]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm/mincore.c: fix race between swapoff and mincore
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
08e552c6 60#include "internal.h"
d1a4c0b3 61#include <net/sock.h>
4bd2c1ee 62#include <net/ip.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
7c0f6ba6 65#include <linux/uaccess.h>
8697d331 66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
7d828602
JW
72struct mem_cgroup *root_mem_cgroup __read_mostly;
73
a181b0e8 74#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 75
f7e1cb6e
JW
76/* Socket memory accounting disabled? */
77static bool cgroup_memory_nosocket;
78
04823c83
VD
79/* Kernel memory accounting disabled? */
80static bool cgroup_memory_nokmem;
81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
c077719b 84int do_swap_account __read_mostly;
c077719b 85#else
a0db00fc 86#define do_swap_account 0
c077719b
KH
87#endif
88
7941d214
JW
89/* Whether legacy memory+swap accounting is active */
90static bool do_memsw_account(void)
91{
92 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
93}
94
71cd3113 95static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
96 "inactive_anon",
97 "active_anon",
98 "inactive_file",
99 "active_file",
100 "unevictable",
101};
102
a0db00fc
KS
103#define THRESHOLDS_EVENTS_TARGET 128
104#define SOFTLIMIT_EVENTS_TARGET 1024
105#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 106
bb4cc1a8
AM
107/*
108 * Cgroups above their limits are maintained in a RB-Tree, independent of
109 * their hierarchy representation
110 */
111
ef8f2327 112struct mem_cgroup_tree_per_node {
bb4cc1a8 113 struct rb_root rb_root;
fa90b2fd 114 struct rb_node *rb_rightmost;
bb4cc1a8
AM
115 spinlock_t lock;
116};
117
bb4cc1a8
AM
118struct mem_cgroup_tree {
119 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
120};
121
122static struct mem_cgroup_tree soft_limit_tree __read_mostly;
123
9490ff27
KH
124/* for OOM */
125struct mem_cgroup_eventfd_list {
126 struct list_head list;
127 struct eventfd_ctx *eventfd;
128};
2e72b634 129
79bd9814
TH
130/*
131 * cgroup_event represents events which userspace want to receive.
132 */
3bc942f3 133struct mem_cgroup_event {
79bd9814 134 /*
59b6f873 135 * memcg which the event belongs to.
79bd9814 136 */
59b6f873 137 struct mem_cgroup *memcg;
79bd9814
TH
138 /*
139 * eventfd to signal userspace about the event.
140 */
141 struct eventfd_ctx *eventfd;
142 /*
143 * Each of these stored in a list by the cgroup.
144 */
145 struct list_head list;
fba94807
TH
146 /*
147 * register_event() callback will be used to add new userspace
148 * waiter for changes related to this event. Use eventfd_signal()
149 * on eventfd to send notification to userspace.
150 */
59b6f873 151 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 152 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
153 /*
154 * unregister_event() callback will be called when userspace closes
155 * the eventfd or on cgroup removing. This callback must be set,
156 * if you want provide notification functionality.
157 */
59b6f873 158 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 159 struct eventfd_ctx *eventfd);
79bd9814
TH
160 /*
161 * All fields below needed to unregister event when
162 * userspace closes eventfd.
163 */
164 poll_table pt;
165 wait_queue_head_t *wqh;
ac6424b9 166 wait_queue_entry_t wait;
79bd9814
TH
167 struct work_struct remove;
168};
169
c0ff4b85
R
170static void mem_cgroup_threshold(struct mem_cgroup *memcg);
171static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 172
7dc74be0
DN
173/* Stuffs for move charges at task migration. */
174/*
1dfab5ab 175 * Types of charges to be moved.
7dc74be0 176 */
1dfab5ab
JW
177#define MOVE_ANON 0x1U
178#define MOVE_FILE 0x2U
179#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 180
4ffef5fe
DN
181/* "mc" and its members are protected by cgroup_mutex */
182static struct move_charge_struct {
b1dd693e 183 spinlock_t lock; /* for from, to */
264a0ae1 184 struct mm_struct *mm;
4ffef5fe
DN
185 struct mem_cgroup *from;
186 struct mem_cgroup *to;
1dfab5ab 187 unsigned long flags;
4ffef5fe 188 unsigned long precharge;
854ffa8d 189 unsigned long moved_charge;
483c30b5 190 unsigned long moved_swap;
8033b97c
DN
191 struct task_struct *moving_task; /* a task moving charges */
192 wait_queue_head_t waitq; /* a waitq for other context */
193} mc = {
2bd9bb20 194 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
195 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
196};
4ffef5fe 197
4e416953
BS
198/*
199 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
200 * limit reclaim to prevent infinite loops, if they ever occur.
201 */
a0db00fc 202#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 203#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 204
217bc319
KH
205enum charge_type {
206 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 207 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 208 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 209 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
210 NR_CHARGE_TYPE,
211};
212
8c7c6e34 213/* for encoding cft->private value on file */
86ae53e1
GC
214enum res_type {
215 _MEM,
216 _MEMSWAP,
217 _OOM_TYPE,
510fc4e1 218 _KMEM,
d55f90bf 219 _TCP,
86ae53e1
GC
220};
221
a0db00fc
KS
222#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
223#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 224#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
225/* Used for OOM nofiier */
226#define OOM_CONTROL (0)
8c7c6e34 227
b05706f1
KT
228/*
229 * Iteration constructs for visiting all cgroups (under a tree). If
230 * loops are exited prematurely (break), mem_cgroup_iter_break() must
231 * be used for reference counting.
232 */
233#define for_each_mem_cgroup_tree(iter, root) \
234 for (iter = mem_cgroup_iter(root, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(root, iter, NULL))
237
238#define for_each_mem_cgroup(iter) \
239 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
240 iter != NULL; \
241 iter = mem_cgroup_iter(NULL, iter, NULL))
242
7775face
TH
243static inline bool should_force_charge(void)
244{
245 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
246 (current->flags & PF_EXITING);
247}
248
70ddf637
AV
249/* Some nice accessors for the vmpressure. */
250struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
251{
252 if (!memcg)
253 memcg = root_mem_cgroup;
254 return &memcg->vmpressure;
255}
256
257struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
258{
259 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
260}
261
84c07d11 262#ifdef CONFIG_MEMCG_KMEM
55007d84 263/*
f7ce3190 264 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
265 * The main reason for not using cgroup id for this:
266 * this works better in sparse environments, where we have a lot of memcgs,
267 * but only a few kmem-limited. Or also, if we have, for instance, 200
268 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
269 * 200 entry array for that.
55007d84 270 *
dbcf73e2
VD
271 * The current size of the caches array is stored in memcg_nr_cache_ids. It
272 * will double each time we have to increase it.
55007d84 273 */
dbcf73e2
VD
274static DEFINE_IDA(memcg_cache_ida);
275int memcg_nr_cache_ids;
749c5415 276
05257a1a
VD
277/* Protects memcg_nr_cache_ids */
278static DECLARE_RWSEM(memcg_cache_ids_sem);
279
280void memcg_get_cache_ids(void)
281{
282 down_read(&memcg_cache_ids_sem);
283}
284
285void memcg_put_cache_ids(void)
286{
287 up_read(&memcg_cache_ids_sem);
288}
289
55007d84
GC
290/*
291 * MIN_SIZE is different than 1, because we would like to avoid going through
292 * the alloc/free process all the time. In a small machine, 4 kmem-limited
293 * cgroups is a reasonable guess. In the future, it could be a parameter or
294 * tunable, but that is strictly not necessary.
295 *
b8627835 296 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
297 * this constant directly from cgroup, but it is understandable that this is
298 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 299 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
300 * increase ours as well if it increases.
301 */
302#define MEMCG_CACHES_MIN_SIZE 4
b8627835 303#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 304
d7f25f8a
GC
305/*
306 * A lot of the calls to the cache allocation functions are expected to be
307 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
308 * conditional to this static branch, we'll have to allow modules that does
309 * kmem_cache_alloc and the such to see this symbol as well
310 */
ef12947c 311DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 312EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 313
17cc4dfe
TH
314struct workqueue_struct *memcg_kmem_cache_wq;
315
0a4465d3
KT
316static int memcg_shrinker_map_size;
317static DEFINE_MUTEX(memcg_shrinker_map_mutex);
318
319static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
320{
321 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
322}
323
324static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
325 int size, int old_size)
326{
327 struct memcg_shrinker_map *new, *old;
328 int nid;
329
330 lockdep_assert_held(&memcg_shrinker_map_mutex);
331
332 for_each_node(nid) {
333 old = rcu_dereference_protected(
334 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
335 /* Not yet online memcg */
336 if (!old)
337 return 0;
338
339 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
340 if (!new)
341 return -ENOMEM;
342
343 /* Set all old bits, clear all new bits */
344 memset(new->map, (int)0xff, old_size);
345 memset((void *)new->map + old_size, 0, size - old_size);
346
347 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
348 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
349 }
350
351 return 0;
352}
353
354static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
355{
356 struct mem_cgroup_per_node *pn;
357 struct memcg_shrinker_map *map;
358 int nid;
359
360 if (mem_cgroup_is_root(memcg))
361 return;
362
363 for_each_node(nid) {
364 pn = mem_cgroup_nodeinfo(memcg, nid);
365 map = rcu_dereference_protected(pn->shrinker_map, true);
366 if (map)
367 kvfree(map);
368 rcu_assign_pointer(pn->shrinker_map, NULL);
369 }
370}
371
372static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
373{
374 struct memcg_shrinker_map *map;
375 int nid, size, ret = 0;
376
377 if (mem_cgroup_is_root(memcg))
378 return 0;
379
380 mutex_lock(&memcg_shrinker_map_mutex);
381 size = memcg_shrinker_map_size;
382 for_each_node(nid) {
383 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
384 if (!map) {
385 memcg_free_shrinker_maps(memcg);
386 ret = -ENOMEM;
387 break;
388 }
389 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
390 }
391 mutex_unlock(&memcg_shrinker_map_mutex);
392
393 return ret;
394}
395
396int memcg_expand_shrinker_maps(int new_id)
397{
398 int size, old_size, ret = 0;
399 struct mem_cgroup *memcg;
400
401 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
402 old_size = memcg_shrinker_map_size;
403 if (size <= old_size)
404 return 0;
405
406 mutex_lock(&memcg_shrinker_map_mutex);
407 if (!root_mem_cgroup)
408 goto unlock;
409
410 for_each_mem_cgroup(memcg) {
411 if (mem_cgroup_is_root(memcg))
412 continue;
413 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
414 if (ret)
415 goto unlock;
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
0a4465d3
KT
438#else /* CONFIG_MEMCG_KMEM */
439static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
440{
441 return 0;
442}
443static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 444#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 445
ad7fa852
TH
446/**
447 * mem_cgroup_css_from_page - css of the memcg associated with a page
448 * @page: page of interest
449 *
450 * If memcg is bound to the default hierarchy, css of the memcg associated
451 * with @page is returned. The returned css remains associated with @page
452 * until it is released.
453 *
454 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
455 * is returned.
ad7fa852
TH
456 */
457struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
458{
459 struct mem_cgroup *memcg;
460
ad7fa852
TH
461 memcg = page->mem_cgroup;
462
9e10a130 463 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
464 memcg = root_mem_cgroup;
465
ad7fa852
TH
466 return &memcg->css;
467}
468
2fc04524
VD
469/**
470 * page_cgroup_ino - return inode number of the memcg a page is charged to
471 * @page: the page
472 *
473 * Look up the closest online ancestor of the memory cgroup @page is charged to
474 * and return its inode number or 0 if @page is not charged to any cgroup. It
475 * is safe to call this function without holding a reference to @page.
476 *
477 * Note, this function is inherently racy, because there is nothing to prevent
478 * the cgroup inode from getting torn down and potentially reallocated a moment
479 * after page_cgroup_ino() returns, so it only should be used by callers that
480 * do not care (such as procfs interfaces).
481 */
482ino_t page_cgroup_ino(struct page *page)
483{
484 struct mem_cgroup *memcg;
485 unsigned long ino = 0;
486
487 rcu_read_lock();
488 memcg = READ_ONCE(page->mem_cgroup);
489 while (memcg && !(memcg->css.flags & CSS_ONLINE))
490 memcg = parent_mem_cgroup(memcg);
491 if (memcg)
492 ino = cgroup_ino(memcg->css.cgroup);
493 rcu_read_unlock();
494 return ino;
495}
496
ef8f2327
MG
497static struct mem_cgroup_per_node *
498mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 499{
97a6c37b 500 int nid = page_to_nid(page);
f64c3f54 501
ef8f2327 502 return memcg->nodeinfo[nid];
f64c3f54
BS
503}
504
ef8f2327
MG
505static struct mem_cgroup_tree_per_node *
506soft_limit_tree_node(int nid)
bb4cc1a8 507{
ef8f2327 508 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
509}
510
ef8f2327 511static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
512soft_limit_tree_from_page(struct page *page)
513{
514 int nid = page_to_nid(page);
bb4cc1a8 515
ef8f2327 516 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
517}
518
ef8f2327
MG
519static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 521 unsigned long new_usage_in_excess)
bb4cc1a8
AM
522{
523 struct rb_node **p = &mctz->rb_root.rb_node;
524 struct rb_node *parent = NULL;
ef8f2327 525 struct mem_cgroup_per_node *mz_node;
fa90b2fd 526 bool rightmost = true;
bb4cc1a8
AM
527
528 if (mz->on_tree)
529 return;
530
531 mz->usage_in_excess = new_usage_in_excess;
532 if (!mz->usage_in_excess)
533 return;
534 while (*p) {
535 parent = *p;
ef8f2327 536 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 537 tree_node);
fa90b2fd 538 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 539 p = &(*p)->rb_left;
fa90b2fd
DB
540 rightmost = false;
541 }
542
bb4cc1a8
AM
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
fa90b2fd
DB
550
551 if (rightmost)
552 mctz->rb_rightmost = &mz->tree_node;
553
bb4cc1a8
AM
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
557}
558
ef8f2327
MG
559static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
560 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
561{
562 if (!mz->on_tree)
563 return;
fa90b2fd
DB
564
565 if (&mz->tree_node == mctz->rb_rightmost)
566 mctz->rb_rightmost = rb_prev(&mz->tree_node);
567
bb4cc1a8
AM
568 rb_erase(&mz->tree_node, &mctz->rb_root);
569 mz->on_tree = false;
570}
571
ef8f2327
MG
572static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
573 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 574{
0a31bc97
JW
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 578 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 579 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
580}
581
3e32cb2e
JW
582static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
583{
584 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 585 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
586 unsigned long excess = 0;
587
588 if (nr_pages > soft_limit)
589 excess = nr_pages - soft_limit;
590
591 return excess;
592}
bb4cc1a8
AM
593
594static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
595{
3e32cb2e 596 unsigned long excess;
ef8f2327
MG
597 struct mem_cgroup_per_node *mz;
598 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 599
e231875b 600 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
601 if (!mctz)
602 return;
bb4cc1a8
AM
603 /*
604 * Necessary to update all ancestors when hierarchy is used.
605 * because their event counter is not touched.
606 */
607 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 608 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 609 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
610 /*
611 * We have to update the tree if mz is on RB-tree or
612 * mem is over its softlimit.
613 */
614 if (excess || mz->on_tree) {
0a31bc97
JW
615 unsigned long flags;
616
617 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
618 /* if on-tree, remove it */
619 if (mz->on_tree)
cf2c8127 620 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
621 /*
622 * Insert again. mz->usage_in_excess will be updated.
623 * If excess is 0, no tree ops.
624 */
cf2c8127 625 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 626 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
627 }
628 }
629}
630
631static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
632{
ef8f2327
MG
633 struct mem_cgroup_tree_per_node *mctz;
634 struct mem_cgroup_per_node *mz;
635 int nid;
bb4cc1a8 636
e231875b 637 for_each_node(nid) {
ef8f2327
MG
638 mz = mem_cgroup_nodeinfo(memcg, nid);
639 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
640 if (mctz)
641 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
642 }
643}
644
ef8f2327
MG
645static struct mem_cgroup_per_node *
646__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 647{
ef8f2327 648 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
649
650retry:
651 mz = NULL;
fa90b2fd 652 if (!mctz->rb_rightmost)
bb4cc1a8
AM
653 goto done; /* Nothing to reclaim from */
654
fa90b2fd
DB
655 mz = rb_entry(mctz->rb_rightmost,
656 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
657 /*
658 * Remove the node now but someone else can add it back,
659 * we will to add it back at the end of reclaim to its correct
660 * position in the tree.
661 */
cf2c8127 662 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 663 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 664 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
665 goto retry;
666done:
667 return mz;
668}
669
ef8f2327
MG
670static struct mem_cgroup_per_node *
671mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 672{
ef8f2327 673 struct mem_cgroup_per_node *mz;
bb4cc1a8 674
0a31bc97 675 spin_lock_irq(&mctz->lock);
bb4cc1a8 676 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 677 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
678 return mz;
679}
680
db9adbcb
JW
681/**
682 * __mod_memcg_state - update cgroup memory statistics
683 * @memcg: the memory cgroup
684 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685 * @val: delta to add to the counter, can be negative
686 */
687void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
688{
689 long x;
690
691 if (mem_cgroup_disabled())
692 return;
693
815744d7
JW
694 __this_cpu_add(memcg->vmstats_local->stat[idx], val);
695
db9adbcb
JW
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
698 struct mem_cgroup *mi;
699
42a30035
JW
700 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
701 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
702 x = 0;
703 }
704 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
705}
706
42a30035
JW
707static struct mem_cgroup_per_node *
708parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
709{
710 struct mem_cgroup *parent;
711
712 parent = parent_mem_cgroup(pn->memcg);
713 if (!parent)
714 return NULL;
715 return mem_cgroup_nodeinfo(parent, nid);
716}
717
db9adbcb
JW
718/**
719 * __mod_lruvec_state - update lruvec memory statistics
720 * @lruvec: the lruvec
721 * @idx: the stat item
722 * @val: delta to add to the counter, can be negative
723 *
724 * The lruvec is the intersection of the NUMA node and a cgroup. This
725 * function updates the all three counters that are affected by a
726 * change of state at this level: per-node, per-cgroup, per-lruvec.
727 */
728void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
729 int val)
730{
42a30035 731 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 732 struct mem_cgroup_per_node *pn;
42a30035 733 struct mem_cgroup *memcg;
db9adbcb
JW
734 long x;
735
736 /* Update node */
42a30035 737 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
738
739 if (mem_cgroup_disabled())
740 return;
741
742 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 743 memcg = pn->memcg;
db9adbcb
JW
744
745 /* Update memcg */
42a30035 746 __mod_memcg_state(memcg, idx, val);
db9adbcb
JW
747
748 /* Update lruvec */
815744d7
JW
749 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
750
db9adbcb
JW
751 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
752 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
753 struct mem_cgroup_per_node *pi;
754
42a30035
JW
755 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
756 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
757 x = 0;
758 }
759 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
760}
761
762/**
763 * __count_memcg_events - account VM events in a cgroup
764 * @memcg: the memory cgroup
765 * @idx: the event item
766 * @count: the number of events that occured
767 */
768void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
769 unsigned long count)
770{
771 unsigned long x;
772
773 if (mem_cgroup_disabled())
774 return;
775
815744d7
JW
776 __this_cpu_add(memcg->vmstats_local->events[idx], count);
777
db9adbcb
JW
778 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
779 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
780 struct mem_cgroup *mi;
781
42a30035
JW
782 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
783 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
784 x = 0;
785 }
786 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
787}
788
42a30035 789static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 790{
871789d4 791 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
792}
793
42a30035
JW
794static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
795{
815744d7
JW
796 long x = 0;
797 int cpu;
798
799 for_each_possible_cpu(cpu)
800 x += per_cpu(memcg->vmstats_local->events[event], cpu);
801 return x;
42a30035
JW
802}
803
c0ff4b85 804static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 805 struct page *page,
f627c2f5 806 bool compound, int nr_pages)
d52aa412 807{
b2402857
KH
808 /*
809 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
810 * counted as CACHE even if it's on ANON LRU.
811 */
0a31bc97 812 if (PageAnon(page))
c9019e9b 813 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 814 else {
c9019e9b 815 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 816 if (PageSwapBacked(page))
c9019e9b 817 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 818 }
55e462b0 819
f627c2f5
KS
820 if (compound) {
821 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 822 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 823 }
b070e65c 824
e401f176
KH
825 /* pagein of a big page is an event. So, ignore page size */
826 if (nr_pages > 0)
c9019e9b 827 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 828 else {
c9019e9b 829 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
830 nr_pages = -nr_pages; /* for event */
831 }
e401f176 832
871789d4 833 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
834}
835
f53d7ce3
JW
836static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
837 enum mem_cgroup_events_target target)
7a159cc9
JW
838{
839 unsigned long val, next;
840
871789d4
CD
841 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
842 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 843 /* from time_after() in jiffies.h */
6a1a8b80 844 if ((long)(next - val) < 0) {
f53d7ce3
JW
845 switch (target) {
846 case MEM_CGROUP_TARGET_THRESH:
847 next = val + THRESHOLDS_EVENTS_TARGET;
848 break;
bb4cc1a8
AM
849 case MEM_CGROUP_TARGET_SOFTLIMIT:
850 next = val + SOFTLIMIT_EVENTS_TARGET;
851 break;
f53d7ce3
JW
852 case MEM_CGROUP_TARGET_NUMAINFO:
853 next = val + NUMAINFO_EVENTS_TARGET;
854 break;
855 default:
856 break;
857 }
871789d4 858 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 859 return true;
7a159cc9 860 }
f53d7ce3 861 return false;
d2265e6f
KH
862}
863
864/*
865 * Check events in order.
866 *
867 */
c0ff4b85 868static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
869{
870 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
871 if (unlikely(mem_cgroup_event_ratelimit(memcg,
872 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 873 bool do_softlimit;
82b3f2a7 874 bool do_numainfo __maybe_unused;
f53d7ce3 875
bb4cc1a8
AM
876 do_softlimit = mem_cgroup_event_ratelimit(memcg,
877 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
878#if MAX_NUMNODES > 1
879 do_numainfo = mem_cgroup_event_ratelimit(memcg,
880 MEM_CGROUP_TARGET_NUMAINFO);
881#endif
c0ff4b85 882 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
883 if (unlikely(do_softlimit))
884 mem_cgroup_update_tree(memcg, page);
453a9bf3 885#if MAX_NUMNODES > 1
f53d7ce3 886 if (unlikely(do_numainfo))
c0ff4b85 887 atomic_inc(&memcg->numainfo_events);
453a9bf3 888#endif
0a31bc97 889 }
d2265e6f
KH
890}
891
cf475ad2 892struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 893{
31a78f23
BS
894 /*
895 * mm_update_next_owner() may clear mm->owner to NULL
896 * if it races with swapoff, page migration, etc.
897 * So this can be called with p == NULL.
898 */
899 if (unlikely(!p))
900 return NULL;
901
073219e9 902 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 903}
33398cf2 904EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 905
d46eb14b
SB
906/**
907 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
908 * @mm: mm from which memcg should be extracted. It can be NULL.
909 *
910 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
911 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
912 * returned.
913 */
914struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 915{
d46eb14b
SB
916 struct mem_cgroup *memcg;
917
918 if (mem_cgroup_disabled())
919 return NULL;
0b7f569e 920
54595fe2
KH
921 rcu_read_lock();
922 do {
6f6acb00
MH
923 /*
924 * Page cache insertions can happen withou an
925 * actual mm context, e.g. during disk probing
926 * on boot, loopback IO, acct() writes etc.
927 */
928 if (unlikely(!mm))
df381975 929 memcg = root_mem_cgroup;
6f6acb00
MH
930 else {
931 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
932 if (unlikely(!memcg))
933 memcg = root_mem_cgroup;
934 }
ec903c0c 935 } while (!css_tryget_online(&memcg->css));
54595fe2 936 rcu_read_unlock();
c0ff4b85 937 return memcg;
54595fe2 938}
d46eb14b
SB
939EXPORT_SYMBOL(get_mem_cgroup_from_mm);
940
f745c6f5
SB
941/**
942 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
943 * @page: page from which memcg should be extracted.
944 *
945 * Obtain a reference on page->memcg and returns it if successful. Otherwise
946 * root_mem_cgroup is returned.
947 */
948struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
949{
950 struct mem_cgroup *memcg = page->mem_cgroup;
951
952 if (mem_cgroup_disabled())
953 return NULL;
954
955 rcu_read_lock();
956 if (!memcg || !css_tryget_online(&memcg->css))
957 memcg = root_mem_cgroup;
958 rcu_read_unlock();
959 return memcg;
960}
961EXPORT_SYMBOL(get_mem_cgroup_from_page);
962
d46eb14b
SB
963/**
964 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
965 */
966static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
967{
968 if (unlikely(current->active_memcg)) {
969 struct mem_cgroup *memcg = root_mem_cgroup;
970
971 rcu_read_lock();
972 if (css_tryget_online(&current->active_memcg->css))
973 memcg = current->active_memcg;
974 rcu_read_unlock();
975 return memcg;
976 }
977 return get_mem_cgroup_from_mm(current->mm);
978}
54595fe2 979
5660048c
JW
980/**
981 * mem_cgroup_iter - iterate over memory cgroup hierarchy
982 * @root: hierarchy root
983 * @prev: previously returned memcg, NULL on first invocation
984 * @reclaim: cookie for shared reclaim walks, NULL for full walks
985 *
986 * Returns references to children of the hierarchy below @root, or
987 * @root itself, or %NULL after a full round-trip.
988 *
989 * Caller must pass the return value in @prev on subsequent
990 * invocations for reference counting, or use mem_cgroup_iter_break()
991 * to cancel a hierarchy walk before the round-trip is complete.
992 *
b213b54f 993 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 994 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 995 * reclaimers operating on the same node and priority.
5660048c 996 */
694fbc0f 997struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 998 struct mem_cgroup *prev,
694fbc0f 999 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1000{
33398cf2 1001 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1002 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1003 struct mem_cgroup *memcg = NULL;
5ac8fb31 1004 struct mem_cgroup *pos = NULL;
711d3d2c 1005
694fbc0f
AM
1006 if (mem_cgroup_disabled())
1007 return NULL;
5660048c 1008
9f3a0d09
JW
1009 if (!root)
1010 root = root_mem_cgroup;
7d74b06f 1011
9f3a0d09 1012 if (prev && !reclaim)
5ac8fb31 1013 pos = prev;
14067bb3 1014
9f3a0d09
JW
1015 if (!root->use_hierarchy && root != root_mem_cgroup) {
1016 if (prev)
5ac8fb31 1017 goto out;
694fbc0f 1018 return root;
9f3a0d09 1019 }
14067bb3 1020
542f85f9 1021 rcu_read_lock();
5f578161 1022
5ac8fb31 1023 if (reclaim) {
ef8f2327 1024 struct mem_cgroup_per_node *mz;
5ac8fb31 1025
ef8f2327 1026 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1027 iter = &mz->iter[reclaim->priority];
1028
1029 if (prev && reclaim->generation != iter->generation)
1030 goto out_unlock;
1031
6df38689 1032 while (1) {
4db0c3c2 1033 pos = READ_ONCE(iter->position);
6df38689
VD
1034 if (!pos || css_tryget(&pos->css))
1035 break;
5ac8fb31 1036 /*
6df38689
VD
1037 * css reference reached zero, so iter->position will
1038 * be cleared by ->css_released. However, we should not
1039 * rely on this happening soon, because ->css_released
1040 * is called from a work queue, and by busy-waiting we
1041 * might block it. So we clear iter->position right
1042 * away.
5ac8fb31 1043 */
6df38689
VD
1044 (void)cmpxchg(&iter->position, pos, NULL);
1045 }
5ac8fb31
JW
1046 }
1047
1048 if (pos)
1049 css = &pos->css;
1050
1051 for (;;) {
1052 css = css_next_descendant_pre(css, &root->css);
1053 if (!css) {
1054 /*
1055 * Reclaimers share the hierarchy walk, and a
1056 * new one might jump in right at the end of
1057 * the hierarchy - make sure they see at least
1058 * one group and restart from the beginning.
1059 */
1060 if (!prev)
1061 continue;
1062 break;
527a5ec9 1063 }
7d74b06f 1064
5ac8fb31
JW
1065 /*
1066 * Verify the css and acquire a reference. The root
1067 * is provided by the caller, so we know it's alive
1068 * and kicking, and don't take an extra reference.
1069 */
1070 memcg = mem_cgroup_from_css(css);
14067bb3 1071
5ac8fb31
JW
1072 if (css == &root->css)
1073 break;
14067bb3 1074
0b8f73e1
JW
1075 if (css_tryget(css))
1076 break;
9f3a0d09 1077
5ac8fb31 1078 memcg = NULL;
9f3a0d09 1079 }
5ac8fb31
JW
1080
1081 if (reclaim) {
5ac8fb31 1082 /*
6df38689
VD
1083 * The position could have already been updated by a competing
1084 * thread, so check that the value hasn't changed since we read
1085 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1086 */
6df38689
VD
1087 (void)cmpxchg(&iter->position, pos, memcg);
1088
5ac8fb31
JW
1089 if (pos)
1090 css_put(&pos->css);
1091
1092 if (!memcg)
1093 iter->generation++;
1094 else if (!prev)
1095 reclaim->generation = iter->generation;
9f3a0d09 1096 }
5ac8fb31 1097
542f85f9
MH
1098out_unlock:
1099 rcu_read_unlock();
5ac8fb31 1100out:
c40046f3
MH
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103
9f3a0d09 1104 return memcg;
14067bb3 1105}
7d74b06f 1106
5660048c
JW
1107/**
1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109 * @root: hierarchy root
1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111 */
1112void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 struct mem_cgroup *prev)
9f3a0d09
JW
1114{
1115 if (!root)
1116 root = root_mem_cgroup;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1119}
7d74b06f 1120
6df38689
VD
1121static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1122{
1123 struct mem_cgroup *memcg = dead_memcg;
1124 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1125 struct mem_cgroup_per_node *mz;
1126 int nid;
6df38689
VD
1127 int i;
1128
9f15bde6 1129 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1130 for_each_node(nid) {
ef8f2327
MG
1131 mz = mem_cgroup_nodeinfo(memcg, nid);
1132 for (i = 0; i <= DEF_PRIORITY; i++) {
1133 iter = &mz->iter[i];
1134 cmpxchg(&iter->position,
1135 dead_memcg, NULL);
6df38689
VD
1136 }
1137 }
1138 }
1139}
1140
7c5f64f8
VD
1141/**
1142 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1143 * @memcg: hierarchy root
1144 * @fn: function to call for each task
1145 * @arg: argument passed to @fn
1146 *
1147 * This function iterates over tasks attached to @memcg or to any of its
1148 * descendants and calls @fn for each task. If @fn returns a non-zero
1149 * value, the function breaks the iteration loop and returns the value.
1150 * Otherwise, it will iterate over all tasks and return 0.
1151 *
1152 * This function must not be called for the root memory cgroup.
1153 */
1154int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1155 int (*fn)(struct task_struct *, void *), void *arg)
1156{
1157 struct mem_cgroup *iter;
1158 int ret = 0;
1159
1160 BUG_ON(memcg == root_mem_cgroup);
1161
1162 for_each_mem_cgroup_tree(iter, memcg) {
1163 struct css_task_iter it;
1164 struct task_struct *task;
1165
bc2fb7ed 1166 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1167 while (!ret && (task = css_task_iter_next(&it)))
1168 ret = fn(task, arg);
1169 css_task_iter_end(&it);
1170 if (ret) {
1171 mem_cgroup_iter_break(memcg, iter);
1172 break;
1173 }
1174 }
1175 return ret;
1176}
1177
925b7673 1178/**
dfe0e773 1179 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1180 * @page: the page
f144c390 1181 * @pgdat: pgdat of the page
dfe0e773
JW
1182 *
1183 * This function is only safe when following the LRU page isolation
1184 * and putback protocol: the LRU lock must be held, and the page must
1185 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1186 */
599d0c95 1187struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1188{
ef8f2327 1189 struct mem_cgroup_per_node *mz;
925b7673 1190 struct mem_cgroup *memcg;
bea8c150 1191 struct lruvec *lruvec;
6d12e2d8 1192
bea8c150 1193 if (mem_cgroup_disabled()) {
599d0c95 1194 lruvec = &pgdat->lruvec;
bea8c150
HD
1195 goto out;
1196 }
925b7673 1197
1306a85a 1198 memcg = page->mem_cgroup;
7512102c 1199 /*
dfe0e773 1200 * Swapcache readahead pages are added to the LRU - and
29833315 1201 * possibly migrated - before they are charged.
7512102c 1202 */
29833315
JW
1203 if (!memcg)
1204 memcg = root_mem_cgroup;
7512102c 1205
ef8f2327 1206 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1207 lruvec = &mz->lruvec;
1208out:
1209 /*
1210 * Since a node can be onlined after the mem_cgroup was created,
1211 * we have to be prepared to initialize lruvec->zone here;
1212 * and if offlined then reonlined, we need to reinitialize it.
1213 */
599d0c95
MG
1214 if (unlikely(lruvec->pgdat != pgdat))
1215 lruvec->pgdat = pgdat;
bea8c150 1216 return lruvec;
08e552c6 1217}
b69408e8 1218
925b7673 1219/**
fa9add64
HD
1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221 * @lruvec: mem_cgroup per zone lru vector
1222 * @lru: index of lru list the page is sitting on
b4536f0c 1223 * @zid: zone id of the accounted pages
fa9add64 1224 * @nr_pages: positive when adding or negative when removing
925b7673 1225 *
ca707239
HD
1226 * This function must be called under lru_lock, just before a page is added
1227 * to or just after a page is removed from an lru list (that ordering being
1228 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1229 */
fa9add64 1230void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1231 int zid, int nr_pages)
3f58a829 1232{
ef8f2327 1233 struct mem_cgroup_per_node *mz;
fa9add64 1234 unsigned long *lru_size;
ca707239 1235 long size;
3f58a829
MK
1236
1237 if (mem_cgroup_disabled())
1238 return;
1239
ef8f2327 1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1241 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1242
1243 if (nr_pages < 0)
1244 *lru_size += nr_pages;
1245
1246 size = *lru_size;
b4536f0c
MH
1247 if (WARN_ONCE(size < 0,
1248 "%s(%p, %d, %d): lru_size %ld\n",
1249 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1250 VM_BUG_ON(1);
1251 *lru_size = 0;
1252 }
1253
1254 if (nr_pages > 0)
1255 *lru_size += nr_pages;
08e552c6 1256}
544122e5 1257
2314b42d 1258bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1259{
2314b42d 1260 struct mem_cgroup *task_memcg;
158e0a2d 1261 struct task_struct *p;
ffbdccf5 1262 bool ret;
4c4a2214 1263
158e0a2d 1264 p = find_lock_task_mm(task);
de077d22 1265 if (p) {
2314b42d 1266 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1267 task_unlock(p);
1268 } else {
1269 /*
1270 * All threads may have already detached their mm's, but the oom
1271 * killer still needs to detect if they have already been oom
1272 * killed to prevent needlessly killing additional tasks.
1273 */
ffbdccf5 1274 rcu_read_lock();
2314b42d
JW
1275 task_memcg = mem_cgroup_from_task(task);
1276 css_get(&task_memcg->css);
ffbdccf5 1277 rcu_read_unlock();
de077d22 1278 }
2314b42d
JW
1279 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1280 css_put(&task_memcg->css);
4c4a2214
DR
1281 return ret;
1282}
1283
19942822 1284/**
9d11ea9f 1285 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1286 * @memcg: the memory cgroup
19942822 1287 *
9d11ea9f 1288 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1289 * pages.
19942822 1290 */
c0ff4b85 1291static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1292{
3e32cb2e
JW
1293 unsigned long margin = 0;
1294 unsigned long count;
1295 unsigned long limit;
9d11ea9f 1296
3e32cb2e 1297 count = page_counter_read(&memcg->memory);
bbec2e15 1298 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1299 if (count < limit)
1300 margin = limit - count;
1301
7941d214 1302 if (do_memsw_account()) {
3e32cb2e 1303 count = page_counter_read(&memcg->memsw);
bbec2e15 1304 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1305 if (count <= limit)
1306 margin = min(margin, limit - count);
cbedbac3
LR
1307 else
1308 margin = 0;
3e32cb2e
JW
1309 }
1310
1311 return margin;
19942822
JW
1312}
1313
32047e2a 1314/*
bdcbb659 1315 * A routine for checking "mem" is under move_account() or not.
32047e2a 1316 *
bdcbb659
QH
1317 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1318 * moving cgroups. This is for waiting at high-memory pressure
1319 * caused by "move".
32047e2a 1320 */
c0ff4b85 1321static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1322{
2bd9bb20
KH
1323 struct mem_cgroup *from;
1324 struct mem_cgroup *to;
4b534334 1325 bool ret = false;
2bd9bb20
KH
1326 /*
1327 * Unlike task_move routines, we access mc.to, mc.from not under
1328 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1329 */
1330 spin_lock(&mc.lock);
1331 from = mc.from;
1332 to = mc.to;
1333 if (!from)
1334 goto unlock;
3e92041d 1335
2314b42d
JW
1336 ret = mem_cgroup_is_descendant(from, memcg) ||
1337 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1338unlock:
1339 spin_unlock(&mc.lock);
4b534334
KH
1340 return ret;
1341}
1342
c0ff4b85 1343static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1344{
1345 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1346 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1347 DEFINE_WAIT(wait);
1348 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1349 /* moving charge context might have finished. */
1350 if (mc.moving_task)
1351 schedule();
1352 finish_wait(&mc.waitq, &wait);
1353 return true;
1354 }
1355 }
1356 return false;
1357}
1358
8ad6e404 1359static const unsigned int memcg1_stats[] = {
71cd3113
JW
1360 MEMCG_CACHE,
1361 MEMCG_RSS,
1362 MEMCG_RSS_HUGE,
1363 NR_SHMEM,
1364 NR_FILE_MAPPED,
1365 NR_FILE_DIRTY,
1366 NR_WRITEBACK,
1367 MEMCG_SWAP,
1368};
1369
1370static const char *const memcg1_stat_names[] = {
1371 "cache",
1372 "rss",
1373 "rss_huge",
1374 "shmem",
1375 "mapped_file",
1376 "dirty",
1377 "writeback",
1378 "swap",
1379};
1380
58cf188e 1381#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1382/**
f0c867d9 1383 * mem_cgroup_print_oom_context: Print OOM information relevant to
1384 * memory controller.
e222432b
BS
1385 * @memcg: The memory cgroup that went over limit
1386 * @p: Task that is going to be killed
1387 *
1388 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1389 * enabled
1390 */
f0c867d9 1391void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1392{
e222432b
BS
1393 rcu_read_lock();
1394
f0c867d9 1395 if (memcg) {
1396 pr_cont(",oom_memcg=");
1397 pr_cont_cgroup_path(memcg->css.cgroup);
1398 } else
1399 pr_cont(",global_oom");
2415b9f5 1400 if (p) {
f0c867d9 1401 pr_cont(",task_memcg=");
2415b9f5 1402 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1403 }
e222432b 1404 rcu_read_unlock();
f0c867d9 1405}
1406
1407/**
1408 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1409 * memory controller.
1410 * @memcg: The memory cgroup that went over limit
1411 */
1412void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1413{
1414 struct mem_cgroup *iter;
1415 unsigned int i;
e222432b 1416
3e32cb2e
JW
1417 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1418 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1419 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1420 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1421 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1422 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1423 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1424 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1425 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1426
1427 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1428 pr_info("Memory cgroup stats for ");
1429 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1430 pr_cont(":");
1431
71cd3113
JW
1432 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1433 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1434 continue;
71cd3113 1435 pr_cont(" %s:%luKB", memcg1_stat_names[i],
205b20cc
JW
1436 K(memcg_page_state_local(iter,
1437 memcg1_stats[i])));
58cf188e
SZ
1438 }
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
205b20cc
JW
1442 K(memcg_page_state_local(iter,
1443 NR_LRU_BASE + i)));
58cf188e
SZ
1444
1445 pr_cont("\n");
1446 }
e222432b
BS
1447}
1448
a63d83f4
DR
1449/*
1450 * Return the memory (and swap, if configured) limit for a memcg.
1451 */
bbec2e15 1452unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1453{
bbec2e15 1454 unsigned long max;
f3e8eb70 1455
bbec2e15 1456 max = memcg->memory.max;
9a5a8f19 1457 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1458 unsigned long memsw_max;
1459 unsigned long swap_max;
9a5a8f19 1460
bbec2e15
RG
1461 memsw_max = memcg->memsw.max;
1462 swap_max = memcg->swap.max;
1463 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1464 max = min(max + swap_max, memsw_max);
9a5a8f19 1465 }
bbec2e15 1466 return max;
a63d83f4
DR
1467}
1468
b6e6edcf 1469static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1470 int order)
9cbb78bb 1471{
6e0fc46d
DR
1472 struct oom_control oc = {
1473 .zonelist = NULL,
1474 .nodemask = NULL,
2a966b77 1475 .memcg = memcg,
6e0fc46d
DR
1476 .gfp_mask = gfp_mask,
1477 .order = order,
6e0fc46d 1478 };
7c5f64f8 1479 bool ret;
9cbb78bb 1480
7775face
TH
1481 if (mutex_lock_killable(&oom_lock))
1482 return true;
1483 /*
1484 * A few threads which were not waiting at mutex_lock_killable() can
1485 * fail to bail out. Therefore, check again after holding oom_lock.
1486 */
1487 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1488 mutex_unlock(&oom_lock);
7c5f64f8 1489 return ret;
9cbb78bb
DR
1490}
1491
ae6e71d3
MC
1492#if MAX_NUMNODES > 1
1493
4d0c066d
KH
1494/**
1495 * test_mem_cgroup_node_reclaimable
dad7557e 1496 * @memcg: the target memcg
4d0c066d
KH
1497 * @nid: the node ID to be checked.
1498 * @noswap : specify true here if the user wants flle only information.
1499 *
1500 * This function returns whether the specified memcg contains any
1501 * reclaimable pages on a node. Returns true if there are any reclaimable
1502 * pages in the node.
1503 */
c0ff4b85 1504static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1505 int nid, bool noswap)
1506{
2b487e59
JW
1507 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1508
def0fdae
JW
1509 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1510 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1511 return true;
1512 if (noswap || !total_swap_pages)
1513 return false;
def0fdae
JW
1514 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1515 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1516 return true;
1517 return false;
1518
1519}
889976db
YH
1520
1521/*
1522 * Always updating the nodemask is not very good - even if we have an empty
1523 * list or the wrong list here, we can start from some node and traverse all
1524 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1525 *
1526 */
c0ff4b85 1527static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1528{
1529 int nid;
453a9bf3
KH
1530 /*
1531 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1532 * pagein/pageout changes since the last update.
1533 */
c0ff4b85 1534 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1535 return;
c0ff4b85 1536 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1537 return;
1538
889976db 1539 /* make a nodemask where this memcg uses memory from */
31aaea4a 1540 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1541
31aaea4a 1542 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1543
c0ff4b85
R
1544 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1545 node_clear(nid, memcg->scan_nodes);
889976db 1546 }
453a9bf3 1547
c0ff4b85
R
1548 atomic_set(&memcg->numainfo_events, 0);
1549 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1550}
1551
1552/*
1553 * Selecting a node where we start reclaim from. Because what we need is just
1554 * reducing usage counter, start from anywhere is O,K. Considering
1555 * memory reclaim from current node, there are pros. and cons.
1556 *
1557 * Freeing memory from current node means freeing memory from a node which
1558 * we'll use or we've used. So, it may make LRU bad. And if several threads
1559 * hit limits, it will see a contention on a node. But freeing from remote
1560 * node means more costs for memory reclaim because of memory latency.
1561 *
1562 * Now, we use round-robin. Better algorithm is welcomed.
1563 */
c0ff4b85 1564int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1565{
1566 int node;
1567
c0ff4b85
R
1568 mem_cgroup_may_update_nodemask(memcg);
1569 node = memcg->last_scanned_node;
889976db 1570
0edaf86c 1571 node = next_node_in(node, memcg->scan_nodes);
889976db 1572 /*
fda3d69b
MH
1573 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1574 * last time it really checked all the LRUs due to rate limiting.
1575 * Fallback to the current node in that case for simplicity.
889976db
YH
1576 */
1577 if (unlikely(node == MAX_NUMNODES))
1578 node = numa_node_id();
1579
c0ff4b85 1580 memcg->last_scanned_node = node;
889976db
YH
1581 return node;
1582}
889976db 1583#else
c0ff4b85 1584int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1585{
1586 return 0;
1587}
1588#endif
1589
0608f43d 1590static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1591 pg_data_t *pgdat,
0608f43d
AM
1592 gfp_t gfp_mask,
1593 unsigned long *total_scanned)
1594{
1595 struct mem_cgroup *victim = NULL;
1596 int total = 0;
1597 int loop = 0;
1598 unsigned long excess;
1599 unsigned long nr_scanned;
1600 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1601 .pgdat = pgdat,
0608f43d
AM
1602 .priority = 0,
1603 };
1604
3e32cb2e 1605 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1606
1607 while (1) {
1608 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1609 if (!victim) {
1610 loop++;
1611 if (loop >= 2) {
1612 /*
1613 * If we have not been able to reclaim
1614 * anything, it might because there are
1615 * no reclaimable pages under this hierarchy
1616 */
1617 if (!total)
1618 break;
1619 /*
1620 * We want to do more targeted reclaim.
1621 * excess >> 2 is not to excessive so as to
1622 * reclaim too much, nor too less that we keep
1623 * coming back to reclaim from this cgroup
1624 */
1625 if (total >= (excess >> 2) ||
1626 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1627 break;
1628 }
1629 continue;
1630 }
a9dd0a83 1631 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1632 pgdat, &nr_scanned);
0608f43d 1633 *total_scanned += nr_scanned;
3e32cb2e 1634 if (!soft_limit_excess(root_memcg))
0608f43d 1635 break;
6d61ef40 1636 }
0608f43d
AM
1637 mem_cgroup_iter_break(root_memcg, victim);
1638 return total;
6d61ef40
BS
1639}
1640
0056f4e6
JW
1641#ifdef CONFIG_LOCKDEP
1642static struct lockdep_map memcg_oom_lock_dep_map = {
1643 .name = "memcg_oom_lock",
1644};
1645#endif
1646
fb2a6fc5
JW
1647static DEFINE_SPINLOCK(memcg_oom_lock);
1648
867578cb
KH
1649/*
1650 * Check OOM-Killer is already running under our hierarchy.
1651 * If someone is running, return false.
1652 */
fb2a6fc5 1653static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1654{
79dfdacc 1655 struct mem_cgroup *iter, *failed = NULL;
a636b327 1656
fb2a6fc5
JW
1657 spin_lock(&memcg_oom_lock);
1658
9f3a0d09 1659 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1660 if (iter->oom_lock) {
79dfdacc
MH
1661 /*
1662 * this subtree of our hierarchy is already locked
1663 * so we cannot give a lock.
1664 */
79dfdacc 1665 failed = iter;
9f3a0d09
JW
1666 mem_cgroup_iter_break(memcg, iter);
1667 break;
23751be0
JW
1668 } else
1669 iter->oom_lock = true;
7d74b06f 1670 }
867578cb 1671
fb2a6fc5
JW
1672 if (failed) {
1673 /*
1674 * OK, we failed to lock the whole subtree so we have
1675 * to clean up what we set up to the failing subtree
1676 */
1677 for_each_mem_cgroup_tree(iter, memcg) {
1678 if (iter == failed) {
1679 mem_cgroup_iter_break(memcg, iter);
1680 break;
1681 }
1682 iter->oom_lock = false;
79dfdacc 1683 }
0056f4e6
JW
1684 } else
1685 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1686
1687 spin_unlock(&memcg_oom_lock);
1688
1689 return !failed;
a636b327 1690}
0b7f569e 1691
fb2a6fc5 1692static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1693{
7d74b06f
KH
1694 struct mem_cgroup *iter;
1695
fb2a6fc5 1696 spin_lock(&memcg_oom_lock);
0056f4e6 1697 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1698 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1699 iter->oom_lock = false;
fb2a6fc5 1700 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1701}
1702
c0ff4b85 1703static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1704{
1705 struct mem_cgroup *iter;
1706
c2b42d3c 1707 spin_lock(&memcg_oom_lock);
c0ff4b85 1708 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1709 iter->under_oom++;
1710 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1711}
1712
c0ff4b85 1713static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1714{
1715 struct mem_cgroup *iter;
1716
867578cb
KH
1717 /*
1718 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1719 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1720 */
c2b42d3c 1721 spin_lock(&memcg_oom_lock);
c0ff4b85 1722 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1723 if (iter->under_oom > 0)
1724 iter->under_oom--;
1725 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1726}
1727
867578cb
KH
1728static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1729
dc98df5a 1730struct oom_wait_info {
d79154bb 1731 struct mem_cgroup *memcg;
ac6424b9 1732 wait_queue_entry_t wait;
dc98df5a
KH
1733};
1734
ac6424b9 1735static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1736 unsigned mode, int sync, void *arg)
1737{
d79154bb
HD
1738 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1739 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1740 struct oom_wait_info *oom_wait_info;
1741
1742 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1743 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1744
2314b42d
JW
1745 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1746 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1747 return 0;
dc98df5a
KH
1748 return autoremove_wake_function(wait, mode, sync, arg);
1749}
1750
c0ff4b85 1751static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1752{
c2b42d3c
TH
1753 /*
1754 * For the following lockless ->under_oom test, the only required
1755 * guarantee is that it must see the state asserted by an OOM when
1756 * this function is called as a result of userland actions
1757 * triggered by the notification of the OOM. This is trivially
1758 * achieved by invoking mem_cgroup_mark_under_oom() before
1759 * triggering notification.
1760 */
1761 if (memcg && memcg->under_oom)
f4b90b70 1762 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1763}
1764
29ef680a
MH
1765enum oom_status {
1766 OOM_SUCCESS,
1767 OOM_FAILED,
1768 OOM_ASYNC,
1769 OOM_SKIPPED
1770};
1771
1772static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1773{
7056d3a3
MH
1774 enum oom_status ret;
1775 bool locked;
1776
29ef680a
MH
1777 if (order > PAGE_ALLOC_COSTLY_ORDER)
1778 return OOM_SKIPPED;
1779
7a1adfdd
RG
1780 memcg_memory_event(memcg, MEMCG_OOM);
1781
867578cb 1782 /*
49426420
JW
1783 * We are in the middle of the charge context here, so we
1784 * don't want to block when potentially sitting on a callstack
1785 * that holds all kinds of filesystem and mm locks.
1786 *
29ef680a
MH
1787 * cgroup1 allows disabling the OOM killer and waiting for outside
1788 * handling until the charge can succeed; remember the context and put
1789 * the task to sleep at the end of the page fault when all locks are
1790 * released.
49426420 1791 *
29ef680a
MH
1792 * On the other hand, in-kernel OOM killer allows for an async victim
1793 * memory reclaim (oom_reaper) and that means that we are not solely
1794 * relying on the oom victim to make a forward progress and we can
1795 * invoke the oom killer here.
1796 *
1797 * Please note that mem_cgroup_out_of_memory might fail to find a
1798 * victim and then we have to bail out from the charge path.
867578cb 1799 */
29ef680a
MH
1800 if (memcg->oom_kill_disable) {
1801 if (!current->in_user_fault)
1802 return OOM_SKIPPED;
1803 css_get(&memcg->css);
1804 current->memcg_in_oom = memcg;
1805 current->memcg_oom_gfp_mask = mask;
1806 current->memcg_oom_order = order;
1807
1808 return OOM_ASYNC;
1809 }
1810
7056d3a3
MH
1811 mem_cgroup_mark_under_oom(memcg);
1812
1813 locked = mem_cgroup_oom_trylock(memcg);
1814
1815 if (locked)
1816 mem_cgroup_oom_notify(memcg);
1817
1818 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1819 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1820 ret = OOM_SUCCESS;
1821 else
1822 ret = OOM_FAILED;
1823
1824 if (locked)
1825 mem_cgroup_oom_unlock(memcg);
29ef680a 1826
7056d3a3 1827 return ret;
3812c8c8
JW
1828}
1829
1830/**
1831 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1832 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1833 *
49426420
JW
1834 * This has to be called at the end of a page fault if the memcg OOM
1835 * handler was enabled.
3812c8c8 1836 *
49426420 1837 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1838 * sleep on a waitqueue until the userspace task resolves the
1839 * situation. Sleeping directly in the charge context with all kinds
1840 * of locks held is not a good idea, instead we remember an OOM state
1841 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1842 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1843 *
1844 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1845 * completed, %false otherwise.
3812c8c8 1846 */
49426420 1847bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1848{
626ebc41 1849 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1850 struct oom_wait_info owait;
49426420 1851 bool locked;
3812c8c8
JW
1852
1853 /* OOM is global, do not handle */
3812c8c8 1854 if (!memcg)
49426420 1855 return false;
3812c8c8 1856
7c5f64f8 1857 if (!handle)
49426420 1858 goto cleanup;
3812c8c8
JW
1859
1860 owait.memcg = memcg;
1861 owait.wait.flags = 0;
1862 owait.wait.func = memcg_oom_wake_function;
1863 owait.wait.private = current;
2055da97 1864 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1865
3812c8c8 1866 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 locked = mem_cgroup_oom_trylock(memcg);
1870
1871 if (locked)
1872 mem_cgroup_oom_notify(memcg);
1873
1874 if (locked && !memcg->oom_kill_disable) {
1875 mem_cgroup_unmark_under_oom(memcg);
1876 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1877 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1878 current->memcg_oom_order);
49426420 1879 } else {
3812c8c8 1880 schedule();
49426420
JW
1881 mem_cgroup_unmark_under_oom(memcg);
1882 finish_wait(&memcg_oom_waitq, &owait.wait);
1883 }
1884
1885 if (locked) {
fb2a6fc5
JW
1886 mem_cgroup_oom_unlock(memcg);
1887 /*
1888 * There is no guarantee that an OOM-lock contender
1889 * sees the wakeups triggered by the OOM kill
1890 * uncharges. Wake any sleepers explicitely.
1891 */
1892 memcg_oom_recover(memcg);
1893 }
49426420 1894cleanup:
626ebc41 1895 current->memcg_in_oom = NULL;
3812c8c8 1896 css_put(&memcg->css);
867578cb 1897 return true;
0b7f569e
KH
1898}
1899
3d8b38eb
RG
1900/**
1901 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1902 * @victim: task to be killed by the OOM killer
1903 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1904 *
1905 * Returns a pointer to a memory cgroup, which has to be cleaned up
1906 * by killing all belonging OOM-killable tasks.
1907 *
1908 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1909 */
1910struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1911 struct mem_cgroup *oom_domain)
1912{
1913 struct mem_cgroup *oom_group = NULL;
1914 struct mem_cgroup *memcg;
1915
1916 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1917 return NULL;
1918
1919 if (!oom_domain)
1920 oom_domain = root_mem_cgroup;
1921
1922 rcu_read_lock();
1923
1924 memcg = mem_cgroup_from_task(victim);
1925 if (memcg == root_mem_cgroup)
1926 goto out;
1927
1928 /*
1929 * Traverse the memory cgroup hierarchy from the victim task's
1930 * cgroup up to the OOMing cgroup (or root) to find the
1931 * highest-level memory cgroup with oom.group set.
1932 */
1933 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1934 if (memcg->oom_group)
1935 oom_group = memcg;
1936
1937 if (memcg == oom_domain)
1938 break;
1939 }
1940
1941 if (oom_group)
1942 css_get(&oom_group->css);
1943out:
1944 rcu_read_unlock();
1945
1946 return oom_group;
1947}
1948
1949void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1950{
1951 pr_info("Tasks in ");
1952 pr_cont_cgroup_path(memcg->css.cgroup);
1953 pr_cont(" are going to be killed due to memory.oom.group set\n");
1954}
1955
d7365e78 1956/**
81f8c3a4
JW
1957 * lock_page_memcg - lock a page->mem_cgroup binding
1958 * @page: the page
32047e2a 1959 *
81f8c3a4 1960 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1961 * another cgroup.
1962 *
1963 * It ensures lifetime of the returned memcg. Caller is responsible
1964 * for the lifetime of the page; __unlock_page_memcg() is available
1965 * when @page might get freed inside the locked section.
d69b042f 1966 */
739f79fc 1967struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1968{
1969 struct mem_cgroup *memcg;
6de22619 1970 unsigned long flags;
89c06bd5 1971
6de22619
JW
1972 /*
1973 * The RCU lock is held throughout the transaction. The fast
1974 * path can get away without acquiring the memcg->move_lock
1975 * because page moving starts with an RCU grace period.
739f79fc
JW
1976 *
1977 * The RCU lock also protects the memcg from being freed when
1978 * the page state that is going to change is the only thing
1979 * preventing the page itself from being freed. E.g. writeback
1980 * doesn't hold a page reference and relies on PG_writeback to
1981 * keep off truncation, migration and so forth.
1982 */
d7365e78
JW
1983 rcu_read_lock();
1984
1985 if (mem_cgroup_disabled())
739f79fc 1986 return NULL;
89c06bd5 1987again:
1306a85a 1988 memcg = page->mem_cgroup;
29833315 1989 if (unlikely(!memcg))
739f79fc 1990 return NULL;
d7365e78 1991
bdcbb659 1992 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1993 return memcg;
89c06bd5 1994
6de22619 1995 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1996 if (memcg != page->mem_cgroup) {
6de22619 1997 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1998 goto again;
1999 }
6de22619
JW
2000
2001 /*
2002 * When charge migration first begins, we can have locked and
2003 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2004 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2005 */
2006 memcg->move_lock_task = current;
2007 memcg->move_lock_flags = flags;
d7365e78 2008
739f79fc 2009 return memcg;
89c06bd5 2010}
81f8c3a4 2011EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2012
d7365e78 2013/**
739f79fc
JW
2014 * __unlock_page_memcg - unlock and unpin a memcg
2015 * @memcg: the memcg
2016 *
2017 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2018 */
739f79fc 2019void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2020{
6de22619
JW
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
89c06bd5 2029
d7365e78 2030 rcu_read_unlock();
89c06bd5 2031}
739f79fc
JW
2032
2033/**
2034 * unlock_page_memcg - unlock a page->mem_cgroup binding
2035 * @page: the page
2036 */
2037void unlock_page_memcg(struct page *page)
2038{
2039 __unlock_page_memcg(page->mem_cgroup);
2040}
81f8c3a4 2041EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2042
cdec2e42
KH
2043struct memcg_stock_pcp {
2044 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2045 unsigned int nr_pages;
cdec2e42 2046 struct work_struct work;
26fe6168 2047 unsigned long flags;
a0db00fc 2048#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2049};
2050static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2051static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2052
a0956d54
SS
2053/**
2054 * consume_stock: Try to consume stocked charge on this cpu.
2055 * @memcg: memcg to consume from.
2056 * @nr_pages: how many pages to charge.
2057 *
2058 * The charges will only happen if @memcg matches the current cpu's memcg
2059 * stock, and at least @nr_pages are available in that stock. Failure to
2060 * service an allocation will refill the stock.
2061 *
2062 * returns true if successful, false otherwise.
cdec2e42 2063 */
a0956d54 2064static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2065{
2066 struct memcg_stock_pcp *stock;
db2ba40c 2067 unsigned long flags;
3e32cb2e 2068 bool ret = false;
cdec2e42 2069
a983b5eb 2070 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2071 return ret;
a0956d54 2072
db2ba40c
JW
2073 local_irq_save(flags);
2074
2075 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2076 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2077 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2078 ret = true;
2079 }
db2ba40c
JW
2080
2081 local_irq_restore(flags);
2082
cdec2e42
KH
2083 return ret;
2084}
2085
2086/*
3e32cb2e 2087 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2088 */
2089static void drain_stock(struct memcg_stock_pcp *stock)
2090{
2091 struct mem_cgroup *old = stock->cached;
2092
11c9ea4e 2093 if (stock->nr_pages) {
3e32cb2e 2094 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2095 if (do_memsw_account())
3e32cb2e 2096 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2097 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2098 stock->nr_pages = 0;
cdec2e42
KH
2099 }
2100 stock->cached = NULL;
cdec2e42
KH
2101}
2102
cdec2e42
KH
2103static void drain_local_stock(struct work_struct *dummy)
2104{
db2ba40c
JW
2105 struct memcg_stock_pcp *stock;
2106 unsigned long flags;
2107
72f0184c
MH
2108 /*
2109 * The only protection from memory hotplug vs. drain_stock races is
2110 * that we always operate on local CPU stock here with IRQ disabled
2111 */
db2ba40c
JW
2112 local_irq_save(flags);
2113
2114 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2115 drain_stock(stock);
26fe6168 2116 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2117
2118 local_irq_restore(flags);
cdec2e42
KH
2119}
2120
2121/*
3e32cb2e 2122 * Cache charges(val) to local per_cpu area.
320cc51d 2123 * This will be consumed by consume_stock() function, later.
cdec2e42 2124 */
c0ff4b85 2125static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2126{
db2ba40c
JW
2127 struct memcg_stock_pcp *stock;
2128 unsigned long flags;
2129
2130 local_irq_save(flags);
cdec2e42 2131
db2ba40c 2132 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2133 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2134 drain_stock(stock);
c0ff4b85 2135 stock->cached = memcg;
cdec2e42 2136 }
11c9ea4e 2137 stock->nr_pages += nr_pages;
db2ba40c 2138
a983b5eb 2139 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2140 drain_stock(stock);
2141
db2ba40c 2142 local_irq_restore(flags);
cdec2e42
KH
2143}
2144
2145/*
c0ff4b85 2146 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2147 * of the hierarchy under it.
cdec2e42 2148 */
6d3d6aa2 2149static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2150{
26fe6168 2151 int cpu, curcpu;
d38144b7 2152
6d3d6aa2
JW
2153 /* If someone's already draining, avoid adding running more workers. */
2154 if (!mutex_trylock(&percpu_charge_mutex))
2155 return;
72f0184c
MH
2156 /*
2157 * Notify other cpus that system-wide "drain" is running
2158 * We do not care about races with the cpu hotplug because cpu down
2159 * as well as workers from this path always operate on the local
2160 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2161 */
5af12d0e 2162 curcpu = get_cpu();
cdec2e42
KH
2163 for_each_online_cpu(cpu) {
2164 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2165 struct mem_cgroup *memcg;
26fe6168 2166
c0ff4b85 2167 memcg = stock->cached;
72f0184c 2168 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2169 continue;
72f0184c
MH
2170 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2171 css_put(&memcg->css);
3e92041d 2172 continue;
72f0184c 2173 }
d1a05b69
MH
2174 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2175 if (cpu == curcpu)
2176 drain_local_stock(&stock->work);
2177 else
2178 schedule_work_on(cpu, &stock->work);
2179 }
72f0184c 2180 css_put(&memcg->css);
cdec2e42 2181 }
5af12d0e 2182 put_cpu();
9f50fad6 2183 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2184}
2185
308167fc 2186static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2187{
cdec2e42 2188 struct memcg_stock_pcp *stock;
42a30035 2189 struct mem_cgroup *memcg, *mi;
cdec2e42 2190
cdec2e42
KH
2191 stock = &per_cpu(memcg_stock, cpu);
2192 drain_stock(stock);
a983b5eb
JW
2193
2194 for_each_mem_cgroup(memcg) {
2195 int i;
2196
2197 for (i = 0; i < MEMCG_NR_STAT; i++) {
2198 int nid;
2199 long x;
2200
871789d4 2201 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2202 if (x)
42a30035
JW
2203 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2204 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2205
2206 if (i >= NR_VM_NODE_STAT_ITEMS)
2207 continue;
2208
2209 for_each_node(nid) {
2210 struct mem_cgroup_per_node *pn;
2211
2212 pn = mem_cgroup_nodeinfo(memcg, nid);
2213 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2214 if (x)
42a30035
JW
2215 do {
2216 atomic_long_add(x, &pn->lruvec_stat[i]);
2217 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2218 }
2219 }
2220
e27be240 2221 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2222 long x;
2223
871789d4 2224 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2225 if (x)
42a30035
JW
2226 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2227 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2228 }
2229 }
2230
308167fc 2231 return 0;
cdec2e42
KH
2232}
2233
f7e1cb6e
JW
2234static void reclaim_high(struct mem_cgroup *memcg,
2235 unsigned int nr_pages,
2236 gfp_t gfp_mask)
2237{
2238 do {
2239 if (page_counter_read(&memcg->memory) <= memcg->high)
2240 continue;
e27be240 2241 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2242 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2243 } while ((memcg = parent_mem_cgroup(memcg)));
2244}
2245
2246static void high_work_func(struct work_struct *work)
2247{
2248 struct mem_cgroup *memcg;
2249
2250 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2251 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2252}
2253
b23afb93
TH
2254/*
2255 * Scheduled by try_charge() to be executed from the userland return path
2256 * and reclaims memory over the high limit.
2257 */
2258void mem_cgroup_handle_over_high(void)
2259{
2260 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2261 struct mem_cgroup *memcg;
b23afb93
TH
2262
2263 if (likely(!nr_pages))
2264 return;
2265
f7e1cb6e
JW
2266 memcg = get_mem_cgroup_from_mm(current->mm);
2267 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2268 css_put(&memcg->css);
2269 current->memcg_nr_pages_over_high = 0;
2270}
2271
00501b53
JW
2272static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2273 unsigned int nr_pages)
8a9f3ccd 2274{
a983b5eb 2275 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2276 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2277 struct mem_cgroup *mem_over_limit;
3e32cb2e 2278 struct page_counter *counter;
6539cc05 2279 unsigned long nr_reclaimed;
b70a2a21
JW
2280 bool may_swap = true;
2281 bool drained = false;
29ef680a
MH
2282 bool oomed = false;
2283 enum oom_status oom_status;
a636b327 2284
ce00a967 2285 if (mem_cgroup_is_root(memcg))
10d53c74 2286 return 0;
6539cc05 2287retry:
b6b6cc72 2288 if (consume_stock(memcg, nr_pages))
10d53c74 2289 return 0;
8a9f3ccd 2290
7941d214 2291 if (!do_memsw_account() ||
6071ca52
JW
2292 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2293 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2294 goto done_restock;
7941d214 2295 if (do_memsw_account())
3e32cb2e
JW
2296 page_counter_uncharge(&memcg->memsw, batch);
2297 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2298 } else {
3e32cb2e 2299 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2300 may_swap = false;
3fbe7244 2301 }
7a81b88c 2302
6539cc05
JW
2303 if (batch > nr_pages) {
2304 batch = nr_pages;
2305 goto retry;
2306 }
6d61ef40 2307
06b078fc
JW
2308 /*
2309 * Unlike in global OOM situations, memcg is not in a physical
2310 * memory shortage. Allow dying and OOM-killed tasks to
2311 * bypass the last charges so that they can exit quickly and
2312 * free their memory.
2313 */
7775face 2314 if (unlikely(should_force_charge()))
10d53c74 2315 goto force;
06b078fc 2316
89a28483
JW
2317 /*
2318 * Prevent unbounded recursion when reclaim operations need to
2319 * allocate memory. This might exceed the limits temporarily,
2320 * but we prefer facilitating memory reclaim and getting back
2321 * under the limit over triggering OOM kills in these cases.
2322 */
2323 if (unlikely(current->flags & PF_MEMALLOC))
2324 goto force;
2325
06b078fc
JW
2326 if (unlikely(task_in_memcg_oom(current)))
2327 goto nomem;
2328
d0164adc 2329 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2330 goto nomem;
4b534334 2331
e27be240 2332 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2333
b70a2a21
JW
2334 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2335 gfp_mask, may_swap);
6539cc05 2336
61e02c74 2337 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2338 goto retry;
28c34c29 2339
b70a2a21 2340 if (!drained) {
6d3d6aa2 2341 drain_all_stock(mem_over_limit);
b70a2a21
JW
2342 drained = true;
2343 goto retry;
2344 }
2345
28c34c29
JW
2346 if (gfp_mask & __GFP_NORETRY)
2347 goto nomem;
6539cc05
JW
2348 /*
2349 * Even though the limit is exceeded at this point, reclaim
2350 * may have been able to free some pages. Retry the charge
2351 * before killing the task.
2352 *
2353 * Only for regular pages, though: huge pages are rather
2354 * unlikely to succeed so close to the limit, and we fall back
2355 * to regular pages anyway in case of failure.
2356 */
61e02c74 2357 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2358 goto retry;
2359 /*
2360 * At task move, charge accounts can be doubly counted. So, it's
2361 * better to wait until the end of task_move if something is going on.
2362 */
2363 if (mem_cgroup_wait_acct_move(mem_over_limit))
2364 goto retry;
2365
9b130619
JW
2366 if (nr_retries--)
2367 goto retry;
2368
29ef680a
MH
2369 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2370 goto nomem;
2371
06b078fc 2372 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2373 goto force;
06b078fc 2374
6539cc05 2375 if (fatal_signal_pending(current))
10d53c74 2376 goto force;
6539cc05 2377
29ef680a
MH
2378 /*
2379 * keep retrying as long as the memcg oom killer is able to make
2380 * a forward progress or bypass the charge if the oom killer
2381 * couldn't make any progress.
2382 */
2383 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2384 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2385 switch (oom_status) {
2386 case OOM_SUCCESS:
2387 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2388 oomed = true;
2389 goto retry;
2390 case OOM_FAILED:
2391 goto force;
2392 default:
2393 goto nomem;
2394 }
7a81b88c 2395nomem:
6d1fdc48 2396 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2397 return -ENOMEM;
10d53c74
TH
2398force:
2399 /*
2400 * The allocation either can't fail or will lead to more memory
2401 * being freed very soon. Allow memory usage go over the limit
2402 * temporarily by force charging it.
2403 */
2404 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2405 if (do_memsw_account())
10d53c74
TH
2406 page_counter_charge(&memcg->memsw, nr_pages);
2407 css_get_many(&memcg->css, nr_pages);
2408
2409 return 0;
6539cc05
JW
2410
2411done_restock:
e8ea14cc 2412 css_get_many(&memcg->css, batch);
6539cc05
JW
2413 if (batch > nr_pages)
2414 refill_stock(memcg, batch - nr_pages);
b23afb93 2415
241994ed 2416 /*
b23afb93
TH
2417 * If the hierarchy is above the normal consumption range, schedule
2418 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2419 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2420 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2421 * not recorded as it most likely matches current's and won't
2422 * change in the meantime. As high limit is checked again before
2423 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2424 */
2425 do {
b23afb93 2426 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2427 /* Don't bother a random interrupted task */
2428 if (in_interrupt()) {
2429 schedule_work(&memcg->high_work);
2430 break;
2431 }
9516a18a 2432 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2433 set_notify_resume(current);
2434 break;
2435 }
241994ed 2436 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2437
2438 return 0;
7a81b88c 2439}
8a9f3ccd 2440
00501b53 2441static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2442{
ce00a967
JW
2443 if (mem_cgroup_is_root(memcg))
2444 return;
2445
3e32cb2e 2446 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2447 if (do_memsw_account())
3e32cb2e 2448 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2449
e8ea14cc 2450 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2451}
2452
0a31bc97
JW
2453static void lock_page_lru(struct page *page, int *isolated)
2454{
f4b7e272 2455 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2456
f4b7e272 2457 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2458 if (PageLRU(page)) {
2459 struct lruvec *lruvec;
2460
f4b7e272 2461 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2462 ClearPageLRU(page);
2463 del_page_from_lru_list(page, lruvec, page_lru(page));
2464 *isolated = 1;
2465 } else
2466 *isolated = 0;
2467}
2468
2469static void unlock_page_lru(struct page *page, int isolated)
2470{
f4b7e272 2471 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2472
2473 if (isolated) {
2474 struct lruvec *lruvec;
2475
f4b7e272 2476 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2477 VM_BUG_ON_PAGE(PageLRU(page), page);
2478 SetPageLRU(page);
2479 add_page_to_lru_list(page, lruvec, page_lru(page));
2480 }
f4b7e272 2481 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2482}
2483
00501b53 2484static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2485 bool lrucare)
7a81b88c 2486{
0a31bc97 2487 int isolated;
9ce70c02 2488
1306a85a 2489 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2490
2491 /*
2492 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2493 * may already be on some other mem_cgroup's LRU. Take care of it.
2494 */
0a31bc97
JW
2495 if (lrucare)
2496 lock_page_lru(page, &isolated);
9ce70c02 2497
0a31bc97
JW
2498 /*
2499 * Nobody should be changing or seriously looking at
1306a85a 2500 * page->mem_cgroup at this point:
0a31bc97
JW
2501 *
2502 * - the page is uncharged
2503 *
2504 * - the page is off-LRU
2505 *
2506 * - an anonymous fault has exclusive page access, except for
2507 * a locked page table
2508 *
2509 * - a page cache insertion, a swapin fault, or a migration
2510 * have the page locked
2511 */
1306a85a 2512 page->mem_cgroup = memcg;
9ce70c02 2513
0a31bc97
JW
2514 if (lrucare)
2515 unlock_page_lru(page, isolated);
7a81b88c 2516}
66e1707b 2517
84c07d11 2518#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2519static int memcg_alloc_cache_id(void)
55007d84 2520{
f3bb3043
VD
2521 int id, size;
2522 int err;
2523
dbcf73e2 2524 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2525 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2526 if (id < 0)
2527 return id;
55007d84 2528
dbcf73e2 2529 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2530 return id;
2531
2532 /*
2533 * There's no space for the new id in memcg_caches arrays,
2534 * so we have to grow them.
2535 */
05257a1a 2536 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2537
2538 size = 2 * (id + 1);
55007d84
GC
2539 if (size < MEMCG_CACHES_MIN_SIZE)
2540 size = MEMCG_CACHES_MIN_SIZE;
2541 else if (size > MEMCG_CACHES_MAX_SIZE)
2542 size = MEMCG_CACHES_MAX_SIZE;
2543
f3bb3043 2544 err = memcg_update_all_caches(size);
60d3fd32
VD
2545 if (!err)
2546 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2547 if (!err)
2548 memcg_nr_cache_ids = size;
2549
2550 up_write(&memcg_cache_ids_sem);
2551
f3bb3043 2552 if (err) {
dbcf73e2 2553 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2554 return err;
2555 }
2556 return id;
2557}
2558
2559static void memcg_free_cache_id(int id)
2560{
dbcf73e2 2561 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2562}
2563
d5b3cf71 2564struct memcg_kmem_cache_create_work {
5722d094
VD
2565 struct mem_cgroup *memcg;
2566 struct kmem_cache *cachep;
2567 struct work_struct work;
2568};
2569
d5b3cf71 2570static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2571{
d5b3cf71
VD
2572 struct memcg_kmem_cache_create_work *cw =
2573 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2574 struct mem_cgroup *memcg = cw->memcg;
2575 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2576
d5b3cf71 2577 memcg_create_kmem_cache(memcg, cachep);
bd673145 2578
5722d094 2579 css_put(&memcg->css);
d7f25f8a
GC
2580 kfree(cw);
2581}
2582
2583/*
2584 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2585 */
85cfb245 2586static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2587 struct kmem_cache *cachep)
d7f25f8a 2588{
d5b3cf71 2589 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2590
c892fd82 2591 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2592 if (!cw)
d7f25f8a 2593 return;
8135be5a
VD
2594
2595 css_get(&memcg->css);
d7f25f8a
GC
2596
2597 cw->memcg = memcg;
2598 cw->cachep = cachep;
d5b3cf71 2599 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2600
17cc4dfe 2601 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2602}
2603
45264778
VD
2604static inline bool memcg_kmem_bypass(void)
2605{
2606 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2607 return true;
2608 return false;
2609}
2610
2611/**
2612 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2613 * @cachep: the original global kmem cache
2614 *
d7f25f8a
GC
2615 * Return the kmem_cache we're supposed to use for a slab allocation.
2616 * We try to use the current memcg's version of the cache.
2617 *
45264778
VD
2618 * If the cache does not exist yet, if we are the first user of it, we
2619 * create it asynchronously in a workqueue and let the current allocation
2620 * go through with the original cache.
d7f25f8a 2621 *
45264778
VD
2622 * This function takes a reference to the cache it returns to assure it
2623 * won't get destroyed while we are working with it. Once the caller is
2624 * done with it, memcg_kmem_put_cache() must be called to release the
2625 * reference.
d7f25f8a 2626 */
45264778 2627struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2628{
2629 struct mem_cgroup *memcg;
959c8963 2630 struct kmem_cache *memcg_cachep;
2a4db7eb 2631 int kmemcg_id;
d7f25f8a 2632
f7ce3190 2633 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2634
45264778 2635 if (memcg_kmem_bypass())
230e9fc2
VD
2636 return cachep;
2637
d46eb14b 2638 memcg = get_mem_cgroup_from_current();
4db0c3c2 2639 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2640 if (kmemcg_id < 0)
ca0dde97 2641 goto out;
d7f25f8a 2642
2a4db7eb 2643 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2644 if (likely(memcg_cachep))
2645 return memcg_cachep;
ca0dde97
LZ
2646
2647 /*
2648 * If we are in a safe context (can wait, and not in interrupt
2649 * context), we could be be predictable and return right away.
2650 * This would guarantee that the allocation being performed
2651 * already belongs in the new cache.
2652 *
2653 * However, there are some clashes that can arrive from locking.
2654 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2655 * memcg_create_kmem_cache, this means no further allocation
2656 * could happen with the slab_mutex held. So it's better to
2657 * defer everything.
ca0dde97 2658 */
d5b3cf71 2659 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2660out:
8135be5a 2661 css_put(&memcg->css);
ca0dde97 2662 return cachep;
d7f25f8a 2663}
d7f25f8a 2664
45264778
VD
2665/**
2666 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2667 * @cachep: the cache returned by memcg_kmem_get_cache
2668 */
2669void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2670{
2671 if (!is_root_cache(cachep))
f7ce3190 2672 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2673}
2674
45264778 2675/**
60cd4bcd 2676 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2677 * @page: page to charge
2678 * @gfp: reclaim mode
2679 * @order: allocation order
2680 * @memcg: memory cgroup to charge
2681 *
2682 * Returns 0 on success, an error code on failure.
2683 */
60cd4bcd 2684int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2685 struct mem_cgroup *memcg)
7ae1e1d0 2686{
f3ccb2c4
VD
2687 unsigned int nr_pages = 1 << order;
2688 struct page_counter *counter;
7ae1e1d0
GC
2689 int ret;
2690
f3ccb2c4 2691 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2692 if (ret)
f3ccb2c4 2693 return ret;
52c29b04
JW
2694
2695 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2696 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2697 cancel_charge(memcg, nr_pages);
2698 return -ENOMEM;
7ae1e1d0
GC
2699 }
2700
f3ccb2c4 2701 page->mem_cgroup = memcg;
7ae1e1d0 2702
f3ccb2c4 2703 return 0;
7ae1e1d0
GC
2704}
2705
45264778 2706/**
60cd4bcd 2707 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2708 * @page: page to charge
2709 * @gfp: reclaim mode
2710 * @order: allocation order
2711 *
2712 * Returns 0 on success, an error code on failure.
2713 */
60cd4bcd 2714int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2715{
f3ccb2c4 2716 struct mem_cgroup *memcg;
fcff7d7e 2717 int ret = 0;
7ae1e1d0 2718
60cd4bcd 2719 if (memcg_kmem_bypass())
45264778
VD
2720 return 0;
2721
d46eb14b 2722 memcg = get_mem_cgroup_from_current();
c4159a75 2723 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2724 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2725 if (!ret)
2726 __SetPageKmemcg(page);
2727 }
7ae1e1d0 2728 css_put(&memcg->css);
d05e83a6 2729 return ret;
7ae1e1d0 2730}
45264778 2731/**
60cd4bcd 2732 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2733 * @page: page to uncharge
2734 * @order: allocation order
2735 */
60cd4bcd 2736void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2737{
1306a85a 2738 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2739 unsigned int nr_pages = 1 << order;
7ae1e1d0 2740
7ae1e1d0
GC
2741 if (!memcg)
2742 return;
2743
309381fe 2744 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2745
52c29b04
JW
2746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2747 page_counter_uncharge(&memcg->kmem, nr_pages);
2748
f3ccb2c4 2749 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2750 if (do_memsw_account())
f3ccb2c4 2751 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2752
1306a85a 2753 page->mem_cgroup = NULL;
c4159a75
VD
2754
2755 /* slab pages do not have PageKmemcg flag set */
2756 if (PageKmemcg(page))
2757 __ClearPageKmemcg(page);
2758
f3ccb2c4 2759 css_put_many(&memcg->css, nr_pages);
60d3fd32 2760}
84c07d11 2761#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2762
ca3e0214
KH
2763#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2764
ca3e0214
KH
2765/*
2766 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2767 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2768 */
e94c8a9c 2769void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2770{
e94c8a9c 2771 int i;
ca3e0214 2772
3d37c4a9
KH
2773 if (mem_cgroup_disabled())
2774 return;
b070e65c 2775
29833315 2776 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2777 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2778
c9019e9b 2779 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2780}
12d27107 2781#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2782
c255a458 2783#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2784/**
2785 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2786 * @entry: swap entry to be moved
2787 * @from: mem_cgroup which the entry is moved from
2788 * @to: mem_cgroup which the entry is moved to
2789 *
2790 * It succeeds only when the swap_cgroup's record for this entry is the same
2791 * as the mem_cgroup's id of @from.
2792 *
2793 * Returns 0 on success, -EINVAL on failure.
2794 *
3e32cb2e 2795 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2796 * both res and memsw, and called css_get().
2797 */
2798static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2799 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2800{
2801 unsigned short old_id, new_id;
2802
34c00c31
LZ
2803 old_id = mem_cgroup_id(from);
2804 new_id = mem_cgroup_id(to);
02491447
DN
2805
2806 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2807 mod_memcg_state(from, MEMCG_SWAP, -1);
2808 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2809 return 0;
2810 }
2811 return -EINVAL;
2812}
2813#else
2814static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2815 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2816{
2817 return -EINVAL;
2818}
8c7c6e34 2819#endif
d13d1443 2820
bbec2e15 2821static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2822
bbec2e15
RG
2823static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2824 unsigned long max, bool memsw)
628f4235 2825{
3e32cb2e 2826 bool enlarge = false;
bb4a7ea2 2827 bool drained = false;
3e32cb2e 2828 int ret;
c054a78c
YZ
2829 bool limits_invariant;
2830 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2831
3e32cb2e 2832 do {
628f4235
KH
2833 if (signal_pending(current)) {
2834 ret = -EINTR;
2835 break;
2836 }
3e32cb2e 2837
bbec2e15 2838 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2839 /*
2840 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2841 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2842 */
bbec2e15
RG
2843 limits_invariant = memsw ? max >= memcg->memory.max :
2844 max <= memcg->memsw.max;
c054a78c 2845 if (!limits_invariant) {
bbec2e15 2846 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2847 ret = -EINVAL;
8c7c6e34
KH
2848 break;
2849 }
bbec2e15 2850 if (max > counter->max)
3e32cb2e 2851 enlarge = true;
bbec2e15
RG
2852 ret = page_counter_set_max(counter, max);
2853 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2854
2855 if (!ret)
2856 break;
2857
bb4a7ea2
SB
2858 if (!drained) {
2859 drain_all_stock(memcg);
2860 drained = true;
2861 continue;
2862 }
2863
1ab5c056
AR
2864 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2865 GFP_KERNEL, !memsw)) {
2866 ret = -EBUSY;
2867 break;
2868 }
2869 } while (true);
3e32cb2e 2870
3c11ecf4
KH
2871 if (!ret && enlarge)
2872 memcg_oom_recover(memcg);
3e32cb2e 2873
628f4235
KH
2874 return ret;
2875}
2876
ef8f2327 2877unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2878 gfp_t gfp_mask,
2879 unsigned long *total_scanned)
2880{
2881 unsigned long nr_reclaimed = 0;
ef8f2327 2882 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2883 unsigned long reclaimed;
2884 int loop = 0;
ef8f2327 2885 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2886 unsigned long excess;
0608f43d
AM
2887 unsigned long nr_scanned;
2888
2889 if (order > 0)
2890 return 0;
2891
ef8f2327 2892 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2893
2894 /*
2895 * Do not even bother to check the largest node if the root
2896 * is empty. Do it lockless to prevent lock bouncing. Races
2897 * are acceptable as soft limit is best effort anyway.
2898 */
bfc7228b 2899 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2900 return 0;
2901
0608f43d
AM
2902 /*
2903 * This loop can run a while, specially if mem_cgroup's continuously
2904 * keep exceeding their soft limit and putting the system under
2905 * pressure
2906 */
2907 do {
2908 if (next_mz)
2909 mz = next_mz;
2910 else
2911 mz = mem_cgroup_largest_soft_limit_node(mctz);
2912 if (!mz)
2913 break;
2914
2915 nr_scanned = 0;
ef8f2327 2916 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2917 gfp_mask, &nr_scanned);
2918 nr_reclaimed += reclaimed;
2919 *total_scanned += nr_scanned;
0a31bc97 2920 spin_lock_irq(&mctz->lock);
bc2f2e7f 2921 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2922
2923 /*
2924 * If we failed to reclaim anything from this memory cgroup
2925 * it is time to move on to the next cgroup
2926 */
2927 next_mz = NULL;
bc2f2e7f
VD
2928 if (!reclaimed)
2929 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2930
3e32cb2e 2931 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2932 /*
2933 * One school of thought says that we should not add
2934 * back the node to the tree if reclaim returns 0.
2935 * But our reclaim could return 0, simply because due
2936 * to priority we are exposing a smaller subset of
2937 * memory to reclaim from. Consider this as a longer
2938 * term TODO.
2939 */
2940 /* If excess == 0, no tree ops */
cf2c8127 2941 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2942 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2943 css_put(&mz->memcg->css);
2944 loop++;
2945 /*
2946 * Could not reclaim anything and there are no more
2947 * mem cgroups to try or we seem to be looping without
2948 * reclaiming anything.
2949 */
2950 if (!nr_reclaimed &&
2951 (next_mz == NULL ||
2952 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2953 break;
2954 } while (!nr_reclaimed);
2955 if (next_mz)
2956 css_put(&next_mz->memcg->css);
2957 return nr_reclaimed;
2958}
2959
ea280e7b
TH
2960/*
2961 * Test whether @memcg has children, dead or alive. Note that this
2962 * function doesn't care whether @memcg has use_hierarchy enabled and
2963 * returns %true if there are child csses according to the cgroup
2964 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2965 */
b5f99b53
GC
2966static inline bool memcg_has_children(struct mem_cgroup *memcg)
2967{
ea280e7b
TH
2968 bool ret;
2969
ea280e7b
TH
2970 rcu_read_lock();
2971 ret = css_next_child(NULL, &memcg->css);
2972 rcu_read_unlock();
2973 return ret;
b5f99b53
GC
2974}
2975
c26251f9 2976/*
51038171 2977 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2978 *
2979 * Caller is responsible for holding css reference for memcg.
2980 */
2981static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2982{
2983 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2984
c1e862c1
KH
2985 /* we call try-to-free pages for make this cgroup empty */
2986 lru_add_drain_all();
d12c60f6
JS
2987
2988 drain_all_stock(memcg);
2989
f817ed48 2990 /* try to free all pages in this cgroup */
3e32cb2e 2991 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2992 int progress;
c1e862c1 2993
c26251f9
MH
2994 if (signal_pending(current))
2995 return -EINTR;
2996
b70a2a21
JW
2997 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2998 GFP_KERNEL, true);
c1e862c1 2999 if (!progress) {
f817ed48 3000 nr_retries--;
c1e862c1 3001 /* maybe some writeback is necessary */
8aa7e847 3002 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3003 }
f817ed48
KH
3004
3005 }
ab5196c2
MH
3006
3007 return 0;
cc847582
KH
3008}
3009
6770c64e
TH
3010static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3011 char *buf, size_t nbytes,
3012 loff_t off)
c1e862c1 3013{
6770c64e 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3015
d8423011
MH
3016 if (mem_cgroup_is_root(memcg))
3017 return -EINVAL;
6770c64e 3018 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3019}
3020
182446d0
TH
3021static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3022 struct cftype *cft)
18f59ea7 3023{
182446d0 3024 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3025}
3026
182446d0
TH
3027static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
18f59ea7
BS
3029{
3030 int retval = 0;
182446d0 3031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3032 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3033
567fb435 3034 if (memcg->use_hierarchy == val)
0b8f73e1 3035 return 0;
567fb435 3036
18f59ea7 3037 /*
af901ca1 3038 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3039 * in the child subtrees. If it is unset, then the change can
3040 * occur, provided the current cgroup has no children.
3041 *
3042 * For the root cgroup, parent_mem is NULL, we allow value to be
3043 * set if there are no children.
3044 */
c0ff4b85 3045 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3046 (val == 1 || val == 0)) {
ea280e7b 3047 if (!memcg_has_children(memcg))
c0ff4b85 3048 memcg->use_hierarchy = val;
18f59ea7
BS
3049 else
3050 retval = -EBUSY;
3051 } else
3052 retval = -EINVAL;
567fb435 3053
18f59ea7
BS
3054 return retval;
3055}
3056
6f646156 3057static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3058{
42a30035 3059 unsigned long val;
ce00a967 3060
3e32cb2e 3061 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3062 val = memcg_page_state(memcg, MEMCG_CACHE) +
3063 memcg_page_state(memcg, MEMCG_RSS);
3064 if (swap)
3065 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3066 } else {
ce00a967 3067 if (!swap)
3e32cb2e 3068 val = page_counter_read(&memcg->memory);
ce00a967 3069 else
3e32cb2e 3070 val = page_counter_read(&memcg->memsw);
ce00a967 3071 }
c12176d3 3072 return val;
ce00a967
JW
3073}
3074
3e32cb2e
JW
3075enum {
3076 RES_USAGE,
3077 RES_LIMIT,
3078 RES_MAX_USAGE,
3079 RES_FAILCNT,
3080 RES_SOFT_LIMIT,
3081};
ce00a967 3082
791badbd 3083static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3084 struct cftype *cft)
8cdea7c0 3085{
182446d0 3086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3087 struct page_counter *counter;
af36f906 3088
3e32cb2e 3089 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3090 case _MEM:
3e32cb2e
JW
3091 counter = &memcg->memory;
3092 break;
8c7c6e34 3093 case _MEMSWAP:
3e32cb2e
JW
3094 counter = &memcg->memsw;
3095 break;
510fc4e1 3096 case _KMEM:
3e32cb2e 3097 counter = &memcg->kmem;
510fc4e1 3098 break;
d55f90bf 3099 case _TCP:
0db15298 3100 counter = &memcg->tcpmem;
d55f90bf 3101 break;
8c7c6e34
KH
3102 default:
3103 BUG();
8c7c6e34 3104 }
3e32cb2e
JW
3105
3106 switch (MEMFILE_ATTR(cft->private)) {
3107 case RES_USAGE:
3108 if (counter == &memcg->memory)
c12176d3 3109 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3110 if (counter == &memcg->memsw)
c12176d3 3111 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3112 return (u64)page_counter_read(counter) * PAGE_SIZE;
3113 case RES_LIMIT:
bbec2e15 3114 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3115 case RES_MAX_USAGE:
3116 return (u64)counter->watermark * PAGE_SIZE;
3117 case RES_FAILCNT:
3118 return counter->failcnt;
3119 case RES_SOFT_LIMIT:
3120 return (u64)memcg->soft_limit * PAGE_SIZE;
3121 default:
3122 BUG();
3123 }
8cdea7c0 3124}
510fc4e1 3125
84c07d11 3126#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3127static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3128{
d6441637
VD
3129 int memcg_id;
3130
b313aeee
VD
3131 if (cgroup_memory_nokmem)
3132 return 0;
3133
2a4db7eb 3134 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3135 BUG_ON(memcg->kmem_state);
d6441637 3136
f3bb3043 3137 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3138 if (memcg_id < 0)
3139 return memcg_id;
d6441637 3140
ef12947c 3141 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3142 /*
567e9ab2 3143 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3144 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3145 * guarantee no one starts accounting before all call sites are
3146 * patched.
3147 */
900a38f0 3148 memcg->kmemcg_id = memcg_id;
567e9ab2 3149 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3150 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3151
3152 return 0;
d6441637
VD
3153}
3154
8e0a8912
JW
3155static void memcg_offline_kmem(struct mem_cgroup *memcg)
3156{
3157 struct cgroup_subsys_state *css;
3158 struct mem_cgroup *parent, *child;
3159 int kmemcg_id;
3160
3161 if (memcg->kmem_state != KMEM_ONLINE)
3162 return;
3163 /*
3164 * Clear the online state before clearing memcg_caches array
3165 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3166 * guarantees that no cache will be created for this cgroup
3167 * after we are done (see memcg_create_kmem_cache()).
3168 */
3169 memcg->kmem_state = KMEM_ALLOCATED;
3170
3171 memcg_deactivate_kmem_caches(memcg);
3172
3173 kmemcg_id = memcg->kmemcg_id;
3174 BUG_ON(kmemcg_id < 0);
3175
3176 parent = parent_mem_cgroup(memcg);
3177 if (!parent)
3178 parent = root_mem_cgroup;
3179
3180 /*
3181 * Change kmemcg_id of this cgroup and all its descendants to the
3182 * parent's id, and then move all entries from this cgroup's list_lrus
3183 * to ones of the parent. After we have finished, all list_lrus
3184 * corresponding to this cgroup are guaranteed to remain empty. The
3185 * ordering is imposed by list_lru_node->lock taken by
3186 * memcg_drain_all_list_lrus().
3187 */
3a06bb78 3188 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3189 css_for_each_descendant_pre(css, &memcg->css) {
3190 child = mem_cgroup_from_css(css);
3191 BUG_ON(child->kmemcg_id != kmemcg_id);
3192 child->kmemcg_id = parent->kmemcg_id;
3193 if (!memcg->use_hierarchy)
3194 break;
3195 }
3a06bb78
TH
3196 rcu_read_unlock();
3197
9bec5c35 3198 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3199
3200 memcg_free_cache_id(kmemcg_id);
3201}
3202
3203static void memcg_free_kmem(struct mem_cgroup *memcg)
3204{
0b8f73e1
JW
3205 /* css_alloc() failed, offlining didn't happen */
3206 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3207 memcg_offline_kmem(memcg);
3208
8e0a8912
JW
3209 if (memcg->kmem_state == KMEM_ALLOCATED) {
3210 memcg_destroy_kmem_caches(memcg);
3211 static_branch_dec(&memcg_kmem_enabled_key);
3212 WARN_ON(page_counter_read(&memcg->kmem));
3213 }
8e0a8912 3214}
d6441637 3215#else
0b8f73e1 3216static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3217{
3218 return 0;
3219}
3220static void memcg_offline_kmem(struct mem_cgroup *memcg)
3221{
3222}
3223static void memcg_free_kmem(struct mem_cgroup *memcg)
3224{
3225}
84c07d11 3226#endif /* CONFIG_MEMCG_KMEM */
127424c8 3227
bbec2e15
RG
3228static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3229 unsigned long max)
d6441637 3230{
b313aeee 3231 int ret;
127424c8 3232
bbec2e15
RG
3233 mutex_lock(&memcg_max_mutex);
3234 ret = page_counter_set_max(&memcg->kmem, max);
3235 mutex_unlock(&memcg_max_mutex);
127424c8 3236 return ret;
d6441637 3237}
510fc4e1 3238
bbec2e15 3239static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3240{
3241 int ret;
3242
bbec2e15 3243 mutex_lock(&memcg_max_mutex);
d55f90bf 3244
bbec2e15 3245 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3246 if (ret)
3247 goto out;
3248
0db15298 3249 if (!memcg->tcpmem_active) {
d55f90bf
VD
3250 /*
3251 * The active flag needs to be written after the static_key
3252 * update. This is what guarantees that the socket activation
2d758073
JW
3253 * function is the last one to run. See mem_cgroup_sk_alloc()
3254 * for details, and note that we don't mark any socket as
3255 * belonging to this memcg until that flag is up.
d55f90bf
VD
3256 *
3257 * We need to do this, because static_keys will span multiple
3258 * sites, but we can't control their order. If we mark a socket
3259 * as accounted, but the accounting functions are not patched in
3260 * yet, we'll lose accounting.
3261 *
2d758073 3262 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3263 * because when this value change, the code to process it is not
3264 * patched in yet.
3265 */
3266 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3267 memcg->tcpmem_active = true;
d55f90bf
VD
3268 }
3269out:
bbec2e15 3270 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3271 return ret;
3272}
d55f90bf 3273
628f4235
KH
3274/*
3275 * The user of this function is...
3276 * RES_LIMIT.
3277 */
451af504
TH
3278static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3279 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3280{
451af504 3281 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3282 unsigned long nr_pages;
628f4235
KH
3283 int ret;
3284
451af504 3285 buf = strstrip(buf);
650c5e56 3286 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3287 if (ret)
3288 return ret;
af36f906 3289
3e32cb2e 3290 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3291 case RES_LIMIT:
4b3bde4c
BS
3292 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3293 ret = -EINVAL;
3294 break;
3295 }
3e32cb2e
JW
3296 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3297 case _MEM:
bbec2e15 3298 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3299 break;
3e32cb2e 3300 case _MEMSWAP:
bbec2e15 3301 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3302 break;
3e32cb2e 3303 case _KMEM:
bbec2e15 3304 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3305 break;
d55f90bf 3306 case _TCP:
bbec2e15 3307 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3308 break;
3e32cb2e 3309 }
296c81d8 3310 break;
3e32cb2e
JW
3311 case RES_SOFT_LIMIT:
3312 memcg->soft_limit = nr_pages;
3313 ret = 0;
628f4235
KH
3314 break;
3315 }
451af504 3316 return ret ?: nbytes;
8cdea7c0
BS
3317}
3318
6770c64e
TH
3319static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3320 size_t nbytes, loff_t off)
c84872e1 3321{
6770c64e 3322 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3323 struct page_counter *counter;
c84872e1 3324
3e32cb2e
JW
3325 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3326 case _MEM:
3327 counter = &memcg->memory;
3328 break;
3329 case _MEMSWAP:
3330 counter = &memcg->memsw;
3331 break;
3332 case _KMEM:
3333 counter = &memcg->kmem;
3334 break;
d55f90bf 3335 case _TCP:
0db15298 3336 counter = &memcg->tcpmem;
d55f90bf 3337 break;
3e32cb2e
JW
3338 default:
3339 BUG();
3340 }
af36f906 3341
3e32cb2e 3342 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3343 case RES_MAX_USAGE:
3e32cb2e 3344 page_counter_reset_watermark(counter);
29f2a4da
PE
3345 break;
3346 case RES_FAILCNT:
3e32cb2e 3347 counter->failcnt = 0;
29f2a4da 3348 break;
3e32cb2e
JW
3349 default:
3350 BUG();
29f2a4da 3351 }
f64c3f54 3352
6770c64e 3353 return nbytes;
c84872e1
PE
3354}
3355
182446d0 3356static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3357 struct cftype *cft)
3358{
182446d0 3359 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3360}
3361
02491447 3362#ifdef CONFIG_MMU
182446d0 3363static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3364 struct cftype *cft, u64 val)
3365{
182446d0 3366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3367
1dfab5ab 3368 if (val & ~MOVE_MASK)
7dc74be0 3369 return -EINVAL;
ee5e8472 3370
7dc74be0 3371 /*
ee5e8472
GC
3372 * No kind of locking is needed in here, because ->can_attach() will
3373 * check this value once in the beginning of the process, and then carry
3374 * on with stale data. This means that changes to this value will only
3375 * affect task migrations starting after the change.
7dc74be0 3376 */
c0ff4b85 3377 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3378 return 0;
3379}
02491447 3380#else
182446d0 3381static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3382 struct cftype *cft, u64 val)
3383{
3384 return -ENOSYS;
3385}
3386#endif
7dc74be0 3387
406eb0c9 3388#ifdef CONFIG_NUMA
113b7dfd
JW
3389
3390#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3391#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3392#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3393
3394static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3395 int nid, unsigned int lru_mask)
3396{
3397 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3398 unsigned long nr = 0;
3399 enum lru_list lru;
3400
3401 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3402
3403 for_each_lru(lru) {
3404 if (!(BIT(lru) & lru_mask))
3405 continue;
205b20cc 3406 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3407 }
3408 return nr;
3409}
3410
3411static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3412 unsigned int lru_mask)
3413{
3414 unsigned long nr = 0;
3415 enum lru_list lru;
3416
3417 for_each_lru(lru) {
3418 if (!(BIT(lru) & lru_mask))
3419 continue;
205b20cc 3420 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3421 }
3422 return nr;
3423}
3424
2da8ca82 3425static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3426{
25485de6
GT
3427 struct numa_stat {
3428 const char *name;
3429 unsigned int lru_mask;
3430 };
3431
3432 static const struct numa_stat stats[] = {
3433 { "total", LRU_ALL },
3434 { "file", LRU_ALL_FILE },
3435 { "anon", LRU_ALL_ANON },
3436 { "unevictable", BIT(LRU_UNEVICTABLE) },
3437 };
3438 const struct numa_stat *stat;
406eb0c9 3439 int nid;
25485de6 3440 unsigned long nr;
aa9694bb 3441 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3442
25485de6
GT
3443 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3444 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3445 seq_printf(m, "%s=%lu", stat->name, nr);
3446 for_each_node_state(nid, N_MEMORY) {
3447 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3448 stat->lru_mask);
3449 seq_printf(m, " N%d=%lu", nid, nr);
3450 }
3451 seq_putc(m, '\n');
406eb0c9 3452 }
406eb0c9 3453
071aee13
YH
3454 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3455 struct mem_cgroup *iter;
3456
3457 nr = 0;
3458 for_each_mem_cgroup_tree(iter, memcg)
3459 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3460 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3461 for_each_node_state(nid, N_MEMORY) {
3462 nr = 0;
3463 for_each_mem_cgroup_tree(iter, memcg)
3464 nr += mem_cgroup_node_nr_lru_pages(
3465 iter, nid, stat->lru_mask);
3466 seq_printf(m, " N%d=%lu", nid, nr);
3467 }
3468 seq_putc(m, '\n');
406eb0c9 3469 }
406eb0c9 3470
406eb0c9
YH
3471 return 0;
3472}
3473#endif /* CONFIG_NUMA */
3474
df0e53d0 3475/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3476static const unsigned int memcg1_events[] = {
df0e53d0
JW
3477 PGPGIN,
3478 PGPGOUT,
3479 PGFAULT,
3480 PGMAJFAULT,
3481};
3482
3483static const char *const memcg1_event_names[] = {
3484 "pgpgin",
3485 "pgpgout",
3486 "pgfault",
3487 "pgmajfault",
3488};
3489
2da8ca82 3490static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3491{
aa9694bb 3492 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3493 unsigned long memory, memsw;
af7c4b0e
JW
3494 struct mem_cgroup *mi;
3495 unsigned int i;
406eb0c9 3496
71cd3113 3497 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3499
71cd3113
JW
3500 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3501 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3502 continue;
71cd3113 3503 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3504 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3505 PAGE_SIZE);
1dd3a273 3506 }
7b854121 3507
df0e53d0
JW
3508 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3509 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3510 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3511
3512 for (i = 0; i < NR_LRU_LISTS; i++)
3513 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3514 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3515 PAGE_SIZE);
af7c4b0e 3516
14067bb3 3517 /* Hierarchical information */
3e32cb2e
JW
3518 memory = memsw = PAGE_COUNTER_MAX;
3519 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3520 memory = min(memory, mi->memory.max);
3521 memsw = min(memsw, mi->memsw.max);
fee7b548 3522 }
3e32cb2e
JW
3523 seq_printf(m, "hierarchical_memory_limit %llu\n",
3524 (u64)memory * PAGE_SIZE);
7941d214 3525 if (do_memsw_account())
3e32cb2e
JW
3526 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3527 (u64)memsw * PAGE_SIZE);
7f016ee8 3528
8de7ecc6 3529 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3530 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3531 continue;
8de7ecc6 3532 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3533 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3534 PAGE_SIZE);
af7c4b0e
JW
3535 }
3536
8de7ecc6
SB
3537 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3538 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3539 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3540
8de7ecc6
SB
3541 for (i = 0; i < NR_LRU_LISTS; i++)
3542 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3543 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3544 PAGE_SIZE);
14067bb3 3545
7f016ee8 3546#ifdef CONFIG_DEBUG_VM
7f016ee8 3547 {
ef8f2327
MG
3548 pg_data_t *pgdat;
3549 struct mem_cgroup_per_node *mz;
89abfab1 3550 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3551 unsigned long recent_rotated[2] = {0, 0};
3552 unsigned long recent_scanned[2] = {0, 0};
3553
ef8f2327
MG
3554 for_each_online_pgdat(pgdat) {
3555 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3556 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3557
ef8f2327
MG
3558 recent_rotated[0] += rstat->recent_rotated[0];
3559 recent_rotated[1] += rstat->recent_rotated[1];
3560 recent_scanned[0] += rstat->recent_scanned[0];
3561 recent_scanned[1] += rstat->recent_scanned[1];
3562 }
78ccf5b5
JW
3563 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3564 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3565 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3566 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3567 }
3568#endif
3569
d2ceb9b7
KH
3570 return 0;
3571}
3572
182446d0
TH
3573static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3574 struct cftype *cft)
a7885eb8 3575{
182446d0 3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3577
1f4c025b 3578 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3579}
3580
182446d0
TH
3581static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3582 struct cftype *cft, u64 val)
a7885eb8 3583{
182446d0 3584 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3585
3dae7fec 3586 if (val > 100)
a7885eb8
KM
3587 return -EINVAL;
3588
14208b0e 3589 if (css->parent)
3dae7fec
JW
3590 memcg->swappiness = val;
3591 else
3592 vm_swappiness = val;
068b38c1 3593
a7885eb8
KM
3594 return 0;
3595}
3596
2e72b634
KS
3597static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3598{
3599 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3600 unsigned long usage;
2e72b634
KS
3601 int i;
3602
3603 rcu_read_lock();
3604 if (!swap)
2c488db2 3605 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3606 else
2c488db2 3607 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3608
3609 if (!t)
3610 goto unlock;
3611
ce00a967 3612 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3613
3614 /*
748dad36 3615 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3616 * If it's not true, a threshold was crossed after last
3617 * call of __mem_cgroup_threshold().
3618 */
5407a562 3619 i = t->current_threshold;
2e72b634
KS
3620
3621 /*
3622 * Iterate backward over array of thresholds starting from
3623 * current_threshold and check if a threshold is crossed.
3624 * If none of thresholds below usage is crossed, we read
3625 * only one element of the array here.
3626 */
3627 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3628 eventfd_signal(t->entries[i].eventfd, 1);
3629
3630 /* i = current_threshold + 1 */
3631 i++;
3632
3633 /*
3634 * Iterate forward over array of thresholds starting from
3635 * current_threshold+1 and check if a threshold is crossed.
3636 * If none of thresholds above usage is crossed, we read
3637 * only one element of the array here.
3638 */
3639 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3640 eventfd_signal(t->entries[i].eventfd, 1);
3641
3642 /* Update current_threshold */
5407a562 3643 t->current_threshold = i - 1;
2e72b634
KS
3644unlock:
3645 rcu_read_unlock();
3646}
3647
3648static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3649{
ad4ca5f4
KS
3650 while (memcg) {
3651 __mem_cgroup_threshold(memcg, false);
7941d214 3652 if (do_memsw_account())
ad4ca5f4
KS
3653 __mem_cgroup_threshold(memcg, true);
3654
3655 memcg = parent_mem_cgroup(memcg);
3656 }
2e72b634
KS
3657}
3658
3659static int compare_thresholds(const void *a, const void *b)
3660{
3661 const struct mem_cgroup_threshold *_a = a;
3662 const struct mem_cgroup_threshold *_b = b;
3663
2bff24a3
GT
3664 if (_a->threshold > _b->threshold)
3665 return 1;
3666
3667 if (_a->threshold < _b->threshold)
3668 return -1;
3669
3670 return 0;
2e72b634
KS
3671}
3672
c0ff4b85 3673static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3674{
3675 struct mem_cgroup_eventfd_list *ev;
3676
2bcf2e92
MH
3677 spin_lock(&memcg_oom_lock);
3678
c0ff4b85 3679 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3680 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3681
3682 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3683 return 0;
3684}
3685
c0ff4b85 3686static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3687{
7d74b06f
KH
3688 struct mem_cgroup *iter;
3689
c0ff4b85 3690 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3691 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3692}
3693
59b6f873 3694static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3695 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3696{
2c488db2
KS
3697 struct mem_cgroup_thresholds *thresholds;
3698 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3699 unsigned long threshold;
3700 unsigned long usage;
2c488db2 3701 int i, size, ret;
2e72b634 3702
650c5e56 3703 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3704 if (ret)
3705 return ret;
3706
3707 mutex_lock(&memcg->thresholds_lock);
2c488db2 3708
05b84301 3709 if (type == _MEM) {
2c488db2 3710 thresholds = &memcg->thresholds;
ce00a967 3711 usage = mem_cgroup_usage(memcg, false);
05b84301 3712 } else if (type == _MEMSWAP) {
2c488db2 3713 thresholds = &memcg->memsw_thresholds;
ce00a967 3714 usage = mem_cgroup_usage(memcg, true);
05b84301 3715 } else
2e72b634
KS
3716 BUG();
3717
2e72b634 3718 /* Check if a threshold crossed before adding a new one */
2c488db2 3719 if (thresholds->primary)
2e72b634
KS
3720 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3721
2c488db2 3722 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3723
3724 /* Allocate memory for new array of thresholds */
67b8046f 3725 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3726 if (!new) {
2e72b634
KS
3727 ret = -ENOMEM;
3728 goto unlock;
3729 }
2c488db2 3730 new->size = size;
2e72b634
KS
3731
3732 /* Copy thresholds (if any) to new array */
2c488db2
KS
3733 if (thresholds->primary) {
3734 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3735 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3736 }
3737
2e72b634 3738 /* Add new threshold */
2c488db2
KS
3739 new->entries[size - 1].eventfd = eventfd;
3740 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3741
3742 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3743 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3744 compare_thresholds, NULL);
3745
3746 /* Find current threshold */
2c488db2 3747 new->current_threshold = -1;
2e72b634 3748 for (i = 0; i < size; i++) {
748dad36 3749 if (new->entries[i].threshold <= usage) {
2e72b634 3750 /*
2c488db2
KS
3751 * new->current_threshold will not be used until
3752 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3753 * it here.
3754 */
2c488db2 3755 ++new->current_threshold;
748dad36
SZ
3756 } else
3757 break;
2e72b634
KS
3758 }
3759
2c488db2
KS
3760 /* Free old spare buffer and save old primary buffer as spare */
3761 kfree(thresholds->spare);
3762 thresholds->spare = thresholds->primary;
3763
3764 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3765
907860ed 3766 /* To be sure that nobody uses thresholds */
2e72b634
KS
3767 synchronize_rcu();
3768
2e72b634
KS
3769unlock:
3770 mutex_unlock(&memcg->thresholds_lock);
3771
3772 return ret;
3773}
3774
59b6f873 3775static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3776 struct eventfd_ctx *eventfd, const char *args)
3777{
59b6f873 3778 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3779}
3780
59b6f873 3781static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3782 struct eventfd_ctx *eventfd, const char *args)
3783{
59b6f873 3784 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3785}
3786
59b6f873 3787static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3788 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3789{
2c488db2
KS
3790 struct mem_cgroup_thresholds *thresholds;
3791 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3792 unsigned long usage;
2c488db2 3793 int i, j, size;
2e72b634
KS
3794
3795 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3796
3797 if (type == _MEM) {
2c488db2 3798 thresholds = &memcg->thresholds;
ce00a967 3799 usage = mem_cgroup_usage(memcg, false);
05b84301 3800 } else if (type == _MEMSWAP) {
2c488db2 3801 thresholds = &memcg->memsw_thresholds;
ce00a967 3802 usage = mem_cgroup_usage(memcg, true);
05b84301 3803 } else
2e72b634
KS
3804 BUG();
3805
371528ca
AV
3806 if (!thresholds->primary)
3807 goto unlock;
3808
2e72b634
KS
3809 /* Check if a threshold crossed before removing */
3810 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3811
3812 /* Calculate new number of threshold */
2c488db2
KS
3813 size = 0;
3814 for (i = 0; i < thresholds->primary->size; i++) {
3815 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3816 size++;
3817 }
3818
2c488db2 3819 new = thresholds->spare;
907860ed 3820
2e72b634
KS
3821 /* Set thresholds array to NULL if we don't have thresholds */
3822 if (!size) {
2c488db2
KS
3823 kfree(new);
3824 new = NULL;
907860ed 3825 goto swap_buffers;
2e72b634
KS
3826 }
3827
2c488db2 3828 new->size = size;
2e72b634
KS
3829
3830 /* Copy thresholds and find current threshold */
2c488db2
KS
3831 new->current_threshold = -1;
3832 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3833 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3834 continue;
3835
2c488db2 3836 new->entries[j] = thresholds->primary->entries[i];
748dad36 3837 if (new->entries[j].threshold <= usage) {
2e72b634 3838 /*
2c488db2 3839 * new->current_threshold will not be used
2e72b634
KS
3840 * until rcu_assign_pointer(), so it's safe to increment
3841 * it here.
3842 */
2c488db2 3843 ++new->current_threshold;
2e72b634
KS
3844 }
3845 j++;
3846 }
3847
907860ed 3848swap_buffers:
2c488db2
KS
3849 /* Swap primary and spare array */
3850 thresholds->spare = thresholds->primary;
8c757763 3851
2c488db2 3852 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3853
907860ed 3854 /* To be sure that nobody uses thresholds */
2e72b634 3855 synchronize_rcu();
6611d8d7
MC
3856
3857 /* If all events are unregistered, free the spare array */
3858 if (!new) {
3859 kfree(thresholds->spare);
3860 thresholds->spare = NULL;
3861 }
371528ca 3862unlock:
2e72b634 3863 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3864}
c1e862c1 3865
59b6f873 3866static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3867 struct eventfd_ctx *eventfd)
3868{
59b6f873 3869 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3870}
3871
59b6f873 3872static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3873 struct eventfd_ctx *eventfd)
3874{
59b6f873 3875 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3876}
3877
59b6f873 3878static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3879 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3880{
9490ff27 3881 struct mem_cgroup_eventfd_list *event;
9490ff27 3882
9490ff27
KH
3883 event = kmalloc(sizeof(*event), GFP_KERNEL);
3884 if (!event)
3885 return -ENOMEM;
3886
1af8efe9 3887 spin_lock(&memcg_oom_lock);
9490ff27
KH
3888
3889 event->eventfd = eventfd;
3890 list_add(&event->list, &memcg->oom_notify);
3891
3892 /* already in OOM ? */
c2b42d3c 3893 if (memcg->under_oom)
9490ff27 3894 eventfd_signal(eventfd, 1);
1af8efe9 3895 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3896
3897 return 0;
3898}
3899
59b6f873 3900static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3901 struct eventfd_ctx *eventfd)
9490ff27 3902{
9490ff27 3903 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3904
1af8efe9 3905 spin_lock(&memcg_oom_lock);
9490ff27 3906
c0ff4b85 3907 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3908 if (ev->eventfd == eventfd) {
3909 list_del(&ev->list);
3910 kfree(ev);
3911 }
3912 }
3913
1af8efe9 3914 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3915}
3916
2da8ca82 3917static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3918{
aa9694bb 3919 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 3920
791badbd 3921 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3922 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3923 seq_printf(sf, "oom_kill %lu\n",
3924 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3925 return 0;
3926}
3927
182446d0 3928static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3929 struct cftype *cft, u64 val)
3930{
182446d0 3931 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3932
3933 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3934 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3935 return -EINVAL;
3936
c0ff4b85 3937 memcg->oom_kill_disable = val;
4d845ebf 3938 if (!val)
c0ff4b85 3939 memcg_oom_recover(memcg);
3dae7fec 3940
3c11ecf4
KH
3941 return 0;
3942}
3943
52ebea74
TH
3944#ifdef CONFIG_CGROUP_WRITEBACK
3945
841710aa
TH
3946static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3947{
3948 return wb_domain_init(&memcg->cgwb_domain, gfp);
3949}
3950
3951static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3952{
3953 wb_domain_exit(&memcg->cgwb_domain);
3954}
3955
2529bb3a
TH
3956static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3957{
3958 wb_domain_size_changed(&memcg->cgwb_domain);
3959}
3960
841710aa
TH
3961struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3962{
3963 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3964
3965 if (!memcg->css.parent)
3966 return NULL;
3967
3968 return &memcg->cgwb_domain;
3969}
3970
0b3d6e6f
GT
3971/*
3972 * idx can be of type enum memcg_stat_item or node_stat_item.
3973 * Keep in sync with memcg_exact_page().
3974 */
3975static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3976{
871789d4 3977 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
3978 int cpu;
3979
3980 for_each_online_cpu(cpu)
871789d4 3981 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
3982 if (x < 0)
3983 x = 0;
3984 return x;
3985}
3986
c2aa723a
TH
3987/**
3988 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3989 * @wb: bdi_writeback in question
c5edf9cd
TH
3990 * @pfilepages: out parameter for number of file pages
3991 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3992 * @pdirty: out parameter for number of dirty pages
3993 * @pwriteback: out parameter for number of pages under writeback
3994 *
c5edf9cd
TH
3995 * Determine the numbers of file, headroom, dirty, and writeback pages in
3996 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3997 * is a bit more involved.
c2aa723a 3998 *
c5edf9cd
TH
3999 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4000 * headroom is calculated as the lowest headroom of itself and the
4001 * ancestors. Note that this doesn't consider the actual amount of
4002 * available memory in the system. The caller should further cap
4003 * *@pheadroom accordingly.
c2aa723a 4004 */
c5edf9cd
TH
4005void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4006 unsigned long *pheadroom, unsigned long *pdirty,
4007 unsigned long *pwriteback)
c2aa723a
TH
4008{
4009 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4010 struct mem_cgroup *parent;
c2aa723a 4011
0b3d6e6f 4012 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4013
4014 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4015 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4016 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4017 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4018 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4019
c2aa723a 4020 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4021 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4022 unsigned long used = page_counter_read(&memcg->memory);
4023
c5edf9cd 4024 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4025 memcg = parent;
4026 }
c2aa723a
TH
4027}
4028
841710aa
TH
4029#else /* CONFIG_CGROUP_WRITEBACK */
4030
4031static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4032{
4033 return 0;
4034}
4035
4036static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4037{
4038}
4039
2529bb3a
TH
4040static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4041{
4042}
4043
52ebea74
TH
4044#endif /* CONFIG_CGROUP_WRITEBACK */
4045
3bc942f3
TH
4046/*
4047 * DO NOT USE IN NEW FILES.
4048 *
4049 * "cgroup.event_control" implementation.
4050 *
4051 * This is way over-engineered. It tries to support fully configurable
4052 * events for each user. Such level of flexibility is completely
4053 * unnecessary especially in the light of the planned unified hierarchy.
4054 *
4055 * Please deprecate this and replace with something simpler if at all
4056 * possible.
4057 */
4058
79bd9814
TH
4059/*
4060 * Unregister event and free resources.
4061 *
4062 * Gets called from workqueue.
4063 */
3bc942f3 4064static void memcg_event_remove(struct work_struct *work)
79bd9814 4065{
3bc942f3
TH
4066 struct mem_cgroup_event *event =
4067 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4068 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4069
4070 remove_wait_queue(event->wqh, &event->wait);
4071
59b6f873 4072 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4073
4074 /* Notify userspace the event is going away. */
4075 eventfd_signal(event->eventfd, 1);
4076
4077 eventfd_ctx_put(event->eventfd);
4078 kfree(event);
59b6f873 4079 css_put(&memcg->css);
79bd9814
TH
4080}
4081
4082/*
a9a08845 4083 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4084 *
4085 * Called with wqh->lock held and interrupts disabled.
4086 */
ac6424b9 4087static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4088 int sync, void *key)
79bd9814 4089{
3bc942f3
TH
4090 struct mem_cgroup_event *event =
4091 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4092 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4093 __poll_t flags = key_to_poll(key);
79bd9814 4094
a9a08845 4095 if (flags & EPOLLHUP) {
79bd9814
TH
4096 /*
4097 * If the event has been detached at cgroup removal, we
4098 * can simply return knowing the other side will cleanup
4099 * for us.
4100 *
4101 * We can't race against event freeing since the other
4102 * side will require wqh->lock via remove_wait_queue(),
4103 * which we hold.
4104 */
fba94807 4105 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4106 if (!list_empty(&event->list)) {
4107 list_del_init(&event->list);
4108 /*
4109 * We are in atomic context, but cgroup_event_remove()
4110 * may sleep, so we have to call it in workqueue.
4111 */
4112 schedule_work(&event->remove);
4113 }
fba94807 4114 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4115 }
4116
4117 return 0;
4118}
4119
3bc942f3 4120static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4121 wait_queue_head_t *wqh, poll_table *pt)
4122{
3bc942f3
TH
4123 struct mem_cgroup_event *event =
4124 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4125
4126 event->wqh = wqh;
4127 add_wait_queue(wqh, &event->wait);
4128}
4129
4130/*
3bc942f3
TH
4131 * DO NOT USE IN NEW FILES.
4132 *
79bd9814
TH
4133 * Parse input and register new cgroup event handler.
4134 *
4135 * Input must be in format '<event_fd> <control_fd> <args>'.
4136 * Interpretation of args is defined by control file implementation.
4137 */
451af504
TH
4138static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4139 char *buf, size_t nbytes, loff_t off)
79bd9814 4140{
451af504 4141 struct cgroup_subsys_state *css = of_css(of);
fba94807 4142 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4143 struct mem_cgroup_event *event;
79bd9814
TH
4144 struct cgroup_subsys_state *cfile_css;
4145 unsigned int efd, cfd;
4146 struct fd efile;
4147 struct fd cfile;
fba94807 4148 const char *name;
79bd9814
TH
4149 char *endp;
4150 int ret;
4151
451af504
TH
4152 buf = strstrip(buf);
4153
4154 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4155 if (*endp != ' ')
4156 return -EINVAL;
451af504 4157 buf = endp + 1;
79bd9814 4158
451af504 4159 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4160 if ((*endp != ' ') && (*endp != '\0'))
4161 return -EINVAL;
451af504 4162 buf = endp + 1;
79bd9814
TH
4163
4164 event = kzalloc(sizeof(*event), GFP_KERNEL);
4165 if (!event)
4166 return -ENOMEM;
4167
59b6f873 4168 event->memcg = memcg;
79bd9814 4169 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4170 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4171 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4172 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4173
4174 efile = fdget(efd);
4175 if (!efile.file) {
4176 ret = -EBADF;
4177 goto out_kfree;
4178 }
4179
4180 event->eventfd = eventfd_ctx_fileget(efile.file);
4181 if (IS_ERR(event->eventfd)) {
4182 ret = PTR_ERR(event->eventfd);
4183 goto out_put_efile;
4184 }
4185
4186 cfile = fdget(cfd);
4187 if (!cfile.file) {
4188 ret = -EBADF;
4189 goto out_put_eventfd;
4190 }
4191
4192 /* the process need read permission on control file */
4193 /* AV: shouldn't we check that it's been opened for read instead? */
4194 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4195 if (ret < 0)
4196 goto out_put_cfile;
4197
fba94807
TH
4198 /*
4199 * Determine the event callbacks and set them in @event. This used
4200 * to be done via struct cftype but cgroup core no longer knows
4201 * about these events. The following is crude but the whole thing
4202 * is for compatibility anyway.
3bc942f3
TH
4203 *
4204 * DO NOT ADD NEW FILES.
fba94807 4205 */
b583043e 4206 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4207
4208 if (!strcmp(name, "memory.usage_in_bytes")) {
4209 event->register_event = mem_cgroup_usage_register_event;
4210 event->unregister_event = mem_cgroup_usage_unregister_event;
4211 } else if (!strcmp(name, "memory.oom_control")) {
4212 event->register_event = mem_cgroup_oom_register_event;
4213 event->unregister_event = mem_cgroup_oom_unregister_event;
4214 } else if (!strcmp(name, "memory.pressure_level")) {
4215 event->register_event = vmpressure_register_event;
4216 event->unregister_event = vmpressure_unregister_event;
4217 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4218 event->register_event = memsw_cgroup_usage_register_event;
4219 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4220 } else {
4221 ret = -EINVAL;
4222 goto out_put_cfile;
4223 }
4224
79bd9814 4225 /*
b5557c4c
TH
4226 * Verify @cfile should belong to @css. Also, remaining events are
4227 * automatically removed on cgroup destruction but the removal is
4228 * asynchronous, so take an extra ref on @css.
79bd9814 4229 */
b583043e 4230 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4231 &memory_cgrp_subsys);
79bd9814 4232 ret = -EINVAL;
5a17f543 4233 if (IS_ERR(cfile_css))
79bd9814 4234 goto out_put_cfile;
5a17f543
TH
4235 if (cfile_css != css) {
4236 css_put(cfile_css);
79bd9814 4237 goto out_put_cfile;
5a17f543 4238 }
79bd9814 4239
451af504 4240 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4241 if (ret)
4242 goto out_put_css;
4243
9965ed17 4244 vfs_poll(efile.file, &event->pt);
79bd9814 4245
fba94807
TH
4246 spin_lock(&memcg->event_list_lock);
4247 list_add(&event->list, &memcg->event_list);
4248 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4249
4250 fdput(cfile);
4251 fdput(efile);
4252
451af504 4253 return nbytes;
79bd9814
TH
4254
4255out_put_css:
b5557c4c 4256 css_put(css);
79bd9814
TH
4257out_put_cfile:
4258 fdput(cfile);
4259out_put_eventfd:
4260 eventfd_ctx_put(event->eventfd);
4261out_put_efile:
4262 fdput(efile);
4263out_kfree:
4264 kfree(event);
4265
4266 return ret;
4267}
4268
241994ed 4269static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4270 {
0eea1030 4271 .name = "usage_in_bytes",
8c7c6e34 4272 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4273 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4274 },
c84872e1
PE
4275 {
4276 .name = "max_usage_in_bytes",
8c7c6e34 4277 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4278 .write = mem_cgroup_reset,
791badbd 4279 .read_u64 = mem_cgroup_read_u64,
c84872e1 4280 },
8cdea7c0 4281 {
0eea1030 4282 .name = "limit_in_bytes",
8c7c6e34 4283 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4284 .write = mem_cgroup_write,
791badbd 4285 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4286 },
296c81d8
BS
4287 {
4288 .name = "soft_limit_in_bytes",
4289 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4290 .write = mem_cgroup_write,
791badbd 4291 .read_u64 = mem_cgroup_read_u64,
296c81d8 4292 },
8cdea7c0
BS
4293 {
4294 .name = "failcnt",
8c7c6e34 4295 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4296 .write = mem_cgroup_reset,
791badbd 4297 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4298 },
d2ceb9b7
KH
4299 {
4300 .name = "stat",
2da8ca82 4301 .seq_show = memcg_stat_show,
d2ceb9b7 4302 },
c1e862c1
KH
4303 {
4304 .name = "force_empty",
6770c64e 4305 .write = mem_cgroup_force_empty_write,
c1e862c1 4306 },
18f59ea7
BS
4307 {
4308 .name = "use_hierarchy",
4309 .write_u64 = mem_cgroup_hierarchy_write,
4310 .read_u64 = mem_cgroup_hierarchy_read,
4311 },
79bd9814 4312 {
3bc942f3 4313 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4314 .write = memcg_write_event_control,
7dbdb199 4315 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4316 },
a7885eb8
KM
4317 {
4318 .name = "swappiness",
4319 .read_u64 = mem_cgroup_swappiness_read,
4320 .write_u64 = mem_cgroup_swappiness_write,
4321 },
7dc74be0
DN
4322 {
4323 .name = "move_charge_at_immigrate",
4324 .read_u64 = mem_cgroup_move_charge_read,
4325 .write_u64 = mem_cgroup_move_charge_write,
4326 },
9490ff27
KH
4327 {
4328 .name = "oom_control",
2da8ca82 4329 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4330 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4331 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4332 },
70ddf637
AV
4333 {
4334 .name = "pressure_level",
70ddf637 4335 },
406eb0c9
YH
4336#ifdef CONFIG_NUMA
4337 {
4338 .name = "numa_stat",
2da8ca82 4339 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4340 },
4341#endif
510fc4e1
GC
4342 {
4343 .name = "kmem.limit_in_bytes",
4344 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4345 .write = mem_cgroup_write,
791badbd 4346 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4347 },
4348 {
4349 .name = "kmem.usage_in_bytes",
4350 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4351 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4352 },
4353 {
4354 .name = "kmem.failcnt",
4355 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4356 .write = mem_cgroup_reset,
791badbd 4357 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4358 },
4359 {
4360 .name = "kmem.max_usage_in_bytes",
4361 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4362 .write = mem_cgroup_reset,
791badbd 4363 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4364 },
5b365771 4365#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4366 {
4367 .name = "kmem.slabinfo",
bc2791f8
TH
4368 .seq_start = memcg_slab_start,
4369 .seq_next = memcg_slab_next,
4370 .seq_stop = memcg_slab_stop,
b047501c 4371 .seq_show = memcg_slab_show,
749c5415
GC
4372 },
4373#endif
d55f90bf
VD
4374 {
4375 .name = "kmem.tcp.limit_in_bytes",
4376 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4377 .write = mem_cgroup_write,
4378 .read_u64 = mem_cgroup_read_u64,
4379 },
4380 {
4381 .name = "kmem.tcp.usage_in_bytes",
4382 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4383 .read_u64 = mem_cgroup_read_u64,
4384 },
4385 {
4386 .name = "kmem.tcp.failcnt",
4387 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4388 .write = mem_cgroup_reset,
4389 .read_u64 = mem_cgroup_read_u64,
4390 },
4391 {
4392 .name = "kmem.tcp.max_usage_in_bytes",
4393 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4394 .write = mem_cgroup_reset,
4395 .read_u64 = mem_cgroup_read_u64,
4396 },
6bc10349 4397 { }, /* terminate */
af36f906 4398};
8c7c6e34 4399
73f576c0
JW
4400/*
4401 * Private memory cgroup IDR
4402 *
4403 * Swap-out records and page cache shadow entries need to store memcg
4404 * references in constrained space, so we maintain an ID space that is
4405 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4406 * memory-controlled cgroups to 64k.
4407 *
4408 * However, there usually are many references to the oflline CSS after
4409 * the cgroup has been destroyed, such as page cache or reclaimable
4410 * slab objects, that don't need to hang on to the ID. We want to keep
4411 * those dead CSS from occupying IDs, or we might quickly exhaust the
4412 * relatively small ID space and prevent the creation of new cgroups
4413 * even when there are much fewer than 64k cgroups - possibly none.
4414 *
4415 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4416 * be freed and recycled when it's no longer needed, which is usually
4417 * when the CSS is offlined.
4418 *
4419 * The only exception to that are records of swapped out tmpfs/shmem
4420 * pages that need to be attributed to live ancestors on swapin. But
4421 * those references are manageable from userspace.
4422 */
4423
4424static DEFINE_IDR(mem_cgroup_idr);
4425
7e97de0b
KT
4426static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4427{
4428 if (memcg->id.id > 0) {
4429 idr_remove(&mem_cgroup_idr, memcg->id.id);
4430 memcg->id.id = 0;
4431 }
4432}
4433
615d66c3 4434static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4435{
1c2d479a 4436 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4437}
4438
615d66c3 4439static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4440{
1c2d479a 4441 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4442 mem_cgroup_id_remove(memcg);
73f576c0
JW
4443
4444 /* Memcg ID pins CSS */
4445 css_put(&memcg->css);
4446 }
4447}
4448
615d66c3
VD
4449static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4450{
4451 mem_cgroup_id_get_many(memcg, 1);
4452}
4453
4454static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4455{
4456 mem_cgroup_id_put_many(memcg, 1);
4457}
4458
73f576c0
JW
4459/**
4460 * mem_cgroup_from_id - look up a memcg from a memcg id
4461 * @id: the memcg id to look up
4462 *
4463 * Caller must hold rcu_read_lock().
4464 */
4465struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4466{
4467 WARN_ON_ONCE(!rcu_read_lock_held());
4468 return idr_find(&mem_cgroup_idr, id);
4469}
4470
ef8f2327 4471static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4472{
4473 struct mem_cgroup_per_node *pn;
ef8f2327 4474 int tmp = node;
1ecaab2b
KH
4475 /*
4476 * This routine is called against possible nodes.
4477 * But it's BUG to call kmalloc() against offline node.
4478 *
4479 * TODO: this routine can waste much memory for nodes which will
4480 * never be onlined. It's better to use memory hotplug callback
4481 * function.
4482 */
41e3355d
KH
4483 if (!node_state(node, N_NORMAL_MEMORY))
4484 tmp = -1;
17295c88 4485 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4486 if (!pn)
4487 return 1;
1ecaab2b 4488
815744d7
JW
4489 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4490 if (!pn->lruvec_stat_local) {
4491 kfree(pn);
4492 return 1;
4493 }
4494
a983b5eb
JW
4495 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4496 if (!pn->lruvec_stat_cpu) {
815744d7 4497 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4498 kfree(pn);
4499 return 1;
4500 }
4501
ef8f2327
MG
4502 lruvec_init(&pn->lruvec);
4503 pn->usage_in_excess = 0;
4504 pn->on_tree = false;
4505 pn->memcg = memcg;
4506
54f72fe0 4507 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4508 return 0;
4509}
4510
ef8f2327 4511static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4512{
00f3ca2c
JW
4513 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4514
4eaf431f
MH
4515 if (!pn)
4516 return;
4517
a983b5eb 4518 free_percpu(pn->lruvec_stat_cpu);
815744d7 4519 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4520 kfree(pn);
1ecaab2b
KH
4521}
4522
40e952f9 4523static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4524{
c8b2a36f 4525 int node;
59927fb9 4526
c8b2a36f 4527 for_each_node(node)
ef8f2327 4528 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4529 free_percpu(memcg->vmstats_percpu);
815744d7 4530 free_percpu(memcg->vmstats_local);
8ff69e2c 4531 kfree(memcg);
59927fb9 4532}
3afe36b1 4533
40e952f9
TE
4534static void mem_cgroup_free(struct mem_cgroup *memcg)
4535{
4536 memcg_wb_domain_exit(memcg);
4537 __mem_cgroup_free(memcg);
4538}
4539
0b8f73e1 4540static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4541{
d142e3e6 4542 struct mem_cgroup *memcg;
b9726c26 4543 unsigned int size;
6d12e2d8 4544 int node;
8cdea7c0 4545
0b8f73e1
JW
4546 size = sizeof(struct mem_cgroup);
4547 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4548
4549 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4550 if (!memcg)
0b8f73e1
JW
4551 return NULL;
4552
73f576c0
JW
4553 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4554 1, MEM_CGROUP_ID_MAX,
4555 GFP_KERNEL);
4556 if (memcg->id.id < 0)
4557 goto fail;
4558
815744d7
JW
4559 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4560 if (!memcg->vmstats_local)
4561 goto fail;
4562
871789d4
CD
4563 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4564 if (!memcg->vmstats_percpu)
0b8f73e1 4565 goto fail;
78fb7466 4566
3ed28fa1 4567 for_each_node(node)
ef8f2327 4568 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4569 goto fail;
f64c3f54 4570
0b8f73e1
JW
4571 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4572 goto fail;
28dbc4b6 4573
f7e1cb6e 4574 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4575 memcg->last_scanned_node = MAX_NUMNODES;
4576 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4577 mutex_init(&memcg->thresholds_lock);
4578 spin_lock_init(&memcg->move_lock);
70ddf637 4579 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4580 INIT_LIST_HEAD(&memcg->event_list);
4581 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4582 memcg->socket_pressure = jiffies;
84c07d11 4583#ifdef CONFIG_MEMCG_KMEM
900a38f0 4584 memcg->kmemcg_id = -1;
900a38f0 4585#endif
52ebea74
TH
4586#ifdef CONFIG_CGROUP_WRITEBACK
4587 INIT_LIST_HEAD(&memcg->cgwb_list);
4588#endif
73f576c0 4589 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4590 return memcg;
4591fail:
7e97de0b 4592 mem_cgroup_id_remove(memcg);
40e952f9 4593 __mem_cgroup_free(memcg);
0b8f73e1 4594 return NULL;
d142e3e6
GC
4595}
4596
0b8f73e1
JW
4597static struct cgroup_subsys_state * __ref
4598mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4599{
0b8f73e1
JW
4600 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4601 struct mem_cgroup *memcg;
4602 long error = -ENOMEM;
d142e3e6 4603
0b8f73e1
JW
4604 memcg = mem_cgroup_alloc();
4605 if (!memcg)
4606 return ERR_PTR(error);
d142e3e6 4607
0b8f73e1
JW
4608 memcg->high = PAGE_COUNTER_MAX;
4609 memcg->soft_limit = PAGE_COUNTER_MAX;
4610 if (parent) {
4611 memcg->swappiness = mem_cgroup_swappiness(parent);
4612 memcg->oom_kill_disable = parent->oom_kill_disable;
4613 }
4614 if (parent && parent->use_hierarchy) {
4615 memcg->use_hierarchy = true;
3e32cb2e 4616 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4617 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4618 page_counter_init(&memcg->memsw, &parent->memsw);
4619 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4620 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4621 } else {
3e32cb2e 4622 page_counter_init(&memcg->memory, NULL);
37e84351 4623 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4624 page_counter_init(&memcg->memsw, NULL);
4625 page_counter_init(&memcg->kmem, NULL);
0db15298 4626 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4627 /*
4628 * Deeper hierachy with use_hierarchy == false doesn't make
4629 * much sense so let cgroup subsystem know about this
4630 * unfortunate state in our controller.
4631 */
d142e3e6 4632 if (parent != root_mem_cgroup)
073219e9 4633 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4634 }
d6441637 4635
0b8f73e1
JW
4636 /* The following stuff does not apply to the root */
4637 if (!parent) {
4638 root_mem_cgroup = memcg;
4639 return &memcg->css;
4640 }
4641
b313aeee 4642 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4643 if (error)
4644 goto fail;
127424c8 4645
f7e1cb6e 4646 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4647 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4648
0b8f73e1
JW
4649 return &memcg->css;
4650fail:
7e97de0b 4651 mem_cgroup_id_remove(memcg);
0b8f73e1 4652 mem_cgroup_free(memcg);
ea3a9645 4653 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4654}
4655
73f576c0 4656static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4657{
58fa2a55
VD
4658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4659
0a4465d3
KT
4660 /*
4661 * A memcg must be visible for memcg_expand_shrinker_maps()
4662 * by the time the maps are allocated. So, we allocate maps
4663 * here, when for_each_mem_cgroup() can't skip it.
4664 */
4665 if (memcg_alloc_shrinker_maps(memcg)) {
4666 mem_cgroup_id_remove(memcg);
4667 return -ENOMEM;
4668 }
4669
73f576c0 4670 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4671 refcount_set(&memcg->id.ref, 1);
73f576c0 4672 css_get(css);
2f7dd7a4 4673 return 0;
8cdea7c0
BS
4674}
4675
eb95419b 4676static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4677{
eb95419b 4678 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4679 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4680
4681 /*
4682 * Unregister events and notify userspace.
4683 * Notify userspace about cgroup removing only after rmdir of cgroup
4684 * directory to avoid race between userspace and kernelspace.
4685 */
fba94807
TH
4686 spin_lock(&memcg->event_list_lock);
4687 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4688 list_del_init(&event->list);
4689 schedule_work(&event->remove);
4690 }
fba94807 4691 spin_unlock(&memcg->event_list_lock);
ec64f515 4692
bf8d5d52 4693 page_counter_set_min(&memcg->memory, 0);
23067153 4694 page_counter_set_low(&memcg->memory, 0);
63677c74 4695
567e9ab2 4696 memcg_offline_kmem(memcg);
52ebea74 4697 wb_memcg_offline(memcg);
73f576c0 4698
591edfb1
RG
4699 drain_all_stock(memcg);
4700
73f576c0 4701 mem_cgroup_id_put(memcg);
df878fb0
KH
4702}
4703
6df38689
VD
4704static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4705{
4706 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4707
4708 invalidate_reclaim_iterators(memcg);
4709}
4710
eb95419b 4711static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4712{
eb95419b 4713 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4714
f7e1cb6e 4715 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4716 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4717
0db15298 4718 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4719 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4720
0b8f73e1
JW
4721 vmpressure_cleanup(&memcg->vmpressure);
4722 cancel_work_sync(&memcg->high_work);
4723 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4724 memcg_free_shrinker_maps(memcg);
d886f4e4 4725 memcg_free_kmem(memcg);
0b8f73e1 4726 mem_cgroup_free(memcg);
8cdea7c0
BS
4727}
4728
1ced953b
TH
4729/**
4730 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4731 * @css: the target css
4732 *
4733 * Reset the states of the mem_cgroup associated with @css. This is
4734 * invoked when the userland requests disabling on the default hierarchy
4735 * but the memcg is pinned through dependency. The memcg should stop
4736 * applying policies and should revert to the vanilla state as it may be
4737 * made visible again.
4738 *
4739 * The current implementation only resets the essential configurations.
4740 * This needs to be expanded to cover all the visible parts.
4741 */
4742static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4743{
4744 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4745
bbec2e15
RG
4746 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4747 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4748 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4749 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4750 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4751 page_counter_set_min(&memcg->memory, 0);
23067153 4752 page_counter_set_low(&memcg->memory, 0);
241994ed 4753 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4754 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4755 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4756}
4757
02491447 4758#ifdef CONFIG_MMU
7dc74be0 4759/* Handlers for move charge at task migration. */
854ffa8d 4760static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4761{
05b84301 4762 int ret;
9476db97 4763
d0164adc
MG
4764 /* Try a single bulk charge without reclaim first, kswapd may wake */
4765 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4766 if (!ret) {
854ffa8d 4767 mc.precharge += count;
854ffa8d
DN
4768 return ret;
4769 }
9476db97 4770
3674534b 4771 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4772 while (count--) {
3674534b 4773 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4774 if (ret)
38c5d72f 4775 return ret;
854ffa8d 4776 mc.precharge++;
9476db97 4777 cond_resched();
854ffa8d 4778 }
9476db97 4779 return 0;
4ffef5fe
DN
4780}
4781
4ffef5fe
DN
4782union mc_target {
4783 struct page *page;
02491447 4784 swp_entry_t ent;
4ffef5fe
DN
4785};
4786
4ffef5fe 4787enum mc_target_type {
8d32ff84 4788 MC_TARGET_NONE = 0,
4ffef5fe 4789 MC_TARGET_PAGE,
02491447 4790 MC_TARGET_SWAP,
c733a828 4791 MC_TARGET_DEVICE,
4ffef5fe
DN
4792};
4793
90254a65
DN
4794static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4795 unsigned long addr, pte_t ptent)
4ffef5fe 4796{
c733a828 4797 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4798
90254a65
DN
4799 if (!page || !page_mapped(page))
4800 return NULL;
4801 if (PageAnon(page)) {
1dfab5ab 4802 if (!(mc.flags & MOVE_ANON))
90254a65 4803 return NULL;
1dfab5ab
JW
4804 } else {
4805 if (!(mc.flags & MOVE_FILE))
4806 return NULL;
4807 }
90254a65
DN
4808 if (!get_page_unless_zero(page))
4809 return NULL;
4810
4811 return page;
4812}
4813
c733a828 4814#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4815static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4816 pte_t ptent, swp_entry_t *entry)
90254a65 4817{
90254a65
DN
4818 struct page *page = NULL;
4819 swp_entry_t ent = pte_to_swp_entry(ptent);
4820
1dfab5ab 4821 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4822 return NULL;
c733a828
JG
4823
4824 /*
4825 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4826 * a device and because they are not accessible by CPU they are store
4827 * as special swap entry in the CPU page table.
4828 */
4829 if (is_device_private_entry(ent)) {
4830 page = device_private_entry_to_page(ent);
4831 /*
4832 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4833 * a refcount of 1 when free (unlike normal page)
4834 */
4835 if (!page_ref_add_unless(page, 1, 1))
4836 return NULL;
4837 return page;
4838 }
4839
4b91355e
KH
4840 /*
4841 * Because lookup_swap_cache() updates some statistics counter,
4842 * we call find_get_page() with swapper_space directly.
4843 */
f6ab1f7f 4844 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4845 if (do_memsw_account())
90254a65
DN
4846 entry->val = ent.val;
4847
4848 return page;
4849}
4b91355e
KH
4850#else
4851static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4852 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4853{
4854 return NULL;
4855}
4856#endif
90254a65 4857
87946a72
DN
4858static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4859 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4860{
4861 struct page *page = NULL;
87946a72
DN
4862 struct address_space *mapping;
4863 pgoff_t pgoff;
4864
4865 if (!vma->vm_file) /* anonymous vma */
4866 return NULL;
1dfab5ab 4867 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4868 return NULL;
4869
87946a72 4870 mapping = vma->vm_file->f_mapping;
0661a336 4871 pgoff = linear_page_index(vma, addr);
87946a72
DN
4872
4873 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4874#ifdef CONFIG_SWAP
4875 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4876 if (shmem_mapping(mapping)) {
4877 page = find_get_entry(mapping, pgoff);
3159f943 4878 if (xa_is_value(page)) {
139b6a6f 4879 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4880 if (do_memsw_account())
139b6a6f 4881 *entry = swp;
f6ab1f7f
HY
4882 page = find_get_page(swap_address_space(swp),
4883 swp_offset(swp));
139b6a6f
JW
4884 }
4885 } else
4886 page = find_get_page(mapping, pgoff);
4887#else
4888 page = find_get_page(mapping, pgoff);
aa3b1895 4889#endif
87946a72
DN
4890 return page;
4891}
4892
b1b0deab
CG
4893/**
4894 * mem_cgroup_move_account - move account of the page
4895 * @page: the page
25843c2b 4896 * @compound: charge the page as compound or small page
b1b0deab
CG
4897 * @from: mem_cgroup which the page is moved from.
4898 * @to: mem_cgroup which the page is moved to. @from != @to.
4899 *
3ac808fd 4900 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4901 *
4902 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4903 * from old cgroup.
4904 */
4905static int mem_cgroup_move_account(struct page *page,
f627c2f5 4906 bool compound,
b1b0deab
CG
4907 struct mem_cgroup *from,
4908 struct mem_cgroup *to)
4909{
4910 unsigned long flags;
f627c2f5 4911 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4912 int ret;
c4843a75 4913 bool anon;
b1b0deab
CG
4914
4915 VM_BUG_ON(from == to);
4916 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4917 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4918
4919 /*
6a93ca8f 4920 * Prevent mem_cgroup_migrate() from looking at
45637bab 4921 * page->mem_cgroup of its source page while we change it.
b1b0deab 4922 */
f627c2f5 4923 ret = -EBUSY;
b1b0deab
CG
4924 if (!trylock_page(page))
4925 goto out;
4926
4927 ret = -EINVAL;
4928 if (page->mem_cgroup != from)
4929 goto out_unlock;
4930
c4843a75
GT
4931 anon = PageAnon(page);
4932
b1b0deab
CG
4933 spin_lock_irqsave(&from->move_lock, flags);
4934
c4843a75 4935 if (!anon && page_mapped(page)) {
c9019e9b
JW
4936 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4937 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4938 }
4939
c4843a75
GT
4940 /*
4941 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4942 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4943 * So mapping should be stable for dirty pages.
4944 */
4945 if (!anon && PageDirty(page)) {
4946 struct address_space *mapping = page_mapping(page);
4947
4948 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4949 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4950 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4951 }
4952 }
4953
b1b0deab 4954 if (PageWriteback(page)) {
c9019e9b
JW
4955 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4956 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4957 }
4958
4959 /*
4960 * It is safe to change page->mem_cgroup here because the page
4961 * is referenced, charged, and isolated - we can't race with
4962 * uncharging, charging, migration, or LRU putback.
4963 */
4964
4965 /* caller should have done css_get */
4966 page->mem_cgroup = to;
4967 spin_unlock_irqrestore(&from->move_lock, flags);
4968
4969 ret = 0;
4970
4971 local_irq_disable();
f627c2f5 4972 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4973 memcg_check_events(to, page);
f627c2f5 4974 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4975 memcg_check_events(from, page);
4976 local_irq_enable();
4977out_unlock:
4978 unlock_page(page);
4979out:
4980 return ret;
4981}
4982
7cf7806c
LR
4983/**
4984 * get_mctgt_type - get target type of moving charge
4985 * @vma: the vma the pte to be checked belongs
4986 * @addr: the address corresponding to the pte to be checked
4987 * @ptent: the pte to be checked
4988 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4989 *
4990 * Returns
4991 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4992 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4993 * move charge. if @target is not NULL, the page is stored in target->page
4994 * with extra refcnt got(Callers should handle it).
4995 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4996 * target for charge migration. if @target is not NULL, the entry is stored
4997 * in target->ent.
df6ad698
JG
4998 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4999 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
5000 * For now we such page is charge like a regular page would be as for all
5001 * intent and purposes it is just special memory taking the place of a
5002 * regular page.
c733a828
JG
5003 *
5004 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5005 *
5006 * Called with pte lock held.
5007 */
5008
8d32ff84 5009static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5010 unsigned long addr, pte_t ptent, union mc_target *target)
5011{
5012 struct page *page = NULL;
8d32ff84 5013 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5014 swp_entry_t ent = { .val = 0 };
5015
5016 if (pte_present(ptent))
5017 page = mc_handle_present_pte(vma, addr, ptent);
5018 else if (is_swap_pte(ptent))
48406ef8 5019 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5020 else if (pte_none(ptent))
87946a72 5021 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5022
5023 if (!page && !ent.val)
8d32ff84 5024 return ret;
02491447 5025 if (page) {
02491447 5026 /*
0a31bc97 5027 * Do only loose check w/o serialization.
1306a85a 5028 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5029 * not under LRU exclusion.
02491447 5030 */
1306a85a 5031 if (page->mem_cgroup == mc.from) {
02491447 5032 ret = MC_TARGET_PAGE;
df6ad698
JG
5033 if (is_device_private_page(page) ||
5034 is_device_public_page(page))
c733a828 5035 ret = MC_TARGET_DEVICE;
02491447
DN
5036 if (target)
5037 target->page = page;
5038 }
5039 if (!ret || !target)
5040 put_page(page);
5041 }
3e14a57b
HY
5042 /*
5043 * There is a swap entry and a page doesn't exist or isn't charged.
5044 * But we cannot move a tail-page in a THP.
5045 */
5046 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5047 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5048 ret = MC_TARGET_SWAP;
5049 if (target)
5050 target->ent = ent;
4ffef5fe 5051 }
4ffef5fe
DN
5052 return ret;
5053}
5054
12724850
NH
5055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5056/*
d6810d73
HY
5057 * We don't consider PMD mapped swapping or file mapped pages because THP does
5058 * not support them for now.
12724850
NH
5059 * Caller should make sure that pmd_trans_huge(pmd) is true.
5060 */
5061static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5062 unsigned long addr, pmd_t pmd, union mc_target *target)
5063{
5064 struct page *page = NULL;
12724850
NH
5065 enum mc_target_type ret = MC_TARGET_NONE;
5066
84c3fc4e
ZY
5067 if (unlikely(is_swap_pmd(pmd))) {
5068 VM_BUG_ON(thp_migration_supported() &&
5069 !is_pmd_migration_entry(pmd));
5070 return ret;
5071 }
12724850 5072 page = pmd_page(pmd);
309381fe 5073 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5074 if (!(mc.flags & MOVE_ANON))
12724850 5075 return ret;
1306a85a 5076 if (page->mem_cgroup == mc.from) {
12724850
NH
5077 ret = MC_TARGET_PAGE;
5078 if (target) {
5079 get_page(page);
5080 target->page = page;
5081 }
5082 }
5083 return ret;
5084}
5085#else
5086static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5087 unsigned long addr, pmd_t pmd, union mc_target *target)
5088{
5089 return MC_TARGET_NONE;
5090}
5091#endif
5092
4ffef5fe
DN
5093static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5094 unsigned long addr, unsigned long end,
5095 struct mm_walk *walk)
5096{
26bcd64a 5097 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5098 pte_t *pte;
5099 spinlock_t *ptl;
5100
b6ec57f4
KS
5101 ptl = pmd_trans_huge_lock(pmd, vma);
5102 if (ptl) {
c733a828
JG
5103 /*
5104 * Note their can not be MC_TARGET_DEVICE for now as we do not
5105 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5106 * MEMORY_DEVICE_PRIVATE but this might change.
5107 */
12724850
NH
5108 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5109 mc.precharge += HPAGE_PMD_NR;
bf929152 5110 spin_unlock(ptl);
1a5a9906 5111 return 0;
12724850 5112 }
03319327 5113
45f83cef
AA
5114 if (pmd_trans_unstable(pmd))
5115 return 0;
4ffef5fe
DN
5116 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5117 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5118 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5119 mc.precharge++; /* increment precharge temporarily */
5120 pte_unmap_unlock(pte - 1, ptl);
5121 cond_resched();
5122
7dc74be0
DN
5123 return 0;
5124}
5125
4ffef5fe
DN
5126static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5127{
5128 unsigned long precharge;
4ffef5fe 5129
26bcd64a
NH
5130 struct mm_walk mem_cgroup_count_precharge_walk = {
5131 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5132 .mm = mm,
5133 };
dfe076b0 5134 down_read(&mm->mmap_sem);
0247f3f4
JM
5135 walk_page_range(0, mm->highest_vm_end,
5136 &mem_cgroup_count_precharge_walk);
dfe076b0 5137 up_read(&mm->mmap_sem);
4ffef5fe
DN
5138
5139 precharge = mc.precharge;
5140 mc.precharge = 0;
5141
5142 return precharge;
5143}
5144
4ffef5fe
DN
5145static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5146{
dfe076b0
DN
5147 unsigned long precharge = mem_cgroup_count_precharge(mm);
5148
5149 VM_BUG_ON(mc.moving_task);
5150 mc.moving_task = current;
5151 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5152}
5153
dfe076b0
DN
5154/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5155static void __mem_cgroup_clear_mc(void)
4ffef5fe 5156{
2bd9bb20
KH
5157 struct mem_cgroup *from = mc.from;
5158 struct mem_cgroup *to = mc.to;
5159
4ffef5fe 5160 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5161 if (mc.precharge) {
00501b53 5162 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5163 mc.precharge = 0;
5164 }
5165 /*
5166 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5167 * we must uncharge here.
5168 */
5169 if (mc.moved_charge) {
00501b53 5170 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5171 mc.moved_charge = 0;
4ffef5fe 5172 }
483c30b5
DN
5173 /* we must fixup refcnts and charges */
5174 if (mc.moved_swap) {
483c30b5 5175 /* uncharge swap account from the old cgroup */
ce00a967 5176 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5177 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5178
615d66c3
VD
5179 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5180
05b84301 5181 /*
3e32cb2e
JW
5182 * we charged both to->memory and to->memsw, so we
5183 * should uncharge to->memory.
05b84301 5184 */
ce00a967 5185 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5186 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5187
615d66c3
VD
5188 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5189 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5190
483c30b5
DN
5191 mc.moved_swap = 0;
5192 }
dfe076b0
DN
5193 memcg_oom_recover(from);
5194 memcg_oom_recover(to);
5195 wake_up_all(&mc.waitq);
5196}
5197
5198static void mem_cgroup_clear_mc(void)
5199{
264a0ae1
TH
5200 struct mm_struct *mm = mc.mm;
5201
dfe076b0
DN
5202 /*
5203 * we must clear moving_task before waking up waiters at the end of
5204 * task migration.
5205 */
5206 mc.moving_task = NULL;
5207 __mem_cgroup_clear_mc();
2bd9bb20 5208 spin_lock(&mc.lock);
4ffef5fe
DN
5209 mc.from = NULL;
5210 mc.to = NULL;
264a0ae1 5211 mc.mm = NULL;
2bd9bb20 5212 spin_unlock(&mc.lock);
264a0ae1
TH
5213
5214 mmput(mm);
4ffef5fe
DN
5215}
5216
1f7dd3e5 5217static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5218{
1f7dd3e5 5219 struct cgroup_subsys_state *css;
eed67d75 5220 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5221 struct mem_cgroup *from;
4530eddb 5222 struct task_struct *leader, *p;
9f2115f9 5223 struct mm_struct *mm;
1dfab5ab 5224 unsigned long move_flags;
9f2115f9 5225 int ret = 0;
7dc74be0 5226
1f7dd3e5
TH
5227 /* charge immigration isn't supported on the default hierarchy */
5228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5229 return 0;
5230
4530eddb
TH
5231 /*
5232 * Multi-process migrations only happen on the default hierarchy
5233 * where charge immigration is not used. Perform charge
5234 * immigration if @tset contains a leader and whine if there are
5235 * multiple.
5236 */
5237 p = NULL;
1f7dd3e5 5238 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5239 WARN_ON_ONCE(p);
5240 p = leader;
1f7dd3e5 5241 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5242 }
5243 if (!p)
5244 return 0;
5245
1f7dd3e5
TH
5246 /*
5247 * We are now commited to this value whatever it is. Changes in this
5248 * tunable will only affect upcoming migrations, not the current one.
5249 * So we need to save it, and keep it going.
5250 */
5251 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5252 if (!move_flags)
5253 return 0;
5254
9f2115f9
TH
5255 from = mem_cgroup_from_task(p);
5256
5257 VM_BUG_ON(from == memcg);
5258
5259 mm = get_task_mm(p);
5260 if (!mm)
5261 return 0;
5262 /* We move charges only when we move a owner of the mm */
5263 if (mm->owner == p) {
5264 VM_BUG_ON(mc.from);
5265 VM_BUG_ON(mc.to);
5266 VM_BUG_ON(mc.precharge);
5267 VM_BUG_ON(mc.moved_charge);
5268 VM_BUG_ON(mc.moved_swap);
5269
5270 spin_lock(&mc.lock);
264a0ae1 5271 mc.mm = mm;
9f2115f9
TH
5272 mc.from = from;
5273 mc.to = memcg;
5274 mc.flags = move_flags;
5275 spin_unlock(&mc.lock);
5276 /* We set mc.moving_task later */
5277
5278 ret = mem_cgroup_precharge_mc(mm);
5279 if (ret)
5280 mem_cgroup_clear_mc();
264a0ae1
TH
5281 } else {
5282 mmput(mm);
7dc74be0
DN
5283 }
5284 return ret;
5285}
5286
1f7dd3e5 5287static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5288{
4e2f245d
JW
5289 if (mc.to)
5290 mem_cgroup_clear_mc();
7dc74be0
DN
5291}
5292
4ffef5fe
DN
5293static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5294 unsigned long addr, unsigned long end,
5295 struct mm_walk *walk)
7dc74be0 5296{
4ffef5fe 5297 int ret = 0;
26bcd64a 5298 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5299 pte_t *pte;
5300 spinlock_t *ptl;
12724850
NH
5301 enum mc_target_type target_type;
5302 union mc_target target;
5303 struct page *page;
4ffef5fe 5304
b6ec57f4
KS
5305 ptl = pmd_trans_huge_lock(pmd, vma);
5306 if (ptl) {
62ade86a 5307 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5308 spin_unlock(ptl);
12724850
NH
5309 return 0;
5310 }
5311 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5312 if (target_type == MC_TARGET_PAGE) {
5313 page = target.page;
5314 if (!isolate_lru_page(page)) {
f627c2f5 5315 if (!mem_cgroup_move_account(page, true,
1306a85a 5316 mc.from, mc.to)) {
12724850
NH
5317 mc.precharge -= HPAGE_PMD_NR;
5318 mc.moved_charge += HPAGE_PMD_NR;
5319 }
5320 putback_lru_page(page);
5321 }
5322 put_page(page);
c733a828
JG
5323 } else if (target_type == MC_TARGET_DEVICE) {
5324 page = target.page;
5325 if (!mem_cgroup_move_account(page, true,
5326 mc.from, mc.to)) {
5327 mc.precharge -= HPAGE_PMD_NR;
5328 mc.moved_charge += HPAGE_PMD_NR;
5329 }
5330 put_page(page);
12724850 5331 }
bf929152 5332 spin_unlock(ptl);
1a5a9906 5333 return 0;
12724850
NH
5334 }
5335
45f83cef
AA
5336 if (pmd_trans_unstable(pmd))
5337 return 0;
4ffef5fe
DN
5338retry:
5339 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5340 for (; addr != end; addr += PAGE_SIZE) {
5341 pte_t ptent = *(pte++);
c733a828 5342 bool device = false;
02491447 5343 swp_entry_t ent;
4ffef5fe
DN
5344
5345 if (!mc.precharge)
5346 break;
5347
8d32ff84 5348 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5349 case MC_TARGET_DEVICE:
5350 device = true;
5351 /* fall through */
4ffef5fe
DN
5352 case MC_TARGET_PAGE:
5353 page = target.page;
53f9263b
KS
5354 /*
5355 * We can have a part of the split pmd here. Moving it
5356 * can be done but it would be too convoluted so simply
5357 * ignore such a partial THP and keep it in original
5358 * memcg. There should be somebody mapping the head.
5359 */
5360 if (PageTransCompound(page))
5361 goto put;
c733a828 5362 if (!device && isolate_lru_page(page))
4ffef5fe 5363 goto put;
f627c2f5
KS
5364 if (!mem_cgroup_move_account(page, false,
5365 mc.from, mc.to)) {
4ffef5fe 5366 mc.precharge--;
854ffa8d
DN
5367 /* we uncharge from mc.from later. */
5368 mc.moved_charge++;
4ffef5fe 5369 }
c733a828
JG
5370 if (!device)
5371 putback_lru_page(page);
8d32ff84 5372put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5373 put_page(page);
5374 break;
02491447
DN
5375 case MC_TARGET_SWAP:
5376 ent = target.ent;
e91cbb42 5377 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5378 mc.precharge--;
483c30b5
DN
5379 /* we fixup refcnts and charges later. */
5380 mc.moved_swap++;
5381 }
02491447 5382 break;
4ffef5fe
DN
5383 default:
5384 break;
5385 }
5386 }
5387 pte_unmap_unlock(pte - 1, ptl);
5388 cond_resched();
5389
5390 if (addr != end) {
5391 /*
5392 * We have consumed all precharges we got in can_attach().
5393 * We try charge one by one, but don't do any additional
5394 * charges to mc.to if we have failed in charge once in attach()
5395 * phase.
5396 */
854ffa8d 5397 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5398 if (!ret)
5399 goto retry;
5400 }
5401
5402 return ret;
5403}
5404
264a0ae1 5405static void mem_cgroup_move_charge(void)
4ffef5fe 5406{
26bcd64a
NH
5407 struct mm_walk mem_cgroup_move_charge_walk = {
5408 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5409 .mm = mc.mm,
26bcd64a 5410 };
4ffef5fe
DN
5411
5412 lru_add_drain_all();
312722cb 5413 /*
81f8c3a4
JW
5414 * Signal lock_page_memcg() to take the memcg's move_lock
5415 * while we're moving its pages to another memcg. Then wait
5416 * for already started RCU-only updates to finish.
312722cb
JW
5417 */
5418 atomic_inc(&mc.from->moving_account);
5419 synchronize_rcu();
dfe076b0 5420retry:
264a0ae1 5421 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5422 /*
5423 * Someone who are holding the mmap_sem might be waiting in
5424 * waitq. So we cancel all extra charges, wake up all waiters,
5425 * and retry. Because we cancel precharges, we might not be able
5426 * to move enough charges, but moving charge is a best-effort
5427 * feature anyway, so it wouldn't be a big problem.
5428 */
5429 __mem_cgroup_clear_mc();
5430 cond_resched();
5431 goto retry;
5432 }
26bcd64a
NH
5433 /*
5434 * When we have consumed all precharges and failed in doing
5435 * additional charge, the page walk just aborts.
5436 */
0247f3f4
JM
5437 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5438
264a0ae1 5439 up_read(&mc.mm->mmap_sem);
312722cb 5440 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5441}
5442
264a0ae1 5443static void mem_cgroup_move_task(void)
67e465a7 5444{
264a0ae1
TH
5445 if (mc.to) {
5446 mem_cgroup_move_charge();
a433658c 5447 mem_cgroup_clear_mc();
264a0ae1 5448 }
67e465a7 5449}
5cfb80a7 5450#else /* !CONFIG_MMU */
1f7dd3e5 5451static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5452{
5453 return 0;
5454}
1f7dd3e5 5455static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5456{
5457}
264a0ae1 5458static void mem_cgroup_move_task(void)
5cfb80a7
DN
5459{
5460}
5461#endif
67e465a7 5462
f00baae7
TH
5463/*
5464 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5465 * to verify whether we're attached to the default hierarchy on each mount
5466 * attempt.
f00baae7 5467 */
eb95419b 5468static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5469{
5470 /*
aa6ec29b 5471 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5472 * guarantees that @root doesn't have any children, so turning it
5473 * on for the root memcg is enough.
5474 */
9e10a130 5475 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5476 root_mem_cgroup->use_hierarchy = true;
5477 else
5478 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5479}
5480
677dc973
CD
5481static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5482{
5483 if (value == PAGE_COUNTER_MAX)
5484 seq_puts(m, "max\n");
5485 else
5486 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5487
5488 return 0;
5489}
5490
241994ed
JW
5491static u64 memory_current_read(struct cgroup_subsys_state *css,
5492 struct cftype *cft)
5493{
f5fc3c5d
JW
5494 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5495
5496 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5497}
5498
bf8d5d52
RG
5499static int memory_min_show(struct seq_file *m, void *v)
5500{
677dc973
CD
5501 return seq_puts_memcg_tunable(m,
5502 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5503}
5504
5505static ssize_t memory_min_write(struct kernfs_open_file *of,
5506 char *buf, size_t nbytes, loff_t off)
5507{
5508 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5509 unsigned long min;
5510 int err;
5511
5512 buf = strstrip(buf);
5513 err = page_counter_memparse(buf, "max", &min);
5514 if (err)
5515 return err;
5516
5517 page_counter_set_min(&memcg->memory, min);
5518
5519 return nbytes;
5520}
5521
241994ed
JW
5522static int memory_low_show(struct seq_file *m, void *v)
5523{
677dc973
CD
5524 return seq_puts_memcg_tunable(m,
5525 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5526}
5527
5528static ssize_t memory_low_write(struct kernfs_open_file *of,
5529 char *buf, size_t nbytes, loff_t off)
5530{
5531 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5532 unsigned long low;
5533 int err;
5534
5535 buf = strstrip(buf);
d2973697 5536 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5537 if (err)
5538 return err;
5539
23067153 5540 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5541
5542 return nbytes;
5543}
5544
5545static int memory_high_show(struct seq_file *m, void *v)
5546{
677dc973 5547 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5548}
5549
5550static ssize_t memory_high_write(struct kernfs_open_file *of,
5551 char *buf, size_t nbytes, loff_t off)
5552{
5553 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5554 unsigned long nr_pages;
241994ed
JW
5555 unsigned long high;
5556 int err;
5557
5558 buf = strstrip(buf);
d2973697 5559 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5560 if (err)
5561 return err;
5562
5563 memcg->high = high;
5564
588083bb
JW
5565 nr_pages = page_counter_read(&memcg->memory);
5566 if (nr_pages > high)
5567 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5568 GFP_KERNEL, true);
5569
2529bb3a 5570 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5571 return nbytes;
5572}
5573
5574static int memory_max_show(struct seq_file *m, void *v)
5575{
677dc973
CD
5576 return seq_puts_memcg_tunable(m,
5577 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5578}
5579
5580static ssize_t memory_max_write(struct kernfs_open_file *of,
5581 char *buf, size_t nbytes, loff_t off)
5582{
5583 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5584 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5585 bool drained = false;
241994ed
JW
5586 unsigned long max;
5587 int err;
5588
5589 buf = strstrip(buf);
d2973697 5590 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5591 if (err)
5592 return err;
5593
bbec2e15 5594 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5595
5596 for (;;) {
5597 unsigned long nr_pages = page_counter_read(&memcg->memory);
5598
5599 if (nr_pages <= max)
5600 break;
5601
5602 if (signal_pending(current)) {
5603 err = -EINTR;
5604 break;
5605 }
5606
5607 if (!drained) {
5608 drain_all_stock(memcg);
5609 drained = true;
5610 continue;
5611 }
5612
5613 if (nr_reclaims) {
5614 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5615 GFP_KERNEL, true))
5616 nr_reclaims--;
5617 continue;
5618 }
5619
e27be240 5620 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5621 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5622 break;
5623 }
241994ed 5624
2529bb3a 5625 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5626 return nbytes;
5627}
5628
5629static int memory_events_show(struct seq_file *m, void *v)
5630{
aa9694bb 5631 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5632
e27be240
JW
5633 seq_printf(m, "low %lu\n",
5634 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5635 seq_printf(m, "high %lu\n",
5636 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5637 seq_printf(m, "max %lu\n",
5638 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5639 seq_printf(m, "oom %lu\n",
5640 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5641 seq_printf(m, "oom_kill %lu\n",
5642 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5643
5644 return 0;
5645}
5646
587d9f72
JW
5647static int memory_stat_show(struct seq_file *m, void *v)
5648{
aa9694bb 5649 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
587d9f72
JW
5650 int i;
5651
5652 /*
5653 * Provide statistics on the state of the memory subsystem as
5654 * well as cumulative event counters that show past behavior.
5655 *
5656 * This list is ordered following a combination of these gradients:
5657 * 1) generic big picture -> specifics and details
5658 * 2) reflecting userspace activity -> reflecting kernel heuristics
5659 *
5660 * Current memory state:
5661 */
5662
5663 seq_printf(m, "anon %llu\n",
42a30035 5664 (u64)memcg_page_state(memcg, MEMCG_RSS) * PAGE_SIZE);
587d9f72 5665 seq_printf(m, "file %llu\n",
42a30035 5666 (u64)memcg_page_state(memcg, MEMCG_CACHE) * PAGE_SIZE);
12580e4b 5667 seq_printf(m, "kernel_stack %llu\n",
42a30035 5668 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) * 1024);
27ee57c9 5669 seq_printf(m, "slab %llu\n",
42a30035
JW
5670 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
5671 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
5672 PAGE_SIZE);
b2807f07 5673 seq_printf(m, "sock %llu\n",
42a30035 5674 (u64)memcg_page_state(memcg, MEMCG_SOCK) * PAGE_SIZE);
587d9f72 5675
9a4caf1e 5676 seq_printf(m, "shmem %llu\n",
42a30035 5677 (u64)memcg_page_state(memcg, NR_SHMEM) * PAGE_SIZE);
587d9f72 5678 seq_printf(m, "file_mapped %llu\n",
42a30035 5679 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) * PAGE_SIZE);
587d9f72 5680 seq_printf(m, "file_dirty %llu\n",
42a30035 5681 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) * PAGE_SIZE);
587d9f72 5682 seq_printf(m, "file_writeback %llu\n",
42a30035 5683 (u64)memcg_page_state(memcg, NR_WRITEBACK) * PAGE_SIZE);
587d9f72 5684
1ff9e6e1
CD
5685 /*
5686 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5687 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5688 * arse because it requires migrating the work out of rmap to a place
5689 * where the page->mem_cgroup is set up and stable.
5690 */
5691 seq_printf(m, "anon_thp %llu\n",
42a30035 5692 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) * PAGE_SIZE);
1ff9e6e1 5693
8de7ecc6
SB
5694 for (i = 0; i < NR_LRU_LISTS; i++)
5695 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
5696 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
5697 PAGE_SIZE);
587d9f72 5698
27ee57c9 5699 seq_printf(m, "slab_reclaimable %llu\n",
42a30035
JW
5700 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
5701 PAGE_SIZE);
27ee57c9 5702 seq_printf(m, "slab_unreclaimable %llu\n",
42a30035
JW
5703 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
5704 PAGE_SIZE);
27ee57c9 5705
587d9f72
JW
5706 /* Accumulated memory events */
5707
42a30035
JW
5708 seq_printf(m, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
5709 seq_printf(m, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
587d9f72 5710
e9b257ed 5711 seq_printf(m, "workingset_refault %lu\n",
42a30035 5712 memcg_page_state(memcg, WORKINGSET_REFAULT));
e9b257ed 5713 seq_printf(m, "workingset_activate %lu\n",
42a30035 5714 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
e9b257ed 5715 seq_printf(m, "workingset_nodereclaim %lu\n",
42a30035
JW
5716 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
5717
5718 seq_printf(m, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
5719 seq_printf(m, "pgscan %lu\n", memcg_events(memcg, PGSCAN_KSWAPD) +
5720 memcg_events(memcg, PGSCAN_DIRECT));
5721 seq_printf(m, "pgsteal %lu\n", memcg_events(memcg, PGSTEAL_KSWAPD) +
5722 memcg_events(memcg, PGSTEAL_DIRECT));
5723 seq_printf(m, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
5724 seq_printf(m, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
5725 seq_printf(m, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
5726 seq_printf(m, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
2262185c 5727
1ff9e6e1 5728#ifdef CONFIG_TRANSPARENT_HUGEPAGE
42a30035
JW
5729 seq_printf(m, "thp_fault_alloc %lu\n",
5730 memcg_events(memcg, THP_FAULT_ALLOC));
1ff9e6e1 5731 seq_printf(m, "thp_collapse_alloc %lu\n",
42a30035 5732 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1ff9e6e1
CD
5733#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5734
587d9f72
JW
5735 return 0;
5736}
5737
3d8b38eb
RG
5738static int memory_oom_group_show(struct seq_file *m, void *v)
5739{
aa9694bb 5740 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5741
5742 seq_printf(m, "%d\n", memcg->oom_group);
5743
5744 return 0;
5745}
5746
5747static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5748 char *buf, size_t nbytes, loff_t off)
5749{
5750 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5751 int ret, oom_group;
5752
5753 buf = strstrip(buf);
5754 if (!buf)
5755 return -EINVAL;
5756
5757 ret = kstrtoint(buf, 0, &oom_group);
5758 if (ret)
5759 return ret;
5760
5761 if (oom_group != 0 && oom_group != 1)
5762 return -EINVAL;
5763
5764 memcg->oom_group = oom_group;
5765
5766 return nbytes;
5767}
5768
241994ed
JW
5769static struct cftype memory_files[] = {
5770 {
5771 .name = "current",
f5fc3c5d 5772 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5773 .read_u64 = memory_current_read,
5774 },
bf8d5d52
RG
5775 {
5776 .name = "min",
5777 .flags = CFTYPE_NOT_ON_ROOT,
5778 .seq_show = memory_min_show,
5779 .write = memory_min_write,
5780 },
241994ed
JW
5781 {
5782 .name = "low",
5783 .flags = CFTYPE_NOT_ON_ROOT,
5784 .seq_show = memory_low_show,
5785 .write = memory_low_write,
5786 },
5787 {
5788 .name = "high",
5789 .flags = CFTYPE_NOT_ON_ROOT,
5790 .seq_show = memory_high_show,
5791 .write = memory_high_write,
5792 },
5793 {
5794 .name = "max",
5795 .flags = CFTYPE_NOT_ON_ROOT,
5796 .seq_show = memory_max_show,
5797 .write = memory_max_write,
5798 },
5799 {
5800 .name = "events",
5801 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5802 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5803 .seq_show = memory_events_show,
5804 },
587d9f72
JW
5805 {
5806 .name = "stat",
5807 .flags = CFTYPE_NOT_ON_ROOT,
5808 .seq_show = memory_stat_show,
5809 },
3d8b38eb
RG
5810 {
5811 .name = "oom.group",
5812 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5813 .seq_show = memory_oom_group_show,
5814 .write = memory_oom_group_write,
5815 },
241994ed
JW
5816 { } /* terminate */
5817};
5818
073219e9 5819struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5820 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5821 .css_online = mem_cgroup_css_online,
92fb9748 5822 .css_offline = mem_cgroup_css_offline,
6df38689 5823 .css_released = mem_cgroup_css_released,
92fb9748 5824 .css_free = mem_cgroup_css_free,
1ced953b 5825 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5826 .can_attach = mem_cgroup_can_attach,
5827 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5828 .post_attach = mem_cgroup_move_task,
f00baae7 5829 .bind = mem_cgroup_bind,
241994ed
JW
5830 .dfl_cftypes = memory_files,
5831 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5832 .early_init = 0,
8cdea7c0 5833};
c077719b 5834
241994ed 5835/**
bf8d5d52 5836 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5837 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5838 * @memcg: the memory cgroup to check
5839 *
23067153
RG
5840 * WARNING: This function is not stateless! It can only be used as part
5841 * of a top-down tree iteration, not for isolated queries.
34c81057 5842 *
bf8d5d52
RG
5843 * Returns one of the following:
5844 * MEMCG_PROT_NONE: cgroup memory is not protected
5845 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5846 * an unprotected supply of reclaimable memory from other cgroups.
5847 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5848 *
bf8d5d52 5849 * @root is exclusive; it is never protected when looked at directly
34c81057 5850 *
bf8d5d52
RG
5851 * To provide a proper hierarchical behavior, effective memory.min/low values
5852 * are used. Below is the description of how effective memory.low is calculated.
5853 * Effective memory.min values is calculated in the same way.
34c81057 5854 *
23067153
RG
5855 * Effective memory.low is always equal or less than the original memory.low.
5856 * If there is no memory.low overcommittment (which is always true for
5857 * top-level memory cgroups), these two values are equal.
5858 * Otherwise, it's a part of parent's effective memory.low,
5859 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5860 * memory.low usages, where memory.low usage is the size of actually
5861 * protected memory.
34c81057 5862 *
23067153
RG
5863 * low_usage
5864 * elow = min( memory.low, parent->elow * ------------------ ),
5865 * siblings_low_usage
34c81057 5866 *
23067153
RG
5867 * | memory.current, if memory.current < memory.low
5868 * low_usage = |
82ede7ee 5869 * | 0, otherwise.
34c81057 5870 *
23067153
RG
5871 *
5872 * Such definition of the effective memory.low provides the expected
5873 * hierarchical behavior: parent's memory.low value is limiting
5874 * children, unprotected memory is reclaimed first and cgroups,
5875 * which are not using their guarantee do not affect actual memory
5876 * distribution.
5877 *
5878 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5879 *
5880 * A A/memory.low = 2G, A/memory.current = 6G
5881 * //\\
5882 * BC DE B/memory.low = 3G B/memory.current = 2G
5883 * C/memory.low = 1G C/memory.current = 2G
5884 * D/memory.low = 0 D/memory.current = 2G
5885 * E/memory.low = 10G E/memory.current = 0
5886 *
5887 * and the memory pressure is applied, the following memory distribution
5888 * is expected (approximately):
5889 *
5890 * A/memory.current = 2G
5891 *
5892 * B/memory.current = 1.3G
5893 * C/memory.current = 0.6G
5894 * D/memory.current = 0
5895 * E/memory.current = 0
5896 *
5897 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5898 * (see propagate_protected_usage()), as well as recursive calculation of
5899 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5900 * path for each memory cgroup top-down from the reclaim,
5901 * it's possible to optimize this part, and save calculated elow
5902 * for next usage. This part is intentionally racy, but it's ok,
5903 * as memory.low is a best-effort mechanism.
241994ed 5904 */
bf8d5d52
RG
5905enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5906 struct mem_cgroup *memcg)
241994ed 5907{
23067153 5908 struct mem_cgroup *parent;
bf8d5d52
RG
5909 unsigned long emin, parent_emin;
5910 unsigned long elow, parent_elow;
5911 unsigned long usage;
23067153 5912
241994ed 5913 if (mem_cgroup_disabled())
bf8d5d52 5914 return MEMCG_PROT_NONE;
241994ed 5915
34c81057
SC
5916 if (!root)
5917 root = root_mem_cgroup;
5918 if (memcg == root)
bf8d5d52 5919 return MEMCG_PROT_NONE;
241994ed 5920
23067153 5921 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5922 if (!usage)
5923 return MEMCG_PROT_NONE;
5924
5925 emin = memcg->memory.min;
5926 elow = memcg->memory.low;
34c81057 5927
bf8d5d52 5928 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5929 /* No parent means a non-hierarchical mode on v1 memcg */
5930 if (!parent)
5931 return MEMCG_PROT_NONE;
5932
23067153
RG
5933 if (parent == root)
5934 goto exit;
5935
bf8d5d52
RG
5936 parent_emin = READ_ONCE(parent->memory.emin);
5937 emin = min(emin, parent_emin);
5938 if (emin && parent_emin) {
5939 unsigned long min_usage, siblings_min_usage;
5940
5941 min_usage = min(usage, memcg->memory.min);
5942 siblings_min_usage = atomic_long_read(
5943 &parent->memory.children_min_usage);
5944
5945 if (min_usage && siblings_min_usage)
5946 emin = min(emin, parent_emin * min_usage /
5947 siblings_min_usage);
5948 }
5949
23067153
RG
5950 parent_elow = READ_ONCE(parent->memory.elow);
5951 elow = min(elow, parent_elow);
bf8d5d52
RG
5952 if (elow && parent_elow) {
5953 unsigned long low_usage, siblings_low_usage;
23067153 5954
bf8d5d52
RG
5955 low_usage = min(usage, memcg->memory.low);
5956 siblings_low_usage = atomic_long_read(
5957 &parent->memory.children_low_usage);
23067153 5958
bf8d5d52
RG
5959 if (low_usage && siblings_low_usage)
5960 elow = min(elow, parent_elow * low_usage /
5961 siblings_low_usage);
5962 }
23067153 5963
23067153 5964exit:
bf8d5d52 5965 memcg->memory.emin = emin;
23067153 5966 memcg->memory.elow = elow;
bf8d5d52
RG
5967
5968 if (usage <= emin)
5969 return MEMCG_PROT_MIN;
5970 else if (usage <= elow)
5971 return MEMCG_PROT_LOW;
5972 else
5973 return MEMCG_PROT_NONE;
241994ed
JW
5974}
5975
00501b53
JW
5976/**
5977 * mem_cgroup_try_charge - try charging a page
5978 * @page: page to charge
5979 * @mm: mm context of the victim
5980 * @gfp_mask: reclaim mode
5981 * @memcgp: charged memcg return
25843c2b 5982 * @compound: charge the page as compound or small page
00501b53
JW
5983 *
5984 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5985 * pages according to @gfp_mask if necessary.
5986 *
5987 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5988 * Otherwise, an error code is returned.
5989 *
5990 * After page->mapping has been set up, the caller must finalize the
5991 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5992 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5993 */
5994int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5995 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5996 bool compound)
00501b53
JW
5997{
5998 struct mem_cgroup *memcg = NULL;
f627c2f5 5999 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6000 int ret = 0;
6001
6002 if (mem_cgroup_disabled())
6003 goto out;
6004
6005 if (PageSwapCache(page)) {
00501b53
JW
6006 /*
6007 * Every swap fault against a single page tries to charge the
6008 * page, bail as early as possible. shmem_unuse() encounters
6009 * already charged pages, too. The USED bit is protected by
6010 * the page lock, which serializes swap cache removal, which
6011 * in turn serializes uncharging.
6012 */
e993d905 6013 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6014 if (compound_head(page)->mem_cgroup)
00501b53 6015 goto out;
e993d905 6016
37e84351 6017 if (do_swap_account) {
e993d905
VD
6018 swp_entry_t ent = { .val = page_private(page), };
6019 unsigned short id = lookup_swap_cgroup_id(ent);
6020
6021 rcu_read_lock();
6022 memcg = mem_cgroup_from_id(id);
6023 if (memcg && !css_tryget_online(&memcg->css))
6024 memcg = NULL;
6025 rcu_read_unlock();
6026 }
00501b53
JW
6027 }
6028
00501b53
JW
6029 if (!memcg)
6030 memcg = get_mem_cgroup_from_mm(mm);
6031
6032 ret = try_charge(memcg, gfp_mask, nr_pages);
6033
6034 css_put(&memcg->css);
00501b53
JW
6035out:
6036 *memcgp = memcg;
6037 return ret;
6038}
6039
2cf85583
TH
6040int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6041 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6042 bool compound)
6043{
6044 struct mem_cgroup *memcg;
6045 int ret;
6046
6047 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6048 memcg = *memcgp;
6049 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6050 return ret;
6051}
6052
00501b53
JW
6053/**
6054 * mem_cgroup_commit_charge - commit a page charge
6055 * @page: page to charge
6056 * @memcg: memcg to charge the page to
6057 * @lrucare: page might be on LRU already
25843c2b 6058 * @compound: charge the page as compound or small page
00501b53
JW
6059 *
6060 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6061 * after page->mapping has been set up. This must happen atomically
6062 * as part of the page instantiation, i.e. under the page table lock
6063 * for anonymous pages, under the page lock for page and swap cache.
6064 *
6065 * In addition, the page must not be on the LRU during the commit, to
6066 * prevent racing with task migration. If it might be, use @lrucare.
6067 *
6068 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6069 */
6070void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6071 bool lrucare, bool compound)
00501b53 6072{
f627c2f5 6073 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6074
6075 VM_BUG_ON_PAGE(!page->mapping, page);
6076 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6077
6078 if (mem_cgroup_disabled())
6079 return;
6080 /*
6081 * Swap faults will attempt to charge the same page multiple
6082 * times. But reuse_swap_page() might have removed the page
6083 * from swapcache already, so we can't check PageSwapCache().
6084 */
6085 if (!memcg)
6086 return;
6087
6abb5a86
JW
6088 commit_charge(page, memcg, lrucare);
6089
6abb5a86 6090 local_irq_disable();
f627c2f5 6091 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6092 memcg_check_events(memcg, page);
6093 local_irq_enable();
00501b53 6094
7941d214 6095 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6096 swp_entry_t entry = { .val = page_private(page) };
6097 /*
6098 * The swap entry might not get freed for a long time,
6099 * let's not wait for it. The page already received a
6100 * memory+swap charge, drop the swap entry duplicate.
6101 */
38d8b4e6 6102 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6103 }
6104}
6105
6106/**
6107 * mem_cgroup_cancel_charge - cancel a page charge
6108 * @page: page to charge
6109 * @memcg: memcg to charge the page to
25843c2b 6110 * @compound: charge the page as compound or small page
00501b53
JW
6111 *
6112 * Cancel a charge transaction started by mem_cgroup_try_charge().
6113 */
f627c2f5
KS
6114void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6115 bool compound)
00501b53 6116{
f627c2f5 6117 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6118
6119 if (mem_cgroup_disabled())
6120 return;
6121 /*
6122 * Swap faults will attempt to charge the same page multiple
6123 * times. But reuse_swap_page() might have removed the page
6124 * from swapcache already, so we can't check PageSwapCache().
6125 */
6126 if (!memcg)
6127 return;
6128
00501b53
JW
6129 cancel_charge(memcg, nr_pages);
6130}
6131
a9d5adee
JG
6132struct uncharge_gather {
6133 struct mem_cgroup *memcg;
6134 unsigned long pgpgout;
6135 unsigned long nr_anon;
6136 unsigned long nr_file;
6137 unsigned long nr_kmem;
6138 unsigned long nr_huge;
6139 unsigned long nr_shmem;
6140 struct page *dummy_page;
6141};
6142
6143static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6144{
a9d5adee
JG
6145 memset(ug, 0, sizeof(*ug));
6146}
6147
6148static void uncharge_batch(const struct uncharge_gather *ug)
6149{
6150 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6151 unsigned long flags;
6152
a9d5adee
JG
6153 if (!mem_cgroup_is_root(ug->memcg)) {
6154 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6155 if (do_memsw_account())
a9d5adee
JG
6156 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6157 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6158 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6159 memcg_oom_recover(ug->memcg);
ce00a967 6160 }
747db954
JW
6161
6162 local_irq_save(flags);
c9019e9b
JW
6163 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6164 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6165 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6166 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6167 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6168 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6169 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6170 local_irq_restore(flags);
e8ea14cc 6171
a9d5adee
JG
6172 if (!mem_cgroup_is_root(ug->memcg))
6173 css_put_many(&ug->memcg->css, nr_pages);
6174}
6175
6176static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6177{
6178 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6179 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6180 !PageHWPoison(page) , page);
a9d5adee
JG
6181
6182 if (!page->mem_cgroup)
6183 return;
6184
6185 /*
6186 * Nobody should be changing or seriously looking at
6187 * page->mem_cgroup at this point, we have fully
6188 * exclusive access to the page.
6189 */
6190
6191 if (ug->memcg != page->mem_cgroup) {
6192 if (ug->memcg) {
6193 uncharge_batch(ug);
6194 uncharge_gather_clear(ug);
6195 }
6196 ug->memcg = page->mem_cgroup;
6197 }
6198
6199 if (!PageKmemcg(page)) {
6200 unsigned int nr_pages = 1;
6201
6202 if (PageTransHuge(page)) {
6203 nr_pages <<= compound_order(page);
6204 ug->nr_huge += nr_pages;
6205 }
6206 if (PageAnon(page))
6207 ug->nr_anon += nr_pages;
6208 else {
6209 ug->nr_file += nr_pages;
6210 if (PageSwapBacked(page))
6211 ug->nr_shmem += nr_pages;
6212 }
6213 ug->pgpgout++;
6214 } else {
6215 ug->nr_kmem += 1 << compound_order(page);
6216 __ClearPageKmemcg(page);
6217 }
6218
6219 ug->dummy_page = page;
6220 page->mem_cgroup = NULL;
747db954
JW
6221}
6222
6223static void uncharge_list(struct list_head *page_list)
6224{
a9d5adee 6225 struct uncharge_gather ug;
747db954 6226 struct list_head *next;
a9d5adee
JG
6227
6228 uncharge_gather_clear(&ug);
747db954 6229
8b592656
JW
6230 /*
6231 * Note that the list can be a single page->lru; hence the
6232 * do-while loop instead of a simple list_for_each_entry().
6233 */
747db954
JW
6234 next = page_list->next;
6235 do {
a9d5adee
JG
6236 struct page *page;
6237
747db954
JW
6238 page = list_entry(next, struct page, lru);
6239 next = page->lru.next;
6240
a9d5adee 6241 uncharge_page(page, &ug);
747db954
JW
6242 } while (next != page_list);
6243
a9d5adee
JG
6244 if (ug.memcg)
6245 uncharge_batch(&ug);
747db954
JW
6246}
6247
0a31bc97
JW
6248/**
6249 * mem_cgroup_uncharge - uncharge a page
6250 * @page: page to uncharge
6251 *
6252 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6253 * mem_cgroup_commit_charge().
6254 */
6255void mem_cgroup_uncharge(struct page *page)
6256{
a9d5adee
JG
6257 struct uncharge_gather ug;
6258
0a31bc97
JW
6259 if (mem_cgroup_disabled())
6260 return;
6261
747db954 6262 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6263 if (!page->mem_cgroup)
0a31bc97
JW
6264 return;
6265
a9d5adee
JG
6266 uncharge_gather_clear(&ug);
6267 uncharge_page(page, &ug);
6268 uncharge_batch(&ug);
747db954 6269}
0a31bc97 6270
747db954
JW
6271/**
6272 * mem_cgroup_uncharge_list - uncharge a list of page
6273 * @page_list: list of pages to uncharge
6274 *
6275 * Uncharge a list of pages previously charged with
6276 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6277 */
6278void mem_cgroup_uncharge_list(struct list_head *page_list)
6279{
6280 if (mem_cgroup_disabled())
6281 return;
0a31bc97 6282
747db954
JW
6283 if (!list_empty(page_list))
6284 uncharge_list(page_list);
0a31bc97
JW
6285}
6286
6287/**
6a93ca8f
JW
6288 * mem_cgroup_migrate - charge a page's replacement
6289 * @oldpage: currently circulating page
6290 * @newpage: replacement page
0a31bc97 6291 *
6a93ca8f
JW
6292 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6293 * be uncharged upon free.
0a31bc97
JW
6294 *
6295 * Both pages must be locked, @newpage->mapping must be set up.
6296 */
6a93ca8f 6297void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6298{
29833315 6299 struct mem_cgroup *memcg;
44b7a8d3
JW
6300 unsigned int nr_pages;
6301 bool compound;
d93c4130 6302 unsigned long flags;
0a31bc97
JW
6303
6304 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6305 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6306 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6307 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6308 newpage);
0a31bc97
JW
6309
6310 if (mem_cgroup_disabled())
6311 return;
6312
6313 /* Page cache replacement: new page already charged? */
1306a85a 6314 if (newpage->mem_cgroup)
0a31bc97
JW
6315 return;
6316
45637bab 6317 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6318 memcg = oldpage->mem_cgroup;
29833315 6319 if (!memcg)
0a31bc97
JW
6320 return;
6321
44b7a8d3
JW
6322 /* Force-charge the new page. The old one will be freed soon */
6323 compound = PageTransHuge(newpage);
6324 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6325
6326 page_counter_charge(&memcg->memory, nr_pages);
6327 if (do_memsw_account())
6328 page_counter_charge(&memcg->memsw, nr_pages);
6329 css_get_many(&memcg->css, nr_pages);
0a31bc97 6330
9cf7666a 6331 commit_charge(newpage, memcg, false);
44b7a8d3 6332
d93c4130 6333 local_irq_save(flags);
44b7a8d3
JW
6334 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6335 memcg_check_events(memcg, newpage);
d93c4130 6336 local_irq_restore(flags);
0a31bc97
JW
6337}
6338
ef12947c 6339DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6340EXPORT_SYMBOL(memcg_sockets_enabled_key);
6341
2d758073 6342void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6343{
6344 struct mem_cgroup *memcg;
6345
2d758073
JW
6346 if (!mem_cgroup_sockets_enabled)
6347 return;
6348
edbe69ef
RG
6349 /*
6350 * Socket cloning can throw us here with sk_memcg already
6351 * filled. It won't however, necessarily happen from
6352 * process context. So the test for root memcg given
6353 * the current task's memcg won't help us in this case.
6354 *
6355 * Respecting the original socket's memcg is a better
6356 * decision in this case.
6357 */
6358 if (sk->sk_memcg) {
6359 css_get(&sk->sk_memcg->css);
6360 return;
6361 }
6362
11092087
JW
6363 rcu_read_lock();
6364 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6365 if (memcg == root_mem_cgroup)
6366 goto out;
0db15298 6367 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6368 goto out;
f7e1cb6e 6369 if (css_tryget_online(&memcg->css))
11092087 6370 sk->sk_memcg = memcg;
f7e1cb6e 6371out:
11092087
JW
6372 rcu_read_unlock();
6373}
11092087 6374
2d758073 6375void mem_cgroup_sk_free(struct sock *sk)
11092087 6376{
2d758073
JW
6377 if (sk->sk_memcg)
6378 css_put(&sk->sk_memcg->css);
11092087
JW
6379}
6380
6381/**
6382 * mem_cgroup_charge_skmem - charge socket memory
6383 * @memcg: memcg to charge
6384 * @nr_pages: number of pages to charge
6385 *
6386 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6387 * @memcg's configured limit, %false if the charge had to be forced.
6388 */
6389bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6390{
f7e1cb6e 6391 gfp_t gfp_mask = GFP_KERNEL;
11092087 6392
f7e1cb6e 6393 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6394 struct page_counter *fail;
f7e1cb6e 6395
0db15298
JW
6396 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6397 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6398 return true;
6399 }
0db15298
JW
6400 page_counter_charge(&memcg->tcpmem, nr_pages);
6401 memcg->tcpmem_pressure = 1;
f7e1cb6e 6402 return false;
11092087 6403 }
d886f4e4 6404
f7e1cb6e
JW
6405 /* Don't block in the packet receive path */
6406 if (in_softirq())
6407 gfp_mask = GFP_NOWAIT;
6408
c9019e9b 6409 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6410
f7e1cb6e
JW
6411 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6412 return true;
6413
6414 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6415 return false;
6416}
6417
6418/**
6419 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6420 * @memcg: memcg to uncharge
6421 * @nr_pages: number of pages to uncharge
11092087
JW
6422 */
6423void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6424{
f7e1cb6e 6425 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6426 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6427 return;
6428 }
d886f4e4 6429
c9019e9b 6430 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6431
475d0487 6432 refill_stock(memcg, nr_pages);
11092087
JW
6433}
6434
f7e1cb6e
JW
6435static int __init cgroup_memory(char *s)
6436{
6437 char *token;
6438
6439 while ((token = strsep(&s, ",")) != NULL) {
6440 if (!*token)
6441 continue;
6442 if (!strcmp(token, "nosocket"))
6443 cgroup_memory_nosocket = true;
04823c83
VD
6444 if (!strcmp(token, "nokmem"))
6445 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6446 }
6447 return 0;
6448}
6449__setup("cgroup.memory=", cgroup_memory);
11092087 6450
2d11085e 6451/*
1081312f
MH
6452 * subsys_initcall() for memory controller.
6453 *
308167fc
SAS
6454 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6455 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6456 * basically everything that doesn't depend on a specific mem_cgroup structure
6457 * should be initialized from here.
2d11085e
MH
6458 */
6459static int __init mem_cgroup_init(void)
6460{
95a045f6
JW
6461 int cpu, node;
6462
84c07d11 6463#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6464 /*
6465 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6466 * so use a workqueue with limited concurrency to avoid stalling
6467 * all worker threads in case lots of cgroups are created and
6468 * destroyed simultaneously.
13583c3d 6469 */
17cc4dfe
TH
6470 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6471 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6472#endif
6473
308167fc
SAS
6474 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6475 memcg_hotplug_cpu_dead);
95a045f6
JW
6476
6477 for_each_possible_cpu(cpu)
6478 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6479 drain_local_stock);
6480
6481 for_each_node(node) {
6482 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6483
6484 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6485 node_online(node) ? node : NUMA_NO_NODE);
6486
ef8f2327 6487 rtpn->rb_root = RB_ROOT;
fa90b2fd 6488 rtpn->rb_rightmost = NULL;
ef8f2327 6489 spin_lock_init(&rtpn->lock);
95a045f6
JW
6490 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6491 }
6492
2d11085e
MH
6493 return 0;
6494}
6495subsys_initcall(mem_cgroup_init);
21afa38e
JW
6496
6497#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6498static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6499{
1c2d479a 6500 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6501 /*
6502 * The root cgroup cannot be destroyed, so it's refcount must
6503 * always be >= 1.
6504 */
6505 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6506 VM_BUG_ON(1);
6507 break;
6508 }
6509 memcg = parent_mem_cgroup(memcg);
6510 if (!memcg)
6511 memcg = root_mem_cgroup;
6512 }
6513 return memcg;
6514}
6515
21afa38e
JW
6516/**
6517 * mem_cgroup_swapout - transfer a memsw charge to swap
6518 * @page: page whose memsw charge to transfer
6519 * @entry: swap entry to move the charge to
6520 *
6521 * Transfer the memsw charge of @page to @entry.
6522 */
6523void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6524{
1f47b61f 6525 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6526 unsigned int nr_entries;
21afa38e
JW
6527 unsigned short oldid;
6528
6529 VM_BUG_ON_PAGE(PageLRU(page), page);
6530 VM_BUG_ON_PAGE(page_count(page), page);
6531
7941d214 6532 if (!do_memsw_account())
21afa38e
JW
6533 return;
6534
6535 memcg = page->mem_cgroup;
6536
6537 /* Readahead page, never charged */
6538 if (!memcg)
6539 return;
6540
1f47b61f
VD
6541 /*
6542 * In case the memcg owning these pages has been offlined and doesn't
6543 * have an ID allocated to it anymore, charge the closest online
6544 * ancestor for the swap instead and transfer the memory+swap charge.
6545 */
6546 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6547 nr_entries = hpage_nr_pages(page);
6548 /* Get references for the tail pages, too */
6549 if (nr_entries > 1)
6550 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6551 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6552 nr_entries);
21afa38e 6553 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6554 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6555
6556 page->mem_cgroup = NULL;
6557
6558 if (!mem_cgroup_is_root(memcg))
d6810d73 6559 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6560
1f47b61f
VD
6561 if (memcg != swap_memcg) {
6562 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6563 page_counter_charge(&swap_memcg->memsw, nr_entries);
6564 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6565 }
6566
ce9ce665
SAS
6567 /*
6568 * Interrupts should be disabled here because the caller holds the
b93b0163 6569 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6570 * important here to have the interrupts disabled because it is the
b93b0163 6571 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6572 */
6573 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6574 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6575 -nr_entries);
21afa38e 6576 memcg_check_events(memcg, page);
73f576c0
JW
6577
6578 if (!mem_cgroup_is_root(memcg))
d08afa14 6579 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6580}
6581
38d8b4e6
HY
6582/**
6583 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6584 * @page: page being added to swap
6585 * @entry: swap entry to charge
6586 *
38d8b4e6 6587 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6588 *
6589 * Returns 0 on success, -ENOMEM on failure.
6590 */
6591int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6592{
38d8b4e6 6593 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6594 struct page_counter *counter;
38d8b4e6 6595 struct mem_cgroup *memcg;
37e84351
VD
6596 unsigned short oldid;
6597
6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6599 return 0;
6600
6601 memcg = page->mem_cgroup;
6602
6603 /* Readahead page, never charged */
6604 if (!memcg)
6605 return 0;
6606
f3a53a3a
TH
6607 if (!entry.val) {
6608 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6609 return 0;
f3a53a3a 6610 }
bb98f2c5 6611
1f47b61f
VD
6612 memcg = mem_cgroup_id_get_online(memcg);
6613
37e84351 6614 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6615 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6616 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6617 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6618 mem_cgroup_id_put(memcg);
37e84351 6619 return -ENOMEM;
1f47b61f 6620 }
37e84351 6621
38d8b4e6
HY
6622 /* Get references for the tail pages, too */
6623 if (nr_pages > 1)
6624 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6625 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6626 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6627 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6628
37e84351
VD
6629 return 0;
6630}
6631
21afa38e 6632/**
38d8b4e6 6633 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6634 * @entry: swap entry to uncharge
38d8b4e6 6635 * @nr_pages: the amount of swap space to uncharge
21afa38e 6636 */
38d8b4e6 6637void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6638{
6639 struct mem_cgroup *memcg;
6640 unsigned short id;
6641
37e84351 6642 if (!do_swap_account)
21afa38e
JW
6643 return;
6644
38d8b4e6 6645 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6646 rcu_read_lock();
adbe427b 6647 memcg = mem_cgroup_from_id(id);
21afa38e 6648 if (memcg) {
37e84351
VD
6649 if (!mem_cgroup_is_root(memcg)) {
6650 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6651 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6652 else
38d8b4e6 6653 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6654 }
c9019e9b 6655 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6656 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6657 }
6658 rcu_read_unlock();
6659}
6660
d8b38438
VD
6661long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6662{
6663 long nr_swap_pages = get_nr_swap_pages();
6664
6665 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6666 return nr_swap_pages;
6667 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6668 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6669 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6670 page_counter_read(&memcg->swap));
6671 return nr_swap_pages;
6672}
6673
5ccc5aba
VD
6674bool mem_cgroup_swap_full(struct page *page)
6675{
6676 struct mem_cgroup *memcg;
6677
6678 VM_BUG_ON_PAGE(!PageLocked(page), page);
6679
6680 if (vm_swap_full())
6681 return true;
6682 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6683 return false;
6684
6685 memcg = page->mem_cgroup;
6686 if (!memcg)
6687 return false;
6688
6689 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6690 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6691 return true;
6692
6693 return false;
6694}
6695
21afa38e
JW
6696/* for remember boot option*/
6697#ifdef CONFIG_MEMCG_SWAP_ENABLED
6698static int really_do_swap_account __initdata = 1;
6699#else
6700static int really_do_swap_account __initdata;
6701#endif
6702
6703static int __init enable_swap_account(char *s)
6704{
6705 if (!strcmp(s, "1"))
6706 really_do_swap_account = 1;
6707 else if (!strcmp(s, "0"))
6708 really_do_swap_account = 0;
6709 return 1;
6710}
6711__setup("swapaccount=", enable_swap_account);
6712
37e84351
VD
6713static u64 swap_current_read(struct cgroup_subsys_state *css,
6714 struct cftype *cft)
6715{
6716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6717
6718 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6719}
6720
6721static int swap_max_show(struct seq_file *m, void *v)
6722{
677dc973
CD
6723 return seq_puts_memcg_tunable(m,
6724 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6725}
6726
6727static ssize_t swap_max_write(struct kernfs_open_file *of,
6728 char *buf, size_t nbytes, loff_t off)
6729{
6730 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6731 unsigned long max;
6732 int err;
6733
6734 buf = strstrip(buf);
6735 err = page_counter_memparse(buf, "max", &max);
6736 if (err)
6737 return err;
6738
be09102b 6739 xchg(&memcg->swap.max, max);
37e84351
VD
6740
6741 return nbytes;
6742}
6743
f3a53a3a
TH
6744static int swap_events_show(struct seq_file *m, void *v)
6745{
aa9694bb 6746 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6747
6748 seq_printf(m, "max %lu\n",
6749 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6750 seq_printf(m, "fail %lu\n",
6751 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6752
6753 return 0;
6754}
6755
37e84351
VD
6756static struct cftype swap_files[] = {
6757 {
6758 .name = "swap.current",
6759 .flags = CFTYPE_NOT_ON_ROOT,
6760 .read_u64 = swap_current_read,
6761 },
6762 {
6763 .name = "swap.max",
6764 .flags = CFTYPE_NOT_ON_ROOT,
6765 .seq_show = swap_max_show,
6766 .write = swap_max_write,
6767 },
f3a53a3a
TH
6768 {
6769 .name = "swap.events",
6770 .flags = CFTYPE_NOT_ON_ROOT,
6771 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6772 .seq_show = swap_events_show,
6773 },
37e84351
VD
6774 { } /* terminate */
6775};
6776
21afa38e
JW
6777static struct cftype memsw_cgroup_files[] = {
6778 {
6779 .name = "memsw.usage_in_bytes",
6780 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6781 .read_u64 = mem_cgroup_read_u64,
6782 },
6783 {
6784 .name = "memsw.max_usage_in_bytes",
6785 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6786 .write = mem_cgroup_reset,
6787 .read_u64 = mem_cgroup_read_u64,
6788 },
6789 {
6790 .name = "memsw.limit_in_bytes",
6791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6792 .write = mem_cgroup_write,
6793 .read_u64 = mem_cgroup_read_u64,
6794 },
6795 {
6796 .name = "memsw.failcnt",
6797 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6798 .write = mem_cgroup_reset,
6799 .read_u64 = mem_cgroup_read_u64,
6800 },
6801 { }, /* terminate */
6802};
6803
6804static int __init mem_cgroup_swap_init(void)
6805{
6806 if (!mem_cgroup_disabled() && really_do_swap_account) {
6807 do_swap_account = 1;
37e84351
VD
6808 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6809 swap_files));
21afa38e
JW
6810 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6811 memsw_cgroup_files));
6812 }
6813 return 0;
6814}
6815subsys_initcall(mem_cgroup_swap_init);
6816
6817#endif /* CONFIG_MEMCG_SWAP */