]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
mm: memcontrol: recursive memory.low protection
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 659 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
f627c2f5 837 bool compound, int nr_pages)
d52aa412 838{
b2402857
KH
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
0a31bc97 843 if (PageAnon(page))
c9019e9b 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 845 else {
c9019e9b 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 847 if (PageSwapBacked(page))
c9019e9b 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 849 }
55e462b0 850
f627c2f5
KS
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 854 }
b070e65c 855
e401f176
KH
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
c9019e9b 858 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 859 else {
c9019e9b 860 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
861 nr_pages = -nr_pages; /* for event */
862 }
e401f176 863
871789d4 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
865}
866
f53d7ce3
JW
867static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
7a159cc9
JW
869{
870 unsigned long val, next;
871
871789d4
CD
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 874 /* from time_after() in jiffies.h */
6a1a8b80 875 if ((long)(next - val) < 0) {
f53d7ce3
JW
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
bb4cc1a8
AM
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
f53d7ce3
JW
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
f53d7ce3 902
bb4cc1a8
AM
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 905 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
0a31bc97 908 }
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
073219e9 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 922}
33398cf2 923EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 924
d46eb14b
SB
925/**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 934{
d46eb14b
SB
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
0b7f569e 939
54595fe2
KH
940 rcu_read_lock();
941 do {
6f6acb00
MH
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
df381975 948 memcg = root_mem_cgroup;
6f6acb00
MH
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
00d484f3 954 } while (!css_tryget(&memcg->css));
54595fe2 955 rcu_read_unlock();
c0ff4b85 956 return memcg;
54595fe2 957}
d46eb14b
SB
958EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
f745c6f5
SB
960/**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968{
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
975 if (!memcg || !css_tryget_online(&memcg->css))
976 memcg = root_mem_cgroup;
977 rcu_read_unlock();
978 return memcg;
979}
980EXPORT_SYMBOL(get_mem_cgroup_from_page);
981
d46eb14b
SB
982/**
983 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
984 */
985static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
986{
987 if (unlikely(current->active_memcg)) {
988 struct mem_cgroup *memcg = root_mem_cgroup;
989
990 rcu_read_lock();
991 if (css_tryget_online(&current->active_memcg->css))
992 memcg = current->active_memcg;
993 rcu_read_unlock();
994 return memcg;
995 }
996 return get_mem_cgroup_from_mm(current->mm);
997}
54595fe2 998
5660048c
JW
999/**
1000 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1001 * @root: hierarchy root
1002 * @prev: previously returned memcg, NULL on first invocation
1003 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1004 *
1005 * Returns references to children of the hierarchy below @root, or
1006 * @root itself, or %NULL after a full round-trip.
1007 *
1008 * Caller must pass the return value in @prev on subsequent
1009 * invocations for reference counting, or use mem_cgroup_iter_break()
1010 * to cancel a hierarchy walk before the round-trip is complete.
1011 *
b213b54f 1012 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1013 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1014 * reclaimers operating on the same node and priority.
5660048c 1015 */
694fbc0f 1016struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1017 struct mem_cgroup *prev,
694fbc0f 1018 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1019{
33398cf2 1020 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1021 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1022 struct mem_cgroup *memcg = NULL;
5ac8fb31 1023 struct mem_cgroup *pos = NULL;
711d3d2c 1024
694fbc0f
AM
1025 if (mem_cgroup_disabled())
1026 return NULL;
5660048c 1027
9f3a0d09
JW
1028 if (!root)
1029 root = root_mem_cgroup;
7d74b06f 1030
9f3a0d09 1031 if (prev && !reclaim)
5ac8fb31 1032 pos = prev;
14067bb3 1033
9f3a0d09
JW
1034 if (!root->use_hierarchy && root != root_mem_cgroup) {
1035 if (prev)
5ac8fb31 1036 goto out;
694fbc0f 1037 return root;
9f3a0d09 1038 }
14067bb3 1039
542f85f9 1040 rcu_read_lock();
5f578161 1041
5ac8fb31 1042 if (reclaim) {
ef8f2327 1043 struct mem_cgroup_per_node *mz;
5ac8fb31 1044
ef8f2327 1045 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1046 iter = &mz->iter;
5ac8fb31
JW
1047
1048 if (prev && reclaim->generation != iter->generation)
1049 goto out_unlock;
1050
6df38689 1051 while (1) {
4db0c3c2 1052 pos = READ_ONCE(iter->position);
6df38689
VD
1053 if (!pos || css_tryget(&pos->css))
1054 break;
5ac8fb31 1055 /*
6df38689
VD
1056 * css reference reached zero, so iter->position will
1057 * be cleared by ->css_released. However, we should not
1058 * rely on this happening soon, because ->css_released
1059 * is called from a work queue, and by busy-waiting we
1060 * might block it. So we clear iter->position right
1061 * away.
5ac8fb31 1062 */
6df38689
VD
1063 (void)cmpxchg(&iter->position, pos, NULL);
1064 }
5ac8fb31
JW
1065 }
1066
1067 if (pos)
1068 css = &pos->css;
1069
1070 for (;;) {
1071 css = css_next_descendant_pre(css, &root->css);
1072 if (!css) {
1073 /*
1074 * Reclaimers share the hierarchy walk, and a
1075 * new one might jump in right at the end of
1076 * the hierarchy - make sure they see at least
1077 * one group and restart from the beginning.
1078 */
1079 if (!prev)
1080 continue;
1081 break;
527a5ec9 1082 }
7d74b06f 1083
5ac8fb31
JW
1084 /*
1085 * Verify the css and acquire a reference. The root
1086 * is provided by the caller, so we know it's alive
1087 * and kicking, and don't take an extra reference.
1088 */
1089 memcg = mem_cgroup_from_css(css);
14067bb3 1090
5ac8fb31
JW
1091 if (css == &root->css)
1092 break;
14067bb3 1093
0b8f73e1
JW
1094 if (css_tryget(css))
1095 break;
9f3a0d09 1096
5ac8fb31 1097 memcg = NULL;
9f3a0d09 1098 }
5ac8fb31
JW
1099
1100 if (reclaim) {
5ac8fb31 1101 /*
6df38689
VD
1102 * The position could have already been updated by a competing
1103 * thread, so check that the value hasn't changed since we read
1104 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1105 */
6df38689
VD
1106 (void)cmpxchg(&iter->position, pos, memcg);
1107
5ac8fb31
JW
1108 if (pos)
1109 css_put(&pos->css);
1110
1111 if (!memcg)
1112 iter->generation++;
1113 else if (!prev)
1114 reclaim->generation = iter->generation;
9f3a0d09 1115 }
5ac8fb31 1116
542f85f9
MH
1117out_unlock:
1118 rcu_read_unlock();
5ac8fb31 1119out:
c40046f3
MH
1120 if (prev && prev != root)
1121 css_put(&prev->css);
1122
9f3a0d09 1123 return memcg;
14067bb3 1124}
7d74b06f 1125
5660048c
JW
1126/**
1127 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1128 * @root: hierarchy root
1129 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1130 */
1131void mem_cgroup_iter_break(struct mem_cgroup *root,
1132 struct mem_cgroup *prev)
9f3a0d09
JW
1133{
1134 if (!root)
1135 root = root_mem_cgroup;
1136 if (prev && prev != root)
1137 css_put(&prev->css);
1138}
7d74b06f 1139
54a83d6b
MC
1140static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1141 struct mem_cgroup *dead_memcg)
6df38689 1142{
6df38689 1143 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1144 struct mem_cgroup_per_node *mz;
1145 int nid;
6df38689 1146
54a83d6b
MC
1147 for_each_node(nid) {
1148 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1149 iter = &mz->iter;
1150 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1151 }
1152}
1153
54a83d6b
MC
1154static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1155{
1156 struct mem_cgroup *memcg = dead_memcg;
1157 struct mem_cgroup *last;
1158
1159 do {
1160 __invalidate_reclaim_iterators(memcg, dead_memcg);
1161 last = memcg;
1162 } while ((memcg = parent_mem_cgroup(memcg)));
1163
1164 /*
1165 * When cgruop1 non-hierarchy mode is used,
1166 * parent_mem_cgroup() does not walk all the way up to the
1167 * cgroup root (root_mem_cgroup). So we have to handle
1168 * dead_memcg from cgroup root separately.
1169 */
1170 if (last != root_mem_cgroup)
1171 __invalidate_reclaim_iterators(root_mem_cgroup,
1172 dead_memcg);
1173}
1174
7c5f64f8
VD
1175/**
1176 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1177 * @memcg: hierarchy root
1178 * @fn: function to call for each task
1179 * @arg: argument passed to @fn
1180 *
1181 * This function iterates over tasks attached to @memcg or to any of its
1182 * descendants and calls @fn for each task. If @fn returns a non-zero
1183 * value, the function breaks the iteration loop and returns the value.
1184 * Otherwise, it will iterate over all tasks and return 0.
1185 *
1186 * This function must not be called for the root memory cgroup.
1187 */
1188int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1189 int (*fn)(struct task_struct *, void *), void *arg)
1190{
1191 struct mem_cgroup *iter;
1192 int ret = 0;
1193
1194 BUG_ON(memcg == root_mem_cgroup);
1195
1196 for_each_mem_cgroup_tree(iter, memcg) {
1197 struct css_task_iter it;
1198 struct task_struct *task;
1199
f168a9a5 1200 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1201 while (!ret && (task = css_task_iter_next(&it)))
1202 ret = fn(task, arg);
1203 css_task_iter_end(&it);
1204 if (ret) {
1205 mem_cgroup_iter_break(memcg, iter);
1206 break;
1207 }
1208 }
1209 return ret;
1210}
1211
925b7673 1212/**
dfe0e773 1213 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1214 * @page: the page
f144c390 1215 * @pgdat: pgdat of the page
dfe0e773
JW
1216 *
1217 * This function is only safe when following the LRU page isolation
1218 * and putback protocol: the LRU lock must be held, and the page must
1219 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1220 */
599d0c95 1221struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1222{
ef8f2327 1223 struct mem_cgroup_per_node *mz;
925b7673 1224 struct mem_cgroup *memcg;
bea8c150 1225 struct lruvec *lruvec;
6d12e2d8 1226
bea8c150 1227 if (mem_cgroup_disabled()) {
867e5e1d 1228 lruvec = &pgdat->__lruvec;
bea8c150
HD
1229 goto out;
1230 }
925b7673 1231
1306a85a 1232 memcg = page->mem_cgroup;
7512102c 1233 /*
dfe0e773 1234 * Swapcache readahead pages are added to the LRU - and
29833315 1235 * possibly migrated - before they are charged.
7512102c 1236 */
29833315
JW
1237 if (!memcg)
1238 memcg = root_mem_cgroup;
7512102c 1239
ef8f2327 1240 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1241 lruvec = &mz->lruvec;
1242out:
1243 /*
1244 * Since a node can be onlined after the mem_cgroup was created,
1245 * we have to be prepared to initialize lruvec->zone here;
1246 * and if offlined then reonlined, we need to reinitialize it.
1247 */
599d0c95
MG
1248 if (unlikely(lruvec->pgdat != pgdat))
1249 lruvec->pgdat = pgdat;
bea8c150 1250 return lruvec;
08e552c6 1251}
b69408e8 1252
925b7673 1253/**
fa9add64
HD
1254 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1255 * @lruvec: mem_cgroup per zone lru vector
1256 * @lru: index of lru list the page is sitting on
b4536f0c 1257 * @zid: zone id of the accounted pages
fa9add64 1258 * @nr_pages: positive when adding or negative when removing
925b7673 1259 *
ca707239
HD
1260 * This function must be called under lru_lock, just before a page is added
1261 * to or just after a page is removed from an lru list (that ordering being
1262 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1263 */
fa9add64 1264void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1265 int zid, int nr_pages)
3f58a829 1266{
ef8f2327 1267 struct mem_cgroup_per_node *mz;
fa9add64 1268 unsigned long *lru_size;
ca707239 1269 long size;
3f58a829
MK
1270
1271 if (mem_cgroup_disabled())
1272 return;
1273
ef8f2327 1274 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1275 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1276
1277 if (nr_pages < 0)
1278 *lru_size += nr_pages;
1279
1280 size = *lru_size;
b4536f0c
MH
1281 if (WARN_ONCE(size < 0,
1282 "%s(%p, %d, %d): lru_size %ld\n",
1283 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1284 VM_BUG_ON(1);
1285 *lru_size = 0;
1286 }
1287
1288 if (nr_pages > 0)
1289 *lru_size += nr_pages;
08e552c6 1290}
544122e5 1291
19942822 1292/**
9d11ea9f 1293 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1294 * @memcg: the memory cgroup
19942822 1295 *
9d11ea9f 1296 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1297 * pages.
19942822 1298 */
c0ff4b85 1299static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1300{
3e32cb2e
JW
1301 unsigned long margin = 0;
1302 unsigned long count;
1303 unsigned long limit;
9d11ea9f 1304
3e32cb2e 1305 count = page_counter_read(&memcg->memory);
bbec2e15 1306 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1307 if (count < limit)
1308 margin = limit - count;
1309
7941d214 1310 if (do_memsw_account()) {
3e32cb2e 1311 count = page_counter_read(&memcg->memsw);
bbec2e15 1312 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1313 if (count <= limit)
1314 margin = min(margin, limit - count);
cbedbac3
LR
1315 else
1316 margin = 0;
3e32cb2e
JW
1317 }
1318
1319 return margin;
19942822
JW
1320}
1321
32047e2a 1322/*
bdcbb659 1323 * A routine for checking "mem" is under move_account() or not.
32047e2a 1324 *
bdcbb659
QH
1325 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1326 * moving cgroups. This is for waiting at high-memory pressure
1327 * caused by "move".
32047e2a 1328 */
c0ff4b85 1329static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1330{
2bd9bb20
KH
1331 struct mem_cgroup *from;
1332 struct mem_cgroup *to;
4b534334 1333 bool ret = false;
2bd9bb20
KH
1334 /*
1335 * Unlike task_move routines, we access mc.to, mc.from not under
1336 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1337 */
1338 spin_lock(&mc.lock);
1339 from = mc.from;
1340 to = mc.to;
1341 if (!from)
1342 goto unlock;
3e92041d 1343
2314b42d
JW
1344 ret = mem_cgroup_is_descendant(from, memcg) ||
1345 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1346unlock:
1347 spin_unlock(&mc.lock);
4b534334
KH
1348 return ret;
1349}
1350
c0ff4b85 1351static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1352{
1353 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1354 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1355 DEFINE_WAIT(wait);
1356 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1357 /* moving charge context might have finished. */
1358 if (mc.moving_task)
1359 schedule();
1360 finish_wait(&mc.waitq, &wait);
1361 return true;
1362 }
1363 }
1364 return false;
1365}
1366
c8713d0b
JW
1367static char *memory_stat_format(struct mem_cgroup *memcg)
1368{
1369 struct seq_buf s;
1370 int i;
71cd3113 1371
c8713d0b
JW
1372 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1373 if (!s.buffer)
1374 return NULL;
1375
1376 /*
1377 * Provide statistics on the state of the memory subsystem as
1378 * well as cumulative event counters that show past behavior.
1379 *
1380 * This list is ordered following a combination of these gradients:
1381 * 1) generic big picture -> specifics and details
1382 * 2) reflecting userspace activity -> reflecting kernel heuristics
1383 *
1384 * Current memory state:
1385 */
1386
1387 seq_buf_printf(&s, "anon %llu\n",
1388 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1389 PAGE_SIZE);
1390 seq_buf_printf(&s, "file %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1392 PAGE_SIZE);
1393 seq_buf_printf(&s, "kernel_stack %llu\n",
1394 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1395 1024);
1396 seq_buf_printf(&s, "slab %llu\n",
1397 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1398 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1399 PAGE_SIZE);
1400 seq_buf_printf(&s, "sock %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1402 PAGE_SIZE);
1403
1404 seq_buf_printf(&s, "shmem %llu\n",
1405 (u64)memcg_page_state(memcg, NR_SHMEM) *
1406 PAGE_SIZE);
1407 seq_buf_printf(&s, "file_mapped %llu\n",
1408 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1409 PAGE_SIZE);
1410 seq_buf_printf(&s, "file_dirty %llu\n",
1411 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "file_writeback %llu\n",
1414 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1415 PAGE_SIZE);
1416
1417 /*
1418 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1419 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1420 * arse because it requires migrating the work out of rmap to a place
1421 * where the page->mem_cgroup is set up and stable.
1422 */
1423 seq_buf_printf(&s, "anon_thp %llu\n",
1424 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1425 PAGE_SIZE);
1426
1427 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1428 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1429 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1430 PAGE_SIZE);
1431
1432 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1433 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1434 PAGE_SIZE);
1435 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1436 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1437 PAGE_SIZE);
1438
1439 /* Accumulated memory events */
1440
ebc5d83d
KK
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1442 memcg_events(memcg, PGFAULT));
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1444 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1445
1446 seq_buf_printf(&s, "workingset_refault %lu\n",
1447 memcg_page_state(memcg, WORKINGSET_REFAULT));
1448 seq_buf_printf(&s, "workingset_activate %lu\n",
1449 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1450 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1452
ebc5d83d
KK
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1454 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1455 seq_buf_printf(&s, "pgscan %lu\n",
1456 memcg_events(memcg, PGSCAN_KSWAPD) +
1457 memcg_events(memcg, PGSCAN_DIRECT));
1458 seq_buf_printf(&s, "pgsteal %lu\n",
1459 memcg_events(memcg, PGSTEAL_KSWAPD) +
1460 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1462 memcg_events(memcg, PGACTIVATE));
1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1464 memcg_events(memcg, PGDEACTIVATE));
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1466 memcg_events(memcg, PGLAZYFREE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1468 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1469
1470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1472 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1473 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1474 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1475#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1476
1477 /* The above should easily fit into one page */
1478 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1479
1480 return s.buffer;
1481}
71cd3113 1482
58cf188e 1483#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1484/**
f0c867d9 1485 * mem_cgroup_print_oom_context: Print OOM information relevant to
1486 * memory controller.
e222432b
BS
1487 * @memcg: The memory cgroup that went over limit
1488 * @p: Task that is going to be killed
1489 *
1490 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1491 * enabled
1492 */
f0c867d9 1493void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1494{
e222432b
BS
1495 rcu_read_lock();
1496
f0c867d9 1497 if (memcg) {
1498 pr_cont(",oom_memcg=");
1499 pr_cont_cgroup_path(memcg->css.cgroup);
1500 } else
1501 pr_cont(",global_oom");
2415b9f5 1502 if (p) {
f0c867d9 1503 pr_cont(",task_memcg=");
2415b9f5 1504 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1505 }
e222432b 1506 rcu_read_unlock();
f0c867d9 1507}
1508
1509/**
1510 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1511 * memory controller.
1512 * @memcg: The memory cgroup that went over limit
1513 */
1514void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1515{
c8713d0b 1516 char *buf;
e222432b 1517
3e32cb2e
JW
1518 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1519 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1520 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1521 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1522 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->swap)),
1524 K((u64)memcg->swap.max), memcg->swap.failcnt);
1525 else {
1526 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->memsw)),
1528 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1529 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1530 K((u64)page_counter_read(&memcg->kmem)),
1531 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1532 }
c8713d0b
JW
1533
1534 pr_info("Memory cgroup stats for ");
1535 pr_cont_cgroup_path(memcg->css.cgroup);
1536 pr_cont(":");
1537 buf = memory_stat_format(memcg);
1538 if (!buf)
1539 return;
1540 pr_info("%s", buf);
1541 kfree(buf);
e222432b
BS
1542}
1543
a63d83f4
DR
1544/*
1545 * Return the memory (and swap, if configured) limit for a memcg.
1546 */
bbec2e15 1547unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1548{
bbec2e15 1549 unsigned long max;
f3e8eb70 1550
bbec2e15 1551 max = memcg->memory.max;
9a5a8f19 1552 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1553 unsigned long memsw_max;
1554 unsigned long swap_max;
9a5a8f19 1555
bbec2e15
RG
1556 memsw_max = memcg->memsw.max;
1557 swap_max = memcg->swap.max;
1558 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1559 max = min(max + swap_max, memsw_max);
9a5a8f19 1560 }
bbec2e15 1561 return max;
a63d83f4
DR
1562}
1563
9783aa99
CD
1564unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1565{
1566 return page_counter_read(&memcg->memory);
1567}
1568
b6e6edcf 1569static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1570 int order)
9cbb78bb 1571{
6e0fc46d
DR
1572 struct oom_control oc = {
1573 .zonelist = NULL,
1574 .nodemask = NULL,
2a966b77 1575 .memcg = memcg,
6e0fc46d
DR
1576 .gfp_mask = gfp_mask,
1577 .order = order,
6e0fc46d 1578 };
7c5f64f8 1579 bool ret;
9cbb78bb 1580
7775face
TH
1581 if (mutex_lock_killable(&oom_lock))
1582 return true;
1583 /*
1584 * A few threads which were not waiting at mutex_lock_killable() can
1585 * fail to bail out. Therefore, check again after holding oom_lock.
1586 */
1587 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1588 mutex_unlock(&oom_lock);
7c5f64f8 1589 return ret;
9cbb78bb
DR
1590}
1591
0608f43d 1592static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1593 pg_data_t *pgdat,
0608f43d
AM
1594 gfp_t gfp_mask,
1595 unsigned long *total_scanned)
1596{
1597 struct mem_cgroup *victim = NULL;
1598 int total = 0;
1599 int loop = 0;
1600 unsigned long excess;
1601 unsigned long nr_scanned;
1602 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1603 .pgdat = pgdat,
0608f43d
AM
1604 };
1605
3e32cb2e 1606 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1607
1608 while (1) {
1609 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1610 if (!victim) {
1611 loop++;
1612 if (loop >= 2) {
1613 /*
1614 * If we have not been able to reclaim
1615 * anything, it might because there are
1616 * no reclaimable pages under this hierarchy
1617 */
1618 if (!total)
1619 break;
1620 /*
1621 * We want to do more targeted reclaim.
1622 * excess >> 2 is not to excessive so as to
1623 * reclaim too much, nor too less that we keep
1624 * coming back to reclaim from this cgroup
1625 */
1626 if (total >= (excess >> 2) ||
1627 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1628 break;
1629 }
1630 continue;
1631 }
a9dd0a83 1632 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1633 pgdat, &nr_scanned);
0608f43d 1634 *total_scanned += nr_scanned;
3e32cb2e 1635 if (!soft_limit_excess(root_memcg))
0608f43d 1636 break;
6d61ef40 1637 }
0608f43d
AM
1638 mem_cgroup_iter_break(root_memcg, victim);
1639 return total;
6d61ef40
BS
1640}
1641
0056f4e6
JW
1642#ifdef CONFIG_LOCKDEP
1643static struct lockdep_map memcg_oom_lock_dep_map = {
1644 .name = "memcg_oom_lock",
1645};
1646#endif
1647
fb2a6fc5
JW
1648static DEFINE_SPINLOCK(memcg_oom_lock);
1649
867578cb
KH
1650/*
1651 * Check OOM-Killer is already running under our hierarchy.
1652 * If someone is running, return false.
1653 */
fb2a6fc5 1654static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1655{
79dfdacc 1656 struct mem_cgroup *iter, *failed = NULL;
a636b327 1657
fb2a6fc5
JW
1658 spin_lock(&memcg_oom_lock);
1659
9f3a0d09 1660 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1661 if (iter->oom_lock) {
79dfdacc
MH
1662 /*
1663 * this subtree of our hierarchy is already locked
1664 * so we cannot give a lock.
1665 */
79dfdacc 1666 failed = iter;
9f3a0d09
JW
1667 mem_cgroup_iter_break(memcg, iter);
1668 break;
23751be0
JW
1669 } else
1670 iter->oom_lock = true;
7d74b06f 1671 }
867578cb 1672
fb2a6fc5
JW
1673 if (failed) {
1674 /*
1675 * OK, we failed to lock the whole subtree so we have
1676 * to clean up what we set up to the failing subtree
1677 */
1678 for_each_mem_cgroup_tree(iter, memcg) {
1679 if (iter == failed) {
1680 mem_cgroup_iter_break(memcg, iter);
1681 break;
1682 }
1683 iter->oom_lock = false;
79dfdacc 1684 }
0056f4e6
JW
1685 } else
1686 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1687
1688 spin_unlock(&memcg_oom_lock);
1689
1690 return !failed;
a636b327 1691}
0b7f569e 1692
fb2a6fc5 1693static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1694{
7d74b06f
KH
1695 struct mem_cgroup *iter;
1696
fb2a6fc5 1697 spin_lock(&memcg_oom_lock);
5facae4f 1698 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1699 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1700 iter->oom_lock = false;
fb2a6fc5 1701 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1702}
1703
c0ff4b85 1704static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1705{
1706 struct mem_cgroup *iter;
1707
c2b42d3c 1708 spin_lock(&memcg_oom_lock);
c0ff4b85 1709 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1710 iter->under_oom++;
1711 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1712}
1713
c0ff4b85 1714static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1715{
1716 struct mem_cgroup *iter;
1717
867578cb
KH
1718 /*
1719 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1720 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1721 */
c2b42d3c 1722 spin_lock(&memcg_oom_lock);
c0ff4b85 1723 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1724 if (iter->under_oom > 0)
1725 iter->under_oom--;
1726 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1727}
1728
867578cb
KH
1729static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1730
dc98df5a 1731struct oom_wait_info {
d79154bb 1732 struct mem_cgroup *memcg;
ac6424b9 1733 wait_queue_entry_t wait;
dc98df5a
KH
1734};
1735
ac6424b9 1736static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1737 unsigned mode, int sync, void *arg)
1738{
d79154bb
HD
1739 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1740 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1741 struct oom_wait_info *oom_wait_info;
1742
1743 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1744 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1745
2314b42d
JW
1746 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1747 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1748 return 0;
dc98df5a
KH
1749 return autoremove_wake_function(wait, mode, sync, arg);
1750}
1751
c0ff4b85 1752static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1753{
c2b42d3c
TH
1754 /*
1755 * For the following lockless ->under_oom test, the only required
1756 * guarantee is that it must see the state asserted by an OOM when
1757 * this function is called as a result of userland actions
1758 * triggered by the notification of the OOM. This is trivially
1759 * achieved by invoking mem_cgroup_mark_under_oom() before
1760 * triggering notification.
1761 */
1762 if (memcg && memcg->under_oom)
f4b90b70 1763 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1764}
1765
29ef680a
MH
1766enum oom_status {
1767 OOM_SUCCESS,
1768 OOM_FAILED,
1769 OOM_ASYNC,
1770 OOM_SKIPPED
1771};
1772
1773static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1774{
7056d3a3
MH
1775 enum oom_status ret;
1776 bool locked;
1777
29ef680a
MH
1778 if (order > PAGE_ALLOC_COSTLY_ORDER)
1779 return OOM_SKIPPED;
1780
7a1adfdd
RG
1781 memcg_memory_event(memcg, MEMCG_OOM);
1782
867578cb 1783 /*
49426420
JW
1784 * We are in the middle of the charge context here, so we
1785 * don't want to block when potentially sitting on a callstack
1786 * that holds all kinds of filesystem and mm locks.
1787 *
29ef680a
MH
1788 * cgroup1 allows disabling the OOM killer and waiting for outside
1789 * handling until the charge can succeed; remember the context and put
1790 * the task to sleep at the end of the page fault when all locks are
1791 * released.
49426420 1792 *
29ef680a
MH
1793 * On the other hand, in-kernel OOM killer allows for an async victim
1794 * memory reclaim (oom_reaper) and that means that we are not solely
1795 * relying on the oom victim to make a forward progress and we can
1796 * invoke the oom killer here.
1797 *
1798 * Please note that mem_cgroup_out_of_memory might fail to find a
1799 * victim and then we have to bail out from the charge path.
867578cb 1800 */
29ef680a
MH
1801 if (memcg->oom_kill_disable) {
1802 if (!current->in_user_fault)
1803 return OOM_SKIPPED;
1804 css_get(&memcg->css);
1805 current->memcg_in_oom = memcg;
1806 current->memcg_oom_gfp_mask = mask;
1807 current->memcg_oom_order = order;
1808
1809 return OOM_ASYNC;
1810 }
1811
7056d3a3
MH
1812 mem_cgroup_mark_under_oom(memcg);
1813
1814 locked = mem_cgroup_oom_trylock(memcg);
1815
1816 if (locked)
1817 mem_cgroup_oom_notify(memcg);
1818
1819 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1820 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1821 ret = OOM_SUCCESS;
1822 else
1823 ret = OOM_FAILED;
1824
1825 if (locked)
1826 mem_cgroup_oom_unlock(memcg);
29ef680a 1827
7056d3a3 1828 return ret;
3812c8c8
JW
1829}
1830
1831/**
1832 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1833 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1834 *
49426420
JW
1835 * This has to be called at the end of a page fault if the memcg OOM
1836 * handler was enabled.
3812c8c8 1837 *
49426420 1838 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1839 * sleep on a waitqueue until the userspace task resolves the
1840 * situation. Sleeping directly in the charge context with all kinds
1841 * of locks held is not a good idea, instead we remember an OOM state
1842 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1843 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1844 *
1845 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1846 * completed, %false otherwise.
3812c8c8 1847 */
49426420 1848bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1849{
626ebc41 1850 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1851 struct oom_wait_info owait;
49426420 1852 bool locked;
3812c8c8
JW
1853
1854 /* OOM is global, do not handle */
3812c8c8 1855 if (!memcg)
49426420 1856 return false;
3812c8c8 1857
7c5f64f8 1858 if (!handle)
49426420 1859 goto cleanup;
3812c8c8
JW
1860
1861 owait.memcg = memcg;
1862 owait.wait.flags = 0;
1863 owait.wait.func = memcg_oom_wake_function;
1864 owait.wait.private = current;
2055da97 1865 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1866
3812c8c8 1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1868 mem_cgroup_mark_under_oom(memcg);
1869
1870 locked = mem_cgroup_oom_trylock(memcg);
1871
1872 if (locked)
1873 mem_cgroup_oom_notify(memcg);
1874
1875 if (locked && !memcg->oom_kill_disable) {
1876 mem_cgroup_unmark_under_oom(memcg);
1877 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1878 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1879 current->memcg_oom_order);
49426420 1880 } else {
3812c8c8 1881 schedule();
49426420
JW
1882 mem_cgroup_unmark_under_oom(memcg);
1883 finish_wait(&memcg_oom_waitq, &owait.wait);
1884 }
1885
1886 if (locked) {
fb2a6fc5
JW
1887 mem_cgroup_oom_unlock(memcg);
1888 /*
1889 * There is no guarantee that an OOM-lock contender
1890 * sees the wakeups triggered by the OOM kill
1891 * uncharges. Wake any sleepers explicitely.
1892 */
1893 memcg_oom_recover(memcg);
1894 }
49426420 1895cleanup:
626ebc41 1896 current->memcg_in_oom = NULL;
3812c8c8 1897 css_put(&memcg->css);
867578cb 1898 return true;
0b7f569e
KH
1899}
1900
3d8b38eb
RG
1901/**
1902 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1903 * @victim: task to be killed by the OOM killer
1904 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1905 *
1906 * Returns a pointer to a memory cgroup, which has to be cleaned up
1907 * by killing all belonging OOM-killable tasks.
1908 *
1909 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1910 */
1911struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1912 struct mem_cgroup *oom_domain)
1913{
1914 struct mem_cgroup *oom_group = NULL;
1915 struct mem_cgroup *memcg;
1916
1917 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1918 return NULL;
1919
1920 if (!oom_domain)
1921 oom_domain = root_mem_cgroup;
1922
1923 rcu_read_lock();
1924
1925 memcg = mem_cgroup_from_task(victim);
1926 if (memcg == root_mem_cgroup)
1927 goto out;
1928
1929 /*
1930 * Traverse the memory cgroup hierarchy from the victim task's
1931 * cgroup up to the OOMing cgroup (or root) to find the
1932 * highest-level memory cgroup with oom.group set.
1933 */
1934 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1935 if (memcg->oom_group)
1936 oom_group = memcg;
1937
1938 if (memcg == oom_domain)
1939 break;
1940 }
1941
1942 if (oom_group)
1943 css_get(&oom_group->css);
1944out:
1945 rcu_read_unlock();
1946
1947 return oom_group;
1948}
1949
1950void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1951{
1952 pr_info("Tasks in ");
1953 pr_cont_cgroup_path(memcg->css.cgroup);
1954 pr_cont(" are going to be killed due to memory.oom.group set\n");
1955}
1956
d7365e78 1957/**
81f8c3a4
JW
1958 * lock_page_memcg - lock a page->mem_cgroup binding
1959 * @page: the page
32047e2a 1960 *
81f8c3a4 1961 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1962 * another cgroup.
1963 *
1964 * It ensures lifetime of the returned memcg. Caller is responsible
1965 * for the lifetime of the page; __unlock_page_memcg() is available
1966 * when @page might get freed inside the locked section.
d69b042f 1967 */
739f79fc 1968struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1969{
1970 struct mem_cgroup *memcg;
6de22619 1971 unsigned long flags;
89c06bd5 1972
6de22619
JW
1973 /*
1974 * The RCU lock is held throughout the transaction. The fast
1975 * path can get away without acquiring the memcg->move_lock
1976 * because page moving starts with an RCU grace period.
739f79fc
JW
1977 *
1978 * The RCU lock also protects the memcg from being freed when
1979 * the page state that is going to change is the only thing
1980 * preventing the page itself from being freed. E.g. writeback
1981 * doesn't hold a page reference and relies on PG_writeback to
1982 * keep off truncation, migration and so forth.
1983 */
d7365e78
JW
1984 rcu_read_lock();
1985
1986 if (mem_cgroup_disabled())
739f79fc 1987 return NULL;
89c06bd5 1988again:
1306a85a 1989 memcg = page->mem_cgroup;
29833315 1990 if (unlikely(!memcg))
739f79fc 1991 return NULL;
d7365e78 1992
bdcbb659 1993 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1994 return memcg;
89c06bd5 1995
6de22619 1996 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1997 if (memcg != page->mem_cgroup) {
6de22619 1998 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1999 goto again;
2000 }
6de22619
JW
2001
2002 /*
2003 * When charge migration first begins, we can have locked and
2004 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2005 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2006 */
2007 memcg->move_lock_task = current;
2008 memcg->move_lock_flags = flags;
d7365e78 2009
739f79fc 2010 return memcg;
89c06bd5 2011}
81f8c3a4 2012EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2013
d7365e78 2014/**
739f79fc
JW
2015 * __unlock_page_memcg - unlock and unpin a memcg
2016 * @memcg: the memcg
2017 *
2018 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2019 */
739f79fc 2020void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2021{
6de22619
JW
2022 if (memcg && memcg->move_lock_task == current) {
2023 unsigned long flags = memcg->move_lock_flags;
2024
2025 memcg->move_lock_task = NULL;
2026 memcg->move_lock_flags = 0;
2027
2028 spin_unlock_irqrestore(&memcg->move_lock, flags);
2029 }
89c06bd5 2030
d7365e78 2031 rcu_read_unlock();
89c06bd5 2032}
739f79fc
JW
2033
2034/**
2035 * unlock_page_memcg - unlock a page->mem_cgroup binding
2036 * @page: the page
2037 */
2038void unlock_page_memcg(struct page *page)
2039{
2040 __unlock_page_memcg(page->mem_cgroup);
2041}
81f8c3a4 2042EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2043
cdec2e42
KH
2044struct memcg_stock_pcp {
2045 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2046 unsigned int nr_pages;
cdec2e42 2047 struct work_struct work;
26fe6168 2048 unsigned long flags;
a0db00fc 2049#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2050};
2051static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2052static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2053
a0956d54
SS
2054/**
2055 * consume_stock: Try to consume stocked charge on this cpu.
2056 * @memcg: memcg to consume from.
2057 * @nr_pages: how many pages to charge.
2058 *
2059 * The charges will only happen if @memcg matches the current cpu's memcg
2060 * stock, and at least @nr_pages are available in that stock. Failure to
2061 * service an allocation will refill the stock.
2062 *
2063 * returns true if successful, false otherwise.
cdec2e42 2064 */
a0956d54 2065static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2066{
2067 struct memcg_stock_pcp *stock;
db2ba40c 2068 unsigned long flags;
3e32cb2e 2069 bool ret = false;
cdec2e42 2070
a983b5eb 2071 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2072 return ret;
a0956d54 2073
db2ba40c
JW
2074 local_irq_save(flags);
2075
2076 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2077 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2078 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2079 ret = true;
2080 }
db2ba40c
JW
2081
2082 local_irq_restore(flags);
2083
cdec2e42
KH
2084 return ret;
2085}
2086
2087/*
3e32cb2e 2088 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2089 */
2090static void drain_stock(struct memcg_stock_pcp *stock)
2091{
2092 struct mem_cgroup *old = stock->cached;
2093
11c9ea4e 2094 if (stock->nr_pages) {
3e32cb2e 2095 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2096 if (do_memsw_account())
3e32cb2e 2097 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2098 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2099 stock->nr_pages = 0;
cdec2e42
KH
2100 }
2101 stock->cached = NULL;
cdec2e42
KH
2102}
2103
cdec2e42
KH
2104static void drain_local_stock(struct work_struct *dummy)
2105{
db2ba40c
JW
2106 struct memcg_stock_pcp *stock;
2107 unsigned long flags;
2108
72f0184c
MH
2109 /*
2110 * The only protection from memory hotplug vs. drain_stock races is
2111 * that we always operate on local CPU stock here with IRQ disabled
2112 */
db2ba40c
JW
2113 local_irq_save(flags);
2114
2115 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2116 drain_stock(stock);
26fe6168 2117 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2118
2119 local_irq_restore(flags);
cdec2e42
KH
2120}
2121
2122/*
3e32cb2e 2123 * Cache charges(val) to local per_cpu area.
320cc51d 2124 * This will be consumed by consume_stock() function, later.
cdec2e42 2125 */
c0ff4b85 2126static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2127{
db2ba40c
JW
2128 struct memcg_stock_pcp *stock;
2129 unsigned long flags;
2130
2131 local_irq_save(flags);
cdec2e42 2132
db2ba40c 2133 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2134 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2135 drain_stock(stock);
c0ff4b85 2136 stock->cached = memcg;
cdec2e42 2137 }
11c9ea4e 2138 stock->nr_pages += nr_pages;
db2ba40c 2139
a983b5eb 2140 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2141 drain_stock(stock);
2142
db2ba40c 2143 local_irq_restore(flags);
cdec2e42
KH
2144}
2145
2146/*
c0ff4b85 2147 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2148 * of the hierarchy under it.
cdec2e42 2149 */
6d3d6aa2 2150static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2151{
26fe6168 2152 int cpu, curcpu;
d38144b7 2153
6d3d6aa2
JW
2154 /* If someone's already draining, avoid adding running more workers. */
2155 if (!mutex_trylock(&percpu_charge_mutex))
2156 return;
72f0184c
MH
2157 /*
2158 * Notify other cpus that system-wide "drain" is running
2159 * We do not care about races with the cpu hotplug because cpu down
2160 * as well as workers from this path always operate on the local
2161 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2162 */
5af12d0e 2163 curcpu = get_cpu();
cdec2e42
KH
2164 for_each_online_cpu(cpu) {
2165 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2166 struct mem_cgroup *memcg;
e1a366be 2167 bool flush = false;
26fe6168 2168
e1a366be 2169 rcu_read_lock();
c0ff4b85 2170 memcg = stock->cached;
e1a366be
RG
2171 if (memcg && stock->nr_pages &&
2172 mem_cgroup_is_descendant(memcg, root_memcg))
2173 flush = true;
2174 rcu_read_unlock();
2175
2176 if (flush &&
2177 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2178 if (cpu == curcpu)
2179 drain_local_stock(&stock->work);
2180 else
2181 schedule_work_on(cpu, &stock->work);
2182 }
cdec2e42 2183 }
5af12d0e 2184 put_cpu();
9f50fad6 2185 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2186}
2187
308167fc 2188static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2189{
cdec2e42 2190 struct memcg_stock_pcp *stock;
42a30035 2191 struct mem_cgroup *memcg, *mi;
cdec2e42 2192
cdec2e42
KH
2193 stock = &per_cpu(memcg_stock, cpu);
2194 drain_stock(stock);
a983b5eb
JW
2195
2196 for_each_mem_cgroup(memcg) {
2197 int i;
2198
2199 for (i = 0; i < MEMCG_NR_STAT; i++) {
2200 int nid;
2201 long x;
2202
871789d4 2203 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2204 if (x)
42a30035
JW
2205 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2206 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2207
2208 if (i >= NR_VM_NODE_STAT_ITEMS)
2209 continue;
2210
2211 for_each_node(nid) {
2212 struct mem_cgroup_per_node *pn;
2213
2214 pn = mem_cgroup_nodeinfo(memcg, nid);
2215 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2216 if (x)
42a30035
JW
2217 do {
2218 atomic_long_add(x, &pn->lruvec_stat[i]);
2219 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2220 }
2221 }
2222
e27be240 2223 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2224 long x;
2225
871789d4 2226 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2227 if (x)
42a30035
JW
2228 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2229 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2230 }
2231 }
2232
308167fc 2233 return 0;
cdec2e42
KH
2234}
2235
f7e1cb6e
JW
2236static void reclaim_high(struct mem_cgroup *memcg,
2237 unsigned int nr_pages,
2238 gfp_t gfp_mask)
2239{
2240 do {
2241 if (page_counter_read(&memcg->memory) <= memcg->high)
2242 continue;
e27be240 2243 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2244 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2245 } while ((memcg = parent_mem_cgroup(memcg)));
2246}
2247
2248static void high_work_func(struct work_struct *work)
2249{
2250 struct mem_cgroup *memcg;
2251
2252 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2253 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2254}
2255
0e4b01df
CD
2256/*
2257 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2258 * enough to still cause a significant slowdown in most cases, while still
2259 * allowing diagnostics and tracing to proceed without becoming stuck.
2260 */
2261#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2262
2263/*
2264 * When calculating the delay, we use these either side of the exponentiation to
2265 * maintain precision and scale to a reasonable number of jiffies (see the table
2266 * below.
2267 *
2268 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2269 * overage ratio to a delay.
2270 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2271 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2272 * to produce a reasonable delay curve.
2273 *
2274 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2275 * reasonable delay curve compared to precision-adjusted overage, not
2276 * penalising heavily at first, but still making sure that growth beyond the
2277 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2278 * example, with a high of 100 megabytes:
2279 *
2280 * +-------+------------------------+
2281 * | usage | time to allocate in ms |
2282 * +-------+------------------------+
2283 * | 100M | 0 |
2284 * | 101M | 6 |
2285 * | 102M | 25 |
2286 * | 103M | 57 |
2287 * | 104M | 102 |
2288 * | 105M | 159 |
2289 * | 106M | 230 |
2290 * | 107M | 313 |
2291 * | 108M | 409 |
2292 * | 109M | 518 |
2293 * | 110M | 639 |
2294 * | 111M | 774 |
2295 * | 112M | 921 |
2296 * | 113M | 1081 |
2297 * | 114M | 1254 |
2298 * | 115M | 1439 |
2299 * | 116M | 1638 |
2300 * | 117M | 1849 |
2301 * | 118M | 2000 |
2302 * | 119M | 2000 |
2303 * | 120M | 2000 |
2304 * +-------+------------------------+
2305 */
2306 #define MEMCG_DELAY_PRECISION_SHIFT 20
2307 #define MEMCG_DELAY_SCALING_SHIFT 14
2308
b23afb93 2309/*
e26733e0
CD
2310 * Get the number of jiffies that we should penalise a mischievous cgroup which
2311 * is exceeding its memory.high by checking both it and its ancestors.
b23afb93 2312 */
e26733e0
CD
2313static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2314 unsigned int nr_pages)
b23afb93 2315{
e26733e0
CD
2316 unsigned long penalty_jiffies;
2317 u64 max_overage = 0;
b23afb93 2318
e26733e0
CD
2319 do {
2320 unsigned long usage, high;
2321 u64 overage;
b23afb93 2322
e26733e0
CD
2323 usage = page_counter_read(&memcg->memory);
2324 high = READ_ONCE(memcg->high);
2325
2326 /*
2327 * Prevent division by 0 in overage calculation by acting as if
2328 * it was a threshold of 1 page
2329 */
2330 high = max(high, 1UL);
2331
2332 overage = usage - high;
2333 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2334 overage = div64_u64(overage, high);
2335
2336 if (overage > max_overage)
2337 max_overage = overage;
2338 } while ((memcg = parent_mem_cgroup(memcg)) &&
2339 !mem_cgroup_is_root(memcg));
2340
2341 if (!max_overage)
2342 return 0;
0e4b01df
CD
2343
2344 /*
0e4b01df
CD
2345 * We use overage compared to memory.high to calculate the number of
2346 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2347 * fairly lenient on small overages, and increasingly harsh when the
2348 * memcg in question makes it clear that it has no intention of stopping
2349 * its crazy behaviour, so we exponentially increase the delay based on
2350 * overage amount.
2351 */
e26733e0
CD
2352 penalty_jiffies = max_overage * max_overage * HZ;
2353 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2354 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2355
2356 /*
2357 * Factor in the task's own contribution to the overage, such that four
2358 * N-sized allocations are throttled approximately the same as one
2359 * 4N-sized allocation.
2360 *
2361 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2362 * larger the current charge patch is than that.
2363 */
2364 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2365
2366 /*
2367 * Clamp the max delay per usermode return so as to still keep the
2368 * application moving forwards and also permit diagnostics, albeit
2369 * extremely slowly.
2370 */
e26733e0
CD
2371 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2372}
2373
2374/*
2375 * Scheduled by try_charge() to be executed from the userland return path
2376 * and reclaims memory over the high limit.
2377 */
2378void mem_cgroup_handle_over_high(void)
2379{
2380 unsigned long penalty_jiffies;
2381 unsigned long pflags;
2382 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2383 struct mem_cgroup *memcg;
2384
2385 if (likely(!nr_pages))
2386 return;
2387
2388 memcg = get_mem_cgroup_from_mm(current->mm);
2389 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2390 current->memcg_nr_pages_over_high = 0;
2391
2392 /*
2393 * memory.high is breached and reclaim is unable to keep up. Throttle
2394 * allocators proactively to slow down excessive growth.
2395 */
2396 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
0e4b01df
CD
2397
2398 /*
2399 * Don't sleep if the amount of jiffies this memcg owes us is so low
2400 * that it's not even worth doing, in an attempt to be nice to those who
2401 * go only a small amount over their memory.high value and maybe haven't
2402 * been aggressively reclaimed enough yet.
2403 */
2404 if (penalty_jiffies <= HZ / 100)
2405 goto out;
2406
2407 /*
2408 * If we exit early, we're guaranteed to die (since
2409 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2410 * need to account for any ill-begotten jiffies to pay them off later.
2411 */
2412 psi_memstall_enter(&pflags);
2413 schedule_timeout_killable(penalty_jiffies);
2414 psi_memstall_leave(&pflags);
2415
2416out:
2417 css_put(&memcg->css);
b23afb93
TH
2418}
2419
00501b53
JW
2420static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2421 unsigned int nr_pages)
8a9f3ccd 2422{
a983b5eb 2423 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2424 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2425 struct mem_cgroup *mem_over_limit;
3e32cb2e 2426 struct page_counter *counter;
6539cc05 2427 unsigned long nr_reclaimed;
b70a2a21
JW
2428 bool may_swap = true;
2429 bool drained = false;
29ef680a 2430 enum oom_status oom_status;
a636b327 2431
ce00a967 2432 if (mem_cgroup_is_root(memcg))
10d53c74 2433 return 0;
6539cc05 2434retry:
b6b6cc72 2435 if (consume_stock(memcg, nr_pages))
10d53c74 2436 return 0;
8a9f3ccd 2437
7941d214 2438 if (!do_memsw_account() ||
6071ca52
JW
2439 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2440 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2441 goto done_restock;
7941d214 2442 if (do_memsw_account())
3e32cb2e
JW
2443 page_counter_uncharge(&memcg->memsw, batch);
2444 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2445 } else {
3e32cb2e 2446 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2447 may_swap = false;
3fbe7244 2448 }
7a81b88c 2449
6539cc05
JW
2450 if (batch > nr_pages) {
2451 batch = nr_pages;
2452 goto retry;
2453 }
6d61ef40 2454
869712fd
JW
2455 /*
2456 * Memcg doesn't have a dedicated reserve for atomic
2457 * allocations. But like the global atomic pool, we need to
2458 * put the burden of reclaim on regular allocation requests
2459 * and let these go through as privileged allocations.
2460 */
2461 if (gfp_mask & __GFP_ATOMIC)
2462 goto force;
2463
06b078fc
JW
2464 /*
2465 * Unlike in global OOM situations, memcg is not in a physical
2466 * memory shortage. Allow dying and OOM-killed tasks to
2467 * bypass the last charges so that they can exit quickly and
2468 * free their memory.
2469 */
7775face 2470 if (unlikely(should_force_charge()))
10d53c74 2471 goto force;
06b078fc 2472
89a28483
JW
2473 /*
2474 * Prevent unbounded recursion when reclaim operations need to
2475 * allocate memory. This might exceed the limits temporarily,
2476 * but we prefer facilitating memory reclaim and getting back
2477 * under the limit over triggering OOM kills in these cases.
2478 */
2479 if (unlikely(current->flags & PF_MEMALLOC))
2480 goto force;
2481
06b078fc
JW
2482 if (unlikely(task_in_memcg_oom(current)))
2483 goto nomem;
2484
d0164adc 2485 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2486 goto nomem;
4b534334 2487
e27be240 2488 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2489
b70a2a21
JW
2490 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2491 gfp_mask, may_swap);
6539cc05 2492
61e02c74 2493 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2494 goto retry;
28c34c29 2495
b70a2a21 2496 if (!drained) {
6d3d6aa2 2497 drain_all_stock(mem_over_limit);
b70a2a21
JW
2498 drained = true;
2499 goto retry;
2500 }
2501
28c34c29
JW
2502 if (gfp_mask & __GFP_NORETRY)
2503 goto nomem;
6539cc05
JW
2504 /*
2505 * Even though the limit is exceeded at this point, reclaim
2506 * may have been able to free some pages. Retry the charge
2507 * before killing the task.
2508 *
2509 * Only for regular pages, though: huge pages are rather
2510 * unlikely to succeed so close to the limit, and we fall back
2511 * to regular pages anyway in case of failure.
2512 */
61e02c74 2513 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2514 goto retry;
2515 /*
2516 * At task move, charge accounts can be doubly counted. So, it's
2517 * better to wait until the end of task_move if something is going on.
2518 */
2519 if (mem_cgroup_wait_acct_move(mem_over_limit))
2520 goto retry;
2521
9b130619
JW
2522 if (nr_retries--)
2523 goto retry;
2524
38d38493 2525 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2526 goto nomem;
2527
06b078fc 2528 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2529 goto force;
06b078fc 2530
6539cc05 2531 if (fatal_signal_pending(current))
10d53c74 2532 goto force;
6539cc05 2533
29ef680a
MH
2534 /*
2535 * keep retrying as long as the memcg oom killer is able to make
2536 * a forward progress or bypass the charge if the oom killer
2537 * couldn't make any progress.
2538 */
2539 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2540 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2541 switch (oom_status) {
2542 case OOM_SUCCESS:
2543 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2544 goto retry;
2545 case OOM_FAILED:
2546 goto force;
2547 default:
2548 goto nomem;
2549 }
7a81b88c 2550nomem:
6d1fdc48 2551 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2552 return -ENOMEM;
10d53c74
TH
2553force:
2554 /*
2555 * The allocation either can't fail or will lead to more memory
2556 * being freed very soon. Allow memory usage go over the limit
2557 * temporarily by force charging it.
2558 */
2559 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2560 if (do_memsw_account())
10d53c74
TH
2561 page_counter_charge(&memcg->memsw, nr_pages);
2562 css_get_many(&memcg->css, nr_pages);
2563
2564 return 0;
6539cc05
JW
2565
2566done_restock:
e8ea14cc 2567 css_get_many(&memcg->css, batch);
6539cc05
JW
2568 if (batch > nr_pages)
2569 refill_stock(memcg, batch - nr_pages);
b23afb93 2570
241994ed 2571 /*
b23afb93
TH
2572 * If the hierarchy is above the normal consumption range, schedule
2573 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2574 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2575 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2576 * not recorded as it most likely matches current's and won't
2577 * change in the meantime. As high limit is checked again before
2578 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2579 */
2580 do {
b23afb93 2581 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2582 /* Don't bother a random interrupted task */
2583 if (in_interrupt()) {
2584 schedule_work(&memcg->high_work);
2585 break;
2586 }
9516a18a 2587 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2588 set_notify_resume(current);
2589 break;
2590 }
241994ed 2591 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2592
2593 return 0;
7a81b88c 2594}
8a9f3ccd 2595
00501b53 2596static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2597{
ce00a967
JW
2598 if (mem_cgroup_is_root(memcg))
2599 return;
2600
3e32cb2e 2601 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2602 if (do_memsw_account())
3e32cb2e 2603 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2604
e8ea14cc 2605 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2606}
2607
0a31bc97
JW
2608static void lock_page_lru(struct page *page, int *isolated)
2609{
f4b7e272 2610 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2611
f4b7e272 2612 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2613 if (PageLRU(page)) {
2614 struct lruvec *lruvec;
2615
f4b7e272 2616 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2617 ClearPageLRU(page);
2618 del_page_from_lru_list(page, lruvec, page_lru(page));
2619 *isolated = 1;
2620 } else
2621 *isolated = 0;
2622}
2623
2624static void unlock_page_lru(struct page *page, int isolated)
2625{
f4b7e272 2626 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2627
2628 if (isolated) {
2629 struct lruvec *lruvec;
2630
f4b7e272 2631 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2632 VM_BUG_ON_PAGE(PageLRU(page), page);
2633 SetPageLRU(page);
2634 add_page_to_lru_list(page, lruvec, page_lru(page));
2635 }
f4b7e272 2636 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2637}
2638
00501b53 2639static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2640 bool lrucare)
7a81b88c 2641{
0a31bc97 2642 int isolated;
9ce70c02 2643
1306a85a 2644 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2645
2646 /*
2647 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2648 * may already be on some other mem_cgroup's LRU. Take care of it.
2649 */
0a31bc97
JW
2650 if (lrucare)
2651 lock_page_lru(page, &isolated);
9ce70c02 2652
0a31bc97
JW
2653 /*
2654 * Nobody should be changing or seriously looking at
1306a85a 2655 * page->mem_cgroup at this point:
0a31bc97
JW
2656 *
2657 * - the page is uncharged
2658 *
2659 * - the page is off-LRU
2660 *
2661 * - an anonymous fault has exclusive page access, except for
2662 * a locked page table
2663 *
2664 * - a page cache insertion, a swapin fault, or a migration
2665 * have the page locked
2666 */
1306a85a 2667 page->mem_cgroup = memcg;
9ce70c02 2668
0a31bc97
JW
2669 if (lrucare)
2670 unlock_page_lru(page, isolated);
7a81b88c 2671}
66e1707b 2672
84c07d11 2673#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2674/*
2675 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2676 *
2677 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2678 * cgroup_mutex, etc.
2679 */
2680struct mem_cgroup *mem_cgroup_from_obj(void *p)
2681{
2682 struct page *page;
2683
2684 if (mem_cgroup_disabled())
2685 return NULL;
2686
2687 page = virt_to_head_page(p);
2688
2689 /*
2690 * Slab pages don't have page->mem_cgroup set because corresponding
2691 * kmem caches can be reparented during the lifetime. That's why
2692 * memcg_from_slab_page() should be used instead.
2693 */
2694 if (PageSlab(page))
2695 return memcg_from_slab_page(page);
2696
2697 /* All other pages use page->mem_cgroup */
2698 return page->mem_cgroup;
2699}
2700
f3bb3043 2701static int memcg_alloc_cache_id(void)
55007d84 2702{
f3bb3043
VD
2703 int id, size;
2704 int err;
2705
dbcf73e2 2706 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2707 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2708 if (id < 0)
2709 return id;
55007d84 2710
dbcf73e2 2711 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2712 return id;
2713
2714 /*
2715 * There's no space for the new id in memcg_caches arrays,
2716 * so we have to grow them.
2717 */
05257a1a 2718 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2719
2720 size = 2 * (id + 1);
55007d84
GC
2721 if (size < MEMCG_CACHES_MIN_SIZE)
2722 size = MEMCG_CACHES_MIN_SIZE;
2723 else if (size > MEMCG_CACHES_MAX_SIZE)
2724 size = MEMCG_CACHES_MAX_SIZE;
2725
f3bb3043 2726 err = memcg_update_all_caches(size);
60d3fd32
VD
2727 if (!err)
2728 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2729 if (!err)
2730 memcg_nr_cache_ids = size;
2731
2732 up_write(&memcg_cache_ids_sem);
2733
f3bb3043 2734 if (err) {
dbcf73e2 2735 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2736 return err;
2737 }
2738 return id;
2739}
2740
2741static void memcg_free_cache_id(int id)
2742{
dbcf73e2 2743 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2744}
2745
d5b3cf71 2746struct memcg_kmem_cache_create_work {
5722d094
VD
2747 struct mem_cgroup *memcg;
2748 struct kmem_cache *cachep;
2749 struct work_struct work;
2750};
2751
d5b3cf71 2752static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2753{
d5b3cf71
VD
2754 struct memcg_kmem_cache_create_work *cw =
2755 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2756 struct mem_cgroup *memcg = cw->memcg;
2757 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2758
d5b3cf71 2759 memcg_create_kmem_cache(memcg, cachep);
bd673145 2760
5722d094 2761 css_put(&memcg->css);
d7f25f8a
GC
2762 kfree(cw);
2763}
2764
2765/*
2766 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2767 */
85cfb245 2768static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2769 struct kmem_cache *cachep)
d7f25f8a 2770{
d5b3cf71 2771 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2772
f0a3a24b
RG
2773 if (!css_tryget_online(&memcg->css))
2774 return;
2775
c892fd82 2776 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2777 if (!cw)
d7f25f8a 2778 return;
8135be5a 2779
d7f25f8a
GC
2780 cw->memcg = memcg;
2781 cw->cachep = cachep;
d5b3cf71 2782 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2783
17cc4dfe 2784 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2785}
2786
45264778
VD
2787static inline bool memcg_kmem_bypass(void)
2788{
2789 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2790 return true;
2791 return false;
2792}
2793
2794/**
2795 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2796 * @cachep: the original global kmem cache
2797 *
d7f25f8a
GC
2798 * Return the kmem_cache we're supposed to use for a slab allocation.
2799 * We try to use the current memcg's version of the cache.
2800 *
45264778
VD
2801 * If the cache does not exist yet, if we are the first user of it, we
2802 * create it asynchronously in a workqueue and let the current allocation
2803 * go through with the original cache.
d7f25f8a 2804 *
45264778
VD
2805 * This function takes a reference to the cache it returns to assure it
2806 * won't get destroyed while we are working with it. Once the caller is
2807 * done with it, memcg_kmem_put_cache() must be called to release the
2808 * reference.
d7f25f8a 2809 */
45264778 2810struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2811{
2812 struct mem_cgroup *memcg;
959c8963 2813 struct kmem_cache *memcg_cachep;
f0a3a24b 2814 struct memcg_cache_array *arr;
2a4db7eb 2815 int kmemcg_id;
d7f25f8a 2816
f7ce3190 2817 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2818
45264778 2819 if (memcg_kmem_bypass())
230e9fc2
VD
2820 return cachep;
2821
f0a3a24b
RG
2822 rcu_read_lock();
2823
2824 if (unlikely(current->active_memcg))
2825 memcg = current->active_memcg;
2826 else
2827 memcg = mem_cgroup_from_task(current);
2828
2829 if (!memcg || memcg == root_mem_cgroup)
2830 goto out_unlock;
2831
4db0c3c2 2832 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2833 if (kmemcg_id < 0)
f0a3a24b 2834 goto out_unlock;
d7f25f8a 2835
f0a3a24b
RG
2836 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2837
2838 /*
2839 * Make sure we will access the up-to-date value. The code updating
2840 * memcg_caches issues a write barrier to match the data dependency
2841 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2842 */
2843 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2844
2845 /*
2846 * If we are in a safe context (can wait, and not in interrupt
2847 * context), we could be be predictable and return right away.
2848 * This would guarantee that the allocation being performed
2849 * already belongs in the new cache.
2850 *
2851 * However, there are some clashes that can arrive from locking.
2852 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2853 * memcg_create_kmem_cache, this means no further allocation
2854 * could happen with the slab_mutex held. So it's better to
2855 * defer everything.
f0a3a24b
RG
2856 *
2857 * If the memcg is dying or memcg_cache is about to be released,
2858 * don't bother creating new kmem_caches. Because memcg_cachep
2859 * is ZEROed as the fist step of kmem offlining, we don't need
2860 * percpu_ref_tryget_live() here. css_tryget_online() check in
2861 * memcg_schedule_kmem_cache_create() will prevent us from
2862 * creation of a new kmem_cache.
ca0dde97 2863 */
f0a3a24b
RG
2864 if (unlikely(!memcg_cachep))
2865 memcg_schedule_kmem_cache_create(memcg, cachep);
2866 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2867 cachep = memcg_cachep;
2868out_unlock:
2869 rcu_read_unlock();
ca0dde97 2870 return cachep;
d7f25f8a 2871}
d7f25f8a 2872
45264778
VD
2873/**
2874 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2875 * @cachep: the cache returned by memcg_kmem_get_cache
2876 */
2877void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2878{
2879 if (!is_root_cache(cachep))
f0a3a24b 2880 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2881}
2882
45264778 2883/**
4b13f64d 2884 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2885 * @memcg: memory cgroup to charge
45264778 2886 * @gfp: reclaim mode
92d0510c 2887 * @nr_pages: number of pages to charge
45264778
VD
2888 *
2889 * Returns 0 on success, an error code on failure.
2890 */
4b13f64d
RG
2891int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2892 unsigned int nr_pages)
7ae1e1d0 2893{
f3ccb2c4 2894 struct page_counter *counter;
7ae1e1d0
GC
2895 int ret;
2896
f3ccb2c4 2897 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2898 if (ret)
f3ccb2c4 2899 return ret;
52c29b04
JW
2900
2901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2902 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2903
2904 /*
2905 * Enforce __GFP_NOFAIL allocation because callers are not
2906 * prepared to see failures and likely do not have any failure
2907 * handling code.
2908 */
2909 if (gfp & __GFP_NOFAIL) {
2910 page_counter_charge(&memcg->kmem, nr_pages);
2911 return 0;
2912 }
52c29b04
JW
2913 cancel_charge(memcg, nr_pages);
2914 return -ENOMEM;
7ae1e1d0 2915 }
f3ccb2c4 2916 return 0;
7ae1e1d0
GC
2917}
2918
4b13f64d
RG
2919/**
2920 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2921 * @memcg: memcg to uncharge
2922 * @nr_pages: number of pages to uncharge
2923 */
2924void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2925{
2926 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2927 page_counter_uncharge(&memcg->kmem, nr_pages);
2928
2929 page_counter_uncharge(&memcg->memory, nr_pages);
2930 if (do_memsw_account())
2931 page_counter_uncharge(&memcg->memsw, nr_pages);
2932}
2933
45264778 2934/**
f4b00eab 2935 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2936 * @page: page to charge
2937 * @gfp: reclaim mode
2938 * @order: allocation order
2939 *
2940 * Returns 0 on success, an error code on failure.
2941 */
f4b00eab 2942int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2943{
f3ccb2c4 2944 struct mem_cgroup *memcg;
fcff7d7e 2945 int ret = 0;
7ae1e1d0 2946
60cd4bcd 2947 if (memcg_kmem_bypass())
45264778
VD
2948 return 0;
2949
d46eb14b 2950 memcg = get_mem_cgroup_from_current();
c4159a75 2951 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2952 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2953 if (!ret) {
2954 page->mem_cgroup = memcg;
c4159a75 2955 __SetPageKmemcg(page);
4d96ba35 2956 }
c4159a75 2957 }
7ae1e1d0 2958 css_put(&memcg->css);
d05e83a6 2959 return ret;
7ae1e1d0 2960}
49a18eae 2961
45264778 2962/**
f4b00eab 2963 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2964 * @page: page to uncharge
2965 * @order: allocation order
2966 */
f4b00eab 2967void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2968{
1306a85a 2969 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2970 unsigned int nr_pages = 1 << order;
7ae1e1d0 2971
7ae1e1d0
GC
2972 if (!memcg)
2973 return;
2974
309381fe 2975 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 2976 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 2977 page->mem_cgroup = NULL;
c4159a75
VD
2978
2979 /* slab pages do not have PageKmemcg flag set */
2980 if (PageKmemcg(page))
2981 __ClearPageKmemcg(page);
2982
f3ccb2c4 2983 css_put_many(&memcg->css, nr_pages);
60d3fd32 2984}
84c07d11 2985#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2986
ca3e0214
KH
2987#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2988
ca3e0214
KH
2989/*
2990 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2991 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2992 */
e94c8a9c 2993void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2994{
e94c8a9c 2995 int i;
ca3e0214 2996
3d37c4a9
KH
2997 if (mem_cgroup_disabled())
2998 return;
b070e65c 2999
29833315 3000 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3001 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3002
c9019e9b 3003 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3004}
12d27107 3005#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3006
c255a458 3007#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3008/**
3009 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3010 * @entry: swap entry to be moved
3011 * @from: mem_cgroup which the entry is moved from
3012 * @to: mem_cgroup which the entry is moved to
3013 *
3014 * It succeeds only when the swap_cgroup's record for this entry is the same
3015 * as the mem_cgroup's id of @from.
3016 *
3017 * Returns 0 on success, -EINVAL on failure.
3018 *
3e32cb2e 3019 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3020 * both res and memsw, and called css_get().
3021 */
3022static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3023 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3024{
3025 unsigned short old_id, new_id;
3026
34c00c31
LZ
3027 old_id = mem_cgroup_id(from);
3028 new_id = mem_cgroup_id(to);
02491447
DN
3029
3030 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3031 mod_memcg_state(from, MEMCG_SWAP, -1);
3032 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3033 return 0;
3034 }
3035 return -EINVAL;
3036}
3037#else
3038static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3039 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3040{
3041 return -EINVAL;
3042}
8c7c6e34 3043#endif
d13d1443 3044
bbec2e15 3045static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3046
bbec2e15
RG
3047static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3048 unsigned long max, bool memsw)
628f4235 3049{
3e32cb2e 3050 bool enlarge = false;
bb4a7ea2 3051 bool drained = false;
3e32cb2e 3052 int ret;
c054a78c
YZ
3053 bool limits_invariant;
3054 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3055
3e32cb2e 3056 do {
628f4235
KH
3057 if (signal_pending(current)) {
3058 ret = -EINTR;
3059 break;
3060 }
3e32cb2e 3061
bbec2e15 3062 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3063 /*
3064 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3065 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3066 */
bbec2e15
RG
3067 limits_invariant = memsw ? max >= memcg->memory.max :
3068 max <= memcg->memsw.max;
c054a78c 3069 if (!limits_invariant) {
bbec2e15 3070 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3071 ret = -EINVAL;
8c7c6e34
KH
3072 break;
3073 }
bbec2e15 3074 if (max > counter->max)
3e32cb2e 3075 enlarge = true;
bbec2e15
RG
3076 ret = page_counter_set_max(counter, max);
3077 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3078
3079 if (!ret)
3080 break;
3081
bb4a7ea2
SB
3082 if (!drained) {
3083 drain_all_stock(memcg);
3084 drained = true;
3085 continue;
3086 }
3087
1ab5c056
AR
3088 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3089 GFP_KERNEL, !memsw)) {
3090 ret = -EBUSY;
3091 break;
3092 }
3093 } while (true);
3e32cb2e 3094
3c11ecf4
KH
3095 if (!ret && enlarge)
3096 memcg_oom_recover(memcg);
3e32cb2e 3097
628f4235
KH
3098 return ret;
3099}
3100
ef8f2327 3101unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3102 gfp_t gfp_mask,
3103 unsigned long *total_scanned)
3104{
3105 unsigned long nr_reclaimed = 0;
ef8f2327 3106 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3107 unsigned long reclaimed;
3108 int loop = 0;
ef8f2327 3109 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3110 unsigned long excess;
0608f43d
AM
3111 unsigned long nr_scanned;
3112
3113 if (order > 0)
3114 return 0;
3115
ef8f2327 3116 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3117
3118 /*
3119 * Do not even bother to check the largest node if the root
3120 * is empty. Do it lockless to prevent lock bouncing. Races
3121 * are acceptable as soft limit is best effort anyway.
3122 */
bfc7228b 3123 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3124 return 0;
3125
0608f43d
AM
3126 /*
3127 * This loop can run a while, specially if mem_cgroup's continuously
3128 * keep exceeding their soft limit and putting the system under
3129 * pressure
3130 */
3131 do {
3132 if (next_mz)
3133 mz = next_mz;
3134 else
3135 mz = mem_cgroup_largest_soft_limit_node(mctz);
3136 if (!mz)
3137 break;
3138
3139 nr_scanned = 0;
ef8f2327 3140 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3141 gfp_mask, &nr_scanned);
3142 nr_reclaimed += reclaimed;
3143 *total_scanned += nr_scanned;
0a31bc97 3144 spin_lock_irq(&mctz->lock);
bc2f2e7f 3145 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3146
3147 /*
3148 * If we failed to reclaim anything from this memory cgroup
3149 * it is time to move on to the next cgroup
3150 */
3151 next_mz = NULL;
bc2f2e7f
VD
3152 if (!reclaimed)
3153 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3154
3e32cb2e 3155 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3156 /*
3157 * One school of thought says that we should not add
3158 * back the node to the tree if reclaim returns 0.
3159 * But our reclaim could return 0, simply because due
3160 * to priority we are exposing a smaller subset of
3161 * memory to reclaim from. Consider this as a longer
3162 * term TODO.
3163 */
3164 /* If excess == 0, no tree ops */
cf2c8127 3165 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3166 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3167 css_put(&mz->memcg->css);
3168 loop++;
3169 /*
3170 * Could not reclaim anything and there are no more
3171 * mem cgroups to try or we seem to be looping without
3172 * reclaiming anything.
3173 */
3174 if (!nr_reclaimed &&
3175 (next_mz == NULL ||
3176 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3177 break;
3178 } while (!nr_reclaimed);
3179 if (next_mz)
3180 css_put(&next_mz->memcg->css);
3181 return nr_reclaimed;
3182}
3183
ea280e7b
TH
3184/*
3185 * Test whether @memcg has children, dead or alive. Note that this
3186 * function doesn't care whether @memcg has use_hierarchy enabled and
3187 * returns %true if there are child csses according to the cgroup
3188 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3189 */
b5f99b53
GC
3190static inline bool memcg_has_children(struct mem_cgroup *memcg)
3191{
ea280e7b
TH
3192 bool ret;
3193
ea280e7b
TH
3194 rcu_read_lock();
3195 ret = css_next_child(NULL, &memcg->css);
3196 rcu_read_unlock();
3197 return ret;
b5f99b53
GC
3198}
3199
c26251f9 3200/*
51038171 3201 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3202 *
3203 * Caller is responsible for holding css reference for memcg.
3204 */
3205static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3206{
3207 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3208
c1e862c1
KH
3209 /* we call try-to-free pages for make this cgroup empty */
3210 lru_add_drain_all();
d12c60f6
JS
3211
3212 drain_all_stock(memcg);
3213
f817ed48 3214 /* try to free all pages in this cgroup */
3e32cb2e 3215 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3216 int progress;
c1e862c1 3217
c26251f9
MH
3218 if (signal_pending(current))
3219 return -EINTR;
3220
b70a2a21
JW
3221 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3222 GFP_KERNEL, true);
c1e862c1 3223 if (!progress) {
f817ed48 3224 nr_retries--;
c1e862c1 3225 /* maybe some writeback is necessary */
8aa7e847 3226 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3227 }
f817ed48
KH
3228
3229 }
ab5196c2
MH
3230
3231 return 0;
cc847582
KH
3232}
3233
6770c64e
TH
3234static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3235 char *buf, size_t nbytes,
3236 loff_t off)
c1e862c1 3237{
6770c64e 3238 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3239
d8423011
MH
3240 if (mem_cgroup_is_root(memcg))
3241 return -EINVAL;
6770c64e 3242 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3243}
3244
182446d0
TH
3245static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3246 struct cftype *cft)
18f59ea7 3247{
182446d0 3248 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3249}
3250
182446d0
TH
3251static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3252 struct cftype *cft, u64 val)
18f59ea7
BS
3253{
3254 int retval = 0;
182446d0 3255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3256 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3257
567fb435 3258 if (memcg->use_hierarchy == val)
0b8f73e1 3259 return 0;
567fb435 3260
18f59ea7 3261 /*
af901ca1 3262 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3263 * in the child subtrees. If it is unset, then the change can
3264 * occur, provided the current cgroup has no children.
3265 *
3266 * For the root cgroup, parent_mem is NULL, we allow value to be
3267 * set if there are no children.
3268 */
c0ff4b85 3269 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3270 (val == 1 || val == 0)) {
ea280e7b 3271 if (!memcg_has_children(memcg))
c0ff4b85 3272 memcg->use_hierarchy = val;
18f59ea7
BS
3273 else
3274 retval = -EBUSY;
3275 } else
3276 retval = -EINVAL;
567fb435 3277
18f59ea7
BS
3278 return retval;
3279}
3280
6f646156 3281static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3282{
42a30035 3283 unsigned long val;
ce00a967 3284
3e32cb2e 3285 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3286 val = memcg_page_state(memcg, MEMCG_CACHE) +
3287 memcg_page_state(memcg, MEMCG_RSS);
3288 if (swap)
3289 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3290 } else {
ce00a967 3291 if (!swap)
3e32cb2e 3292 val = page_counter_read(&memcg->memory);
ce00a967 3293 else
3e32cb2e 3294 val = page_counter_read(&memcg->memsw);
ce00a967 3295 }
c12176d3 3296 return val;
ce00a967
JW
3297}
3298
3e32cb2e
JW
3299enum {
3300 RES_USAGE,
3301 RES_LIMIT,
3302 RES_MAX_USAGE,
3303 RES_FAILCNT,
3304 RES_SOFT_LIMIT,
3305};
ce00a967 3306
791badbd 3307static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3308 struct cftype *cft)
8cdea7c0 3309{
182446d0 3310 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3311 struct page_counter *counter;
af36f906 3312
3e32cb2e 3313 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3314 case _MEM:
3e32cb2e
JW
3315 counter = &memcg->memory;
3316 break;
8c7c6e34 3317 case _MEMSWAP:
3e32cb2e
JW
3318 counter = &memcg->memsw;
3319 break;
510fc4e1 3320 case _KMEM:
3e32cb2e 3321 counter = &memcg->kmem;
510fc4e1 3322 break;
d55f90bf 3323 case _TCP:
0db15298 3324 counter = &memcg->tcpmem;
d55f90bf 3325 break;
8c7c6e34
KH
3326 default:
3327 BUG();
8c7c6e34 3328 }
3e32cb2e
JW
3329
3330 switch (MEMFILE_ATTR(cft->private)) {
3331 case RES_USAGE:
3332 if (counter == &memcg->memory)
c12176d3 3333 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3334 if (counter == &memcg->memsw)
c12176d3 3335 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3336 return (u64)page_counter_read(counter) * PAGE_SIZE;
3337 case RES_LIMIT:
bbec2e15 3338 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3339 case RES_MAX_USAGE:
3340 return (u64)counter->watermark * PAGE_SIZE;
3341 case RES_FAILCNT:
3342 return counter->failcnt;
3343 case RES_SOFT_LIMIT:
3344 return (u64)memcg->soft_limit * PAGE_SIZE;
3345 default:
3346 BUG();
3347 }
8cdea7c0 3348}
510fc4e1 3349
4a87e2a2 3350static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3351{
4a87e2a2 3352 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3353 struct mem_cgroup *mi;
3354 int node, cpu, i;
c350a99e
RG
3355
3356 for_each_online_cpu(cpu)
4a87e2a2 3357 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3358 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3359
3360 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3361 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3362 atomic_long_add(stat[i], &mi->vmstats[i]);
3363
3364 for_each_node(node) {
3365 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3366 struct mem_cgroup_per_node *pi;
3367
4a87e2a2 3368 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3369 stat[i] = 0;
3370
3371 for_each_online_cpu(cpu)
4a87e2a2 3372 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3373 stat[i] += per_cpu(
3374 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3375
3376 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3377 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3378 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3379 }
3380}
3381
bb65f89b
RG
3382static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3383{
3384 unsigned long events[NR_VM_EVENT_ITEMS];
3385 struct mem_cgroup *mi;
3386 int cpu, i;
3387
3388 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3389 events[i] = 0;
3390
3391 for_each_online_cpu(cpu)
3392 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3393 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3394 cpu);
bb65f89b
RG
3395
3396 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3397 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3398 atomic_long_add(events[i], &mi->vmevents[i]);
3399}
3400
84c07d11 3401#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3402static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3403{
d6441637
VD
3404 int memcg_id;
3405
b313aeee
VD
3406 if (cgroup_memory_nokmem)
3407 return 0;
3408
2a4db7eb 3409 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3410 BUG_ON(memcg->kmem_state);
d6441637 3411
f3bb3043 3412 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3413 if (memcg_id < 0)
3414 return memcg_id;
d6441637 3415
ef12947c 3416 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3417 /*
567e9ab2 3418 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3419 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3420 * guarantee no one starts accounting before all call sites are
3421 * patched.
3422 */
900a38f0 3423 memcg->kmemcg_id = memcg_id;
567e9ab2 3424 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3425 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3426
3427 return 0;
d6441637
VD
3428}
3429
8e0a8912
JW
3430static void memcg_offline_kmem(struct mem_cgroup *memcg)
3431{
3432 struct cgroup_subsys_state *css;
3433 struct mem_cgroup *parent, *child;
3434 int kmemcg_id;
3435
3436 if (memcg->kmem_state != KMEM_ONLINE)
3437 return;
3438 /*
3439 * Clear the online state before clearing memcg_caches array
3440 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3441 * guarantees that no cache will be created for this cgroup
3442 * after we are done (see memcg_create_kmem_cache()).
3443 */
3444 memcg->kmem_state = KMEM_ALLOCATED;
3445
8e0a8912
JW
3446 parent = parent_mem_cgroup(memcg);
3447 if (!parent)
3448 parent = root_mem_cgroup;
3449
bee07b33 3450 /*
4a87e2a2 3451 * Deactivate and reparent kmem_caches.
bee07b33 3452 */
fb2f2b0a
RG
3453 memcg_deactivate_kmem_caches(memcg, parent);
3454
3455 kmemcg_id = memcg->kmemcg_id;
3456 BUG_ON(kmemcg_id < 0);
3457
8e0a8912
JW
3458 /*
3459 * Change kmemcg_id of this cgroup and all its descendants to the
3460 * parent's id, and then move all entries from this cgroup's list_lrus
3461 * to ones of the parent. After we have finished, all list_lrus
3462 * corresponding to this cgroup are guaranteed to remain empty. The
3463 * ordering is imposed by list_lru_node->lock taken by
3464 * memcg_drain_all_list_lrus().
3465 */
3a06bb78 3466 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3467 css_for_each_descendant_pre(css, &memcg->css) {
3468 child = mem_cgroup_from_css(css);
3469 BUG_ON(child->kmemcg_id != kmemcg_id);
3470 child->kmemcg_id = parent->kmemcg_id;
3471 if (!memcg->use_hierarchy)
3472 break;
3473 }
3a06bb78
TH
3474 rcu_read_unlock();
3475
9bec5c35 3476 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3477
3478 memcg_free_cache_id(kmemcg_id);
3479}
3480
3481static void memcg_free_kmem(struct mem_cgroup *memcg)
3482{
0b8f73e1
JW
3483 /* css_alloc() failed, offlining didn't happen */
3484 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3485 memcg_offline_kmem(memcg);
3486
8e0a8912 3487 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3488 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3489 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3490 }
8e0a8912 3491}
d6441637 3492#else
0b8f73e1 3493static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3494{
3495 return 0;
3496}
3497static void memcg_offline_kmem(struct mem_cgroup *memcg)
3498{
3499}
3500static void memcg_free_kmem(struct mem_cgroup *memcg)
3501{
3502}
84c07d11 3503#endif /* CONFIG_MEMCG_KMEM */
127424c8 3504
bbec2e15
RG
3505static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3506 unsigned long max)
d6441637 3507{
b313aeee 3508 int ret;
127424c8 3509
bbec2e15
RG
3510 mutex_lock(&memcg_max_mutex);
3511 ret = page_counter_set_max(&memcg->kmem, max);
3512 mutex_unlock(&memcg_max_mutex);
127424c8 3513 return ret;
d6441637 3514}
510fc4e1 3515
bbec2e15 3516static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3517{
3518 int ret;
3519
bbec2e15 3520 mutex_lock(&memcg_max_mutex);
d55f90bf 3521
bbec2e15 3522 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3523 if (ret)
3524 goto out;
3525
0db15298 3526 if (!memcg->tcpmem_active) {
d55f90bf
VD
3527 /*
3528 * The active flag needs to be written after the static_key
3529 * update. This is what guarantees that the socket activation
2d758073
JW
3530 * function is the last one to run. See mem_cgroup_sk_alloc()
3531 * for details, and note that we don't mark any socket as
3532 * belonging to this memcg until that flag is up.
d55f90bf
VD
3533 *
3534 * We need to do this, because static_keys will span multiple
3535 * sites, but we can't control their order. If we mark a socket
3536 * as accounted, but the accounting functions are not patched in
3537 * yet, we'll lose accounting.
3538 *
2d758073 3539 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3540 * because when this value change, the code to process it is not
3541 * patched in yet.
3542 */
3543 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3544 memcg->tcpmem_active = true;
d55f90bf
VD
3545 }
3546out:
bbec2e15 3547 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3548 return ret;
3549}
d55f90bf 3550
628f4235
KH
3551/*
3552 * The user of this function is...
3553 * RES_LIMIT.
3554 */
451af504
TH
3555static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3556 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3557{
451af504 3558 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3559 unsigned long nr_pages;
628f4235
KH
3560 int ret;
3561
451af504 3562 buf = strstrip(buf);
650c5e56 3563 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3564 if (ret)
3565 return ret;
af36f906 3566
3e32cb2e 3567 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3568 case RES_LIMIT:
4b3bde4c
BS
3569 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3570 ret = -EINVAL;
3571 break;
3572 }
3e32cb2e
JW
3573 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3574 case _MEM:
bbec2e15 3575 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3576 break;
3e32cb2e 3577 case _MEMSWAP:
bbec2e15 3578 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3579 break;
3e32cb2e 3580 case _KMEM:
0158115f
MH
3581 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3582 "Please report your usecase to linux-mm@kvack.org if you "
3583 "depend on this functionality.\n");
bbec2e15 3584 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3585 break;
d55f90bf 3586 case _TCP:
bbec2e15 3587 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3588 break;
3e32cb2e 3589 }
296c81d8 3590 break;
3e32cb2e
JW
3591 case RES_SOFT_LIMIT:
3592 memcg->soft_limit = nr_pages;
3593 ret = 0;
628f4235
KH
3594 break;
3595 }
451af504 3596 return ret ?: nbytes;
8cdea7c0
BS
3597}
3598
6770c64e
TH
3599static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3600 size_t nbytes, loff_t off)
c84872e1 3601{
6770c64e 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3603 struct page_counter *counter;
c84872e1 3604
3e32cb2e
JW
3605 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3606 case _MEM:
3607 counter = &memcg->memory;
3608 break;
3609 case _MEMSWAP:
3610 counter = &memcg->memsw;
3611 break;
3612 case _KMEM:
3613 counter = &memcg->kmem;
3614 break;
d55f90bf 3615 case _TCP:
0db15298 3616 counter = &memcg->tcpmem;
d55f90bf 3617 break;
3e32cb2e
JW
3618 default:
3619 BUG();
3620 }
af36f906 3621
3e32cb2e 3622 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3623 case RES_MAX_USAGE:
3e32cb2e 3624 page_counter_reset_watermark(counter);
29f2a4da
PE
3625 break;
3626 case RES_FAILCNT:
3e32cb2e 3627 counter->failcnt = 0;
29f2a4da 3628 break;
3e32cb2e
JW
3629 default:
3630 BUG();
29f2a4da 3631 }
f64c3f54 3632
6770c64e 3633 return nbytes;
c84872e1
PE
3634}
3635
182446d0 3636static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3637 struct cftype *cft)
3638{
182446d0 3639 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3640}
3641
02491447 3642#ifdef CONFIG_MMU
182446d0 3643static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3644 struct cftype *cft, u64 val)
3645{
182446d0 3646 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3647
1dfab5ab 3648 if (val & ~MOVE_MASK)
7dc74be0 3649 return -EINVAL;
ee5e8472 3650
7dc74be0 3651 /*
ee5e8472
GC
3652 * No kind of locking is needed in here, because ->can_attach() will
3653 * check this value once in the beginning of the process, and then carry
3654 * on with stale data. This means that changes to this value will only
3655 * affect task migrations starting after the change.
7dc74be0 3656 */
c0ff4b85 3657 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3658 return 0;
3659}
02491447 3660#else
182446d0 3661static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3662 struct cftype *cft, u64 val)
3663{
3664 return -ENOSYS;
3665}
3666#endif
7dc74be0 3667
406eb0c9 3668#ifdef CONFIG_NUMA
113b7dfd
JW
3669
3670#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3671#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3672#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3673
3674static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3675 int nid, unsigned int lru_mask)
3676{
867e5e1d 3677 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3678 unsigned long nr = 0;
3679 enum lru_list lru;
3680
3681 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3682
3683 for_each_lru(lru) {
3684 if (!(BIT(lru) & lru_mask))
3685 continue;
205b20cc 3686 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3687 }
3688 return nr;
3689}
3690
3691static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3692 unsigned int lru_mask)
3693{
3694 unsigned long nr = 0;
3695 enum lru_list lru;
3696
3697 for_each_lru(lru) {
3698 if (!(BIT(lru) & lru_mask))
3699 continue;
205b20cc 3700 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3701 }
3702 return nr;
3703}
3704
2da8ca82 3705static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3706{
25485de6
GT
3707 struct numa_stat {
3708 const char *name;
3709 unsigned int lru_mask;
3710 };
3711
3712 static const struct numa_stat stats[] = {
3713 { "total", LRU_ALL },
3714 { "file", LRU_ALL_FILE },
3715 { "anon", LRU_ALL_ANON },
3716 { "unevictable", BIT(LRU_UNEVICTABLE) },
3717 };
3718 const struct numa_stat *stat;
406eb0c9 3719 int nid;
25485de6 3720 unsigned long nr;
aa9694bb 3721 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3722
25485de6
GT
3723 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3724 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3725 seq_printf(m, "%s=%lu", stat->name, nr);
3726 for_each_node_state(nid, N_MEMORY) {
3727 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3728 stat->lru_mask);
3729 seq_printf(m, " N%d=%lu", nid, nr);
3730 }
3731 seq_putc(m, '\n');
406eb0c9 3732 }
406eb0c9 3733
071aee13
YH
3734 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3735 struct mem_cgroup *iter;
3736
3737 nr = 0;
3738 for_each_mem_cgroup_tree(iter, memcg)
3739 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3740 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3741 for_each_node_state(nid, N_MEMORY) {
3742 nr = 0;
3743 for_each_mem_cgroup_tree(iter, memcg)
3744 nr += mem_cgroup_node_nr_lru_pages(
3745 iter, nid, stat->lru_mask);
3746 seq_printf(m, " N%d=%lu", nid, nr);
3747 }
3748 seq_putc(m, '\n');
406eb0c9 3749 }
406eb0c9 3750
406eb0c9
YH
3751 return 0;
3752}
3753#endif /* CONFIG_NUMA */
3754
c8713d0b
JW
3755static const unsigned int memcg1_stats[] = {
3756 MEMCG_CACHE,
3757 MEMCG_RSS,
3758 MEMCG_RSS_HUGE,
3759 NR_SHMEM,
3760 NR_FILE_MAPPED,
3761 NR_FILE_DIRTY,
3762 NR_WRITEBACK,
3763 MEMCG_SWAP,
3764};
3765
3766static const char *const memcg1_stat_names[] = {
3767 "cache",
3768 "rss",
3769 "rss_huge",
3770 "shmem",
3771 "mapped_file",
3772 "dirty",
3773 "writeback",
3774 "swap",
3775};
3776
df0e53d0 3777/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3778static const unsigned int memcg1_events[] = {
df0e53d0
JW
3779 PGPGIN,
3780 PGPGOUT,
3781 PGFAULT,
3782 PGMAJFAULT,
3783};
3784
2da8ca82 3785static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3786{
aa9694bb 3787 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3788 unsigned long memory, memsw;
af7c4b0e
JW
3789 struct mem_cgroup *mi;
3790 unsigned int i;
406eb0c9 3791
71cd3113 3792 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3793
71cd3113
JW
3794 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3795 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3796 continue;
71cd3113 3797 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3798 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3799 PAGE_SIZE);
1dd3a273 3800 }
7b854121 3801
df0e53d0 3802 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3803 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3804 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3805
3806 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3807 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3808 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3809 PAGE_SIZE);
af7c4b0e 3810
14067bb3 3811 /* Hierarchical information */
3e32cb2e
JW
3812 memory = memsw = PAGE_COUNTER_MAX;
3813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3814 memory = min(memory, mi->memory.max);
3815 memsw = min(memsw, mi->memsw.max);
fee7b548 3816 }
3e32cb2e
JW
3817 seq_printf(m, "hierarchical_memory_limit %llu\n",
3818 (u64)memory * PAGE_SIZE);
7941d214 3819 if (do_memsw_account())
3e32cb2e
JW
3820 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3821 (u64)memsw * PAGE_SIZE);
7f016ee8 3822
8de7ecc6 3823 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3824 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3825 continue;
8de7ecc6 3826 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3827 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3828 PAGE_SIZE);
af7c4b0e
JW
3829 }
3830
8de7ecc6 3831 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3832 seq_printf(m, "total_%s %llu\n",
3833 vm_event_name(memcg1_events[i]),
dd923990 3834 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3835
8de7ecc6 3836 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3837 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3838 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3839 PAGE_SIZE);
14067bb3 3840
7f016ee8 3841#ifdef CONFIG_DEBUG_VM
7f016ee8 3842 {
ef8f2327
MG
3843 pg_data_t *pgdat;
3844 struct mem_cgroup_per_node *mz;
89abfab1 3845 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3846 unsigned long recent_rotated[2] = {0, 0};
3847 unsigned long recent_scanned[2] = {0, 0};
3848
ef8f2327
MG
3849 for_each_online_pgdat(pgdat) {
3850 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3851 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3852
ef8f2327
MG
3853 recent_rotated[0] += rstat->recent_rotated[0];
3854 recent_rotated[1] += rstat->recent_rotated[1];
3855 recent_scanned[0] += rstat->recent_scanned[0];
3856 recent_scanned[1] += rstat->recent_scanned[1];
3857 }
78ccf5b5
JW
3858 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3859 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3860 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3861 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3862 }
3863#endif
3864
d2ceb9b7
KH
3865 return 0;
3866}
3867
182446d0
TH
3868static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3869 struct cftype *cft)
a7885eb8 3870{
182446d0 3871 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3872
1f4c025b 3873 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3874}
3875
182446d0
TH
3876static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3877 struct cftype *cft, u64 val)
a7885eb8 3878{
182446d0 3879 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3880
3dae7fec 3881 if (val > 100)
a7885eb8
KM
3882 return -EINVAL;
3883
14208b0e 3884 if (css->parent)
3dae7fec
JW
3885 memcg->swappiness = val;
3886 else
3887 vm_swappiness = val;
068b38c1 3888
a7885eb8
KM
3889 return 0;
3890}
3891
2e72b634
KS
3892static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3893{
3894 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3895 unsigned long usage;
2e72b634
KS
3896 int i;
3897
3898 rcu_read_lock();
3899 if (!swap)
2c488db2 3900 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3901 else
2c488db2 3902 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3903
3904 if (!t)
3905 goto unlock;
3906
ce00a967 3907 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3908
3909 /*
748dad36 3910 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3911 * If it's not true, a threshold was crossed after last
3912 * call of __mem_cgroup_threshold().
3913 */
5407a562 3914 i = t->current_threshold;
2e72b634
KS
3915
3916 /*
3917 * Iterate backward over array of thresholds starting from
3918 * current_threshold and check if a threshold is crossed.
3919 * If none of thresholds below usage is crossed, we read
3920 * only one element of the array here.
3921 */
3922 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3923 eventfd_signal(t->entries[i].eventfd, 1);
3924
3925 /* i = current_threshold + 1 */
3926 i++;
3927
3928 /*
3929 * Iterate forward over array of thresholds starting from
3930 * current_threshold+1 and check if a threshold is crossed.
3931 * If none of thresholds above usage is crossed, we read
3932 * only one element of the array here.
3933 */
3934 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3935 eventfd_signal(t->entries[i].eventfd, 1);
3936
3937 /* Update current_threshold */
5407a562 3938 t->current_threshold = i - 1;
2e72b634
KS
3939unlock:
3940 rcu_read_unlock();
3941}
3942
3943static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3944{
ad4ca5f4
KS
3945 while (memcg) {
3946 __mem_cgroup_threshold(memcg, false);
7941d214 3947 if (do_memsw_account())
ad4ca5f4
KS
3948 __mem_cgroup_threshold(memcg, true);
3949
3950 memcg = parent_mem_cgroup(memcg);
3951 }
2e72b634
KS
3952}
3953
3954static int compare_thresholds(const void *a, const void *b)
3955{
3956 const struct mem_cgroup_threshold *_a = a;
3957 const struct mem_cgroup_threshold *_b = b;
3958
2bff24a3
GT
3959 if (_a->threshold > _b->threshold)
3960 return 1;
3961
3962 if (_a->threshold < _b->threshold)
3963 return -1;
3964
3965 return 0;
2e72b634
KS
3966}
3967
c0ff4b85 3968static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3969{
3970 struct mem_cgroup_eventfd_list *ev;
3971
2bcf2e92
MH
3972 spin_lock(&memcg_oom_lock);
3973
c0ff4b85 3974 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3975 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3976
3977 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3978 return 0;
3979}
3980
c0ff4b85 3981static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3982{
7d74b06f
KH
3983 struct mem_cgroup *iter;
3984
c0ff4b85 3985 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3986 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3987}
3988
59b6f873 3989static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3990 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3991{
2c488db2
KS
3992 struct mem_cgroup_thresholds *thresholds;
3993 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3994 unsigned long threshold;
3995 unsigned long usage;
2c488db2 3996 int i, size, ret;
2e72b634 3997
650c5e56 3998 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3999 if (ret)
4000 return ret;
4001
4002 mutex_lock(&memcg->thresholds_lock);
2c488db2 4003
05b84301 4004 if (type == _MEM) {
2c488db2 4005 thresholds = &memcg->thresholds;
ce00a967 4006 usage = mem_cgroup_usage(memcg, false);
05b84301 4007 } else if (type == _MEMSWAP) {
2c488db2 4008 thresholds = &memcg->memsw_thresholds;
ce00a967 4009 usage = mem_cgroup_usage(memcg, true);
05b84301 4010 } else
2e72b634
KS
4011 BUG();
4012
2e72b634 4013 /* Check if a threshold crossed before adding a new one */
2c488db2 4014 if (thresholds->primary)
2e72b634
KS
4015 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4016
2c488db2 4017 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4018
4019 /* Allocate memory for new array of thresholds */
67b8046f 4020 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4021 if (!new) {
2e72b634
KS
4022 ret = -ENOMEM;
4023 goto unlock;
4024 }
2c488db2 4025 new->size = size;
2e72b634
KS
4026
4027 /* Copy thresholds (if any) to new array */
2c488db2
KS
4028 if (thresholds->primary) {
4029 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4030 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4031 }
4032
2e72b634 4033 /* Add new threshold */
2c488db2
KS
4034 new->entries[size - 1].eventfd = eventfd;
4035 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4036
4037 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4038 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4039 compare_thresholds, NULL);
4040
4041 /* Find current threshold */
2c488db2 4042 new->current_threshold = -1;
2e72b634 4043 for (i = 0; i < size; i++) {
748dad36 4044 if (new->entries[i].threshold <= usage) {
2e72b634 4045 /*
2c488db2
KS
4046 * new->current_threshold will not be used until
4047 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4048 * it here.
4049 */
2c488db2 4050 ++new->current_threshold;
748dad36
SZ
4051 } else
4052 break;
2e72b634
KS
4053 }
4054
2c488db2
KS
4055 /* Free old spare buffer and save old primary buffer as spare */
4056 kfree(thresholds->spare);
4057 thresholds->spare = thresholds->primary;
4058
4059 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4060
907860ed 4061 /* To be sure that nobody uses thresholds */
2e72b634
KS
4062 synchronize_rcu();
4063
2e72b634
KS
4064unlock:
4065 mutex_unlock(&memcg->thresholds_lock);
4066
4067 return ret;
4068}
4069
59b6f873 4070static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4071 struct eventfd_ctx *eventfd, const char *args)
4072{
59b6f873 4073 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4074}
4075
59b6f873 4076static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4077 struct eventfd_ctx *eventfd, const char *args)
4078{
59b6f873 4079 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4080}
4081
59b6f873 4082static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4083 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4084{
2c488db2
KS
4085 struct mem_cgroup_thresholds *thresholds;
4086 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4087 unsigned long usage;
7d36665a 4088 int i, j, size, entries;
2e72b634
KS
4089
4090 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4091
4092 if (type == _MEM) {
2c488db2 4093 thresholds = &memcg->thresholds;
ce00a967 4094 usage = mem_cgroup_usage(memcg, false);
05b84301 4095 } else if (type == _MEMSWAP) {
2c488db2 4096 thresholds = &memcg->memsw_thresholds;
ce00a967 4097 usage = mem_cgroup_usage(memcg, true);
05b84301 4098 } else
2e72b634
KS
4099 BUG();
4100
371528ca
AV
4101 if (!thresholds->primary)
4102 goto unlock;
4103
2e72b634
KS
4104 /* Check if a threshold crossed before removing */
4105 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4106
4107 /* Calculate new number of threshold */
7d36665a 4108 size = entries = 0;
2c488db2
KS
4109 for (i = 0; i < thresholds->primary->size; i++) {
4110 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4111 size++;
7d36665a
CX
4112 else
4113 entries++;
2e72b634
KS
4114 }
4115
2c488db2 4116 new = thresholds->spare;
907860ed 4117
7d36665a
CX
4118 /* If no items related to eventfd have been cleared, nothing to do */
4119 if (!entries)
4120 goto unlock;
4121
2e72b634
KS
4122 /* Set thresholds array to NULL if we don't have thresholds */
4123 if (!size) {
2c488db2
KS
4124 kfree(new);
4125 new = NULL;
907860ed 4126 goto swap_buffers;
2e72b634
KS
4127 }
4128
2c488db2 4129 new->size = size;
2e72b634
KS
4130
4131 /* Copy thresholds and find current threshold */
2c488db2
KS
4132 new->current_threshold = -1;
4133 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4134 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4135 continue;
4136
2c488db2 4137 new->entries[j] = thresholds->primary->entries[i];
748dad36 4138 if (new->entries[j].threshold <= usage) {
2e72b634 4139 /*
2c488db2 4140 * new->current_threshold will not be used
2e72b634
KS
4141 * until rcu_assign_pointer(), so it's safe to increment
4142 * it here.
4143 */
2c488db2 4144 ++new->current_threshold;
2e72b634
KS
4145 }
4146 j++;
4147 }
4148
907860ed 4149swap_buffers:
2c488db2
KS
4150 /* Swap primary and spare array */
4151 thresholds->spare = thresholds->primary;
8c757763 4152
2c488db2 4153 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4154
907860ed 4155 /* To be sure that nobody uses thresholds */
2e72b634 4156 synchronize_rcu();
6611d8d7
MC
4157
4158 /* If all events are unregistered, free the spare array */
4159 if (!new) {
4160 kfree(thresholds->spare);
4161 thresholds->spare = NULL;
4162 }
371528ca 4163unlock:
2e72b634 4164 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4165}
c1e862c1 4166
59b6f873 4167static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4168 struct eventfd_ctx *eventfd)
4169{
59b6f873 4170 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4171}
4172
59b6f873 4173static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4174 struct eventfd_ctx *eventfd)
4175{
59b6f873 4176 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4177}
4178
59b6f873 4179static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4180 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4181{
9490ff27 4182 struct mem_cgroup_eventfd_list *event;
9490ff27 4183
9490ff27
KH
4184 event = kmalloc(sizeof(*event), GFP_KERNEL);
4185 if (!event)
4186 return -ENOMEM;
4187
1af8efe9 4188 spin_lock(&memcg_oom_lock);
9490ff27
KH
4189
4190 event->eventfd = eventfd;
4191 list_add(&event->list, &memcg->oom_notify);
4192
4193 /* already in OOM ? */
c2b42d3c 4194 if (memcg->under_oom)
9490ff27 4195 eventfd_signal(eventfd, 1);
1af8efe9 4196 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4197
4198 return 0;
4199}
4200
59b6f873 4201static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4202 struct eventfd_ctx *eventfd)
9490ff27 4203{
9490ff27 4204 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4205
1af8efe9 4206 spin_lock(&memcg_oom_lock);
9490ff27 4207
c0ff4b85 4208 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4209 if (ev->eventfd == eventfd) {
4210 list_del(&ev->list);
4211 kfree(ev);
4212 }
4213 }
4214
1af8efe9 4215 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4216}
4217
2da8ca82 4218static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4219{
aa9694bb 4220 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4221
791badbd 4222 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4223 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4224 seq_printf(sf, "oom_kill %lu\n",
4225 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4226 return 0;
4227}
4228
182446d0 4229static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4230 struct cftype *cft, u64 val)
4231{
182446d0 4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4233
4234 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4235 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4236 return -EINVAL;
4237
c0ff4b85 4238 memcg->oom_kill_disable = val;
4d845ebf 4239 if (!val)
c0ff4b85 4240 memcg_oom_recover(memcg);
3dae7fec 4241
3c11ecf4
KH
4242 return 0;
4243}
4244
52ebea74
TH
4245#ifdef CONFIG_CGROUP_WRITEBACK
4246
3a8e9ac8
TH
4247#include <trace/events/writeback.h>
4248
841710aa
TH
4249static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4250{
4251 return wb_domain_init(&memcg->cgwb_domain, gfp);
4252}
4253
4254static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4255{
4256 wb_domain_exit(&memcg->cgwb_domain);
4257}
4258
2529bb3a
TH
4259static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4260{
4261 wb_domain_size_changed(&memcg->cgwb_domain);
4262}
4263
841710aa
TH
4264struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4265{
4266 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4267
4268 if (!memcg->css.parent)
4269 return NULL;
4270
4271 return &memcg->cgwb_domain;
4272}
4273
0b3d6e6f
GT
4274/*
4275 * idx can be of type enum memcg_stat_item or node_stat_item.
4276 * Keep in sync with memcg_exact_page().
4277 */
4278static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4279{
871789d4 4280 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4281 int cpu;
4282
4283 for_each_online_cpu(cpu)
871789d4 4284 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4285 if (x < 0)
4286 x = 0;
4287 return x;
4288}
4289
c2aa723a
TH
4290/**
4291 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4292 * @wb: bdi_writeback in question
c5edf9cd
TH
4293 * @pfilepages: out parameter for number of file pages
4294 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4295 * @pdirty: out parameter for number of dirty pages
4296 * @pwriteback: out parameter for number of pages under writeback
4297 *
c5edf9cd
TH
4298 * Determine the numbers of file, headroom, dirty, and writeback pages in
4299 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4300 * is a bit more involved.
c2aa723a 4301 *
c5edf9cd
TH
4302 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4303 * headroom is calculated as the lowest headroom of itself and the
4304 * ancestors. Note that this doesn't consider the actual amount of
4305 * available memory in the system. The caller should further cap
4306 * *@pheadroom accordingly.
c2aa723a 4307 */
c5edf9cd
TH
4308void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4309 unsigned long *pheadroom, unsigned long *pdirty,
4310 unsigned long *pwriteback)
c2aa723a
TH
4311{
4312 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4313 struct mem_cgroup *parent;
c2aa723a 4314
0b3d6e6f 4315 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4316
4317 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4318 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4319 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4320 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4321 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4322
c2aa723a 4323 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4324 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4325 unsigned long used = page_counter_read(&memcg->memory);
4326
c5edf9cd 4327 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4328 memcg = parent;
4329 }
c2aa723a
TH
4330}
4331
97b27821
TH
4332/*
4333 * Foreign dirty flushing
4334 *
4335 * There's an inherent mismatch between memcg and writeback. The former
4336 * trackes ownership per-page while the latter per-inode. This was a
4337 * deliberate design decision because honoring per-page ownership in the
4338 * writeback path is complicated, may lead to higher CPU and IO overheads
4339 * and deemed unnecessary given that write-sharing an inode across
4340 * different cgroups isn't a common use-case.
4341 *
4342 * Combined with inode majority-writer ownership switching, this works well
4343 * enough in most cases but there are some pathological cases. For
4344 * example, let's say there are two cgroups A and B which keep writing to
4345 * different but confined parts of the same inode. B owns the inode and
4346 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4347 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4348 * triggering background writeback. A will be slowed down without a way to
4349 * make writeback of the dirty pages happen.
4350 *
4351 * Conditions like the above can lead to a cgroup getting repatedly and
4352 * severely throttled after making some progress after each
4353 * dirty_expire_interval while the underyling IO device is almost
4354 * completely idle.
4355 *
4356 * Solving this problem completely requires matching the ownership tracking
4357 * granularities between memcg and writeback in either direction. However,
4358 * the more egregious behaviors can be avoided by simply remembering the
4359 * most recent foreign dirtying events and initiating remote flushes on
4360 * them when local writeback isn't enough to keep the memory clean enough.
4361 *
4362 * The following two functions implement such mechanism. When a foreign
4363 * page - a page whose memcg and writeback ownerships don't match - is
4364 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4365 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4366 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4367 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4368 * foreign bdi_writebacks which haven't expired. Both the numbers of
4369 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4370 * limited to MEMCG_CGWB_FRN_CNT.
4371 *
4372 * The mechanism only remembers IDs and doesn't hold any object references.
4373 * As being wrong occasionally doesn't matter, updates and accesses to the
4374 * records are lockless and racy.
4375 */
4376void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4377 struct bdi_writeback *wb)
4378{
4379 struct mem_cgroup *memcg = page->mem_cgroup;
4380 struct memcg_cgwb_frn *frn;
4381 u64 now = get_jiffies_64();
4382 u64 oldest_at = now;
4383 int oldest = -1;
4384 int i;
4385
3a8e9ac8
TH
4386 trace_track_foreign_dirty(page, wb);
4387
97b27821
TH
4388 /*
4389 * Pick the slot to use. If there is already a slot for @wb, keep
4390 * using it. If not replace the oldest one which isn't being
4391 * written out.
4392 */
4393 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4394 frn = &memcg->cgwb_frn[i];
4395 if (frn->bdi_id == wb->bdi->id &&
4396 frn->memcg_id == wb->memcg_css->id)
4397 break;
4398 if (time_before64(frn->at, oldest_at) &&
4399 atomic_read(&frn->done.cnt) == 1) {
4400 oldest = i;
4401 oldest_at = frn->at;
4402 }
4403 }
4404
4405 if (i < MEMCG_CGWB_FRN_CNT) {
4406 /*
4407 * Re-using an existing one. Update timestamp lazily to
4408 * avoid making the cacheline hot. We want them to be
4409 * reasonably up-to-date and significantly shorter than
4410 * dirty_expire_interval as that's what expires the record.
4411 * Use the shorter of 1s and dirty_expire_interval / 8.
4412 */
4413 unsigned long update_intv =
4414 min_t(unsigned long, HZ,
4415 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4416
4417 if (time_before64(frn->at, now - update_intv))
4418 frn->at = now;
4419 } else if (oldest >= 0) {
4420 /* replace the oldest free one */
4421 frn = &memcg->cgwb_frn[oldest];
4422 frn->bdi_id = wb->bdi->id;
4423 frn->memcg_id = wb->memcg_css->id;
4424 frn->at = now;
4425 }
4426}
4427
4428/* issue foreign writeback flushes for recorded foreign dirtying events */
4429void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4430{
4431 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4432 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4433 u64 now = jiffies_64;
4434 int i;
4435
4436 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4437 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4438
4439 /*
4440 * If the record is older than dirty_expire_interval,
4441 * writeback on it has already started. No need to kick it
4442 * off again. Also, don't start a new one if there's
4443 * already one in flight.
4444 */
4445 if (time_after64(frn->at, now - intv) &&
4446 atomic_read(&frn->done.cnt) == 1) {
4447 frn->at = 0;
3a8e9ac8 4448 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4449 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4450 WB_REASON_FOREIGN_FLUSH,
4451 &frn->done);
4452 }
4453 }
4454}
4455
841710aa
TH
4456#else /* CONFIG_CGROUP_WRITEBACK */
4457
4458static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4459{
4460 return 0;
4461}
4462
4463static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4464{
4465}
4466
2529bb3a
TH
4467static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4468{
4469}
4470
52ebea74
TH
4471#endif /* CONFIG_CGROUP_WRITEBACK */
4472
3bc942f3
TH
4473/*
4474 * DO NOT USE IN NEW FILES.
4475 *
4476 * "cgroup.event_control" implementation.
4477 *
4478 * This is way over-engineered. It tries to support fully configurable
4479 * events for each user. Such level of flexibility is completely
4480 * unnecessary especially in the light of the planned unified hierarchy.
4481 *
4482 * Please deprecate this and replace with something simpler if at all
4483 * possible.
4484 */
4485
79bd9814
TH
4486/*
4487 * Unregister event and free resources.
4488 *
4489 * Gets called from workqueue.
4490 */
3bc942f3 4491static void memcg_event_remove(struct work_struct *work)
79bd9814 4492{
3bc942f3
TH
4493 struct mem_cgroup_event *event =
4494 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4495 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4496
4497 remove_wait_queue(event->wqh, &event->wait);
4498
59b6f873 4499 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4500
4501 /* Notify userspace the event is going away. */
4502 eventfd_signal(event->eventfd, 1);
4503
4504 eventfd_ctx_put(event->eventfd);
4505 kfree(event);
59b6f873 4506 css_put(&memcg->css);
79bd9814
TH
4507}
4508
4509/*
a9a08845 4510 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4511 *
4512 * Called with wqh->lock held and interrupts disabled.
4513 */
ac6424b9 4514static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4515 int sync, void *key)
79bd9814 4516{
3bc942f3
TH
4517 struct mem_cgroup_event *event =
4518 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4519 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4520 __poll_t flags = key_to_poll(key);
79bd9814 4521
a9a08845 4522 if (flags & EPOLLHUP) {
79bd9814
TH
4523 /*
4524 * If the event has been detached at cgroup removal, we
4525 * can simply return knowing the other side will cleanup
4526 * for us.
4527 *
4528 * We can't race against event freeing since the other
4529 * side will require wqh->lock via remove_wait_queue(),
4530 * which we hold.
4531 */
fba94807 4532 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4533 if (!list_empty(&event->list)) {
4534 list_del_init(&event->list);
4535 /*
4536 * We are in atomic context, but cgroup_event_remove()
4537 * may sleep, so we have to call it in workqueue.
4538 */
4539 schedule_work(&event->remove);
4540 }
fba94807 4541 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4542 }
4543
4544 return 0;
4545}
4546
3bc942f3 4547static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4548 wait_queue_head_t *wqh, poll_table *pt)
4549{
3bc942f3
TH
4550 struct mem_cgroup_event *event =
4551 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4552
4553 event->wqh = wqh;
4554 add_wait_queue(wqh, &event->wait);
4555}
4556
4557/*
3bc942f3
TH
4558 * DO NOT USE IN NEW FILES.
4559 *
79bd9814
TH
4560 * Parse input and register new cgroup event handler.
4561 *
4562 * Input must be in format '<event_fd> <control_fd> <args>'.
4563 * Interpretation of args is defined by control file implementation.
4564 */
451af504
TH
4565static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4566 char *buf, size_t nbytes, loff_t off)
79bd9814 4567{
451af504 4568 struct cgroup_subsys_state *css = of_css(of);
fba94807 4569 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4570 struct mem_cgroup_event *event;
79bd9814
TH
4571 struct cgroup_subsys_state *cfile_css;
4572 unsigned int efd, cfd;
4573 struct fd efile;
4574 struct fd cfile;
fba94807 4575 const char *name;
79bd9814
TH
4576 char *endp;
4577 int ret;
4578
451af504
TH
4579 buf = strstrip(buf);
4580
4581 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4582 if (*endp != ' ')
4583 return -EINVAL;
451af504 4584 buf = endp + 1;
79bd9814 4585
451af504 4586 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4587 if ((*endp != ' ') && (*endp != '\0'))
4588 return -EINVAL;
451af504 4589 buf = endp + 1;
79bd9814
TH
4590
4591 event = kzalloc(sizeof(*event), GFP_KERNEL);
4592 if (!event)
4593 return -ENOMEM;
4594
59b6f873 4595 event->memcg = memcg;
79bd9814 4596 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4597 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4598 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4599 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4600
4601 efile = fdget(efd);
4602 if (!efile.file) {
4603 ret = -EBADF;
4604 goto out_kfree;
4605 }
4606
4607 event->eventfd = eventfd_ctx_fileget(efile.file);
4608 if (IS_ERR(event->eventfd)) {
4609 ret = PTR_ERR(event->eventfd);
4610 goto out_put_efile;
4611 }
4612
4613 cfile = fdget(cfd);
4614 if (!cfile.file) {
4615 ret = -EBADF;
4616 goto out_put_eventfd;
4617 }
4618
4619 /* the process need read permission on control file */
4620 /* AV: shouldn't we check that it's been opened for read instead? */
4621 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4622 if (ret < 0)
4623 goto out_put_cfile;
4624
fba94807
TH
4625 /*
4626 * Determine the event callbacks and set them in @event. This used
4627 * to be done via struct cftype but cgroup core no longer knows
4628 * about these events. The following is crude but the whole thing
4629 * is for compatibility anyway.
3bc942f3
TH
4630 *
4631 * DO NOT ADD NEW FILES.
fba94807 4632 */
b583043e 4633 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4634
4635 if (!strcmp(name, "memory.usage_in_bytes")) {
4636 event->register_event = mem_cgroup_usage_register_event;
4637 event->unregister_event = mem_cgroup_usage_unregister_event;
4638 } else if (!strcmp(name, "memory.oom_control")) {
4639 event->register_event = mem_cgroup_oom_register_event;
4640 event->unregister_event = mem_cgroup_oom_unregister_event;
4641 } else if (!strcmp(name, "memory.pressure_level")) {
4642 event->register_event = vmpressure_register_event;
4643 event->unregister_event = vmpressure_unregister_event;
4644 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4645 event->register_event = memsw_cgroup_usage_register_event;
4646 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4647 } else {
4648 ret = -EINVAL;
4649 goto out_put_cfile;
4650 }
4651
79bd9814 4652 /*
b5557c4c
TH
4653 * Verify @cfile should belong to @css. Also, remaining events are
4654 * automatically removed on cgroup destruction but the removal is
4655 * asynchronous, so take an extra ref on @css.
79bd9814 4656 */
b583043e 4657 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4658 &memory_cgrp_subsys);
79bd9814 4659 ret = -EINVAL;
5a17f543 4660 if (IS_ERR(cfile_css))
79bd9814 4661 goto out_put_cfile;
5a17f543
TH
4662 if (cfile_css != css) {
4663 css_put(cfile_css);
79bd9814 4664 goto out_put_cfile;
5a17f543 4665 }
79bd9814 4666
451af504 4667 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4668 if (ret)
4669 goto out_put_css;
4670
9965ed17 4671 vfs_poll(efile.file, &event->pt);
79bd9814 4672
fba94807
TH
4673 spin_lock(&memcg->event_list_lock);
4674 list_add(&event->list, &memcg->event_list);
4675 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4676
4677 fdput(cfile);
4678 fdput(efile);
4679
451af504 4680 return nbytes;
79bd9814
TH
4681
4682out_put_css:
b5557c4c 4683 css_put(css);
79bd9814
TH
4684out_put_cfile:
4685 fdput(cfile);
4686out_put_eventfd:
4687 eventfd_ctx_put(event->eventfd);
4688out_put_efile:
4689 fdput(efile);
4690out_kfree:
4691 kfree(event);
4692
4693 return ret;
4694}
4695
241994ed 4696static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4697 {
0eea1030 4698 .name = "usage_in_bytes",
8c7c6e34 4699 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4700 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4701 },
c84872e1
PE
4702 {
4703 .name = "max_usage_in_bytes",
8c7c6e34 4704 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4705 .write = mem_cgroup_reset,
791badbd 4706 .read_u64 = mem_cgroup_read_u64,
c84872e1 4707 },
8cdea7c0 4708 {
0eea1030 4709 .name = "limit_in_bytes",
8c7c6e34 4710 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4711 .write = mem_cgroup_write,
791badbd 4712 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4713 },
296c81d8
BS
4714 {
4715 .name = "soft_limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4717 .write = mem_cgroup_write,
791badbd 4718 .read_u64 = mem_cgroup_read_u64,
296c81d8 4719 },
8cdea7c0
BS
4720 {
4721 .name = "failcnt",
8c7c6e34 4722 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4723 .write = mem_cgroup_reset,
791badbd 4724 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4725 },
d2ceb9b7
KH
4726 {
4727 .name = "stat",
2da8ca82 4728 .seq_show = memcg_stat_show,
d2ceb9b7 4729 },
c1e862c1
KH
4730 {
4731 .name = "force_empty",
6770c64e 4732 .write = mem_cgroup_force_empty_write,
c1e862c1 4733 },
18f59ea7
BS
4734 {
4735 .name = "use_hierarchy",
4736 .write_u64 = mem_cgroup_hierarchy_write,
4737 .read_u64 = mem_cgroup_hierarchy_read,
4738 },
79bd9814 4739 {
3bc942f3 4740 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4741 .write = memcg_write_event_control,
7dbdb199 4742 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4743 },
a7885eb8
KM
4744 {
4745 .name = "swappiness",
4746 .read_u64 = mem_cgroup_swappiness_read,
4747 .write_u64 = mem_cgroup_swappiness_write,
4748 },
7dc74be0
DN
4749 {
4750 .name = "move_charge_at_immigrate",
4751 .read_u64 = mem_cgroup_move_charge_read,
4752 .write_u64 = mem_cgroup_move_charge_write,
4753 },
9490ff27
KH
4754 {
4755 .name = "oom_control",
2da8ca82 4756 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4757 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4758 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4759 },
70ddf637
AV
4760 {
4761 .name = "pressure_level",
70ddf637 4762 },
406eb0c9
YH
4763#ifdef CONFIG_NUMA
4764 {
4765 .name = "numa_stat",
2da8ca82 4766 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4767 },
4768#endif
510fc4e1
GC
4769 {
4770 .name = "kmem.limit_in_bytes",
4771 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4772 .write = mem_cgroup_write,
791badbd 4773 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4774 },
4775 {
4776 .name = "kmem.usage_in_bytes",
4777 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4778 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4779 },
4780 {
4781 .name = "kmem.failcnt",
4782 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4783 .write = mem_cgroup_reset,
791badbd 4784 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4785 },
4786 {
4787 .name = "kmem.max_usage_in_bytes",
4788 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4789 .write = mem_cgroup_reset,
791badbd 4790 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4791 },
a87425a3
YS
4792#if defined(CONFIG_MEMCG_KMEM) && \
4793 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4794 {
4795 .name = "kmem.slabinfo",
bc2791f8
TH
4796 .seq_start = memcg_slab_start,
4797 .seq_next = memcg_slab_next,
4798 .seq_stop = memcg_slab_stop,
b047501c 4799 .seq_show = memcg_slab_show,
749c5415
GC
4800 },
4801#endif
d55f90bf
VD
4802 {
4803 .name = "kmem.tcp.limit_in_bytes",
4804 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4805 .write = mem_cgroup_write,
4806 .read_u64 = mem_cgroup_read_u64,
4807 },
4808 {
4809 .name = "kmem.tcp.usage_in_bytes",
4810 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4811 .read_u64 = mem_cgroup_read_u64,
4812 },
4813 {
4814 .name = "kmem.tcp.failcnt",
4815 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4816 .write = mem_cgroup_reset,
4817 .read_u64 = mem_cgroup_read_u64,
4818 },
4819 {
4820 .name = "kmem.tcp.max_usage_in_bytes",
4821 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4822 .write = mem_cgroup_reset,
4823 .read_u64 = mem_cgroup_read_u64,
4824 },
6bc10349 4825 { }, /* terminate */
af36f906 4826};
8c7c6e34 4827
73f576c0
JW
4828/*
4829 * Private memory cgroup IDR
4830 *
4831 * Swap-out records and page cache shadow entries need to store memcg
4832 * references in constrained space, so we maintain an ID space that is
4833 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4834 * memory-controlled cgroups to 64k.
4835 *
4836 * However, there usually are many references to the oflline CSS after
4837 * the cgroup has been destroyed, such as page cache or reclaimable
4838 * slab objects, that don't need to hang on to the ID. We want to keep
4839 * those dead CSS from occupying IDs, or we might quickly exhaust the
4840 * relatively small ID space and prevent the creation of new cgroups
4841 * even when there are much fewer than 64k cgroups - possibly none.
4842 *
4843 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4844 * be freed and recycled when it's no longer needed, which is usually
4845 * when the CSS is offlined.
4846 *
4847 * The only exception to that are records of swapped out tmpfs/shmem
4848 * pages that need to be attributed to live ancestors on swapin. But
4849 * those references are manageable from userspace.
4850 */
4851
4852static DEFINE_IDR(mem_cgroup_idr);
4853
7e97de0b
KT
4854static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4855{
4856 if (memcg->id.id > 0) {
4857 idr_remove(&mem_cgroup_idr, memcg->id.id);
4858 memcg->id.id = 0;
4859 }
4860}
4861
615d66c3 4862static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4863{
1c2d479a 4864 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4865}
4866
615d66c3 4867static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4868{
1c2d479a 4869 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4870 mem_cgroup_id_remove(memcg);
73f576c0
JW
4871
4872 /* Memcg ID pins CSS */
4873 css_put(&memcg->css);
4874 }
4875}
4876
615d66c3
VD
4877static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4878{
4879 mem_cgroup_id_put_many(memcg, 1);
4880}
4881
73f576c0
JW
4882/**
4883 * mem_cgroup_from_id - look up a memcg from a memcg id
4884 * @id: the memcg id to look up
4885 *
4886 * Caller must hold rcu_read_lock().
4887 */
4888struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4889{
4890 WARN_ON_ONCE(!rcu_read_lock_held());
4891 return idr_find(&mem_cgroup_idr, id);
4892}
4893
ef8f2327 4894static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4895{
4896 struct mem_cgroup_per_node *pn;
ef8f2327 4897 int tmp = node;
1ecaab2b
KH
4898 /*
4899 * This routine is called against possible nodes.
4900 * But it's BUG to call kmalloc() against offline node.
4901 *
4902 * TODO: this routine can waste much memory for nodes which will
4903 * never be onlined. It's better to use memory hotplug callback
4904 * function.
4905 */
41e3355d
KH
4906 if (!node_state(node, N_NORMAL_MEMORY))
4907 tmp = -1;
17295c88 4908 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4909 if (!pn)
4910 return 1;
1ecaab2b 4911
815744d7
JW
4912 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4913 if (!pn->lruvec_stat_local) {
4914 kfree(pn);
4915 return 1;
4916 }
4917
a983b5eb
JW
4918 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4919 if (!pn->lruvec_stat_cpu) {
815744d7 4920 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4921 kfree(pn);
4922 return 1;
4923 }
4924
ef8f2327
MG
4925 lruvec_init(&pn->lruvec);
4926 pn->usage_in_excess = 0;
4927 pn->on_tree = false;
4928 pn->memcg = memcg;
4929
54f72fe0 4930 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4931 return 0;
4932}
4933
ef8f2327 4934static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4935{
00f3ca2c
JW
4936 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4937
4eaf431f
MH
4938 if (!pn)
4939 return;
4940
a983b5eb 4941 free_percpu(pn->lruvec_stat_cpu);
815744d7 4942 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4943 kfree(pn);
1ecaab2b
KH
4944}
4945
40e952f9 4946static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4947{
c8b2a36f 4948 int node;
59927fb9 4949
c8b2a36f 4950 for_each_node(node)
ef8f2327 4951 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4952 free_percpu(memcg->vmstats_percpu);
815744d7 4953 free_percpu(memcg->vmstats_local);
8ff69e2c 4954 kfree(memcg);
59927fb9 4955}
3afe36b1 4956
40e952f9
TE
4957static void mem_cgroup_free(struct mem_cgroup *memcg)
4958{
4959 memcg_wb_domain_exit(memcg);
7961eee3
SB
4960 /*
4961 * Flush percpu vmstats and vmevents to guarantee the value correctness
4962 * on parent's and all ancestor levels.
4963 */
4a87e2a2 4964 memcg_flush_percpu_vmstats(memcg);
7961eee3 4965 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4966 __mem_cgroup_free(memcg);
4967}
4968
0b8f73e1 4969static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4970{
d142e3e6 4971 struct mem_cgroup *memcg;
b9726c26 4972 unsigned int size;
6d12e2d8 4973 int node;
97b27821 4974 int __maybe_unused i;
8cdea7c0 4975
0b8f73e1
JW
4976 size = sizeof(struct mem_cgroup);
4977 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4978
4979 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4980 if (!memcg)
0b8f73e1
JW
4981 return NULL;
4982
73f576c0
JW
4983 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4984 1, MEM_CGROUP_ID_MAX,
4985 GFP_KERNEL);
4986 if (memcg->id.id < 0)
4987 goto fail;
4988
815744d7
JW
4989 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4990 if (!memcg->vmstats_local)
4991 goto fail;
4992
871789d4
CD
4993 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4994 if (!memcg->vmstats_percpu)
0b8f73e1 4995 goto fail;
78fb7466 4996
3ed28fa1 4997 for_each_node(node)
ef8f2327 4998 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4999 goto fail;
f64c3f54 5000
0b8f73e1
JW
5001 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5002 goto fail;
28dbc4b6 5003
f7e1cb6e 5004 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5005 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5006 mutex_init(&memcg->thresholds_lock);
5007 spin_lock_init(&memcg->move_lock);
70ddf637 5008 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5009 INIT_LIST_HEAD(&memcg->event_list);
5010 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5011 memcg->socket_pressure = jiffies;
84c07d11 5012#ifdef CONFIG_MEMCG_KMEM
900a38f0 5013 memcg->kmemcg_id = -1;
900a38f0 5014#endif
52ebea74
TH
5015#ifdef CONFIG_CGROUP_WRITEBACK
5016 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5017 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5018 memcg->cgwb_frn[i].done =
5019 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5020#endif
5021#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5022 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5023 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5024 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5025#endif
73f576c0 5026 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5027 return memcg;
5028fail:
7e97de0b 5029 mem_cgroup_id_remove(memcg);
40e952f9 5030 __mem_cgroup_free(memcg);
0b8f73e1 5031 return NULL;
d142e3e6
GC
5032}
5033
0b8f73e1
JW
5034static struct cgroup_subsys_state * __ref
5035mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5036{
0b8f73e1
JW
5037 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5038 struct mem_cgroup *memcg;
5039 long error = -ENOMEM;
d142e3e6 5040
0b8f73e1
JW
5041 memcg = mem_cgroup_alloc();
5042 if (!memcg)
5043 return ERR_PTR(error);
d142e3e6 5044
0b8f73e1
JW
5045 memcg->high = PAGE_COUNTER_MAX;
5046 memcg->soft_limit = PAGE_COUNTER_MAX;
5047 if (parent) {
5048 memcg->swappiness = mem_cgroup_swappiness(parent);
5049 memcg->oom_kill_disable = parent->oom_kill_disable;
5050 }
5051 if (parent && parent->use_hierarchy) {
5052 memcg->use_hierarchy = true;
3e32cb2e 5053 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5054 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5055 page_counter_init(&memcg->memsw, &parent->memsw);
5056 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5057 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5058 } else {
3e32cb2e 5059 page_counter_init(&memcg->memory, NULL);
37e84351 5060 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5061 page_counter_init(&memcg->memsw, NULL);
5062 page_counter_init(&memcg->kmem, NULL);
0db15298 5063 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5064 /*
5065 * Deeper hierachy with use_hierarchy == false doesn't make
5066 * much sense so let cgroup subsystem know about this
5067 * unfortunate state in our controller.
5068 */
d142e3e6 5069 if (parent != root_mem_cgroup)
073219e9 5070 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5071 }
d6441637 5072
0b8f73e1
JW
5073 /* The following stuff does not apply to the root */
5074 if (!parent) {
fb2f2b0a
RG
5075#ifdef CONFIG_MEMCG_KMEM
5076 INIT_LIST_HEAD(&memcg->kmem_caches);
5077#endif
0b8f73e1
JW
5078 root_mem_cgroup = memcg;
5079 return &memcg->css;
5080 }
5081
b313aeee 5082 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5083 if (error)
5084 goto fail;
127424c8 5085
f7e1cb6e 5086 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5087 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5088
0b8f73e1
JW
5089 return &memcg->css;
5090fail:
7e97de0b 5091 mem_cgroup_id_remove(memcg);
0b8f73e1 5092 mem_cgroup_free(memcg);
ea3a9645 5093 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5094}
5095
73f576c0 5096static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5097{
58fa2a55
VD
5098 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5099
0a4465d3
KT
5100 /*
5101 * A memcg must be visible for memcg_expand_shrinker_maps()
5102 * by the time the maps are allocated. So, we allocate maps
5103 * here, when for_each_mem_cgroup() can't skip it.
5104 */
5105 if (memcg_alloc_shrinker_maps(memcg)) {
5106 mem_cgroup_id_remove(memcg);
5107 return -ENOMEM;
5108 }
5109
73f576c0 5110 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5111 refcount_set(&memcg->id.ref, 1);
73f576c0 5112 css_get(css);
2f7dd7a4 5113 return 0;
8cdea7c0
BS
5114}
5115
eb95419b 5116static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5117{
eb95419b 5118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5119 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5120
5121 /*
5122 * Unregister events and notify userspace.
5123 * Notify userspace about cgroup removing only after rmdir of cgroup
5124 * directory to avoid race between userspace and kernelspace.
5125 */
fba94807
TH
5126 spin_lock(&memcg->event_list_lock);
5127 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5128 list_del_init(&event->list);
5129 schedule_work(&event->remove);
5130 }
fba94807 5131 spin_unlock(&memcg->event_list_lock);
ec64f515 5132
bf8d5d52 5133 page_counter_set_min(&memcg->memory, 0);
23067153 5134 page_counter_set_low(&memcg->memory, 0);
63677c74 5135
567e9ab2 5136 memcg_offline_kmem(memcg);
52ebea74 5137 wb_memcg_offline(memcg);
73f576c0 5138
591edfb1
RG
5139 drain_all_stock(memcg);
5140
73f576c0 5141 mem_cgroup_id_put(memcg);
df878fb0
KH
5142}
5143
6df38689
VD
5144static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5145{
5146 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5147
5148 invalidate_reclaim_iterators(memcg);
5149}
5150
eb95419b 5151static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5152{
eb95419b 5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5154 int __maybe_unused i;
c268e994 5155
97b27821
TH
5156#ifdef CONFIG_CGROUP_WRITEBACK
5157 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5158 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5159#endif
f7e1cb6e 5160 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5161 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5162
0db15298 5163 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5164 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5165
0b8f73e1
JW
5166 vmpressure_cleanup(&memcg->vmpressure);
5167 cancel_work_sync(&memcg->high_work);
5168 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5169 memcg_free_shrinker_maps(memcg);
d886f4e4 5170 memcg_free_kmem(memcg);
0b8f73e1 5171 mem_cgroup_free(memcg);
8cdea7c0
BS
5172}
5173
1ced953b
TH
5174/**
5175 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5176 * @css: the target css
5177 *
5178 * Reset the states of the mem_cgroup associated with @css. This is
5179 * invoked when the userland requests disabling on the default hierarchy
5180 * but the memcg is pinned through dependency. The memcg should stop
5181 * applying policies and should revert to the vanilla state as it may be
5182 * made visible again.
5183 *
5184 * The current implementation only resets the essential configurations.
5185 * This needs to be expanded to cover all the visible parts.
5186 */
5187static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5188{
5189 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5190
bbec2e15
RG
5191 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5192 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5193 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5194 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5195 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5196 page_counter_set_min(&memcg->memory, 0);
23067153 5197 page_counter_set_low(&memcg->memory, 0);
241994ed 5198 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5199 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5200 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5201}
5202
02491447 5203#ifdef CONFIG_MMU
7dc74be0 5204/* Handlers for move charge at task migration. */
854ffa8d 5205static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5206{
05b84301 5207 int ret;
9476db97 5208
d0164adc
MG
5209 /* Try a single bulk charge without reclaim first, kswapd may wake */
5210 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5211 if (!ret) {
854ffa8d 5212 mc.precharge += count;
854ffa8d
DN
5213 return ret;
5214 }
9476db97 5215
3674534b 5216 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5217 while (count--) {
3674534b 5218 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5219 if (ret)
38c5d72f 5220 return ret;
854ffa8d 5221 mc.precharge++;
9476db97 5222 cond_resched();
854ffa8d 5223 }
9476db97 5224 return 0;
4ffef5fe
DN
5225}
5226
4ffef5fe
DN
5227union mc_target {
5228 struct page *page;
02491447 5229 swp_entry_t ent;
4ffef5fe
DN
5230};
5231
4ffef5fe 5232enum mc_target_type {
8d32ff84 5233 MC_TARGET_NONE = 0,
4ffef5fe 5234 MC_TARGET_PAGE,
02491447 5235 MC_TARGET_SWAP,
c733a828 5236 MC_TARGET_DEVICE,
4ffef5fe
DN
5237};
5238
90254a65
DN
5239static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5240 unsigned long addr, pte_t ptent)
4ffef5fe 5241{
25b2995a 5242 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5243
90254a65
DN
5244 if (!page || !page_mapped(page))
5245 return NULL;
5246 if (PageAnon(page)) {
1dfab5ab 5247 if (!(mc.flags & MOVE_ANON))
90254a65 5248 return NULL;
1dfab5ab
JW
5249 } else {
5250 if (!(mc.flags & MOVE_FILE))
5251 return NULL;
5252 }
90254a65
DN
5253 if (!get_page_unless_zero(page))
5254 return NULL;
5255
5256 return page;
5257}
5258
c733a828 5259#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5260static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5261 pte_t ptent, swp_entry_t *entry)
90254a65 5262{
90254a65
DN
5263 struct page *page = NULL;
5264 swp_entry_t ent = pte_to_swp_entry(ptent);
5265
1dfab5ab 5266 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5267 return NULL;
c733a828
JG
5268
5269 /*
5270 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5271 * a device and because they are not accessible by CPU they are store
5272 * as special swap entry in the CPU page table.
5273 */
5274 if (is_device_private_entry(ent)) {
5275 page = device_private_entry_to_page(ent);
5276 /*
5277 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5278 * a refcount of 1 when free (unlike normal page)
5279 */
5280 if (!page_ref_add_unless(page, 1, 1))
5281 return NULL;
5282 return page;
5283 }
5284
4b91355e
KH
5285 /*
5286 * Because lookup_swap_cache() updates some statistics counter,
5287 * we call find_get_page() with swapper_space directly.
5288 */
f6ab1f7f 5289 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5290 if (do_memsw_account())
90254a65
DN
5291 entry->val = ent.val;
5292
5293 return page;
5294}
4b91355e
KH
5295#else
5296static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5297 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5298{
5299 return NULL;
5300}
5301#endif
90254a65 5302
87946a72
DN
5303static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5304 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5305{
5306 struct page *page = NULL;
87946a72
DN
5307 struct address_space *mapping;
5308 pgoff_t pgoff;
5309
5310 if (!vma->vm_file) /* anonymous vma */
5311 return NULL;
1dfab5ab 5312 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5313 return NULL;
5314
87946a72 5315 mapping = vma->vm_file->f_mapping;
0661a336 5316 pgoff = linear_page_index(vma, addr);
87946a72
DN
5317
5318 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5319#ifdef CONFIG_SWAP
5320 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5321 if (shmem_mapping(mapping)) {
5322 page = find_get_entry(mapping, pgoff);
3159f943 5323 if (xa_is_value(page)) {
139b6a6f 5324 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5325 if (do_memsw_account())
139b6a6f 5326 *entry = swp;
f6ab1f7f
HY
5327 page = find_get_page(swap_address_space(swp),
5328 swp_offset(swp));
139b6a6f
JW
5329 }
5330 } else
5331 page = find_get_page(mapping, pgoff);
5332#else
5333 page = find_get_page(mapping, pgoff);
aa3b1895 5334#endif
87946a72
DN
5335 return page;
5336}
5337
b1b0deab
CG
5338/**
5339 * mem_cgroup_move_account - move account of the page
5340 * @page: the page
25843c2b 5341 * @compound: charge the page as compound or small page
b1b0deab
CG
5342 * @from: mem_cgroup which the page is moved from.
5343 * @to: mem_cgroup which the page is moved to. @from != @to.
5344 *
3ac808fd 5345 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5346 *
5347 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5348 * from old cgroup.
5349 */
5350static int mem_cgroup_move_account(struct page *page,
f627c2f5 5351 bool compound,
b1b0deab
CG
5352 struct mem_cgroup *from,
5353 struct mem_cgroup *to)
5354{
ae8af438
KK
5355 struct lruvec *from_vec, *to_vec;
5356 struct pglist_data *pgdat;
b1b0deab 5357 unsigned long flags;
f627c2f5 5358 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5359 int ret;
c4843a75 5360 bool anon;
b1b0deab
CG
5361
5362 VM_BUG_ON(from == to);
5363 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5364 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5365
5366 /*
6a93ca8f 5367 * Prevent mem_cgroup_migrate() from looking at
45637bab 5368 * page->mem_cgroup of its source page while we change it.
b1b0deab 5369 */
f627c2f5 5370 ret = -EBUSY;
b1b0deab
CG
5371 if (!trylock_page(page))
5372 goto out;
5373
5374 ret = -EINVAL;
5375 if (page->mem_cgroup != from)
5376 goto out_unlock;
5377
c4843a75
GT
5378 anon = PageAnon(page);
5379
ae8af438 5380 pgdat = page_pgdat(page);
867e5e1d
JW
5381 from_vec = mem_cgroup_lruvec(from, pgdat);
5382 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5383
b1b0deab
CG
5384 spin_lock_irqsave(&from->move_lock, flags);
5385
c4843a75 5386 if (!anon && page_mapped(page)) {
ae8af438
KK
5387 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5388 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5389 }
5390
c4843a75
GT
5391 /*
5392 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5393 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5394 * So mapping should be stable for dirty pages.
5395 */
5396 if (!anon && PageDirty(page)) {
5397 struct address_space *mapping = page_mapping(page);
5398
5399 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5400 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5401 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5402 }
5403 }
5404
b1b0deab 5405 if (PageWriteback(page)) {
ae8af438
KK
5406 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5407 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5408 }
5409
5410 /*
5411 * It is safe to change page->mem_cgroup here because the page
5412 * is referenced, charged, and isolated - we can't race with
5413 * uncharging, charging, migration, or LRU putback.
5414 */
5415
5416 /* caller should have done css_get */
5417 page->mem_cgroup = to;
87eaceb3 5418
b1b0deab
CG
5419 spin_unlock_irqrestore(&from->move_lock, flags);
5420
5421 ret = 0;
5422
5423 local_irq_disable();
f627c2f5 5424 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5425 memcg_check_events(to, page);
f627c2f5 5426 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5427 memcg_check_events(from, page);
5428 local_irq_enable();
5429out_unlock:
5430 unlock_page(page);
5431out:
5432 return ret;
5433}
5434
7cf7806c
LR
5435/**
5436 * get_mctgt_type - get target type of moving charge
5437 * @vma: the vma the pte to be checked belongs
5438 * @addr: the address corresponding to the pte to be checked
5439 * @ptent: the pte to be checked
5440 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5441 *
5442 * Returns
5443 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5444 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5445 * move charge. if @target is not NULL, the page is stored in target->page
5446 * with extra refcnt got(Callers should handle it).
5447 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5448 * target for charge migration. if @target is not NULL, the entry is stored
5449 * in target->ent.
25b2995a
CH
5450 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5451 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5452 * For now we such page is charge like a regular page would be as for all
5453 * intent and purposes it is just special memory taking the place of a
5454 * regular page.
c733a828
JG
5455 *
5456 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5457 *
5458 * Called with pte lock held.
5459 */
5460
8d32ff84 5461static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5462 unsigned long addr, pte_t ptent, union mc_target *target)
5463{
5464 struct page *page = NULL;
8d32ff84 5465 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5466 swp_entry_t ent = { .val = 0 };
5467
5468 if (pte_present(ptent))
5469 page = mc_handle_present_pte(vma, addr, ptent);
5470 else if (is_swap_pte(ptent))
48406ef8 5471 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5472 else if (pte_none(ptent))
87946a72 5473 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5474
5475 if (!page && !ent.val)
8d32ff84 5476 return ret;
02491447 5477 if (page) {
02491447 5478 /*
0a31bc97 5479 * Do only loose check w/o serialization.
1306a85a 5480 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5481 * not under LRU exclusion.
02491447 5482 */
1306a85a 5483 if (page->mem_cgroup == mc.from) {
02491447 5484 ret = MC_TARGET_PAGE;
25b2995a 5485 if (is_device_private_page(page))
c733a828 5486 ret = MC_TARGET_DEVICE;
02491447
DN
5487 if (target)
5488 target->page = page;
5489 }
5490 if (!ret || !target)
5491 put_page(page);
5492 }
3e14a57b
HY
5493 /*
5494 * There is a swap entry and a page doesn't exist or isn't charged.
5495 * But we cannot move a tail-page in a THP.
5496 */
5497 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5498 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5499 ret = MC_TARGET_SWAP;
5500 if (target)
5501 target->ent = ent;
4ffef5fe 5502 }
4ffef5fe
DN
5503 return ret;
5504}
5505
12724850
NH
5506#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5507/*
d6810d73
HY
5508 * We don't consider PMD mapped swapping or file mapped pages because THP does
5509 * not support them for now.
12724850
NH
5510 * Caller should make sure that pmd_trans_huge(pmd) is true.
5511 */
5512static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5513 unsigned long addr, pmd_t pmd, union mc_target *target)
5514{
5515 struct page *page = NULL;
12724850
NH
5516 enum mc_target_type ret = MC_TARGET_NONE;
5517
84c3fc4e
ZY
5518 if (unlikely(is_swap_pmd(pmd))) {
5519 VM_BUG_ON(thp_migration_supported() &&
5520 !is_pmd_migration_entry(pmd));
5521 return ret;
5522 }
12724850 5523 page = pmd_page(pmd);
309381fe 5524 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5525 if (!(mc.flags & MOVE_ANON))
12724850 5526 return ret;
1306a85a 5527 if (page->mem_cgroup == mc.from) {
12724850
NH
5528 ret = MC_TARGET_PAGE;
5529 if (target) {
5530 get_page(page);
5531 target->page = page;
5532 }
5533 }
5534 return ret;
5535}
5536#else
5537static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5538 unsigned long addr, pmd_t pmd, union mc_target *target)
5539{
5540 return MC_TARGET_NONE;
5541}
5542#endif
5543
4ffef5fe
DN
5544static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5545 unsigned long addr, unsigned long end,
5546 struct mm_walk *walk)
5547{
26bcd64a 5548 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5549 pte_t *pte;
5550 spinlock_t *ptl;
5551
b6ec57f4
KS
5552 ptl = pmd_trans_huge_lock(pmd, vma);
5553 if (ptl) {
c733a828
JG
5554 /*
5555 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5556 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5557 * this might change.
c733a828 5558 */
12724850
NH
5559 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5560 mc.precharge += HPAGE_PMD_NR;
bf929152 5561 spin_unlock(ptl);
1a5a9906 5562 return 0;
12724850 5563 }
03319327 5564
45f83cef
AA
5565 if (pmd_trans_unstable(pmd))
5566 return 0;
4ffef5fe
DN
5567 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5568 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5569 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5570 mc.precharge++; /* increment precharge temporarily */
5571 pte_unmap_unlock(pte - 1, ptl);
5572 cond_resched();
5573
7dc74be0
DN
5574 return 0;
5575}
5576
7b86ac33
CH
5577static const struct mm_walk_ops precharge_walk_ops = {
5578 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5579};
5580
4ffef5fe
DN
5581static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5582{
5583 unsigned long precharge;
4ffef5fe 5584
dfe076b0 5585 down_read(&mm->mmap_sem);
7b86ac33 5586 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5587 up_read(&mm->mmap_sem);
4ffef5fe
DN
5588
5589 precharge = mc.precharge;
5590 mc.precharge = 0;
5591
5592 return precharge;
5593}
5594
4ffef5fe
DN
5595static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5596{
dfe076b0
DN
5597 unsigned long precharge = mem_cgroup_count_precharge(mm);
5598
5599 VM_BUG_ON(mc.moving_task);
5600 mc.moving_task = current;
5601 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5602}
5603
dfe076b0
DN
5604/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5605static void __mem_cgroup_clear_mc(void)
4ffef5fe 5606{
2bd9bb20
KH
5607 struct mem_cgroup *from = mc.from;
5608 struct mem_cgroup *to = mc.to;
5609
4ffef5fe 5610 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5611 if (mc.precharge) {
00501b53 5612 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5613 mc.precharge = 0;
5614 }
5615 /*
5616 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5617 * we must uncharge here.
5618 */
5619 if (mc.moved_charge) {
00501b53 5620 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5621 mc.moved_charge = 0;
4ffef5fe 5622 }
483c30b5
DN
5623 /* we must fixup refcnts and charges */
5624 if (mc.moved_swap) {
483c30b5 5625 /* uncharge swap account from the old cgroup */
ce00a967 5626 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5627 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5628
615d66c3
VD
5629 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5630
05b84301 5631 /*
3e32cb2e
JW
5632 * we charged both to->memory and to->memsw, so we
5633 * should uncharge to->memory.
05b84301 5634 */
ce00a967 5635 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5636 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5637
615d66c3
VD
5638 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5639 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5640
483c30b5
DN
5641 mc.moved_swap = 0;
5642 }
dfe076b0
DN
5643 memcg_oom_recover(from);
5644 memcg_oom_recover(to);
5645 wake_up_all(&mc.waitq);
5646}
5647
5648static void mem_cgroup_clear_mc(void)
5649{
264a0ae1
TH
5650 struct mm_struct *mm = mc.mm;
5651
dfe076b0
DN
5652 /*
5653 * we must clear moving_task before waking up waiters at the end of
5654 * task migration.
5655 */
5656 mc.moving_task = NULL;
5657 __mem_cgroup_clear_mc();
2bd9bb20 5658 spin_lock(&mc.lock);
4ffef5fe
DN
5659 mc.from = NULL;
5660 mc.to = NULL;
264a0ae1 5661 mc.mm = NULL;
2bd9bb20 5662 spin_unlock(&mc.lock);
264a0ae1
TH
5663
5664 mmput(mm);
4ffef5fe
DN
5665}
5666
1f7dd3e5 5667static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5668{
1f7dd3e5 5669 struct cgroup_subsys_state *css;
eed67d75 5670 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5671 struct mem_cgroup *from;
4530eddb 5672 struct task_struct *leader, *p;
9f2115f9 5673 struct mm_struct *mm;
1dfab5ab 5674 unsigned long move_flags;
9f2115f9 5675 int ret = 0;
7dc74be0 5676
1f7dd3e5
TH
5677 /* charge immigration isn't supported on the default hierarchy */
5678 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5679 return 0;
5680
4530eddb
TH
5681 /*
5682 * Multi-process migrations only happen on the default hierarchy
5683 * where charge immigration is not used. Perform charge
5684 * immigration if @tset contains a leader and whine if there are
5685 * multiple.
5686 */
5687 p = NULL;
1f7dd3e5 5688 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5689 WARN_ON_ONCE(p);
5690 p = leader;
1f7dd3e5 5691 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5692 }
5693 if (!p)
5694 return 0;
5695
1f7dd3e5
TH
5696 /*
5697 * We are now commited to this value whatever it is. Changes in this
5698 * tunable will only affect upcoming migrations, not the current one.
5699 * So we need to save it, and keep it going.
5700 */
5701 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5702 if (!move_flags)
5703 return 0;
5704
9f2115f9
TH
5705 from = mem_cgroup_from_task(p);
5706
5707 VM_BUG_ON(from == memcg);
5708
5709 mm = get_task_mm(p);
5710 if (!mm)
5711 return 0;
5712 /* We move charges only when we move a owner of the mm */
5713 if (mm->owner == p) {
5714 VM_BUG_ON(mc.from);
5715 VM_BUG_ON(mc.to);
5716 VM_BUG_ON(mc.precharge);
5717 VM_BUG_ON(mc.moved_charge);
5718 VM_BUG_ON(mc.moved_swap);
5719
5720 spin_lock(&mc.lock);
264a0ae1 5721 mc.mm = mm;
9f2115f9
TH
5722 mc.from = from;
5723 mc.to = memcg;
5724 mc.flags = move_flags;
5725 spin_unlock(&mc.lock);
5726 /* We set mc.moving_task later */
5727
5728 ret = mem_cgroup_precharge_mc(mm);
5729 if (ret)
5730 mem_cgroup_clear_mc();
264a0ae1
TH
5731 } else {
5732 mmput(mm);
7dc74be0
DN
5733 }
5734 return ret;
5735}
5736
1f7dd3e5 5737static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5738{
4e2f245d
JW
5739 if (mc.to)
5740 mem_cgroup_clear_mc();
7dc74be0
DN
5741}
5742
4ffef5fe
DN
5743static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5744 unsigned long addr, unsigned long end,
5745 struct mm_walk *walk)
7dc74be0 5746{
4ffef5fe 5747 int ret = 0;
26bcd64a 5748 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5749 pte_t *pte;
5750 spinlock_t *ptl;
12724850
NH
5751 enum mc_target_type target_type;
5752 union mc_target target;
5753 struct page *page;
4ffef5fe 5754
b6ec57f4
KS
5755 ptl = pmd_trans_huge_lock(pmd, vma);
5756 if (ptl) {
62ade86a 5757 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5758 spin_unlock(ptl);
12724850
NH
5759 return 0;
5760 }
5761 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5762 if (target_type == MC_TARGET_PAGE) {
5763 page = target.page;
5764 if (!isolate_lru_page(page)) {
f627c2f5 5765 if (!mem_cgroup_move_account(page, true,
1306a85a 5766 mc.from, mc.to)) {
12724850
NH
5767 mc.precharge -= HPAGE_PMD_NR;
5768 mc.moved_charge += HPAGE_PMD_NR;
5769 }
5770 putback_lru_page(page);
5771 }
5772 put_page(page);
c733a828
JG
5773 } else if (target_type == MC_TARGET_DEVICE) {
5774 page = target.page;
5775 if (!mem_cgroup_move_account(page, true,
5776 mc.from, mc.to)) {
5777 mc.precharge -= HPAGE_PMD_NR;
5778 mc.moved_charge += HPAGE_PMD_NR;
5779 }
5780 put_page(page);
12724850 5781 }
bf929152 5782 spin_unlock(ptl);
1a5a9906 5783 return 0;
12724850
NH
5784 }
5785
45f83cef
AA
5786 if (pmd_trans_unstable(pmd))
5787 return 0;
4ffef5fe
DN
5788retry:
5789 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5790 for (; addr != end; addr += PAGE_SIZE) {
5791 pte_t ptent = *(pte++);
c733a828 5792 bool device = false;
02491447 5793 swp_entry_t ent;
4ffef5fe
DN
5794
5795 if (!mc.precharge)
5796 break;
5797
8d32ff84 5798 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5799 case MC_TARGET_DEVICE:
5800 device = true;
5801 /* fall through */
4ffef5fe
DN
5802 case MC_TARGET_PAGE:
5803 page = target.page;
53f9263b
KS
5804 /*
5805 * We can have a part of the split pmd here. Moving it
5806 * can be done but it would be too convoluted so simply
5807 * ignore such a partial THP and keep it in original
5808 * memcg. There should be somebody mapping the head.
5809 */
5810 if (PageTransCompound(page))
5811 goto put;
c733a828 5812 if (!device && isolate_lru_page(page))
4ffef5fe 5813 goto put;
f627c2f5
KS
5814 if (!mem_cgroup_move_account(page, false,
5815 mc.from, mc.to)) {
4ffef5fe 5816 mc.precharge--;
854ffa8d
DN
5817 /* we uncharge from mc.from later. */
5818 mc.moved_charge++;
4ffef5fe 5819 }
c733a828
JG
5820 if (!device)
5821 putback_lru_page(page);
8d32ff84 5822put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5823 put_page(page);
5824 break;
02491447
DN
5825 case MC_TARGET_SWAP:
5826 ent = target.ent;
e91cbb42 5827 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5828 mc.precharge--;
483c30b5
DN
5829 /* we fixup refcnts and charges later. */
5830 mc.moved_swap++;
5831 }
02491447 5832 break;
4ffef5fe
DN
5833 default:
5834 break;
5835 }
5836 }
5837 pte_unmap_unlock(pte - 1, ptl);
5838 cond_resched();
5839
5840 if (addr != end) {
5841 /*
5842 * We have consumed all precharges we got in can_attach().
5843 * We try charge one by one, but don't do any additional
5844 * charges to mc.to if we have failed in charge once in attach()
5845 * phase.
5846 */
854ffa8d 5847 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5848 if (!ret)
5849 goto retry;
5850 }
5851
5852 return ret;
5853}
5854
7b86ac33
CH
5855static const struct mm_walk_ops charge_walk_ops = {
5856 .pmd_entry = mem_cgroup_move_charge_pte_range,
5857};
5858
264a0ae1 5859static void mem_cgroup_move_charge(void)
4ffef5fe 5860{
4ffef5fe 5861 lru_add_drain_all();
312722cb 5862 /*
81f8c3a4
JW
5863 * Signal lock_page_memcg() to take the memcg's move_lock
5864 * while we're moving its pages to another memcg. Then wait
5865 * for already started RCU-only updates to finish.
312722cb
JW
5866 */
5867 atomic_inc(&mc.from->moving_account);
5868 synchronize_rcu();
dfe076b0 5869retry:
264a0ae1 5870 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5871 /*
5872 * Someone who are holding the mmap_sem might be waiting in
5873 * waitq. So we cancel all extra charges, wake up all waiters,
5874 * and retry. Because we cancel precharges, we might not be able
5875 * to move enough charges, but moving charge is a best-effort
5876 * feature anyway, so it wouldn't be a big problem.
5877 */
5878 __mem_cgroup_clear_mc();
5879 cond_resched();
5880 goto retry;
5881 }
26bcd64a
NH
5882 /*
5883 * When we have consumed all precharges and failed in doing
5884 * additional charge, the page walk just aborts.
5885 */
7b86ac33
CH
5886 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5887 NULL);
0247f3f4 5888
264a0ae1 5889 up_read(&mc.mm->mmap_sem);
312722cb 5890 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5891}
5892
264a0ae1 5893static void mem_cgroup_move_task(void)
67e465a7 5894{
264a0ae1
TH
5895 if (mc.to) {
5896 mem_cgroup_move_charge();
a433658c 5897 mem_cgroup_clear_mc();
264a0ae1 5898 }
67e465a7 5899}
5cfb80a7 5900#else /* !CONFIG_MMU */
1f7dd3e5 5901static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5902{
5903 return 0;
5904}
1f7dd3e5 5905static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5906{
5907}
264a0ae1 5908static void mem_cgroup_move_task(void)
5cfb80a7
DN
5909{
5910}
5911#endif
67e465a7 5912
f00baae7
TH
5913/*
5914 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5915 * to verify whether we're attached to the default hierarchy on each mount
5916 * attempt.
f00baae7 5917 */
eb95419b 5918static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5919{
5920 /*
aa6ec29b 5921 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5922 * guarantees that @root doesn't have any children, so turning it
5923 * on for the root memcg is enough.
5924 */
9e10a130 5925 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5926 root_mem_cgroup->use_hierarchy = true;
5927 else
5928 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5929}
5930
677dc973
CD
5931static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5932{
5933 if (value == PAGE_COUNTER_MAX)
5934 seq_puts(m, "max\n");
5935 else
5936 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5937
5938 return 0;
5939}
5940
241994ed
JW
5941static u64 memory_current_read(struct cgroup_subsys_state *css,
5942 struct cftype *cft)
5943{
f5fc3c5d
JW
5944 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5945
5946 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5947}
5948
bf8d5d52
RG
5949static int memory_min_show(struct seq_file *m, void *v)
5950{
677dc973
CD
5951 return seq_puts_memcg_tunable(m,
5952 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5953}
5954
5955static ssize_t memory_min_write(struct kernfs_open_file *of,
5956 char *buf, size_t nbytes, loff_t off)
5957{
5958 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5959 unsigned long min;
5960 int err;
5961
5962 buf = strstrip(buf);
5963 err = page_counter_memparse(buf, "max", &min);
5964 if (err)
5965 return err;
5966
5967 page_counter_set_min(&memcg->memory, min);
5968
5969 return nbytes;
5970}
5971
241994ed
JW
5972static int memory_low_show(struct seq_file *m, void *v)
5973{
677dc973
CD
5974 return seq_puts_memcg_tunable(m,
5975 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5976}
5977
5978static ssize_t memory_low_write(struct kernfs_open_file *of,
5979 char *buf, size_t nbytes, loff_t off)
5980{
5981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5982 unsigned long low;
5983 int err;
5984
5985 buf = strstrip(buf);
d2973697 5986 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5987 if (err)
5988 return err;
5989
23067153 5990 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5991
5992 return nbytes;
5993}
5994
5995static int memory_high_show(struct seq_file *m, void *v)
5996{
677dc973 5997 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5998}
5999
6000static ssize_t memory_high_write(struct kernfs_open_file *of,
6001 char *buf, size_t nbytes, loff_t off)
6002{
6003 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6004 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6005 bool drained = false;
241994ed
JW
6006 unsigned long high;
6007 int err;
6008
6009 buf = strstrip(buf);
d2973697 6010 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6011 if (err)
6012 return err;
6013
6014 memcg->high = high;
6015
8c8c383c
JW
6016 for (;;) {
6017 unsigned long nr_pages = page_counter_read(&memcg->memory);
6018 unsigned long reclaimed;
6019
6020 if (nr_pages <= high)
6021 break;
6022
6023 if (signal_pending(current))
6024 break;
6025
6026 if (!drained) {
6027 drain_all_stock(memcg);
6028 drained = true;
6029 continue;
6030 }
6031
6032 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6033 GFP_KERNEL, true);
6034
6035 if (!reclaimed && !nr_retries--)
6036 break;
6037 }
588083bb 6038
241994ed
JW
6039 return nbytes;
6040}
6041
6042static int memory_max_show(struct seq_file *m, void *v)
6043{
677dc973
CD
6044 return seq_puts_memcg_tunable(m,
6045 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6046}
6047
6048static ssize_t memory_max_write(struct kernfs_open_file *of,
6049 char *buf, size_t nbytes, loff_t off)
6050{
6051 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6052 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6053 bool drained = false;
241994ed
JW
6054 unsigned long max;
6055 int err;
6056
6057 buf = strstrip(buf);
d2973697 6058 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6059 if (err)
6060 return err;
6061
bbec2e15 6062 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6063
6064 for (;;) {
6065 unsigned long nr_pages = page_counter_read(&memcg->memory);
6066
6067 if (nr_pages <= max)
6068 break;
6069
7249c9f0 6070 if (signal_pending(current))
b6e6edcf 6071 break;
b6e6edcf
JW
6072
6073 if (!drained) {
6074 drain_all_stock(memcg);
6075 drained = true;
6076 continue;
6077 }
6078
6079 if (nr_reclaims) {
6080 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6081 GFP_KERNEL, true))
6082 nr_reclaims--;
6083 continue;
6084 }
6085
e27be240 6086 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6087 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6088 break;
6089 }
241994ed 6090
2529bb3a 6091 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6092 return nbytes;
6093}
6094
1e577f97
SB
6095static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6096{
6097 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6098 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6099 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6100 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6101 seq_printf(m, "oom_kill %lu\n",
6102 atomic_long_read(&events[MEMCG_OOM_KILL]));
6103}
6104
241994ed
JW
6105static int memory_events_show(struct seq_file *m, void *v)
6106{
aa9694bb 6107 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6108
1e577f97
SB
6109 __memory_events_show(m, memcg->memory_events);
6110 return 0;
6111}
6112
6113static int memory_events_local_show(struct seq_file *m, void *v)
6114{
6115 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6116
1e577f97 6117 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6118 return 0;
6119}
6120
587d9f72
JW
6121static int memory_stat_show(struct seq_file *m, void *v)
6122{
aa9694bb 6123 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6124 char *buf;
1ff9e6e1 6125
c8713d0b
JW
6126 buf = memory_stat_format(memcg);
6127 if (!buf)
6128 return -ENOMEM;
6129 seq_puts(m, buf);
6130 kfree(buf);
587d9f72
JW
6131 return 0;
6132}
6133
3d8b38eb
RG
6134static int memory_oom_group_show(struct seq_file *m, void *v)
6135{
aa9694bb 6136 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6137
6138 seq_printf(m, "%d\n", memcg->oom_group);
6139
6140 return 0;
6141}
6142
6143static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6144 char *buf, size_t nbytes, loff_t off)
6145{
6146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6147 int ret, oom_group;
6148
6149 buf = strstrip(buf);
6150 if (!buf)
6151 return -EINVAL;
6152
6153 ret = kstrtoint(buf, 0, &oom_group);
6154 if (ret)
6155 return ret;
6156
6157 if (oom_group != 0 && oom_group != 1)
6158 return -EINVAL;
6159
6160 memcg->oom_group = oom_group;
6161
6162 return nbytes;
6163}
6164
241994ed
JW
6165static struct cftype memory_files[] = {
6166 {
6167 .name = "current",
f5fc3c5d 6168 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6169 .read_u64 = memory_current_read,
6170 },
bf8d5d52
RG
6171 {
6172 .name = "min",
6173 .flags = CFTYPE_NOT_ON_ROOT,
6174 .seq_show = memory_min_show,
6175 .write = memory_min_write,
6176 },
241994ed
JW
6177 {
6178 .name = "low",
6179 .flags = CFTYPE_NOT_ON_ROOT,
6180 .seq_show = memory_low_show,
6181 .write = memory_low_write,
6182 },
6183 {
6184 .name = "high",
6185 .flags = CFTYPE_NOT_ON_ROOT,
6186 .seq_show = memory_high_show,
6187 .write = memory_high_write,
6188 },
6189 {
6190 .name = "max",
6191 .flags = CFTYPE_NOT_ON_ROOT,
6192 .seq_show = memory_max_show,
6193 .write = memory_max_write,
6194 },
6195 {
6196 .name = "events",
6197 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6198 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6199 .seq_show = memory_events_show,
6200 },
1e577f97
SB
6201 {
6202 .name = "events.local",
6203 .flags = CFTYPE_NOT_ON_ROOT,
6204 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6205 .seq_show = memory_events_local_show,
6206 },
587d9f72
JW
6207 {
6208 .name = "stat",
6209 .flags = CFTYPE_NOT_ON_ROOT,
6210 .seq_show = memory_stat_show,
6211 },
3d8b38eb
RG
6212 {
6213 .name = "oom.group",
6214 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6215 .seq_show = memory_oom_group_show,
6216 .write = memory_oom_group_write,
6217 },
241994ed
JW
6218 { } /* terminate */
6219};
6220
073219e9 6221struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6222 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6223 .css_online = mem_cgroup_css_online,
92fb9748 6224 .css_offline = mem_cgroup_css_offline,
6df38689 6225 .css_released = mem_cgroup_css_released,
92fb9748 6226 .css_free = mem_cgroup_css_free,
1ced953b 6227 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6228 .can_attach = mem_cgroup_can_attach,
6229 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6230 .post_attach = mem_cgroup_move_task,
f00baae7 6231 .bind = mem_cgroup_bind,
241994ed
JW
6232 .dfl_cftypes = memory_files,
6233 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6234 .early_init = 0,
8cdea7c0 6235};
c077719b 6236
bc50bcc6
JW
6237/*
6238 * This function calculates an individual cgroup's effective
6239 * protection which is derived from its own memory.min/low, its
6240 * parent's and siblings' settings, as well as the actual memory
6241 * distribution in the tree.
6242 *
6243 * The following rules apply to the effective protection values:
6244 *
6245 * 1. At the first level of reclaim, effective protection is equal to
6246 * the declared protection in memory.min and memory.low.
6247 *
6248 * 2. To enable safe delegation of the protection configuration, at
6249 * subsequent levels the effective protection is capped to the
6250 * parent's effective protection.
6251 *
6252 * 3. To make complex and dynamic subtrees easier to configure, the
6253 * user is allowed to overcommit the declared protection at a given
6254 * level. If that is the case, the parent's effective protection is
6255 * distributed to the children in proportion to how much protection
6256 * they have declared and how much of it they are utilizing.
6257 *
6258 * This makes distribution proportional, but also work-conserving:
6259 * if one cgroup claims much more protection than it uses memory,
6260 * the unused remainder is available to its siblings.
6261 *
6262 * 4. Conversely, when the declared protection is undercommitted at a
6263 * given level, the distribution of the larger parental protection
6264 * budget is NOT proportional. A cgroup's protection from a sibling
6265 * is capped to its own memory.min/low setting.
6266 *
8a931f80
JW
6267 * 5. However, to allow protecting recursive subtrees from each other
6268 * without having to declare each individual cgroup's fixed share
6269 * of the ancestor's claim to protection, any unutilized -
6270 * "floating" - protection from up the tree is distributed in
6271 * proportion to each cgroup's *usage*. This makes the protection
6272 * neutral wrt sibling cgroups and lets them compete freely over
6273 * the shared parental protection budget, but it protects the
6274 * subtree as a whole from neighboring subtrees.
6275 *
6276 * Note that 4. and 5. are not in conflict: 4. is about protecting
6277 * against immediate siblings whereas 5. is about protecting against
6278 * neighboring subtrees.
bc50bcc6
JW
6279 */
6280static unsigned long effective_protection(unsigned long usage,
8a931f80 6281 unsigned long parent_usage,
bc50bcc6
JW
6282 unsigned long setting,
6283 unsigned long parent_effective,
6284 unsigned long siblings_protected)
6285{
6286 unsigned long protected;
8a931f80 6287 unsigned long ep;
bc50bcc6
JW
6288
6289 protected = min(usage, setting);
6290 /*
6291 * If all cgroups at this level combined claim and use more
6292 * protection then what the parent affords them, distribute
6293 * shares in proportion to utilization.
6294 *
6295 * We are using actual utilization rather than the statically
6296 * claimed protection in order to be work-conserving: claimed
6297 * but unused protection is available to siblings that would
6298 * otherwise get a smaller chunk than what they claimed.
6299 */
6300 if (siblings_protected > parent_effective)
6301 return protected * parent_effective / siblings_protected;
6302
6303 /*
6304 * Ok, utilized protection of all children is within what the
6305 * parent affords them, so we know whatever this child claims
6306 * and utilizes is effectively protected.
6307 *
6308 * If there is unprotected usage beyond this value, reclaim
6309 * will apply pressure in proportion to that amount.
6310 *
6311 * If there is unutilized protection, the cgroup will be fully
6312 * shielded from reclaim, but we do return a smaller value for
6313 * protection than what the group could enjoy in theory. This
6314 * is okay. With the overcommit distribution above, effective
6315 * protection is always dependent on how memory is actually
6316 * consumed among the siblings anyway.
6317 */
8a931f80
JW
6318 ep = protected;
6319
6320 /*
6321 * If the children aren't claiming (all of) the protection
6322 * afforded to them by the parent, distribute the remainder in
6323 * proportion to the (unprotected) memory of each cgroup. That
6324 * way, cgroups that aren't explicitly prioritized wrt each
6325 * other compete freely over the allowance, but they are
6326 * collectively protected from neighboring trees.
6327 *
6328 * We're using unprotected memory for the weight so that if
6329 * some cgroups DO claim explicit protection, we don't protect
6330 * the same bytes twice.
6331 */
6332 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6333 return ep;
6334
6335 if (parent_effective > siblings_protected && usage > protected) {
6336 unsigned long unclaimed;
6337
6338 unclaimed = parent_effective - siblings_protected;
6339 unclaimed *= usage - protected;
6340 unclaimed /= parent_usage - siblings_protected;
6341
6342 ep += unclaimed;
6343 }
6344
6345 return ep;
bc50bcc6
JW
6346}
6347
241994ed 6348/**
bf8d5d52 6349 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6350 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6351 * @memcg: the memory cgroup to check
6352 *
23067153
RG
6353 * WARNING: This function is not stateless! It can only be used as part
6354 * of a top-down tree iteration, not for isolated queries.
34c81057 6355 *
bf8d5d52
RG
6356 * Returns one of the following:
6357 * MEMCG_PROT_NONE: cgroup memory is not protected
6358 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6359 * an unprotected supply of reclaimable memory from other cgroups.
6360 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6361 */
bf8d5d52
RG
6362enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6363 struct mem_cgroup *memcg)
241994ed 6364{
8a931f80 6365 unsigned long usage, parent_usage;
23067153
RG
6366 struct mem_cgroup *parent;
6367
241994ed 6368 if (mem_cgroup_disabled())
bf8d5d52 6369 return MEMCG_PROT_NONE;
241994ed 6370
34c81057
SC
6371 if (!root)
6372 root = root_mem_cgroup;
6373 if (memcg == root)
bf8d5d52 6374 return MEMCG_PROT_NONE;
241994ed 6375
23067153 6376 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6377 if (!usage)
6378 return MEMCG_PROT_NONE;
6379
bf8d5d52 6380 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6381 /* No parent means a non-hierarchical mode on v1 memcg */
6382 if (!parent)
6383 return MEMCG_PROT_NONE;
6384
bc50bcc6
JW
6385 if (parent == root) {
6386 memcg->memory.emin = memcg->memory.min;
6387 memcg->memory.elow = memcg->memory.low;
6388 goto out;
bf8d5d52
RG
6389 }
6390
8a931f80
JW
6391 parent_usage = page_counter_read(&parent->memory);
6392
6393 memcg->memory.emin = effective_protection(usage, parent_usage,
bc50bcc6
JW
6394 memcg->memory.min, READ_ONCE(parent->memory.emin),
6395 atomic_long_read(&parent->memory.children_min_usage));
23067153 6396
8a931f80 6397 memcg->memory.elow = effective_protection(usage, parent_usage,
bc50bcc6
JW
6398 memcg->memory.low, READ_ONCE(parent->memory.elow),
6399 atomic_long_read(&parent->memory.children_low_usage));
23067153 6400
bc50bcc6
JW
6401out:
6402 if (usage <= memcg->memory.emin)
bf8d5d52 6403 return MEMCG_PROT_MIN;
bc50bcc6 6404 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6405 return MEMCG_PROT_LOW;
6406 else
6407 return MEMCG_PROT_NONE;
241994ed
JW
6408}
6409
00501b53
JW
6410/**
6411 * mem_cgroup_try_charge - try charging a page
6412 * @page: page to charge
6413 * @mm: mm context of the victim
6414 * @gfp_mask: reclaim mode
6415 * @memcgp: charged memcg return
25843c2b 6416 * @compound: charge the page as compound or small page
00501b53
JW
6417 *
6418 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6419 * pages according to @gfp_mask if necessary.
6420 *
6421 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6422 * Otherwise, an error code is returned.
6423 *
6424 * After page->mapping has been set up, the caller must finalize the
6425 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6426 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6427 */
6428int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6429 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6430 bool compound)
00501b53
JW
6431{
6432 struct mem_cgroup *memcg = NULL;
f627c2f5 6433 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6434 int ret = 0;
6435
6436 if (mem_cgroup_disabled())
6437 goto out;
6438
6439 if (PageSwapCache(page)) {
00501b53
JW
6440 /*
6441 * Every swap fault against a single page tries to charge the
6442 * page, bail as early as possible. shmem_unuse() encounters
6443 * already charged pages, too. The USED bit is protected by
6444 * the page lock, which serializes swap cache removal, which
6445 * in turn serializes uncharging.
6446 */
e993d905 6447 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6448 if (compound_head(page)->mem_cgroup)
00501b53 6449 goto out;
e993d905 6450
37e84351 6451 if (do_swap_account) {
e993d905
VD
6452 swp_entry_t ent = { .val = page_private(page), };
6453 unsigned short id = lookup_swap_cgroup_id(ent);
6454
6455 rcu_read_lock();
6456 memcg = mem_cgroup_from_id(id);
6457 if (memcg && !css_tryget_online(&memcg->css))
6458 memcg = NULL;
6459 rcu_read_unlock();
6460 }
00501b53
JW
6461 }
6462
00501b53
JW
6463 if (!memcg)
6464 memcg = get_mem_cgroup_from_mm(mm);
6465
6466 ret = try_charge(memcg, gfp_mask, nr_pages);
6467
6468 css_put(&memcg->css);
00501b53
JW
6469out:
6470 *memcgp = memcg;
6471 return ret;
6472}
6473
2cf85583
TH
6474int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6475 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6476 bool compound)
6477{
6478 struct mem_cgroup *memcg;
6479 int ret;
6480
6481 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6482 memcg = *memcgp;
6483 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6484 return ret;
6485}
6486
00501b53
JW
6487/**
6488 * mem_cgroup_commit_charge - commit a page charge
6489 * @page: page to charge
6490 * @memcg: memcg to charge the page to
6491 * @lrucare: page might be on LRU already
25843c2b 6492 * @compound: charge the page as compound or small page
00501b53
JW
6493 *
6494 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6495 * after page->mapping has been set up. This must happen atomically
6496 * as part of the page instantiation, i.e. under the page table lock
6497 * for anonymous pages, under the page lock for page and swap cache.
6498 *
6499 * In addition, the page must not be on the LRU during the commit, to
6500 * prevent racing with task migration. If it might be, use @lrucare.
6501 *
6502 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6503 */
6504void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6505 bool lrucare, bool compound)
00501b53 6506{
f627c2f5 6507 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6508
6509 VM_BUG_ON_PAGE(!page->mapping, page);
6510 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6511
6512 if (mem_cgroup_disabled())
6513 return;
6514 /*
6515 * Swap faults will attempt to charge the same page multiple
6516 * times. But reuse_swap_page() might have removed the page
6517 * from swapcache already, so we can't check PageSwapCache().
6518 */
6519 if (!memcg)
6520 return;
6521
6abb5a86
JW
6522 commit_charge(page, memcg, lrucare);
6523
6abb5a86 6524 local_irq_disable();
f627c2f5 6525 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6526 memcg_check_events(memcg, page);
6527 local_irq_enable();
00501b53 6528
7941d214 6529 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6530 swp_entry_t entry = { .val = page_private(page) };
6531 /*
6532 * The swap entry might not get freed for a long time,
6533 * let's not wait for it. The page already received a
6534 * memory+swap charge, drop the swap entry duplicate.
6535 */
38d8b4e6 6536 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6537 }
6538}
6539
6540/**
6541 * mem_cgroup_cancel_charge - cancel a page charge
6542 * @page: page to charge
6543 * @memcg: memcg to charge the page to
25843c2b 6544 * @compound: charge the page as compound or small page
00501b53
JW
6545 *
6546 * Cancel a charge transaction started by mem_cgroup_try_charge().
6547 */
f627c2f5
KS
6548void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6549 bool compound)
00501b53 6550{
f627c2f5 6551 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6552
6553 if (mem_cgroup_disabled())
6554 return;
6555 /*
6556 * Swap faults will attempt to charge the same page multiple
6557 * times. But reuse_swap_page() might have removed the page
6558 * from swapcache already, so we can't check PageSwapCache().
6559 */
6560 if (!memcg)
6561 return;
6562
00501b53
JW
6563 cancel_charge(memcg, nr_pages);
6564}
6565
a9d5adee
JG
6566struct uncharge_gather {
6567 struct mem_cgroup *memcg;
6568 unsigned long pgpgout;
6569 unsigned long nr_anon;
6570 unsigned long nr_file;
6571 unsigned long nr_kmem;
6572 unsigned long nr_huge;
6573 unsigned long nr_shmem;
6574 struct page *dummy_page;
6575};
6576
6577static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6578{
a9d5adee
JG
6579 memset(ug, 0, sizeof(*ug));
6580}
6581
6582static void uncharge_batch(const struct uncharge_gather *ug)
6583{
6584 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6585 unsigned long flags;
6586
a9d5adee
JG
6587 if (!mem_cgroup_is_root(ug->memcg)) {
6588 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6589 if (do_memsw_account())
a9d5adee
JG
6590 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6592 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6593 memcg_oom_recover(ug->memcg);
ce00a967 6594 }
747db954
JW
6595
6596 local_irq_save(flags);
c9019e9b
JW
6597 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6598 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6599 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6600 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6601 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6602 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6603 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6604 local_irq_restore(flags);
e8ea14cc 6605
a9d5adee
JG
6606 if (!mem_cgroup_is_root(ug->memcg))
6607 css_put_many(&ug->memcg->css, nr_pages);
6608}
6609
6610static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6611{
6612 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6613 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6614 !PageHWPoison(page) , page);
a9d5adee
JG
6615
6616 if (!page->mem_cgroup)
6617 return;
6618
6619 /*
6620 * Nobody should be changing or seriously looking at
6621 * page->mem_cgroup at this point, we have fully
6622 * exclusive access to the page.
6623 */
6624
6625 if (ug->memcg != page->mem_cgroup) {
6626 if (ug->memcg) {
6627 uncharge_batch(ug);
6628 uncharge_gather_clear(ug);
6629 }
6630 ug->memcg = page->mem_cgroup;
6631 }
6632
6633 if (!PageKmemcg(page)) {
6634 unsigned int nr_pages = 1;
6635
6636 if (PageTransHuge(page)) {
d8c6546b 6637 nr_pages = compound_nr(page);
a9d5adee
JG
6638 ug->nr_huge += nr_pages;
6639 }
6640 if (PageAnon(page))
6641 ug->nr_anon += nr_pages;
6642 else {
6643 ug->nr_file += nr_pages;
6644 if (PageSwapBacked(page))
6645 ug->nr_shmem += nr_pages;
6646 }
6647 ug->pgpgout++;
6648 } else {
d8c6546b 6649 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6650 __ClearPageKmemcg(page);
6651 }
6652
6653 ug->dummy_page = page;
6654 page->mem_cgroup = NULL;
747db954
JW
6655}
6656
6657static void uncharge_list(struct list_head *page_list)
6658{
a9d5adee 6659 struct uncharge_gather ug;
747db954 6660 struct list_head *next;
a9d5adee
JG
6661
6662 uncharge_gather_clear(&ug);
747db954 6663
8b592656
JW
6664 /*
6665 * Note that the list can be a single page->lru; hence the
6666 * do-while loop instead of a simple list_for_each_entry().
6667 */
747db954
JW
6668 next = page_list->next;
6669 do {
a9d5adee
JG
6670 struct page *page;
6671
747db954
JW
6672 page = list_entry(next, struct page, lru);
6673 next = page->lru.next;
6674
a9d5adee 6675 uncharge_page(page, &ug);
747db954
JW
6676 } while (next != page_list);
6677
a9d5adee
JG
6678 if (ug.memcg)
6679 uncharge_batch(&ug);
747db954
JW
6680}
6681
0a31bc97
JW
6682/**
6683 * mem_cgroup_uncharge - uncharge a page
6684 * @page: page to uncharge
6685 *
6686 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6687 * mem_cgroup_commit_charge().
6688 */
6689void mem_cgroup_uncharge(struct page *page)
6690{
a9d5adee
JG
6691 struct uncharge_gather ug;
6692
0a31bc97
JW
6693 if (mem_cgroup_disabled())
6694 return;
6695
747db954 6696 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6697 if (!page->mem_cgroup)
0a31bc97
JW
6698 return;
6699
a9d5adee
JG
6700 uncharge_gather_clear(&ug);
6701 uncharge_page(page, &ug);
6702 uncharge_batch(&ug);
747db954 6703}
0a31bc97 6704
747db954
JW
6705/**
6706 * mem_cgroup_uncharge_list - uncharge a list of page
6707 * @page_list: list of pages to uncharge
6708 *
6709 * Uncharge a list of pages previously charged with
6710 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6711 */
6712void mem_cgroup_uncharge_list(struct list_head *page_list)
6713{
6714 if (mem_cgroup_disabled())
6715 return;
0a31bc97 6716
747db954
JW
6717 if (!list_empty(page_list))
6718 uncharge_list(page_list);
0a31bc97
JW
6719}
6720
6721/**
6a93ca8f
JW
6722 * mem_cgroup_migrate - charge a page's replacement
6723 * @oldpage: currently circulating page
6724 * @newpage: replacement page
0a31bc97 6725 *
6a93ca8f
JW
6726 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6727 * be uncharged upon free.
0a31bc97
JW
6728 *
6729 * Both pages must be locked, @newpage->mapping must be set up.
6730 */
6a93ca8f 6731void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6732{
29833315 6733 struct mem_cgroup *memcg;
44b7a8d3 6734 unsigned int nr_pages;
d93c4130 6735 unsigned long flags;
0a31bc97
JW
6736
6737 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6738 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6739 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6740 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6741 newpage);
0a31bc97
JW
6742
6743 if (mem_cgroup_disabled())
6744 return;
6745
6746 /* Page cache replacement: new page already charged? */
1306a85a 6747 if (newpage->mem_cgroup)
0a31bc97
JW
6748 return;
6749
45637bab 6750 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6751 memcg = oldpage->mem_cgroup;
29833315 6752 if (!memcg)
0a31bc97
JW
6753 return;
6754
44b7a8d3 6755 /* Force-charge the new page. The old one will be freed soon */
92855270 6756 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6757
6758 page_counter_charge(&memcg->memory, nr_pages);
6759 if (do_memsw_account())
6760 page_counter_charge(&memcg->memsw, nr_pages);
6761 css_get_many(&memcg->css, nr_pages);
0a31bc97 6762
9cf7666a 6763 commit_charge(newpage, memcg, false);
44b7a8d3 6764
d93c4130 6765 local_irq_save(flags);
92855270
KC
6766 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6767 nr_pages);
44b7a8d3 6768 memcg_check_events(memcg, newpage);
d93c4130 6769 local_irq_restore(flags);
0a31bc97
JW
6770}
6771
ef12947c 6772DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6773EXPORT_SYMBOL(memcg_sockets_enabled_key);
6774
2d758073 6775void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6776{
6777 struct mem_cgroup *memcg;
6778
2d758073
JW
6779 if (!mem_cgroup_sockets_enabled)
6780 return;
6781
e876ecc6
SB
6782 /* Do not associate the sock with unrelated interrupted task's memcg. */
6783 if (in_interrupt())
6784 return;
6785
11092087
JW
6786 rcu_read_lock();
6787 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6788 if (memcg == root_mem_cgroup)
6789 goto out;
0db15298 6790 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6791 goto out;
f7e1cb6e 6792 if (css_tryget_online(&memcg->css))
11092087 6793 sk->sk_memcg = memcg;
f7e1cb6e 6794out:
11092087
JW
6795 rcu_read_unlock();
6796}
11092087 6797
2d758073 6798void mem_cgroup_sk_free(struct sock *sk)
11092087 6799{
2d758073
JW
6800 if (sk->sk_memcg)
6801 css_put(&sk->sk_memcg->css);
11092087
JW
6802}
6803
6804/**
6805 * mem_cgroup_charge_skmem - charge socket memory
6806 * @memcg: memcg to charge
6807 * @nr_pages: number of pages to charge
6808 *
6809 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6810 * @memcg's configured limit, %false if the charge had to be forced.
6811 */
6812bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6813{
f7e1cb6e 6814 gfp_t gfp_mask = GFP_KERNEL;
11092087 6815
f7e1cb6e 6816 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6817 struct page_counter *fail;
f7e1cb6e 6818
0db15298
JW
6819 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6820 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6821 return true;
6822 }
0db15298
JW
6823 page_counter_charge(&memcg->tcpmem, nr_pages);
6824 memcg->tcpmem_pressure = 1;
f7e1cb6e 6825 return false;
11092087 6826 }
d886f4e4 6827
f7e1cb6e
JW
6828 /* Don't block in the packet receive path */
6829 if (in_softirq())
6830 gfp_mask = GFP_NOWAIT;
6831
c9019e9b 6832 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6833
f7e1cb6e
JW
6834 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6835 return true;
6836
6837 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6838 return false;
6839}
6840
6841/**
6842 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6843 * @memcg: memcg to uncharge
6844 * @nr_pages: number of pages to uncharge
11092087
JW
6845 */
6846void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6847{
f7e1cb6e 6848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6849 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6850 return;
6851 }
d886f4e4 6852
c9019e9b 6853 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6854
475d0487 6855 refill_stock(memcg, nr_pages);
11092087
JW
6856}
6857
f7e1cb6e
JW
6858static int __init cgroup_memory(char *s)
6859{
6860 char *token;
6861
6862 while ((token = strsep(&s, ",")) != NULL) {
6863 if (!*token)
6864 continue;
6865 if (!strcmp(token, "nosocket"))
6866 cgroup_memory_nosocket = true;
04823c83
VD
6867 if (!strcmp(token, "nokmem"))
6868 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6869 }
6870 return 0;
6871}
6872__setup("cgroup.memory=", cgroup_memory);
11092087 6873
2d11085e 6874/*
1081312f
MH
6875 * subsys_initcall() for memory controller.
6876 *
308167fc
SAS
6877 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6878 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6879 * basically everything that doesn't depend on a specific mem_cgroup structure
6880 * should be initialized from here.
2d11085e
MH
6881 */
6882static int __init mem_cgroup_init(void)
6883{
95a045f6
JW
6884 int cpu, node;
6885
84c07d11 6886#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6887 /*
6888 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6889 * so use a workqueue with limited concurrency to avoid stalling
6890 * all worker threads in case lots of cgroups are created and
6891 * destroyed simultaneously.
13583c3d 6892 */
17cc4dfe
TH
6893 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6894 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6895#endif
6896
308167fc
SAS
6897 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6898 memcg_hotplug_cpu_dead);
95a045f6
JW
6899
6900 for_each_possible_cpu(cpu)
6901 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6902 drain_local_stock);
6903
6904 for_each_node(node) {
6905 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6906
6907 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6908 node_online(node) ? node : NUMA_NO_NODE);
6909
ef8f2327 6910 rtpn->rb_root = RB_ROOT;
fa90b2fd 6911 rtpn->rb_rightmost = NULL;
ef8f2327 6912 spin_lock_init(&rtpn->lock);
95a045f6
JW
6913 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6914 }
6915
2d11085e
MH
6916 return 0;
6917}
6918subsys_initcall(mem_cgroup_init);
21afa38e
JW
6919
6920#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6921static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6922{
1c2d479a 6923 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6924 /*
6925 * The root cgroup cannot be destroyed, so it's refcount must
6926 * always be >= 1.
6927 */
6928 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6929 VM_BUG_ON(1);
6930 break;
6931 }
6932 memcg = parent_mem_cgroup(memcg);
6933 if (!memcg)
6934 memcg = root_mem_cgroup;
6935 }
6936 return memcg;
6937}
6938
21afa38e
JW
6939/**
6940 * mem_cgroup_swapout - transfer a memsw charge to swap
6941 * @page: page whose memsw charge to transfer
6942 * @entry: swap entry to move the charge to
6943 *
6944 * Transfer the memsw charge of @page to @entry.
6945 */
6946void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6947{
1f47b61f 6948 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6949 unsigned int nr_entries;
21afa38e
JW
6950 unsigned short oldid;
6951
6952 VM_BUG_ON_PAGE(PageLRU(page), page);
6953 VM_BUG_ON_PAGE(page_count(page), page);
6954
7941d214 6955 if (!do_memsw_account())
21afa38e
JW
6956 return;
6957
6958 memcg = page->mem_cgroup;
6959
6960 /* Readahead page, never charged */
6961 if (!memcg)
6962 return;
6963
1f47b61f
VD
6964 /*
6965 * In case the memcg owning these pages has been offlined and doesn't
6966 * have an ID allocated to it anymore, charge the closest online
6967 * ancestor for the swap instead and transfer the memory+swap charge.
6968 */
6969 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6970 nr_entries = hpage_nr_pages(page);
6971 /* Get references for the tail pages, too */
6972 if (nr_entries > 1)
6973 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6974 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6975 nr_entries);
21afa38e 6976 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6977 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6978
6979 page->mem_cgroup = NULL;
6980
6981 if (!mem_cgroup_is_root(memcg))
d6810d73 6982 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6983
1f47b61f
VD
6984 if (memcg != swap_memcg) {
6985 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6986 page_counter_charge(&swap_memcg->memsw, nr_entries);
6987 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6988 }
6989
ce9ce665
SAS
6990 /*
6991 * Interrupts should be disabled here because the caller holds the
b93b0163 6992 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6993 * important here to have the interrupts disabled because it is the
b93b0163 6994 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6995 */
6996 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6997 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6998 -nr_entries);
21afa38e 6999 memcg_check_events(memcg, page);
73f576c0
JW
7000
7001 if (!mem_cgroup_is_root(memcg))
d08afa14 7002 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7003}
7004
38d8b4e6
HY
7005/**
7006 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7007 * @page: page being added to swap
7008 * @entry: swap entry to charge
7009 *
38d8b4e6 7010 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7011 *
7012 * Returns 0 on success, -ENOMEM on failure.
7013 */
7014int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7015{
38d8b4e6 7016 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7017 struct page_counter *counter;
38d8b4e6 7018 struct mem_cgroup *memcg;
37e84351
VD
7019 unsigned short oldid;
7020
7021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7022 return 0;
7023
7024 memcg = page->mem_cgroup;
7025
7026 /* Readahead page, never charged */
7027 if (!memcg)
7028 return 0;
7029
f3a53a3a
TH
7030 if (!entry.val) {
7031 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7032 return 0;
f3a53a3a 7033 }
bb98f2c5 7034
1f47b61f
VD
7035 memcg = mem_cgroup_id_get_online(memcg);
7036
37e84351 7037 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7038 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7039 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7040 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7041 mem_cgroup_id_put(memcg);
37e84351 7042 return -ENOMEM;
1f47b61f 7043 }
37e84351 7044
38d8b4e6
HY
7045 /* Get references for the tail pages, too */
7046 if (nr_pages > 1)
7047 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7048 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7049 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7050 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7051
37e84351
VD
7052 return 0;
7053}
7054
21afa38e 7055/**
38d8b4e6 7056 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7057 * @entry: swap entry to uncharge
38d8b4e6 7058 * @nr_pages: the amount of swap space to uncharge
21afa38e 7059 */
38d8b4e6 7060void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7061{
7062 struct mem_cgroup *memcg;
7063 unsigned short id;
7064
37e84351 7065 if (!do_swap_account)
21afa38e
JW
7066 return;
7067
38d8b4e6 7068 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7069 rcu_read_lock();
adbe427b 7070 memcg = mem_cgroup_from_id(id);
21afa38e 7071 if (memcg) {
37e84351
VD
7072 if (!mem_cgroup_is_root(memcg)) {
7073 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7074 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7075 else
38d8b4e6 7076 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7077 }
c9019e9b 7078 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7079 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7080 }
7081 rcu_read_unlock();
7082}
7083
d8b38438
VD
7084long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7085{
7086 long nr_swap_pages = get_nr_swap_pages();
7087
7088 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7089 return nr_swap_pages;
7090 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7091 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7092 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7093 page_counter_read(&memcg->swap));
7094 return nr_swap_pages;
7095}
7096
5ccc5aba
VD
7097bool mem_cgroup_swap_full(struct page *page)
7098{
7099 struct mem_cgroup *memcg;
7100
7101 VM_BUG_ON_PAGE(!PageLocked(page), page);
7102
7103 if (vm_swap_full())
7104 return true;
7105 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7106 return false;
7107
7108 memcg = page->mem_cgroup;
7109 if (!memcg)
7110 return false;
7111
7112 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7113 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7114 return true;
7115
7116 return false;
7117}
7118
21afa38e
JW
7119/* for remember boot option*/
7120#ifdef CONFIG_MEMCG_SWAP_ENABLED
7121static int really_do_swap_account __initdata = 1;
7122#else
7123static int really_do_swap_account __initdata;
7124#endif
7125
7126static int __init enable_swap_account(char *s)
7127{
7128 if (!strcmp(s, "1"))
7129 really_do_swap_account = 1;
7130 else if (!strcmp(s, "0"))
7131 really_do_swap_account = 0;
7132 return 1;
7133}
7134__setup("swapaccount=", enable_swap_account);
7135
37e84351
VD
7136static u64 swap_current_read(struct cgroup_subsys_state *css,
7137 struct cftype *cft)
7138{
7139 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7140
7141 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7142}
7143
7144static int swap_max_show(struct seq_file *m, void *v)
7145{
677dc973
CD
7146 return seq_puts_memcg_tunable(m,
7147 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7148}
7149
7150static ssize_t swap_max_write(struct kernfs_open_file *of,
7151 char *buf, size_t nbytes, loff_t off)
7152{
7153 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7154 unsigned long max;
7155 int err;
7156
7157 buf = strstrip(buf);
7158 err = page_counter_memparse(buf, "max", &max);
7159 if (err)
7160 return err;
7161
be09102b 7162 xchg(&memcg->swap.max, max);
37e84351
VD
7163
7164 return nbytes;
7165}
7166
f3a53a3a
TH
7167static int swap_events_show(struct seq_file *m, void *v)
7168{
aa9694bb 7169 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7170
7171 seq_printf(m, "max %lu\n",
7172 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7173 seq_printf(m, "fail %lu\n",
7174 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7175
7176 return 0;
7177}
7178
37e84351
VD
7179static struct cftype swap_files[] = {
7180 {
7181 .name = "swap.current",
7182 .flags = CFTYPE_NOT_ON_ROOT,
7183 .read_u64 = swap_current_read,
7184 },
7185 {
7186 .name = "swap.max",
7187 .flags = CFTYPE_NOT_ON_ROOT,
7188 .seq_show = swap_max_show,
7189 .write = swap_max_write,
7190 },
f3a53a3a
TH
7191 {
7192 .name = "swap.events",
7193 .flags = CFTYPE_NOT_ON_ROOT,
7194 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7195 .seq_show = swap_events_show,
7196 },
37e84351
VD
7197 { } /* terminate */
7198};
7199
21afa38e
JW
7200static struct cftype memsw_cgroup_files[] = {
7201 {
7202 .name = "memsw.usage_in_bytes",
7203 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7204 .read_u64 = mem_cgroup_read_u64,
7205 },
7206 {
7207 .name = "memsw.max_usage_in_bytes",
7208 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7209 .write = mem_cgroup_reset,
7210 .read_u64 = mem_cgroup_read_u64,
7211 },
7212 {
7213 .name = "memsw.limit_in_bytes",
7214 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7215 .write = mem_cgroup_write,
7216 .read_u64 = mem_cgroup_read_u64,
7217 },
7218 {
7219 .name = "memsw.failcnt",
7220 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7221 .write = mem_cgroup_reset,
7222 .read_u64 = mem_cgroup_read_u64,
7223 },
7224 { }, /* terminate */
7225};
7226
7227static int __init mem_cgroup_swap_init(void)
7228{
7229 if (!mem_cgroup_disabled() && really_do_swap_account) {
7230 do_swap_account = 1;
37e84351
VD
7231 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7232 swap_files));
21afa38e
JW
7233 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7234 memsw_cgroup_files));
7235 }
7236 return 0;
7237}
7238subsys_initcall(mem_cgroup_swap_init);
7239
7240#endif /* CONFIG_MEMCG_SWAP */