]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
mm, vmscan: move lru_lock to the node
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
264a0ae1 210 struct mm_struct *mm;
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
d55f90bf 245 _TCP,
86ae53e1
GC
246};
247
a0db00fc
KS
248#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 250#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
251/* Used for OOM nofiier */
252#define OOM_CONTROL (0)
8c7c6e34 253
70ddf637
AV
254/* Some nice accessors for the vmpressure. */
255struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256{
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260}
261
262struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263{
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265}
266
7ffc0edc
MH
267static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268{
269 return (memcg == root_mem_cgroup);
270}
271
127424c8 272#ifndef CONFIG_SLOB
55007d84 273/*
f7ce3190 274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
55007d84 280 *
dbcf73e2
VD
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
55007d84 283 */
dbcf73e2
VD
284static DEFINE_IDA(memcg_cache_ida);
285int memcg_nr_cache_ids;
749c5415 286
05257a1a
VD
287/* Protects memcg_nr_cache_ids */
288static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290void memcg_get_cache_ids(void)
291{
292 down_read(&memcg_cache_ids_sem);
293}
294
295void memcg_put_cache_ids(void)
296{
297 up_read(&memcg_cache_ids_sem);
298}
299
55007d84
GC
300/*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
b8627835 306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
310 * increase ours as well if it increases.
311 */
312#define MEMCG_CACHES_MIN_SIZE 4
b8627835 313#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 314
d7f25f8a
GC
315/*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
ef12947c 321DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 322EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 323
127424c8 324#endif /* !CONFIG_SLOB */
a8964b9b 325
ad7fa852
TH
326/**
327 * mem_cgroup_css_from_page - css of the memcg associated with a page
328 * @page: page of interest
329 *
330 * If memcg is bound to the default hierarchy, css of the memcg associated
331 * with @page is returned. The returned css remains associated with @page
332 * until it is released.
333 *
334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335 * is returned.
ad7fa852
TH
336 */
337struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338{
339 struct mem_cgroup *memcg;
340
ad7fa852
TH
341 memcg = page->mem_cgroup;
342
9e10a130 343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
344 memcg = root_mem_cgroup;
345
ad7fa852
TH
346 return &memcg->css;
347}
348
2fc04524
VD
349/**
350 * page_cgroup_ino - return inode number of the memcg a page is charged to
351 * @page: the page
352 *
353 * Look up the closest online ancestor of the memory cgroup @page is charged to
354 * and return its inode number or 0 if @page is not charged to any cgroup. It
355 * is safe to call this function without holding a reference to @page.
356 *
357 * Note, this function is inherently racy, because there is nothing to prevent
358 * the cgroup inode from getting torn down and potentially reallocated a moment
359 * after page_cgroup_ino() returns, so it only should be used by callers that
360 * do not care (such as procfs interfaces).
361 */
362ino_t page_cgroup_ino(struct page *page)
363{
364 struct mem_cgroup *memcg;
365 unsigned long ino = 0;
366
367 rcu_read_lock();
368 memcg = READ_ONCE(page->mem_cgroup);
369 while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 memcg = parent_mem_cgroup(memcg);
371 if (memcg)
372 ino = cgroup_ino(memcg->css.cgroup);
373 rcu_read_unlock();
374 return ino;
375}
376
f64c3f54 377static struct mem_cgroup_per_zone *
e231875b 378mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 379{
97a6c37b
JW
380 int nid = page_to_nid(page);
381 int zid = page_zonenum(page);
f64c3f54 382
e231875b 383 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
384}
385
bb4cc1a8
AM
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
cf2c8127
JW
401static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
402 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 403 unsigned long new_usage_in_excess)
bb4cc1a8
AM
404{
405 struct rb_node **p = &mctz->rb_root.rb_node;
406 struct rb_node *parent = NULL;
407 struct mem_cgroup_per_zone *mz_node;
408
409 if (mz->on_tree)
410 return;
411
412 mz->usage_in_excess = new_usage_in_excess;
413 if (!mz->usage_in_excess)
414 return;
415 while (*p) {
416 parent = *p;
417 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 tree_node);
419 if (mz->usage_in_excess < mz_node->usage_in_excess)
420 p = &(*p)->rb_left;
421 /*
422 * We can't avoid mem cgroups that are over their soft
423 * limit by the same amount
424 */
425 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 p = &(*p)->rb_right;
427 }
428 rb_link_node(&mz->tree_node, parent, p);
429 rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 mz->on_tree = true;
431}
432
cf2c8127
JW
433static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
435{
436 if (!mz->on_tree)
437 return;
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440}
441
cf2c8127
JW
442static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 444{
0a31bc97
JW
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 448 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 449 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
450}
451
3e32cb2e
JW
452static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453{
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462}
bb4cc1a8
AM
463
464static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465{
3e32cb2e 466 unsigned long excess;
bb4cc1a8
AM
467 struct mem_cgroup_per_zone *mz;
468 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 469
e231875b 470 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 476 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 477 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
0a31bc97
JW
483 unsigned long flags;
484
485 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
486 /* if on-tree, remove it */
487 if (mz->on_tree)
cf2c8127 488 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
489 /*
490 * Insert again. mz->usage_in_excess will be updated.
491 * If excess is 0, no tree ops.
492 */
cf2c8127 493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 494 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
495 }
496 }
497}
498
499static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500{
bb4cc1a8 501 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
502 struct mem_cgroup_per_zone *mz;
503 int nid, zid;
bb4cc1a8 504
e231875b
JZ
505 for_each_node(nid) {
506 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
507 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
508 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 509 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
510 }
511 }
512}
513
514static struct mem_cgroup_per_zone *
515__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516{
517 struct rb_node *rightmost = NULL;
518 struct mem_cgroup_per_zone *mz;
519
520retry:
521 mz = NULL;
522 rightmost = rb_last(&mctz->rb_root);
523 if (!rightmost)
524 goto done; /* Nothing to reclaim from */
525
526 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 533 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 534 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
535 goto retry;
536done:
537 return mz;
538}
539
540static struct mem_cgroup_per_zone *
541mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542{
543 struct mem_cgroup_per_zone *mz;
544
0a31bc97 545 spin_lock_irq(&mctz->lock);
bb4cc1a8 546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 547 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
548 return mz;
549}
550
711d3d2c 551/*
484ebb3b
GT
552 * Return page count for single (non recursive) @memcg.
553 *
711d3d2c
KH
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 559 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 569 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
570 * implemented.
571 */
484ebb3b
GT
572static unsigned long
573mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 574{
7a159cc9 575 long val = 0;
c62b1a3b 576 int cpu;
c62b1a3b 577
484ebb3b 578 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 579 for_each_possible_cpu(cpu)
c0ff4b85 580 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
581 /*
582 * Summing races with updates, so val may be negative. Avoid exposing
583 * transient negative values.
584 */
585 if (val < 0)
586 val = 0;
c62b1a3b
KH
587 return val;
588}
589
c0ff4b85 590static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
591 enum mem_cgroup_events_index idx)
592{
593 unsigned long val = 0;
594 int cpu;
595
733a572e 596 for_each_possible_cpu(cpu)
c0ff4b85 597 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
598 return val;
599}
600
c0ff4b85 601static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 602 struct page *page,
f627c2f5 603 bool compound, int nr_pages)
d52aa412 604{
b2402857
KH
605 /*
606 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
607 * counted as CACHE even if it's on ANON LRU.
608 */
0a31bc97 609 if (PageAnon(page))
b2402857 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 611 nr_pages);
d52aa412 612 else
b2402857 613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 614 nr_pages);
55e462b0 615
f627c2f5
KS
616 if (compound) {
617 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
619 nr_pages);
f627c2f5 620 }
b070e65c 621
e401f176
KH
622 /* pagein of a big page is an event. So, ignore page size */
623 if (nr_pages > 0)
c0ff4b85 624 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 625 else {
c0ff4b85 626 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
627 nr_pages = -nr_pages; /* for event */
628 }
e401f176 629
13114716 630 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
631}
632
0a6b76dd
VD
633unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
634 int nid, unsigned int lru_mask)
bb2a0de9 635{
e231875b 636 unsigned long nr = 0;
889976db
YH
637 int zid;
638
e231875b 639 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 640
e231875b
JZ
641 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
642 struct mem_cgroup_per_zone *mz;
643 enum lru_list lru;
644
645 for_each_lru(lru) {
646 if (!(BIT(lru) & lru_mask))
647 continue;
648 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
649 nr += mz->lru_size[lru];
650 }
651 }
652 return nr;
889976db 653}
bb2a0de9 654
c0ff4b85 655static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 656 unsigned int lru_mask)
6d12e2d8 657{
e231875b 658 unsigned long nr = 0;
889976db 659 int nid;
6d12e2d8 660
31aaea4a 661 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
662 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
663 return nr;
d52aa412
KH
664}
665
f53d7ce3
JW
666static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
667 enum mem_cgroup_events_target target)
7a159cc9
JW
668{
669 unsigned long val, next;
670
13114716 671 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 672 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 673 /* from time_after() in jiffies.h */
f53d7ce3
JW
674 if ((long)next - (long)val < 0) {
675 switch (target) {
676 case MEM_CGROUP_TARGET_THRESH:
677 next = val + THRESHOLDS_EVENTS_TARGET;
678 break;
bb4cc1a8
AM
679 case MEM_CGROUP_TARGET_SOFTLIMIT:
680 next = val + SOFTLIMIT_EVENTS_TARGET;
681 break;
f53d7ce3
JW
682 case MEM_CGROUP_TARGET_NUMAINFO:
683 next = val + NUMAINFO_EVENTS_TARGET;
684 break;
685 default:
686 break;
687 }
688 __this_cpu_write(memcg->stat->targets[target], next);
689 return true;
7a159cc9 690 }
f53d7ce3 691 return false;
d2265e6f
KH
692}
693
694/*
695 * Check events in order.
696 *
697 */
c0ff4b85 698static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
699{
700 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
701 if (unlikely(mem_cgroup_event_ratelimit(memcg,
702 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 703 bool do_softlimit;
82b3f2a7 704 bool do_numainfo __maybe_unused;
f53d7ce3 705
bb4cc1a8
AM
706 do_softlimit = mem_cgroup_event_ratelimit(memcg,
707 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
708#if MAX_NUMNODES > 1
709 do_numainfo = mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_NUMAINFO);
711#endif
c0ff4b85 712 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
713 if (unlikely(do_softlimit))
714 mem_cgroup_update_tree(memcg, page);
453a9bf3 715#if MAX_NUMNODES > 1
f53d7ce3 716 if (unlikely(do_numainfo))
c0ff4b85 717 atomic_inc(&memcg->numainfo_events);
453a9bf3 718#endif
0a31bc97 719 }
d2265e6f
KH
720}
721
cf475ad2 722struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 723{
31a78f23
BS
724 /*
725 * mm_update_next_owner() may clear mm->owner to NULL
726 * if it races with swapoff, page migration, etc.
727 * So this can be called with p == NULL.
728 */
729 if (unlikely(!p))
730 return NULL;
731
073219e9 732 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 733}
33398cf2 734EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 735
df381975 736static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 737{
c0ff4b85 738 struct mem_cgroup *memcg = NULL;
0b7f569e 739
54595fe2
KH
740 rcu_read_lock();
741 do {
6f6acb00
MH
742 /*
743 * Page cache insertions can happen withou an
744 * actual mm context, e.g. during disk probing
745 * on boot, loopback IO, acct() writes etc.
746 */
747 if (unlikely(!mm))
df381975 748 memcg = root_mem_cgroup;
6f6acb00
MH
749 else {
750 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
751 if (unlikely(!memcg))
752 memcg = root_mem_cgroup;
753 }
ec903c0c 754 } while (!css_tryget_online(&memcg->css));
54595fe2 755 rcu_read_unlock();
c0ff4b85 756 return memcg;
54595fe2
KH
757}
758
5660048c
JW
759/**
760 * mem_cgroup_iter - iterate over memory cgroup hierarchy
761 * @root: hierarchy root
762 * @prev: previously returned memcg, NULL on first invocation
763 * @reclaim: cookie for shared reclaim walks, NULL for full walks
764 *
765 * Returns references to children of the hierarchy below @root, or
766 * @root itself, or %NULL after a full round-trip.
767 *
768 * Caller must pass the return value in @prev on subsequent
769 * invocations for reference counting, or use mem_cgroup_iter_break()
770 * to cancel a hierarchy walk before the round-trip is complete.
771 *
772 * Reclaimers can specify a zone and a priority level in @reclaim to
773 * divide up the memcgs in the hierarchy among all concurrent
774 * reclaimers operating on the same zone and priority.
775 */
694fbc0f 776struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 777 struct mem_cgroup *prev,
694fbc0f 778 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 779{
33398cf2 780 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 781 struct cgroup_subsys_state *css = NULL;
9f3a0d09 782 struct mem_cgroup *memcg = NULL;
5ac8fb31 783 struct mem_cgroup *pos = NULL;
711d3d2c 784
694fbc0f
AM
785 if (mem_cgroup_disabled())
786 return NULL;
5660048c 787
9f3a0d09
JW
788 if (!root)
789 root = root_mem_cgroup;
7d74b06f 790
9f3a0d09 791 if (prev && !reclaim)
5ac8fb31 792 pos = prev;
14067bb3 793
9f3a0d09
JW
794 if (!root->use_hierarchy && root != root_mem_cgroup) {
795 if (prev)
5ac8fb31 796 goto out;
694fbc0f 797 return root;
9f3a0d09 798 }
14067bb3 799
542f85f9 800 rcu_read_lock();
5f578161 801
5ac8fb31
JW
802 if (reclaim) {
803 struct mem_cgroup_per_zone *mz;
804
805 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
806 iter = &mz->iter[reclaim->priority];
807
808 if (prev && reclaim->generation != iter->generation)
809 goto out_unlock;
810
6df38689 811 while (1) {
4db0c3c2 812 pos = READ_ONCE(iter->position);
6df38689
VD
813 if (!pos || css_tryget(&pos->css))
814 break;
5ac8fb31 815 /*
6df38689
VD
816 * css reference reached zero, so iter->position will
817 * be cleared by ->css_released. However, we should not
818 * rely on this happening soon, because ->css_released
819 * is called from a work queue, and by busy-waiting we
820 * might block it. So we clear iter->position right
821 * away.
5ac8fb31 822 */
6df38689
VD
823 (void)cmpxchg(&iter->position, pos, NULL);
824 }
5ac8fb31
JW
825 }
826
827 if (pos)
828 css = &pos->css;
829
830 for (;;) {
831 css = css_next_descendant_pre(css, &root->css);
832 if (!css) {
833 /*
834 * Reclaimers share the hierarchy walk, and a
835 * new one might jump in right at the end of
836 * the hierarchy - make sure they see at least
837 * one group and restart from the beginning.
838 */
839 if (!prev)
840 continue;
841 break;
527a5ec9 842 }
7d74b06f 843
5ac8fb31
JW
844 /*
845 * Verify the css and acquire a reference. The root
846 * is provided by the caller, so we know it's alive
847 * and kicking, and don't take an extra reference.
848 */
849 memcg = mem_cgroup_from_css(css);
14067bb3 850
5ac8fb31
JW
851 if (css == &root->css)
852 break;
14067bb3 853
0b8f73e1
JW
854 if (css_tryget(css))
855 break;
9f3a0d09 856
5ac8fb31 857 memcg = NULL;
9f3a0d09 858 }
5ac8fb31
JW
859
860 if (reclaim) {
5ac8fb31 861 /*
6df38689
VD
862 * The position could have already been updated by a competing
863 * thread, so check that the value hasn't changed since we read
864 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 865 */
6df38689
VD
866 (void)cmpxchg(&iter->position, pos, memcg);
867
5ac8fb31
JW
868 if (pos)
869 css_put(&pos->css);
870
871 if (!memcg)
872 iter->generation++;
873 else if (!prev)
874 reclaim->generation = iter->generation;
9f3a0d09 875 }
5ac8fb31 876
542f85f9
MH
877out_unlock:
878 rcu_read_unlock();
5ac8fb31 879out:
c40046f3
MH
880 if (prev && prev != root)
881 css_put(&prev->css);
882
9f3a0d09 883 return memcg;
14067bb3 884}
7d74b06f 885
5660048c
JW
886/**
887 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
888 * @root: hierarchy root
889 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
890 */
891void mem_cgroup_iter_break(struct mem_cgroup *root,
892 struct mem_cgroup *prev)
9f3a0d09
JW
893{
894 if (!root)
895 root = root_mem_cgroup;
896 if (prev && prev != root)
897 css_put(&prev->css);
898}
7d74b06f 899
6df38689
VD
900static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
901{
902 struct mem_cgroup *memcg = dead_memcg;
903 struct mem_cgroup_reclaim_iter *iter;
904 struct mem_cgroup_per_zone *mz;
905 int nid, zid;
906 int i;
907
908 while ((memcg = parent_mem_cgroup(memcg))) {
909 for_each_node(nid) {
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
912 for (i = 0; i <= DEF_PRIORITY; i++) {
913 iter = &mz->iter[i];
914 cmpxchg(&iter->position,
915 dead_memcg, NULL);
916 }
917 }
918 }
919 }
920}
921
9f3a0d09
JW
922/*
923 * Iteration constructs for visiting all cgroups (under a tree). If
924 * loops are exited prematurely (break), mem_cgroup_iter_break() must
925 * be used for reference counting.
926 */
927#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 928 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 929 iter != NULL; \
527a5ec9 930 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 931
9f3a0d09 932#define for_each_mem_cgroup(iter) \
527a5ec9 933 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 934 iter != NULL; \
527a5ec9 935 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 936
925b7673 937/**
dfe0e773 938 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 939 * @page: the page
fa9add64 940 * @zone: zone of the page
dfe0e773
JW
941 *
942 * This function is only safe when following the LRU page isolation
943 * and putback protocol: the LRU lock must be held, and the page must
944 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 945 */
fa9add64 946struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 947{
08e552c6 948 struct mem_cgroup_per_zone *mz;
925b7673 949 struct mem_cgroup *memcg;
bea8c150 950 struct lruvec *lruvec;
6d12e2d8 951
bea8c150
HD
952 if (mem_cgroup_disabled()) {
953 lruvec = &zone->lruvec;
954 goto out;
955 }
925b7673 956
1306a85a 957 memcg = page->mem_cgroup;
7512102c 958 /*
dfe0e773 959 * Swapcache readahead pages are added to the LRU - and
29833315 960 * possibly migrated - before they are charged.
7512102c 961 */
29833315
JW
962 if (!memcg)
963 memcg = root_mem_cgroup;
7512102c 964
e231875b 965 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
966 lruvec = &mz->lruvec;
967out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
973 if (unlikely(lruvec->zone != zone))
974 lruvec->zone = zone;
975 return lruvec;
08e552c6 976}
b69408e8 977
925b7673 978/**
fa9add64
HD
979 * mem_cgroup_update_lru_size - account for adding or removing an lru page
980 * @lruvec: mem_cgroup per zone lru vector
981 * @lru: index of lru list the page is sitting on
982 * @nr_pages: positive when adding or negative when removing
925b7673 983 *
ca707239
HD
984 * This function must be called under lru_lock, just before a page is added
985 * to or just after a page is removed from an lru list (that ordering being
986 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 987 */
fa9add64
HD
988void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
989 int nr_pages)
3f58a829
MK
990{
991 struct mem_cgroup_per_zone *mz;
fa9add64 992 unsigned long *lru_size;
ca707239
HD
993 long size;
994 bool empty;
3f58a829 995
9d5e6a9f
HD
996 __update_lru_size(lruvec, lru, nr_pages);
997
3f58a829
MK
998 if (mem_cgroup_disabled())
999 return;
1000
fa9add64
HD
1001 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1002 lru_size = mz->lru_size + lru;
ca707239
HD
1003 empty = list_empty(lruvec->lists + lru);
1004
1005 if (nr_pages < 0)
1006 *lru_size += nr_pages;
1007
1008 size = *lru_size;
1009 if (WARN_ONCE(size < 0 || empty != !size,
1010 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1011 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1012 VM_BUG_ON(1);
1013 *lru_size = 0;
1014 }
1015
1016 if (nr_pages > 0)
1017 *lru_size += nr_pages;
08e552c6 1018}
544122e5 1019
2314b42d 1020bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1021{
2314b42d 1022 struct mem_cgroup *task_memcg;
158e0a2d 1023 struct task_struct *p;
ffbdccf5 1024 bool ret;
4c4a2214 1025
158e0a2d 1026 p = find_lock_task_mm(task);
de077d22 1027 if (p) {
2314b42d 1028 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1029 task_unlock(p);
1030 } else {
1031 /*
1032 * All threads may have already detached their mm's, but the oom
1033 * killer still needs to detect if they have already been oom
1034 * killed to prevent needlessly killing additional tasks.
1035 */
ffbdccf5 1036 rcu_read_lock();
2314b42d
JW
1037 task_memcg = mem_cgroup_from_task(task);
1038 css_get(&task_memcg->css);
ffbdccf5 1039 rcu_read_unlock();
de077d22 1040 }
2314b42d
JW
1041 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1042 css_put(&task_memcg->css);
4c4a2214
DR
1043 return ret;
1044}
1045
19942822 1046/**
9d11ea9f 1047 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1048 * @memcg: the memory cgroup
19942822 1049 *
9d11ea9f 1050 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1051 * pages.
19942822 1052 */
c0ff4b85 1053static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1054{
3e32cb2e
JW
1055 unsigned long margin = 0;
1056 unsigned long count;
1057 unsigned long limit;
9d11ea9f 1058
3e32cb2e 1059 count = page_counter_read(&memcg->memory);
4db0c3c2 1060 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1061 if (count < limit)
1062 margin = limit - count;
1063
7941d214 1064 if (do_memsw_account()) {
3e32cb2e 1065 count = page_counter_read(&memcg->memsw);
4db0c3c2 1066 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1067 if (count <= limit)
1068 margin = min(margin, limit - count);
cbedbac3
LR
1069 else
1070 margin = 0;
3e32cb2e
JW
1071 }
1072
1073 return margin;
19942822
JW
1074}
1075
32047e2a 1076/*
bdcbb659 1077 * A routine for checking "mem" is under move_account() or not.
32047e2a 1078 *
bdcbb659
QH
1079 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1080 * moving cgroups. This is for waiting at high-memory pressure
1081 * caused by "move".
32047e2a 1082 */
c0ff4b85 1083static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1084{
2bd9bb20
KH
1085 struct mem_cgroup *from;
1086 struct mem_cgroup *to;
4b534334 1087 bool ret = false;
2bd9bb20
KH
1088 /*
1089 * Unlike task_move routines, we access mc.to, mc.from not under
1090 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1091 */
1092 spin_lock(&mc.lock);
1093 from = mc.from;
1094 to = mc.to;
1095 if (!from)
1096 goto unlock;
3e92041d 1097
2314b42d
JW
1098 ret = mem_cgroup_is_descendant(from, memcg) ||
1099 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1100unlock:
1101 spin_unlock(&mc.lock);
4b534334
KH
1102 return ret;
1103}
1104
c0ff4b85 1105static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1106{
1107 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1108 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1109 DEFINE_WAIT(wait);
1110 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1111 /* moving charge context might have finished. */
1112 if (mc.moving_task)
1113 schedule();
1114 finish_wait(&mc.waitq, &wait);
1115 return true;
1116 }
1117 }
1118 return false;
1119}
1120
58cf188e 1121#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1122/**
58cf188e 1123 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1124 * @memcg: The memory cgroup that went over limit
1125 * @p: Task that is going to be killed
1126 *
1127 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1128 * enabled
1129 */
1130void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1131{
58cf188e
SZ
1132 struct mem_cgroup *iter;
1133 unsigned int i;
e222432b 1134
e222432b
BS
1135 rcu_read_lock();
1136
2415b9f5
BV
1137 if (p) {
1138 pr_info("Task in ");
1139 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1140 pr_cont(" killed as a result of limit of ");
1141 } else {
1142 pr_info("Memory limit reached of cgroup ");
1143 }
1144
e61734c5 1145 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1146 pr_cont("\n");
e222432b 1147
e222432b
BS
1148 rcu_read_unlock();
1149
3e32cb2e
JW
1150 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1151 K((u64)page_counter_read(&memcg->memory)),
1152 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1153 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1154 K((u64)page_counter_read(&memcg->memsw)),
1155 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1156 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1157 K((u64)page_counter_read(&memcg->kmem)),
1158 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1159
1160 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1161 pr_info("Memory cgroup stats for ");
1162 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1163 pr_cont(":");
1164
1165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1166 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1167 continue;
484ebb3b 1168 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1169 K(mem_cgroup_read_stat(iter, i)));
1170 }
1171
1172 for (i = 0; i < NR_LRU_LISTS; i++)
1173 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1174 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1175
1176 pr_cont("\n");
1177 }
e222432b
BS
1178}
1179
81d39c20
KH
1180/*
1181 * This function returns the number of memcg under hierarchy tree. Returns
1182 * 1(self count) if no children.
1183 */
c0ff4b85 1184static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1185{
1186 int num = 0;
7d74b06f
KH
1187 struct mem_cgroup *iter;
1188
c0ff4b85 1189 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1190 num++;
81d39c20
KH
1191 return num;
1192}
1193
a63d83f4
DR
1194/*
1195 * Return the memory (and swap, if configured) limit for a memcg.
1196 */
3e32cb2e 1197static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1198{
3e32cb2e 1199 unsigned long limit;
f3e8eb70 1200
3e32cb2e 1201 limit = memcg->memory.limit;
9a5a8f19 1202 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1203 unsigned long memsw_limit;
37e84351 1204 unsigned long swap_limit;
9a5a8f19 1205
3e32cb2e 1206 memsw_limit = memcg->memsw.limit;
37e84351
VD
1207 swap_limit = memcg->swap.limit;
1208 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1209 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1210 }
9a5a8f19 1211 return limit;
a63d83f4
DR
1212}
1213
b6e6edcf 1214static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1215 int order)
9cbb78bb 1216{
6e0fc46d
DR
1217 struct oom_control oc = {
1218 .zonelist = NULL,
1219 .nodemask = NULL,
2a966b77 1220 .memcg = memcg,
6e0fc46d
DR
1221 .gfp_mask = gfp_mask,
1222 .order = order,
6e0fc46d 1223 };
9cbb78bb
DR
1224 struct mem_cgroup *iter;
1225 unsigned long chosen_points = 0;
1226 unsigned long totalpages;
1227 unsigned int points = 0;
1228 struct task_struct *chosen = NULL;
1229
dc56401f
JW
1230 mutex_lock(&oom_lock);
1231
876aafbf 1232 /*
465adcf1
DR
1233 * If current has a pending SIGKILL or is exiting, then automatically
1234 * select it. The goal is to allow it to allocate so that it may
1235 * quickly exit and free its memory.
876aafbf 1236 */
1af8bb43 1237 if (task_will_free_mem(current)) {
16e95196 1238 mark_oom_victim(current);
1af8bb43 1239 wake_oom_reaper(current);
dc56401f 1240 goto unlock;
876aafbf
DR
1241 }
1242
2a966b77 1243 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1244 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1245 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1246 struct css_task_iter it;
9cbb78bb
DR
1247 struct task_struct *task;
1248
72ec7029
TH
1249 css_task_iter_start(&iter->css, &it);
1250 while ((task = css_task_iter_next(&it))) {
fbe84a09 1251 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1252 case OOM_SCAN_SELECT:
1253 if (chosen)
1254 put_task_struct(chosen);
1255 chosen = task;
1256 chosen_points = ULONG_MAX;
1257 get_task_struct(chosen);
1258 /* fall through */
1259 case OOM_SCAN_CONTINUE:
1260 continue;
1261 case OOM_SCAN_ABORT:
72ec7029 1262 css_task_iter_end(&it);
9cbb78bb
DR
1263 mem_cgroup_iter_break(memcg, iter);
1264 if (chosen)
1265 put_task_struct(chosen);
1ebab2db
TH
1266 /* Set a dummy value to return "true". */
1267 chosen = (void *) 1;
dc56401f 1268 goto unlock;
9cbb78bb
DR
1269 case OOM_SCAN_OK:
1270 break;
1271 };
1272 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1273 if (!points || points < chosen_points)
1274 continue;
1275 /* Prefer thread group leaders for display purposes */
1276 if (points == chosen_points &&
1277 thread_group_leader(chosen))
1278 continue;
1279
1280 if (chosen)
1281 put_task_struct(chosen);
1282 chosen = task;
1283 chosen_points = points;
1284 get_task_struct(chosen);
9cbb78bb 1285 }
72ec7029 1286 css_task_iter_end(&it);
9cbb78bb
DR
1287 }
1288
dc56401f
JW
1289 if (chosen) {
1290 points = chosen_points * 1000 / totalpages;
2a966b77 1291 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1292 "Memory cgroup out of memory");
dc56401f
JW
1293 }
1294unlock:
1295 mutex_unlock(&oom_lock);
b6e6edcf 1296 return chosen;
9cbb78bb
DR
1297}
1298
ae6e71d3
MC
1299#if MAX_NUMNODES > 1
1300
4d0c066d
KH
1301/**
1302 * test_mem_cgroup_node_reclaimable
dad7557e 1303 * @memcg: the target memcg
4d0c066d
KH
1304 * @nid: the node ID to be checked.
1305 * @noswap : specify true here if the user wants flle only information.
1306 *
1307 * This function returns whether the specified memcg contains any
1308 * reclaimable pages on a node. Returns true if there are any reclaimable
1309 * pages in the node.
1310 */
c0ff4b85 1311static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1312 int nid, bool noswap)
1313{
c0ff4b85 1314 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1315 return true;
1316 if (noswap || !total_swap_pages)
1317 return false;
c0ff4b85 1318 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1319 return true;
1320 return false;
1321
1322}
889976db
YH
1323
1324/*
1325 * Always updating the nodemask is not very good - even if we have an empty
1326 * list or the wrong list here, we can start from some node and traverse all
1327 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1328 *
1329 */
c0ff4b85 1330static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1331{
1332 int nid;
453a9bf3
KH
1333 /*
1334 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1335 * pagein/pageout changes since the last update.
1336 */
c0ff4b85 1337 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1338 return;
c0ff4b85 1339 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1340 return;
1341
889976db 1342 /* make a nodemask where this memcg uses memory from */
31aaea4a 1343 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1344
31aaea4a 1345 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1346
c0ff4b85
R
1347 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1348 node_clear(nid, memcg->scan_nodes);
889976db 1349 }
453a9bf3 1350
c0ff4b85
R
1351 atomic_set(&memcg->numainfo_events, 0);
1352 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1353}
1354
1355/*
1356 * Selecting a node where we start reclaim from. Because what we need is just
1357 * reducing usage counter, start from anywhere is O,K. Considering
1358 * memory reclaim from current node, there are pros. and cons.
1359 *
1360 * Freeing memory from current node means freeing memory from a node which
1361 * we'll use or we've used. So, it may make LRU bad. And if several threads
1362 * hit limits, it will see a contention on a node. But freeing from remote
1363 * node means more costs for memory reclaim because of memory latency.
1364 *
1365 * Now, we use round-robin. Better algorithm is welcomed.
1366 */
c0ff4b85 1367int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1368{
1369 int node;
1370
c0ff4b85
R
1371 mem_cgroup_may_update_nodemask(memcg);
1372 node = memcg->last_scanned_node;
889976db 1373
0edaf86c 1374 node = next_node_in(node, memcg->scan_nodes);
889976db 1375 /*
fda3d69b
MH
1376 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1377 * last time it really checked all the LRUs due to rate limiting.
1378 * Fallback to the current node in that case for simplicity.
889976db
YH
1379 */
1380 if (unlikely(node == MAX_NUMNODES))
1381 node = numa_node_id();
1382
c0ff4b85 1383 memcg->last_scanned_node = node;
889976db
YH
1384 return node;
1385}
889976db 1386#else
c0ff4b85 1387int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1388{
1389 return 0;
1390}
1391#endif
1392
0608f43d
AM
1393static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1394 struct zone *zone,
1395 gfp_t gfp_mask,
1396 unsigned long *total_scanned)
1397{
1398 struct mem_cgroup *victim = NULL;
1399 int total = 0;
1400 int loop = 0;
1401 unsigned long excess;
1402 unsigned long nr_scanned;
1403 struct mem_cgroup_reclaim_cookie reclaim = {
1404 .zone = zone,
1405 .priority = 0,
1406 };
1407
3e32cb2e 1408 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1409
1410 while (1) {
1411 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1412 if (!victim) {
1413 loop++;
1414 if (loop >= 2) {
1415 /*
1416 * If we have not been able to reclaim
1417 * anything, it might because there are
1418 * no reclaimable pages under this hierarchy
1419 */
1420 if (!total)
1421 break;
1422 /*
1423 * We want to do more targeted reclaim.
1424 * excess >> 2 is not to excessive so as to
1425 * reclaim too much, nor too less that we keep
1426 * coming back to reclaim from this cgroup
1427 */
1428 if (total >= (excess >> 2) ||
1429 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1430 break;
1431 }
1432 continue;
1433 }
0608f43d
AM
1434 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1435 zone, &nr_scanned);
1436 *total_scanned += nr_scanned;
3e32cb2e 1437 if (!soft_limit_excess(root_memcg))
0608f43d 1438 break;
6d61ef40 1439 }
0608f43d
AM
1440 mem_cgroup_iter_break(root_memcg, victim);
1441 return total;
6d61ef40
BS
1442}
1443
0056f4e6
JW
1444#ifdef CONFIG_LOCKDEP
1445static struct lockdep_map memcg_oom_lock_dep_map = {
1446 .name = "memcg_oom_lock",
1447};
1448#endif
1449
fb2a6fc5
JW
1450static DEFINE_SPINLOCK(memcg_oom_lock);
1451
867578cb
KH
1452/*
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1455 */
fb2a6fc5 1456static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1457{
79dfdacc 1458 struct mem_cgroup *iter, *failed = NULL;
a636b327 1459
fb2a6fc5
JW
1460 spin_lock(&memcg_oom_lock);
1461
9f3a0d09 1462 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1463 if (iter->oom_lock) {
79dfdacc
MH
1464 /*
1465 * this subtree of our hierarchy is already locked
1466 * so we cannot give a lock.
1467 */
79dfdacc 1468 failed = iter;
9f3a0d09
JW
1469 mem_cgroup_iter_break(memcg, iter);
1470 break;
23751be0
JW
1471 } else
1472 iter->oom_lock = true;
7d74b06f 1473 }
867578cb 1474
fb2a6fc5
JW
1475 if (failed) {
1476 /*
1477 * OK, we failed to lock the whole subtree so we have
1478 * to clean up what we set up to the failing subtree
1479 */
1480 for_each_mem_cgroup_tree(iter, memcg) {
1481 if (iter == failed) {
1482 mem_cgroup_iter_break(memcg, iter);
1483 break;
1484 }
1485 iter->oom_lock = false;
79dfdacc 1486 }
0056f4e6
JW
1487 } else
1488 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1489
1490 spin_unlock(&memcg_oom_lock);
1491
1492 return !failed;
a636b327 1493}
0b7f569e 1494
fb2a6fc5 1495static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1496{
7d74b06f
KH
1497 struct mem_cgroup *iter;
1498
fb2a6fc5 1499 spin_lock(&memcg_oom_lock);
0056f4e6 1500 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1501 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1502 iter->oom_lock = false;
fb2a6fc5 1503 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1504}
1505
c0ff4b85 1506static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1507{
1508 struct mem_cgroup *iter;
1509
c2b42d3c 1510 spin_lock(&memcg_oom_lock);
c0ff4b85 1511 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1512 iter->under_oom++;
1513 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1514}
1515
c0ff4b85 1516static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1517{
1518 struct mem_cgroup *iter;
1519
867578cb
KH
1520 /*
1521 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1522 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1523 */
c2b42d3c 1524 spin_lock(&memcg_oom_lock);
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1526 if (iter->under_oom > 0)
1527 iter->under_oom--;
1528 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1529}
1530
867578cb
KH
1531static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1532
dc98df5a 1533struct oom_wait_info {
d79154bb 1534 struct mem_cgroup *memcg;
dc98df5a
KH
1535 wait_queue_t wait;
1536};
1537
1538static int memcg_oom_wake_function(wait_queue_t *wait,
1539 unsigned mode, int sync, void *arg)
1540{
d79154bb
HD
1541 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1542 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1543 struct oom_wait_info *oom_wait_info;
1544
1545 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1546 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1547
2314b42d
JW
1548 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1549 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1550 return 0;
dc98df5a
KH
1551 return autoremove_wake_function(wait, mode, sync, arg);
1552}
1553
c0ff4b85 1554static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1555{
c2b42d3c
TH
1556 /*
1557 * For the following lockless ->under_oom test, the only required
1558 * guarantee is that it must see the state asserted by an OOM when
1559 * this function is called as a result of userland actions
1560 * triggered by the notification of the OOM. This is trivially
1561 * achieved by invoking mem_cgroup_mark_under_oom() before
1562 * triggering notification.
1563 */
1564 if (memcg && memcg->under_oom)
f4b90b70 1565 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1566}
1567
3812c8c8 1568static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1569{
d0db7afa 1570 if (!current->memcg_may_oom)
3812c8c8 1571 return;
867578cb 1572 /*
49426420
JW
1573 * We are in the middle of the charge context here, so we
1574 * don't want to block when potentially sitting on a callstack
1575 * that holds all kinds of filesystem and mm locks.
1576 *
1577 * Also, the caller may handle a failed allocation gracefully
1578 * (like optional page cache readahead) and so an OOM killer
1579 * invocation might not even be necessary.
1580 *
1581 * That's why we don't do anything here except remember the
1582 * OOM context and then deal with it at the end of the page
1583 * fault when the stack is unwound, the locks are released,
1584 * and when we know whether the fault was overall successful.
867578cb 1585 */
49426420 1586 css_get(&memcg->css);
626ebc41
TH
1587 current->memcg_in_oom = memcg;
1588 current->memcg_oom_gfp_mask = mask;
1589 current->memcg_oom_order = order;
3812c8c8
JW
1590}
1591
1592/**
1593 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1594 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1595 *
49426420
JW
1596 * This has to be called at the end of a page fault if the memcg OOM
1597 * handler was enabled.
3812c8c8 1598 *
49426420 1599 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1600 * sleep on a waitqueue until the userspace task resolves the
1601 * situation. Sleeping directly in the charge context with all kinds
1602 * of locks held is not a good idea, instead we remember an OOM state
1603 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1604 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1605 *
1606 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1607 * completed, %false otherwise.
3812c8c8 1608 */
49426420 1609bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1610{
626ebc41 1611 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1612 struct oom_wait_info owait;
49426420 1613 bool locked;
3812c8c8
JW
1614
1615 /* OOM is global, do not handle */
3812c8c8 1616 if (!memcg)
49426420 1617 return false;
3812c8c8 1618
c32b3cbe 1619 if (!handle || oom_killer_disabled)
49426420 1620 goto cleanup;
3812c8c8
JW
1621
1622 owait.memcg = memcg;
1623 owait.wait.flags = 0;
1624 owait.wait.func = memcg_oom_wake_function;
1625 owait.wait.private = current;
1626 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1627
3812c8c8 1628 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1629 mem_cgroup_mark_under_oom(memcg);
1630
1631 locked = mem_cgroup_oom_trylock(memcg);
1632
1633 if (locked)
1634 mem_cgroup_oom_notify(memcg);
1635
1636 if (locked && !memcg->oom_kill_disable) {
1637 mem_cgroup_unmark_under_oom(memcg);
1638 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1639 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1640 current->memcg_oom_order);
49426420 1641 } else {
3812c8c8 1642 schedule();
49426420
JW
1643 mem_cgroup_unmark_under_oom(memcg);
1644 finish_wait(&memcg_oom_waitq, &owait.wait);
1645 }
1646
1647 if (locked) {
fb2a6fc5
JW
1648 mem_cgroup_oom_unlock(memcg);
1649 /*
1650 * There is no guarantee that an OOM-lock contender
1651 * sees the wakeups triggered by the OOM kill
1652 * uncharges. Wake any sleepers explicitely.
1653 */
1654 memcg_oom_recover(memcg);
1655 }
49426420 1656cleanup:
626ebc41 1657 current->memcg_in_oom = NULL;
3812c8c8 1658 css_put(&memcg->css);
867578cb 1659 return true;
0b7f569e
KH
1660}
1661
d7365e78 1662/**
81f8c3a4
JW
1663 * lock_page_memcg - lock a page->mem_cgroup binding
1664 * @page: the page
32047e2a 1665 *
81f8c3a4
JW
1666 * This function protects unlocked LRU pages from being moved to
1667 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1668 */
62cccb8c 1669void lock_page_memcg(struct page *page)
89c06bd5
KH
1670{
1671 struct mem_cgroup *memcg;
6de22619 1672 unsigned long flags;
89c06bd5 1673
6de22619
JW
1674 /*
1675 * The RCU lock is held throughout the transaction. The fast
1676 * path can get away without acquiring the memcg->move_lock
1677 * because page moving starts with an RCU grace period.
6de22619 1678 */
d7365e78
JW
1679 rcu_read_lock();
1680
1681 if (mem_cgroup_disabled())
62cccb8c 1682 return;
89c06bd5 1683again:
1306a85a 1684 memcg = page->mem_cgroup;
29833315 1685 if (unlikely(!memcg))
62cccb8c 1686 return;
d7365e78 1687
bdcbb659 1688 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1689 return;
89c06bd5 1690
6de22619 1691 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1692 if (memcg != page->mem_cgroup) {
6de22619 1693 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1694 goto again;
1695 }
6de22619
JW
1696
1697 /*
1698 * When charge migration first begins, we can have locked and
1699 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1700 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1701 */
1702 memcg->move_lock_task = current;
1703 memcg->move_lock_flags = flags;
d7365e78 1704
62cccb8c 1705 return;
89c06bd5 1706}
81f8c3a4 1707EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1708
d7365e78 1709/**
81f8c3a4 1710 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1711 * @page: the page
d7365e78 1712 */
62cccb8c 1713void unlock_page_memcg(struct page *page)
89c06bd5 1714{
62cccb8c
JW
1715 struct mem_cgroup *memcg = page->mem_cgroup;
1716
6de22619
JW
1717 if (memcg && memcg->move_lock_task == current) {
1718 unsigned long flags = memcg->move_lock_flags;
1719
1720 memcg->move_lock_task = NULL;
1721 memcg->move_lock_flags = 0;
1722
1723 spin_unlock_irqrestore(&memcg->move_lock, flags);
1724 }
89c06bd5 1725
d7365e78 1726 rcu_read_unlock();
89c06bd5 1727}
81f8c3a4 1728EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1729
cdec2e42
KH
1730/*
1731 * size of first charge trial. "32" comes from vmscan.c's magic value.
1732 * TODO: maybe necessary to use big numbers in big irons.
1733 */
7ec99d62 1734#define CHARGE_BATCH 32U
cdec2e42
KH
1735struct memcg_stock_pcp {
1736 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1737 unsigned int nr_pages;
cdec2e42 1738 struct work_struct work;
26fe6168 1739 unsigned long flags;
a0db00fc 1740#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1741};
1742static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1743static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1744
a0956d54
SS
1745/**
1746 * consume_stock: Try to consume stocked charge on this cpu.
1747 * @memcg: memcg to consume from.
1748 * @nr_pages: how many pages to charge.
1749 *
1750 * The charges will only happen if @memcg matches the current cpu's memcg
1751 * stock, and at least @nr_pages are available in that stock. Failure to
1752 * service an allocation will refill the stock.
1753 *
1754 * returns true if successful, false otherwise.
cdec2e42 1755 */
a0956d54 1756static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1757{
1758 struct memcg_stock_pcp *stock;
3e32cb2e 1759 bool ret = false;
cdec2e42 1760
a0956d54 1761 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1762 return ret;
a0956d54 1763
cdec2e42 1764 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1765 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1766 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1767 ret = true;
1768 }
cdec2e42
KH
1769 put_cpu_var(memcg_stock);
1770 return ret;
1771}
1772
1773/*
3e32cb2e 1774 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1775 */
1776static void drain_stock(struct memcg_stock_pcp *stock)
1777{
1778 struct mem_cgroup *old = stock->cached;
1779
11c9ea4e 1780 if (stock->nr_pages) {
3e32cb2e 1781 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1782 if (do_memsw_account())
3e32cb2e 1783 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1784 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1785 stock->nr_pages = 0;
cdec2e42
KH
1786 }
1787 stock->cached = NULL;
cdec2e42
KH
1788}
1789
1790/*
1791 * This must be called under preempt disabled or must be called by
1792 * a thread which is pinned to local cpu.
1793 */
1794static void drain_local_stock(struct work_struct *dummy)
1795{
7c8e0181 1796 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1797 drain_stock(stock);
26fe6168 1798 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1799}
1800
1801/*
3e32cb2e 1802 * Cache charges(val) to local per_cpu area.
320cc51d 1803 * This will be consumed by consume_stock() function, later.
cdec2e42 1804 */
c0ff4b85 1805static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1806{
1807 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1808
c0ff4b85 1809 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1810 drain_stock(stock);
c0ff4b85 1811 stock->cached = memcg;
cdec2e42 1812 }
11c9ea4e 1813 stock->nr_pages += nr_pages;
cdec2e42
KH
1814 put_cpu_var(memcg_stock);
1815}
1816
1817/*
c0ff4b85 1818 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1819 * of the hierarchy under it.
cdec2e42 1820 */
6d3d6aa2 1821static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1822{
26fe6168 1823 int cpu, curcpu;
d38144b7 1824
6d3d6aa2
JW
1825 /* If someone's already draining, avoid adding running more workers. */
1826 if (!mutex_trylock(&percpu_charge_mutex))
1827 return;
cdec2e42 1828 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1829 get_online_cpus();
5af12d0e 1830 curcpu = get_cpu();
cdec2e42
KH
1831 for_each_online_cpu(cpu) {
1832 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1833 struct mem_cgroup *memcg;
26fe6168 1834
c0ff4b85
R
1835 memcg = stock->cached;
1836 if (!memcg || !stock->nr_pages)
26fe6168 1837 continue;
2314b42d 1838 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1839 continue;
d1a05b69
MH
1840 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1841 if (cpu == curcpu)
1842 drain_local_stock(&stock->work);
1843 else
1844 schedule_work_on(cpu, &stock->work);
1845 }
cdec2e42 1846 }
5af12d0e 1847 put_cpu();
f894ffa8 1848 put_online_cpus();
9f50fad6 1849 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1850}
1851
0db0628d 1852static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1853 unsigned long action,
1854 void *hcpu)
1855{
1856 int cpu = (unsigned long)hcpu;
1857 struct memcg_stock_pcp *stock;
1858
619d094b 1859 if (action == CPU_ONLINE)
1489ebad 1860 return NOTIFY_OK;
1489ebad 1861
d833049b 1862 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1863 return NOTIFY_OK;
711d3d2c 1864
cdec2e42
KH
1865 stock = &per_cpu(memcg_stock, cpu);
1866 drain_stock(stock);
1867 return NOTIFY_OK;
1868}
1869
f7e1cb6e
JW
1870static void reclaim_high(struct mem_cgroup *memcg,
1871 unsigned int nr_pages,
1872 gfp_t gfp_mask)
1873{
1874 do {
1875 if (page_counter_read(&memcg->memory) <= memcg->high)
1876 continue;
1877 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1878 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1879 } while ((memcg = parent_mem_cgroup(memcg)));
1880}
1881
1882static void high_work_func(struct work_struct *work)
1883{
1884 struct mem_cgroup *memcg;
1885
1886 memcg = container_of(work, struct mem_cgroup, high_work);
1887 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1888}
1889
b23afb93
TH
1890/*
1891 * Scheduled by try_charge() to be executed from the userland return path
1892 * and reclaims memory over the high limit.
1893 */
1894void mem_cgroup_handle_over_high(void)
1895{
1896 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1897 struct mem_cgroup *memcg;
b23afb93
TH
1898
1899 if (likely(!nr_pages))
1900 return;
1901
f7e1cb6e
JW
1902 memcg = get_mem_cgroup_from_mm(current->mm);
1903 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1904 css_put(&memcg->css);
1905 current->memcg_nr_pages_over_high = 0;
1906}
1907
00501b53
JW
1908static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1909 unsigned int nr_pages)
8a9f3ccd 1910{
7ec99d62 1911 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1912 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1913 struct mem_cgroup *mem_over_limit;
3e32cb2e 1914 struct page_counter *counter;
6539cc05 1915 unsigned long nr_reclaimed;
b70a2a21
JW
1916 bool may_swap = true;
1917 bool drained = false;
a636b327 1918
ce00a967 1919 if (mem_cgroup_is_root(memcg))
10d53c74 1920 return 0;
6539cc05 1921retry:
b6b6cc72 1922 if (consume_stock(memcg, nr_pages))
10d53c74 1923 return 0;
8a9f3ccd 1924
7941d214 1925 if (!do_memsw_account() ||
6071ca52
JW
1926 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1927 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1928 goto done_restock;
7941d214 1929 if (do_memsw_account())
3e32cb2e
JW
1930 page_counter_uncharge(&memcg->memsw, batch);
1931 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1932 } else {
3e32cb2e 1933 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1934 may_swap = false;
3fbe7244 1935 }
7a81b88c 1936
6539cc05
JW
1937 if (batch > nr_pages) {
1938 batch = nr_pages;
1939 goto retry;
1940 }
6d61ef40 1941
06b078fc
JW
1942 /*
1943 * Unlike in global OOM situations, memcg is not in a physical
1944 * memory shortage. Allow dying and OOM-killed tasks to
1945 * bypass the last charges so that they can exit quickly and
1946 * free their memory.
1947 */
1948 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1949 fatal_signal_pending(current) ||
1950 current->flags & PF_EXITING))
10d53c74 1951 goto force;
06b078fc
JW
1952
1953 if (unlikely(task_in_memcg_oom(current)))
1954 goto nomem;
1955
d0164adc 1956 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1957 goto nomem;
4b534334 1958
241994ed
JW
1959 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1960
b70a2a21
JW
1961 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1962 gfp_mask, may_swap);
6539cc05 1963
61e02c74 1964 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1965 goto retry;
28c34c29 1966
b70a2a21 1967 if (!drained) {
6d3d6aa2 1968 drain_all_stock(mem_over_limit);
b70a2a21
JW
1969 drained = true;
1970 goto retry;
1971 }
1972
28c34c29
JW
1973 if (gfp_mask & __GFP_NORETRY)
1974 goto nomem;
6539cc05
JW
1975 /*
1976 * Even though the limit is exceeded at this point, reclaim
1977 * may have been able to free some pages. Retry the charge
1978 * before killing the task.
1979 *
1980 * Only for regular pages, though: huge pages are rather
1981 * unlikely to succeed so close to the limit, and we fall back
1982 * to regular pages anyway in case of failure.
1983 */
61e02c74 1984 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1985 goto retry;
1986 /*
1987 * At task move, charge accounts can be doubly counted. So, it's
1988 * better to wait until the end of task_move if something is going on.
1989 */
1990 if (mem_cgroup_wait_acct_move(mem_over_limit))
1991 goto retry;
1992
9b130619
JW
1993 if (nr_retries--)
1994 goto retry;
1995
06b078fc 1996 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1997 goto force;
06b078fc 1998
6539cc05 1999 if (fatal_signal_pending(current))
10d53c74 2000 goto force;
6539cc05 2001
241994ed
JW
2002 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2003
3608de07
JM
2004 mem_cgroup_oom(mem_over_limit, gfp_mask,
2005 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2006nomem:
6d1fdc48 2007 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2008 return -ENOMEM;
10d53c74
TH
2009force:
2010 /*
2011 * The allocation either can't fail or will lead to more memory
2012 * being freed very soon. Allow memory usage go over the limit
2013 * temporarily by force charging it.
2014 */
2015 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2016 if (do_memsw_account())
10d53c74
TH
2017 page_counter_charge(&memcg->memsw, nr_pages);
2018 css_get_many(&memcg->css, nr_pages);
2019
2020 return 0;
6539cc05
JW
2021
2022done_restock:
e8ea14cc 2023 css_get_many(&memcg->css, batch);
6539cc05
JW
2024 if (batch > nr_pages)
2025 refill_stock(memcg, batch - nr_pages);
b23afb93 2026
241994ed 2027 /*
b23afb93
TH
2028 * If the hierarchy is above the normal consumption range, schedule
2029 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2030 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2031 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2032 * not recorded as it most likely matches current's and won't
2033 * change in the meantime. As high limit is checked again before
2034 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2035 */
2036 do {
b23afb93 2037 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2038 /* Don't bother a random interrupted task */
2039 if (in_interrupt()) {
2040 schedule_work(&memcg->high_work);
2041 break;
2042 }
9516a18a 2043 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2044 set_notify_resume(current);
2045 break;
2046 }
241994ed 2047 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2048
2049 return 0;
7a81b88c 2050}
8a9f3ccd 2051
00501b53 2052static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2053{
ce00a967
JW
2054 if (mem_cgroup_is_root(memcg))
2055 return;
2056
3e32cb2e 2057 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2058 if (do_memsw_account())
3e32cb2e 2059 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2060
e8ea14cc 2061 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2062}
2063
0a31bc97
JW
2064static void lock_page_lru(struct page *page, int *isolated)
2065{
2066 struct zone *zone = page_zone(page);
2067
a52633d8 2068 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2069 if (PageLRU(page)) {
2070 struct lruvec *lruvec;
2071
2072 lruvec = mem_cgroup_page_lruvec(page, zone);
2073 ClearPageLRU(page);
2074 del_page_from_lru_list(page, lruvec, page_lru(page));
2075 *isolated = 1;
2076 } else
2077 *isolated = 0;
2078}
2079
2080static void unlock_page_lru(struct page *page, int isolated)
2081{
2082 struct zone *zone = page_zone(page);
2083
2084 if (isolated) {
2085 struct lruvec *lruvec;
2086
2087 lruvec = mem_cgroup_page_lruvec(page, zone);
2088 VM_BUG_ON_PAGE(PageLRU(page), page);
2089 SetPageLRU(page);
2090 add_page_to_lru_list(page, lruvec, page_lru(page));
2091 }
a52633d8 2092 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2093}
2094
00501b53 2095static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2096 bool lrucare)
7a81b88c 2097{
0a31bc97 2098 int isolated;
9ce70c02 2099
1306a85a 2100 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2101
2102 /*
2103 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2104 * may already be on some other mem_cgroup's LRU. Take care of it.
2105 */
0a31bc97
JW
2106 if (lrucare)
2107 lock_page_lru(page, &isolated);
9ce70c02 2108
0a31bc97
JW
2109 /*
2110 * Nobody should be changing or seriously looking at
1306a85a 2111 * page->mem_cgroup at this point:
0a31bc97
JW
2112 *
2113 * - the page is uncharged
2114 *
2115 * - the page is off-LRU
2116 *
2117 * - an anonymous fault has exclusive page access, except for
2118 * a locked page table
2119 *
2120 * - a page cache insertion, a swapin fault, or a migration
2121 * have the page locked
2122 */
1306a85a 2123 page->mem_cgroup = memcg;
9ce70c02 2124
0a31bc97
JW
2125 if (lrucare)
2126 unlock_page_lru(page, isolated);
7a81b88c 2127}
66e1707b 2128
127424c8 2129#ifndef CONFIG_SLOB
f3bb3043 2130static int memcg_alloc_cache_id(void)
55007d84 2131{
f3bb3043
VD
2132 int id, size;
2133 int err;
2134
dbcf73e2 2135 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2136 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2137 if (id < 0)
2138 return id;
55007d84 2139
dbcf73e2 2140 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2141 return id;
2142
2143 /*
2144 * There's no space for the new id in memcg_caches arrays,
2145 * so we have to grow them.
2146 */
05257a1a 2147 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2148
2149 size = 2 * (id + 1);
55007d84
GC
2150 if (size < MEMCG_CACHES_MIN_SIZE)
2151 size = MEMCG_CACHES_MIN_SIZE;
2152 else if (size > MEMCG_CACHES_MAX_SIZE)
2153 size = MEMCG_CACHES_MAX_SIZE;
2154
f3bb3043 2155 err = memcg_update_all_caches(size);
60d3fd32
VD
2156 if (!err)
2157 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2158 if (!err)
2159 memcg_nr_cache_ids = size;
2160
2161 up_write(&memcg_cache_ids_sem);
2162
f3bb3043 2163 if (err) {
dbcf73e2 2164 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2165 return err;
2166 }
2167 return id;
2168}
2169
2170static void memcg_free_cache_id(int id)
2171{
dbcf73e2 2172 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2173}
2174
d5b3cf71 2175struct memcg_kmem_cache_create_work {
5722d094
VD
2176 struct mem_cgroup *memcg;
2177 struct kmem_cache *cachep;
2178 struct work_struct work;
2179};
2180
d5b3cf71 2181static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2182{
d5b3cf71
VD
2183 struct memcg_kmem_cache_create_work *cw =
2184 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2185 struct mem_cgroup *memcg = cw->memcg;
2186 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2187
d5b3cf71 2188 memcg_create_kmem_cache(memcg, cachep);
bd673145 2189
5722d094 2190 css_put(&memcg->css);
d7f25f8a
GC
2191 kfree(cw);
2192}
2193
2194/*
2195 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2196 */
d5b3cf71
VD
2197static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2198 struct kmem_cache *cachep)
d7f25f8a 2199{
d5b3cf71 2200 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2201
776ed0f0 2202 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2203 if (!cw)
d7f25f8a 2204 return;
8135be5a
VD
2205
2206 css_get(&memcg->css);
d7f25f8a
GC
2207
2208 cw->memcg = memcg;
2209 cw->cachep = cachep;
d5b3cf71 2210 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2211
d7f25f8a
GC
2212 schedule_work(&cw->work);
2213}
2214
d5b3cf71
VD
2215static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2216 struct kmem_cache *cachep)
0e9d92f2
GC
2217{
2218 /*
2219 * We need to stop accounting when we kmalloc, because if the
2220 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2221 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2222 *
2223 * However, it is better to enclose the whole function. Depending on
2224 * the debugging options enabled, INIT_WORK(), for instance, can
2225 * trigger an allocation. This too, will make us recurse. Because at
2226 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2227 * the safest choice is to do it like this, wrapping the whole function.
2228 */
6f185c29 2229 current->memcg_kmem_skip_account = 1;
d5b3cf71 2230 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2231 current->memcg_kmem_skip_account = 0;
0e9d92f2 2232}
c67a8a68 2233
45264778
VD
2234static inline bool memcg_kmem_bypass(void)
2235{
2236 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2237 return true;
2238 return false;
2239}
2240
2241/**
2242 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2243 * @cachep: the original global kmem cache
2244 *
d7f25f8a
GC
2245 * Return the kmem_cache we're supposed to use for a slab allocation.
2246 * We try to use the current memcg's version of the cache.
2247 *
45264778
VD
2248 * If the cache does not exist yet, if we are the first user of it, we
2249 * create it asynchronously in a workqueue and let the current allocation
2250 * go through with the original cache.
d7f25f8a 2251 *
45264778
VD
2252 * This function takes a reference to the cache it returns to assure it
2253 * won't get destroyed while we are working with it. Once the caller is
2254 * done with it, memcg_kmem_put_cache() must be called to release the
2255 * reference.
d7f25f8a 2256 */
45264778 2257struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2258{
2259 struct mem_cgroup *memcg;
959c8963 2260 struct kmem_cache *memcg_cachep;
2a4db7eb 2261 int kmemcg_id;
d7f25f8a 2262
f7ce3190 2263 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2264
45264778 2265 if (memcg_kmem_bypass())
230e9fc2
VD
2266 return cachep;
2267
9d100c5e 2268 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2269 return cachep;
2270
8135be5a 2271 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2272 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2273 if (kmemcg_id < 0)
ca0dde97 2274 goto out;
d7f25f8a 2275
2a4db7eb 2276 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2277 if (likely(memcg_cachep))
2278 return memcg_cachep;
ca0dde97
LZ
2279
2280 /*
2281 * If we are in a safe context (can wait, and not in interrupt
2282 * context), we could be be predictable and return right away.
2283 * This would guarantee that the allocation being performed
2284 * already belongs in the new cache.
2285 *
2286 * However, there are some clashes that can arrive from locking.
2287 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2288 * memcg_create_kmem_cache, this means no further allocation
2289 * could happen with the slab_mutex held. So it's better to
2290 * defer everything.
ca0dde97 2291 */
d5b3cf71 2292 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2293out:
8135be5a 2294 css_put(&memcg->css);
ca0dde97 2295 return cachep;
d7f25f8a 2296}
d7f25f8a 2297
45264778
VD
2298/**
2299 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2300 * @cachep: the cache returned by memcg_kmem_get_cache
2301 */
2302void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2303{
2304 if (!is_root_cache(cachep))
f7ce3190 2305 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2306}
2307
45264778
VD
2308/**
2309 * memcg_kmem_charge: charge a kmem page
2310 * @page: page to charge
2311 * @gfp: reclaim mode
2312 * @order: allocation order
2313 * @memcg: memory cgroup to charge
2314 *
2315 * Returns 0 on success, an error code on failure.
2316 */
2317int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2318 struct mem_cgroup *memcg)
7ae1e1d0 2319{
f3ccb2c4
VD
2320 unsigned int nr_pages = 1 << order;
2321 struct page_counter *counter;
7ae1e1d0
GC
2322 int ret;
2323
f3ccb2c4 2324 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2325 if (ret)
f3ccb2c4 2326 return ret;
52c29b04
JW
2327
2328 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2329 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2330 cancel_charge(memcg, nr_pages);
2331 return -ENOMEM;
7ae1e1d0
GC
2332 }
2333
f3ccb2c4 2334 page->mem_cgroup = memcg;
7ae1e1d0 2335
f3ccb2c4 2336 return 0;
7ae1e1d0
GC
2337}
2338
45264778
VD
2339/**
2340 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2341 * @page: page to charge
2342 * @gfp: reclaim mode
2343 * @order: allocation order
2344 *
2345 * Returns 0 on success, an error code on failure.
2346 */
2347int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2348{
f3ccb2c4 2349 struct mem_cgroup *memcg;
fcff7d7e 2350 int ret = 0;
7ae1e1d0 2351
45264778
VD
2352 if (memcg_kmem_bypass())
2353 return 0;
2354
f3ccb2c4 2355 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2356 if (!mem_cgroup_is_root(memcg))
45264778 2357 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2358 css_put(&memcg->css);
d05e83a6 2359 return ret;
7ae1e1d0 2360}
45264778
VD
2361/**
2362 * memcg_kmem_uncharge: uncharge a kmem page
2363 * @page: page to uncharge
2364 * @order: allocation order
2365 */
2366void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2367{
1306a85a 2368 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2369 unsigned int nr_pages = 1 << order;
7ae1e1d0 2370
7ae1e1d0
GC
2371 if (!memcg)
2372 return;
2373
309381fe 2374 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2375
52c29b04
JW
2376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2377 page_counter_uncharge(&memcg->kmem, nr_pages);
2378
f3ccb2c4 2379 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2380 if (do_memsw_account())
f3ccb2c4 2381 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2382
1306a85a 2383 page->mem_cgroup = NULL;
f3ccb2c4 2384 css_put_many(&memcg->css, nr_pages);
60d3fd32 2385}
127424c8 2386#endif /* !CONFIG_SLOB */
7ae1e1d0 2387
ca3e0214
KH
2388#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2389
ca3e0214
KH
2390/*
2391 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2392 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2393 */
e94c8a9c 2394void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2395{
e94c8a9c 2396 int i;
ca3e0214 2397
3d37c4a9
KH
2398 if (mem_cgroup_disabled())
2399 return;
b070e65c 2400
29833315 2401 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2402 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2403
1306a85a 2404 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2405 HPAGE_PMD_NR);
ca3e0214 2406}
12d27107 2407#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2408
c255a458 2409#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2410static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2411 bool charge)
d13d1443 2412{
0a31bc97
JW
2413 int val = (charge) ? 1 : -1;
2414 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2415}
02491447
DN
2416
2417/**
2418 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2419 * @entry: swap entry to be moved
2420 * @from: mem_cgroup which the entry is moved from
2421 * @to: mem_cgroup which the entry is moved to
2422 *
2423 * It succeeds only when the swap_cgroup's record for this entry is the same
2424 * as the mem_cgroup's id of @from.
2425 *
2426 * Returns 0 on success, -EINVAL on failure.
2427 *
3e32cb2e 2428 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2429 * both res and memsw, and called css_get().
2430 */
2431static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2432 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2433{
2434 unsigned short old_id, new_id;
2435
34c00c31
LZ
2436 old_id = mem_cgroup_id(from);
2437 new_id = mem_cgroup_id(to);
02491447
DN
2438
2439 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2440 mem_cgroup_swap_statistics(from, false);
483c30b5 2441 mem_cgroup_swap_statistics(to, true);
02491447
DN
2442 return 0;
2443 }
2444 return -EINVAL;
2445}
2446#else
2447static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2448 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2449{
2450 return -EINVAL;
2451}
8c7c6e34 2452#endif
d13d1443 2453
3e32cb2e 2454static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2455
d38d2a75 2456static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2457 unsigned long limit)
628f4235 2458{
3e32cb2e
JW
2459 unsigned long curusage;
2460 unsigned long oldusage;
2461 bool enlarge = false;
81d39c20 2462 int retry_count;
3e32cb2e 2463 int ret;
81d39c20
KH
2464
2465 /*
2466 * For keeping hierarchical_reclaim simple, how long we should retry
2467 * is depends on callers. We set our retry-count to be function
2468 * of # of children which we should visit in this loop.
2469 */
3e32cb2e
JW
2470 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2471 mem_cgroup_count_children(memcg);
81d39c20 2472
3e32cb2e 2473 oldusage = page_counter_read(&memcg->memory);
628f4235 2474
3e32cb2e 2475 do {
628f4235
KH
2476 if (signal_pending(current)) {
2477 ret = -EINTR;
2478 break;
2479 }
3e32cb2e
JW
2480
2481 mutex_lock(&memcg_limit_mutex);
2482 if (limit > memcg->memsw.limit) {
2483 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2484 ret = -EINVAL;
628f4235
KH
2485 break;
2486 }
3e32cb2e
JW
2487 if (limit > memcg->memory.limit)
2488 enlarge = true;
2489 ret = page_counter_limit(&memcg->memory, limit);
2490 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2491
2492 if (!ret)
2493 break;
2494
b70a2a21
JW
2495 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2496
3e32cb2e 2497 curusage = page_counter_read(&memcg->memory);
81d39c20 2498 /* Usage is reduced ? */
f894ffa8 2499 if (curusage >= oldusage)
81d39c20
KH
2500 retry_count--;
2501 else
2502 oldusage = curusage;
3e32cb2e
JW
2503 } while (retry_count);
2504
3c11ecf4
KH
2505 if (!ret && enlarge)
2506 memcg_oom_recover(memcg);
14797e23 2507
8c7c6e34
KH
2508 return ret;
2509}
2510
338c8431 2511static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2512 unsigned long limit)
8c7c6e34 2513{
3e32cb2e
JW
2514 unsigned long curusage;
2515 unsigned long oldusage;
2516 bool enlarge = false;
81d39c20 2517 int retry_count;
3e32cb2e 2518 int ret;
8c7c6e34 2519
81d39c20 2520 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2521 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2522 mem_cgroup_count_children(memcg);
2523
2524 oldusage = page_counter_read(&memcg->memsw);
2525
2526 do {
8c7c6e34
KH
2527 if (signal_pending(current)) {
2528 ret = -EINTR;
2529 break;
2530 }
3e32cb2e
JW
2531
2532 mutex_lock(&memcg_limit_mutex);
2533 if (limit < memcg->memory.limit) {
2534 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2535 ret = -EINVAL;
8c7c6e34
KH
2536 break;
2537 }
3e32cb2e
JW
2538 if (limit > memcg->memsw.limit)
2539 enlarge = true;
2540 ret = page_counter_limit(&memcg->memsw, limit);
2541 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2542
2543 if (!ret)
2544 break;
2545
b70a2a21
JW
2546 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2547
3e32cb2e 2548 curusage = page_counter_read(&memcg->memsw);
81d39c20 2549 /* Usage is reduced ? */
8c7c6e34 2550 if (curusage >= oldusage)
628f4235 2551 retry_count--;
81d39c20
KH
2552 else
2553 oldusage = curusage;
3e32cb2e
JW
2554 } while (retry_count);
2555
3c11ecf4
KH
2556 if (!ret && enlarge)
2557 memcg_oom_recover(memcg);
3e32cb2e 2558
628f4235
KH
2559 return ret;
2560}
2561
0608f43d
AM
2562unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2563 gfp_t gfp_mask,
2564 unsigned long *total_scanned)
2565{
2566 unsigned long nr_reclaimed = 0;
2567 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2568 unsigned long reclaimed;
2569 int loop = 0;
2570 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2571 unsigned long excess;
0608f43d
AM
2572 unsigned long nr_scanned;
2573
2574 if (order > 0)
2575 return 0;
2576
2577 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2578 /*
2579 * This loop can run a while, specially if mem_cgroup's continuously
2580 * keep exceeding their soft limit and putting the system under
2581 * pressure
2582 */
2583 do {
2584 if (next_mz)
2585 mz = next_mz;
2586 else
2587 mz = mem_cgroup_largest_soft_limit_node(mctz);
2588 if (!mz)
2589 break;
2590
2591 nr_scanned = 0;
2592 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2593 gfp_mask, &nr_scanned);
2594 nr_reclaimed += reclaimed;
2595 *total_scanned += nr_scanned;
0a31bc97 2596 spin_lock_irq(&mctz->lock);
bc2f2e7f 2597 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2598
2599 /*
2600 * If we failed to reclaim anything from this memory cgroup
2601 * it is time to move on to the next cgroup
2602 */
2603 next_mz = NULL;
bc2f2e7f
VD
2604 if (!reclaimed)
2605 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2606
3e32cb2e 2607 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2608 /*
2609 * One school of thought says that we should not add
2610 * back the node to the tree if reclaim returns 0.
2611 * But our reclaim could return 0, simply because due
2612 * to priority we are exposing a smaller subset of
2613 * memory to reclaim from. Consider this as a longer
2614 * term TODO.
2615 */
2616 /* If excess == 0, no tree ops */
cf2c8127 2617 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2618 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2619 css_put(&mz->memcg->css);
2620 loop++;
2621 /*
2622 * Could not reclaim anything and there are no more
2623 * mem cgroups to try or we seem to be looping without
2624 * reclaiming anything.
2625 */
2626 if (!nr_reclaimed &&
2627 (next_mz == NULL ||
2628 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2629 break;
2630 } while (!nr_reclaimed);
2631 if (next_mz)
2632 css_put(&next_mz->memcg->css);
2633 return nr_reclaimed;
2634}
2635
ea280e7b
TH
2636/*
2637 * Test whether @memcg has children, dead or alive. Note that this
2638 * function doesn't care whether @memcg has use_hierarchy enabled and
2639 * returns %true if there are child csses according to the cgroup
2640 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2641 */
b5f99b53
GC
2642static inline bool memcg_has_children(struct mem_cgroup *memcg)
2643{
ea280e7b
TH
2644 bool ret;
2645
ea280e7b
TH
2646 rcu_read_lock();
2647 ret = css_next_child(NULL, &memcg->css);
2648 rcu_read_unlock();
2649 return ret;
b5f99b53
GC
2650}
2651
c26251f9 2652/*
51038171 2653 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2654 *
2655 * Caller is responsible for holding css reference for memcg.
2656 */
2657static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2658{
2659 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2660
c1e862c1
KH
2661 /* we call try-to-free pages for make this cgroup empty */
2662 lru_add_drain_all();
f817ed48 2663 /* try to free all pages in this cgroup */
3e32cb2e 2664 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2665 int progress;
c1e862c1 2666
c26251f9
MH
2667 if (signal_pending(current))
2668 return -EINTR;
2669
b70a2a21
JW
2670 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2671 GFP_KERNEL, true);
c1e862c1 2672 if (!progress) {
f817ed48 2673 nr_retries--;
c1e862c1 2674 /* maybe some writeback is necessary */
8aa7e847 2675 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2676 }
f817ed48
KH
2677
2678 }
ab5196c2
MH
2679
2680 return 0;
cc847582
KH
2681}
2682
6770c64e
TH
2683static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2684 char *buf, size_t nbytes,
2685 loff_t off)
c1e862c1 2686{
6770c64e 2687 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2688
d8423011
MH
2689 if (mem_cgroup_is_root(memcg))
2690 return -EINVAL;
6770c64e 2691 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2692}
2693
182446d0
TH
2694static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2695 struct cftype *cft)
18f59ea7 2696{
182446d0 2697 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2698}
2699
182446d0
TH
2700static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2701 struct cftype *cft, u64 val)
18f59ea7
BS
2702{
2703 int retval = 0;
182446d0 2704 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2705 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2706
567fb435 2707 if (memcg->use_hierarchy == val)
0b8f73e1 2708 return 0;
567fb435 2709
18f59ea7 2710 /*
af901ca1 2711 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2712 * in the child subtrees. If it is unset, then the change can
2713 * occur, provided the current cgroup has no children.
2714 *
2715 * For the root cgroup, parent_mem is NULL, we allow value to be
2716 * set if there are no children.
2717 */
c0ff4b85 2718 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2719 (val == 1 || val == 0)) {
ea280e7b 2720 if (!memcg_has_children(memcg))
c0ff4b85 2721 memcg->use_hierarchy = val;
18f59ea7
BS
2722 else
2723 retval = -EBUSY;
2724 } else
2725 retval = -EINVAL;
567fb435 2726
18f59ea7
BS
2727 return retval;
2728}
2729
72b54e73 2730static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2731{
2732 struct mem_cgroup *iter;
72b54e73 2733 int i;
ce00a967 2734
72b54e73 2735 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2736
72b54e73
VD
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_STAT; i++)
2739 stat[i] += mem_cgroup_read_stat(iter, i);
2740 }
ce00a967
JW
2741}
2742
72b54e73 2743static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2744{
2745 struct mem_cgroup *iter;
72b54e73 2746 int i;
587d9f72 2747
72b54e73 2748 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2749
72b54e73
VD
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2752 events[i] += mem_cgroup_read_events(iter, i);
2753 }
587d9f72
JW
2754}
2755
6f646156 2756static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2757{
72b54e73 2758 unsigned long val = 0;
ce00a967 2759
3e32cb2e 2760 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2761 struct mem_cgroup *iter;
2762
2763 for_each_mem_cgroup_tree(iter, memcg) {
2764 val += mem_cgroup_read_stat(iter,
2765 MEM_CGROUP_STAT_CACHE);
2766 val += mem_cgroup_read_stat(iter,
2767 MEM_CGROUP_STAT_RSS);
2768 if (swap)
2769 val += mem_cgroup_read_stat(iter,
2770 MEM_CGROUP_STAT_SWAP);
2771 }
3e32cb2e 2772 } else {
ce00a967 2773 if (!swap)
3e32cb2e 2774 val = page_counter_read(&memcg->memory);
ce00a967 2775 else
3e32cb2e 2776 val = page_counter_read(&memcg->memsw);
ce00a967 2777 }
c12176d3 2778 return val;
ce00a967
JW
2779}
2780
3e32cb2e
JW
2781enum {
2782 RES_USAGE,
2783 RES_LIMIT,
2784 RES_MAX_USAGE,
2785 RES_FAILCNT,
2786 RES_SOFT_LIMIT,
2787};
ce00a967 2788
791badbd 2789static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2790 struct cftype *cft)
8cdea7c0 2791{
182446d0 2792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2793 struct page_counter *counter;
af36f906 2794
3e32cb2e 2795 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2796 case _MEM:
3e32cb2e
JW
2797 counter = &memcg->memory;
2798 break;
8c7c6e34 2799 case _MEMSWAP:
3e32cb2e
JW
2800 counter = &memcg->memsw;
2801 break;
510fc4e1 2802 case _KMEM:
3e32cb2e 2803 counter = &memcg->kmem;
510fc4e1 2804 break;
d55f90bf 2805 case _TCP:
0db15298 2806 counter = &memcg->tcpmem;
d55f90bf 2807 break;
8c7c6e34
KH
2808 default:
2809 BUG();
8c7c6e34 2810 }
3e32cb2e
JW
2811
2812 switch (MEMFILE_ATTR(cft->private)) {
2813 case RES_USAGE:
2814 if (counter == &memcg->memory)
c12176d3 2815 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2816 if (counter == &memcg->memsw)
c12176d3 2817 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2818 return (u64)page_counter_read(counter) * PAGE_SIZE;
2819 case RES_LIMIT:
2820 return (u64)counter->limit * PAGE_SIZE;
2821 case RES_MAX_USAGE:
2822 return (u64)counter->watermark * PAGE_SIZE;
2823 case RES_FAILCNT:
2824 return counter->failcnt;
2825 case RES_SOFT_LIMIT:
2826 return (u64)memcg->soft_limit * PAGE_SIZE;
2827 default:
2828 BUG();
2829 }
8cdea7c0 2830}
510fc4e1 2831
127424c8 2832#ifndef CONFIG_SLOB
567e9ab2 2833static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2834{
d6441637
VD
2835 int memcg_id;
2836
b313aeee
VD
2837 if (cgroup_memory_nokmem)
2838 return 0;
2839
2a4db7eb 2840 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2841 BUG_ON(memcg->kmem_state);
d6441637 2842
f3bb3043 2843 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2844 if (memcg_id < 0)
2845 return memcg_id;
d6441637 2846
ef12947c 2847 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2848 /*
567e9ab2 2849 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2850 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2851 * guarantee no one starts accounting before all call sites are
2852 * patched.
2853 */
900a38f0 2854 memcg->kmemcg_id = memcg_id;
567e9ab2 2855 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2856
2857 return 0;
d6441637
VD
2858}
2859
8e0a8912
JW
2860static void memcg_offline_kmem(struct mem_cgroup *memcg)
2861{
2862 struct cgroup_subsys_state *css;
2863 struct mem_cgroup *parent, *child;
2864 int kmemcg_id;
2865
2866 if (memcg->kmem_state != KMEM_ONLINE)
2867 return;
2868 /*
2869 * Clear the online state before clearing memcg_caches array
2870 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2871 * guarantees that no cache will be created for this cgroup
2872 * after we are done (see memcg_create_kmem_cache()).
2873 */
2874 memcg->kmem_state = KMEM_ALLOCATED;
2875
2876 memcg_deactivate_kmem_caches(memcg);
2877
2878 kmemcg_id = memcg->kmemcg_id;
2879 BUG_ON(kmemcg_id < 0);
2880
2881 parent = parent_mem_cgroup(memcg);
2882 if (!parent)
2883 parent = root_mem_cgroup;
2884
2885 /*
2886 * Change kmemcg_id of this cgroup and all its descendants to the
2887 * parent's id, and then move all entries from this cgroup's list_lrus
2888 * to ones of the parent. After we have finished, all list_lrus
2889 * corresponding to this cgroup are guaranteed to remain empty. The
2890 * ordering is imposed by list_lru_node->lock taken by
2891 * memcg_drain_all_list_lrus().
2892 */
3a06bb78 2893 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2894 css_for_each_descendant_pre(css, &memcg->css) {
2895 child = mem_cgroup_from_css(css);
2896 BUG_ON(child->kmemcg_id != kmemcg_id);
2897 child->kmemcg_id = parent->kmemcg_id;
2898 if (!memcg->use_hierarchy)
2899 break;
2900 }
3a06bb78
TH
2901 rcu_read_unlock();
2902
8e0a8912
JW
2903 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905 memcg_free_cache_id(kmemcg_id);
2906}
2907
2908static void memcg_free_kmem(struct mem_cgroup *memcg)
2909{
0b8f73e1
JW
2910 /* css_alloc() failed, offlining didn't happen */
2911 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912 memcg_offline_kmem(memcg);
2913
8e0a8912
JW
2914 if (memcg->kmem_state == KMEM_ALLOCATED) {
2915 memcg_destroy_kmem_caches(memcg);
2916 static_branch_dec(&memcg_kmem_enabled_key);
2917 WARN_ON(page_counter_read(&memcg->kmem));
2918 }
8e0a8912 2919}
d6441637 2920#else
0b8f73e1 2921static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2922{
2923 return 0;
2924}
2925static void memcg_offline_kmem(struct mem_cgroup *memcg)
2926{
2927}
2928static void memcg_free_kmem(struct mem_cgroup *memcg)
2929{
2930}
2931#endif /* !CONFIG_SLOB */
2932
d6441637 2933static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2934 unsigned long limit)
d6441637 2935{
b313aeee 2936 int ret;
127424c8
JW
2937
2938 mutex_lock(&memcg_limit_mutex);
127424c8 2939 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2940 mutex_unlock(&memcg_limit_mutex);
2941 return ret;
d6441637 2942}
510fc4e1 2943
d55f90bf
VD
2944static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2945{
2946 int ret;
2947
2948 mutex_lock(&memcg_limit_mutex);
2949
0db15298 2950 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2951 if (ret)
2952 goto out;
2953
0db15298 2954 if (!memcg->tcpmem_active) {
d55f90bf
VD
2955 /*
2956 * The active flag needs to be written after the static_key
2957 * update. This is what guarantees that the socket activation
2958 * function is the last one to run. See sock_update_memcg() for
2959 * details, and note that we don't mark any socket as belonging
2960 * to this memcg until that flag is up.
2961 *
2962 * We need to do this, because static_keys will span multiple
2963 * sites, but we can't control their order. If we mark a socket
2964 * as accounted, but the accounting functions are not patched in
2965 * yet, we'll lose accounting.
2966 *
2967 * We never race with the readers in sock_update_memcg(),
2968 * because when this value change, the code to process it is not
2969 * patched in yet.
2970 */
2971 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2972 memcg->tcpmem_active = true;
d55f90bf
VD
2973 }
2974out:
2975 mutex_unlock(&memcg_limit_mutex);
2976 return ret;
2977}
d55f90bf 2978
628f4235
KH
2979/*
2980 * The user of this function is...
2981 * RES_LIMIT.
2982 */
451af504
TH
2983static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2985{
451af504 2986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2987 unsigned long nr_pages;
628f4235
KH
2988 int ret;
2989
451af504 2990 buf = strstrip(buf);
650c5e56 2991 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2992 if (ret)
2993 return ret;
af36f906 2994
3e32cb2e 2995 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2996 case RES_LIMIT:
4b3bde4c
BS
2997 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2998 ret = -EINVAL;
2999 break;
3000 }
3e32cb2e
JW
3001 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002 case _MEM:
3003 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3004 break;
3e32cb2e
JW
3005 case _MEMSWAP:
3006 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3007 break;
3e32cb2e
JW
3008 case _KMEM:
3009 ret = memcg_update_kmem_limit(memcg, nr_pages);
3010 break;
d55f90bf
VD
3011 case _TCP:
3012 ret = memcg_update_tcp_limit(memcg, nr_pages);
3013 break;
3e32cb2e 3014 }
296c81d8 3015 break;
3e32cb2e
JW
3016 case RES_SOFT_LIMIT:
3017 memcg->soft_limit = nr_pages;
3018 ret = 0;
628f4235
KH
3019 break;
3020 }
451af504 3021 return ret ?: nbytes;
8cdea7c0
BS
3022}
3023
6770c64e
TH
3024static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3025 size_t nbytes, loff_t off)
c84872e1 3026{
6770c64e 3027 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3028 struct page_counter *counter;
c84872e1 3029
3e32cb2e
JW
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 counter = &memcg->memory;
3033 break;
3034 case _MEMSWAP:
3035 counter = &memcg->memsw;
3036 break;
3037 case _KMEM:
3038 counter = &memcg->kmem;
3039 break;
d55f90bf 3040 case _TCP:
0db15298 3041 counter = &memcg->tcpmem;
d55f90bf 3042 break;
3e32cb2e
JW
3043 default:
3044 BUG();
3045 }
af36f906 3046
3e32cb2e 3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3048 case RES_MAX_USAGE:
3e32cb2e 3049 page_counter_reset_watermark(counter);
29f2a4da
PE
3050 break;
3051 case RES_FAILCNT:
3e32cb2e 3052 counter->failcnt = 0;
29f2a4da 3053 break;
3e32cb2e
JW
3054 default:
3055 BUG();
29f2a4da 3056 }
f64c3f54 3057
6770c64e 3058 return nbytes;
c84872e1
PE
3059}
3060
182446d0 3061static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3062 struct cftype *cft)
3063{
182446d0 3064 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3065}
3066
02491447 3067#ifdef CONFIG_MMU
182446d0 3068static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3069 struct cftype *cft, u64 val)
3070{
182446d0 3071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3072
1dfab5ab 3073 if (val & ~MOVE_MASK)
7dc74be0 3074 return -EINVAL;
ee5e8472 3075
7dc74be0 3076 /*
ee5e8472
GC
3077 * No kind of locking is needed in here, because ->can_attach() will
3078 * check this value once in the beginning of the process, and then carry
3079 * on with stale data. This means that changes to this value will only
3080 * affect task migrations starting after the change.
7dc74be0 3081 */
c0ff4b85 3082 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3083 return 0;
3084}
02491447 3085#else
182446d0 3086static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3087 struct cftype *cft, u64 val)
3088{
3089 return -ENOSYS;
3090}
3091#endif
7dc74be0 3092
406eb0c9 3093#ifdef CONFIG_NUMA
2da8ca82 3094static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3095{
25485de6
GT
3096 struct numa_stat {
3097 const char *name;
3098 unsigned int lru_mask;
3099 };
3100
3101 static const struct numa_stat stats[] = {
3102 { "total", LRU_ALL },
3103 { "file", LRU_ALL_FILE },
3104 { "anon", LRU_ALL_ANON },
3105 { "unevictable", BIT(LRU_UNEVICTABLE) },
3106 };
3107 const struct numa_stat *stat;
406eb0c9 3108 int nid;
25485de6 3109 unsigned long nr;
2da8ca82 3110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3111
25485de6
GT
3112 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3113 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3114 seq_printf(m, "%s=%lu", stat->name, nr);
3115 for_each_node_state(nid, N_MEMORY) {
3116 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3117 stat->lru_mask);
3118 seq_printf(m, " N%d=%lu", nid, nr);
3119 }
3120 seq_putc(m, '\n');
406eb0c9 3121 }
406eb0c9 3122
071aee13
YH
3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 struct mem_cgroup *iter;
3125
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3129 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3130 for_each_node_state(nid, N_MEMORY) {
3131 nr = 0;
3132 for_each_mem_cgroup_tree(iter, memcg)
3133 nr += mem_cgroup_node_nr_lru_pages(
3134 iter, nid, stat->lru_mask);
3135 seq_printf(m, " N%d=%lu", nid, nr);
3136 }
3137 seq_putc(m, '\n');
406eb0c9 3138 }
406eb0c9 3139
406eb0c9
YH
3140 return 0;
3141}
3142#endif /* CONFIG_NUMA */
3143
2da8ca82 3144static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3145{
2da8ca82 3146 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3147 unsigned long memory, memsw;
af7c4b0e
JW
3148 struct mem_cgroup *mi;
3149 unsigned int i;
406eb0c9 3150
0ca44b14
GT
3151 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3152 MEM_CGROUP_STAT_NSTATS);
3153 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3154 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3156
af7c4b0e 3157 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3159 continue;
484ebb3b 3160 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3161 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3162 }
7b854121 3163
af7c4b0e
JW
3164 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3165 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3166 mem_cgroup_read_events(memcg, i));
3167
3168 for (i = 0; i < NR_LRU_LISTS; i++)
3169 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3170 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3171
14067bb3 3172 /* Hierarchical information */
3e32cb2e
JW
3173 memory = memsw = PAGE_COUNTER_MAX;
3174 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3175 memory = min(memory, mi->memory.limit);
3176 memsw = min(memsw, mi->memsw.limit);
fee7b548 3177 }
3e32cb2e
JW
3178 seq_printf(m, "hierarchical_memory_limit %llu\n",
3179 (u64)memory * PAGE_SIZE);
7941d214 3180 if (do_memsw_account())
3e32cb2e
JW
3181 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3182 (u64)memsw * PAGE_SIZE);
7f016ee8 3183
af7c4b0e 3184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3185 unsigned long long val = 0;
af7c4b0e 3186
7941d214 3187 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3188 continue;
af7c4b0e
JW
3189 for_each_mem_cgroup_tree(mi, memcg)
3190 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3191 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3192 }
3193
3194 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3195 unsigned long long val = 0;
3196
3197 for_each_mem_cgroup_tree(mi, memcg)
3198 val += mem_cgroup_read_events(mi, i);
3199 seq_printf(m, "total_%s %llu\n",
3200 mem_cgroup_events_names[i], val);
3201 }
3202
3203 for (i = 0; i < NR_LRU_LISTS; i++) {
3204 unsigned long long val = 0;
3205
3206 for_each_mem_cgroup_tree(mi, memcg)
3207 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3208 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3209 }
14067bb3 3210
7f016ee8 3211#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3212 {
3213 int nid, zid;
3214 struct mem_cgroup_per_zone *mz;
89abfab1 3215 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3216 unsigned long recent_rotated[2] = {0, 0};
3217 unsigned long recent_scanned[2] = {0, 0};
3218
3219 for_each_online_node(nid)
3220 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3221 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3222 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3223
89abfab1
HD
3224 recent_rotated[0] += rstat->recent_rotated[0];
3225 recent_rotated[1] += rstat->recent_rotated[1];
3226 recent_scanned[0] += rstat->recent_scanned[0];
3227 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3228 }
78ccf5b5
JW
3229 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3233 }
3234#endif
3235
d2ceb9b7
KH
3236 return 0;
3237}
3238
182446d0
TH
3239static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 struct cftype *cft)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
1f4c025b 3244 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3245}
3246
182446d0
TH
3247static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 struct cftype *cft, u64 val)
a7885eb8 3249{
182446d0 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3251
3dae7fec 3252 if (val > 100)
a7885eb8
KM
3253 return -EINVAL;
3254
14208b0e 3255 if (css->parent)
3dae7fec
JW
3256 memcg->swappiness = val;
3257 else
3258 vm_swappiness = val;
068b38c1 3259
a7885eb8
KM
3260 return 0;
3261}
3262
2e72b634
KS
3263static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264{
3265 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3266 unsigned long usage;
2e72b634
KS
3267 int i;
3268
3269 rcu_read_lock();
3270 if (!swap)
2c488db2 3271 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3272 else
2c488db2 3273 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3274
3275 if (!t)
3276 goto unlock;
3277
ce00a967 3278 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3279
3280 /*
748dad36 3281 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3282 * If it's not true, a threshold was crossed after last
3283 * call of __mem_cgroup_threshold().
3284 */
5407a562 3285 i = t->current_threshold;
2e72b634
KS
3286
3287 /*
3288 * Iterate backward over array of thresholds starting from
3289 * current_threshold and check if a threshold is crossed.
3290 * If none of thresholds below usage is crossed, we read
3291 * only one element of the array here.
3292 */
3293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296 /* i = current_threshold + 1 */
3297 i++;
3298
3299 /*
3300 * Iterate forward over array of thresholds starting from
3301 * current_threshold+1 and check if a threshold is crossed.
3302 * If none of thresholds above usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* Update current_threshold */
5407a562 3309 t->current_threshold = i - 1;
2e72b634
KS
3310unlock:
3311 rcu_read_unlock();
3312}
3313
3314static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315{
ad4ca5f4
KS
3316 while (memcg) {
3317 __mem_cgroup_threshold(memcg, false);
7941d214 3318 if (do_memsw_account())
ad4ca5f4
KS
3319 __mem_cgroup_threshold(memcg, true);
3320
3321 memcg = parent_mem_cgroup(memcg);
3322 }
2e72b634
KS
3323}
3324
3325static int compare_thresholds(const void *a, const void *b)
3326{
3327 const struct mem_cgroup_threshold *_a = a;
3328 const struct mem_cgroup_threshold *_b = b;
3329
2bff24a3
GT
3330 if (_a->threshold > _b->threshold)
3331 return 1;
3332
3333 if (_a->threshold < _b->threshold)
3334 return -1;
3335
3336 return 0;
2e72b634
KS
3337}
3338
c0ff4b85 3339static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3340{
3341 struct mem_cgroup_eventfd_list *ev;
3342
2bcf2e92
MH
3343 spin_lock(&memcg_oom_lock);
3344
c0ff4b85 3345 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3346 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3347
3348 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3349 return 0;
3350}
3351
c0ff4b85 3352static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3353{
7d74b06f
KH
3354 struct mem_cgroup *iter;
3355
c0ff4b85 3356 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3357 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3358}
3359
59b6f873 3360static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3361 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3362{
2c488db2
KS
3363 struct mem_cgroup_thresholds *thresholds;
3364 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3365 unsigned long threshold;
3366 unsigned long usage;
2c488db2 3367 int i, size, ret;
2e72b634 3368
650c5e56 3369 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3370 if (ret)
3371 return ret;
3372
3373 mutex_lock(&memcg->thresholds_lock);
2c488db2 3374
05b84301 3375 if (type == _MEM) {
2c488db2 3376 thresholds = &memcg->thresholds;
ce00a967 3377 usage = mem_cgroup_usage(memcg, false);
05b84301 3378 } else if (type == _MEMSWAP) {
2c488db2 3379 thresholds = &memcg->memsw_thresholds;
ce00a967 3380 usage = mem_cgroup_usage(memcg, true);
05b84301 3381 } else
2e72b634
KS
3382 BUG();
3383
2e72b634 3384 /* Check if a threshold crossed before adding a new one */
2c488db2 3385 if (thresholds->primary)
2e72b634
KS
3386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
2c488db2 3388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3389
3390 /* Allocate memory for new array of thresholds */
2c488db2 3391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3392 GFP_KERNEL);
2c488db2 3393 if (!new) {
2e72b634
KS
3394 ret = -ENOMEM;
3395 goto unlock;
3396 }
2c488db2 3397 new->size = size;
2e72b634
KS
3398
3399 /* Copy thresholds (if any) to new array */
2c488db2
KS
3400 if (thresholds->primary) {
3401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3402 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3403 }
3404
2e72b634 3405 /* Add new threshold */
2c488db2
KS
3406 new->entries[size - 1].eventfd = eventfd;
3407 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3408
3409 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3411 compare_thresholds, NULL);
3412
3413 /* Find current threshold */
2c488db2 3414 new->current_threshold = -1;
2e72b634 3415 for (i = 0; i < size; i++) {
748dad36 3416 if (new->entries[i].threshold <= usage) {
2e72b634 3417 /*
2c488db2
KS
3418 * new->current_threshold will not be used until
3419 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3420 * it here.
3421 */
2c488db2 3422 ++new->current_threshold;
748dad36
SZ
3423 } else
3424 break;
2e72b634
KS
3425 }
3426
2c488db2
KS
3427 /* Free old spare buffer and save old primary buffer as spare */
3428 kfree(thresholds->spare);
3429 thresholds->spare = thresholds->primary;
3430
3431 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3432
907860ed 3433 /* To be sure that nobody uses thresholds */
2e72b634
KS
3434 synchronize_rcu();
3435
2e72b634
KS
3436unlock:
3437 mutex_unlock(&memcg->thresholds_lock);
3438
3439 return ret;
3440}
3441
59b6f873 3442static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3443 struct eventfd_ctx *eventfd, const char *args)
3444{
59b6f873 3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3446}
3447
59b6f873 3448static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3449 struct eventfd_ctx *eventfd, const char *args)
3450{
59b6f873 3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3452}
3453
59b6f873 3454static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3455 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3456{
2c488db2
KS
3457 struct mem_cgroup_thresholds *thresholds;
3458 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3459 unsigned long usage;
2c488db2 3460 int i, j, size;
2e72b634
KS
3461
3462 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3463
3464 if (type == _MEM) {
2c488db2 3465 thresholds = &memcg->thresholds;
ce00a967 3466 usage = mem_cgroup_usage(memcg, false);
05b84301 3467 } else if (type == _MEMSWAP) {
2c488db2 3468 thresholds = &memcg->memsw_thresholds;
ce00a967 3469 usage = mem_cgroup_usage(memcg, true);
05b84301 3470 } else
2e72b634
KS
3471 BUG();
3472
371528ca
AV
3473 if (!thresholds->primary)
3474 goto unlock;
3475
2e72b634
KS
3476 /* Check if a threshold crossed before removing */
3477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479 /* Calculate new number of threshold */
2c488db2
KS
3480 size = 0;
3481 for (i = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3483 size++;
3484 }
3485
2c488db2 3486 new = thresholds->spare;
907860ed 3487
2e72b634
KS
3488 /* Set thresholds array to NULL if we don't have thresholds */
3489 if (!size) {
2c488db2
KS
3490 kfree(new);
3491 new = NULL;
907860ed 3492 goto swap_buffers;
2e72b634
KS
3493 }
3494
2c488db2 3495 new->size = size;
2e72b634
KS
3496
3497 /* Copy thresholds and find current threshold */
2c488db2
KS
3498 new->current_threshold = -1;
3499 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3501 continue;
3502
2c488db2 3503 new->entries[j] = thresholds->primary->entries[i];
748dad36 3504 if (new->entries[j].threshold <= usage) {
2e72b634 3505 /*
2c488db2 3506 * new->current_threshold will not be used
2e72b634
KS
3507 * until rcu_assign_pointer(), so it's safe to increment
3508 * it here.
3509 */
2c488db2 3510 ++new->current_threshold;
2e72b634
KS
3511 }
3512 j++;
3513 }
3514
907860ed 3515swap_buffers:
2c488db2
KS
3516 /* Swap primary and spare array */
3517 thresholds->spare = thresholds->primary;
8c757763 3518
2c488db2 3519 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3520
907860ed 3521 /* To be sure that nobody uses thresholds */
2e72b634 3522 synchronize_rcu();
6611d8d7
MC
3523
3524 /* If all events are unregistered, free the spare array */
3525 if (!new) {
3526 kfree(thresholds->spare);
3527 thresholds->spare = NULL;
3528 }
371528ca 3529unlock:
2e72b634 3530 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3531}
c1e862c1 3532
59b6f873 3533static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3534 struct eventfd_ctx *eventfd)
3535{
59b6f873 3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3537}
3538
59b6f873 3539static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3540 struct eventfd_ctx *eventfd)
3541{
59b6f873 3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3543}
3544
59b6f873 3545static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3546 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3547{
9490ff27 3548 struct mem_cgroup_eventfd_list *event;
9490ff27 3549
9490ff27
KH
3550 event = kmalloc(sizeof(*event), GFP_KERNEL);
3551 if (!event)
3552 return -ENOMEM;
3553
1af8efe9 3554 spin_lock(&memcg_oom_lock);
9490ff27
KH
3555
3556 event->eventfd = eventfd;
3557 list_add(&event->list, &memcg->oom_notify);
3558
3559 /* already in OOM ? */
c2b42d3c 3560 if (memcg->under_oom)
9490ff27 3561 eventfd_signal(eventfd, 1);
1af8efe9 3562 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3563
3564 return 0;
3565}
3566
59b6f873 3567static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3568 struct eventfd_ctx *eventfd)
9490ff27 3569{
9490ff27 3570 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3571
1af8efe9 3572 spin_lock(&memcg_oom_lock);
9490ff27 3573
c0ff4b85 3574 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3575 if (ev->eventfd == eventfd) {
3576 list_del(&ev->list);
3577 kfree(ev);
3578 }
3579 }
3580
1af8efe9 3581 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3582}
3583
2da8ca82 3584static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3585{
2da8ca82 3586 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3587
791badbd 3588 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3589 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3590 return 0;
3591}
3592
182446d0 3593static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3594 struct cftype *cft, u64 val)
3595{
182446d0 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3597
3598 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3599 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3600 return -EINVAL;
3601
c0ff4b85 3602 memcg->oom_kill_disable = val;
4d845ebf 3603 if (!val)
c0ff4b85 3604 memcg_oom_recover(memcg);
3dae7fec 3605
3c11ecf4
KH
3606 return 0;
3607}
3608
52ebea74
TH
3609#ifdef CONFIG_CGROUP_WRITEBACK
3610
3611struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612{
3613 return &memcg->cgwb_list;
3614}
3615
841710aa
TH
3616static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617{
3618 return wb_domain_init(&memcg->cgwb_domain, gfp);
3619}
3620
3621static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622{
3623 wb_domain_exit(&memcg->cgwb_domain);
3624}
3625
2529bb3a
TH
3626static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627{
3628 wb_domain_size_changed(&memcg->cgwb_domain);
3629}
3630
841710aa
TH
3631struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632{
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635 if (!memcg->css.parent)
3636 return NULL;
3637
3638 return &memcg->cgwb_domain;
3639}
3640
c2aa723a
TH
3641/**
3642 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643 * @wb: bdi_writeback in question
c5edf9cd
TH
3644 * @pfilepages: out parameter for number of file pages
3645 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3646 * @pdirty: out parameter for number of dirty pages
3647 * @pwriteback: out parameter for number of pages under writeback
3648 *
c5edf9cd
TH
3649 * Determine the numbers of file, headroom, dirty, and writeback pages in
3650 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3651 * is a bit more involved.
c2aa723a 3652 *
c5edf9cd
TH
3653 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3654 * headroom is calculated as the lowest headroom of itself and the
3655 * ancestors. Note that this doesn't consider the actual amount of
3656 * available memory in the system. The caller should further cap
3657 * *@pheadroom accordingly.
c2aa723a 3658 */
c5edf9cd
TH
3659void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 unsigned long *pheadroom, unsigned long *pdirty,
3661 unsigned long *pwriteback)
c2aa723a
TH
3662{
3663 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 struct mem_cgroup *parent;
c2aa723a
TH
3665
3666 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668 /* this should eventually include NR_UNSTABLE_NFS */
3669 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3670 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 (1 << LRU_ACTIVE_FILE));
3672 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3673
c2aa723a
TH
3674 while ((parent = parent_mem_cgroup(memcg))) {
3675 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 unsigned long used = page_counter_read(&memcg->memory);
3677
c5edf9cd 3678 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3679 memcg = parent;
3680 }
c2aa723a
TH
3681}
3682
841710aa
TH
3683#else /* CONFIG_CGROUP_WRITEBACK */
3684
3685static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686{
3687 return 0;
3688}
3689
3690static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691{
3692}
3693
2529bb3a
TH
3694static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695{
3696}
3697
52ebea74
TH
3698#endif /* CONFIG_CGROUP_WRITEBACK */
3699
3bc942f3
TH
3700/*
3701 * DO NOT USE IN NEW FILES.
3702 *
3703 * "cgroup.event_control" implementation.
3704 *
3705 * This is way over-engineered. It tries to support fully configurable
3706 * events for each user. Such level of flexibility is completely
3707 * unnecessary especially in the light of the planned unified hierarchy.
3708 *
3709 * Please deprecate this and replace with something simpler if at all
3710 * possible.
3711 */
3712
79bd9814
TH
3713/*
3714 * Unregister event and free resources.
3715 *
3716 * Gets called from workqueue.
3717 */
3bc942f3 3718static void memcg_event_remove(struct work_struct *work)
79bd9814 3719{
3bc942f3
TH
3720 struct mem_cgroup_event *event =
3721 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3722 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3723
3724 remove_wait_queue(event->wqh, &event->wait);
3725
59b6f873 3726 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3727
3728 /* Notify userspace the event is going away. */
3729 eventfd_signal(event->eventfd, 1);
3730
3731 eventfd_ctx_put(event->eventfd);
3732 kfree(event);
59b6f873 3733 css_put(&memcg->css);
79bd9814
TH
3734}
3735
3736/*
3737 * Gets called on POLLHUP on eventfd when user closes it.
3738 *
3739 * Called with wqh->lock held and interrupts disabled.
3740 */
3bc942f3
TH
3741static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 int sync, void *key)
79bd9814 3743{
3bc942f3
TH
3744 struct mem_cgroup_event *event =
3745 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3746 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3747 unsigned long flags = (unsigned long)key;
3748
3749 if (flags & POLLHUP) {
3750 /*
3751 * If the event has been detached at cgroup removal, we
3752 * can simply return knowing the other side will cleanup
3753 * for us.
3754 *
3755 * We can't race against event freeing since the other
3756 * side will require wqh->lock via remove_wait_queue(),
3757 * which we hold.
3758 */
fba94807 3759 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3760 if (!list_empty(&event->list)) {
3761 list_del_init(&event->list);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove()
3764 * may sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
fba94807 3768 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3769 }
3770
3771 return 0;
3772}
3773
3bc942f3 3774static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3775 wait_queue_head_t *wqh, poll_table *pt)
3776{
3bc942f3
TH
3777 struct mem_cgroup_event *event =
3778 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782}
3783
3784/*
3bc942f3
TH
3785 * DO NOT USE IN NEW FILES.
3786 *
79bd9814
TH
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
451af504
TH
3792static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 char *buf, size_t nbytes, loff_t off)
79bd9814 3794{
451af504 3795 struct cgroup_subsys_state *css = of_css(of);
fba94807 3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3797 struct mem_cgroup_event *event;
79bd9814
TH
3798 struct cgroup_subsys_state *cfile_css;
3799 unsigned int efd, cfd;
3800 struct fd efile;
3801 struct fd cfile;
fba94807 3802 const char *name;
79bd9814
TH
3803 char *endp;
3804 int ret;
3805
451af504
TH
3806 buf = strstrip(buf);
3807
3808 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3809 if (*endp != ' ')
3810 return -EINVAL;
451af504 3811 buf = endp + 1;
79bd9814 3812
451af504 3813 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3814 if ((*endp != ' ') && (*endp != '\0'))
3815 return -EINVAL;
451af504 3816 buf = endp + 1;
79bd9814
TH
3817
3818 event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 if (!event)
3820 return -ENOMEM;
3821
59b6f873 3822 event->memcg = memcg;
79bd9814 3823 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3824 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3827
3828 efile = fdget(efd);
3829 if (!efile.file) {
3830 ret = -EBADF;
3831 goto out_kfree;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile.file);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto out_put_efile;
3838 }
3839
3840 cfile = fdget(cfd);
3841 if (!cfile.file) {
3842 ret = -EBADF;
3843 goto out_put_eventfd;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 if (ret < 0)
3850 goto out_put_cfile;
3851
fba94807
TH
3852 /*
3853 * Determine the event callbacks and set them in @event. This used
3854 * to be done via struct cftype but cgroup core no longer knows
3855 * about these events. The following is crude but the whole thing
3856 * is for compatibility anyway.
3bc942f3
TH
3857 *
3858 * DO NOT ADD NEW FILES.
fba94807 3859 */
b583043e 3860 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3861
3862 if (!strcmp(name, "memory.usage_in_bytes")) {
3863 event->register_event = mem_cgroup_usage_register_event;
3864 event->unregister_event = mem_cgroup_usage_unregister_event;
3865 } else if (!strcmp(name, "memory.oom_control")) {
3866 event->register_event = mem_cgroup_oom_register_event;
3867 event->unregister_event = mem_cgroup_oom_unregister_event;
3868 } else if (!strcmp(name, "memory.pressure_level")) {
3869 event->register_event = vmpressure_register_event;
3870 event->unregister_event = vmpressure_unregister_event;
3871 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3872 event->register_event = memsw_cgroup_usage_register_event;
3873 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3874 } else {
3875 ret = -EINVAL;
3876 goto out_put_cfile;
3877 }
3878
79bd9814 3879 /*
b5557c4c
TH
3880 * Verify @cfile should belong to @css. Also, remaining events are
3881 * automatically removed on cgroup destruction but the removal is
3882 * asynchronous, so take an extra ref on @css.
79bd9814 3883 */
b583043e 3884 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3885 &memory_cgrp_subsys);
79bd9814 3886 ret = -EINVAL;
5a17f543 3887 if (IS_ERR(cfile_css))
79bd9814 3888 goto out_put_cfile;
5a17f543
TH
3889 if (cfile_css != css) {
3890 css_put(cfile_css);
79bd9814 3891 goto out_put_cfile;
5a17f543 3892 }
79bd9814 3893
451af504 3894 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3895 if (ret)
3896 goto out_put_css;
3897
3898 efile.file->f_op->poll(efile.file, &event->pt);
3899
fba94807
TH
3900 spin_lock(&memcg->event_list_lock);
3901 list_add(&event->list, &memcg->event_list);
3902 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3903
3904 fdput(cfile);
3905 fdput(efile);
3906
451af504 3907 return nbytes;
79bd9814
TH
3908
3909out_put_css:
b5557c4c 3910 css_put(css);
79bd9814
TH
3911out_put_cfile:
3912 fdput(cfile);
3913out_put_eventfd:
3914 eventfd_ctx_put(event->eventfd);
3915out_put_efile:
3916 fdput(efile);
3917out_kfree:
3918 kfree(event);
3919
3920 return ret;
3921}
3922
241994ed 3923static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3924 {
0eea1030 3925 .name = "usage_in_bytes",
8c7c6e34 3926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3927 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3928 },
c84872e1
PE
3929 {
3930 .name = "max_usage_in_bytes",
8c7c6e34 3931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3932 .write = mem_cgroup_reset,
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
c84872e1 3934 },
8cdea7c0 3935 {
0eea1030 3936 .name = "limit_in_bytes",
8c7c6e34 3937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3938 .write = mem_cgroup_write,
791badbd 3939 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3940 },
296c81d8
BS
3941 {
3942 .name = "soft_limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3944 .write = mem_cgroup_write,
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
296c81d8 3946 },
8cdea7c0
BS
3947 {
3948 .name = "failcnt",
8c7c6e34 3949 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3950 .write = mem_cgroup_reset,
791badbd 3951 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3952 },
d2ceb9b7
KH
3953 {
3954 .name = "stat",
2da8ca82 3955 .seq_show = memcg_stat_show,
d2ceb9b7 3956 },
c1e862c1
KH
3957 {
3958 .name = "force_empty",
6770c64e 3959 .write = mem_cgroup_force_empty_write,
c1e862c1 3960 },
18f59ea7
BS
3961 {
3962 .name = "use_hierarchy",
3963 .write_u64 = mem_cgroup_hierarchy_write,
3964 .read_u64 = mem_cgroup_hierarchy_read,
3965 },
79bd9814 3966 {
3bc942f3 3967 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3968 .write = memcg_write_event_control,
7dbdb199 3969 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3970 },
a7885eb8
KM
3971 {
3972 .name = "swappiness",
3973 .read_u64 = mem_cgroup_swappiness_read,
3974 .write_u64 = mem_cgroup_swappiness_write,
3975 },
7dc74be0
DN
3976 {
3977 .name = "move_charge_at_immigrate",
3978 .read_u64 = mem_cgroup_move_charge_read,
3979 .write_u64 = mem_cgroup_move_charge_write,
3980 },
9490ff27
KH
3981 {
3982 .name = "oom_control",
2da8ca82 3983 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3984 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3985 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 },
70ddf637
AV
3987 {
3988 .name = "pressure_level",
70ddf637 3989 },
406eb0c9
YH
3990#ifdef CONFIG_NUMA
3991 {
3992 .name = "numa_stat",
2da8ca82 3993 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3994 },
3995#endif
510fc4e1
GC
3996 {
3997 .name = "kmem.limit_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3999 .write = mem_cgroup_write,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4001 },
4002 {
4003 .name = "kmem.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4005 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4006 },
4007 {
4008 .name = "kmem.failcnt",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4010 .write = mem_cgroup_reset,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4012 },
4013 {
4014 .name = "kmem.max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4016 .write = mem_cgroup_reset,
791badbd 4017 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4018 },
749c5415
GC
4019#ifdef CONFIG_SLABINFO
4020 {
4021 .name = "kmem.slabinfo",
b047501c
VD
4022 .seq_start = slab_start,
4023 .seq_next = slab_next,
4024 .seq_stop = slab_stop,
4025 .seq_show = memcg_slab_show,
749c5415
GC
4026 },
4027#endif
d55f90bf
VD
4028 {
4029 .name = "kmem.tcp.limit_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 .write = mem_cgroup_write,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.failcnt",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.max_usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
6bc10349 4051 { }, /* terminate */
af36f906 4052};
8c7c6e34 4053
73f576c0
JW
4054/*
4055 * Private memory cgroup IDR
4056 *
4057 * Swap-out records and page cache shadow entries need to store memcg
4058 * references in constrained space, so we maintain an ID space that is
4059 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4060 * memory-controlled cgroups to 64k.
4061 *
4062 * However, there usually are many references to the oflline CSS after
4063 * the cgroup has been destroyed, such as page cache or reclaimable
4064 * slab objects, that don't need to hang on to the ID. We want to keep
4065 * those dead CSS from occupying IDs, or we might quickly exhaust the
4066 * relatively small ID space and prevent the creation of new cgroups
4067 * even when there are much fewer than 64k cgroups - possibly none.
4068 *
4069 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4070 * be freed and recycled when it's no longer needed, which is usually
4071 * when the CSS is offlined.
4072 *
4073 * The only exception to that are records of swapped out tmpfs/shmem
4074 * pages that need to be attributed to live ancestors on swapin. But
4075 * those references are manageable from userspace.
4076 */
4077
4078static DEFINE_IDR(mem_cgroup_idr);
4079
4080static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4081{
4082 atomic_inc(&memcg->id.ref);
4083}
4084
4085static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4086{
4087 if (atomic_dec_and_test(&memcg->id.ref)) {
4088 idr_remove(&mem_cgroup_idr, memcg->id.id);
4089 memcg->id.id = 0;
4090
4091 /* Memcg ID pins CSS */
4092 css_put(&memcg->css);
4093 }
4094}
4095
4096/**
4097 * mem_cgroup_from_id - look up a memcg from a memcg id
4098 * @id: the memcg id to look up
4099 *
4100 * Caller must hold rcu_read_lock().
4101 */
4102struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4103{
4104 WARN_ON_ONCE(!rcu_read_lock_held());
4105 return idr_find(&mem_cgroup_idr, id);
4106}
4107
c0ff4b85 4108static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4109{
4110 struct mem_cgroup_per_node *pn;
1ecaab2b 4111 struct mem_cgroup_per_zone *mz;
41e3355d 4112 int zone, tmp = node;
1ecaab2b
KH
4113 /*
4114 * This routine is called against possible nodes.
4115 * But it's BUG to call kmalloc() against offline node.
4116 *
4117 * TODO: this routine can waste much memory for nodes which will
4118 * never be onlined. It's better to use memory hotplug callback
4119 * function.
4120 */
41e3355d
KH
4121 if (!node_state(node, N_NORMAL_MEMORY))
4122 tmp = -1;
17295c88 4123 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4124 if (!pn)
4125 return 1;
1ecaab2b 4126
1ecaab2b
KH
4127 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4128 mz = &pn->zoneinfo[zone];
bea8c150 4129 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4130 mz->usage_in_excess = 0;
4131 mz->on_tree = false;
d79154bb 4132 mz->memcg = memcg;
1ecaab2b 4133 }
54f72fe0 4134 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4135 return 0;
4136}
4137
c0ff4b85 4138static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4139{
54f72fe0 4140 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4141}
4142
0b8f73e1 4143static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4144{
c8b2a36f 4145 int node;
59927fb9 4146
0b8f73e1 4147 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4148 for_each_node(node)
4149 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4150 free_percpu(memcg->stat);
8ff69e2c 4151 kfree(memcg);
59927fb9 4152}
3afe36b1 4153
0b8f73e1 4154static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4155{
d142e3e6 4156 struct mem_cgroup *memcg;
0b8f73e1 4157 size_t size;
6d12e2d8 4158 int node;
8cdea7c0 4159
0b8f73e1
JW
4160 size = sizeof(struct mem_cgroup);
4161 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4162
4163 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4164 if (!memcg)
0b8f73e1
JW
4165 return NULL;
4166
73f576c0
JW
4167 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4168 1, MEM_CGROUP_ID_MAX,
4169 GFP_KERNEL);
4170 if (memcg->id.id < 0)
4171 goto fail;
4172
0b8f73e1
JW
4173 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4174 if (!memcg->stat)
4175 goto fail;
78fb7466 4176
3ed28fa1 4177 for_each_node(node)
c0ff4b85 4178 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4179 goto fail;
f64c3f54 4180
0b8f73e1
JW
4181 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4182 goto fail;
28dbc4b6 4183
f7e1cb6e 4184 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4185 memcg->last_scanned_node = MAX_NUMNODES;
4186 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4187 mutex_init(&memcg->thresholds_lock);
4188 spin_lock_init(&memcg->move_lock);
70ddf637 4189 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4190 INIT_LIST_HEAD(&memcg->event_list);
4191 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4192 memcg->socket_pressure = jiffies;
127424c8 4193#ifndef CONFIG_SLOB
900a38f0 4194 memcg->kmemcg_id = -1;
900a38f0 4195#endif
52ebea74
TH
4196#ifdef CONFIG_CGROUP_WRITEBACK
4197 INIT_LIST_HEAD(&memcg->cgwb_list);
4198#endif
73f576c0 4199 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4200 return memcg;
4201fail:
73f576c0
JW
4202 if (memcg->id.id > 0)
4203 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4204 mem_cgroup_free(memcg);
4205 return NULL;
d142e3e6
GC
4206}
4207
0b8f73e1
JW
4208static struct cgroup_subsys_state * __ref
4209mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4210{
0b8f73e1
JW
4211 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4212 struct mem_cgroup *memcg;
4213 long error = -ENOMEM;
d142e3e6 4214
0b8f73e1
JW
4215 memcg = mem_cgroup_alloc();
4216 if (!memcg)
4217 return ERR_PTR(error);
d142e3e6 4218
0b8f73e1
JW
4219 memcg->high = PAGE_COUNTER_MAX;
4220 memcg->soft_limit = PAGE_COUNTER_MAX;
4221 if (parent) {
4222 memcg->swappiness = mem_cgroup_swappiness(parent);
4223 memcg->oom_kill_disable = parent->oom_kill_disable;
4224 }
4225 if (parent && parent->use_hierarchy) {
4226 memcg->use_hierarchy = true;
3e32cb2e 4227 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4228 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4229 page_counter_init(&memcg->memsw, &parent->memsw);
4230 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4231 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4232 } else {
3e32cb2e 4233 page_counter_init(&memcg->memory, NULL);
37e84351 4234 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4235 page_counter_init(&memcg->memsw, NULL);
4236 page_counter_init(&memcg->kmem, NULL);
0db15298 4237 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4238 /*
4239 * Deeper hierachy with use_hierarchy == false doesn't make
4240 * much sense so let cgroup subsystem know about this
4241 * unfortunate state in our controller.
4242 */
d142e3e6 4243 if (parent != root_mem_cgroup)
073219e9 4244 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4245 }
d6441637 4246
0b8f73e1
JW
4247 /* The following stuff does not apply to the root */
4248 if (!parent) {
4249 root_mem_cgroup = memcg;
4250 return &memcg->css;
4251 }
4252
b313aeee 4253 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4254 if (error)
4255 goto fail;
127424c8 4256
f7e1cb6e 4257 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4258 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4259
0b8f73e1
JW
4260 return &memcg->css;
4261fail:
4262 mem_cgroup_free(memcg);
ea3a9645 4263 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4264}
4265
73f576c0 4266static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4267{
73f576c0
JW
4268 /* Online state pins memcg ID, memcg ID pins CSS */
4269 mem_cgroup_id_get(mem_cgroup_from_css(css));
4270 css_get(css);
2f7dd7a4 4271 return 0;
8cdea7c0
BS
4272}
4273
eb95419b 4274static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4275{
eb95419b 4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4277 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4278
4279 /*
4280 * Unregister events and notify userspace.
4281 * Notify userspace about cgroup removing only after rmdir of cgroup
4282 * directory to avoid race between userspace and kernelspace.
4283 */
fba94807
TH
4284 spin_lock(&memcg->event_list_lock);
4285 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4286 list_del_init(&event->list);
4287 schedule_work(&event->remove);
4288 }
fba94807 4289 spin_unlock(&memcg->event_list_lock);
ec64f515 4290
567e9ab2 4291 memcg_offline_kmem(memcg);
52ebea74 4292 wb_memcg_offline(memcg);
73f576c0
JW
4293
4294 mem_cgroup_id_put(memcg);
df878fb0
KH
4295}
4296
6df38689
VD
4297static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4298{
4299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4300
4301 invalidate_reclaim_iterators(memcg);
4302}
4303
eb95419b 4304static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4305{
eb95419b 4306 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4307
f7e1cb6e 4308 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4309 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4310
0db15298 4311 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4312 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4313
0b8f73e1
JW
4314 vmpressure_cleanup(&memcg->vmpressure);
4315 cancel_work_sync(&memcg->high_work);
4316 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4317 memcg_free_kmem(memcg);
0b8f73e1 4318 mem_cgroup_free(memcg);
8cdea7c0
BS
4319}
4320
1ced953b
TH
4321/**
4322 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4323 * @css: the target css
4324 *
4325 * Reset the states of the mem_cgroup associated with @css. This is
4326 * invoked when the userland requests disabling on the default hierarchy
4327 * but the memcg is pinned through dependency. The memcg should stop
4328 * applying policies and should revert to the vanilla state as it may be
4329 * made visible again.
4330 *
4331 * The current implementation only resets the essential configurations.
4332 * This needs to be expanded to cover all the visible parts.
4333 */
4334static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4335{
4336 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4337
d334c9bc
VD
4338 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4339 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4340 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4343 memcg->low = 0;
4344 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4345 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4346 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4347}
4348
02491447 4349#ifdef CONFIG_MMU
7dc74be0 4350/* Handlers for move charge at task migration. */
854ffa8d 4351static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4352{
05b84301 4353 int ret;
9476db97 4354
d0164adc
MG
4355 /* Try a single bulk charge without reclaim first, kswapd may wake */
4356 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4357 if (!ret) {
854ffa8d 4358 mc.precharge += count;
854ffa8d
DN
4359 return ret;
4360 }
9476db97
JW
4361
4362 /* Try charges one by one with reclaim */
854ffa8d 4363 while (count--) {
00501b53 4364 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4365 if (ret)
38c5d72f 4366 return ret;
854ffa8d 4367 mc.precharge++;
9476db97 4368 cond_resched();
854ffa8d 4369 }
9476db97 4370 return 0;
4ffef5fe
DN
4371}
4372
4ffef5fe
DN
4373union mc_target {
4374 struct page *page;
02491447 4375 swp_entry_t ent;
4ffef5fe
DN
4376};
4377
4ffef5fe 4378enum mc_target_type {
8d32ff84 4379 MC_TARGET_NONE = 0,
4ffef5fe 4380 MC_TARGET_PAGE,
02491447 4381 MC_TARGET_SWAP,
4ffef5fe
DN
4382};
4383
90254a65
DN
4384static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4385 unsigned long addr, pte_t ptent)
4ffef5fe 4386{
90254a65 4387 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4388
90254a65
DN
4389 if (!page || !page_mapped(page))
4390 return NULL;
4391 if (PageAnon(page)) {
1dfab5ab 4392 if (!(mc.flags & MOVE_ANON))
90254a65 4393 return NULL;
1dfab5ab
JW
4394 } else {
4395 if (!(mc.flags & MOVE_FILE))
4396 return NULL;
4397 }
90254a65
DN
4398 if (!get_page_unless_zero(page))
4399 return NULL;
4400
4401 return page;
4402}
4403
4b91355e 4404#ifdef CONFIG_SWAP
90254a65 4405static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4406 pte_t ptent, swp_entry_t *entry)
90254a65 4407{
90254a65
DN
4408 struct page *page = NULL;
4409 swp_entry_t ent = pte_to_swp_entry(ptent);
4410
1dfab5ab 4411 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4412 return NULL;
4b91355e
KH
4413 /*
4414 * Because lookup_swap_cache() updates some statistics counter,
4415 * we call find_get_page() with swapper_space directly.
4416 */
33806f06 4417 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4418 if (do_memsw_account())
90254a65
DN
4419 entry->val = ent.val;
4420
4421 return page;
4422}
4b91355e
KH
4423#else
4424static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4425 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4426{
4427 return NULL;
4428}
4429#endif
90254a65 4430
87946a72
DN
4431static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4432 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4433{
4434 struct page *page = NULL;
87946a72
DN
4435 struct address_space *mapping;
4436 pgoff_t pgoff;
4437
4438 if (!vma->vm_file) /* anonymous vma */
4439 return NULL;
1dfab5ab 4440 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4441 return NULL;
4442
87946a72 4443 mapping = vma->vm_file->f_mapping;
0661a336 4444 pgoff = linear_page_index(vma, addr);
87946a72
DN
4445
4446 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4447#ifdef CONFIG_SWAP
4448 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4449 if (shmem_mapping(mapping)) {
4450 page = find_get_entry(mapping, pgoff);
4451 if (radix_tree_exceptional_entry(page)) {
4452 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4453 if (do_memsw_account())
139b6a6f
JW
4454 *entry = swp;
4455 page = find_get_page(swap_address_space(swp), swp.val);
4456 }
4457 } else
4458 page = find_get_page(mapping, pgoff);
4459#else
4460 page = find_get_page(mapping, pgoff);
aa3b1895 4461#endif
87946a72
DN
4462 return page;
4463}
4464
b1b0deab
CG
4465/**
4466 * mem_cgroup_move_account - move account of the page
4467 * @page: the page
25843c2b 4468 * @compound: charge the page as compound or small page
b1b0deab
CG
4469 * @from: mem_cgroup which the page is moved from.
4470 * @to: mem_cgroup which the page is moved to. @from != @to.
4471 *
3ac808fd 4472 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4473 *
4474 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4475 * from old cgroup.
4476 */
4477static int mem_cgroup_move_account(struct page *page,
f627c2f5 4478 bool compound,
b1b0deab
CG
4479 struct mem_cgroup *from,
4480 struct mem_cgroup *to)
4481{
4482 unsigned long flags;
f627c2f5 4483 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4484 int ret;
c4843a75 4485 bool anon;
b1b0deab
CG
4486
4487 VM_BUG_ON(from == to);
4488 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4489 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4490
4491 /*
6a93ca8f 4492 * Prevent mem_cgroup_migrate() from looking at
45637bab 4493 * page->mem_cgroup of its source page while we change it.
b1b0deab 4494 */
f627c2f5 4495 ret = -EBUSY;
b1b0deab
CG
4496 if (!trylock_page(page))
4497 goto out;
4498
4499 ret = -EINVAL;
4500 if (page->mem_cgroup != from)
4501 goto out_unlock;
4502
c4843a75
GT
4503 anon = PageAnon(page);
4504
b1b0deab
CG
4505 spin_lock_irqsave(&from->move_lock, flags);
4506
c4843a75 4507 if (!anon && page_mapped(page)) {
b1b0deab
CG
4508 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4509 nr_pages);
4510 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4511 nr_pages);
4512 }
4513
c4843a75
GT
4514 /*
4515 * move_lock grabbed above and caller set from->moving_account, so
4516 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4517 * So mapping should be stable for dirty pages.
4518 */
4519 if (!anon && PageDirty(page)) {
4520 struct address_space *mapping = page_mapping(page);
4521
4522 if (mapping_cap_account_dirty(mapping)) {
4523 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4524 nr_pages);
4525 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4526 nr_pages);
4527 }
4528 }
4529
b1b0deab
CG
4530 if (PageWriteback(page)) {
4531 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4532 nr_pages);
4533 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4534 nr_pages);
4535 }
4536
4537 /*
4538 * It is safe to change page->mem_cgroup here because the page
4539 * is referenced, charged, and isolated - we can't race with
4540 * uncharging, charging, migration, or LRU putback.
4541 */
4542
4543 /* caller should have done css_get */
4544 page->mem_cgroup = to;
4545 spin_unlock_irqrestore(&from->move_lock, flags);
4546
4547 ret = 0;
4548
4549 local_irq_disable();
f627c2f5 4550 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4551 memcg_check_events(to, page);
f627c2f5 4552 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4553 memcg_check_events(from, page);
4554 local_irq_enable();
4555out_unlock:
4556 unlock_page(page);
4557out:
4558 return ret;
4559}
4560
7cf7806c
LR
4561/**
4562 * get_mctgt_type - get target type of moving charge
4563 * @vma: the vma the pte to be checked belongs
4564 * @addr: the address corresponding to the pte to be checked
4565 * @ptent: the pte to be checked
4566 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4567 *
4568 * Returns
4569 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4570 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4571 * move charge. if @target is not NULL, the page is stored in target->page
4572 * with extra refcnt got(Callers should handle it).
4573 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4574 * target for charge migration. if @target is not NULL, the entry is stored
4575 * in target->ent.
4576 *
4577 * Called with pte lock held.
4578 */
4579
8d32ff84 4580static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4581 unsigned long addr, pte_t ptent, union mc_target *target)
4582{
4583 struct page *page = NULL;
8d32ff84 4584 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4585 swp_entry_t ent = { .val = 0 };
4586
4587 if (pte_present(ptent))
4588 page = mc_handle_present_pte(vma, addr, ptent);
4589 else if (is_swap_pte(ptent))
48406ef8 4590 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4591 else if (pte_none(ptent))
87946a72 4592 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4593
4594 if (!page && !ent.val)
8d32ff84 4595 return ret;
02491447 4596 if (page) {
02491447 4597 /*
0a31bc97 4598 * Do only loose check w/o serialization.
1306a85a 4599 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4600 * not under LRU exclusion.
02491447 4601 */
1306a85a 4602 if (page->mem_cgroup == mc.from) {
02491447
DN
4603 ret = MC_TARGET_PAGE;
4604 if (target)
4605 target->page = page;
4606 }
4607 if (!ret || !target)
4608 put_page(page);
4609 }
90254a65
DN
4610 /* There is a swap entry and a page doesn't exist or isn't charged */
4611 if (ent.val && !ret &&
34c00c31 4612 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4613 ret = MC_TARGET_SWAP;
4614 if (target)
4615 target->ent = ent;
4ffef5fe 4616 }
4ffef5fe
DN
4617 return ret;
4618}
4619
12724850
NH
4620#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4621/*
4622 * We don't consider swapping or file mapped pages because THP does not
4623 * support them for now.
4624 * Caller should make sure that pmd_trans_huge(pmd) is true.
4625 */
4626static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4627 unsigned long addr, pmd_t pmd, union mc_target *target)
4628{
4629 struct page *page = NULL;
12724850
NH
4630 enum mc_target_type ret = MC_TARGET_NONE;
4631
4632 page = pmd_page(pmd);
309381fe 4633 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4634 if (!(mc.flags & MOVE_ANON))
12724850 4635 return ret;
1306a85a 4636 if (page->mem_cgroup == mc.from) {
12724850
NH
4637 ret = MC_TARGET_PAGE;
4638 if (target) {
4639 get_page(page);
4640 target->page = page;
4641 }
4642 }
4643 return ret;
4644}
4645#else
4646static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4647 unsigned long addr, pmd_t pmd, union mc_target *target)
4648{
4649 return MC_TARGET_NONE;
4650}
4651#endif
4652
4ffef5fe
DN
4653static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4654 unsigned long addr, unsigned long end,
4655 struct mm_walk *walk)
4656{
26bcd64a 4657 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4658 pte_t *pte;
4659 spinlock_t *ptl;
4660
b6ec57f4
KS
4661 ptl = pmd_trans_huge_lock(pmd, vma);
4662 if (ptl) {
12724850
NH
4663 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4664 mc.precharge += HPAGE_PMD_NR;
bf929152 4665 spin_unlock(ptl);
1a5a9906 4666 return 0;
12724850 4667 }
03319327 4668
45f83cef
AA
4669 if (pmd_trans_unstable(pmd))
4670 return 0;
4ffef5fe
DN
4671 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4672 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4673 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4674 mc.precharge++; /* increment precharge temporarily */
4675 pte_unmap_unlock(pte - 1, ptl);
4676 cond_resched();
4677
7dc74be0
DN
4678 return 0;
4679}
4680
4ffef5fe
DN
4681static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4682{
4683 unsigned long precharge;
4ffef5fe 4684
26bcd64a
NH
4685 struct mm_walk mem_cgroup_count_precharge_walk = {
4686 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4687 .mm = mm,
4688 };
dfe076b0 4689 down_read(&mm->mmap_sem);
26bcd64a 4690 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4691 up_read(&mm->mmap_sem);
4ffef5fe
DN
4692
4693 precharge = mc.precharge;
4694 mc.precharge = 0;
4695
4696 return precharge;
4697}
4698
4ffef5fe
DN
4699static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4700{
dfe076b0
DN
4701 unsigned long precharge = mem_cgroup_count_precharge(mm);
4702
4703 VM_BUG_ON(mc.moving_task);
4704 mc.moving_task = current;
4705 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4706}
4707
dfe076b0
DN
4708/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4709static void __mem_cgroup_clear_mc(void)
4ffef5fe 4710{
2bd9bb20
KH
4711 struct mem_cgroup *from = mc.from;
4712 struct mem_cgroup *to = mc.to;
4713
4ffef5fe 4714 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4715 if (mc.precharge) {
00501b53 4716 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4717 mc.precharge = 0;
4718 }
4719 /*
4720 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4721 * we must uncharge here.
4722 */
4723 if (mc.moved_charge) {
00501b53 4724 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4725 mc.moved_charge = 0;
4ffef5fe 4726 }
483c30b5
DN
4727 /* we must fixup refcnts and charges */
4728 if (mc.moved_swap) {
483c30b5 4729 /* uncharge swap account from the old cgroup */
ce00a967 4730 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4731 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4732
05b84301 4733 /*
3e32cb2e
JW
4734 * we charged both to->memory and to->memsw, so we
4735 * should uncharge to->memory.
05b84301 4736 */
ce00a967 4737 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4739
e8ea14cc 4740 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4741
4050377b 4742 /* we've already done css_get(mc.to) */
483c30b5
DN
4743 mc.moved_swap = 0;
4744 }
dfe076b0
DN
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4748}
4749
4750static void mem_cgroup_clear_mc(void)
4751{
264a0ae1
TH
4752 struct mm_struct *mm = mc.mm;
4753
dfe076b0
DN
4754 /*
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4757 */
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
2bd9bb20 4760 spin_lock(&mc.lock);
4ffef5fe
DN
4761 mc.from = NULL;
4762 mc.to = NULL;
264a0ae1 4763 mc.mm = NULL;
2bd9bb20 4764 spin_unlock(&mc.lock);
264a0ae1
TH
4765
4766 mmput(mm);
4ffef5fe
DN
4767}
4768
1f7dd3e5 4769static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4770{
1f7dd3e5 4771 struct cgroup_subsys_state *css;
eed67d75 4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4773 struct mem_cgroup *from;
4530eddb 4774 struct task_struct *leader, *p;
9f2115f9 4775 struct mm_struct *mm;
1dfab5ab 4776 unsigned long move_flags;
9f2115f9 4777 int ret = 0;
7dc74be0 4778
1f7dd3e5
TH
4779 /* charge immigration isn't supported on the default hierarchy */
4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4781 return 0;
4782
4530eddb
TH
4783 /*
4784 * Multi-process migrations only happen on the default hierarchy
4785 * where charge immigration is not used. Perform charge
4786 * immigration if @tset contains a leader and whine if there are
4787 * multiple.
4788 */
4789 p = NULL;
1f7dd3e5 4790 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4791 WARN_ON_ONCE(p);
4792 p = leader;
1f7dd3e5 4793 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4794 }
4795 if (!p)
4796 return 0;
4797
1f7dd3e5
TH
4798 /*
4799 * We are now commited to this value whatever it is. Changes in this
4800 * tunable will only affect upcoming migrations, not the current one.
4801 * So we need to save it, and keep it going.
4802 */
4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4804 if (!move_flags)
4805 return 0;
4806
9f2115f9
TH
4807 from = mem_cgroup_from_task(p);
4808
4809 VM_BUG_ON(from == memcg);
4810
4811 mm = get_task_mm(p);
4812 if (!mm)
4813 return 0;
4814 /* We move charges only when we move a owner of the mm */
4815 if (mm->owner == p) {
4816 VM_BUG_ON(mc.from);
4817 VM_BUG_ON(mc.to);
4818 VM_BUG_ON(mc.precharge);
4819 VM_BUG_ON(mc.moved_charge);
4820 VM_BUG_ON(mc.moved_swap);
4821
4822 spin_lock(&mc.lock);
264a0ae1 4823 mc.mm = mm;
9f2115f9
TH
4824 mc.from = from;
4825 mc.to = memcg;
4826 mc.flags = move_flags;
4827 spin_unlock(&mc.lock);
4828 /* We set mc.moving_task later */
4829
4830 ret = mem_cgroup_precharge_mc(mm);
4831 if (ret)
4832 mem_cgroup_clear_mc();
264a0ae1
TH
4833 } else {
4834 mmput(mm);
7dc74be0
DN
4835 }
4836 return ret;
4837}
4838
1f7dd3e5 4839static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4840{
4e2f245d
JW
4841 if (mc.to)
4842 mem_cgroup_clear_mc();
7dc74be0
DN
4843}
4844
4ffef5fe
DN
4845static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 unsigned long addr, unsigned long end,
4847 struct mm_walk *walk)
7dc74be0 4848{
4ffef5fe 4849 int ret = 0;
26bcd64a 4850 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4851 pte_t *pte;
4852 spinlock_t *ptl;
12724850
NH
4853 enum mc_target_type target_type;
4854 union mc_target target;
4855 struct page *page;
4ffef5fe 4856
b6ec57f4
KS
4857 ptl = pmd_trans_huge_lock(pmd, vma);
4858 if (ptl) {
62ade86a 4859 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4860 spin_unlock(ptl);
12724850
NH
4861 return 0;
4862 }
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4865 page = target.page;
4866 if (!isolate_lru_page(page)) {
f627c2f5 4867 if (!mem_cgroup_move_account(page, true,
1306a85a 4868 mc.from, mc.to)) {
12724850
NH
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4871 }
4872 putback_lru_page(page);
4873 }
4874 put_page(page);
4875 }
bf929152 4876 spin_unlock(ptl);
1a5a9906 4877 return 0;
12724850
NH
4878 }
4879
45f83cef
AA
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4ffef5fe
DN
4882retry:
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
02491447 4886 swp_entry_t ent;
4ffef5fe
DN
4887
4888 if (!mc.precharge)
4889 break;
4890
8d32ff84 4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4892 case MC_TARGET_PAGE:
4893 page = target.page;
53f9263b
KS
4894 /*
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4899 */
4900 if (PageTransCompound(page))
4901 goto put;
4ffef5fe
DN
4902 if (isolate_lru_page(page))
4903 goto put;
f627c2f5
KS
4904 if (!mem_cgroup_move_account(page, false,
4905 mc.from, mc.to)) {
4ffef5fe 4906 mc.precharge--;
854ffa8d
DN
4907 /* we uncharge from mc.from later. */
4908 mc.moved_charge++;
4ffef5fe
DN
4909 }
4910 putback_lru_page(page);
8d32ff84 4911put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4912 put_page(page);
4913 break;
02491447
DN
4914 case MC_TARGET_SWAP:
4915 ent = target.ent;
e91cbb42 4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4917 mc.precharge--;
483c30b5
DN
4918 /* we fixup refcnts and charges later. */
4919 mc.moved_swap++;
4920 }
02491447 4921 break;
4ffef5fe
DN
4922 default:
4923 break;
4924 }
4925 }
4926 pte_unmap_unlock(pte - 1, ptl);
4927 cond_resched();
4928
4929 if (addr != end) {
4930 /*
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4934 * phase.
4935 */
854ffa8d 4936 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4937 if (!ret)
4938 goto retry;
4939 }
4940
4941 return ret;
4942}
4943
264a0ae1 4944static void mem_cgroup_move_charge(void)
4ffef5fe 4945{
26bcd64a
NH
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4948 .mm = mc.mm,
26bcd64a 4949 };
4ffef5fe
DN
4950
4951 lru_add_drain_all();
312722cb 4952 /*
81f8c3a4
JW
4953 * Signal lock_page_memcg() to take the memcg's move_lock
4954 * while we're moving its pages to another memcg. Then wait
4955 * for already started RCU-only updates to finish.
312722cb
JW
4956 */
4957 atomic_inc(&mc.from->moving_account);
4958 synchronize_rcu();
dfe076b0 4959retry:
264a0ae1 4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4961 /*
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4967 */
4968 __mem_cgroup_clear_mc();
4969 cond_resched();
4970 goto retry;
4971 }
26bcd64a
NH
4972 /*
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4975 */
4976 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4977 up_read(&mc.mm->mmap_sem);
312722cb 4978 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4979}
4980
264a0ae1 4981static void mem_cgroup_move_task(void)
67e465a7 4982{
264a0ae1
TH
4983 if (mc.to) {
4984 mem_cgroup_move_charge();
a433658c 4985 mem_cgroup_clear_mc();
264a0ae1 4986 }
67e465a7 4987}
5cfb80a7 4988#else /* !CONFIG_MMU */
1f7dd3e5 4989static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4990{
4991 return 0;
4992}
1f7dd3e5 4993static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4994{
4995}
264a0ae1 4996static void mem_cgroup_move_task(void)
5cfb80a7
DN
4997{
4998}
4999#endif
67e465a7 5000
f00baae7
TH
5001/*
5002 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5003 * to verify whether we're attached to the default hierarchy on each mount
5004 * attempt.
f00baae7 5005 */
eb95419b 5006static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5007{
5008 /*
aa6ec29b 5009 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5010 * guarantees that @root doesn't have any children, so turning it
5011 * on for the root memcg is enough.
5012 */
9e10a130 5013 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5014 root_mem_cgroup->use_hierarchy = true;
5015 else
5016 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5017}
5018
241994ed
JW
5019static u64 memory_current_read(struct cgroup_subsys_state *css,
5020 struct cftype *cft)
5021{
f5fc3c5d
JW
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5023
5024 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5025}
5026
5027static int memory_low_show(struct seq_file *m, void *v)
5028{
5029 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5030 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5031
5032 if (low == PAGE_COUNTER_MAX)
d2973697 5033 seq_puts(m, "max\n");
241994ed
JW
5034 else
5035 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5036
5037 return 0;
5038}
5039
5040static ssize_t memory_low_write(struct kernfs_open_file *of,
5041 char *buf, size_t nbytes, loff_t off)
5042{
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5044 unsigned long low;
5045 int err;
5046
5047 buf = strstrip(buf);
d2973697 5048 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5049 if (err)
5050 return err;
5051
5052 memcg->low = low;
5053
5054 return nbytes;
5055}
5056
5057static int memory_high_show(struct seq_file *m, void *v)
5058{
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5060 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5061
5062 if (high == PAGE_COUNTER_MAX)
d2973697 5063 seq_puts(m, "max\n");
241994ed
JW
5064 else
5065 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5066
5067 return 0;
5068}
5069
5070static ssize_t memory_high_write(struct kernfs_open_file *of,
5071 char *buf, size_t nbytes, loff_t off)
5072{
5073 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5074 unsigned long nr_pages;
241994ed
JW
5075 unsigned long high;
5076 int err;
5077
5078 buf = strstrip(buf);
d2973697 5079 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5080 if (err)
5081 return err;
5082
5083 memcg->high = high;
5084
588083bb
JW
5085 nr_pages = page_counter_read(&memcg->memory);
5086 if (nr_pages > high)
5087 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5088 GFP_KERNEL, true);
5089
2529bb3a 5090 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5091 return nbytes;
5092}
5093
5094static int memory_max_show(struct seq_file *m, void *v)
5095{
5096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5097 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5098
5099 if (max == PAGE_COUNTER_MAX)
d2973697 5100 seq_puts(m, "max\n");
241994ed
JW
5101 else
5102 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5103
5104 return 0;
5105}
5106
5107static ssize_t memory_max_write(struct kernfs_open_file *of,
5108 char *buf, size_t nbytes, loff_t off)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5111 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5112 bool drained = false;
241994ed
JW
5113 unsigned long max;
5114 int err;
5115
5116 buf = strstrip(buf);
d2973697 5117 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5118 if (err)
5119 return err;
5120
b6e6edcf
JW
5121 xchg(&memcg->memory.limit, max);
5122
5123 for (;;) {
5124 unsigned long nr_pages = page_counter_read(&memcg->memory);
5125
5126 if (nr_pages <= max)
5127 break;
5128
5129 if (signal_pending(current)) {
5130 err = -EINTR;
5131 break;
5132 }
5133
5134 if (!drained) {
5135 drain_all_stock(memcg);
5136 drained = true;
5137 continue;
5138 }
5139
5140 if (nr_reclaims) {
5141 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5142 GFP_KERNEL, true))
5143 nr_reclaims--;
5144 continue;
5145 }
5146
5147 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5148 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5149 break;
5150 }
241994ed 5151
2529bb3a 5152 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5153 return nbytes;
5154}
5155
5156static int memory_events_show(struct seq_file *m, void *v)
5157{
5158 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5159
5160 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5161 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5162 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5163 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5164
5165 return 0;
5166}
5167
587d9f72
JW
5168static int memory_stat_show(struct seq_file *m, void *v)
5169{
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5171 unsigned long stat[MEMCG_NR_STAT];
5172 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5173 int i;
5174
5175 /*
5176 * Provide statistics on the state of the memory subsystem as
5177 * well as cumulative event counters that show past behavior.
5178 *
5179 * This list is ordered following a combination of these gradients:
5180 * 1) generic big picture -> specifics and details
5181 * 2) reflecting userspace activity -> reflecting kernel heuristics
5182 *
5183 * Current memory state:
5184 */
5185
72b54e73
VD
5186 tree_stat(memcg, stat);
5187 tree_events(memcg, events);
5188
587d9f72 5189 seq_printf(m, "anon %llu\n",
72b54e73 5190 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5191 seq_printf(m, "file %llu\n",
72b54e73 5192 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5193 seq_printf(m, "kernel_stack %llu\n",
5194 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5195 seq_printf(m, "slab %llu\n",
5196 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5197 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5198 seq_printf(m, "sock %llu\n",
72b54e73 5199 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5200
5201 seq_printf(m, "file_mapped %llu\n",
72b54e73 5202 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5203 seq_printf(m, "file_dirty %llu\n",
72b54e73 5204 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5205 seq_printf(m, "file_writeback %llu\n",
72b54e73 5206 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5207
5208 for (i = 0; i < NR_LRU_LISTS; i++) {
5209 struct mem_cgroup *mi;
5210 unsigned long val = 0;
5211
5212 for_each_mem_cgroup_tree(mi, memcg)
5213 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5214 seq_printf(m, "%s %llu\n",
5215 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5216 }
5217
27ee57c9
VD
5218 seq_printf(m, "slab_reclaimable %llu\n",
5219 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5220 seq_printf(m, "slab_unreclaimable %llu\n",
5221 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5222
587d9f72
JW
5223 /* Accumulated memory events */
5224
5225 seq_printf(m, "pgfault %lu\n",
72b54e73 5226 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5227 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5228 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5229
5230 return 0;
5231}
5232
241994ed
JW
5233static struct cftype memory_files[] = {
5234 {
5235 .name = "current",
f5fc3c5d 5236 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5237 .read_u64 = memory_current_read,
5238 },
5239 {
5240 .name = "low",
5241 .flags = CFTYPE_NOT_ON_ROOT,
5242 .seq_show = memory_low_show,
5243 .write = memory_low_write,
5244 },
5245 {
5246 .name = "high",
5247 .flags = CFTYPE_NOT_ON_ROOT,
5248 .seq_show = memory_high_show,
5249 .write = memory_high_write,
5250 },
5251 {
5252 .name = "max",
5253 .flags = CFTYPE_NOT_ON_ROOT,
5254 .seq_show = memory_max_show,
5255 .write = memory_max_write,
5256 },
5257 {
5258 .name = "events",
5259 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5260 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5261 .seq_show = memory_events_show,
5262 },
587d9f72
JW
5263 {
5264 .name = "stat",
5265 .flags = CFTYPE_NOT_ON_ROOT,
5266 .seq_show = memory_stat_show,
5267 },
241994ed
JW
5268 { } /* terminate */
5269};
5270
073219e9 5271struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5272 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5273 .css_online = mem_cgroup_css_online,
92fb9748 5274 .css_offline = mem_cgroup_css_offline,
6df38689 5275 .css_released = mem_cgroup_css_released,
92fb9748 5276 .css_free = mem_cgroup_css_free,
1ced953b 5277 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5278 .can_attach = mem_cgroup_can_attach,
5279 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5280 .post_attach = mem_cgroup_move_task,
f00baae7 5281 .bind = mem_cgroup_bind,
241994ed
JW
5282 .dfl_cftypes = memory_files,
5283 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5284 .early_init = 0,
8cdea7c0 5285};
c077719b 5286
241994ed
JW
5287/**
5288 * mem_cgroup_low - check if memory consumption is below the normal range
5289 * @root: the highest ancestor to consider
5290 * @memcg: the memory cgroup to check
5291 *
5292 * Returns %true if memory consumption of @memcg, and that of all
5293 * configurable ancestors up to @root, is below the normal range.
5294 */
5295bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5296{
5297 if (mem_cgroup_disabled())
5298 return false;
5299
5300 /*
5301 * The toplevel group doesn't have a configurable range, so
5302 * it's never low when looked at directly, and it is not
5303 * considered an ancestor when assessing the hierarchy.
5304 */
5305
5306 if (memcg == root_mem_cgroup)
5307 return false;
5308
4e54dede 5309 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5310 return false;
5311
5312 while (memcg != root) {
5313 memcg = parent_mem_cgroup(memcg);
5314
5315 if (memcg == root_mem_cgroup)
5316 break;
5317
4e54dede 5318 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5319 return false;
5320 }
5321 return true;
5322}
5323
00501b53
JW
5324/**
5325 * mem_cgroup_try_charge - try charging a page
5326 * @page: page to charge
5327 * @mm: mm context of the victim
5328 * @gfp_mask: reclaim mode
5329 * @memcgp: charged memcg return
25843c2b 5330 * @compound: charge the page as compound or small page
00501b53
JW
5331 *
5332 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5333 * pages according to @gfp_mask if necessary.
5334 *
5335 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5336 * Otherwise, an error code is returned.
5337 *
5338 * After page->mapping has been set up, the caller must finalize the
5339 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5340 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5341 */
5342int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5343 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5344 bool compound)
00501b53
JW
5345{
5346 struct mem_cgroup *memcg = NULL;
f627c2f5 5347 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5348 int ret = 0;
5349
5350 if (mem_cgroup_disabled())
5351 goto out;
5352
5353 if (PageSwapCache(page)) {
00501b53
JW
5354 /*
5355 * Every swap fault against a single page tries to charge the
5356 * page, bail as early as possible. shmem_unuse() encounters
5357 * already charged pages, too. The USED bit is protected by
5358 * the page lock, which serializes swap cache removal, which
5359 * in turn serializes uncharging.
5360 */
e993d905 5361 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5362 if (page->mem_cgroup)
00501b53 5363 goto out;
e993d905 5364
37e84351 5365 if (do_swap_account) {
e993d905
VD
5366 swp_entry_t ent = { .val = page_private(page), };
5367 unsigned short id = lookup_swap_cgroup_id(ent);
5368
5369 rcu_read_lock();
5370 memcg = mem_cgroup_from_id(id);
5371 if (memcg && !css_tryget_online(&memcg->css))
5372 memcg = NULL;
5373 rcu_read_unlock();
5374 }
00501b53
JW
5375 }
5376
00501b53
JW
5377 if (!memcg)
5378 memcg = get_mem_cgroup_from_mm(mm);
5379
5380 ret = try_charge(memcg, gfp_mask, nr_pages);
5381
5382 css_put(&memcg->css);
00501b53
JW
5383out:
5384 *memcgp = memcg;
5385 return ret;
5386}
5387
5388/**
5389 * mem_cgroup_commit_charge - commit a page charge
5390 * @page: page to charge
5391 * @memcg: memcg to charge the page to
5392 * @lrucare: page might be on LRU already
25843c2b 5393 * @compound: charge the page as compound or small page
00501b53
JW
5394 *
5395 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5396 * after page->mapping has been set up. This must happen atomically
5397 * as part of the page instantiation, i.e. under the page table lock
5398 * for anonymous pages, under the page lock for page and swap cache.
5399 *
5400 * In addition, the page must not be on the LRU during the commit, to
5401 * prevent racing with task migration. If it might be, use @lrucare.
5402 *
5403 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5404 */
5405void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5406 bool lrucare, bool compound)
00501b53 5407{
f627c2f5 5408 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5409
5410 VM_BUG_ON_PAGE(!page->mapping, page);
5411 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5412
5413 if (mem_cgroup_disabled())
5414 return;
5415 /*
5416 * Swap faults will attempt to charge the same page multiple
5417 * times. But reuse_swap_page() might have removed the page
5418 * from swapcache already, so we can't check PageSwapCache().
5419 */
5420 if (!memcg)
5421 return;
5422
6abb5a86
JW
5423 commit_charge(page, memcg, lrucare);
5424
6abb5a86 5425 local_irq_disable();
f627c2f5 5426 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5427 memcg_check_events(memcg, page);
5428 local_irq_enable();
00501b53 5429
7941d214 5430 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5431 swp_entry_t entry = { .val = page_private(page) };
5432 /*
5433 * The swap entry might not get freed for a long time,
5434 * let's not wait for it. The page already received a
5435 * memory+swap charge, drop the swap entry duplicate.
5436 */
5437 mem_cgroup_uncharge_swap(entry);
5438 }
5439}
5440
5441/**
5442 * mem_cgroup_cancel_charge - cancel a page charge
5443 * @page: page to charge
5444 * @memcg: memcg to charge the page to
25843c2b 5445 * @compound: charge the page as compound or small page
00501b53
JW
5446 *
5447 * Cancel a charge transaction started by mem_cgroup_try_charge().
5448 */
f627c2f5
KS
5449void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5450 bool compound)
00501b53 5451{
f627c2f5 5452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5453
5454 if (mem_cgroup_disabled())
5455 return;
5456 /*
5457 * Swap faults will attempt to charge the same page multiple
5458 * times. But reuse_swap_page() might have removed the page
5459 * from swapcache already, so we can't check PageSwapCache().
5460 */
5461 if (!memcg)
5462 return;
5463
00501b53
JW
5464 cancel_charge(memcg, nr_pages);
5465}
5466
747db954 5467static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5468 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5469 unsigned long nr_huge, unsigned long nr_kmem,
5470 struct page *dummy_page)
747db954 5471{
5e8d35f8 5472 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5473 unsigned long flags;
5474
ce00a967 5475 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5476 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5477 if (do_memsw_account())
18eca2e6 5478 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5479 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5480 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5481 memcg_oom_recover(memcg);
5482 }
747db954
JW
5483
5484 local_irq_save(flags);
5485 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5488 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5489 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5490 memcg_check_events(memcg, dummy_page);
5491 local_irq_restore(flags);
e8ea14cc
JW
5492
5493 if (!mem_cgroup_is_root(memcg))
18eca2e6 5494 css_put_many(&memcg->css, nr_pages);
747db954
JW
5495}
5496
5497static void uncharge_list(struct list_head *page_list)
5498{
5499 struct mem_cgroup *memcg = NULL;
747db954
JW
5500 unsigned long nr_anon = 0;
5501 unsigned long nr_file = 0;
5502 unsigned long nr_huge = 0;
5e8d35f8 5503 unsigned long nr_kmem = 0;
747db954 5504 unsigned long pgpgout = 0;
747db954
JW
5505 struct list_head *next;
5506 struct page *page;
5507
8b592656
JW
5508 /*
5509 * Note that the list can be a single page->lru; hence the
5510 * do-while loop instead of a simple list_for_each_entry().
5511 */
747db954
JW
5512 next = page_list->next;
5513 do {
747db954
JW
5514 page = list_entry(next, struct page, lru);
5515 next = page->lru.next;
5516
5517 VM_BUG_ON_PAGE(PageLRU(page), page);
5518 VM_BUG_ON_PAGE(page_count(page), page);
5519
1306a85a 5520 if (!page->mem_cgroup)
747db954
JW
5521 continue;
5522
5523 /*
5524 * Nobody should be changing or seriously looking at
1306a85a 5525 * page->mem_cgroup at this point, we have fully
29833315 5526 * exclusive access to the page.
747db954
JW
5527 */
5528
1306a85a 5529 if (memcg != page->mem_cgroup) {
747db954 5530 if (memcg) {
18eca2e6 5531 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5532 nr_huge, nr_kmem, page);
5533 pgpgout = nr_anon = nr_file =
5534 nr_huge = nr_kmem = 0;
747db954 5535 }
1306a85a 5536 memcg = page->mem_cgroup;
747db954
JW
5537 }
5538
5e8d35f8
VD
5539 if (!PageKmemcg(page)) {
5540 unsigned int nr_pages = 1;
747db954 5541
5e8d35f8
VD
5542 if (PageTransHuge(page)) {
5543 nr_pages <<= compound_order(page);
5e8d35f8
VD
5544 nr_huge += nr_pages;
5545 }
5546 if (PageAnon(page))
5547 nr_anon += nr_pages;
5548 else
5549 nr_file += nr_pages;
5550 pgpgout++;
5551 } else
5552 nr_kmem += 1 << compound_order(page);
747db954 5553
1306a85a 5554 page->mem_cgroup = NULL;
747db954
JW
5555 } while (next != page_list);
5556
5557 if (memcg)
18eca2e6 5558 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5559 nr_huge, nr_kmem, page);
747db954
JW
5560}
5561
0a31bc97
JW
5562/**
5563 * mem_cgroup_uncharge - uncharge a page
5564 * @page: page to uncharge
5565 *
5566 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5567 * mem_cgroup_commit_charge().
5568 */
5569void mem_cgroup_uncharge(struct page *page)
5570{
0a31bc97
JW
5571 if (mem_cgroup_disabled())
5572 return;
5573
747db954 5574 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5575 if (!page->mem_cgroup)
0a31bc97
JW
5576 return;
5577
747db954
JW
5578 INIT_LIST_HEAD(&page->lru);
5579 uncharge_list(&page->lru);
5580}
0a31bc97 5581
747db954
JW
5582/**
5583 * mem_cgroup_uncharge_list - uncharge a list of page
5584 * @page_list: list of pages to uncharge
5585 *
5586 * Uncharge a list of pages previously charged with
5587 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5588 */
5589void mem_cgroup_uncharge_list(struct list_head *page_list)
5590{
5591 if (mem_cgroup_disabled())
5592 return;
0a31bc97 5593
747db954
JW
5594 if (!list_empty(page_list))
5595 uncharge_list(page_list);
0a31bc97
JW
5596}
5597
5598/**
6a93ca8f
JW
5599 * mem_cgroup_migrate - charge a page's replacement
5600 * @oldpage: currently circulating page
5601 * @newpage: replacement page
0a31bc97 5602 *
6a93ca8f
JW
5603 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5604 * be uncharged upon free.
0a31bc97
JW
5605 *
5606 * Both pages must be locked, @newpage->mapping must be set up.
5607 */
6a93ca8f 5608void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5609{
29833315 5610 struct mem_cgroup *memcg;
44b7a8d3
JW
5611 unsigned int nr_pages;
5612 bool compound;
d93c4130 5613 unsigned long flags;
0a31bc97
JW
5614
5615 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5616 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5617 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5618 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5619 newpage);
0a31bc97
JW
5620
5621 if (mem_cgroup_disabled())
5622 return;
5623
5624 /* Page cache replacement: new page already charged? */
1306a85a 5625 if (newpage->mem_cgroup)
0a31bc97
JW
5626 return;
5627
45637bab 5628 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5629 memcg = oldpage->mem_cgroup;
29833315 5630 if (!memcg)
0a31bc97
JW
5631 return;
5632
44b7a8d3
JW
5633 /* Force-charge the new page. The old one will be freed soon */
5634 compound = PageTransHuge(newpage);
5635 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5636
5637 page_counter_charge(&memcg->memory, nr_pages);
5638 if (do_memsw_account())
5639 page_counter_charge(&memcg->memsw, nr_pages);
5640 css_get_many(&memcg->css, nr_pages);
0a31bc97 5641
9cf7666a 5642 commit_charge(newpage, memcg, false);
44b7a8d3 5643
d93c4130 5644 local_irq_save(flags);
44b7a8d3
JW
5645 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5646 memcg_check_events(memcg, newpage);
d93c4130 5647 local_irq_restore(flags);
0a31bc97
JW
5648}
5649
ef12947c 5650DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5651EXPORT_SYMBOL(memcg_sockets_enabled_key);
5652
5653void sock_update_memcg(struct sock *sk)
5654{
5655 struct mem_cgroup *memcg;
5656
5657 /* Socket cloning can throw us here with sk_cgrp already
5658 * filled. It won't however, necessarily happen from
5659 * process context. So the test for root memcg given
5660 * the current task's memcg won't help us in this case.
5661 *
5662 * Respecting the original socket's memcg is a better
5663 * decision in this case.
5664 */
5665 if (sk->sk_memcg) {
5666 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5667 css_get(&sk->sk_memcg->css);
5668 return;
5669 }
5670
5671 rcu_read_lock();
5672 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5673 if (memcg == root_mem_cgroup)
5674 goto out;
0db15298 5675 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5676 goto out;
f7e1cb6e 5677 if (css_tryget_online(&memcg->css))
11092087 5678 sk->sk_memcg = memcg;
f7e1cb6e 5679out:
11092087
JW
5680 rcu_read_unlock();
5681}
5682EXPORT_SYMBOL(sock_update_memcg);
5683
5684void sock_release_memcg(struct sock *sk)
5685{
5686 WARN_ON(!sk->sk_memcg);
5687 css_put(&sk->sk_memcg->css);
5688}
5689
5690/**
5691 * mem_cgroup_charge_skmem - charge socket memory
5692 * @memcg: memcg to charge
5693 * @nr_pages: number of pages to charge
5694 *
5695 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5696 * @memcg's configured limit, %false if the charge had to be forced.
5697 */
5698bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5699{
f7e1cb6e 5700 gfp_t gfp_mask = GFP_KERNEL;
11092087 5701
f7e1cb6e 5702 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5703 struct page_counter *fail;
f7e1cb6e 5704
0db15298
JW
5705 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5706 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5707 return true;
5708 }
0db15298
JW
5709 page_counter_charge(&memcg->tcpmem, nr_pages);
5710 memcg->tcpmem_pressure = 1;
f7e1cb6e 5711 return false;
11092087 5712 }
d886f4e4 5713
f7e1cb6e
JW
5714 /* Don't block in the packet receive path */
5715 if (in_softirq())
5716 gfp_mask = GFP_NOWAIT;
5717
b2807f07
JW
5718 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5719
f7e1cb6e
JW
5720 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5721 return true;
5722
5723 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5724 return false;
5725}
5726
5727/**
5728 * mem_cgroup_uncharge_skmem - uncharge socket memory
5729 * @memcg - memcg to uncharge
5730 * @nr_pages - number of pages to uncharge
5731 */
5732void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5733{
f7e1cb6e 5734 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5735 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5736 return;
5737 }
d886f4e4 5738
b2807f07
JW
5739 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5740
f7e1cb6e
JW
5741 page_counter_uncharge(&memcg->memory, nr_pages);
5742 css_put_many(&memcg->css, nr_pages);
11092087
JW
5743}
5744
f7e1cb6e
JW
5745static int __init cgroup_memory(char *s)
5746{
5747 char *token;
5748
5749 while ((token = strsep(&s, ",")) != NULL) {
5750 if (!*token)
5751 continue;
5752 if (!strcmp(token, "nosocket"))
5753 cgroup_memory_nosocket = true;
04823c83
VD
5754 if (!strcmp(token, "nokmem"))
5755 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5756 }
5757 return 0;
5758}
5759__setup("cgroup.memory=", cgroup_memory);
11092087 5760
2d11085e 5761/*
1081312f
MH
5762 * subsys_initcall() for memory controller.
5763 *
5764 * Some parts like hotcpu_notifier() have to be initialized from this context
5765 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5766 * everything that doesn't depend on a specific mem_cgroup structure should
5767 * be initialized from here.
2d11085e
MH
5768 */
5769static int __init mem_cgroup_init(void)
5770{
95a045f6
JW
5771 int cpu, node;
5772
2d11085e 5773 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5774
5775 for_each_possible_cpu(cpu)
5776 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5777 drain_local_stock);
5778
5779 for_each_node(node) {
5780 struct mem_cgroup_tree_per_node *rtpn;
5781 int zone;
5782
5783 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5784 node_online(node) ? node : NUMA_NO_NODE);
5785
5786 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5787 struct mem_cgroup_tree_per_zone *rtpz;
5788
5789 rtpz = &rtpn->rb_tree_per_zone[zone];
5790 rtpz->rb_root = RB_ROOT;
5791 spin_lock_init(&rtpz->lock);
5792 }
5793 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5794 }
5795
2d11085e
MH
5796 return 0;
5797}
5798subsys_initcall(mem_cgroup_init);
21afa38e
JW
5799
5800#ifdef CONFIG_MEMCG_SWAP
5801/**
5802 * mem_cgroup_swapout - transfer a memsw charge to swap
5803 * @page: page whose memsw charge to transfer
5804 * @entry: swap entry to move the charge to
5805 *
5806 * Transfer the memsw charge of @page to @entry.
5807 */
5808void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5809{
5810 struct mem_cgroup *memcg;
5811 unsigned short oldid;
5812
5813 VM_BUG_ON_PAGE(PageLRU(page), page);
5814 VM_BUG_ON_PAGE(page_count(page), page);
5815
7941d214 5816 if (!do_memsw_account())
21afa38e
JW
5817 return;
5818
5819 memcg = page->mem_cgroup;
5820
5821 /* Readahead page, never charged */
5822 if (!memcg)
5823 return;
5824
73f576c0 5825 mem_cgroup_id_get(memcg);
21afa38e
JW
5826 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5827 VM_BUG_ON_PAGE(oldid, page);
5828 mem_cgroup_swap_statistics(memcg, true);
5829
5830 page->mem_cgroup = NULL;
5831
5832 if (!mem_cgroup_is_root(memcg))
5833 page_counter_uncharge(&memcg->memory, 1);
5834
ce9ce665
SAS
5835 /*
5836 * Interrupts should be disabled here because the caller holds the
5837 * mapping->tree_lock lock which is taken with interrupts-off. It is
5838 * important here to have the interrupts disabled because it is the
5839 * only synchronisation we have for udpating the per-CPU variables.
5840 */
5841 VM_BUG_ON(!irqs_disabled());
f627c2f5 5842 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5843 memcg_check_events(memcg, page);
73f576c0
JW
5844
5845 if (!mem_cgroup_is_root(memcg))
5846 css_put(&memcg->css);
21afa38e
JW
5847}
5848
37e84351
VD
5849/*
5850 * mem_cgroup_try_charge_swap - try charging a swap entry
5851 * @page: page being added to swap
5852 * @entry: swap entry to charge
5853 *
5854 * Try to charge @entry to the memcg that @page belongs to.
5855 *
5856 * Returns 0 on success, -ENOMEM on failure.
5857 */
5858int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5859{
5860 struct mem_cgroup *memcg;
5861 struct page_counter *counter;
5862 unsigned short oldid;
5863
5864 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5865 return 0;
5866
5867 memcg = page->mem_cgroup;
5868
5869 /* Readahead page, never charged */
5870 if (!memcg)
5871 return 0;
5872
5873 if (!mem_cgroup_is_root(memcg) &&
5874 !page_counter_try_charge(&memcg->swap, 1, &counter))
5875 return -ENOMEM;
5876
73f576c0 5877 mem_cgroup_id_get(memcg);
37e84351
VD
5878 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5879 VM_BUG_ON_PAGE(oldid, page);
5880 mem_cgroup_swap_statistics(memcg, true);
5881
37e84351
VD
5882 return 0;
5883}
5884
21afa38e
JW
5885/**
5886 * mem_cgroup_uncharge_swap - uncharge a swap entry
5887 * @entry: swap entry to uncharge
5888 *
37e84351 5889 * Drop the swap charge associated with @entry.
21afa38e
JW
5890 */
5891void mem_cgroup_uncharge_swap(swp_entry_t entry)
5892{
5893 struct mem_cgroup *memcg;
5894 unsigned short id;
5895
37e84351 5896 if (!do_swap_account)
21afa38e
JW
5897 return;
5898
5899 id = swap_cgroup_record(entry, 0);
5900 rcu_read_lock();
adbe427b 5901 memcg = mem_cgroup_from_id(id);
21afa38e 5902 if (memcg) {
37e84351
VD
5903 if (!mem_cgroup_is_root(memcg)) {
5904 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5905 page_counter_uncharge(&memcg->swap, 1);
5906 else
5907 page_counter_uncharge(&memcg->memsw, 1);
5908 }
21afa38e 5909 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5910 mem_cgroup_id_put(memcg);
21afa38e
JW
5911 }
5912 rcu_read_unlock();
5913}
5914
d8b38438
VD
5915long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5916{
5917 long nr_swap_pages = get_nr_swap_pages();
5918
5919 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5920 return nr_swap_pages;
5921 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5922 nr_swap_pages = min_t(long, nr_swap_pages,
5923 READ_ONCE(memcg->swap.limit) -
5924 page_counter_read(&memcg->swap));
5925 return nr_swap_pages;
5926}
5927
5ccc5aba
VD
5928bool mem_cgroup_swap_full(struct page *page)
5929{
5930 struct mem_cgroup *memcg;
5931
5932 VM_BUG_ON_PAGE(!PageLocked(page), page);
5933
5934 if (vm_swap_full())
5935 return true;
5936 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5937 return false;
5938
5939 memcg = page->mem_cgroup;
5940 if (!memcg)
5941 return false;
5942
5943 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5944 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5945 return true;
5946
5947 return false;
5948}
5949
21afa38e
JW
5950/* for remember boot option*/
5951#ifdef CONFIG_MEMCG_SWAP_ENABLED
5952static int really_do_swap_account __initdata = 1;
5953#else
5954static int really_do_swap_account __initdata;
5955#endif
5956
5957static int __init enable_swap_account(char *s)
5958{
5959 if (!strcmp(s, "1"))
5960 really_do_swap_account = 1;
5961 else if (!strcmp(s, "0"))
5962 really_do_swap_account = 0;
5963 return 1;
5964}
5965__setup("swapaccount=", enable_swap_account);
5966
37e84351
VD
5967static u64 swap_current_read(struct cgroup_subsys_state *css,
5968 struct cftype *cft)
5969{
5970 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5971
5972 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5973}
5974
5975static int swap_max_show(struct seq_file *m, void *v)
5976{
5977 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5978 unsigned long max = READ_ONCE(memcg->swap.limit);
5979
5980 if (max == PAGE_COUNTER_MAX)
5981 seq_puts(m, "max\n");
5982 else
5983 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5984
5985 return 0;
5986}
5987
5988static ssize_t swap_max_write(struct kernfs_open_file *of,
5989 char *buf, size_t nbytes, loff_t off)
5990{
5991 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5992 unsigned long max;
5993 int err;
5994
5995 buf = strstrip(buf);
5996 err = page_counter_memparse(buf, "max", &max);
5997 if (err)
5998 return err;
5999
6000 mutex_lock(&memcg_limit_mutex);
6001 err = page_counter_limit(&memcg->swap, max);
6002 mutex_unlock(&memcg_limit_mutex);
6003 if (err)
6004 return err;
6005
6006 return nbytes;
6007}
6008
6009static struct cftype swap_files[] = {
6010 {
6011 .name = "swap.current",
6012 .flags = CFTYPE_NOT_ON_ROOT,
6013 .read_u64 = swap_current_read,
6014 },
6015 {
6016 .name = "swap.max",
6017 .flags = CFTYPE_NOT_ON_ROOT,
6018 .seq_show = swap_max_show,
6019 .write = swap_max_write,
6020 },
6021 { } /* terminate */
6022};
6023
21afa38e
JW
6024static struct cftype memsw_cgroup_files[] = {
6025 {
6026 .name = "memsw.usage_in_bytes",
6027 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6028 .read_u64 = mem_cgroup_read_u64,
6029 },
6030 {
6031 .name = "memsw.max_usage_in_bytes",
6032 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6033 .write = mem_cgroup_reset,
6034 .read_u64 = mem_cgroup_read_u64,
6035 },
6036 {
6037 .name = "memsw.limit_in_bytes",
6038 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6039 .write = mem_cgroup_write,
6040 .read_u64 = mem_cgroup_read_u64,
6041 },
6042 {
6043 .name = "memsw.failcnt",
6044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6045 .write = mem_cgroup_reset,
6046 .read_u64 = mem_cgroup_read_u64,
6047 },
6048 { }, /* terminate */
6049};
6050
6051static int __init mem_cgroup_swap_init(void)
6052{
6053 if (!mem_cgroup_disabled() && really_do_swap_account) {
6054 do_swap_account = 1;
37e84351
VD
6055 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6056 swap_files));
21afa38e
JW
6057 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6058 memsw_cgroup_files));
6059 }
6060 return 0;
6061}
6062subsys_initcall(mem_cgroup_swap_init);
6063
6064#endif /* CONFIG_MEMCG_SWAP */