]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: fix cpuhotplug statistics flushing
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
c1a660de
RG
258static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
259 unsigned int nr_pages);
260static void __memcg_kmem_uncharge(struct mem_cgroup *memcg,
261 unsigned int nr_pages);
262
bf4f0599
RG
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 struct mem_cgroup *memcg;
267 unsigned int nr_bytes;
268 unsigned int nr_pages;
269 unsigned long flags;
270
271 /*
272 * At this point all allocated objects are freed, and
273 * objcg->nr_charged_bytes can't have an arbitrary byte value.
274 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
275 *
276 * The following sequence can lead to it:
277 * 1) CPU0: objcg == stock->cached_objcg
278 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
279 * PAGE_SIZE bytes are charged
280 * 3) CPU1: a process from another memcg is allocating something,
281 * the stock if flushed,
282 * objcg->nr_charged_bytes = PAGE_SIZE - 92
283 * 5) CPU0: we do release this object,
284 * 92 bytes are added to stock->nr_bytes
285 * 6) CPU0: stock is flushed,
286 * 92 bytes are added to objcg->nr_charged_bytes
287 *
288 * In the result, nr_charged_bytes == PAGE_SIZE.
289 * This page will be uncharged in obj_cgroup_release().
290 */
291 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
292 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
293 nr_pages = nr_bytes >> PAGE_SHIFT;
294
295 spin_lock_irqsave(&css_set_lock, flags);
296 memcg = obj_cgroup_memcg(objcg);
297 if (nr_pages)
298 __memcg_kmem_uncharge(memcg, nr_pages);
299 list_del(&objcg->list);
300 mem_cgroup_put(memcg);
301 spin_unlock_irqrestore(&css_set_lock, flags);
302
303 percpu_ref_exit(ref);
304 kfree_rcu(objcg, rcu);
305}
306
307static struct obj_cgroup *obj_cgroup_alloc(void)
308{
309 struct obj_cgroup *objcg;
310 int ret;
311
312 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
313 if (!objcg)
314 return NULL;
315
316 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
317 GFP_KERNEL);
318 if (ret) {
319 kfree(objcg);
320 return NULL;
321 }
322 INIT_LIST_HEAD(&objcg->list);
323 return objcg;
324}
325
326static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
327 struct mem_cgroup *parent)
328{
329 struct obj_cgroup *objcg, *iter;
330
331 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
332
333 spin_lock_irq(&css_set_lock);
334
335 /* Move active objcg to the parent's list */
336 xchg(&objcg->memcg, parent);
337 css_get(&parent->css);
338 list_add(&objcg->list, &parent->objcg_list);
339
340 /* Move already reparented objcgs to the parent's list */
341 list_for_each_entry(iter, &memcg->objcg_list, list) {
342 css_get(&parent->css);
343 xchg(&iter->memcg, parent);
344 css_put(&memcg->css);
345 }
346 list_splice(&memcg->objcg_list, &parent->objcg_list);
347
348 spin_unlock_irq(&css_set_lock);
349
350 percpu_ref_kill(&objcg->refcnt);
351}
352
55007d84 353/*
9855609b 354 * This will be used as a shrinker list's index.
b8627835
LZ
355 * The main reason for not using cgroup id for this:
356 * this works better in sparse environments, where we have a lot of memcgs,
357 * but only a few kmem-limited. Or also, if we have, for instance, 200
358 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
359 * 200 entry array for that.
55007d84 360 *
dbcf73e2
VD
361 * The current size of the caches array is stored in memcg_nr_cache_ids. It
362 * will double each time we have to increase it.
55007d84 363 */
dbcf73e2
VD
364static DEFINE_IDA(memcg_cache_ida);
365int memcg_nr_cache_ids;
749c5415 366
05257a1a
VD
367/* Protects memcg_nr_cache_ids */
368static DECLARE_RWSEM(memcg_cache_ids_sem);
369
370void memcg_get_cache_ids(void)
371{
372 down_read(&memcg_cache_ids_sem);
373}
374
375void memcg_put_cache_ids(void)
376{
377 up_read(&memcg_cache_ids_sem);
378}
379
55007d84
GC
380/*
381 * MIN_SIZE is different than 1, because we would like to avoid going through
382 * the alloc/free process all the time. In a small machine, 4 kmem-limited
383 * cgroups is a reasonable guess. In the future, it could be a parameter or
384 * tunable, but that is strictly not necessary.
385 *
b8627835 386 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
387 * this constant directly from cgroup, but it is understandable that this is
388 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 389 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
390 * increase ours as well if it increases.
391 */
392#define MEMCG_CACHES_MIN_SIZE 4
b8627835 393#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 394
d7f25f8a
GC
395/*
396 * A lot of the calls to the cache allocation functions are expected to be
272911a4 397 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
398 * conditional to this static branch, we'll have to allow modules that does
399 * kmem_cache_alloc and the such to see this symbol as well
400 */
ef12947c 401DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 402EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 403#endif
17cc4dfe 404
0a4465d3
KT
405static int memcg_shrinker_map_size;
406static DEFINE_MUTEX(memcg_shrinker_map_mutex);
407
408static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
409{
410 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
411}
412
413static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
414 int size, int old_size)
415{
416 struct memcg_shrinker_map *new, *old;
417 int nid;
418
419 lockdep_assert_held(&memcg_shrinker_map_mutex);
420
421 for_each_node(nid) {
422 old = rcu_dereference_protected(
423 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
424 /* Not yet online memcg */
425 if (!old)
426 return 0;
427
86daf94e 428 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
429 if (!new)
430 return -ENOMEM;
431
432 /* Set all old bits, clear all new bits */
433 memset(new->map, (int)0xff, old_size);
434 memset((void *)new->map + old_size, 0, size - old_size);
435
436 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
437 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
438 }
439
440 return 0;
441}
442
443static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
444{
445 struct mem_cgroup_per_node *pn;
446 struct memcg_shrinker_map *map;
447 int nid;
448
449 if (mem_cgroup_is_root(memcg))
450 return;
451
452 for_each_node(nid) {
453 pn = mem_cgroup_nodeinfo(memcg, nid);
454 map = rcu_dereference_protected(pn->shrinker_map, true);
8a260162 455 kvfree(map);
0a4465d3
KT
456 rcu_assign_pointer(pn->shrinker_map, NULL);
457 }
458}
459
460static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461{
462 struct memcg_shrinker_map *map;
463 int nid, size, ret = 0;
464
465 if (mem_cgroup_is_root(memcg))
466 return 0;
467
468 mutex_lock(&memcg_shrinker_map_mutex);
469 size = memcg_shrinker_map_size;
470 for_each_node(nid) {
86daf94e 471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
472 if (!map) {
473 memcg_free_shrinker_maps(memcg);
474 ret = -ENOMEM;
475 break;
476 }
477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 }
479 mutex_unlock(&memcg_shrinker_map_mutex);
480
481 return ret;
482}
483
484int memcg_expand_shrinker_maps(int new_id)
485{
486 int size, old_size, ret = 0;
487 struct mem_cgroup *memcg;
488
489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 old_size = memcg_shrinker_map_size;
491 if (size <= old_size)
492 return 0;
493
494 mutex_lock(&memcg_shrinker_map_mutex);
495 if (!root_mem_cgroup)
496 goto unlock;
497
498 for_each_mem_cgroup(memcg) {
499 if (mem_cgroup_is_root(memcg))
500 continue;
501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
502 if (ret) {
503 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 504 goto unlock;
75866af6 505 }
0a4465d3
KT
506 }
507unlock:
508 if (!ret)
509 memcg_shrinker_map_size = size;
510 mutex_unlock(&memcg_shrinker_map_mutex);
511 return ret;
512}
fae91d6d
KT
513
514void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515{
516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 struct memcg_shrinker_map *map;
518
519 rcu_read_lock();
520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
521 /* Pairs with smp mb in shrink_slab() */
522 smp_mb__before_atomic();
fae91d6d
KT
523 set_bit(shrinker_id, map->map);
524 rcu_read_unlock();
525 }
526}
527
ad7fa852
TH
528/**
529 * mem_cgroup_css_from_page - css of the memcg associated with a page
530 * @page: page of interest
531 *
532 * If memcg is bound to the default hierarchy, css of the memcg associated
533 * with @page is returned. The returned css remains associated with @page
534 * until it is released.
535 *
536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537 * is returned.
ad7fa852
TH
538 */
539struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540{
541 struct mem_cgroup *memcg;
542
bcfe06bf 543 memcg = page_memcg(page);
ad7fa852 544
9e10a130 545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
546 memcg = root_mem_cgroup;
547
ad7fa852
TH
548 return &memcg->css;
549}
550
2fc04524
VD
551/**
552 * page_cgroup_ino - return inode number of the memcg a page is charged to
553 * @page: the page
554 *
555 * Look up the closest online ancestor of the memory cgroup @page is charged to
556 * and return its inode number or 0 if @page is not charged to any cgroup. It
557 * is safe to call this function without holding a reference to @page.
558 *
559 * Note, this function is inherently racy, because there is nothing to prevent
560 * the cgroup inode from getting torn down and potentially reallocated a moment
561 * after page_cgroup_ino() returns, so it only should be used by callers that
562 * do not care (such as procfs interfaces).
563 */
564ino_t page_cgroup_ino(struct page *page)
565{
566 struct mem_cgroup *memcg;
567 unsigned long ino = 0;
568
569 rcu_read_lock();
bcfe06bf 570 memcg = page_memcg_check(page);
286e04b8 571
2fc04524
VD
572 while (memcg && !(memcg->css.flags & CSS_ONLINE))
573 memcg = parent_mem_cgroup(memcg);
574 if (memcg)
575 ino = cgroup_ino(memcg->css.cgroup);
576 rcu_read_unlock();
577 return ino;
578}
579
ef8f2327
MG
580static struct mem_cgroup_per_node *
581mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
97a6c37b 583 int nid = page_to_nid(page);
f64c3f54 584
ef8f2327 585 return memcg->nodeinfo[nid];
f64c3f54
BS
586}
587
ef8f2327
MG
588static struct mem_cgroup_tree_per_node *
589soft_limit_tree_node(int nid)
bb4cc1a8 590{
ef8f2327 591 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
592}
593
ef8f2327 594static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
595soft_limit_tree_from_page(struct page *page)
596{
597 int nid = page_to_nid(page);
bb4cc1a8 598
ef8f2327 599 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
600}
601
ef8f2327
MG
602static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
603 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 604 unsigned long new_usage_in_excess)
bb4cc1a8
AM
605{
606 struct rb_node **p = &mctz->rb_root.rb_node;
607 struct rb_node *parent = NULL;
ef8f2327 608 struct mem_cgroup_per_node *mz_node;
fa90b2fd 609 bool rightmost = true;
bb4cc1a8
AM
610
611 if (mz->on_tree)
612 return;
613
614 mz->usage_in_excess = new_usage_in_excess;
615 if (!mz->usage_in_excess)
616 return;
617 while (*p) {
618 parent = *p;
ef8f2327 619 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 620 tree_node);
fa90b2fd 621 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 622 p = &(*p)->rb_left;
fa90b2fd 623 rightmost = false;
378876b0 624 } else {
bb4cc1a8 625 p = &(*p)->rb_right;
378876b0 626 }
bb4cc1a8 627 }
fa90b2fd
DB
628
629 if (rightmost)
630 mctz->rb_rightmost = &mz->tree_node;
631
bb4cc1a8
AM
632 rb_link_node(&mz->tree_node, parent, p);
633 rb_insert_color(&mz->tree_node, &mctz->rb_root);
634 mz->on_tree = true;
635}
636
ef8f2327
MG
637static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
638 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
639{
640 if (!mz->on_tree)
641 return;
fa90b2fd
DB
642
643 if (&mz->tree_node == mctz->rb_rightmost)
644 mctz->rb_rightmost = rb_prev(&mz->tree_node);
645
bb4cc1a8
AM
646 rb_erase(&mz->tree_node, &mctz->rb_root);
647 mz->on_tree = false;
648}
649
ef8f2327
MG
650static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
651 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 652{
0a31bc97
JW
653 unsigned long flags;
654
655 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 656 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 657 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
658}
659
3e32cb2e
JW
660static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
661{
662 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 663 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
664 unsigned long excess = 0;
665
666 if (nr_pages > soft_limit)
667 excess = nr_pages - soft_limit;
668
669 return excess;
670}
bb4cc1a8
AM
671
672static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
673{
3e32cb2e 674 unsigned long excess;
ef8f2327
MG
675 struct mem_cgroup_per_node *mz;
676 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 677
e231875b 678 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
679 if (!mctz)
680 return;
bb4cc1a8
AM
681 /*
682 * Necessary to update all ancestors when hierarchy is used.
683 * because their event counter is not touched.
684 */
685 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 686 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 687 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
688 /*
689 * We have to update the tree if mz is on RB-tree or
690 * mem is over its softlimit.
691 */
692 if (excess || mz->on_tree) {
0a31bc97
JW
693 unsigned long flags;
694
695 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
696 /* if on-tree, remove it */
697 if (mz->on_tree)
cf2c8127 698 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
699 /*
700 * Insert again. mz->usage_in_excess will be updated.
701 * If excess is 0, no tree ops.
702 */
cf2c8127 703 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 704 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
705 }
706 }
707}
708
709static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
710{
ef8f2327
MG
711 struct mem_cgroup_tree_per_node *mctz;
712 struct mem_cgroup_per_node *mz;
713 int nid;
bb4cc1a8 714
e231875b 715 for_each_node(nid) {
ef8f2327
MG
716 mz = mem_cgroup_nodeinfo(memcg, nid);
717 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
718 if (mctz)
719 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
720 }
721}
722
ef8f2327
MG
723static struct mem_cgroup_per_node *
724__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 725{
ef8f2327 726 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
727
728retry:
729 mz = NULL;
fa90b2fd 730 if (!mctz->rb_rightmost)
bb4cc1a8
AM
731 goto done; /* Nothing to reclaim from */
732
fa90b2fd
DB
733 mz = rb_entry(mctz->rb_rightmost,
734 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
735 /*
736 * Remove the node now but someone else can add it back,
737 * we will to add it back at the end of reclaim to its correct
738 * position in the tree.
739 */
cf2c8127 740 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 741 if (!soft_limit_excess(mz->memcg) ||
8965aa28 742 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
743 goto retry;
744done:
745 return mz;
746}
747
ef8f2327
MG
748static struct mem_cgroup_per_node *
749mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 750{
ef8f2327 751 struct mem_cgroup_per_node *mz;
bb4cc1a8 752
0a31bc97 753 spin_lock_irq(&mctz->lock);
bb4cc1a8 754 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 755 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
756 return mz;
757}
758
db9adbcb
JW
759/**
760 * __mod_memcg_state - update cgroup memory statistics
761 * @memcg: the memory cgroup
762 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
763 * @val: delta to add to the counter, can be negative
764 */
765void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
766{
ea426c2a 767 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
768
769 if (mem_cgroup_disabled())
770 return;
771
772616b0 772 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
773 threshold <<= PAGE_SHIFT;
774
db9adbcb 775 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 776 if (unlikely(abs(x) > threshold)) {
42a30035
JW
777 struct mem_cgroup *mi;
778
766a4c19
YS
779 /*
780 * Batch local counters to keep them in sync with
781 * the hierarchical ones.
782 */
783 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
784 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
785 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
786 x = 0;
787 }
788 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
789}
790
42a30035
JW
791static struct mem_cgroup_per_node *
792parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
793{
794 struct mem_cgroup *parent;
795
796 parent = parent_mem_cgroup(pn->memcg);
797 if (!parent)
798 return NULL;
799 return mem_cgroup_nodeinfo(parent, nid);
800}
801
eedc4e5a
RG
802void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
803 int val)
db9adbcb
JW
804{
805 struct mem_cgroup_per_node *pn;
42a30035 806 struct mem_cgroup *memcg;
ea426c2a 807 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 808
db9adbcb 809 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 810 memcg = pn->memcg;
db9adbcb
JW
811
812 /* Update memcg */
42a30035 813 __mod_memcg_state(memcg, idx, val);
db9adbcb 814
b4c46484
RG
815 /* Update lruvec */
816 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
817
ea426c2a
RG
818 if (vmstat_item_in_bytes(idx))
819 threshold <<= PAGE_SHIFT;
820
db9adbcb 821 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 822 if (unlikely(abs(x) > threshold)) {
eedc4e5a 823 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
824 struct mem_cgroup_per_node *pi;
825
42a30035
JW
826 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
827 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
828 x = 0;
829 }
830 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
831}
832
eedc4e5a
RG
833/**
834 * __mod_lruvec_state - update lruvec memory statistics
835 * @lruvec: the lruvec
836 * @idx: the stat item
837 * @val: delta to add to the counter, can be negative
838 *
839 * The lruvec is the intersection of the NUMA node and a cgroup. This
840 * function updates the all three counters that are affected by a
841 * change of state at this level: per-node, per-cgroup, per-lruvec.
842 */
843void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
844 int val)
845{
846 /* Update node */
847 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
848
849 /* Update memcg and lruvec */
850 if (!mem_cgroup_disabled())
851 __mod_memcg_lruvec_state(lruvec, idx, val);
852}
853
c47d5032
SB
854void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
855 int val)
856{
857 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 858 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
859 pg_data_t *pgdat = page_pgdat(page);
860 struct lruvec *lruvec;
861
862 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 863 if (!memcg) {
c47d5032
SB
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
d635a69d 868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
869 __mod_lruvec_state(lruvec, idx, val);
870}
f0c0c115 871EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 872
da3ceeff 873void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 874{
4f103c63 875 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
876 struct mem_cgroup *memcg;
877 struct lruvec *lruvec;
878
879 rcu_read_lock();
4f103c63 880 memcg = mem_cgroup_from_obj(p);
ec9f0238 881
8faeb1ff
MS
882 /*
883 * Untracked pages have no memcg, no lruvec. Update only the
884 * node. If we reparent the slab objects to the root memcg,
885 * when we free the slab object, we need to update the per-memcg
886 * vmstats to keep it correct for the root memcg.
887 */
888 if (!memcg) {
ec9f0238
RG
889 __mod_node_page_state(pgdat, idx, val);
890 } else {
867e5e1d 891 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
892 __mod_lruvec_state(lruvec, idx, val);
893 }
894 rcu_read_unlock();
895}
896
db9adbcb
JW
897/**
898 * __count_memcg_events - account VM events in a cgroup
899 * @memcg: the memory cgroup
900 * @idx: the event item
901 * @count: the number of events that occured
902 */
903void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
904 unsigned long count)
905{
906 unsigned long x;
907
908 if (mem_cgroup_disabled())
909 return;
910
911 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
912 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
913 struct mem_cgroup *mi;
914
766a4c19
YS
915 /*
916 * Batch local counters to keep them in sync with
917 * the hierarchical ones.
918 */
919 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
920 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
921 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
922 x = 0;
923 }
924 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
925}
926
42a30035 927static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 928{
871789d4 929 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
930}
931
42a30035
JW
932static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
933{
815744d7
JW
934 long x = 0;
935 int cpu;
936
937 for_each_possible_cpu(cpu)
938 x += per_cpu(memcg->vmstats_local->events[event], cpu);
939 return x;
42a30035
JW
940}
941
c0ff4b85 942static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 943 struct page *page,
3fba69a5 944 int nr_pages)
d52aa412 945{
e401f176
KH
946 /* pagein of a big page is an event. So, ignore page size */
947 if (nr_pages > 0)
c9019e9b 948 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 949 else {
c9019e9b 950 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
951 nr_pages = -nr_pages; /* for event */
952 }
e401f176 953
871789d4 954 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
955}
956
f53d7ce3
JW
957static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
958 enum mem_cgroup_events_target target)
7a159cc9
JW
959{
960 unsigned long val, next;
961
871789d4
CD
962 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
963 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 964 /* from time_after() in jiffies.h */
6a1a8b80 965 if ((long)(next - val) < 0) {
f53d7ce3
JW
966 switch (target) {
967 case MEM_CGROUP_TARGET_THRESH:
968 next = val + THRESHOLDS_EVENTS_TARGET;
969 break;
bb4cc1a8
AM
970 case MEM_CGROUP_TARGET_SOFTLIMIT:
971 next = val + SOFTLIMIT_EVENTS_TARGET;
972 break;
f53d7ce3
JW
973 default:
974 break;
975 }
871789d4 976 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 977 return true;
7a159cc9 978 }
f53d7ce3 979 return false;
d2265e6f
KH
980}
981
982/*
983 * Check events in order.
984 *
985 */
c0ff4b85 986static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
987{
988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 991 bool do_softlimit;
f53d7ce3 992
bb4cc1a8
AM
993 do_softlimit = mem_cgroup_event_ratelimit(memcg,
994 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 995 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
996 if (unlikely(do_softlimit))
997 mem_cgroup_update_tree(memcg, page);
0a31bc97 998 }
d2265e6f
KH
999}
1000
cf475ad2 1001struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1002{
31a78f23
BS
1003 /*
1004 * mm_update_next_owner() may clear mm->owner to NULL
1005 * if it races with swapoff, page migration, etc.
1006 * So this can be called with p == NULL.
1007 */
1008 if (unlikely(!p))
1009 return NULL;
1010
073219e9 1011 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1012}
33398cf2 1013EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1014
d46eb14b
SB
1015/**
1016 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1017 * @mm: mm from which memcg should be extracted. It can be NULL.
1018 *
1019 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1020 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1021 * returned.
1022 */
1023struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1024{
d46eb14b
SB
1025 struct mem_cgroup *memcg;
1026
1027 if (mem_cgroup_disabled())
1028 return NULL;
0b7f569e 1029
54595fe2
KH
1030 rcu_read_lock();
1031 do {
6f6acb00
MH
1032 /*
1033 * Page cache insertions can happen withou an
1034 * actual mm context, e.g. during disk probing
1035 * on boot, loopback IO, acct() writes etc.
1036 */
1037 if (unlikely(!mm))
df381975 1038 memcg = root_mem_cgroup;
6f6acb00
MH
1039 else {
1040 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1041 if (unlikely(!memcg))
1042 memcg = root_mem_cgroup;
1043 }
00d484f3 1044 } while (!css_tryget(&memcg->css));
54595fe2 1045 rcu_read_unlock();
c0ff4b85 1046 return memcg;
54595fe2 1047}
d46eb14b
SB
1048EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1049
37d5985c 1050static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1051{
37d5985c
RG
1052 if (in_interrupt())
1053 return this_cpu_read(int_active_memcg);
1054 else
1055 return current->active_memcg;
1056}
279c3393 1057
37d5985c
RG
1058static __always_inline struct mem_cgroup *get_active_memcg(void)
1059{
1060 struct mem_cgroup *memcg;
d46eb14b 1061
37d5985c
RG
1062 rcu_read_lock();
1063 memcg = active_memcg();
1685bde6
MS
1064 /* remote memcg must hold a ref. */
1065 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
37d5985c
RG
1067 rcu_read_unlock();
1068
1069 return memcg;
1070}
1071
4127c650
RG
1072static __always_inline bool memcg_kmem_bypass(void)
1073{
1074 /* Allow remote memcg charging from any context. */
1075 if (unlikely(active_memcg()))
1076 return false;
1077
1078 /* Memcg to charge can't be determined. */
1079 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1080 return true;
1081
1082 return false;
1083}
1084
37d5985c
RG
1085/**
1086 * If active memcg is set, do not fallback to current->mm->memcg.
1087 */
1088static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1089{
1090 if (memcg_kmem_bypass())
1091 return NULL;
1092
1093 if (unlikely(active_memcg()))
1094 return get_active_memcg();
1095
d46eb14b
SB
1096 return get_mem_cgroup_from_mm(current->mm);
1097}
54595fe2 1098
5660048c
JW
1099/**
1100 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1101 * @root: hierarchy root
1102 * @prev: previously returned memcg, NULL on first invocation
1103 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1104 *
1105 * Returns references to children of the hierarchy below @root, or
1106 * @root itself, or %NULL after a full round-trip.
1107 *
1108 * Caller must pass the return value in @prev on subsequent
1109 * invocations for reference counting, or use mem_cgroup_iter_break()
1110 * to cancel a hierarchy walk before the round-trip is complete.
1111 *
05bdc520
ML
1112 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1113 * in the hierarchy among all concurrent reclaimers operating on the
1114 * same node.
5660048c 1115 */
694fbc0f 1116struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1117 struct mem_cgroup *prev,
694fbc0f 1118 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1119{
3f649ab7 1120 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1121 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1122 struct mem_cgroup *memcg = NULL;
5ac8fb31 1123 struct mem_cgroup *pos = NULL;
711d3d2c 1124
694fbc0f
AM
1125 if (mem_cgroup_disabled())
1126 return NULL;
5660048c 1127
9f3a0d09
JW
1128 if (!root)
1129 root = root_mem_cgroup;
7d74b06f 1130
9f3a0d09 1131 if (prev && !reclaim)
5ac8fb31 1132 pos = prev;
14067bb3 1133
542f85f9 1134 rcu_read_lock();
5f578161 1135
5ac8fb31 1136 if (reclaim) {
ef8f2327 1137 struct mem_cgroup_per_node *mz;
5ac8fb31 1138
ef8f2327 1139 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1140 iter = &mz->iter;
5ac8fb31
JW
1141
1142 if (prev && reclaim->generation != iter->generation)
1143 goto out_unlock;
1144
6df38689 1145 while (1) {
4db0c3c2 1146 pos = READ_ONCE(iter->position);
6df38689
VD
1147 if (!pos || css_tryget(&pos->css))
1148 break;
5ac8fb31 1149 /*
6df38689
VD
1150 * css reference reached zero, so iter->position will
1151 * be cleared by ->css_released. However, we should not
1152 * rely on this happening soon, because ->css_released
1153 * is called from a work queue, and by busy-waiting we
1154 * might block it. So we clear iter->position right
1155 * away.
5ac8fb31 1156 */
6df38689
VD
1157 (void)cmpxchg(&iter->position, pos, NULL);
1158 }
5ac8fb31
JW
1159 }
1160
1161 if (pos)
1162 css = &pos->css;
1163
1164 for (;;) {
1165 css = css_next_descendant_pre(css, &root->css);
1166 if (!css) {
1167 /*
1168 * Reclaimers share the hierarchy walk, and a
1169 * new one might jump in right at the end of
1170 * the hierarchy - make sure they see at least
1171 * one group and restart from the beginning.
1172 */
1173 if (!prev)
1174 continue;
1175 break;
527a5ec9 1176 }
7d74b06f 1177
5ac8fb31
JW
1178 /*
1179 * Verify the css and acquire a reference. The root
1180 * is provided by the caller, so we know it's alive
1181 * and kicking, and don't take an extra reference.
1182 */
1183 memcg = mem_cgroup_from_css(css);
14067bb3 1184
5ac8fb31
JW
1185 if (css == &root->css)
1186 break;
14067bb3 1187
0b8f73e1
JW
1188 if (css_tryget(css))
1189 break;
9f3a0d09 1190
5ac8fb31 1191 memcg = NULL;
9f3a0d09 1192 }
5ac8fb31
JW
1193
1194 if (reclaim) {
5ac8fb31 1195 /*
6df38689
VD
1196 * The position could have already been updated by a competing
1197 * thread, so check that the value hasn't changed since we read
1198 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1199 */
6df38689
VD
1200 (void)cmpxchg(&iter->position, pos, memcg);
1201
5ac8fb31
JW
1202 if (pos)
1203 css_put(&pos->css);
1204
1205 if (!memcg)
1206 iter->generation++;
1207 else if (!prev)
1208 reclaim->generation = iter->generation;
9f3a0d09 1209 }
5ac8fb31 1210
542f85f9
MH
1211out_unlock:
1212 rcu_read_unlock();
c40046f3
MH
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
9f3a0d09 1216 return memcg;
14067bb3 1217}
7d74b06f 1218
5660048c
JW
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
9f3a0d09
JW
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
7d74b06f 1232
54a83d6b
MC
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
6df38689 1235{
6df38689 1236 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
6df38689 1239
54a83d6b
MC
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1244 }
1245}
1246
54a83d6b
MC
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
7c5f64f8
VD
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
f168a9a5 1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
6168d0da
AS
1305#ifdef CONFIG_DEBUG_VM
1306void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1307{
1308 struct mem_cgroup *memcg;
1309
1310 if (mem_cgroup_disabled())
1311 return;
1312
1313 memcg = page_memcg(page);
1314
1315 if (!memcg)
1316 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1317 else
1318 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1319}
1320#endif
1321
6168d0da
AS
1322/**
1323 * lock_page_lruvec - lock and return lruvec for a given page.
1324 * @page: the page
1325 *
d7e3aba5
AS
1326 * These functions are safe to use under any of the following conditions:
1327 * - page locked
1328 * - PageLRU cleared
1329 * - lock_page_memcg()
1330 * - page->_refcount is zero
6168d0da
AS
1331 */
1332struct lruvec *lock_page_lruvec(struct page *page)
1333{
1334 struct lruvec *lruvec;
1335 struct pglist_data *pgdat = page_pgdat(page);
1336
6168d0da
AS
1337 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1338 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1339
1340 lruvec_memcg_debug(lruvec, page);
1341
1342 return lruvec;
1343}
1344
1345struct lruvec *lock_page_lruvec_irq(struct page *page)
1346{
1347 struct lruvec *lruvec;
1348 struct pglist_data *pgdat = page_pgdat(page);
1349
6168d0da
AS
1350 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1351 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1352
1353 lruvec_memcg_debug(lruvec, page);
1354
1355 return lruvec;
1356}
1357
1358struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1359{
1360 struct lruvec *lruvec;
1361 struct pglist_data *pgdat = page_pgdat(page);
1362
6168d0da
AS
1363 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1364 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1365
1366 lruvec_memcg_debug(lruvec, page);
1367
1368 return lruvec;
1369}
1370
925b7673 1371/**
fa9add64
HD
1372 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1373 * @lruvec: mem_cgroup per zone lru vector
1374 * @lru: index of lru list the page is sitting on
b4536f0c 1375 * @zid: zone id of the accounted pages
fa9add64 1376 * @nr_pages: positive when adding or negative when removing
925b7673 1377 *
ca707239
HD
1378 * This function must be called under lru_lock, just before a page is added
1379 * to or just after a page is removed from an lru list (that ordering being
1380 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1381 */
fa9add64 1382void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1383 int zid, int nr_pages)
3f58a829 1384{
ef8f2327 1385 struct mem_cgroup_per_node *mz;
fa9add64 1386 unsigned long *lru_size;
ca707239 1387 long size;
3f58a829
MK
1388
1389 if (mem_cgroup_disabled())
1390 return;
1391
ef8f2327 1392 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1393 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1394
1395 if (nr_pages < 0)
1396 *lru_size += nr_pages;
1397
1398 size = *lru_size;
b4536f0c
MH
1399 if (WARN_ONCE(size < 0,
1400 "%s(%p, %d, %d): lru_size %ld\n",
1401 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1402 VM_BUG_ON(1);
1403 *lru_size = 0;
1404 }
1405
1406 if (nr_pages > 0)
1407 *lru_size += nr_pages;
08e552c6 1408}
544122e5 1409
19942822 1410/**
9d11ea9f 1411 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1412 * @memcg: the memory cgroup
19942822 1413 *
9d11ea9f 1414 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1415 * pages.
19942822 1416 */
c0ff4b85 1417static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1418{
3e32cb2e
JW
1419 unsigned long margin = 0;
1420 unsigned long count;
1421 unsigned long limit;
9d11ea9f 1422
3e32cb2e 1423 count = page_counter_read(&memcg->memory);
bbec2e15 1424 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1425 if (count < limit)
1426 margin = limit - count;
1427
7941d214 1428 if (do_memsw_account()) {
3e32cb2e 1429 count = page_counter_read(&memcg->memsw);
bbec2e15 1430 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1431 if (count < limit)
3e32cb2e 1432 margin = min(margin, limit - count);
cbedbac3
LR
1433 else
1434 margin = 0;
3e32cb2e
JW
1435 }
1436
1437 return margin;
19942822
JW
1438}
1439
32047e2a 1440/*
bdcbb659 1441 * A routine for checking "mem" is under move_account() or not.
32047e2a 1442 *
bdcbb659
QH
1443 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1444 * moving cgroups. This is for waiting at high-memory pressure
1445 * caused by "move".
32047e2a 1446 */
c0ff4b85 1447static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1448{
2bd9bb20
KH
1449 struct mem_cgroup *from;
1450 struct mem_cgroup *to;
4b534334 1451 bool ret = false;
2bd9bb20
KH
1452 /*
1453 * Unlike task_move routines, we access mc.to, mc.from not under
1454 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1455 */
1456 spin_lock(&mc.lock);
1457 from = mc.from;
1458 to = mc.to;
1459 if (!from)
1460 goto unlock;
3e92041d 1461
2314b42d
JW
1462 ret = mem_cgroup_is_descendant(from, memcg) ||
1463 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1464unlock:
1465 spin_unlock(&mc.lock);
4b534334
KH
1466 return ret;
1467}
1468
c0ff4b85 1469static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1470{
1471 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1472 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1473 DEFINE_WAIT(wait);
1474 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1475 /* moving charge context might have finished. */
1476 if (mc.moving_task)
1477 schedule();
1478 finish_wait(&mc.waitq, &wait);
1479 return true;
1480 }
1481 }
1482 return false;
1483}
1484
5f9a4f4a
MS
1485struct memory_stat {
1486 const char *name;
5f9a4f4a
MS
1487 unsigned int idx;
1488};
1489
57b2847d 1490static const struct memory_stat memory_stats[] = {
fff66b79
MS
1491 { "anon", NR_ANON_MAPPED },
1492 { "file", NR_FILE_PAGES },
1493 { "kernel_stack", NR_KERNEL_STACK_KB },
1494 { "pagetables", NR_PAGETABLE },
1495 { "percpu", MEMCG_PERCPU_B },
1496 { "sock", MEMCG_SOCK },
1497 { "shmem", NR_SHMEM },
1498 { "file_mapped", NR_FILE_MAPPED },
1499 { "file_dirty", NR_FILE_DIRTY },
1500 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1501#ifdef CONFIG_SWAP
1502 { "swapcached", NR_SWAPCACHE },
1503#endif
5f9a4f4a 1504#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1505 { "anon_thp", NR_ANON_THPS },
1506 { "file_thp", NR_FILE_THPS },
1507 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1508#endif
fff66b79
MS
1509 { "inactive_anon", NR_INACTIVE_ANON },
1510 { "active_anon", NR_ACTIVE_ANON },
1511 { "inactive_file", NR_INACTIVE_FILE },
1512 { "active_file", NR_ACTIVE_FILE },
1513 { "unevictable", NR_UNEVICTABLE },
1514 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1515 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1516
1517 /* The memory events */
fff66b79
MS
1518 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1519 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1520 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1521 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1522 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1523 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1524 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1525};
1526
fff66b79
MS
1527/* Translate stat items to the correct unit for memory.stat output */
1528static int memcg_page_state_unit(int item)
1529{
1530 switch (item) {
1531 case MEMCG_PERCPU_B:
1532 case NR_SLAB_RECLAIMABLE_B:
1533 case NR_SLAB_UNRECLAIMABLE_B:
1534 case WORKINGSET_REFAULT_ANON:
1535 case WORKINGSET_REFAULT_FILE:
1536 case WORKINGSET_ACTIVATE_ANON:
1537 case WORKINGSET_ACTIVATE_FILE:
1538 case WORKINGSET_RESTORE_ANON:
1539 case WORKINGSET_RESTORE_FILE:
1540 case WORKINGSET_NODERECLAIM:
1541 return 1;
1542 case NR_KERNEL_STACK_KB:
1543 return SZ_1K;
1544 default:
1545 return PAGE_SIZE;
1546 }
1547}
1548
1549static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1550 int item)
1551{
1552 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1553}
1554
c8713d0b
JW
1555static char *memory_stat_format(struct mem_cgroup *memcg)
1556{
1557 struct seq_buf s;
1558 int i;
71cd3113 1559
c8713d0b
JW
1560 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1561 if (!s.buffer)
1562 return NULL;
1563
1564 /*
1565 * Provide statistics on the state of the memory subsystem as
1566 * well as cumulative event counters that show past behavior.
1567 *
1568 * This list is ordered following a combination of these gradients:
1569 * 1) generic big picture -> specifics and details
1570 * 2) reflecting userspace activity -> reflecting kernel heuristics
1571 *
1572 * Current memory state:
1573 */
1574
5f9a4f4a
MS
1575 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1576 u64 size;
c8713d0b 1577
fff66b79 1578 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1579 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1580
5f9a4f4a 1581 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1582 size += memcg_page_state_output(memcg,
1583 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1584 seq_buf_printf(&s, "slab %llu\n", size);
1585 }
1586 }
c8713d0b
JW
1587
1588 /* Accumulated memory events */
1589
ebc5d83d
KK
1590 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1591 memcg_events(memcg, PGFAULT));
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1593 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1595 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1596 seq_buf_printf(&s, "pgscan %lu\n",
1597 memcg_events(memcg, PGSCAN_KSWAPD) +
1598 memcg_events(memcg, PGSCAN_DIRECT));
1599 seq_buf_printf(&s, "pgsteal %lu\n",
1600 memcg_events(memcg, PGSTEAL_KSWAPD) +
1601 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1602 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1603 memcg_events(memcg, PGACTIVATE));
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1605 memcg_events(memcg, PGDEACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1607 memcg_events(memcg, PGLAZYFREE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1609 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1610
1611#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1612 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1613 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1615 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1616#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1617
1618 /* The above should easily fit into one page */
1619 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1620
1621 return s.buffer;
1622}
71cd3113 1623
58cf188e 1624#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1625/**
f0c867d9 1626 * mem_cgroup_print_oom_context: Print OOM information relevant to
1627 * memory controller.
e222432b
BS
1628 * @memcg: The memory cgroup that went over limit
1629 * @p: Task that is going to be killed
1630 *
1631 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1632 * enabled
1633 */
f0c867d9 1634void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1635{
e222432b
BS
1636 rcu_read_lock();
1637
f0c867d9 1638 if (memcg) {
1639 pr_cont(",oom_memcg=");
1640 pr_cont_cgroup_path(memcg->css.cgroup);
1641 } else
1642 pr_cont(",global_oom");
2415b9f5 1643 if (p) {
f0c867d9 1644 pr_cont(",task_memcg=");
2415b9f5 1645 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1646 }
e222432b 1647 rcu_read_unlock();
f0c867d9 1648}
1649
1650/**
1651 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1652 * memory controller.
1653 * @memcg: The memory cgroup that went over limit
1654 */
1655void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1656{
c8713d0b 1657 char *buf;
e222432b 1658
3e32cb2e
JW
1659 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1660 K((u64)page_counter_read(&memcg->memory)),
15b42562 1661 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1662 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1663 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1664 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1665 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1666 else {
1667 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1668 K((u64)page_counter_read(&memcg->memsw)),
1669 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1670 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1671 K((u64)page_counter_read(&memcg->kmem)),
1672 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1673 }
c8713d0b
JW
1674
1675 pr_info("Memory cgroup stats for ");
1676 pr_cont_cgroup_path(memcg->css.cgroup);
1677 pr_cont(":");
1678 buf = memory_stat_format(memcg);
1679 if (!buf)
1680 return;
1681 pr_info("%s", buf);
1682 kfree(buf);
e222432b
BS
1683}
1684
a63d83f4
DR
1685/*
1686 * Return the memory (and swap, if configured) limit for a memcg.
1687 */
bbec2e15 1688unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1689{
8d387a5f
WL
1690 unsigned long max = READ_ONCE(memcg->memory.max);
1691
1692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1693 if (mem_cgroup_swappiness(memcg))
1694 max += min(READ_ONCE(memcg->swap.max),
1695 (unsigned long)total_swap_pages);
1696 } else { /* v1 */
1697 if (mem_cgroup_swappiness(memcg)) {
1698 /* Calculate swap excess capacity from memsw limit */
1699 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1700
1701 max += min(swap, (unsigned long)total_swap_pages);
1702 }
9a5a8f19 1703 }
bbec2e15 1704 return max;
a63d83f4
DR
1705}
1706
9783aa99
CD
1707unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1708{
1709 return page_counter_read(&memcg->memory);
1710}
1711
b6e6edcf 1712static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1713 int order)
9cbb78bb 1714{
6e0fc46d
DR
1715 struct oom_control oc = {
1716 .zonelist = NULL,
1717 .nodemask = NULL,
2a966b77 1718 .memcg = memcg,
6e0fc46d
DR
1719 .gfp_mask = gfp_mask,
1720 .order = order,
6e0fc46d 1721 };
1378b37d 1722 bool ret = true;
9cbb78bb 1723
7775face
TH
1724 if (mutex_lock_killable(&oom_lock))
1725 return true;
1378b37d
YS
1726
1727 if (mem_cgroup_margin(memcg) >= (1 << order))
1728 goto unlock;
1729
7775face
TH
1730 /*
1731 * A few threads which were not waiting at mutex_lock_killable() can
1732 * fail to bail out. Therefore, check again after holding oom_lock.
1733 */
1734 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1735
1736unlock:
dc56401f 1737 mutex_unlock(&oom_lock);
7c5f64f8 1738 return ret;
9cbb78bb
DR
1739}
1740
0608f43d 1741static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1742 pg_data_t *pgdat,
0608f43d
AM
1743 gfp_t gfp_mask,
1744 unsigned long *total_scanned)
1745{
1746 struct mem_cgroup *victim = NULL;
1747 int total = 0;
1748 int loop = 0;
1749 unsigned long excess;
1750 unsigned long nr_scanned;
1751 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1752 .pgdat = pgdat,
0608f43d
AM
1753 };
1754
3e32cb2e 1755 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1756
1757 while (1) {
1758 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1759 if (!victim) {
1760 loop++;
1761 if (loop >= 2) {
1762 /*
1763 * If we have not been able to reclaim
1764 * anything, it might because there are
1765 * no reclaimable pages under this hierarchy
1766 */
1767 if (!total)
1768 break;
1769 /*
1770 * We want to do more targeted reclaim.
1771 * excess >> 2 is not to excessive so as to
1772 * reclaim too much, nor too less that we keep
1773 * coming back to reclaim from this cgroup
1774 */
1775 if (total >= (excess >> 2) ||
1776 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1777 break;
1778 }
1779 continue;
1780 }
a9dd0a83 1781 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1782 pgdat, &nr_scanned);
0608f43d 1783 *total_scanned += nr_scanned;
3e32cb2e 1784 if (!soft_limit_excess(root_memcg))
0608f43d 1785 break;
6d61ef40 1786 }
0608f43d
AM
1787 mem_cgroup_iter_break(root_memcg, victim);
1788 return total;
6d61ef40
BS
1789}
1790
0056f4e6
JW
1791#ifdef CONFIG_LOCKDEP
1792static struct lockdep_map memcg_oom_lock_dep_map = {
1793 .name = "memcg_oom_lock",
1794};
1795#endif
1796
fb2a6fc5
JW
1797static DEFINE_SPINLOCK(memcg_oom_lock);
1798
867578cb
KH
1799/*
1800 * Check OOM-Killer is already running under our hierarchy.
1801 * If someone is running, return false.
1802 */
fb2a6fc5 1803static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1804{
79dfdacc 1805 struct mem_cgroup *iter, *failed = NULL;
a636b327 1806
fb2a6fc5
JW
1807 spin_lock(&memcg_oom_lock);
1808
9f3a0d09 1809 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1810 if (iter->oom_lock) {
79dfdacc
MH
1811 /*
1812 * this subtree of our hierarchy is already locked
1813 * so we cannot give a lock.
1814 */
79dfdacc 1815 failed = iter;
9f3a0d09
JW
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
23751be0
JW
1818 } else
1819 iter->oom_lock = true;
7d74b06f 1820 }
867578cb 1821
fb2a6fc5
JW
1822 if (failed) {
1823 /*
1824 * OK, we failed to lock the whole subtree so we have
1825 * to clean up what we set up to the failing subtree
1826 */
1827 for_each_mem_cgroup_tree(iter, memcg) {
1828 if (iter == failed) {
1829 mem_cgroup_iter_break(memcg, iter);
1830 break;
1831 }
1832 iter->oom_lock = false;
79dfdacc 1833 }
0056f4e6
JW
1834 } else
1835 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1836
1837 spin_unlock(&memcg_oom_lock);
1838
1839 return !failed;
a636b327 1840}
0b7f569e 1841
fb2a6fc5 1842static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1843{
7d74b06f
KH
1844 struct mem_cgroup *iter;
1845
fb2a6fc5 1846 spin_lock(&memcg_oom_lock);
5facae4f 1847 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1848 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1849 iter->oom_lock = false;
fb2a6fc5 1850 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1851}
1852
c0ff4b85 1853static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
c2b42d3c 1857 spin_lock(&memcg_oom_lock);
c0ff4b85 1858 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1859 iter->under_oom++;
1860 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1861}
1862
c0ff4b85 1863static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1864{
1865 struct mem_cgroup *iter;
1866
867578cb 1867 /*
7a52d4d8
ML
1868 * Be careful about under_oom underflows becase a child memcg
1869 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1870 */
c2b42d3c 1871 spin_lock(&memcg_oom_lock);
c0ff4b85 1872 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1873 if (iter->under_oom > 0)
1874 iter->under_oom--;
1875 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1876}
1877
867578cb
KH
1878static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1879
dc98df5a 1880struct oom_wait_info {
d79154bb 1881 struct mem_cgroup *memcg;
ac6424b9 1882 wait_queue_entry_t wait;
dc98df5a
KH
1883};
1884
ac6424b9 1885static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1886 unsigned mode, int sync, void *arg)
1887{
d79154bb
HD
1888 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1889 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1890 struct oom_wait_info *oom_wait_info;
1891
1892 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1893 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1894
2314b42d
JW
1895 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1896 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1897 return 0;
dc98df5a
KH
1898 return autoremove_wake_function(wait, mode, sync, arg);
1899}
1900
c0ff4b85 1901static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1902{
c2b42d3c
TH
1903 /*
1904 * For the following lockless ->under_oom test, the only required
1905 * guarantee is that it must see the state asserted by an OOM when
1906 * this function is called as a result of userland actions
1907 * triggered by the notification of the OOM. This is trivially
1908 * achieved by invoking mem_cgroup_mark_under_oom() before
1909 * triggering notification.
1910 */
1911 if (memcg && memcg->under_oom)
f4b90b70 1912 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1913}
1914
29ef680a
MH
1915enum oom_status {
1916 OOM_SUCCESS,
1917 OOM_FAILED,
1918 OOM_ASYNC,
1919 OOM_SKIPPED
1920};
1921
1922static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1923{
7056d3a3
MH
1924 enum oom_status ret;
1925 bool locked;
1926
29ef680a
MH
1927 if (order > PAGE_ALLOC_COSTLY_ORDER)
1928 return OOM_SKIPPED;
1929
7a1adfdd
RG
1930 memcg_memory_event(memcg, MEMCG_OOM);
1931
867578cb 1932 /*
49426420
JW
1933 * We are in the middle of the charge context here, so we
1934 * don't want to block when potentially sitting on a callstack
1935 * that holds all kinds of filesystem and mm locks.
1936 *
29ef680a
MH
1937 * cgroup1 allows disabling the OOM killer and waiting for outside
1938 * handling until the charge can succeed; remember the context and put
1939 * the task to sleep at the end of the page fault when all locks are
1940 * released.
49426420 1941 *
29ef680a
MH
1942 * On the other hand, in-kernel OOM killer allows for an async victim
1943 * memory reclaim (oom_reaper) and that means that we are not solely
1944 * relying on the oom victim to make a forward progress and we can
1945 * invoke the oom killer here.
1946 *
1947 * Please note that mem_cgroup_out_of_memory might fail to find a
1948 * victim and then we have to bail out from the charge path.
867578cb 1949 */
29ef680a
MH
1950 if (memcg->oom_kill_disable) {
1951 if (!current->in_user_fault)
1952 return OOM_SKIPPED;
1953 css_get(&memcg->css);
1954 current->memcg_in_oom = memcg;
1955 current->memcg_oom_gfp_mask = mask;
1956 current->memcg_oom_order = order;
1957
1958 return OOM_ASYNC;
1959 }
1960
7056d3a3
MH
1961 mem_cgroup_mark_under_oom(memcg);
1962
1963 locked = mem_cgroup_oom_trylock(memcg);
1964
1965 if (locked)
1966 mem_cgroup_oom_notify(memcg);
1967
1968 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1969 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1970 ret = OOM_SUCCESS;
1971 else
1972 ret = OOM_FAILED;
1973
1974 if (locked)
1975 mem_cgroup_oom_unlock(memcg);
29ef680a 1976
7056d3a3 1977 return ret;
3812c8c8
JW
1978}
1979
1980/**
1981 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1982 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1983 *
49426420
JW
1984 * This has to be called at the end of a page fault if the memcg OOM
1985 * handler was enabled.
3812c8c8 1986 *
49426420 1987 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1988 * sleep on a waitqueue until the userspace task resolves the
1989 * situation. Sleeping directly in the charge context with all kinds
1990 * of locks held is not a good idea, instead we remember an OOM state
1991 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1992 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1993 *
1994 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1995 * completed, %false otherwise.
3812c8c8 1996 */
49426420 1997bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1998{
626ebc41 1999 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2000 struct oom_wait_info owait;
49426420 2001 bool locked;
3812c8c8
JW
2002
2003 /* OOM is global, do not handle */
3812c8c8 2004 if (!memcg)
49426420 2005 return false;
3812c8c8 2006
7c5f64f8 2007 if (!handle)
49426420 2008 goto cleanup;
3812c8c8
JW
2009
2010 owait.memcg = memcg;
2011 owait.wait.flags = 0;
2012 owait.wait.func = memcg_oom_wake_function;
2013 owait.wait.private = current;
2055da97 2014 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2015
3812c8c8 2016 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2017 mem_cgroup_mark_under_oom(memcg);
2018
2019 locked = mem_cgroup_oom_trylock(memcg);
2020
2021 if (locked)
2022 mem_cgroup_oom_notify(memcg);
2023
2024 if (locked && !memcg->oom_kill_disable) {
2025 mem_cgroup_unmark_under_oom(memcg);
2026 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2027 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2028 current->memcg_oom_order);
49426420 2029 } else {
3812c8c8 2030 schedule();
49426420
JW
2031 mem_cgroup_unmark_under_oom(memcg);
2032 finish_wait(&memcg_oom_waitq, &owait.wait);
2033 }
2034
2035 if (locked) {
fb2a6fc5
JW
2036 mem_cgroup_oom_unlock(memcg);
2037 /*
2038 * There is no guarantee that an OOM-lock contender
2039 * sees the wakeups triggered by the OOM kill
2040 * uncharges. Wake any sleepers explicitely.
2041 */
2042 memcg_oom_recover(memcg);
2043 }
49426420 2044cleanup:
626ebc41 2045 current->memcg_in_oom = NULL;
3812c8c8 2046 css_put(&memcg->css);
867578cb 2047 return true;
0b7f569e
KH
2048}
2049
3d8b38eb
RG
2050/**
2051 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2052 * @victim: task to be killed by the OOM killer
2053 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2054 *
2055 * Returns a pointer to a memory cgroup, which has to be cleaned up
2056 * by killing all belonging OOM-killable tasks.
2057 *
2058 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2059 */
2060struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2061 struct mem_cgroup *oom_domain)
2062{
2063 struct mem_cgroup *oom_group = NULL;
2064 struct mem_cgroup *memcg;
2065
2066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2067 return NULL;
2068
2069 if (!oom_domain)
2070 oom_domain = root_mem_cgroup;
2071
2072 rcu_read_lock();
2073
2074 memcg = mem_cgroup_from_task(victim);
2075 if (memcg == root_mem_cgroup)
2076 goto out;
2077
48fe267c
RG
2078 /*
2079 * If the victim task has been asynchronously moved to a different
2080 * memory cgroup, we might end up killing tasks outside oom_domain.
2081 * In this case it's better to ignore memory.group.oom.
2082 */
2083 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2084 goto out;
2085
3d8b38eb
RG
2086 /*
2087 * Traverse the memory cgroup hierarchy from the victim task's
2088 * cgroup up to the OOMing cgroup (or root) to find the
2089 * highest-level memory cgroup with oom.group set.
2090 */
2091 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2092 if (memcg->oom_group)
2093 oom_group = memcg;
2094
2095 if (memcg == oom_domain)
2096 break;
2097 }
2098
2099 if (oom_group)
2100 css_get(&oom_group->css);
2101out:
2102 rcu_read_unlock();
2103
2104 return oom_group;
2105}
2106
2107void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2108{
2109 pr_info("Tasks in ");
2110 pr_cont_cgroup_path(memcg->css.cgroup);
2111 pr_cont(" are going to be killed due to memory.oom.group set\n");
2112}
2113
d7365e78 2114/**
bcfe06bf 2115 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2116 * @page: the page
32047e2a 2117 *
81f8c3a4 2118 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2119 * another cgroup.
2120 *
1c824a68
JW
2121 * It ensures lifetime of the locked memcg. Caller is responsible
2122 * for the lifetime of the page.
d69b042f 2123 */
1c824a68 2124void lock_page_memcg(struct page *page)
89c06bd5 2125{
9da7b521 2126 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2127 struct mem_cgroup *memcg;
6de22619 2128 unsigned long flags;
89c06bd5 2129
6de22619
JW
2130 /*
2131 * The RCU lock is held throughout the transaction. The fast
2132 * path can get away without acquiring the memcg->move_lock
2133 * because page moving starts with an RCU grace period.
739f79fc 2134 */
d7365e78
JW
2135 rcu_read_lock();
2136
2137 if (mem_cgroup_disabled())
1c824a68 2138 return;
89c06bd5 2139again:
bcfe06bf 2140 memcg = page_memcg(head);
29833315 2141 if (unlikely(!memcg))
1c824a68 2142 return;
d7365e78 2143
20ad50d6
AS
2144#ifdef CONFIG_PROVE_LOCKING
2145 local_irq_save(flags);
2146 might_lock(&memcg->move_lock);
2147 local_irq_restore(flags);
2148#endif
2149
bdcbb659 2150 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2151 return;
89c06bd5 2152
6de22619 2153 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2154 if (memcg != page_memcg(head)) {
6de22619 2155 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2156 goto again;
2157 }
6de22619
JW
2158
2159 /*
1c824a68
JW
2160 * When charge migration first begins, we can have multiple
2161 * critical sections holding the fast-path RCU lock and one
2162 * holding the slowpath move_lock. Track the task who has the
2163 * move_lock for unlock_page_memcg().
6de22619
JW
2164 */
2165 memcg->move_lock_task = current;
2166 memcg->move_lock_flags = flags;
89c06bd5 2167}
81f8c3a4 2168EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2169
1c824a68 2170static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2171{
6de22619
JW
2172 if (memcg && memcg->move_lock_task == current) {
2173 unsigned long flags = memcg->move_lock_flags;
2174
2175 memcg->move_lock_task = NULL;
2176 memcg->move_lock_flags = 0;
2177
2178 spin_unlock_irqrestore(&memcg->move_lock, flags);
2179 }
89c06bd5 2180
d7365e78 2181 rcu_read_unlock();
89c06bd5 2182}
739f79fc
JW
2183
2184/**
bcfe06bf 2185 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2186 * @page: the page
2187 */
2188void unlock_page_memcg(struct page *page)
2189{
9da7b521
JW
2190 struct page *head = compound_head(page);
2191
bcfe06bf 2192 __unlock_page_memcg(page_memcg(head));
739f79fc 2193}
81f8c3a4 2194EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2195
cdec2e42
KH
2196struct memcg_stock_pcp {
2197 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2198 unsigned int nr_pages;
bf4f0599
RG
2199
2200#ifdef CONFIG_MEMCG_KMEM
2201 struct obj_cgroup *cached_objcg;
2202 unsigned int nr_bytes;
2203#endif
2204
cdec2e42 2205 struct work_struct work;
26fe6168 2206 unsigned long flags;
a0db00fc 2207#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2208};
2209static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2210static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2211
bf4f0599
RG
2212#ifdef CONFIG_MEMCG_KMEM
2213static void drain_obj_stock(struct memcg_stock_pcp *stock);
2214static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2215 struct mem_cgroup *root_memcg);
2216
2217#else
2218static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2219{
2220}
2221static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2222 struct mem_cgroup *root_memcg)
2223{
2224 return false;
2225}
2226#endif
2227
a0956d54
SS
2228/**
2229 * consume_stock: Try to consume stocked charge on this cpu.
2230 * @memcg: memcg to consume from.
2231 * @nr_pages: how many pages to charge.
2232 *
2233 * The charges will only happen if @memcg matches the current cpu's memcg
2234 * stock, and at least @nr_pages are available in that stock. Failure to
2235 * service an allocation will refill the stock.
2236 *
2237 * returns true if successful, false otherwise.
cdec2e42 2238 */
a0956d54 2239static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2240{
2241 struct memcg_stock_pcp *stock;
db2ba40c 2242 unsigned long flags;
3e32cb2e 2243 bool ret = false;
cdec2e42 2244
a983b5eb 2245 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2246 return ret;
a0956d54 2247
db2ba40c
JW
2248 local_irq_save(flags);
2249
2250 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2251 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2252 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2253 ret = true;
2254 }
db2ba40c
JW
2255
2256 local_irq_restore(flags);
2257
cdec2e42
KH
2258 return ret;
2259}
2260
2261/*
3e32cb2e 2262 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2263 */
2264static void drain_stock(struct memcg_stock_pcp *stock)
2265{
2266 struct mem_cgroup *old = stock->cached;
2267
1a3e1f40
JW
2268 if (!old)
2269 return;
2270
11c9ea4e 2271 if (stock->nr_pages) {
3e32cb2e 2272 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2273 if (do_memsw_account())
3e32cb2e 2274 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2275 stock->nr_pages = 0;
cdec2e42 2276 }
1a3e1f40
JW
2277
2278 css_put(&old->css);
cdec2e42 2279 stock->cached = NULL;
cdec2e42
KH
2280}
2281
cdec2e42
KH
2282static void drain_local_stock(struct work_struct *dummy)
2283{
db2ba40c
JW
2284 struct memcg_stock_pcp *stock;
2285 unsigned long flags;
2286
72f0184c
MH
2287 /*
2288 * The only protection from memory hotplug vs. drain_stock races is
2289 * that we always operate on local CPU stock here with IRQ disabled
2290 */
db2ba40c
JW
2291 local_irq_save(flags);
2292
2293 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2294 drain_obj_stock(stock);
cdec2e42 2295 drain_stock(stock);
26fe6168 2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2297
2298 local_irq_restore(flags);
cdec2e42
KH
2299}
2300
2301/*
3e32cb2e 2302 * Cache charges(val) to local per_cpu area.
320cc51d 2303 * This will be consumed by consume_stock() function, later.
cdec2e42 2304 */
c0ff4b85 2305static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2306{
db2ba40c
JW
2307 struct memcg_stock_pcp *stock;
2308 unsigned long flags;
2309
2310 local_irq_save(flags);
cdec2e42 2311
db2ba40c 2312 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2313 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2314 drain_stock(stock);
1a3e1f40 2315 css_get(&memcg->css);
c0ff4b85 2316 stock->cached = memcg;
cdec2e42 2317 }
11c9ea4e 2318 stock->nr_pages += nr_pages;
db2ba40c 2319
a983b5eb 2320 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2321 drain_stock(stock);
2322
db2ba40c 2323 local_irq_restore(flags);
cdec2e42
KH
2324}
2325
2326/*
c0ff4b85 2327 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2328 * of the hierarchy under it.
cdec2e42 2329 */
6d3d6aa2 2330static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2331{
26fe6168 2332 int cpu, curcpu;
d38144b7 2333
6d3d6aa2
JW
2334 /* If someone's already draining, avoid adding running more workers. */
2335 if (!mutex_trylock(&percpu_charge_mutex))
2336 return;
72f0184c
MH
2337 /*
2338 * Notify other cpus that system-wide "drain" is running
2339 * We do not care about races with the cpu hotplug because cpu down
2340 * as well as workers from this path always operate on the local
2341 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2342 */
5af12d0e 2343 curcpu = get_cpu();
cdec2e42
KH
2344 for_each_online_cpu(cpu) {
2345 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2346 struct mem_cgroup *memcg;
e1a366be 2347 bool flush = false;
26fe6168 2348
e1a366be 2349 rcu_read_lock();
c0ff4b85 2350 memcg = stock->cached;
e1a366be
RG
2351 if (memcg && stock->nr_pages &&
2352 mem_cgroup_is_descendant(memcg, root_memcg))
2353 flush = true;
bf4f0599
RG
2354 if (obj_stock_flush_required(stock, root_memcg))
2355 flush = true;
e1a366be
RG
2356 rcu_read_unlock();
2357
2358 if (flush &&
2359 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2360 if (cpu == curcpu)
2361 drain_local_stock(&stock->work);
2362 else
2363 schedule_work_on(cpu, &stock->work);
2364 }
cdec2e42 2365 }
5af12d0e 2366 put_cpu();
9f50fad6 2367 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2368}
2369
308167fc 2370static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2371{
cdec2e42 2372 struct memcg_stock_pcp *stock;
a3d4c05a 2373 struct mem_cgroup *memcg;
cdec2e42 2374
cdec2e42
KH
2375 stock = &per_cpu(memcg_stock, cpu);
2376 drain_stock(stock);
a983b5eb
JW
2377
2378 for_each_mem_cgroup(memcg) {
a3d4c05a 2379 struct memcg_vmstats_percpu *statc;
a983b5eb
JW
2380 int i;
2381
a3d4c05a
JW
2382 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
2383
a983b5eb
JW
2384 for (i = 0; i < MEMCG_NR_STAT; i++) {
2385 int nid;
a983b5eb 2386
a3d4c05a
JW
2387 if (statc->stat[i]) {
2388 mod_memcg_state(memcg, i, statc->stat[i]);
2389 statc->stat[i] = 0;
2390 }
a983b5eb
JW
2391
2392 if (i >= NR_VM_NODE_STAT_ITEMS)
2393 continue;
2394
2395 for_each_node(nid) {
a3d4c05a 2396 struct batched_lruvec_stat *lstatc;
a983b5eb 2397 struct mem_cgroup_per_node *pn;
a3d4c05a 2398 long x;
a983b5eb
JW
2399
2400 pn = mem_cgroup_nodeinfo(memcg, nid);
a3d4c05a
JW
2401 lstatc = per_cpu_ptr(pn->lruvec_stat_cpu, cpu);
2402
2403 x = lstatc->count[i];
2404 lstatc->count[i] = 0;
2405
2406 if (x) {
42a30035
JW
2407 do {
2408 atomic_long_add(x, &pn->lruvec_stat[i]);
2409 } while ((pn = parent_nodeinfo(pn, nid)));
a3d4c05a 2410 }
a983b5eb
JW
2411 }
2412 }
2413
e27be240 2414 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a3d4c05a
JW
2415 if (statc->events[i]) {
2416 count_memcg_events(memcg, i, statc->events[i]);
2417 statc->events[i] = 0;
2418 }
a983b5eb
JW
2419 }
2420 }
2421
308167fc 2422 return 0;
cdec2e42
KH
2423}
2424
b3ff9291
CD
2425static unsigned long reclaim_high(struct mem_cgroup *memcg,
2426 unsigned int nr_pages,
2427 gfp_t gfp_mask)
f7e1cb6e 2428{
b3ff9291
CD
2429 unsigned long nr_reclaimed = 0;
2430
f7e1cb6e 2431 do {
e22c6ed9
JW
2432 unsigned long pflags;
2433
d1663a90
JK
2434 if (page_counter_read(&memcg->memory) <=
2435 READ_ONCE(memcg->memory.high))
f7e1cb6e 2436 continue;
e22c6ed9 2437
e27be240 2438 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2439
2440 psi_memstall_enter(&pflags);
b3ff9291
CD
2441 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2442 gfp_mask, true);
e22c6ed9 2443 psi_memstall_leave(&pflags);
4bf17307
CD
2444 } while ((memcg = parent_mem_cgroup(memcg)) &&
2445 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2446
2447 return nr_reclaimed;
f7e1cb6e
JW
2448}
2449
2450static void high_work_func(struct work_struct *work)
2451{
2452 struct mem_cgroup *memcg;
2453
2454 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2455 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2456}
2457
0e4b01df
CD
2458/*
2459 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2460 * enough to still cause a significant slowdown in most cases, while still
2461 * allowing diagnostics and tracing to proceed without becoming stuck.
2462 */
2463#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2464
2465/*
2466 * When calculating the delay, we use these either side of the exponentiation to
2467 * maintain precision and scale to a reasonable number of jiffies (see the table
2468 * below.
2469 *
2470 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2471 * overage ratio to a delay.
ac5ddd0f 2472 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2473 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2474 * to produce a reasonable delay curve.
2475 *
2476 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2477 * reasonable delay curve compared to precision-adjusted overage, not
2478 * penalising heavily at first, but still making sure that growth beyond the
2479 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2480 * example, with a high of 100 megabytes:
2481 *
2482 * +-------+------------------------+
2483 * | usage | time to allocate in ms |
2484 * +-------+------------------------+
2485 * | 100M | 0 |
2486 * | 101M | 6 |
2487 * | 102M | 25 |
2488 * | 103M | 57 |
2489 * | 104M | 102 |
2490 * | 105M | 159 |
2491 * | 106M | 230 |
2492 * | 107M | 313 |
2493 * | 108M | 409 |
2494 * | 109M | 518 |
2495 * | 110M | 639 |
2496 * | 111M | 774 |
2497 * | 112M | 921 |
2498 * | 113M | 1081 |
2499 * | 114M | 1254 |
2500 * | 115M | 1439 |
2501 * | 116M | 1638 |
2502 * | 117M | 1849 |
2503 * | 118M | 2000 |
2504 * | 119M | 2000 |
2505 * | 120M | 2000 |
2506 * +-------+------------------------+
2507 */
2508 #define MEMCG_DELAY_PRECISION_SHIFT 20
2509 #define MEMCG_DELAY_SCALING_SHIFT 14
2510
8a5dbc65 2511static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2512{
8a5dbc65 2513 u64 overage;
b23afb93 2514
8a5dbc65
JK
2515 if (usage <= high)
2516 return 0;
e26733e0 2517
8a5dbc65
JK
2518 /*
2519 * Prevent division by 0 in overage calculation by acting as if
2520 * it was a threshold of 1 page
2521 */
2522 high = max(high, 1UL);
9b8b1754 2523
8a5dbc65
JK
2524 overage = usage - high;
2525 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2526 return div64_u64(overage, high);
2527}
e26733e0 2528
8a5dbc65
JK
2529static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2530{
2531 u64 overage, max_overage = 0;
e26733e0 2532
8a5dbc65
JK
2533 do {
2534 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2535 READ_ONCE(memcg->memory.high));
8a5dbc65 2536 max_overage = max(overage, max_overage);
e26733e0
CD
2537 } while ((memcg = parent_mem_cgroup(memcg)) &&
2538 !mem_cgroup_is_root(memcg));
2539
8a5dbc65
JK
2540 return max_overage;
2541}
2542
4b82ab4f
JK
2543static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2544{
2545 u64 overage, max_overage = 0;
2546
2547 do {
2548 overage = calculate_overage(page_counter_read(&memcg->swap),
2549 READ_ONCE(memcg->swap.high));
2550 if (overage)
2551 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2552 max_overage = max(overage, max_overage);
2553 } while ((memcg = parent_mem_cgroup(memcg)) &&
2554 !mem_cgroup_is_root(memcg));
2555
2556 return max_overage;
2557}
2558
8a5dbc65
JK
2559/*
2560 * Get the number of jiffies that we should penalise a mischievous cgroup which
2561 * is exceeding its memory.high by checking both it and its ancestors.
2562 */
2563static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2564 unsigned int nr_pages,
2565 u64 max_overage)
2566{
2567 unsigned long penalty_jiffies;
2568
e26733e0
CD
2569 if (!max_overage)
2570 return 0;
0e4b01df
CD
2571
2572 /*
0e4b01df
CD
2573 * We use overage compared to memory.high to calculate the number of
2574 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2575 * fairly lenient on small overages, and increasingly harsh when the
2576 * memcg in question makes it clear that it has no intention of stopping
2577 * its crazy behaviour, so we exponentially increase the delay based on
2578 * overage amount.
2579 */
e26733e0
CD
2580 penalty_jiffies = max_overage * max_overage * HZ;
2581 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2582 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2583
2584 /*
2585 * Factor in the task's own contribution to the overage, such that four
2586 * N-sized allocations are throttled approximately the same as one
2587 * 4N-sized allocation.
2588 *
2589 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2590 * larger the current charge patch is than that.
2591 */
ff144e69 2592 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2593}
2594
2595/*
2596 * Scheduled by try_charge() to be executed from the userland return path
2597 * and reclaims memory over the high limit.
2598 */
2599void mem_cgroup_handle_over_high(void)
2600{
2601 unsigned long penalty_jiffies;
2602 unsigned long pflags;
b3ff9291 2603 unsigned long nr_reclaimed;
e26733e0 2604 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2605 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2606 struct mem_cgroup *memcg;
b3ff9291 2607 bool in_retry = false;
e26733e0
CD
2608
2609 if (likely(!nr_pages))
2610 return;
2611
2612 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2613 current->memcg_nr_pages_over_high = 0;
2614
b3ff9291
CD
2615retry_reclaim:
2616 /*
2617 * The allocating task should reclaim at least the batch size, but for
2618 * subsequent retries we only want to do what's necessary to prevent oom
2619 * or breaching resource isolation.
2620 *
2621 * This is distinct from memory.max or page allocator behaviour because
2622 * memory.high is currently batched, whereas memory.max and the page
2623 * allocator run every time an allocation is made.
2624 */
2625 nr_reclaimed = reclaim_high(memcg,
2626 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2627 GFP_KERNEL);
2628
e26733e0
CD
2629 /*
2630 * memory.high is breached and reclaim is unable to keep up. Throttle
2631 * allocators proactively to slow down excessive growth.
2632 */
8a5dbc65
JK
2633 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2634 mem_find_max_overage(memcg));
0e4b01df 2635
4b82ab4f
JK
2636 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2637 swap_find_max_overage(memcg));
2638
ff144e69
JK
2639 /*
2640 * Clamp the max delay per usermode return so as to still keep the
2641 * application moving forwards and also permit diagnostics, albeit
2642 * extremely slowly.
2643 */
2644 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2645
0e4b01df
CD
2646 /*
2647 * Don't sleep if the amount of jiffies this memcg owes us is so low
2648 * that it's not even worth doing, in an attempt to be nice to those who
2649 * go only a small amount over their memory.high value and maybe haven't
2650 * been aggressively reclaimed enough yet.
2651 */
2652 if (penalty_jiffies <= HZ / 100)
2653 goto out;
2654
b3ff9291
CD
2655 /*
2656 * If reclaim is making forward progress but we're still over
2657 * memory.high, we want to encourage that rather than doing allocator
2658 * throttling.
2659 */
2660 if (nr_reclaimed || nr_retries--) {
2661 in_retry = true;
2662 goto retry_reclaim;
2663 }
2664
0e4b01df
CD
2665 /*
2666 * If we exit early, we're guaranteed to die (since
2667 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2668 * need to account for any ill-begotten jiffies to pay them off later.
2669 */
2670 psi_memstall_enter(&pflags);
2671 schedule_timeout_killable(penalty_jiffies);
2672 psi_memstall_leave(&pflags);
2673
2674out:
2675 css_put(&memcg->css);
b23afb93
TH
2676}
2677
00501b53
JW
2678static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2679 unsigned int nr_pages)
8a9f3ccd 2680{
a983b5eb 2681 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2682 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2683 struct mem_cgroup *mem_over_limit;
3e32cb2e 2684 struct page_counter *counter;
e22c6ed9 2685 enum oom_status oom_status;
6539cc05 2686 unsigned long nr_reclaimed;
b70a2a21
JW
2687 bool may_swap = true;
2688 bool drained = false;
e22c6ed9 2689 unsigned long pflags;
a636b327 2690
ce00a967 2691 if (mem_cgroup_is_root(memcg))
10d53c74 2692 return 0;
6539cc05 2693retry:
b6b6cc72 2694 if (consume_stock(memcg, nr_pages))
10d53c74 2695 return 0;
8a9f3ccd 2696
7941d214 2697 if (!do_memsw_account() ||
6071ca52
JW
2698 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2699 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2700 goto done_restock;
7941d214 2701 if (do_memsw_account())
3e32cb2e
JW
2702 page_counter_uncharge(&memcg->memsw, batch);
2703 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2704 } else {
3e32cb2e 2705 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2706 may_swap = false;
3fbe7244 2707 }
7a81b88c 2708
6539cc05
JW
2709 if (batch > nr_pages) {
2710 batch = nr_pages;
2711 goto retry;
2712 }
6d61ef40 2713
869712fd
JW
2714 /*
2715 * Memcg doesn't have a dedicated reserve for atomic
2716 * allocations. But like the global atomic pool, we need to
2717 * put the burden of reclaim on regular allocation requests
2718 * and let these go through as privileged allocations.
2719 */
2720 if (gfp_mask & __GFP_ATOMIC)
2721 goto force;
2722
06b078fc
JW
2723 /*
2724 * Unlike in global OOM situations, memcg is not in a physical
2725 * memory shortage. Allow dying and OOM-killed tasks to
2726 * bypass the last charges so that they can exit quickly and
2727 * free their memory.
2728 */
7775face 2729 if (unlikely(should_force_charge()))
10d53c74 2730 goto force;
06b078fc 2731
89a28483
JW
2732 /*
2733 * Prevent unbounded recursion when reclaim operations need to
2734 * allocate memory. This might exceed the limits temporarily,
2735 * but we prefer facilitating memory reclaim and getting back
2736 * under the limit over triggering OOM kills in these cases.
2737 */
2738 if (unlikely(current->flags & PF_MEMALLOC))
2739 goto force;
2740
06b078fc
JW
2741 if (unlikely(task_in_memcg_oom(current)))
2742 goto nomem;
2743
d0164adc 2744 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2745 goto nomem;
4b534334 2746
e27be240 2747 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2748
e22c6ed9 2749 psi_memstall_enter(&pflags);
b70a2a21
JW
2750 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2751 gfp_mask, may_swap);
e22c6ed9 2752 psi_memstall_leave(&pflags);
6539cc05 2753
61e02c74 2754 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2755 goto retry;
28c34c29 2756
b70a2a21 2757 if (!drained) {
6d3d6aa2 2758 drain_all_stock(mem_over_limit);
b70a2a21
JW
2759 drained = true;
2760 goto retry;
2761 }
2762
28c34c29
JW
2763 if (gfp_mask & __GFP_NORETRY)
2764 goto nomem;
6539cc05
JW
2765 /*
2766 * Even though the limit is exceeded at this point, reclaim
2767 * may have been able to free some pages. Retry the charge
2768 * before killing the task.
2769 *
2770 * Only for regular pages, though: huge pages are rather
2771 * unlikely to succeed so close to the limit, and we fall back
2772 * to regular pages anyway in case of failure.
2773 */
61e02c74 2774 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2775 goto retry;
2776 /*
2777 * At task move, charge accounts can be doubly counted. So, it's
2778 * better to wait until the end of task_move if something is going on.
2779 */
2780 if (mem_cgroup_wait_acct_move(mem_over_limit))
2781 goto retry;
2782
9b130619
JW
2783 if (nr_retries--)
2784 goto retry;
2785
38d38493 2786 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2787 goto nomem;
2788
6539cc05 2789 if (fatal_signal_pending(current))
10d53c74 2790 goto force;
6539cc05 2791
29ef680a
MH
2792 /*
2793 * keep retrying as long as the memcg oom killer is able to make
2794 * a forward progress or bypass the charge if the oom killer
2795 * couldn't make any progress.
2796 */
2797 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2798 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2799 switch (oom_status) {
2800 case OOM_SUCCESS:
d977aa93 2801 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2802 goto retry;
2803 case OOM_FAILED:
2804 goto force;
2805 default:
2806 goto nomem;
2807 }
7a81b88c 2808nomem:
6d1fdc48 2809 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2810 return -ENOMEM;
10d53c74
TH
2811force:
2812 /*
2813 * The allocation either can't fail or will lead to more memory
2814 * being freed very soon. Allow memory usage go over the limit
2815 * temporarily by force charging it.
2816 */
2817 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2818 if (do_memsw_account())
10d53c74 2819 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2820
2821 return 0;
6539cc05
JW
2822
2823done_restock:
2824 if (batch > nr_pages)
2825 refill_stock(memcg, batch - nr_pages);
b23afb93 2826
241994ed 2827 /*
b23afb93
TH
2828 * If the hierarchy is above the normal consumption range, schedule
2829 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2830 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2831 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2832 * not recorded as it most likely matches current's and won't
2833 * change in the meantime. As high limit is checked again before
2834 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2835 */
2836 do {
4b82ab4f
JK
2837 bool mem_high, swap_high;
2838
2839 mem_high = page_counter_read(&memcg->memory) >
2840 READ_ONCE(memcg->memory.high);
2841 swap_high = page_counter_read(&memcg->swap) >
2842 READ_ONCE(memcg->swap.high);
2843
2844 /* Don't bother a random interrupted task */
2845 if (in_interrupt()) {
2846 if (mem_high) {
f7e1cb6e
JW
2847 schedule_work(&memcg->high_work);
2848 break;
2849 }
4b82ab4f
JK
2850 continue;
2851 }
2852
2853 if (mem_high || swap_high) {
2854 /*
2855 * The allocating tasks in this cgroup will need to do
2856 * reclaim or be throttled to prevent further growth
2857 * of the memory or swap footprints.
2858 *
2859 * Target some best-effort fairness between the tasks,
2860 * and distribute reclaim work and delay penalties
2861 * based on how much each task is actually allocating.
2862 */
9516a18a 2863 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2864 set_notify_resume(current);
2865 break;
2866 }
241994ed 2867 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2868
2869 return 0;
7a81b88c 2870}
8a9f3ccd 2871
f0e45fb4 2872#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2873static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2874{
ce00a967
JW
2875 if (mem_cgroup_is_root(memcg))
2876 return;
2877
3e32cb2e 2878 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2879 if (do_memsw_account())
3e32cb2e 2880 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2881}
f0e45fb4 2882#endif
d01dd17f 2883
d9eb1ea2 2884static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2885{
bcfe06bf 2886 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2887 /*
a5eb011a 2888 * Any of the following ensures page's memcg stability:
0a31bc97 2889 *
a0b5b414
JW
2890 * - the page lock
2891 * - LRU isolation
2892 * - lock_page_memcg()
2893 * - exclusive reference
0a31bc97 2894 */
bcfe06bf 2895 page->memcg_data = (unsigned long)memcg;
7a81b88c 2896}
66e1707b 2897
84c07d11 2898#ifdef CONFIG_MEMCG_KMEM
10befea9 2899int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2900 gfp_t gfp, bool new_page)
10befea9
RG
2901{
2902 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2903 unsigned long memcg_data;
10befea9
RG
2904 void *vec;
2905
2906 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2907 page_to_nid(page));
2908 if (!vec)
2909 return -ENOMEM;
2910
2e9bd483
RG
2911 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2912 if (new_page) {
2913 /*
2914 * If the slab page is brand new and nobody can yet access
2915 * it's memcg_data, no synchronization is required and
2916 * memcg_data can be simply assigned.
2917 */
2918 page->memcg_data = memcg_data;
2919 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2920 /*
2921 * If the slab page is already in use, somebody can allocate
2922 * and assign obj_cgroups in parallel. In this case the existing
2923 * objcg vector should be reused.
2924 */
10befea9 2925 kfree(vec);
2e9bd483
RG
2926 return 0;
2927 }
10befea9 2928
2e9bd483 2929 kmemleak_not_leak(vec);
10befea9
RG
2930 return 0;
2931}
2932
8380ce47
RG
2933/*
2934 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2935 *
bcfe06bf
RG
2936 * A passed kernel object can be a slab object or a generic kernel page, so
2937 * different mechanisms for getting the memory cgroup pointer should be used.
2938 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2939 * can not know for sure how the kernel object is implemented.
2940 * mem_cgroup_from_obj() can be safely used in such cases.
2941 *
8380ce47
RG
2942 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2943 * cgroup_mutex, etc.
2944 */
2945struct mem_cgroup *mem_cgroup_from_obj(void *p)
2946{
2947 struct page *page;
2948
2949 if (mem_cgroup_disabled())
2950 return NULL;
2951
2952 page = virt_to_head_page(p);
2953
2954 /*
9855609b
RG
2955 * Slab objects are accounted individually, not per-page.
2956 * Memcg membership data for each individual object is saved in
2957 * the page->obj_cgroups.
8380ce47 2958 */
270c6a71 2959 if (page_objcgs_check(page)) {
9855609b
RG
2960 struct obj_cgroup *objcg;
2961 unsigned int off;
2962
2963 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2964 objcg = page_objcgs(page)[off];
10befea9
RG
2965 if (objcg)
2966 return obj_cgroup_memcg(objcg);
2967
2968 return NULL;
9855609b 2969 }
8380ce47 2970
bcfe06bf
RG
2971 /*
2972 * page_memcg_check() is used here, because page_has_obj_cgroups()
2973 * check above could fail because the object cgroups vector wasn't set
2974 * at that moment, but it can be set concurrently.
2975 * page_memcg_check(page) will guarantee that a proper memory
2976 * cgroup pointer or NULL will be returned.
2977 */
2978 return page_memcg_check(page);
8380ce47
RG
2979}
2980
bf4f0599
RG
2981__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2982{
2983 struct obj_cgroup *objcg = NULL;
2984 struct mem_cgroup *memcg;
2985
279c3393
RG
2986 if (memcg_kmem_bypass())
2987 return NULL;
2988
bf4f0599 2989 rcu_read_lock();
37d5985c
RG
2990 if (unlikely(active_memcg()))
2991 memcg = active_memcg();
bf4f0599
RG
2992 else
2993 memcg = mem_cgroup_from_task(current);
2994
2995 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2996 objcg = rcu_dereference(memcg->objcg);
2997 if (objcg && obj_cgroup_tryget(objcg))
2998 break;
2f7659a3 2999 objcg = NULL;
bf4f0599
RG
3000 }
3001 rcu_read_unlock();
3002
3003 return objcg;
3004}
3005
f3bb3043 3006static int memcg_alloc_cache_id(void)
55007d84 3007{
f3bb3043
VD
3008 int id, size;
3009 int err;
3010
dbcf73e2 3011 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3012 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3013 if (id < 0)
3014 return id;
55007d84 3015
dbcf73e2 3016 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3017 return id;
3018
3019 /*
3020 * There's no space for the new id in memcg_caches arrays,
3021 * so we have to grow them.
3022 */
05257a1a 3023 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3024
3025 size = 2 * (id + 1);
55007d84
GC
3026 if (size < MEMCG_CACHES_MIN_SIZE)
3027 size = MEMCG_CACHES_MIN_SIZE;
3028 else if (size > MEMCG_CACHES_MAX_SIZE)
3029 size = MEMCG_CACHES_MAX_SIZE;
3030
9855609b 3031 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3032 if (!err)
3033 memcg_nr_cache_ids = size;
3034
3035 up_write(&memcg_cache_ids_sem);
3036
f3bb3043 3037 if (err) {
dbcf73e2 3038 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3039 return err;
3040 }
3041 return id;
3042}
3043
3044static void memcg_free_cache_id(int id)
3045{
dbcf73e2 3046 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3047}
3048
45264778 3049/**
4b13f64d 3050 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3051 * @memcg: memory cgroup to charge
45264778 3052 * @gfp: reclaim mode
92d0510c 3053 * @nr_pages: number of pages to charge
45264778
VD
3054 *
3055 * Returns 0 on success, an error code on failure.
3056 */
c1a660de
RG
3057static int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3058 unsigned int nr_pages)
7ae1e1d0 3059{
f3ccb2c4 3060 struct page_counter *counter;
7ae1e1d0
GC
3061 int ret;
3062
f3ccb2c4 3063 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3064 if (ret)
f3ccb2c4 3065 return ret;
52c29b04
JW
3066
3067 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3068 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3069
3070 /*
3071 * Enforce __GFP_NOFAIL allocation because callers are not
3072 * prepared to see failures and likely do not have any failure
3073 * handling code.
3074 */
3075 if (gfp & __GFP_NOFAIL) {
3076 page_counter_charge(&memcg->kmem, nr_pages);
3077 return 0;
3078 }
52c29b04
JW
3079 cancel_charge(memcg, nr_pages);
3080 return -ENOMEM;
7ae1e1d0 3081 }
f3ccb2c4 3082 return 0;
7ae1e1d0
GC
3083}
3084
4b13f64d
RG
3085/**
3086 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3087 * @memcg: memcg to uncharge
3088 * @nr_pages: number of pages to uncharge
3089 */
c1a660de 3090static void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
4b13f64d
RG
3091{
3092 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3093 page_counter_uncharge(&memcg->kmem, nr_pages);
3094
3de7d4f2 3095 refill_stock(memcg, nr_pages);
4b13f64d
RG
3096}
3097
45264778 3098/**
f4b00eab 3099 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3100 * @page: page to charge
3101 * @gfp: reclaim mode
3102 * @order: allocation order
3103 *
3104 * Returns 0 on success, an error code on failure.
3105 */
f4b00eab 3106int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3107{
f3ccb2c4 3108 struct mem_cgroup *memcg;
fcff7d7e 3109 int ret = 0;
7ae1e1d0 3110
d46eb14b 3111 memcg = get_mem_cgroup_from_current();
279c3393 3112 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3113 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3114 if (!ret) {
18b2db3b
RG
3115 page->memcg_data = (unsigned long)memcg |
3116 MEMCG_DATA_KMEM;
1a3e1f40 3117 return 0;
4d96ba35 3118 }
279c3393 3119 css_put(&memcg->css);
c4159a75 3120 }
d05e83a6 3121 return ret;
7ae1e1d0 3122}
49a18eae 3123
45264778 3124/**
f4b00eab 3125 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3126 * @page: page to uncharge
3127 * @order: allocation order
3128 */
f4b00eab 3129void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3130{
bcfe06bf 3131 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3132 unsigned int nr_pages = 1 << order;
7ae1e1d0 3133
7ae1e1d0
GC
3134 if (!memcg)
3135 return;
3136
309381fe 3137 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3138 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3139 page->memcg_data = 0;
1a3e1f40 3140 css_put(&memcg->css);
60d3fd32 3141}
bf4f0599
RG
3142
3143static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3144{
3145 struct memcg_stock_pcp *stock;
3146 unsigned long flags;
3147 bool ret = false;
3148
3149 local_irq_save(flags);
3150
3151 stock = this_cpu_ptr(&memcg_stock);
3152 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3153 stock->nr_bytes -= nr_bytes;
3154 ret = true;
3155 }
3156
3157 local_irq_restore(flags);
3158
3159 return ret;
3160}
3161
3162static void drain_obj_stock(struct memcg_stock_pcp *stock)
3163{
3164 struct obj_cgroup *old = stock->cached_objcg;
3165
3166 if (!old)
3167 return;
3168
3169 if (stock->nr_bytes) {
3170 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3171 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3172
3173 if (nr_pages) {
3174 rcu_read_lock();
3175 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3176 rcu_read_unlock();
3177 }
3178
3179 /*
3180 * The leftover is flushed to the centralized per-memcg value.
3181 * On the next attempt to refill obj stock it will be moved
3182 * to a per-cpu stock (probably, on an other CPU), see
3183 * refill_obj_stock().
3184 *
3185 * How often it's flushed is a trade-off between the memory
3186 * limit enforcement accuracy and potential CPU contention,
3187 * so it might be changed in the future.
3188 */
3189 atomic_add(nr_bytes, &old->nr_charged_bytes);
3190 stock->nr_bytes = 0;
3191 }
3192
3193 obj_cgroup_put(old);
3194 stock->cached_objcg = NULL;
3195}
3196
3197static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3198 struct mem_cgroup *root_memcg)
3199{
3200 struct mem_cgroup *memcg;
3201
3202 if (stock->cached_objcg) {
3203 memcg = obj_cgroup_memcg(stock->cached_objcg);
3204 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3205 return true;
3206 }
3207
3208 return false;
3209}
3210
3211static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3212{
3213 struct memcg_stock_pcp *stock;
3214 unsigned long flags;
3215
3216 local_irq_save(flags);
3217
3218 stock = this_cpu_ptr(&memcg_stock);
3219 if (stock->cached_objcg != objcg) { /* reset if necessary */
3220 drain_obj_stock(stock);
3221 obj_cgroup_get(objcg);
3222 stock->cached_objcg = objcg;
3223 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3224 }
3225 stock->nr_bytes += nr_bytes;
3226
3227 if (stock->nr_bytes > PAGE_SIZE)
3228 drain_obj_stock(stock);
3229
3230 local_irq_restore(flags);
3231}
3232
3233int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3234{
3235 struct mem_cgroup *memcg;
3236 unsigned int nr_pages, nr_bytes;
3237 int ret;
3238
3239 if (consume_obj_stock(objcg, size))
3240 return 0;
3241
3242 /*
3243 * In theory, memcg->nr_charged_bytes can have enough
3244 * pre-charged bytes to satisfy the allocation. However,
3245 * flushing memcg->nr_charged_bytes requires two atomic
3246 * operations, and memcg->nr_charged_bytes can't be big,
3247 * so it's better to ignore it and try grab some new pages.
3248 * memcg->nr_charged_bytes will be flushed in
3249 * refill_obj_stock(), called from this function or
3250 * independently later.
3251 */
3252 rcu_read_lock();
eefbfa7f 3253retry:
bf4f0599 3254 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3255 if (unlikely(!css_tryget(&memcg->css)))
3256 goto retry;
bf4f0599
RG
3257 rcu_read_unlock();
3258
3259 nr_pages = size >> PAGE_SHIFT;
3260 nr_bytes = size & (PAGE_SIZE - 1);
3261
3262 if (nr_bytes)
3263 nr_pages += 1;
3264
3265 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3266 if (!ret && nr_bytes)
3267 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3268
3269 css_put(&memcg->css);
3270 return ret;
3271}
3272
3273void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3274{
3275 refill_obj_stock(objcg, size);
3276}
3277
84c07d11 3278#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3279
ca3e0214 3280/*
be6c8982 3281 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3282 */
be6c8982 3283void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3284{
bcfe06bf 3285 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3286 int i;
ca3e0214 3287
be6c8982 3288 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3289 return;
b070e65c 3290
be6c8982
ZG
3291 for (i = 1; i < nr; i++)
3292 head[i].memcg_data = head->memcg_data;
3293 css_get_many(&memcg->css, nr - 1);
ca3e0214 3294}
ca3e0214 3295
c255a458 3296#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3297/**
3298 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3299 * @entry: swap entry to be moved
3300 * @from: mem_cgroup which the entry is moved from
3301 * @to: mem_cgroup which the entry is moved to
3302 *
3303 * It succeeds only when the swap_cgroup's record for this entry is the same
3304 * as the mem_cgroup's id of @from.
3305 *
3306 * Returns 0 on success, -EINVAL on failure.
3307 *
3e32cb2e 3308 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3309 * both res and memsw, and called css_get().
3310 */
3311static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3312 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3313{
3314 unsigned short old_id, new_id;
3315
34c00c31
LZ
3316 old_id = mem_cgroup_id(from);
3317 new_id = mem_cgroup_id(to);
02491447
DN
3318
3319 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3320 mod_memcg_state(from, MEMCG_SWAP, -1);
3321 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3322 return 0;
3323 }
3324 return -EINVAL;
3325}
3326#else
3327static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3328 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3329{
3330 return -EINVAL;
3331}
8c7c6e34 3332#endif
d13d1443 3333
bbec2e15 3334static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3335
bbec2e15
RG
3336static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3337 unsigned long max, bool memsw)
628f4235 3338{
3e32cb2e 3339 bool enlarge = false;
bb4a7ea2 3340 bool drained = false;
3e32cb2e 3341 int ret;
c054a78c
YZ
3342 bool limits_invariant;
3343 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3344
3e32cb2e 3345 do {
628f4235
KH
3346 if (signal_pending(current)) {
3347 ret = -EINTR;
3348 break;
3349 }
3e32cb2e 3350
bbec2e15 3351 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3352 /*
3353 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3354 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3355 */
15b42562 3356 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3357 max <= memcg->memsw.max;
c054a78c 3358 if (!limits_invariant) {
bbec2e15 3359 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3360 ret = -EINVAL;
8c7c6e34
KH
3361 break;
3362 }
bbec2e15 3363 if (max > counter->max)
3e32cb2e 3364 enlarge = true;
bbec2e15
RG
3365 ret = page_counter_set_max(counter, max);
3366 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3367
3368 if (!ret)
3369 break;
3370
bb4a7ea2
SB
3371 if (!drained) {
3372 drain_all_stock(memcg);
3373 drained = true;
3374 continue;
3375 }
3376
1ab5c056
AR
3377 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3378 GFP_KERNEL, !memsw)) {
3379 ret = -EBUSY;
3380 break;
3381 }
3382 } while (true);
3e32cb2e 3383
3c11ecf4
KH
3384 if (!ret && enlarge)
3385 memcg_oom_recover(memcg);
3e32cb2e 3386
628f4235
KH
3387 return ret;
3388}
3389
ef8f2327 3390unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3391 gfp_t gfp_mask,
3392 unsigned long *total_scanned)
3393{
3394 unsigned long nr_reclaimed = 0;
ef8f2327 3395 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3396 unsigned long reclaimed;
3397 int loop = 0;
ef8f2327 3398 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3399 unsigned long excess;
0608f43d
AM
3400 unsigned long nr_scanned;
3401
3402 if (order > 0)
3403 return 0;
3404
ef8f2327 3405 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3406
3407 /*
3408 * Do not even bother to check the largest node if the root
3409 * is empty. Do it lockless to prevent lock bouncing. Races
3410 * are acceptable as soft limit is best effort anyway.
3411 */
bfc7228b 3412 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3413 return 0;
3414
0608f43d
AM
3415 /*
3416 * This loop can run a while, specially if mem_cgroup's continuously
3417 * keep exceeding their soft limit and putting the system under
3418 * pressure
3419 */
3420 do {
3421 if (next_mz)
3422 mz = next_mz;
3423 else
3424 mz = mem_cgroup_largest_soft_limit_node(mctz);
3425 if (!mz)
3426 break;
3427
3428 nr_scanned = 0;
ef8f2327 3429 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3430 gfp_mask, &nr_scanned);
3431 nr_reclaimed += reclaimed;
3432 *total_scanned += nr_scanned;
0a31bc97 3433 spin_lock_irq(&mctz->lock);
bc2f2e7f 3434 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3435
3436 /*
3437 * If we failed to reclaim anything from this memory cgroup
3438 * it is time to move on to the next cgroup
3439 */
3440 next_mz = NULL;
bc2f2e7f
VD
3441 if (!reclaimed)
3442 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3443
3e32cb2e 3444 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3445 /*
3446 * One school of thought says that we should not add
3447 * back the node to the tree if reclaim returns 0.
3448 * But our reclaim could return 0, simply because due
3449 * to priority we are exposing a smaller subset of
3450 * memory to reclaim from. Consider this as a longer
3451 * term TODO.
3452 */
3453 /* If excess == 0, no tree ops */
cf2c8127 3454 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3455 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3456 css_put(&mz->memcg->css);
3457 loop++;
3458 /*
3459 * Could not reclaim anything and there are no more
3460 * mem cgroups to try or we seem to be looping without
3461 * reclaiming anything.
3462 */
3463 if (!nr_reclaimed &&
3464 (next_mz == NULL ||
3465 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3466 break;
3467 } while (!nr_reclaimed);
3468 if (next_mz)
3469 css_put(&next_mz->memcg->css);
3470 return nr_reclaimed;
3471}
3472
c26251f9 3473/*
51038171 3474 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3475 *
3476 * Caller is responsible for holding css reference for memcg.
3477 */
3478static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3479{
d977aa93 3480 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3481
c1e862c1
KH
3482 /* we call try-to-free pages for make this cgroup empty */
3483 lru_add_drain_all();
d12c60f6
JS
3484
3485 drain_all_stock(memcg);
3486
f817ed48 3487 /* try to free all pages in this cgroup */
3e32cb2e 3488 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3489 int progress;
c1e862c1 3490
c26251f9
MH
3491 if (signal_pending(current))
3492 return -EINTR;
3493
b70a2a21
JW
3494 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3495 GFP_KERNEL, true);
c1e862c1 3496 if (!progress) {
f817ed48 3497 nr_retries--;
c1e862c1 3498 /* maybe some writeback is necessary */
8aa7e847 3499 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3500 }
f817ed48
KH
3501
3502 }
ab5196c2
MH
3503
3504 return 0;
cc847582
KH
3505}
3506
6770c64e
TH
3507static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3508 char *buf, size_t nbytes,
3509 loff_t off)
c1e862c1 3510{
6770c64e 3511 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3512
d8423011
MH
3513 if (mem_cgroup_is_root(memcg))
3514 return -EINVAL;
6770c64e 3515 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3516}
3517
182446d0
TH
3518static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3519 struct cftype *cft)
18f59ea7 3520{
bef8620c 3521 return 1;
18f59ea7
BS
3522}
3523
182446d0
TH
3524static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3525 struct cftype *cft, u64 val)
18f59ea7 3526{
bef8620c 3527 if (val == 1)
0b8f73e1 3528 return 0;
567fb435 3529
bef8620c
RG
3530 pr_warn_once("Non-hierarchical mode is deprecated. "
3531 "Please report your usecase to linux-mm@kvack.org if you "
3532 "depend on this functionality.\n");
567fb435 3533
bef8620c 3534 return -EINVAL;
18f59ea7
BS
3535}
3536
6f646156 3537static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3538{
42a30035 3539 unsigned long val;
ce00a967 3540
3e32cb2e 3541 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3542 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3543 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3544 if (swap)
3545 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3546 } else {
ce00a967 3547 if (!swap)
3e32cb2e 3548 val = page_counter_read(&memcg->memory);
ce00a967 3549 else
3e32cb2e 3550 val = page_counter_read(&memcg->memsw);
ce00a967 3551 }
c12176d3 3552 return val;
ce00a967
JW
3553}
3554
3e32cb2e
JW
3555enum {
3556 RES_USAGE,
3557 RES_LIMIT,
3558 RES_MAX_USAGE,
3559 RES_FAILCNT,
3560 RES_SOFT_LIMIT,
3561};
ce00a967 3562
791badbd 3563static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3564 struct cftype *cft)
8cdea7c0 3565{
182446d0 3566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3567 struct page_counter *counter;
af36f906 3568
3e32cb2e 3569 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3570 case _MEM:
3e32cb2e
JW
3571 counter = &memcg->memory;
3572 break;
8c7c6e34 3573 case _MEMSWAP:
3e32cb2e
JW
3574 counter = &memcg->memsw;
3575 break;
510fc4e1 3576 case _KMEM:
3e32cb2e 3577 counter = &memcg->kmem;
510fc4e1 3578 break;
d55f90bf 3579 case _TCP:
0db15298 3580 counter = &memcg->tcpmem;
d55f90bf 3581 break;
8c7c6e34
KH
3582 default:
3583 BUG();
8c7c6e34 3584 }
3e32cb2e
JW
3585
3586 switch (MEMFILE_ATTR(cft->private)) {
3587 case RES_USAGE:
3588 if (counter == &memcg->memory)
c12176d3 3589 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3590 if (counter == &memcg->memsw)
c12176d3 3591 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3592 return (u64)page_counter_read(counter) * PAGE_SIZE;
3593 case RES_LIMIT:
bbec2e15 3594 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3595 case RES_MAX_USAGE:
3596 return (u64)counter->watermark * PAGE_SIZE;
3597 case RES_FAILCNT:
3598 return counter->failcnt;
3599 case RES_SOFT_LIMIT:
3600 return (u64)memcg->soft_limit * PAGE_SIZE;
3601 default:
3602 BUG();
3603 }
8cdea7c0 3604}
510fc4e1 3605
4a87e2a2 3606static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3607{
4a87e2a2 3608 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3609 struct mem_cgroup *mi;
3610 int node, cpu, i;
c350a99e
RG
3611
3612 for_each_online_cpu(cpu)
4a87e2a2 3613 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3614 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3615
3616 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3617 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3618 atomic_long_add(stat[i], &mi->vmstats[i]);
3619
3620 for_each_node(node) {
3621 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3622 struct mem_cgroup_per_node *pi;
3623
4a87e2a2 3624 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3625 stat[i] = 0;
3626
3627 for_each_online_cpu(cpu)
4a87e2a2 3628 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3629 stat[i] += per_cpu(
3630 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3631
3632 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3633 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3634 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3635 }
3636}
3637
bb65f89b
RG
3638static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3639{
3640 unsigned long events[NR_VM_EVENT_ITEMS];
3641 struct mem_cgroup *mi;
3642 int cpu, i;
3643
3644 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3645 events[i] = 0;
3646
3647 for_each_online_cpu(cpu)
3648 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3649 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3650 cpu);
bb65f89b
RG
3651
3652 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3653 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3654 atomic_long_add(events[i], &mi->vmevents[i]);
3655}
3656
84c07d11 3657#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3658static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3659{
bf4f0599 3660 struct obj_cgroup *objcg;
d6441637
VD
3661 int memcg_id;
3662
b313aeee
VD
3663 if (cgroup_memory_nokmem)
3664 return 0;
3665
2a4db7eb 3666 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3667 BUG_ON(memcg->kmem_state);
d6441637 3668
f3bb3043 3669 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3670 if (memcg_id < 0)
3671 return memcg_id;
d6441637 3672
bf4f0599
RG
3673 objcg = obj_cgroup_alloc();
3674 if (!objcg) {
3675 memcg_free_cache_id(memcg_id);
3676 return -ENOMEM;
3677 }
3678 objcg->memcg = memcg;
3679 rcu_assign_pointer(memcg->objcg, objcg);
3680
d648bcc7
RG
3681 static_branch_enable(&memcg_kmem_enabled_key);
3682
900a38f0 3683 memcg->kmemcg_id = memcg_id;
567e9ab2 3684 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3685
3686 return 0;
d6441637
VD
3687}
3688
8e0a8912
JW
3689static void memcg_offline_kmem(struct mem_cgroup *memcg)
3690{
3691 struct cgroup_subsys_state *css;
3692 struct mem_cgroup *parent, *child;
3693 int kmemcg_id;
3694
3695 if (memcg->kmem_state != KMEM_ONLINE)
3696 return;
9855609b 3697
8e0a8912
JW
3698 memcg->kmem_state = KMEM_ALLOCATED;
3699
8e0a8912
JW
3700 parent = parent_mem_cgroup(memcg);
3701 if (!parent)
3702 parent = root_mem_cgroup;
3703
bf4f0599 3704 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3705
3706 kmemcg_id = memcg->kmemcg_id;
3707 BUG_ON(kmemcg_id < 0);
3708
8e0a8912
JW
3709 /*
3710 * Change kmemcg_id of this cgroup and all its descendants to the
3711 * parent's id, and then move all entries from this cgroup's list_lrus
3712 * to ones of the parent. After we have finished, all list_lrus
3713 * corresponding to this cgroup are guaranteed to remain empty. The
3714 * ordering is imposed by list_lru_node->lock taken by
3715 * memcg_drain_all_list_lrus().
3716 */
3a06bb78 3717 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3718 css_for_each_descendant_pre(css, &memcg->css) {
3719 child = mem_cgroup_from_css(css);
3720 BUG_ON(child->kmemcg_id != kmemcg_id);
3721 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3722 }
3a06bb78
TH
3723 rcu_read_unlock();
3724
9bec5c35 3725 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3726
3727 memcg_free_cache_id(kmemcg_id);
3728}
3729
3730static void memcg_free_kmem(struct mem_cgroup *memcg)
3731{
0b8f73e1
JW
3732 /* css_alloc() failed, offlining didn't happen */
3733 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3734 memcg_offline_kmem(memcg);
8e0a8912 3735}
d6441637 3736#else
0b8f73e1 3737static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3738{
3739 return 0;
3740}
3741static void memcg_offline_kmem(struct mem_cgroup *memcg)
3742{
3743}
3744static void memcg_free_kmem(struct mem_cgroup *memcg)
3745{
3746}
84c07d11 3747#endif /* CONFIG_MEMCG_KMEM */
127424c8 3748
bbec2e15
RG
3749static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3750 unsigned long max)
d6441637 3751{
b313aeee 3752 int ret;
127424c8 3753
bbec2e15
RG
3754 mutex_lock(&memcg_max_mutex);
3755 ret = page_counter_set_max(&memcg->kmem, max);
3756 mutex_unlock(&memcg_max_mutex);
127424c8 3757 return ret;
d6441637 3758}
510fc4e1 3759
bbec2e15 3760static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3761{
3762 int ret;
3763
bbec2e15 3764 mutex_lock(&memcg_max_mutex);
d55f90bf 3765
bbec2e15 3766 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3767 if (ret)
3768 goto out;
3769
0db15298 3770 if (!memcg->tcpmem_active) {
d55f90bf
VD
3771 /*
3772 * The active flag needs to be written after the static_key
3773 * update. This is what guarantees that the socket activation
2d758073
JW
3774 * function is the last one to run. See mem_cgroup_sk_alloc()
3775 * for details, and note that we don't mark any socket as
3776 * belonging to this memcg until that flag is up.
d55f90bf
VD
3777 *
3778 * We need to do this, because static_keys will span multiple
3779 * sites, but we can't control their order. If we mark a socket
3780 * as accounted, but the accounting functions are not patched in
3781 * yet, we'll lose accounting.
3782 *
2d758073 3783 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3784 * because when this value change, the code to process it is not
3785 * patched in yet.
3786 */
3787 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3788 memcg->tcpmem_active = true;
d55f90bf
VD
3789 }
3790out:
bbec2e15 3791 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3792 return ret;
3793}
d55f90bf 3794
628f4235
KH
3795/*
3796 * The user of this function is...
3797 * RES_LIMIT.
3798 */
451af504
TH
3799static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3800 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3801{
451af504 3802 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3803 unsigned long nr_pages;
628f4235
KH
3804 int ret;
3805
451af504 3806 buf = strstrip(buf);
650c5e56 3807 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3808 if (ret)
3809 return ret;
af36f906 3810
3e32cb2e 3811 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3812 case RES_LIMIT:
4b3bde4c
BS
3813 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3814 ret = -EINVAL;
3815 break;
3816 }
3e32cb2e
JW
3817 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3818 case _MEM:
bbec2e15 3819 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3820 break;
3e32cb2e 3821 case _MEMSWAP:
bbec2e15 3822 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3823 break;
3e32cb2e 3824 case _KMEM:
0158115f
MH
3825 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3826 "Please report your usecase to linux-mm@kvack.org if you "
3827 "depend on this functionality.\n");
bbec2e15 3828 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3829 break;
d55f90bf 3830 case _TCP:
bbec2e15 3831 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3832 break;
3e32cb2e 3833 }
296c81d8 3834 break;
3e32cb2e
JW
3835 case RES_SOFT_LIMIT:
3836 memcg->soft_limit = nr_pages;
3837 ret = 0;
628f4235
KH
3838 break;
3839 }
451af504 3840 return ret ?: nbytes;
8cdea7c0
BS
3841}
3842
6770c64e
TH
3843static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3844 size_t nbytes, loff_t off)
c84872e1 3845{
6770c64e 3846 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3847 struct page_counter *counter;
c84872e1 3848
3e32cb2e
JW
3849 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3850 case _MEM:
3851 counter = &memcg->memory;
3852 break;
3853 case _MEMSWAP:
3854 counter = &memcg->memsw;
3855 break;
3856 case _KMEM:
3857 counter = &memcg->kmem;
3858 break;
d55f90bf 3859 case _TCP:
0db15298 3860 counter = &memcg->tcpmem;
d55f90bf 3861 break;
3e32cb2e
JW
3862 default:
3863 BUG();
3864 }
af36f906 3865
3e32cb2e 3866 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3867 case RES_MAX_USAGE:
3e32cb2e 3868 page_counter_reset_watermark(counter);
29f2a4da
PE
3869 break;
3870 case RES_FAILCNT:
3e32cb2e 3871 counter->failcnt = 0;
29f2a4da 3872 break;
3e32cb2e
JW
3873 default:
3874 BUG();
29f2a4da 3875 }
f64c3f54 3876
6770c64e 3877 return nbytes;
c84872e1
PE
3878}
3879
182446d0 3880static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3881 struct cftype *cft)
3882{
182446d0 3883 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3884}
3885
02491447 3886#ifdef CONFIG_MMU
182446d0 3887static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3888 struct cftype *cft, u64 val)
3889{
182446d0 3890 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3891
1dfab5ab 3892 if (val & ~MOVE_MASK)
7dc74be0 3893 return -EINVAL;
ee5e8472 3894
7dc74be0 3895 /*
ee5e8472
GC
3896 * No kind of locking is needed in here, because ->can_attach() will
3897 * check this value once in the beginning of the process, and then carry
3898 * on with stale data. This means that changes to this value will only
3899 * affect task migrations starting after the change.
7dc74be0 3900 */
c0ff4b85 3901 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3902 return 0;
3903}
02491447 3904#else
182446d0 3905static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3906 struct cftype *cft, u64 val)
3907{
3908 return -ENOSYS;
3909}
3910#endif
7dc74be0 3911
406eb0c9 3912#ifdef CONFIG_NUMA
113b7dfd
JW
3913
3914#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3915#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3916#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3917
3918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3919 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3920{
867e5e1d 3921 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3922 unsigned long nr = 0;
3923 enum lru_list lru;
3924
3925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3926
3927 for_each_lru(lru) {
3928 if (!(BIT(lru) & lru_mask))
3929 continue;
dd8657b6
SB
3930 if (tree)
3931 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3932 else
3933 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3934 }
3935 return nr;
3936}
3937
3938static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3939 unsigned int lru_mask,
3940 bool tree)
113b7dfd
JW
3941{
3942 unsigned long nr = 0;
3943 enum lru_list lru;
3944
3945 for_each_lru(lru) {
3946 if (!(BIT(lru) & lru_mask))
3947 continue;
dd8657b6
SB
3948 if (tree)
3949 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3950 else
3951 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3952 }
3953 return nr;
3954}
3955
2da8ca82 3956static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3957{
25485de6
GT
3958 struct numa_stat {
3959 const char *name;
3960 unsigned int lru_mask;
3961 };
3962
3963 static const struct numa_stat stats[] = {
3964 { "total", LRU_ALL },
3965 { "file", LRU_ALL_FILE },
3966 { "anon", LRU_ALL_ANON },
3967 { "unevictable", BIT(LRU_UNEVICTABLE) },
3968 };
3969 const struct numa_stat *stat;
406eb0c9 3970 int nid;
aa9694bb 3971 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3972
25485de6 3973 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3974 seq_printf(m, "%s=%lu", stat->name,
3975 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3976 false));
3977 for_each_node_state(nid, N_MEMORY)
3978 seq_printf(m, " N%d=%lu", nid,
3979 mem_cgroup_node_nr_lru_pages(memcg, nid,
3980 stat->lru_mask, false));
25485de6 3981 seq_putc(m, '\n');
406eb0c9 3982 }
406eb0c9 3983
071aee13 3984 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3985
3986 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3987 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3988 true));
3989 for_each_node_state(nid, N_MEMORY)
3990 seq_printf(m, " N%d=%lu", nid,
3991 mem_cgroup_node_nr_lru_pages(memcg, nid,
3992 stat->lru_mask, true));
071aee13 3993 seq_putc(m, '\n');
406eb0c9 3994 }
406eb0c9 3995
406eb0c9
YH
3996 return 0;
3997}
3998#endif /* CONFIG_NUMA */
3999
c8713d0b 4000static const unsigned int memcg1_stats[] = {
0d1c2072 4001 NR_FILE_PAGES,
be5d0a74 4002 NR_ANON_MAPPED,
468c3982
JW
4003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4004 NR_ANON_THPS,
4005#endif
c8713d0b
JW
4006 NR_SHMEM,
4007 NR_FILE_MAPPED,
4008 NR_FILE_DIRTY,
4009 NR_WRITEBACK,
4010 MEMCG_SWAP,
4011};
4012
4013static const char *const memcg1_stat_names[] = {
4014 "cache",
4015 "rss",
468c3982 4016#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4017 "rss_huge",
468c3982 4018#endif
c8713d0b
JW
4019 "shmem",
4020 "mapped_file",
4021 "dirty",
4022 "writeback",
4023 "swap",
4024};
4025
df0e53d0 4026/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4027static const unsigned int memcg1_events[] = {
df0e53d0
JW
4028 PGPGIN,
4029 PGPGOUT,
4030 PGFAULT,
4031 PGMAJFAULT,
4032};
4033
2da8ca82 4034static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4035{
aa9694bb 4036 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4037 unsigned long memory, memsw;
af7c4b0e
JW
4038 struct mem_cgroup *mi;
4039 unsigned int i;
406eb0c9 4040
71cd3113 4041 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4042
71cd3113 4043 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4044 unsigned long nr;
4045
71cd3113 4046 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4047 continue;
468c3982 4048 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4049 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4050 }
7b854121 4051
df0e53d0 4052 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4053 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4054 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4055
4056 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4057 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4058 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4059 PAGE_SIZE);
af7c4b0e 4060
14067bb3 4061 /* Hierarchical information */
3e32cb2e
JW
4062 memory = memsw = PAGE_COUNTER_MAX;
4063 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4064 memory = min(memory, READ_ONCE(mi->memory.max));
4065 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4066 }
3e32cb2e
JW
4067 seq_printf(m, "hierarchical_memory_limit %llu\n",
4068 (u64)memory * PAGE_SIZE);
7941d214 4069 if (do_memsw_account())
3e32cb2e
JW
4070 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4071 (u64)memsw * PAGE_SIZE);
7f016ee8 4072
8de7ecc6 4073 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4074 unsigned long nr;
4075
71cd3113 4076 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4077 continue;
7de2e9f1 4078 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4079 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4080 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4081 }
4082
8de7ecc6 4083 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4084 seq_printf(m, "total_%s %llu\n",
4085 vm_event_name(memcg1_events[i]),
dd923990 4086 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4087
8de7ecc6 4088 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4089 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4090 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4091 PAGE_SIZE);
14067bb3 4092
7f016ee8 4093#ifdef CONFIG_DEBUG_VM
7f016ee8 4094 {
ef8f2327
MG
4095 pg_data_t *pgdat;
4096 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4097 unsigned long anon_cost = 0;
4098 unsigned long file_cost = 0;
7f016ee8 4099
ef8f2327
MG
4100 for_each_online_pgdat(pgdat) {
4101 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4102
1431d4d1
JW
4103 anon_cost += mz->lruvec.anon_cost;
4104 file_cost += mz->lruvec.file_cost;
ef8f2327 4105 }
1431d4d1
JW
4106 seq_printf(m, "anon_cost %lu\n", anon_cost);
4107 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4108 }
4109#endif
4110
d2ceb9b7
KH
4111 return 0;
4112}
4113
182446d0
TH
4114static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4115 struct cftype *cft)
a7885eb8 4116{
182446d0 4117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4118
1f4c025b 4119 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4120}
4121
182446d0
TH
4122static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4123 struct cftype *cft, u64 val)
a7885eb8 4124{
182446d0 4125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4126
3dae7fec 4127 if (val > 100)
a7885eb8
KM
4128 return -EINVAL;
4129
a4792030 4130 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4131 memcg->swappiness = val;
4132 else
4133 vm_swappiness = val;
068b38c1 4134
a7885eb8
KM
4135 return 0;
4136}
4137
2e72b634
KS
4138static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4139{
4140 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4141 unsigned long usage;
2e72b634
KS
4142 int i;
4143
4144 rcu_read_lock();
4145 if (!swap)
2c488db2 4146 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4147 else
2c488db2 4148 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4149
4150 if (!t)
4151 goto unlock;
4152
ce00a967 4153 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4154
4155 /*
748dad36 4156 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4157 * If it's not true, a threshold was crossed after last
4158 * call of __mem_cgroup_threshold().
4159 */
5407a562 4160 i = t->current_threshold;
2e72b634
KS
4161
4162 /*
4163 * Iterate backward over array of thresholds starting from
4164 * current_threshold and check if a threshold is crossed.
4165 * If none of thresholds below usage is crossed, we read
4166 * only one element of the array here.
4167 */
4168 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4169 eventfd_signal(t->entries[i].eventfd, 1);
4170
4171 /* i = current_threshold + 1 */
4172 i++;
4173
4174 /*
4175 * Iterate forward over array of thresholds starting from
4176 * current_threshold+1 and check if a threshold is crossed.
4177 * If none of thresholds above usage is crossed, we read
4178 * only one element of the array here.
4179 */
4180 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4181 eventfd_signal(t->entries[i].eventfd, 1);
4182
4183 /* Update current_threshold */
5407a562 4184 t->current_threshold = i - 1;
2e72b634
KS
4185unlock:
4186 rcu_read_unlock();
4187}
4188
4189static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4190{
ad4ca5f4
KS
4191 while (memcg) {
4192 __mem_cgroup_threshold(memcg, false);
7941d214 4193 if (do_memsw_account())
ad4ca5f4
KS
4194 __mem_cgroup_threshold(memcg, true);
4195
4196 memcg = parent_mem_cgroup(memcg);
4197 }
2e72b634
KS
4198}
4199
4200static int compare_thresholds(const void *a, const void *b)
4201{
4202 const struct mem_cgroup_threshold *_a = a;
4203 const struct mem_cgroup_threshold *_b = b;
4204
2bff24a3
GT
4205 if (_a->threshold > _b->threshold)
4206 return 1;
4207
4208 if (_a->threshold < _b->threshold)
4209 return -1;
4210
4211 return 0;
2e72b634
KS
4212}
4213
c0ff4b85 4214static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4215{
4216 struct mem_cgroup_eventfd_list *ev;
4217
2bcf2e92
MH
4218 spin_lock(&memcg_oom_lock);
4219
c0ff4b85 4220 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4221 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4222
4223 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4224 return 0;
4225}
4226
c0ff4b85 4227static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4228{
7d74b06f
KH
4229 struct mem_cgroup *iter;
4230
c0ff4b85 4231 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4232 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4233}
4234
59b6f873 4235static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4236 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4237{
2c488db2
KS
4238 struct mem_cgroup_thresholds *thresholds;
4239 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4240 unsigned long threshold;
4241 unsigned long usage;
2c488db2 4242 int i, size, ret;
2e72b634 4243
650c5e56 4244 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4245 if (ret)
4246 return ret;
4247
4248 mutex_lock(&memcg->thresholds_lock);
2c488db2 4249
05b84301 4250 if (type == _MEM) {
2c488db2 4251 thresholds = &memcg->thresholds;
ce00a967 4252 usage = mem_cgroup_usage(memcg, false);
05b84301 4253 } else if (type == _MEMSWAP) {
2c488db2 4254 thresholds = &memcg->memsw_thresholds;
ce00a967 4255 usage = mem_cgroup_usage(memcg, true);
05b84301 4256 } else
2e72b634
KS
4257 BUG();
4258
2e72b634 4259 /* Check if a threshold crossed before adding a new one */
2c488db2 4260 if (thresholds->primary)
2e72b634
KS
4261 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4262
2c488db2 4263 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4264
4265 /* Allocate memory for new array of thresholds */
67b8046f 4266 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4267 if (!new) {
2e72b634
KS
4268 ret = -ENOMEM;
4269 goto unlock;
4270 }
2c488db2 4271 new->size = size;
2e72b634
KS
4272
4273 /* Copy thresholds (if any) to new array */
e90342e6
GS
4274 if (thresholds->primary)
4275 memcpy(new->entries, thresholds->primary->entries,
4276 flex_array_size(new, entries, size - 1));
2c488db2 4277
2e72b634 4278 /* Add new threshold */
2c488db2
KS
4279 new->entries[size - 1].eventfd = eventfd;
4280 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4281
4282 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4283 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4284 compare_thresholds, NULL);
4285
4286 /* Find current threshold */
2c488db2 4287 new->current_threshold = -1;
2e72b634 4288 for (i = 0; i < size; i++) {
748dad36 4289 if (new->entries[i].threshold <= usage) {
2e72b634 4290 /*
2c488db2
KS
4291 * new->current_threshold will not be used until
4292 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4293 * it here.
4294 */
2c488db2 4295 ++new->current_threshold;
748dad36
SZ
4296 } else
4297 break;
2e72b634
KS
4298 }
4299
2c488db2
KS
4300 /* Free old spare buffer and save old primary buffer as spare */
4301 kfree(thresholds->spare);
4302 thresholds->spare = thresholds->primary;
4303
4304 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4305
907860ed 4306 /* To be sure that nobody uses thresholds */
2e72b634
KS
4307 synchronize_rcu();
4308
2e72b634
KS
4309unlock:
4310 mutex_unlock(&memcg->thresholds_lock);
4311
4312 return ret;
4313}
4314
59b6f873 4315static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4316 struct eventfd_ctx *eventfd, const char *args)
4317{
59b6f873 4318 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4319}
4320
59b6f873 4321static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4322 struct eventfd_ctx *eventfd, const char *args)
4323{
59b6f873 4324 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4325}
4326
59b6f873 4327static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4328 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4329{
2c488db2
KS
4330 struct mem_cgroup_thresholds *thresholds;
4331 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4332 unsigned long usage;
7d36665a 4333 int i, j, size, entries;
2e72b634
KS
4334
4335 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4336
4337 if (type == _MEM) {
2c488db2 4338 thresholds = &memcg->thresholds;
ce00a967 4339 usage = mem_cgroup_usage(memcg, false);
05b84301 4340 } else if (type == _MEMSWAP) {
2c488db2 4341 thresholds = &memcg->memsw_thresholds;
ce00a967 4342 usage = mem_cgroup_usage(memcg, true);
05b84301 4343 } else
2e72b634
KS
4344 BUG();
4345
371528ca
AV
4346 if (!thresholds->primary)
4347 goto unlock;
4348
2e72b634
KS
4349 /* Check if a threshold crossed before removing */
4350 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4351
4352 /* Calculate new number of threshold */
7d36665a 4353 size = entries = 0;
2c488db2
KS
4354 for (i = 0; i < thresholds->primary->size; i++) {
4355 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4356 size++;
7d36665a
CX
4357 else
4358 entries++;
2e72b634
KS
4359 }
4360
2c488db2 4361 new = thresholds->spare;
907860ed 4362
7d36665a
CX
4363 /* If no items related to eventfd have been cleared, nothing to do */
4364 if (!entries)
4365 goto unlock;
4366
2e72b634
KS
4367 /* Set thresholds array to NULL if we don't have thresholds */
4368 if (!size) {
2c488db2
KS
4369 kfree(new);
4370 new = NULL;
907860ed 4371 goto swap_buffers;
2e72b634
KS
4372 }
4373
2c488db2 4374 new->size = size;
2e72b634
KS
4375
4376 /* Copy thresholds and find current threshold */
2c488db2
KS
4377 new->current_threshold = -1;
4378 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4379 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4380 continue;
4381
2c488db2 4382 new->entries[j] = thresholds->primary->entries[i];
748dad36 4383 if (new->entries[j].threshold <= usage) {
2e72b634 4384 /*
2c488db2 4385 * new->current_threshold will not be used
2e72b634
KS
4386 * until rcu_assign_pointer(), so it's safe to increment
4387 * it here.
4388 */
2c488db2 4389 ++new->current_threshold;
2e72b634
KS
4390 }
4391 j++;
4392 }
4393
907860ed 4394swap_buffers:
2c488db2
KS
4395 /* Swap primary and spare array */
4396 thresholds->spare = thresholds->primary;
8c757763 4397
2c488db2 4398 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4399
907860ed 4400 /* To be sure that nobody uses thresholds */
2e72b634 4401 synchronize_rcu();
6611d8d7
MC
4402
4403 /* If all events are unregistered, free the spare array */
4404 if (!new) {
4405 kfree(thresholds->spare);
4406 thresholds->spare = NULL;
4407 }
371528ca 4408unlock:
2e72b634 4409 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4410}
c1e862c1 4411
59b6f873 4412static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4413 struct eventfd_ctx *eventfd)
4414{
59b6f873 4415 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4416}
4417
59b6f873 4418static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4419 struct eventfd_ctx *eventfd)
4420{
59b6f873 4421 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4422}
4423
59b6f873 4424static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4425 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4426{
9490ff27 4427 struct mem_cgroup_eventfd_list *event;
9490ff27 4428
9490ff27
KH
4429 event = kmalloc(sizeof(*event), GFP_KERNEL);
4430 if (!event)
4431 return -ENOMEM;
4432
1af8efe9 4433 spin_lock(&memcg_oom_lock);
9490ff27
KH
4434
4435 event->eventfd = eventfd;
4436 list_add(&event->list, &memcg->oom_notify);
4437
4438 /* already in OOM ? */
c2b42d3c 4439 if (memcg->under_oom)
9490ff27 4440 eventfd_signal(eventfd, 1);
1af8efe9 4441 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4442
4443 return 0;
4444}
4445
59b6f873 4446static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4447 struct eventfd_ctx *eventfd)
9490ff27 4448{
9490ff27 4449 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4450
1af8efe9 4451 spin_lock(&memcg_oom_lock);
9490ff27 4452
c0ff4b85 4453 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4454 if (ev->eventfd == eventfd) {
4455 list_del(&ev->list);
4456 kfree(ev);
4457 }
4458 }
4459
1af8efe9 4460 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4461}
4462
2da8ca82 4463static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4464{
aa9694bb 4465 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4466
791badbd 4467 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4468 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4469 seq_printf(sf, "oom_kill %lu\n",
4470 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4471 return 0;
4472}
4473
182446d0 4474static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4475 struct cftype *cft, u64 val)
4476{
182446d0 4477 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4478
4479 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4480 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4481 return -EINVAL;
4482
c0ff4b85 4483 memcg->oom_kill_disable = val;
4d845ebf 4484 if (!val)
c0ff4b85 4485 memcg_oom_recover(memcg);
3dae7fec 4486
3c11ecf4
KH
4487 return 0;
4488}
4489
52ebea74
TH
4490#ifdef CONFIG_CGROUP_WRITEBACK
4491
3a8e9ac8
TH
4492#include <trace/events/writeback.h>
4493
841710aa
TH
4494static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4495{
4496 return wb_domain_init(&memcg->cgwb_domain, gfp);
4497}
4498
4499static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4500{
4501 wb_domain_exit(&memcg->cgwb_domain);
4502}
4503
2529bb3a
TH
4504static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4505{
4506 wb_domain_size_changed(&memcg->cgwb_domain);
4507}
4508
841710aa
TH
4509struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4512
4513 if (!memcg->css.parent)
4514 return NULL;
4515
4516 return &memcg->cgwb_domain;
4517}
4518
0b3d6e6f
GT
4519/*
4520 * idx can be of type enum memcg_stat_item or node_stat_item.
4521 * Keep in sync with memcg_exact_page().
4522 */
4523static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4524{
871789d4 4525 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4526 int cpu;
4527
4528 for_each_online_cpu(cpu)
871789d4 4529 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4530 if (x < 0)
4531 x = 0;
4532 return x;
4533}
4534
c2aa723a
TH
4535/**
4536 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4537 * @wb: bdi_writeback in question
c5edf9cd
TH
4538 * @pfilepages: out parameter for number of file pages
4539 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4540 * @pdirty: out parameter for number of dirty pages
4541 * @pwriteback: out parameter for number of pages under writeback
4542 *
c5edf9cd
TH
4543 * Determine the numbers of file, headroom, dirty, and writeback pages in
4544 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4545 * is a bit more involved.
c2aa723a 4546 *
c5edf9cd
TH
4547 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4548 * headroom is calculated as the lowest headroom of itself and the
4549 * ancestors. Note that this doesn't consider the actual amount of
4550 * available memory in the system. The caller should further cap
4551 * *@pheadroom accordingly.
c2aa723a 4552 */
c5edf9cd
TH
4553void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4554 unsigned long *pheadroom, unsigned long *pdirty,
4555 unsigned long *pwriteback)
c2aa723a
TH
4556{
4557 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4558 struct mem_cgroup *parent;
c2aa723a 4559
0b3d6e6f 4560 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4561
0b3d6e6f 4562 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4563 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4564 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4565 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4566
c2aa723a 4567 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4568 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4569 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4570 unsigned long used = page_counter_read(&memcg->memory);
4571
c5edf9cd 4572 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4573 memcg = parent;
4574 }
c2aa723a
TH
4575}
4576
97b27821
TH
4577/*
4578 * Foreign dirty flushing
4579 *
4580 * There's an inherent mismatch between memcg and writeback. The former
4581 * trackes ownership per-page while the latter per-inode. This was a
4582 * deliberate design decision because honoring per-page ownership in the
4583 * writeback path is complicated, may lead to higher CPU and IO overheads
4584 * and deemed unnecessary given that write-sharing an inode across
4585 * different cgroups isn't a common use-case.
4586 *
4587 * Combined with inode majority-writer ownership switching, this works well
4588 * enough in most cases but there are some pathological cases. For
4589 * example, let's say there are two cgroups A and B which keep writing to
4590 * different but confined parts of the same inode. B owns the inode and
4591 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4592 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4593 * triggering background writeback. A will be slowed down without a way to
4594 * make writeback of the dirty pages happen.
4595 *
4596 * Conditions like the above can lead to a cgroup getting repatedly and
4597 * severely throttled after making some progress after each
4598 * dirty_expire_interval while the underyling IO device is almost
4599 * completely idle.
4600 *
4601 * Solving this problem completely requires matching the ownership tracking
4602 * granularities between memcg and writeback in either direction. However,
4603 * the more egregious behaviors can be avoided by simply remembering the
4604 * most recent foreign dirtying events and initiating remote flushes on
4605 * them when local writeback isn't enough to keep the memory clean enough.
4606 *
4607 * The following two functions implement such mechanism. When a foreign
4608 * page - a page whose memcg and writeback ownerships don't match - is
4609 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4610 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4611 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4612 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4613 * foreign bdi_writebacks which haven't expired. Both the numbers of
4614 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4615 * limited to MEMCG_CGWB_FRN_CNT.
4616 *
4617 * The mechanism only remembers IDs and doesn't hold any object references.
4618 * As being wrong occasionally doesn't matter, updates and accesses to the
4619 * records are lockless and racy.
4620 */
4621void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4622 struct bdi_writeback *wb)
4623{
bcfe06bf 4624 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4625 struct memcg_cgwb_frn *frn;
4626 u64 now = get_jiffies_64();
4627 u64 oldest_at = now;
4628 int oldest = -1;
4629 int i;
4630
3a8e9ac8
TH
4631 trace_track_foreign_dirty(page, wb);
4632
97b27821
TH
4633 /*
4634 * Pick the slot to use. If there is already a slot for @wb, keep
4635 * using it. If not replace the oldest one which isn't being
4636 * written out.
4637 */
4638 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4639 frn = &memcg->cgwb_frn[i];
4640 if (frn->bdi_id == wb->bdi->id &&
4641 frn->memcg_id == wb->memcg_css->id)
4642 break;
4643 if (time_before64(frn->at, oldest_at) &&
4644 atomic_read(&frn->done.cnt) == 1) {
4645 oldest = i;
4646 oldest_at = frn->at;
4647 }
4648 }
4649
4650 if (i < MEMCG_CGWB_FRN_CNT) {
4651 /*
4652 * Re-using an existing one. Update timestamp lazily to
4653 * avoid making the cacheline hot. We want them to be
4654 * reasonably up-to-date and significantly shorter than
4655 * dirty_expire_interval as that's what expires the record.
4656 * Use the shorter of 1s and dirty_expire_interval / 8.
4657 */
4658 unsigned long update_intv =
4659 min_t(unsigned long, HZ,
4660 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4661
4662 if (time_before64(frn->at, now - update_intv))
4663 frn->at = now;
4664 } else if (oldest >= 0) {
4665 /* replace the oldest free one */
4666 frn = &memcg->cgwb_frn[oldest];
4667 frn->bdi_id = wb->bdi->id;
4668 frn->memcg_id = wb->memcg_css->id;
4669 frn->at = now;
4670 }
4671}
4672
4673/* issue foreign writeback flushes for recorded foreign dirtying events */
4674void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4675{
4676 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4677 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4678 u64 now = jiffies_64;
4679 int i;
4680
4681 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4682 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4683
4684 /*
4685 * If the record is older than dirty_expire_interval,
4686 * writeback on it has already started. No need to kick it
4687 * off again. Also, don't start a new one if there's
4688 * already one in flight.
4689 */
4690 if (time_after64(frn->at, now - intv) &&
4691 atomic_read(&frn->done.cnt) == 1) {
4692 frn->at = 0;
3a8e9ac8 4693 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4694 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4695 WB_REASON_FOREIGN_FLUSH,
4696 &frn->done);
4697 }
4698 }
4699}
4700
841710aa
TH
4701#else /* CONFIG_CGROUP_WRITEBACK */
4702
4703static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4704{
4705 return 0;
4706}
4707
4708static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4709{
4710}
4711
2529bb3a
TH
4712static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4713{
4714}
4715
52ebea74
TH
4716#endif /* CONFIG_CGROUP_WRITEBACK */
4717
3bc942f3
TH
4718/*
4719 * DO NOT USE IN NEW FILES.
4720 *
4721 * "cgroup.event_control" implementation.
4722 *
4723 * This is way over-engineered. It tries to support fully configurable
4724 * events for each user. Such level of flexibility is completely
4725 * unnecessary especially in the light of the planned unified hierarchy.
4726 *
4727 * Please deprecate this and replace with something simpler if at all
4728 * possible.
4729 */
4730
79bd9814
TH
4731/*
4732 * Unregister event and free resources.
4733 *
4734 * Gets called from workqueue.
4735 */
3bc942f3 4736static void memcg_event_remove(struct work_struct *work)
79bd9814 4737{
3bc942f3
TH
4738 struct mem_cgroup_event *event =
4739 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4740 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4741
4742 remove_wait_queue(event->wqh, &event->wait);
4743
59b6f873 4744 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4745
4746 /* Notify userspace the event is going away. */
4747 eventfd_signal(event->eventfd, 1);
4748
4749 eventfd_ctx_put(event->eventfd);
4750 kfree(event);
59b6f873 4751 css_put(&memcg->css);
79bd9814
TH
4752}
4753
4754/*
a9a08845 4755 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4756 *
4757 * Called with wqh->lock held and interrupts disabled.
4758 */
ac6424b9 4759static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4760 int sync, void *key)
79bd9814 4761{
3bc942f3
TH
4762 struct mem_cgroup_event *event =
4763 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4764 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4765 __poll_t flags = key_to_poll(key);
79bd9814 4766
a9a08845 4767 if (flags & EPOLLHUP) {
79bd9814
TH
4768 /*
4769 * If the event has been detached at cgroup removal, we
4770 * can simply return knowing the other side will cleanup
4771 * for us.
4772 *
4773 * We can't race against event freeing since the other
4774 * side will require wqh->lock via remove_wait_queue(),
4775 * which we hold.
4776 */
fba94807 4777 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4778 if (!list_empty(&event->list)) {
4779 list_del_init(&event->list);
4780 /*
4781 * We are in atomic context, but cgroup_event_remove()
4782 * may sleep, so we have to call it in workqueue.
4783 */
4784 schedule_work(&event->remove);
4785 }
fba94807 4786 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4787 }
4788
4789 return 0;
4790}
4791
3bc942f3 4792static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4793 wait_queue_head_t *wqh, poll_table *pt)
4794{
3bc942f3
TH
4795 struct mem_cgroup_event *event =
4796 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4797
4798 event->wqh = wqh;
4799 add_wait_queue(wqh, &event->wait);
4800}
4801
4802/*
3bc942f3
TH
4803 * DO NOT USE IN NEW FILES.
4804 *
79bd9814
TH
4805 * Parse input and register new cgroup event handler.
4806 *
4807 * Input must be in format '<event_fd> <control_fd> <args>'.
4808 * Interpretation of args is defined by control file implementation.
4809 */
451af504
TH
4810static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4811 char *buf, size_t nbytes, loff_t off)
79bd9814 4812{
451af504 4813 struct cgroup_subsys_state *css = of_css(of);
fba94807 4814 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4815 struct mem_cgroup_event *event;
79bd9814
TH
4816 struct cgroup_subsys_state *cfile_css;
4817 unsigned int efd, cfd;
4818 struct fd efile;
4819 struct fd cfile;
fba94807 4820 const char *name;
79bd9814
TH
4821 char *endp;
4822 int ret;
4823
451af504
TH
4824 buf = strstrip(buf);
4825
4826 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4827 if (*endp != ' ')
4828 return -EINVAL;
451af504 4829 buf = endp + 1;
79bd9814 4830
451af504 4831 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4832 if ((*endp != ' ') && (*endp != '\0'))
4833 return -EINVAL;
451af504 4834 buf = endp + 1;
79bd9814
TH
4835
4836 event = kzalloc(sizeof(*event), GFP_KERNEL);
4837 if (!event)
4838 return -ENOMEM;
4839
59b6f873 4840 event->memcg = memcg;
79bd9814 4841 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4842 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4843 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4844 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4845
4846 efile = fdget(efd);
4847 if (!efile.file) {
4848 ret = -EBADF;
4849 goto out_kfree;
4850 }
4851
4852 event->eventfd = eventfd_ctx_fileget(efile.file);
4853 if (IS_ERR(event->eventfd)) {
4854 ret = PTR_ERR(event->eventfd);
4855 goto out_put_efile;
4856 }
4857
4858 cfile = fdget(cfd);
4859 if (!cfile.file) {
4860 ret = -EBADF;
4861 goto out_put_eventfd;
4862 }
4863
4864 /* the process need read permission on control file */
4865 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4866 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4867 if (ret < 0)
4868 goto out_put_cfile;
4869
fba94807
TH
4870 /*
4871 * Determine the event callbacks and set them in @event. This used
4872 * to be done via struct cftype but cgroup core no longer knows
4873 * about these events. The following is crude but the whole thing
4874 * is for compatibility anyway.
3bc942f3
TH
4875 *
4876 * DO NOT ADD NEW FILES.
fba94807 4877 */
b583043e 4878 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4879
4880 if (!strcmp(name, "memory.usage_in_bytes")) {
4881 event->register_event = mem_cgroup_usage_register_event;
4882 event->unregister_event = mem_cgroup_usage_unregister_event;
4883 } else if (!strcmp(name, "memory.oom_control")) {
4884 event->register_event = mem_cgroup_oom_register_event;
4885 event->unregister_event = mem_cgroup_oom_unregister_event;
4886 } else if (!strcmp(name, "memory.pressure_level")) {
4887 event->register_event = vmpressure_register_event;
4888 event->unregister_event = vmpressure_unregister_event;
4889 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4890 event->register_event = memsw_cgroup_usage_register_event;
4891 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4892 } else {
4893 ret = -EINVAL;
4894 goto out_put_cfile;
4895 }
4896
79bd9814 4897 /*
b5557c4c
TH
4898 * Verify @cfile should belong to @css. Also, remaining events are
4899 * automatically removed on cgroup destruction but the removal is
4900 * asynchronous, so take an extra ref on @css.
79bd9814 4901 */
b583043e 4902 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4903 &memory_cgrp_subsys);
79bd9814 4904 ret = -EINVAL;
5a17f543 4905 if (IS_ERR(cfile_css))
79bd9814 4906 goto out_put_cfile;
5a17f543
TH
4907 if (cfile_css != css) {
4908 css_put(cfile_css);
79bd9814 4909 goto out_put_cfile;
5a17f543 4910 }
79bd9814 4911
451af504 4912 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4913 if (ret)
4914 goto out_put_css;
4915
9965ed17 4916 vfs_poll(efile.file, &event->pt);
79bd9814 4917
fba94807
TH
4918 spin_lock(&memcg->event_list_lock);
4919 list_add(&event->list, &memcg->event_list);
4920 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4921
4922 fdput(cfile);
4923 fdput(efile);
4924
451af504 4925 return nbytes;
79bd9814
TH
4926
4927out_put_css:
b5557c4c 4928 css_put(css);
79bd9814
TH
4929out_put_cfile:
4930 fdput(cfile);
4931out_put_eventfd:
4932 eventfd_ctx_put(event->eventfd);
4933out_put_efile:
4934 fdput(efile);
4935out_kfree:
4936 kfree(event);
4937
4938 return ret;
4939}
4940
241994ed 4941static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4942 {
0eea1030 4943 .name = "usage_in_bytes",
8c7c6e34 4944 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4945 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4946 },
c84872e1
PE
4947 {
4948 .name = "max_usage_in_bytes",
8c7c6e34 4949 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4950 .write = mem_cgroup_reset,
791badbd 4951 .read_u64 = mem_cgroup_read_u64,
c84872e1 4952 },
8cdea7c0 4953 {
0eea1030 4954 .name = "limit_in_bytes",
8c7c6e34 4955 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4956 .write = mem_cgroup_write,
791badbd 4957 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4958 },
296c81d8
BS
4959 {
4960 .name = "soft_limit_in_bytes",
4961 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4962 .write = mem_cgroup_write,
791badbd 4963 .read_u64 = mem_cgroup_read_u64,
296c81d8 4964 },
8cdea7c0
BS
4965 {
4966 .name = "failcnt",
8c7c6e34 4967 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4968 .write = mem_cgroup_reset,
791badbd 4969 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4970 },
d2ceb9b7
KH
4971 {
4972 .name = "stat",
2da8ca82 4973 .seq_show = memcg_stat_show,
d2ceb9b7 4974 },
c1e862c1
KH
4975 {
4976 .name = "force_empty",
6770c64e 4977 .write = mem_cgroup_force_empty_write,
c1e862c1 4978 },
18f59ea7
BS
4979 {
4980 .name = "use_hierarchy",
4981 .write_u64 = mem_cgroup_hierarchy_write,
4982 .read_u64 = mem_cgroup_hierarchy_read,
4983 },
79bd9814 4984 {
3bc942f3 4985 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4986 .write = memcg_write_event_control,
7dbdb199 4987 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4988 },
a7885eb8
KM
4989 {
4990 .name = "swappiness",
4991 .read_u64 = mem_cgroup_swappiness_read,
4992 .write_u64 = mem_cgroup_swappiness_write,
4993 },
7dc74be0
DN
4994 {
4995 .name = "move_charge_at_immigrate",
4996 .read_u64 = mem_cgroup_move_charge_read,
4997 .write_u64 = mem_cgroup_move_charge_write,
4998 },
9490ff27
KH
4999 {
5000 .name = "oom_control",
2da8ca82 5001 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5002 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5003 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5004 },
70ddf637
AV
5005 {
5006 .name = "pressure_level",
70ddf637 5007 },
406eb0c9
YH
5008#ifdef CONFIG_NUMA
5009 {
5010 .name = "numa_stat",
2da8ca82 5011 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5012 },
5013#endif
510fc4e1
GC
5014 {
5015 .name = "kmem.limit_in_bytes",
5016 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5017 .write = mem_cgroup_write,
791badbd 5018 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5019 },
5020 {
5021 .name = "kmem.usage_in_bytes",
5022 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5023 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5024 },
5025 {
5026 .name = "kmem.failcnt",
5027 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5028 .write = mem_cgroup_reset,
791badbd 5029 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5030 },
5031 {
5032 .name = "kmem.max_usage_in_bytes",
5033 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5034 .write = mem_cgroup_reset,
791badbd 5035 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5036 },
a87425a3
YS
5037#if defined(CONFIG_MEMCG_KMEM) && \
5038 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5039 {
5040 .name = "kmem.slabinfo",
b047501c 5041 .seq_show = memcg_slab_show,
749c5415
GC
5042 },
5043#endif
d55f90bf
VD
5044 {
5045 .name = "kmem.tcp.limit_in_bytes",
5046 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5047 .write = mem_cgroup_write,
5048 .read_u64 = mem_cgroup_read_u64,
5049 },
5050 {
5051 .name = "kmem.tcp.usage_in_bytes",
5052 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5053 .read_u64 = mem_cgroup_read_u64,
5054 },
5055 {
5056 .name = "kmem.tcp.failcnt",
5057 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5058 .write = mem_cgroup_reset,
5059 .read_u64 = mem_cgroup_read_u64,
5060 },
5061 {
5062 .name = "kmem.tcp.max_usage_in_bytes",
5063 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5064 .write = mem_cgroup_reset,
5065 .read_u64 = mem_cgroup_read_u64,
5066 },
6bc10349 5067 { }, /* terminate */
af36f906 5068};
8c7c6e34 5069
73f576c0
JW
5070/*
5071 * Private memory cgroup IDR
5072 *
5073 * Swap-out records and page cache shadow entries need to store memcg
5074 * references in constrained space, so we maintain an ID space that is
5075 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5076 * memory-controlled cgroups to 64k.
5077 *
b8f2935f 5078 * However, there usually are many references to the offline CSS after
73f576c0
JW
5079 * the cgroup has been destroyed, such as page cache or reclaimable
5080 * slab objects, that don't need to hang on to the ID. We want to keep
5081 * those dead CSS from occupying IDs, or we might quickly exhaust the
5082 * relatively small ID space and prevent the creation of new cgroups
5083 * even when there are much fewer than 64k cgroups - possibly none.
5084 *
5085 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5086 * be freed and recycled when it's no longer needed, which is usually
5087 * when the CSS is offlined.
5088 *
5089 * The only exception to that are records of swapped out tmpfs/shmem
5090 * pages that need to be attributed to live ancestors on swapin. But
5091 * those references are manageable from userspace.
5092 */
5093
5094static DEFINE_IDR(mem_cgroup_idr);
5095
7e97de0b
KT
5096static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5097{
5098 if (memcg->id.id > 0) {
5099 idr_remove(&mem_cgroup_idr, memcg->id.id);
5100 memcg->id.id = 0;
5101 }
5102}
5103
c1514c0a
VF
5104static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5105 unsigned int n)
73f576c0 5106{
1c2d479a 5107 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5108}
5109
615d66c3 5110static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5111{
1c2d479a 5112 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5113 mem_cgroup_id_remove(memcg);
73f576c0
JW
5114
5115 /* Memcg ID pins CSS */
5116 css_put(&memcg->css);
5117 }
5118}
5119
615d66c3
VD
5120static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5121{
5122 mem_cgroup_id_put_many(memcg, 1);
5123}
5124
73f576c0
JW
5125/**
5126 * mem_cgroup_from_id - look up a memcg from a memcg id
5127 * @id: the memcg id to look up
5128 *
5129 * Caller must hold rcu_read_lock().
5130 */
5131struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5132{
5133 WARN_ON_ONCE(!rcu_read_lock_held());
5134 return idr_find(&mem_cgroup_idr, id);
5135}
5136
ef8f2327 5137static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5138{
5139 struct mem_cgroup_per_node *pn;
ef8f2327 5140 int tmp = node;
1ecaab2b
KH
5141 /*
5142 * This routine is called against possible nodes.
5143 * But it's BUG to call kmalloc() against offline node.
5144 *
5145 * TODO: this routine can waste much memory for nodes which will
5146 * never be onlined. It's better to use memory hotplug callback
5147 * function.
5148 */
41e3355d
KH
5149 if (!node_state(node, N_NORMAL_MEMORY))
5150 tmp = -1;
17295c88 5151 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5152 if (!pn)
5153 return 1;
1ecaab2b 5154
3e38e0aa
RG
5155 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5156 GFP_KERNEL_ACCOUNT);
815744d7
JW
5157 if (!pn->lruvec_stat_local) {
5158 kfree(pn);
5159 return 1;
5160 }
5161
f3344adf 5162 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5163 GFP_KERNEL_ACCOUNT);
a983b5eb 5164 if (!pn->lruvec_stat_cpu) {
815744d7 5165 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5166 kfree(pn);
5167 return 1;
5168 }
5169
ef8f2327
MG
5170 lruvec_init(&pn->lruvec);
5171 pn->usage_in_excess = 0;
5172 pn->on_tree = false;
5173 pn->memcg = memcg;
5174
54f72fe0 5175 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5176 return 0;
5177}
5178
ef8f2327 5179static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5180{
00f3ca2c
JW
5181 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5182
4eaf431f
MH
5183 if (!pn)
5184 return;
5185
a983b5eb 5186 free_percpu(pn->lruvec_stat_cpu);
815744d7 5187 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5188 kfree(pn);
1ecaab2b
KH
5189}
5190
40e952f9 5191static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5192{
c8b2a36f 5193 int node;
59927fb9 5194
c8b2a36f 5195 for_each_node(node)
ef8f2327 5196 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5197 free_percpu(memcg->vmstats_percpu);
815744d7 5198 free_percpu(memcg->vmstats_local);
8ff69e2c 5199 kfree(memcg);
59927fb9 5200}
3afe36b1 5201
40e952f9
TE
5202static void mem_cgroup_free(struct mem_cgroup *memcg)
5203{
5204 memcg_wb_domain_exit(memcg);
7961eee3
SB
5205 /*
5206 * Flush percpu vmstats and vmevents to guarantee the value correctness
5207 * on parent's and all ancestor levels.
5208 */
4a87e2a2 5209 memcg_flush_percpu_vmstats(memcg);
7961eee3 5210 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5211 __mem_cgroup_free(memcg);
5212}
5213
0b8f73e1 5214static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5215{
d142e3e6 5216 struct mem_cgroup *memcg;
b9726c26 5217 unsigned int size;
6d12e2d8 5218 int node;
97b27821 5219 int __maybe_unused i;
11d67612 5220 long error = -ENOMEM;
8cdea7c0 5221
0b8f73e1
JW
5222 size = sizeof(struct mem_cgroup);
5223 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5224
5225 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5226 if (!memcg)
11d67612 5227 return ERR_PTR(error);
0b8f73e1 5228
73f576c0
JW
5229 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5230 1, MEM_CGROUP_ID_MAX,
5231 GFP_KERNEL);
11d67612
YS
5232 if (memcg->id.id < 0) {
5233 error = memcg->id.id;
73f576c0 5234 goto fail;
11d67612 5235 }
73f576c0 5236
3e38e0aa
RG
5237 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5238 GFP_KERNEL_ACCOUNT);
815744d7
JW
5239 if (!memcg->vmstats_local)
5240 goto fail;
5241
3e38e0aa
RG
5242 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5243 GFP_KERNEL_ACCOUNT);
871789d4 5244 if (!memcg->vmstats_percpu)
0b8f73e1 5245 goto fail;
78fb7466 5246
3ed28fa1 5247 for_each_node(node)
ef8f2327 5248 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5249 goto fail;
f64c3f54 5250
0b8f73e1
JW
5251 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5252 goto fail;
28dbc4b6 5253
f7e1cb6e 5254 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5255 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5256 mutex_init(&memcg->thresholds_lock);
5257 spin_lock_init(&memcg->move_lock);
70ddf637 5258 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5259 INIT_LIST_HEAD(&memcg->event_list);
5260 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5261 memcg->socket_pressure = jiffies;
84c07d11 5262#ifdef CONFIG_MEMCG_KMEM
900a38f0 5263 memcg->kmemcg_id = -1;
bf4f0599 5264 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5265#endif
52ebea74
TH
5266#ifdef CONFIG_CGROUP_WRITEBACK
5267 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5268 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5269 memcg->cgwb_frn[i].done =
5270 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5271#endif
5272#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5273 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5274 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5275 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5276#endif
73f576c0 5277 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5278 return memcg;
5279fail:
7e97de0b 5280 mem_cgroup_id_remove(memcg);
40e952f9 5281 __mem_cgroup_free(memcg);
11d67612 5282 return ERR_PTR(error);
d142e3e6
GC
5283}
5284
0b8f73e1
JW
5285static struct cgroup_subsys_state * __ref
5286mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5287{
0b8f73e1 5288 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5289 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5290 long error = -ENOMEM;
d142e3e6 5291
b87d8cef 5292 old_memcg = set_active_memcg(parent);
0b8f73e1 5293 memcg = mem_cgroup_alloc();
b87d8cef 5294 set_active_memcg(old_memcg);
11d67612
YS
5295 if (IS_ERR(memcg))
5296 return ERR_CAST(memcg);
d142e3e6 5297
d1663a90 5298 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5299 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5300 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5301 if (parent) {
5302 memcg->swappiness = mem_cgroup_swappiness(parent);
5303 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5304
3e32cb2e 5305 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5306 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5307 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5308 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5309 } else {
bef8620c
RG
5310 page_counter_init(&memcg->memory, NULL);
5311 page_counter_init(&memcg->swap, NULL);
5312 page_counter_init(&memcg->kmem, NULL);
5313 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5314
0b8f73e1
JW
5315 root_mem_cgroup = memcg;
5316 return &memcg->css;
5317 }
5318
bef8620c 5319 /* The following stuff does not apply to the root */
b313aeee 5320 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5321 if (error)
5322 goto fail;
127424c8 5323
f7e1cb6e 5324 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5325 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5326
0b8f73e1
JW
5327 return &memcg->css;
5328fail:
7e97de0b 5329 mem_cgroup_id_remove(memcg);
0b8f73e1 5330 mem_cgroup_free(memcg);
11d67612 5331 return ERR_PTR(error);
0b8f73e1
JW
5332}
5333
73f576c0 5334static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5335{
58fa2a55
VD
5336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5337
0a4465d3
KT
5338 /*
5339 * A memcg must be visible for memcg_expand_shrinker_maps()
5340 * by the time the maps are allocated. So, we allocate maps
5341 * here, when for_each_mem_cgroup() can't skip it.
5342 */
5343 if (memcg_alloc_shrinker_maps(memcg)) {
5344 mem_cgroup_id_remove(memcg);
5345 return -ENOMEM;
5346 }
5347
73f576c0 5348 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5349 refcount_set(&memcg->id.ref, 1);
73f576c0 5350 css_get(css);
2f7dd7a4 5351 return 0;
8cdea7c0
BS
5352}
5353
eb95419b 5354static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5355{
eb95419b 5356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5357 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5358
5359 /*
5360 * Unregister events and notify userspace.
5361 * Notify userspace about cgroup removing only after rmdir of cgroup
5362 * directory to avoid race between userspace and kernelspace.
5363 */
fba94807
TH
5364 spin_lock(&memcg->event_list_lock);
5365 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5366 list_del_init(&event->list);
5367 schedule_work(&event->remove);
5368 }
fba94807 5369 spin_unlock(&memcg->event_list_lock);
ec64f515 5370
bf8d5d52 5371 page_counter_set_min(&memcg->memory, 0);
23067153 5372 page_counter_set_low(&memcg->memory, 0);
63677c74 5373
567e9ab2 5374 memcg_offline_kmem(memcg);
52ebea74 5375 wb_memcg_offline(memcg);
73f576c0 5376
591edfb1
RG
5377 drain_all_stock(memcg);
5378
73f576c0 5379 mem_cgroup_id_put(memcg);
df878fb0
KH
5380}
5381
6df38689
VD
5382static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5383{
5384 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5385
5386 invalidate_reclaim_iterators(memcg);
5387}
5388
eb95419b 5389static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5390{
eb95419b 5391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5392 int __maybe_unused i;
c268e994 5393
97b27821
TH
5394#ifdef CONFIG_CGROUP_WRITEBACK
5395 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5396 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5397#endif
f7e1cb6e 5398 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5399 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5400
0db15298 5401 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5402 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5403
0b8f73e1
JW
5404 vmpressure_cleanup(&memcg->vmpressure);
5405 cancel_work_sync(&memcg->high_work);
5406 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5407 memcg_free_shrinker_maps(memcg);
d886f4e4 5408 memcg_free_kmem(memcg);
0b8f73e1 5409 mem_cgroup_free(memcg);
8cdea7c0
BS
5410}
5411
1ced953b
TH
5412/**
5413 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5414 * @css: the target css
5415 *
5416 * Reset the states of the mem_cgroup associated with @css. This is
5417 * invoked when the userland requests disabling on the default hierarchy
5418 * but the memcg is pinned through dependency. The memcg should stop
5419 * applying policies and should revert to the vanilla state as it may be
5420 * made visible again.
5421 *
5422 * The current implementation only resets the essential configurations.
5423 * This needs to be expanded to cover all the visible parts.
5424 */
5425static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5426{
5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428
bbec2e15
RG
5429 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5430 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5431 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5432 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5433 page_counter_set_min(&memcg->memory, 0);
23067153 5434 page_counter_set_low(&memcg->memory, 0);
d1663a90 5435 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5436 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5437 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5438 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5439}
5440
02491447 5441#ifdef CONFIG_MMU
7dc74be0 5442/* Handlers for move charge at task migration. */
854ffa8d 5443static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5444{
05b84301 5445 int ret;
9476db97 5446
d0164adc
MG
5447 /* Try a single bulk charge without reclaim first, kswapd may wake */
5448 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5449 if (!ret) {
854ffa8d 5450 mc.precharge += count;
854ffa8d
DN
5451 return ret;
5452 }
9476db97 5453
3674534b 5454 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5455 while (count--) {
3674534b 5456 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5457 if (ret)
38c5d72f 5458 return ret;
854ffa8d 5459 mc.precharge++;
9476db97 5460 cond_resched();
854ffa8d 5461 }
9476db97 5462 return 0;
4ffef5fe
DN
5463}
5464
4ffef5fe
DN
5465union mc_target {
5466 struct page *page;
02491447 5467 swp_entry_t ent;
4ffef5fe
DN
5468};
5469
4ffef5fe 5470enum mc_target_type {
8d32ff84 5471 MC_TARGET_NONE = 0,
4ffef5fe 5472 MC_TARGET_PAGE,
02491447 5473 MC_TARGET_SWAP,
c733a828 5474 MC_TARGET_DEVICE,
4ffef5fe
DN
5475};
5476
90254a65
DN
5477static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5478 unsigned long addr, pte_t ptent)
4ffef5fe 5479{
25b2995a 5480 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5481
90254a65
DN
5482 if (!page || !page_mapped(page))
5483 return NULL;
5484 if (PageAnon(page)) {
1dfab5ab 5485 if (!(mc.flags & MOVE_ANON))
90254a65 5486 return NULL;
1dfab5ab
JW
5487 } else {
5488 if (!(mc.flags & MOVE_FILE))
5489 return NULL;
5490 }
90254a65
DN
5491 if (!get_page_unless_zero(page))
5492 return NULL;
5493
5494 return page;
5495}
5496
c733a828 5497#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5498static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5499 pte_t ptent, swp_entry_t *entry)
90254a65 5500{
90254a65
DN
5501 struct page *page = NULL;
5502 swp_entry_t ent = pte_to_swp_entry(ptent);
5503
9a137153 5504 if (!(mc.flags & MOVE_ANON))
90254a65 5505 return NULL;
c733a828
JG
5506
5507 /*
5508 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5509 * a device and because they are not accessible by CPU they are store
5510 * as special swap entry in the CPU page table.
5511 */
5512 if (is_device_private_entry(ent)) {
5513 page = device_private_entry_to_page(ent);
5514 /*
5515 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5516 * a refcount of 1 when free (unlike normal page)
5517 */
5518 if (!page_ref_add_unless(page, 1, 1))
5519 return NULL;
5520 return page;
5521 }
5522
9a137153
RC
5523 if (non_swap_entry(ent))
5524 return NULL;
5525
4b91355e
KH
5526 /*
5527 * Because lookup_swap_cache() updates some statistics counter,
5528 * we call find_get_page() with swapper_space directly.
5529 */
f6ab1f7f 5530 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5531 entry->val = ent.val;
90254a65
DN
5532
5533 return page;
5534}
4b91355e
KH
5535#else
5536static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5537 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5538{
5539 return NULL;
5540}
5541#endif
90254a65 5542
87946a72
DN
5543static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5544 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5545{
87946a72
DN
5546 if (!vma->vm_file) /* anonymous vma */
5547 return NULL;
1dfab5ab 5548 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5549 return NULL;
5550
87946a72 5551 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5552 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5553 return find_get_incore_page(vma->vm_file->f_mapping,
5554 linear_page_index(vma, addr));
87946a72
DN
5555}
5556
b1b0deab
CG
5557/**
5558 * mem_cgroup_move_account - move account of the page
5559 * @page: the page
25843c2b 5560 * @compound: charge the page as compound or small page
b1b0deab
CG
5561 * @from: mem_cgroup which the page is moved from.
5562 * @to: mem_cgroup which the page is moved to. @from != @to.
5563 *
3ac808fd 5564 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5565 *
5566 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5567 * from old cgroup.
5568 */
5569static int mem_cgroup_move_account(struct page *page,
f627c2f5 5570 bool compound,
b1b0deab
CG
5571 struct mem_cgroup *from,
5572 struct mem_cgroup *to)
5573{
ae8af438
KK
5574 struct lruvec *from_vec, *to_vec;
5575 struct pglist_data *pgdat;
6c357848 5576 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5577 int ret;
5578
5579 VM_BUG_ON(from == to);
5580 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5581 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5582
5583 /*
6a93ca8f 5584 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5585 * page's memory cgroup of its source page while we change it.
b1b0deab 5586 */
f627c2f5 5587 ret = -EBUSY;
b1b0deab
CG
5588 if (!trylock_page(page))
5589 goto out;
5590
5591 ret = -EINVAL;
bcfe06bf 5592 if (page_memcg(page) != from)
b1b0deab
CG
5593 goto out_unlock;
5594
ae8af438 5595 pgdat = page_pgdat(page);
867e5e1d
JW
5596 from_vec = mem_cgroup_lruvec(from, pgdat);
5597 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5598
abb242f5 5599 lock_page_memcg(page);
b1b0deab 5600
be5d0a74
JW
5601 if (PageAnon(page)) {
5602 if (page_mapped(page)) {
5603 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5604 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5605 if (PageTransHuge(page)) {
69473e5d
MS
5606 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5607 -nr_pages);
5608 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5609 nr_pages);
468c3982 5610 }
be5d0a74
JW
5611 }
5612 } else {
0d1c2072
JW
5613 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5614 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5615
5616 if (PageSwapBacked(page)) {
5617 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5619 }
5620
49e50d27
JW
5621 if (page_mapped(page)) {
5622 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5623 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5624 }
b1b0deab 5625
49e50d27
JW
5626 if (PageDirty(page)) {
5627 struct address_space *mapping = page_mapping(page);
c4843a75 5628
f56753ac 5629 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5630 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5631 -nr_pages);
5632 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5633 nr_pages);
5634 }
c4843a75
GT
5635 }
5636 }
5637
b1b0deab 5638 if (PageWriteback(page)) {
ae8af438
KK
5639 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5640 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5641 }
5642
5643 /*
abb242f5
JW
5644 * All state has been migrated, let's switch to the new memcg.
5645 *
bcfe06bf 5646 * It is safe to change page's memcg here because the page
abb242f5
JW
5647 * is referenced, charged, isolated, and locked: we can't race
5648 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5649 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5650 *
5651 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5652 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5653 * new memcg that isn't locked, the above state can change
5654 * concurrently again. Make sure we're truly done with it.
b1b0deab 5655 */
abb242f5 5656 smp_mb();
b1b0deab 5657
1a3e1f40
JW
5658 css_get(&to->css);
5659 css_put(&from->css);
5660
bcfe06bf 5661 page->memcg_data = (unsigned long)to;
87eaceb3 5662
abb242f5 5663 __unlock_page_memcg(from);
b1b0deab
CG
5664
5665 ret = 0;
5666
5667 local_irq_disable();
3fba69a5 5668 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5669 memcg_check_events(to, page);
3fba69a5 5670 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5671 memcg_check_events(from, page);
5672 local_irq_enable();
5673out_unlock:
5674 unlock_page(page);
5675out:
5676 return ret;
5677}
5678
7cf7806c
LR
5679/**
5680 * get_mctgt_type - get target type of moving charge
5681 * @vma: the vma the pte to be checked belongs
5682 * @addr: the address corresponding to the pte to be checked
5683 * @ptent: the pte to be checked
5684 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5685 *
5686 * Returns
5687 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5688 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5689 * move charge. if @target is not NULL, the page is stored in target->page
5690 * with extra refcnt got(Callers should handle it).
5691 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5692 * target for charge migration. if @target is not NULL, the entry is stored
5693 * in target->ent.
25b2995a
CH
5694 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5695 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5696 * For now we such page is charge like a regular page would be as for all
5697 * intent and purposes it is just special memory taking the place of a
5698 * regular page.
c733a828
JG
5699 *
5700 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5701 *
5702 * Called with pte lock held.
5703 */
5704
8d32ff84 5705static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5706 unsigned long addr, pte_t ptent, union mc_target *target)
5707{
5708 struct page *page = NULL;
8d32ff84 5709 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5710 swp_entry_t ent = { .val = 0 };
5711
5712 if (pte_present(ptent))
5713 page = mc_handle_present_pte(vma, addr, ptent);
5714 else if (is_swap_pte(ptent))
48406ef8 5715 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5716 else if (pte_none(ptent))
87946a72 5717 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5718
5719 if (!page && !ent.val)
8d32ff84 5720 return ret;
02491447 5721 if (page) {
02491447 5722 /*
0a31bc97 5723 * Do only loose check w/o serialization.
1306a85a 5724 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5725 * not under LRU exclusion.
02491447 5726 */
bcfe06bf 5727 if (page_memcg(page) == mc.from) {
02491447 5728 ret = MC_TARGET_PAGE;
25b2995a 5729 if (is_device_private_page(page))
c733a828 5730 ret = MC_TARGET_DEVICE;
02491447
DN
5731 if (target)
5732 target->page = page;
5733 }
5734 if (!ret || !target)
5735 put_page(page);
5736 }
3e14a57b
HY
5737 /*
5738 * There is a swap entry and a page doesn't exist or isn't charged.
5739 * But we cannot move a tail-page in a THP.
5740 */
5741 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5742 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5743 ret = MC_TARGET_SWAP;
5744 if (target)
5745 target->ent = ent;
4ffef5fe 5746 }
4ffef5fe
DN
5747 return ret;
5748}
5749
12724850
NH
5750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5751/*
d6810d73
HY
5752 * We don't consider PMD mapped swapping or file mapped pages because THP does
5753 * not support them for now.
12724850
NH
5754 * Caller should make sure that pmd_trans_huge(pmd) is true.
5755 */
5756static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5757 unsigned long addr, pmd_t pmd, union mc_target *target)
5758{
5759 struct page *page = NULL;
12724850
NH
5760 enum mc_target_type ret = MC_TARGET_NONE;
5761
84c3fc4e
ZY
5762 if (unlikely(is_swap_pmd(pmd))) {
5763 VM_BUG_ON(thp_migration_supported() &&
5764 !is_pmd_migration_entry(pmd));
5765 return ret;
5766 }
12724850 5767 page = pmd_page(pmd);
309381fe 5768 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5769 if (!(mc.flags & MOVE_ANON))
12724850 5770 return ret;
bcfe06bf 5771 if (page_memcg(page) == mc.from) {
12724850
NH
5772 ret = MC_TARGET_PAGE;
5773 if (target) {
5774 get_page(page);
5775 target->page = page;
5776 }
5777 }
5778 return ret;
5779}
5780#else
5781static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5782 unsigned long addr, pmd_t pmd, union mc_target *target)
5783{
5784 return MC_TARGET_NONE;
5785}
5786#endif
5787
4ffef5fe
DN
5788static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5789 unsigned long addr, unsigned long end,
5790 struct mm_walk *walk)
5791{
26bcd64a 5792 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5793 pte_t *pte;
5794 spinlock_t *ptl;
5795
b6ec57f4
KS
5796 ptl = pmd_trans_huge_lock(pmd, vma);
5797 if (ptl) {
c733a828
JG
5798 /*
5799 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5800 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5801 * this might change.
c733a828 5802 */
12724850
NH
5803 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5804 mc.precharge += HPAGE_PMD_NR;
bf929152 5805 spin_unlock(ptl);
1a5a9906 5806 return 0;
12724850 5807 }
03319327 5808
45f83cef
AA
5809 if (pmd_trans_unstable(pmd))
5810 return 0;
4ffef5fe
DN
5811 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5812 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5813 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5814 mc.precharge++; /* increment precharge temporarily */
5815 pte_unmap_unlock(pte - 1, ptl);
5816 cond_resched();
5817
7dc74be0
DN
5818 return 0;
5819}
5820
7b86ac33
CH
5821static const struct mm_walk_ops precharge_walk_ops = {
5822 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5823};
5824
4ffef5fe
DN
5825static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5826{
5827 unsigned long precharge;
4ffef5fe 5828
d8ed45c5 5829 mmap_read_lock(mm);
7b86ac33 5830 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5831 mmap_read_unlock(mm);
4ffef5fe
DN
5832
5833 precharge = mc.precharge;
5834 mc.precharge = 0;
5835
5836 return precharge;
5837}
5838
4ffef5fe
DN
5839static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5840{
dfe076b0
DN
5841 unsigned long precharge = mem_cgroup_count_precharge(mm);
5842
5843 VM_BUG_ON(mc.moving_task);
5844 mc.moving_task = current;
5845 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5846}
5847
dfe076b0
DN
5848/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5849static void __mem_cgroup_clear_mc(void)
4ffef5fe 5850{
2bd9bb20
KH
5851 struct mem_cgroup *from = mc.from;
5852 struct mem_cgroup *to = mc.to;
5853
4ffef5fe 5854 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5855 if (mc.precharge) {
00501b53 5856 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5857 mc.precharge = 0;
5858 }
5859 /*
5860 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5861 * we must uncharge here.
5862 */
5863 if (mc.moved_charge) {
00501b53 5864 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5865 mc.moved_charge = 0;
4ffef5fe 5866 }
483c30b5
DN
5867 /* we must fixup refcnts and charges */
5868 if (mc.moved_swap) {
483c30b5 5869 /* uncharge swap account from the old cgroup */
ce00a967 5870 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5871 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5872
615d66c3
VD
5873 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5874
05b84301 5875 /*
3e32cb2e
JW
5876 * we charged both to->memory and to->memsw, so we
5877 * should uncharge to->memory.
05b84301 5878 */
ce00a967 5879 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5880 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5881
483c30b5
DN
5882 mc.moved_swap = 0;
5883 }
dfe076b0
DN
5884 memcg_oom_recover(from);
5885 memcg_oom_recover(to);
5886 wake_up_all(&mc.waitq);
5887}
5888
5889static void mem_cgroup_clear_mc(void)
5890{
264a0ae1
TH
5891 struct mm_struct *mm = mc.mm;
5892
dfe076b0
DN
5893 /*
5894 * we must clear moving_task before waking up waiters at the end of
5895 * task migration.
5896 */
5897 mc.moving_task = NULL;
5898 __mem_cgroup_clear_mc();
2bd9bb20 5899 spin_lock(&mc.lock);
4ffef5fe
DN
5900 mc.from = NULL;
5901 mc.to = NULL;
264a0ae1 5902 mc.mm = NULL;
2bd9bb20 5903 spin_unlock(&mc.lock);
264a0ae1
TH
5904
5905 mmput(mm);
4ffef5fe
DN
5906}
5907
1f7dd3e5 5908static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5909{
1f7dd3e5 5910 struct cgroup_subsys_state *css;
eed67d75 5911 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5912 struct mem_cgroup *from;
4530eddb 5913 struct task_struct *leader, *p;
9f2115f9 5914 struct mm_struct *mm;
1dfab5ab 5915 unsigned long move_flags;
9f2115f9 5916 int ret = 0;
7dc74be0 5917
1f7dd3e5
TH
5918 /* charge immigration isn't supported on the default hierarchy */
5919 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5920 return 0;
5921
4530eddb
TH
5922 /*
5923 * Multi-process migrations only happen on the default hierarchy
5924 * where charge immigration is not used. Perform charge
5925 * immigration if @tset contains a leader and whine if there are
5926 * multiple.
5927 */
5928 p = NULL;
1f7dd3e5 5929 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5930 WARN_ON_ONCE(p);
5931 p = leader;
1f7dd3e5 5932 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5933 }
5934 if (!p)
5935 return 0;
5936
1f7dd3e5
TH
5937 /*
5938 * We are now commited to this value whatever it is. Changes in this
5939 * tunable will only affect upcoming migrations, not the current one.
5940 * So we need to save it, and keep it going.
5941 */
5942 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5943 if (!move_flags)
5944 return 0;
5945
9f2115f9
TH
5946 from = mem_cgroup_from_task(p);
5947
5948 VM_BUG_ON(from == memcg);
5949
5950 mm = get_task_mm(p);
5951 if (!mm)
5952 return 0;
5953 /* We move charges only when we move a owner of the mm */
5954 if (mm->owner == p) {
5955 VM_BUG_ON(mc.from);
5956 VM_BUG_ON(mc.to);
5957 VM_BUG_ON(mc.precharge);
5958 VM_BUG_ON(mc.moved_charge);
5959 VM_BUG_ON(mc.moved_swap);
5960
5961 spin_lock(&mc.lock);
264a0ae1 5962 mc.mm = mm;
9f2115f9
TH
5963 mc.from = from;
5964 mc.to = memcg;
5965 mc.flags = move_flags;
5966 spin_unlock(&mc.lock);
5967 /* We set mc.moving_task later */
5968
5969 ret = mem_cgroup_precharge_mc(mm);
5970 if (ret)
5971 mem_cgroup_clear_mc();
264a0ae1
TH
5972 } else {
5973 mmput(mm);
7dc74be0
DN
5974 }
5975 return ret;
5976}
5977
1f7dd3e5 5978static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5979{
4e2f245d
JW
5980 if (mc.to)
5981 mem_cgroup_clear_mc();
7dc74be0
DN
5982}
5983
4ffef5fe
DN
5984static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5985 unsigned long addr, unsigned long end,
5986 struct mm_walk *walk)
7dc74be0 5987{
4ffef5fe 5988 int ret = 0;
26bcd64a 5989 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5990 pte_t *pte;
5991 spinlock_t *ptl;
12724850
NH
5992 enum mc_target_type target_type;
5993 union mc_target target;
5994 struct page *page;
4ffef5fe 5995
b6ec57f4
KS
5996 ptl = pmd_trans_huge_lock(pmd, vma);
5997 if (ptl) {
62ade86a 5998 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5999 spin_unlock(ptl);
12724850
NH
6000 return 0;
6001 }
6002 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6003 if (target_type == MC_TARGET_PAGE) {
6004 page = target.page;
6005 if (!isolate_lru_page(page)) {
f627c2f5 6006 if (!mem_cgroup_move_account(page, true,
1306a85a 6007 mc.from, mc.to)) {
12724850
NH
6008 mc.precharge -= HPAGE_PMD_NR;
6009 mc.moved_charge += HPAGE_PMD_NR;
6010 }
6011 putback_lru_page(page);
6012 }
6013 put_page(page);
c733a828
JG
6014 } else if (target_type == MC_TARGET_DEVICE) {
6015 page = target.page;
6016 if (!mem_cgroup_move_account(page, true,
6017 mc.from, mc.to)) {
6018 mc.precharge -= HPAGE_PMD_NR;
6019 mc.moved_charge += HPAGE_PMD_NR;
6020 }
6021 put_page(page);
12724850 6022 }
bf929152 6023 spin_unlock(ptl);
1a5a9906 6024 return 0;
12724850
NH
6025 }
6026
45f83cef
AA
6027 if (pmd_trans_unstable(pmd))
6028 return 0;
4ffef5fe
DN
6029retry:
6030 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6031 for (; addr != end; addr += PAGE_SIZE) {
6032 pte_t ptent = *(pte++);
c733a828 6033 bool device = false;
02491447 6034 swp_entry_t ent;
4ffef5fe
DN
6035
6036 if (!mc.precharge)
6037 break;
6038
8d32ff84 6039 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6040 case MC_TARGET_DEVICE:
6041 device = true;
e4a9bc58 6042 fallthrough;
4ffef5fe
DN
6043 case MC_TARGET_PAGE:
6044 page = target.page;
53f9263b
KS
6045 /*
6046 * We can have a part of the split pmd here. Moving it
6047 * can be done but it would be too convoluted so simply
6048 * ignore such a partial THP and keep it in original
6049 * memcg. There should be somebody mapping the head.
6050 */
6051 if (PageTransCompound(page))
6052 goto put;
c733a828 6053 if (!device && isolate_lru_page(page))
4ffef5fe 6054 goto put;
f627c2f5
KS
6055 if (!mem_cgroup_move_account(page, false,
6056 mc.from, mc.to)) {
4ffef5fe 6057 mc.precharge--;
854ffa8d
DN
6058 /* we uncharge from mc.from later. */
6059 mc.moved_charge++;
4ffef5fe 6060 }
c733a828
JG
6061 if (!device)
6062 putback_lru_page(page);
8d32ff84 6063put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6064 put_page(page);
6065 break;
02491447
DN
6066 case MC_TARGET_SWAP:
6067 ent = target.ent;
e91cbb42 6068 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6069 mc.precharge--;
8d22a935
HD
6070 mem_cgroup_id_get_many(mc.to, 1);
6071 /* we fixup other refcnts and charges later. */
483c30b5
DN
6072 mc.moved_swap++;
6073 }
02491447 6074 break;
4ffef5fe
DN
6075 default:
6076 break;
6077 }
6078 }
6079 pte_unmap_unlock(pte - 1, ptl);
6080 cond_resched();
6081
6082 if (addr != end) {
6083 /*
6084 * We have consumed all precharges we got in can_attach().
6085 * We try charge one by one, but don't do any additional
6086 * charges to mc.to if we have failed in charge once in attach()
6087 * phase.
6088 */
854ffa8d 6089 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6090 if (!ret)
6091 goto retry;
6092 }
6093
6094 return ret;
6095}
6096
7b86ac33
CH
6097static const struct mm_walk_ops charge_walk_ops = {
6098 .pmd_entry = mem_cgroup_move_charge_pte_range,
6099};
6100
264a0ae1 6101static void mem_cgroup_move_charge(void)
4ffef5fe 6102{
4ffef5fe 6103 lru_add_drain_all();
312722cb 6104 /*
81f8c3a4
JW
6105 * Signal lock_page_memcg() to take the memcg's move_lock
6106 * while we're moving its pages to another memcg. Then wait
6107 * for already started RCU-only updates to finish.
312722cb
JW
6108 */
6109 atomic_inc(&mc.from->moving_account);
6110 synchronize_rcu();
dfe076b0 6111retry:
d8ed45c5 6112 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6113 /*
c1e8d7c6 6114 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6115 * waitq. So we cancel all extra charges, wake up all waiters,
6116 * and retry. Because we cancel precharges, we might not be able
6117 * to move enough charges, but moving charge is a best-effort
6118 * feature anyway, so it wouldn't be a big problem.
6119 */
6120 __mem_cgroup_clear_mc();
6121 cond_resched();
6122 goto retry;
6123 }
26bcd64a
NH
6124 /*
6125 * When we have consumed all precharges and failed in doing
6126 * additional charge, the page walk just aborts.
6127 */
7b86ac33
CH
6128 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6129 NULL);
0247f3f4 6130
d8ed45c5 6131 mmap_read_unlock(mc.mm);
312722cb 6132 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6133}
6134
264a0ae1 6135static void mem_cgroup_move_task(void)
67e465a7 6136{
264a0ae1
TH
6137 if (mc.to) {
6138 mem_cgroup_move_charge();
a433658c 6139 mem_cgroup_clear_mc();
264a0ae1 6140 }
67e465a7 6141}
5cfb80a7 6142#else /* !CONFIG_MMU */
1f7dd3e5 6143static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6144{
6145 return 0;
6146}
1f7dd3e5 6147static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6148{
6149}
264a0ae1 6150static void mem_cgroup_move_task(void)
5cfb80a7
DN
6151{
6152}
6153#endif
67e465a7 6154
677dc973
CD
6155static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6156{
6157 if (value == PAGE_COUNTER_MAX)
6158 seq_puts(m, "max\n");
6159 else
6160 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6161
6162 return 0;
6163}
6164
241994ed
JW
6165static u64 memory_current_read(struct cgroup_subsys_state *css,
6166 struct cftype *cft)
6167{
f5fc3c5d
JW
6168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6169
6170 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6171}
6172
bf8d5d52
RG
6173static int memory_min_show(struct seq_file *m, void *v)
6174{
677dc973
CD
6175 return seq_puts_memcg_tunable(m,
6176 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6177}
6178
6179static ssize_t memory_min_write(struct kernfs_open_file *of,
6180 char *buf, size_t nbytes, loff_t off)
6181{
6182 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6183 unsigned long min;
6184 int err;
6185
6186 buf = strstrip(buf);
6187 err = page_counter_memparse(buf, "max", &min);
6188 if (err)
6189 return err;
6190
6191 page_counter_set_min(&memcg->memory, min);
6192
6193 return nbytes;
6194}
6195
241994ed
JW
6196static int memory_low_show(struct seq_file *m, void *v)
6197{
677dc973
CD
6198 return seq_puts_memcg_tunable(m,
6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6200}
6201
6202static ssize_t memory_low_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6206 unsigned long low;
6207 int err;
6208
6209 buf = strstrip(buf);
d2973697 6210 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6211 if (err)
6212 return err;
6213
23067153 6214 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6215
6216 return nbytes;
6217}
6218
6219static int memory_high_show(struct seq_file *m, void *v)
6220{
d1663a90
JK
6221 return seq_puts_memcg_tunable(m,
6222 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6223}
6224
6225static ssize_t memory_high_write(struct kernfs_open_file *of,
6226 char *buf, size_t nbytes, loff_t off)
6227{
6228 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6229 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6230 bool drained = false;
241994ed
JW
6231 unsigned long high;
6232 int err;
6233
6234 buf = strstrip(buf);
d2973697 6235 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6236 if (err)
6237 return err;
6238
e82553c1
JW
6239 page_counter_set_high(&memcg->memory, high);
6240
8c8c383c
JW
6241 for (;;) {
6242 unsigned long nr_pages = page_counter_read(&memcg->memory);
6243 unsigned long reclaimed;
6244
6245 if (nr_pages <= high)
6246 break;
6247
6248 if (signal_pending(current))
6249 break;
6250
6251 if (!drained) {
6252 drain_all_stock(memcg);
6253 drained = true;
6254 continue;
6255 }
6256
6257 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6258 GFP_KERNEL, true);
6259
6260 if (!reclaimed && !nr_retries--)
6261 break;
6262 }
588083bb 6263
19ce33ac 6264 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6265 return nbytes;
6266}
6267
6268static int memory_max_show(struct seq_file *m, void *v)
6269{
677dc973
CD
6270 return seq_puts_memcg_tunable(m,
6271 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6272}
6273
6274static ssize_t memory_max_write(struct kernfs_open_file *of,
6275 char *buf, size_t nbytes, loff_t off)
6276{
6277 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6278 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6279 bool drained = false;
241994ed
JW
6280 unsigned long max;
6281 int err;
6282
6283 buf = strstrip(buf);
d2973697 6284 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6285 if (err)
6286 return err;
6287
bbec2e15 6288 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6289
6290 for (;;) {
6291 unsigned long nr_pages = page_counter_read(&memcg->memory);
6292
6293 if (nr_pages <= max)
6294 break;
6295
7249c9f0 6296 if (signal_pending(current))
b6e6edcf 6297 break;
b6e6edcf
JW
6298
6299 if (!drained) {
6300 drain_all_stock(memcg);
6301 drained = true;
6302 continue;
6303 }
6304
6305 if (nr_reclaims) {
6306 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6307 GFP_KERNEL, true))
6308 nr_reclaims--;
6309 continue;
6310 }
6311
e27be240 6312 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6313 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6314 break;
6315 }
241994ed 6316
2529bb3a 6317 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6318 return nbytes;
6319}
6320
1e577f97
SB
6321static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6322{
6323 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6324 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6325 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6326 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6327 seq_printf(m, "oom_kill %lu\n",
6328 atomic_long_read(&events[MEMCG_OOM_KILL]));
6329}
6330
241994ed
JW
6331static int memory_events_show(struct seq_file *m, void *v)
6332{
aa9694bb 6333 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6334
1e577f97
SB
6335 __memory_events_show(m, memcg->memory_events);
6336 return 0;
6337}
6338
6339static int memory_events_local_show(struct seq_file *m, void *v)
6340{
6341 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6342
1e577f97 6343 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6344 return 0;
6345}
6346
587d9f72
JW
6347static int memory_stat_show(struct seq_file *m, void *v)
6348{
aa9694bb 6349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6350 char *buf;
1ff9e6e1 6351
c8713d0b
JW
6352 buf = memory_stat_format(memcg);
6353 if (!buf)
6354 return -ENOMEM;
6355 seq_puts(m, buf);
6356 kfree(buf);
587d9f72
JW
6357 return 0;
6358}
6359
5f9a4f4a 6360#ifdef CONFIG_NUMA
fff66b79
MS
6361static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6362 int item)
6363{
6364 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6365}
6366
5f9a4f4a
MS
6367static int memory_numa_stat_show(struct seq_file *m, void *v)
6368{
6369 int i;
6370 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6371
6372 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6373 int nid;
6374
6375 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6376 continue;
6377
6378 seq_printf(m, "%s", memory_stats[i].name);
6379 for_each_node_state(nid, N_MEMORY) {
6380 u64 size;
6381 struct lruvec *lruvec;
6382
6383 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6384 size = lruvec_page_state_output(lruvec,
6385 memory_stats[i].idx);
5f9a4f4a
MS
6386 seq_printf(m, " N%d=%llu", nid, size);
6387 }
6388 seq_putc(m, '\n');
6389 }
6390
6391 return 0;
6392}
6393#endif
6394
3d8b38eb
RG
6395static int memory_oom_group_show(struct seq_file *m, void *v)
6396{
aa9694bb 6397 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6398
6399 seq_printf(m, "%d\n", memcg->oom_group);
6400
6401 return 0;
6402}
6403
6404static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6405 char *buf, size_t nbytes, loff_t off)
6406{
6407 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6408 int ret, oom_group;
6409
6410 buf = strstrip(buf);
6411 if (!buf)
6412 return -EINVAL;
6413
6414 ret = kstrtoint(buf, 0, &oom_group);
6415 if (ret)
6416 return ret;
6417
6418 if (oom_group != 0 && oom_group != 1)
6419 return -EINVAL;
6420
6421 memcg->oom_group = oom_group;
6422
6423 return nbytes;
6424}
6425
241994ed
JW
6426static struct cftype memory_files[] = {
6427 {
6428 .name = "current",
f5fc3c5d 6429 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6430 .read_u64 = memory_current_read,
6431 },
bf8d5d52
RG
6432 {
6433 .name = "min",
6434 .flags = CFTYPE_NOT_ON_ROOT,
6435 .seq_show = memory_min_show,
6436 .write = memory_min_write,
6437 },
241994ed
JW
6438 {
6439 .name = "low",
6440 .flags = CFTYPE_NOT_ON_ROOT,
6441 .seq_show = memory_low_show,
6442 .write = memory_low_write,
6443 },
6444 {
6445 .name = "high",
6446 .flags = CFTYPE_NOT_ON_ROOT,
6447 .seq_show = memory_high_show,
6448 .write = memory_high_write,
6449 },
6450 {
6451 .name = "max",
6452 .flags = CFTYPE_NOT_ON_ROOT,
6453 .seq_show = memory_max_show,
6454 .write = memory_max_write,
6455 },
6456 {
6457 .name = "events",
6458 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6459 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6460 .seq_show = memory_events_show,
6461 },
1e577f97
SB
6462 {
6463 .name = "events.local",
6464 .flags = CFTYPE_NOT_ON_ROOT,
6465 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6466 .seq_show = memory_events_local_show,
6467 },
587d9f72
JW
6468 {
6469 .name = "stat",
587d9f72
JW
6470 .seq_show = memory_stat_show,
6471 },
5f9a4f4a
MS
6472#ifdef CONFIG_NUMA
6473 {
6474 .name = "numa_stat",
6475 .seq_show = memory_numa_stat_show,
6476 },
6477#endif
3d8b38eb
RG
6478 {
6479 .name = "oom.group",
6480 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6481 .seq_show = memory_oom_group_show,
6482 .write = memory_oom_group_write,
6483 },
241994ed
JW
6484 { } /* terminate */
6485};
6486
073219e9 6487struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6488 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6489 .css_online = mem_cgroup_css_online,
92fb9748 6490 .css_offline = mem_cgroup_css_offline,
6df38689 6491 .css_released = mem_cgroup_css_released,
92fb9748 6492 .css_free = mem_cgroup_css_free,
1ced953b 6493 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6494 .can_attach = mem_cgroup_can_attach,
6495 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6496 .post_attach = mem_cgroup_move_task,
241994ed
JW
6497 .dfl_cftypes = memory_files,
6498 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6499 .early_init = 0,
8cdea7c0 6500};
c077719b 6501
bc50bcc6
JW
6502/*
6503 * This function calculates an individual cgroup's effective
6504 * protection which is derived from its own memory.min/low, its
6505 * parent's and siblings' settings, as well as the actual memory
6506 * distribution in the tree.
6507 *
6508 * The following rules apply to the effective protection values:
6509 *
6510 * 1. At the first level of reclaim, effective protection is equal to
6511 * the declared protection in memory.min and memory.low.
6512 *
6513 * 2. To enable safe delegation of the protection configuration, at
6514 * subsequent levels the effective protection is capped to the
6515 * parent's effective protection.
6516 *
6517 * 3. To make complex and dynamic subtrees easier to configure, the
6518 * user is allowed to overcommit the declared protection at a given
6519 * level. If that is the case, the parent's effective protection is
6520 * distributed to the children in proportion to how much protection
6521 * they have declared and how much of it they are utilizing.
6522 *
6523 * This makes distribution proportional, but also work-conserving:
6524 * if one cgroup claims much more protection than it uses memory,
6525 * the unused remainder is available to its siblings.
6526 *
6527 * 4. Conversely, when the declared protection is undercommitted at a
6528 * given level, the distribution of the larger parental protection
6529 * budget is NOT proportional. A cgroup's protection from a sibling
6530 * is capped to its own memory.min/low setting.
6531 *
8a931f80
JW
6532 * 5. However, to allow protecting recursive subtrees from each other
6533 * without having to declare each individual cgroup's fixed share
6534 * of the ancestor's claim to protection, any unutilized -
6535 * "floating" - protection from up the tree is distributed in
6536 * proportion to each cgroup's *usage*. This makes the protection
6537 * neutral wrt sibling cgroups and lets them compete freely over
6538 * the shared parental protection budget, but it protects the
6539 * subtree as a whole from neighboring subtrees.
6540 *
6541 * Note that 4. and 5. are not in conflict: 4. is about protecting
6542 * against immediate siblings whereas 5. is about protecting against
6543 * neighboring subtrees.
bc50bcc6
JW
6544 */
6545static unsigned long effective_protection(unsigned long usage,
8a931f80 6546 unsigned long parent_usage,
bc50bcc6
JW
6547 unsigned long setting,
6548 unsigned long parent_effective,
6549 unsigned long siblings_protected)
6550{
6551 unsigned long protected;
8a931f80 6552 unsigned long ep;
bc50bcc6
JW
6553
6554 protected = min(usage, setting);
6555 /*
6556 * If all cgroups at this level combined claim and use more
6557 * protection then what the parent affords them, distribute
6558 * shares in proportion to utilization.
6559 *
6560 * We are using actual utilization rather than the statically
6561 * claimed protection in order to be work-conserving: claimed
6562 * but unused protection is available to siblings that would
6563 * otherwise get a smaller chunk than what they claimed.
6564 */
6565 if (siblings_protected > parent_effective)
6566 return protected * parent_effective / siblings_protected;
6567
6568 /*
6569 * Ok, utilized protection of all children is within what the
6570 * parent affords them, so we know whatever this child claims
6571 * and utilizes is effectively protected.
6572 *
6573 * If there is unprotected usage beyond this value, reclaim
6574 * will apply pressure in proportion to that amount.
6575 *
6576 * If there is unutilized protection, the cgroup will be fully
6577 * shielded from reclaim, but we do return a smaller value for
6578 * protection than what the group could enjoy in theory. This
6579 * is okay. With the overcommit distribution above, effective
6580 * protection is always dependent on how memory is actually
6581 * consumed among the siblings anyway.
6582 */
8a931f80
JW
6583 ep = protected;
6584
6585 /*
6586 * If the children aren't claiming (all of) the protection
6587 * afforded to them by the parent, distribute the remainder in
6588 * proportion to the (unprotected) memory of each cgroup. That
6589 * way, cgroups that aren't explicitly prioritized wrt each
6590 * other compete freely over the allowance, but they are
6591 * collectively protected from neighboring trees.
6592 *
6593 * We're using unprotected memory for the weight so that if
6594 * some cgroups DO claim explicit protection, we don't protect
6595 * the same bytes twice.
cd324edc
JW
6596 *
6597 * Check both usage and parent_usage against the respective
6598 * protected values. One should imply the other, but they
6599 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6600 */
6601 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6602 return ep;
cd324edc
JW
6603 if (parent_effective > siblings_protected &&
6604 parent_usage > siblings_protected &&
6605 usage > protected) {
8a931f80
JW
6606 unsigned long unclaimed;
6607
6608 unclaimed = parent_effective - siblings_protected;
6609 unclaimed *= usage - protected;
6610 unclaimed /= parent_usage - siblings_protected;
6611
6612 ep += unclaimed;
6613 }
6614
6615 return ep;
bc50bcc6
JW
6616}
6617
241994ed 6618/**
bf8d5d52 6619 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6620 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6621 * @memcg: the memory cgroup to check
6622 *
23067153
RG
6623 * WARNING: This function is not stateless! It can only be used as part
6624 * of a top-down tree iteration, not for isolated queries.
241994ed 6625 */
45c7f7e1
CD
6626void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6627 struct mem_cgroup *memcg)
241994ed 6628{
8a931f80 6629 unsigned long usage, parent_usage;
23067153
RG
6630 struct mem_cgroup *parent;
6631
241994ed 6632 if (mem_cgroup_disabled())
45c7f7e1 6633 return;
241994ed 6634
34c81057
SC
6635 if (!root)
6636 root = root_mem_cgroup;
22f7496f
YS
6637
6638 /*
6639 * Effective values of the reclaim targets are ignored so they
6640 * can be stale. Have a look at mem_cgroup_protection for more
6641 * details.
6642 * TODO: calculation should be more robust so that we do not need
6643 * that special casing.
6644 */
34c81057 6645 if (memcg == root)
45c7f7e1 6646 return;
241994ed 6647
23067153 6648 usage = page_counter_read(&memcg->memory);
bf8d5d52 6649 if (!usage)
45c7f7e1 6650 return;
bf8d5d52 6651
bf8d5d52 6652 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6653 /* No parent means a non-hierarchical mode on v1 memcg */
6654 if (!parent)
45c7f7e1 6655 return;
df2a4196 6656
bc50bcc6 6657 if (parent == root) {
c3d53200 6658 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6659 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6660 return;
bf8d5d52
RG
6661 }
6662
8a931f80
JW
6663 parent_usage = page_counter_read(&parent->memory);
6664
b3a7822e 6665 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6666 READ_ONCE(memcg->memory.min),
6667 READ_ONCE(parent->memory.emin),
b3a7822e 6668 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6669
b3a7822e 6670 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6671 READ_ONCE(memcg->memory.low),
6672 READ_ONCE(parent->memory.elow),
b3a7822e 6673 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6674}
6675
00501b53 6676/**
f0e45fb4 6677 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6678 * @page: page to charge
6679 * @mm: mm context of the victim
6680 * @gfp_mask: reclaim mode
00501b53
JW
6681 *
6682 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6683 * pages according to @gfp_mask if necessary.
6684 *
f0e45fb4 6685 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6686 */
d9eb1ea2 6687int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6688{
6c357848 6689 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6690 struct mem_cgroup *memcg = NULL;
00501b53
JW
6691 int ret = 0;
6692
6693 if (mem_cgroup_disabled())
6694 goto out;
6695
6696 if (PageSwapCache(page)) {
2d1c4980
JW
6697 swp_entry_t ent = { .val = page_private(page), };
6698 unsigned short id;
6699
00501b53
JW
6700 /*
6701 * Every swap fault against a single page tries to charge the
6702 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6703 * already charged pages, too. page and memcg binding is
6704 * protected by the page lock, which serializes swap cache
6705 * removal, which in turn serializes uncharging.
00501b53 6706 */
e993d905 6707 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6708 if (page_memcg(compound_head(page)))
00501b53 6709 goto out;
e993d905 6710
2d1c4980
JW
6711 id = lookup_swap_cgroup_id(ent);
6712 rcu_read_lock();
6713 memcg = mem_cgroup_from_id(id);
6714 if (memcg && !css_tryget_online(&memcg->css))
6715 memcg = NULL;
6716 rcu_read_unlock();
00501b53
JW
6717 }
6718
00501b53
JW
6719 if (!memcg)
6720 memcg = get_mem_cgroup_from_mm(mm);
6721
6722 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6723 if (ret)
6724 goto out_put;
00501b53 6725
1a3e1f40 6726 css_get(&memcg->css);
d9eb1ea2 6727 commit_charge(page, memcg);
6abb5a86 6728
6abb5a86 6729 local_irq_disable();
3fba69a5 6730 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6731 memcg_check_events(memcg, page);
6732 local_irq_enable();
00501b53 6733
cae3af62
MS
6734 /*
6735 * Cgroup1's unified memory+swap counter has been charged with the
6736 * new swapcache page, finish the transfer by uncharging the swap
6737 * slot. The swap slot would also get uncharged when it dies, but
6738 * it can stick around indefinitely and we'd count the page twice
6739 * the entire time.
6740 *
6741 * Cgroup2 has separate resource counters for memory and swap,
6742 * so this is a non-issue here. Memory and swap charge lifetimes
6743 * correspond 1:1 to page and swap slot lifetimes: we charge the
6744 * page to memory here, and uncharge swap when the slot is freed.
6745 */
6746 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6747 swp_entry_t entry = { .val = page_private(page) };
6748 /*
6749 * The swap entry might not get freed for a long time,
6750 * let's not wait for it. The page already received a
6751 * memory+swap charge, drop the swap entry duplicate.
6752 */
38d8b4e6 6753 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6754 }
00501b53 6755
f0e45fb4
JW
6756out_put:
6757 css_put(&memcg->css);
6758out:
6759 return ret;
3fea5a49
JW
6760}
6761
a9d5adee
JG
6762struct uncharge_gather {
6763 struct mem_cgroup *memcg;
9f762dbe 6764 unsigned long nr_pages;
a9d5adee 6765 unsigned long pgpgout;
a9d5adee 6766 unsigned long nr_kmem;
a9d5adee
JG
6767 struct page *dummy_page;
6768};
6769
6770static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6771{
a9d5adee
JG
6772 memset(ug, 0, sizeof(*ug));
6773}
6774
6775static void uncharge_batch(const struct uncharge_gather *ug)
6776{
747db954
JW
6777 unsigned long flags;
6778
a9d5adee 6779 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6780 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6781 if (do_memsw_account())
9f762dbe 6782 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6783 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6784 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6785 memcg_oom_recover(ug->memcg);
ce00a967 6786 }
747db954
JW
6787
6788 local_irq_save(flags);
c9019e9b 6789 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6790 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6791 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6792 local_irq_restore(flags);
f1796544
MH
6793
6794 /* drop reference from uncharge_page */
6795 css_put(&ug->memcg->css);
a9d5adee
JG
6796}
6797
6798static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6799{
9f762dbe
JW
6800 unsigned long nr_pages;
6801
a9d5adee 6802 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6803
bcfe06bf 6804 if (!page_memcg(page))
a9d5adee
JG
6805 return;
6806
6807 /*
6808 * Nobody should be changing or seriously looking at
bcfe06bf 6809 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6810 * exclusive access to the page.
6811 */
6812
bcfe06bf 6813 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6814 if (ug->memcg) {
6815 uncharge_batch(ug);
6816 uncharge_gather_clear(ug);
6817 }
bcfe06bf 6818 ug->memcg = page_memcg(page);
f1796544
MH
6819
6820 /* pairs with css_put in uncharge_batch */
6821 css_get(&ug->memcg->css);
a9d5adee
JG
6822 }
6823
9f762dbe
JW
6824 nr_pages = compound_nr(page);
6825 ug->nr_pages += nr_pages;
a9d5adee 6826
18b2db3b 6827 if (PageMemcgKmem(page))
9f762dbe 6828 ug->nr_kmem += nr_pages;
18b2db3b
RG
6829 else
6830 ug->pgpgout++;
a9d5adee
JG
6831
6832 ug->dummy_page = page;
bcfe06bf 6833 page->memcg_data = 0;
1a3e1f40 6834 css_put(&ug->memcg->css);
747db954
JW
6835}
6836
0a31bc97
JW
6837/**
6838 * mem_cgroup_uncharge - uncharge a page
6839 * @page: page to uncharge
6840 *
f0e45fb4 6841 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6842 */
6843void mem_cgroup_uncharge(struct page *page)
6844{
a9d5adee
JG
6845 struct uncharge_gather ug;
6846
0a31bc97
JW
6847 if (mem_cgroup_disabled())
6848 return;
6849
747db954 6850 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6851 if (!page_memcg(page))
0a31bc97
JW
6852 return;
6853
a9d5adee
JG
6854 uncharge_gather_clear(&ug);
6855 uncharge_page(page, &ug);
6856 uncharge_batch(&ug);
747db954 6857}
0a31bc97 6858
747db954
JW
6859/**
6860 * mem_cgroup_uncharge_list - uncharge a list of page
6861 * @page_list: list of pages to uncharge
6862 *
6863 * Uncharge a list of pages previously charged with
f0e45fb4 6864 * mem_cgroup_charge().
747db954
JW
6865 */
6866void mem_cgroup_uncharge_list(struct list_head *page_list)
6867{
c41a40b6
MS
6868 struct uncharge_gather ug;
6869 struct page *page;
6870
747db954
JW
6871 if (mem_cgroup_disabled())
6872 return;
0a31bc97 6873
c41a40b6
MS
6874 uncharge_gather_clear(&ug);
6875 list_for_each_entry(page, page_list, lru)
6876 uncharge_page(page, &ug);
6877 if (ug.memcg)
6878 uncharge_batch(&ug);
0a31bc97
JW
6879}
6880
6881/**
6a93ca8f
JW
6882 * mem_cgroup_migrate - charge a page's replacement
6883 * @oldpage: currently circulating page
6884 * @newpage: replacement page
0a31bc97 6885 *
6a93ca8f
JW
6886 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6887 * be uncharged upon free.
0a31bc97
JW
6888 *
6889 * Both pages must be locked, @newpage->mapping must be set up.
6890 */
6a93ca8f 6891void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6892{
29833315 6893 struct mem_cgroup *memcg;
44b7a8d3 6894 unsigned int nr_pages;
d93c4130 6895 unsigned long flags;
0a31bc97
JW
6896
6897 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6898 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6899 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6900 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6901 newpage);
0a31bc97
JW
6902
6903 if (mem_cgroup_disabled())
6904 return;
6905
6906 /* Page cache replacement: new page already charged? */
bcfe06bf 6907 if (page_memcg(newpage))
0a31bc97
JW
6908 return;
6909
bcfe06bf 6910 memcg = page_memcg(oldpage);
a4055888 6911 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6912 if (!memcg)
0a31bc97
JW
6913 return;
6914
44b7a8d3 6915 /* Force-charge the new page. The old one will be freed soon */
6c357848 6916 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6917
6918 page_counter_charge(&memcg->memory, nr_pages);
6919 if (do_memsw_account())
6920 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6921
1a3e1f40 6922 css_get(&memcg->css);
d9eb1ea2 6923 commit_charge(newpage, memcg);
44b7a8d3 6924
d93c4130 6925 local_irq_save(flags);
3fba69a5 6926 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6927 memcg_check_events(memcg, newpage);
d93c4130 6928 local_irq_restore(flags);
0a31bc97
JW
6929}
6930
ef12947c 6931DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6932EXPORT_SYMBOL(memcg_sockets_enabled_key);
6933
2d758073 6934void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6935{
6936 struct mem_cgroup *memcg;
6937
2d758073
JW
6938 if (!mem_cgroup_sockets_enabled)
6939 return;
6940
e876ecc6
SB
6941 /* Do not associate the sock with unrelated interrupted task's memcg. */
6942 if (in_interrupt())
6943 return;
6944
11092087
JW
6945 rcu_read_lock();
6946 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6947 if (memcg == root_mem_cgroup)
6948 goto out;
0db15298 6949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6950 goto out;
8965aa28 6951 if (css_tryget(&memcg->css))
11092087 6952 sk->sk_memcg = memcg;
f7e1cb6e 6953out:
11092087
JW
6954 rcu_read_unlock();
6955}
11092087 6956
2d758073 6957void mem_cgroup_sk_free(struct sock *sk)
11092087 6958{
2d758073
JW
6959 if (sk->sk_memcg)
6960 css_put(&sk->sk_memcg->css);
11092087
JW
6961}
6962
6963/**
6964 * mem_cgroup_charge_skmem - charge socket memory
6965 * @memcg: memcg to charge
6966 * @nr_pages: number of pages to charge
6967 *
6968 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6969 * @memcg's configured limit, %false if the charge had to be forced.
6970 */
6971bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6972{
f7e1cb6e 6973 gfp_t gfp_mask = GFP_KERNEL;
11092087 6974
f7e1cb6e 6975 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6976 struct page_counter *fail;
f7e1cb6e 6977
0db15298
JW
6978 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6979 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6980 return true;
6981 }
0db15298
JW
6982 page_counter_charge(&memcg->tcpmem, nr_pages);
6983 memcg->tcpmem_pressure = 1;
f7e1cb6e 6984 return false;
11092087 6985 }
d886f4e4 6986
f7e1cb6e
JW
6987 /* Don't block in the packet receive path */
6988 if (in_softirq())
6989 gfp_mask = GFP_NOWAIT;
6990
c9019e9b 6991 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6992
f7e1cb6e
JW
6993 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6994 return true;
6995
6996 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6997 return false;
6998}
6999
7000/**
7001 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7002 * @memcg: memcg to uncharge
7003 * @nr_pages: number of pages to uncharge
11092087
JW
7004 */
7005void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7006{
f7e1cb6e 7007 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7008 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7009 return;
7010 }
d886f4e4 7011
c9019e9b 7012 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7013
475d0487 7014 refill_stock(memcg, nr_pages);
11092087
JW
7015}
7016
f7e1cb6e
JW
7017static int __init cgroup_memory(char *s)
7018{
7019 char *token;
7020
7021 while ((token = strsep(&s, ",")) != NULL) {
7022 if (!*token)
7023 continue;
7024 if (!strcmp(token, "nosocket"))
7025 cgroup_memory_nosocket = true;
04823c83
VD
7026 if (!strcmp(token, "nokmem"))
7027 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7028 }
7029 return 0;
7030}
7031__setup("cgroup.memory=", cgroup_memory);
11092087 7032
2d11085e 7033/*
1081312f
MH
7034 * subsys_initcall() for memory controller.
7035 *
308167fc
SAS
7036 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7037 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7038 * basically everything that doesn't depend on a specific mem_cgroup structure
7039 * should be initialized from here.
2d11085e
MH
7040 */
7041static int __init mem_cgroup_init(void)
7042{
95a045f6
JW
7043 int cpu, node;
7044
f3344adf
MS
7045 /*
7046 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7047 * used for per-memcg-per-cpu caching of per-node statistics. In order
7048 * to work fine, we should make sure that the overfill threshold can't
7049 * exceed S32_MAX / PAGE_SIZE.
7050 */
7051 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7052
308167fc
SAS
7053 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7054 memcg_hotplug_cpu_dead);
95a045f6
JW
7055
7056 for_each_possible_cpu(cpu)
7057 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7058 drain_local_stock);
7059
7060 for_each_node(node) {
7061 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7062
7063 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7064 node_online(node) ? node : NUMA_NO_NODE);
7065
ef8f2327 7066 rtpn->rb_root = RB_ROOT;
fa90b2fd 7067 rtpn->rb_rightmost = NULL;
ef8f2327 7068 spin_lock_init(&rtpn->lock);
95a045f6
JW
7069 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7070 }
7071
2d11085e
MH
7072 return 0;
7073}
7074subsys_initcall(mem_cgroup_init);
21afa38e
JW
7075
7076#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7077static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7078{
1c2d479a 7079 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7080 /*
7081 * The root cgroup cannot be destroyed, so it's refcount must
7082 * always be >= 1.
7083 */
7084 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7085 VM_BUG_ON(1);
7086 break;
7087 }
7088 memcg = parent_mem_cgroup(memcg);
7089 if (!memcg)
7090 memcg = root_mem_cgroup;
7091 }
7092 return memcg;
7093}
7094
21afa38e
JW
7095/**
7096 * mem_cgroup_swapout - transfer a memsw charge to swap
7097 * @page: page whose memsw charge to transfer
7098 * @entry: swap entry to move the charge to
7099 *
7100 * Transfer the memsw charge of @page to @entry.
7101 */
7102void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7103{
1f47b61f 7104 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7105 unsigned int nr_entries;
21afa38e
JW
7106 unsigned short oldid;
7107
7108 VM_BUG_ON_PAGE(PageLRU(page), page);
7109 VM_BUG_ON_PAGE(page_count(page), page);
7110
76358ab5
AS
7111 if (mem_cgroup_disabled())
7112 return;
7113
2d1c4980 7114 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7115 return;
7116
bcfe06bf 7117 memcg = page_memcg(page);
21afa38e 7118
a4055888 7119 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7120 if (!memcg)
7121 return;
7122
1f47b61f
VD
7123 /*
7124 * In case the memcg owning these pages has been offlined and doesn't
7125 * have an ID allocated to it anymore, charge the closest online
7126 * ancestor for the swap instead and transfer the memory+swap charge.
7127 */
7128 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7129 nr_entries = thp_nr_pages(page);
d6810d73
HY
7130 /* Get references for the tail pages, too */
7131 if (nr_entries > 1)
7132 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7133 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7134 nr_entries);
21afa38e 7135 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7136 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7137
bcfe06bf 7138 page->memcg_data = 0;
21afa38e
JW
7139
7140 if (!mem_cgroup_is_root(memcg))
d6810d73 7141 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7142
2d1c4980 7143 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7144 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7145 page_counter_charge(&swap_memcg->memsw, nr_entries);
7146 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7147 }
7148
ce9ce665
SAS
7149 /*
7150 * Interrupts should be disabled here because the caller holds the
b93b0163 7151 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7152 * important here to have the interrupts disabled because it is the
b93b0163 7153 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7154 */
7155 VM_BUG_ON(!irqs_disabled());
3fba69a5 7156 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7157 memcg_check_events(memcg, page);
73f576c0 7158
1a3e1f40 7159 css_put(&memcg->css);
21afa38e
JW
7160}
7161
38d8b4e6
HY
7162/**
7163 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7164 * @page: page being added to swap
7165 * @entry: swap entry to charge
7166 *
38d8b4e6 7167 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7168 *
7169 * Returns 0 on success, -ENOMEM on failure.
7170 */
7171int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7172{
6c357848 7173 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7174 struct page_counter *counter;
38d8b4e6 7175 struct mem_cgroup *memcg;
37e84351
VD
7176 unsigned short oldid;
7177
76358ab5
AS
7178 if (mem_cgroup_disabled())
7179 return 0;
7180
2d1c4980 7181 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7182 return 0;
7183
bcfe06bf 7184 memcg = page_memcg(page);
37e84351 7185
a4055888 7186 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7187 if (!memcg)
7188 return 0;
7189
f3a53a3a
TH
7190 if (!entry.val) {
7191 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7192 return 0;
f3a53a3a 7193 }
bb98f2c5 7194
1f47b61f
VD
7195 memcg = mem_cgroup_id_get_online(memcg);
7196
2d1c4980 7197 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7198 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7199 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7200 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7201 mem_cgroup_id_put(memcg);
37e84351 7202 return -ENOMEM;
1f47b61f 7203 }
37e84351 7204
38d8b4e6
HY
7205 /* Get references for the tail pages, too */
7206 if (nr_pages > 1)
7207 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7208 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7209 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7210 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7211
37e84351
VD
7212 return 0;
7213}
7214
21afa38e 7215/**
38d8b4e6 7216 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7217 * @entry: swap entry to uncharge
38d8b4e6 7218 * @nr_pages: the amount of swap space to uncharge
21afa38e 7219 */
38d8b4e6 7220void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7221{
7222 struct mem_cgroup *memcg;
7223 unsigned short id;
7224
38d8b4e6 7225 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7226 rcu_read_lock();
adbe427b 7227 memcg = mem_cgroup_from_id(id);
21afa38e 7228 if (memcg) {
2d1c4980 7229 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7230 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7231 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7232 else
38d8b4e6 7233 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7234 }
c9019e9b 7235 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7236 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7237 }
7238 rcu_read_unlock();
7239}
7240
d8b38438
VD
7241long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7242{
7243 long nr_swap_pages = get_nr_swap_pages();
7244
eccb52e7 7245 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7246 return nr_swap_pages;
7247 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7248 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7249 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7250 page_counter_read(&memcg->swap));
7251 return nr_swap_pages;
7252}
7253
5ccc5aba
VD
7254bool mem_cgroup_swap_full(struct page *page)
7255{
7256 struct mem_cgroup *memcg;
7257
7258 VM_BUG_ON_PAGE(!PageLocked(page), page);
7259
7260 if (vm_swap_full())
7261 return true;
eccb52e7 7262 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7263 return false;
7264
bcfe06bf 7265 memcg = page_memcg(page);
5ccc5aba
VD
7266 if (!memcg)
7267 return false;
7268
4b82ab4f
JK
7269 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7270 unsigned long usage = page_counter_read(&memcg->swap);
7271
7272 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7273 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7274 return true;
4b82ab4f 7275 }
5ccc5aba
VD
7276
7277 return false;
7278}
7279
eccb52e7 7280static int __init setup_swap_account(char *s)
21afa38e
JW
7281{
7282 if (!strcmp(s, "1"))
5ab92901 7283 cgroup_memory_noswap = false;
21afa38e 7284 else if (!strcmp(s, "0"))
5ab92901 7285 cgroup_memory_noswap = true;
21afa38e
JW
7286 return 1;
7287}
eccb52e7 7288__setup("swapaccount=", setup_swap_account);
21afa38e 7289
37e84351
VD
7290static u64 swap_current_read(struct cgroup_subsys_state *css,
7291 struct cftype *cft)
7292{
7293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7294
7295 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7296}
7297
4b82ab4f
JK
7298static int swap_high_show(struct seq_file *m, void *v)
7299{
7300 return seq_puts_memcg_tunable(m,
7301 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7302}
7303
7304static ssize_t swap_high_write(struct kernfs_open_file *of,
7305 char *buf, size_t nbytes, loff_t off)
7306{
7307 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7308 unsigned long high;
7309 int err;
7310
7311 buf = strstrip(buf);
7312 err = page_counter_memparse(buf, "max", &high);
7313 if (err)
7314 return err;
7315
7316 page_counter_set_high(&memcg->swap, high);
7317
7318 return nbytes;
7319}
7320
37e84351
VD
7321static int swap_max_show(struct seq_file *m, void *v)
7322{
677dc973
CD
7323 return seq_puts_memcg_tunable(m,
7324 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7325}
7326
7327static ssize_t swap_max_write(struct kernfs_open_file *of,
7328 char *buf, size_t nbytes, loff_t off)
7329{
7330 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7331 unsigned long max;
7332 int err;
7333
7334 buf = strstrip(buf);
7335 err = page_counter_memparse(buf, "max", &max);
7336 if (err)
7337 return err;
7338
be09102b 7339 xchg(&memcg->swap.max, max);
37e84351
VD
7340
7341 return nbytes;
7342}
7343
f3a53a3a
TH
7344static int swap_events_show(struct seq_file *m, void *v)
7345{
aa9694bb 7346 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7347
4b82ab4f
JK
7348 seq_printf(m, "high %lu\n",
7349 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7350 seq_printf(m, "max %lu\n",
7351 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7352 seq_printf(m, "fail %lu\n",
7353 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7354
7355 return 0;
7356}
7357
37e84351
VD
7358static struct cftype swap_files[] = {
7359 {
7360 .name = "swap.current",
7361 .flags = CFTYPE_NOT_ON_ROOT,
7362 .read_u64 = swap_current_read,
7363 },
4b82ab4f
JK
7364 {
7365 .name = "swap.high",
7366 .flags = CFTYPE_NOT_ON_ROOT,
7367 .seq_show = swap_high_show,
7368 .write = swap_high_write,
7369 },
37e84351
VD
7370 {
7371 .name = "swap.max",
7372 .flags = CFTYPE_NOT_ON_ROOT,
7373 .seq_show = swap_max_show,
7374 .write = swap_max_write,
7375 },
f3a53a3a
TH
7376 {
7377 .name = "swap.events",
7378 .flags = CFTYPE_NOT_ON_ROOT,
7379 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7380 .seq_show = swap_events_show,
7381 },
37e84351
VD
7382 { } /* terminate */
7383};
7384
eccb52e7 7385static struct cftype memsw_files[] = {
21afa38e
JW
7386 {
7387 .name = "memsw.usage_in_bytes",
7388 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7389 .read_u64 = mem_cgroup_read_u64,
7390 },
7391 {
7392 .name = "memsw.max_usage_in_bytes",
7393 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7394 .write = mem_cgroup_reset,
7395 .read_u64 = mem_cgroup_read_u64,
7396 },
7397 {
7398 .name = "memsw.limit_in_bytes",
7399 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7400 .write = mem_cgroup_write,
7401 .read_u64 = mem_cgroup_read_u64,
7402 },
7403 {
7404 .name = "memsw.failcnt",
7405 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7406 .write = mem_cgroup_reset,
7407 .read_u64 = mem_cgroup_read_u64,
7408 },
7409 { }, /* terminate */
7410};
7411
82ff165c
BS
7412/*
7413 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7414 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7415 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7416 * boot parameter. This may result in premature OOPS inside
7417 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7418 */
21afa38e
JW
7419static int __init mem_cgroup_swap_init(void)
7420{
2d1c4980
JW
7421 /* No memory control -> no swap control */
7422 if (mem_cgroup_disabled())
7423 cgroup_memory_noswap = true;
7424
7425 if (cgroup_memory_noswap)
eccb52e7
JW
7426 return 0;
7427
7428 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7429 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7430
21afa38e
JW
7431 return 0;
7432}
82ff165c 7433core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7434
7435#endif /* CONFIG_MEMCG_SWAP */