW
2083 if (memcg)
2084 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2085}
26174efd 2086
cdec2e42
KH
2087/*
2088 * size of first charge trial. "32" comes from vmscan.c's magic value.
2089 * TODO: maybe necessary to use big numbers in big irons.
2090 */
7ec99d62 2091#define CHARGE_BATCH 32U
cdec2e42
KH
2092struct memcg_stock_pcp {
2093 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2094 unsigned int nr_pages;
cdec2e42 2095 struct work_struct work;
26fe6168 2096 unsigned long flags;
a0db00fc 2097#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2098};
2099static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2100static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2101
a0956d54
SS
2102/**
2103 * consume_stock: Try to consume stocked charge on this cpu.
2104 * @memcg: memcg to consume from.
2105 * @nr_pages: how many pages to charge.
2106 *
2107 * The charges will only happen if @memcg matches the current cpu's memcg
2108 * stock, and at least @nr_pages are available in that stock. Failure to
2109 * service an allocation will refill the stock.
2110 *
2111 * returns true if successful, false otherwise.
cdec2e42 2112 */
a0956d54 2113static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2114{
2115 struct memcg_stock_pcp *stock;
3e32cb2e 2116 bool ret = false;
cdec2e42 2117
a0956d54 2118 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2119 return ret;
a0956d54 2120
cdec2e42 2121 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2122 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2123 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2124 ret = true;
2125 }
cdec2e42
KH
2126 put_cpu_var(memcg_stock);
2127 return ret;
2128}
2129
2130/*
3e32cb2e 2131 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2132 */
2133static void drain_stock(struct memcg_stock_pcp *stock)
2134{
2135 struct mem_cgroup *old = stock->cached;
2136
11c9ea4e 2137 if (stock->nr_pages) {
3e32cb2e 2138 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2139 if (do_swap_account)
3e32cb2e 2140 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2141 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2142 stock->nr_pages = 0;
cdec2e42
KH
2143 }
2144 stock->cached = NULL;
cdec2e42
KH
2145}
2146
2147/*
2148 * This must be called under preempt disabled or must be called by
2149 * a thread which is pinned to local cpu.
2150 */
2151static void drain_local_stock(struct work_struct *dummy)
2152{
7c8e0181 2153 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2154 drain_stock(stock);
26fe6168 2155 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2156}
2157
2158/*
3e32cb2e 2159 * Cache charges(val) to local per_cpu area.
320cc51d 2160 * This will be consumed by consume_stock() function, later.
cdec2e42 2161 */
c0ff4b85 2162static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2163{
2164 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2165
c0ff4b85 2166 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2167 drain_stock(stock);
c0ff4b85 2168 stock->cached = memcg;
cdec2e42 2169 }
11c9ea4e 2170 stock->nr_pages += nr_pages;
cdec2e42
KH
2171 put_cpu_var(memcg_stock);
2172}
2173
2174/*
c0ff4b85 2175 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2176 * of the hierarchy under it.
cdec2e42 2177 */
6d3d6aa2 2178static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2179{
26fe6168 2180 int cpu, curcpu;
d38144b7 2181
6d3d6aa2
JW
2182 /* If someone's already draining, avoid adding running more workers. */
2183 if (!mutex_trylock(&percpu_charge_mutex))
2184 return;
cdec2e42 2185 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2186 get_online_cpus();
5af12d0e 2187 curcpu = get_cpu();
cdec2e42
KH
2188 for_each_online_cpu(cpu) {
2189 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2190 struct mem_cgroup *memcg;
26fe6168 2191
c0ff4b85
R
2192 memcg = stock->cached;
2193 if (!memcg || !stock->nr_pages)
26fe6168 2194 continue;
2314b42d 2195 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2196 continue;
d1a05b69
MH
2197 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2198 if (cpu == curcpu)
2199 drain_local_stock(&stock->work);
2200 else
2201 schedule_work_on(cpu, &stock->work);
2202 }
cdec2e42 2203 }
5af12d0e 2204 put_cpu();
f894ffa8 2205 put_online_cpus();
9f50fad6 2206 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2207}
2208
711d3d2c
KH
2209/*
2210 * This function drains percpu counter value from DEAD cpu and
2211 * move it to local cpu. Note that this function can be preempted.
2212 */
c0ff4b85 2213static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2214{
2215 int i;
2216
c0ff4b85 2217 spin_lock(&memcg->pcp_counter_lock);
6104621d 2218 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2219 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2220
c0ff4b85
R
2221 per_cpu(memcg->stat->count[i], cpu) = 0;
2222 memcg->nocpu_base.count[i] += x;
711d3d2c 2223 }
e9f8974f 2224 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2225 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2226
c0ff4b85
R
2227 per_cpu(memcg->stat->events[i], cpu) = 0;
2228 memcg->nocpu_base.events[i] += x;
e9f8974f 2229 }
c0ff4b85 2230 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2231}
2232
0db0628d 2233static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2234 unsigned long action,
2235 void *hcpu)
2236{
2237 int cpu = (unsigned long)hcpu;
2238 struct memcg_stock_pcp *stock;
711d3d2c 2239 struct mem_cgroup *iter;
cdec2e42 2240
619d094b 2241 if (action == CPU_ONLINE)
1489ebad 2242 return NOTIFY_OK;
1489ebad 2243
d833049b 2244 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2245 return NOTIFY_OK;
711d3d2c 2246
9f3a0d09 2247 for_each_mem_cgroup(iter)
711d3d2c
KH
2248 mem_cgroup_drain_pcp_counter(iter, cpu);
2249
cdec2e42
KH
2250 stock = &per_cpu(memcg_stock, cpu);
2251 drain_stock(stock);
2252 return NOTIFY_OK;
2253}
2254
00501b53
JW
2255static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2256 unsigned int nr_pages)
8a9f3ccd 2257{
7ec99d62 2258 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2259 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2260 struct mem_cgroup *mem_over_limit;
3e32cb2e 2261 struct page_counter *counter;
6539cc05 2262 unsigned long nr_reclaimed;
b70a2a21
JW
2263 bool may_swap = true;
2264 bool drained = false;
05b84301 2265 int ret = 0;
a636b327 2266
ce00a967
JW
2267 if (mem_cgroup_is_root(memcg))
2268 goto done;
6539cc05 2269retry:
b6b6cc72
MH
2270 if (consume_stock(memcg, nr_pages))
2271 goto done;
8a9f3ccd 2272
3fbe7244 2273 if (!do_swap_account ||
3e32cb2e
JW
2274 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2275 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2276 goto done_restock;
3fbe7244 2277 if (do_swap_account)
3e32cb2e
JW
2278 page_counter_uncharge(&memcg->memsw, batch);
2279 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2280 } else {
3e32cb2e 2281 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2282 may_swap = false;
3fbe7244 2283 }
7a81b88c 2284
6539cc05
JW
2285 if (batch > nr_pages) {
2286 batch = nr_pages;
2287 goto retry;
2288 }
6d61ef40 2289
06b078fc
JW
2290 /*
2291 * Unlike in global OOM situations, memcg is not in a physical
2292 * memory shortage. Allow dying and OOM-killed tasks to
2293 * bypass the last charges so that they can exit quickly and
2294 * free their memory.
2295 */
2296 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2297 fatal_signal_pending(current) ||
2298 current->flags & PF_EXITING))
2299 goto bypass;
2300
2301 if (unlikely(task_in_memcg_oom(current)))
2302 goto nomem;
2303
6539cc05
JW
2304 if (!(gfp_mask & __GFP_WAIT))
2305 goto nomem;
4b534334 2306
241994ed
JW
2307 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2308
b70a2a21
JW
2309 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2310 gfp_mask, may_swap);
6539cc05 2311
61e02c74 2312 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2313 goto retry;
28c34c29 2314
b70a2a21 2315 if (!drained) {
6d3d6aa2 2316 drain_all_stock(mem_over_limit);
b70a2a21
JW
2317 drained = true;
2318 goto retry;
2319 }
2320
28c34c29
JW
2321 if (gfp_mask & __GFP_NORETRY)
2322 goto nomem;
6539cc05
JW
2323 /*
2324 * Even though the limit is exceeded at this point, reclaim
2325 * may have been able to free some pages. Retry the charge
2326 * before killing the task.
2327 *
2328 * Only for regular pages, though: huge pages are rather
2329 * unlikely to succeed so close to the limit, and we fall back
2330 * to regular pages anyway in case of failure.
2331 */
61e02c74 2332 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2333 goto retry;
2334 /*
2335 * At task move, charge accounts can be doubly counted. So, it's
2336 * better to wait until the end of task_move if something is going on.
2337 */
2338 if (mem_cgroup_wait_acct_move(mem_over_limit))
2339 goto retry;
2340
9b130619
JW
2341 if (nr_retries--)
2342 goto retry;
2343
06b078fc
JW
2344 if (gfp_mask & __GFP_NOFAIL)
2345 goto bypass;
2346
6539cc05
JW
2347 if (fatal_signal_pending(current))
2348 goto bypass;
2349
241994ed
JW
2350 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2351
61e02c74 2352 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2353nomem:
6d1fdc48 2354 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2355 return -ENOMEM;
867578cb 2356bypass:
ce00a967 2357 return -EINTR;
6539cc05
JW
2358
2359done_restock:
e8ea14cc 2360 css_get_many(&memcg->css, batch);
6539cc05
JW
2361 if (batch > nr_pages)
2362 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2363 /*
2364 * If the hierarchy is above the normal consumption range,
2365 * make the charging task trim their excess contribution.
2366 */
2367 do {
2368 if (page_counter_read(&memcg->memory) <= memcg->high)
2369 continue;
2370 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2371 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2372 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2373done:
05b84301 2374 return ret;
7a81b88c 2375}
8a9f3ccd 2376
00501b53 2377static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2378{
ce00a967
JW
2379 if (mem_cgroup_is_root(memcg))
2380 return;
2381
3e32cb2e 2382 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2383 if (do_swap_account)
3e32cb2e 2384 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2385
e8ea14cc 2386 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2387}
2388
0a31bc97
JW
2389/*
2390 * try_get_mem_cgroup_from_page - look up page's memcg association
2391 * @page: the page
2392 *
2393 * Look up, get a css reference, and return the memcg that owns @page.
2394 *
2395 * The page must be locked to prevent racing with swap-in and page
2396 * cache charges. If coming from an unlocked page table, the caller
2397 * must ensure the page is on the LRU or this can race with charging.
2398 */
e42d9d5d 2399struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2400{
29833315 2401 struct mem_cgroup *memcg;
a3b2d692 2402 unsigned short id;
b5a84319
KH
2403 swp_entry_t ent;
2404
309381fe 2405 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2406
1306a85a 2407 memcg = page->mem_cgroup;
29833315
JW
2408 if (memcg) {
2409 if (!css_tryget_online(&memcg->css))
c0ff4b85 2410 memcg = NULL;
e42d9d5d 2411 } else if (PageSwapCache(page)) {
3c776e64 2412 ent.val = page_private(page);
9fb4b7cc 2413 id = lookup_swap_cgroup_id(ent);
a3b2d692 2414 rcu_read_lock();
adbe427b 2415 memcg = mem_cgroup_from_id(id);
ec903c0c 2416 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2417 memcg = NULL;
a3b2d692 2418 rcu_read_unlock();
3c776e64 2419 }
c0ff4b85 2420 return memcg;
b5a84319
KH
2421}
2422
0a31bc97
JW
2423static void lock_page_lru(struct page *page, int *isolated)
2424{
2425 struct zone *zone = page_zone(page);
2426
2427 spin_lock_irq(&zone->lru_lock);
2428 if (PageLRU(page)) {
2429 struct lruvec *lruvec;
2430
2431 lruvec = mem_cgroup_page_lruvec(page, zone);
2432 ClearPageLRU(page);
2433 del_page_from_lru_list(page, lruvec, page_lru(page));
2434 *isolated = 1;
2435 } else
2436 *isolated = 0;
2437}
2438
2439static void unlock_page_lru(struct page *page, int isolated)
2440{
2441 struct zone *zone = page_zone(page);
2442
2443 if (isolated) {
2444 struct lruvec *lruvec;
2445
2446 lruvec = mem_cgroup_page_lruvec(page, zone);
2447 VM_BUG_ON_PAGE(PageLRU(page), page);
2448 SetPageLRU(page);
2449 add_page_to_lru_list(page, lruvec, page_lru(page));
2450 }
2451 spin_unlock_irq(&zone->lru_lock);
2452}
2453
00501b53 2454static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2455 bool lrucare)
7a81b88c 2456{
0a31bc97 2457 int isolated;
9ce70c02 2458
1306a85a 2459 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2460
2461 /*
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2464 */
0a31bc97
JW
2465 if (lrucare)
2466 lock_page_lru(page, &isolated);
9ce70c02 2467
0a31bc97
JW
2468 /*
2469 * Nobody should be changing or seriously looking at
1306a85a 2470 * page->mem_cgroup at this point:
0a31bc97
JW
2471 *
2472 * - the page is uncharged
2473 *
2474 * - the page is off-LRU
2475 *
2476 * - an anonymous fault has exclusive page access, except for
2477 * a locked page table
2478 *
2479 * - a page cache insertion, a swapin fault, or a migration
2480 * have the page locked
2481 */
1306a85a 2482 page->mem_cgroup = memcg;
9ce70c02 2483
0a31bc97
JW
2484 if (lrucare)
2485 unlock_page_lru(page, isolated);
7a81b88c 2486}
66e1707b 2487
7ae1e1d0 2488#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2489int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2490 unsigned long nr_pages)
7ae1e1d0 2491{
3e32cb2e 2492 struct page_counter *counter;
7ae1e1d0 2493 int ret = 0;
7ae1e1d0 2494
3e32cb2e
JW
2495 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2496 if (ret < 0)
7ae1e1d0
GC
2497 return ret;
2498
3e32cb2e 2499 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2500 if (ret == -EINTR) {
2501 /*
00501b53
JW
2502 * try_charge() chose to bypass to root due to OOM kill or
2503 * fatal signal. Since our only options are to either fail
2504 * the allocation or charge it to this cgroup, do it as a
2505 * temporary condition. But we can't fail. From a kmem/slab
2506 * perspective, the cache has already been selected, by
2507 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2508 * our minds.
2509 *
2510 * This condition will only trigger if the task entered
00501b53
JW
2511 * memcg_charge_kmem in a sane state, but was OOM-killed
2512 * during try_charge() above. Tasks that were already dying
2513 * when the allocation triggers should have been already
7ae1e1d0
GC
2514 * directed to the root cgroup in memcontrol.h
2515 */
3e32cb2e 2516 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2517 if (do_swap_account)
3e32cb2e 2518 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2519 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2520 ret = 0;
2521 } else if (ret)
3e32cb2e 2522 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2523
2524 return ret;
2525}
2526
dbf22eb6 2527void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2528{
3e32cb2e 2529 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2530 if (do_swap_account)
3e32cb2e 2531 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2532
64f21993 2533 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2534
e8ea14cc 2535 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2536}
2537
2633d7a0
GC
2538/*
2539 * helper for acessing a memcg's index. It will be used as an index in the
2540 * child cache array in kmem_cache, and also to derive its name. This function
2541 * will return -1 when this is not a kmem-limited memcg.
2542 */
2543int memcg_cache_id(struct mem_cgroup *memcg)
2544{
2545 return memcg ? memcg->kmemcg_id : -1;
2546}
2547
f3bb3043 2548static int memcg_alloc_cache_id(void)
55007d84 2549{
f3bb3043
VD
2550 int id, size;
2551 int err;
2552
dbcf73e2 2553 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2554 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2555 if (id < 0)
2556 return id;
55007d84 2557
dbcf73e2 2558 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2559 return id;
2560
2561 /*
2562 * There's no space for the new id in memcg_caches arrays,
2563 * so we have to grow them.
2564 */
05257a1a 2565 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2566
2567 size = 2 * (id + 1);
55007d84
GC
2568 if (size < MEMCG_CACHES_MIN_SIZE)
2569 size = MEMCG_CACHES_MIN_SIZE;
2570 else if (size > MEMCG_CACHES_MAX_SIZE)
2571 size = MEMCG_CACHES_MAX_SIZE;
2572
f3bb3043 2573 err = memcg_update_all_caches(size);
60d3fd32
VD
2574 if (!err)
2575 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2576 if (!err)
2577 memcg_nr_cache_ids = size;
2578
2579 up_write(&memcg_cache_ids_sem);
2580
f3bb3043 2581 if (err) {
dbcf73e2 2582 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2583 return err;
2584 }
2585 return id;
2586}
2587
2588static void memcg_free_cache_id(int id)
2589{
dbcf73e2 2590 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2591}
2592
d5b3cf71 2593struct memcg_kmem_cache_create_work {
5722d094
VD
2594 struct mem_cgroup *memcg;
2595 struct kmem_cache *cachep;
2596 struct work_struct work;
2597};
2598
d5b3cf71 2599static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2600{
d5b3cf71
VD
2601 struct memcg_kmem_cache_create_work *cw =
2602 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2603 struct mem_cgroup *memcg = cw->memcg;
2604 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2605
d5b3cf71 2606 memcg_create_kmem_cache(memcg, cachep);
bd673145 2607
5722d094 2608 css_put(&memcg->css);
d7f25f8a
GC
2609 kfree(cw);
2610}
2611
2612/*
2613 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2614 */
d5b3cf71
VD
2615static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2616 struct kmem_cache *cachep)
d7f25f8a 2617{
d5b3cf71 2618 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2619
776ed0f0 2620 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2621 if (!cw)
d7f25f8a 2622 return;
8135be5a
VD
2623
2624 css_get(&memcg->css);
d7f25f8a
GC
2625
2626 cw->memcg = memcg;
2627 cw->cachep = cachep;
d5b3cf71 2628 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2629
d7f25f8a
GC
2630 schedule_work(&cw->work);
2631}
2632
d5b3cf71
VD
2633static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2634 struct kmem_cache *cachep)
0e9d92f2
GC
2635{
2636 /*
2637 * We need to stop accounting when we kmalloc, because if the
2638 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2639 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2640 *
2641 * However, it is better to enclose the whole function. Depending on
2642 * the debugging options enabled, INIT_WORK(), for instance, can
2643 * trigger an allocation. This too, will make us recurse. Because at
2644 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2645 * the safest choice is to do it like this, wrapping the whole function.
2646 */
6f185c29 2647 current->memcg_kmem_skip_account = 1;
d5b3cf71 2648 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2649 current->memcg_kmem_skip_account = 0;
0e9d92f2 2650}
c67a8a68 2651
d7f25f8a
GC
2652/*
2653 * Return the kmem_cache we're supposed to use for a slab allocation.
2654 * We try to use the current memcg's version of the cache.
2655 *
2656 * If the cache does not exist yet, if we are the first user of it,
2657 * we either create it immediately, if possible, or create it asynchronously
2658 * in a workqueue.
2659 * In the latter case, we will let the current allocation go through with
2660 * the original cache.
2661 *
2662 * Can't be called in interrupt context or from kernel threads.
2663 * This function needs to be called with rcu_read_lock() held.
2664 */
056b7cce 2665struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2666{
2667 struct mem_cgroup *memcg;
959c8963 2668 struct kmem_cache *memcg_cachep;
2a4db7eb 2669 int kmemcg_id;
d7f25f8a 2670
f7ce3190 2671 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2672
9d100c5e 2673 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2674 return cachep;
2675
8135be5a 2676 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2677 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2678 if (kmemcg_id < 0)
ca0dde97 2679 goto out;
d7f25f8a 2680
2a4db7eb 2681 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2682 if (likely(memcg_cachep))
2683 return memcg_cachep;
ca0dde97
LZ
2684
2685 /*
2686 * If we are in a safe context (can wait, and not in interrupt
2687 * context), we could be be predictable and return right away.
2688 * This would guarantee that the allocation being performed
2689 * already belongs in the new cache.
2690 *
2691 * However, there are some clashes that can arrive from locking.
2692 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2693 * memcg_create_kmem_cache, this means no further allocation
2694 * could happen with the slab_mutex held. So it's better to
2695 * defer everything.
ca0dde97 2696 */
d5b3cf71 2697 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2698out:
8135be5a 2699 css_put(&memcg->css);
ca0dde97 2700 return cachep;
d7f25f8a 2701}
d7f25f8a 2702
8135be5a
VD
2703void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2704{
2705 if (!is_root_cache(cachep))
f7ce3190 2706 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2707}
2708
7ae1e1d0
GC
2709/*
2710 * We need to verify if the allocation against current->mm->owner's memcg is
2711 * possible for the given order. But the page is not allocated yet, so we'll
2712 * need a further commit step to do the final arrangements.
2713 *
2714 * It is possible for the task to switch cgroups in this mean time, so at
2715 * commit time, we can't rely on task conversion any longer. We'll then use
2716 * the handle argument to return to the caller which cgroup we should commit
2717 * against. We could also return the memcg directly and avoid the pointer
2718 * passing, but a boolean return value gives better semantics considering
2719 * the compiled-out case as well.
2720 *
2721 * Returning true means the allocation is possible.
2722 */
2723bool
2724__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2725{
2726 struct mem_cgroup *memcg;
2727 int ret;
2728
2729 *_memcg = NULL;
6d42c232 2730
df381975 2731 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2732
cf2b8fbf 2733 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2734 css_put(&memcg->css);
2735 return true;
2736 }
2737
3e32cb2e 2738 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2739 if (!ret)
2740 *_memcg = memcg;
7ae1e1d0
GC
2741
2742 css_put(&memcg->css);
2743 return (ret == 0);
2744}
2745
2746void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2747 int order)
2748{
7ae1e1d0
GC
2749 VM_BUG_ON(mem_cgroup_is_root(memcg));
2750
2751 /* The page allocation failed. Revert */
2752 if (!page) {
3e32cb2e 2753 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2754 return;
2755 }
1306a85a 2756 page->mem_cgroup = memcg;
7ae1e1d0
GC
2757}
2758
2759void __memcg_kmem_uncharge_pages(struct page *page, int order)
2760{
1306a85a 2761 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2762
7ae1e1d0
GC
2763 if (!memcg)
2764 return;
2765
309381fe 2766 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2767
3e32cb2e 2768 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2769 page->mem_cgroup = NULL;
7ae1e1d0 2770}
60d3fd32
VD
2771
2772struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2773{
2774 struct mem_cgroup *memcg = NULL;
2775 struct kmem_cache *cachep;
2776 struct page *page;
2777
2778 page = virt_to_head_page(ptr);
2779 if (PageSlab(page)) {
2780 cachep = page->slab_cache;
2781 if (!is_root_cache(cachep))
f7ce3190 2782 memcg = cachep->memcg_params.memcg;
60d3fd32
VD
2783 } else
2784 /* page allocated by alloc_kmem_pages */
2785 memcg = page->mem_cgroup;
2786
2787 return memcg;
2788}
7ae1e1d0
GC
2789#endif /* CONFIG_MEMCG_KMEM */
2790
ca3e0214
KH
2791#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2792
ca3e0214
KH
2793/*
2794 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2795 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2796 * charge/uncharge will be never happen and move_account() is done under
2797 * compound_lock(), so we don't have to take care of races.
ca3e0214 2798 */
e94c8a9c 2799void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2800{
e94c8a9c 2801 int i;
ca3e0214 2802
3d37c4a9
KH
2803 if (mem_cgroup_disabled())
2804 return;
b070e65c 2805
29833315 2806 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2807 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2808
1306a85a 2809 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2810 HPAGE_PMD_NR);
ca3e0214 2811}
12d27107 2812#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2813
c255a458 2814#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2815static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2816 bool charge)
d13d1443 2817{
0a31bc97
JW
2818 int val = (charge) ? 1 : -1;
2819 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2820}
02491447
DN
2821
2822/**
2823 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2824 * @entry: swap entry to be moved
2825 * @from: mem_cgroup which the entry is moved from
2826 * @to: mem_cgroup which the entry is moved to
2827 *
2828 * It succeeds only when the swap_cgroup's record for this entry is the same
2829 * as the mem_cgroup's id of @from.
2830 *
2831 * Returns 0 on success, -EINVAL on failure.
2832 *
3e32cb2e 2833 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2834 * both res and memsw, and called css_get().
2835 */
2836static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2837 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2838{
2839 unsigned short old_id, new_id;
2840
34c00c31
LZ
2841 old_id = mem_cgroup_id(from);
2842 new_id = mem_cgroup_id(to);
02491447
DN
2843
2844 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2845 mem_cgroup_swap_statistics(from, false);
483c30b5 2846 mem_cgroup_swap_statistics(to, true);
02491447
DN
2847 return 0;
2848 }
2849 return -EINVAL;
2850}
2851#else
2852static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2853 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2854{
2855 return -EINVAL;
2856}
8c7c6e34 2857#endif
d13d1443 2858
3e32cb2e 2859static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2860
d38d2a75 2861static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2862 unsigned long limit)
628f4235 2863{
3e32cb2e
JW
2864 unsigned long curusage;
2865 unsigned long oldusage;
2866 bool enlarge = false;
81d39c20 2867 int retry_count;
3e32cb2e 2868 int ret;
81d39c20
KH
2869
2870 /*
2871 * For keeping hierarchical_reclaim simple, how long we should retry
2872 * is depends on callers. We set our retry-count to be function
2873 * of # of children which we should visit in this loop.
2874 */
3e32cb2e
JW
2875 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2876 mem_cgroup_count_children(memcg);
81d39c20 2877
3e32cb2e 2878 oldusage = page_counter_read(&memcg->memory);
628f4235 2879
3e32cb2e 2880 do {
628f4235
KH
2881 if (signal_pending(current)) {
2882 ret = -EINTR;
2883 break;
2884 }
3e32cb2e
JW
2885
2886 mutex_lock(&memcg_limit_mutex);
2887 if (limit > memcg->memsw.limit) {
2888 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2889 ret = -EINVAL;
628f4235
KH
2890 break;
2891 }
3e32cb2e
JW
2892 if (limit > memcg->memory.limit)
2893 enlarge = true;
2894 ret = page_counter_limit(&memcg->memory, limit);
2895 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2896
2897 if (!ret)
2898 break;
2899
b70a2a21
JW
2900 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2901
3e32cb2e 2902 curusage = page_counter_read(&memcg->memory);
81d39c20 2903 /* Usage is reduced ? */
f894ffa8 2904 if (curusage >= oldusage)
81d39c20
KH
2905 retry_count--;
2906 else
2907 oldusage = curusage;
3e32cb2e
JW
2908 } while (retry_count);
2909
3c11ecf4
KH
2910 if (!ret && enlarge)
2911 memcg_oom_recover(memcg);
14797e23 2912
8c7c6e34
KH
2913 return ret;
2914}
2915
338c8431 2916static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2917 unsigned long limit)
8c7c6e34 2918{
3e32cb2e
JW
2919 unsigned long curusage;
2920 unsigned long oldusage;
2921 bool enlarge = false;
81d39c20 2922 int retry_count;
3e32cb2e 2923 int ret;
8c7c6e34 2924
81d39c20 2925 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2926 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2927 mem_cgroup_count_children(memcg);
2928
2929 oldusage = page_counter_read(&memcg->memsw);
2930
2931 do {
8c7c6e34
KH
2932 if (signal_pending(current)) {
2933 ret = -EINTR;
2934 break;
2935 }
3e32cb2e
JW
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 if (limit < memcg->memory.limit) {
2939 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2940 ret = -EINVAL;
8c7c6e34
KH
2941 break;
2942 }
3e32cb2e
JW
2943 if (limit > memcg->memsw.limit)
2944 enlarge = true;
2945 ret = page_counter_limit(&memcg->memsw, limit);
2946 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2947
2948 if (!ret)
2949 break;
2950
b70a2a21
JW
2951 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2952
3e32cb2e 2953 curusage = page_counter_read(&memcg->memsw);
81d39c20 2954 /* Usage is reduced ? */
8c7c6e34 2955 if (curusage >= oldusage)
628f4235 2956 retry_count--;
81d39c20
KH
2957 else
2958 oldusage = curusage;
3e32cb2e
JW
2959 } while (retry_count);
2960
3c11ecf4
KH
2961 if (!ret && enlarge)
2962 memcg_oom_recover(memcg);
3e32cb2e 2963
628f4235
KH
2964 return ret;
2965}
2966
0608f43d
AM
2967unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2968 gfp_t gfp_mask,
2969 unsigned long *total_scanned)
2970{
2971 unsigned long nr_reclaimed = 0;
2972 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2973 unsigned long reclaimed;
2974 int loop = 0;
2975 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2976 unsigned long excess;
0608f43d
AM
2977 unsigned long nr_scanned;
2978
2979 if (order > 0)
2980 return 0;
2981
2982 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2983 /*
2984 * This loop can run a while, specially if mem_cgroup's continuously
2985 * keep exceeding their soft limit and putting the system under
2986 * pressure
2987 */
2988 do {
2989 if (next_mz)
2990 mz = next_mz;
2991 else
2992 mz = mem_cgroup_largest_soft_limit_node(mctz);
2993 if (!mz)
2994 break;
2995
2996 nr_scanned = 0;
2997 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2998 gfp_mask, &nr_scanned);
2999 nr_reclaimed += reclaimed;
3000 *total_scanned += nr_scanned;
0a31bc97 3001 spin_lock_irq(&mctz->lock);
bc2f2e7f 3002 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3003
3004 /*
3005 * If we failed to reclaim anything from this memory cgroup
3006 * it is time to move on to the next cgroup
3007 */
3008 next_mz = NULL;
bc2f2e7f
VD
3009 if (!reclaimed)
3010 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3011
3e32cb2e 3012 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3013 /*
3014 * One school of thought says that we should not add
3015 * back the node to the tree if reclaim returns 0.
3016 * But our reclaim could return 0, simply because due
3017 * to priority we are exposing a smaller subset of
3018 * memory to reclaim from. Consider this as a longer
3019 * term TODO.
3020 */
3021 /* If excess == 0, no tree ops */
cf2c8127 3022 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3023 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3024 css_put(&mz->memcg->css);
3025 loop++;
3026 /*
3027 * Could not reclaim anything and there are no more
3028 * mem cgroups to try or we seem to be looping without
3029 * reclaiming anything.
3030 */
3031 if (!nr_reclaimed &&
3032 (next_mz == NULL ||
3033 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3034 break;
3035 } while (!nr_reclaimed);
3036 if (next_mz)
3037 css_put(&next_mz->memcg->css);
3038 return nr_reclaimed;
3039}
3040
ea280e7b
TH
3041/*
3042 * Test whether @memcg has children, dead or alive. Note that this
3043 * function doesn't care whether @memcg has use_hierarchy enabled and
3044 * returns %true if there are child csses according to the cgroup
3045 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3046 */
b5f99b53
GC
3047static inline bool memcg_has_children(struct mem_cgroup *memcg)
3048{
ea280e7b
TH
3049 bool ret;
3050
696ac172 3051 /*
ea280e7b
TH
3052 * The lock does not prevent addition or deletion of children, but
3053 * it prevents a new child from being initialized based on this
3054 * parent in css_online(), so it's enough to decide whether
3055 * hierarchically inherited attributes can still be changed or not.
696ac172 3056 */
ea280e7b
TH
3057 lockdep_assert_held(&memcg_create_mutex);
3058
3059 rcu_read_lock();
3060 ret = css_next_child(NULL, &memcg->css);
3061 rcu_read_unlock();
3062 return ret;
b5f99b53
GC
3063}
3064
c26251f9
MH
3065/*
3066 * Reclaims as many pages from the given memcg as possible and moves
3067 * the rest to the parent.
3068 *
3069 * Caller is responsible for holding css reference for memcg.
3070 */
3071static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3072{
3073 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3074
c1e862c1
KH
3075 /* we call try-to-free pages for make this cgroup empty */
3076 lru_add_drain_all();
f817ed48 3077 /* try to free all pages in this cgroup */
3e32cb2e 3078 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3079 int progress;
c1e862c1 3080
c26251f9
MH
3081 if (signal_pending(current))
3082 return -EINTR;
3083
b70a2a21
JW
3084 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3085 GFP_KERNEL, true);
c1e862c1 3086 if (!progress) {
f817ed48 3087 nr_retries--;
c1e862c1 3088 /* maybe some writeback is necessary */
8aa7e847 3089 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3090 }
f817ed48
KH
3091
3092 }
ab5196c2
MH
3093
3094 return 0;
cc847582
KH
3095}
3096
6770c64e
TH
3097static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3098 char *buf, size_t nbytes,
3099 loff_t off)
c1e862c1 3100{
6770c64e 3101 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3102
d8423011
MH
3103 if (mem_cgroup_is_root(memcg))
3104 return -EINVAL;
6770c64e 3105 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3106}
3107
182446d0
TH
3108static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3109 struct cftype *cft)
18f59ea7 3110{
182446d0 3111 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3112}
3113
182446d0
TH
3114static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3115 struct cftype *cft, u64 val)
18f59ea7
BS
3116{
3117 int retval = 0;
182446d0 3118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3119 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3120
0999821b 3121 mutex_lock(&memcg_create_mutex);
567fb435
GC
3122
3123 if (memcg->use_hierarchy == val)
3124 goto out;
3125
18f59ea7 3126 /*
af901ca1 3127 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3128 * in the child subtrees. If it is unset, then the change can
3129 * occur, provided the current cgroup has no children.
3130 *
3131 * For the root cgroup, parent_mem is NULL, we allow value to be
3132 * set if there are no children.
3133 */
c0ff4b85 3134 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3135 (val == 1 || val == 0)) {
ea280e7b 3136 if (!memcg_has_children(memcg))
c0ff4b85 3137 memcg->use_hierarchy = val;
18f59ea7
BS
3138 else
3139 retval = -EBUSY;
3140 } else
3141 retval = -EINVAL;
567fb435
GC
3142
3143out:
0999821b 3144 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3145
3146 return retval;
3147}
3148
3e32cb2e
JW
3149static unsigned long tree_stat(struct mem_cgroup *memcg,
3150 enum mem_cgroup_stat_index idx)
ce00a967
JW
3151{
3152 struct mem_cgroup *iter;
3153 long val = 0;
3154
3155 /* Per-cpu values can be negative, use a signed accumulator */
3156 for_each_mem_cgroup_tree(iter, memcg)
3157 val += mem_cgroup_read_stat(iter, idx);
3158
3159 if (val < 0) /* race ? */
3160 val = 0;
3161 return val;
3162}
3163
3164static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3165{
3166 u64 val;
3167
3e32cb2e
JW
3168 if (mem_cgroup_is_root(memcg)) {
3169 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3170 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3171 if (swap)
3172 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3173 } else {
ce00a967 3174 if (!swap)
3e32cb2e 3175 val = page_counter_read(&memcg->memory);
ce00a967 3176 else
3e32cb2e 3177 val = page_counter_read(&memcg->memsw);
ce00a967 3178 }
ce00a967
JW
3179 return val << PAGE_SHIFT;
3180}
3181
3e32cb2e
JW
3182enum {
3183 RES_USAGE,
3184 RES_LIMIT,
3185 RES_MAX_USAGE,
3186 RES_FAILCNT,
3187 RES_SOFT_LIMIT,
3188};
ce00a967 3189
791badbd 3190static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3191 struct cftype *cft)
8cdea7c0 3192{
182446d0 3193 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3194 struct page_counter *counter;
af36f906 3195
3e32cb2e 3196 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3197 case _MEM:
3e32cb2e
JW
3198 counter = &memcg->memory;
3199 break;
8c7c6e34 3200 case _MEMSWAP:
3e32cb2e
JW
3201 counter = &memcg->memsw;
3202 break;
510fc4e1 3203 case _KMEM:
3e32cb2e 3204 counter = &memcg->kmem;
510fc4e1 3205 break;
8c7c6e34
KH
3206 default:
3207 BUG();
8c7c6e34 3208 }
3e32cb2e
JW
3209
3210 switch (MEMFILE_ATTR(cft->private)) {
3211 case RES_USAGE:
3212 if (counter == &memcg->memory)
3213 return mem_cgroup_usage(memcg, false);
3214 if (counter == &memcg->memsw)
3215 return mem_cgroup_usage(memcg, true);
3216 return (u64)page_counter_read(counter) * PAGE_SIZE;
3217 case RES_LIMIT:
3218 return (u64)counter->limit * PAGE_SIZE;
3219 case RES_MAX_USAGE:
3220 return (u64)counter->watermark * PAGE_SIZE;
3221 case RES_FAILCNT:
3222 return counter->failcnt;
3223 case RES_SOFT_LIMIT:
3224 return (u64)memcg->soft_limit * PAGE_SIZE;
3225 default:
3226 BUG();
3227 }
8cdea7c0 3228}
510fc4e1 3229
510fc4e1 3230#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3231static int memcg_activate_kmem(struct mem_cgroup *memcg,
3232 unsigned long nr_pages)
d6441637
VD
3233{
3234 int err = 0;
3235 int memcg_id;
3236
2a4db7eb 3237 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 3238 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 3239 BUG_ON(memcg->kmem_acct_active);
d6441637 3240
510fc4e1
GC
3241 /*
3242 * For simplicity, we won't allow this to be disabled. It also can't
3243 * be changed if the cgroup has children already, or if tasks had
3244 * already joined.
3245 *
3246 * If tasks join before we set the limit, a person looking at
3247 * kmem.usage_in_bytes will have no way to determine when it took
3248 * place, which makes the value quite meaningless.
3249 *
3250 * After it first became limited, changes in the value of the limit are
3251 * of course permitted.
510fc4e1 3252 */
0999821b 3253 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3254 if (cgroup_has_tasks(memcg->css.cgroup) ||
3255 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3256 err = -EBUSY;
3257 mutex_unlock(&memcg_create_mutex);
3258 if (err)
3259 goto out;
510fc4e1 3260
f3bb3043 3261 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3262 if (memcg_id < 0) {
3263 err = memcg_id;
3264 goto out;
3265 }
3266
d6441637 3267 /*
900a38f0
VD
3268 * We couldn't have accounted to this cgroup, because it hasn't got
3269 * activated yet, so this should succeed.
d6441637 3270 */
3e32cb2e 3271 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3272 VM_BUG_ON(err);
3273
3274 static_key_slow_inc(&memcg_kmem_enabled_key);
3275 /*
900a38f0
VD
3276 * A memory cgroup is considered kmem-active as soon as it gets
3277 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3278 * guarantee no one starts accounting before all call sites are
3279 * patched.
3280 */
900a38f0 3281 memcg->kmemcg_id = memcg_id;
2788cf0c 3282 memcg->kmem_acct_activated = true;
2a4db7eb 3283 memcg->kmem_acct_active = true;
510fc4e1 3284out:
d6441637 3285 return err;
d6441637
VD
3286}
3287
d6441637 3288static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3289 unsigned long limit)
d6441637
VD
3290{
3291 int ret;
3292
3e32cb2e 3293 mutex_lock(&memcg_limit_mutex);
d6441637 3294 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3295 ret = memcg_activate_kmem(memcg, limit);
d6441637 3296 else
3e32cb2e
JW
3297 ret = page_counter_limit(&memcg->kmem, limit);
3298 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3299 return ret;
3300}
3301
55007d84 3302static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3303{
55007d84 3304 int ret = 0;
510fc4e1 3305 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3306
d6441637
VD
3307 if (!parent)
3308 return 0;
55007d84 3309
8c0145b6 3310 mutex_lock(&memcg_limit_mutex);
55007d84 3311 /*
d6441637
VD
3312 * If the parent cgroup is not kmem-active now, it cannot be activated
3313 * after this point, because it has at least one child already.
55007d84 3314 */
d6441637 3315 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3316 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3317 mutex_unlock(&memcg_limit_mutex);
55007d84 3318 return ret;
510fc4e1 3319}
d6441637
VD
3320#else
3321static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3322 unsigned long limit)
d6441637
VD
3323{
3324 return -EINVAL;
3325}
6d043990 3326#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3327
628f4235
KH
3328/*
3329 * The user of this function is...
3330 * RES_LIMIT.
3331 */
451af504
TH
3332static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3333 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3334{
451af504 3335 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3336 unsigned long nr_pages;
628f4235
KH
3337 int ret;
3338
451af504 3339 buf = strstrip(buf);
650c5e56 3340 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3341 if (ret)
3342 return ret;
af36f906 3343
3e32cb2e 3344 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3345 case RES_LIMIT:
4b3bde4c
BS
3346 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3347 ret = -EINVAL;
3348 break;
3349 }
3e32cb2e
JW
3350 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3351 case _MEM:
3352 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3353 break;
3e32cb2e
JW
3354 case _MEMSWAP:
3355 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3356 break;
3e32cb2e
JW
3357 case _KMEM:
3358 ret = memcg_update_kmem_limit(memcg, nr_pages);
3359 break;
3360 }
296c81d8 3361 break;
3e32cb2e
JW
3362 case RES_SOFT_LIMIT:
3363 memcg->soft_limit = nr_pages;
3364 ret = 0;
628f4235
KH
3365 break;
3366 }
451af504 3367 return ret ?: nbytes;
8cdea7c0
BS
3368}
3369
6770c64e
TH
3370static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3371 size_t nbytes, loff_t off)
c84872e1 3372{
6770c64e 3373 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3374 struct page_counter *counter;
c84872e1 3375
3e32cb2e
JW
3376 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3377 case _MEM:
3378 counter = &memcg->memory;
3379 break;
3380 case _MEMSWAP:
3381 counter = &memcg->memsw;
3382 break;
3383 case _KMEM:
3384 counter = &memcg->kmem;
3385 break;
3386 default:
3387 BUG();
3388 }
af36f906 3389
3e32cb2e 3390 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3391 case RES_MAX_USAGE:
3e32cb2e 3392 page_counter_reset_watermark(counter);
29f2a4da
PE
3393 break;
3394 case RES_FAILCNT:
3e32cb2e 3395 counter->failcnt = 0;
29f2a4da 3396 break;
3e32cb2e
JW
3397 default:
3398 BUG();
29f2a4da 3399 }
f64c3f54 3400
6770c64e 3401 return nbytes;
c84872e1
PE
3402}
3403
182446d0 3404static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3405 struct cftype *cft)
3406{
182446d0 3407 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3408}
3409
02491447 3410#ifdef CONFIG_MMU
182446d0 3411static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3412 struct cftype *cft, u64 val)
3413{
182446d0 3414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3415
1dfab5ab 3416 if (val & ~MOVE_MASK)
7dc74be0 3417 return -EINVAL;
ee5e8472 3418
7dc74be0 3419 /*
ee5e8472
GC
3420 * No kind of locking is needed in here, because ->can_attach() will
3421 * check this value once in the beginning of the process, and then carry
3422 * on with stale data. This means that changes to this value will only
3423 * affect task migrations starting after the change.
7dc74be0 3424 */
c0ff4b85 3425 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3426 return 0;
3427}
02491447 3428#else
182446d0 3429static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3430 struct cftype *cft, u64 val)
3431{
3432 return -ENOSYS;
3433}
3434#endif
7dc74be0 3435
406eb0c9 3436#ifdef CONFIG_NUMA
2da8ca82 3437static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3438{
25485de6
GT
3439 struct numa_stat {
3440 const char *name;
3441 unsigned int lru_mask;
3442 };
3443
3444 static const struct numa_stat stats[] = {
3445 { "total", LRU_ALL },
3446 { "file", LRU_ALL_FILE },
3447 { "anon", LRU_ALL_ANON },
3448 { "unevictable", BIT(LRU_UNEVICTABLE) },
3449 };
3450 const struct numa_stat *stat;
406eb0c9 3451 int nid;
25485de6 3452 unsigned long nr;
2da8ca82 3453 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3454
25485de6
GT
3455 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3456 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3457 seq_printf(m, "%s=%lu", stat->name, nr);
3458 for_each_node_state(nid, N_MEMORY) {
3459 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3460 stat->lru_mask);
3461 seq_printf(m, " N%d=%lu", nid, nr);
3462 }
3463 seq_putc(m, '\n');
406eb0c9 3464 }
406eb0c9 3465
071aee13
YH
3466 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3467 struct mem_cgroup *iter;
3468
3469 nr = 0;
3470 for_each_mem_cgroup_tree(iter, memcg)
3471 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3472 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3473 for_each_node_state(nid, N_MEMORY) {
3474 nr = 0;
3475 for_each_mem_cgroup_tree(iter, memcg)
3476 nr += mem_cgroup_node_nr_lru_pages(
3477 iter, nid, stat->lru_mask);
3478 seq_printf(m, " N%d=%lu", nid, nr);
3479 }
3480 seq_putc(m, '\n');
406eb0c9 3481 }
406eb0c9 3482
406eb0c9
YH
3483 return 0;
3484}
3485#endif /* CONFIG_NUMA */
3486
2da8ca82 3487static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3488{
2da8ca82 3489 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3490 unsigned long memory, memsw;
af7c4b0e
JW
3491 struct mem_cgroup *mi;
3492 unsigned int i;
406eb0c9 3493
0ca44b14
GT
3494 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3495 MEM_CGROUP_STAT_NSTATS);
3496 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3497 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3499
af7c4b0e 3500 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3501 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3502 continue;
af7c4b0e
JW
3503 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3504 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3505 }
7b854121 3506
af7c4b0e
JW
3507 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3508 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3509 mem_cgroup_read_events(memcg, i));
3510
3511 for (i = 0; i < NR_LRU_LISTS; i++)
3512 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3513 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3514
14067bb3 3515 /* Hierarchical information */
3e32cb2e
JW
3516 memory = memsw = PAGE_COUNTER_MAX;
3517 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 memory = min(memory, mi->memory.limit);
3519 memsw = min(memsw, mi->memsw.limit);
fee7b548 3520 }
3e32cb2e
JW
3521 seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 (u64)memory * PAGE_SIZE);
3523 if (do_swap_account)
3524 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 (u64)memsw * PAGE_SIZE);
7f016ee8 3526
af7c4b0e
JW
3527 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3528 long long val = 0;
3529
bff6bb83 3530 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3531 continue;
af7c4b0e
JW
3532 for_each_mem_cgroup_tree(mi, memcg)
3533 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3534 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3535 }
3536
3537 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3538 unsigned long long val = 0;
3539
3540 for_each_mem_cgroup_tree(mi, memcg)
3541 val += mem_cgroup_read_events(mi, i);
3542 seq_printf(m, "total_%s %llu\n",
3543 mem_cgroup_events_names[i], val);
3544 }
3545
3546 for (i = 0; i < NR_LRU_LISTS; i++) {
3547 unsigned long long val = 0;
3548
3549 for_each_mem_cgroup_tree(mi, memcg)
3550 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3551 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3552 }
14067bb3 3553
7f016ee8 3554#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3555 {
3556 int nid, zid;
3557 struct mem_cgroup_per_zone *mz;
89abfab1 3558 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3559 unsigned long recent_rotated[2] = {0, 0};
3560 unsigned long recent_scanned[2] = {0, 0};
3561
3562 for_each_online_node(nid)
3563 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3564 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3565 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3566
89abfab1
HD
3567 recent_rotated[0] += rstat->recent_rotated[0];
3568 recent_rotated[1] += rstat->recent_rotated[1];
3569 recent_scanned[0] += rstat->recent_scanned[0];
3570 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3571 }
78ccf5b5
JW
3572 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3573 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3574 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3575 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3576 }
3577#endif
3578
d2ceb9b7
KH
3579 return 0;
3580}
3581
182446d0
TH
3582static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3583 struct cftype *cft)
a7885eb8 3584{
182446d0 3585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3586
1f4c025b 3587 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3588}
3589
182446d0
TH
3590static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3591 struct cftype *cft, u64 val)
a7885eb8 3592{
182446d0 3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3594
3dae7fec 3595 if (val > 100)
a7885eb8
KM
3596 return -EINVAL;
3597
14208b0e 3598 if (css->parent)
3dae7fec
JW
3599 memcg->swappiness = val;
3600 else
3601 vm_swappiness = val;
068b38c1 3602
a7885eb8
KM
3603 return 0;
3604}
3605
2e72b634
KS
3606static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3607{
3608 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3609 unsigned long usage;
2e72b634
KS
3610 int i;
3611
3612 rcu_read_lock();
3613 if (!swap)
2c488db2 3614 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3615 else
2c488db2 3616 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3617
3618 if (!t)
3619 goto unlock;
3620
ce00a967 3621 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3622
3623 /*
748dad36 3624 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3625 * If it's not true, a threshold was crossed after last
3626 * call of __mem_cgroup_threshold().
3627 */
5407a562 3628 i = t->current_threshold;
2e72b634
KS
3629
3630 /*
3631 * Iterate backward over array of thresholds starting from
3632 * current_threshold and check if a threshold is crossed.
3633 * If none of thresholds below usage is crossed, we read
3634 * only one element of the array here.
3635 */
3636 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3637 eventfd_signal(t->entries[i].eventfd, 1);
3638
3639 /* i = current_threshold + 1 */
3640 i++;
3641
3642 /*
3643 * Iterate forward over array of thresholds starting from
3644 * current_threshold+1 and check if a threshold is crossed.
3645 * If none of thresholds above usage is crossed, we read
3646 * only one element of the array here.
3647 */
3648 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3649 eventfd_signal(t->entries[i].eventfd, 1);
3650
3651 /* Update current_threshold */
5407a562 3652 t->current_threshold = i - 1;
2e72b634
KS
3653unlock:
3654 rcu_read_unlock();
3655}
3656
3657static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3658{
ad4ca5f4
KS
3659 while (memcg) {
3660 __mem_cgroup_threshold(memcg, false);
3661 if (do_swap_account)
3662 __mem_cgroup_threshold(memcg, true);
3663
3664 memcg = parent_mem_cgroup(memcg);
3665 }
2e72b634
KS
3666}
3667
3668static int compare_thresholds(const void *a, const void *b)
3669{
3670 const struct mem_cgroup_threshold *_a = a;
3671 const struct mem_cgroup_threshold *_b = b;
3672
2bff24a3
GT
3673 if (_a->threshold > _b->threshold)
3674 return 1;
3675
3676 if (_a->threshold < _b->threshold)
3677 return -1;
3678
3679 return 0;
2e72b634
KS
3680}
3681
c0ff4b85 3682static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3683{
3684 struct mem_cgroup_eventfd_list *ev;
3685
2bcf2e92
MH
3686 spin_lock(&memcg_oom_lock);
3687
c0ff4b85 3688 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3689 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3690
3691 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3692 return 0;
3693}
3694
c0ff4b85 3695static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3696{
7d74b06f
KH
3697 struct mem_cgroup *iter;
3698
c0ff4b85 3699 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3700 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3701}
3702
59b6f873 3703static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3704 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3705{
2c488db2
KS
3706 struct mem_cgroup_thresholds *thresholds;
3707 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3708 unsigned long threshold;
3709 unsigned long usage;
2c488db2 3710 int i, size, ret;
2e72b634 3711
650c5e56 3712 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3713 if (ret)
3714 return ret;
3715
3716 mutex_lock(&memcg->thresholds_lock);
2c488db2 3717
05b84301 3718 if (type == _MEM) {
2c488db2 3719 thresholds = &memcg->thresholds;
ce00a967 3720 usage = mem_cgroup_usage(memcg, false);
05b84301 3721 } else if (type == _MEMSWAP) {
2c488db2 3722 thresholds = &memcg->memsw_thresholds;
ce00a967 3723 usage = mem_cgroup_usage(memcg, true);
05b84301 3724 } else
2e72b634
KS
3725 BUG();
3726
2e72b634 3727 /* Check if a threshold crossed before adding a new one */
2c488db2 3728 if (thresholds->primary)
2e72b634
KS
3729 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3730
2c488db2 3731 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3732
3733 /* Allocate memory for new array of thresholds */
2c488db2 3734 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3735 GFP_KERNEL);
2c488db2 3736 if (!new) {
2e72b634
KS
3737 ret = -ENOMEM;
3738 goto unlock;
3739 }
2c488db2 3740 new->size = size;
2e72b634
KS
3741
3742 /* Copy thresholds (if any) to new array */
2c488db2
KS
3743 if (thresholds->primary) {
3744 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3745 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3746 }
3747
2e72b634 3748 /* Add new threshold */
2c488db2
KS
3749 new->entries[size - 1].eventfd = eventfd;
3750 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3751
3752 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3753 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3754 compare_thresholds, NULL);
3755
3756 /* Find current threshold */
2c488db2 3757 new->current_threshold = -1;
2e72b634 3758 for (i = 0; i < size; i++) {
748dad36 3759 if (new->entries[i].threshold <= usage) {
2e72b634 3760 /*
2c488db2
KS
3761 * new->current_threshold will not be used until
3762 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3763 * it here.
3764 */
2c488db2 3765 ++new->current_threshold;
748dad36
SZ
3766 } else
3767 break;
2e72b634
KS
3768 }
3769
2c488db2
KS
3770 /* Free old spare buffer and save old primary buffer as spare */
3771 kfree(thresholds->spare);
3772 thresholds->spare = thresholds->primary;
3773
3774 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3775
907860ed 3776 /* To be sure that nobody uses thresholds */
2e72b634
KS
3777 synchronize_rcu();
3778
2e72b634
KS
3779unlock:
3780 mutex_unlock(&memcg->thresholds_lock);
3781
3782 return ret;
3783}
3784
59b6f873 3785static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3786 struct eventfd_ctx *eventfd, const char *args)
3787{
59b6f873 3788 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3789}
3790
59b6f873 3791static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3792 struct eventfd_ctx *eventfd, const char *args)
3793{
59b6f873 3794 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3795}
3796
59b6f873 3797static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3798 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3799{
2c488db2
KS
3800 struct mem_cgroup_thresholds *thresholds;
3801 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3802 unsigned long usage;
2c488db2 3803 int i, j, size;
2e72b634
KS
3804
3805 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3806
3807 if (type == _MEM) {
2c488db2 3808 thresholds = &memcg->thresholds;
ce00a967 3809 usage = mem_cgroup_usage(memcg, false);
05b84301 3810 } else if (type == _MEMSWAP) {
2c488db2 3811 thresholds = &memcg->memsw_thresholds;
ce00a967 3812 usage = mem_cgroup_usage(memcg, true);
05b84301 3813 } else
2e72b634
KS
3814 BUG();
3815
371528ca
AV
3816 if (!thresholds->primary)
3817 goto unlock;
3818
2e72b634
KS
3819 /* Check if a threshold crossed before removing */
3820 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3821
3822 /* Calculate new number of threshold */
2c488db2
KS
3823 size = 0;
3824 for (i = 0; i < thresholds->primary->size; i++) {
3825 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3826 size++;
3827 }
3828
2c488db2 3829 new = thresholds->spare;
907860ed 3830
2e72b634
KS
3831 /* Set thresholds array to NULL if we don't have thresholds */
3832 if (!size) {
2c488db2
KS
3833 kfree(new);
3834 new = NULL;
907860ed 3835 goto swap_buffers;
2e72b634
KS
3836 }
3837
2c488db2 3838 new->size = size;
2e72b634
KS
3839
3840 /* Copy thresholds and find current threshold */
2c488db2
KS
3841 new->current_threshold = -1;
3842 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3843 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3844 continue;
3845
2c488db2 3846 new->entries[j] = thresholds->primary->entries[i];
748dad36 3847 if (new->entries[j].threshold <= usage) {
2e72b634 3848 /*
2c488db2 3849 * new->current_threshold will not be used
2e72b634
KS
3850 * until rcu_assign_pointer(), so it's safe to increment
3851 * it here.
3852 */
2c488db2 3853 ++new->current_threshold;
2e72b634
KS
3854 }
3855 j++;
3856 }
3857
907860ed 3858swap_buffers:
2c488db2
KS
3859 /* Swap primary and spare array */
3860 thresholds->spare = thresholds->primary;
8c757763
SZ
3861 /* If all events are unregistered, free the spare array */
3862 if (!new) {
3863 kfree(thresholds->spare);
3864 thresholds->spare = NULL;
3865 }
3866
2c488db2 3867 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3868
907860ed 3869 /* To be sure that nobody uses thresholds */
2e72b634 3870 synchronize_rcu();
371528ca 3871unlock:
2e72b634 3872 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3873}
c1e862c1 3874
59b6f873 3875static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3876 struct eventfd_ctx *eventfd)
3877{
59b6f873 3878 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3879}
3880
59b6f873 3881static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3882 struct eventfd_ctx *eventfd)
3883{
59b6f873 3884 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3885}
3886
59b6f873 3887static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3888 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3889{
9490ff27 3890 struct mem_cgroup_eventfd_list *event;
9490ff27 3891
9490ff27
KH
3892 event = kmalloc(sizeof(*event), GFP_KERNEL);
3893 if (!event)
3894 return -ENOMEM;
3895
1af8efe9 3896 spin_lock(&memcg_oom_lock);
9490ff27
KH
3897
3898 event->eventfd = eventfd;
3899 list_add(&event->list, &memcg->oom_notify);
3900
3901 /* already in OOM ? */
79dfdacc 3902 if (atomic_read(&memcg->under_oom))
9490ff27 3903 eventfd_signal(eventfd, 1);
1af8efe9 3904 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3905
3906 return 0;
3907}
3908
59b6f873 3909static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3910 struct eventfd_ctx *eventfd)
9490ff27 3911{
9490ff27 3912 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3913
1af8efe9 3914 spin_lock(&memcg_oom_lock);
9490ff27 3915
c0ff4b85 3916 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3917 if (ev->eventfd == eventfd) {
3918 list_del(&ev->list);
3919 kfree(ev);
3920 }
3921 }
3922
1af8efe9 3923 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3924}
3925
2da8ca82 3926static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3927{
2da8ca82 3928 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3929
791badbd
TH
3930 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3931 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
3932 return 0;
3933}
3934
182446d0 3935static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3936 struct cftype *cft, u64 val)
3937{
182446d0 3938 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3939
3940 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3941 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3942 return -EINVAL;
3943
c0ff4b85 3944 memcg->oom_kill_disable = val;
4d845ebf 3945 if (!val)
c0ff4b85 3946 memcg_oom_recover(memcg);
3dae7fec 3947
3c11ecf4
KH
3948 return 0;
3949}
3950
c255a458 3951#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3952static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3953{
55007d84
GC
3954 int ret;
3955
55007d84
GC
3956 ret = memcg_propagate_kmem(memcg);
3957 if (ret)
3958 return ret;
2633d7a0 3959
1d62e436 3960 return mem_cgroup_sockets_init(memcg, ss);
573b400d 3961}
e5671dfa 3962
2a4db7eb
VD
3963static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3964{
2788cf0c
VD
3965 struct cgroup_subsys_state *css;
3966 struct mem_cgroup *parent, *child;
3967 int kmemcg_id;
3968
2a4db7eb
VD
3969 if (!memcg->kmem_acct_active)
3970 return;
3971
3972 /*
3973 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3974 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3975 * guarantees no cache will be created for this cgroup after we are
3976 * done (see memcg_create_kmem_cache()).
3977 */
3978 memcg->kmem_acct_active = false;
3979
3980 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3981
3982 kmemcg_id = memcg->kmemcg_id;
3983 BUG_ON(kmemcg_id < 0);
3984
3985 parent = parent_mem_cgroup(memcg);
3986 if (!parent)
3987 parent = root_mem_cgroup;
3988
3989 /*
3990 * Change kmemcg_id of this cgroup and all its descendants to the
3991 * parent's id, and then move all entries from this cgroup's list_lrus
3992 * to ones of the parent. After we have finished, all list_lrus
3993 * corresponding to this cgroup are guaranteed to remain empty. The
3994 * ordering is imposed by list_lru_node->lock taken by
3995 * memcg_drain_all_list_lrus().
3996 */
3997 css_for_each_descendant_pre(css, &memcg->css) {
3998 child = mem_cgroup_from_css(css);
3999 BUG_ON(child->kmemcg_id != kmemcg_id);
4000 child->kmemcg_id = parent->kmemcg_id;
4001 if (!memcg->use_hierarchy)
4002 break;
4003 }
4004 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4005
4006 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
4007}
4008
10d5ebf4 4009static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4010{
f48b80a5
VD
4011 if (memcg->kmem_acct_activated) {
4012 memcg_destroy_kmem_caches(memcg);
4013 static_key_slow_dec(&memcg_kmem_enabled_key);
4014 WARN_ON(page_counter_read(&memcg->kmem));
4015 }
1d62e436 4016 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4017}
e5671dfa 4018#else
cbe128e3 4019static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4020{
4021 return 0;
4022}
d1a4c0b3 4023
2a4db7eb
VD
4024static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4025{
4026}
4027
10d5ebf4
LZ
4028static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4029{
4030}
e5671dfa
GC
4031#endif
4032
3bc942f3
TH
4033/*
4034 * DO NOT USE IN NEW FILES.
4035 *
4036 * "cgroup.event_control" implementation.
4037 *
4038 * This is way over-engineered. It tries to support fully configurable
4039 * events for each user. Such level of flexibility is completely
4040 * unnecessary especially in the light of the planned unified hierarchy.
4041 *
4042 * Please deprecate this and replace with something simpler if at all
4043 * possible.
4044 */
4045
79bd9814
TH
4046/*
4047 * Unregister event and free resources.
4048 *
4049 * Gets called from workqueue.
4050 */
3bc942f3 4051static void memcg_event_remove(struct work_struct *work)
79bd9814 4052{
3bc942f3
TH
4053 struct mem_cgroup_event *event =
4054 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4055 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4056
4057 remove_wait_queue(event->wqh, &event->wait);
4058
59b6f873 4059 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4060
4061 /* Notify userspace the event is going away. */
4062 eventfd_signal(event->eventfd, 1);
4063
4064 eventfd_ctx_put(event->eventfd);
4065 kfree(event);
59b6f873 4066 css_put(&memcg->css);
79bd9814
TH
4067}
4068
4069/*
4070 * Gets called on POLLHUP on eventfd when user closes it.
4071 *
4072 * Called with wqh->lock held and interrupts disabled.
4073 */
3bc942f3
TH
4074static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4075 int sync, void *key)
79bd9814 4076{
3bc942f3
TH
4077 struct mem_cgroup_event *event =
4078 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4079 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4080 unsigned long flags = (unsigned long)key;
4081
4082 if (flags & POLLHUP) {
4083 /*
4084 * If the event has been detached at cgroup removal, we
4085 * can simply return knowing the other side will cleanup
4086 * for us.
4087 *
4088 * We can't race against event freeing since the other
4089 * side will require wqh->lock via remove_wait_queue(),
4090 * which we hold.
4091 */
fba94807 4092 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4093 if (!list_empty(&event->list)) {
4094 list_del_init(&event->list);
4095 /*
4096 * We are in atomic context, but cgroup_event_remove()
4097 * may sleep, so we have to call it in workqueue.
4098 */
4099 schedule_work(&event->remove);
4100 }
fba94807 4101 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4102 }
4103
4104 return 0;
4105}
4106
3bc942f3 4107static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4108 wait_queue_head_t *wqh, poll_table *pt)
4109{
3bc942f3
TH
4110 struct mem_cgroup_event *event =
4111 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4112
4113 event->wqh = wqh;
4114 add_wait_queue(wqh, &event->wait);
4115}
4116
4117/*
3bc942f3
TH
4118 * DO NOT USE IN NEW FILES.
4119 *
79bd9814
TH
4120 * Parse input and register new cgroup event handler.
4121 *
4122 * Input must be in format '<event_fd> <control_fd> <args>'.
4123 * Interpretation of args is defined by control file implementation.
4124 */
451af504
TH
4125static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4126 char *buf, size_t nbytes, loff_t off)
79bd9814 4127{
451af504 4128 struct cgroup_subsys_state *css = of_css(of);
fba94807 4129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4130 struct mem_cgroup_event *event;
79bd9814
TH
4131 struct cgroup_subsys_state *cfile_css;
4132 unsigned int efd, cfd;
4133 struct fd efile;
4134 struct fd cfile;
fba94807 4135 const char *name;
79bd9814
TH
4136 char *endp;
4137 int ret;
4138
451af504
TH
4139 buf = strstrip(buf);
4140
4141 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4142 if (*endp != ' ')
4143 return -EINVAL;
451af504 4144 buf = endp + 1;
79bd9814 4145
451af504 4146 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4147 if ((*endp != ' ') && (*endp != '\0'))
4148 return -EINVAL;
451af504 4149 buf = endp + 1;
79bd9814
TH
4150
4151 event = kzalloc(sizeof(*event), GFP_KERNEL);
4152 if (!event)
4153 return -ENOMEM;
4154
59b6f873 4155 event->memcg = memcg;
79bd9814 4156 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4157 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4158 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4159 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4160
4161 efile = fdget(efd);
4162 if (!efile.file) {
4163 ret = -EBADF;
4164 goto out_kfree;
4165 }
4166
4167 event->eventfd = eventfd_ctx_fileget(efile.file);
4168 if (IS_ERR(event->eventfd)) {
4169 ret = PTR_ERR(event->eventfd);
4170 goto out_put_efile;
4171 }
4172
4173 cfile = fdget(cfd);
4174 if (!cfile.file) {
4175 ret = -EBADF;
4176 goto out_put_eventfd;
4177 }
4178
4179 /* the process need read permission on control file */
4180 /* AV: shouldn't we check that it's been opened for read instead? */
4181 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4182 if (ret < 0)
4183 goto out_put_cfile;
4184
fba94807
TH
4185 /*
4186 * Determine the event callbacks and set them in @event. This used
4187 * to be done via struct cftype but cgroup core no longer knows
4188 * about these events. The following is crude but the whole thing
4189 * is for compatibility anyway.
3bc942f3
TH
4190 *
4191 * DO NOT ADD NEW FILES.
fba94807 4192 */
b583043e 4193 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4194
4195 if (!strcmp(name, "memory.usage_in_bytes")) {
4196 event->register_event = mem_cgroup_usage_register_event;
4197 event->unregister_event = mem_cgroup_usage_unregister_event;
4198 } else if (!strcmp(name, "memory.oom_control")) {
4199 event->register_event = mem_cgroup_oom_register_event;
4200 event->unregister_event = mem_cgroup_oom_unregister_event;
4201 } else if (!strcmp(name, "memory.pressure_level")) {
4202 event->register_event = vmpressure_register_event;
4203 event->unregister_event = vmpressure_unregister_event;
4204 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4205 event->register_event = memsw_cgroup_usage_register_event;
4206 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4207 } else {
4208 ret = -EINVAL;
4209 goto out_put_cfile;
4210 }
4211
79bd9814 4212 /*
b5557c4c
TH
4213 * Verify @cfile should belong to @css. Also, remaining events are
4214 * automatically removed on cgroup destruction but the removal is
4215 * asynchronous, so take an extra ref on @css.
79bd9814 4216 */
b583043e 4217 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4218 &memory_cgrp_subsys);
79bd9814 4219 ret = -EINVAL;
5a17f543 4220 if (IS_ERR(cfile_css))
79bd9814 4221 goto out_put_cfile;
5a17f543
TH
4222 if (cfile_css != css) {
4223 css_put(cfile_css);
79bd9814 4224 goto out_put_cfile;
5a17f543 4225 }
79bd9814 4226
451af504 4227 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4228 if (ret)
4229 goto out_put_css;
4230
4231 efile.file->f_op->poll(efile.file, &event->pt);
4232
fba94807
TH
4233 spin_lock(&memcg->event_list_lock);
4234 list_add(&event->list, &memcg->event_list);
4235 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4236
4237 fdput(cfile);
4238 fdput(efile);
4239
451af504 4240 return nbytes;
79bd9814
TH
4241
4242out_put_css:
b5557c4c 4243 css_put(css);
79bd9814
TH
4244out_put_cfile:
4245 fdput(cfile);
4246out_put_eventfd:
4247 eventfd_ctx_put(event->eventfd);
4248out_put_efile:
4249 fdput(efile);
4250out_kfree:
4251 kfree(event);
4252
4253 return ret;
4254}
4255
241994ed 4256static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4257 {
0eea1030 4258 .name = "usage_in_bytes",
8c7c6e34 4259 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4260 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4261 },
c84872e1
PE
4262 {
4263 .name = "max_usage_in_bytes",
8c7c6e34 4264 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4265 .write = mem_cgroup_reset,
791badbd 4266 .read_u64 = mem_cgroup_read_u64,
c84872e1 4267 },
8cdea7c0 4268 {
0eea1030 4269 .name = "limit_in_bytes",
8c7c6e34 4270 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4271 .write = mem_cgroup_write,
791badbd 4272 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4273 },
296c81d8
BS
4274 {
4275 .name = "soft_limit_in_bytes",
4276 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4277 .write = mem_cgroup_write,
791badbd 4278 .read_u64 = mem_cgroup_read_u64,
296c81d8 4279 },
8cdea7c0
BS
4280 {
4281 .name = "failcnt",
8c7c6e34 4282 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4283 .write = mem_cgroup_reset,
791badbd 4284 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4285 },
d2ceb9b7
KH
4286 {
4287 .name = "stat",
2da8ca82 4288 .seq_show = memcg_stat_show,
d2ceb9b7 4289 },
c1e862c1
KH
4290 {
4291 .name = "force_empty",
6770c64e 4292 .write = mem_cgroup_force_empty_write,
c1e862c1 4293 },
18f59ea7
BS
4294 {
4295 .name = "use_hierarchy",
4296 .write_u64 = mem_cgroup_hierarchy_write,
4297 .read_u64 = mem_cgroup_hierarchy_read,
4298 },
79bd9814 4299 {
3bc942f3 4300 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4301 .write = memcg_write_event_control,
79bd9814
TH
4302 .flags = CFTYPE_NO_PREFIX,
4303 .mode = S_IWUGO,
4304 },
a7885eb8
KM
4305 {
4306 .name = "swappiness",
4307 .read_u64 = mem_cgroup_swappiness_read,
4308 .write_u64 = mem_cgroup_swappiness_write,
4309 },
7dc74be0
DN
4310 {
4311 .name = "move_charge_at_immigrate",
4312 .read_u64 = mem_cgroup_move_charge_read,
4313 .write_u64 = mem_cgroup_move_charge_write,
4314 },
9490ff27
KH
4315 {
4316 .name = "oom_control",
2da8ca82 4317 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4318 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4319 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4320 },
70ddf637
AV
4321 {
4322 .name = "pressure_level",
70ddf637 4323 },
406eb0c9
YH
4324#ifdef CONFIG_NUMA
4325 {
4326 .name = "numa_stat",
2da8ca82 4327 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4328 },
4329#endif
510fc4e1
GC
4330#ifdef CONFIG_MEMCG_KMEM
4331 {
4332 .name = "kmem.limit_in_bytes",
4333 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4334 .write = mem_cgroup_write,
791badbd 4335 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4336 },
4337 {
4338 .name = "kmem.usage_in_bytes",
4339 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4340 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4341 },
4342 {
4343 .name = "kmem.failcnt",
4344 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4345 .write = mem_cgroup_reset,
791badbd 4346 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4347 },
4348 {
4349 .name = "kmem.max_usage_in_bytes",
4350 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4351 .write = mem_cgroup_reset,
791badbd 4352 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4353 },
749c5415
GC
4354#ifdef CONFIG_SLABINFO
4355 {
4356 .name = "kmem.slabinfo",
b047501c
VD
4357 .seq_start = slab_start,
4358 .seq_next = slab_next,
4359 .seq_stop = slab_stop,
4360 .seq_show = memcg_slab_show,
749c5415
GC
4361 },
4362#endif
8c7c6e34 4363#endif
6bc10349 4364 { }, /* terminate */
af36f906 4365};
8c7c6e34 4366
c0ff4b85 4367static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4368{
4369 struct mem_cgroup_per_node *pn;
1ecaab2b 4370 struct mem_cgroup_per_zone *mz;
41e3355d 4371 int zone, tmp = node;
1ecaab2b
KH
4372 /*
4373 * This routine is called against possible nodes.
4374 * But it's BUG to call kmalloc() against offline node.
4375 *
4376 * TODO: this routine can waste much memory for nodes which will
4377 * never be onlined. It's better to use memory hotplug callback
4378 * function.
4379 */
41e3355d
KH
4380 if (!node_state(node, N_NORMAL_MEMORY))
4381 tmp = -1;
17295c88 4382 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4383 if (!pn)
4384 return 1;
1ecaab2b 4385
1ecaab2b
KH
4386 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4387 mz = &pn->zoneinfo[zone];
bea8c150 4388 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4389 mz->usage_in_excess = 0;
4390 mz->on_tree = false;
d79154bb 4391 mz->memcg = memcg;
1ecaab2b 4392 }
54f72fe0 4393 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4394 return 0;
4395}
4396
c0ff4b85 4397static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4398{
54f72fe0 4399 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4400}
4401
33327948
KH
4402static struct mem_cgroup *mem_cgroup_alloc(void)
4403{
d79154bb 4404 struct mem_cgroup *memcg;
8ff69e2c 4405 size_t size;
33327948 4406
8ff69e2c
VD
4407 size = sizeof(struct mem_cgroup);
4408 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4409
8ff69e2c 4410 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4411 if (!memcg)
e7bbcdf3
DC
4412 return NULL;
4413
d79154bb
HD
4414 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4415 if (!memcg->stat)
d2e61b8d 4416 goto out_free;
d79154bb
HD
4417 spin_lock_init(&memcg->pcp_counter_lock);
4418 return memcg;
d2e61b8d
DC
4419
4420out_free:
8ff69e2c 4421 kfree(memcg);
d2e61b8d 4422 return NULL;
33327948
KH
4423}
4424
59927fb9 4425/*
c8b2a36f
GC
4426 * At destroying mem_cgroup, references from swap_cgroup can remain.
4427 * (scanning all at force_empty is too costly...)
4428 *
4429 * Instead of clearing all references at force_empty, we remember
4430 * the number of reference from swap_cgroup and free mem_cgroup when
4431 * it goes down to 0.
4432 *
4433 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4434 */
c8b2a36f
GC
4435
4436static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4437{
c8b2a36f 4438 int node;
59927fb9 4439
bb4cc1a8 4440 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4441
4442 for_each_node(node)
4443 free_mem_cgroup_per_zone_info(memcg, node);
4444
4445 free_percpu(memcg->stat);
8ff69e2c 4446 kfree(memcg);
59927fb9 4447}
3afe36b1 4448
7bcc1bb1
DN
4449/*
4450 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4451 */
e1aab161 4452struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4453{
3e32cb2e 4454 if (!memcg->memory.parent)
7bcc1bb1 4455 return NULL;
3e32cb2e 4456 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4457}
e1aab161 4458EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4459
0eb253e2 4460static struct cgroup_subsys_state * __ref
eb95419b 4461mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4462{
d142e3e6 4463 struct mem_cgroup *memcg;
04046e1a 4464 long error = -ENOMEM;
6d12e2d8 4465 int node;
8cdea7c0 4466
c0ff4b85
R
4467 memcg = mem_cgroup_alloc();
4468 if (!memcg)
04046e1a 4469 return ERR_PTR(error);
78fb7466 4470
3ed28fa1 4471 for_each_node(node)
c0ff4b85 4472 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4473 goto free_out;
f64c3f54 4474
c077719b 4475 /* root ? */
eb95419b 4476 if (parent_css == NULL) {
a41c58a6 4477 root_mem_cgroup = memcg;
56161634 4478 mem_cgroup_root_css = &memcg->css;
3e32cb2e 4479 page_counter_init(&memcg->memory, NULL);
241994ed 4480 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4481 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4482 page_counter_init(&memcg->memsw, NULL);
4483 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4484 }
28dbc4b6 4485
d142e3e6
GC
4486 memcg->last_scanned_node = MAX_NUMNODES;
4487 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4488 memcg->move_charge_at_immigrate = 0;
4489 mutex_init(&memcg->thresholds_lock);
4490 spin_lock_init(&memcg->move_lock);
70ddf637 4491 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4492 INIT_LIST_HEAD(&memcg->event_list);
4493 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4494#ifdef CONFIG_MEMCG_KMEM
4495 memcg->kmemcg_id = -1;
900a38f0 4496#endif
d142e3e6
GC
4497
4498 return &memcg->css;
4499
4500free_out:
4501 __mem_cgroup_free(memcg);
4502 return ERR_PTR(error);
4503}
4504
4505static int
eb95419b 4506mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4507{
eb95419b 4508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4509 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4510 int ret;
d142e3e6 4511
15a4c835 4512 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4513 return -ENOSPC;
4514
63876986 4515 if (!parent)
d142e3e6
GC
4516 return 0;
4517
0999821b 4518 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4519
4520 memcg->use_hierarchy = parent->use_hierarchy;
4521 memcg->oom_kill_disable = parent->oom_kill_disable;
4522 memcg->swappiness = mem_cgroup_swappiness(parent);
4523
4524 if (parent->use_hierarchy) {
3e32cb2e 4525 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4526 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4527 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4528 page_counter_init(&memcg->memsw, &parent->memsw);
4529 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4530
7bcc1bb1 4531 /*
8d76a979
LZ
4532 * No need to take a reference to the parent because cgroup
4533 * core guarantees its existence.
7bcc1bb1 4534 */
18f59ea7 4535 } else {
3e32cb2e 4536 page_counter_init(&memcg->memory, NULL);
241994ed 4537 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4538 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4539 page_counter_init(&memcg->memsw, NULL);
4540 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4541 /*
4542 * Deeper hierachy with use_hierarchy == false doesn't make
4543 * much sense so let cgroup subsystem know about this
4544 * unfortunate state in our controller.
4545 */
d142e3e6 4546 if (parent != root_mem_cgroup)
073219e9 4547 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4548 }
0999821b 4549 mutex_unlock(&memcg_create_mutex);
d6441637 4550
2f7dd7a4
JW
4551 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4552 if (ret)
4553 return ret;
4554
4555 /*
4556 * Make sure the memcg is initialized: mem_cgroup_iter()
4557 * orders reading memcg->initialized against its callers
4558 * reading the memcg members.
4559 */
4560 smp_store_release(&memcg->initialized, 1);
4561
4562 return 0;
8cdea7c0
BS
4563}
4564
eb95419b 4565static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4566{
eb95419b 4567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4568 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4569
4570 /*
4571 * Unregister events and notify userspace.
4572 * Notify userspace about cgroup removing only after rmdir of cgroup
4573 * directory to avoid race between userspace and kernelspace.
4574 */
fba94807
TH
4575 spin_lock(&memcg->event_list_lock);
4576 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4577 list_del_init(&event->list);
4578 schedule_work(&event->remove);
4579 }
fba94807 4580 spin_unlock(&memcg->event_list_lock);
ec64f515 4581
33cb876e 4582 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4583
4584 memcg_deactivate_kmem(memcg);
df878fb0
KH
4585}
4586
eb95419b 4587static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4588{
eb95419b 4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4590
10d5ebf4 4591 memcg_destroy_kmem(memcg);
465939a1 4592 __mem_cgroup_free(memcg);
8cdea7c0
BS
4593}
4594
1ced953b
TH
4595/**
4596 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4597 * @css: the target css
4598 *
4599 * Reset the states of the mem_cgroup associated with @css. This is
4600 * invoked when the userland requests disabling on the default hierarchy
4601 * but the memcg is pinned through dependency. The memcg should stop
4602 * applying policies and should revert to the vanilla state as it may be
4603 * made visible again.
4604 *
4605 * The current implementation only resets the essential configurations.
4606 * This needs to be expanded to cover all the visible parts.
4607 */
4608static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4609{
4610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4611
3e32cb2e
JW
4612 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4613 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4614 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4615 memcg->low = 0;
4616 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4617 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4618}
4619
02491447 4620#ifdef CONFIG_MMU
7dc74be0 4621/* Handlers for move charge at task migration. */
854ffa8d 4622static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4623{
05b84301 4624 int ret;
9476db97
JW
4625
4626 /* Try a single bulk charge without reclaim first */
00501b53 4627 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4628 if (!ret) {
854ffa8d 4629 mc.precharge += count;
854ffa8d
DN
4630 return ret;
4631 }
692e7c45 4632 if (ret == -EINTR) {
00501b53 4633 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4634 return ret;
4635 }
9476db97
JW
4636
4637 /* Try charges one by one with reclaim */
854ffa8d 4638 while (count--) {
00501b53 4639 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4640 /*
4641 * In case of failure, any residual charges against
4642 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4643 * later on. However, cancel any charges that are
4644 * bypassed to root right away or they'll be lost.
9476db97 4645 */
692e7c45 4646 if (ret == -EINTR)
00501b53 4647 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4648 if (ret)
38c5d72f 4649 return ret;
854ffa8d 4650 mc.precharge++;
9476db97 4651 cond_resched();
854ffa8d 4652 }
9476db97 4653 return 0;
4ffef5fe
DN
4654}
4655
4656/**
8d32ff84 4657 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4658 * @vma: the vma the pte to be checked belongs
4659 * @addr: the address corresponding to the pte to be checked
4660 * @ptent: the pte to be checked
02491447 4661 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4662 *
4663 * Returns
4664 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4665 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4666 * move charge. if @target is not NULL, the page is stored in target->page
4667 * with extra refcnt got(Callers should handle it).
02491447
DN
4668 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4669 * target for charge migration. if @target is not NULL, the entry is stored
4670 * in target->ent.
4ffef5fe
DN
4671 *
4672 * Called with pte lock held.
4673 */
4ffef5fe
DN
4674union mc_target {
4675 struct page *page;
02491447 4676 swp_entry_t ent;
4ffef5fe
DN
4677};
4678
4ffef5fe 4679enum mc_target_type {
8d32ff84 4680 MC_TARGET_NONE = 0,
4ffef5fe 4681 MC_TARGET_PAGE,
02491447 4682 MC_TARGET_SWAP,
4ffef5fe
DN
4683};
4684
90254a65
DN
4685static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4686 unsigned long addr, pte_t ptent)
4ffef5fe 4687{
90254a65 4688 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4689
90254a65
DN
4690 if (!page || !page_mapped(page))
4691 return NULL;
4692 if (PageAnon(page)) {
1dfab5ab 4693 if (!(mc.flags & MOVE_ANON))
90254a65 4694 return NULL;
1dfab5ab
JW
4695 } else {
4696 if (!(mc.flags & MOVE_FILE))
4697 return NULL;
4698 }
90254a65
DN
4699 if (!get_page_unless_zero(page))
4700 return NULL;
4701
4702 return page;
4703}
4704
4b91355e 4705#ifdef CONFIG_SWAP
90254a65
DN
4706static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4707 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4708{
90254a65
DN
4709 struct page *page = NULL;
4710 swp_entry_t ent = pte_to_swp_entry(ptent);
4711
1dfab5ab 4712 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4713 return NULL;
4b91355e
KH
4714 /*
4715 * Because lookup_swap_cache() updates some statistics counter,
4716 * we call find_get_page() with swapper_space directly.
4717 */
33806f06 4718 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4719 if (do_swap_account)
4720 entry->val = ent.val;
4721
4722 return page;
4723}
4b91355e
KH
4724#else
4725static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4726 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4727{
4728 return NULL;
4729}
4730#endif
90254a65 4731
87946a72
DN
4732static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4733 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4734{
4735 struct page *page = NULL;
87946a72
DN
4736 struct address_space *mapping;
4737 pgoff_t pgoff;
4738
4739 if (!vma->vm_file) /* anonymous vma */
4740 return NULL;
1dfab5ab 4741 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4742 return NULL;
4743
87946a72 4744 mapping = vma->vm_file->f_mapping;
0661a336 4745 pgoff = linear_page_index(vma, addr);
87946a72
DN
4746
4747 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4748#ifdef CONFIG_SWAP
4749 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4750 if (shmem_mapping(mapping)) {
4751 page = find_get_entry(mapping, pgoff);
4752 if (radix_tree_exceptional_entry(page)) {
4753 swp_entry_t swp = radix_to_swp_entry(page);
4754 if (do_swap_account)
4755 *entry = swp;
4756 page = find_get_page(swap_address_space(swp), swp.val);
4757 }
4758 } else
4759 page = find_get_page(mapping, pgoff);
4760#else
4761 page = find_get_page(mapping, pgoff);
aa3b1895 4762#endif
87946a72
DN
4763 return page;
4764}
4765
b1b0deab
CG
4766/**
4767 * mem_cgroup_move_account - move account of the page
4768 * @page: the page
4769 * @nr_pages: number of regular pages (>1 for huge pages)
4770 * @from: mem_cgroup which the page is moved from.
4771 * @to: mem_cgroup which the page is moved to. @from != @to.
4772 *
4773 * The caller must confirm following.
4774 * - page is not on LRU (isolate_page() is useful.)
4775 * - compound_lock is held when nr_pages > 1
4776 *
4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778 * from old cgroup.
4779 */
4780static int mem_cgroup_move_account(struct page *page,
4781 unsigned int nr_pages,
4782 struct mem_cgroup *from,
4783 struct mem_cgroup *to)
4784{
4785 unsigned long flags;
4786 int ret;
c4843a75 4787 bool anon;
b1b0deab
CG
4788
4789 VM_BUG_ON(from == to);
4790 VM_BUG_ON_PAGE(PageLRU(page), page);
4791 /*
4792 * The page is isolated from LRU. So, collapse function
4793 * will not handle this page. But page splitting can happen.
4794 * Do this check under compound_page_lock(). The caller should
4795 * hold it.
4796 */
4797 ret = -EBUSY;
4798 if (nr_pages > 1 && !PageTransHuge(page))
4799 goto out;
4800
4801 /*
4802 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4803 * of its source page while we change it: page migration takes
4804 * both pages off the LRU, but page cache replacement doesn't.
4805 */
4806 if (!trylock_page(page))
4807 goto out;
4808
4809 ret = -EINVAL;
4810 if (page->mem_cgroup != from)
4811 goto out_unlock;
4812
c4843a75
GT
4813 anon = PageAnon(page);
4814
b1b0deab
CG
4815 spin_lock_irqsave(&from->move_lock, flags);
4816
c4843a75 4817 if (!anon && page_mapped(page)) {
b1b0deab
CG
4818 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4819 nr_pages);
4820 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4821 nr_pages);
4822 }
4823
c4843a75
GT
4824 /*
4825 * move_lock grabbed above and caller set from->moving_account, so
4826 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4827 * So mapping should be stable for dirty pages.
4828 */
4829 if (!anon && PageDirty(page)) {
4830 struct address_space *mapping = page_mapping(page);
4831
4832 if (mapping_cap_account_dirty(mapping)) {
4833 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4834 nr_pages);
4835 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4836 nr_pages);
4837 }
4838 }
4839
b1b0deab
CG
4840 if (PageWriteback(page)) {
4841 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4842 nr_pages);
4843 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4844 nr_pages);
4845 }
4846
4847 /*
4848 * It is safe to change page->mem_cgroup here because the page
4849 * is referenced, charged, and isolated - we can't race with
4850 * uncharging, charging, migration, or LRU putback.
4851 */
4852
4853 /* caller should have done css_get */
4854 page->mem_cgroup = to;
4855 spin_unlock_irqrestore(&from->move_lock, flags);
4856
4857 ret = 0;
4858
4859 local_irq_disable();
4860 mem_cgroup_charge_statistics(to, page, nr_pages);
4861 memcg_check_events(to, page);
4862 mem_cgroup_charge_statistics(from, page, -nr_pages);
4863 memcg_check_events(from, page);
4864 local_irq_enable();
4865out_unlock:
4866 unlock_page(page);
4867out:
4868 return ret;
4869}
4870
8d32ff84 4871static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4872 unsigned long addr, pte_t ptent, union mc_target *target)
4873{
4874 struct page *page = NULL;
8d32ff84 4875 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4876 swp_entry_t ent = { .val = 0 };
4877
4878 if (pte_present(ptent))
4879 page = mc_handle_present_pte(vma, addr, ptent);
4880 else if (is_swap_pte(ptent))
4881 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4882 else if (pte_none(ptent))
87946a72 4883 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4884
4885 if (!page && !ent.val)
8d32ff84 4886 return ret;
02491447 4887 if (page) {
02491447 4888 /*
0a31bc97 4889 * Do only loose check w/o serialization.
1306a85a 4890 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4891 * not under LRU exclusion.
02491447 4892 */
1306a85a 4893 if (page->mem_cgroup == mc.from) {
02491447
DN
4894 ret = MC_TARGET_PAGE;
4895 if (target)
4896 target->page = page;
4897 }
4898 if (!ret || !target)
4899 put_page(page);
4900 }
90254a65
DN
4901 /* There is a swap entry and a page doesn't exist or isn't charged */
4902 if (ent.val && !ret &&
34c00c31 4903 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4904 ret = MC_TARGET_SWAP;
4905 if (target)
4906 target->ent = ent;
4ffef5fe 4907 }
4ffef5fe
DN
4908 return ret;
4909}
4910
12724850
NH
4911#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912/*
4913 * We don't consider swapping or file mapped pages because THP does not
4914 * support them for now.
4915 * Caller should make sure that pmd_trans_huge(pmd) is true.
4916 */
4917static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4918 unsigned long addr, pmd_t pmd, union mc_target *target)
4919{
4920 struct page *page = NULL;
12724850
NH
4921 enum mc_target_type ret = MC_TARGET_NONE;
4922
4923 page = pmd_page(pmd);
309381fe 4924 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4925 if (!(mc.flags & MOVE_ANON))
12724850 4926 return ret;
1306a85a 4927 if (page->mem_cgroup == mc.from) {
12724850
NH
4928 ret = MC_TARGET_PAGE;
4929 if (target) {
4930 get_page(page);
4931 target->page = page;
4932 }
4933 }
4934 return ret;
4935}
4936#else
4937static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4938 unsigned long addr, pmd_t pmd, union mc_target *target)
4939{
4940 return MC_TARGET_NONE;
4941}
4942#endif
4943
4ffef5fe
DN
4944static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4945 unsigned long addr, unsigned long end,
4946 struct mm_walk *walk)
4947{
26bcd64a 4948 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4949 pte_t *pte;
4950 spinlock_t *ptl;
4951
bf929152 4952 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4953 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4954 mc.precharge += HPAGE_PMD_NR;
bf929152 4955 spin_unlock(ptl);
1a5a9906 4956 return 0;
12724850 4957 }
03319327 4958
45f83cef
AA
4959 if (pmd_trans_unstable(pmd))
4960 return 0;
4ffef5fe
DN
4961 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4962 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4963 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4964 mc.precharge++; /* increment precharge temporarily */
4965 pte_unmap_unlock(pte - 1, ptl);
4966 cond_resched();
4967
7dc74be0
DN
4968 return 0;
4969}
4970
4ffef5fe
DN
4971static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4972{
4973 unsigned long precharge;
4ffef5fe 4974
26bcd64a
NH
4975 struct mm_walk mem_cgroup_count_precharge_walk = {
4976 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4977 .mm = mm,
4978 };
dfe076b0 4979 down_read(&mm->mmap_sem);
26bcd64a 4980 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4981 up_read(&mm->mmap_sem);
4ffef5fe
DN
4982
4983 precharge = mc.precharge;
4984 mc.precharge = 0;
4985
4986 return precharge;
4987}
4988
4ffef5fe
DN
4989static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4990{
dfe076b0
DN
4991 unsigned long precharge = mem_cgroup_count_precharge(mm);
4992
4993 VM_BUG_ON(mc.moving_task);
4994 mc.moving_task = current;
4995 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4996}
4997
dfe076b0
DN
4998/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4999static void __mem_cgroup_clear_mc(void)
4ffef5fe 5000{
2bd9bb20
KH
5001 struct mem_cgroup *from = mc.from;
5002 struct mem_cgroup *to = mc.to;
5003
4ffef5fe 5004 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5005 if (mc.precharge) {
00501b53 5006 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5007 mc.precharge = 0;
5008 }
5009 /*
5010 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5011 * we must uncharge here.
5012 */
5013 if (mc.moved_charge) {
00501b53 5014 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5015 mc.moved_charge = 0;
4ffef5fe 5016 }
483c30b5
DN
5017 /* we must fixup refcnts and charges */
5018 if (mc.moved_swap) {
483c30b5 5019 /* uncharge swap account from the old cgroup */
ce00a967 5020 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5021 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5022
05b84301 5023 /*
3e32cb2e
JW
5024 * we charged both to->memory and to->memsw, so we
5025 * should uncharge to->memory.
05b84301 5026 */
ce00a967 5027 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5028 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5029
e8ea14cc 5030 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5031
4050377b 5032 /* we've already done css_get(mc.to) */
483c30b5
DN
5033 mc.moved_swap = 0;
5034 }
dfe076b0
DN
5035 memcg_oom_recover(from);
5036 memcg_oom_recover(to);
5037 wake_up_all(&mc.waitq);
5038}
5039
5040static void mem_cgroup_clear_mc(void)
5041{
dfe076b0
DN
5042 /*
5043 * we must clear moving_task before waking up waiters at the end of
5044 * task migration.
5045 */
5046 mc.moving_task = NULL;
5047 __mem_cgroup_clear_mc();
2bd9bb20 5048 spin_lock(&mc.lock);
4ffef5fe
DN
5049 mc.from = NULL;
5050 mc.to = NULL;
2bd9bb20 5051 spin_unlock(&mc.lock);
4ffef5fe
DN
5052}
5053
eb95419b 5054static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5055 struct cgroup_taskset *tset)
7dc74be0 5056{
2f7ee569 5057 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5058 int ret = 0;
eb95419b 5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5060 unsigned long move_flags;
7dc74be0 5061
ee5e8472
GC
5062 /*
5063 * We are now commited to this value whatever it is. Changes in this
5064 * tunable will only affect upcoming migrations, not the current one.
5065 * So we need to save it, and keep it going.
5066 */
4db0c3c2 5067 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
1dfab5ab 5068 if (move_flags) {
7dc74be0
DN
5069 struct mm_struct *mm;
5070 struct mem_cgroup *from = mem_cgroup_from_task(p);
5071
c0ff4b85 5072 VM_BUG_ON(from == memcg);
7dc74be0
DN
5073
5074 mm = get_task_mm(p);
5075 if (!mm)
5076 return 0;
7dc74be0 5077 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5078 if (mm->owner == p) {
5079 VM_BUG_ON(mc.from);
5080 VM_BUG_ON(mc.to);
5081 VM_BUG_ON(mc.precharge);
854ffa8d 5082 VM_BUG_ON(mc.moved_charge);
483c30b5 5083 VM_BUG_ON(mc.moved_swap);
247b1447 5084
2bd9bb20 5085 spin_lock(&mc.lock);
4ffef5fe 5086 mc.from = from;
c0ff4b85 5087 mc.to = memcg;
1dfab5ab 5088 mc.flags = move_flags;
2bd9bb20 5089 spin_unlock(&mc.lock);
dfe076b0 5090 /* We set mc.moving_task later */
4ffef5fe
DN
5091
5092 ret = mem_cgroup_precharge_mc(mm);
5093 if (ret)
5094 mem_cgroup_clear_mc();
dfe076b0
DN
5095 }
5096 mmput(mm);
7dc74be0
DN
5097 }
5098 return ret;
5099}
5100
eb95419b 5101static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5102 struct cgroup_taskset *tset)
7dc74be0 5103{
4e2f245d
JW
5104 if (mc.to)
5105 mem_cgroup_clear_mc();
7dc74be0
DN
5106}
5107
4ffef5fe
DN
5108static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5109 unsigned long addr, unsigned long end,
5110 struct mm_walk *walk)
7dc74be0 5111{
4ffef5fe 5112 int ret = 0;
26bcd64a 5113 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5114 pte_t *pte;
5115 spinlock_t *ptl;
12724850
NH
5116 enum mc_target_type target_type;
5117 union mc_target target;
5118 struct page *page;
4ffef5fe 5119
12724850
NH
5120 /*
5121 * We don't take compound_lock() here but no race with splitting thp
5122 * happens because:
5123 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5124 * under splitting, which means there's no concurrent thp split,
5125 * - if another thread runs into split_huge_page() just after we
5126 * entered this if-block, the thread must wait for page table lock
5127 * to be unlocked in __split_huge_page_splitting(), where the main
5128 * part of thp split is not executed yet.
5129 */
bf929152 5130 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5131 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5132 spin_unlock(ptl);
12724850
NH
5133 return 0;
5134 }
5135 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5136 if (target_type == MC_TARGET_PAGE) {
5137 page = target.page;
5138 if (!isolate_lru_page(page)) {
12724850 5139 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5140 mc.from, mc.to)) {
12724850
NH
5141 mc.precharge -= HPAGE_PMD_NR;
5142 mc.moved_charge += HPAGE_PMD_NR;
5143 }
5144 putback_lru_page(page);
5145 }
5146 put_page(page);
5147 }
bf929152 5148 spin_unlock(ptl);
1a5a9906 5149 return 0;
12724850
NH
5150 }
5151
45f83cef
AA
5152 if (pmd_trans_unstable(pmd))
5153 return 0;
4ffef5fe
DN
5154retry:
5155 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5156 for (; addr != end; addr += PAGE_SIZE) {
5157 pte_t ptent = *(pte++);
02491447 5158 swp_entry_t ent;
4ffef5fe
DN
5159
5160 if (!mc.precharge)
5161 break;
5162
8d32ff84 5163 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5164 case MC_TARGET_PAGE:
5165 page = target.page;
5166 if (isolate_lru_page(page))
5167 goto put;
1306a85a 5168 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5169 mc.precharge--;
854ffa8d
DN
5170 /* we uncharge from mc.from later. */
5171 mc.moved_charge++;
4ffef5fe
DN
5172 }
5173 putback_lru_page(page);
8d32ff84 5174put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5175 put_page(page);
5176 break;
02491447
DN
5177 case MC_TARGET_SWAP:
5178 ent = target.ent;
e91cbb42 5179 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5180 mc.precharge--;
483c30b5
DN
5181 /* we fixup refcnts and charges later. */
5182 mc.moved_swap++;
5183 }
02491447 5184 break;
4ffef5fe
DN
5185 default:
5186 break;
5187 }
5188 }
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5191
5192 if (addr != end) {
5193 /*
5194 * We have consumed all precharges we got in can_attach().
5195 * We try charge one by one, but don't do any additional
5196 * charges to mc.to if we have failed in charge once in attach()
5197 * phase.
5198 */
854ffa8d 5199 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5200 if (!ret)
5201 goto retry;
5202 }
5203
5204 return ret;
5205}
5206
5207static void mem_cgroup_move_charge(struct mm_struct *mm)
5208{
26bcd64a
NH
5209 struct mm_walk mem_cgroup_move_charge_walk = {
5210 .pmd_entry = mem_cgroup_move_charge_pte_range,
5211 .mm = mm,
5212 };
4ffef5fe
DN
5213
5214 lru_add_drain_all();
312722cb
JW
5215 /*
5216 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5217 * move_lock while we're moving its pages to another memcg.
5218 * Then wait for already started RCU-only updates to finish.
5219 */
5220 atomic_inc(&mc.from->moving_account);
5221 synchronize_rcu();
dfe076b0
DN
5222retry:
5223 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5224 /*
5225 * Someone who are holding the mmap_sem might be waiting in
5226 * waitq. So we cancel all extra charges, wake up all waiters,
5227 * and retry. Because we cancel precharges, we might not be able
5228 * to move enough charges, but moving charge is a best-effort
5229 * feature anyway, so it wouldn't be a big problem.
5230 */
5231 __mem_cgroup_clear_mc();
5232 cond_resched();
5233 goto retry;
5234 }
26bcd64a
NH
5235 /*
5236 * When we have consumed all precharges and failed in doing
5237 * additional charge, the page walk just aborts.
5238 */
5239 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 5240 up_read(&mm->mmap_sem);
312722cb 5241 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5242}
5243
eb95419b 5244static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5245 struct cgroup_taskset *tset)
67e465a7 5246{
2f7ee569 5247 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5248 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5249
dfe076b0 5250 if (mm) {
a433658c
KM
5251 if (mc.to)
5252 mem_cgroup_move_charge(mm);
dfe076b0
DN
5253 mmput(mm);
5254 }
a433658c
KM
5255 if (mc.to)
5256 mem_cgroup_clear_mc();
67e465a7 5257}
5cfb80a7 5258#else /* !CONFIG_MMU */
eb95419b 5259static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5260 struct cgroup_taskset *tset)
5cfb80a7
DN
5261{
5262 return 0;
5263}
eb95419b 5264static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5265 struct cgroup_taskset *tset)
5cfb80a7
DN
5266{
5267}
eb95419b 5268static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5269 struct cgroup_taskset *tset)
5cfb80a7
DN
5270{
5271}
5272#endif
67e465a7 5273
f00baae7
TH
5274/*
5275 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5276 * to verify whether we're attached to the default hierarchy on each mount
5277 * attempt.
f00baae7 5278 */
eb95419b 5279static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5280{
5281 /*
aa6ec29b 5282 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5283 * guarantees that @root doesn't have any children, so turning it
5284 * on for the root memcg is enough.
5285 */
aa6ec29b 5286 if (cgroup_on_dfl(root_css->cgroup))
7feee590
VD
5287 root_mem_cgroup->use_hierarchy = true;
5288 else
5289 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5290}
5291
241994ed
JW
5292static u64 memory_current_read(struct cgroup_subsys_state *css,
5293 struct cftype *cft)
5294{
5295 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5296}
5297
5298static int memory_low_show(struct seq_file *m, void *v)
5299{
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5301 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5302
5303 if (low == PAGE_COUNTER_MAX)
d2973697 5304 seq_puts(m, "max\n");
241994ed
JW
5305 else
5306 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5307
5308 return 0;
5309}
5310
5311static ssize_t memory_low_write(struct kernfs_open_file *of,
5312 char *buf, size_t nbytes, loff_t off)
5313{
5314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5315 unsigned long low;
5316 int err;
5317
5318 buf = strstrip(buf);
d2973697 5319 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5320 if (err)
5321 return err;
5322
5323 memcg->low = low;
5324
5325 return nbytes;
5326}
5327
5328static int memory_high_show(struct seq_file *m, void *v)
5329{
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5331 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5332
5333 if (high == PAGE_COUNTER_MAX)
d2973697 5334 seq_puts(m, "max\n");
241994ed
JW
5335 else
5336 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5337
5338 return 0;
5339}
5340
5341static ssize_t memory_high_write(struct kernfs_open_file *of,
5342 char *buf, size_t nbytes, loff_t off)
5343{
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5345 unsigned long high;
5346 int err;
5347
5348 buf = strstrip(buf);
d2973697 5349 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5350 if (err)
5351 return err;
5352
5353 memcg->high = high;
5354
5355 return nbytes;
5356}
5357
5358static int memory_max_show(struct seq_file *m, void *v)
5359{
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5361 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5362
5363 if (max == PAGE_COUNTER_MAX)
d2973697 5364 seq_puts(m, "max\n");
241994ed
JW
5365 else
5366 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5367
5368 return 0;
5369}
5370
5371static ssize_t memory_max_write(struct kernfs_open_file *of,
5372 char *buf, size_t nbytes, loff_t off)
5373{
5374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5375 unsigned long max;
5376 int err;
5377
5378 buf = strstrip(buf);
d2973697 5379 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5380 if (err)
5381 return err;
5382
5383 err = mem_cgroup_resize_limit(memcg, max);
5384 if (err)
5385 return err;
5386
5387 return nbytes;
5388}
5389
5390static int memory_events_show(struct seq_file *m, void *v)
5391{
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5393
5394 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5395 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5396 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5397 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5398
5399 return 0;
5400}
5401
5402static struct cftype memory_files[] = {
5403 {
5404 .name = "current",
5405 .read_u64 = memory_current_read,
5406 },
5407 {
5408 .name = "low",
5409 .flags = CFTYPE_NOT_ON_ROOT,
5410 .seq_show = memory_low_show,
5411 .write = memory_low_write,
5412 },
5413 {
5414 .name = "high",
5415 .flags = CFTYPE_NOT_ON_ROOT,
5416 .seq_show = memory_high_show,
5417 .write = memory_high_write,
5418 },
5419 {
5420 .name = "max",
5421 .flags = CFTYPE_NOT_ON_ROOT,
5422 .seq_show = memory_max_show,
5423 .write = memory_max_write,
5424 },
5425 {
5426 .name = "events",
5427 .flags = CFTYPE_NOT_ON_ROOT,
5428 .seq_show = memory_events_show,
5429 },
5430 { } /* terminate */
5431};
5432
073219e9 5433struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5434 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5435 .css_online = mem_cgroup_css_online,
92fb9748
TH
5436 .css_offline = mem_cgroup_css_offline,
5437 .css_free = mem_cgroup_css_free,
1ced953b 5438 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5439 .can_attach = mem_cgroup_can_attach,
5440 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5441 .attach = mem_cgroup_move_task,
f00baae7 5442 .bind = mem_cgroup_bind,
241994ed
JW
5443 .dfl_cftypes = memory_files,
5444 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5445 .early_init = 0,
8cdea7c0 5446};
c077719b 5447
241994ed
JW
5448/**
5449 * mem_cgroup_events - count memory events against a cgroup
5450 * @memcg: the memory cgroup
5451 * @idx: the event index
5452 * @nr: the number of events to account for
5453 */
5454void mem_cgroup_events(struct mem_cgroup *memcg,
5455 enum mem_cgroup_events_index idx,
5456 unsigned int nr)
5457{
5458 this_cpu_add(memcg->stat->events[idx], nr);
5459}
5460
5461/**
5462 * mem_cgroup_low - check if memory consumption is below the normal range
5463 * @root: the highest ancestor to consider
5464 * @memcg: the memory cgroup to check
5465 *
5466 * Returns %true if memory consumption of @memcg, and that of all
5467 * configurable ancestors up to @root, is below the normal range.
5468 */
5469bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5470{
5471 if (mem_cgroup_disabled())
5472 return false;
5473
5474 /*
5475 * The toplevel group doesn't have a configurable range, so
5476 * it's never low when looked at directly, and it is not
5477 * considered an ancestor when assessing the hierarchy.
5478 */
5479
5480 if (memcg == root_mem_cgroup)
5481 return false;
5482
4e54dede 5483 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5484 return false;
5485
5486 while (memcg != root) {
5487 memcg = parent_mem_cgroup(memcg);
5488
5489 if (memcg == root_mem_cgroup)
5490 break;
5491
4e54dede 5492 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5493 return false;
5494 }
5495 return true;
5496}
5497
00501b53
JW
5498/**
5499 * mem_cgroup_try_charge - try charging a page
5500 * @page: page to charge
5501 * @mm: mm context of the victim
5502 * @gfp_mask: reclaim mode
5503 * @memcgp: charged memcg return
5504 *
5505 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5506 * pages according to @gfp_mask if necessary.
5507 *
5508 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5509 * Otherwise, an error code is returned.
5510 *
5511 * After page->mapping has been set up, the caller must finalize the
5512 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5513 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5514 */
5515int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5516 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5517{
5518 struct mem_cgroup *memcg = NULL;
5519 unsigned int nr_pages = 1;
5520 int ret = 0;
5521
5522 if (mem_cgroup_disabled())
5523 goto out;
5524
5525 if (PageSwapCache(page)) {
00501b53
JW
5526 /*
5527 * Every swap fault against a single page tries to charge the
5528 * page, bail as early as possible. shmem_unuse() encounters
5529 * already charged pages, too. The USED bit is protected by
5530 * the page lock, which serializes swap cache removal, which
5531 * in turn serializes uncharging.
5532 */
1306a85a 5533 if (page->mem_cgroup)
00501b53
JW
5534 goto out;
5535 }
5536
5537 if (PageTransHuge(page)) {
5538 nr_pages <<= compound_order(page);
5539 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5540 }
5541
5542 if (do_swap_account && PageSwapCache(page))
5543 memcg = try_get_mem_cgroup_from_page(page);
5544 if (!memcg)
5545 memcg = get_mem_cgroup_from_mm(mm);
5546
5547 ret = try_charge(memcg, gfp_mask, nr_pages);
5548
5549 css_put(&memcg->css);
5550
5551 if (ret == -EINTR) {
5552 memcg = root_mem_cgroup;
5553 ret = 0;
5554 }
5555out:
5556 *memcgp = memcg;
5557 return ret;
5558}
5559
5560/**
5561 * mem_cgroup_commit_charge - commit a page charge
5562 * @page: page to charge
5563 * @memcg: memcg to charge the page to
5564 * @lrucare: page might be on LRU already
5565 *
5566 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5567 * after page->mapping has been set up. This must happen atomically
5568 * as part of the page instantiation, i.e. under the page table lock
5569 * for anonymous pages, under the page lock for page and swap cache.
5570 *
5571 * In addition, the page must not be on the LRU during the commit, to
5572 * prevent racing with task migration. If it might be, use @lrucare.
5573 *
5574 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5575 */
5576void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5577 bool lrucare)
5578{
5579 unsigned int nr_pages = 1;
5580
5581 VM_BUG_ON_PAGE(!page->mapping, page);
5582 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5583
5584 if (mem_cgroup_disabled())
5585 return;
5586 /*
5587 * Swap faults will attempt to charge the same page multiple
5588 * times. But reuse_swap_page() might have removed the page
5589 * from swapcache already, so we can't check PageSwapCache().
5590 */
5591 if (!memcg)
5592 return;
5593
6abb5a86
JW
5594 commit_charge(page, memcg, lrucare);
5595
00501b53
JW
5596 if (PageTransHuge(page)) {
5597 nr_pages <<= compound_order(page);
5598 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5599 }
5600
6abb5a86
JW
5601 local_irq_disable();
5602 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5603 memcg_check_events(memcg, page);
5604 local_irq_enable();
00501b53
JW
5605
5606 if (do_swap_account && PageSwapCache(page)) {
5607 swp_entry_t entry = { .val = page_private(page) };
5608 /*
5609 * The swap entry might not get freed for a long time,
5610 * let's not wait for it. The page already received a
5611 * memory+swap charge, drop the swap entry duplicate.
5612 */
5613 mem_cgroup_uncharge_swap(entry);
5614 }
5615}
5616
5617/**
5618 * mem_cgroup_cancel_charge - cancel a page charge
5619 * @page: page to charge
5620 * @memcg: memcg to charge the page to
5621 *
5622 * Cancel a charge transaction started by mem_cgroup_try_charge().
5623 */
5624void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5625{
5626 unsigned int nr_pages = 1;
5627
5628 if (mem_cgroup_disabled())
5629 return;
5630 /*
5631 * Swap faults will attempt to charge the same page multiple
5632 * times. But reuse_swap_page() might have removed the page
5633 * from swapcache already, so we can't check PageSwapCache().
5634 */
5635 if (!memcg)
5636 return;
5637
5638 if (PageTransHuge(page)) {
5639 nr_pages <<= compound_order(page);
5640 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5641 }
5642
5643 cancel_charge(memcg, nr_pages);
5644}
5645
747db954 5646static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5647 unsigned long nr_anon, unsigned long nr_file,
5648 unsigned long nr_huge, struct page *dummy_page)
5649{
18eca2e6 5650 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5651 unsigned long flags;
5652
ce00a967 5653 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5654 page_counter_uncharge(&memcg->memory, nr_pages);
5655 if (do_swap_account)
5656 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5657 memcg_oom_recover(memcg);
5658 }
747db954
JW
5659
5660 local_irq_save(flags);
5661 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5662 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5663 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5664 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5665 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5666 memcg_check_events(memcg, dummy_page);
5667 local_irq_restore(flags);
e8ea14cc
JW
5668
5669 if (!mem_cgroup_is_root(memcg))
18eca2e6 5670 css_put_many(&memcg->css, nr_pages);
747db954
JW
5671}
5672
5673static void uncharge_list(struct list_head *page_list)
5674{
5675 struct mem_cgroup *memcg = NULL;
747db954
JW
5676 unsigned long nr_anon = 0;
5677 unsigned long nr_file = 0;
5678 unsigned long nr_huge = 0;
5679 unsigned long pgpgout = 0;
747db954
JW
5680 struct list_head *next;
5681 struct page *page;
5682
5683 next = page_list->next;
5684 do {
5685 unsigned int nr_pages = 1;
747db954
JW
5686
5687 page = list_entry(next, struct page, lru);
5688 next = page->lru.next;
5689
5690 VM_BUG_ON_PAGE(PageLRU(page), page);
5691 VM_BUG_ON_PAGE(page_count(page), page);
5692
1306a85a 5693 if (!page->mem_cgroup)
747db954
JW
5694 continue;
5695
5696 /*
5697 * Nobody should be changing or seriously looking at
1306a85a 5698 * page->mem_cgroup at this point, we have fully
29833315 5699 * exclusive access to the page.
747db954
JW
5700 */
5701
1306a85a 5702 if (memcg != page->mem_cgroup) {
747db954 5703 if (memcg) {
18eca2e6
JW
5704 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5705 nr_huge, page);
5706 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5707 }
1306a85a 5708 memcg = page->mem_cgroup;
747db954
JW
5709 }
5710
5711 if (PageTransHuge(page)) {
5712 nr_pages <<= compound_order(page);
5713 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5714 nr_huge += nr_pages;
5715 }
5716
5717 if (PageAnon(page))
5718 nr_anon += nr_pages;
5719 else
5720 nr_file += nr_pages;
5721
1306a85a 5722 page->mem_cgroup = NULL;
747db954
JW
5723
5724 pgpgout++;
5725 } while (next != page_list);
5726
5727 if (memcg)
18eca2e6
JW
5728 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5729 nr_huge, page);
747db954
JW
5730}
5731
0a31bc97
JW
5732/**
5733 * mem_cgroup_uncharge - uncharge a page
5734 * @page: page to uncharge
5735 *
5736 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5737 * mem_cgroup_commit_charge().
5738 */
5739void mem_cgroup_uncharge(struct page *page)
5740{
0a31bc97
JW
5741 if (mem_cgroup_disabled())
5742 return;
5743
747db954 5744 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5745 if (!page->mem_cgroup)
0a31bc97
JW
5746 return;
5747
747db954
JW
5748 INIT_LIST_HEAD(&page->lru);
5749 uncharge_list(&page->lru);
5750}
0a31bc97 5751
747db954
JW
5752/**
5753 * mem_cgroup_uncharge_list - uncharge a list of page
5754 * @page_list: list of pages to uncharge
5755 *
5756 * Uncharge a list of pages previously charged with
5757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5758 */
5759void mem_cgroup_uncharge_list(struct list_head *page_list)
5760{
5761 if (mem_cgroup_disabled())
5762 return;
0a31bc97 5763
747db954
JW
5764 if (!list_empty(page_list))
5765 uncharge_list(page_list);
0a31bc97
JW
5766}
5767
5768/**
5769 * mem_cgroup_migrate - migrate a charge to another page
5770 * @oldpage: currently charged page
5771 * @newpage: page to transfer the charge to
f5e03a49 5772 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5773 *
5774 * Migrate the charge from @oldpage to @newpage.
5775 *
5776 * Both pages must be locked, @newpage->mapping must be set up.
5777 */
5778void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5779 bool lrucare)
5780{
29833315 5781 struct mem_cgroup *memcg;
0a31bc97
JW
5782 int isolated;
5783
5784 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5785 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5786 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5787 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5788 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5789 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5790 newpage);
0a31bc97
JW
5791
5792 if (mem_cgroup_disabled())
5793 return;
5794
5795 /* Page cache replacement: new page already charged? */
1306a85a 5796 if (newpage->mem_cgroup)
0a31bc97
JW
5797 return;
5798
7d5e3245
JW
5799 /*
5800 * Swapcache readahead pages can get migrated before being
5801 * charged, and migration from compaction can happen to an
5802 * uncharged page when the PFN walker finds a page that
5803 * reclaim just put back on the LRU but has not released yet.
5804 */
1306a85a 5805 memcg = oldpage->mem_cgroup;
29833315 5806 if (!memcg)
0a31bc97
JW
5807 return;
5808
0a31bc97
JW
5809 if (lrucare)
5810 lock_page_lru(oldpage, &isolated);
5811
1306a85a 5812 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5813
5814 if (lrucare)
5815 unlock_page_lru(oldpage, isolated);
5816
29833315 5817 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5818}
5819
2d11085e 5820/*
1081312f
MH
5821 * subsys_initcall() for memory controller.
5822 *
5823 * Some parts like hotcpu_notifier() have to be initialized from this context
5824 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5825 * everything that doesn't depend on a specific mem_cgroup structure should
5826 * be initialized from here.
2d11085e
MH
5827 */
5828static int __init mem_cgroup_init(void)
5829{
95a045f6
JW
5830 int cpu, node;
5831
2d11085e 5832 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5833
5834 for_each_possible_cpu(cpu)
5835 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5836 drain_local_stock);
5837
5838 for_each_node(node) {
5839 struct mem_cgroup_tree_per_node *rtpn;
5840 int zone;
5841
5842 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5843 node_online(node) ? node : NUMA_NO_NODE);
5844
5845 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5846 struct mem_cgroup_tree_per_zone *rtpz;
5847
5848 rtpz = &rtpn->rb_tree_per_zone[zone];
5849 rtpz->rb_root = RB_ROOT;
5850 spin_lock_init(&rtpz->lock);
5851 }
5852 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5853 }
5854
2d11085e
MH
5855 return 0;
5856}
5857subsys_initcall(mem_cgroup_init);
21afa38e
JW
5858
5859#ifdef CONFIG_MEMCG_SWAP
5860/**
5861 * mem_cgroup_swapout - transfer a memsw charge to swap
5862 * @page: page whose memsw charge to transfer
5863 * @entry: swap entry to move the charge to
5864 *
5865 * Transfer the memsw charge of @page to @entry.
5866 */
5867void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5868{
5869 struct mem_cgroup *memcg;
5870 unsigned short oldid;
5871
5872 VM_BUG_ON_PAGE(PageLRU(page), page);
5873 VM_BUG_ON_PAGE(page_count(page), page);
5874
5875 if (!do_swap_account)
5876 return;
5877
5878 memcg = page->mem_cgroup;
5879
5880 /* Readahead page, never charged */
5881 if (!memcg)
5882 return;
5883
5884 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5885 VM_BUG_ON_PAGE(oldid, page);
5886 mem_cgroup_swap_statistics(memcg, true);
5887
5888 page->mem_cgroup = NULL;
5889
5890 if (!mem_cgroup_is_root(memcg))
5891 page_counter_uncharge(&memcg->memory, 1);
5892
5893 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5894 VM_BUG_ON(!irqs_disabled());
5895
5896 mem_cgroup_charge_statistics(memcg, page, -1);
5897 memcg_check_events(memcg, page);
5898}
5899
5900/**
5901 * mem_cgroup_uncharge_swap - uncharge a swap entry
5902 * @entry: swap entry to uncharge
5903 *
5904 * Drop the memsw charge associated with @entry.
5905 */
5906void mem_cgroup_uncharge_swap(swp_entry_t entry)
5907{
5908 struct mem_cgroup *memcg;
5909 unsigned short id;
5910
5911 if (!do_swap_account)
5912 return;
5913
5914 id = swap_cgroup_record(entry, 0);
5915 rcu_read_lock();
adbe427b 5916 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5917 if (memcg) {
5918 if (!mem_cgroup_is_root(memcg))
5919 page_counter_uncharge(&memcg->memsw, 1);
5920 mem_cgroup_swap_statistics(memcg, false);
5921 css_put(&memcg->css);
5922 }
5923 rcu_read_unlock();
5924}
5925
5926/* for remember boot option*/
5927#ifdef CONFIG_MEMCG_SWAP_ENABLED
5928static int really_do_swap_account __initdata = 1;
5929#else
5930static int really_do_swap_account __initdata;
5931#endif
5932
5933static int __init enable_swap_account(char *s)
5934{
5935 if (!strcmp(s, "1"))
5936 really_do_swap_account = 1;
5937 else if (!strcmp(s, "0"))
5938 really_do_swap_account = 0;
5939 return 1;
5940}
5941__setup("swapaccount=", enable_swap_account);
5942
5943static struct cftype memsw_cgroup_files[] = {
5944 {
5945 .name = "memsw.usage_in_bytes",
5946 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5947 .read_u64 = mem_cgroup_read_u64,
5948 },
5949 {
5950 .name = "memsw.max_usage_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5952 .write = mem_cgroup_reset,
5953 .read_u64 = mem_cgroup_read_u64,
5954 },
5955 {
5956 .name = "memsw.limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5958 .write = mem_cgroup_write,
5959 .read_u64 = mem_cgroup_read_u64,
5960 },
5961 {
5962 .name = "memsw.failcnt",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5964 .write = mem_cgroup_reset,
5965 .read_u64 = mem_cgroup_read_u64,
5966 },
5967 { }, /* terminate */
5968};
5969
5970static int __init mem_cgroup_swap_init(void)
5971{
5972 if (!mem_cgroup_disabled() && really_do_swap_account) {
5973 do_swap_account = 1;
5974 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5975 memsw_cgroup_files));
5976 }
5977 return 0;
5978}
5979subsys_initcall(mem_cgroup_swap_init);
5980
5981#endif /* CONFIG_MEMCG_SWAP */