]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm/usercopy: use memory range to be accessed for wraparound check
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
c8713d0b 60#include <linux/seq_buf.h>
08e552c6 61#include "internal.h"
d1a4c0b3 62#include <net/sock.h>
4bd2c1ee 63#include <net/ip.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
7c0f6ba6 66#include <linux/uaccess.h>
8697d331 67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
073219e9
TH
70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 72
7d828602
JW
73struct mem_cgroup *root_mem_cgroup __read_mostly;
74
a181b0e8 75#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 76
f7e1cb6e
JW
77/* Socket memory accounting disabled? */
78static bool cgroup_memory_nosocket;
79
04823c83
VD
80/* Kernel memory accounting disabled? */
81static bool cgroup_memory_nokmem;
82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
71cd3113 96static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102};
103
a0db00fc
KS
104#define THRESHOLDS_EVENTS_TARGET 128
105#define SOFTLIMIT_EVENTS_TARGET 1024
106#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
217bc319
KH
206enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 208 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
211 NR_CHARGE_TYPE,
212};
213
8c7c6e34 214/* for encoding cft->private value on file */
86ae53e1
GC
215enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
510fc4e1 219 _KMEM,
d55f90bf 220 _TCP,
86ae53e1
GC
221};
222
a0db00fc
KS
223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 225#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
226/* Used for OOM nofiier */
227#define OOM_CONTROL (0)
8c7c6e34 228
b05706f1
KT
229/*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234#define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239#define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
7775face
TH
244static inline bool should_force_charge(void)
245{
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248}
249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
84c07d11 263#ifdef CONFIG_MEMCG_KMEM
55007d84 264/*
f7ce3190 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
55007d84 271 *
dbcf73e2
VD
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
55007d84 274 */
dbcf73e2
VD
275static DEFINE_IDA(memcg_cache_ida);
276int memcg_nr_cache_ids;
749c5415 277
05257a1a
VD
278/* Protects memcg_nr_cache_ids */
279static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281void memcg_get_cache_ids(void)
282{
283 down_read(&memcg_cache_ids_sem);
284}
285
286void memcg_put_cache_ids(void)
287{
288 up_read(&memcg_cache_ids_sem);
289}
290
55007d84
GC
291/*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
b8627835 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
301 * increase ours as well if it increases.
302 */
303#define MEMCG_CACHES_MIN_SIZE 4
b8627835 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 305
d7f25f8a
GC
306/*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
ef12947c 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 314
17cc4dfe
TH
315struct workqueue_struct *memcg_kmem_cache_wq;
316
0a4465d3
KT
317static int memcg_shrinker_map_size;
318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321{
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323}
324
325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327{
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353}
354
355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356{
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371}
372
373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374{
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395}
396
397int memcg_expand_shrinker_maps(int new_id)
398{
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423}
fae91d6d
KT
424
425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426{
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
fae91d6d
KT
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437}
438
0a4465d3
KT
439#else /* CONFIG_MEMCG_KMEM */
440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441{
442 return 0;
443}
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 445#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 446
ad7fa852
TH
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
ad7fa852
TH
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
ad7fa852
TH
462 memcg = page->mem_cgroup;
463
9e10a130 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
465 memcg = root_mem_cgroup;
466
ad7fa852
TH
467 return &memcg->css;
468}
469
2fc04524
VD
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
4d96ba35
RG
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
ef8f2327
MG
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b 504 int nid = page_to_nid(page);
f64c3f54 505
ef8f2327 506 return memcg->nodeinfo[nid];
f64c3f54
BS
507}
508
ef8f2327
MG
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
bb4cc1a8 511{
ef8f2327 512 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
513}
514
ef8f2327 515static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
bb4cc1a8 519
ef8f2327 520 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
521}
522
ef8f2327
MG
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 525 unsigned long new_usage_in_excess)
bb4cc1a8
AM
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
ef8f2327 529 struct mem_cgroup_per_node *mz_node;
fa90b2fd 530 bool rightmost = true;
bb4cc1a8
AM
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
ef8f2327 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 541 tree_node);
fa90b2fd 542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 543 p = &(*p)->rb_left;
fa90b2fd
DB
544 rightmost = false;
545 }
546
bb4cc1a8
AM
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
fa90b2fd
DB
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
bb4cc1a8
AM
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
ef8f2327
MG
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
565{
566 if (!mz->on_tree)
567 return;
fa90b2fd
DB
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
bb4cc1a8
AM
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
ef8f2327
MG
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 578{
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 582 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584}
585
3e32cb2e
JW
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
bb4cc1a8
AM
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
3e32cb2e 600 unsigned long excess;
ef8f2327
MG
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 603
e231875b 604 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
605 if (!mctz)
606 return;
bb4cc1a8
AM
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 612 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 613 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
0a31bc97
JW
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
622 /* if on-tree, remove it */
623 if (mz->on_tree)
cf2c8127 624 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
cf2c8127 629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 630 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
ef8f2327
MG
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
bb4cc1a8 640
e231875b 641 for_each_node(nid) {
ef8f2327
MG
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
646 }
647}
648
ef8f2327
MG
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 651{
ef8f2327 652 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
653
654retry:
655 mz = NULL;
fa90b2fd 656 if (!mctz->rb_rightmost)
bb4cc1a8
AM
657 goto done; /* Nothing to reclaim from */
658
fa90b2fd
DB
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
cf2c8127 666 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 667 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 668 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
669 goto retry;
670done:
671 return mz;
672}
673
ef8f2327
MG
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 676{
ef8f2327 677 struct mem_cgroup_per_node *mz;
bb4cc1a8 678
0a31bc97 679 spin_lock_irq(&mctz->lock);
bb4cc1a8 680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 681 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
682 return mz;
683}
684
db9adbcb
JW
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
700 struct mem_cgroup *mi;
701
766a4c19
YS
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712}
713
42a30035
JW
714static struct mem_cgroup_per_node *
715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716{
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723}
724
db9adbcb
JW
725/**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737{
42a30035 738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 739 struct mem_cgroup_per_node *pn;
42a30035 740 struct mem_cgroup *memcg;
db9adbcb
JW
741 long x;
742
743 /* Update node */
42a30035 744 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 750 memcg = pn->memcg;
db9adbcb
JW
751
752 /* Update memcg */
42a30035 753 __mod_memcg_state(memcg, idx, val);
db9adbcb 754
db9adbcb
JW
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
757 struct mem_cgroup_per_node *pi;
758
766a4c19
YS
759 /*
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
762 */
763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
42a30035
JW
764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
766 x = 0;
767 }
768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769}
770
771/**
772 * __count_memcg_events - account VM events in a cgroup
773 * @memcg: the memory cgroup
774 * @idx: the event item
775 * @count: the number of events that occured
776 */
777void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
778 unsigned long count)
779{
780 unsigned long x;
781
782 if (mem_cgroup_disabled())
783 return;
784
785 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
786 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
787 struct mem_cgroup *mi;
788
766a4c19
YS
789 /*
790 * Batch local counters to keep them in sync with
791 * the hierarchical ones.
792 */
793 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
794 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
795 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
796 x = 0;
797 }
798 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
799}
800
42a30035 801static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 802{
871789d4 803 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
804}
805
42a30035
JW
806static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
807{
815744d7
JW
808 long x = 0;
809 int cpu;
810
811 for_each_possible_cpu(cpu)
812 x += per_cpu(memcg->vmstats_local->events[event], cpu);
813 return x;
42a30035
JW
814}
815
c0ff4b85 816static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 817 struct page *page,
f627c2f5 818 bool compound, int nr_pages)
d52aa412 819{
b2402857
KH
820 /*
821 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
822 * counted as CACHE even if it's on ANON LRU.
823 */
0a31bc97 824 if (PageAnon(page))
c9019e9b 825 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 826 else {
c9019e9b 827 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 828 if (PageSwapBacked(page))
c9019e9b 829 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 830 }
55e462b0 831
f627c2f5
KS
832 if (compound) {
833 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 834 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 835 }
b070e65c 836
e401f176
KH
837 /* pagein of a big page is an event. So, ignore page size */
838 if (nr_pages > 0)
c9019e9b 839 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 840 else {
c9019e9b 841 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
842 nr_pages = -nr_pages; /* for event */
843 }
e401f176 844
871789d4 845 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
846}
847
f53d7ce3
JW
848static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
849 enum mem_cgroup_events_target target)
7a159cc9
JW
850{
851 unsigned long val, next;
852
871789d4
CD
853 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
854 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 855 /* from time_after() in jiffies.h */
6a1a8b80 856 if ((long)(next - val) < 0) {
f53d7ce3
JW
857 switch (target) {
858 case MEM_CGROUP_TARGET_THRESH:
859 next = val + THRESHOLDS_EVENTS_TARGET;
860 break;
bb4cc1a8
AM
861 case MEM_CGROUP_TARGET_SOFTLIMIT:
862 next = val + SOFTLIMIT_EVENTS_TARGET;
863 break;
f53d7ce3
JW
864 case MEM_CGROUP_TARGET_NUMAINFO:
865 next = val + NUMAINFO_EVENTS_TARGET;
866 break;
867 default:
868 break;
869 }
871789d4 870 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 871 return true;
7a159cc9 872 }
f53d7ce3 873 return false;
d2265e6f
KH
874}
875
876/*
877 * Check events in order.
878 *
879 */
c0ff4b85 880static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
881{
882 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
883 if (unlikely(mem_cgroup_event_ratelimit(memcg,
884 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 885 bool do_softlimit;
82b3f2a7 886 bool do_numainfo __maybe_unused;
f53d7ce3 887
bb4cc1a8
AM
888 do_softlimit = mem_cgroup_event_ratelimit(memcg,
889 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
890#if MAX_NUMNODES > 1
891 do_numainfo = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_NUMAINFO);
893#endif
c0ff4b85 894 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
895 if (unlikely(do_softlimit))
896 mem_cgroup_update_tree(memcg, page);
453a9bf3 897#if MAX_NUMNODES > 1
f53d7ce3 898 if (unlikely(do_numainfo))
c0ff4b85 899 atomic_inc(&memcg->numainfo_events);
453a9bf3 900#endif
0a31bc97 901 }
d2265e6f
KH
902}
903
cf475ad2 904struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 905{
31a78f23
BS
906 /*
907 * mm_update_next_owner() may clear mm->owner to NULL
908 * if it races with swapoff, page migration, etc.
909 * So this can be called with p == NULL.
910 */
911 if (unlikely(!p))
912 return NULL;
913
073219e9 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 915}
33398cf2 916EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 917
d46eb14b
SB
918/**
919 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
920 * @mm: mm from which memcg should be extracted. It can be NULL.
921 *
922 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
923 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
924 * returned.
925 */
926struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 927{
d46eb14b
SB
928 struct mem_cgroup *memcg;
929
930 if (mem_cgroup_disabled())
931 return NULL;
0b7f569e 932
54595fe2
KH
933 rcu_read_lock();
934 do {
6f6acb00
MH
935 /*
936 * Page cache insertions can happen withou an
937 * actual mm context, e.g. during disk probing
938 * on boot, loopback IO, acct() writes etc.
939 */
940 if (unlikely(!mm))
df381975 941 memcg = root_mem_cgroup;
6f6acb00
MH
942 else {
943 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
944 if (unlikely(!memcg))
945 memcg = root_mem_cgroup;
946 }
ec903c0c 947 } while (!css_tryget_online(&memcg->css));
54595fe2 948 rcu_read_unlock();
c0ff4b85 949 return memcg;
54595fe2 950}
d46eb14b
SB
951EXPORT_SYMBOL(get_mem_cgroup_from_mm);
952
f745c6f5
SB
953/**
954 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
955 * @page: page from which memcg should be extracted.
956 *
957 * Obtain a reference on page->memcg and returns it if successful. Otherwise
958 * root_mem_cgroup is returned.
959 */
960struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
961{
962 struct mem_cgroup *memcg = page->mem_cgroup;
963
964 if (mem_cgroup_disabled())
965 return NULL;
966
967 rcu_read_lock();
968 if (!memcg || !css_tryget_online(&memcg->css))
969 memcg = root_mem_cgroup;
970 rcu_read_unlock();
971 return memcg;
972}
973EXPORT_SYMBOL(get_mem_cgroup_from_page);
974
d46eb14b
SB
975/**
976 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
977 */
978static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
979{
980 if (unlikely(current->active_memcg)) {
981 struct mem_cgroup *memcg = root_mem_cgroup;
982
983 rcu_read_lock();
984 if (css_tryget_online(&current->active_memcg->css))
985 memcg = current->active_memcg;
986 rcu_read_unlock();
987 return memcg;
988 }
989 return get_mem_cgroup_from_mm(current->mm);
990}
54595fe2 991
5660048c
JW
992/**
993 * mem_cgroup_iter - iterate over memory cgroup hierarchy
994 * @root: hierarchy root
995 * @prev: previously returned memcg, NULL on first invocation
996 * @reclaim: cookie for shared reclaim walks, NULL for full walks
997 *
998 * Returns references to children of the hierarchy below @root, or
999 * @root itself, or %NULL after a full round-trip.
1000 *
1001 * Caller must pass the return value in @prev on subsequent
1002 * invocations for reference counting, or use mem_cgroup_iter_break()
1003 * to cancel a hierarchy walk before the round-trip is complete.
1004 *
b213b54f 1005 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1006 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1007 * reclaimers operating on the same node and priority.
5660048c 1008 */
694fbc0f 1009struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1010 struct mem_cgroup *prev,
694fbc0f 1011 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1012{
33398cf2 1013 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1014 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1015 struct mem_cgroup *memcg = NULL;
5ac8fb31 1016 struct mem_cgroup *pos = NULL;
711d3d2c 1017
694fbc0f
AM
1018 if (mem_cgroup_disabled())
1019 return NULL;
5660048c 1020
9f3a0d09
JW
1021 if (!root)
1022 root = root_mem_cgroup;
7d74b06f 1023
9f3a0d09 1024 if (prev && !reclaim)
5ac8fb31 1025 pos = prev;
14067bb3 1026
9f3a0d09
JW
1027 if (!root->use_hierarchy && root != root_mem_cgroup) {
1028 if (prev)
5ac8fb31 1029 goto out;
694fbc0f 1030 return root;
9f3a0d09 1031 }
14067bb3 1032
542f85f9 1033 rcu_read_lock();
5f578161 1034
5ac8fb31 1035 if (reclaim) {
ef8f2327 1036 struct mem_cgroup_per_node *mz;
5ac8fb31 1037
ef8f2327 1038 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1039 iter = &mz->iter[reclaim->priority];
1040
1041 if (prev && reclaim->generation != iter->generation)
1042 goto out_unlock;
1043
6df38689 1044 while (1) {
4db0c3c2 1045 pos = READ_ONCE(iter->position);
6df38689
VD
1046 if (!pos || css_tryget(&pos->css))
1047 break;
5ac8fb31 1048 /*
6df38689
VD
1049 * css reference reached zero, so iter->position will
1050 * be cleared by ->css_released. However, we should not
1051 * rely on this happening soon, because ->css_released
1052 * is called from a work queue, and by busy-waiting we
1053 * might block it. So we clear iter->position right
1054 * away.
5ac8fb31 1055 */
6df38689
VD
1056 (void)cmpxchg(&iter->position, pos, NULL);
1057 }
5ac8fb31
JW
1058 }
1059
1060 if (pos)
1061 css = &pos->css;
1062
1063 for (;;) {
1064 css = css_next_descendant_pre(css, &root->css);
1065 if (!css) {
1066 /*
1067 * Reclaimers share the hierarchy walk, and a
1068 * new one might jump in right at the end of
1069 * the hierarchy - make sure they see at least
1070 * one group and restart from the beginning.
1071 */
1072 if (!prev)
1073 continue;
1074 break;
527a5ec9 1075 }
7d74b06f 1076
5ac8fb31
JW
1077 /*
1078 * Verify the css and acquire a reference. The root
1079 * is provided by the caller, so we know it's alive
1080 * and kicking, and don't take an extra reference.
1081 */
1082 memcg = mem_cgroup_from_css(css);
14067bb3 1083
5ac8fb31
JW
1084 if (css == &root->css)
1085 break;
14067bb3 1086
0b8f73e1
JW
1087 if (css_tryget(css))
1088 break;
9f3a0d09 1089
5ac8fb31 1090 memcg = NULL;
9f3a0d09 1091 }
5ac8fb31
JW
1092
1093 if (reclaim) {
5ac8fb31 1094 /*
6df38689
VD
1095 * The position could have already been updated by a competing
1096 * thread, so check that the value hasn't changed since we read
1097 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1098 */
6df38689
VD
1099 (void)cmpxchg(&iter->position, pos, memcg);
1100
5ac8fb31
JW
1101 if (pos)
1102 css_put(&pos->css);
1103
1104 if (!memcg)
1105 iter->generation++;
1106 else if (!prev)
1107 reclaim->generation = iter->generation;
9f3a0d09 1108 }
5ac8fb31 1109
542f85f9
MH
1110out_unlock:
1111 rcu_read_unlock();
5ac8fb31 1112out:
c40046f3
MH
1113 if (prev && prev != root)
1114 css_put(&prev->css);
1115
9f3a0d09 1116 return memcg;
14067bb3 1117}
7d74b06f 1118
5660048c
JW
1119/**
1120 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1121 * @root: hierarchy root
1122 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1123 */
1124void mem_cgroup_iter_break(struct mem_cgroup *root,
1125 struct mem_cgroup *prev)
9f3a0d09
JW
1126{
1127 if (!root)
1128 root = root_mem_cgroup;
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131}
7d74b06f 1132
54a83d6b
MC
1133static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1134 struct mem_cgroup *dead_memcg)
6df38689 1135{
6df38689 1136 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1137 struct mem_cgroup_per_node *mz;
1138 int nid;
6df38689
VD
1139 int i;
1140
54a83d6b
MC
1141 for_each_node(nid) {
1142 mz = mem_cgroup_nodeinfo(from, nid);
1143 for (i = 0; i <= DEF_PRIORITY; i++) {
1144 iter = &mz->iter[i];
1145 cmpxchg(&iter->position,
1146 dead_memcg, NULL);
6df38689
VD
1147 }
1148 }
1149}
1150
54a83d6b
MC
1151static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1152{
1153 struct mem_cgroup *memcg = dead_memcg;
1154 struct mem_cgroup *last;
1155
1156 do {
1157 __invalidate_reclaim_iterators(memcg, dead_memcg);
1158 last = memcg;
1159 } while ((memcg = parent_mem_cgroup(memcg)));
1160
1161 /*
1162 * When cgruop1 non-hierarchy mode is used,
1163 * parent_mem_cgroup() does not walk all the way up to the
1164 * cgroup root (root_mem_cgroup). So we have to handle
1165 * dead_memcg from cgroup root separately.
1166 */
1167 if (last != root_mem_cgroup)
1168 __invalidate_reclaim_iterators(root_mem_cgroup,
1169 dead_memcg);
1170}
1171
7c5f64f8
VD
1172/**
1173 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1174 * @memcg: hierarchy root
1175 * @fn: function to call for each task
1176 * @arg: argument passed to @fn
1177 *
1178 * This function iterates over tasks attached to @memcg or to any of its
1179 * descendants and calls @fn for each task. If @fn returns a non-zero
1180 * value, the function breaks the iteration loop and returns the value.
1181 * Otherwise, it will iterate over all tasks and return 0.
1182 *
1183 * This function must not be called for the root memory cgroup.
1184 */
1185int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1186 int (*fn)(struct task_struct *, void *), void *arg)
1187{
1188 struct mem_cgroup *iter;
1189 int ret = 0;
1190
1191 BUG_ON(memcg == root_mem_cgroup);
1192
1193 for_each_mem_cgroup_tree(iter, memcg) {
1194 struct css_task_iter it;
1195 struct task_struct *task;
1196
f168a9a5 1197 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1198 while (!ret && (task = css_task_iter_next(&it)))
1199 ret = fn(task, arg);
1200 css_task_iter_end(&it);
1201 if (ret) {
1202 mem_cgroup_iter_break(memcg, iter);
1203 break;
1204 }
1205 }
1206 return ret;
1207}
1208
925b7673 1209/**
dfe0e773 1210 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1211 * @page: the page
f144c390 1212 * @pgdat: pgdat of the page
dfe0e773
JW
1213 *
1214 * This function is only safe when following the LRU page isolation
1215 * and putback protocol: the LRU lock must be held, and the page must
1216 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1217 */
599d0c95 1218struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1219{
ef8f2327 1220 struct mem_cgroup_per_node *mz;
925b7673 1221 struct mem_cgroup *memcg;
bea8c150 1222 struct lruvec *lruvec;
6d12e2d8 1223
bea8c150 1224 if (mem_cgroup_disabled()) {
599d0c95 1225 lruvec = &pgdat->lruvec;
bea8c150
HD
1226 goto out;
1227 }
925b7673 1228
1306a85a 1229 memcg = page->mem_cgroup;
7512102c 1230 /*
dfe0e773 1231 * Swapcache readahead pages are added to the LRU - and
29833315 1232 * possibly migrated - before they are charged.
7512102c 1233 */
29833315
JW
1234 if (!memcg)
1235 memcg = root_mem_cgroup;
7512102c 1236
ef8f2327 1237 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1238 lruvec = &mz->lruvec;
1239out:
1240 /*
1241 * Since a node can be onlined after the mem_cgroup was created,
1242 * we have to be prepared to initialize lruvec->zone here;
1243 * and if offlined then reonlined, we need to reinitialize it.
1244 */
599d0c95
MG
1245 if (unlikely(lruvec->pgdat != pgdat))
1246 lruvec->pgdat = pgdat;
bea8c150 1247 return lruvec;
08e552c6 1248}
b69408e8 1249
925b7673 1250/**
fa9add64
HD
1251 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1252 * @lruvec: mem_cgroup per zone lru vector
1253 * @lru: index of lru list the page is sitting on
b4536f0c 1254 * @zid: zone id of the accounted pages
fa9add64 1255 * @nr_pages: positive when adding or negative when removing
925b7673 1256 *
ca707239
HD
1257 * This function must be called under lru_lock, just before a page is added
1258 * to or just after a page is removed from an lru list (that ordering being
1259 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1260 */
fa9add64 1261void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1262 int zid, int nr_pages)
3f58a829 1263{
ef8f2327 1264 struct mem_cgroup_per_node *mz;
fa9add64 1265 unsigned long *lru_size;
ca707239 1266 long size;
3f58a829
MK
1267
1268 if (mem_cgroup_disabled())
1269 return;
1270
ef8f2327 1271 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1272 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1273
1274 if (nr_pages < 0)
1275 *lru_size += nr_pages;
1276
1277 size = *lru_size;
b4536f0c
MH
1278 if (WARN_ONCE(size < 0,
1279 "%s(%p, %d, %d): lru_size %ld\n",
1280 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1281 VM_BUG_ON(1);
1282 *lru_size = 0;
1283 }
1284
1285 if (nr_pages > 0)
1286 *lru_size += nr_pages;
08e552c6 1287}
544122e5 1288
19942822 1289/**
9d11ea9f 1290 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1291 * @memcg: the memory cgroup
19942822 1292 *
9d11ea9f 1293 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1294 * pages.
19942822 1295 */
c0ff4b85 1296static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1297{
3e32cb2e
JW
1298 unsigned long margin = 0;
1299 unsigned long count;
1300 unsigned long limit;
9d11ea9f 1301
3e32cb2e 1302 count = page_counter_read(&memcg->memory);
bbec2e15 1303 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1304 if (count < limit)
1305 margin = limit - count;
1306
7941d214 1307 if (do_memsw_account()) {
3e32cb2e 1308 count = page_counter_read(&memcg->memsw);
bbec2e15 1309 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1310 if (count <= limit)
1311 margin = min(margin, limit - count);
cbedbac3
LR
1312 else
1313 margin = 0;
3e32cb2e
JW
1314 }
1315
1316 return margin;
19942822
JW
1317}
1318
32047e2a 1319/*
bdcbb659 1320 * A routine for checking "mem" is under move_account() or not.
32047e2a 1321 *
bdcbb659
QH
1322 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1323 * moving cgroups. This is for waiting at high-memory pressure
1324 * caused by "move".
32047e2a 1325 */
c0ff4b85 1326static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1327{
2bd9bb20
KH
1328 struct mem_cgroup *from;
1329 struct mem_cgroup *to;
4b534334 1330 bool ret = false;
2bd9bb20
KH
1331 /*
1332 * Unlike task_move routines, we access mc.to, mc.from not under
1333 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1334 */
1335 spin_lock(&mc.lock);
1336 from = mc.from;
1337 to = mc.to;
1338 if (!from)
1339 goto unlock;
3e92041d 1340
2314b42d
JW
1341 ret = mem_cgroup_is_descendant(from, memcg) ||
1342 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1343unlock:
1344 spin_unlock(&mc.lock);
4b534334
KH
1345 return ret;
1346}
1347
c0ff4b85 1348static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1349{
1350 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1351 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1352 DEFINE_WAIT(wait);
1353 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1354 /* moving charge context might have finished. */
1355 if (mc.moving_task)
1356 schedule();
1357 finish_wait(&mc.waitq, &wait);
1358 return true;
1359 }
1360 }
1361 return false;
1362}
1363
c8713d0b
JW
1364static char *memory_stat_format(struct mem_cgroup *memcg)
1365{
1366 struct seq_buf s;
1367 int i;
71cd3113 1368
c8713d0b
JW
1369 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1370 if (!s.buffer)
1371 return NULL;
1372
1373 /*
1374 * Provide statistics on the state of the memory subsystem as
1375 * well as cumulative event counters that show past behavior.
1376 *
1377 * This list is ordered following a combination of these gradients:
1378 * 1) generic big picture -> specifics and details
1379 * 2) reflecting userspace activity -> reflecting kernel heuristics
1380 *
1381 * Current memory state:
1382 */
1383
1384 seq_buf_printf(&s, "anon %llu\n",
1385 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1386 PAGE_SIZE);
1387 seq_buf_printf(&s, "file %llu\n",
1388 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1389 PAGE_SIZE);
1390 seq_buf_printf(&s, "kernel_stack %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1392 1024);
1393 seq_buf_printf(&s, "slab %llu\n",
1394 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1395 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "sock %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1399 PAGE_SIZE);
1400
1401 seq_buf_printf(&s, "shmem %llu\n",
1402 (u64)memcg_page_state(memcg, NR_SHMEM) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "file_mapped %llu\n",
1405 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1406 PAGE_SIZE);
1407 seq_buf_printf(&s, "file_dirty %llu\n",
1408 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1409 PAGE_SIZE);
1410 seq_buf_printf(&s, "file_writeback %llu\n",
1411 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1412 PAGE_SIZE);
1413
1414 /*
1415 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1416 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1417 * arse because it requires migrating the work out of rmap to a place
1418 * where the page->mem_cgroup is set up and stable.
1419 */
1420 seq_buf_printf(&s, "anon_thp %llu\n",
1421 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1422 PAGE_SIZE);
1423
1424 for (i = 0; i < NR_LRU_LISTS; i++)
1425 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1426 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1427 PAGE_SIZE);
1428
1429 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1430 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1431 PAGE_SIZE);
1432 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1433 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1434 PAGE_SIZE);
1435
1436 /* Accumulated memory events */
1437
1438 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1439 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1440
1441 seq_buf_printf(&s, "workingset_refault %lu\n",
1442 memcg_page_state(memcg, WORKINGSET_REFAULT));
1443 seq_buf_printf(&s, "workingset_activate %lu\n",
1444 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1445 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1446 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1447
1448 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1449 seq_buf_printf(&s, "pgscan %lu\n",
1450 memcg_events(memcg, PGSCAN_KSWAPD) +
1451 memcg_events(memcg, PGSCAN_DIRECT));
1452 seq_buf_printf(&s, "pgsteal %lu\n",
1453 memcg_events(memcg, PGSTEAL_KSWAPD) +
1454 memcg_events(memcg, PGSTEAL_DIRECT));
1455 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1456 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1457 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1458 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1459
1460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1462 memcg_events(memcg, THP_FAULT_ALLOC));
1463 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470 return s.buffer;
1471}
71cd3113 1472
58cf188e 1473#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1474/**
f0c867d9 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
e222432b
BS
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1479 *
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 * enabled
1482 */
f0c867d9 1483void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1484{
e222432b
BS
1485 rcu_read_lock();
1486
f0c867d9 1487 if (memcg) {
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1490 } else
1491 pr_cont(",global_oom");
2415b9f5 1492 if (p) {
f0c867d9 1493 pr_cont(",task_memcg=");
2415b9f5 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1495 }
e222432b 1496 rcu_read_unlock();
f0c867d9 1497}
1498
1499/**
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1503 */
1504void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505{
c8713d0b 1506 char *buf;
e222432b 1507
3e32cb2e
JW
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1510 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)memcg->swap.max), memcg->swap.failcnt);
1515 else {
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1522 }
c8713d0b
JW
1523
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1526 pr_cont(":");
1527 buf = memory_stat_format(memcg);
1528 if (!buf)
1529 return;
1530 pr_info("%s", buf);
1531 kfree(buf);
e222432b
BS
1532}
1533
a63d83f4
DR
1534/*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
bbec2e15 1537unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1538{
bbec2e15 1539 unsigned long max;
f3e8eb70 1540
bbec2e15 1541 max = memcg->memory.max;
9a5a8f19 1542 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1543 unsigned long memsw_max;
1544 unsigned long swap_max;
9a5a8f19 1545
bbec2e15
RG
1546 memsw_max = memcg->memsw.max;
1547 swap_max = memcg->swap.max;
1548 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 max = min(max + swap_max, memsw_max);
9a5a8f19 1550 }
bbec2e15 1551 return max;
a63d83f4
DR
1552}
1553
b6e6edcf 1554static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1555 int order)
9cbb78bb 1556{
6e0fc46d
DR
1557 struct oom_control oc = {
1558 .zonelist = NULL,
1559 .nodemask = NULL,
2a966b77 1560 .memcg = memcg,
6e0fc46d
DR
1561 .gfp_mask = gfp_mask,
1562 .order = order,
6e0fc46d 1563 };
7c5f64f8 1564 bool ret;
9cbb78bb 1565
7775face
TH
1566 if (mutex_lock_killable(&oom_lock))
1567 return true;
1568 /*
1569 * A few threads which were not waiting at mutex_lock_killable() can
1570 * fail to bail out. Therefore, check again after holding oom_lock.
1571 */
1572 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1573 mutex_unlock(&oom_lock);
7c5f64f8 1574 return ret;
9cbb78bb
DR
1575}
1576
ae6e71d3
MC
1577#if MAX_NUMNODES > 1
1578
4d0c066d
KH
1579/**
1580 * test_mem_cgroup_node_reclaimable
dad7557e 1581 * @memcg: the target memcg
4d0c066d
KH
1582 * @nid: the node ID to be checked.
1583 * @noswap : specify true here if the user wants flle only information.
1584 *
1585 * This function returns whether the specified memcg contains any
1586 * reclaimable pages on a node. Returns true if there are any reclaimable
1587 * pages in the node.
1588 */
c0ff4b85 1589static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1590 int nid, bool noswap)
1591{
2b487e59
JW
1592 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1593
def0fdae
JW
1594 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1595 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1596 return true;
1597 if (noswap || !total_swap_pages)
1598 return false;
def0fdae
JW
1599 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1600 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1601 return true;
1602 return false;
1603
1604}
889976db
YH
1605
1606/*
1607 * Always updating the nodemask is not very good - even if we have an empty
1608 * list or the wrong list here, we can start from some node and traverse all
1609 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1610 *
1611 */
c0ff4b85 1612static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1613{
1614 int nid;
453a9bf3
KH
1615 /*
1616 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1617 * pagein/pageout changes since the last update.
1618 */
c0ff4b85 1619 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1620 return;
c0ff4b85 1621 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1622 return;
1623
889976db 1624 /* make a nodemask where this memcg uses memory from */
31aaea4a 1625 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1626
31aaea4a 1627 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1628
c0ff4b85
R
1629 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1630 node_clear(nid, memcg->scan_nodes);
889976db 1631 }
453a9bf3 1632
c0ff4b85
R
1633 atomic_set(&memcg->numainfo_events, 0);
1634 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1635}
1636
1637/*
1638 * Selecting a node where we start reclaim from. Because what we need is just
1639 * reducing usage counter, start from anywhere is O,K. Considering
1640 * memory reclaim from current node, there are pros. and cons.
1641 *
1642 * Freeing memory from current node means freeing memory from a node which
1643 * we'll use or we've used. So, it may make LRU bad. And if several threads
1644 * hit limits, it will see a contention on a node. But freeing from remote
1645 * node means more costs for memory reclaim because of memory latency.
1646 *
1647 * Now, we use round-robin. Better algorithm is welcomed.
1648 */
c0ff4b85 1649int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1650{
1651 int node;
1652
c0ff4b85
R
1653 mem_cgroup_may_update_nodemask(memcg);
1654 node = memcg->last_scanned_node;
889976db 1655
0edaf86c 1656 node = next_node_in(node, memcg->scan_nodes);
889976db 1657 /*
fda3d69b
MH
1658 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1659 * last time it really checked all the LRUs due to rate limiting.
1660 * Fallback to the current node in that case for simplicity.
889976db
YH
1661 */
1662 if (unlikely(node == MAX_NUMNODES))
1663 node = numa_node_id();
1664
c0ff4b85 1665 memcg->last_scanned_node = node;
889976db
YH
1666 return node;
1667}
889976db 1668#else
c0ff4b85 1669int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1670{
1671 return 0;
1672}
1673#endif
1674
0608f43d 1675static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1676 pg_data_t *pgdat,
0608f43d
AM
1677 gfp_t gfp_mask,
1678 unsigned long *total_scanned)
1679{
1680 struct mem_cgroup *victim = NULL;
1681 int total = 0;
1682 int loop = 0;
1683 unsigned long excess;
1684 unsigned long nr_scanned;
1685 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1686 .pgdat = pgdat,
0608f43d
AM
1687 .priority = 0,
1688 };
1689
3e32cb2e 1690 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1691
1692 while (1) {
1693 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1694 if (!victim) {
1695 loop++;
1696 if (loop >= 2) {
1697 /*
1698 * If we have not been able to reclaim
1699 * anything, it might because there are
1700 * no reclaimable pages under this hierarchy
1701 */
1702 if (!total)
1703 break;
1704 /*
1705 * We want to do more targeted reclaim.
1706 * excess >> 2 is not to excessive so as to
1707 * reclaim too much, nor too less that we keep
1708 * coming back to reclaim from this cgroup
1709 */
1710 if (total >= (excess >> 2) ||
1711 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1712 break;
1713 }
1714 continue;
1715 }
a9dd0a83 1716 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1717 pgdat, &nr_scanned);
0608f43d 1718 *total_scanned += nr_scanned;
3e32cb2e 1719 if (!soft_limit_excess(root_memcg))
0608f43d 1720 break;
6d61ef40 1721 }
0608f43d
AM
1722 mem_cgroup_iter_break(root_memcg, victim);
1723 return total;
6d61ef40
BS
1724}
1725
0056f4e6
JW
1726#ifdef CONFIG_LOCKDEP
1727static struct lockdep_map memcg_oom_lock_dep_map = {
1728 .name = "memcg_oom_lock",
1729};
1730#endif
1731
fb2a6fc5
JW
1732static DEFINE_SPINLOCK(memcg_oom_lock);
1733
867578cb
KH
1734/*
1735 * Check OOM-Killer is already running under our hierarchy.
1736 * If someone is running, return false.
1737 */
fb2a6fc5 1738static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1739{
79dfdacc 1740 struct mem_cgroup *iter, *failed = NULL;
a636b327 1741
fb2a6fc5
JW
1742 spin_lock(&memcg_oom_lock);
1743
9f3a0d09 1744 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1745 if (iter->oom_lock) {
79dfdacc
MH
1746 /*
1747 * this subtree of our hierarchy is already locked
1748 * so we cannot give a lock.
1749 */
79dfdacc 1750 failed = iter;
9f3a0d09
JW
1751 mem_cgroup_iter_break(memcg, iter);
1752 break;
23751be0
JW
1753 } else
1754 iter->oom_lock = true;
7d74b06f 1755 }
867578cb 1756
fb2a6fc5
JW
1757 if (failed) {
1758 /*
1759 * OK, we failed to lock the whole subtree so we have
1760 * to clean up what we set up to the failing subtree
1761 */
1762 for_each_mem_cgroup_tree(iter, memcg) {
1763 if (iter == failed) {
1764 mem_cgroup_iter_break(memcg, iter);
1765 break;
1766 }
1767 iter->oom_lock = false;
79dfdacc 1768 }
0056f4e6
JW
1769 } else
1770 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1771
1772 spin_unlock(&memcg_oom_lock);
1773
1774 return !failed;
a636b327 1775}
0b7f569e 1776
fb2a6fc5 1777static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1778{
7d74b06f
KH
1779 struct mem_cgroup *iter;
1780
fb2a6fc5 1781 spin_lock(&memcg_oom_lock);
0056f4e6 1782 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1783 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1784 iter->oom_lock = false;
fb2a6fc5 1785 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1786}
1787
c0ff4b85 1788static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1789{
1790 struct mem_cgroup *iter;
1791
c2b42d3c 1792 spin_lock(&memcg_oom_lock);
c0ff4b85 1793 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1794 iter->under_oom++;
1795 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1796}
1797
c0ff4b85 1798static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1799{
1800 struct mem_cgroup *iter;
1801
867578cb
KH
1802 /*
1803 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1804 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1805 */
c2b42d3c 1806 spin_lock(&memcg_oom_lock);
c0ff4b85 1807 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1808 if (iter->under_oom > 0)
1809 iter->under_oom--;
1810 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1811}
1812
867578cb
KH
1813static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1814
dc98df5a 1815struct oom_wait_info {
d79154bb 1816 struct mem_cgroup *memcg;
ac6424b9 1817 wait_queue_entry_t wait;
dc98df5a
KH
1818};
1819
ac6424b9 1820static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1821 unsigned mode, int sync, void *arg)
1822{
d79154bb
HD
1823 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1824 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1825 struct oom_wait_info *oom_wait_info;
1826
1827 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1828 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1829
2314b42d
JW
1830 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1831 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1832 return 0;
dc98df5a
KH
1833 return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
c0ff4b85 1836static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1837{
c2b42d3c
TH
1838 /*
1839 * For the following lockless ->under_oom test, the only required
1840 * guarantee is that it must see the state asserted by an OOM when
1841 * this function is called as a result of userland actions
1842 * triggered by the notification of the OOM. This is trivially
1843 * achieved by invoking mem_cgroup_mark_under_oom() before
1844 * triggering notification.
1845 */
1846 if (memcg && memcg->under_oom)
f4b90b70 1847 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1848}
1849
29ef680a
MH
1850enum oom_status {
1851 OOM_SUCCESS,
1852 OOM_FAILED,
1853 OOM_ASYNC,
1854 OOM_SKIPPED
1855};
1856
1857static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1858{
7056d3a3
MH
1859 enum oom_status ret;
1860 bool locked;
1861
29ef680a
MH
1862 if (order > PAGE_ALLOC_COSTLY_ORDER)
1863 return OOM_SKIPPED;
1864
7a1adfdd
RG
1865 memcg_memory_event(memcg, MEMCG_OOM);
1866
867578cb 1867 /*
49426420
JW
1868 * We are in the middle of the charge context here, so we
1869 * don't want to block when potentially sitting on a callstack
1870 * that holds all kinds of filesystem and mm locks.
1871 *
29ef680a
MH
1872 * cgroup1 allows disabling the OOM killer and waiting for outside
1873 * handling until the charge can succeed; remember the context and put
1874 * the task to sleep at the end of the page fault when all locks are
1875 * released.
49426420 1876 *
29ef680a
MH
1877 * On the other hand, in-kernel OOM killer allows for an async victim
1878 * memory reclaim (oom_reaper) and that means that we are not solely
1879 * relying on the oom victim to make a forward progress and we can
1880 * invoke the oom killer here.
1881 *
1882 * Please note that mem_cgroup_out_of_memory might fail to find a
1883 * victim and then we have to bail out from the charge path.
867578cb 1884 */
29ef680a
MH
1885 if (memcg->oom_kill_disable) {
1886 if (!current->in_user_fault)
1887 return OOM_SKIPPED;
1888 css_get(&memcg->css);
1889 current->memcg_in_oom = memcg;
1890 current->memcg_oom_gfp_mask = mask;
1891 current->memcg_oom_order = order;
1892
1893 return OOM_ASYNC;
1894 }
1895
7056d3a3
MH
1896 mem_cgroup_mark_under_oom(memcg);
1897
1898 locked = mem_cgroup_oom_trylock(memcg);
1899
1900 if (locked)
1901 mem_cgroup_oom_notify(memcg);
1902
1903 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1904 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1905 ret = OOM_SUCCESS;
1906 else
1907 ret = OOM_FAILED;
1908
1909 if (locked)
1910 mem_cgroup_oom_unlock(memcg);
29ef680a 1911
7056d3a3 1912 return ret;
3812c8c8
JW
1913}
1914
1915/**
1916 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1917 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1918 *
49426420
JW
1919 * This has to be called at the end of a page fault if the memcg OOM
1920 * handler was enabled.
3812c8c8 1921 *
49426420 1922 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1923 * sleep on a waitqueue until the userspace task resolves the
1924 * situation. Sleeping directly in the charge context with all kinds
1925 * of locks held is not a good idea, instead we remember an OOM state
1926 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1927 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1928 *
1929 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1930 * completed, %false otherwise.
3812c8c8 1931 */
49426420 1932bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1933{
626ebc41 1934 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1935 struct oom_wait_info owait;
49426420 1936 bool locked;
3812c8c8
JW
1937
1938 /* OOM is global, do not handle */
3812c8c8 1939 if (!memcg)
49426420 1940 return false;
3812c8c8 1941
7c5f64f8 1942 if (!handle)
49426420 1943 goto cleanup;
3812c8c8
JW
1944
1945 owait.memcg = memcg;
1946 owait.wait.flags = 0;
1947 owait.wait.func = memcg_oom_wake_function;
1948 owait.wait.private = current;
2055da97 1949 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1950
3812c8c8 1951 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1952 mem_cgroup_mark_under_oom(memcg);
1953
1954 locked = mem_cgroup_oom_trylock(memcg);
1955
1956 if (locked)
1957 mem_cgroup_oom_notify(memcg);
1958
1959 if (locked && !memcg->oom_kill_disable) {
1960 mem_cgroup_unmark_under_oom(memcg);
1961 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1962 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1963 current->memcg_oom_order);
49426420 1964 } else {
3812c8c8 1965 schedule();
49426420
JW
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 }
1969
1970 if (locked) {
fb2a6fc5
JW
1971 mem_cgroup_oom_unlock(memcg);
1972 /*
1973 * There is no guarantee that an OOM-lock contender
1974 * sees the wakeups triggered by the OOM kill
1975 * uncharges. Wake any sleepers explicitely.
1976 */
1977 memcg_oom_recover(memcg);
1978 }
49426420 1979cleanup:
626ebc41 1980 current->memcg_in_oom = NULL;
3812c8c8 1981 css_put(&memcg->css);
867578cb 1982 return true;
0b7f569e
KH
1983}
1984
3d8b38eb
RG
1985/**
1986 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1987 * @victim: task to be killed by the OOM killer
1988 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1989 *
1990 * Returns a pointer to a memory cgroup, which has to be cleaned up
1991 * by killing all belonging OOM-killable tasks.
1992 *
1993 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1994 */
1995struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1996 struct mem_cgroup *oom_domain)
1997{
1998 struct mem_cgroup *oom_group = NULL;
1999 struct mem_cgroup *memcg;
2000
2001 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2002 return NULL;
2003
2004 if (!oom_domain)
2005 oom_domain = root_mem_cgroup;
2006
2007 rcu_read_lock();
2008
2009 memcg = mem_cgroup_from_task(victim);
2010 if (memcg == root_mem_cgroup)
2011 goto out;
2012
2013 /*
2014 * Traverse the memory cgroup hierarchy from the victim task's
2015 * cgroup up to the OOMing cgroup (or root) to find the
2016 * highest-level memory cgroup with oom.group set.
2017 */
2018 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2019 if (memcg->oom_group)
2020 oom_group = memcg;
2021
2022 if (memcg == oom_domain)
2023 break;
2024 }
2025
2026 if (oom_group)
2027 css_get(&oom_group->css);
2028out:
2029 rcu_read_unlock();
2030
2031 return oom_group;
2032}
2033
2034void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2035{
2036 pr_info("Tasks in ");
2037 pr_cont_cgroup_path(memcg->css.cgroup);
2038 pr_cont(" are going to be killed due to memory.oom.group set\n");
2039}
2040
d7365e78 2041/**
81f8c3a4
JW
2042 * lock_page_memcg - lock a page->mem_cgroup binding
2043 * @page: the page
32047e2a 2044 *
81f8c3a4 2045 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2046 * another cgroup.
2047 *
2048 * It ensures lifetime of the returned memcg. Caller is responsible
2049 * for the lifetime of the page; __unlock_page_memcg() is available
2050 * when @page might get freed inside the locked section.
d69b042f 2051 */
739f79fc 2052struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2053{
2054 struct mem_cgroup *memcg;
6de22619 2055 unsigned long flags;
89c06bd5 2056
6de22619
JW
2057 /*
2058 * The RCU lock is held throughout the transaction. The fast
2059 * path can get away without acquiring the memcg->move_lock
2060 * because page moving starts with an RCU grace period.
739f79fc
JW
2061 *
2062 * The RCU lock also protects the memcg from being freed when
2063 * the page state that is going to change is the only thing
2064 * preventing the page itself from being freed. E.g. writeback
2065 * doesn't hold a page reference and relies on PG_writeback to
2066 * keep off truncation, migration and so forth.
2067 */
d7365e78
JW
2068 rcu_read_lock();
2069
2070 if (mem_cgroup_disabled())
739f79fc 2071 return NULL;
89c06bd5 2072again:
1306a85a 2073 memcg = page->mem_cgroup;
29833315 2074 if (unlikely(!memcg))
739f79fc 2075 return NULL;
d7365e78 2076
bdcbb659 2077 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2078 return memcg;
89c06bd5 2079
6de22619 2080 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2081 if (memcg != page->mem_cgroup) {
6de22619 2082 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2083 goto again;
2084 }
6de22619
JW
2085
2086 /*
2087 * When charge migration first begins, we can have locked and
2088 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2089 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2090 */
2091 memcg->move_lock_task = current;
2092 memcg->move_lock_flags = flags;
d7365e78 2093
739f79fc 2094 return memcg;
89c06bd5 2095}
81f8c3a4 2096EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2097
d7365e78 2098/**
739f79fc
JW
2099 * __unlock_page_memcg - unlock and unpin a memcg
2100 * @memcg: the memcg
2101 *
2102 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2103 */
739f79fc 2104void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2105{
6de22619
JW
2106 if (memcg && memcg->move_lock_task == current) {
2107 unsigned long flags = memcg->move_lock_flags;
2108
2109 memcg->move_lock_task = NULL;
2110 memcg->move_lock_flags = 0;
2111
2112 spin_unlock_irqrestore(&memcg->move_lock, flags);
2113 }
89c06bd5 2114
d7365e78 2115 rcu_read_unlock();
89c06bd5 2116}
739f79fc
JW
2117
2118/**
2119 * unlock_page_memcg - unlock a page->mem_cgroup binding
2120 * @page: the page
2121 */
2122void unlock_page_memcg(struct page *page)
2123{
2124 __unlock_page_memcg(page->mem_cgroup);
2125}
81f8c3a4 2126EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2127
cdec2e42
KH
2128struct memcg_stock_pcp {
2129 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2130 unsigned int nr_pages;
cdec2e42 2131 struct work_struct work;
26fe6168 2132 unsigned long flags;
a0db00fc 2133#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2134};
2135static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2136static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2137
a0956d54
SS
2138/**
2139 * consume_stock: Try to consume stocked charge on this cpu.
2140 * @memcg: memcg to consume from.
2141 * @nr_pages: how many pages to charge.
2142 *
2143 * The charges will only happen if @memcg matches the current cpu's memcg
2144 * stock, and at least @nr_pages are available in that stock. Failure to
2145 * service an allocation will refill the stock.
2146 *
2147 * returns true if successful, false otherwise.
cdec2e42 2148 */
a0956d54 2149static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2150{
2151 struct memcg_stock_pcp *stock;
db2ba40c 2152 unsigned long flags;
3e32cb2e 2153 bool ret = false;
cdec2e42 2154
a983b5eb 2155 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2156 return ret;
a0956d54 2157
db2ba40c
JW
2158 local_irq_save(flags);
2159
2160 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2161 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2162 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2163 ret = true;
2164 }
db2ba40c
JW
2165
2166 local_irq_restore(flags);
2167
cdec2e42
KH
2168 return ret;
2169}
2170
2171/*
3e32cb2e 2172 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2173 */
2174static void drain_stock(struct memcg_stock_pcp *stock)
2175{
2176 struct mem_cgroup *old = stock->cached;
2177
11c9ea4e 2178 if (stock->nr_pages) {
3e32cb2e 2179 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2180 if (do_memsw_account())
3e32cb2e 2181 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2182 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2183 stock->nr_pages = 0;
cdec2e42
KH
2184 }
2185 stock->cached = NULL;
cdec2e42
KH
2186}
2187
cdec2e42
KH
2188static void drain_local_stock(struct work_struct *dummy)
2189{
db2ba40c
JW
2190 struct memcg_stock_pcp *stock;
2191 unsigned long flags;
2192
72f0184c
MH
2193 /*
2194 * The only protection from memory hotplug vs. drain_stock races is
2195 * that we always operate on local CPU stock here with IRQ disabled
2196 */
db2ba40c
JW
2197 local_irq_save(flags);
2198
2199 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2200 drain_stock(stock);
26fe6168 2201 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2202
2203 local_irq_restore(flags);
cdec2e42
KH
2204}
2205
2206/*
3e32cb2e 2207 * Cache charges(val) to local per_cpu area.
320cc51d 2208 * This will be consumed by consume_stock() function, later.
cdec2e42 2209 */
c0ff4b85 2210static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2211{
db2ba40c
JW
2212 struct memcg_stock_pcp *stock;
2213 unsigned long flags;
2214
2215 local_irq_save(flags);
cdec2e42 2216
db2ba40c 2217 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2218 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2219 drain_stock(stock);
c0ff4b85 2220 stock->cached = memcg;
cdec2e42 2221 }
11c9ea4e 2222 stock->nr_pages += nr_pages;
db2ba40c 2223
a983b5eb 2224 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2225 drain_stock(stock);
2226
db2ba40c 2227 local_irq_restore(flags);
cdec2e42
KH
2228}
2229
2230/*
c0ff4b85 2231 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2232 * of the hierarchy under it.
cdec2e42 2233 */
6d3d6aa2 2234static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2235{
26fe6168 2236 int cpu, curcpu;
d38144b7 2237
6d3d6aa2
JW
2238 /* If someone's already draining, avoid adding running more workers. */
2239 if (!mutex_trylock(&percpu_charge_mutex))
2240 return;
72f0184c
MH
2241 /*
2242 * Notify other cpus that system-wide "drain" is running
2243 * We do not care about races with the cpu hotplug because cpu down
2244 * as well as workers from this path always operate on the local
2245 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2246 */
5af12d0e 2247 curcpu = get_cpu();
cdec2e42
KH
2248 for_each_online_cpu(cpu) {
2249 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2250 struct mem_cgroup *memcg;
26fe6168 2251
c0ff4b85 2252 memcg = stock->cached;
72f0184c 2253 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2254 continue;
72f0184c
MH
2255 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2256 css_put(&memcg->css);
3e92041d 2257 continue;
72f0184c 2258 }
d1a05b69
MH
2259 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2260 if (cpu == curcpu)
2261 drain_local_stock(&stock->work);
2262 else
2263 schedule_work_on(cpu, &stock->work);
2264 }
72f0184c 2265 css_put(&memcg->css);
cdec2e42 2266 }
5af12d0e 2267 put_cpu();
9f50fad6 2268 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2269}
2270
308167fc 2271static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2272{
cdec2e42 2273 struct memcg_stock_pcp *stock;
42a30035 2274 struct mem_cgroup *memcg, *mi;
cdec2e42 2275
cdec2e42
KH
2276 stock = &per_cpu(memcg_stock, cpu);
2277 drain_stock(stock);
a983b5eb
JW
2278
2279 for_each_mem_cgroup(memcg) {
2280 int i;
2281
2282 for (i = 0; i < MEMCG_NR_STAT; i++) {
2283 int nid;
2284 long x;
2285
871789d4 2286 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2287 if (x)
42a30035
JW
2288 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2289 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2290
2291 if (i >= NR_VM_NODE_STAT_ITEMS)
2292 continue;
2293
2294 for_each_node(nid) {
2295 struct mem_cgroup_per_node *pn;
2296
2297 pn = mem_cgroup_nodeinfo(memcg, nid);
2298 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2299 if (x)
42a30035
JW
2300 do {
2301 atomic_long_add(x, &pn->lruvec_stat[i]);
2302 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2303 }
2304 }
2305
e27be240 2306 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2307 long x;
2308
871789d4 2309 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2310 if (x)
42a30035
JW
2311 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2312 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2313 }
2314 }
2315
308167fc 2316 return 0;
cdec2e42
KH
2317}
2318
f7e1cb6e
JW
2319static void reclaim_high(struct mem_cgroup *memcg,
2320 unsigned int nr_pages,
2321 gfp_t gfp_mask)
2322{
2323 do {
2324 if (page_counter_read(&memcg->memory) <= memcg->high)
2325 continue;
e27be240 2326 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2327 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2328 } while ((memcg = parent_mem_cgroup(memcg)));
2329}
2330
2331static void high_work_func(struct work_struct *work)
2332{
2333 struct mem_cgroup *memcg;
2334
2335 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2336 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2337}
2338
b23afb93
TH
2339/*
2340 * Scheduled by try_charge() to be executed from the userland return path
2341 * and reclaims memory over the high limit.
2342 */
2343void mem_cgroup_handle_over_high(void)
2344{
2345 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2346 struct mem_cgroup *memcg;
b23afb93
TH
2347
2348 if (likely(!nr_pages))
2349 return;
2350
f7e1cb6e
JW
2351 memcg = get_mem_cgroup_from_mm(current->mm);
2352 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2353 css_put(&memcg->css);
2354 current->memcg_nr_pages_over_high = 0;
2355}
2356
00501b53
JW
2357static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2358 unsigned int nr_pages)
8a9f3ccd 2359{
a983b5eb 2360 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2361 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2362 struct mem_cgroup *mem_over_limit;
3e32cb2e 2363 struct page_counter *counter;
6539cc05 2364 unsigned long nr_reclaimed;
b70a2a21
JW
2365 bool may_swap = true;
2366 bool drained = false;
29ef680a 2367 enum oom_status oom_status;
a636b327 2368
ce00a967 2369 if (mem_cgroup_is_root(memcg))
10d53c74 2370 return 0;
6539cc05 2371retry:
b6b6cc72 2372 if (consume_stock(memcg, nr_pages))
10d53c74 2373 return 0;
8a9f3ccd 2374
7941d214 2375 if (!do_memsw_account() ||
6071ca52
JW
2376 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2377 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2378 goto done_restock;
7941d214 2379 if (do_memsw_account())
3e32cb2e
JW
2380 page_counter_uncharge(&memcg->memsw, batch);
2381 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2382 } else {
3e32cb2e 2383 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2384 may_swap = false;
3fbe7244 2385 }
7a81b88c 2386
6539cc05
JW
2387 if (batch > nr_pages) {
2388 batch = nr_pages;
2389 goto retry;
2390 }
6d61ef40 2391
06b078fc
JW
2392 /*
2393 * Unlike in global OOM situations, memcg is not in a physical
2394 * memory shortage. Allow dying and OOM-killed tasks to
2395 * bypass the last charges so that they can exit quickly and
2396 * free their memory.
2397 */
7775face 2398 if (unlikely(should_force_charge()))
10d53c74 2399 goto force;
06b078fc 2400
89a28483
JW
2401 /*
2402 * Prevent unbounded recursion when reclaim operations need to
2403 * allocate memory. This might exceed the limits temporarily,
2404 * but we prefer facilitating memory reclaim and getting back
2405 * under the limit over triggering OOM kills in these cases.
2406 */
2407 if (unlikely(current->flags & PF_MEMALLOC))
2408 goto force;
2409
06b078fc
JW
2410 if (unlikely(task_in_memcg_oom(current)))
2411 goto nomem;
2412
d0164adc 2413 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2414 goto nomem;
4b534334 2415
e27be240 2416 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2417
b70a2a21
JW
2418 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2419 gfp_mask, may_swap);
6539cc05 2420
61e02c74 2421 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2422 goto retry;
28c34c29 2423
b70a2a21 2424 if (!drained) {
6d3d6aa2 2425 drain_all_stock(mem_over_limit);
b70a2a21
JW
2426 drained = true;
2427 goto retry;
2428 }
2429
28c34c29
JW
2430 if (gfp_mask & __GFP_NORETRY)
2431 goto nomem;
6539cc05
JW
2432 /*
2433 * Even though the limit is exceeded at this point, reclaim
2434 * may have been able to free some pages. Retry the charge
2435 * before killing the task.
2436 *
2437 * Only for regular pages, though: huge pages are rather
2438 * unlikely to succeed so close to the limit, and we fall back
2439 * to regular pages anyway in case of failure.
2440 */
61e02c74 2441 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2442 goto retry;
2443 /*
2444 * At task move, charge accounts can be doubly counted. So, it's
2445 * better to wait until the end of task_move if something is going on.
2446 */
2447 if (mem_cgroup_wait_acct_move(mem_over_limit))
2448 goto retry;
2449
9b130619
JW
2450 if (nr_retries--)
2451 goto retry;
2452
38d38493 2453 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2454 goto nomem;
2455
06b078fc 2456 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2457 goto force;
06b078fc 2458
6539cc05 2459 if (fatal_signal_pending(current))
10d53c74 2460 goto force;
6539cc05 2461
29ef680a
MH
2462 /*
2463 * keep retrying as long as the memcg oom killer is able to make
2464 * a forward progress or bypass the charge if the oom killer
2465 * couldn't make any progress.
2466 */
2467 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2468 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2469 switch (oom_status) {
2470 case OOM_SUCCESS:
2471 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2472 goto retry;
2473 case OOM_FAILED:
2474 goto force;
2475 default:
2476 goto nomem;
2477 }
7a81b88c 2478nomem:
6d1fdc48 2479 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2480 return -ENOMEM;
10d53c74
TH
2481force:
2482 /*
2483 * The allocation either can't fail or will lead to more memory
2484 * being freed very soon. Allow memory usage go over the limit
2485 * temporarily by force charging it.
2486 */
2487 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2488 if (do_memsw_account())
10d53c74
TH
2489 page_counter_charge(&memcg->memsw, nr_pages);
2490 css_get_many(&memcg->css, nr_pages);
2491
2492 return 0;
6539cc05
JW
2493
2494done_restock:
e8ea14cc 2495 css_get_many(&memcg->css, batch);
6539cc05
JW
2496 if (batch > nr_pages)
2497 refill_stock(memcg, batch - nr_pages);
b23afb93 2498
241994ed 2499 /*
b23afb93
TH
2500 * If the hierarchy is above the normal consumption range, schedule
2501 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2502 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2503 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2504 * not recorded as it most likely matches current's and won't
2505 * change in the meantime. As high limit is checked again before
2506 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2507 */
2508 do {
b23afb93 2509 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2510 /* Don't bother a random interrupted task */
2511 if (in_interrupt()) {
2512 schedule_work(&memcg->high_work);
2513 break;
2514 }
9516a18a 2515 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2516 set_notify_resume(current);
2517 break;
2518 }
241994ed 2519 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2520
2521 return 0;
7a81b88c 2522}
8a9f3ccd 2523
00501b53 2524static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2525{
ce00a967
JW
2526 if (mem_cgroup_is_root(memcg))
2527 return;
2528
3e32cb2e 2529 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2530 if (do_memsw_account())
3e32cb2e 2531 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2532
e8ea14cc 2533 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2534}
2535
0a31bc97
JW
2536static void lock_page_lru(struct page *page, int *isolated)
2537{
f4b7e272 2538 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2539
f4b7e272 2540 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2541 if (PageLRU(page)) {
2542 struct lruvec *lruvec;
2543
f4b7e272 2544 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2545 ClearPageLRU(page);
2546 del_page_from_lru_list(page, lruvec, page_lru(page));
2547 *isolated = 1;
2548 } else
2549 *isolated = 0;
2550}
2551
2552static void unlock_page_lru(struct page *page, int isolated)
2553{
f4b7e272 2554 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2555
2556 if (isolated) {
2557 struct lruvec *lruvec;
2558
f4b7e272 2559 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2560 VM_BUG_ON_PAGE(PageLRU(page), page);
2561 SetPageLRU(page);
2562 add_page_to_lru_list(page, lruvec, page_lru(page));
2563 }
f4b7e272 2564 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2565}
2566
00501b53 2567static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2568 bool lrucare)
7a81b88c 2569{
0a31bc97 2570 int isolated;
9ce70c02 2571
1306a85a 2572 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2573
2574 /*
2575 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2576 * may already be on some other mem_cgroup's LRU. Take care of it.
2577 */
0a31bc97
JW
2578 if (lrucare)
2579 lock_page_lru(page, &isolated);
9ce70c02 2580
0a31bc97
JW
2581 /*
2582 * Nobody should be changing or seriously looking at
1306a85a 2583 * page->mem_cgroup at this point:
0a31bc97
JW
2584 *
2585 * - the page is uncharged
2586 *
2587 * - the page is off-LRU
2588 *
2589 * - an anonymous fault has exclusive page access, except for
2590 * a locked page table
2591 *
2592 * - a page cache insertion, a swapin fault, or a migration
2593 * have the page locked
2594 */
1306a85a 2595 page->mem_cgroup = memcg;
9ce70c02 2596
0a31bc97
JW
2597 if (lrucare)
2598 unlock_page_lru(page, isolated);
7a81b88c 2599}
66e1707b 2600
84c07d11 2601#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2602static int memcg_alloc_cache_id(void)
55007d84 2603{
f3bb3043
VD
2604 int id, size;
2605 int err;
2606
dbcf73e2 2607 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2608 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2609 if (id < 0)
2610 return id;
55007d84 2611
dbcf73e2 2612 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2613 return id;
2614
2615 /*
2616 * There's no space for the new id in memcg_caches arrays,
2617 * so we have to grow them.
2618 */
05257a1a 2619 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2620
2621 size = 2 * (id + 1);
55007d84
GC
2622 if (size < MEMCG_CACHES_MIN_SIZE)
2623 size = MEMCG_CACHES_MIN_SIZE;
2624 else if (size > MEMCG_CACHES_MAX_SIZE)
2625 size = MEMCG_CACHES_MAX_SIZE;
2626
f3bb3043 2627 err = memcg_update_all_caches(size);
60d3fd32
VD
2628 if (!err)
2629 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2630 if (!err)
2631 memcg_nr_cache_ids = size;
2632
2633 up_write(&memcg_cache_ids_sem);
2634
f3bb3043 2635 if (err) {
dbcf73e2 2636 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2637 return err;
2638 }
2639 return id;
2640}
2641
2642static void memcg_free_cache_id(int id)
2643{
dbcf73e2 2644 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2645}
2646
d5b3cf71 2647struct memcg_kmem_cache_create_work {
5722d094
VD
2648 struct mem_cgroup *memcg;
2649 struct kmem_cache *cachep;
2650 struct work_struct work;
2651};
2652
d5b3cf71 2653static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2654{
d5b3cf71
VD
2655 struct memcg_kmem_cache_create_work *cw =
2656 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2657 struct mem_cgroup *memcg = cw->memcg;
2658 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2659
d5b3cf71 2660 memcg_create_kmem_cache(memcg, cachep);
bd673145 2661
5722d094 2662 css_put(&memcg->css);
d7f25f8a
GC
2663 kfree(cw);
2664}
2665
2666/*
2667 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2668 */
85cfb245 2669static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2670 struct kmem_cache *cachep)
d7f25f8a 2671{
d5b3cf71 2672 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2673
f0a3a24b
RG
2674 if (!css_tryget_online(&memcg->css))
2675 return;
2676
c892fd82 2677 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2678 if (!cw)
d7f25f8a 2679 return;
8135be5a 2680
d7f25f8a
GC
2681 cw->memcg = memcg;
2682 cw->cachep = cachep;
d5b3cf71 2683 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2684
17cc4dfe 2685 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2686}
2687
45264778
VD
2688static inline bool memcg_kmem_bypass(void)
2689{
2690 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2691 return true;
2692 return false;
2693}
2694
2695/**
2696 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2697 * @cachep: the original global kmem cache
2698 *
d7f25f8a
GC
2699 * Return the kmem_cache we're supposed to use for a slab allocation.
2700 * We try to use the current memcg's version of the cache.
2701 *
45264778
VD
2702 * If the cache does not exist yet, if we are the first user of it, we
2703 * create it asynchronously in a workqueue and let the current allocation
2704 * go through with the original cache.
d7f25f8a 2705 *
45264778
VD
2706 * This function takes a reference to the cache it returns to assure it
2707 * won't get destroyed while we are working with it. Once the caller is
2708 * done with it, memcg_kmem_put_cache() must be called to release the
2709 * reference.
d7f25f8a 2710 */
45264778 2711struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2712{
2713 struct mem_cgroup *memcg;
959c8963 2714 struct kmem_cache *memcg_cachep;
f0a3a24b 2715 struct memcg_cache_array *arr;
2a4db7eb 2716 int kmemcg_id;
d7f25f8a 2717
f7ce3190 2718 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2719
45264778 2720 if (memcg_kmem_bypass())
230e9fc2
VD
2721 return cachep;
2722
f0a3a24b
RG
2723 rcu_read_lock();
2724
2725 if (unlikely(current->active_memcg))
2726 memcg = current->active_memcg;
2727 else
2728 memcg = mem_cgroup_from_task(current);
2729
2730 if (!memcg || memcg == root_mem_cgroup)
2731 goto out_unlock;
2732
4db0c3c2 2733 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2734 if (kmemcg_id < 0)
f0a3a24b 2735 goto out_unlock;
d7f25f8a 2736
f0a3a24b
RG
2737 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2738
2739 /*
2740 * Make sure we will access the up-to-date value. The code updating
2741 * memcg_caches issues a write barrier to match the data dependency
2742 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2743 */
2744 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2745
2746 /*
2747 * If we are in a safe context (can wait, and not in interrupt
2748 * context), we could be be predictable and return right away.
2749 * This would guarantee that the allocation being performed
2750 * already belongs in the new cache.
2751 *
2752 * However, there are some clashes that can arrive from locking.
2753 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2754 * memcg_create_kmem_cache, this means no further allocation
2755 * could happen with the slab_mutex held. So it's better to
2756 * defer everything.
f0a3a24b
RG
2757 *
2758 * If the memcg is dying or memcg_cache is about to be released,
2759 * don't bother creating new kmem_caches. Because memcg_cachep
2760 * is ZEROed as the fist step of kmem offlining, we don't need
2761 * percpu_ref_tryget_live() here. css_tryget_online() check in
2762 * memcg_schedule_kmem_cache_create() will prevent us from
2763 * creation of a new kmem_cache.
ca0dde97 2764 */
f0a3a24b
RG
2765 if (unlikely(!memcg_cachep))
2766 memcg_schedule_kmem_cache_create(memcg, cachep);
2767 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2768 cachep = memcg_cachep;
2769out_unlock:
2770 rcu_read_unlock();
ca0dde97 2771 return cachep;
d7f25f8a 2772}
d7f25f8a 2773
45264778
VD
2774/**
2775 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2776 * @cachep: the cache returned by memcg_kmem_get_cache
2777 */
2778void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2779{
2780 if (!is_root_cache(cachep))
f0a3a24b 2781 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2782}
2783
45264778 2784/**
60cd4bcd 2785 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2786 * @page: page to charge
2787 * @gfp: reclaim mode
2788 * @order: allocation order
2789 * @memcg: memory cgroup to charge
2790 *
2791 * Returns 0 on success, an error code on failure.
2792 */
60cd4bcd 2793int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2794 struct mem_cgroup *memcg)
7ae1e1d0 2795{
f3ccb2c4
VD
2796 unsigned int nr_pages = 1 << order;
2797 struct page_counter *counter;
7ae1e1d0
GC
2798 int ret;
2799
f3ccb2c4 2800 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2801 if (ret)
f3ccb2c4 2802 return ret;
52c29b04
JW
2803
2804 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2805 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2806 cancel_charge(memcg, nr_pages);
2807 return -ENOMEM;
7ae1e1d0 2808 }
f3ccb2c4 2809 return 0;
7ae1e1d0
GC
2810}
2811
45264778 2812/**
60cd4bcd 2813 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2814 * @page: page to charge
2815 * @gfp: reclaim mode
2816 * @order: allocation order
2817 *
2818 * Returns 0 on success, an error code on failure.
2819 */
60cd4bcd 2820int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2821{
f3ccb2c4 2822 struct mem_cgroup *memcg;
fcff7d7e 2823 int ret = 0;
7ae1e1d0 2824
60cd4bcd 2825 if (memcg_kmem_bypass())
45264778
VD
2826 return 0;
2827
d46eb14b 2828 memcg = get_mem_cgroup_from_current();
c4159a75 2829 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2830 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2831 if (!ret) {
2832 page->mem_cgroup = memcg;
c4159a75 2833 __SetPageKmemcg(page);
4d96ba35 2834 }
c4159a75 2835 }
7ae1e1d0 2836 css_put(&memcg->css);
d05e83a6 2837 return ret;
7ae1e1d0 2838}
49a18eae
RG
2839
2840/**
2841 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2842 * @memcg: memcg to uncharge
2843 * @nr_pages: number of pages to uncharge
2844 */
2845void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2846 unsigned int nr_pages)
2847{
2848 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2849 page_counter_uncharge(&memcg->kmem, nr_pages);
2850
2851 page_counter_uncharge(&memcg->memory, nr_pages);
2852 if (do_memsw_account())
2853 page_counter_uncharge(&memcg->memsw, nr_pages);
2854}
45264778 2855/**
60cd4bcd 2856 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2857 * @page: page to uncharge
2858 * @order: allocation order
2859 */
60cd4bcd 2860void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2861{
1306a85a 2862 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2863 unsigned int nr_pages = 1 << order;
7ae1e1d0 2864
7ae1e1d0
GC
2865 if (!memcg)
2866 return;
2867
309381fe 2868 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2869 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2870 page->mem_cgroup = NULL;
c4159a75
VD
2871
2872 /* slab pages do not have PageKmemcg flag set */
2873 if (PageKmemcg(page))
2874 __ClearPageKmemcg(page);
2875
f3ccb2c4 2876 css_put_many(&memcg->css, nr_pages);
60d3fd32 2877}
84c07d11 2878#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2879
ca3e0214
KH
2880#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2881
ca3e0214
KH
2882/*
2883 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2884 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2885 */
e94c8a9c 2886void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2887{
e94c8a9c 2888 int i;
ca3e0214 2889
3d37c4a9
KH
2890 if (mem_cgroup_disabled())
2891 return;
b070e65c 2892
29833315 2893 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2894 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2895
c9019e9b 2896 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2897}
12d27107 2898#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2899
c255a458 2900#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2901/**
2902 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2903 * @entry: swap entry to be moved
2904 * @from: mem_cgroup which the entry is moved from
2905 * @to: mem_cgroup which the entry is moved to
2906 *
2907 * It succeeds only when the swap_cgroup's record for this entry is the same
2908 * as the mem_cgroup's id of @from.
2909 *
2910 * Returns 0 on success, -EINVAL on failure.
2911 *
3e32cb2e 2912 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2913 * both res and memsw, and called css_get().
2914 */
2915static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2916 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2917{
2918 unsigned short old_id, new_id;
2919
34c00c31
LZ
2920 old_id = mem_cgroup_id(from);
2921 new_id = mem_cgroup_id(to);
02491447
DN
2922
2923 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2924 mod_memcg_state(from, MEMCG_SWAP, -1);
2925 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2926 return 0;
2927 }
2928 return -EINVAL;
2929}
2930#else
2931static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2932 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2933{
2934 return -EINVAL;
2935}
8c7c6e34 2936#endif
d13d1443 2937
bbec2e15 2938static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2939
bbec2e15
RG
2940static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2941 unsigned long max, bool memsw)
628f4235 2942{
3e32cb2e 2943 bool enlarge = false;
bb4a7ea2 2944 bool drained = false;
3e32cb2e 2945 int ret;
c054a78c
YZ
2946 bool limits_invariant;
2947 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2948
3e32cb2e 2949 do {
628f4235
KH
2950 if (signal_pending(current)) {
2951 ret = -EINTR;
2952 break;
2953 }
3e32cb2e 2954
bbec2e15 2955 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2956 /*
2957 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2958 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2959 */
bbec2e15
RG
2960 limits_invariant = memsw ? max >= memcg->memory.max :
2961 max <= memcg->memsw.max;
c054a78c 2962 if (!limits_invariant) {
bbec2e15 2963 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2964 ret = -EINVAL;
8c7c6e34
KH
2965 break;
2966 }
bbec2e15 2967 if (max > counter->max)
3e32cb2e 2968 enlarge = true;
bbec2e15
RG
2969 ret = page_counter_set_max(counter, max);
2970 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2971
2972 if (!ret)
2973 break;
2974
bb4a7ea2
SB
2975 if (!drained) {
2976 drain_all_stock(memcg);
2977 drained = true;
2978 continue;
2979 }
2980
1ab5c056
AR
2981 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2982 GFP_KERNEL, !memsw)) {
2983 ret = -EBUSY;
2984 break;
2985 }
2986 } while (true);
3e32cb2e 2987
3c11ecf4
KH
2988 if (!ret && enlarge)
2989 memcg_oom_recover(memcg);
3e32cb2e 2990
628f4235
KH
2991 return ret;
2992}
2993
ef8f2327 2994unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2995 gfp_t gfp_mask,
2996 unsigned long *total_scanned)
2997{
2998 unsigned long nr_reclaimed = 0;
ef8f2327 2999 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3000 unsigned long reclaimed;
3001 int loop = 0;
ef8f2327 3002 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3003 unsigned long excess;
0608f43d
AM
3004 unsigned long nr_scanned;
3005
3006 if (order > 0)
3007 return 0;
3008
ef8f2327 3009 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3010
3011 /*
3012 * Do not even bother to check the largest node if the root
3013 * is empty. Do it lockless to prevent lock bouncing. Races
3014 * are acceptable as soft limit is best effort anyway.
3015 */
bfc7228b 3016 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3017 return 0;
3018
0608f43d
AM
3019 /*
3020 * This loop can run a while, specially if mem_cgroup's continuously
3021 * keep exceeding their soft limit and putting the system under
3022 * pressure
3023 */
3024 do {
3025 if (next_mz)
3026 mz = next_mz;
3027 else
3028 mz = mem_cgroup_largest_soft_limit_node(mctz);
3029 if (!mz)
3030 break;
3031
3032 nr_scanned = 0;
ef8f2327 3033 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3034 gfp_mask, &nr_scanned);
3035 nr_reclaimed += reclaimed;
3036 *total_scanned += nr_scanned;
0a31bc97 3037 spin_lock_irq(&mctz->lock);
bc2f2e7f 3038 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3039
3040 /*
3041 * If we failed to reclaim anything from this memory cgroup
3042 * it is time to move on to the next cgroup
3043 */
3044 next_mz = NULL;
bc2f2e7f
VD
3045 if (!reclaimed)
3046 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3047
3e32cb2e 3048 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3049 /*
3050 * One school of thought says that we should not add
3051 * back the node to the tree if reclaim returns 0.
3052 * But our reclaim could return 0, simply because due
3053 * to priority we are exposing a smaller subset of
3054 * memory to reclaim from. Consider this as a longer
3055 * term TODO.
3056 */
3057 /* If excess == 0, no tree ops */
cf2c8127 3058 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3059 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3060 css_put(&mz->memcg->css);
3061 loop++;
3062 /*
3063 * Could not reclaim anything and there are no more
3064 * mem cgroups to try or we seem to be looping without
3065 * reclaiming anything.
3066 */
3067 if (!nr_reclaimed &&
3068 (next_mz == NULL ||
3069 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3070 break;
3071 } while (!nr_reclaimed);
3072 if (next_mz)
3073 css_put(&next_mz->memcg->css);
3074 return nr_reclaimed;
3075}
3076
ea280e7b
TH
3077/*
3078 * Test whether @memcg has children, dead or alive. Note that this
3079 * function doesn't care whether @memcg has use_hierarchy enabled and
3080 * returns %true if there are child csses according to the cgroup
3081 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3082 */
b5f99b53
GC
3083static inline bool memcg_has_children(struct mem_cgroup *memcg)
3084{
ea280e7b
TH
3085 bool ret;
3086
ea280e7b
TH
3087 rcu_read_lock();
3088 ret = css_next_child(NULL, &memcg->css);
3089 rcu_read_unlock();
3090 return ret;
b5f99b53
GC
3091}
3092
c26251f9 3093/*
51038171 3094 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3095 *
3096 * Caller is responsible for holding css reference for memcg.
3097 */
3098static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3099{
3100 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3101
c1e862c1
KH
3102 /* we call try-to-free pages for make this cgroup empty */
3103 lru_add_drain_all();
d12c60f6
JS
3104
3105 drain_all_stock(memcg);
3106
f817ed48 3107 /* try to free all pages in this cgroup */
3e32cb2e 3108 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3109 int progress;
c1e862c1 3110
c26251f9
MH
3111 if (signal_pending(current))
3112 return -EINTR;
3113
b70a2a21
JW
3114 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3115 GFP_KERNEL, true);
c1e862c1 3116 if (!progress) {
f817ed48 3117 nr_retries--;
c1e862c1 3118 /* maybe some writeback is necessary */
8aa7e847 3119 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3120 }
f817ed48
KH
3121
3122 }
ab5196c2
MH
3123
3124 return 0;
cc847582
KH
3125}
3126
6770c64e
TH
3127static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3128 char *buf, size_t nbytes,
3129 loff_t off)
c1e862c1 3130{
6770c64e 3131 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3132
d8423011
MH
3133 if (mem_cgroup_is_root(memcg))
3134 return -EINVAL;
6770c64e 3135 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3136}
3137
182446d0
TH
3138static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3139 struct cftype *cft)
18f59ea7 3140{
182446d0 3141 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3142}
3143
182446d0
TH
3144static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3145 struct cftype *cft, u64 val)
18f59ea7
BS
3146{
3147 int retval = 0;
182446d0 3148 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3149 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3150
567fb435 3151 if (memcg->use_hierarchy == val)
0b8f73e1 3152 return 0;
567fb435 3153
18f59ea7 3154 /*
af901ca1 3155 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3156 * in the child subtrees. If it is unset, then the change can
3157 * occur, provided the current cgroup has no children.
3158 *
3159 * For the root cgroup, parent_mem is NULL, we allow value to be
3160 * set if there are no children.
3161 */
c0ff4b85 3162 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3163 (val == 1 || val == 0)) {
ea280e7b 3164 if (!memcg_has_children(memcg))
c0ff4b85 3165 memcg->use_hierarchy = val;
18f59ea7
BS
3166 else
3167 retval = -EBUSY;
3168 } else
3169 retval = -EINVAL;
567fb435 3170
18f59ea7
BS
3171 return retval;
3172}
3173
6f646156 3174static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3175{
42a30035 3176 unsigned long val;
ce00a967 3177
3e32cb2e 3178 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3179 val = memcg_page_state(memcg, MEMCG_CACHE) +
3180 memcg_page_state(memcg, MEMCG_RSS);
3181 if (swap)
3182 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3183 } else {
ce00a967 3184 if (!swap)
3e32cb2e 3185 val = page_counter_read(&memcg->memory);
ce00a967 3186 else
3e32cb2e 3187 val = page_counter_read(&memcg->memsw);
ce00a967 3188 }
c12176d3 3189 return val;
ce00a967
JW
3190}
3191
3e32cb2e
JW
3192enum {
3193 RES_USAGE,
3194 RES_LIMIT,
3195 RES_MAX_USAGE,
3196 RES_FAILCNT,
3197 RES_SOFT_LIMIT,
3198};
ce00a967 3199
791badbd 3200static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3201 struct cftype *cft)
8cdea7c0 3202{
182446d0 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3204 struct page_counter *counter;
af36f906 3205
3e32cb2e 3206 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3207 case _MEM:
3e32cb2e
JW
3208 counter = &memcg->memory;
3209 break;
8c7c6e34 3210 case _MEMSWAP:
3e32cb2e
JW
3211 counter = &memcg->memsw;
3212 break;
510fc4e1 3213 case _KMEM:
3e32cb2e 3214 counter = &memcg->kmem;
510fc4e1 3215 break;
d55f90bf 3216 case _TCP:
0db15298 3217 counter = &memcg->tcpmem;
d55f90bf 3218 break;
8c7c6e34
KH
3219 default:
3220 BUG();
8c7c6e34 3221 }
3e32cb2e
JW
3222
3223 switch (MEMFILE_ATTR(cft->private)) {
3224 case RES_USAGE:
3225 if (counter == &memcg->memory)
c12176d3 3226 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3227 if (counter == &memcg->memsw)
c12176d3 3228 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3229 return (u64)page_counter_read(counter) * PAGE_SIZE;
3230 case RES_LIMIT:
bbec2e15 3231 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3232 case RES_MAX_USAGE:
3233 return (u64)counter->watermark * PAGE_SIZE;
3234 case RES_FAILCNT:
3235 return counter->failcnt;
3236 case RES_SOFT_LIMIT:
3237 return (u64)memcg->soft_limit * PAGE_SIZE;
3238 default:
3239 BUG();
3240 }
8cdea7c0 3241}
510fc4e1 3242
84c07d11 3243#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3244static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3245{
d6441637
VD
3246 int memcg_id;
3247
b313aeee
VD
3248 if (cgroup_memory_nokmem)
3249 return 0;
3250
2a4db7eb 3251 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3252 BUG_ON(memcg->kmem_state);
d6441637 3253
f3bb3043 3254 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3255 if (memcg_id < 0)
3256 return memcg_id;
d6441637 3257
ef12947c 3258 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3259 /*
567e9ab2 3260 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3261 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3262 * guarantee no one starts accounting before all call sites are
3263 * patched.
3264 */
900a38f0 3265 memcg->kmemcg_id = memcg_id;
567e9ab2 3266 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3267 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3268
3269 return 0;
d6441637
VD
3270}
3271
8e0a8912
JW
3272static void memcg_offline_kmem(struct mem_cgroup *memcg)
3273{
3274 struct cgroup_subsys_state *css;
3275 struct mem_cgroup *parent, *child;
3276 int kmemcg_id;
3277
3278 if (memcg->kmem_state != KMEM_ONLINE)
3279 return;
3280 /*
3281 * Clear the online state before clearing memcg_caches array
3282 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3283 * guarantees that no cache will be created for this cgroup
3284 * after we are done (see memcg_create_kmem_cache()).
3285 */
3286 memcg->kmem_state = KMEM_ALLOCATED;
3287
8e0a8912
JW
3288 parent = parent_mem_cgroup(memcg);
3289 if (!parent)
3290 parent = root_mem_cgroup;
3291
fb2f2b0a
RG
3292 memcg_deactivate_kmem_caches(memcg, parent);
3293
3294 kmemcg_id = memcg->kmemcg_id;
3295 BUG_ON(kmemcg_id < 0);
3296
8e0a8912
JW
3297 /*
3298 * Change kmemcg_id of this cgroup and all its descendants to the
3299 * parent's id, and then move all entries from this cgroup's list_lrus
3300 * to ones of the parent. After we have finished, all list_lrus
3301 * corresponding to this cgroup are guaranteed to remain empty. The
3302 * ordering is imposed by list_lru_node->lock taken by
3303 * memcg_drain_all_list_lrus().
3304 */
3a06bb78 3305 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3306 css_for_each_descendant_pre(css, &memcg->css) {
3307 child = mem_cgroup_from_css(css);
3308 BUG_ON(child->kmemcg_id != kmemcg_id);
3309 child->kmemcg_id = parent->kmemcg_id;
3310 if (!memcg->use_hierarchy)
3311 break;
3312 }
3a06bb78
TH
3313 rcu_read_unlock();
3314
9bec5c35 3315 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3316
3317 memcg_free_cache_id(kmemcg_id);
3318}
3319
3320static void memcg_free_kmem(struct mem_cgroup *memcg)
3321{
0b8f73e1
JW
3322 /* css_alloc() failed, offlining didn't happen */
3323 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3324 memcg_offline_kmem(memcg);
3325
8e0a8912 3326 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3327 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3328 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3329 }
8e0a8912 3330}
d6441637 3331#else
0b8f73e1 3332static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3333{
3334 return 0;
3335}
3336static void memcg_offline_kmem(struct mem_cgroup *memcg)
3337{
3338}
3339static void memcg_free_kmem(struct mem_cgroup *memcg)
3340{
3341}
84c07d11 3342#endif /* CONFIG_MEMCG_KMEM */
127424c8 3343
bbec2e15
RG
3344static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3345 unsigned long max)
d6441637 3346{
b313aeee 3347 int ret;
127424c8 3348
bbec2e15
RG
3349 mutex_lock(&memcg_max_mutex);
3350 ret = page_counter_set_max(&memcg->kmem, max);
3351 mutex_unlock(&memcg_max_mutex);
127424c8 3352 return ret;
d6441637 3353}
510fc4e1 3354
bbec2e15 3355static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3356{
3357 int ret;
3358
bbec2e15 3359 mutex_lock(&memcg_max_mutex);
d55f90bf 3360
bbec2e15 3361 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3362 if (ret)
3363 goto out;
3364
0db15298 3365 if (!memcg->tcpmem_active) {
d55f90bf
VD
3366 /*
3367 * The active flag needs to be written after the static_key
3368 * update. This is what guarantees that the socket activation
2d758073
JW
3369 * function is the last one to run. See mem_cgroup_sk_alloc()
3370 * for details, and note that we don't mark any socket as
3371 * belonging to this memcg until that flag is up.
d55f90bf
VD
3372 *
3373 * We need to do this, because static_keys will span multiple
3374 * sites, but we can't control their order. If we mark a socket
3375 * as accounted, but the accounting functions are not patched in
3376 * yet, we'll lose accounting.
3377 *
2d758073 3378 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3379 * because when this value change, the code to process it is not
3380 * patched in yet.
3381 */
3382 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3383 memcg->tcpmem_active = true;
d55f90bf
VD
3384 }
3385out:
bbec2e15 3386 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3387 return ret;
3388}
d55f90bf 3389
628f4235
KH
3390/*
3391 * The user of this function is...
3392 * RES_LIMIT.
3393 */
451af504
TH
3394static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3395 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3396{
451af504 3397 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3398 unsigned long nr_pages;
628f4235
KH
3399 int ret;
3400
451af504 3401 buf = strstrip(buf);
650c5e56 3402 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3403 if (ret)
3404 return ret;
af36f906 3405
3e32cb2e 3406 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3407 case RES_LIMIT:
4b3bde4c
BS
3408 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3409 ret = -EINVAL;
3410 break;
3411 }
3e32cb2e
JW
3412 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3413 case _MEM:
bbec2e15 3414 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3415 break;
3e32cb2e 3416 case _MEMSWAP:
bbec2e15 3417 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3418 break;
3e32cb2e 3419 case _KMEM:
bbec2e15 3420 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3421 break;
d55f90bf 3422 case _TCP:
bbec2e15 3423 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3424 break;
3e32cb2e 3425 }
296c81d8 3426 break;
3e32cb2e
JW
3427 case RES_SOFT_LIMIT:
3428 memcg->soft_limit = nr_pages;
3429 ret = 0;
628f4235
KH
3430 break;
3431 }
451af504 3432 return ret ?: nbytes;
8cdea7c0
BS
3433}
3434
6770c64e
TH
3435static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3436 size_t nbytes, loff_t off)
c84872e1 3437{
6770c64e 3438 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3439 struct page_counter *counter;
c84872e1 3440
3e32cb2e
JW
3441 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3442 case _MEM:
3443 counter = &memcg->memory;
3444 break;
3445 case _MEMSWAP:
3446 counter = &memcg->memsw;
3447 break;
3448 case _KMEM:
3449 counter = &memcg->kmem;
3450 break;
d55f90bf 3451 case _TCP:
0db15298 3452 counter = &memcg->tcpmem;
d55f90bf 3453 break;
3e32cb2e
JW
3454 default:
3455 BUG();
3456 }
af36f906 3457
3e32cb2e 3458 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3459 case RES_MAX_USAGE:
3e32cb2e 3460 page_counter_reset_watermark(counter);
29f2a4da
PE
3461 break;
3462 case RES_FAILCNT:
3e32cb2e 3463 counter->failcnt = 0;
29f2a4da 3464 break;
3e32cb2e
JW
3465 default:
3466 BUG();
29f2a4da 3467 }
f64c3f54 3468
6770c64e 3469 return nbytes;
c84872e1
PE
3470}
3471
182446d0 3472static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3473 struct cftype *cft)
3474{
182446d0 3475 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3476}
3477
02491447 3478#ifdef CONFIG_MMU
182446d0 3479static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3480 struct cftype *cft, u64 val)
3481{
182446d0 3482 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3483
1dfab5ab 3484 if (val & ~MOVE_MASK)
7dc74be0 3485 return -EINVAL;
ee5e8472 3486
7dc74be0 3487 /*
ee5e8472
GC
3488 * No kind of locking is needed in here, because ->can_attach() will
3489 * check this value once in the beginning of the process, and then carry
3490 * on with stale data. This means that changes to this value will only
3491 * affect task migrations starting after the change.
7dc74be0 3492 */
c0ff4b85 3493 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3494 return 0;
3495}
02491447 3496#else
182446d0 3497static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3498 struct cftype *cft, u64 val)
3499{
3500 return -ENOSYS;
3501}
3502#endif
7dc74be0 3503
406eb0c9 3504#ifdef CONFIG_NUMA
113b7dfd
JW
3505
3506#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3507#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3508#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3509
3510static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3511 int nid, unsigned int lru_mask)
3512{
3513 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3514 unsigned long nr = 0;
3515 enum lru_list lru;
3516
3517 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3518
3519 for_each_lru(lru) {
3520 if (!(BIT(lru) & lru_mask))
3521 continue;
205b20cc 3522 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3523 }
3524 return nr;
3525}
3526
3527static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3528 unsigned int lru_mask)
3529{
3530 unsigned long nr = 0;
3531 enum lru_list lru;
3532
3533 for_each_lru(lru) {
3534 if (!(BIT(lru) & lru_mask))
3535 continue;
205b20cc 3536 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3537 }
3538 return nr;
3539}
3540
2da8ca82 3541static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3542{
25485de6
GT
3543 struct numa_stat {
3544 const char *name;
3545 unsigned int lru_mask;
3546 };
3547
3548 static const struct numa_stat stats[] = {
3549 { "total", LRU_ALL },
3550 { "file", LRU_ALL_FILE },
3551 { "anon", LRU_ALL_ANON },
3552 { "unevictable", BIT(LRU_UNEVICTABLE) },
3553 };
3554 const struct numa_stat *stat;
406eb0c9 3555 int nid;
25485de6 3556 unsigned long nr;
aa9694bb 3557 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3558
25485de6
GT
3559 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3560 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3561 seq_printf(m, "%s=%lu", stat->name, nr);
3562 for_each_node_state(nid, N_MEMORY) {
3563 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3564 stat->lru_mask);
3565 seq_printf(m, " N%d=%lu", nid, nr);
3566 }
3567 seq_putc(m, '\n');
406eb0c9 3568 }
406eb0c9 3569
071aee13
YH
3570 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3571 struct mem_cgroup *iter;
3572
3573 nr = 0;
3574 for_each_mem_cgroup_tree(iter, memcg)
3575 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3576 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3577 for_each_node_state(nid, N_MEMORY) {
3578 nr = 0;
3579 for_each_mem_cgroup_tree(iter, memcg)
3580 nr += mem_cgroup_node_nr_lru_pages(
3581 iter, nid, stat->lru_mask);
3582 seq_printf(m, " N%d=%lu", nid, nr);
3583 }
3584 seq_putc(m, '\n');
406eb0c9 3585 }
406eb0c9 3586
406eb0c9
YH
3587 return 0;
3588}
3589#endif /* CONFIG_NUMA */
3590
c8713d0b
JW
3591static const unsigned int memcg1_stats[] = {
3592 MEMCG_CACHE,
3593 MEMCG_RSS,
3594 MEMCG_RSS_HUGE,
3595 NR_SHMEM,
3596 NR_FILE_MAPPED,
3597 NR_FILE_DIRTY,
3598 NR_WRITEBACK,
3599 MEMCG_SWAP,
3600};
3601
3602static const char *const memcg1_stat_names[] = {
3603 "cache",
3604 "rss",
3605 "rss_huge",
3606 "shmem",
3607 "mapped_file",
3608 "dirty",
3609 "writeback",
3610 "swap",
3611};
3612
df0e53d0 3613/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3614static const unsigned int memcg1_events[] = {
df0e53d0
JW
3615 PGPGIN,
3616 PGPGOUT,
3617 PGFAULT,
3618 PGMAJFAULT,
3619};
3620
3621static const char *const memcg1_event_names[] = {
3622 "pgpgin",
3623 "pgpgout",
3624 "pgfault",
3625 "pgmajfault",
3626};
3627
2da8ca82 3628static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3629{
aa9694bb 3630 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3631 unsigned long memory, memsw;
af7c4b0e
JW
3632 struct mem_cgroup *mi;
3633 unsigned int i;
406eb0c9 3634
71cd3113 3635 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3636 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3637
71cd3113
JW
3638 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3639 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3640 continue;
71cd3113 3641 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3642 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3643 PAGE_SIZE);
1dd3a273 3644 }
7b854121 3645
df0e53d0
JW
3646 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3647 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3648 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3649
3650 for (i = 0; i < NR_LRU_LISTS; i++)
3651 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3652 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3653 PAGE_SIZE);
af7c4b0e 3654
14067bb3 3655 /* Hierarchical information */
3e32cb2e
JW
3656 memory = memsw = PAGE_COUNTER_MAX;
3657 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3658 memory = min(memory, mi->memory.max);
3659 memsw = min(memsw, mi->memsw.max);
fee7b548 3660 }
3e32cb2e
JW
3661 seq_printf(m, "hierarchical_memory_limit %llu\n",
3662 (u64)memory * PAGE_SIZE);
7941d214 3663 if (do_memsw_account())
3e32cb2e
JW
3664 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3665 (u64)memsw * PAGE_SIZE);
7f016ee8 3666
8de7ecc6 3667 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3668 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3669 continue;
8de7ecc6 3670 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3671 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3672 PAGE_SIZE);
af7c4b0e
JW
3673 }
3674
8de7ecc6
SB
3675 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3676 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3677 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3678
8de7ecc6
SB
3679 for (i = 0; i < NR_LRU_LISTS; i++)
3680 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3681 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3682 PAGE_SIZE);
14067bb3 3683
7f016ee8 3684#ifdef CONFIG_DEBUG_VM
7f016ee8 3685 {
ef8f2327
MG
3686 pg_data_t *pgdat;
3687 struct mem_cgroup_per_node *mz;
89abfab1 3688 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3689 unsigned long recent_rotated[2] = {0, 0};
3690 unsigned long recent_scanned[2] = {0, 0};
3691
ef8f2327
MG
3692 for_each_online_pgdat(pgdat) {
3693 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3694 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3695
ef8f2327
MG
3696 recent_rotated[0] += rstat->recent_rotated[0];
3697 recent_rotated[1] += rstat->recent_rotated[1];
3698 recent_scanned[0] += rstat->recent_scanned[0];
3699 recent_scanned[1] += rstat->recent_scanned[1];
3700 }
78ccf5b5
JW
3701 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3702 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3703 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3704 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3705 }
3706#endif
3707
d2ceb9b7
KH
3708 return 0;
3709}
3710
182446d0
TH
3711static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3712 struct cftype *cft)
a7885eb8 3713{
182446d0 3714 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3715
1f4c025b 3716 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3717}
3718
182446d0
TH
3719static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3720 struct cftype *cft, u64 val)
a7885eb8 3721{
182446d0 3722 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3723
3dae7fec 3724 if (val > 100)
a7885eb8
KM
3725 return -EINVAL;
3726
14208b0e 3727 if (css->parent)
3dae7fec
JW
3728 memcg->swappiness = val;
3729 else
3730 vm_swappiness = val;
068b38c1 3731
a7885eb8
KM
3732 return 0;
3733}
3734
2e72b634
KS
3735static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3736{
3737 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3738 unsigned long usage;
2e72b634
KS
3739 int i;
3740
3741 rcu_read_lock();
3742 if (!swap)
2c488db2 3743 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3744 else
2c488db2 3745 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3746
3747 if (!t)
3748 goto unlock;
3749
ce00a967 3750 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3751
3752 /*
748dad36 3753 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3754 * If it's not true, a threshold was crossed after last
3755 * call of __mem_cgroup_threshold().
3756 */
5407a562 3757 i = t->current_threshold;
2e72b634
KS
3758
3759 /*
3760 * Iterate backward over array of thresholds starting from
3761 * current_threshold and check if a threshold is crossed.
3762 * If none of thresholds below usage is crossed, we read
3763 * only one element of the array here.
3764 */
3765 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3766 eventfd_signal(t->entries[i].eventfd, 1);
3767
3768 /* i = current_threshold + 1 */
3769 i++;
3770
3771 /*
3772 * Iterate forward over array of thresholds starting from
3773 * current_threshold+1 and check if a threshold is crossed.
3774 * If none of thresholds above usage is crossed, we read
3775 * only one element of the array here.
3776 */
3777 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3778 eventfd_signal(t->entries[i].eventfd, 1);
3779
3780 /* Update current_threshold */
5407a562 3781 t->current_threshold = i - 1;
2e72b634
KS
3782unlock:
3783 rcu_read_unlock();
3784}
3785
3786static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3787{
ad4ca5f4
KS
3788 while (memcg) {
3789 __mem_cgroup_threshold(memcg, false);
7941d214 3790 if (do_memsw_account())
ad4ca5f4
KS
3791 __mem_cgroup_threshold(memcg, true);
3792
3793 memcg = parent_mem_cgroup(memcg);
3794 }
2e72b634
KS
3795}
3796
3797static int compare_thresholds(const void *a, const void *b)
3798{
3799 const struct mem_cgroup_threshold *_a = a;
3800 const struct mem_cgroup_threshold *_b = b;
3801
2bff24a3
GT
3802 if (_a->threshold > _b->threshold)
3803 return 1;
3804
3805 if (_a->threshold < _b->threshold)
3806 return -1;
3807
3808 return 0;
2e72b634
KS
3809}
3810
c0ff4b85 3811static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3812{
3813 struct mem_cgroup_eventfd_list *ev;
3814
2bcf2e92
MH
3815 spin_lock(&memcg_oom_lock);
3816
c0ff4b85 3817 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3818 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3819
3820 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3821 return 0;
3822}
3823
c0ff4b85 3824static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3825{
7d74b06f
KH
3826 struct mem_cgroup *iter;
3827
c0ff4b85 3828 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3829 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3830}
3831
59b6f873 3832static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3833 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3834{
2c488db2
KS
3835 struct mem_cgroup_thresholds *thresholds;
3836 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3837 unsigned long threshold;
3838 unsigned long usage;
2c488db2 3839 int i, size, ret;
2e72b634 3840
650c5e56 3841 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3842 if (ret)
3843 return ret;
3844
3845 mutex_lock(&memcg->thresholds_lock);
2c488db2 3846
05b84301 3847 if (type == _MEM) {
2c488db2 3848 thresholds = &memcg->thresholds;
ce00a967 3849 usage = mem_cgroup_usage(memcg, false);
05b84301 3850 } else if (type == _MEMSWAP) {
2c488db2 3851 thresholds = &memcg->memsw_thresholds;
ce00a967 3852 usage = mem_cgroup_usage(memcg, true);
05b84301 3853 } else
2e72b634
KS
3854 BUG();
3855
2e72b634 3856 /* Check if a threshold crossed before adding a new one */
2c488db2 3857 if (thresholds->primary)
2e72b634
KS
3858 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3859
2c488db2 3860 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3861
3862 /* Allocate memory for new array of thresholds */
67b8046f 3863 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3864 if (!new) {
2e72b634
KS
3865 ret = -ENOMEM;
3866 goto unlock;
3867 }
2c488db2 3868 new->size = size;
2e72b634
KS
3869
3870 /* Copy thresholds (if any) to new array */
2c488db2
KS
3871 if (thresholds->primary) {
3872 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3873 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3874 }
3875
2e72b634 3876 /* Add new threshold */
2c488db2
KS
3877 new->entries[size - 1].eventfd = eventfd;
3878 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3879
3880 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3881 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3882 compare_thresholds, NULL);
3883
3884 /* Find current threshold */
2c488db2 3885 new->current_threshold = -1;
2e72b634 3886 for (i = 0; i < size; i++) {
748dad36 3887 if (new->entries[i].threshold <= usage) {
2e72b634 3888 /*
2c488db2
KS
3889 * new->current_threshold will not be used until
3890 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3891 * it here.
3892 */
2c488db2 3893 ++new->current_threshold;
748dad36
SZ
3894 } else
3895 break;
2e72b634
KS
3896 }
3897
2c488db2
KS
3898 /* Free old spare buffer and save old primary buffer as spare */
3899 kfree(thresholds->spare);
3900 thresholds->spare = thresholds->primary;
3901
3902 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3903
907860ed 3904 /* To be sure that nobody uses thresholds */
2e72b634
KS
3905 synchronize_rcu();
3906
2e72b634
KS
3907unlock:
3908 mutex_unlock(&memcg->thresholds_lock);
3909
3910 return ret;
3911}
3912
59b6f873 3913static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3914 struct eventfd_ctx *eventfd, const char *args)
3915{
59b6f873 3916 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3917}
3918
59b6f873 3919static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3920 struct eventfd_ctx *eventfd, const char *args)
3921{
59b6f873 3922 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3923}
3924
59b6f873 3925static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3926 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3927{
2c488db2
KS
3928 struct mem_cgroup_thresholds *thresholds;
3929 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3930 unsigned long usage;
2c488db2 3931 int i, j, size;
2e72b634
KS
3932
3933 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3934
3935 if (type == _MEM) {
2c488db2 3936 thresholds = &memcg->thresholds;
ce00a967 3937 usage = mem_cgroup_usage(memcg, false);
05b84301 3938 } else if (type == _MEMSWAP) {
2c488db2 3939 thresholds = &memcg->memsw_thresholds;
ce00a967 3940 usage = mem_cgroup_usage(memcg, true);
05b84301 3941 } else
2e72b634
KS
3942 BUG();
3943
371528ca
AV
3944 if (!thresholds->primary)
3945 goto unlock;
3946
2e72b634
KS
3947 /* Check if a threshold crossed before removing */
3948 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3949
3950 /* Calculate new number of threshold */
2c488db2
KS
3951 size = 0;
3952 for (i = 0; i < thresholds->primary->size; i++) {
3953 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3954 size++;
3955 }
3956
2c488db2 3957 new = thresholds->spare;
907860ed 3958
2e72b634
KS
3959 /* Set thresholds array to NULL if we don't have thresholds */
3960 if (!size) {
2c488db2
KS
3961 kfree(new);
3962 new = NULL;
907860ed 3963 goto swap_buffers;
2e72b634
KS
3964 }
3965
2c488db2 3966 new->size = size;
2e72b634
KS
3967
3968 /* Copy thresholds and find current threshold */
2c488db2
KS
3969 new->current_threshold = -1;
3970 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3971 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3972 continue;
3973
2c488db2 3974 new->entries[j] = thresholds->primary->entries[i];
748dad36 3975 if (new->entries[j].threshold <= usage) {
2e72b634 3976 /*
2c488db2 3977 * new->current_threshold will not be used
2e72b634
KS
3978 * until rcu_assign_pointer(), so it's safe to increment
3979 * it here.
3980 */
2c488db2 3981 ++new->current_threshold;
2e72b634
KS
3982 }
3983 j++;
3984 }
3985
907860ed 3986swap_buffers:
2c488db2
KS
3987 /* Swap primary and spare array */
3988 thresholds->spare = thresholds->primary;
8c757763 3989
2c488db2 3990 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3991
907860ed 3992 /* To be sure that nobody uses thresholds */
2e72b634 3993 synchronize_rcu();
6611d8d7
MC
3994
3995 /* If all events are unregistered, free the spare array */
3996 if (!new) {
3997 kfree(thresholds->spare);
3998 thresholds->spare = NULL;
3999 }
371528ca 4000unlock:
2e72b634 4001 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4002}
c1e862c1 4003
59b6f873 4004static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4005 struct eventfd_ctx *eventfd)
4006{
59b6f873 4007 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4008}
4009
59b6f873 4010static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4011 struct eventfd_ctx *eventfd)
4012{
59b6f873 4013 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4014}
4015
59b6f873 4016static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4017 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4018{
9490ff27 4019 struct mem_cgroup_eventfd_list *event;
9490ff27 4020
9490ff27
KH
4021 event = kmalloc(sizeof(*event), GFP_KERNEL);
4022 if (!event)
4023 return -ENOMEM;
4024
1af8efe9 4025 spin_lock(&memcg_oom_lock);
9490ff27
KH
4026
4027 event->eventfd = eventfd;
4028 list_add(&event->list, &memcg->oom_notify);
4029
4030 /* already in OOM ? */
c2b42d3c 4031 if (memcg->under_oom)
9490ff27 4032 eventfd_signal(eventfd, 1);
1af8efe9 4033 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4034
4035 return 0;
4036}
4037
59b6f873 4038static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4039 struct eventfd_ctx *eventfd)
9490ff27 4040{
9490ff27 4041 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4042
1af8efe9 4043 spin_lock(&memcg_oom_lock);
9490ff27 4044
c0ff4b85 4045 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4046 if (ev->eventfd == eventfd) {
4047 list_del(&ev->list);
4048 kfree(ev);
4049 }
4050 }
4051
1af8efe9 4052 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4053}
4054
2da8ca82 4055static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4056{
aa9694bb 4057 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4058
791badbd 4059 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4060 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4061 seq_printf(sf, "oom_kill %lu\n",
4062 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4063 return 0;
4064}
4065
182446d0 4066static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4067 struct cftype *cft, u64 val)
4068{
182446d0 4069 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4070
4071 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4072 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4073 return -EINVAL;
4074
c0ff4b85 4075 memcg->oom_kill_disable = val;
4d845ebf 4076 if (!val)
c0ff4b85 4077 memcg_oom_recover(memcg);
3dae7fec 4078
3c11ecf4
KH
4079 return 0;
4080}
4081
52ebea74
TH
4082#ifdef CONFIG_CGROUP_WRITEBACK
4083
841710aa
TH
4084static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4085{
4086 return wb_domain_init(&memcg->cgwb_domain, gfp);
4087}
4088
4089static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4090{
4091 wb_domain_exit(&memcg->cgwb_domain);
4092}
4093
2529bb3a
TH
4094static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4095{
4096 wb_domain_size_changed(&memcg->cgwb_domain);
4097}
4098
841710aa
TH
4099struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4100{
4101 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4102
4103 if (!memcg->css.parent)
4104 return NULL;
4105
4106 return &memcg->cgwb_domain;
4107}
4108
0b3d6e6f
GT
4109/*
4110 * idx can be of type enum memcg_stat_item or node_stat_item.
4111 * Keep in sync with memcg_exact_page().
4112 */
4113static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4114{
871789d4 4115 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4116 int cpu;
4117
4118 for_each_online_cpu(cpu)
871789d4 4119 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4120 if (x < 0)
4121 x = 0;
4122 return x;
4123}
4124
c2aa723a
TH
4125/**
4126 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4127 * @wb: bdi_writeback in question
c5edf9cd
TH
4128 * @pfilepages: out parameter for number of file pages
4129 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4130 * @pdirty: out parameter for number of dirty pages
4131 * @pwriteback: out parameter for number of pages under writeback
4132 *
c5edf9cd
TH
4133 * Determine the numbers of file, headroom, dirty, and writeback pages in
4134 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4135 * is a bit more involved.
c2aa723a 4136 *
c5edf9cd
TH
4137 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4138 * headroom is calculated as the lowest headroom of itself and the
4139 * ancestors. Note that this doesn't consider the actual amount of
4140 * available memory in the system. The caller should further cap
4141 * *@pheadroom accordingly.
c2aa723a 4142 */
c5edf9cd
TH
4143void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4144 unsigned long *pheadroom, unsigned long *pdirty,
4145 unsigned long *pwriteback)
c2aa723a
TH
4146{
4147 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4148 struct mem_cgroup *parent;
c2aa723a 4149
0b3d6e6f 4150 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4151
4152 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4153 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4154 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4155 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4156 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4157
c2aa723a 4158 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4159 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4160 unsigned long used = page_counter_read(&memcg->memory);
4161
c5edf9cd 4162 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4163 memcg = parent;
4164 }
c2aa723a
TH
4165}
4166
841710aa
TH
4167#else /* CONFIG_CGROUP_WRITEBACK */
4168
4169static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4170{
4171 return 0;
4172}
4173
4174static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4175{
4176}
4177
2529bb3a
TH
4178static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4179{
4180}
4181
52ebea74
TH
4182#endif /* CONFIG_CGROUP_WRITEBACK */
4183
3bc942f3
TH
4184/*
4185 * DO NOT USE IN NEW FILES.
4186 *
4187 * "cgroup.event_control" implementation.
4188 *
4189 * This is way over-engineered. It tries to support fully configurable
4190 * events for each user. Such level of flexibility is completely
4191 * unnecessary especially in the light of the planned unified hierarchy.
4192 *
4193 * Please deprecate this and replace with something simpler if at all
4194 * possible.
4195 */
4196
79bd9814
TH
4197/*
4198 * Unregister event and free resources.
4199 *
4200 * Gets called from workqueue.
4201 */
3bc942f3 4202static void memcg_event_remove(struct work_struct *work)
79bd9814 4203{
3bc942f3
TH
4204 struct mem_cgroup_event *event =
4205 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4206 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4207
4208 remove_wait_queue(event->wqh, &event->wait);
4209
59b6f873 4210 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4211
4212 /* Notify userspace the event is going away. */
4213 eventfd_signal(event->eventfd, 1);
4214
4215 eventfd_ctx_put(event->eventfd);
4216 kfree(event);
59b6f873 4217 css_put(&memcg->css);
79bd9814
TH
4218}
4219
4220/*
a9a08845 4221 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4222 *
4223 * Called with wqh->lock held and interrupts disabled.
4224 */
ac6424b9 4225static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4226 int sync, void *key)
79bd9814 4227{
3bc942f3
TH
4228 struct mem_cgroup_event *event =
4229 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4230 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4231 __poll_t flags = key_to_poll(key);
79bd9814 4232
a9a08845 4233 if (flags & EPOLLHUP) {
79bd9814
TH
4234 /*
4235 * If the event has been detached at cgroup removal, we
4236 * can simply return knowing the other side will cleanup
4237 * for us.
4238 *
4239 * We can't race against event freeing since the other
4240 * side will require wqh->lock via remove_wait_queue(),
4241 * which we hold.
4242 */
fba94807 4243 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4244 if (!list_empty(&event->list)) {
4245 list_del_init(&event->list);
4246 /*
4247 * We are in atomic context, but cgroup_event_remove()
4248 * may sleep, so we have to call it in workqueue.
4249 */
4250 schedule_work(&event->remove);
4251 }
fba94807 4252 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4253 }
4254
4255 return 0;
4256}
4257
3bc942f3 4258static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4259 wait_queue_head_t *wqh, poll_table *pt)
4260{
3bc942f3
TH
4261 struct mem_cgroup_event *event =
4262 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4263
4264 event->wqh = wqh;
4265 add_wait_queue(wqh, &event->wait);
4266}
4267
4268/*
3bc942f3
TH
4269 * DO NOT USE IN NEW FILES.
4270 *
79bd9814
TH
4271 * Parse input and register new cgroup event handler.
4272 *
4273 * Input must be in format '<event_fd> <control_fd> <args>'.
4274 * Interpretation of args is defined by control file implementation.
4275 */
451af504
TH
4276static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4277 char *buf, size_t nbytes, loff_t off)
79bd9814 4278{
451af504 4279 struct cgroup_subsys_state *css = of_css(of);
fba94807 4280 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4281 struct mem_cgroup_event *event;
79bd9814
TH
4282 struct cgroup_subsys_state *cfile_css;
4283 unsigned int efd, cfd;
4284 struct fd efile;
4285 struct fd cfile;
fba94807 4286 const char *name;
79bd9814
TH
4287 char *endp;
4288 int ret;
4289
451af504
TH
4290 buf = strstrip(buf);
4291
4292 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4293 if (*endp != ' ')
4294 return -EINVAL;
451af504 4295 buf = endp + 1;
79bd9814 4296
451af504 4297 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4298 if ((*endp != ' ') && (*endp != '\0'))
4299 return -EINVAL;
451af504 4300 buf = endp + 1;
79bd9814
TH
4301
4302 event = kzalloc(sizeof(*event), GFP_KERNEL);
4303 if (!event)
4304 return -ENOMEM;
4305
59b6f873 4306 event->memcg = memcg;
79bd9814 4307 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4308 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4309 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4310 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4311
4312 efile = fdget(efd);
4313 if (!efile.file) {
4314 ret = -EBADF;
4315 goto out_kfree;
4316 }
4317
4318 event->eventfd = eventfd_ctx_fileget(efile.file);
4319 if (IS_ERR(event->eventfd)) {
4320 ret = PTR_ERR(event->eventfd);
4321 goto out_put_efile;
4322 }
4323
4324 cfile = fdget(cfd);
4325 if (!cfile.file) {
4326 ret = -EBADF;
4327 goto out_put_eventfd;
4328 }
4329
4330 /* the process need read permission on control file */
4331 /* AV: shouldn't we check that it's been opened for read instead? */
4332 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4333 if (ret < 0)
4334 goto out_put_cfile;
4335
fba94807
TH
4336 /*
4337 * Determine the event callbacks and set them in @event. This used
4338 * to be done via struct cftype but cgroup core no longer knows
4339 * about these events. The following is crude but the whole thing
4340 * is for compatibility anyway.
3bc942f3
TH
4341 *
4342 * DO NOT ADD NEW FILES.
fba94807 4343 */
b583043e 4344 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4345
4346 if (!strcmp(name, "memory.usage_in_bytes")) {
4347 event->register_event = mem_cgroup_usage_register_event;
4348 event->unregister_event = mem_cgroup_usage_unregister_event;
4349 } else if (!strcmp(name, "memory.oom_control")) {
4350 event->register_event = mem_cgroup_oom_register_event;
4351 event->unregister_event = mem_cgroup_oom_unregister_event;
4352 } else if (!strcmp(name, "memory.pressure_level")) {
4353 event->register_event = vmpressure_register_event;
4354 event->unregister_event = vmpressure_unregister_event;
4355 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4356 event->register_event = memsw_cgroup_usage_register_event;
4357 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4358 } else {
4359 ret = -EINVAL;
4360 goto out_put_cfile;
4361 }
4362
79bd9814 4363 /*
b5557c4c
TH
4364 * Verify @cfile should belong to @css. Also, remaining events are
4365 * automatically removed on cgroup destruction but the removal is
4366 * asynchronous, so take an extra ref on @css.
79bd9814 4367 */
b583043e 4368 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4369 &memory_cgrp_subsys);
79bd9814 4370 ret = -EINVAL;
5a17f543 4371 if (IS_ERR(cfile_css))
79bd9814 4372 goto out_put_cfile;
5a17f543
TH
4373 if (cfile_css != css) {
4374 css_put(cfile_css);
79bd9814 4375 goto out_put_cfile;
5a17f543 4376 }
79bd9814 4377
451af504 4378 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4379 if (ret)
4380 goto out_put_css;
4381
9965ed17 4382 vfs_poll(efile.file, &event->pt);
79bd9814 4383
fba94807
TH
4384 spin_lock(&memcg->event_list_lock);
4385 list_add(&event->list, &memcg->event_list);
4386 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4387
4388 fdput(cfile);
4389 fdput(efile);
4390
451af504 4391 return nbytes;
79bd9814
TH
4392
4393out_put_css:
b5557c4c 4394 css_put(css);
79bd9814
TH
4395out_put_cfile:
4396 fdput(cfile);
4397out_put_eventfd:
4398 eventfd_ctx_put(event->eventfd);
4399out_put_efile:
4400 fdput(efile);
4401out_kfree:
4402 kfree(event);
4403
4404 return ret;
4405}
4406
241994ed 4407static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4408 {
0eea1030 4409 .name = "usage_in_bytes",
8c7c6e34 4410 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4411 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4412 },
c84872e1
PE
4413 {
4414 .name = "max_usage_in_bytes",
8c7c6e34 4415 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4416 .write = mem_cgroup_reset,
791badbd 4417 .read_u64 = mem_cgroup_read_u64,
c84872e1 4418 },
8cdea7c0 4419 {
0eea1030 4420 .name = "limit_in_bytes",
8c7c6e34 4421 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4422 .write = mem_cgroup_write,
791badbd 4423 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4424 },
296c81d8
BS
4425 {
4426 .name = "soft_limit_in_bytes",
4427 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4428 .write = mem_cgroup_write,
791badbd 4429 .read_u64 = mem_cgroup_read_u64,
296c81d8 4430 },
8cdea7c0
BS
4431 {
4432 .name = "failcnt",
8c7c6e34 4433 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4434 .write = mem_cgroup_reset,
791badbd 4435 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4436 },
d2ceb9b7
KH
4437 {
4438 .name = "stat",
2da8ca82 4439 .seq_show = memcg_stat_show,
d2ceb9b7 4440 },
c1e862c1
KH
4441 {
4442 .name = "force_empty",
6770c64e 4443 .write = mem_cgroup_force_empty_write,
c1e862c1 4444 },
18f59ea7
BS
4445 {
4446 .name = "use_hierarchy",
4447 .write_u64 = mem_cgroup_hierarchy_write,
4448 .read_u64 = mem_cgroup_hierarchy_read,
4449 },
79bd9814 4450 {
3bc942f3 4451 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4452 .write = memcg_write_event_control,
7dbdb199 4453 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4454 },
a7885eb8
KM
4455 {
4456 .name = "swappiness",
4457 .read_u64 = mem_cgroup_swappiness_read,
4458 .write_u64 = mem_cgroup_swappiness_write,
4459 },
7dc74be0
DN
4460 {
4461 .name = "move_charge_at_immigrate",
4462 .read_u64 = mem_cgroup_move_charge_read,
4463 .write_u64 = mem_cgroup_move_charge_write,
4464 },
9490ff27
KH
4465 {
4466 .name = "oom_control",
2da8ca82 4467 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4468 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4469 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4470 },
70ddf637
AV
4471 {
4472 .name = "pressure_level",
70ddf637 4473 },
406eb0c9
YH
4474#ifdef CONFIG_NUMA
4475 {
4476 .name = "numa_stat",
2da8ca82 4477 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4478 },
4479#endif
510fc4e1
GC
4480 {
4481 .name = "kmem.limit_in_bytes",
4482 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4483 .write = mem_cgroup_write,
791badbd 4484 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4485 },
4486 {
4487 .name = "kmem.usage_in_bytes",
4488 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4489 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4490 },
4491 {
4492 .name = "kmem.failcnt",
4493 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4494 .write = mem_cgroup_reset,
791badbd 4495 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4496 },
4497 {
4498 .name = "kmem.max_usage_in_bytes",
4499 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4500 .write = mem_cgroup_reset,
791badbd 4501 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4502 },
5b365771 4503#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4504 {
4505 .name = "kmem.slabinfo",
bc2791f8
TH
4506 .seq_start = memcg_slab_start,
4507 .seq_next = memcg_slab_next,
4508 .seq_stop = memcg_slab_stop,
b047501c 4509 .seq_show = memcg_slab_show,
749c5415
GC
4510 },
4511#endif
d55f90bf
VD
4512 {
4513 .name = "kmem.tcp.limit_in_bytes",
4514 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4515 .write = mem_cgroup_write,
4516 .read_u64 = mem_cgroup_read_u64,
4517 },
4518 {
4519 .name = "kmem.tcp.usage_in_bytes",
4520 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4521 .read_u64 = mem_cgroup_read_u64,
4522 },
4523 {
4524 .name = "kmem.tcp.failcnt",
4525 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4526 .write = mem_cgroup_reset,
4527 .read_u64 = mem_cgroup_read_u64,
4528 },
4529 {
4530 .name = "kmem.tcp.max_usage_in_bytes",
4531 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4532 .write = mem_cgroup_reset,
4533 .read_u64 = mem_cgroup_read_u64,
4534 },
6bc10349 4535 { }, /* terminate */
af36f906 4536};
8c7c6e34 4537
73f576c0
JW
4538/*
4539 * Private memory cgroup IDR
4540 *
4541 * Swap-out records and page cache shadow entries need to store memcg
4542 * references in constrained space, so we maintain an ID space that is
4543 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4544 * memory-controlled cgroups to 64k.
4545 *
4546 * However, there usually are many references to the oflline CSS after
4547 * the cgroup has been destroyed, such as page cache or reclaimable
4548 * slab objects, that don't need to hang on to the ID. We want to keep
4549 * those dead CSS from occupying IDs, or we might quickly exhaust the
4550 * relatively small ID space and prevent the creation of new cgroups
4551 * even when there are much fewer than 64k cgroups - possibly none.
4552 *
4553 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4554 * be freed and recycled when it's no longer needed, which is usually
4555 * when the CSS is offlined.
4556 *
4557 * The only exception to that are records of swapped out tmpfs/shmem
4558 * pages that need to be attributed to live ancestors on swapin. But
4559 * those references are manageable from userspace.
4560 */
4561
4562static DEFINE_IDR(mem_cgroup_idr);
4563
7e97de0b
KT
4564static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4565{
4566 if (memcg->id.id > 0) {
4567 idr_remove(&mem_cgroup_idr, memcg->id.id);
4568 memcg->id.id = 0;
4569 }
4570}
4571
615d66c3 4572static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4573{
1c2d479a 4574 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4575}
4576
615d66c3 4577static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4578{
1c2d479a 4579 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4580 mem_cgroup_id_remove(memcg);
73f576c0
JW
4581
4582 /* Memcg ID pins CSS */
4583 css_put(&memcg->css);
4584 }
4585}
4586
615d66c3
VD
4587static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4588{
4589 mem_cgroup_id_get_many(memcg, 1);
4590}
4591
4592static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4593{
4594 mem_cgroup_id_put_many(memcg, 1);
4595}
4596
73f576c0
JW
4597/**
4598 * mem_cgroup_from_id - look up a memcg from a memcg id
4599 * @id: the memcg id to look up
4600 *
4601 * Caller must hold rcu_read_lock().
4602 */
4603struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4604{
4605 WARN_ON_ONCE(!rcu_read_lock_held());
4606 return idr_find(&mem_cgroup_idr, id);
4607}
4608
ef8f2327 4609static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4610{
4611 struct mem_cgroup_per_node *pn;
ef8f2327 4612 int tmp = node;
1ecaab2b
KH
4613 /*
4614 * This routine is called against possible nodes.
4615 * But it's BUG to call kmalloc() against offline node.
4616 *
4617 * TODO: this routine can waste much memory for nodes which will
4618 * never be onlined. It's better to use memory hotplug callback
4619 * function.
4620 */
41e3355d
KH
4621 if (!node_state(node, N_NORMAL_MEMORY))
4622 tmp = -1;
17295c88 4623 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4624 if (!pn)
4625 return 1;
1ecaab2b 4626
815744d7
JW
4627 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4628 if (!pn->lruvec_stat_local) {
4629 kfree(pn);
4630 return 1;
4631 }
4632
a983b5eb
JW
4633 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4634 if (!pn->lruvec_stat_cpu) {
815744d7 4635 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4636 kfree(pn);
4637 return 1;
4638 }
4639
ef8f2327
MG
4640 lruvec_init(&pn->lruvec);
4641 pn->usage_in_excess = 0;
4642 pn->on_tree = false;
4643 pn->memcg = memcg;
4644
54f72fe0 4645 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4646 return 0;
4647}
4648
ef8f2327 4649static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4650{
00f3ca2c
JW
4651 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4652
4eaf431f
MH
4653 if (!pn)
4654 return;
4655
a983b5eb 4656 free_percpu(pn->lruvec_stat_cpu);
815744d7 4657 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4658 kfree(pn);
1ecaab2b
KH
4659}
4660
40e952f9 4661static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4662{
c8b2a36f 4663 int node;
59927fb9 4664
c8b2a36f 4665 for_each_node(node)
ef8f2327 4666 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4667 free_percpu(memcg->vmstats_percpu);
815744d7 4668 free_percpu(memcg->vmstats_local);
8ff69e2c 4669 kfree(memcg);
59927fb9 4670}
3afe36b1 4671
40e952f9
TE
4672static void mem_cgroup_free(struct mem_cgroup *memcg)
4673{
4674 memcg_wb_domain_exit(memcg);
4675 __mem_cgroup_free(memcg);
4676}
4677
0b8f73e1 4678static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4679{
d142e3e6 4680 struct mem_cgroup *memcg;
b9726c26 4681 unsigned int size;
6d12e2d8 4682 int node;
8cdea7c0 4683
0b8f73e1
JW
4684 size = sizeof(struct mem_cgroup);
4685 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4686
4687 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4688 if (!memcg)
0b8f73e1
JW
4689 return NULL;
4690
73f576c0
JW
4691 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4692 1, MEM_CGROUP_ID_MAX,
4693 GFP_KERNEL);
4694 if (memcg->id.id < 0)
4695 goto fail;
4696
815744d7
JW
4697 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4698 if (!memcg->vmstats_local)
4699 goto fail;
4700
871789d4
CD
4701 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4702 if (!memcg->vmstats_percpu)
0b8f73e1 4703 goto fail;
78fb7466 4704
3ed28fa1 4705 for_each_node(node)
ef8f2327 4706 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4707 goto fail;
f64c3f54 4708
0b8f73e1
JW
4709 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4710 goto fail;
28dbc4b6 4711
f7e1cb6e 4712 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4713 memcg->last_scanned_node = MAX_NUMNODES;
4714 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4715 mutex_init(&memcg->thresholds_lock);
4716 spin_lock_init(&memcg->move_lock);
70ddf637 4717 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4718 INIT_LIST_HEAD(&memcg->event_list);
4719 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4720 memcg->socket_pressure = jiffies;
84c07d11 4721#ifdef CONFIG_MEMCG_KMEM
900a38f0 4722 memcg->kmemcg_id = -1;
900a38f0 4723#endif
52ebea74
TH
4724#ifdef CONFIG_CGROUP_WRITEBACK
4725 INIT_LIST_HEAD(&memcg->cgwb_list);
4726#endif
73f576c0 4727 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4728 return memcg;
4729fail:
7e97de0b 4730 mem_cgroup_id_remove(memcg);
40e952f9 4731 __mem_cgroup_free(memcg);
0b8f73e1 4732 return NULL;
d142e3e6
GC
4733}
4734
0b8f73e1
JW
4735static struct cgroup_subsys_state * __ref
4736mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4737{
0b8f73e1
JW
4738 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4739 struct mem_cgroup *memcg;
4740 long error = -ENOMEM;
d142e3e6 4741
0b8f73e1
JW
4742 memcg = mem_cgroup_alloc();
4743 if (!memcg)
4744 return ERR_PTR(error);
d142e3e6 4745
0b8f73e1
JW
4746 memcg->high = PAGE_COUNTER_MAX;
4747 memcg->soft_limit = PAGE_COUNTER_MAX;
4748 if (parent) {
4749 memcg->swappiness = mem_cgroup_swappiness(parent);
4750 memcg->oom_kill_disable = parent->oom_kill_disable;
4751 }
4752 if (parent && parent->use_hierarchy) {
4753 memcg->use_hierarchy = true;
3e32cb2e 4754 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4755 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4756 page_counter_init(&memcg->memsw, &parent->memsw);
4757 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4758 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4759 } else {
3e32cb2e 4760 page_counter_init(&memcg->memory, NULL);
37e84351 4761 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4762 page_counter_init(&memcg->memsw, NULL);
4763 page_counter_init(&memcg->kmem, NULL);
0db15298 4764 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4765 /*
4766 * Deeper hierachy with use_hierarchy == false doesn't make
4767 * much sense so let cgroup subsystem know about this
4768 * unfortunate state in our controller.
4769 */
d142e3e6 4770 if (parent != root_mem_cgroup)
073219e9 4771 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4772 }
d6441637 4773
0b8f73e1
JW
4774 /* The following stuff does not apply to the root */
4775 if (!parent) {
fb2f2b0a
RG
4776#ifdef CONFIG_MEMCG_KMEM
4777 INIT_LIST_HEAD(&memcg->kmem_caches);
4778#endif
0b8f73e1
JW
4779 root_mem_cgroup = memcg;
4780 return &memcg->css;
4781 }
4782
b313aeee 4783 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4784 if (error)
4785 goto fail;
127424c8 4786
f7e1cb6e 4787 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4788 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4789
0b8f73e1
JW
4790 return &memcg->css;
4791fail:
7e97de0b 4792 mem_cgroup_id_remove(memcg);
0b8f73e1 4793 mem_cgroup_free(memcg);
ea3a9645 4794 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4795}
4796
73f576c0 4797static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4798{
58fa2a55
VD
4799 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4800
0a4465d3
KT
4801 /*
4802 * A memcg must be visible for memcg_expand_shrinker_maps()
4803 * by the time the maps are allocated. So, we allocate maps
4804 * here, when for_each_mem_cgroup() can't skip it.
4805 */
4806 if (memcg_alloc_shrinker_maps(memcg)) {
4807 mem_cgroup_id_remove(memcg);
4808 return -ENOMEM;
4809 }
4810
73f576c0 4811 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4812 refcount_set(&memcg->id.ref, 1);
73f576c0 4813 css_get(css);
2f7dd7a4 4814 return 0;
8cdea7c0
BS
4815}
4816
eb95419b 4817static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4818{
eb95419b 4819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4820 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4821
4822 /*
4823 * Unregister events and notify userspace.
4824 * Notify userspace about cgroup removing only after rmdir of cgroup
4825 * directory to avoid race between userspace and kernelspace.
4826 */
fba94807
TH
4827 spin_lock(&memcg->event_list_lock);
4828 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4829 list_del_init(&event->list);
4830 schedule_work(&event->remove);
4831 }
fba94807 4832 spin_unlock(&memcg->event_list_lock);
ec64f515 4833
bf8d5d52 4834 page_counter_set_min(&memcg->memory, 0);
23067153 4835 page_counter_set_low(&memcg->memory, 0);
63677c74 4836
567e9ab2 4837 memcg_offline_kmem(memcg);
52ebea74 4838 wb_memcg_offline(memcg);
73f576c0 4839
591edfb1
RG
4840 drain_all_stock(memcg);
4841
73f576c0 4842 mem_cgroup_id_put(memcg);
df878fb0
KH
4843}
4844
6df38689
VD
4845static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4846{
4847 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4848
4849 invalidate_reclaim_iterators(memcg);
4850}
4851
eb95419b 4852static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4853{
eb95419b 4854 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4855
f7e1cb6e 4856 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4857 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4858
0db15298 4859 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4860 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4861
0b8f73e1
JW
4862 vmpressure_cleanup(&memcg->vmpressure);
4863 cancel_work_sync(&memcg->high_work);
4864 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4865 memcg_free_shrinker_maps(memcg);
d886f4e4 4866 memcg_free_kmem(memcg);
0b8f73e1 4867 mem_cgroup_free(memcg);
8cdea7c0
BS
4868}
4869
1ced953b
TH
4870/**
4871 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4872 * @css: the target css
4873 *
4874 * Reset the states of the mem_cgroup associated with @css. This is
4875 * invoked when the userland requests disabling on the default hierarchy
4876 * but the memcg is pinned through dependency. The memcg should stop
4877 * applying policies and should revert to the vanilla state as it may be
4878 * made visible again.
4879 *
4880 * The current implementation only resets the essential configurations.
4881 * This needs to be expanded to cover all the visible parts.
4882 */
4883static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4884{
4885 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4886
bbec2e15
RG
4887 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4888 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4889 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4890 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4891 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4892 page_counter_set_min(&memcg->memory, 0);
23067153 4893 page_counter_set_low(&memcg->memory, 0);
241994ed 4894 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4895 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4896 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4897}
4898
02491447 4899#ifdef CONFIG_MMU
7dc74be0 4900/* Handlers for move charge at task migration. */
854ffa8d 4901static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4902{
05b84301 4903 int ret;
9476db97 4904
d0164adc
MG
4905 /* Try a single bulk charge without reclaim first, kswapd may wake */
4906 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4907 if (!ret) {
854ffa8d 4908 mc.precharge += count;
854ffa8d
DN
4909 return ret;
4910 }
9476db97 4911
3674534b 4912 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4913 while (count--) {
3674534b 4914 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4915 if (ret)
38c5d72f 4916 return ret;
854ffa8d 4917 mc.precharge++;
9476db97 4918 cond_resched();
854ffa8d 4919 }
9476db97 4920 return 0;
4ffef5fe
DN
4921}
4922
4ffef5fe
DN
4923union mc_target {
4924 struct page *page;
02491447 4925 swp_entry_t ent;
4ffef5fe
DN
4926};
4927
4ffef5fe 4928enum mc_target_type {
8d32ff84 4929 MC_TARGET_NONE = 0,
4ffef5fe 4930 MC_TARGET_PAGE,
02491447 4931 MC_TARGET_SWAP,
c733a828 4932 MC_TARGET_DEVICE,
4ffef5fe
DN
4933};
4934
90254a65
DN
4935static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4936 unsigned long addr, pte_t ptent)
4ffef5fe 4937{
25b2995a 4938 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4939
90254a65
DN
4940 if (!page || !page_mapped(page))
4941 return NULL;
4942 if (PageAnon(page)) {
1dfab5ab 4943 if (!(mc.flags & MOVE_ANON))
90254a65 4944 return NULL;
1dfab5ab
JW
4945 } else {
4946 if (!(mc.flags & MOVE_FILE))
4947 return NULL;
4948 }
90254a65
DN
4949 if (!get_page_unless_zero(page))
4950 return NULL;
4951
4952 return page;
4953}
4954
c733a828 4955#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4956static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4957 pte_t ptent, swp_entry_t *entry)
90254a65 4958{
90254a65
DN
4959 struct page *page = NULL;
4960 swp_entry_t ent = pte_to_swp_entry(ptent);
4961
1dfab5ab 4962 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4963 return NULL;
c733a828
JG
4964
4965 /*
4966 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4967 * a device and because they are not accessible by CPU they are store
4968 * as special swap entry in the CPU page table.
4969 */
4970 if (is_device_private_entry(ent)) {
4971 page = device_private_entry_to_page(ent);
4972 /*
4973 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4974 * a refcount of 1 when free (unlike normal page)
4975 */
4976 if (!page_ref_add_unless(page, 1, 1))
4977 return NULL;
4978 return page;
4979 }
4980
4b91355e
KH
4981 /*
4982 * Because lookup_swap_cache() updates some statistics counter,
4983 * we call find_get_page() with swapper_space directly.
4984 */
f6ab1f7f 4985 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4986 if (do_memsw_account())
90254a65
DN
4987 entry->val = ent.val;
4988
4989 return page;
4990}
4b91355e
KH
4991#else
4992static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4993 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4994{
4995 return NULL;
4996}
4997#endif
90254a65 4998
87946a72
DN
4999static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5000 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5001{
5002 struct page *page = NULL;
87946a72
DN
5003 struct address_space *mapping;
5004 pgoff_t pgoff;
5005
5006 if (!vma->vm_file) /* anonymous vma */
5007 return NULL;
1dfab5ab 5008 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5009 return NULL;
5010
87946a72 5011 mapping = vma->vm_file->f_mapping;
0661a336 5012 pgoff = linear_page_index(vma, addr);
87946a72
DN
5013
5014 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5015#ifdef CONFIG_SWAP
5016 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5017 if (shmem_mapping(mapping)) {
5018 page = find_get_entry(mapping, pgoff);
3159f943 5019 if (xa_is_value(page)) {
139b6a6f 5020 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5021 if (do_memsw_account())
139b6a6f 5022 *entry = swp;
f6ab1f7f
HY
5023 page = find_get_page(swap_address_space(swp),
5024 swp_offset(swp));
139b6a6f
JW
5025 }
5026 } else
5027 page = find_get_page(mapping, pgoff);
5028#else
5029 page = find_get_page(mapping, pgoff);
aa3b1895 5030#endif
87946a72
DN
5031 return page;
5032}
5033
b1b0deab
CG
5034/**
5035 * mem_cgroup_move_account - move account of the page
5036 * @page: the page
25843c2b 5037 * @compound: charge the page as compound or small page
b1b0deab
CG
5038 * @from: mem_cgroup which the page is moved from.
5039 * @to: mem_cgroup which the page is moved to. @from != @to.
5040 *
3ac808fd 5041 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5042 *
5043 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5044 * from old cgroup.
5045 */
5046static int mem_cgroup_move_account(struct page *page,
f627c2f5 5047 bool compound,
b1b0deab
CG
5048 struct mem_cgroup *from,
5049 struct mem_cgroup *to)
5050{
5051 unsigned long flags;
f627c2f5 5052 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5053 int ret;
c4843a75 5054 bool anon;
b1b0deab
CG
5055
5056 VM_BUG_ON(from == to);
5057 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5058 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5059
5060 /*
6a93ca8f 5061 * Prevent mem_cgroup_migrate() from looking at
45637bab 5062 * page->mem_cgroup of its source page while we change it.
b1b0deab 5063 */
f627c2f5 5064 ret = -EBUSY;
b1b0deab
CG
5065 if (!trylock_page(page))
5066 goto out;
5067
5068 ret = -EINVAL;
5069 if (page->mem_cgroup != from)
5070 goto out_unlock;
5071
c4843a75
GT
5072 anon = PageAnon(page);
5073
b1b0deab
CG
5074 spin_lock_irqsave(&from->move_lock, flags);
5075
c4843a75 5076 if (!anon && page_mapped(page)) {
c9019e9b
JW
5077 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5078 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5079 }
5080
c4843a75
GT
5081 /*
5082 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5083 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5084 * So mapping should be stable for dirty pages.
5085 */
5086 if (!anon && PageDirty(page)) {
5087 struct address_space *mapping = page_mapping(page);
5088
5089 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5090 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5091 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5092 }
5093 }
5094
b1b0deab 5095 if (PageWriteback(page)) {
c9019e9b
JW
5096 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5097 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5098 }
5099
5100 /*
5101 * It is safe to change page->mem_cgroup here because the page
5102 * is referenced, charged, and isolated - we can't race with
5103 * uncharging, charging, migration, or LRU putback.
5104 */
5105
5106 /* caller should have done css_get */
5107 page->mem_cgroup = to;
5108 spin_unlock_irqrestore(&from->move_lock, flags);
5109
5110 ret = 0;
5111
5112 local_irq_disable();
f627c2f5 5113 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5114 memcg_check_events(to, page);
f627c2f5 5115 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5116 memcg_check_events(from, page);
5117 local_irq_enable();
5118out_unlock:
5119 unlock_page(page);
5120out:
5121 return ret;
5122}
5123
7cf7806c
LR
5124/**
5125 * get_mctgt_type - get target type of moving charge
5126 * @vma: the vma the pte to be checked belongs
5127 * @addr: the address corresponding to the pte to be checked
5128 * @ptent: the pte to be checked
5129 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5130 *
5131 * Returns
5132 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5133 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5134 * move charge. if @target is not NULL, the page is stored in target->page
5135 * with extra refcnt got(Callers should handle it).
5136 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5137 * target for charge migration. if @target is not NULL, the entry is stored
5138 * in target->ent.
25b2995a
CH
5139 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5140 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5141 * For now we such page is charge like a regular page would be as for all
5142 * intent and purposes it is just special memory taking the place of a
5143 * regular page.
c733a828
JG
5144 *
5145 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5146 *
5147 * Called with pte lock held.
5148 */
5149
8d32ff84 5150static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5151 unsigned long addr, pte_t ptent, union mc_target *target)
5152{
5153 struct page *page = NULL;
8d32ff84 5154 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5155 swp_entry_t ent = { .val = 0 };
5156
5157 if (pte_present(ptent))
5158 page = mc_handle_present_pte(vma, addr, ptent);
5159 else if (is_swap_pte(ptent))
48406ef8 5160 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5161 else if (pte_none(ptent))
87946a72 5162 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5163
5164 if (!page && !ent.val)
8d32ff84 5165 return ret;
02491447 5166 if (page) {
02491447 5167 /*
0a31bc97 5168 * Do only loose check w/o serialization.
1306a85a 5169 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5170 * not under LRU exclusion.
02491447 5171 */
1306a85a 5172 if (page->mem_cgroup == mc.from) {
02491447 5173 ret = MC_TARGET_PAGE;
25b2995a 5174 if (is_device_private_page(page))
c733a828 5175 ret = MC_TARGET_DEVICE;
02491447
DN
5176 if (target)
5177 target->page = page;
5178 }
5179 if (!ret || !target)
5180 put_page(page);
5181 }
3e14a57b
HY
5182 /*
5183 * There is a swap entry and a page doesn't exist or isn't charged.
5184 * But we cannot move a tail-page in a THP.
5185 */
5186 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5187 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5188 ret = MC_TARGET_SWAP;
5189 if (target)
5190 target->ent = ent;
4ffef5fe 5191 }
4ffef5fe
DN
5192 return ret;
5193}
5194
12724850
NH
5195#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5196/*
d6810d73
HY
5197 * We don't consider PMD mapped swapping or file mapped pages because THP does
5198 * not support them for now.
12724850
NH
5199 * Caller should make sure that pmd_trans_huge(pmd) is true.
5200 */
5201static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5202 unsigned long addr, pmd_t pmd, union mc_target *target)
5203{
5204 struct page *page = NULL;
12724850
NH
5205 enum mc_target_type ret = MC_TARGET_NONE;
5206
84c3fc4e
ZY
5207 if (unlikely(is_swap_pmd(pmd))) {
5208 VM_BUG_ON(thp_migration_supported() &&
5209 !is_pmd_migration_entry(pmd));
5210 return ret;
5211 }
12724850 5212 page = pmd_page(pmd);
309381fe 5213 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5214 if (!(mc.flags & MOVE_ANON))
12724850 5215 return ret;
1306a85a 5216 if (page->mem_cgroup == mc.from) {
12724850
NH
5217 ret = MC_TARGET_PAGE;
5218 if (target) {
5219 get_page(page);
5220 target->page = page;
5221 }
5222 }
5223 return ret;
5224}
5225#else
5226static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5227 unsigned long addr, pmd_t pmd, union mc_target *target)
5228{
5229 return MC_TARGET_NONE;
5230}
5231#endif
5232
4ffef5fe
DN
5233static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5234 unsigned long addr, unsigned long end,
5235 struct mm_walk *walk)
5236{
26bcd64a 5237 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5238 pte_t *pte;
5239 spinlock_t *ptl;
5240
b6ec57f4
KS
5241 ptl = pmd_trans_huge_lock(pmd, vma);
5242 if (ptl) {
c733a828
JG
5243 /*
5244 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5245 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5246 * this might change.
c733a828 5247 */
12724850
NH
5248 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5249 mc.precharge += HPAGE_PMD_NR;
bf929152 5250 spin_unlock(ptl);
1a5a9906 5251 return 0;
12724850 5252 }
03319327 5253
45f83cef
AA
5254 if (pmd_trans_unstable(pmd))
5255 return 0;
4ffef5fe
DN
5256 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5257 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5258 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5259 mc.precharge++; /* increment precharge temporarily */
5260 pte_unmap_unlock(pte - 1, ptl);
5261 cond_resched();
5262
7dc74be0
DN
5263 return 0;
5264}
5265
4ffef5fe
DN
5266static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5267{
5268 unsigned long precharge;
4ffef5fe 5269
26bcd64a
NH
5270 struct mm_walk mem_cgroup_count_precharge_walk = {
5271 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5272 .mm = mm,
5273 };
dfe076b0 5274 down_read(&mm->mmap_sem);
0247f3f4
JM
5275 walk_page_range(0, mm->highest_vm_end,
5276 &mem_cgroup_count_precharge_walk);
dfe076b0 5277 up_read(&mm->mmap_sem);
4ffef5fe
DN
5278
5279 precharge = mc.precharge;
5280 mc.precharge = 0;
5281
5282 return precharge;
5283}
5284
4ffef5fe
DN
5285static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5286{
dfe076b0
DN
5287 unsigned long precharge = mem_cgroup_count_precharge(mm);
5288
5289 VM_BUG_ON(mc.moving_task);
5290 mc.moving_task = current;
5291 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5292}
5293
dfe076b0
DN
5294/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5295static void __mem_cgroup_clear_mc(void)
4ffef5fe 5296{
2bd9bb20
KH
5297 struct mem_cgroup *from = mc.from;
5298 struct mem_cgroup *to = mc.to;
5299
4ffef5fe 5300 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5301 if (mc.precharge) {
00501b53 5302 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5303 mc.precharge = 0;
5304 }
5305 /*
5306 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5307 * we must uncharge here.
5308 */
5309 if (mc.moved_charge) {
00501b53 5310 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5311 mc.moved_charge = 0;
4ffef5fe 5312 }
483c30b5
DN
5313 /* we must fixup refcnts and charges */
5314 if (mc.moved_swap) {
483c30b5 5315 /* uncharge swap account from the old cgroup */
ce00a967 5316 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5317 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5318
615d66c3
VD
5319 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5320
05b84301 5321 /*
3e32cb2e
JW
5322 * we charged both to->memory and to->memsw, so we
5323 * should uncharge to->memory.
05b84301 5324 */
ce00a967 5325 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5326 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5327
615d66c3
VD
5328 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5329 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5330
483c30b5
DN
5331 mc.moved_swap = 0;
5332 }
dfe076b0
DN
5333 memcg_oom_recover(from);
5334 memcg_oom_recover(to);
5335 wake_up_all(&mc.waitq);
5336}
5337
5338static void mem_cgroup_clear_mc(void)
5339{
264a0ae1
TH
5340 struct mm_struct *mm = mc.mm;
5341
dfe076b0
DN
5342 /*
5343 * we must clear moving_task before waking up waiters at the end of
5344 * task migration.
5345 */
5346 mc.moving_task = NULL;
5347 __mem_cgroup_clear_mc();
2bd9bb20 5348 spin_lock(&mc.lock);
4ffef5fe
DN
5349 mc.from = NULL;
5350 mc.to = NULL;
264a0ae1 5351 mc.mm = NULL;
2bd9bb20 5352 spin_unlock(&mc.lock);
264a0ae1
TH
5353
5354 mmput(mm);
4ffef5fe
DN
5355}
5356
1f7dd3e5 5357static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5358{
1f7dd3e5 5359 struct cgroup_subsys_state *css;
eed67d75 5360 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5361 struct mem_cgroup *from;
4530eddb 5362 struct task_struct *leader, *p;
9f2115f9 5363 struct mm_struct *mm;
1dfab5ab 5364 unsigned long move_flags;
9f2115f9 5365 int ret = 0;
7dc74be0 5366
1f7dd3e5
TH
5367 /* charge immigration isn't supported on the default hierarchy */
5368 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5369 return 0;
5370
4530eddb
TH
5371 /*
5372 * Multi-process migrations only happen on the default hierarchy
5373 * where charge immigration is not used. Perform charge
5374 * immigration if @tset contains a leader and whine if there are
5375 * multiple.
5376 */
5377 p = NULL;
1f7dd3e5 5378 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5379 WARN_ON_ONCE(p);
5380 p = leader;
1f7dd3e5 5381 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5382 }
5383 if (!p)
5384 return 0;
5385
1f7dd3e5
TH
5386 /*
5387 * We are now commited to this value whatever it is. Changes in this
5388 * tunable will only affect upcoming migrations, not the current one.
5389 * So we need to save it, and keep it going.
5390 */
5391 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5392 if (!move_flags)
5393 return 0;
5394
9f2115f9
TH
5395 from = mem_cgroup_from_task(p);
5396
5397 VM_BUG_ON(from == memcg);
5398
5399 mm = get_task_mm(p);
5400 if (!mm)
5401 return 0;
5402 /* We move charges only when we move a owner of the mm */
5403 if (mm->owner == p) {
5404 VM_BUG_ON(mc.from);
5405 VM_BUG_ON(mc.to);
5406 VM_BUG_ON(mc.precharge);
5407 VM_BUG_ON(mc.moved_charge);
5408 VM_BUG_ON(mc.moved_swap);
5409
5410 spin_lock(&mc.lock);
264a0ae1 5411 mc.mm = mm;
9f2115f9
TH
5412 mc.from = from;
5413 mc.to = memcg;
5414 mc.flags = move_flags;
5415 spin_unlock(&mc.lock);
5416 /* We set mc.moving_task later */
5417
5418 ret = mem_cgroup_precharge_mc(mm);
5419 if (ret)
5420 mem_cgroup_clear_mc();
264a0ae1
TH
5421 } else {
5422 mmput(mm);
7dc74be0
DN
5423 }
5424 return ret;
5425}
5426
1f7dd3e5 5427static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5428{
4e2f245d
JW
5429 if (mc.to)
5430 mem_cgroup_clear_mc();
7dc74be0
DN
5431}
5432
4ffef5fe
DN
5433static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5434 unsigned long addr, unsigned long end,
5435 struct mm_walk *walk)
7dc74be0 5436{
4ffef5fe 5437 int ret = 0;
26bcd64a 5438 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5439 pte_t *pte;
5440 spinlock_t *ptl;
12724850
NH
5441 enum mc_target_type target_type;
5442 union mc_target target;
5443 struct page *page;
4ffef5fe 5444
b6ec57f4
KS
5445 ptl = pmd_trans_huge_lock(pmd, vma);
5446 if (ptl) {
62ade86a 5447 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5448 spin_unlock(ptl);
12724850
NH
5449 return 0;
5450 }
5451 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5452 if (target_type == MC_TARGET_PAGE) {
5453 page = target.page;
5454 if (!isolate_lru_page(page)) {
f627c2f5 5455 if (!mem_cgroup_move_account(page, true,
1306a85a 5456 mc.from, mc.to)) {
12724850
NH
5457 mc.precharge -= HPAGE_PMD_NR;
5458 mc.moved_charge += HPAGE_PMD_NR;
5459 }
5460 putback_lru_page(page);
5461 }
5462 put_page(page);
c733a828
JG
5463 } else if (target_type == MC_TARGET_DEVICE) {
5464 page = target.page;
5465 if (!mem_cgroup_move_account(page, true,
5466 mc.from, mc.to)) {
5467 mc.precharge -= HPAGE_PMD_NR;
5468 mc.moved_charge += HPAGE_PMD_NR;
5469 }
5470 put_page(page);
12724850 5471 }
bf929152 5472 spin_unlock(ptl);
1a5a9906 5473 return 0;
12724850
NH
5474 }
5475
45f83cef
AA
5476 if (pmd_trans_unstable(pmd))
5477 return 0;
4ffef5fe
DN
5478retry:
5479 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5480 for (; addr != end; addr += PAGE_SIZE) {
5481 pte_t ptent = *(pte++);
c733a828 5482 bool device = false;
02491447 5483 swp_entry_t ent;
4ffef5fe
DN
5484
5485 if (!mc.precharge)
5486 break;
5487
8d32ff84 5488 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5489 case MC_TARGET_DEVICE:
5490 device = true;
5491 /* fall through */
4ffef5fe
DN
5492 case MC_TARGET_PAGE:
5493 page = target.page;
53f9263b
KS
5494 /*
5495 * We can have a part of the split pmd here. Moving it
5496 * can be done but it would be too convoluted so simply
5497 * ignore such a partial THP and keep it in original
5498 * memcg. There should be somebody mapping the head.
5499 */
5500 if (PageTransCompound(page))
5501 goto put;
c733a828 5502 if (!device && isolate_lru_page(page))
4ffef5fe 5503 goto put;
f627c2f5
KS
5504 if (!mem_cgroup_move_account(page, false,
5505 mc.from, mc.to)) {
4ffef5fe 5506 mc.precharge--;
854ffa8d
DN
5507 /* we uncharge from mc.from later. */
5508 mc.moved_charge++;
4ffef5fe 5509 }
c733a828
JG
5510 if (!device)
5511 putback_lru_page(page);
8d32ff84 5512put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5513 put_page(page);
5514 break;
02491447
DN
5515 case MC_TARGET_SWAP:
5516 ent = target.ent;
e91cbb42 5517 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5518 mc.precharge--;
483c30b5
DN
5519 /* we fixup refcnts and charges later. */
5520 mc.moved_swap++;
5521 }
02491447 5522 break;
4ffef5fe
DN
5523 default:
5524 break;
5525 }
5526 }
5527 pte_unmap_unlock(pte - 1, ptl);
5528 cond_resched();
5529
5530 if (addr != end) {
5531 /*
5532 * We have consumed all precharges we got in can_attach().
5533 * We try charge one by one, but don't do any additional
5534 * charges to mc.to if we have failed in charge once in attach()
5535 * phase.
5536 */
854ffa8d 5537 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5538 if (!ret)
5539 goto retry;
5540 }
5541
5542 return ret;
5543}
5544
264a0ae1 5545static void mem_cgroup_move_charge(void)
4ffef5fe 5546{
26bcd64a
NH
5547 struct mm_walk mem_cgroup_move_charge_walk = {
5548 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5549 .mm = mc.mm,
26bcd64a 5550 };
4ffef5fe
DN
5551
5552 lru_add_drain_all();
312722cb 5553 /*
81f8c3a4
JW
5554 * Signal lock_page_memcg() to take the memcg's move_lock
5555 * while we're moving its pages to another memcg. Then wait
5556 * for already started RCU-only updates to finish.
312722cb
JW
5557 */
5558 atomic_inc(&mc.from->moving_account);
5559 synchronize_rcu();
dfe076b0 5560retry:
264a0ae1 5561 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5562 /*
5563 * Someone who are holding the mmap_sem might be waiting in
5564 * waitq. So we cancel all extra charges, wake up all waiters,
5565 * and retry. Because we cancel precharges, we might not be able
5566 * to move enough charges, but moving charge is a best-effort
5567 * feature anyway, so it wouldn't be a big problem.
5568 */
5569 __mem_cgroup_clear_mc();
5570 cond_resched();
5571 goto retry;
5572 }
26bcd64a
NH
5573 /*
5574 * When we have consumed all precharges and failed in doing
5575 * additional charge, the page walk just aborts.
5576 */
0247f3f4
JM
5577 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5578
264a0ae1 5579 up_read(&mc.mm->mmap_sem);
312722cb 5580 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5581}
5582
264a0ae1 5583static void mem_cgroup_move_task(void)
67e465a7 5584{
264a0ae1
TH
5585 if (mc.to) {
5586 mem_cgroup_move_charge();
a433658c 5587 mem_cgroup_clear_mc();
264a0ae1 5588 }
67e465a7 5589}
5cfb80a7 5590#else /* !CONFIG_MMU */
1f7dd3e5 5591static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5592{
5593 return 0;
5594}
1f7dd3e5 5595static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5596{
5597}
264a0ae1 5598static void mem_cgroup_move_task(void)
5cfb80a7
DN
5599{
5600}
5601#endif
67e465a7 5602
f00baae7
TH
5603/*
5604 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5605 * to verify whether we're attached to the default hierarchy on each mount
5606 * attempt.
f00baae7 5607 */
eb95419b 5608static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5609{
5610 /*
aa6ec29b 5611 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5612 * guarantees that @root doesn't have any children, so turning it
5613 * on for the root memcg is enough.
5614 */
9e10a130 5615 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5616 root_mem_cgroup->use_hierarchy = true;
5617 else
5618 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5619}
5620
677dc973
CD
5621static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5622{
5623 if (value == PAGE_COUNTER_MAX)
5624 seq_puts(m, "max\n");
5625 else
5626 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5627
5628 return 0;
5629}
5630
241994ed
JW
5631static u64 memory_current_read(struct cgroup_subsys_state *css,
5632 struct cftype *cft)
5633{
f5fc3c5d
JW
5634 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5635
5636 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5637}
5638
bf8d5d52
RG
5639static int memory_min_show(struct seq_file *m, void *v)
5640{
677dc973
CD
5641 return seq_puts_memcg_tunable(m,
5642 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5643}
5644
5645static ssize_t memory_min_write(struct kernfs_open_file *of,
5646 char *buf, size_t nbytes, loff_t off)
5647{
5648 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5649 unsigned long min;
5650 int err;
5651
5652 buf = strstrip(buf);
5653 err = page_counter_memparse(buf, "max", &min);
5654 if (err)
5655 return err;
5656
5657 page_counter_set_min(&memcg->memory, min);
5658
5659 return nbytes;
5660}
5661
241994ed
JW
5662static int memory_low_show(struct seq_file *m, void *v)
5663{
677dc973
CD
5664 return seq_puts_memcg_tunable(m,
5665 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5666}
5667
5668static ssize_t memory_low_write(struct kernfs_open_file *of,
5669 char *buf, size_t nbytes, loff_t off)
5670{
5671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5672 unsigned long low;
5673 int err;
5674
5675 buf = strstrip(buf);
d2973697 5676 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5677 if (err)
5678 return err;
5679
23067153 5680 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5681
5682 return nbytes;
5683}
5684
5685static int memory_high_show(struct seq_file *m, void *v)
5686{
677dc973 5687 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5688}
5689
5690static ssize_t memory_high_write(struct kernfs_open_file *of,
5691 char *buf, size_t nbytes, loff_t off)
5692{
5693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5694 unsigned long nr_pages;
241994ed
JW
5695 unsigned long high;
5696 int err;
5697
5698 buf = strstrip(buf);
d2973697 5699 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5700 if (err)
5701 return err;
5702
5703 memcg->high = high;
5704
588083bb
JW
5705 nr_pages = page_counter_read(&memcg->memory);
5706 if (nr_pages > high)
5707 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5708 GFP_KERNEL, true);
5709
2529bb3a 5710 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5711 return nbytes;
5712}
5713
5714static int memory_max_show(struct seq_file *m, void *v)
5715{
677dc973
CD
5716 return seq_puts_memcg_tunable(m,
5717 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5718}
5719
5720static ssize_t memory_max_write(struct kernfs_open_file *of,
5721 char *buf, size_t nbytes, loff_t off)
5722{
5723 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5724 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5725 bool drained = false;
241994ed
JW
5726 unsigned long max;
5727 int err;
5728
5729 buf = strstrip(buf);
d2973697 5730 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5731 if (err)
5732 return err;
5733
bbec2e15 5734 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5735
5736 for (;;) {
5737 unsigned long nr_pages = page_counter_read(&memcg->memory);
5738
5739 if (nr_pages <= max)
5740 break;
5741
5742 if (signal_pending(current)) {
5743 err = -EINTR;
5744 break;
5745 }
5746
5747 if (!drained) {
5748 drain_all_stock(memcg);
5749 drained = true;
5750 continue;
5751 }
5752
5753 if (nr_reclaims) {
5754 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5755 GFP_KERNEL, true))
5756 nr_reclaims--;
5757 continue;
5758 }
5759
e27be240 5760 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5761 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5762 break;
5763 }
241994ed 5764
2529bb3a 5765 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5766 return nbytes;
5767}
5768
1e577f97
SB
5769static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5770{
5771 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5772 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5773 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5774 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5775 seq_printf(m, "oom_kill %lu\n",
5776 atomic_long_read(&events[MEMCG_OOM_KILL]));
5777}
5778
241994ed
JW
5779static int memory_events_show(struct seq_file *m, void *v)
5780{
aa9694bb 5781 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5782
1e577f97
SB
5783 __memory_events_show(m, memcg->memory_events);
5784 return 0;
5785}
5786
5787static int memory_events_local_show(struct seq_file *m, void *v)
5788{
5789 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5790
1e577f97 5791 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
5792 return 0;
5793}
5794
587d9f72
JW
5795static int memory_stat_show(struct seq_file *m, void *v)
5796{
aa9694bb 5797 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 5798 char *buf;
1ff9e6e1 5799
c8713d0b
JW
5800 buf = memory_stat_format(memcg);
5801 if (!buf)
5802 return -ENOMEM;
5803 seq_puts(m, buf);
5804 kfree(buf);
587d9f72
JW
5805 return 0;
5806}
5807
3d8b38eb
RG
5808static int memory_oom_group_show(struct seq_file *m, void *v)
5809{
aa9694bb 5810 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5811
5812 seq_printf(m, "%d\n", memcg->oom_group);
5813
5814 return 0;
5815}
5816
5817static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5818 char *buf, size_t nbytes, loff_t off)
5819{
5820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5821 int ret, oom_group;
5822
5823 buf = strstrip(buf);
5824 if (!buf)
5825 return -EINVAL;
5826
5827 ret = kstrtoint(buf, 0, &oom_group);
5828 if (ret)
5829 return ret;
5830
5831 if (oom_group != 0 && oom_group != 1)
5832 return -EINVAL;
5833
5834 memcg->oom_group = oom_group;
5835
5836 return nbytes;
5837}
5838
241994ed
JW
5839static struct cftype memory_files[] = {
5840 {
5841 .name = "current",
f5fc3c5d 5842 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5843 .read_u64 = memory_current_read,
5844 },
bf8d5d52
RG
5845 {
5846 .name = "min",
5847 .flags = CFTYPE_NOT_ON_ROOT,
5848 .seq_show = memory_min_show,
5849 .write = memory_min_write,
5850 },
241994ed
JW
5851 {
5852 .name = "low",
5853 .flags = CFTYPE_NOT_ON_ROOT,
5854 .seq_show = memory_low_show,
5855 .write = memory_low_write,
5856 },
5857 {
5858 .name = "high",
5859 .flags = CFTYPE_NOT_ON_ROOT,
5860 .seq_show = memory_high_show,
5861 .write = memory_high_write,
5862 },
5863 {
5864 .name = "max",
5865 .flags = CFTYPE_NOT_ON_ROOT,
5866 .seq_show = memory_max_show,
5867 .write = memory_max_write,
5868 },
5869 {
5870 .name = "events",
5871 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5872 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5873 .seq_show = memory_events_show,
5874 },
1e577f97
SB
5875 {
5876 .name = "events.local",
5877 .flags = CFTYPE_NOT_ON_ROOT,
5878 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5879 .seq_show = memory_events_local_show,
5880 },
587d9f72
JW
5881 {
5882 .name = "stat",
5883 .flags = CFTYPE_NOT_ON_ROOT,
5884 .seq_show = memory_stat_show,
5885 },
3d8b38eb
RG
5886 {
5887 .name = "oom.group",
5888 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5889 .seq_show = memory_oom_group_show,
5890 .write = memory_oom_group_write,
5891 },
241994ed
JW
5892 { } /* terminate */
5893};
5894
073219e9 5895struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5896 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5897 .css_online = mem_cgroup_css_online,
92fb9748 5898 .css_offline = mem_cgroup_css_offline,
6df38689 5899 .css_released = mem_cgroup_css_released,
92fb9748 5900 .css_free = mem_cgroup_css_free,
1ced953b 5901 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5902 .can_attach = mem_cgroup_can_attach,
5903 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5904 .post_attach = mem_cgroup_move_task,
f00baae7 5905 .bind = mem_cgroup_bind,
241994ed
JW
5906 .dfl_cftypes = memory_files,
5907 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5908 .early_init = 0,
8cdea7c0 5909};
c077719b 5910
241994ed 5911/**
bf8d5d52 5912 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5913 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5914 * @memcg: the memory cgroup to check
5915 *
23067153
RG
5916 * WARNING: This function is not stateless! It can only be used as part
5917 * of a top-down tree iteration, not for isolated queries.
34c81057 5918 *
bf8d5d52
RG
5919 * Returns one of the following:
5920 * MEMCG_PROT_NONE: cgroup memory is not protected
5921 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5922 * an unprotected supply of reclaimable memory from other cgroups.
5923 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5924 *
bf8d5d52 5925 * @root is exclusive; it is never protected when looked at directly
34c81057 5926 *
bf8d5d52
RG
5927 * To provide a proper hierarchical behavior, effective memory.min/low values
5928 * are used. Below is the description of how effective memory.low is calculated.
5929 * Effective memory.min values is calculated in the same way.
34c81057 5930 *
23067153
RG
5931 * Effective memory.low is always equal or less than the original memory.low.
5932 * If there is no memory.low overcommittment (which is always true for
5933 * top-level memory cgroups), these two values are equal.
5934 * Otherwise, it's a part of parent's effective memory.low,
5935 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5936 * memory.low usages, where memory.low usage is the size of actually
5937 * protected memory.
34c81057 5938 *
23067153
RG
5939 * low_usage
5940 * elow = min( memory.low, parent->elow * ------------------ ),
5941 * siblings_low_usage
34c81057 5942 *
23067153
RG
5943 * | memory.current, if memory.current < memory.low
5944 * low_usage = |
82ede7ee 5945 * | 0, otherwise.
34c81057 5946 *
23067153
RG
5947 *
5948 * Such definition of the effective memory.low provides the expected
5949 * hierarchical behavior: parent's memory.low value is limiting
5950 * children, unprotected memory is reclaimed first and cgroups,
5951 * which are not using their guarantee do not affect actual memory
5952 * distribution.
5953 *
5954 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5955 *
5956 * A A/memory.low = 2G, A/memory.current = 6G
5957 * //\\
5958 * BC DE B/memory.low = 3G B/memory.current = 2G
5959 * C/memory.low = 1G C/memory.current = 2G
5960 * D/memory.low = 0 D/memory.current = 2G
5961 * E/memory.low = 10G E/memory.current = 0
5962 *
5963 * and the memory pressure is applied, the following memory distribution
5964 * is expected (approximately):
5965 *
5966 * A/memory.current = 2G
5967 *
5968 * B/memory.current = 1.3G
5969 * C/memory.current = 0.6G
5970 * D/memory.current = 0
5971 * E/memory.current = 0
5972 *
5973 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5974 * (see propagate_protected_usage()), as well as recursive calculation of
5975 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5976 * path for each memory cgroup top-down from the reclaim,
5977 * it's possible to optimize this part, and save calculated elow
5978 * for next usage. This part is intentionally racy, but it's ok,
5979 * as memory.low is a best-effort mechanism.
241994ed 5980 */
bf8d5d52
RG
5981enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5982 struct mem_cgroup *memcg)
241994ed 5983{
23067153 5984 struct mem_cgroup *parent;
bf8d5d52
RG
5985 unsigned long emin, parent_emin;
5986 unsigned long elow, parent_elow;
5987 unsigned long usage;
23067153 5988
241994ed 5989 if (mem_cgroup_disabled())
bf8d5d52 5990 return MEMCG_PROT_NONE;
241994ed 5991
34c81057
SC
5992 if (!root)
5993 root = root_mem_cgroup;
5994 if (memcg == root)
bf8d5d52 5995 return MEMCG_PROT_NONE;
241994ed 5996
23067153 5997 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5998 if (!usage)
5999 return MEMCG_PROT_NONE;
6000
6001 emin = memcg->memory.min;
6002 elow = memcg->memory.low;
34c81057 6003
bf8d5d52 6004 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6005 /* No parent means a non-hierarchical mode on v1 memcg */
6006 if (!parent)
6007 return MEMCG_PROT_NONE;
6008
23067153
RG
6009 if (parent == root)
6010 goto exit;
6011
bf8d5d52
RG
6012 parent_emin = READ_ONCE(parent->memory.emin);
6013 emin = min(emin, parent_emin);
6014 if (emin && parent_emin) {
6015 unsigned long min_usage, siblings_min_usage;
6016
6017 min_usage = min(usage, memcg->memory.min);
6018 siblings_min_usage = atomic_long_read(
6019 &parent->memory.children_min_usage);
6020
6021 if (min_usage && siblings_min_usage)
6022 emin = min(emin, parent_emin * min_usage /
6023 siblings_min_usage);
6024 }
6025
23067153
RG
6026 parent_elow = READ_ONCE(parent->memory.elow);
6027 elow = min(elow, parent_elow);
bf8d5d52
RG
6028 if (elow && parent_elow) {
6029 unsigned long low_usage, siblings_low_usage;
23067153 6030
bf8d5d52
RG
6031 low_usage = min(usage, memcg->memory.low);
6032 siblings_low_usage = atomic_long_read(
6033 &parent->memory.children_low_usage);
23067153 6034
bf8d5d52
RG
6035 if (low_usage && siblings_low_usage)
6036 elow = min(elow, parent_elow * low_usage /
6037 siblings_low_usage);
6038 }
23067153 6039
23067153 6040exit:
bf8d5d52 6041 memcg->memory.emin = emin;
23067153 6042 memcg->memory.elow = elow;
bf8d5d52
RG
6043
6044 if (usage <= emin)
6045 return MEMCG_PROT_MIN;
6046 else if (usage <= elow)
6047 return MEMCG_PROT_LOW;
6048 else
6049 return MEMCG_PROT_NONE;
241994ed
JW
6050}
6051
00501b53
JW
6052/**
6053 * mem_cgroup_try_charge - try charging a page
6054 * @page: page to charge
6055 * @mm: mm context of the victim
6056 * @gfp_mask: reclaim mode
6057 * @memcgp: charged memcg return
25843c2b 6058 * @compound: charge the page as compound or small page
00501b53
JW
6059 *
6060 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6061 * pages according to @gfp_mask if necessary.
6062 *
6063 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6064 * Otherwise, an error code is returned.
6065 *
6066 * After page->mapping has been set up, the caller must finalize the
6067 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6068 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6069 */
6070int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6071 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6072 bool compound)
00501b53
JW
6073{
6074 struct mem_cgroup *memcg = NULL;
f627c2f5 6075 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6076 int ret = 0;
6077
6078 if (mem_cgroup_disabled())
6079 goto out;
6080
6081 if (PageSwapCache(page)) {
00501b53
JW
6082 /*
6083 * Every swap fault against a single page tries to charge the
6084 * page, bail as early as possible. shmem_unuse() encounters
6085 * already charged pages, too. The USED bit is protected by
6086 * the page lock, which serializes swap cache removal, which
6087 * in turn serializes uncharging.
6088 */
e993d905 6089 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6090 if (compound_head(page)->mem_cgroup)
00501b53 6091 goto out;
e993d905 6092
37e84351 6093 if (do_swap_account) {
e993d905
VD
6094 swp_entry_t ent = { .val = page_private(page), };
6095 unsigned short id = lookup_swap_cgroup_id(ent);
6096
6097 rcu_read_lock();
6098 memcg = mem_cgroup_from_id(id);
6099 if (memcg && !css_tryget_online(&memcg->css))
6100 memcg = NULL;
6101 rcu_read_unlock();
6102 }
00501b53
JW
6103 }
6104
00501b53
JW
6105 if (!memcg)
6106 memcg = get_mem_cgroup_from_mm(mm);
6107
6108 ret = try_charge(memcg, gfp_mask, nr_pages);
6109
6110 css_put(&memcg->css);
00501b53
JW
6111out:
6112 *memcgp = memcg;
6113 return ret;
6114}
6115
2cf85583
TH
6116int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6117 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6118 bool compound)
6119{
6120 struct mem_cgroup *memcg;
6121 int ret;
6122
6123 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6124 memcg = *memcgp;
6125 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6126 return ret;
6127}
6128
00501b53
JW
6129/**
6130 * mem_cgroup_commit_charge - commit a page charge
6131 * @page: page to charge
6132 * @memcg: memcg to charge the page to
6133 * @lrucare: page might be on LRU already
25843c2b 6134 * @compound: charge the page as compound or small page
00501b53
JW
6135 *
6136 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6137 * after page->mapping has been set up. This must happen atomically
6138 * as part of the page instantiation, i.e. under the page table lock
6139 * for anonymous pages, under the page lock for page and swap cache.
6140 *
6141 * In addition, the page must not be on the LRU during the commit, to
6142 * prevent racing with task migration. If it might be, use @lrucare.
6143 *
6144 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6145 */
6146void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6147 bool lrucare, bool compound)
00501b53 6148{
f627c2f5 6149 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6150
6151 VM_BUG_ON_PAGE(!page->mapping, page);
6152 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6153
6154 if (mem_cgroup_disabled())
6155 return;
6156 /*
6157 * Swap faults will attempt to charge the same page multiple
6158 * times. But reuse_swap_page() might have removed the page
6159 * from swapcache already, so we can't check PageSwapCache().
6160 */
6161 if (!memcg)
6162 return;
6163
6abb5a86
JW
6164 commit_charge(page, memcg, lrucare);
6165
6abb5a86 6166 local_irq_disable();
f627c2f5 6167 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6168 memcg_check_events(memcg, page);
6169 local_irq_enable();
00501b53 6170
7941d214 6171 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6172 swp_entry_t entry = { .val = page_private(page) };
6173 /*
6174 * The swap entry might not get freed for a long time,
6175 * let's not wait for it. The page already received a
6176 * memory+swap charge, drop the swap entry duplicate.
6177 */
38d8b4e6 6178 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6179 }
6180}
6181
6182/**
6183 * mem_cgroup_cancel_charge - cancel a page charge
6184 * @page: page to charge
6185 * @memcg: memcg to charge the page to
25843c2b 6186 * @compound: charge the page as compound or small page
00501b53
JW
6187 *
6188 * Cancel a charge transaction started by mem_cgroup_try_charge().
6189 */
f627c2f5
KS
6190void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6191 bool compound)
00501b53 6192{
f627c2f5 6193 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6194
6195 if (mem_cgroup_disabled())
6196 return;
6197 /*
6198 * Swap faults will attempt to charge the same page multiple
6199 * times. But reuse_swap_page() might have removed the page
6200 * from swapcache already, so we can't check PageSwapCache().
6201 */
6202 if (!memcg)
6203 return;
6204
00501b53
JW
6205 cancel_charge(memcg, nr_pages);
6206}
6207
a9d5adee
JG
6208struct uncharge_gather {
6209 struct mem_cgroup *memcg;
6210 unsigned long pgpgout;
6211 unsigned long nr_anon;
6212 unsigned long nr_file;
6213 unsigned long nr_kmem;
6214 unsigned long nr_huge;
6215 unsigned long nr_shmem;
6216 struct page *dummy_page;
6217};
6218
6219static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6220{
a9d5adee
JG
6221 memset(ug, 0, sizeof(*ug));
6222}
6223
6224static void uncharge_batch(const struct uncharge_gather *ug)
6225{
6226 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6227 unsigned long flags;
6228
a9d5adee
JG
6229 if (!mem_cgroup_is_root(ug->memcg)) {
6230 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6231 if (do_memsw_account())
a9d5adee
JG
6232 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6233 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6234 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6235 memcg_oom_recover(ug->memcg);
ce00a967 6236 }
747db954
JW
6237
6238 local_irq_save(flags);
c9019e9b
JW
6239 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6240 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6241 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6242 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6243 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6244 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6245 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6246 local_irq_restore(flags);
e8ea14cc 6247
a9d5adee
JG
6248 if (!mem_cgroup_is_root(ug->memcg))
6249 css_put_many(&ug->memcg->css, nr_pages);
6250}
6251
6252static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6253{
6254 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6255 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6256 !PageHWPoison(page) , page);
a9d5adee
JG
6257
6258 if (!page->mem_cgroup)
6259 return;
6260
6261 /*
6262 * Nobody should be changing or seriously looking at
6263 * page->mem_cgroup at this point, we have fully
6264 * exclusive access to the page.
6265 */
6266
6267 if (ug->memcg != page->mem_cgroup) {
6268 if (ug->memcg) {
6269 uncharge_batch(ug);
6270 uncharge_gather_clear(ug);
6271 }
6272 ug->memcg = page->mem_cgroup;
6273 }
6274
6275 if (!PageKmemcg(page)) {
6276 unsigned int nr_pages = 1;
6277
6278 if (PageTransHuge(page)) {
6279 nr_pages <<= compound_order(page);
6280 ug->nr_huge += nr_pages;
6281 }
6282 if (PageAnon(page))
6283 ug->nr_anon += nr_pages;
6284 else {
6285 ug->nr_file += nr_pages;
6286 if (PageSwapBacked(page))
6287 ug->nr_shmem += nr_pages;
6288 }
6289 ug->pgpgout++;
6290 } else {
6291 ug->nr_kmem += 1 << compound_order(page);
6292 __ClearPageKmemcg(page);
6293 }
6294
6295 ug->dummy_page = page;
6296 page->mem_cgroup = NULL;
747db954
JW
6297}
6298
6299static void uncharge_list(struct list_head *page_list)
6300{
a9d5adee 6301 struct uncharge_gather ug;
747db954 6302 struct list_head *next;
a9d5adee
JG
6303
6304 uncharge_gather_clear(&ug);
747db954 6305
8b592656
JW
6306 /*
6307 * Note that the list can be a single page->lru; hence the
6308 * do-while loop instead of a simple list_for_each_entry().
6309 */
747db954
JW
6310 next = page_list->next;
6311 do {
a9d5adee
JG
6312 struct page *page;
6313
747db954
JW
6314 page = list_entry(next, struct page, lru);
6315 next = page->lru.next;
6316
a9d5adee 6317 uncharge_page(page, &ug);
747db954
JW
6318 } while (next != page_list);
6319
a9d5adee
JG
6320 if (ug.memcg)
6321 uncharge_batch(&ug);
747db954
JW
6322}
6323
0a31bc97
JW
6324/**
6325 * mem_cgroup_uncharge - uncharge a page
6326 * @page: page to uncharge
6327 *
6328 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6329 * mem_cgroup_commit_charge().
6330 */
6331void mem_cgroup_uncharge(struct page *page)
6332{
a9d5adee
JG
6333 struct uncharge_gather ug;
6334
0a31bc97
JW
6335 if (mem_cgroup_disabled())
6336 return;
6337
747db954 6338 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6339 if (!page->mem_cgroup)
0a31bc97
JW
6340 return;
6341
a9d5adee
JG
6342 uncharge_gather_clear(&ug);
6343 uncharge_page(page, &ug);
6344 uncharge_batch(&ug);
747db954 6345}
0a31bc97 6346
747db954
JW
6347/**
6348 * mem_cgroup_uncharge_list - uncharge a list of page
6349 * @page_list: list of pages to uncharge
6350 *
6351 * Uncharge a list of pages previously charged with
6352 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6353 */
6354void mem_cgroup_uncharge_list(struct list_head *page_list)
6355{
6356 if (mem_cgroup_disabled())
6357 return;
0a31bc97 6358
747db954
JW
6359 if (!list_empty(page_list))
6360 uncharge_list(page_list);
0a31bc97
JW
6361}
6362
6363/**
6a93ca8f
JW
6364 * mem_cgroup_migrate - charge a page's replacement
6365 * @oldpage: currently circulating page
6366 * @newpage: replacement page
0a31bc97 6367 *
6a93ca8f
JW
6368 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6369 * be uncharged upon free.
0a31bc97
JW
6370 *
6371 * Both pages must be locked, @newpage->mapping must be set up.
6372 */
6a93ca8f 6373void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6374{
29833315 6375 struct mem_cgroup *memcg;
44b7a8d3
JW
6376 unsigned int nr_pages;
6377 bool compound;
d93c4130 6378 unsigned long flags;
0a31bc97
JW
6379
6380 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6381 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6382 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6383 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6384 newpage);
0a31bc97
JW
6385
6386 if (mem_cgroup_disabled())
6387 return;
6388
6389 /* Page cache replacement: new page already charged? */
1306a85a 6390 if (newpage->mem_cgroup)
0a31bc97
JW
6391 return;
6392
45637bab 6393 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6394 memcg = oldpage->mem_cgroup;
29833315 6395 if (!memcg)
0a31bc97
JW
6396 return;
6397
44b7a8d3
JW
6398 /* Force-charge the new page. The old one will be freed soon */
6399 compound = PageTransHuge(newpage);
6400 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6401
6402 page_counter_charge(&memcg->memory, nr_pages);
6403 if (do_memsw_account())
6404 page_counter_charge(&memcg->memsw, nr_pages);
6405 css_get_many(&memcg->css, nr_pages);
0a31bc97 6406
9cf7666a 6407 commit_charge(newpage, memcg, false);
44b7a8d3 6408
d93c4130 6409 local_irq_save(flags);
44b7a8d3
JW
6410 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6411 memcg_check_events(memcg, newpage);
d93c4130 6412 local_irq_restore(flags);
0a31bc97
JW
6413}
6414
ef12947c 6415DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6416EXPORT_SYMBOL(memcg_sockets_enabled_key);
6417
2d758073 6418void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6419{
6420 struct mem_cgroup *memcg;
6421
2d758073
JW
6422 if (!mem_cgroup_sockets_enabled)
6423 return;
6424
edbe69ef
RG
6425 /*
6426 * Socket cloning can throw us here with sk_memcg already
6427 * filled. It won't however, necessarily happen from
6428 * process context. So the test for root memcg given
6429 * the current task's memcg won't help us in this case.
6430 *
6431 * Respecting the original socket's memcg is a better
6432 * decision in this case.
6433 */
6434 if (sk->sk_memcg) {
6435 css_get(&sk->sk_memcg->css);
6436 return;
6437 }
6438
11092087
JW
6439 rcu_read_lock();
6440 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6441 if (memcg == root_mem_cgroup)
6442 goto out;
0db15298 6443 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6444 goto out;
f7e1cb6e 6445 if (css_tryget_online(&memcg->css))
11092087 6446 sk->sk_memcg = memcg;
f7e1cb6e 6447out:
11092087
JW
6448 rcu_read_unlock();
6449}
11092087 6450
2d758073 6451void mem_cgroup_sk_free(struct sock *sk)
11092087 6452{
2d758073
JW
6453 if (sk->sk_memcg)
6454 css_put(&sk->sk_memcg->css);
11092087
JW
6455}
6456
6457/**
6458 * mem_cgroup_charge_skmem - charge socket memory
6459 * @memcg: memcg to charge
6460 * @nr_pages: number of pages to charge
6461 *
6462 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6463 * @memcg's configured limit, %false if the charge had to be forced.
6464 */
6465bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6466{
f7e1cb6e 6467 gfp_t gfp_mask = GFP_KERNEL;
11092087 6468
f7e1cb6e 6469 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6470 struct page_counter *fail;
f7e1cb6e 6471
0db15298
JW
6472 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6473 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6474 return true;
6475 }
0db15298
JW
6476 page_counter_charge(&memcg->tcpmem, nr_pages);
6477 memcg->tcpmem_pressure = 1;
f7e1cb6e 6478 return false;
11092087 6479 }
d886f4e4 6480
f7e1cb6e
JW
6481 /* Don't block in the packet receive path */
6482 if (in_softirq())
6483 gfp_mask = GFP_NOWAIT;
6484
c9019e9b 6485 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6486
f7e1cb6e
JW
6487 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6488 return true;
6489
6490 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6491 return false;
6492}
6493
6494/**
6495 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6496 * @memcg: memcg to uncharge
6497 * @nr_pages: number of pages to uncharge
11092087
JW
6498 */
6499void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6500{
f7e1cb6e 6501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6502 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6503 return;
6504 }
d886f4e4 6505
c9019e9b 6506 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6507
475d0487 6508 refill_stock(memcg, nr_pages);
11092087
JW
6509}
6510
f7e1cb6e
JW
6511static int __init cgroup_memory(char *s)
6512{
6513 char *token;
6514
6515 while ((token = strsep(&s, ",")) != NULL) {
6516 if (!*token)
6517 continue;
6518 if (!strcmp(token, "nosocket"))
6519 cgroup_memory_nosocket = true;
04823c83
VD
6520 if (!strcmp(token, "nokmem"))
6521 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6522 }
6523 return 0;
6524}
6525__setup("cgroup.memory=", cgroup_memory);
11092087 6526
2d11085e 6527/*
1081312f
MH
6528 * subsys_initcall() for memory controller.
6529 *
308167fc
SAS
6530 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6531 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6532 * basically everything that doesn't depend on a specific mem_cgroup structure
6533 * should be initialized from here.
2d11085e
MH
6534 */
6535static int __init mem_cgroup_init(void)
6536{
95a045f6
JW
6537 int cpu, node;
6538
84c07d11 6539#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6540 /*
6541 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6542 * so use a workqueue with limited concurrency to avoid stalling
6543 * all worker threads in case lots of cgroups are created and
6544 * destroyed simultaneously.
13583c3d 6545 */
17cc4dfe
TH
6546 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6547 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6548#endif
6549
308167fc
SAS
6550 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6551 memcg_hotplug_cpu_dead);
95a045f6
JW
6552
6553 for_each_possible_cpu(cpu)
6554 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6555 drain_local_stock);
6556
6557 for_each_node(node) {
6558 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6559
6560 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6561 node_online(node) ? node : NUMA_NO_NODE);
6562
ef8f2327 6563 rtpn->rb_root = RB_ROOT;
fa90b2fd 6564 rtpn->rb_rightmost = NULL;
ef8f2327 6565 spin_lock_init(&rtpn->lock);
95a045f6
JW
6566 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6567 }
6568
2d11085e
MH
6569 return 0;
6570}
6571subsys_initcall(mem_cgroup_init);
21afa38e
JW
6572
6573#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6574static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6575{
1c2d479a 6576 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6577 /*
6578 * The root cgroup cannot be destroyed, so it's refcount must
6579 * always be >= 1.
6580 */
6581 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6582 VM_BUG_ON(1);
6583 break;
6584 }
6585 memcg = parent_mem_cgroup(memcg);
6586 if (!memcg)
6587 memcg = root_mem_cgroup;
6588 }
6589 return memcg;
6590}
6591
21afa38e
JW
6592/**
6593 * mem_cgroup_swapout - transfer a memsw charge to swap
6594 * @page: page whose memsw charge to transfer
6595 * @entry: swap entry to move the charge to
6596 *
6597 * Transfer the memsw charge of @page to @entry.
6598 */
6599void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6600{
1f47b61f 6601 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6602 unsigned int nr_entries;
21afa38e
JW
6603 unsigned short oldid;
6604
6605 VM_BUG_ON_PAGE(PageLRU(page), page);
6606 VM_BUG_ON_PAGE(page_count(page), page);
6607
7941d214 6608 if (!do_memsw_account())
21afa38e
JW
6609 return;
6610
6611 memcg = page->mem_cgroup;
6612
6613 /* Readahead page, never charged */
6614 if (!memcg)
6615 return;
6616
1f47b61f
VD
6617 /*
6618 * In case the memcg owning these pages has been offlined and doesn't
6619 * have an ID allocated to it anymore, charge the closest online
6620 * ancestor for the swap instead and transfer the memory+swap charge.
6621 */
6622 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6623 nr_entries = hpage_nr_pages(page);
6624 /* Get references for the tail pages, too */
6625 if (nr_entries > 1)
6626 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6627 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6628 nr_entries);
21afa38e 6629 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6630 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6631
6632 page->mem_cgroup = NULL;
6633
6634 if (!mem_cgroup_is_root(memcg))
d6810d73 6635 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6636
1f47b61f
VD
6637 if (memcg != swap_memcg) {
6638 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6639 page_counter_charge(&swap_memcg->memsw, nr_entries);
6640 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6641 }
6642
ce9ce665
SAS
6643 /*
6644 * Interrupts should be disabled here because the caller holds the
b93b0163 6645 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6646 * important here to have the interrupts disabled because it is the
b93b0163 6647 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6648 */
6649 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6650 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6651 -nr_entries);
21afa38e 6652 memcg_check_events(memcg, page);
73f576c0
JW
6653
6654 if (!mem_cgroup_is_root(memcg))
d08afa14 6655 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6656}
6657
38d8b4e6
HY
6658/**
6659 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6660 * @page: page being added to swap
6661 * @entry: swap entry to charge
6662 *
38d8b4e6 6663 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6664 *
6665 * Returns 0 on success, -ENOMEM on failure.
6666 */
6667int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6668{
38d8b4e6 6669 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6670 struct page_counter *counter;
38d8b4e6 6671 struct mem_cgroup *memcg;
37e84351
VD
6672 unsigned short oldid;
6673
6674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6675 return 0;
6676
6677 memcg = page->mem_cgroup;
6678
6679 /* Readahead page, never charged */
6680 if (!memcg)
6681 return 0;
6682
f3a53a3a
TH
6683 if (!entry.val) {
6684 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6685 return 0;
f3a53a3a 6686 }
bb98f2c5 6687
1f47b61f
VD
6688 memcg = mem_cgroup_id_get_online(memcg);
6689
37e84351 6690 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6691 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6692 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6693 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6694 mem_cgroup_id_put(memcg);
37e84351 6695 return -ENOMEM;
1f47b61f 6696 }
37e84351 6697
38d8b4e6
HY
6698 /* Get references for the tail pages, too */
6699 if (nr_pages > 1)
6700 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6701 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6702 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6703 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6704
37e84351
VD
6705 return 0;
6706}
6707
21afa38e 6708/**
38d8b4e6 6709 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6710 * @entry: swap entry to uncharge
38d8b4e6 6711 * @nr_pages: the amount of swap space to uncharge
21afa38e 6712 */
38d8b4e6 6713void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6714{
6715 struct mem_cgroup *memcg;
6716 unsigned short id;
6717
37e84351 6718 if (!do_swap_account)
21afa38e
JW
6719 return;
6720
38d8b4e6 6721 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6722 rcu_read_lock();
adbe427b 6723 memcg = mem_cgroup_from_id(id);
21afa38e 6724 if (memcg) {
37e84351
VD
6725 if (!mem_cgroup_is_root(memcg)) {
6726 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6727 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6728 else
38d8b4e6 6729 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6730 }
c9019e9b 6731 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6732 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6733 }
6734 rcu_read_unlock();
6735}
6736
d8b38438
VD
6737long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6738{
6739 long nr_swap_pages = get_nr_swap_pages();
6740
6741 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6742 return nr_swap_pages;
6743 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6744 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6745 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6746 page_counter_read(&memcg->swap));
6747 return nr_swap_pages;
6748}
6749
5ccc5aba
VD
6750bool mem_cgroup_swap_full(struct page *page)
6751{
6752 struct mem_cgroup *memcg;
6753
6754 VM_BUG_ON_PAGE(!PageLocked(page), page);
6755
6756 if (vm_swap_full())
6757 return true;
6758 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6759 return false;
6760
6761 memcg = page->mem_cgroup;
6762 if (!memcg)
6763 return false;
6764
6765 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6766 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6767 return true;
6768
6769 return false;
6770}
6771
21afa38e
JW
6772/* for remember boot option*/
6773#ifdef CONFIG_MEMCG_SWAP_ENABLED
6774static int really_do_swap_account __initdata = 1;
6775#else
6776static int really_do_swap_account __initdata;
6777#endif
6778
6779static int __init enable_swap_account(char *s)
6780{
6781 if (!strcmp(s, "1"))
6782 really_do_swap_account = 1;
6783 else if (!strcmp(s, "0"))
6784 really_do_swap_account = 0;
6785 return 1;
6786}
6787__setup("swapaccount=", enable_swap_account);
6788
37e84351
VD
6789static u64 swap_current_read(struct cgroup_subsys_state *css,
6790 struct cftype *cft)
6791{
6792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6793
6794 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6795}
6796
6797static int swap_max_show(struct seq_file *m, void *v)
6798{
677dc973
CD
6799 return seq_puts_memcg_tunable(m,
6800 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6801}
6802
6803static ssize_t swap_max_write(struct kernfs_open_file *of,
6804 char *buf, size_t nbytes, loff_t off)
6805{
6806 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6807 unsigned long max;
6808 int err;
6809
6810 buf = strstrip(buf);
6811 err = page_counter_memparse(buf, "max", &max);
6812 if (err)
6813 return err;
6814
be09102b 6815 xchg(&memcg->swap.max, max);
37e84351
VD
6816
6817 return nbytes;
6818}
6819
f3a53a3a
TH
6820static int swap_events_show(struct seq_file *m, void *v)
6821{
aa9694bb 6822 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6823
6824 seq_printf(m, "max %lu\n",
6825 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6826 seq_printf(m, "fail %lu\n",
6827 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6828
6829 return 0;
6830}
6831
37e84351
VD
6832static struct cftype swap_files[] = {
6833 {
6834 .name = "swap.current",
6835 .flags = CFTYPE_NOT_ON_ROOT,
6836 .read_u64 = swap_current_read,
6837 },
6838 {
6839 .name = "swap.max",
6840 .flags = CFTYPE_NOT_ON_ROOT,
6841 .seq_show = swap_max_show,
6842 .write = swap_max_write,
6843 },
f3a53a3a
TH
6844 {
6845 .name = "swap.events",
6846 .flags = CFTYPE_NOT_ON_ROOT,
6847 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6848 .seq_show = swap_events_show,
6849 },
37e84351
VD
6850 { } /* terminate */
6851};
6852
21afa38e
JW
6853static struct cftype memsw_cgroup_files[] = {
6854 {
6855 .name = "memsw.usage_in_bytes",
6856 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6857 .read_u64 = mem_cgroup_read_u64,
6858 },
6859 {
6860 .name = "memsw.max_usage_in_bytes",
6861 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6862 .write = mem_cgroup_reset,
6863 .read_u64 = mem_cgroup_read_u64,
6864 },
6865 {
6866 .name = "memsw.limit_in_bytes",
6867 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6868 .write = mem_cgroup_write,
6869 .read_u64 = mem_cgroup_read_u64,
6870 },
6871 {
6872 .name = "memsw.failcnt",
6873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6874 .write = mem_cgroup_reset,
6875 .read_u64 = mem_cgroup_read_u64,
6876 },
6877 { }, /* terminate */
6878};
6879
6880static int __init mem_cgroup_swap_init(void)
6881{
6882 if (!mem_cgroup_disabled() && really_do_swap_account) {
6883 do_swap_account = 1;
37e84351
VD
6884 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6885 swap_files));
21afa38e
JW
6886 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6887 memsw_cgroup_files));
6888 }
6889 return 0;
6890}
6891subsys_initcall(mem_cgroup_swap_init);
6892
6893#endif /* CONFIG_MEMCG_SWAP */