]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memcontrol.c
memcg: no uncharged pages reach page_cgroup_zoneinfo
[thirdparty/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
8c7c6e34
KH
330/* for encoding cft->private value on file */
331#define _MEM (0)
332#define _MEMSWAP (1)
9490ff27 333#define _OOM_TYPE (2)
8c7c6e34
KH
334#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
337/* Used for OOM nofiier */
338#define OOM_CONTROL (0)
8c7c6e34 339
75822b44
BS
340/*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
347#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 349
8c7c6e34
KH
350static void mem_cgroup_get(struct mem_cgroup *mem);
351static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 352static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 353static void drain_all_stock_async(void);
8c7c6e34 354
f64c3f54
BS
355static struct mem_cgroup_per_zone *
356mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357{
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359}
360
d324236b
WF
361struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362{
363 return &mem->css;
364}
365
f64c3f54
BS
366static struct mem_cgroup_per_zone *
367page_cgroup_zoneinfo(struct page_cgroup *pc)
368{
369 struct mem_cgroup *mem = pc->mem_cgroup;
370 int nid = page_cgroup_nid(pc);
371 int zid = page_cgroup_zid(pc);
372
f64c3f54
BS
373 return mem_cgroup_zoneinfo(mem, nid, zid);
374}
375
376static struct mem_cgroup_tree_per_zone *
377soft_limit_tree_node_zone(int nid, int zid)
378{
379 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
380}
381
382static struct mem_cgroup_tree_per_zone *
383soft_limit_tree_from_page(struct page *page)
384{
385 int nid = page_to_nid(page);
386 int zid = page_zonenum(page);
387
388 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
389}
390
391static void
4e416953 392__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 393 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
394 struct mem_cgroup_tree_per_zone *mctz,
395 unsigned long long new_usage_in_excess)
f64c3f54
BS
396{
397 struct rb_node **p = &mctz->rb_root.rb_node;
398 struct rb_node *parent = NULL;
399 struct mem_cgroup_per_zone *mz_node;
400
401 if (mz->on_tree)
402 return;
403
ef8745c1
KH
404 mz->usage_in_excess = new_usage_in_excess;
405 if (!mz->usage_in_excess)
406 return;
f64c3f54
BS
407 while (*p) {
408 parent = *p;
409 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
410 tree_node);
411 if (mz->usage_in_excess < mz_node->usage_in_excess)
412 p = &(*p)->rb_left;
413 /*
414 * We can't avoid mem cgroups that are over their soft
415 * limit by the same amount
416 */
417 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418 p = &(*p)->rb_right;
419 }
420 rb_link_node(&mz->tree_node, parent, p);
421 rb_insert_color(&mz->tree_node, &mctz->rb_root);
422 mz->on_tree = true;
4e416953
BS
423}
424
425static void
426__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
427 struct mem_cgroup_per_zone *mz,
428 struct mem_cgroup_tree_per_zone *mctz)
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
f64c3f54
BS
436static void
437mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 struct mem_cgroup_per_zone *mz,
439 struct mem_cgroup_tree_per_zone *mctz)
440{
441 spin_lock(&mctz->lock);
4e416953 442 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
443 spin_unlock(&mctz->lock);
444}
445
f64c3f54
BS
446
447static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
448{
ef8745c1 449 unsigned long long excess;
f64c3f54
BS
450 struct mem_cgroup_per_zone *mz;
451 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
452 int nid = page_to_nid(page);
453 int zid = page_zonenum(page);
f64c3f54
BS
454 mctz = soft_limit_tree_from_page(page);
455
456 /*
4e649152
KH
457 * Necessary to update all ancestors when hierarchy is used.
458 * because their event counter is not touched.
f64c3f54 459 */
4e649152
KH
460 for (; mem; mem = parent_mem_cgroup(mem)) {
461 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 462 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
463 /*
464 * We have to update the tree if mz is on RB-tree or
465 * mem is over its softlimit.
466 */
ef8745c1 467 if (excess || mz->on_tree) {
4e649152
KH
468 spin_lock(&mctz->lock);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mem, mz, mctz);
472 /*
ef8745c1
KH
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
4e649152 475 */
ef8745c1 476 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
477 spin_unlock(&mctz->lock);
478 }
f64c3f54
BS
479 }
480}
481
482static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
483{
484 int node, zone;
485 struct mem_cgroup_per_zone *mz;
486 struct mem_cgroup_tree_per_zone *mctz;
487
488 for_each_node_state(node, N_POSSIBLE) {
489 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
490 mz = mem_cgroup_zoneinfo(mem, node, zone);
491 mctz = soft_limit_tree_node_zone(node, zone);
492 mem_cgroup_remove_exceeded(mem, mz, mctz);
493 }
494 }
495}
496
4e416953
BS
497static struct mem_cgroup_per_zone *
498__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
499{
500 struct rb_node *rightmost = NULL;
26251eaf 501 struct mem_cgroup_per_zone *mz;
4e416953
BS
502
503retry:
26251eaf 504 mz = NULL;
4e416953
BS
505 rightmost = rb_last(&mctz->rb_root);
506 if (!rightmost)
507 goto done; /* Nothing to reclaim from */
508
509 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
510 /*
511 * Remove the node now but someone else can add it back,
512 * we will to add it back at the end of reclaim to its correct
513 * position in the tree.
514 */
515 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
516 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
517 !css_tryget(&mz->mem->css))
518 goto retry;
519done:
520 return mz;
521}
522
523static struct mem_cgroup_per_zone *
524mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525{
526 struct mem_cgroup_per_zone *mz;
527
528 spin_lock(&mctz->lock);
529 mz = __mem_cgroup_largest_soft_limit_node(mctz);
530 spin_unlock(&mctz->lock);
531 return mz;
532}
533
711d3d2c
KH
534/*
535 * Implementation Note: reading percpu statistics for memcg.
536 *
537 * Both of vmstat[] and percpu_counter has threshold and do periodic
538 * synchronization to implement "quick" read. There are trade-off between
539 * reading cost and precision of value. Then, we may have a chance to implement
540 * a periodic synchronizion of counter in memcg's counter.
541 *
542 * But this _read() function is used for user interface now. The user accounts
543 * memory usage by memory cgroup and he _always_ requires exact value because
544 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
545 * have to visit all online cpus and make sum. So, for now, unnecessary
546 * synchronization is not implemented. (just implemented for cpu hotplug)
547 *
548 * If there are kernel internal actions which can make use of some not-exact
549 * value, and reading all cpu value can be performance bottleneck in some
550 * common workload, threashold and synchonization as vmstat[] should be
551 * implemented.
552 */
c62b1a3b
KH
553static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
554 enum mem_cgroup_stat_index idx)
555{
556 int cpu;
557 s64 val = 0;
558
711d3d2c
KH
559 get_online_cpus();
560 for_each_online_cpu(cpu)
c62b1a3b 561 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
562#ifdef CONFIG_HOTPLUG_CPU
563 spin_lock(&mem->pcp_counter_lock);
564 val += mem->nocpu_base.count[idx];
565 spin_unlock(&mem->pcp_counter_lock);
566#endif
567 put_online_cpus();
c62b1a3b
KH
568 return val;
569}
570
571static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
572{
573 s64 ret;
574
575 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
576 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
577 return ret;
578}
579
0c3e73e8
BS
580static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
581 bool charge)
582{
583 int val = (charge) ? 1 : -1;
c62b1a3b 584 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
585}
586
c05555b5 587static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 588 bool file, int nr_pages)
d52aa412 589{
c62b1a3b
KH
590 preempt_disable();
591
e401f176
KH
592 if (file)
593 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 594 else
e401f176 595 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 596
e401f176
KH
597 /* pagein of a big page is an event. So, ignore page size */
598 if (nr_pages > 0)
c62b1a3b 599 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 600 else {
c62b1a3b 601 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
602 nr_pages = -nr_pages; /* for event */
603 }
e401f176
KH
604
605 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 606
c62b1a3b 607 preempt_enable();
6d12e2d8
KH
608}
609
14067bb3 610static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 611 enum lru_list idx)
6d12e2d8
KH
612{
613 int nid, zid;
614 struct mem_cgroup_per_zone *mz;
615 u64 total = 0;
616
617 for_each_online_node(nid)
618 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
619 mz = mem_cgroup_zoneinfo(mem, nid, zid);
620 total += MEM_CGROUP_ZSTAT(mz, idx);
621 }
622 return total;
d52aa412
KH
623}
624
d2265e6f
KH
625static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
626{
627 s64 val;
628
629 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
630
631 return !(val & ((1 << event_mask_shift) - 1));
632}
633
634/*
635 * Check events in order.
636 *
637 */
638static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
639{
640 /* threshold event is triggered in finer grain than soft limit */
641 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
642 mem_cgroup_threshold(mem);
643 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
644 mem_cgroup_update_tree(mem, page);
645 }
646}
647
d5b69e38 648static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
649{
650 return container_of(cgroup_subsys_state(cont,
651 mem_cgroup_subsys_id), struct mem_cgroup,
652 css);
653}
654
cf475ad2 655struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 656{
31a78f23
BS
657 /*
658 * mm_update_next_owner() may clear mm->owner to NULL
659 * if it races with swapoff, page migration, etc.
660 * So this can be called with p == NULL.
661 */
662 if (unlikely(!p))
663 return NULL;
664
78fb7466
PE
665 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
666 struct mem_cgroup, css);
667}
668
54595fe2
KH
669static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
670{
671 struct mem_cgroup *mem = NULL;
0b7f569e
KH
672
673 if (!mm)
674 return NULL;
54595fe2
KH
675 /*
676 * Because we have no locks, mm->owner's may be being moved to other
677 * cgroup. We use css_tryget() here even if this looks
678 * pessimistic (rather than adding locks here).
679 */
680 rcu_read_lock();
681 do {
682 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
683 if (unlikely(!mem))
684 break;
685 } while (!css_tryget(&mem->css));
686 rcu_read_unlock();
687 return mem;
688}
689
7d74b06f
KH
690/* The caller has to guarantee "mem" exists before calling this */
691static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 692{
711d3d2c
KH
693 struct cgroup_subsys_state *css;
694 int found;
695
696 if (!mem) /* ROOT cgroup has the smallest ID */
697 return root_mem_cgroup; /*css_put/get against root is ignored*/
698 if (!mem->use_hierarchy) {
699 if (css_tryget(&mem->css))
700 return mem;
701 return NULL;
702 }
703 rcu_read_lock();
704 /*
705 * searching a memory cgroup which has the smallest ID under given
706 * ROOT cgroup. (ID >= 1)
707 */
708 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
709 if (css && css_tryget(css))
710 mem = container_of(css, struct mem_cgroup, css);
711 else
712 mem = NULL;
713 rcu_read_unlock();
714 return mem;
7d74b06f
KH
715}
716
717static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
718 struct mem_cgroup *root,
719 bool cond)
720{
721 int nextid = css_id(&iter->css) + 1;
722 int found;
723 int hierarchy_used;
14067bb3 724 struct cgroup_subsys_state *css;
14067bb3 725
7d74b06f 726 hierarchy_used = iter->use_hierarchy;
14067bb3 727
7d74b06f 728 css_put(&iter->css);
711d3d2c
KH
729 /* If no ROOT, walk all, ignore hierarchy */
730 if (!cond || (root && !hierarchy_used))
7d74b06f 731 return NULL;
14067bb3 732
711d3d2c
KH
733 if (!root)
734 root = root_mem_cgroup;
735
7d74b06f
KH
736 do {
737 iter = NULL;
14067bb3 738 rcu_read_lock();
7d74b06f
KH
739
740 css = css_get_next(&mem_cgroup_subsys, nextid,
741 &root->css, &found);
14067bb3 742 if (css && css_tryget(css))
7d74b06f 743 iter = container_of(css, struct mem_cgroup, css);
14067bb3 744 rcu_read_unlock();
7d74b06f 745 /* If css is NULL, no more cgroups will be found */
14067bb3 746 nextid = found + 1;
7d74b06f 747 } while (css && !iter);
14067bb3 748
7d74b06f 749 return iter;
14067bb3 750}
7d74b06f
KH
751/*
752 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
753 * be careful that "break" loop is not allowed. We have reference count.
754 * Instead of that modify "cond" to be false and "continue" to exit the loop.
755 */
756#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
757 for (iter = mem_cgroup_start_loop(root);\
758 iter != NULL;\
759 iter = mem_cgroup_get_next(iter, root, cond))
760
761#define for_each_mem_cgroup_tree(iter, root) \
762 for_each_mem_cgroup_tree_cond(iter, root, true)
763
711d3d2c
KH
764#define for_each_mem_cgroup_all(iter) \
765 for_each_mem_cgroup_tree_cond(iter, NULL, true)
766
14067bb3 767
4b3bde4c
BS
768static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
769{
770 return (mem == root_mem_cgroup);
771}
772
08e552c6
KH
773/*
774 * Following LRU functions are allowed to be used without PCG_LOCK.
775 * Operations are called by routine of global LRU independently from memcg.
776 * What we have to take care of here is validness of pc->mem_cgroup.
777 *
778 * Changes to pc->mem_cgroup happens when
779 * 1. charge
780 * 2. moving account
781 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
782 * It is added to LRU before charge.
783 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
784 * When moving account, the page is not on LRU. It's isolated.
785 */
4f98a2fe 786
08e552c6
KH
787void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
788{
789 struct page_cgroup *pc;
08e552c6 790 struct mem_cgroup_per_zone *mz;
6d12e2d8 791
f8d66542 792 if (mem_cgroup_disabled())
08e552c6
KH
793 return;
794 pc = lookup_page_cgroup(page);
795 /* can happen while we handle swapcache. */
4b3bde4c 796 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 797 return;
4b3bde4c 798 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
799 /*
800 * We don't check PCG_USED bit. It's cleared when the "page" is finally
801 * removed from global LRU.
802 */
08e552c6 803 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
804 /* huge page split is done under lru_lock. so, we have no races. */
805 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
806 if (mem_cgroup_is_root(pc->mem_cgroup))
807 return;
808 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 809 list_del_init(&pc->lru);
6d12e2d8
KH
810}
811
08e552c6 812void mem_cgroup_del_lru(struct page *page)
6d12e2d8 813{
08e552c6
KH
814 mem_cgroup_del_lru_list(page, page_lru(page));
815}
b69408e8 816
3f58a829
MK
817/*
818 * Writeback is about to end against a page which has been marked for immediate
819 * reclaim. If it still appears to be reclaimable, move it to the tail of the
820 * inactive list.
821 */
822void mem_cgroup_rotate_reclaimable_page(struct page *page)
823{
824 struct mem_cgroup_per_zone *mz;
825 struct page_cgroup *pc;
826 enum lru_list lru = page_lru(page);
827
828 if (mem_cgroup_disabled())
829 return;
830
831 pc = lookup_page_cgroup(page);
832 /* unused or root page is not rotated. */
833 if (!PageCgroupUsed(pc))
834 return;
835 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
836 smp_rmb();
837 if (mem_cgroup_is_root(pc->mem_cgroup))
838 return;
839 mz = page_cgroup_zoneinfo(pc);
840 list_move_tail(&pc->lru, &mz->lists[lru]);
841}
842
08e552c6
KH
843void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
844{
845 struct mem_cgroup_per_zone *mz;
846 struct page_cgroup *pc;
b69408e8 847
f8d66542 848 if (mem_cgroup_disabled())
08e552c6 849 return;
6d12e2d8 850
08e552c6 851 pc = lookup_page_cgroup(page);
4b3bde4c 852 /* unused or root page is not rotated. */
713735b4
JW
853 if (!PageCgroupUsed(pc))
854 return;
855 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
856 smp_rmb();
857 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
858 return;
859 mz = page_cgroup_zoneinfo(pc);
860 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
861}
862
08e552c6 863void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 864{
08e552c6
KH
865 struct page_cgroup *pc;
866 struct mem_cgroup_per_zone *mz;
6d12e2d8 867
f8d66542 868 if (mem_cgroup_disabled())
08e552c6
KH
869 return;
870 pc = lookup_page_cgroup(page);
4b3bde4c 871 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 872 if (!PageCgroupUsed(pc))
894bc310 873 return;
713735b4
JW
874 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
875 smp_rmb();
08e552c6 876 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
877 /* huge page split is done under lru_lock. so, we have no races. */
878 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
879 SetPageCgroupAcctLRU(pc);
880 if (mem_cgroup_is_root(pc->mem_cgroup))
881 return;
08e552c6
KH
882 list_add(&pc->lru, &mz->lists[lru]);
883}
544122e5 884
08e552c6 885/*
544122e5
KH
886 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
887 * lru because the page may.be reused after it's fully uncharged (because of
888 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
889 * it again. This function is only used to charge SwapCache. It's done under
890 * lock_page and expected that zone->lru_lock is never held.
08e552c6 891 */
544122e5 892static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 893{
544122e5
KH
894 unsigned long flags;
895 struct zone *zone = page_zone(page);
896 struct page_cgroup *pc = lookup_page_cgroup(page);
897
898 spin_lock_irqsave(&zone->lru_lock, flags);
899 /*
900 * Forget old LRU when this page_cgroup is *not* used. This Used bit
901 * is guarded by lock_page() because the page is SwapCache.
902 */
903 if (!PageCgroupUsed(pc))
904 mem_cgroup_del_lru_list(page, page_lru(page));
905 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
906}
907
544122e5
KH
908static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
909{
910 unsigned long flags;
911 struct zone *zone = page_zone(page);
912 struct page_cgroup *pc = lookup_page_cgroup(page);
913
914 spin_lock_irqsave(&zone->lru_lock, flags);
915 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 916 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
917 mem_cgroup_add_lru_list(page, page_lru(page));
918 spin_unlock_irqrestore(&zone->lru_lock, flags);
919}
920
921
08e552c6
KH
922void mem_cgroup_move_lists(struct page *page,
923 enum lru_list from, enum lru_list to)
924{
f8d66542 925 if (mem_cgroup_disabled())
08e552c6
KH
926 return;
927 mem_cgroup_del_lru_list(page, from);
928 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
929}
930
4c4a2214
DR
931int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
932{
933 int ret;
0b7f569e 934 struct mem_cgroup *curr = NULL;
158e0a2d 935 struct task_struct *p;
4c4a2214 936
158e0a2d
KH
937 p = find_lock_task_mm(task);
938 if (!p)
939 return 0;
940 curr = try_get_mem_cgroup_from_mm(p->mm);
941 task_unlock(p);
0b7f569e
KH
942 if (!curr)
943 return 0;
d31f56db
DN
944 /*
945 * We should check use_hierarchy of "mem" not "curr". Because checking
946 * use_hierarchy of "curr" here make this function true if hierarchy is
947 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
948 * hierarchy(even if use_hierarchy is disabled in "mem").
949 */
950 if (mem->use_hierarchy)
0b7f569e
KH
951 ret = css_is_ancestor(&curr->css, &mem->css);
952 else
953 ret = (curr == mem);
954 css_put(&curr->css);
4c4a2214
DR
955 return ret;
956}
957
c772be93 958static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
959{
960 unsigned long active;
961 unsigned long inactive;
c772be93
KM
962 unsigned long gb;
963 unsigned long inactive_ratio;
14797e23 964
14067bb3
KH
965 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
966 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 967
c772be93
KM
968 gb = (inactive + active) >> (30 - PAGE_SHIFT);
969 if (gb)
970 inactive_ratio = int_sqrt(10 * gb);
971 else
972 inactive_ratio = 1;
973
974 if (present_pages) {
975 present_pages[0] = inactive;
976 present_pages[1] = active;
977 }
978
979 return inactive_ratio;
980}
981
982int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
983{
984 unsigned long active;
985 unsigned long inactive;
986 unsigned long present_pages[2];
987 unsigned long inactive_ratio;
988
989 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
990
991 inactive = present_pages[0];
992 active = present_pages[1];
993
994 if (inactive * inactive_ratio < active)
14797e23
KM
995 return 1;
996
997 return 0;
998}
999
56e49d21
RR
1000int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1001{
1002 unsigned long active;
1003 unsigned long inactive;
1004
1005 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1006 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1007
1008 return (active > inactive);
1009}
1010
a3d8e054
KM
1011unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1012 struct zone *zone,
1013 enum lru_list lru)
1014{
13d7e3a2 1015 int nid = zone_to_nid(zone);
a3d8e054
KM
1016 int zid = zone_idx(zone);
1017 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1018
1019 return MEM_CGROUP_ZSTAT(mz, lru);
1020}
1021
3e2f41f1
KM
1022struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1023 struct zone *zone)
1024{
13d7e3a2 1025 int nid = zone_to_nid(zone);
3e2f41f1
KM
1026 int zid = zone_idx(zone);
1027 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1028
1029 return &mz->reclaim_stat;
1030}
1031
1032struct zone_reclaim_stat *
1033mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1034{
1035 struct page_cgroup *pc;
1036 struct mem_cgroup_per_zone *mz;
1037
1038 if (mem_cgroup_disabled())
1039 return NULL;
1040
1041 pc = lookup_page_cgroup(page);
bd112db8
DN
1042 if (!PageCgroupUsed(pc))
1043 return NULL;
713735b4
JW
1044 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1045 smp_rmb();
3e2f41f1
KM
1046 mz = page_cgroup_zoneinfo(pc);
1047 if (!mz)
1048 return NULL;
1049
1050 return &mz->reclaim_stat;
1051}
1052
66e1707b
BS
1053unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1054 struct list_head *dst,
1055 unsigned long *scanned, int order,
1056 int mode, struct zone *z,
1057 struct mem_cgroup *mem_cont,
4f98a2fe 1058 int active, int file)
66e1707b
BS
1059{
1060 unsigned long nr_taken = 0;
1061 struct page *page;
1062 unsigned long scan;
1063 LIST_HEAD(pc_list);
1064 struct list_head *src;
ff7283fa 1065 struct page_cgroup *pc, *tmp;
13d7e3a2 1066 int nid = zone_to_nid(z);
1ecaab2b
KH
1067 int zid = zone_idx(z);
1068 struct mem_cgroup_per_zone *mz;
b7c46d15 1069 int lru = LRU_FILE * file + active;
2ffebca6 1070 int ret;
66e1707b 1071
cf475ad2 1072 BUG_ON(!mem_cont);
1ecaab2b 1073 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1074 src = &mz->lists[lru];
66e1707b 1075
ff7283fa
KH
1076 scan = 0;
1077 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1078 if (scan >= nr_to_scan)
ff7283fa 1079 break;
08e552c6
KH
1080
1081 page = pc->page;
52d4b9ac
KH
1082 if (unlikely(!PageCgroupUsed(pc)))
1083 continue;
436c6541 1084 if (unlikely(!PageLRU(page)))
ff7283fa 1085 continue;
ff7283fa 1086
436c6541 1087 scan++;
2ffebca6
KH
1088 ret = __isolate_lru_page(page, mode, file);
1089 switch (ret) {
1090 case 0:
66e1707b 1091 list_move(&page->lru, dst);
2ffebca6 1092 mem_cgroup_del_lru(page);
2c888cfb 1093 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1094 break;
1095 case -EBUSY:
1096 /* we don't affect global LRU but rotate in our LRU */
1097 mem_cgroup_rotate_lru_list(page, page_lru(page));
1098 break;
1099 default:
1100 break;
66e1707b
BS
1101 }
1102 }
1103
66e1707b 1104 *scanned = scan;
cc8e970c
KM
1105
1106 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1107 0, 0, 0, mode);
1108
66e1707b
BS
1109 return nr_taken;
1110}
1111
6d61ef40
BS
1112#define mem_cgroup_from_res_counter(counter, member) \
1113 container_of(counter, struct mem_cgroup, member)
1114
19942822 1115/**
9d11ea9f
JW
1116 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1117 * @mem: the memory cgroup
19942822 1118 *
9d11ea9f
JW
1119 * Returns the maximum amount of memory @mem can be charged with, in
1120 * bytes.
19942822 1121 */
9d11ea9f 1122static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1123{
9d11ea9f
JW
1124 unsigned long long margin;
1125
1126 margin = res_counter_margin(&mem->res);
1127 if (do_swap_account)
1128 margin = min(margin, res_counter_margin(&mem->memsw));
1129 return margin;
19942822
JW
1130}
1131
a7885eb8
KM
1132static unsigned int get_swappiness(struct mem_cgroup *memcg)
1133{
1134 struct cgroup *cgrp = memcg->css.cgroup;
1135 unsigned int swappiness;
1136
1137 /* root ? */
1138 if (cgrp->parent == NULL)
1139 return vm_swappiness;
1140
1141 spin_lock(&memcg->reclaim_param_lock);
1142 swappiness = memcg->swappiness;
1143 spin_unlock(&memcg->reclaim_param_lock);
1144
1145 return swappiness;
1146}
1147
32047e2a
KH
1148static void mem_cgroup_start_move(struct mem_cgroup *mem)
1149{
1150 int cpu;
1489ebad
KH
1151
1152 get_online_cpus();
1153 spin_lock(&mem->pcp_counter_lock);
1154 for_each_online_cpu(cpu)
32047e2a 1155 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1156 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1157 spin_unlock(&mem->pcp_counter_lock);
1158 put_online_cpus();
32047e2a
KH
1159
1160 synchronize_rcu();
1161}
1162
1163static void mem_cgroup_end_move(struct mem_cgroup *mem)
1164{
1165 int cpu;
1166
1167 if (!mem)
1168 return;
1489ebad
KH
1169 get_online_cpus();
1170 spin_lock(&mem->pcp_counter_lock);
1171 for_each_online_cpu(cpu)
32047e2a 1172 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1173 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1174 spin_unlock(&mem->pcp_counter_lock);
1175 put_online_cpus();
32047e2a
KH
1176}
1177/*
1178 * 2 routines for checking "mem" is under move_account() or not.
1179 *
1180 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1181 * for avoiding race in accounting. If true,
1182 * pc->mem_cgroup may be overwritten.
1183 *
1184 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1185 * under hierarchy of moving cgroups. This is for
1186 * waiting at hith-memory prressure caused by "move".
1187 */
1188
1189static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1190{
1191 VM_BUG_ON(!rcu_read_lock_held());
1192 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1193}
4b534334
KH
1194
1195static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1196{
2bd9bb20
KH
1197 struct mem_cgroup *from;
1198 struct mem_cgroup *to;
4b534334 1199 bool ret = false;
2bd9bb20
KH
1200 /*
1201 * Unlike task_move routines, we access mc.to, mc.from not under
1202 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1203 */
1204 spin_lock(&mc.lock);
1205 from = mc.from;
1206 to = mc.to;
1207 if (!from)
1208 goto unlock;
1209 if (from == mem || to == mem
1210 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1211 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1212 ret = true;
1213unlock:
1214 spin_unlock(&mc.lock);
4b534334
KH
1215 return ret;
1216}
1217
1218static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1219{
1220 if (mc.moving_task && current != mc.moving_task) {
1221 if (mem_cgroup_under_move(mem)) {
1222 DEFINE_WAIT(wait);
1223 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1224 /* moving charge context might have finished. */
1225 if (mc.moving_task)
1226 schedule();
1227 finish_wait(&mc.waitq, &wait);
1228 return true;
1229 }
1230 }
1231 return false;
1232}
1233
e222432b 1234/**
6a6135b6 1235 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1236 * @memcg: The memory cgroup that went over limit
1237 * @p: Task that is going to be killed
1238 *
1239 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1240 * enabled
1241 */
1242void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1243{
1244 struct cgroup *task_cgrp;
1245 struct cgroup *mem_cgrp;
1246 /*
1247 * Need a buffer in BSS, can't rely on allocations. The code relies
1248 * on the assumption that OOM is serialized for memory controller.
1249 * If this assumption is broken, revisit this code.
1250 */
1251 static char memcg_name[PATH_MAX];
1252 int ret;
1253
d31f56db 1254 if (!memcg || !p)
e222432b
BS
1255 return;
1256
1257
1258 rcu_read_lock();
1259
1260 mem_cgrp = memcg->css.cgroup;
1261 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1262
1263 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1264 if (ret < 0) {
1265 /*
1266 * Unfortunately, we are unable to convert to a useful name
1267 * But we'll still print out the usage information
1268 */
1269 rcu_read_unlock();
1270 goto done;
1271 }
1272 rcu_read_unlock();
1273
1274 printk(KERN_INFO "Task in %s killed", memcg_name);
1275
1276 rcu_read_lock();
1277 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1278 if (ret < 0) {
1279 rcu_read_unlock();
1280 goto done;
1281 }
1282 rcu_read_unlock();
1283
1284 /*
1285 * Continues from above, so we don't need an KERN_ level
1286 */
1287 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1288done:
1289
1290 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1291 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1292 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1293 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1294 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1295 "failcnt %llu\n",
1296 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1297 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1298 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1299}
1300
81d39c20
KH
1301/*
1302 * This function returns the number of memcg under hierarchy tree. Returns
1303 * 1(self count) if no children.
1304 */
1305static int mem_cgroup_count_children(struct mem_cgroup *mem)
1306{
1307 int num = 0;
7d74b06f
KH
1308 struct mem_cgroup *iter;
1309
1310 for_each_mem_cgroup_tree(iter, mem)
1311 num++;
81d39c20
KH
1312 return num;
1313}
1314
a63d83f4
DR
1315/*
1316 * Return the memory (and swap, if configured) limit for a memcg.
1317 */
1318u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1319{
1320 u64 limit;
1321 u64 memsw;
1322
f3e8eb70
JW
1323 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1324 limit += total_swap_pages << PAGE_SHIFT;
1325
a63d83f4
DR
1326 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1327 /*
1328 * If memsw is finite and limits the amount of swap space available
1329 * to this memcg, return that limit.
1330 */
1331 return min(limit, memsw);
1332}
1333
6d61ef40 1334/*
04046e1a
KH
1335 * Visit the first child (need not be the first child as per the ordering
1336 * of the cgroup list, since we track last_scanned_child) of @mem and use
1337 * that to reclaim free pages from.
1338 */
1339static struct mem_cgroup *
1340mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1341{
1342 struct mem_cgroup *ret = NULL;
1343 struct cgroup_subsys_state *css;
1344 int nextid, found;
1345
1346 if (!root_mem->use_hierarchy) {
1347 css_get(&root_mem->css);
1348 ret = root_mem;
1349 }
1350
1351 while (!ret) {
1352 rcu_read_lock();
1353 nextid = root_mem->last_scanned_child + 1;
1354 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1355 &found);
1356 if (css && css_tryget(css))
1357 ret = container_of(css, struct mem_cgroup, css);
1358
1359 rcu_read_unlock();
1360 /* Updates scanning parameter */
1361 spin_lock(&root_mem->reclaim_param_lock);
1362 if (!css) {
1363 /* this means start scan from ID:1 */
1364 root_mem->last_scanned_child = 0;
1365 } else
1366 root_mem->last_scanned_child = found;
1367 spin_unlock(&root_mem->reclaim_param_lock);
1368 }
1369
1370 return ret;
1371}
1372
1373/*
1374 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1375 * we reclaimed from, so that we don't end up penalizing one child extensively
1376 * based on its position in the children list.
6d61ef40
BS
1377 *
1378 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1379 *
1380 * We give up and return to the caller when we visit root_mem twice.
1381 * (other groups can be removed while we're walking....)
81d39c20
KH
1382 *
1383 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1384 */
1385static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1386 struct zone *zone,
75822b44
BS
1387 gfp_t gfp_mask,
1388 unsigned long reclaim_options)
6d61ef40 1389{
04046e1a
KH
1390 struct mem_cgroup *victim;
1391 int ret, total = 0;
1392 int loop = 0;
75822b44
BS
1393 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1394 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1395 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1396 unsigned long excess;
1397
1398 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1399
22a668d7
KH
1400 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1401 if (root_mem->memsw_is_minimum)
1402 noswap = true;
1403
4e416953 1404 while (1) {
04046e1a 1405 victim = mem_cgroup_select_victim(root_mem);
4e416953 1406 if (victim == root_mem) {
04046e1a 1407 loop++;
cdec2e42
KH
1408 if (loop >= 1)
1409 drain_all_stock_async();
4e416953
BS
1410 if (loop >= 2) {
1411 /*
1412 * If we have not been able to reclaim
1413 * anything, it might because there are
1414 * no reclaimable pages under this hierarchy
1415 */
1416 if (!check_soft || !total) {
1417 css_put(&victim->css);
1418 break;
1419 }
1420 /*
1421 * We want to do more targetted reclaim.
1422 * excess >> 2 is not to excessive so as to
1423 * reclaim too much, nor too less that we keep
1424 * coming back to reclaim from this cgroup
1425 */
1426 if (total >= (excess >> 2) ||
1427 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1428 css_put(&victim->css);
1429 break;
1430 }
1431 }
1432 }
c62b1a3b 1433 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1434 /* this cgroup's local usage == 0 */
1435 css_put(&victim->css);
6d61ef40
BS
1436 continue;
1437 }
04046e1a 1438 /* we use swappiness of local cgroup */
4e416953
BS
1439 if (check_soft)
1440 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1441 noswap, get_swappiness(victim), zone);
4e416953
BS
1442 else
1443 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1444 noswap, get_swappiness(victim));
04046e1a 1445 css_put(&victim->css);
81d39c20
KH
1446 /*
1447 * At shrinking usage, we can't check we should stop here or
1448 * reclaim more. It's depends on callers. last_scanned_child
1449 * will work enough for keeping fairness under tree.
1450 */
1451 if (shrink)
1452 return ret;
04046e1a 1453 total += ret;
4e416953 1454 if (check_soft) {
9d11ea9f 1455 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1456 return total;
9d11ea9f 1457 } else if (mem_cgroup_margin(root_mem))
04046e1a 1458 return 1 + total;
6d61ef40 1459 }
04046e1a 1460 return total;
6d61ef40
BS
1461}
1462
867578cb
KH
1463/*
1464 * Check OOM-Killer is already running under our hierarchy.
1465 * If someone is running, return false.
1466 */
1467static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1468{
7d74b06f
KH
1469 int x, lock_count = 0;
1470 struct mem_cgroup *iter;
a636b327 1471
7d74b06f
KH
1472 for_each_mem_cgroup_tree(iter, mem) {
1473 x = atomic_inc_return(&iter->oom_lock);
1474 lock_count = max(x, lock_count);
1475 }
867578cb
KH
1476
1477 if (lock_count == 1)
1478 return true;
1479 return false;
a636b327 1480}
0b7f569e 1481
7d74b06f 1482static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1483{
7d74b06f
KH
1484 struct mem_cgroup *iter;
1485
867578cb
KH
1486 /*
1487 * When a new child is created while the hierarchy is under oom,
1488 * mem_cgroup_oom_lock() may not be called. We have to use
1489 * atomic_add_unless() here.
1490 */
7d74b06f
KH
1491 for_each_mem_cgroup_tree(iter, mem)
1492 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1493 return 0;
1494}
1495
867578cb
KH
1496
1497static DEFINE_MUTEX(memcg_oom_mutex);
1498static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1499
dc98df5a
KH
1500struct oom_wait_info {
1501 struct mem_cgroup *mem;
1502 wait_queue_t wait;
1503};
1504
1505static int memcg_oom_wake_function(wait_queue_t *wait,
1506 unsigned mode, int sync, void *arg)
1507{
1508 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1509 struct oom_wait_info *oom_wait_info;
1510
1511 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1512
1513 if (oom_wait_info->mem == wake_mem)
1514 goto wakeup;
1515 /* if no hierarchy, no match */
1516 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1517 return 0;
1518 /*
1519 * Both of oom_wait_info->mem and wake_mem are stable under us.
1520 * Then we can use css_is_ancestor without taking care of RCU.
1521 */
1522 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1523 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1524 return 0;
1525
1526wakeup:
1527 return autoremove_wake_function(wait, mode, sync, arg);
1528}
1529
1530static void memcg_wakeup_oom(struct mem_cgroup *mem)
1531{
1532 /* for filtering, pass "mem" as argument. */
1533 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1534}
1535
3c11ecf4
KH
1536static void memcg_oom_recover(struct mem_cgroup *mem)
1537{
2bd9bb20 1538 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1539 memcg_wakeup_oom(mem);
1540}
1541
867578cb
KH
1542/*
1543 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1544 */
1545bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1546{
dc98df5a 1547 struct oom_wait_info owait;
3c11ecf4 1548 bool locked, need_to_kill;
867578cb 1549
dc98df5a
KH
1550 owait.mem = mem;
1551 owait.wait.flags = 0;
1552 owait.wait.func = memcg_oom_wake_function;
1553 owait.wait.private = current;
1554 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1555 need_to_kill = true;
867578cb
KH
1556 /* At first, try to OOM lock hierarchy under mem.*/
1557 mutex_lock(&memcg_oom_mutex);
1558 locked = mem_cgroup_oom_lock(mem);
1559 /*
1560 * Even if signal_pending(), we can't quit charge() loop without
1561 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1562 * under OOM is always welcomed, use TASK_KILLABLE here.
1563 */
3c11ecf4
KH
1564 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1565 if (!locked || mem->oom_kill_disable)
1566 need_to_kill = false;
1567 if (locked)
9490ff27 1568 mem_cgroup_oom_notify(mem);
867578cb
KH
1569 mutex_unlock(&memcg_oom_mutex);
1570
3c11ecf4
KH
1571 if (need_to_kill) {
1572 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1573 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1574 } else {
867578cb 1575 schedule();
dc98df5a 1576 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1577 }
1578 mutex_lock(&memcg_oom_mutex);
1579 mem_cgroup_oom_unlock(mem);
dc98df5a 1580 memcg_wakeup_oom(mem);
867578cb
KH
1581 mutex_unlock(&memcg_oom_mutex);
1582
1583 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1584 return false;
1585 /* Give chance to dying process */
1586 schedule_timeout(1);
1587 return true;
0b7f569e
KH
1588}
1589
d69b042f
BS
1590/*
1591 * Currently used to update mapped file statistics, but the routine can be
1592 * generalized to update other statistics as well.
32047e2a
KH
1593 *
1594 * Notes: Race condition
1595 *
1596 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1597 * it tends to be costly. But considering some conditions, we doesn't need
1598 * to do so _always_.
1599 *
1600 * Considering "charge", lock_page_cgroup() is not required because all
1601 * file-stat operations happen after a page is attached to radix-tree. There
1602 * are no race with "charge".
1603 *
1604 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1605 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1606 * if there are race with "uncharge". Statistics itself is properly handled
1607 * by flags.
1608 *
1609 * Considering "move", this is an only case we see a race. To make the race
1610 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1611 * possibility of race condition. If there is, we take a lock.
d69b042f 1612 */
26174efd 1613
2a7106f2
GT
1614void mem_cgroup_update_page_stat(struct page *page,
1615 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1616{
1617 struct mem_cgroup *mem;
32047e2a
KH
1618 struct page_cgroup *pc = lookup_page_cgroup(page);
1619 bool need_unlock = false;
dbd4ea78 1620 unsigned long uninitialized_var(flags);
d69b042f 1621
d69b042f
BS
1622 if (unlikely(!pc))
1623 return;
1624
32047e2a 1625 rcu_read_lock();
d69b042f 1626 mem = pc->mem_cgroup;
32047e2a
KH
1627 if (unlikely(!mem || !PageCgroupUsed(pc)))
1628 goto out;
1629 /* pc->mem_cgroup is unstable ? */
ca3e0214 1630 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1631 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1632 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1633 need_unlock = true;
1634 mem = pc->mem_cgroup;
1635 if (!mem || !PageCgroupUsed(pc))
1636 goto out;
1637 }
26174efd 1638
26174efd 1639 switch (idx) {
2a7106f2 1640 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1641 if (val > 0)
1642 SetPageCgroupFileMapped(pc);
1643 else if (!page_mapped(page))
0c270f8f 1644 ClearPageCgroupFileMapped(pc);
2a7106f2 1645 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1646 break;
1647 default:
1648 BUG();
8725d541 1649 }
d69b042f 1650
2a7106f2
GT
1651 this_cpu_add(mem->stat->count[idx], val);
1652
32047e2a
KH
1653out:
1654 if (unlikely(need_unlock))
dbd4ea78 1655 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1656 rcu_read_unlock();
1657 return;
d69b042f 1658}
2a7106f2 1659EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1660
cdec2e42
KH
1661/*
1662 * size of first charge trial. "32" comes from vmscan.c's magic value.
1663 * TODO: maybe necessary to use big numbers in big irons.
1664 */
1665#define CHARGE_SIZE (32 * PAGE_SIZE)
1666struct memcg_stock_pcp {
1667 struct mem_cgroup *cached; /* this never be root cgroup */
1668 int charge;
1669 struct work_struct work;
1670};
1671static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1672static atomic_t memcg_drain_count;
1673
1674/*
1675 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1676 * from local stock and true is returned. If the stock is 0 or charges from a
1677 * cgroup which is not current target, returns false. This stock will be
1678 * refilled.
1679 */
1680static bool consume_stock(struct mem_cgroup *mem)
1681{
1682 struct memcg_stock_pcp *stock;
1683 bool ret = true;
1684
1685 stock = &get_cpu_var(memcg_stock);
1686 if (mem == stock->cached && stock->charge)
1687 stock->charge -= PAGE_SIZE;
1688 else /* need to call res_counter_charge */
1689 ret = false;
1690 put_cpu_var(memcg_stock);
1691 return ret;
1692}
1693
1694/*
1695 * Returns stocks cached in percpu to res_counter and reset cached information.
1696 */
1697static void drain_stock(struct memcg_stock_pcp *stock)
1698{
1699 struct mem_cgroup *old = stock->cached;
1700
1701 if (stock->charge) {
1702 res_counter_uncharge(&old->res, stock->charge);
1703 if (do_swap_account)
1704 res_counter_uncharge(&old->memsw, stock->charge);
1705 }
1706 stock->cached = NULL;
1707 stock->charge = 0;
1708}
1709
1710/*
1711 * This must be called under preempt disabled or must be called by
1712 * a thread which is pinned to local cpu.
1713 */
1714static void drain_local_stock(struct work_struct *dummy)
1715{
1716 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1717 drain_stock(stock);
1718}
1719
1720/*
1721 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1722 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1723 */
1724static void refill_stock(struct mem_cgroup *mem, int val)
1725{
1726 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1727
1728 if (stock->cached != mem) { /* reset if necessary */
1729 drain_stock(stock);
1730 stock->cached = mem;
1731 }
1732 stock->charge += val;
1733 put_cpu_var(memcg_stock);
1734}
1735
1736/*
1737 * Tries to drain stocked charges in other cpus. This function is asynchronous
1738 * and just put a work per cpu for draining localy on each cpu. Caller can
1739 * expects some charges will be back to res_counter later but cannot wait for
1740 * it.
1741 */
1742static void drain_all_stock_async(void)
1743{
1744 int cpu;
1745 /* This function is for scheduling "drain" in asynchronous way.
1746 * The result of "drain" is not directly handled by callers. Then,
1747 * if someone is calling drain, we don't have to call drain more.
1748 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1749 * there is a race. We just do loose check here.
1750 */
1751 if (atomic_read(&memcg_drain_count))
1752 return;
1753 /* Notify other cpus that system-wide "drain" is running */
1754 atomic_inc(&memcg_drain_count);
1755 get_online_cpus();
1756 for_each_online_cpu(cpu) {
1757 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1758 schedule_work_on(cpu, &stock->work);
1759 }
1760 put_online_cpus();
1761 atomic_dec(&memcg_drain_count);
1762 /* We don't wait for flush_work */
1763}
1764
1765/* This is a synchronous drain interface. */
1766static void drain_all_stock_sync(void)
1767{
1768 /* called when force_empty is called */
1769 atomic_inc(&memcg_drain_count);
1770 schedule_on_each_cpu(drain_local_stock);
1771 atomic_dec(&memcg_drain_count);
1772}
1773
711d3d2c
KH
1774/*
1775 * This function drains percpu counter value from DEAD cpu and
1776 * move it to local cpu. Note that this function can be preempted.
1777 */
1778static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1779{
1780 int i;
1781
1782 spin_lock(&mem->pcp_counter_lock);
1783 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1784 s64 x = per_cpu(mem->stat->count[i], cpu);
1785
1786 per_cpu(mem->stat->count[i], cpu) = 0;
1787 mem->nocpu_base.count[i] += x;
1788 }
1489ebad
KH
1789 /* need to clear ON_MOVE value, works as a kind of lock. */
1790 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1791 spin_unlock(&mem->pcp_counter_lock);
1792}
1793
1794static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1795{
1796 int idx = MEM_CGROUP_ON_MOVE;
1797
1798 spin_lock(&mem->pcp_counter_lock);
1799 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1800 spin_unlock(&mem->pcp_counter_lock);
1801}
1802
1803static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1804 unsigned long action,
1805 void *hcpu)
1806{
1807 int cpu = (unsigned long)hcpu;
1808 struct memcg_stock_pcp *stock;
711d3d2c 1809 struct mem_cgroup *iter;
cdec2e42 1810
1489ebad
KH
1811 if ((action == CPU_ONLINE)) {
1812 for_each_mem_cgroup_all(iter)
1813 synchronize_mem_cgroup_on_move(iter, cpu);
1814 return NOTIFY_OK;
1815 }
1816
711d3d2c 1817 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1818 return NOTIFY_OK;
711d3d2c
KH
1819
1820 for_each_mem_cgroup_all(iter)
1821 mem_cgroup_drain_pcp_counter(iter, cpu);
1822
cdec2e42
KH
1823 stock = &per_cpu(memcg_stock, cpu);
1824 drain_stock(stock);
1825 return NOTIFY_OK;
1826}
1827
4b534334
KH
1828
1829/* See __mem_cgroup_try_charge() for details */
1830enum {
1831 CHARGE_OK, /* success */
1832 CHARGE_RETRY, /* need to retry but retry is not bad */
1833 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1834 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1835 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1836};
1837
1838static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1839 int csize, bool oom_check)
1840{
1841 struct mem_cgroup *mem_over_limit;
1842 struct res_counter *fail_res;
1843 unsigned long flags = 0;
1844 int ret;
1845
1846 ret = res_counter_charge(&mem->res, csize, &fail_res);
1847
1848 if (likely(!ret)) {
1849 if (!do_swap_account)
1850 return CHARGE_OK;
1851 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1852 if (likely(!ret))
1853 return CHARGE_OK;
1854
01c88e2d 1855 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1856 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1857 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1858 } else
1859 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1860 /*
1861 * csize can be either a huge page (HPAGE_SIZE), a batch of
1862 * regular pages (CHARGE_SIZE), or a single regular page
1863 * (PAGE_SIZE).
1864 *
1865 * Never reclaim on behalf of optional batching, retry with a
1866 * single page instead.
1867 */
1868 if (csize == CHARGE_SIZE)
4b534334
KH
1869 return CHARGE_RETRY;
1870
1871 if (!(gfp_mask & __GFP_WAIT))
1872 return CHARGE_WOULDBLOCK;
1873
1874 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1875 gfp_mask, flags);
9d11ea9f 1876 if (mem_cgroup_margin(mem_over_limit) >= csize)
19942822 1877 return CHARGE_RETRY;
4b534334 1878 /*
19942822
JW
1879 * Even though the limit is exceeded at this point, reclaim
1880 * may have been able to free some pages. Retry the charge
1881 * before killing the task.
1882 *
1883 * Only for regular pages, though: huge pages are rather
1884 * unlikely to succeed so close to the limit, and we fall back
1885 * to regular pages anyway in case of failure.
4b534334 1886 */
19942822 1887 if (csize == PAGE_SIZE && ret)
4b534334
KH
1888 return CHARGE_RETRY;
1889
1890 /*
1891 * At task move, charge accounts can be doubly counted. So, it's
1892 * better to wait until the end of task_move if something is going on.
1893 */
1894 if (mem_cgroup_wait_acct_move(mem_over_limit))
1895 return CHARGE_RETRY;
1896
1897 /* If we don't need to call oom-killer at el, return immediately */
1898 if (!oom_check)
1899 return CHARGE_NOMEM;
1900 /* check OOM */
1901 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1902 return CHARGE_OOM_DIE;
1903
1904 return CHARGE_RETRY;
1905}
1906
f817ed48
KH
1907/*
1908 * Unlike exported interface, "oom" parameter is added. if oom==true,
1909 * oom-killer can be invoked.
8a9f3ccd 1910 */
f817ed48 1911static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1912 gfp_t gfp_mask,
1913 struct mem_cgroup **memcg, bool oom,
1914 int page_size)
8a9f3ccd 1915{
4b534334
KH
1916 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1917 struct mem_cgroup *mem = NULL;
1918 int ret;
ec168510 1919 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1920
867578cb
KH
1921 /*
1922 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1923 * in system level. So, allow to go ahead dying process in addition to
1924 * MEMDIE process.
1925 */
1926 if (unlikely(test_thread_flag(TIF_MEMDIE)
1927 || fatal_signal_pending(current)))
1928 goto bypass;
a636b327 1929
8a9f3ccd 1930 /*
3be91277
HD
1931 * We always charge the cgroup the mm_struct belongs to.
1932 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1933 * thread group leader migrates. It's possible that mm is not
1934 * set, if so charge the init_mm (happens for pagecache usage).
1935 */
f75ca962
KH
1936 if (!*memcg && !mm)
1937 goto bypass;
1938again:
1939 if (*memcg) { /* css should be a valid one */
4b534334 1940 mem = *memcg;
f75ca962
KH
1941 VM_BUG_ON(css_is_removed(&mem->css));
1942 if (mem_cgroup_is_root(mem))
1943 goto done;
ec168510 1944 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1945 goto done;
4b534334
KH
1946 css_get(&mem->css);
1947 } else {
f75ca962 1948 struct task_struct *p;
54595fe2 1949
f75ca962
KH
1950 rcu_read_lock();
1951 p = rcu_dereference(mm->owner);
f75ca962 1952 /*
ebb76ce1
KH
1953 * Because we don't have task_lock(), "p" can exit.
1954 * In that case, "mem" can point to root or p can be NULL with
1955 * race with swapoff. Then, we have small risk of mis-accouning.
1956 * But such kind of mis-account by race always happens because
1957 * we don't have cgroup_mutex(). It's overkill and we allo that
1958 * small race, here.
1959 * (*) swapoff at el will charge against mm-struct not against
1960 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1961 */
1962 mem = mem_cgroup_from_task(p);
ebb76ce1 1963 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1964 rcu_read_unlock();
1965 goto done;
1966 }
ec168510 1967 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1968 /*
1969 * It seems dagerous to access memcg without css_get().
1970 * But considering how consume_stok works, it's not
1971 * necessary. If consume_stock success, some charges
1972 * from this memcg are cached on this cpu. So, we
1973 * don't need to call css_get()/css_tryget() before
1974 * calling consume_stock().
1975 */
1976 rcu_read_unlock();
1977 goto done;
1978 }
1979 /* after here, we may be blocked. we need to get refcnt */
1980 if (!css_tryget(&mem->css)) {
1981 rcu_read_unlock();
1982 goto again;
1983 }
1984 rcu_read_unlock();
1985 }
8a9f3ccd 1986
4b534334
KH
1987 do {
1988 bool oom_check;
7a81b88c 1989
4b534334 1990 /* If killed, bypass charge */
f75ca962
KH
1991 if (fatal_signal_pending(current)) {
1992 css_put(&mem->css);
4b534334 1993 goto bypass;
f75ca962 1994 }
6d61ef40 1995
4b534334
KH
1996 oom_check = false;
1997 if (oom && !nr_oom_retries) {
1998 oom_check = true;
1999 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2000 }
66e1707b 2001
4b534334 2002 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 2003
4b534334
KH
2004 switch (ret) {
2005 case CHARGE_OK:
2006 break;
2007 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 2008 csize = page_size;
f75ca962
KH
2009 css_put(&mem->css);
2010 mem = NULL;
2011 goto again;
4b534334 2012 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2013 css_put(&mem->css);
4b534334
KH
2014 goto nomem;
2015 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2016 if (!oom) {
2017 css_put(&mem->css);
867578cb 2018 goto nomem;
f75ca962 2019 }
4b534334
KH
2020 /* If oom, we never return -ENOMEM */
2021 nr_oom_retries--;
2022 break;
2023 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2024 css_put(&mem->css);
867578cb 2025 goto bypass;
66e1707b 2026 }
4b534334
KH
2027 } while (ret != CHARGE_OK);
2028
ec168510
AA
2029 if (csize > page_size)
2030 refill_stock(mem, csize - page_size);
f75ca962 2031 css_put(&mem->css);
0c3e73e8 2032done:
f75ca962 2033 *memcg = mem;
7a81b88c
KH
2034 return 0;
2035nomem:
f75ca962 2036 *memcg = NULL;
7a81b88c 2037 return -ENOMEM;
867578cb
KH
2038bypass:
2039 *memcg = NULL;
2040 return 0;
7a81b88c 2041}
8a9f3ccd 2042
a3032a2c
DN
2043/*
2044 * Somemtimes we have to undo a charge we got by try_charge().
2045 * This function is for that and do uncharge, put css's refcnt.
2046 * gotten by try_charge().
2047 */
854ffa8d
DN
2048static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2049 unsigned long count)
a3032a2c
DN
2050{
2051 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2052 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2053 if (do_swap_account)
854ffa8d 2054 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2055 }
854ffa8d
DN
2056}
2057
ec168510
AA
2058static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2059 int page_size)
854ffa8d 2060{
ec168510 2061 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2062}
2063
a3b2d692
KH
2064/*
2065 * A helper function to get mem_cgroup from ID. must be called under
2066 * rcu_read_lock(). The caller must check css_is_removed() or some if
2067 * it's concern. (dropping refcnt from swap can be called against removed
2068 * memcg.)
2069 */
2070static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2071{
2072 struct cgroup_subsys_state *css;
2073
2074 /* ID 0 is unused ID */
2075 if (!id)
2076 return NULL;
2077 css = css_lookup(&mem_cgroup_subsys, id);
2078 if (!css)
2079 return NULL;
2080 return container_of(css, struct mem_cgroup, css);
2081}
2082
e42d9d5d 2083struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2084{
e42d9d5d 2085 struct mem_cgroup *mem = NULL;
3c776e64 2086 struct page_cgroup *pc;
a3b2d692 2087 unsigned short id;
b5a84319
KH
2088 swp_entry_t ent;
2089
3c776e64
DN
2090 VM_BUG_ON(!PageLocked(page));
2091
3c776e64 2092 pc = lookup_page_cgroup(page);
c0bd3f63 2093 lock_page_cgroup(pc);
a3b2d692 2094 if (PageCgroupUsed(pc)) {
3c776e64 2095 mem = pc->mem_cgroup;
a3b2d692
KH
2096 if (mem && !css_tryget(&mem->css))
2097 mem = NULL;
e42d9d5d 2098 } else if (PageSwapCache(page)) {
3c776e64 2099 ent.val = page_private(page);
a3b2d692
KH
2100 id = lookup_swap_cgroup(ent);
2101 rcu_read_lock();
2102 mem = mem_cgroup_lookup(id);
2103 if (mem && !css_tryget(&mem->css))
2104 mem = NULL;
2105 rcu_read_unlock();
3c776e64 2106 }
c0bd3f63 2107 unlock_page_cgroup(pc);
b5a84319
KH
2108 return mem;
2109}
2110
ca3e0214
KH
2111static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2112 struct page_cgroup *pc,
2113 enum charge_type ctype,
2114 int page_size)
7a81b88c 2115{
ca3e0214
KH
2116 int nr_pages = page_size >> PAGE_SHIFT;
2117
ca3e0214
KH
2118 lock_page_cgroup(pc);
2119 if (unlikely(PageCgroupUsed(pc))) {
2120 unlock_page_cgroup(pc);
2121 mem_cgroup_cancel_charge(mem, page_size);
2122 return;
2123 }
2124 /*
2125 * we don't need page_cgroup_lock about tail pages, becase they are not
2126 * accessed by any other context at this point.
2127 */
8a9f3ccd 2128 pc->mem_cgroup = mem;
261fb61a
KH
2129 /*
2130 * We access a page_cgroup asynchronously without lock_page_cgroup().
2131 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2132 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2133 * before USED bit, we need memory barrier here.
2134 * See mem_cgroup_add_lru_list(), etc.
2135 */
08e552c6 2136 smp_wmb();
4b3bde4c
BS
2137 switch (ctype) {
2138 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2139 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2140 SetPageCgroupCache(pc);
2141 SetPageCgroupUsed(pc);
2142 break;
2143 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2144 ClearPageCgroupCache(pc);
2145 SetPageCgroupUsed(pc);
2146 break;
2147 default:
2148 break;
2149 }
3be91277 2150
ca3e0214 2151 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2152 unlock_page_cgroup(pc);
430e4863
KH
2153 /*
2154 * "charge_statistics" updated event counter. Then, check it.
2155 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2156 * if they exceeds softlimit.
2157 */
d2265e6f 2158 memcg_check_events(mem, pc->page);
7a81b88c 2159}
66e1707b 2160
ca3e0214
KH
2161#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2162
2163#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2164 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2165/*
2166 * Because tail pages are not marked as "used", set it. We're under
2167 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2168 */
2169void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2170{
2171 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2172 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2173 unsigned long flags;
2174
3d37c4a9
KH
2175 if (mem_cgroup_disabled())
2176 return;
ca3e0214 2177 /*
ece35ca8 2178 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2179 * page state accounting.
2180 */
2181 move_lock_page_cgroup(head_pc, &flags);
2182
2183 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2184 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2185 if (PageCgroupAcctLRU(head_pc)) {
2186 enum lru_list lru;
2187 struct mem_cgroup_per_zone *mz;
2188
2189 /*
2190 * LRU flags cannot be copied because we need to add tail
2191 *.page to LRU by generic call and our hook will be called.
2192 * We hold lru_lock, then, reduce counter directly.
2193 */
2194 lru = page_lru(head);
2195 mz = page_cgroup_zoneinfo(head_pc);
2196 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2197 }
ca3e0214
KH
2198 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2199 move_unlock_page_cgroup(head_pc, &flags);
2200}
2201#endif
2202
f817ed48 2203/**
57f9fd7d 2204 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2205 * @pc: page_cgroup of the page.
2206 * @from: mem_cgroup which the page is moved from.
2207 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2208 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2209 *
2210 * The caller must confirm following.
08e552c6 2211 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2212 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2213 *
854ffa8d
DN
2214 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2215 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2216 * true, this function does "uncharge" from old cgroup, but it doesn't if
2217 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2218 */
2219
57f9fd7d 2220static void __mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2221 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2222 int charge_size)
f817ed48 2223{
987eba66
KH
2224 int nr_pages = charge_size >> PAGE_SHIFT;
2225
f817ed48 2226 VM_BUG_ON(from == to);
08e552c6 2227 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2228 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2229 VM_BUG_ON(!PageCgroupUsed(pc));
2230 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2231
8725d541 2232 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2233 /* Update mapped_file data for mem_cgroup */
2234 preempt_disable();
2235 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2236 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2237 preempt_enable();
d69b042f 2238 }
987eba66 2239 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2240 if (uncharge)
2241 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2242 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2243
854ffa8d 2244 /* caller should have done css_get */
08e552c6 2245 pc->mem_cgroup = to;
987eba66 2246 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2247 /*
2248 * We charges against "to" which may not have any tasks. Then, "to"
2249 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2250 * this function is just force_empty() and move charge, so it's
2251 * garanteed that "to" is never removed. So, we don't check rmdir
2252 * status here.
88703267 2253 */
57f9fd7d
DN
2254}
2255
2256/*
2257 * check whether the @pc is valid for moving account and call
2258 * __mem_cgroup_move_account()
2259 */
2260static int mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2261 struct mem_cgroup *from, struct mem_cgroup *to,
2262 bool uncharge, int charge_size)
57f9fd7d
DN
2263{
2264 int ret = -EINVAL;
dbd4ea78 2265 unsigned long flags;
52dbb905
KH
2266 /*
2267 * The page is isolated from LRU. So, collapse function
2268 * will not handle this page. But page splitting can happen.
2269 * Do this check under compound_page_lock(). The caller should
2270 * hold it.
2271 */
987eba66
KH
2272 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2273 return -EBUSY;
2274
57f9fd7d
DN
2275 lock_page_cgroup(pc);
2276 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2277 move_lock_page_cgroup(pc, &flags);
987eba66 2278 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
dbd4ea78 2279 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2280 ret = 0;
2281 }
2282 unlock_page_cgroup(pc);
d2265e6f
KH
2283 /*
2284 * check events
2285 */
2286 memcg_check_events(to, pc->page);
2287 memcg_check_events(from, pc->page);
f817ed48
KH
2288 return ret;
2289}
2290
2291/*
2292 * move charges to its parent.
2293 */
2294
2295static int mem_cgroup_move_parent(struct page_cgroup *pc,
2296 struct mem_cgroup *child,
2297 gfp_t gfp_mask)
2298{
08e552c6 2299 struct page *page = pc->page;
f817ed48
KH
2300 struct cgroup *cg = child->css.cgroup;
2301 struct cgroup *pcg = cg->parent;
2302 struct mem_cgroup *parent;
52dbb905 2303 int page_size = PAGE_SIZE;
987eba66 2304 unsigned long flags;
f817ed48
KH
2305 int ret;
2306
2307 /* Is ROOT ? */
2308 if (!pcg)
2309 return -EINVAL;
2310
57f9fd7d
DN
2311 ret = -EBUSY;
2312 if (!get_page_unless_zero(page))
2313 goto out;
2314 if (isolate_lru_page(page))
2315 goto put;
52dbb905
KH
2316
2317 if (PageTransHuge(page))
2318 page_size = HPAGE_SIZE;
08e552c6 2319
f817ed48 2320 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2321 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2322 &parent, false, page_size);
a636b327 2323 if (ret || !parent)
57f9fd7d 2324 goto put_back;
f817ed48 2325
52dbb905 2326 if (page_size > PAGE_SIZE)
987eba66
KH
2327 flags = compound_lock_irqsave(page);
2328
52dbb905 2329 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
854ffa8d 2330 if (ret)
52dbb905 2331 mem_cgroup_cancel_charge(parent, page_size);
8dba474f 2332
52dbb905 2333 if (page_size > PAGE_SIZE)
987eba66 2334 compound_unlock_irqrestore(page, flags);
8dba474f 2335put_back:
08e552c6 2336 putback_lru_page(page);
57f9fd7d 2337put:
40d58138 2338 put_page(page);
57f9fd7d 2339out:
f817ed48
KH
2340 return ret;
2341}
2342
7a81b88c
KH
2343/*
2344 * Charge the memory controller for page usage.
2345 * Return
2346 * 0 if the charge was successful
2347 * < 0 if the cgroup is over its limit
2348 */
2349static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2350 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2351{
73045c47 2352 struct mem_cgroup *mem = NULL;
8493ae43 2353 int page_size = PAGE_SIZE;
7a81b88c 2354 struct page_cgroup *pc;
8493ae43 2355 bool oom = true;
7a81b88c 2356 int ret;
ec168510 2357
37c2ac78 2358 if (PageTransHuge(page)) {
ec168510 2359 page_size <<= compound_order(page);
37c2ac78 2360 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2361 /*
2362 * Never OOM-kill a process for a huge page. The
2363 * fault handler will fall back to regular pages.
2364 */
2365 oom = false;
37c2ac78 2366 }
7a81b88c
KH
2367
2368 pc = lookup_page_cgroup(page);
af4a6621 2369 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2370
8493ae43 2371 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2372 if (ret || !mem)
7a81b88c
KH
2373 return ret;
2374
ec168510 2375 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2376 return 0;
8a9f3ccd
BS
2377}
2378
7a81b88c
KH
2379int mem_cgroup_newpage_charge(struct page *page,
2380 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2381{
f8d66542 2382 if (mem_cgroup_disabled())
cede86ac 2383 return 0;
69029cd5
KH
2384 /*
2385 * If already mapped, we don't have to account.
2386 * If page cache, page->mapping has address_space.
2387 * But page->mapping may have out-of-use anon_vma pointer,
2388 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2389 * is NULL.
2390 */
2391 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2392 return 0;
2393 if (unlikely(!mm))
2394 mm = &init_mm;
217bc319 2395 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2396 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2397}
2398
83aae4c7
DN
2399static void
2400__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2401 enum charge_type ctype);
2402
e1a1cd59
BS
2403int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2404 gfp_t gfp_mask)
8697d331 2405{
b5a84319
KH
2406 int ret;
2407
f8d66542 2408 if (mem_cgroup_disabled())
cede86ac 2409 return 0;
52d4b9ac
KH
2410 if (PageCompound(page))
2411 return 0;
accf163e
KH
2412 /*
2413 * Corner case handling. This is called from add_to_page_cache()
2414 * in usual. But some FS (shmem) precharges this page before calling it
2415 * and call add_to_page_cache() with GFP_NOWAIT.
2416 *
2417 * For GFP_NOWAIT case, the page may be pre-charged before calling
2418 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2419 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2420 * And when the page is SwapCache, it should take swap information
2421 * into account. This is under lock_page() now.
accf163e
KH
2422 */
2423 if (!(gfp_mask & __GFP_WAIT)) {
2424 struct page_cgroup *pc;
2425
52d4b9ac
KH
2426 pc = lookup_page_cgroup(page);
2427 if (!pc)
2428 return 0;
2429 lock_page_cgroup(pc);
2430 if (PageCgroupUsed(pc)) {
2431 unlock_page_cgroup(pc);
accf163e
KH
2432 return 0;
2433 }
52d4b9ac 2434 unlock_page_cgroup(pc);
accf163e
KH
2435 }
2436
73045c47 2437 if (unlikely(!mm))
8697d331 2438 mm = &init_mm;
accf163e 2439
c05555b5
KH
2440 if (page_is_file_cache(page))
2441 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2442 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2443
83aae4c7
DN
2444 /* shmem */
2445 if (PageSwapCache(page)) {
56039efa 2446 struct mem_cgroup *mem;
73045c47 2447
83aae4c7
DN
2448 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2449 if (!ret)
2450 __mem_cgroup_commit_charge_swapin(page, mem,
2451 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2452 } else
2453 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2454 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2455
b5a84319 2456 return ret;
e8589cc1
KH
2457}
2458
54595fe2
KH
2459/*
2460 * While swap-in, try_charge -> commit or cancel, the page is locked.
2461 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2462 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2463 * "commit()" or removed by "cancel()"
2464 */
8c7c6e34
KH
2465int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2466 struct page *page,
2467 gfp_t mask, struct mem_cgroup **ptr)
2468{
2469 struct mem_cgroup *mem;
54595fe2 2470 int ret;
8c7c6e34 2471
56039efa
KH
2472 *ptr = NULL;
2473
f8d66542 2474 if (mem_cgroup_disabled())
8c7c6e34
KH
2475 return 0;
2476
2477 if (!do_swap_account)
2478 goto charge_cur_mm;
8c7c6e34
KH
2479 /*
2480 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2481 * the pte, and even removed page from swap cache: in those cases
2482 * do_swap_page()'s pte_same() test will fail; but there's also a
2483 * KSM case which does need to charge the page.
8c7c6e34
KH
2484 */
2485 if (!PageSwapCache(page))
407f9c8b 2486 goto charge_cur_mm;
e42d9d5d 2487 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2488 if (!mem)
2489 goto charge_cur_mm;
8c7c6e34 2490 *ptr = mem;
ec168510 2491 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2492 css_put(&mem->css);
2493 return ret;
8c7c6e34
KH
2494charge_cur_mm:
2495 if (unlikely(!mm))
2496 mm = &init_mm;
ec168510 2497 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2498}
2499
83aae4c7
DN
2500static void
2501__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2502 enum charge_type ctype)
7a81b88c
KH
2503{
2504 struct page_cgroup *pc;
2505
f8d66542 2506 if (mem_cgroup_disabled())
7a81b88c
KH
2507 return;
2508 if (!ptr)
2509 return;
88703267 2510 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2511 pc = lookup_page_cgroup(page);
544122e5 2512 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2513 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2514 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2515 /*
2516 * Now swap is on-memory. This means this page may be
2517 * counted both as mem and swap....double count.
03f3c433
KH
2518 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2519 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2520 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2521 */
03f3c433 2522 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2523 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2524 unsigned short id;
8c7c6e34 2525 struct mem_cgroup *memcg;
a3b2d692
KH
2526
2527 id = swap_cgroup_record(ent, 0);
2528 rcu_read_lock();
2529 memcg = mem_cgroup_lookup(id);
8c7c6e34 2530 if (memcg) {
a3b2d692
KH
2531 /*
2532 * This recorded memcg can be obsolete one. So, avoid
2533 * calling css_tryget
2534 */
0c3e73e8 2535 if (!mem_cgroup_is_root(memcg))
4e649152 2536 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2537 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2538 mem_cgroup_put(memcg);
2539 }
a3b2d692 2540 rcu_read_unlock();
8c7c6e34 2541 }
88703267
KH
2542 /*
2543 * At swapin, we may charge account against cgroup which has no tasks.
2544 * So, rmdir()->pre_destroy() can be called while we do this charge.
2545 * In that case, we need to call pre_destroy() again. check it here.
2546 */
2547 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2548}
2549
83aae4c7
DN
2550void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2551{
2552 __mem_cgroup_commit_charge_swapin(page, ptr,
2553 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2554}
2555
7a81b88c
KH
2556void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2557{
f8d66542 2558 if (mem_cgroup_disabled())
7a81b88c
KH
2559 return;
2560 if (!mem)
2561 return;
ec168510 2562 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2563}
2564
569b846d 2565static void
ec168510
AA
2566__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2567 int page_size)
569b846d
KH
2568{
2569 struct memcg_batch_info *batch = NULL;
2570 bool uncharge_memsw = true;
2571 /* If swapout, usage of swap doesn't decrease */
2572 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2573 uncharge_memsw = false;
569b846d
KH
2574
2575 batch = &current->memcg_batch;
2576 /*
2577 * In usual, we do css_get() when we remember memcg pointer.
2578 * But in this case, we keep res->usage until end of a series of
2579 * uncharges. Then, it's ok to ignore memcg's refcnt.
2580 */
2581 if (!batch->memcg)
2582 batch->memcg = mem;
3c11ecf4
KH
2583 /*
2584 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2585 * In those cases, all pages freed continously can be expected to be in
2586 * the same cgroup and we have chance to coalesce uncharges.
2587 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2588 * because we want to do uncharge as soon as possible.
2589 */
2590
2591 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2592 goto direct_uncharge;
2593
ec168510
AA
2594 if (page_size != PAGE_SIZE)
2595 goto direct_uncharge;
2596
569b846d
KH
2597 /*
2598 * In typical case, batch->memcg == mem. This means we can
2599 * merge a series of uncharges to an uncharge of res_counter.
2600 * If not, we uncharge res_counter ony by one.
2601 */
2602 if (batch->memcg != mem)
2603 goto direct_uncharge;
2604 /* remember freed charge and uncharge it later */
2605 batch->bytes += PAGE_SIZE;
2606 if (uncharge_memsw)
2607 batch->memsw_bytes += PAGE_SIZE;
2608 return;
2609direct_uncharge:
ec168510 2610 res_counter_uncharge(&mem->res, page_size);
569b846d 2611 if (uncharge_memsw)
ec168510 2612 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2613 if (unlikely(batch->memcg != mem))
2614 memcg_oom_recover(mem);
569b846d
KH
2615 return;
2616}
7a81b88c 2617
8a9f3ccd 2618/*
69029cd5 2619 * uncharge if !page_mapped(page)
8a9f3ccd 2620 */
8c7c6e34 2621static struct mem_cgroup *
69029cd5 2622__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2623{
152c9ccb 2624 int count;
8289546e 2625 struct page_cgroup *pc;
8c7c6e34 2626 struct mem_cgroup *mem = NULL;
ec168510 2627 int page_size = PAGE_SIZE;
8a9f3ccd 2628
f8d66542 2629 if (mem_cgroup_disabled())
8c7c6e34 2630 return NULL;
4077960e 2631
d13d1443 2632 if (PageSwapCache(page))
8c7c6e34 2633 return NULL;
d13d1443 2634
37c2ac78 2635 if (PageTransHuge(page)) {
ec168510 2636 page_size <<= compound_order(page);
37c2ac78
AA
2637 VM_BUG_ON(!PageTransHuge(page));
2638 }
ec168510 2639
152c9ccb 2640 count = page_size >> PAGE_SHIFT;
8697d331 2641 /*
3c541e14 2642 * Check if our page_cgroup is valid
8697d331 2643 */
52d4b9ac
KH
2644 pc = lookup_page_cgroup(page);
2645 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2646 return NULL;
b9c565d5 2647
52d4b9ac 2648 lock_page_cgroup(pc);
d13d1443 2649
8c7c6e34
KH
2650 mem = pc->mem_cgroup;
2651
d13d1443
KH
2652 if (!PageCgroupUsed(pc))
2653 goto unlock_out;
2654
2655 switch (ctype) {
2656 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2657 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2658 /* See mem_cgroup_prepare_migration() */
2659 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2660 goto unlock_out;
2661 break;
2662 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2663 if (!PageAnon(page)) { /* Shared memory */
2664 if (page->mapping && !page_is_file_cache(page))
2665 goto unlock_out;
2666 } else if (page_mapped(page)) /* Anon */
2667 goto unlock_out;
2668 break;
2669 default:
2670 break;
52d4b9ac 2671 }
d13d1443 2672
ca3e0214 2673 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2674
52d4b9ac 2675 ClearPageCgroupUsed(pc);
544122e5
KH
2676 /*
2677 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2678 * freed from LRU. This is safe because uncharged page is expected not
2679 * to be reused (freed soon). Exception is SwapCache, it's handled by
2680 * special functions.
2681 */
b9c565d5 2682
52d4b9ac 2683 unlock_page_cgroup(pc);
f75ca962
KH
2684 /*
2685 * even after unlock, we have mem->res.usage here and this memcg
2686 * will never be freed.
2687 */
d2265e6f 2688 memcg_check_events(mem, page);
f75ca962
KH
2689 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2690 mem_cgroup_swap_statistics(mem, true);
2691 mem_cgroup_get(mem);
2692 }
2693 if (!mem_cgroup_is_root(mem))
ec168510 2694 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2695
8c7c6e34 2696 return mem;
d13d1443
KH
2697
2698unlock_out:
2699 unlock_page_cgroup(pc);
8c7c6e34 2700 return NULL;
3c541e14
BS
2701}
2702
69029cd5
KH
2703void mem_cgroup_uncharge_page(struct page *page)
2704{
52d4b9ac
KH
2705 /* early check. */
2706 if (page_mapped(page))
2707 return;
2708 if (page->mapping && !PageAnon(page))
2709 return;
69029cd5
KH
2710 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2711}
2712
2713void mem_cgroup_uncharge_cache_page(struct page *page)
2714{
2715 VM_BUG_ON(page_mapped(page));
b7abea96 2716 VM_BUG_ON(page->mapping);
69029cd5
KH
2717 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2718}
2719
569b846d
KH
2720/*
2721 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2722 * In that cases, pages are freed continuously and we can expect pages
2723 * are in the same memcg. All these calls itself limits the number of
2724 * pages freed at once, then uncharge_start/end() is called properly.
2725 * This may be called prural(2) times in a context,
2726 */
2727
2728void mem_cgroup_uncharge_start(void)
2729{
2730 current->memcg_batch.do_batch++;
2731 /* We can do nest. */
2732 if (current->memcg_batch.do_batch == 1) {
2733 current->memcg_batch.memcg = NULL;
2734 current->memcg_batch.bytes = 0;
2735 current->memcg_batch.memsw_bytes = 0;
2736 }
2737}
2738
2739void mem_cgroup_uncharge_end(void)
2740{
2741 struct memcg_batch_info *batch = &current->memcg_batch;
2742
2743 if (!batch->do_batch)
2744 return;
2745
2746 batch->do_batch--;
2747 if (batch->do_batch) /* If stacked, do nothing. */
2748 return;
2749
2750 if (!batch->memcg)
2751 return;
2752 /*
2753 * This "batch->memcg" is valid without any css_get/put etc...
2754 * bacause we hide charges behind us.
2755 */
2756 if (batch->bytes)
2757 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2758 if (batch->memsw_bytes)
2759 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2760 memcg_oom_recover(batch->memcg);
569b846d
KH
2761 /* forget this pointer (for sanity check) */
2762 batch->memcg = NULL;
2763}
2764
e767e056 2765#ifdef CONFIG_SWAP
8c7c6e34 2766/*
e767e056 2767 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2768 * memcg information is recorded to swap_cgroup of "ent"
2769 */
8a9478ca
KH
2770void
2771mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2772{
2773 struct mem_cgroup *memcg;
8a9478ca
KH
2774 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2775
2776 if (!swapout) /* this was a swap cache but the swap is unused ! */
2777 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2778
2779 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2780
f75ca962
KH
2781 /*
2782 * record memcg information, if swapout && memcg != NULL,
2783 * mem_cgroup_get() was called in uncharge().
2784 */
2785 if (do_swap_account && swapout && memcg)
a3b2d692 2786 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2787}
e767e056 2788#endif
8c7c6e34
KH
2789
2790#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2791/*
2792 * called from swap_entry_free(). remove record in swap_cgroup and
2793 * uncharge "memsw" account.
2794 */
2795void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2796{
8c7c6e34 2797 struct mem_cgroup *memcg;
a3b2d692 2798 unsigned short id;
8c7c6e34
KH
2799
2800 if (!do_swap_account)
2801 return;
2802
a3b2d692
KH
2803 id = swap_cgroup_record(ent, 0);
2804 rcu_read_lock();
2805 memcg = mem_cgroup_lookup(id);
8c7c6e34 2806 if (memcg) {
a3b2d692
KH
2807 /*
2808 * We uncharge this because swap is freed.
2809 * This memcg can be obsolete one. We avoid calling css_tryget
2810 */
0c3e73e8 2811 if (!mem_cgroup_is_root(memcg))
4e649152 2812 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2813 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2814 mem_cgroup_put(memcg);
2815 }
a3b2d692 2816 rcu_read_unlock();
d13d1443 2817}
02491447
DN
2818
2819/**
2820 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2821 * @entry: swap entry to be moved
2822 * @from: mem_cgroup which the entry is moved from
2823 * @to: mem_cgroup which the entry is moved to
483c30b5 2824 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2825 *
2826 * It succeeds only when the swap_cgroup's record for this entry is the same
2827 * as the mem_cgroup's id of @from.
2828 *
2829 * Returns 0 on success, -EINVAL on failure.
2830 *
2831 * The caller must have charged to @to, IOW, called res_counter_charge() about
2832 * both res and memsw, and called css_get().
2833 */
2834static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2835 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2836{
2837 unsigned short old_id, new_id;
2838
2839 old_id = css_id(&from->css);
2840 new_id = css_id(&to->css);
2841
2842 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2843 mem_cgroup_swap_statistics(from, false);
483c30b5 2844 mem_cgroup_swap_statistics(to, true);
02491447 2845 /*
483c30b5
DN
2846 * This function is only called from task migration context now.
2847 * It postpones res_counter and refcount handling till the end
2848 * of task migration(mem_cgroup_clear_mc()) for performance
2849 * improvement. But we cannot postpone mem_cgroup_get(to)
2850 * because if the process that has been moved to @to does
2851 * swap-in, the refcount of @to might be decreased to 0.
02491447 2852 */
02491447 2853 mem_cgroup_get(to);
483c30b5
DN
2854 if (need_fixup) {
2855 if (!mem_cgroup_is_root(from))
2856 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2857 mem_cgroup_put(from);
2858 /*
2859 * we charged both to->res and to->memsw, so we should
2860 * uncharge to->res.
2861 */
2862 if (!mem_cgroup_is_root(to))
2863 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2864 }
02491447
DN
2865 return 0;
2866 }
2867 return -EINVAL;
2868}
2869#else
2870static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2871 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2872{
2873 return -EINVAL;
2874}
8c7c6e34 2875#endif
d13d1443 2876
ae41be37 2877/*
01b1ae63
KH
2878 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2879 * page belongs to.
ae41be37 2880 */
ac39cf8c 2881int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2882 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2883{
2884 struct page_cgroup *pc;
e8589cc1 2885 struct mem_cgroup *mem = NULL;
ac39cf8c 2886 enum charge_type ctype;
e8589cc1 2887 int ret = 0;
8869b8f6 2888
56039efa
KH
2889 *ptr = NULL;
2890
ec168510 2891 VM_BUG_ON(PageTransHuge(page));
f8d66542 2892 if (mem_cgroup_disabled())
4077960e
BS
2893 return 0;
2894
52d4b9ac
KH
2895 pc = lookup_page_cgroup(page);
2896 lock_page_cgroup(pc);
2897 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2898 mem = pc->mem_cgroup;
2899 css_get(&mem->css);
ac39cf8c
AM
2900 /*
2901 * At migrating an anonymous page, its mapcount goes down
2902 * to 0 and uncharge() will be called. But, even if it's fully
2903 * unmapped, migration may fail and this page has to be
2904 * charged again. We set MIGRATION flag here and delay uncharge
2905 * until end_migration() is called
2906 *
2907 * Corner Case Thinking
2908 * A)
2909 * When the old page was mapped as Anon and it's unmap-and-freed
2910 * while migration was ongoing.
2911 * If unmap finds the old page, uncharge() of it will be delayed
2912 * until end_migration(). If unmap finds a new page, it's
2913 * uncharged when it make mapcount to be 1->0. If unmap code
2914 * finds swap_migration_entry, the new page will not be mapped
2915 * and end_migration() will find it(mapcount==0).
2916 *
2917 * B)
2918 * When the old page was mapped but migraion fails, the kernel
2919 * remaps it. A charge for it is kept by MIGRATION flag even
2920 * if mapcount goes down to 0. We can do remap successfully
2921 * without charging it again.
2922 *
2923 * C)
2924 * The "old" page is under lock_page() until the end of
2925 * migration, so, the old page itself will not be swapped-out.
2926 * If the new page is swapped out before end_migraton, our
2927 * hook to usual swap-out path will catch the event.
2928 */
2929 if (PageAnon(page))
2930 SetPageCgroupMigration(pc);
e8589cc1 2931 }
52d4b9ac 2932 unlock_page_cgroup(pc);
ac39cf8c
AM
2933 /*
2934 * If the page is not charged at this point,
2935 * we return here.
2936 */
2937 if (!mem)
2938 return 0;
01b1ae63 2939
93d5c9be 2940 *ptr = mem;
ef6a3c63 2941 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c
AM
2942 css_put(&mem->css);/* drop extra refcnt */
2943 if (ret || *ptr == NULL) {
2944 if (PageAnon(page)) {
2945 lock_page_cgroup(pc);
2946 ClearPageCgroupMigration(pc);
2947 unlock_page_cgroup(pc);
2948 /*
2949 * The old page may be fully unmapped while we kept it.
2950 */
2951 mem_cgroup_uncharge_page(page);
2952 }
2953 return -ENOMEM;
e8589cc1 2954 }
ac39cf8c
AM
2955 /*
2956 * We charge new page before it's used/mapped. So, even if unlock_page()
2957 * is called before end_migration, we can catch all events on this new
2958 * page. In the case new page is migrated but not remapped, new page's
2959 * mapcount will be finally 0 and we call uncharge in end_migration().
2960 */
2961 pc = lookup_page_cgroup(newpage);
2962 if (PageAnon(page))
2963 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2964 else if (page_is_file_cache(page))
2965 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2966 else
2967 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2968 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2969 return ret;
ae41be37 2970}
8869b8f6 2971
69029cd5 2972/* remove redundant charge if migration failed*/
01b1ae63 2973void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2974 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2975{
ac39cf8c 2976 struct page *used, *unused;
01b1ae63 2977 struct page_cgroup *pc;
01b1ae63
KH
2978
2979 if (!mem)
2980 return;
ac39cf8c 2981 /* blocks rmdir() */
88703267 2982 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2983 if (!migration_ok) {
ac39cf8c
AM
2984 used = oldpage;
2985 unused = newpage;
01b1ae63 2986 } else {
ac39cf8c 2987 used = newpage;
01b1ae63
KH
2988 unused = oldpage;
2989 }
69029cd5 2990 /*
ac39cf8c
AM
2991 * We disallowed uncharge of pages under migration because mapcount
2992 * of the page goes down to zero, temporarly.
2993 * Clear the flag and check the page should be charged.
01b1ae63 2994 */
ac39cf8c
AM
2995 pc = lookup_page_cgroup(oldpage);
2996 lock_page_cgroup(pc);
2997 ClearPageCgroupMigration(pc);
2998 unlock_page_cgroup(pc);
01b1ae63 2999
ac39cf8c
AM
3000 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3001
01b1ae63 3002 /*
ac39cf8c
AM
3003 * If a page is a file cache, radix-tree replacement is very atomic
3004 * and we can skip this check. When it was an Anon page, its mapcount
3005 * goes down to 0. But because we added MIGRATION flage, it's not
3006 * uncharged yet. There are several case but page->mapcount check
3007 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3008 * check. (see prepare_charge() also)
69029cd5 3009 */
ac39cf8c
AM
3010 if (PageAnon(used))
3011 mem_cgroup_uncharge_page(used);
88703267 3012 /*
ac39cf8c
AM
3013 * At migration, we may charge account against cgroup which has no
3014 * tasks.
88703267
KH
3015 * So, rmdir()->pre_destroy() can be called while we do this charge.
3016 * In that case, we need to call pre_destroy() again. check it here.
3017 */
3018 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3019}
78fb7466 3020
c9b0ed51 3021/*
ae3abae6
DN
3022 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3023 * Calling hierarchical_reclaim is not enough because we should update
3024 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3025 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3026 * not from the memcg which this page would be charged to.
3027 * try_charge_swapin does all of these works properly.
c9b0ed51 3028 */
ae3abae6 3029int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3030 struct mm_struct *mm,
3031 gfp_t gfp_mask)
c9b0ed51 3032{
56039efa 3033 struct mem_cgroup *mem;
ae3abae6 3034 int ret;
c9b0ed51 3035
f8d66542 3036 if (mem_cgroup_disabled())
cede86ac 3037 return 0;
c9b0ed51 3038
ae3abae6
DN
3039 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3040 if (!ret)
3041 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3042
ae3abae6 3043 return ret;
c9b0ed51
KH
3044}
3045
f212ad7c
DN
3046#ifdef CONFIG_DEBUG_VM
3047static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3048{
3049 struct page_cgroup *pc;
3050
3051 pc = lookup_page_cgroup(page);
3052 if (likely(pc) && PageCgroupUsed(pc))
3053 return pc;
3054 return NULL;
3055}
3056
3057bool mem_cgroup_bad_page_check(struct page *page)
3058{
3059 if (mem_cgroup_disabled())
3060 return false;
3061
3062 return lookup_page_cgroup_used(page) != NULL;
3063}
3064
3065void mem_cgroup_print_bad_page(struct page *page)
3066{
3067 struct page_cgroup *pc;
3068
3069 pc = lookup_page_cgroup_used(page);
3070 if (pc) {
3071 int ret = -1;
3072 char *path;
3073
3074 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3075 pc, pc->flags, pc->mem_cgroup);
3076
3077 path = kmalloc(PATH_MAX, GFP_KERNEL);
3078 if (path) {
3079 rcu_read_lock();
3080 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3081 path, PATH_MAX);
3082 rcu_read_unlock();
3083 }
3084
3085 printk(KERN_CONT "(%s)\n",
3086 (ret < 0) ? "cannot get the path" : path);
3087 kfree(path);
3088 }
3089}
3090#endif
3091
8c7c6e34
KH
3092static DEFINE_MUTEX(set_limit_mutex);
3093
d38d2a75 3094static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3095 unsigned long long val)
628f4235 3096{
81d39c20 3097 int retry_count;
3c11ecf4 3098 u64 memswlimit, memlimit;
628f4235 3099 int ret = 0;
81d39c20
KH
3100 int children = mem_cgroup_count_children(memcg);
3101 u64 curusage, oldusage;
3c11ecf4 3102 int enlarge;
81d39c20
KH
3103
3104 /*
3105 * For keeping hierarchical_reclaim simple, how long we should retry
3106 * is depends on callers. We set our retry-count to be function
3107 * of # of children which we should visit in this loop.
3108 */
3109 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3110
3111 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3112
3c11ecf4 3113 enlarge = 0;
8c7c6e34 3114 while (retry_count) {
628f4235
KH
3115 if (signal_pending(current)) {
3116 ret = -EINTR;
3117 break;
3118 }
8c7c6e34
KH
3119 /*
3120 * Rather than hide all in some function, I do this in
3121 * open coded manner. You see what this really does.
3122 * We have to guarantee mem->res.limit < mem->memsw.limit.
3123 */
3124 mutex_lock(&set_limit_mutex);
3125 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3126 if (memswlimit < val) {
3127 ret = -EINVAL;
3128 mutex_unlock(&set_limit_mutex);
628f4235
KH
3129 break;
3130 }
3c11ecf4
KH
3131
3132 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3133 if (memlimit < val)
3134 enlarge = 1;
3135
8c7c6e34 3136 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3137 if (!ret) {
3138 if (memswlimit == val)
3139 memcg->memsw_is_minimum = true;
3140 else
3141 memcg->memsw_is_minimum = false;
3142 }
8c7c6e34
KH
3143 mutex_unlock(&set_limit_mutex);
3144
3145 if (!ret)
3146 break;
3147
aa20d489 3148 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3149 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3150 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3151 /* Usage is reduced ? */
3152 if (curusage >= oldusage)
3153 retry_count--;
3154 else
3155 oldusage = curusage;
8c7c6e34 3156 }
3c11ecf4
KH
3157 if (!ret && enlarge)
3158 memcg_oom_recover(memcg);
14797e23 3159
8c7c6e34
KH
3160 return ret;
3161}
3162
338c8431
LZ
3163static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3164 unsigned long long val)
8c7c6e34 3165{
81d39c20 3166 int retry_count;
3c11ecf4 3167 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3168 int children = mem_cgroup_count_children(memcg);
3169 int ret = -EBUSY;
3c11ecf4 3170 int enlarge = 0;
8c7c6e34 3171
81d39c20
KH
3172 /* see mem_cgroup_resize_res_limit */
3173 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3174 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3175 while (retry_count) {
3176 if (signal_pending(current)) {
3177 ret = -EINTR;
3178 break;
3179 }
3180 /*
3181 * Rather than hide all in some function, I do this in
3182 * open coded manner. You see what this really does.
3183 * We have to guarantee mem->res.limit < mem->memsw.limit.
3184 */
3185 mutex_lock(&set_limit_mutex);
3186 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3187 if (memlimit > val) {
3188 ret = -EINVAL;
3189 mutex_unlock(&set_limit_mutex);
3190 break;
3191 }
3c11ecf4
KH
3192 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3193 if (memswlimit < val)
3194 enlarge = 1;
8c7c6e34 3195 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3196 if (!ret) {
3197 if (memlimit == val)
3198 memcg->memsw_is_minimum = true;
3199 else
3200 memcg->memsw_is_minimum = false;
3201 }
8c7c6e34
KH
3202 mutex_unlock(&set_limit_mutex);
3203
3204 if (!ret)
3205 break;
3206
4e416953 3207 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3208 MEM_CGROUP_RECLAIM_NOSWAP |
3209 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3210 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3211 /* Usage is reduced ? */
8c7c6e34 3212 if (curusage >= oldusage)
628f4235 3213 retry_count--;
81d39c20
KH
3214 else
3215 oldusage = curusage;
628f4235 3216 }
3c11ecf4
KH
3217 if (!ret && enlarge)
3218 memcg_oom_recover(memcg);
628f4235
KH
3219 return ret;
3220}
3221
4e416953 3222unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3223 gfp_t gfp_mask)
4e416953
BS
3224{
3225 unsigned long nr_reclaimed = 0;
3226 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3227 unsigned long reclaimed;
3228 int loop = 0;
3229 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3230 unsigned long long excess;
4e416953
BS
3231
3232 if (order > 0)
3233 return 0;
3234
00918b6a 3235 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3236 /*
3237 * This loop can run a while, specially if mem_cgroup's continuously
3238 * keep exceeding their soft limit and putting the system under
3239 * pressure
3240 */
3241 do {
3242 if (next_mz)
3243 mz = next_mz;
3244 else
3245 mz = mem_cgroup_largest_soft_limit_node(mctz);
3246 if (!mz)
3247 break;
3248
3249 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3250 gfp_mask,
3251 MEM_CGROUP_RECLAIM_SOFT);
3252 nr_reclaimed += reclaimed;
3253 spin_lock(&mctz->lock);
3254
3255 /*
3256 * If we failed to reclaim anything from this memory cgroup
3257 * it is time to move on to the next cgroup
3258 */
3259 next_mz = NULL;
3260 if (!reclaimed) {
3261 do {
3262 /*
3263 * Loop until we find yet another one.
3264 *
3265 * By the time we get the soft_limit lock
3266 * again, someone might have aded the
3267 * group back on the RB tree. Iterate to
3268 * make sure we get a different mem.
3269 * mem_cgroup_largest_soft_limit_node returns
3270 * NULL if no other cgroup is present on
3271 * the tree
3272 */
3273 next_mz =
3274 __mem_cgroup_largest_soft_limit_node(mctz);
3275 if (next_mz == mz) {
3276 css_put(&next_mz->mem->css);
3277 next_mz = NULL;
3278 } else /* next_mz == NULL or other memcg */
3279 break;
3280 } while (1);
3281 }
4e416953 3282 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3283 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3284 /*
3285 * One school of thought says that we should not add
3286 * back the node to the tree if reclaim returns 0.
3287 * But our reclaim could return 0, simply because due
3288 * to priority we are exposing a smaller subset of
3289 * memory to reclaim from. Consider this as a longer
3290 * term TODO.
3291 */
ef8745c1
KH
3292 /* If excess == 0, no tree ops */
3293 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3294 spin_unlock(&mctz->lock);
3295 css_put(&mz->mem->css);
3296 loop++;
3297 /*
3298 * Could not reclaim anything and there are no more
3299 * mem cgroups to try or we seem to be looping without
3300 * reclaiming anything.
3301 */
3302 if (!nr_reclaimed &&
3303 (next_mz == NULL ||
3304 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3305 break;
3306 } while (!nr_reclaimed);
3307 if (next_mz)
3308 css_put(&next_mz->mem->css);
3309 return nr_reclaimed;
3310}
3311
cc847582
KH
3312/*
3313 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3314 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3315 */
f817ed48 3316static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3317 int node, int zid, enum lru_list lru)
cc847582 3318{
08e552c6
KH
3319 struct zone *zone;
3320 struct mem_cgroup_per_zone *mz;
f817ed48 3321 struct page_cgroup *pc, *busy;
08e552c6 3322 unsigned long flags, loop;
072c56c1 3323 struct list_head *list;
f817ed48 3324 int ret = 0;
072c56c1 3325
08e552c6
KH
3326 zone = &NODE_DATA(node)->node_zones[zid];
3327 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3328 list = &mz->lists[lru];
cc847582 3329
f817ed48
KH
3330 loop = MEM_CGROUP_ZSTAT(mz, lru);
3331 /* give some margin against EBUSY etc...*/
3332 loop += 256;
3333 busy = NULL;
3334 while (loop--) {
3335 ret = 0;
08e552c6 3336 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3337 if (list_empty(list)) {
08e552c6 3338 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3339 break;
f817ed48
KH
3340 }
3341 pc = list_entry(list->prev, struct page_cgroup, lru);
3342 if (busy == pc) {
3343 list_move(&pc->lru, list);
648bcc77 3344 busy = NULL;
08e552c6 3345 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3346 continue;
3347 }
08e552c6 3348 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3349
2c26fdd7 3350 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3351 if (ret == -ENOMEM)
52d4b9ac 3352 break;
f817ed48
KH
3353
3354 if (ret == -EBUSY || ret == -EINVAL) {
3355 /* found lock contention or "pc" is obsolete. */
3356 busy = pc;
3357 cond_resched();
3358 } else
3359 busy = NULL;
cc847582 3360 }
08e552c6 3361
f817ed48
KH
3362 if (!ret && !list_empty(list))
3363 return -EBUSY;
3364 return ret;
cc847582
KH
3365}
3366
3367/*
3368 * make mem_cgroup's charge to be 0 if there is no task.
3369 * This enables deleting this mem_cgroup.
3370 */
c1e862c1 3371static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3372{
f817ed48
KH
3373 int ret;
3374 int node, zid, shrink;
3375 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3376 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3377
cc847582 3378 css_get(&mem->css);
f817ed48
KH
3379
3380 shrink = 0;
c1e862c1
KH
3381 /* should free all ? */
3382 if (free_all)
3383 goto try_to_free;
f817ed48 3384move_account:
fce66477 3385 do {
f817ed48 3386 ret = -EBUSY;
c1e862c1
KH
3387 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3388 goto out;
3389 ret = -EINTR;
3390 if (signal_pending(current))
cc847582 3391 goto out;
52d4b9ac
KH
3392 /* This is for making all *used* pages to be on LRU. */
3393 lru_add_drain_all();
cdec2e42 3394 drain_all_stock_sync();
f817ed48 3395 ret = 0;
32047e2a 3396 mem_cgroup_start_move(mem);
299b4eaa 3397 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3398 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3399 enum lru_list l;
f817ed48
KH
3400 for_each_lru(l) {
3401 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3402 node, zid, l);
f817ed48
KH
3403 if (ret)
3404 break;
3405 }
1ecaab2b 3406 }
f817ed48
KH
3407 if (ret)
3408 break;
3409 }
32047e2a 3410 mem_cgroup_end_move(mem);
3c11ecf4 3411 memcg_oom_recover(mem);
f817ed48
KH
3412 /* it seems parent cgroup doesn't have enough mem */
3413 if (ret == -ENOMEM)
3414 goto try_to_free;
52d4b9ac 3415 cond_resched();
fce66477
DN
3416 /* "ret" should also be checked to ensure all lists are empty. */
3417 } while (mem->res.usage > 0 || ret);
cc847582
KH
3418out:
3419 css_put(&mem->css);
3420 return ret;
f817ed48
KH
3421
3422try_to_free:
c1e862c1
KH
3423 /* returns EBUSY if there is a task or if we come here twice. */
3424 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3425 ret = -EBUSY;
3426 goto out;
3427 }
c1e862c1
KH
3428 /* we call try-to-free pages for make this cgroup empty */
3429 lru_add_drain_all();
f817ed48
KH
3430 /* try to free all pages in this cgroup */
3431 shrink = 1;
3432 while (nr_retries && mem->res.usage > 0) {
3433 int progress;
c1e862c1
KH
3434
3435 if (signal_pending(current)) {
3436 ret = -EINTR;
3437 goto out;
3438 }
a7885eb8
KM
3439 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3440 false, get_swappiness(mem));
c1e862c1 3441 if (!progress) {
f817ed48 3442 nr_retries--;
c1e862c1 3443 /* maybe some writeback is necessary */
8aa7e847 3444 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3445 }
f817ed48
KH
3446
3447 }
08e552c6 3448 lru_add_drain();
f817ed48 3449 /* try move_account...there may be some *locked* pages. */
fce66477 3450 goto move_account;
cc847582
KH
3451}
3452
c1e862c1
KH
3453int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3454{
3455 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3456}
3457
3458
18f59ea7
BS
3459static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3460{
3461 return mem_cgroup_from_cont(cont)->use_hierarchy;
3462}
3463
3464static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3465 u64 val)
3466{
3467 int retval = 0;
3468 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3469 struct cgroup *parent = cont->parent;
3470 struct mem_cgroup *parent_mem = NULL;
3471
3472 if (parent)
3473 parent_mem = mem_cgroup_from_cont(parent);
3474
3475 cgroup_lock();
3476 /*
af901ca1 3477 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3478 * in the child subtrees. If it is unset, then the change can
3479 * occur, provided the current cgroup has no children.
3480 *
3481 * For the root cgroup, parent_mem is NULL, we allow value to be
3482 * set if there are no children.
3483 */
3484 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3485 (val == 1 || val == 0)) {
3486 if (list_empty(&cont->children))
3487 mem->use_hierarchy = val;
3488 else
3489 retval = -EBUSY;
3490 } else
3491 retval = -EINVAL;
3492 cgroup_unlock();
3493
3494 return retval;
3495}
3496
0c3e73e8 3497
7d74b06f
KH
3498static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3499 enum mem_cgroup_stat_index idx)
0c3e73e8 3500{
7d74b06f
KH
3501 struct mem_cgroup *iter;
3502 s64 val = 0;
0c3e73e8 3503
7d74b06f
KH
3504 /* each per cpu's value can be minus.Then, use s64 */
3505 for_each_mem_cgroup_tree(iter, mem)
3506 val += mem_cgroup_read_stat(iter, idx);
3507
3508 if (val < 0) /* race ? */
3509 val = 0;
3510 return val;
0c3e73e8
BS
3511}
3512
104f3928
KS
3513static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3514{
7d74b06f 3515 u64 val;
104f3928
KS
3516
3517 if (!mem_cgroup_is_root(mem)) {
3518 if (!swap)
3519 return res_counter_read_u64(&mem->res, RES_USAGE);
3520 else
3521 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3522 }
3523
7d74b06f
KH
3524 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3525 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3526
7d74b06f
KH
3527 if (swap)
3528 val += mem_cgroup_get_recursive_idx_stat(mem,
3529 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3530
3531 return val << PAGE_SHIFT;
3532}
3533
2c3daa72 3534static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3535{
8c7c6e34 3536 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3537 u64 val;
8c7c6e34
KH
3538 int type, name;
3539
3540 type = MEMFILE_TYPE(cft->private);
3541 name = MEMFILE_ATTR(cft->private);
3542 switch (type) {
3543 case _MEM:
104f3928
KS
3544 if (name == RES_USAGE)
3545 val = mem_cgroup_usage(mem, false);
3546 else
0c3e73e8 3547 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3548 break;
3549 case _MEMSWAP:
104f3928
KS
3550 if (name == RES_USAGE)
3551 val = mem_cgroup_usage(mem, true);
3552 else
0c3e73e8 3553 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3554 break;
3555 default:
3556 BUG();
3557 break;
3558 }
3559 return val;
8cdea7c0 3560}
628f4235
KH
3561/*
3562 * The user of this function is...
3563 * RES_LIMIT.
3564 */
856c13aa
PM
3565static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3566 const char *buffer)
8cdea7c0 3567{
628f4235 3568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3569 int type, name;
628f4235
KH
3570 unsigned long long val;
3571 int ret;
3572
8c7c6e34
KH
3573 type = MEMFILE_TYPE(cft->private);
3574 name = MEMFILE_ATTR(cft->private);
3575 switch (name) {
628f4235 3576 case RES_LIMIT:
4b3bde4c
BS
3577 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3578 ret = -EINVAL;
3579 break;
3580 }
628f4235
KH
3581 /* This function does all necessary parse...reuse it */
3582 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3583 if (ret)
3584 break;
3585 if (type == _MEM)
628f4235 3586 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3587 else
3588 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3589 break;
296c81d8
BS
3590 case RES_SOFT_LIMIT:
3591 ret = res_counter_memparse_write_strategy(buffer, &val);
3592 if (ret)
3593 break;
3594 /*
3595 * For memsw, soft limits are hard to implement in terms
3596 * of semantics, for now, we support soft limits for
3597 * control without swap
3598 */
3599 if (type == _MEM)
3600 ret = res_counter_set_soft_limit(&memcg->res, val);
3601 else
3602 ret = -EINVAL;
3603 break;
628f4235
KH
3604 default:
3605 ret = -EINVAL; /* should be BUG() ? */
3606 break;
3607 }
3608 return ret;
8cdea7c0
BS
3609}
3610
fee7b548
KH
3611static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3612 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3613{
3614 struct cgroup *cgroup;
3615 unsigned long long min_limit, min_memsw_limit, tmp;
3616
3617 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3618 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3619 cgroup = memcg->css.cgroup;
3620 if (!memcg->use_hierarchy)
3621 goto out;
3622
3623 while (cgroup->parent) {
3624 cgroup = cgroup->parent;
3625 memcg = mem_cgroup_from_cont(cgroup);
3626 if (!memcg->use_hierarchy)
3627 break;
3628 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3629 min_limit = min(min_limit, tmp);
3630 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3631 min_memsw_limit = min(min_memsw_limit, tmp);
3632 }
3633out:
3634 *mem_limit = min_limit;
3635 *memsw_limit = min_memsw_limit;
3636 return;
3637}
3638
29f2a4da 3639static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3640{
3641 struct mem_cgroup *mem;
8c7c6e34 3642 int type, name;
c84872e1
PE
3643
3644 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3645 type = MEMFILE_TYPE(event);
3646 name = MEMFILE_ATTR(event);
3647 switch (name) {
29f2a4da 3648 case RES_MAX_USAGE:
8c7c6e34
KH
3649 if (type == _MEM)
3650 res_counter_reset_max(&mem->res);
3651 else
3652 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3653 break;
3654 case RES_FAILCNT:
8c7c6e34
KH
3655 if (type == _MEM)
3656 res_counter_reset_failcnt(&mem->res);
3657 else
3658 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3659 break;
3660 }
f64c3f54 3661
85cc59db 3662 return 0;
c84872e1
PE
3663}
3664
7dc74be0
DN
3665static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3666 struct cftype *cft)
3667{
3668 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3669}
3670
02491447 3671#ifdef CONFIG_MMU
7dc74be0
DN
3672static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3673 struct cftype *cft, u64 val)
3674{
3675 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3676
3677 if (val >= (1 << NR_MOVE_TYPE))
3678 return -EINVAL;
3679 /*
3680 * We check this value several times in both in can_attach() and
3681 * attach(), so we need cgroup lock to prevent this value from being
3682 * inconsistent.
3683 */
3684 cgroup_lock();
3685 mem->move_charge_at_immigrate = val;
3686 cgroup_unlock();
3687
3688 return 0;
3689}
02491447
DN
3690#else
3691static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3692 struct cftype *cft, u64 val)
3693{
3694 return -ENOSYS;
3695}
3696#endif
7dc74be0 3697
14067bb3
KH
3698
3699/* For read statistics */
3700enum {
3701 MCS_CACHE,
3702 MCS_RSS,
d8046582 3703 MCS_FILE_MAPPED,
14067bb3
KH
3704 MCS_PGPGIN,
3705 MCS_PGPGOUT,
1dd3a273 3706 MCS_SWAP,
14067bb3
KH
3707 MCS_INACTIVE_ANON,
3708 MCS_ACTIVE_ANON,
3709 MCS_INACTIVE_FILE,
3710 MCS_ACTIVE_FILE,
3711 MCS_UNEVICTABLE,
3712 NR_MCS_STAT,
3713};
3714
3715struct mcs_total_stat {
3716 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3717};
3718
14067bb3
KH
3719struct {
3720 char *local_name;
3721 char *total_name;
3722} memcg_stat_strings[NR_MCS_STAT] = {
3723 {"cache", "total_cache"},
3724 {"rss", "total_rss"},
d69b042f 3725 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3726 {"pgpgin", "total_pgpgin"},
3727 {"pgpgout", "total_pgpgout"},
1dd3a273 3728 {"swap", "total_swap"},
14067bb3
KH
3729 {"inactive_anon", "total_inactive_anon"},
3730 {"active_anon", "total_active_anon"},
3731 {"inactive_file", "total_inactive_file"},
3732 {"active_file", "total_active_file"},
3733 {"unevictable", "total_unevictable"}
3734};
3735
3736
7d74b06f
KH
3737static void
3738mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3739{
14067bb3
KH
3740 s64 val;
3741
3742 /* per cpu stat */
c62b1a3b 3743 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3744 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3745 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3746 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3747 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3748 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3749 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3750 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3751 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3752 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3753 if (do_swap_account) {
c62b1a3b 3754 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3755 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3756 }
14067bb3
KH
3757
3758 /* per zone stat */
3759 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3760 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3761 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3762 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3763 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3764 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3765 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3766 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3767 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3768 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3769}
3770
3771static void
3772mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3773{
7d74b06f
KH
3774 struct mem_cgroup *iter;
3775
3776 for_each_mem_cgroup_tree(iter, mem)
3777 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3778}
3779
c64745cf
PM
3780static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3781 struct cgroup_map_cb *cb)
d2ceb9b7 3782{
d2ceb9b7 3783 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3784 struct mcs_total_stat mystat;
d2ceb9b7
KH
3785 int i;
3786
14067bb3
KH
3787 memset(&mystat, 0, sizeof(mystat));
3788 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3789
1dd3a273
DN
3790 for (i = 0; i < NR_MCS_STAT; i++) {
3791 if (i == MCS_SWAP && !do_swap_account)
3792 continue;
14067bb3 3793 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3794 }
7b854121 3795
14067bb3 3796 /* Hierarchical information */
fee7b548
KH
3797 {
3798 unsigned long long limit, memsw_limit;
3799 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3800 cb->fill(cb, "hierarchical_memory_limit", limit);
3801 if (do_swap_account)
3802 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3803 }
7f016ee8 3804
14067bb3
KH
3805 memset(&mystat, 0, sizeof(mystat));
3806 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3807 for (i = 0; i < NR_MCS_STAT; i++) {
3808 if (i == MCS_SWAP && !do_swap_account)
3809 continue;
14067bb3 3810 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3811 }
14067bb3 3812
7f016ee8 3813#ifdef CONFIG_DEBUG_VM
c772be93 3814 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3815
3816 {
3817 int nid, zid;
3818 struct mem_cgroup_per_zone *mz;
3819 unsigned long recent_rotated[2] = {0, 0};
3820 unsigned long recent_scanned[2] = {0, 0};
3821
3822 for_each_online_node(nid)
3823 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3824 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3825
3826 recent_rotated[0] +=
3827 mz->reclaim_stat.recent_rotated[0];
3828 recent_rotated[1] +=
3829 mz->reclaim_stat.recent_rotated[1];
3830 recent_scanned[0] +=
3831 mz->reclaim_stat.recent_scanned[0];
3832 recent_scanned[1] +=
3833 mz->reclaim_stat.recent_scanned[1];
3834 }
3835 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3836 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3837 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3838 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3839 }
3840#endif
3841
d2ceb9b7
KH
3842 return 0;
3843}
3844
a7885eb8
KM
3845static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3846{
3847 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3848
3849 return get_swappiness(memcg);
3850}
3851
3852static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3853 u64 val)
3854{
3855 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3856 struct mem_cgroup *parent;
068b38c1 3857
a7885eb8
KM
3858 if (val > 100)
3859 return -EINVAL;
3860
3861 if (cgrp->parent == NULL)
3862 return -EINVAL;
3863
3864 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3865
3866 cgroup_lock();
3867
a7885eb8
KM
3868 /* If under hierarchy, only empty-root can set this value */
3869 if ((parent->use_hierarchy) ||
068b38c1
LZ
3870 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3871 cgroup_unlock();
a7885eb8 3872 return -EINVAL;
068b38c1 3873 }
a7885eb8
KM
3874
3875 spin_lock(&memcg->reclaim_param_lock);
3876 memcg->swappiness = val;
3877 spin_unlock(&memcg->reclaim_param_lock);
3878
068b38c1
LZ
3879 cgroup_unlock();
3880
a7885eb8
KM
3881 return 0;
3882}
3883
2e72b634
KS
3884static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3885{
3886 struct mem_cgroup_threshold_ary *t;
3887 u64 usage;
3888 int i;
3889
3890 rcu_read_lock();
3891 if (!swap)
2c488db2 3892 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3893 else
2c488db2 3894 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3895
3896 if (!t)
3897 goto unlock;
3898
3899 usage = mem_cgroup_usage(memcg, swap);
3900
3901 /*
3902 * current_threshold points to threshold just below usage.
3903 * If it's not true, a threshold was crossed after last
3904 * call of __mem_cgroup_threshold().
3905 */
5407a562 3906 i = t->current_threshold;
2e72b634
KS
3907
3908 /*
3909 * Iterate backward over array of thresholds starting from
3910 * current_threshold and check if a threshold is crossed.
3911 * If none of thresholds below usage is crossed, we read
3912 * only one element of the array here.
3913 */
3914 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3915 eventfd_signal(t->entries[i].eventfd, 1);
3916
3917 /* i = current_threshold + 1 */
3918 i++;
3919
3920 /*
3921 * Iterate forward over array of thresholds starting from
3922 * current_threshold+1 and check if a threshold is crossed.
3923 * If none of thresholds above usage is crossed, we read
3924 * only one element of the array here.
3925 */
3926 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3927 eventfd_signal(t->entries[i].eventfd, 1);
3928
3929 /* Update current_threshold */
5407a562 3930 t->current_threshold = i - 1;
2e72b634
KS
3931unlock:
3932 rcu_read_unlock();
3933}
3934
3935static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3936{
ad4ca5f4
KS
3937 while (memcg) {
3938 __mem_cgroup_threshold(memcg, false);
3939 if (do_swap_account)
3940 __mem_cgroup_threshold(memcg, true);
3941
3942 memcg = parent_mem_cgroup(memcg);
3943 }
2e72b634
KS
3944}
3945
3946static int compare_thresholds(const void *a, const void *b)
3947{
3948 const struct mem_cgroup_threshold *_a = a;
3949 const struct mem_cgroup_threshold *_b = b;
3950
3951 return _a->threshold - _b->threshold;
3952}
3953
7d74b06f 3954static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3955{
3956 struct mem_cgroup_eventfd_list *ev;
3957
3958 list_for_each_entry(ev, &mem->oom_notify, list)
3959 eventfd_signal(ev->eventfd, 1);
3960 return 0;
3961}
3962
3963static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3964{
7d74b06f
KH
3965 struct mem_cgroup *iter;
3966
3967 for_each_mem_cgroup_tree(iter, mem)
3968 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3969}
3970
3971static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3972 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3973{
3974 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3975 struct mem_cgroup_thresholds *thresholds;
3976 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3977 int type = MEMFILE_TYPE(cft->private);
3978 u64 threshold, usage;
2c488db2 3979 int i, size, ret;
2e72b634
KS
3980
3981 ret = res_counter_memparse_write_strategy(args, &threshold);
3982 if (ret)
3983 return ret;
3984
3985 mutex_lock(&memcg->thresholds_lock);
2c488db2 3986
2e72b634 3987 if (type == _MEM)
2c488db2 3988 thresholds = &memcg->thresholds;
2e72b634 3989 else if (type == _MEMSWAP)
2c488db2 3990 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3991 else
3992 BUG();
3993
3994 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3995
3996 /* Check if a threshold crossed before adding a new one */
2c488db2 3997 if (thresholds->primary)
2e72b634
KS
3998 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3999
2c488db2 4000 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4001
4002 /* Allocate memory for new array of thresholds */
2c488db2 4003 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4004 GFP_KERNEL);
2c488db2 4005 if (!new) {
2e72b634
KS
4006 ret = -ENOMEM;
4007 goto unlock;
4008 }
2c488db2 4009 new->size = size;
2e72b634
KS
4010
4011 /* Copy thresholds (if any) to new array */
2c488db2
KS
4012 if (thresholds->primary) {
4013 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4014 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4015 }
4016
2e72b634 4017 /* Add new threshold */
2c488db2
KS
4018 new->entries[size - 1].eventfd = eventfd;
4019 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4020
4021 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4022 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4023 compare_thresholds, NULL);
4024
4025 /* Find current threshold */
2c488db2 4026 new->current_threshold = -1;
2e72b634 4027 for (i = 0; i < size; i++) {
2c488db2 4028 if (new->entries[i].threshold < usage) {
2e72b634 4029 /*
2c488db2
KS
4030 * new->current_threshold will not be used until
4031 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4032 * it here.
4033 */
2c488db2 4034 ++new->current_threshold;
2e72b634
KS
4035 }
4036 }
4037
2c488db2
KS
4038 /* Free old spare buffer and save old primary buffer as spare */
4039 kfree(thresholds->spare);
4040 thresholds->spare = thresholds->primary;
4041
4042 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4043
907860ed 4044 /* To be sure that nobody uses thresholds */
2e72b634
KS
4045 synchronize_rcu();
4046
2e72b634
KS
4047unlock:
4048 mutex_unlock(&memcg->thresholds_lock);
4049
4050 return ret;
4051}
4052
907860ed 4053static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4054 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4055{
4056 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4057 struct mem_cgroup_thresholds *thresholds;
4058 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4059 int type = MEMFILE_TYPE(cft->private);
4060 u64 usage;
2c488db2 4061 int i, j, size;
2e72b634
KS
4062
4063 mutex_lock(&memcg->thresholds_lock);
4064 if (type == _MEM)
2c488db2 4065 thresholds = &memcg->thresholds;
2e72b634 4066 else if (type == _MEMSWAP)
2c488db2 4067 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4068 else
4069 BUG();
4070
4071 /*
4072 * Something went wrong if we trying to unregister a threshold
4073 * if we don't have thresholds
4074 */
4075 BUG_ON(!thresholds);
4076
4077 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4078
4079 /* Check if a threshold crossed before removing */
4080 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4081
4082 /* Calculate new number of threshold */
2c488db2
KS
4083 size = 0;
4084 for (i = 0; i < thresholds->primary->size; i++) {
4085 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4086 size++;
4087 }
4088
2c488db2 4089 new = thresholds->spare;
907860ed 4090
2e72b634
KS
4091 /* Set thresholds array to NULL if we don't have thresholds */
4092 if (!size) {
2c488db2
KS
4093 kfree(new);
4094 new = NULL;
907860ed 4095 goto swap_buffers;
2e72b634
KS
4096 }
4097
2c488db2 4098 new->size = size;
2e72b634
KS
4099
4100 /* Copy thresholds and find current threshold */
2c488db2
KS
4101 new->current_threshold = -1;
4102 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4103 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4104 continue;
4105
2c488db2
KS
4106 new->entries[j] = thresholds->primary->entries[i];
4107 if (new->entries[j].threshold < usage) {
2e72b634 4108 /*
2c488db2 4109 * new->current_threshold will not be used
2e72b634
KS
4110 * until rcu_assign_pointer(), so it's safe to increment
4111 * it here.
4112 */
2c488db2 4113 ++new->current_threshold;
2e72b634
KS
4114 }
4115 j++;
4116 }
4117
907860ed 4118swap_buffers:
2c488db2
KS
4119 /* Swap primary and spare array */
4120 thresholds->spare = thresholds->primary;
4121 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4122
907860ed 4123 /* To be sure that nobody uses thresholds */
2e72b634
KS
4124 synchronize_rcu();
4125
2e72b634 4126 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4127}
c1e862c1 4128
9490ff27
KH
4129static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4130 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4131{
4132 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4133 struct mem_cgroup_eventfd_list *event;
4134 int type = MEMFILE_TYPE(cft->private);
4135
4136 BUG_ON(type != _OOM_TYPE);
4137 event = kmalloc(sizeof(*event), GFP_KERNEL);
4138 if (!event)
4139 return -ENOMEM;
4140
4141 mutex_lock(&memcg_oom_mutex);
4142
4143 event->eventfd = eventfd;
4144 list_add(&event->list, &memcg->oom_notify);
4145
4146 /* already in OOM ? */
4147 if (atomic_read(&memcg->oom_lock))
4148 eventfd_signal(eventfd, 1);
4149 mutex_unlock(&memcg_oom_mutex);
4150
4151 return 0;
4152}
4153
907860ed 4154static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4155 struct cftype *cft, struct eventfd_ctx *eventfd)
4156{
4157 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4158 struct mem_cgroup_eventfd_list *ev, *tmp;
4159 int type = MEMFILE_TYPE(cft->private);
4160
4161 BUG_ON(type != _OOM_TYPE);
4162
4163 mutex_lock(&memcg_oom_mutex);
4164
4165 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4166 if (ev->eventfd == eventfd) {
4167 list_del(&ev->list);
4168 kfree(ev);
4169 }
4170 }
4171
4172 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4173}
4174
3c11ecf4
KH
4175static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4176 struct cftype *cft, struct cgroup_map_cb *cb)
4177{
4178 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4179
4180 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4181
4182 if (atomic_read(&mem->oom_lock))
4183 cb->fill(cb, "under_oom", 1);
4184 else
4185 cb->fill(cb, "under_oom", 0);
4186 return 0;
4187}
4188
3c11ecf4
KH
4189static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4190 struct cftype *cft, u64 val)
4191{
4192 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4193 struct mem_cgroup *parent;
4194
4195 /* cannot set to root cgroup and only 0 and 1 are allowed */
4196 if (!cgrp->parent || !((val == 0) || (val == 1)))
4197 return -EINVAL;
4198
4199 parent = mem_cgroup_from_cont(cgrp->parent);
4200
4201 cgroup_lock();
4202 /* oom-kill-disable is a flag for subhierarchy. */
4203 if ((parent->use_hierarchy) ||
4204 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4205 cgroup_unlock();
4206 return -EINVAL;
4207 }
4208 mem->oom_kill_disable = val;
4d845ebf
KH
4209 if (!val)
4210 memcg_oom_recover(mem);
3c11ecf4
KH
4211 cgroup_unlock();
4212 return 0;
4213}
4214
8cdea7c0
BS
4215static struct cftype mem_cgroup_files[] = {
4216 {
0eea1030 4217 .name = "usage_in_bytes",
8c7c6e34 4218 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4219 .read_u64 = mem_cgroup_read,
9490ff27
KH
4220 .register_event = mem_cgroup_usage_register_event,
4221 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4222 },
c84872e1
PE
4223 {
4224 .name = "max_usage_in_bytes",
8c7c6e34 4225 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4226 .trigger = mem_cgroup_reset,
c84872e1
PE
4227 .read_u64 = mem_cgroup_read,
4228 },
8cdea7c0 4229 {
0eea1030 4230 .name = "limit_in_bytes",
8c7c6e34 4231 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4232 .write_string = mem_cgroup_write,
2c3daa72 4233 .read_u64 = mem_cgroup_read,
8cdea7c0 4234 },
296c81d8
BS
4235 {
4236 .name = "soft_limit_in_bytes",
4237 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4238 .write_string = mem_cgroup_write,
4239 .read_u64 = mem_cgroup_read,
4240 },
8cdea7c0
BS
4241 {
4242 .name = "failcnt",
8c7c6e34 4243 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4244 .trigger = mem_cgroup_reset,
2c3daa72 4245 .read_u64 = mem_cgroup_read,
8cdea7c0 4246 },
d2ceb9b7
KH
4247 {
4248 .name = "stat",
c64745cf 4249 .read_map = mem_control_stat_show,
d2ceb9b7 4250 },
c1e862c1
KH
4251 {
4252 .name = "force_empty",
4253 .trigger = mem_cgroup_force_empty_write,
4254 },
18f59ea7
BS
4255 {
4256 .name = "use_hierarchy",
4257 .write_u64 = mem_cgroup_hierarchy_write,
4258 .read_u64 = mem_cgroup_hierarchy_read,
4259 },
a7885eb8
KM
4260 {
4261 .name = "swappiness",
4262 .read_u64 = mem_cgroup_swappiness_read,
4263 .write_u64 = mem_cgroup_swappiness_write,
4264 },
7dc74be0
DN
4265 {
4266 .name = "move_charge_at_immigrate",
4267 .read_u64 = mem_cgroup_move_charge_read,
4268 .write_u64 = mem_cgroup_move_charge_write,
4269 },
9490ff27
KH
4270 {
4271 .name = "oom_control",
3c11ecf4
KH
4272 .read_map = mem_cgroup_oom_control_read,
4273 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4274 .register_event = mem_cgroup_oom_register_event,
4275 .unregister_event = mem_cgroup_oom_unregister_event,
4276 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4277 },
8cdea7c0
BS
4278};
4279
8c7c6e34
KH
4280#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4281static struct cftype memsw_cgroup_files[] = {
4282 {
4283 .name = "memsw.usage_in_bytes",
4284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4285 .read_u64 = mem_cgroup_read,
9490ff27
KH
4286 .register_event = mem_cgroup_usage_register_event,
4287 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4288 },
4289 {
4290 .name = "memsw.max_usage_in_bytes",
4291 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4292 .trigger = mem_cgroup_reset,
4293 .read_u64 = mem_cgroup_read,
4294 },
4295 {
4296 .name = "memsw.limit_in_bytes",
4297 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4298 .write_string = mem_cgroup_write,
4299 .read_u64 = mem_cgroup_read,
4300 },
4301 {
4302 .name = "memsw.failcnt",
4303 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4304 .trigger = mem_cgroup_reset,
4305 .read_u64 = mem_cgroup_read,
4306 },
4307};
4308
4309static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4310{
4311 if (!do_swap_account)
4312 return 0;
4313 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4314 ARRAY_SIZE(memsw_cgroup_files));
4315};
4316#else
4317static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4318{
4319 return 0;
4320}
4321#endif
4322
6d12e2d8
KH
4323static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4324{
4325 struct mem_cgroup_per_node *pn;
1ecaab2b 4326 struct mem_cgroup_per_zone *mz;
b69408e8 4327 enum lru_list l;
41e3355d 4328 int zone, tmp = node;
1ecaab2b
KH
4329 /*
4330 * This routine is called against possible nodes.
4331 * But it's BUG to call kmalloc() against offline node.
4332 *
4333 * TODO: this routine can waste much memory for nodes which will
4334 * never be onlined. It's better to use memory hotplug callback
4335 * function.
4336 */
41e3355d
KH
4337 if (!node_state(node, N_NORMAL_MEMORY))
4338 tmp = -1;
17295c88 4339 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4340 if (!pn)
4341 return 1;
1ecaab2b 4342
6d12e2d8 4343 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4344 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4345 mz = &pn->zoneinfo[zone];
b69408e8
CL
4346 for_each_lru(l)
4347 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4348 mz->usage_in_excess = 0;
4e416953
BS
4349 mz->on_tree = false;
4350 mz->mem = mem;
1ecaab2b 4351 }
6d12e2d8
KH
4352 return 0;
4353}
4354
1ecaab2b
KH
4355static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4356{
4357 kfree(mem->info.nodeinfo[node]);
4358}
4359
33327948
KH
4360static struct mem_cgroup *mem_cgroup_alloc(void)
4361{
4362 struct mem_cgroup *mem;
c62b1a3b 4363 int size = sizeof(struct mem_cgroup);
33327948 4364
c62b1a3b 4365 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4366 if (size < PAGE_SIZE)
17295c88 4367 mem = kzalloc(size, GFP_KERNEL);
33327948 4368 else
17295c88 4369 mem = vzalloc(size);
33327948 4370
e7bbcdf3
DC
4371 if (!mem)
4372 return NULL;
4373
c62b1a3b 4374 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4375 if (!mem->stat)
4376 goto out_free;
711d3d2c 4377 spin_lock_init(&mem->pcp_counter_lock);
33327948 4378 return mem;
d2e61b8d
DC
4379
4380out_free:
4381 if (size < PAGE_SIZE)
4382 kfree(mem);
4383 else
4384 vfree(mem);
4385 return NULL;
33327948
KH
4386}
4387
8c7c6e34
KH
4388/*
4389 * At destroying mem_cgroup, references from swap_cgroup can remain.
4390 * (scanning all at force_empty is too costly...)
4391 *
4392 * Instead of clearing all references at force_empty, we remember
4393 * the number of reference from swap_cgroup and free mem_cgroup when
4394 * it goes down to 0.
4395 *
8c7c6e34
KH
4396 * Removal of cgroup itself succeeds regardless of refs from swap.
4397 */
4398
a7ba0eef 4399static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4400{
08e552c6
KH
4401 int node;
4402
f64c3f54 4403 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4404 free_css_id(&mem_cgroup_subsys, &mem->css);
4405
08e552c6
KH
4406 for_each_node_state(node, N_POSSIBLE)
4407 free_mem_cgroup_per_zone_info(mem, node);
4408
c62b1a3b
KH
4409 free_percpu(mem->stat);
4410 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4411 kfree(mem);
4412 else
4413 vfree(mem);
4414}
4415
8c7c6e34
KH
4416static void mem_cgroup_get(struct mem_cgroup *mem)
4417{
4418 atomic_inc(&mem->refcnt);
4419}
4420
483c30b5 4421static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4422{
483c30b5 4423 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4424 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4425 __mem_cgroup_free(mem);
7bcc1bb1
DN
4426 if (parent)
4427 mem_cgroup_put(parent);
4428 }
8c7c6e34
KH
4429}
4430
483c30b5
DN
4431static void mem_cgroup_put(struct mem_cgroup *mem)
4432{
4433 __mem_cgroup_put(mem, 1);
4434}
4435
7bcc1bb1
DN
4436/*
4437 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4438 */
4439static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4440{
4441 if (!mem->res.parent)
4442 return NULL;
4443 return mem_cgroup_from_res_counter(mem->res.parent, res);
4444}
33327948 4445
c077719b
KH
4446#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4447static void __init enable_swap_cgroup(void)
4448{
f8d66542 4449 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4450 do_swap_account = 1;
4451}
4452#else
4453static void __init enable_swap_cgroup(void)
4454{
4455}
4456#endif
4457
f64c3f54
BS
4458static int mem_cgroup_soft_limit_tree_init(void)
4459{
4460 struct mem_cgroup_tree_per_node *rtpn;
4461 struct mem_cgroup_tree_per_zone *rtpz;
4462 int tmp, node, zone;
4463
4464 for_each_node_state(node, N_POSSIBLE) {
4465 tmp = node;
4466 if (!node_state(node, N_NORMAL_MEMORY))
4467 tmp = -1;
4468 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4469 if (!rtpn)
4470 return 1;
4471
4472 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4473
4474 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4475 rtpz = &rtpn->rb_tree_per_zone[zone];
4476 rtpz->rb_root = RB_ROOT;
4477 spin_lock_init(&rtpz->lock);
4478 }
4479 }
4480 return 0;
4481}
4482
0eb253e2 4483static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4484mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4485{
28dbc4b6 4486 struct mem_cgroup *mem, *parent;
04046e1a 4487 long error = -ENOMEM;
6d12e2d8 4488 int node;
8cdea7c0 4489
c8dad2bb
JB
4490 mem = mem_cgroup_alloc();
4491 if (!mem)
04046e1a 4492 return ERR_PTR(error);
78fb7466 4493
6d12e2d8
KH
4494 for_each_node_state(node, N_POSSIBLE)
4495 if (alloc_mem_cgroup_per_zone_info(mem, node))
4496 goto free_out;
f64c3f54 4497
c077719b 4498 /* root ? */
28dbc4b6 4499 if (cont->parent == NULL) {
cdec2e42 4500 int cpu;
c077719b 4501 enable_swap_cgroup();
28dbc4b6 4502 parent = NULL;
4b3bde4c 4503 root_mem_cgroup = mem;
f64c3f54
BS
4504 if (mem_cgroup_soft_limit_tree_init())
4505 goto free_out;
cdec2e42
KH
4506 for_each_possible_cpu(cpu) {
4507 struct memcg_stock_pcp *stock =
4508 &per_cpu(memcg_stock, cpu);
4509 INIT_WORK(&stock->work, drain_local_stock);
4510 }
711d3d2c 4511 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4512 } else {
28dbc4b6 4513 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4514 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4515 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4516 }
28dbc4b6 4517
18f59ea7
BS
4518 if (parent && parent->use_hierarchy) {
4519 res_counter_init(&mem->res, &parent->res);
4520 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4521 /*
4522 * We increment refcnt of the parent to ensure that we can
4523 * safely access it on res_counter_charge/uncharge.
4524 * This refcnt will be decremented when freeing this
4525 * mem_cgroup(see mem_cgroup_put).
4526 */
4527 mem_cgroup_get(parent);
18f59ea7
BS
4528 } else {
4529 res_counter_init(&mem->res, NULL);
4530 res_counter_init(&mem->memsw, NULL);
4531 }
04046e1a 4532 mem->last_scanned_child = 0;
2733c06a 4533 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4534 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4535
a7885eb8
KM
4536 if (parent)
4537 mem->swappiness = get_swappiness(parent);
a7ba0eef 4538 atomic_set(&mem->refcnt, 1);
7dc74be0 4539 mem->move_charge_at_immigrate = 0;
2e72b634 4540 mutex_init(&mem->thresholds_lock);
8cdea7c0 4541 return &mem->css;
6d12e2d8 4542free_out:
a7ba0eef 4543 __mem_cgroup_free(mem);
4b3bde4c 4544 root_mem_cgroup = NULL;
04046e1a 4545 return ERR_PTR(error);
8cdea7c0
BS
4546}
4547
ec64f515 4548static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4549 struct cgroup *cont)
4550{
4551 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4552
4553 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4554}
4555
8cdea7c0
BS
4556static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4557 struct cgroup *cont)
4558{
c268e994 4559 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4560
c268e994 4561 mem_cgroup_put(mem);
8cdea7c0
BS
4562}
4563
4564static int mem_cgroup_populate(struct cgroup_subsys *ss,
4565 struct cgroup *cont)
4566{
8c7c6e34
KH
4567 int ret;
4568
4569 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4570 ARRAY_SIZE(mem_cgroup_files));
4571
4572 if (!ret)
4573 ret = register_memsw_files(cont, ss);
4574 return ret;
8cdea7c0
BS
4575}
4576
02491447 4577#ifdef CONFIG_MMU
7dc74be0 4578/* Handlers for move charge at task migration. */
854ffa8d
DN
4579#define PRECHARGE_COUNT_AT_ONCE 256
4580static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4581{
854ffa8d
DN
4582 int ret = 0;
4583 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4584 struct mem_cgroup *mem = mc.to;
4585
854ffa8d
DN
4586 if (mem_cgroup_is_root(mem)) {
4587 mc.precharge += count;
4588 /* we don't need css_get for root */
4589 return ret;
4590 }
4591 /* try to charge at once */
4592 if (count > 1) {
4593 struct res_counter *dummy;
4594 /*
4595 * "mem" cannot be under rmdir() because we've already checked
4596 * by cgroup_lock_live_cgroup() that it is not removed and we
4597 * are still under the same cgroup_mutex. So we can postpone
4598 * css_get().
4599 */
4600 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4601 goto one_by_one;
4602 if (do_swap_account && res_counter_charge(&mem->memsw,
4603 PAGE_SIZE * count, &dummy)) {
4604 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4605 goto one_by_one;
4606 }
4607 mc.precharge += count;
854ffa8d
DN
4608 return ret;
4609 }
4610one_by_one:
4611 /* fall back to one by one charge */
4612 while (count--) {
4613 if (signal_pending(current)) {
4614 ret = -EINTR;
4615 break;
4616 }
4617 if (!batch_count--) {
4618 batch_count = PRECHARGE_COUNT_AT_ONCE;
4619 cond_resched();
4620 }
ec168510
AA
4621 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4622 PAGE_SIZE);
854ffa8d
DN
4623 if (ret || !mem)
4624 /* mem_cgroup_clear_mc() will do uncharge later */
4625 return -ENOMEM;
4626 mc.precharge++;
4627 }
4ffef5fe
DN
4628 return ret;
4629}
4630
4631/**
4632 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4633 * @vma: the vma the pte to be checked belongs
4634 * @addr: the address corresponding to the pte to be checked
4635 * @ptent: the pte to be checked
02491447 4636 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4637 *
4638 * Returns
4639 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4640 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4641 * move charge. if @target is not NULL, the page is stored in target->page
4642 * with extra refcnt got(Callers should handle it).
02491447
DN
4643 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4644 * target for charge migration. if @target is not NULL, the entry is stored
4645 * in target->ent.
4ffef5fe
DN
4646 *
4647 * Called with pte lock held.
4648 */
4ffef5fe
DN
4649union mc_target {
4650 struct page *page;
02491447 4651 swp_entry_t ent;
4ffef5fe
DN
4652};
4653
4ffef5fe
DN
4654enum mc_target_type {
4655 MC_TARGET_NONE, /* not used */
4656 MC_TARGET_PAGE,
02491447 4657 MC_TARGET_SWAP,
4ffef5fe
DN
4658};
4659
90254a65
DN
4660static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4661 unsigned long addr, pte_t ptent)
4ffef5fe 4662{
90254a65 4663 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4664
90254a65
DN
4665 if (!page || !page_mapped(page))
4666 return NULL;
4667 if (PageAnon(page)) {
4668 /* we don't move shared anon */
4669 if (!move_anon() || page_mapcount(page) > 2)
4670 return NULL;
87946a72
DN
4671 } else if (!move_file())
4672 /* we ignore mapcount for file pages */
90254a65
DN
4673 return NULL;
4674 if (!get_page_unless_zero(page))
4675 return NULL;
4676
4677 return page;
4678}
4679
4680static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4681 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4682{
4683 int usage_count;
4684 struct page *page = NULL;
4685 swp_entry_t ent = pte_to_swp_entry(ptent);
4686
4687 if (!move_anon() || non_swap_entry(ent))
4688 return NULL;
4689 usage_count = mem_cgroup_count_swap_user(ent, &page);
4690 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4691 if (page)
4692 put_page(page);
90254a65 4693 return NULL;
02491447 4694 }
90254a65
DN
4695 if (do_swap_account)
4696 entry->val = ent.val;
4697
4698 return page;
4699}
4700
87946a72
DN
4701static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4702 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4703{
4704 struct page *page = NULL;
4705 struct inode *inode;
4706 struct address_space *mapping;
4707 pgoff_t pgoff;
4708
4709 if (!vma->vm_file) /* anonymous vma */
4710 return NULL;
4711 if (!move_file())
4712 return NULL;
4713
4714 inode = vma->vm_file->f_path.dentry->d_inode;
4715 mapping = vma->vm_file->f_mapping;
4716 if (pte_none(ptent))
4717 pgoff = linear_page_index(vma, addr);
4718 else /* pte_file(ptent) is true */
4719 pgoff = pte_to_pgoff(ptent);
4720
4721 /* page is moved even if it's not RSS of this task(page-faulted). */
4722 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4723 page = find_get_page(mapping, pgoff);
4724 } else { /* shmem/tmpfs file. we should take account of swap too. */
4725 swp_entry_t ent;
4726 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4727 if (do_swap_account)
4728 entry->val = ent.val;
4729 }
4730
4731 return page;
4732}
4733
90254a65
DN
4734static int is_target_pte_for_mc(struct vm_area_struct *vma,
4735 unsigned long addr, pte_t ptent, union mc_target *target)
4736{
4737 struct page *page = NULL;
4738 struct page_cgroup *pc;
4739 int ret = 0;
4740 swp_entry_t ent = { .val = 0 };
4741
4742 if (pte_present(ptent))
4743 page = mc_handle_present_pte(vma, addr, ptent);
4744 else if (is_swap_pte(ptent))
4745 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4746 else if (pte_none(ptent) || pte_file(ptent))
4747 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4748
4749 if (!page && !ent.val)
4750 return 0;
02491447
DN
4751 if (page) {
4752 pc = lookup_page_cgroup(page);
4753 /*
4754 * Do only loose check w/o page_cgroup lock.
4755 * mem_cgroup_move_account() checks the pc is valid or not under
4756 * the lock.
4757 */
4758 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4759 ret = MC_TARGET_PAGE;
4760 if (target)
4761 target->page = page;
4762 }
4763 if (!ret || !target)
4764 put_page(page);
4765 }
90254a65
DN
4766 /* There is a swap entry and a page doesn't exist or isn't charged */
4767 if (ent.val && !ret &&
7f0f1546
KH
4768 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4769 ret = MC_TARGET_SWAP;
4770 if (target)
4771 target->ent = ent;
4ffef5fe 4772 }
4ffef5fe
DN
4773 return ret;
4774}
4775
4776static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4777 unsigned long addr, unsigned long end,
4778 struct mm_walk *walk)
4779{
4780 struct vm_area_struct *vma = walk->private;
4781 pte_t *pte;
4782 spinlock_t *ptl;
4783
03319327
DH
4784 split_huge_page_pmd(walk->mm, pmd);
4785
4ffef5fe
DN
4786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4787 for (; addr != end; pte++, addr += PAGE_SIZE)
4788 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4789 mc.precharge++; /* increment precharge temporarily */
4790 pte_unmap_unlock(pte - 1, ptl);
4791 cond_resched();
4792
7dc74be0
DN
4793 return 0;
4794}
4795
4ffef5fe
DN
4796static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4797{
4798 unsigned long precharge;
4799 struct vm_area_struct *vma;
4800
dfe076b0 4801 down_read(&mm->mmap_sem);
4ffef5fe
DN
4802 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4803 struct mm_walk mem_cgroup_count_precharge_walk = {
4804 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4805 .mm = mm,
4806 .private = vma,
4807 };
4808 if (is_vm_hugetlb_page(vma))
4809 continue;
4ffef5fe
DN
4810 walk_page_range(vma->vm_start, vma->vm_end,
4811 &mem_cgroup_count_precharge_walk);
4812 }
dfe076b0 4813 up_read(&mm->mmap_sem);
4ffef5fe
DN
4814
4815 precharge = mc.precharge;
4816 mc.precharge = 0;
4817
4818 return precharge;
4819}
4820
4ffef5fe
DN
4821static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4822{
dfe076b0
DN
4823 unsigned long precharge = mem_cgroup_count_precharge(mm);
4824
4825 VM_BUG_ON(mc.moving_task);
4826 mc.moving_task = current;
4827 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4828}
4829
dfe076b0
DN
4830/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4831static void __mem_cgroup_clear_mc(void)
4ffef5fe 4832{
2bd9bb20
KH
4833 struct mem_cgroup *from = mc.from;
4834 struct mem_cgroup *to = mc.to;
4835
4ffef5fe 4836 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4837 if (mc.precharge) {
4838 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4839 mc.precharge = 0;
4840 }
4841 /*
4842 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4843 * we must uncharge here.
4844 */
4845 if (mc.moved_charge) {
4846 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4847 mc.moved_charge = 0;
4ffef5fe 4848 }
483c30b5
DN
4849 /* we must fixup refcnts and charges */
4850 if (mc.moved_swap) {
483c30b5
DN
4851 /* uncharge swap account from the old cgroup */
4852 if (!mem_cgroup_is_root(mc.from))
4853 res_counter_uncharge(&mc.from->memsw,
4854 PAGE_SIZE * mc.moved_swap);
4855 __mem_cgroup_put(mc.from, mc.moved_swap);
4856
4857 if (!mem_cgroup_is_root(mc.to)) {
4858 /*
4859 * we charged both to->res and to->memsw, so we should
4860 * uncharge to->res.
4861 */
4862 res_counter_uncharge(&mc.to->res,
4863 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4864 }
4865 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4866 mc.moved_swap = 0;
4867 }
dfe076b0
DN
4868 memcg_oom_recover(from);
4869 memcg_oom_recover(to);
4870 wake_up_all(&mc.waitq);
4871}
4872
4873static void mem_cgroup_clear_mc(void)
4874{
4875 struct mem_cgroup *from = mc.from;
4876
4877 /*
4878 * we must clear moving_task before waking up waiters at the end of
4879 * task migration.
4880 */
4881 mc.moving_task = NULL;
4882 __mem_cgroup_clear_mc();
2bd9bb20 4883 spin_lock(&mc.lock);
4ffef5fe
DN
4884 mc.from = NULL;
4885 mc.to = NULL;
2bd9bb20 4886 spin_unlock(&mc.lock);
32047e2a 4887 mem_cgroup_end_move(from);
4ffef5fe
DN
4888}
4889
7dc74be0
DN
4890static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4891 struct cgroup *cgroup,
4892 struct task_struct *p,
4893 bool threadgroup)
4894{
4895 int ret = 0;
4896 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4897
4898 if (mem->move_charge_at_immigrate) {
4899 struct mm_struct *mm;
4900 struct mem_cgroup *from = mem_cgroup_from_task(p);
4901
4902 VM_BUG_ON(from == mem);
4903
4904 mm = get_task_mm(p);
4905 if (!mm)
4906 return 0;
7dc74be0 4907 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4908 if (mm->owner == p) {
4909 VM_BUG_ON(mc.from);
4910 VM_BUG_ON(mc.to);
4911 VM_BUG_ON(mc.precharge);
854ffa8d 4912 VM_BUG_ON(mc.moved_charge);
483c30b5 4913 VM_BUG_ON(mc.moved_swap);
32047e2a 4914 mem_cgroup_start_move(from);
2bd9bb20 4915 spin_lock(&mc.lock);
4ffef5fe
DN
4916 mc.from = from;
4917 mc.to = mem;
2bd9bb20 4918 spin_unlock(&mc.lock);
dfe076b0 4919 /* We set mc.moving_task later */
4ffef5fe
DN
4920
4921 ret = mem_cgroup_precharge_mc(mm);
4922 if (ret)
4923 mem_cgroup_clear_mc();
dfe076b0
DN
4924 }
4925 mmput(mm);
7dc74be0
DN
4926 }
4927 return ret;
4928}
4929
4930static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4931 struct cgroup *cgroup,
4932 struct task_struct *p,
4933 bool threadgroup)
4934{
4ffef5fe 4935 mem_cgroup_clear_mc();
7dc74be0
DN
4936}
4937
4ffef5fe
DN
4938static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4939 unsigned long addr, unsigned long end,
4940 struct mm_walk *walk)
7dc74be0 4941{
4ffef5fe
DN
4942 int ret = 0;
4943 struct vm_area_struct *vma = walk->private;
4944 pte_t *pte;
4945 spinlock_t *ptl;
4946
03319327 4947 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4948retry:
4949 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4950 for (; addr != end; addr += PAGE_SIZE) {
4951 pte_t ptent = *(pte++);
4952 union mc_target target;
4953 int type;
4954 struct page *page;
4955 struct page_cgroup *pc;
02491447 4956 swp_entry_t ent;
4ffef5fe
DN
4957
4958 if (!mc.precharge)
4959 break;
4960
4961 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4962 switch (type) {
4963 case MC_TARGET_PAGE:
4964 page = target.page;
4965 if (isolate_lru_page(page))
4966 goto put;
4967 pc = lookup_page_cgroup(page);
854ffa8d 4968 if (!mem_cgroup_move_account(pc,
987eba66 4969 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4970 mc.precharge--;
854ffa8d
DN
4971 /* we uncharge from mc.from later. */
4972 mc.moved_charge++;
4ffef5fe
DN
4973 }
4974 putback_lru_page(page);
4975put: /* is_target_pte_for_mc() gets the page */
4976 put_page(page);
4977 break;
02491447
DN
4978 case MC_TARGET_SWAP:
4979 ent = target.ent;
483c30b5
DN
4980 if (!mem_cgroup_move_swap_account(ent,
4981 mc.from, mc.to, false)) {
02491447 4982 mc.precharge--;
483c30b5
DN
4983 /* we fixup refcnts and charges later. */
4984 mc.moved_swap++;
4985 }
02491447 4986 break;
4ffef5fe
DN
4987 default:
4988 break;
4989 }
4990 }
4991 pte_unmap_unlock(pte - 1, ptl);
4992 cond_resched();
4993
4994 if (addr != end) {
4995 /*
4996 * We have consumed all precharges we got in can_attach().
4997 * We try charge one by one, but don't do any additional
4998 * charges to mc.to if we have failed in charge once in attach()
4999 * phase.
5000 */
854ffa8d 5001 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5002 if (!ret)
5003 goto retry;
5004 }
5005
5006 return ret;
5007}
5008
5009static void mem_cgroup_move_charge(struct mm_struct *mm)
5010{
5011 struct vm_area_struct *vma;
5012
5013 lru_add_drain_all();
dfe076b0
DN
5014retry:
5015 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5016 /*
5017 * Someone who are holding the mmap_sem might be waiting in
5018 * waitq. So we cancel all extra charges, wake up all waiters,
5019 * and retry. Because we cancel precharges, we might not be able
5020 * to move enough charges, but moving charge is a best-effort
5021 * feature anyway, so it wouldn't be a big problem.
5022 */
5023 __mem_cgroup_clear_mc();
5024 cond_resched();
5025 goto retry;
5026 }
4ffef5fe
DN
5027 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5028 int ret;
5029 struct mm_walk mem_cgroup_move_charge_walk = {
5030 .pmd_entry = mem_cgroup_move_charge_pte_range,
5031 .mm = mm,
5032 .private = vma,
5033 };
5034 if (is_vm_hugetlb_page(vma))
5035 continue;
4ffef5fe
DN
5036 ret = walk_page_range(vma->vm_start, vma->vm_end,
5037 &mem_cgroup_move_charge_walk);
5038 if (ret)
5039 /*
5040 * means we have consumed all precharges and failed in
5041 * doing additional charge. Just abandon here.
5042 */
5043 break;
5044 }
dfe076b0 5045 up_read(&mm->mmap_sem);
7dc74be0
DN
5046}
5047
67e465a7
BS
5048static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5049 struct cgroup *cont,
5050 struct cgroup *old_cont,
be367d09
BB
5051 struct task_struct *p,
5052 bool threadgroup)
67e465a7 5053{
dfe076b0
DN
5054 struct mm_struct *mm;
5055
5056 if (!mc.to)
4ffef5fe
DN
5057 /* no need to move charge */
5058 return;
5059
dfe076b0
DN
5060 mm = get_task_mm(p);
5061 if (mm) {
5062 mem_cgroup_move_charge(mm);
5063 mmput(mm);
5064 }
4ffef5fe 5065 mem_cgroup_clear_mc();
67e465a7 5066}
5cfb80a7
DN
5067#else /* !CONFIG_MMU */
5068static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5069 struct cgroup *cgroup,
5070 struct task_struct *p,
5071 bool threadgroup)
5072{
5073 return 0;
5074}
5075static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5076 struct cgroup *cgroup,
5077 struct task_struct *p,
5078 bool threadgroup)
5079{
5080}
5081static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5082 struct cgroup *cont,
5083 struct cgroup *old_cont,
5084 struct task_struct *p,
5085 bool threadgroup)
5086{
5087}
5088#endif
67e465a7 5089
8cdea7c0
BS
5090struct cgroup_subsys mem_cgroup_subsys = {
5091 .name = "memory",
5092 .subsys_id = mem_cgroup_subsys_id,
5093 .create = mem_cgroup_create,
df878fb0 5094 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5095 .destroy = mem_cgroup_destroy,
5096 .populate = mem_cgroup_populate,
7dc74be0
DN
5097 .can_attach = mem_cgroup_can_attach,
5098 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5099 .attach = mem_cgroup_move_task,
6d12e2d8 5100 .early_init = 0,
04046e1a 5101 .use_id = 1,
8cdea7c0 5102};
c077719b
KH
5103
5104#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5105static int __init enable_swap_account(char *s)
5106{
5107 /* consider enabled if no parameter or 1 is given */
fceda1bf 5108 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5109 really_do_swap_account = 1;
fceda1bf 5110 else if (!strcmp(s, "=0"))
a42c390c
MH
5111 really_do_swap_account = 0;
5112 return 1;
5113}
5114__setup("swapaccount", enable_swap_account);
c077719b
KH
5115
5116static int __init disable_swap_account(char *s)
5117{
552b372b 5118 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5119 enable_swap_account("=0");
c077719b
KH
5120 return 1;
5121}
5122__setup("noswapaccount", disable_swap_account);
5123#endif