]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
cgroup: implement cftype->write()
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
15a4c835 530 return memcg->css.id;
34c00c31
LZ
531}
532
533static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
534{
535 struct cgroup_subsys_state *css;
536
7d699ddb 537 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
538 return mem_cgroup_from_css(css);
539}
540
e1aab161 541/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 542#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 543
e1aab161
GC
544void sock_update_memcg(struct sock *sk)
545{
376be5ff 546 if (mem_cgroup_sockets_enabled) {
e1aab161 547 struct mem_cgroup *memcg;
3f134619 548 struct cg_proto *cg_proto;
e1aab161
GC
549
550 BUG_ON(!sk->sk_prot->proto_cgroup);
551
f3f511e1
GC
552 /* Socket cloning can throw us here with sk_cgrp already
553 * filled. It won't however, necessarily happen from
554 * process context. So the test for root memcg given
555 * the current task's memcg won't help us in this case.
556 *
557 * Respecting the original socket's memcg is a better
558 * decision in this case.
559 */
560 if (sk->sk_cgrp) {
561 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 562 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
563 return;
564 }
565
e1aab161
GC
566 rcu_read_lock();
567 memcg = mem_cgroup_from_task(current);
3f134619 568 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 569 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
570 memcg_proto_active(cg_proto) &&
571 css_tryget_online(&memcg->css)) {
3f134619 572 sk->sk_cgrp = cg_proto;
e1aab161
GC
573 }
574 rcu_read_unlock();
575 }
576}
577EXPORT_SYMBOL(sock_update_memcg);
578
579void sock_release_memcg(struct sock *sk)
580{
376be5ff 581 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
582 struct mem_cgroup *memcg;
583 WARN_ON(!sk->sk_cgrp->memcg);
584 memcg = sk->sk_cgrp->memcg;
5347e5ae 585 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
586 }
587}
d1a4c0b3
GC
588
589struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
590{
591 if (!memcg || mem_cgroup_is_root(memcg))
592 return NULL;
593
2e685cad 594 return &memcg->tcp_mem;
d1a4c0b3
GC
595}
596EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 597
3f134619
GC
598static void disarm_sock_keys(struct mem_cgroup *memcg)
599{
2e685cad 600 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
601 return;
602 static_key_slow_dec(&memcg_socket_limit_enabled);
603}
604#else
605static void disarm_sock_keys(struct mem_cgroup *memcg)
606{
607}
608#endif
609
a8964b9b 610#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
611/*
612 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
613 * The main reason for not using cgroup id for this:
614 * this works better in sparse environments, where we have a lot of memcgs,
615 * but only a few kmem-limited. Or also, if we have, for instance, 200
616 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
617 * 200 entry array for that.
55007d84
GC
618 *
619 * The current size of the caches array is stored in
620 * memcg_limited_groups_array_size. It will double each time we have to
621 * increase it.
622 */
623static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
624int memcg_limited_groups_array_size;
625
55007d84
GC
626/*
627 * MIN_SIZE is different than 1, because we would like to avoid going through
628 * the alloc/free process all the time. In a small machine, 4 kmem-limited
629 * cgroups is a reasonable guess. In the future, it could be a parameter or
630 * tunable, but that is strictly not necessary.
631 *
b8627835 632 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
633 * this constant directly from cgroup, but it is understandable that this is
634 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 635 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
636 * increase ours as well if it increases.
637 */
638#define MEMCG_CACHES_MIN_SIZE 4
b8627835 639#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 640
d7f25f8a
GC
641/*
642 * A lot of the calls to the cache allocation functions are expected to be
643 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
644 * conditional to this static branch, we'll have to allow modules that does
645 * kmem_cache_alloc and the such to see this symbol as well
646 */
a8964b9b 647struct static_key memcg_kmem_enabled_key;
d7f25f8a 648EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
649
650static void disarm_kmem_keys(struct mem_cgroup *memcg)
651{
55007d84 652 if (memcg_kmem_is_active(memcg)) {
a8964b9b 653 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
654 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
655 }
bea207c8
GC
656 /*
657 * This check can't live in kmem destruction function,
658 * since the charges will outlive the cgroup
659 */
660 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
661}
662#else
663static void disarm_kmem_keys(struct mem_cgroup *memcg)
664{
665}
666#endif /* CONFIG_MEMCG_KMEM */
667
668static void disarm_static_keys(struct mem_cgroup *memcg)
669{
670 disarm_sock_keys(memcg);
671 disarm_kmem_keys(memcg);
672}
673
c0ff4b85 674static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 675
f64c3f54 676static struct mem_cgroup_per_zone *
c0ff4b85 677mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 678{
45cf7ebd 679 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 680 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
681}
682
c0ff4b85 683struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 684{
c0ff4b85 685 return &memcg->css;
d324236b
WF
686}
687
f64c3f54 688static struct mem_cgroup_per_zone *
c0ff4b85 689page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 690{
97a6c37b
JW
691 int nid = page_to_nid(page);
692 int zid = page_zonenum(page);
f64c3f54 693
c0ff4b85 694 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
695}
696
bb4cc1a8
AM
697static struct mem_cgroup_tree_per_zone *
698soft_limit_tree_node_zone(int nid, int zid)
699{
700 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
701}
702
703static struct mem_cgroup_tree_per_zone *
704soft_limit_tree_from_page(struct page *page)
705{
706 int nid = page_to_nid(page);
707 int zid = page_zonenum(page);
708
709 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
710}
711
712static void
713__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
714 struct mem_cgroup_per_zone *mz,
715 struct mem_cgroup_tree_per_zone *mctz,
716 unsigned long long new_usage_in_excess)
717{
718 struct rb_node **p = &mctz->rb_root.rb_node;
719 struct rb_node *parent = NULL;
720 struct mem_cgroup_per_zone *mz_node;
721
722 if (mz->on_tree)
723 return;
724
725 mz->usage_in_excess = new_usage_in_excess;
726 if (!mz->usage_in_excess)
727 return;
728 while (*p) {
729 parent = *p;
730 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
731 tree_node);
732 if (mz->usage_in_excess < mz_node->usage_in_excess)
733 p = &(*p)->rb_left;
734 /*
735 * We can't avoid mem cgroups that are over their soft
736 * limit by the same amount
737 */
738 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
739 p = &(*p)->rb_right;
740 }
741 rb_link_node(&mz->tree_node, parent, p);
742 rb_insert_color(&mz->tree_node, &mctz->rb_root);
743 mz->on_tree = true;
744}
745
746static void
747__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
748 struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
750{
751 if (!mz->on_tree)
752 return;
753 rb_erase(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = false;
755}
756
757static void
758mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
759 struct mem_cgroup_per_zone *mz,
760 struct mem_cgroup_tree_per_zone *mctz)
761{
762 spin_lock(&mctz->lock);
763 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
764 spin_unlock(&mctz->lock);
765}
766
767
768static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
769{
770 unsigned long long excess;
771 struct mem_cgroup_per_zone *mz;
772 struct mem_cgroup_tree_per_zone *mctz;
773 int nid = page_to_nid(page);
774 int zid = page_zonenum(page);
775 mctz = soft_limit_tree_from_page(page);
776
777 /*
778 * Necessary to update all ancestors when hierarchy is used.
779 * because their event counter is not touched.
780 */
781 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
782 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
783 excess = res_counter_soft_limit_excess(&memcg->res);
784 /*
785 * We have to update the tree if mz is on RB-tree or
786 * mem is over its softlimit.
787 */
788 if (excess || mz->on_tree) {
789 spin_lock(&mctz->lock);
790 /* if on-tree, remove it */
791 if (mz->on_tree)
792 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
793 /*
794 * Insert again. mz->usage_in_excess will be updated.
795 * If excess is 0, no tree ops.
796 */
797 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
798 spin_unlock(&mctz->lock);
799 }
800 }
801}
802
803static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
804{
805 int node, zone;
806 struct mem_cgroup_per_zone *mz;
807 struct mem_cgroup_tree_per_zone *mctz;
808
809 for_each_node(node) {
810 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
811 mz = mem_cgroup_zoneinfo(memcg, node, zone);
812 mctz = soft_limit_tree_node_zone(node, zone);
813 mem_cgroup_remove_exceeded(memcg, mz, mctz);
814 }
815 }
816}
817
818static struct mem_cgroup_per_zone *
819__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
820{
821 struct rb_node *rightmost = NULL;
822 struct mem_cgroup_per_zone *mz;
823
824retry:
825 mz = NULL;
826 rightmost = rb_last(&mctz->rb_root);
827 if (!rightmost)
828 goto done; /* Nothing to reclaim from */
829
830 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
831 /*
832 * Remove the node now but someone else can add it back,
833 * we will to add it back at the end of reclaim to its correct
834 * position in the tree.
835 */
836 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
837 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
ec903c0c 838 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
839 goto retry;
840done:
841 return mz;
842}
843
844static struct mem_cgroup_per_zone *
845mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
846{
847 struct mem_cgroup_per_zone *mz;
848
849 spin_lock(&mctz->lock);
850 mz = __mem_cgroup_largest_soft_limit_node(mctz);
851 spin_unlock(&mctz->lock);
852 return mz;
853}
854
711d3d2c
KH
855/*
856 * Implementation Note: reading percpu statistics for memcg.
857 *
858 * Both of vmstat[] and percpu_counter has threshold and do periodic
859 * synchronization to implement "quick" read. There are trade-off between
860 * reading cost and precision of value. Then, we may have a chance to implement
861 * a periodic synchronizion of counter in memcg's counter.
862 *
863 * But this _read() function is used for user interface now. The user accounts
864 * memory usage by memory cgroup and he _always_ requires exact value because
865 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
866 * have to visit all online cpus and make sum. So, for now, unnecessary
867 * synchronization is not implemented. (just implemented for cpu hotplug)
868 *
869 * If there are kernel internal actions which can make use of some not-exact
870 * value, and reading all cpu value can be performance bottleneck in some
871 * common workload, threashold and synchonization as vmstat[] should be
872 * implemented.
873 */
c0ff4b85 874static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 875 enum mem_cgroup_stat_index idx)
c62b1a3b 876{
7a159cc9 877 long val = 0;
c62b1a3b 878 int cpu;
c62b1a3b 879
711d3d2c
KH
880 get_online_cpus();
881 for_each_online_cpu(cpu)
c0ff4b85 882 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 883#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
884 spin_lock(&memcg->pcp_counter_lock);
885 val += memcg->nocpu_base.count[idx];
886 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
887#endif
888 put_online_cpus();
c62b1a3b
KH
889 return val;
890}
891
c0ff4b85 892static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
893 bool charge)
894{
895 int val = (charge) ? 1 : -1;
bff6bb83 896 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
897}
898
c0ff4b85 899static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
900 enum mem_cgroup_events_index idx)
901{
902 unsigned long val = 0;
903 int cpu;
904
9c567512 905 get_online_cpus();
e9f8974f 906 for_each_online_cpu(cpu)
c0ff4b85 907 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 908#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
909 spin_lock(&memcg->pcp_counter_lock);
910 val += memcg->nocpu_base.events[idx];
911 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 912#endif
9c567512 913 put_online_cpus();
e9f8974f
JW
914 return val;
915}
916
c0ff4b85 917static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 918 struct page *page,
b2402857 919 bool anon, int nr_pages)
d52aa412 920{
b2402857
KH
921 /*
922 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
923 * counted as CACHE even if it's on ANON LRU.
924 */
925 if (anon)
926 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 927 nr_pages);
d52aa412 928 else
b2402857 929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 930 nr_pages);
55e462b0 931
b070e65c
DR
932 if (PageTransHuge(page))
933 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
934 nr_pages);
935
e401f176
KH
936 /* pagein of a big page is an event. So, ignore page size */
937 if (nr_pages > 0)
c0ff4b85 938 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 939 else {
c0ff4b85 940 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
941 nr_pages = -nr_pages; /* for event */
942 }
e401f176 943
13114716 944 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
945}
946
bb2a0de9 947unsigned long
4d7dcca2 948mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
949{
950 struct mem_cgroup_per_zone *mz;
951
952 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
953 return mz->lru_size[lru];
954}
955
956static unsigned long
c0ff4b85 957mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 958 unsigned int lru_mask)
889976db
YH
959{
960 struct mem_cgroup_per_zone *mz;
f156ab93 961 enum lru_list lru;
bb2a0de9
KH
962 unsigned long ret = 0;
963
c0ff4b85 964 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 965
f156ab93
HD
966 for_each_lru(lru) {
967 if (BIT(lru) & lru_mask)
968 ret += mz->lru_size[lru];
bb2a0de9
KH
969 }
970 return ret;
971}
972
973static unsigned long
c0ff4b85 974mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
975 int nid, unsigned int lru_mask)
976{
889976db
YH
977 u64 total = 0;
978 int zid;
979
bb2a0de9 980 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
981 total += mem_cgroup_zone_nr_lru_pages(memcg,
982 nid, zid, lru_mask);
bb2a0de9 983
889976db
YH
984 return total;
985}
bb2a0de9 986
c0ff4b85 987static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 988 unsigned int lru_mask)
6d12e2d8 989{
889976db 990 int nid;
6d12e2d8
KH
991 u64 total = 0;
992
31aaea4a 993 for_each_node_state(nid, N_MEMORY)
c0ff4b85 994 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 995 return total;
d52aa412
KH
996}
997
f53d7ce3
JW
998static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
999 enum mem_cgroup_events_target target)
7a159cc9
JW
1000{
1001 unsigned long val, next;
1002
13114716 1003 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1004 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1005 /* from time_after() in jiffies.h */
f53d7ce3
JW
1006 if ((long)next - (long)val < 0) {
1007 switch (target) {
1008 case MEM_CGROUP_TARGET_THRESH:
1009 next = val + THRESHOLDS_EVENTS_TARGET;
1010 break;
bb4cc1a8
AM
1011 case MEM_CGROUP_TARGET_SOFTLIMIT:
1012 next = val + SOFTLIMIT_EVENTS_TARGET;
1013 break;
f53d7ce3
JW
1014 case MEM_CGROUP_TARGET_NUMAINFO:
1015 next = val + NUMAINFO_EVENTS_TARGET;
1016 break;
1017 default:
1018 break;
1019 }
1020 __this_cpu_write(memcg->stat->targets[target], next);
1021 return true;
7a159cc9 1022 }
f53d7ce3 1023 return false;
d2265e6f
KH
1024}
1025
1026/*
1027 * Check events in order.
1028 *
1029 */
c0ff4b85 1030static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1031{
4799401f 1032 preempt_disable();
d2265e6f 1033 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1034 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1035 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1036 bool do_softlimit;
82b3f2a7 1037 bool do_numainfo __maybe_unused;
f53d7ce3 1038
bb4cc1a8
AM
1039 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1040 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1041#if MAX_NUMNODES > 1
1042 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_NUMAINFO);
1044#endif
1045 preempt_enable();
1046
c0ff4b85 1047 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1048 if (unlikely(do_softlimit))
1049 mem_cgroup_update_tree(memcg, page);
453a9bf3 1050#if MAX_NUMNODES > 1
f53d7ce3 1051 if (unlikely(do_numainfo))
c0ff4b85 1052 atomic_inc(&memcg->numainfo_events);
453a9bf3 1053#endif
f53d7ce3
JW
1054 } else
1055 preempt_enable();
d2265e6f
KH
1056}
1057
cf475ad2 1058struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1059{
31a78f23
BS
1060 /*
1061 * mm_update_next_owner() may clear mm->owner to NULL
1062 * if it races with swapoff, page migration, etc.
1063 * So this can be called with p == NULL.
1064 */
1065 if (unlikely(!p))
1066 return NULL;
1067
073219e9 1068 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1069}
1070
df381975 1071static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1072{
c0ff4b85 1073 struct mem_cgroup *memcg = NULL;
0b7f569e 1074
54595fe2
KH
1075 rcu_read_lock();
1076 do {
c0ff4b85
R
1077 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1078 if (unlikely(!memcg))
df381975 1079 memcg = root_mem_cgroup;
ec903c0c 1080 } while (!css_tryget_online(&memcg->css));
54595fe2 1081 rcu_read_unlock();
c0ff4b85 1082 return memcg;
54595fe2
KH
1083}
1084
16248d8f
MH
1085/*
1086 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1087 * ref. count) or NULL if the whole root's subtree has been visited.
1088 *
1089 * helper function to be used by mem_cgroup_iter
1090 */
1091static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1092 struct mem_cgroup *last_visited)
16248d8f 1093{
492eb21b 1094 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1095
bd8815a6 1096 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1097skip_node:
492eb21b 1098 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1099
1100 /*
1101 * Even if we found a group we have to make sure it is
1102 * alive. css && !memcg means that the groups should be
1103 * skipped and we should continue the tree walk.
1104 * last_visited css is safe to use because it is
1105 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1106 *
1107 * We do not take a reference on the root of the tree walk
1108 * because we might race with the root removal when it would
1109 * be the only node in the iterated hierarchy and mem_cgroup_iter
1110 * would end up in an endless loop because it expects that at
1111 * least one valid node will be returned. Root cannot disappear
1112 * because caller of the iterator should hold it already so
1113 * skipping css reference should be safe.
16248d8f 1114 */
492eb21b 1115 if (next_css) {
ce48225f 1116 if ((next_css == &root->css) ||
ec903c0c
TH
1117 ((next_css->flags & CSS_ONLINE) &&
1118 css_tryget_online(next_css)))
d8ad3055 1119 return mem_cgroup_from_css(next_css);
0eef6156
MH
1120
1121 prev_css = next_css;
1122 goto skip_node;
16248d8f
MH
1123 }
1124
1125 return NULL;
1126}
1127
519ebea3
JW
1128static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1129{
1130 /*
1131 * When a group in the hierarchy below root is destroyed, the
1132 * hierarchy iterator can no longer be trusted since it might
1133 * have pointed to the destroyed group. Invalidate it.
1134 */
1135 atomic_inc(&root->dead_count);
1136}
1137
1138static struct mem_cgroup *
1139mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1140 struct mem_cgroup *root,
1141 int *sequence)
1142{
1143 struct mem_cgroup *position = NULL;
1144 /*
1145 * A cgroup destruction happens in two stages: offlining and
1146 * release. They are separated by a RCU grace period.
1147 *
1148 * If the iterator is valid, we may still race with an
1149 * offlining. The RCU lock ensures the object won't be
1150 * released, tryget will fail if we lost the race.
1151 */
1152 *sequence = atomic_read(&root->dead_count);
1153 if (iter->last_dead_count == *sequence) {
1154 smp_rmb();
1155 position = iter->last_visited;
ecc736fc
MH
1156
1157 /*
1158 * We cannot take a reference to root because we might race
1159 * with root removal and returning NULL would end up in
1160 * an endless loop on the iterator user level when root
1161 * would be returned all the time.
1162 */
1163 if (position && position != root &&
ec903c0c 1164 !css_tryget_online(&position->css))
519ebea3
JW
1165 position = NULL;
1166 }
1167 return position;
1168}
1169
1170static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1171 struct mem_cgroup *last_visited,
1172 struct mem_cgroup *new_position,
ecc736fc 1173 struct mem_cgroup *root,
519ebea3
JW
1174 int sequence)
1175{
ecc736fc
MH
1176 /* root reference counting symmetric to mem_cgroup_iter_load */
1177 if (last_visited && last_visited != root)
519ebea3
JW
1178 css_put(&last_visited->css);
1179 /*
1180 * We store the sequence count from the time @last_visited was
1181 * loaded successfully instead of rereading it here so that we
1182 * don't lose destruction events in between. We could have
1183 * raced with the destruction of @new_position after all.
1184 */
1185 iter->last_visited = new_position;
1186 smp_wmb();
1187 iter->last_dead_count = sequence;
1188}
1189
5660048c
JW
1190/**
1191 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1192 * @root: hierarchy root
1193 * @prev: previously returned memcg, NULL on first invocation
1194 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1195 *
1196 * Returns references to children of the hierarchy below @root, or
1197 * @root itself, or %NULL after a full round-trip.
1198 *
1199 * Caller must pass the return value in @prev on subsequent
1200 * invocations for reference counting, or use mem_cgroup_iter_break()
1201 * to cancel a hierarchy walk before the round-trip is complete.
1202 *
1203 * Reclaimers can specify a zone and a priority level in @reclaim to
1204 * divide up the memcgs in the hierarchy among all concurrent
1205 * reclaimers operating on the same zone and priority.
1206 */
694fbc0f 1207struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1208 struct mem_cgroup *prev,
694fbc0f 1209 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1210{
9f3a0d09 1211 struct mem_cgroup *memcg = NULL;
542f85f9 1212 struct mem_cgroup *last_visited = NULL;
711d3d2c 1213
694fbc0f
AM
1214 if (mem_cgroup_disabled())
1215 return NULL;
5660048c 1216
9f3a0d09
JW
1217 if (!root)
1218 root = root_mem_cgroup;
7d74b06f 1219
9f3a0d09 1220 if (prev && !reclaim)
542f85f9 1221 last_visited = prev;
14067bb3 1222
9f3a0d09
JW
1223 if (!root->use_hierarchy && root != root_mem_cgroup) {
1224 if (prev)
c40046f3 1225 goto out_css_put;
694fbc0f 1226 return root;
9f3a0d09 1227 }
14067bb3 1228
542f85f9 1229 rcu_read_lock();
9f3a0d09 1230 while (!memcg) {
527a5ec9 1231 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1232 int uninitialized_var(seq);
711d3d2c 1233
527a5ec9
JW
1234 if (reclaim) {
1235 int nid = zone_to_nid(reclaim->zone);
1236 int zid = zone_idx(reclaim->zone);
1237 struct mem_cgroup_per_zone *mz;
1238
1239 mz = mem_cgroup_zoneinfo(root, nid, zid);
1240 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1241 if (prev && reclaim->generation != iter->generation) {
5f578161 1242 iter->last_visited = NULL;
542f85f9
MH
1243 goto out_unlock;
1244 }
5f578161 1245
519ebea3 1246 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1247 }
7d74b06f 1248
694fbc0f 1249 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1250
527a5ec9 1251 if (reclaim) {
ecc736fc
MH
1252 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1253 seq);
542f85f9 1254
19f39402 1255 if (!memcg)
527a5ec9
JW
1256 iter->generation++;
1257 else if (!prev && memcg)
1258 reclaim->generation = iter->generation;
1259 }
9f3a0d09 1260
694fbc0f 1261 if (prev && !memcg)
542f85f9 1262 goto out_unlock;
9f3a0d09 1263 }
542f85f9
MH
1264out_unlock:
1265 rcu_read_unlock();
c40046f3
MH
1266out_css_put:
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269
9f3a0d09 1270 return memcg;
14067bb3 1271}
7d74b06f 1272
5660048c
JW
1273/**
1274 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1275 * @root: hierarchy root
1276 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1277 */
1278void mem_cgroup_iter_break(struct mem_cgroup *root,
1279 struct mem_cgroup *prev)
9f3a0d09
JW
1280{
1281 if (!root)
1282 root = root_mem_cgroup;
1283 if (prev && prev != root)
1284 css_put(&prev->css);
1285}
7d74b06f 1286
9f3a0d09
JW
1287/*
1288 * Iteration constructs for visiting all cgroups (under a tree). If
1289 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1290 * be used for reference counting.
1291 */
1292#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1293 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1294 iter != NULL; \
527a5ec9 1295 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1296
9f3a0d09 1297#define for_each_mem_cgroup(iter) \
527a5ec9 1298 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1299 iter != NULL; \
527a5ec9 1300 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1301
68ae564b 1302void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1303{
c0ff4b85 1304 struct mem_cgroup *memcg;
456f998e 1305
456f998e 1306 rcu_read_lock();
c0ff4b85
R
1307 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1308 if (unlikely(!memcg))
456f998e
YH
1309 goto out;
1310
1311 switch (idx) {
456f998e 1312 case PGFAULT:
0e574a93
JW
1313 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1314 break;
1315 case PGMAJFAULT:
1316 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1317 break;
1318 default:
1319 BUG();
1320 }
1321out:
1322 rcu_read_unlock();
1323}
68ae564b 1324EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1325
925b7673
JW
1326/**
1327 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1328 * @zone: zone of the wanted lruvec
fa9add64 1329 * @memcg: memcg of the wanted lruvec
925b7673
JW
1330 *
1331 * Returns the lru list vector holding pages for the given @zone and
1332 * @mem. This can be the global zone lruvec, if the memory controller
1333 * is disabled.
1334 */
1335struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1336 struct mem_cgroup *memcg)
1337{
1338 struct mem_cgroup_per_zone *mz;
bea8c150 1339 struct lruvec *lruvec;
925b7673 1340
bea8c150
HD
1341 if (mem_cgroup_disabled()) {
1342 lruvec = &zone->lruvec;
1343 goto out;
1344 }
925b7673
JW
1345
1346 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1347 lruvec = &mz->lruvec;
1348out:
1349 /*
1350 * Since a node can be onlined after the mem_cgroup was created,
1351 * we have to be prepared to initialize lruvec->zone here;
1352 * and if offlined then reonlined, we need to reinitialize it.
1353 */
1354 if (unlikely(lruvec->zone != zone))
1355 lruvec->zone = zone;
1356 return lruvec;
925b7673
JW
1357}
1358
08e552c6
KH
1359/*
1360 * Following LRU functions are allowed to be used without PCG_LOCK.
1361 * Operations are called by routine of global LRU independently from memcg.
1362 * What we have to take care of here is validness of pc->mem_cgroup.
1363 *
1364 * Changes to pc->mem_cgroup happens when
1365 * 1. charge
1366 * 2. moving account
1367 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1368 * It is added to LRU before charge.
1369 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1370 * When moving account, the page is not on LRU. It's isolated.
1371 */
4f98a2fe 1372
925b7673 1373/**
fa9add64 1374 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1375 * @page: the page
fa9add64 1376 * @zone: zone of the page
925b7673 1377 */
fa9add64 1378struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1379{
08e552c6 1380 struct mem_cgroup_per_zone *mz;
925b7673
JW
1381 struct mem_cgroup *memcg;
1382 struct page_cgroup *pc;
bea8c150 1383 struct lruvec *lruvec;
6d12e2d8 1384
bea8c150
HD
1385 if (mem_cgroup_disabled()) {
1386 lruvec = &zone->lruvec;
1387 goto out;
1388 }
925b7673 1389
08e552c6 1390 pc = lookup_page_cgroup(page);
38c5d72f 1391 memcg = pc->mem_cgroup;
7512102c
HD
1392
1393 /*
fa9add64 1394 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1395 * an uncharged page off lru does nothing to secure
1396 * its former mem_cgroup from sudden removal.
1397 *
1398 * Our caller holds lru_lock, and PageCgroupUsed is updated
1399 * under page_cgroup lock: between them, they make all uses
1400 * of pc->mem_cgroup safe.
1401 */
fa9add64 1402 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1403 pc->mem_cgroup = memcg = root_mem_cgroup;
1404
925b7673 1405 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1406 lruvec = &mz->lruvec;
1407out:
1408 /*
1409 * Since a node can be onlined after the mem_cgroup was created,
1410 * we have to be prepared to initialize lruvec->zone here;
1411 * and if offlined then reonlined, we need to reinitialize it.
1412 */
1413 if (unlikely(lruvec->zone != zone))
1414 lruvec->zone = zone;
1415 return lruvec;
08e552c6 1416}
b69408e8 1417
925b7673 1418/**
fa9add64
HD
1419 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1420 * @lruvec: mem_cgroup per zone lru vector
1421 * @lru: index of lru list the page is sitting on
1422 * @nr_pages: positive when adding or negative when removing
925b7673 1423 *
fa9add64
HD
1424 * This function must be called when a page is added to or removed from an
1425 * lru list.
3f58a829 1426 */
fa9add64
HD
1427void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1428 int nr_pages)
3f58a829
MK
1429{
1430 struct mem_cgroup_per_zone *mz;
fa9add64 1431 unsigned long *lru_size;
3f58a829
MK
1432
1433 if (mem_cgroup_disabled())
1434 return;
1435
fa9add64
HD
1436 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1437 lru_size = mz->lru_size + lru;
1438 *lru_size += nr_pages;
1439 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1440}
544122e5 1441
3e92041d 1442/*
c0ff4b85 1443 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1444 * hierarchy subtree
1445 */
c3ac9a8a
JW
1446bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1447 struct mem_cgroup *memcg)
3e92041d 1448{
91c63734
JW
1449 if (root_memcg == memcg)
1450 return true;
3a981f48 1451 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1452 return false;
b47f77b5 1453 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1454}
1455
1456static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1457 struct mem_cgroup *memcg)
1458{
1459 bool ret;
1460
91c63734 1461 rcu_read_lock();
c3ac9a8a 1462 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1463 rcu_read_unlock();
1464 return ret;
3e92041d
MH
1465}
1466
ffbdccf5
DR
1467bool task_in_mem_cgroup(struct task_struct *task,
1468 const struct mem_cgroup *memcg)
4c4a2214 1469{
0b7f569e 1470 struct mem_cgroup *curr = NULL;
158e0a2d 1471 struct task_struct *p;
ffbdccf5 1472 bool ret;
4c4a2214 1473
158e0a2d 1474 p = find_lock_task_mm(task);
de077d22 1475 if (p) {
df381975 1476 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1477 task_unlock(p);
1478 } else {
1479 /*
1480 * All threads may have already detached their mm's, but the oom
1481 * killer still needs to detect if they have already been oom
1482 * killed to prevent needlessly killing additional tasks.
1483 */
ffbdccf5 1484 rcu_read_lock();
de077d22
DR
1485 curr = mem_cgroup_from_task(task);
1486 if (curr)
1487 css_get(&curr->css);
ffbdccf5 1488 rcu_read_unlock();
de077d22 1489 }
d31f56db 1490 /*
c0ff4b85 1491 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1492 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1493 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1494 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1495 */
c0ff4b85 1496 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1497 css_put(&curr->css);
4c4a2214
DR
1498 return ret;
1499}
1500
c56d5c7d 1501int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1502{
9b272977 1503 unsigned long inactive_ratio;
14797e23 1504 unsigned long inactive;
9b272977 1505 unsigned long active;
c772be93 1506 unsigned long gb;
14797e23 1507
4d7dcca2
HD
1508 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1509 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1510
c772be93
KM
1511 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1512 if (gb)
1513 inactive_ratio = int_sqrt(10 * gb);
1514 else
1515 inactive_ratio = 1;
1516
9b272977 1517 return inactive * inactive_ratio < active;
14797e23
KM
1518}
1519
6d61ef40
BS
1520#define mem_cgroup_from_res_counter(counter, member) \
1521 container_of(counter, struct mem_cgroup, member)
1522
19942822 1523/**
9d11ea9f 1524 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1525 * @memcg: the memory cgroup
19942822 1526 *
9d11ea9f 1527 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1528 * pages.
19942822 1529 */
c0ff4b85 1530static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1531{
9d11ea9f
JW
1532 unsigned long long margin;
1533
c0ff4b85 1534 margin = res_counter_margin(&memcg->res);
9d11ea9f 1535 if (do_swap_account)
c0ff4b85 1536 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1537 return margin >> PAGE_SHIFT;
19942822
JW
1538}
1539
1f4c025b 1540int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1541{
a7885eb8 1542 /* root ? */
63876986 1543 if (!css_parent(&memcg->css))
a7885eb8
KM
1544 return vm_swappiness;
1545
bf1ff263 1546 return memcg->swappiness;
a7885eb8
KM
1547}
1548
619d094b
KH
1549/*
1550 * memcg->moving_account is used for checking possibility that some thread is
1551 * calling move_account(). When a thread on CPU-A starts moving pages under
1552 * a memcg, other threads should check memcg->moving_account under
1553 * rcu_read_lock(), like this:
1554 *
1555 * CPU-A CPU-B
1556 * rcu_read_lock()
1557 * memcg->moving_account+1 if (memcg->mocing_account)
1558 * take heavy locks.
1559 * synchronize_rcu() update something.
1560 * rcu_read_unlock()
1561 * start move here.
1562 */
4331f7d3
KH
1563
1564/* for quick checking without looking up memcg */
1565atomic_t memcg_moving __read_mostly;
1566
c0ff4b85 1567static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1568{
4331f7d3 1569 atomic_inc(&memcg_moving);
619d094b 1570 atomic_inc(&memcg->moving_account);
32047e2a
KH
1571 synchronize_rcu();
1572}
1573
c0ff4b85 1574static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1575{
619d094b
KH
1576 /*
1577 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1578 * We check NULL in callee rather than caller.
1579 */
4331f7d3
KH
1580 if (memcg) {
1581 atomic_dec(&memcg_moving);
619d094b 1582 atomic_dec(&memcg->moving_account);
4331f7d3 1583 }
32047e2a 1584}
619d094b 1585
32047e2a
KH
1586/*
1587 * 2 routines for checking "mem" is under move_account() or not.
1588 *
13fd1dd9
AM
1589 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1590 * is used for avoiding races in accounting. If true,
32047e2a
KH
1591 * pc->mem_cgroup may be overwritten.
1592 *
1593 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1594 * under hierarchy of moving cgroups. This is for
1595 * waiting at hith-memory prressure caused by "move".
1596 */
1597
13fd1dd9 1598static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1599{
1600 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1601 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1602}
4b534334 1603
c0ff4b85 1604static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1605{
2bd9bb20
KH
1606 struct mem_cgroup *from;
1607 struct mem_cgroup *to;
4b534334 1608 bool ret = false;
2bd9bb20
KH
1609 /*
1610 * Unlike task_move routines, we access mc.to, mc.from not under
1611 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1612 */
1613 spin_lock(&mc.lock);
1614 from = mc.from;
1615 to = mc.to;
1616 if (!from)
1617 goto unlock;
3e92041d 1618
c0ff4b85
R
1619 ret = mem_cgroup_same_or_subtree(memcg, from)
1620 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1621unlock:
1622 spin_unlock(&mc.lock);
4b534334
KH
1623 return ret;
1624}
1625
c0ff4b85 1626static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1627{
1628 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1629 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1630 DEFINE_WAIT(wait);
1631 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1632 /* moving charge context might have finished. */
1633 if (mc.moving_task)
1634 schedule();
1635 finish_wait(&mc.waitq, &wait);
1636 return true;
1637 }
1638 }
1639 return false;
1640}
1641
312734c0
KH
1642/*
1643 * Take this lock when
1644 * - a code tries to modify page's memcg while it's USED.
1645 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1646 * see mem_cgroup_stolen(), too.
312734c0
KH
1647 */
1648static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1649 unsigned long *flags)
1650{
1651 spin_lock_irqsave(&memcg->move_lock, *flags);
1652}
1653
1654static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1655 unsigned long *flags)
1656{
1657 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1658}
1659
58cf188e 1660#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1661/**
58cf188e 1662 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1663 * @memcg: The memory cgroup that went over limit
1664 * @p: Task that is going to be killed
1665 *
1666 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1667 * enabled
1668 */
1669void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1670{
e61734c5 1671 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1672 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1673 struct mem_cgroup *iter;
1674 unsigned int i;
e222432b 1675
58cf188e 1676 if (!p)
e222432b
BS
1677 return;
1678
08088cb9 1679 mutex_lock(&oom_info_lock);
e222432b
BS
1680 rcu_read_lock();
1681
e61734c5
TH
1682 pr_info("Task in ");
1683 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1684 pr_info(" killed as a result of limit of ");
1685 pr_cont_cgroup_path(memcg->css.cgroup);
1686 pr_info("\n");
e222432b 1687
e222432b
BS
1688 rcu_read_unlock();
1689
d045197f 1690 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1691 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1692 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1693 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1694 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1695 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1696 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1697 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1698 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1699 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1700 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1701 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1702
1703 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1704 pr_info("Memory cgroup stats for ");
1705 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1706 pr_cont(":");
1707
1708 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1709 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1710 continue;
1711 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1712 K(mem_cgroup_read_stat(iter, i)));
1713 }
1714
1715 for (i = 0; i < NR_LRU_LISTS; i++)
1716 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1717 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1718
1719 pr_cont("\n");
1720 }
08088cb9 1721 mutex_unlock(&oom_info_lock);
e222432b
BS
1722}
1723
81d39c20
KH
1724/*
1725 * This function returns the number of memcg under hierarchy tree. Returns
1726 * 1(self count) if no children.
1727 */
c0ff4b85 1728static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1729{
1730 int num = 0;
7d74b06f
KH
1731 struct mem_cgroup *iter;
1732
c0ff4b85 1733 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1734 num++;
81d39c20
KH
1735 return num;
1736}
1737
a63d83f4
DR
1738/*
1739 * Return the memory (and swap, if configured) limit for a memcg.
1740 */
9cbb78bb 1741static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1742{
1743 u64 limit;
a63d83f4 1744
f3e8eb70 1745 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1746
a63d83f4 1747 /*
9a5a8f19 1748 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1749 */
9a5a8f19
MH
1750 if (mem_cgroup_swappiness(memcg)) {
1751 u64 memsw;
1752
1753 limit += total_swap_pages << PAGE_SHIFT;
1754 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1755
1756 /*
1757 * If memsw is finite and limits the amount of swap space
1758 * available to this memcg, return that limit.
1759 */
1760 limit = min(limit, memsw);
1761 }
1762
1763 return limit;
a63d83f4
DR
1764}
1765
19965460
DR
1766static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1767 int order)
9cbb78bb
DR
1768{
1769 struct mem_cgroup *iter;
1770 unsigned long chosen_points = 0;
1771 unsigned long totalpages;
1772 unsigned int points = 0;
1773 struct task_struct *chosen = NULL;
1774
876aafbf 1775 /*
465adcf1
DR
1776 * If current has a pending SIGKILL or is exiting, then automatically
1777 * select it. The goal is to allow it to allocate so that it may
1778 * quickly exit and free its memory.
876aafbf 1779 */
465adcf1 1780 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1781 set_thread_flag(TIF_MEMDIE);
1782 return;
1783 }
1784
1785 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1786 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1787 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1788 struct css_task_iter it;
9cbb78bb
DR
1789 struct task_struct *task;
1790
72ec7029
TH
1791 css_task_iter_start(&iter->css, &it);
1792 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1793 switch (oom_scan_process_thread(task, totalpages, NULL,
1794 false)) {
1795 case OOM_SCAN_SELECT:
1796 if (chosen)
1797 put_task_struct(chosen);
1798 chosen = task;
1799 chosen_points = ULONG_MAX;
1800 get_task_struct(chosen);
1801 /* fall through */
1802 case OOM_SCAN_CONTINUE:
1803 continue;
1804 case OOM_SCAN_ABORT:
72ec7029 1805 css_task_iter_end(&it);
9cbb78bb
DR
1806 mem_cgroup_iter_break(memcg, iter);
1807 if (chosen)
1808 put_task_struct(chosen);
1809 return;
1810 case OOM_SCAN_OK:
1811 break;
1812 };
1813 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1814 if (!points || points < chosen_points)
1815 continue;
1816 /* Prefer thread group leaders for display purposes */
1817 if (points == chosen_points &&
1818 thread_group_leader(chosen))
1819 continue;
1820
1821 if (chosen)
1822 put_task_struct(chosen);
1823 chosen = task;
1824 chosen_points = points;
1825 get_task_struct(chosen);
9cbb78bb 1826 }
72ec7029 1827 css_task_iter_end(&it);
9cbb78bb
DR
1828 }
1829
1830 if (!chosen)
1831 return;
1832 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1833 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1834 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1835}
1836
5660048c
JW
1837static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1838 gfp_t gfp_mask,
1839 unsigned long flags)
1840{
1841 unsigned long total = 0;
1842 bool noswap = false;
1843 int loop;
1844
1845 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1846 noswap = true;
1847 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1848 noswap = true;
1849
1850 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1851 if (loop)
1852 drain_all_stock_async(memcg);
1853 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1854 /*
1855 * Allow limit shrinkers, which are triggered directly
1856 * by userspace, to catch signals and stop reclaim
1857 * after minimal progress, regardless of the margin.
1858 */
1859 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1860 break;
1861 if (mem_cgroup_margin(memcg))
1862 break;
1863 /*
1864 * If nothing was reclaimed after two attempts, there
1865 * may be no reclaimable pages in this hierarchy.
1866 */
1867 if (loop && !total)
1868 break;
1869 }
1870 return total;
1871}
1872
4d0c066d
KH
1873/**
1874 * test_mem_cgroup_node_reclaimable
dad7557e 1875 * @memcg: the target memcg
4d0c066d
KH
1876 * @nid: the node ID to be checked.
1877 * @noswap : specify true here if the user wants flle only information.
1878 *
1879 * This function returns whether the specified memcg contains any
1880 * reclaimable pages on a node. Returns true if there are any reclaimable
1881 * pages in the node.
1882 */
c0ff4b85 1883static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1884 int nid, bool noswap)
1885{
c0ff4b85 1886 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1887 return true;
1888 if (noswap || !total_swap_pages)
1889 return false;
c0ff4b85 1890 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1891 return true;
1892 return false;
1893
1894}
bb4cc1a8 1895#if MAX_NUMNODES > 1
889976db
YH
1896
1897/*
1898 * Always updating the nodemask is not very good - even if we have an empty
1899 * list or the wrong list here, we can start from some node and traverse all
1900 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1901 *
1902 */
c0ff4b85 1903static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1904{
1905 int nid;
453a9bf3
KH
1906 /*
1907 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1908 * pagein/pageout changes since the last update.
1909 */
c0ff4b85 1910 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1911 return;
c0ff4b85 1912 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1913 return;
1914
889976db 1915 /* make a nodemask where this memcg uses memory from */
31aaea4a 1916 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1917
31aaea4a 1918 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1919
c0ff4b85
R
1920 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1921 node_clear(nid, memcg->scan_nodes);
889976db 1922 }
453a9bf3 1923
c0ff4b85
R
1924 atomic_set(&memcg->numainfo_events, 0);
1925 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1926}
1927
1928/*
1929 * Selecting a node where we start reclaim from. Because what we need is just
1930 * reducing usage counter, start from anywhere is O,K. Considering
1931 * memory reclaim from current node, there are pros. and cons.
1932 *
1933 * Freeing memory from current node means freeing memory from a node which
1934 * we'll use or we've used. So, it may make LRU bad. And if several threads
1935 * hit limits, it will see a contention on a node. But freeing from remote
1936 * node means more costs for memory reclaim because of memory latency.
1937 *
1938 * Now, we use round-robin. Better algorithm is welcomed.
1939 */
c0ff4b85 1940int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1941{
1942 int node;
1943
c0ff4b85
R
1944 mem_cgroup_may_update_nodemask(memcg);
1945 node = memcg->last_scanned_node;
889976db 1946
c0ff4b85 1947 node = next_node(node, memcg->scan_nodes);
889976db 1948 if (node == MAX_NUMNODES)
c0ff4b85 1949 node = first_node(memcg->scan_nodes);
889976db
YH
1950 /*
1951 * We call this when we hit limit, not when pages are added to LRU.
1952 * No LRU may hold pages because all pages are UNEVICTABLE or
1953 * memcg is too small and all pages are not on LRU. In that case,
1954 * we use curret node.
1955 */
1956 if (unlikely(node == MAX_NUMNODES))
1957 node = numa_node_id();
1958
c0ff4b85 1959 memcg->last_scanned_node = node;
889976db
YH
1960 return node;
1961}
1962
bb4cc1a8
AM
1963/*
1964 * Check all nodes whether it contains reclaimable pages or not.
1965 * For quick scan, we make use of scan_nodes. This will allow us to skip
1966 * unused nodes. But scan_nodes is lazily updated and may not cotain
1967 * enough new information. We need to do double check.
1968 */
1969static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1970{
1971 int nid;
1972
1973 /*
1974 * quick check...making use of scan_node.
1975 * We can skip unused nodes.
1976 */
1977 if (!nodes_empty(memcg->scan_nodes)) {
1978 for (nid = first_node(memcg->scan_nodes);
1979 nid < MAX_NUMNODES;
1980 nid = next_node(nid, memcg->scan_nodes)) {
1981
1982 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1983 return true;
1984 }
1985 }
1986 /*
1987 * Check rest of nodes.
1988 */
1989 for_each_node_state(nid, N_MEMORY) {
1990 if (node_isset(nid, memcg->scan_nodes))
1991 continue;
1992 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1993 return true;
1994 }
1995 return false;
1996}
1997
889976db 1998#else
c0ff4b85 1999int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2000{
2001 return 0;
2002}
4d0c066d 2003
bb4cc1a8
AM
2004static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2005{
2006 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2007}
889976db
YH
2008#endif
2009
0608f43d
AM
2010static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2011 struct zone *zone,
2012 gfp_t gfp_mask,
2013 unsigned long *total_scanned)
2014{
2015 struct mem_cgroup *victim = NULL;
2016 int total = 0;
2017 int loop = 0;
2018 unsigned long excess;
2019 unsigned long nr_scanned;
2020 struct mem_cgroup_reclaim_cookie reclaim = {
2021 .zone = zone,
2022 .priority = 0,
2023 };
2024
2025 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2026
2027 while (1) {
2028 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2029 if (!victim) {
2030 loop++;
2031 if (loop >= 2) {
2032 /*
2033 * If we have not been able to reclaim
2034 * anything, it might because there are
2035 * no reclaimable pages under this hierarchy
2036 */
2037 if (!total)
2038 break;
2039 /*
2040 * We want to do more targeted reclaim.
2041 * excess >> 2 is not to excessive so as to
2042 * reclaim too much, nor too less that we keep
2043 * coming back to reclaim from this cgroup
2044 */
2045 if (total >= (excess >> 2) ||
2046 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2047 break;
2048 }
2049 continue;
2050 }
2051 if (!mem_cgroup_reclaimable(victim, false))
2052 continue;
2053 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2054 zone, &nr_scanned);
2055 *total_scanned += nr_scanned;
2056 if (!res_counter_soft_limit_excess(&root_memcg->res))
2057 break;
6d61ef40 2058 }
0608f43d
AM
2059 mem_cgroup_iter_break(root_memcg, victim);
2060 return total;
6d61ef40
BS
2061}
2062
0056f4e6
JW
2063#ifdef CONFIG_LOCKDEP
2064static struct lockdep_map memcg_oom_lock_dep_map = {
2065 .name = "memcg_oom_lock",
2066};
2067#endif
2068
fb2a6fc5
JW
2069static DEFINE_SPINLOCK(memcg_oom_lock);
2070
867578cb
KH
2071/*
2072 * Check OOM-Killer is already running under our hierarchy.
2073 * If someone is running, return false.
2074 */
fb2a6fc5 2075static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2076{
79dfdacc 2077 struct mem_cgroup *iter, *failed = NULL;
a636b327 2078
fb2a6fc5
JW
2079 spin_lock(&memcg_oom_lock);
2080
9f3a0d09 2081 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2082 if (iter->oom_lock) {
79dfdacc
MH
2083 /*
2084 * this subtree of our hierarchy is already locked
2085 * so we cannot give a lock.
2086 */
79dfdacc 2087 failed = iter;
9f3a0d09
JW
2088 mem_cgroup_iter_break(memcg, iter);
2089 break;
23751be0
JW
2090 } else
2091 iter->oom_lock = true;
7d74b06f 2092 }
867578cb 2093
fb2a6fc5
JW
2094 if (failed) {
2095 /*
2096 * OK, we failed to lock the whole subtree so we have
2097 * to clean up what we set up to the failing subtree
2098 */
2099 for_each_mem_cgroup_tree(iter, memcg) {
2100 if (iter == failed) {
2101 mem_cgroup_iter_break(memcg, iter);
2102 break;
2103 }
2104 iter->oom_lock = false;
79dfdacc 2105 }
0056f4e6
JW
2106 } else
2107 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2108
2109 spin_unlock(&memcg_oom_lock);
2110
2111 return !failed;
a636b327 2112}
0b7f569e 2113
fb2a6fc5 2114static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2115{
7d74b06f
KH
2116 struct mem_cgroup *iter;
2117
fb2a6fc5 2118 spin_lock(&memcg_oom_lock);
0056f4e6 2119 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2120 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2121 iter->oom_lock = false;
fb2a6fc5 2122 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2123}
2124
c0ff4b85 2125static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2126{
2127 struct mem_cgroup *iter;
2128
c0ff4b85 2129 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2130 atomic_inc(&iter->under_oom);
2131}
2132
c0ff4b85 2133static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2134{
2135 struct mem_cgroup *iter;
2136
867578cb
KH
2137 /*
2138 * When a new child is created while the hierarchy is under oom,
2139 * mem_cgroup_oom_lock() may not be called. We have to use
2140 * atomic_add_unless() here.
2141 */
c0ff4b85 2142 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2143 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2144}
2145
867578cb
KH
2146static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2147
dc98df5a 2148struct oom_wait_info {
d79154bb 2149 struct mem_cgroup *memcg;
dc98df5a
KH
2150 wait_queue_t wait;
2151};
2152
2153static int memcg_oom_wake_function(wait_queue_t *wait,
2154 unsigned mode, int sync, void *arg)
2155{
d79154bb
HD
2156 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2157 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2158 struct oom_wait_info *oom_wait_info;
2159
2160 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2161 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2162
dc98df5a 2163 /*
d79154bb 2164 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2165 * Then we can use css_is_ancestor without taking care of RCU.
2166 */
c0ff4b85
R
2167 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2168 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2169 return 0;
dc98df5a
KH
2170 return autoremove_wake_function(wait, mode, sync, arg);
2171}
2172
c0ff4b85 2173static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2174{
3812c8c8 2175 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2176 /* for filtering, pass "memcg" as argument. */
2177 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2178}
2179
c0ff4b85 2180static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2181{
c0ff4b85
R
2182 if (memcg && atomic_read(&memcg->under_oom))
2183 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2184}
2185
3812c8c8 2186static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2187{
3812c8c8
JW
2188 if (!current->memcg_oom.may_oom)
2189 return;
867578cb 2190 /*
49426420
JW
2191 * We are in the middle of the charge context here, so we
2192 * don't want to block when potentially sitting on a callstack
2193 * that holds all kinds of filesystem and mm locks.
2194 *
2195 * Also, the caller may handle a failed allocation gracefully
2196 * (like optional page cache readahead) and so an OOM killer
2197 * invocation might not even be necessary.
2198 *
2199 * That's why we don't do anything here except remember the
2200 * OOM context and then deal with it at the end of the page
2201 * fault when the stack is unwound, the locks are released,
2202 * and when we know whether the fault was overall successful.
867578cb 2203 */
49426420
JW
2204 css_get(&memcg->css);
2205 current->memcg_oom.memcg = memcg;
2206 current->memcg_oom.gfp_mask = mask;
2207 current->memcg_oom.order = order;
3812c8c8
JW
2208}
2209
2210/**
2211 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2212 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2213 *
49426420
JW
2214 * This has to be called at the end of a page fault if the memcg OOM
2215 * handler was enabled.
3812c8c8 2216 *
49426420 2217 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2218 * sleep on a waitqueue until the userspace task resolves the
2219 * situation. Sleeping directly in the charge context with all kinds
2220 * of locks held is not a good idea, instead we remember an OOM state
2221 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2222 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2223 *
2224 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2225 * completed, %false otherwise.
3812c8c8 2226 */
49426420 2227bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2228{
49426420 2229 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2230 struct oom_wait_info owait;
49426420 2231 bool locked;
3812c8c8
JW
2232
2233 /* OOM is global, do not handle */
3812c8c8 2234 if (!memcg)
49426420 2235 return false;
3812c8c8 2236
49426420
JW
2237 if (!handle)
2238 goto cleanup;
3812c8c8
JW
2239
2240 owait.memcg = memcg;
2241 owait.wait.flags = 0;
2242 owait.wait.func = memcg_oom_wake_function;
2243 owait.wait.private = current;
2244 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2245
3812c8c8 2246 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2247 mem_cgroup_mark_under_oom(memcg);
2248
2249 locked = mem_cgroup_oom_trylock(memcg);
2250
2251 if (locked)
2252 mem_cgroup_oom_notify(memcg);
2253
2254 if (locked && !memcg->oom_kill_disable) {
2255 mem_cgroup_unmark_under_oom(memcg);
2256 finish_wait(&memcg_oom_waitq, &owait.wait);
2257 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2258 current->memcg_oom.order);
2259 } else {
3812c8c8 2260 schedule();
49426420
JW
2261 mem_cgroup_unmark_under_oom(memcg);
2262 finish_wait(&memcg_oom_waitq, &owait.wait);
2263 }
2264
2265 if (locked) {
fb2a6fc5
JW
2266 mem_cgroup_oom_unlock(memcg);
2267 /*
2268 * There is no guarantee that an OOM-lock contender
2269 * sees the wakeups triggered by the OOM kill
2270 * uncharges. Wake any sleepers explicitely.
2271 */
2272 memcg_oom_recover(memcg);
2273 }
49426420
JW
2274cleanup:
2275 current->memcg_oom.memcg = NULL;
3812c8c8 2276 css_put(&memcg->css);
867578cb 2277 return true;
0b7f569e
KH
2278}
2279
d69b042f
BS
2280/*
2281 * Currently used to update mapped file statistics, but the routine can be
2282 * generalized to update other statistics as well.
32047e2a
KH
2283 *
2284 * Notes: Race condition
2285 *
2286 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2287 * it tends to be costly. But considering some conditions, we doesn't need
2288 * to do so _always_.
2289 *
2290 * Considering "charge", lock_page_cgroup() is not required because all
2291 * file-stat operations happen after a page is attached to radix-tree. There
2292 * are no race with "charge".
2293 *
2294 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2295 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2296 * if there are race with "uncharge". Statistics itself is properly handled
2297 * by flags.
2298 *
2299 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2300 * small, we check mm->moving_account and detect there are possibility of race
2301 * If there is, we take a lock.
d69b042f 2302 */
26174efd 2303
89c06bd5
KH
2304void __mem_cgroup_begin_update_page_stat(struct page *page,
2305 bool *locked, unsigned long *flags)
2306{
2307 struct mem_cgroup *memcg;
2308 struct page_cgroup *pc;
2309
2310 pc = lookup_page_cgroup(page);
2311again:
2312 memcg = pc->mem_cgroup;
2313 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2314 return;
2315 /*
2316 * If this memory cgroup is not under account moving, we don't
da92c47d 2317 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2318 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2319 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2320 */
13fd1dd9 2321 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2322 return;
2323
2324 move_lock_mem_cgroup(memcg, flags);
2325 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2326 move_unlock_mem_cgroup(memcg, flags);
2327 goto again;
2328 }
2329 *locked = true;
2330}
2331
2332void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2333{
2334 struct page_cgroup *pc = lookup_page_cgroup(page);
2335
2336 /*
2337 * It's guaranteed that pc->mem_cgroup never changes while
2338 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2339 * should take move_lock_mem_cgroup().
89c06bd5
KH
2340 */
2341 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2342}
2343
2a7106f2 2344void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2345 enum mem_cgroup_stat_index idx, int val)
d69b042f 2346{
c0ff4b85 2347 struct mem_cgroup *memcg;
32047e2a 2348 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2349 unsigned long uninitialized_var(flags);
d69b042f 2350
cfa44946 2351 if (mem_cgroup_disabled())
d69b042f 2352 return;
89c06bd5 2353
658b72c5 2354 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2355 memcg = pc->mem_cgroup;
2356 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2357 return;
26174efd 2358
c0ff4b85 2359 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2360}
26174efd 2361
cdec2e42
KH
2362/*
2363 * size of first charge trial. "32" comes from vmscan.c's magic value.
2364 * TODO: maybe necessary to use big numbers in big irons.
2365 */
7ec99d62 2366#define CHARGE_BATCH 32U
cdec2e42
KH
2367struct memcg_stock_pcp {
2368 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2369 unsigned int nr_pages;
cdec2e42 2370 struct work_struct work;
26fe6168 2371 unsigned long flags;
a0db00fc 2372#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2373};
2374static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2375static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2376
a0956d54
SS
2377/**
2378 * consume_stock: Try to consume stocked charge on this cpu.
2379 * @memcg: memcg to consume from.
2380 * @nr_pages: how many pages to charge.
2381 *
2382 * The charges will only happen if @memcg matches the current cpu's memcg
2383 * stock, and at least @nr_pages are available in that stock. Failure to
2384 * service an allocation will refill the stock.
2385 *
2386 * returns true if successful, false otherwise.
cdec2e42 2387 */
a0956d54 2388static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2389{
2390 struct memcg_stock_pcp *stock;
2391 bool ret = true;
2392
a0956d54
SS
2393 if (nr_pages > CHARGE_BATCH)
2394 return false;
2395
cdec2e42 2396 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2397 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2398 stock->nr_pages -= nr_pages;
cdec2e42
KH
2399 else /* need to call res_counter_charge */
2400 ret = false;
2401 put_cpu_var(memcg_stock);
2402 return ret;
2403}
2404
2405/*
2406 * Returns stocks cached in percpu to res_counter and reset cached information.
2407 */
2408static void drain_stock(struct memcg_stock_pcp *stock)
2409{
2410 struct mem_cgroup *old = stock->cached;
2411
11c9ea4e
JW
2412 if (stock->nr_pages) {
2413 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2414
2415 res_counter_uncharge(&old->res, bytes);
cdec2e42 2416 if (do_swap_account)
11c9ea4e
JW
2417 res_counter_uncharge(&old->memsw, bytes);
2418 stock->nr_pages = 0;
cdec2e42
KH
2419 }
2420 stock->cached = NULL;
cdec2e42
KH
2421}
2422
2423/*
2424 * This must be called under preempt disabled or must be called by
2425 * a thread which is pinned to local cpu.
2426 */
2427static void drain_local_stock(struct work_struct *dummy)
2428{
2429 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2430 drain_stock(stock);
26fe6168 2431 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2432}
2433
e4777496
MH
2434static void __init memcg_stock_init(void)
2435{
2436 int cpu;
2437
2438 for_each_possible_cpu(cpu) {
2439 struct memcg_stock_pcp *stock =
2440 &per_cpu(memcg_stock, cpu);
2441 INIT_WORK(&stock->work, drain_local_stock);
2442 }
2443}
2444
cdec2e42
KH
2445/*
2446 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2447 * This will be consumed by consume_stock() function, later.
cdec2e42 2448 */
c0ff4b85 2449static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2450{
2451 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2452
c0ff4b85 2453 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2454 drain_stock(stock);
c0ff4b85 2455 stock->cached = memcg;
cdec2e42 2456 }
11c9ea4e 2457 stock->nr_pages += nr_pages;
cdec2e42
KH
2458 put_cpu_var(memcg_stock);
2459}
2460
2461/*
c0ff4b85 2462 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2463 * of the hierarchy under it. sync flag says whether we should block
2464 * until the work is done.
cdec2e42 2465 */
c0ff4b85 2466static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2467{
26fe6168 2468 int cpu, curcpu;
d38144b7 2469
cdec2e42 2470 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2471 get_online_cpus();
5af12d0e 2472 curcpu = get_cpu();
cdec2e42
KH
2473 for_each_online_cpu(cpu) {
2474 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2475 struct mem_cgroup *memcg;
26fe6168 2476
c0ff4b85
R
2477 memcg = stock->cached;
2478 if (!memcg || !stock->nr_pages)
26fe6168 2479 continue;
c0ff4b85 2480 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2481 continue;
d1a05b69
MH
2482 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2483 if (cpu == curcpu)
2484 drain_local_stock(&stock->work);
2485 else
2486 schedule_work_on(cpu, &stock->work);
2487 }
cdec2e42 2488 }
5af12d0e 2489 put_cpu();
d38144b7
MH
2490
2491 if (!sync)
2492 goto out;
2493
2494 for_each_online_cpu(cpu) {
2495 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2496 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2497 flush_work(&stock->work);
2498 }
2499out:
f894ffa8 2500 put_online_cpus();
d38144b7
MH
2501}
2502
2503/*
2504 * Tries to drain stocked charges in other cpus. This function is asynchronous
2505 * and just put a work per cpu for draining localy on each cpu. Caller can
2506 * expects some charges will be back to res_counter later but cannot wait for
2507 * it.
2508 */
c0ff4b85 2509static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2510{
9f50fad6
MH
2511 /*
2512 * If someone calls draining, avoid adding more kworker runs.
2513 */
2514 if (!mutex_trylock(&percpu_charge_mutex))
2515 return;
c0ff4b85 2516 drain_all_stock(root_memcg, false);
9f50fad6 2517 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2518}
2519
2520/* This is a synchronous drain interface. */
c0ff4b85 2521static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2522{
2523 /* called when force_empty is called */
9f50fad6 2524 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2525 drain_all_stock(root_memcg, true);
9f50fad6 2526 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2527}
2528
711d3d2c
KH
2529/*
2530 * This function drains percpu counter value from DEAD cpu and
2531 * move it to local cpu. Note that this function can be preempted.
2532 */
c0ff4b85 2533static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2534{
2535 int i;
2536
c0ff4b85 2537 spin_lock(&memcg->pcp_counter_lock);
6104621d 2538 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2539 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2540
c0ff4b85
R
2541 per_cpu(memcg->stat->count[i], cpu) = 0;
2542 memcg->nocpu_base.count[i] += x;
711d3d2c 2543 }
e9f8974f 2544 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2545 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2546
c0ff4b85
R
2547 per_cpu(memcg->stat->events[i], cpu) = 0;
2548 memcg->nocpu_base.events[i] += x;
e9f8974f 2549 }
c0ff4b85 2550 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2551}
2552
0db0628d 2553static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2554 unsigned long action,
2555 void *hcpu)
2556{
2557 int cpu = (unsigned long)hcpu;
2558 struct memcg_stock_pcp *stock;
711d3d2c 2559 struct mem_cgroup *iter;
cdec2e42 2560
619d094b 2561 if (action == CPU_ONLINE)
1489ebad 2562 return NOTIFY_OK;
1489ebad 2563
d833049b 2564 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2565 return NOTIFY_OK;
711d3d2c 2566
9f3a0d09 2567 for_each_mem_cgroup(iter)
711d3d2c
KH
2568 mem_cgroup_drain_pcp_counter(iter, cpu);
2569
cdec2e42
KH
2570 stock = &per_cpu(memcg_stock, cpu);
2571 drain_stock(stock);
2572 return NOTIFY_OK;
2573}
2574
4b534334 2575
6d1fdc48 2576/* See mem_cgroup_try_charge() for details */
4b534334
KH
2577enum {
2578 CHARGE_OK, /* success */
2579 CHARGE_RETRY, /* need to retry but retry is not bad */
2580 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2581 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2582};
2583
c0ff4b85 2584static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2585 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2586 bool invoke_oom)
4b534334 2587{
7ec99d62 2588 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2589 struct mem_cgroup *mem_over_limit;
2590 struct res_counter *fail_res;
2591 unsigned long flags = 0;
2592 int ret;
2593
c0ff4b85 2594 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2595
2596 if (likely(!ret)) {
2597 if (!do_swap_account)
2598 return CHARGE_OK;
c0ff4b85 2599 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2600 if (likely(!ret))
2601 return CHARGE_OK;
2602
c0ff4b85 2603 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2604 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2605 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2606 } else
2607 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2608 /*
9221edb7
JW
2609 * Never reclaim on behalf of optional batching, retry with a
2610 * single page instead.
2611 */
4c9c5359 2612 if (nr_pages > min_pages)
4b534334
KH
2613 return CHARGE_RETRY;
2614
2615 if (!(gfp_mask & __GFP_WAIT))
2616 return CHARGE_WOULDBLOCK;
2617
4c9c5359
SS
2618 if (gfp_mask & __GFP_NORETRY)
2619 return CHARGE_NOMEM;
2620
5660048c 2621 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2622 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2623 return CHARGE_RETRY;
4b534334 2624 /*
19942822
JW
2625 * Even though the limit is exceeded at this point, reclaim
2626 * may have been able to free some pages. Retry the charge
2627 * before killing the task.
2628 *
2629 * Only for regular pages, though: huge pages are rather
2630 * unlikely to succeed so close to the limit, and we fall back
2631 * to regular pages anyway in case of failure.
4b534334 2632 */
4c9c5359 2633 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2634 return CHARGE_RETRY;
2635
2636 /*
2637 * At task move, charge accounts can be doubly counted. So, it's
2638 * better to wait until the end of task_move if something is going on.
2639 */
2640 if (mem_cgroup_wait_acct_move(mem_over_limit))
2641 return CHARGE_RETRY;
2642
3812c8c8
JW
2643 if (invoke_oom)
2644 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2645
3812c8c8 2646 return CHARGE_NOMEM;
4b534334
KH
2647}
2648
6d1fdc48
JW
2649/**
2650 * mem_cgroup_try_charge - try charging a memcg
2651 * @memcg: memcg to charge
2652 * @nr_pages: number of pages to charge
2653 * @oom: trigger OOM if reclaim fails
38c5d72f 2654 *
6d1fdc48
JW
2655 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2656 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2657 */
6d1fdc48
JW
2658static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2659 gfp_t gfp_mask,
2660 unsigned int nr_pages,
2661 bool oom)
8a9f3ccd 2662{
7ec99d62 2663 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2664 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2665 int ret;
a636b327 2666
6d1fdc48
JW
2667 if (mem_cgroup_is_root(memcg))
2668 goto done;
867578cb 2669 /*
6d1fdc48
JW
2670 * Unlike in global OOM situations, memcg is not in a physical
2671 * memory shortage. Allow dying and OOM-killed tasks to
2672 * bypass the last charges so that they can exit quickly and
2673 * free their memory.
867578cb 2674 */
6d1fdc48
JW
2675 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2676 fatal_signal_pending(current)))
867578cb 2677 goto bypass;
a636b327 2678
49426420 2679 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2680 goto nomem;
49426420 2681
a0d8b00a
JW
2682 if (gfp_mask & __GFP_NOFAIL)
2683 oom = false;
f75ca962 2684again:
b6b6cc72
MH
2685 if (consume_stock(memcg, nr_pages))
2686 goto done;
8a9f3ccd 2687
4b534334 2688 do {
3812c8c8 2689 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2690
4b534334 2691 /* If killed, bypass charge */
6d1fdc48 2692 if (fatal_signal_pending(current))
4b534334 2693 goto bypass;
6d61ef40 2694
3812c8c8
JW
2695 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2696 nr_pages, invoke_oom);
4b534334
KH
2697 switch (ret) {
2698 case CHARGE_OK:
2699 break;
2700 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2701 batch = nr_pages;
f75ca962 2702 goto again;
4b534334
KH
2703 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2704 goto nomem;
2705 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2706 if (!oom || invoke_oom)
867578cb 2707 goto nomem;
4b534334
KH
2708 nr_oom_retries--;
2709 break;
66e1707b 2710 }
4b534334
KH
2711 } while (ret != CHARGE_OK);
2712
7ec99d62 2713 if (batch > nr_pages)
c0ff4b85 2714 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2715done:
7a81b88c
KH
2716 return 0;
2717nomem:
6d1fdc48 2718 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2719 return -ENOMEM;
867578cb 2720bypass:
38c5d72f 2721 return -EINTR;
7a81b88c 2722}
8a9f3ccd 2723
6d1fdc48
JW
2724/**
2725 * mem_cgroup_try_charge_mm - try charging a mm
2726 * @mm: mm_struct to charge
2727 * @nr_pages: number of pages to charge
2728 * @oom: trigger OOM if reclaim fails
2729 *
2730 * Returns the charged mem_cgroup associated with the given mm_struct or
2731 * NULL the charge failed.
2732 */
2733static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2734 gfp_t gfp_mask,
2735 unsigned int nr_pages,
2736 bool oom)
2737
2738{
2739 struct mem_cgroup *memcg;
2740 int ret;
2741
2742 memcg = get_mem_cgroup_from_mm(mm);
2743 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2744 css_put(&memcg->css);
2745 if (ret == -EINTR)
2746 memcg = root_mem_cgroup;
2747 else if (ret)
2748 memcg = NULL;
2749
2750 return memcg;
2751}
2752
a3032a2c
DN
2753/*
2754 * Somemtimes we have to undo a charge we got by try_charge().
2755 * This function is for that and do uncharge, put css's refcnt.
2756 * gotten by try_charge().
2757 */
c0ff4b85 2758static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2759 unsigned int nr_pages)
a3032a2c 2760{
c0ff4b85 2761 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2762 unsigned long bytes = nr_pages * PAGE_SIZE;
2763
c0ff4b85 2764 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2765 if (do_swap_account)
c0ff4b85 2766 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2767 }
854ffa8d
DN
2768}
2769
d01dd17f
KH
2770/*
2771 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2772 * This is useful when moving usage to parent cgroup.
2773 */
2774static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2775 unsigned int nr_pages)
2776{
2777 unsigned long bytes = nr_pages * PAGE_SIZE;
2778
2779 if (mem_cgroup_is_root(memcg))
2780 return;
2781
2782 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2783 if (do_swap_account)
2784 res_counter_uncharge_until(&memcg->memsw,
2785 memcg->memsw.parent, bytes);
2786}
2787
a3b2d692
KH
2788/*
2789 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2790 * rcu_read_lock(). The caller is responsible for calling
2791 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2792 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2793 */
2794static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2795{
a3b2d692
KH
2796 /* ID 0 is unused ID */
2797 if (!id)
2798 return NULL;
34c00c31 2799 return mem_cgroup_from_id(id);
a3b2d692
KH
2800}
2801
e42d9d5d 2802struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2803{
c0ff4b85 2804 struct mem_cgroup *memcg = NULL;
3c776e64 2805 struct page_cgroup *pc;
a3b2d692 2806 unsigned short id;
b5a84319
KH
2807 swp_entry_t ent;
2808
309381fe 2809 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2810
3c776e64 2811 pc = lookup_page_cgroup(page);
c0bd3f63 2812 lock_page_cgroup(pc);
a3b2d692 2813 if (PageCgroupUsed(pc)) {
c0ff4b85 2814 memcg = pc->mem_cgroup;
ec903c0c 2815 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2816 memcg = NULL;
e42d9d5d 2817 } else if (PageSwapCache(page)) {
3c776e64 2818 ent.val = page_private(page);
9fb4b7cc 2819 id = lookup_swap_cgroup_id(ent);
a3b2d692 2820 rcu_read_lock();
c0ff4b85 2821 memcg = mem_cgroup_lookup(id);
ec903c0c 2822 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2823 memcg = NULL;
a3b2d692 2824 rcu_read_unlock();
3c776e64 2825 }
c0bd3f63 2826 unlock_page_cgroup(pc);
c0ff4b85 2827 return memcg;
b5a84319
KH
2828}
2829
c0ff4b85 2830static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2831 struct page *page,
7ec99d62 2832 unsigned int nr_pages,
9ce70c02
HD
2833 enum charge_type ctype,
2834 bool lrucare)
7a81b88c 2835{
ce587e65 2836 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2837 struct zone *uninitialized_var(zone);
fa9add64 2838 struct lruvec *lruvec;
9ce70c02 2839 bool was_on_lru = false;
b2402857 2840 bool anon;
9ce70c02 2841
ca3e0214 2842 lock_page_cgroup(pc);
309381fe 2843 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2844 /*
2845 * we don't need page_cgroup_lock about tail pages, becase they are not
2846 * accessed by any other context at this point.
2847 */
9ce70c02
HD
2848
2849 /*
2850 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2851 * may already be on some other mem_cgroup's LRU. Take care of it.
2852 */
2853 if (lrucare) {
2854 zone = page_zone(page);
2855 spin_lock_irq(&zone->lru_lock);
2856 if (PageLRU(page)) {
fa9add64 2857 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2858 ClearPageLRU(page);
fa9add64 2859 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2860 was_on_lru = true;
2861 }
2862 }
2863
c0ff4b85 2864 pc->mem_cgroup = memcg;
261fb61a
KH
2865 /*
2866 * We access a page_cgroup asynchronously without lock_page_cgroup().
2867 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2868 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2869 * before USED bit, we need memory barrier here.
2870 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2871 */
08e552c6 2872 smp_wmb();
b2402857 2873 SetPageCgroupUsed(pc);
3be91277 2874
9ce70c02
HD
2875 if (lrucare) {
2876 if (was_on_lru) {
fa9add64 2877 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2878 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2879 SetPageLRU(page);
fa9add64 2880 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2881 }
2882 spin_unlock_irq(&zone->lru_lock);
2883 }
2884
41326c17 2885 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2886 anon = true;
2887 else
2888 anon = false;
2889
b070e65c 2890 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2891 unlock_page_cgroup(pc);
9ce70c02 2892
430e4863 2893 /*
bb4cc1a8
AM
2894 * "charge_statistics" updated event counter. Then, check it.
2895 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2896 * if they exceeds softlimit.
430e4863 2897 */
c0ff4b85 2898 memcg_check_events(memcg, page);
7a81b88c 2899}
66e1707b 2900
7cf27982
GC
2901static DEFINE_MUTEX(set_limit_mutex);
2902
7ae1e1d0 2903#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2904static DEFINE_MUTEX(activate_kmem_mutex);
2905
7ae1e1d0
GC
2906static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2907{
2908 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2909 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2910}
2911
1f458cbf
GC
2912/*
2913 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2914 * in the memcg_cache_params struct.
2915 */
2916static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2917{
2918 struct kmem_cache *cachep;
2919
2920 VM_BUG_ON(p->is_root_cache);
2921 cachep = p->root_cache;
7a67d7ab 2922 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2923}
2924
749c5415 2925#ifdef CONFIG_SLABINFO
2da8ca82 2926static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2927{
2da8ca82 2928 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2929 struct memcg_cache_params *params;
2930
2931 if (!memcg_can_account_kmem(memcg))
2932 return -EIO;
2933
2934 print_slabinfo_header(m);
2935
2936 mutex_lock(&memcg->slab_caches_mutex);
2937 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2938 cache_show(memcg_params_to_cache(params), m);
2939 mutex_unlock(&memcg->slab_caches_mutex);
2940
2941 return 0;
2942}
2943#endif
2944
7ae1e1d0
GC
2945static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2946{
2947 struct res_counter *fail_res;
7ae1e1d0 2948 int ret = 0;
7ae1e1d0
GC
2949
2950 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2951 if (ret)
2952 return ret;
2953
6d1fdc48
JW
2954 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2955 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2956 if (ret == -EINTR) {
2957 /*
6d1fdc48 2958 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2959 * OOM kill or fatal signal. Since our only options are to
2960 * either fail the allocation or charge it to this cgroup, do
2961 * it as a temporary condition. But we can't fail. From a
2962 * kmem/slab perspective, the cache has already been selected,
2963 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2964 * our minds.
2965 *
2966 * This condition will only trigger if the task entered
2967 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2968 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2969 * dying when the allocation triggers should have been already
2970 * directed to the root cgroup in memcontrol.h
2971 */
2972 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2973 if (do_swap_account)
2974 res_counter_charge_nofail(&memcg->memsw, size,
2975 &fail_res);
2976 ret = 0;
2977 } else if (ret)
2978 res_counter_uncharge(&memcg->kmem, size);
2979
2980 return ret;
2981}
2982
2983static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2984{
7ae1e1d0
GC
2985 res_counter_uncharge(&memcg->res, size);
2986 if (do_swap_account)
2987 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2988
2989 /* Not down to 0 */
2990 if (res_counter_uncharge(&memcg->kmem, size))
2991 return;
2992
10d5ebf4
LZ
2993 /*
2994 * Releases a reference taken in kmem_cgroup_css_offline in case
2995 * this last uncharge is racing with the offlining code or it is
2996 * outliving the memcg existence.
2997 *
2998 * The memory barrier imposed by test&clear is paired with the
2999 * explicit one in memcg_kmem_mark_dead().
3000 */
7de37682 3001 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3002 css_put(&memcg->css);
7ae1e1d0
GC
3003}
3004
2633d7a0
GC
3005/*
3006 * helper for acessing a memcg's index. It will be used as an index in the
3007 * child cache array in kmem_cache, and also to derive its name. This function
3008 * will return -1 when this is not a kmem-limited memcg.
3009 */
3010int memcg_cache_id(struct mem_cgroup *memcg)
3011{
3012 return memcg ? memcg->kmemcg_id : -1;
3013}
3014
55007d84
GC
3015static size_t memcg_caches_array_size(int num_groups)
3016{
3017 ssize_t size;
3018 if (num_groups <= 0)
3019 return 0;
3020
3021 size = 2 * num_groups;
3022 if (size < MEMCG_CACHES_MIN_SIZE)
3023 size = MEMCG_CACHES_MIN_SIZE;
3024 else if (size > MEMCG_CACHES_MAX_SIZE)
3025 size = MEMCG_CACHES_MAX_SIZE;
3026
3027 return size;
3028}
3029
3030/*
3031 * We should update the current array size iff all caches updates succeed. This
3032 * can only be done from the slab side. The slab mutex needs to be held when
3033 * calling this.
3034 */
3035void memcg_update_array_size(int num)
3036{
3037 if (num > memcg_limited_groups_array_size)
3038 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3039}
3040
15cf17d2
KK
3041static void kmem_cache_destroy_work_func(struct work_struct *w);
3042
55007d84
GC
3043int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3044{
3045 struct memcg_cache_params *cur_params = s->memcg_params;
3046
f35c3a8e 3047 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3048
3049 if (num_groups > memcg_limited_groups_array_size) {
3050 int i;
f8570263 3051 struct memcg_cache_params *new_params;
55007d84
GC
3052 ssize_t size = memcg_caches_array_size(num_groups);
3053
3054 size *= sizeof(void *);
90c7a79c 3055 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3056
f8570263
VD
3057 new_params = kzalloc(size, GFP_KERNEL);
3058 if (!new_params)
55007d84 3059 return -ENOMEM;
55007d84 3060
f8570263 3061 new_params->is_root_cache = true;
55007d84
GC
3062
3063 /*
3064 * There is the chance it will be bigger than
3065 * memcg_limited_groups_array_size, if we failed an allocation
3066 * in a cache, in which case all caches updated before it, will
3067 * have a bigger array.
3068 *
3069 * But if that is the case, the data after
3070 * memcg_limited_groups_array_size is certainly unused
3071 */
3072 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3073 if (!cur_params->memcg_caches[i])
3074 continue;
f8570263 3075 new_params->memcg_caches[i] =
55007d84
GC
3076 cur_params->memcg_caches[i];
3077 }
3078
3079 /*
3080 * Ideally, we would wait until all caches succeed, and only
3081 * then free the old one. But this is not worth the extra
3082 * pointer per-cache we'd have to have for this.
3083 *
3084 * It is not a big deal if some caches are left with a size
3085 * bigger than the others. And all updates will reset this
3086 * anyway.
3087 */
f8570263
VD
3088 rcu_assign_pointer(s->memcg_params, new_params);
3089 if (cur_params)
3090 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3091 }
3092 return 0;
3093}
3094
5722d094
VD
3095char *memcg_create_cache_name(struct mem_cgroup *memcg,
3096 struct kmem_cache *root_cache)
3097{
3098 static char *buf = NULL;
3099
3100 /*
3101 * We need a mutex here to protect the shared buffer. Since this is
3102 * expected to be called only on cache creation, we can employ the
3103 * slab_mutex for that purpose.
3104 */
3105 lockdep_assert_held(&slab_mutex);
3106
3107 if (!buf) {
3108 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3109 if (!buf)
3110 return NULL;
3111 }
3112
3113 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3114 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3115 memcg_cache_id(memcg), buf);
3116}
3117
363a044f
VD
3118int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3119 struct kmem_cache *root_cache)
2633d7a0 3120{
90c7a79c 3121 size_t size;
2633d7a0
GC
3122
3123 if (!memcg_kmem_enabled())
3124 return 0;
3125
90c7a79c
AV
3126 if (!memcg) {
3127 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3128 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3129 } else
3130 size = sizeof(struct memcg_cache_params);
55007d84 3131
2633d7a0
GC
3132 s->memcg_params = kzalloc(size, GFP_KERNEL);
3133 if (!s->memcg_params)
3134 return -ENOMEM;
3135
943a451a 3136 if (memcg) {
2633d7a0 3137 s->memcg_params->memcg = memcg;
943a451a 3138 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3139 INIT_WORK(&s->memcg_params->destroy,
3140 kmem_cache_destroy_work_func);
051dd460 3141 css_get(&memcg->css);
4ba902b5
GC
3142 } else
3143 s->memcg_params->is_root_cache = true;
3144
2633d7a0
GC
3145 return 0;
3146}
3147
363a044f
VD
3148void memcg_free_cache_params(struct kmem_cache *s)
3149{
051dd460
VD
3150 if (!s->memcg_params)
3151 return;
3152 if (!s->memcg_params->is_root_cache)
3153 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3154 kfree(s->memcg_params);
3155}
3156
1aa13254 3157void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3158{
d7f25f8a
GC
3159 struct kmem_cache *root;
3160 struct mem_cgroup *memcg;
3161 int id;
3162
1aa13254
VD
3163 if (is_root_cache(s))
3164 return;
3165
2edefe11
VD
3166 /*
3167 * Holding the slab_mutex assures nobody will touch the memcg_caches
3168 * array while we are modifying it.
3169 */
3170 lockdep_assert_held(&slab_mutex);
3171
1aa13254
VD
3172 root = s->memcg_params->root_cache;
3173 memcg = s->memcg_params->memcg;
3174 id = memcg_cache_id(memcg);
3175
d7f25f8a 3176 /*
959c8963
VD
3177 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3178 * barrier here to ensure nobody will see the kmem_cache partially
3179 * initialized.
d7f25f8a 3180 */
959c8963
VD
3181 smp_wmb();
3182
96403da2
VD
3183 /*
3184 * Initialize the pointer to this cache in its parent's memcg_params
3185 * before adding it to the memcg_slab_caches list, otherwise we can
3186 * fail to convert memcg_params_to_cache() while traversing the list.
3187 */
2edefe11 3188 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3189 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3190
3191 mutex_lock(&memcg->slab_caches_mutex);
3192 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3193 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3194}
d7f25f8a 3195
1aa13254
VD
3196void memcg_unregister_cache(struct kmem_cache *s)
3197{
3198 struct kmem_cache *root;
3199 struct mem_cgroup *memcg;
3200 int id;
3201
3202 if (is_root_cache(s))
3203 return;
d7f25f8a 3204
2edefe11
VD
3205 /*
3206 * Holding the slab_mutex assures nobody will touch the memcg_caches
3207 * array while we are modifying it.
3208 */
3209 lockdep_assert_held(&slab_mutex);
3210
d7f25f8a 3211 root = s->memcg_params->root_cache;
96403da2
VD
3212 memcg = s->memcg_params->memcg;
3213 id = memcg_cache_id(memcg);
d7f25f8a
GC
3214
3215 mutex_lock(&memcg->slab_caches_mutex);
3216 list_del(&s->memcg_params->list);
3217 mutex_unlock(&memcg->slab_caches_mutex);
3218
96403da2
VD
3219 /*
3220 * Clear the pointer to this cache in its parent's memcg_params only
3221 * after removing it from the memcg_slab_caches list, otherwise we can
3222 * fail to convert memcg_params_to_cache() while traversing the list.
3223 */
051dd460 3224 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
96403da2 3225 root->memcg_params->memcg_caches[id] = NULL;
2633d7a0
GC
3226}
3227
0e9d92f2
GC
3228/*
3229 * During the creation a new cache, we need to disable our accounting mechanism
3230 * altogether. This is true even if we are not creating, but rather just
3231 * enqueing new caches to be created.
3232 *
3233 * This is because that process will trigger allocations; some visible, like
3234 * explicit kmallocs to auxiliary data structures, name strings and internal
3235 * cache structures; some well concealed, like INIT_WORK() that can allocate
3236 * objects during debug.
3237 *
3238 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3239 * to it. This may not be a bounded recursion: since the first cache creation
3240 * failed to complete (waiting on the allocation), we'll just try to create the
3241 * cache again, failing at the same point.
3242 *
3243 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3244 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3245 * inside the following two functions.
3246 */
3247static inline void memcg_stop_kmem_account(void)
3248{
3249 VM_BUG_ON(!current->mm);
3250 current->memcg_kmem_skip_account++;
3251}
3252
3253static inline void memcg_resume_kmem_account(void)
3254{
3255 VM_BUG_ON(!current->mm);
3256 current->memcg_kmem_skip_account--;
3257}
3258
1f458cbf
GC
3259static void kmem_cache_destroy_work_func(struct work_struct *w)
3260{
3261 struct kmem_cache *cachep;
3262 struct memcg_cache_params *p;
3263
3264 p = container_of(w, struct memcg_cache_params, destroy);
3265
3266 cachep = memcg_params_to_cache(p);
3267
22933152
GC
3268 /*
3269 * If we get down to 0 after shrink, we could delete right away.
3270 * However, memcg_release_pages() already puts us back in the workqueue
3271 * in that case. If we proceed deleting, we'll get a dangling
3272 * reference, and removing the object from the workqueue in that case
3273 * is unnecessary complication. We are not a fast path.
3274 *
3275 * Note that this case is fundamentally different from racing with
3276 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3277 * kmem_cache_shrink, not only we would be reinserting a dead cache
3278 * into the queue, but doing so from inside the worker racing to
3279 * destroy it.
3280 *
3281 * So if we aren't down to zero, we'll just schedule a worker and try
3282 * again
3283 */
0d8a4a37 3284 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
22933152 3285 kmem_cache_shrink(cachep);
0d8a4a37 3286 else
1f458cbf
GC
3287 kmem_cache_destroy(cachep);
3288}
3289
3290void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3291{
3292 if (!cachep->memcg_params->dead)
3293 return;
3294
22933152
GC
3295 /*
3296 * There are many ways in which we can get here.
3297 *
3298 * We can get to a memory-pressure situation while the delayed work is
3299 * still pending to run. The vmscan shrinkers can then release all
3300 * cache memory and get us to destruction. If this is the case, we'll
3301 * be executed twice, which is a bug (the second time will execute over
3302 * bogus data). In this case, cancelling the work should be fine.
3303 *
3304 * But we can also get here from the worker itself, if
3305 * kmem_cache_shrink is enough to shake all the remaining objects and
3306 * get the page count to 0. In this case, we'll deadlock if we try to
3307 * cancel the work (the worker runs with an internal lock held, which
3308 * is the same lock we would hold for cancel_work_sync().)
3309 *
3310 * Since we can't possibly know who got us here, just refrain from
3311 * running if there is already work pending
3312 */
3313 if (work_pending(&cachep->memcg_params->destroy))
3314 return;
1f458cbf
GC
3315 /*
3316 * We have to defer the actual destroying to a workqueue, because
3317 * we might currently be in a context that cannot sleep.
3318 */
3319 schedule_work(&cachep->memcg_params->destroy);
3320}
3321
b8529907 3322int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
7cf27982
GC
3323{
3324 struct kmem_cache *c;
b8529907 3325 int i, failed = 0;
7cf27982
GC
3326
3327 /*
3328 * If the cache is being destroyed, we trust that there is no one else
3329 * requesting objects from it. Even if there are, the sanity checks in
3330 * kmem_cache_destroy should caught this ill-case.
3331 *
3332 * Still, we don't want anyone else freeing memcg_caches under our
3333 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3334 * we'll take the activate_kmem_mutex to protect ourselves against
3335 * this.
7cf27982 3336 */
d6441637 3337 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3338 for_each_memcg_cache_index(i) {
3339 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3340 if (!c)
3341 continue;
3342
3343 /*
3344 * We will now manually delete the caches, so to avoid races
3345 * we need to cancel all pending destruction workers and
3346 * proceed with destruction ourselves.
3347 *
3348 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3349 * and that could spawn the workers again: it is likely that
3350 * the cache still have active pages until this very moment.
3351 * This would lead us back to mem_cgroup_destroy_cache.
3352 *
3353 * But that will not execute at all if the "dead" flag is not
3354 * set, so flip it down to guarantee we are in control.
3355 */
3356 c->memcg_params->dead = false;
22933152 3357 cancel_work_sync(&c->memcg_params->destroy);
7cf27982 3358 kmem_cache_destroy(c);
b8529907
VD
3359
3360 if (cache_from_memcg_idx(s, i))
3361 failed++;
7cf27982 3362 }
d6441637 3363 mutex_unlock(&activate_kmem_mutex);
b8529907 3364 return failed;
7cf27982
GC
3365}
3366
1f458cbf
GC
3367static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3368{
3369 struct kmem_cache *cachep;
3370 struct memcg_cache_params *params;
3371
3372 if (!memcg_kmem_is_active(memcg))
3373 return;
3374
3375 mutex_lock(&memcg->slab_caches_mutex);
3376 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3377 cachep = memcg_params_to_cache(params);
3378 cachep->memcg_params->dead = true;
1f458cbf
GC
3379 schedule_work(&cachep->memcg_params->destroy);
3380 }
3381 mutex_unlock(&memcg->slab_caches_mutex);
3382}
3383
5722d094
VD
3384struct create_work {
3385 struct mem_cgroup *memcg;
3386 struct kmem_cache *cachep;
3387 struct work_struct work;
3388};
3389
d7f25f8a
GC
3390static void memcg_create_cache_work_func(struct work_struct *w)
3391{
5722d094
VD
3392 struct create_work *cw = container_of(w, struct create_work, work);
3393 struct mem_cgroup *memcg = cw->memcg;
3394 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3395
794b1248 3396 kmem_cache_create_memcg(memcg, cachep);
5722d094 3397 css_put(&memcg->css);
d7f25f8a
GC
3398 kfree(cw);
3399}
3400
3401/*
3402 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3403 */
0e9d92f2
GC
3404static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3405 struct kmem_cache *cachep)
d7f25f8a
GC
3406{
3407 struct create_work *cw;
3408
3409 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3410 if (cw == NULL) {
3411 css_put(&memcg->css);
d7f25f8a
GC
3412 return;
3413 }
3414
3415 cw->memcg = memcg;
3416 cw->cachep = cachep;
3417
3418 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3419 schedule_work(&cw->work);
3420}
3421
0e9d92f2
GC
3422static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3423 struct kmem_cache *cachep)
3424{
3425 /*
3426 * We need to stop accounting when we kmalloc, because if the
3427 * corresponding kmalloc cache is not yet created, the first allocation
3428 * in __memcg_create_cache_enqueue will recurse.
3429 *
3430 * However, it is better to enclose the whole function. Depending on
3431 * the debugging options enabled, INIT_WORK(), for instance, can
3432 * trigger an allocation. This too, will make us recurse. Because at
3433 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3434 * the safest choice is to do it like this, wrapping the whole function.
3435 */
3436 memcg_stop_kmem_account();
3437 __memcg_create_cache_enqueue(memcg, cachep);
3438 memcg_resume_kmem_account();
3439}
d7f25f8a
GC
3440/*
3441 * Return the kmem_cache we're supposed to use for a slab allocation.
3442 * We try to use the current memcg's version of the cache.
3443 *
3444 * If the cache does not exist yet, if we are the first user of it,
3445 * we either create it immediately, if possible, or create it asynchronously
3446 * in a workqueue.
3447 * In the latter case, we will let the current allocation go through with
3448 * the original cache.
3449 *
3450 * Can't be called in interrupt context or from kernel threads.
3451 * This function needs to be called with rcu_read_lock() held.
3452 */
3453struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3454 gfp_t gfp)
3455{
3456 struct mem_cgroup *memcg;
959c8963 3457 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3458
3459 VM_BUG_ON(!cachep->memcg_params);
3460 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3461
0e9d92f2
GC
3462 if (!current->mm || current->memcg_kmem_skip_account)
3463 return cachep;
3464
d7f25f8a
GC
3465 rcu_read_lock();
3466 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3467
3468 if (!memcg_can_account_kmem(memcg))
ca0dde97 3469 goto out;
d7f25f8a 3470
959c8963
VD
3471 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3472 if (likely(memcg_cachep)) {
3473 cachep = memcg_cachep;
ca0dde97 3474 goto out;
d7f25f8a
GC
3475 }
3476
ca0dde97 3477 /* The corresponding put will be done in the workqueue. */
ec903c0c 3478 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3479 goto out;
3480 rcu_read_unlock();
3481
3482 /*
3483 * If we are in a safe context (can wait, and not in interrupt
3484 * context), we could be be predictable and return right away.
3485 * This would guarantee that the allocation being performed
3486 * already belongs in the new cache.
3487 *
3488 * However, there are some clashes that can arrive from locking.
3489 * For instance, because we acquire the slab_mutex while doing
3490 * kmem_cache_dup, this means no further allocation could happen
3491 * with the slab_mutex held.
3492 *
3493 * Also, because cache creation issue get_online_cpus(), this
3494 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3495 * that ends up reversed during cpu hotplug. (cpuset allocates
3496 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3497 * better to defer everything.
3498 */
3499 memcg_create_cache_enqueue(memcg, cachep);
3500 return cachep;
3501out:
3502 rcu_read_unlock();
3503 return cachep;
d7f25f8a
GC
3504}
3505EXPORT_SYMBOL(__memcg_kmem_get_cache);
3506
7ae1e1d0
GC
3507/*
3508 * We need to verify if the allocation against current->mm->owner's memcg is
3509 * possible for the given order. But the page is not allocated yet, so we'll
3510 * need a further commit step to do the final arrangements.
3511 *
3512 * It is possible for the task to switch cgroups in this mean time, so at
3513 * commit time, we can't rely on task conversion any longer. We'll then use
3514 * the handle argument to return to the caller which cgroup we should commit
3515 * against. We could also return the memcg directly and avoid the pointer
3516 * passing, but a boolean return value gives better semantics considering
3517 * the compiled-out case as well.
3518 *
3519 * Returning true means the allocation is possible.
3520 */
3521bool
3522__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3523{
3524 struct mem_cgroup *memcg;
3525 int ret;
3526
3527 *_memcg = NULL;
6d42c232
GC
3528
3529 /*
3530 * Disabling accounting is only relevant for some specific memcg
3531 * internal allocations. Therefore we would initially not have such
3532 * check here, since direct calls to the page allocator that are marked
3533 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3534 * concerned with cache allocations, and by having this test at
3535 * memcg_kmem_get_cache, we are already able to relay the allocation to
3536 * the root cache and bypass the memcg cache altogether.
3537 *
3538 * There is one exception, though: the SLUB allocator does not create
3539 * large order caches, but rather service large kmallocs directly from
3540 * the page allocator. Therefore, the following sequence when backed by
3541 * the SLUB allocator:
3542 *
f894ffa8
AM
3543 * memcg_stop_kmem_account();
3544 * kmalloc(<large_number>)
3545 * memcg_resume_kmem_account();
6d42c232
GC
3546 *
3547 * would effectively ignore the fact that we should skip accounting,
3548 * since it will drive us directly to this function without passing
3549 * through the cache selector memcg_kmem_get_cache. Such large
3550 * allocations are extremely rare but can happen, for instance, for the
3551 * cache arrays. We bring this test here.
3552 */
3553 if (!current->mm || current->memcg_kmem_skip_account)
3554 return true;
3555
df381975 3556 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3557
3558 if (!memcg_can_account_kmem(memcg)) {
3559 css_put(&memcg->css);
3560 return true;
3561 }
3562
7ae1e1d0
GC
3563 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3564 if (!ret)
3565 *_memcg = memcg;
7ae1e1d0
GC
3566
3567 css_put(&memcg->css);
3568 return (ret == 0);
3569}
3570
3571void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3572 int order)
3573{
3574 struct page_cgroup *pc;
3575
3576 VM_BUG_ON(mem_cgroup_is_root(memcg));
3577
3578 /* The page allocation failed. Revert */
3579 if (!page) {
3580 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3581 return;
3582 }
3583
3584 pc = lookup_page_cgroup(page);
3585 lock_page_cgroup(pc);
3586 pc->mem_cgroup = memcg;
3587 SetPageCgroupUsed(pc);
3588 unlock_page_cgroup(pc);
3589}
3590
3591void __memcg_kmem_uncharge_pages(struct page *page, int order)
3592{
3593 struct mem_cgroup *memcg = NULL;
3594 struct page_cgroup *pc;
3595
3596
3597 pc = lookup_page_cgroup(page);
3598 /*
3599 * Fast unlocked return. Theoretically might have changed, have to
3600 * check again after locking.
3601 */
3602 if (!PageCgroupUsed(pc))
3603 return;
3604
3605 lock_page_cgroup(pc);
3606 if (PageCgroupUsed(pc)) {
3607 memcg = pc->mem_cgroup;
3608 ClearPageCgroupUsed(pc);
3609 }
3610 unlock_page_cgroup(pc);
3611
3612 /*
3613 * We trust that only if there is a memcg associated with the page, it
3614 * is a valid allocation
3615 */
3616 if (!memcg)
3617 return;
3618
309381fe 3619 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3620 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3621}
1f458cbf
GC
3622#else
3623static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3624{
3625}
7ae1e1d0
GC
3626#endif /* CONFIG_MEMCG_KMEM */
3627
ca3e0214
KH
3628#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3629
a0db00fc 3630#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3631/*
3632 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3633 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3634 * charge/uncharge will be never happen and move_account() is done under
3635 * compound_lock(), so we don't have to take care of races.
ca3e0214 3636 */
e94c8a9c 3637void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3638{
3639 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3640 struct page_cgroup *pc;
b070e65c 3641 struct mem_cgroup *memcg;
e94c8a9c 3642 int i;
ca3e0214 3643
3d37c4a9
KH
3644 if (mem_cgroup_disabled())
3645 return;
b070e65c
DR
3646
3647 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3648 for (i = 1; i < HPAGE_PMD_NR; i++) {
3649 pc = head_pc + i;
b070e65c 3650 pc->mem_cgroup = memcg;
e94c8a9c 3651 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3652 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3653 }
b070e65c
DR
3654 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3655 HPAGE_PMD_NR);
ca3e0214 3656}
12d27107 3657#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3658
f817ed48 3659/**
de3638d9 3660 * mem_cgroup_move_account - move account of the page
5564e88b 3661 * @page: the page
7ec99d62 3662 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3663 * @pc: page_cgroup of the page.
3664 * @from: mem_cgroup which the page is moved from.
3665 * @to: mem_cgroup which the page is moved to. @from != @to.
3666 *
3667 * The caller must confirm following.
08e552c6 3668 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3669 * - compound_lock is held when nr_pages > 1
f817ed48 3670 *
2f3479b1
KH
3671 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3672 * from old cgroup.
f817ed48 3673 */
7ec99d62
JW
3674static int mem_cgroup_move_account(struct page *page,
3675 unsigned int nr_pages,
3676 struct page_cgroup *pc,
3677 struct mem_cgroup *from,
2f3479b1 3678 struct mem_cgroup *to)
f817ed48 3679{
de3638d9
JW
3680 unsigned long flags;
3681 int ret;
b2402857 3682 bool anon = PageAnon(page);
987eba66 3683
f817ed48 3684 VM_BUG_ON(from == to);
309381fe 3685 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3686 /*
3687 * The page is isolated from LRU. So, collapse function
3688 * will not handle this page. But page splitting can happen.
3689 * Do this check under compound_page_lock(). The caller should
3690 * hold it.
3691 */
3692 ret = -EBUSY;
7ec99d62 3693 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3694 goto out;
3695
3696 lock_page_cgroup(pc);
3697
3698 ret = -EINVAL;
3699 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3700 goto unlock;
3701
312734c0 3702 move_lock_mem_cgroup(from, &flags);
f817ed48 3703
59d1d256
JW
3704 if (!anon && page_mapped(page)) {
3705 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3706 nr_pages);
3707 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3708 nr_pages);
3709 }
3ea67d06 3710
59d1d256
JW
3711 if (PageWriteback(page)) {
3712 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3713 nr_pages);
3714 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3715 nr_pages);
3716 }
3ea67d06 3717
b070e65c 3718 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3719
854ffa8d 3720 /* caller should have done css_get */
08e552c6 3721 pc->mem_cgroup = to;
b070e65c 3722 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3723 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3724 ret = 0;
3725unlock:
57f9fd7d 3726 unlock_page_cgroup(pc);
d2265e6f
KH
3727 /*
3728 * check events
3729 */
5564e88b
JW
3730 memcg_check_events(to, page);
3731 memcg_check_events(from, page);
de3638d9 3732out:
f817ed48
KH
3733 return ret;
3734}
3735
2ef37d3f
MH
3736/**
3737 * mem_cgroup_move_parent - moves page to the parent group
3738 * @page: the page to move
3739 * @pc: page_cgroup of the page
3740 * @child: page's cgroup
3741 *
3742 * move charges to its parent or the root cgroup if the group has no
3743 * parent (aka use_hierarchy==0).
3744 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3745 * mem_cgroup_move_account fails) the failure is always temporary and
3746 * it signals a race with a page removal/uncharge or migration. In the
3747 * first case the page is on the way out and it will vanish from the LRU
3748 * on the next attempt and the call should be retried later.
3749 * Isolation from the LRU fails only if page has been isolated from
3750 * the LRU since we looked at it and that usually means either global
3751 * reclaim or migration going on. The page will either get back to the
3752 * LRU or vanish.
3753 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3754 * (!PageCgroupUsed) or moved to a different group. The page will
3755 * disappear in the next attempt.
f817ed48 3756 */
5564e88b
JW
3757static int mem_cgroup_move_parent(struct page *page,
3758 struct page_cgroup *pc,
6068bf01 3759 struct mem_cgroup *child)
f817ed48 3760{
f817ed48 3761 struct mem_cgroup *parent;
7ec99d62 3762 unsigned int nr_pages;
4be4489f 3763 unsigned long uninitialized_var(flags);
f817ed48
KH
3764 int ret;
3765
d8423011 3766 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3767
57f9fd7d
DN
3768 ret = -EBUSY;
3769 if (!get_page_unless_zero(page))
3770 goto out;
3771 if (isolate_lru_page(page))
3772 goto put;
52dbb905 3773
7ec99d62 3774 nr_pages = hpage_nr_pages(page);
08e552c6 3775
cc926f78
KH
3776 parent = parent_mem_cgroup(child);
3777 /*
3778 * If no parent, move charges to root cgroup.
3779 */
3780 if (!parent)
3781 parent = root_mem_cgroup;
f817ed48 3782
2ef37d3f 3783 if (nr_pages > 1) {
309381fe 3784 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3785 flags = compound_lock_irqsave(page);
2ef37d3f 3786 }
987eba66 3787
cc926f78 3788 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3789 pc, child, parent);
cc926f78
KH
3790 if (!ret)
3791 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3792
7ec99d62 3793 if (nr_pages > 1)
987eba66 3794 compound_unlock_irqrestore(page, flags);
08e552c6 3795 putback_lru_page(page);
57f9fd7d 3796put:
40d58138 3797 put_page(page);
57f9fd7d 3798out:
f817ed48
KH
3799 return ret;
3800}
3801
d715ae08 3802int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3803 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3804{
7ec99d62 3805 unsigned int nr_pages = 1;
6d1fdc48 3806 struct mem_cgroup *memcg;
8493ae43 3807 bool oom = true;
ec168510 3808
1bec6b33
JW
3809 if (mem_cgroup_disabled())
3810 return 0;
3811
3812 VM_BUG_ON_PAGE(page_mapped(page), page);
3813 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3814 VM_BUG_ON(!mm);
3815
37c2ac78 3816 if (PageTransHuge(page)) {
7ec99d62 3817 nr_pages <<= compound_order(page);
309381fe 3818 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3819 /*
3820 * Never OOM-kill a process for a huge page. The
3821 * fault handler will fall back to regular pages.
3822 */
3823 oom = false;
37c2ac78 3824 }
7a81b88c 3825
6d1fdc48
JW
3826 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3827 if (!memcg)
3828 return -ENOMEM;
1bec6b33
JW
3829 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3830 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3831 return 0;
8a9f3ccd
BS
3832}
3833
54595fe2
KH
3834/*
3835 * While swap-in, try_charge -> commit or cancel, the page is locked.
3836 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3837 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3838 * "commit()" or removed by "cancel()"
3839 */
0435a2fd
JW
3840static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3841 struct page *page,
3842 gfp_t mask,
3843 struct mem_cgroup **memcgp)
8c7c6e34 3844{
6d1fdc48 3845 struct mem_cgroup *memcg = NULL;
90deb788 3846 struct page_cgroup *pc;
54595fe2 3847 int ret;
8c7c6e34 3848
90deb788
JW
3849 pc = lookup_page_cgroup(page);
3850 /*
3851 * Every swap fault against a single page tries to charge the
3852 * page, bail as early as possible. shmem_unuse() encounters
3853 * already charged pages, too. The USED bit is protected by
3854 * the page lock, which serializes swap cache removal, which
3855 * in turn serializes uncharging.
3856 */
3857 if (PageCgroupUsed(pc))
6d1fdc48
JW
3858 goto out;
3859 if (do_swap_account)
3860 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3861 if (!memcg)
6d1fdc48
JW
3862 memcg = get_mem_cgroup_from_mm(mm);
3863 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3864 css_put(&memcg->css);
38c5d72f 3865 if (ret == -EINTR)
6d1fdc48
JW
3866 memcg = root_mem_cgroup;
3867 else if (ret)
3868 return ret;
3869out:
3870 *memcgp = memcg;
3871 return 0;
8c7c6e34
KH
3872}
3873
0435a2fd
JW
3874int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3875 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3876{
6d1fdc48
JW
3877 if (mem_cgroup_disabled()) {
3878 *memcgp = NULL;
0435a2fd 3879 return 0;
6d1fdc48 3880 }
bdf4f4d2
JW
3881 /*
3882 * A racing thread's fault, or swapoff, may have already
3883 * updated the pte, and even removed page from swap cache: in
3884 * those cases unuse_pte()'s pte_same() test will fail; but
3885 * there's also a KSM case which does need to charge the page.
3886 */
3887 if (!PageSwapCache(page)) {
6d1fdc48 3888 struct mem_cgroup *memcg;
bdf4f4d2 3889
6d1fdc48
JW
3890 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3891 if (!memcg)
3892 return -ENOMEM;
3893 *memcgp = memcg;
3894 return 0;
bdf4f4d2 3895 }
0435a2fd
JW
3896 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3897}
3898
827a03d2
JW
3899void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3900{
3901 if (mem_cgroup_disabled())
3902 return;
3903 if (!memcg)
3904 return;
3905 __mem_cgroup_cancel_charge(memcg, 1);
3906}
3907
83aae4c7 3908static void
72835c86 3909__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3910 enum charge_type ctype)
7a81b88c 3911{
f8d66542 3912 if (mem_cgroup_disabled())
7a81b88c 3913 return;
72835c86 3914 if (!memcg)
7a81b88c 3915 return;
5a6475a4 3916
ce587e65 3917 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3918 /*
3919 * Now swap is on-memory. This means this page may be
3920 * counted both as mem and swap....double count.
03f3c433
KH
3921 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3922 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3923 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3924 */
03f3c433 3925 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3926 swp_entry_t ent = {.val = page_private(page)};
86493009 3927 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3928 }
7a81b88c
KH
3929}
3930
72835c86
JW
3931void mem_cgroup_commit_charge_swapin(struct page *page,
3932 struct mem_cgroup *memcg)
83aae4c7 3933{
72835c86 3934 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3935 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3936}
3937
d715ae08 3938int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3939 gfp_t gfp_mask)
7a81b88c 3940{
827a03d2 3941 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3942 struct mem_cgroup *memcg;
827a03d2
JW
3943 int ret;
3944
f8d66542 3945 if (mem_cgroup_disabled())
827a03d2
JW
3946 return 0;
3947 if (PageCompound(page))
3948 return 0;
3949
6d1fdc48 3950 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3951 ret = __mem_cgroup_try_charge_swapin(mm, page,
3952 gfp_mask, &memcg);
6d1fdc48
JW
3953 if (ret)
3954 return ret;
3955 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3956 return 0;
827a03d2 3957 }
6d1fdc48
JW
3958
3959 /*
3960 * Page cache insertions can happen without an actual mm
3961 * context, e.g. during disk probing on boot.
3962 */
3963 if (unlikely(!mm))
3964 memcg = root_mem_cgroup;
3965 else {
3966 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3967 if (!memcg)
3968 return -ENOMEM;
3969 }
3970 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3971 return 0;
7a81b88c
KH
3972}
3973
c0ff4b85 3974static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3975 unsigned int nr_pages,
3976 const enum charge_type ctype)
569b846d
KH
3977{
3978 struct memcg_batch_info *batch = NULL;
3979 bool uncharge_memsw = true;
7ec99d62 3980
569b846d
KH
3981 /* If swapout, usage of swap doesn't decrease */
3982 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3983 uncharge_memsw = false;
569b846d
KH
3984
3985 batch = &current->memcg_batch;
3986 /*
3987 * In usual, we do css_get() when we remember memcg pointer.
3988 * But in this case, we keep res->usage until end of a series of
3989 * uncharges. Then, it's ok to ignore memcg's refcnt.
3990 */
3991 if (!batch->memcg)
c0ff4b85 3992 batch->memcg = memcg;
3c11ecf4
KH
3993 /*
3994 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3995 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3996 * the same cgroup and we have chance to coalesce uncharges.
3997 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3998 * because we want to do uncharge as soon as possible.
3999 */
4000
4001 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4002 goto direct_uncharge;
4003
7ec99d62 4004 if (nr_pages > 1)
ec168510
AA
4005 goto direct_uncharge;
4006
569b846d
KH
4007 /*
4008 * In typical case, batch->memcg == mem. This means we can
4009 * merge a series of uncharges to an uncharge of res_counter.
4010 * If not, we uncharge res_counter ony by one.
4011 */
c0ff4b85 4012 if (batch->memcg != memcg)
569b846d
KH
4013 goto direct_uncharge;
4014 /* remember freed charge and uncharge it later */
7ffd4ca7 4015 batch->nr_pages++;
569b846d 4016 if (uncharge_memsw)
7ffd4ca7 4017 batch->memsw_nr_pages++;
569b846d
KH
4018 return;
4019direct_uncharge:
c0ff4b85 4020 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4021 if (uncharge_memsw)
c0ff4b85
R
4022 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4023 if (unlikely(batch->memcg != memcg))
4024 memcg_oom_recover(memcg);
569b846d 4025}
7a81b88c 4026
8a9f3ccd 4027/*
69029cd5 4028 * uncharge if !page_mapped(page)
8a9f3ccd 4029 */
8c7c6e34 4030static struct mem_cgroup *
0030f535
JW
4031__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4032 bool end_migration)
8a9f3ccd 4033{
c0ff4b85 4034 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4035 unsigned int nr_pages = 1;
4036 struct page_cgroup *pc;
b2402857 4037 bool anon;
8a9f3ccd 4038
f8d66542 4039 if (mem_cgroup_disabled())
8c7c6e34 4040 return NULL;
4077960e 4041
37c2ac78 4042 if (PageTransHuge(page)) {
7ec99d62 4043 nr_pages <<= compound_order(page);
309381fe 4044 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4045 }
8697d331 4046 /*
3c541e14 4047 * Check if our page_cgroup is valid
8697d331 4048 */
52d4b9ac 4049 pc = lookup_page_cgroup(page);
cfa44946 4050 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4051 return NULL;
b9c565d5 4052
52d4b9ac 4053 lock_page_cgroup(pc);
d13d1443 4054
c0ff4b85 4055 memcg = pc->mem_cgroup;
8c7c6e34 4056
d13d1443
KH
4057 if (!PageCgroupUsed(pc))
4058 goto unlock_out;
4059
b2402857
KH
4060 anon = PageAnon(page);
4061
d13d1443 4062 switch (ctype) {
41326c17 4063 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4064 /*
4065 * Generally PageAnon tells if it's the anon statistics to be
4066 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4067 * used before page reached the stage of being marked PageAnon.
4068 */
b2402857
KH
4069 anon = true;
4070 /* fallthrough */
8a9478ca 4071 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4072 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4073 if (page_mapped(page))
4074 goto unlock_out;
4075 /*
4076 * Pages under migration may not be uncharged. But
4077 * end_migration() /must/ be the one uncharging the
4078 * unused post-migration page and so it has to call
4079 * here with the migration bit still set. See the
4080 * res_counter handling below.
4081 */
4082 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4083 goto unlock_out;
4084 break;
4085 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4086 if (!PageAnon(page)) { /* Shared memory */
4087 if (page->mapping && !page_is_file_cache(page))
4088 goto unlock_out;
4089 } else if (page_mapped(page)) /* Anon */
4090 goto unlock_out;
4091 break;
4092 default:
4093 break;
52d4b9ac 4094 }
d13d1443 4095
b070e65c 4096 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4097
52d4b9ac 4098 ClearPageCgroupUsed(pc);
544122e5
KH
4099 /*
4100 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4101 * freed from LRU. This is safe because uncharged page is expected not
4102 * to be reused (freed soon). Exception is SwapCache, it's handled by
4103 * special functions.
4104 */
b9c565d5 4105
52d4b9ac 4106 unlock_page_cgroup(pc);
f75ca962 4107 /*
c0ff4b85 4108 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4109 * will never be freed, so it's safe to call css_get().
f75ca962 4110 */
c0ff4b85 4111 memcg_check_events(memcg, page);
f75ca962 4112 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4113 mem_cgroup_swap_statistics(memcg, true);
4050377b 4114 css_get(&memcg->css);
f75ca962 4115 }
0030f535
JW
4116 /*
4117 * Migration does not charge the res_counter for the
4118 * replacement page, so leave it alone when phasing out the
4119 * page that is unused after the migration.
4120 */
4121 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4122 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4123
c0ff4b85 4124 return memcg;
d13d1443
KH
4125
4126unlock_out:
4127 unlock_page_cgroup(pc);
8c7c6e34 4128 return NULL;
3c541e14
BS
4129}
4130
69029cd5
KH
4131void mem_cgroup_uncharge_page(struct page *page)
4132{
52d4b9ac
KH
4133 /* early check. */
4134 if (page_mapped(page))
4135 return;
309381fe 4136 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4137 /*
4138 * If the page is in swap cache, uncharge should be deferred
4139 * to the swap path, which also properly accounts swap usage
4140 * and handles memcg lifetime.
4141 *
4142 * Note that this check is not stable and reclaim may add the
4143 * page to swap cache at any time after this. However, if the
4144 * page is not in swap cache by the time page->mapcount hits
4145 * 0, there won't be any page table references to the swap
4146 * slot, and reclaim will free it and not actually write the
4147 * page to disk.
4148 */
0c59b89c
JW
4149 if (PageSwapCache(page))
4150 return;
0030f535 4151 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4152}
4153
4154void mem_cgroup_uncharge_cache_page(struct page *page)
4155{
309381fe
SL
4156 VM_BUG_ON_PAGE(page_mapped(page), page);
4157 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4158 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4159}
4160
569b846d
KH
4161/*
4162 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4163 * In that cases, pages are freed continuously and we can expect pages
4164 * are in the same memcg. All these calls itself limits the number of
4165 * pages freed at once, then uncharge_start/end() is called properly.
4166 * This may be called prural(2) times in a context,
4167 */
4168
4169void mem_cgroup_uncharge_start(void)
4170{
4171 current->memcg_batch.do_batch++;
4172 /* We can do nest. */
4173 if (current->memcg_batch.do_batch == 1) {
4174 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4175 current->memcg_batch.nr_pages = 0;
4176 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4177 }
4178}
4179
4180void mem_cgroup_uncharge_end(void)
4181{
4182 struct memcg_batch_info *batch = &current->memcg_batch;
4183
4184 if (!batch->do_batch)
4185 return;
4186
4187 batch->do_batch--;
4188 if (batch->do_batch) /* If stacked, do nothing. */
4189 return;
4190
4191 if (!batch->memcg)
4192 return;
4193 /*
4194 * This "batch->memcg" is valid without any css_get/put etc...
4195 * bacause we hide charges behind us.
4196 */
7ffd4ca7
JW
4197 if (batch->nr_pages)
4198 res_counter_uncharge(&batch->memcg->res,
4199 batch->nr_pages * PAGE_SIZE);
4200 if (batch->memsw_nr_pages)
4201 res_counter_uncharge(&batch->memcg->memsw,
4202 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4203 memcg_oom_recover(batch->memcg);
569b846d
KH
4204 /* forget this pointer (for sanity check) */
4205 batch->memcg = NULL;
4206}
4207
e767e056 4208#ifdef CONFIG_SWAP
8c7c6e34 4209/*
e767e056 4210 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4211 * memcg information is recorded to swap_cgroup of "ent"
4212 */
8a9478ca
KH
4213void
4214mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4215{
4216 struct mem_cgroup *memcg;
8a9478ca
KH
4217 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4218
4219 if (!swapout) /* this was a swap cache but the swap is unused ! */
4220 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4221
0030f535 4222 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4223
f75ca962
KH
4224 /*
4225 * record memcg information, if swapout && memcg != NULL,
4050377b 4226 * css_get() was called in uncharge().
f75ca962
KH
4227 */
4228 if (do_swap_account && swapout && memcg)
34c00c31 4229 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4230}
e767e056 4231#endif
8c7c6e34 4232
c255a458 4233#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4234/*
4235 * called from swap_entry_free(). remove record in swap_cgroup and
4236 * uncharge "memsw" account.
4237 */
4238void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4239{
8c7c6e34 4240 struct mem_cgroup *memcg;
a3b2d692 4241 unsigned short id;
8c7c6e34
KH
4242
4243 if (!do_swap_account)
4244 return;
4245
a3b2d692
KH
4246 id = swap_cgroup_record(ent, 0);
4247 rcu_read_lock();
4248 memcg = mem_cgroup_lookup(id);
8c7c6e34 4249 if (memcg) {
a3b2d692 4250 /*
ec903c0c
TH
4251 * We uncharge this because swap is freed. This memcg can
4252 * be obsolete one. We avoid calling css_tryget_online().
a3b2d692 4253 */
0c3e73e8 4254 if (!mem_cgroup_is_root(memcg))
4e649152 4255 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4256 mem_cgroup_swap_statistics(memcg, false);
4050377b 4257 css_put(&memcg->css);
8c7c6e34 4258 }
a3b2d692 4259 rcu_read_unlock();
d13d1443 4260}
02491447
DN
4261
4262/**
4263 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4264 * @entry: swap entry to be moved
4265 * @from: mem_cgroup which the entry is moved from
4266 * @to: mem_cgroup which the entry is moved to
4267 *
4268 * It succeeds only when the swap_cgroup's record for this entry is the same
4269 * as the mem_cgroup's id of @from.
4270 *
4271 * Returns 0 on success, -EINVAL on failure.
4272 *
4273 * The caller must have charged to @to, IOW, called res_counter_charge() about
4274 * both res and memsw, and called css_get().
4275 */
4276static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4277 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4278{
4279 unsigned short old_id, new_id;
4280
34c00c31
LZ
4281 old_id = mem_cgroup_id(from);
4282 new_id = mem_cgroup_id(to);
02491447
DN
4283
4284 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4285 mem_cgroup_swap_statistics(from, false);
483c30b5 4286 mem_cgroup_swap_statistics(to, true);
02491447 4287 /*
483c30b5
DN
4288 * This function is only called from task migration context now.
4289 * It postpones res_counter and refcount handling till the end
4290 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4291 * improvement. But we cannot postpone css_get(to) because if
4292 * the process that has been moved to @to does swap-in, the
4293 * refcount of @to might be decreased to 0.
4294 *
4295 * We are in attach() phase, so the cgroup is guaranteed to be
4296 * alive, so we can just call css_get().
02491447 4297 */
4050377b 4298 css_get(&to->css);
02491447
DN
4299 return 0;
4300 }
4301 return -EINVAL;
4302}
4303#else
4304static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4305 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4306{
4307 return -EINVAL;
4308}
8c7c6e34 4309#endif
d13d1443 4310
ae41be37 4311/*
01b1ae63
KH
4312 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4313 * page belongs to.
ae41be37 4314 */
0030f535
JW
4315void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4316 struct mem_cgroup **memcgp)
ae41be37 4317{
c0ff4b85 4318 struct mem_cgroup *memcg = NULL;
b32967ff 4319 unsigned int nr_pages = 1;
7ec99d62 4320 struct page_cgroup *pc;
ac39cf8c 4321 enum charge_type ctype;
8869b8f6 4322
72835c86 4323 *memcgp = NULL;
56039efa 4324
f8d66542 4325 if (mem_cgroup_disabled())
0030f535 4326 return;
4077960e 4327
b32967ff
MG
4328 if (PageTransHuge(page))
4329 nr_pages <<= compound_order(page);
4330
52d4b9ac
KH
4331 pc = lookup_page_cgroup(page);
4332 lock_page_cgroup(pc);
4333 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4334 memcg = pc->mem_cgroup;
4335 css_get(&memcg->css);
ac39cf8c
AM
4336 /*
4337 * At migrating an anonymous page, its mapcount goes down
4338 * to 0 and uncharge() will be called. But, even if it's fully
4339 * unmapped, migration may fail and this page has to be
4340 * charged again. We set MIGRATION flag here and delay uncharge
4341 * until end_migration() is called
4342 *
4343 * Corner Case Thinking
4344 * A)
4345 * When the old page was mapped as Anon and it's unmap-and-freed
4346 * while migration was ongoing.
4347 * If unmap finds the old page, uncharge() of it will be delayed
4348 * until end_migration(). If unmap finds a new page, it's
4349 * uncharged when it make mapcount to be 1->0. If unmap code
4350 * finds swap_migration_entry, the new page will not be mapped
4351 * and end_migration() will find it(mapcount==0).
4352 *
4353 * B)
4354 * When the old page was mapped but migraion fails, the kernel
4355 * remaps it. A charge for it is kept by MIGRATION flag even
4356 * if mapcount goes down to 0. We can do remap successfully
4357 * without charging it again.
4358 *
4359 * C)
4360 * The "old" page is under lock_page() until the end of
4361 * migration, so, the old page itself will not be swapped-out.
4362 * If the new page is swapped out before end_migraton, our
4363 * hook to usual swap-out path will catch the event.
4364 */
4365 if (PageAnon(page))
4366 SetPageCgroupMigration(pc);
e8589cc1 4367 }
52d4b9ac 4368 unlock_page_cgroup(pc);
ac39cf8c
AM
4369 /*
4370 * If the page is not charged at this point,
4371 * we return here.
4372 */
c0ff4b85 4373 if (!memcg)
0030f535 4374 return;
01b1ae63 4375
72835c86 4376 *memcgp = memcg;
ac39cf8c
AM
4377 /*
4378 * We charge new page before it's used/mapped. So, even if unlock_page()
4379 * is called before end_migration, we can catch all events on this new
4380 * page. In the case new page is migrated but not remapped, new page's
4381 * mapcount will be finally 0 and we call uncharge in end_migration().
4382 */
ac39cf8c 4383 if (PageAnon(page))
41326c17 4384 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4385 else
62ba7442 4386 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4387 /*
4388 * The page is committed to the memcg, but it's not actually
4389 * charged to the res_counter since we plan on replacing the
4390 * old one and only one page is going to be left afterwards.
4391 */
b32967ff 4392 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4393}
8869b8f6 4394
69029cd5 4395/* remove redundant charge if migration failed*/
c0ff4b85 4396void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4397 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4398{
ac39cf8c 4399 struct page *used, *unused;
01b1ae63 4400 struct page_cgroup *pc;
b2402857 4401 bool anon;
01b1ae63 4402
c0ff4b85 4403 if (!memcg)
01b1ae63 4404 return;
b25ed609 4405
50de1dd9 4406 if (!migration_ok) {
ac39cf8c
AM
4407 used = oldpage;
4408 unused = newpage;
01b1ae63 4409 } else {
ac39cf8c 4410 used = newpage;
01b1ae63
KH
4411 unused = oldpage;
4412 }
0030f535 4413 anon = PageAnon(used);
7d188958
JW
4414 __mem_cgroup_uncharge_common(unused,
4415 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4416 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4417 true);
0030f535 4418 css_put(&memcg->css);
69029cd5 4419 /*
ac39cf8c
AM
4420 * We disallowed uncharge of pages under migration because mapcount
4421 * of the page goes down to zero, temporarly.
4422 * Clear the flag and check the page should be charged.
01b1ae63 4423 */
ac39cf8c
AM
4424 pc = lookup_page_cgroup(oldpage);
4425 lock_page_cgroup(pc);
4426 ClearPageCgroupMigration(pc);
4427 unlock_page_cgroup(pc);
ac39cf8c 4428
01b1ae63 4429 /*
ac39cf8c
AM
4430 * If a page is a file cache, radix-tree replacement is very atomic
4431 * and we can skip this check. When it was an Anon page, its mapcount
4432 * goes down to 0. But because we added MIGRATION flage, it's not
4433 * uncharged yet. There are several case but page->mapcount check
4434 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4435 * check. (see prepare_charge() also)
69029cd5 4436 */
b2402857 4437 if (anon)
ac39cf8c 4438 mem_cgroup_uncharge_page(used);
ae41be37 4439}
78fb7466 4440
ab936cbc
KH
4441/*
4442 * At replace page cache, newpage is not under any memcg but it's on
4443 * LRU. So, this function doesn't touch res_counter but handles LRU
4444 * in correct way. Both pages are locked so we cannot race with uncharge.
4445 */
4446void mem_cgroup_replace_page_cache(struct page *oldpage,
4447 struct page *newpage)
4448{
bde05d1c 4449 struct mem_cgroup *memcg = NULL;
ab936cbc 4450 struct page_cgroup *pc;
ab936cbc 4451 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4452
4453 if (mem_cgroup_disabled())
4454 return;
4455
4456 pc = lookup_page_cgroup(oldpage);
4457 /* fix accounting on old pages */
4458 lock_page_cgroup(pc);
bde05d1c
HD
4459 if (PageCgroupUsed(pc)) {
4460 memcg = pc->mem_cgroup;
b070e65c 4461 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4462 ClearPageCgroupUsed(pc);
4463 }
ab936cbc
KH
4464 unlock_page_cgroup(pc);
4465
bde05d1c
HD
4466 /*
4467 * When called from shmem_replace_page(), in some cases the
4468 * oldpage has already been charged, and in some cases not.
4469 */
4470 if (!memcg)
4471 return;
ab936cbc
KH
4472 /*
4473 * Even if newpage->mapping was NULL before starting replacement,
4474 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4475 * LRU while we overwrite pc->mem_cgroup.
4476 */
ce587e65 4477 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4478}
4479
f212ad7c
DN
4480#ifdef CONFIG_DEBUG_VM
4481static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4482{
4483 struct page_cgroup *pc;
4484
4485 pc = lookup_page_cgroup(page);
cfa44946
JW
4486 /*
4487 * Can be NULL while feeding pages into the page allocator for
4488 * the first time, i.e. during boot or memory hotplug;
4489 * or when mem_cgroup_disabled().
4490 */
f212ad7c
DN
4491 if (likely(pc) && PageCgroupUsed(pc))
4492 return pc;
4493 return NULL;
4494}
4495
4496bool mem_cgroup_bad_page_check(struct page *page)
4497{
4498 if (mem_cgroup_disabled())
4499 return false;
4500
4501 return lookup_page_cgroup_used(page) != NULL;
4502}
4503
4504void mem_cgroup_print_bad_page(struct page *page)
4505{
4506 struct page_cgroup *pc;
4507
4508 pc = lookup_page_cgroup_used(page);
4509 if (pc) {
d045197f
AM
4510 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4511 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4512 }
4513}
4514#endif
4515
d38d2a75 4516static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4517 unsigned long long val)
628f4235 4518{
81d39c20 4519 int retry_count;
3c11ecf4 4520 u64 memswlimit, memlimit;
628f4235 4521 int ret = 0;
81d39c20
KH
4522 int children = mem_cgroup_count_children(memcg);
4523 u64 curusage, oldusage;
3c11ecf4 4524 int enlarge;
81d39c20
KH
4525
4526 /*
4527 * For keeping hierarchical_reclaim simple, how long we should retry
4528 * is depends on callers. We set our retry-count to be function
4529 * of # of children which we should visit in this loop.
4530 */
4531 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4532
4533 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4534
3c11ecf4 4535 enlarge = 0;
8c7c6e34 4536 while (retry_count) {
628f4235
KH
4537 if (signal_pending(current)) {
4538 ret = -EINTR;
4539 break;
4540 }
8c7c6e34
KH
4541 /*
4542 * Rather than hide all in some function, I do this in
4543 * open coded manner. You see what this really does.
aaad153e 4544 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4545 */
4546 mutex_lock(&set_limit_mutex);
4547 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4548 if (memswlimit < val) {
4549 ret = -EINVAL;
4550 mutex_unlock(&set_limit_mutex);
628f4235
KH
4551 break;
4552 }
3c11ecf4
KH
4553
4554 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4555 if (memlimit < val)
4556 enlarge = 1;
4557
8c7c6e34 4558 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4559 if (!ret) {
4560 if (memswlimit == val)
4561 memcg->memsw_is_minimum = true;
4562 else
4563 memcg->memsw_is_minimum = false;
4564 }
8c7c6e34
KH
4565 mutex_unlock(&set_limit_mutex);
4566
4567 if (!ret)
4568 break;
4569
5660048c
JW
4570 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4571 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4572 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4573 /* Usage is reduced ? */
f894ffa8 4574 if (curusage >= oldusage)
81d39c20
KH
4575 retry_count--;
4576 else
4577 oldusage = curusage;
8c7c6e34 4578 }
3c11ecf4
KH
4579 if (!ret && enlarge)
4580 memcg_oom_recover(memcg);
14797e23 4581
8c7c6e34
KH
4582 return ret;
4583}
4584
338c8431
LZ
4585static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4586 unsigned long long val)
8c7c6e34 4587{
81d39c20 4588 int retry_count;
3c11ecf4 4589 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4590 int children = mem_cgroup_count_children(memcg);
4591 int ret = -EBUSY;
3c11ecf4 4592 int enlarge = 0;
8c7c6e34 4593
81d39c20 4594 /* see mem_cgroup_resize_res_limit */
f894ffa8 4595 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4596 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4597 while (retry_count) {
4598 if (signal_pending(current)) {
4599 ret = -EINTR;
4600 break;
4601 }
4602 /*
4603 * Rather than hide all in some function, I do this in
4604 * open coded manner. You see what this really does.
aaad153e 4605 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4606 */
4607 mutex_lock(&set_limit_mutex);
4608 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4609 if (memlimit > val) {
4610 ret = -EINVAL;
4611 mutex_unlock(&set_limit_mutex);
4612 break;
4613 }
3c11ecf4
KH
4614 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4615 if (memswlimit < val)
4616 enlarge = 1;
8c7c6e34 4617 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4618 if (!ret) {
4619 if (memlimit == val)
4620 memcg->memsw_is_minimum = true;
4621 else
4622 memcg->memsw_is_minimum = false;
4623 }
8c7c6e34
KH
4624 mutex_unlock(&set_limit_mutex);
4625
4626 if (!ret)
4627 break;
4628
5660048c
JW
4629 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4630 MEM_CGROUP_RECLAIM_NOSWAP |
4631 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4632 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4633 /* Usage is reduced ? */
8c7c6e34 4634 if (curusage >= oldusage)
628f4235 4635 retry_count--;
81d39c20
KH
4636 else
4637 oldusage = curusage;
628f4235 4638 }
3c11ecf4
KH
4639 if (!ret && enlarge)
4640 memcg_oom_recover(memcg);
628f4235
KH
4641 return ret;
4642}
4643
0608f43d
AM
4644unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4645 gfp_t gfp_mask,
4646 unsigned long *total_scanned)
4647{
4648 unsigned long nr_reclaimed = 0;
4649 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4650 unsigned long reclaimed;
4651 int loop = 0;
4652 struct mem_cgroup_tree_per_zone *mctz;
4653 unsigned long long excess;
4654 unsigned long nr_scanned;
4655
4656 if (order > 0)
4657 return 0;
4658
4659 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4660 /*
4661 * This loop can run a while, specially if mem_cgroup's continuously
4662 * keep exceeding their soft limit and putting the system under
4663 * pressure
4664 */
4665 do {
4666 if (next_mz)
4667 mz = next_mz;
4668 else
4669 mz = mem_cgroup_largest_soft_limit_node(mctz);
4670 if (!mz)
4671 break;
4672
4673 nr_scanned = 0;
4674 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4675 gfp_mask, &nr_scanned);
4676 nr_reclaimed += reclaimed;
4677 *total_scanned += nr_scanned;
4678 spin_lock(&mctz->lock);
4679
4680 /*
4681 * If we failed to reclaim anything from this memory cgroup
4682 * it is time to move on to the next cgroup
4683 */
4684 next_mz = NULL;
4685 if (!reclaimed) {
4686 do {
4687 /*
4688 * Loop until we find yet another one.
4689 *
4690 * By the time we get the soft_limit lock
4691 * again, someone might have aded the
4692 * group back on the RB tree. Iterate to
4693 * make sure we get a different mem.
4694 * mem_cgroup_largest_soft_limit_node returns
4695 * NULL if no other cgroup is present on
4696 * the tree
4697 */
4698 next_mz =
4699 __mem_cgroup_largest_soft_limit_node(mctz);
4700 if (next_mz == mz)
4701 css_put(&next_mz->memcg->css);
4702 else /* next_mz == NULL or other memcg */
4703 break;
4704 } while (1);
4705 }
4706 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4707 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4708 /*
4709 * One school of thought says that we should not add
4710 * back the node to the tree if reclaim returns 0.
4711 * But our reclaim could return 0, simply because due
4712 * to priority we are exposing a smaller subset of
4713 * memory to reclaim from. Consider this as a longer
4714 * term TODO.
4715 */
4716 /* If excess == 0, no tree ops */
4717 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4718 spin_unlock(&mctz->lock);
4719 css_put(&mz->memcg->css);
4720 loop++;
4721 /*
4722 * Could not reclaim anything and there are no more
4723 * mem cgroups to try or we seem to be looping without
4724 * reclaiming anything.
4725 */
4726 if (!nr_reclaimed &&
4727 (next_mz == NULL ||
4728 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4729 break;
4730 } while (!nr_reclaimed);
4731 if (next_mz)
4732 css_put(&next_mz->memcg->css);
4733 return nr_reclaimed;
4734}
4735
2ef37d3f
MH
4736/**
4737 * mem_cgroup_force_empty_list - clears LRU of a group
4738 * @memcg: group to clear
4739 * @node: NUMA node
4740 * @zid: zone id
4741 * @lru: lru to to clear
4742 *
3c935d18 4743 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4744 * reclaim the pages page themselves - pages are moved to the parent (or root)
4745 * group.
cc847582 4746 */
2ef37d3f 4747static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4748 int node, int zid, enum lru_list lru)
cc847582 4749{
bea8c150 4750 struct lruvec *lruvec;
2ef37d3f 4751 unsigned long flags;
072c56c1 4752 struct list_head *list;
925b7673
JW
4753 struct page *busy;
4754 struct zone *zone;
072c56c1 4755
08e552c6 4756 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4757 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4758 list = &lruvec->lists[lru];
cc847582 4759
f817ed48 4760 busy = NULL;
2ef37d3f 4761 do {
925b7673 4762 struct page_cgroup *pc;
5564e88b
JW
4763 struct page *page;
4764
08e552c6 4765 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4766 if (list_empty(list)) {
08e552c6 4767 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4768 break;
f817ed48 4769 }
925b7673
JW
4770 page = list_entry(list->prev, struct page, lru);
4771 if (busy == page) {
4772 list_move(&page->lru, list);
648bcc77 4773 busy = NULL;
08e552c6 4774 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4775 continue;
4776 }
08e552c6 4777 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4778
925b7673 4779 pc = lookup_page_cgroup(page);
5564e88b 4780
3c935d18 4781 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4782 /* found lock contention or "pc" is obsolete. */
925b7673 4783 busy = page;
f817ed48
KH
4784 cond_resched();
4785 } else
4786 busy = NULL;
2ef37d3f 4787 } while (!list_empty(list));
cc847582
KH
4788}
4789
4790/*
c26251f9
MH
4791 * make mem_cgroup's charge to be 0 if there is no task by moving
4792 * all the charges and pages to the parent.
cc847582 4793 * This enables deleting this mem_cgroup.
c26251f9
MH
4794 *
4795 * Caller is responsible for holding css reference on the memcg.
cc847582 4796 */
ab5196c2 4797static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4798{
c26251f9 4799 int node, zid;
bea207c8 4800 u64 usage;
f817ed48 4801
fce66477 4802 do {
52d4b9ac
KH
4803 /* This is for making all *used* pages to be on LRU. */
4804 lru_add_drain_all();
c0ff4b85 4805 drain_all_stock_sync(memcg);
c0ff4b85 4806 mem_cgroup_start_move(memcg);
31aaea4a 4807 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4808 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4809 enum lru_list lru;
4810 for_each_lru(lru) {
2ef37d3f 4811 mem_cgroup_force_empty_list(memcg,
f156ab93 4812 node, zid, lru);
f817ed48 4813 }
1ecaab2b 4814 }
f817ed48 4815 }
c0ff4b85
R
4816 mem_cgroup_end_move(memcg);
4817 memcg_oom_recover(memcg);
52d4b9ac 4818 cond_resched();
f817ed48 4819
2ef37d3f 4820 /*
bea207c8
GC
4821 * Kernel memory may not necessarily be trackable to a specific
4822 * process. So they are not migrated, and therefore we can't
4823 * expect their value to drop to 0 here.
4824 * Having res filled up with kmem only is enough.
4825 *
2ef37d3f
MH
4826 * This is a safety check because mem_cgroup_force_empty_list
4827 * could have raced with mem_cgroup_replace_page_cache callers
4828 * so the lru seemed empty but the page could have been added
4829 * right after the check. RES_USAGE should be safe as we always
4830 * charge before adding to the LRU.
4831 */
bea207c8
GC
4832 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4833 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4834 } while (usage > 0);
c26251f9
MH
4835}
4836
b5f99b53
GC
4837static inline bool memcg_has_children(struct mem_cgroup *memcg)
4838{
696ac172
JW
4839 lockdep_assert_held(&memcg_create_mutex);
4840 /*
4841 * The lock does not prevent addition or deletion to the list
4842 * of children, but it prevents a new child from being
4843 * initialized based on this parent in css_online(), so it's
4844 * enough to decide whether hierarchically inherited
4845 * attributes can still be changed or not.
4846 */
4847 return memcg->use_hierarchy &&
4848 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4849}
4850
c26251f9
MH
4851/*
4852 * Reclaims as many pages from the given memcg as possible and moves
4853 * the rest to the parent.
4854 *
4855 * Caller is responsible for holding css reference for memcg.
4856 */
4857static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4858{
4859 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4860 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4861
c1e862c1 4862 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4863 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4864 return -EBUSY;
4865
c1e862c1
KH
4866 /* we call try-to-free pages for make this cgroup empty */
4867 lru_add_drain_all();
f817ed48 4868 /* try to free all pages in this cgroup */
569530fb 4869 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4870 int progress;
c1e862c1 4871
c26251f9
MH
4872 if (signal_pending(current))
4873 return -EINTR;
4874
c0ff4b85 4875 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4876 false);
c1e862c1 4877 if (!progress) {
f817ed48 4878 nr_retries--;
c1e862c1 4879 /* maybe some writeback is necessary */
8aa7e847 4880 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4881 }
f817ed48
KH
4882
4883 }
08e552c6 4884 lru_add_drain();
ab5196c2
MH
4885 mem_cgroup_reparent_charges(memcg);
4886
4887 return 0;
cc847582
KH
4888}
4889
182446d0
TH
4890static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4891 unsigned int event)
c1e862c1 4892{
182446d0 4893 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4894
d8423011
MH
4895 if (mem_cgroup_is_root(memcg))
4896 return -EINVAL;
c33bd835 4897 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4898}
4899
182446d0
TH
4900static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4901 struct cftype *cft)
18f59ea7 4902{
182446d0 4903 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4904}
4905
182446d0
TH
4906static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4907 struct cftype *cft, u64 val)
18f59ea7
BS
4908{
4909 int retval = 0;
182446d0 4910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4911 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4912
0999821b 4913 mutex_lock(&memcg_create_mutex);
567fb435
GC
4914
4915 if (memcg->use_hierarchy == val)
4916 goto out;
4917
18f59ea7 4918 /*
af901ca1 4919 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4920 * in the child subtrees. If it is unset, then the change can
4921 * occur, provided the current cgroup has no children.
4922 *
4923 * For the root cgroup, parent_mem is NULL, we allow value to be
4924 * set if there are no children.
4925 */
c0ff4b85 4926 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4927 (val == 1 || val == 0)) {
696ac172 4928 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4929 memcg->use_hierarchy = val;
18f59ea7
BS
4930 else
4931 retval = -EBUSY;
4932 } else
4933 retval = -EINVAL;
567fb435
GC
4934
4935out:
0999821b 4936 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4937
4938 return retval;
4939}
4940
0c3e73e8 4941
c0ff4b85 4942static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4943 enum mem_cgroup_stat_index idx)
0c3e73e8 4944{
7d74b06f 4945 struct mem_cgroup *iter;
7a159cc9 4946 long val = 0;
0c3e73e8 4947
7a159cc9 4948 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4949 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4950 val += mem_cgroup_read_stat(iter, idx);
4951
4952 if (val < 0) /* race ? */
4953 val = 0;
4954 return val;
0c3e73e8
BS
4955}
4956
c0ff4b85 4957static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4958{
7d74b06f 4959 u64 val;
104f3928 4960
c0ff4b85 4961 if (!mem_cgroup_is_root(memcg)) {
104f3928 4962 if (!swap)
65c64ce8 4963 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4964 else
65c64ce8 4965 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4966 }
4967
b070e65c
DR
4968 /*
4969 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4970 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4971 */
c0ff4b85
R
4972 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4973 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4974
7d74b06f 4975 if (swap)
bff6bb83 4976 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4977
4978 return val << PAGE_SHIFT;
4979}
4980
791badbd
TH
4981static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4982 struct cftype *cft)
8cdea7c0 4983{
182446d0 4984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4985 u64 val;
791badbd 4986 int name;
86ae53e1 4987 enum res_type type;
8c7c6e34
KH
4988
4989 type = MEMFILE_TYPE(cft->private);
4990 name = MEMFILE_ATTR(cft->private);
af36f906 4991
8c7c6e34
KH
4992 switch (type) {
4993 case _MEM:
104f3928 4994 if (name == RES_USAGE)
c0ff4b85 4995 val = mem_cgroup_usage(memcg, false);
104f3928 4996 else
c0ff4b85 4997 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4998 break;
4999 case _MEMSWAP:
104f3928 5000 if (name == RES_USAGE)
c0ff4b85 5001 val = mem_cgroup_usage(memcg, true);
104f3928 5002 else
c0ff4b85 5003 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5004 break;
510fc4e1
GC
5005 case _KMEM:
5006 val = res_counter_read_u64(&memcg->kmem, name);
5007 break;
8c7c6e34
KH
5008 default:
5009 BUG();
8c7c6e34 5010 }
af36f906 5011
791badbd 5012 return val;
8cdea7c0 5013}
510fc4e1 5014
510fc4e1 5015#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5016/* should be called with activate_kmem_mutex held */
5017static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5018 unsigned long long limit)
5019{
5020 int err = 0;
5021 int memcg_id;
5022
5023 if (memcg_kmem_is_active(memcg))
5024 return 0;
5025
5026 /*
5027 * We are going to allocate memory for data shared by all memory
5028 * cgroups so let's stop accounting here.
5029 */
5030 memcg_stop_kmem_account();
5031
510fc4e1
GC
5032 /*
5033 * For simplicity, we won't allow this to be disabled. It also can't
5034 * be changed if the cgroup has children already, or if tasks had
5035 * already joined.
5036 *
5037 * If tasks join before we set the limit, a person looking at
5038 * kmem.usage_in_bytes will have no way to determine when it took
5039 * place, which makes the value quite meaningless.
5040 *
5041 * After it first became limited, changes in the value of the limit are
5042 * of course permitted.
510fc4e1 5043 */
0999821b 5044 mutex_lock(&memcg_create_mutex);
07bc356e 5045 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
5046 err = -EBUSY;
5047 mutex_unlock(&memcg_create_mutex);
5048 if (err)
5049 goto out;
510fc4e1 5050
d6441637
VD
5051 memcg_id = ida_simple_get(&kmem_limited_groups,
5052 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5053 if (memcg_id < 0) {
5054 err = memcg_id;
5055 goto out;
5056 }
5057
5058 /*
5059 * Make sure we have enough space for this cgroup in each root cache's
5060 * memcg_params.
5061 */
5062 err = memcg_update_all_caches(memcg_id + 1);
5063 if (err)
5064 goto out_rmid;
5065
5066 memcg->kmemcg_id = memcg_id;
5067 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5068 mutex_init(&memcg->slab_caches_mutex);
5069
5070 /*
5071 * We couldn't have accounted to this cgroup, because it hasn't got the
5072 * active bit set yet, so this should succeed.
5073 */
5074 err = res_counter_set_limit(&memcg->kmem, limit);
5075 VM_BUG_ON(err);
5076
5077 static_key_slow_inc(&memcg_kmem_enabled_key);
5078 /*
5079 * Setting the active bit after enabling static branching will
5080 * guarantee no one starts accounting before all call sites are
5081 * patched.
5082 */
5083 memcg_kmem_set_active(memcg);
510fc4e1 5084out:
d6441637
VD
5085 memcg_resume_kmem_account();
5086 return err;
5087
5088out_rmid:
5089 ida_simple_remove(&kmem_limited_groups, memcg_id);
5090 goto out;
5091}
5092
5093static int memcg_activate_kmem(struct mem_cgroup *memcg,
5094 unsigned long long limit)
5095{
5096 int ret;
5097
5098 mutex_lock(&activate_kmem_mutex);
5099 ret = __memcg_activate_kmem(memcg, limit);
5100 mutex_unlock(&activate_kmem_mutex);
5101 return ret;
5102}
5103
5104static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5105 unsigned long long val)
5106{
5107 int ret;
5108
5109 if (!memcg_kmem_is_active(memcg))
5110 ret = memcg_activate_kmem(memcg, val);
5111 else
5112 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5113 return ret;
5114}
5115
55007d84 5116static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5117{
55007d84 5118 int ret = 0;
510fc4e1 5119 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5120
d6441637
VD
5121 if (!parent)
5122 return 0;
55007d84 5123
d6441637 5124 mutex_lock(&activate_kmem_mutex);
55007d84 5125 /*
d6441637
VD
5126 * If the parent cgroup is not kmem-active now, it cannot be activated
5127 * after this point, because it has at least one child already.
55007d84 5128 */
d6441637
VD
5129 if (memcg_kmem_is_active(parent))
5130 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5131 mutex_unlock(&activate_kmem_mutex);
55007d84 5132 return ret;
510fc4e1 5133}
d6441637
VD
5134#else
5135static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5136 unsigned long long val)
5137{
5138 return -EINVAL;
5139}
6d043990 5140#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5141
628f4235
KH
5142/*
5143 * The user of this function is...
5144 * RES_LIMIT.
5145 */
182446d0 5146static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5147 char *buffer)
8cdea7c0 5148{
182446d0 5149 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5150 enum res_type type;
5151 int name;
628f4235
KH
5152 unsigned long long val;
5153 int ret;
5154
8c7c6e34
KH
5155 type = MEMFILE_TYPE(cft->private);
5156 name = MEMFILE_ATTR(cft->private);
af36f906 5157
8c7c6e34 5158 switch (name) {
628f4235 5159 case RES_LIMIT:
4b3bde4c
BS
5160 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5161 ret = -EINVAL;
5162 break;
5163 }
628f4235
KH
5164 /* This function does all necessary parse...reuse it */
5165 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5166 if (ret)
5167 break;
5168 if (type == _MEM)
628f4235 5169 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5170 else if (type == _MEMSWAP)
8c7c6e34 5171 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5172 else if (type == _KMEM)
d6441637 5173 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5174 else
5175 return -EINVAL;
628f4235 5176 break;
296c81d8
BS
5177 case RES_SOFT_LIMIT:
5178 ret = res_counter_memparse_write_strategy(buffer, &val);
5179 if (ret)
5180 break;
5181 /*
5182 * For memsw, soft limits are hard to implement in terms
5183 * of semantics, for now, we support soft limits for
5184 * control without swap
5185 */
5186 if (type == _MEM)
5187 ret = res_counter_set_soft_limit(&memcg->res, val);
5188 else
5189 ret = -EINVAL;
5190 break;
628f4235
KH
5191 default:
5192 ret = -EINVAL; /* should be BUG() ? */
5193 break;
5194 }
5195 return ret;
8cdea7c0
BS
5196}
5197
fee7b548
KH
5198static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5199 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5200{
fee7b548
KH
5201 unsigned long long min_limit, min_memsw_limit, tmp;
5202
5203 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5204 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5205 if (!memcg->use_hierarchy)
5206 goto out;
5207
63876986
TH
5208 while (css_parent(&memcg->css)) {
5209 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5210 if (!memcg->use_hierarchy)
5211 break;
5212 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5213 min_limit = min(min_limit, tmp);
5214 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5215 min_memsw_limit = min(min_memsw_limit, tmp);
5216 }
5217out:
5218 *mem_limit = min_limit;
5219 *memsw_limit = min_memsw_limit;
fee7b548
KH
5220}
5221
182446d0 5222static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5223{
182446d0 5224 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5225 int name;
5226 enum res_type type;
c84872e1 5227
8c7c6e34
KH
5228 type = MEMFILE_TYPE(event);
5229 name = MEMFILE_ATTR(event);
af36f906 5230
8c7c6e34 5231 switch (name) {
29f2a4da 5232 case RES_MAX_USAGE:
8c7c6e34 5233 if (type == _MEM)
c0ff4b85 5234 res_counter_reset_max(&memcg->res);
510fc4e1 5235 else if (type == _MEMSWAP)
c0ff4b85 5236 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5237 else if (type == _KMEM)
5238 res_counter_reset_max(&memcg->kmem);
5239 else
5240 return -EINVAL;
29f2a4da
PE
5241 break;
5242 case RES_FAILCNT:
8c7c6e34 5243 if (type == _MEM)
c0ff4b85 5244 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5245 else if (type == _MEMSWAP)
c0ff4b85 5246 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5247 else if (type == _KMEM)
5248 res_counter_reset_failcnt(&memcg->kmem);
5249 else
5250 return -EINVAL;
29f2a4da
PE
5251 break;
5252 }
f64c3f54 5253
85cc59db 5254 return 0;
c84872e1
PE
5255}
5256
182446d0 5257static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5258 struct cftype *cft)
5259{
182446d0 5260 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5261}
5262
02491447 5263#ifdef CONFIG_MMU
182446d0 5264static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5265 struct cftype *cft, u64 val)
5266{
182446d0 5267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5268
5269 if (val >= (1 << NR_MOVE_TYPE))
5270 return -EINVAL;
ee5e8472 5271
7dc74be0 5272 /*
ee5e8472
GC
5273 * No kind of locking is needed in here, because ->can_attach() will
5274 * check this value once in the beginning of the process, and then carry
5275 * on with stale data. This means that changes to this value will only
5276 * affect task migrations starting after the change.
7dc74be0 5277 */
c0ff4b85 5278 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5279 return 0;
5280}
02491447 5281#else
182446d0 5282static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5283 struct cftype *cft, u64 val)
5284{
5285 return -ENOSYS;
5286}
5287#endif
7dc74be0 5288
406eb0c9 5289#ifdef CONFIG_NUMA
2da8ca82 5290static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5291{
25485de6
GT
5292 struct numa_stat {
5293 const char *name;
5294 unsigned int lru_mask;
5295 };
5296
5297 static const struct numa_stat stats[] = {
5298 { "total", LRU_ALL },
5299 { "file", LRU_ALL_FILE },
5300 { "anon", LRU_ALL_ANON },
5301 { "unevictable", BIT(LRU_UNEVICTABLE) },
5302 };
5303 const struct numa_stat *stat;
406eb0c9 5304 int nid;
25485de6 5305 unsigned long nr;
2da8ca82 5306 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5307
25485de6
GT
5308 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5309 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5310 seq_printf(m, "%s=%lu", stat->name, nr);
5311 for_each_node_state(nid, N_MEMORY) {
5312 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5313 stat->lru_mask);
5314 seq_printf(m, " N%d=%lu", nid, nr);
5315 }
5316 seq_putc(m, '\n');
406eb0c9 5317 }
406eb0c9 5318
071aee13
YH
5319 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5320 struct mem_cgroup *iter;
5321
5322 nr = 0;
5323 for_each_mem_cgroup_tree(iter, memcg)
5324 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5325 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5326 for_each_node_state(nid, N_MEMORY) {
5327 nr = 0;
5328 for_each_mem_cgroup_tree(iter, memcg)
5329 nr += mem_cgroup_node_nr_lru_pages(
5330 iter, nid, stat->lru_mask);
5331 seq_printf(m, " N%d=%lu", nid, nr);
5332 }
5333 seq_putc(m, '\n');
406eb0c9 5334 }
406eb0c9 5335
406eb0c9
YH
5336 return 0;
5337}
5338#endif /* CONFIG_NUMA */
5339
af7c4b0e
JW
5340static inline void mem_cgroup_lru_names_not_uptodate(void)
5341{
5342 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5343}
5344
2da8ca82 5345static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5346{
2da8ca82 5347 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5348 struct mem_cgroup *mi;
5349 unsigned int i;
406eb0c9 5350
af7c4b0e 5351 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5352 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5353 continue;
af7c4b0e
JW
5354 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5355 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5356 }
7b854121 5357
af7c4b0e
JW
5358 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5359 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5360 mem_cgroup_read_events(memcg, i));
5361
5362 for (i = 0; i < NR_LRU_LISTS; i++)
5363 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5364 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5365
14067bb3 5366 /* Hierarchical information */
fee7b548
KH
5367 {
5368 unsigned long long limit, memsw_limit;
d79154bb 5369 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5370 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5371 if (do_swap_account)
78ccf5b5
JW
5372 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5373 memsw_limit);
fee7b548 5374 }
7f016ee8 5375
af7c4b0e
JW
5376 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5377 long long val = 0;
5378
bff6bb83 5379 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5380 continue;
af7c4b0e
JW
5381 for_each_mem_cgroup_tree(mi, memcg)
5382 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5383 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5384 }
5385
5386 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5387 unsigned long long val = 0;
5388
5389 for_each_mem_cgroup_tree(mi, memcg)
5390 val += mem_cgroup_read_events(mi, i);
5391 seq_printf(m, "total_%s %llu\n",
5392 mem_cgroup_events_names[i], val);
5393 }
5394
5395 for (i = 0; i < NR_LRU_LISTS; i++) {
5396 unsigned long long val = 0;
5397
5398 for_each_mem_cgroup_tree(mi, memcg)
5399 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5400 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5401 }
14067bb3 5402
7f016ee8 5403#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5404 {
5405 int nid, zid;
5406 struct mem_cgroup_per_zone *mz;
89abfab1 5407 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5408 unsigned long recent_rotated[2] = {0, 0};
5409 unsigned long recent_scanned[2] = {0, 0};
5410
5411 for_each_online_node(nid)
5412 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5413 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5414 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5415
89abfab1
HD
5416 recent_rotated[0] += rstat->recent_rotated[0];
5417 recent_rotated[1] += rstat->recent_rotated[1];
5418 recent_scanned[0] += rstat->recent_scanned[0];
5419 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5420 }
78ccf5b5
JW
5421 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5422 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5423 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5424 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5425 }
5426#endif
5427
d2ceb9b7
KH
5428 return 0;
5429}
5430
182446d0
TH
5431static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5432 struct cftype *cft)
a7885eb8 5433{
182446d0 5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5435
1f4c025b 5436 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5437}
5438
182446d0
TH
5439static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5440 struct cftype *cft, u64 val)
a7885eb8 5441{
182446d0 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5443 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5444
63876986 5445 if (val > 100 || !parent)
a7885eb8
KM
5446 return -EINVAL;
5447
0999821b 5448 mutex_lock(&memcg_create_mutex);
068b38c1 5449
a7885eb8 5450 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5451 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5452 mutex_unlock(&memcg_create_mutex);
a7885eb8 5453 return -EINVAL;
068b38c1 5454 }
a7885eb8 5455
a7885eb8 5456 memcg->swappiness = val;
a7885eb8 5457
0999821b 5458 mutex_unlock(&memcg_create_mutex);
068b38c1 5459
a7885eb8
KM
5460 return 0;
5461}
5462
2e72b634
KS
5463static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5464{
5465 struct mem_cgroup_threshold_ary *t;
5466 u64 usage;
5467 int i;
5468
5469 rcu_read_lock();
5470 if (!swap)
2c488db2 5471 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5472 else
2c488db2 5473 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5474
5475 if (!t)
5476 goto unlock;
5477
5478 usage = mem_cgroup_usage(memcg, swap);
5479
5480 /*
748dad36 5481 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5482 * If it's not true, a threshold was crossed after last
5483 * call of __mem_cgroup_threshold().
5484 */
5407a562 5485 i = t->current_threshold;
2e72b634
KS
5486
5487 /*
5488 * Iterate backward over array of thresholds starting from
5489 * current_threshold and check if a threshold is crossed.
5490 * If none of thresholds below usage is crossed, we read
5491 * only one element of the array here.
5492 */
5493 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5494 eventfd_signal(t->entries[i].eventfd, 1);
5495
5496 /* i = current_threshold + 1 */
5497 i++;
5498
5499 /*
5500 * Iterate forward over array of thresholds starting from
5501 * current_threshold+1 and check if a threshold is crossed.
5502 * If none of thresholds above usage is crossed, we read
5503 * only one element of the array here.
5504 */
5505 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5506 eventfd_signal(t->entries[i].eventfd, 1);
5507
5508 /* Update current_threshold */
5407a562 5509 t->current_threshold = i - 1;
2e72b634
KS
5510unlock:
5511 rcu_read_unlock();
5512}
5513
5514static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5515{
ad4ca5f4
KS
5516 while (memcg) {
5517 __mem_cgroup_threshold(memcg, false);
5518 if (do_swap_account)
5519 __mem_cgroup_threshold(memcg, true);
5520
5521 memcg = parent_mem_cgroup(memcg);
5522 }
2e72b634
KS
5523}
5524
5525static int compare_thresholds(const void *a, const void *b)
5526{
5527 const struct mem_cgroup_threshold *_a = a;
5528 const struct mem_cgroup_threshold *_b = b;
5529
2bff24a3
GT
5530 if (_a->threshold > _b->threshold)
5531 return 1;
5532
5533 if (_a->threshold < _b->threshold)
5534 return -1;
5535
5536 return 0;
2e72b634
KS
5537}
5538
c0ff4b85 5539static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5540{
5541 struct mem_cgroup_eventfd_list *ev;
5542
c0ff4b85 5543 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5544 eventfd_signal(ev->eventfd, 1);
5545 return 0;
5546}
5547
c0ff4b85 5548static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5549{
7d74b06f
KH
5550 struct mem_cgroup *iter;
5551
c0ff4b85 5552 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5553 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5554}
5555
59b6f873 5556static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5557 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5558{
2c488db2
KS
5559 struct mem_cgroup_thresholds *thresholds;
5560 struct mem_cgroup_threshold_ary *new;
2e72b634 5561 u64 threshold, usage;
2c488db2 5562 int i, size, ret;
2e72b634
KS
5563
5564 ret = res_counter_memparse_write_strategy(args, &threshold);
5565 if (ret)
5566 return ret;
5567
5568 mutex_lock(&memcg->thresholds_lock);
2c488db2 5569
2e72b634 5570 if (type == _MEM)
2c488db2 5571 thresholds = &memcg->thresholds;
2e72b634 5572 else if (type == _MEMSWAP)
2c488db2 5573 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5574 else
5575 BUG();
5576
5577 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5578
5579 /* Check if a threshold crossed before adding a new one */
2c488db2 5580 if (thresholds->primary)
2e72b634
KS
5581 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5582
2c488db2 5583 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5584
5585 /* Allocate memory for new array of thresholds */
2c488db2 5586 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5587 GFP_KERNEL);
2c488db2 5588 if (!new) {
2e72b634
KS
5589 ret = -ENOMEM;
5590 goto unlock;
5591 }
2c488db2 5592 new->size = size;
2e72b634
KS
5593
5594 /* Copy thresholds (if any) to new array */
2c488db2
KS
5595 if (thresholds->primary) {
5596 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5597 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5598 }
5599
2e72b634 5600 /* Add new threshold */
2c488db2
KS
5601 new->entries[size - 1].eventfd = eventfd;
5602 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5603
5604 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5605 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5606 compare_thresholds, NULL);
5607
5608 /* Find current threshold */
2c488db2 5609 new->current_threshold = -1;
2e72b634 5610 for (i = 0; i < size; i++) {
748dad36 5611 if (new->entries[i].threshold <= usage) {
2e72b634 5612 /*
2c488db2
KS
5613 * new->current_threshold will not be used until
5614 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5615 * it here.
5616 */
2c488db2 5617 ++new->current_threshold;
748dad36
SZ
5618 } else
5619 break;
2e72b634
KS
5620 }
5621
2c488db2
KS
5622 /* Free old spare buffer and save old primary buffer as spare */
5623 kfree(thresholds->spare);
5624 thresholds->spare = thresholds->primary;
5625
5626 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5627
907860ed 5628 /* To be sure that nobody uses thresholds */
2e72b634
KS
5629 synchronize_rcu();
5630
2e72b634
KS
5631unlock:
5632 mutex_unlock(&memcg->thresholds_lock);
5633
5634 return ret;
5635}
5636
59b6f873 5637static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5638 struct eventfd_ctx *eventfd, const char *args)
5639{
59b6f873 5640 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5641}
5642
59b6f873 5643static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5644 struct eventfd_ctx *eventfd, const char *args)
5645{
59b6f873 5646 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5647}
5648
59b6f873 5649static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5650 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5651{
2c488db2
KS
5652 struct mem_cgroup_thresholds *thresholds;
5653 struct mem_cgroup_threshold_ary *new;
2e72b634 5654 u64 usage;
2c488db2 5655 int i, j, size;
2e72b634
KS
5656
5657 mutex_lock(&memcg->thresholds_lock);
5658 if (type == _MEM)
2c488db2 5659 thresholds = &memcg->thresholds;
2e72b634 5660 else if (type == _MEMSWAP)
2c488db2 5661 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5662 else
5663 BUG();
5664
371528ca
AV
5665 if (!thresholds->primary)
5666 goto unlock;
5667
2e72b634
KS
5668 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5669
5670 /* Check if a threshold crossed before removing */
5671 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5672
5673 /* Calculate new number of threshold */
2c488db2
KS
5674 size = 0;
5675 for (i = 0; i < thresholds->primary->size; i++) {
5676 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5677 size++;
5678 }
5679
2c488db2 5680 new = thresholds->spare;
907860ed 5681
2e72b634
KS
5682 /* Set thresholds array to NULL if we don't have thresholds */
5683 if (!size) {
2c488db2
KS
5684 kfree(new);
5685 new = NULL;
907860ed 5686 goto swap_buffers;
2e72b634
KS
5687 }
5688
2c488db2 5689 new->size = size;
2e72b634
KS
5690
5691 /* Copy thresholds and find current threshold */
2c488db2
KS
5692 new->current_threshold = -1;
5693 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5694 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5695 continue;
5696
2c488db2 5697 new->entries[j] = thresholds->primary->entries[i];
748dad36 5698 if (new->entries[j].threshold <= usage) {
2e72b634 5699 /*
2c488db2 5700 * new->current_threshold will not be used
2e72b634
KS
5701 * until rcu_assign_pointer(), so it's safe to increment
5702 * it here.
5703 */
2c488db2 5704 ++new->current_threshold;
2e72b634
KS
5705 }
5706 j++;
5707 }
5708
907860ed 5709swap_buffers:
2c488db2
KS
5710 /* Swap primary and spare array */
5711 thresholds->spare = thresholds->primary;
8c757763
SZ
5712 /* If all events are unregistered, free the spare array */
5713 if (!new) {
5714 kfree(thresholds->spare);
5715 thresholds->spare = NULL;
5716 }
5717
2c488db2 5718 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5719
907860ed 5720 /* To be sure that nobody uses thresholds */
2e72b634 5721 synchronize_rcu();
371528ca 5722unlock:
2e72b634 5723 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5724}
c1e862c1 5725
59b6f873 5726static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5727 struct eventfd_ctx *eventfd)
5728{
59b6f873 5729 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5730}
5731
59b6f873 5732static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5733 struct eventfd_ctx *eventfd)
5734{
59b6f873 5735 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5736}
5737
59b6f873 5738static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5739 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5740{
9490ff27 5741 struct mem_cgroup_eventfd_list *event;
9490ff27 5742
9490ff27
KH
5743 event = kmalloc(sizeof(*event), GFP_KERNEL);
5744 if (!event)
5745 return -ENOMEM;
5746
1af8efe9 5747 spin_lock(&memcg_oom_lock);
9490ff27
KH
5748
5749 event->eventfd = eventfd;
5750 list_add(&event->list, &memcg->oom_notify);
5751
5752 /* already in OOM ? */
79dfdacc 5753 if (atomic_read(&memcg->under_oom))
9490ff27 5754 eventfd_signal(eventfd, 1);
1af8efe9 5755 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5756
5757 return 0;
5758}
5759
59b6f873 5760static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5761 struct eventfd_ctx *eventfd)
9490ff27 5762{
9490ff27 5763 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5764
1af8efe9 5765 spin_lock(&memcg_oom_lock);
9490ff27 5766
c0ff4b85 5767 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5768 if (ev->eventfd == eventfd) {
5769 list_del(&ev->list);
5770 kfree(ev);
5771 }
5772 }
5773
1af8efe9 5774 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5775}
5776
2da8ca82 5777static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5778{
2da8ca82 5779 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5780
791badbd
TH
5781 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5782 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5783 return 0;
5784}
5785
182446d0 5786static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5787 struct cftype *cft, u64 val)
5788{
182446d0 5789 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5790 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5791
5792 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5793 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5794 return -EINVAL;
5795
0999821b 5796 mutex_lock(&memcg_create_mutex);
3c11ecf4 5797 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5798 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5799 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5800 return -EINVAL;
5801 }
c0ff4b85 5802 memcg->oom_kill_disable = val;
4d845ebf 5803 if (!val)
c0ff4b85 5804 memcg_oom_recover(memcg);
0999821b 5805 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5806 return 0;
5807}
5808
c255a458 5809#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5810static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5811{
55007d84
GC
5812 int ret;
5813
2633d7a0 5814 memcg->kmemcg_id = -1;
55007d84
GC
5815 ret = memcg_propagate_kmem(memcg);
5816 if (ret)
5817 return ret;
2633d7a0 5818
1d62e436 5819 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5820}
e5671dfa 5821
10d5ebf4 5822static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5823{
1d62e436 5824 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5825}
5826
5827static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5828{
5829 if (!memcg_kmem_is_active(memcg))
5830 return;
5831
5832 /*
5833 * kmem charges can outlive the cgroup. In the case of slab
5834 * pages, for instance, a page contain objects from various
5835 * processes. As we prevent from taking a reference for every
5836 * such allocation we have to be careful when doing uncharge
5837 * (see memcg_uncharge_kmem) and here during offlining.
5838 *
5839 * The idea is that that only the _last_ uncharge which sees
5840 * the dead memcg will drop the last reference. An additional
5841 * reference is taken here before the group is marked dead
5842 * which is then paired with css_put during uncharge resp. here.
5843 *
5844 * Although this might sound strange as this path is called from
ec903c0c
TH
5845 * css_offline() when the referencemight have dropped down to 0 and
5846 * shouldn't be incremented anymore (css_tryget_online() would
5847 * fail) we do not have other options because of the kmem
5848 * allocations lifetime.
10d5ebf4
LZ
5849 */
5850 css_get(&memcg->css);
7de37682
GC
5851
5852 memcg_kmem_mark_dead(memcg);
5853
5854 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5855 return;
5856
7de37682 5857 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5858 css_put(&memcg->css);
d1a4c0b3 5859}
e5671dfa 5860#else
cbe128e3 5861static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5862{
5863 return 0;
5864}
d1a4c0b3 5865
10d5ebf4
LZ
5866static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5867{
5868}
5869
5870static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5871{
5872}
e5671dfa
GC
5873#endif
5874
3bc942f3
TH
5875/*
5876 * DO NOT USE IN NEW FILES.
5877 *
5878 * "cgroup.event_control" implementation.
5879 *
5880 * This is way over-engineered. It tries to support fully configurable
5881 * events for each user. Such level of flexibility is completely
5882 * unnecessary especially in the light of the planned unified hierarchy.
5883 *
5884 * Please deprecate this and replace with something simpler if at all
5885 * possible.
5886 */
5887
79bd9814
TH
5888/*
5889 * Unregister event and free resources.
5890 *
5891 * Gets called from workqueue.
5892 */
3bc942f3 5893static void memcg_event_remove(struct work_struct *work)
79bd9814 5894{
3bc942f3
TH
5895 struct mem_cgroup_event *event =
5896 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5897 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5898
5899 remove_wait_queue(event->wqh, &event->wait);
5900
59b6f873 5901 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5902
5903 /* Notify userspace the event is going away. */
5904 eventfd_signal(event->eventfd, 1);
5905
5906 eventfd_ctx_put(event->eventfd);
5907 kfree(event);
59b6f873 5908 css_put(&memcg->css);
79bd9814
TH
5909}
5910
5911/*
5912 * Gets called on POLLHUP on eventfd when user closes it.
5913 *
5914 * Called with wqh->lock held and interrupts disabled.
5915 */
3bc942f3
TH
5916static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5917 int sync, void *key)
79bd9814 5918{
3bc942f3
TH
5919 struct mem_cgroup_event *event =
5920 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5921 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5922 unsigned long flags = (unsigned long)key;
5923
5924 if (flags & POLLHUP) {
5925 /*
5926 * If the event has been detached at cgroup removal, we
5927 * can simply return knowing the other side will cleanup
5928 * for us.
5929 *
5930 * We can't race against event freeing since the other
5931 * side will require wqh->lock via remove_wait_queue(),
5932 * which we hold.
5933 */
fba94807 5934 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5935 if (!list_empty(&event->list)) {
5936 list_del_init(&event->list);
5937 /*
5938 * We are in atomic context, but cgroup_event_remove()
5939 * may sleep, so we have to call it in workqueue.
5940 */
5941 schedule_work(&event->remove);
5942 }
fba94807 5943 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5944 }
5945
5946 return 0;
5947}
5948
3bc942f3 5949static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5950 wait_queue_head_t *wqh, poll_table *pt)
5951{
3bc942f3
TH
5952 struct mem_cgroup_event *event =
5953 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5954
5955 event->wqh = wqh;
5956 add_wait_queue(wqh, &event->wait);
5957}
5958
5959/*
3bc942f3
TH
5960 * DO NOT USE IN NEW FILES.
5961 *
79bd9814
TH
5962 * Parse input and register new cgroup event handler.
5963 *
5964 * Input must be in format '<event_fd> <control_fd> <args>'.
5965 * Interpretation of args is defined by control file implementation.
5966 */
3bc942f3 5967static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5968 struct cftype *cft, char *buffer)
79bd9814 5969{
fba94807 5970 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5971 struct mem_cgroup_event *event;
79bd9814
TH
5972 struct cgroup_subsys_state *cfile_css;
5973 unsigned int efd, cfd;
5974 struct fd efile;
5975 struct fd cfile;
fba94807 5976 const char *name;
79bd9814
TH
5977 char *endp;
5978 int ret;
5979
5980 efd = simple_strtoul(buffer, &endp, 10);
5981 if (*endp != ' ')
5982 return -EINVAL;
5983 buffer = endp + 1;
5984
5985 cfd = simple_strtoul(buffer, &endp, 10);
5986 if ((*endp != ' ') && (*endp != '\0'))
5987 return -EINVAL;
5988 buffer = endp + 1;
5989
5990 event = kzalloc(sizeof(*event), GFP_KERNEL);
5991 if (!event)
5992 return -ENOMEM;
5993
59b6f873 5994 event->memcg = memcg;
79bd9814 5995 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5996 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5997 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5998 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5999
6000 efile = fdget(efd);
6001 if (!efile.file) {
6002 ret = -EBADF;
6003 goto out_kfree;
6004 }
6005
6006 event->eventfd = eventfd_ctx_fileget(efile.file);
6007 if (IS_ERR(event->eventfd)) {
6008 ret = PTR_ERR(event->eventfd);
6009 goto out_put_efile;
6010 }
6011
6012 cfile = fdget(cfd);
6013 if (!cfile.file) {
6014 ret = -EBADF;
6015 goto out_put_eventfd;
6016 }
6017
6018 /* the process need read permission on control file */
6019 /* AV: shouldn't we check that it's been opened for read instead? */
6020 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6021 if (ret < 0)
6022 goto out_put_cfile;
6023
fba94807
TH
6024 /*
6025 * Determine the event callbacks and set them in @event. This used
6026 * to be done via struct cftype but cgroup core no longer knows
6027 * about these events. The following is crude but the whole thing
6028 * is for compatibility anyway.
3bc942f3
TH
6029 *
6030 * DO NOT ADD NEW FILES.
fba94807
TH
6031 */
6032 name = cfile.file->f_dentry->d_name.name;
6033
6034 if (!strcmp(name, "memory.usage_in_bytes")) {
6035 event->register_event = mem_cgroup_usage_register_event;
6036 event->unregister_event = mem_cgroup_usage_unregister_event;
6037 } else if (!strcmp(name, "memory.oom_control")) {
6038 event->register_event = mem_cgroup_oom_register_event;
6039 event->unregister_event = mem_cgroup_oom_unregister_event;
6040 } else if (!strcmp(name, "memory.pressure_level")) {
6041 event->register_event = vmpressure_register_event;
6042 event->unregister_event = vmpressure_unregister_event;
6043 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6044 event->register_event = memsw_cgroup_usage_register_event;
6045 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6046 } else {
6047 ret = -EINVAL;
6048 goto out_put_cfile;
6049 }
6050
79bd9814 6051 /*
b5557c4c
TH
6052 * Verify @cfile should belong to @css. Also, remaining events are
6053 * automatically removed on cgroup destruction but the removal is
6054 * asynchronous, so take an extra ref on @css.
79bd9814 6055 */
ec903c0c
TH
6056 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
6057 &memory_cgrp_subsys);
79bd9814 6058 ret = -EINVAL;
5a17f543 6059 if (IS_ERR(cfile_css))
79bd9814 6060 goto out_put_cfile;
5a17f543
TH
6061 if (cfile_css != css) {
6062 css_put(cfile_css);
79bd9814 6063 goto out_put_cfile;
5a17f543 6064 }
79bd9814 6065
59b6f873 6066 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6067 if (ret)
6068 goto out_put_css;
6069
6070 efile.file->f_op->poll(efile.file, &event->pt);
6071
fba94807
TH
6072 spin_lock(&memcg->event_list_lock);
6073 list_add(&event->list, &memcg->event_list);
6074 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6075
6076 fdput(cfile);
6077 fdput(efile);
6078
6079 return 0;
6080
6081out_put_css:
b5557c4c 6082 css_put(css);
79bd9814
TH
6083out_put_cfile:
6084 fdput(cfile);
6085out_put_eventfd:
6086 eventfd_ctx_put(event->eventfd);
6087out_put_efile:
6088 fdput(efile);
6089out_kfree:
6090 kfree(event);
6091
6092 return ret;
6093}
6094
8cdea7c0
BS
6095static struct cftype mem_cgroup_files[] = {
6096 {
0eea1030 6097 .name = "usage_in_bytes",
8c7c6e34 6098 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6099 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6100 },
c84872e1
PE
6101 {
6102 .name = "max_usage_in_bytes",
8c7c6e34 6103 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6104 .trigger = mem_cgroup_reset,
791badbd 6105 .read_u64 = mem_cgroup_read_u64,
c84872e1 6106 },
8cdea7c0 6107 {
0eea1030 6108 .name = "limit_in_bytes",
8c7c6e34 6109 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6110 .write_string = mem_cgroup_write,
791badbd 6111 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6112 },
296c81d8
BS
6113 {
6114 .name = "soft_limit_in_bytes",
6115 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6116 .write_string = mem_cgroup_write,
791badbd 6117 .read_u64 = mem_cgroup_read_u64,
296c81d8 6118 },
8cdea7c0
BS
6119 {
6120 .name = "failcnt",
8c7c6e34 6121 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6122 .trigger = mem_cgroup_reset,
791badbd 6123 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6124 },
d2ceb9b7
KH
6125 {
6126 .name = "stat",
2da8ca82 6127 .seq_show = memcg_stat_show,
d2ceb9b7 6128 },
c1e862c1
KH
6129 {
6130 .name = "force_empty",
6131 .trigger = mem_cgroup_force_empty_write,
6132 },
18f59ea7
BS
6133 {
6134 .name = "use_hierarchy",
f00baae7 6135 .flags = CFTYPE_INSANE,
18f59ea7
BS
6136 .write_u64 = mem_cgroup_hierarchy_write,
6137 .read_u64 = mem_cgroup_hierarchy_read,
6138 },
79bd9814 6139 {
3bc942f3
TH
6140 .name = "cgroup.event_control", /* XXX: for compat */
6141 .write_string = memcg_write_event_control,
79bd9814
TH
6142 .flags = CFTYPE_NO_PREFIX,
6143 .mode = S_IWUGO,
6144 },
a7885eb8
KM
6145 {
6146 .name = "swappiness",
6147 .read_u64 = mem_cgroup_swappiness_read,
6148 .write_u64 = mem_cgroup_swappiness_write,
6149 },
7dc74be0
DN
6150 {
6151 .name = "move_charge_at_immigrate",
6152 .read_u64 = mem_cgroup_move_charge_read,
6153 .write_u64 = mem_cgroup_move_charge_write,
6154 },
9490ff27
KH
6155 {
6156 .name = "oom_control",
2da8ca82 6157 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6158 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6159 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6160 },
70ddf637
AV
6161 {
6162 .name = "pressure_level",
70ddf637 6163 },
406eb0c9
YH
6164#ifdef CONFIG_NUMA
6165 {
6166 .name = "numa_stat",
2da8ca82 6167 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6168 },
6169#endif
510fc4e1
GC
6170#ifdef CONFIG_MEMCG_KMEM
6171 {
6172 .name = "kmem.limit_in_bytes",
6173 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6174 .write_string = mem_cgroup_write,
791badbd 6175 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6176 },
6177 {
6178 .name = "kmem.usage_in_bytes",
6179 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6180 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6181 },
6182 {
6183 .name = "kmem.failcnt",
6184 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6185 .trigger = mem_cgroup_reset,
791badbd 6186 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6187 },
6188 {
6189 .name = "kmem.max_usage_in_bytes",
6190 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6191 .trigger = mem_cgroup_reset,
791badbd 6192 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6193 },
749c5415
GC
6194#ifdef CONFIG_SLABINFO
6195 {
6196 .name = "kmem.slabinfo",
2da8ca82 6197 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6198 },
6199#endif
8c7c6e34 6200#endif
6bc10349 6201 { }, /* terminate */
af36f906 6202};
8c7c6e34 6203
2d11085e
MH
6204#ifdef CONFIG_MEMCG_SWAP
6205static struct cftype memsw_cgroup_files[] = {
6206 {
6207 .name = "memsw.usage_in_bytes",
6208 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6209 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6210 },
6211 {
6212 .name = "memsw.max_usage_in_bytes",
6213 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6214 .trigger = mem_cgroup_reset,
791badbd 6215 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6216 },
6217 {
6218 .name = "memsw.limit_in_bytes",
6219 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6220 .write_string = mem_cgroup_write,
791badbd 6221 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6222 },
6223 {
6224 .name = "memsw.failcnt",
6225 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6226 .trigger = mem_cgroup_reset,
791badbd 6227 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6228 },
6229 { }, /* terminate */
6230};
6231#endif
c0ff4b85 6232static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6233{
6234 struct mem_cgroup_per_node *pn;
1ecaab2b 6235 struct mem_cgroup_per_zone *mz;
41e3355d 6236 int zone, tmp = node;
1ecaab2b
KH
6237 /*
6238 * This routine is called against possible nodes.
6239 * But it's BUG to call kmalloc() against offline node.
6240 *
6241 * TODO: this routine can waste much memory for nodes which will
6242 * never be onlined. It's better to use memory hotplug callback
6243 * function.
6244 */
41e3355d
KH
6245 if (!node_state(node, N_NORMAL_MEMORY))
6246 tmp = -1;
17295c88 6247 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6248 if (!pn)
6249 return 1;
1ecaab2b 6250
1ecaab2b
KH
6251 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6252 mz = &pn->zoneinfo[zone];
bea8c150 6253 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6254 mz->usage_in_excess = 0;
6255 mz->on_tree = false;
d79154bb 6256 mz->memcg = memcg;
1ecaab2b 6257 }
54f72fe0 6258 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6259 return 0;
6260}
6261
c0ff4b85 6262static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6263{
54f72fe0 6264 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6265}
6266
33327948
KH
6267static struct mem_cgroup *mem_cgroup_alloc(void)
6268{
d79154bb 6269 struct mem_cgroup *memcg;
8ff69e2c 6270 size_t size;
33327948 6271
8ff69e2c
VD
6272 size = sizeof(struct mem_cgroup);
6273 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6274
8ff69e2c 6275 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6276 if (!memcg)
e7bbcdf3
DC
6277 return NULL;
6278
d79154bb
HD
6279 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6280 if (!memcg->stat)
d2e61b8d 6281 goto out_free;
d79154bb
HD
6282 spin_lock_init(&memcg->pcp_counter_lock);
6283 return memcg;
d2e61b8d
DC
6284
6285out_free:
8ff69e2c 6286 kfree(memcg);
d2e61b8d 6287 return NULL;
33327948
KH
6288}
6289
59927fb9 6290/*
c8b2a36f
GC
6291 * At destroying mem_cgroup, references from swap_cgroup can remain.
6292 * (scanning all at force_empty is too costly...)
6293 *
6294 * Instead of clearing all references at force_empty, we remember
6295 * the number of reference from swap_cgroup and free mem_cgroup when
6296 * it goes down to 0.
6297 *
6298 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6299 */
c8b2a36f
GC
6300
6301static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6302{
c8b2a36f 6303 int node;
59927fb9 6304
bb4cc1a8 6305 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6306
6307 for_each_node(node)
6308 free_mem_cgroup_per_zone_info(memcg, node);
6309
6310 free_percpu(memcg->stat);
6311
3f134619
GC
6312 /*
6313 * We need to make sure that (at least for now), the jump label
6314 * destruction code runs outside of the cgroup lock. This is because
6315 * get_online_cpus(), which is called from the static_branch update,
6316 * can't be called inside the cgroup_lock. cpusets are the ones
6317 * enforcing this dependency, so if they ever change, we might as well.
6318 *
6319 * schedule_work() will guarantee this happens. Be careful if you need
6320 * to move this code around, and make sure it is outside
6321 * the cgroup_lock.
6322 */
a8964b9b 6323 disarm_static_keys(memcg);
8ff69e2c 6324 kfree(memcg);
59927fb9 6325}
3afe36b1 6326
7bcc1bb1
DN
6327/*
6328 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6329 */
e1aab161 6330struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6331{
c0ff4b85 6332 if (!memcg->res.parent)
7bcc1bb1 6333 return NULL;
c0ff4b85 6334 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6335}
e1aab161 6336EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6337
bb4cc1a8
AM
6338static void __init mem_cgroup_soft_limit_tree_init(void)
6339{
6340 struct mem_cgroup_tree_per_node *rtpn;
6341 struct mem_cgroup_tree_per_zone *rtpz;
6342 int tmp, node, zone;
6343
6344 for_each_node(node) {
6345 tmp = node;
6346 if (!node_state(node, N_NORMAL_MEMORY))
6347 tmp = -1;
6348 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6349 BUG_ON(!rtpn);
6350
6351 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6352
6353 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6354 rtpz = &rtpn->rb_tree_per_zone[zone];
6355 rtpz->rb_root = RB_ROOT;
6356 spin_lock_init(&rtpz->lock);
6357 }
6358 }
6359}
6360
0eb253e2 6361static struct cgroup_subsys_state * __ref
eb95419b 6362mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6363{
d142e3e6 6364 struct mem_cgroup *memcg;
04046e1a 6365 long error = -ENOMEM;
6d12e2d8 6366 int node;
8cdea7c0 6367
c0ff4b85
R
6368 memcg = mem_cgroup_alloc();
6369 if (!memcg)
04046e1a 6370 return ERR_PTR(error);
78fb7466 6371
3ed28fa1 6372 for_each_node(node)
c0ff4b85 6373 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6374 goto free_out;
f64c3f54 6375
c077719b 6376 /* root ? */
eb95419b 6377 if (parent_css == NULL) {
a41c58a6 6378 root_mem_cgroup = memcg;
d142e3e6
GC
6379 res_counter_init(&memcg->res, NULL);
6380 res_counter_init(&memcg->memsw, NULL);
6381 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6382 }
28dbc4b6 6383
d142e3e6
GC
6384 memcg->last_scanned_node = MAX_NUMNODES;
6385 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6386 memcg->move_charge_at_immigrate = 0;
6387 mutex_init(&memcg->thresholds_lock);
6388 spin_lock_init(&memcg->move_lock);
70ddf637 6389 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6390 INIT_LIST_HEAD(&memcg->event_list);
6391 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6392
6393 return &memcg->css;
6394
6395free_out:
6396 __mem_cgroup_free(memcg);
6397 return ERR_PTR(error);
6398}
6399
6400static int
eb95419b 6401mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6402{
eb95419b
TH
6403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6404 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6405
15a4c835 6406 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
6407 return -ENOSPC;
6408
63876986 6409 if (!parent)
d142e3e6
GC
6410 return 0;
6411
0999821b 6412 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6413
6414 memcg->use_hierarchy = parent->use_hierarchy;
6415 memcg->oom_kill_disable = parent->oom_kill_disable;
6416 memcg->swappiness = mem_cgroup_swappiness(parent);
6417
6418 if (parent->use_hierarchy) {
c0ff4b85
R
6419 res_counter_init(&memcg->res, &parent->res);
6420 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6421 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6422
7bcc1bb1 6423 /*
8d76a979
LZ
6424 * No need to take a reference to the parent because cgroup
6425 * core guarantees its existence.
7bcc1bb1 6426 */
18f59ea7 6427 } else {
c0ff4b85
R
6428 res_counter_init(&memcg->res, NULL);
6429 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6430 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6431 /*
6432 * Deeper hierachy with use_hierarchy == false doesn't make
6433 * much sense so let cgroup subsystem know about this
6434 * unfortunate state in our controller.
6435 */
d142e3e6 6436 if (parent != root_mem_cgroup)
073219e9 6437 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6438 }
0999821b 6439 mutex_unlock(&memcg_create_mutex);
d6441637 6440
073219e9 6441 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6442}
6443
5f578161
MH
6444/*
6445 * Announce all parents that a group from their hierarchy is gone.
6446 */
6447static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6448{
6449 struct mem_cgroup *parent = memcg;
6450
6451 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6452 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6453
6454 /*
6455 * if the root memcg is not hierarchical we have to check it
6456 * explicitely.
6457 */
6458 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6459 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6460}
6461
eb95419b 6462static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6463{
eb95419b 6464 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6465 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6466 struct cgroup_subsys_state *iter;
79bd9814
TH
6467
6468 /*
6469 * Unregister events and notify userspace.
6470 * Notify userspace about cgroup removing only after rmdir of cgroup
6471 * directory to avoid race between userspace and kernelspace.
6472 */
fba94807
TH
6473 spin_lock(&memcg->event_list_lock);
6474 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6475 list_del_init(&event->list);
6476 schedule_work(&event->remove);
6477 }
fba94807 6478 spin_unlock(&memcg->event_list_lock);
ec64f515 6479
10d5ebf4
LZ
6480 kmem_cgroup_css_offline(memcg);
6481
5f578161 6482 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6483
6484 /*
6485 * This requires that offlining is serialized. Right now that is
6486 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6487 */
6488 css_for_each_descendant_post(iter, css)
6489 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6490
1f458cbf 6491 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6492 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6493}
6494
eb95419b 6495static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6496{
eb95419b 6497 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6498 /*
6499 * XXX: css_offline() would be where we should reparent all
6500 * memory to prepare the cgroup for destruction. However,
ec903c0c 6501 * memcg does not do css_tryget_online() and res_counter charging
96f1c58d
JW
6502 * under the same RCU lock region, which means that charging
6503 * could race with offlining. Offlining only happens to
6504 * cgroups with no tasks in them but charges can show up
6505 * without any tasks from the swapin path when the target
6506 * memcg is looked up from the swapout record and not from the
6507 * current task as it usually is. A race like this can leak
6508 * charges and put pages with stale cgroup pointers into
6509 * circulation:
6510 *
6511 * #0 #1
6512 * lookup_swap_cgroup_id()
6513 * rcu_read_lock()
6514 * mem_cgroup_lookup()
ec903c0c 6515 * css_tryget_online()
96f1c58d 6516 * rcu_read_unlock()
ec903c0c 6517 * disable css_tryget_online()
96f1c58d
JW
6518 * call_rcu()
6519 * offline_css()
6520 * reparent_charges()
6521 * res_counter_charge()
6522 * css_put()
6523 * css_free()
6524 * pc->mem_cgroup = dead memcg
6525 * add page to lru
6526 *
6527 * The bulk of the charges are still moved in offline_css() to
6528 * avoid pinning a lot of pages in case a long-term reference
6529 * like a swapout record is deferring the css_free() to long
6530 * after offlining. But this makes sure we catch any charges
6531 * made after offlining:
6532 */
6533 mem_cgroup_reparent_charges(memcg);
c268e994 6534
10d5ebf4 6535 memcg_destroy_kmem(memcg);
465939a1 6536 __mem_cgroup_free(memcg);
8cdea7c0
BS
6537}
6538
02491447 6539#ifdef CONFIG_MMU
7dc74be0 6540/* Handlers for move charge at task migration. */
854ffa8d
DN
6541#define PRECHARGE_COUNT_AT_ONCE 256
6542static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6543{
854ffa8d
DN
6544 int ret = 0;
6545 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6546 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6547
c0ff4b85 6548 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6549 mc.precharge += count;
6550 /* we don't need css_get for root */
6551 return ret;
6552 }
6553 /* try to charge at once */
6554 if (count > 1) {
6555 struct res_counter *dummy;
6556 /*
c0ff4b85 6557 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6558 * by cgroup_lock_live_cgroup() that it is not removed and we
6559 * are still under the same cgroup_mutex. So we can postpone
6560 * css_get().
6561 */
c0ff4b85 6562 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6563 goto one_by_one;
c0ff4b85 6564 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6565 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6566 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6567 goto one_by_one;
6568 }
6569 mc.precharge += count;
854ffa8d
DN
6570 return ret;
6571 }
6572one_by_one:
6573 /* fall back to one by one charge */
6574 while (count--) {
6575 if (signal_pending(current)) {
6576 ret = -EINTR;
6577 break;
6578 }
6579 if (!batch_count--) {
6580 batch_count = PRECHARGE_COUNT_AT_ONCE;
6581 cond_resched();
6582 }
6d1fdc48 6583 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6584 if (ret)
854ffa8d 6585 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6586 return ret;
854ffa8d
DN
6587 mc.precharge++;
6588 }
4ffef5fe
DN
6589 return ret;
6590}
6591
6592/**
8d32ff84 6593 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6594 * @vma: the vma the pte to be checked belongs
6595 * @addr: the address corresponding to the pte to be checked
6596 * @ptent: the pte to be checked
02491447 6597 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6598 *
6599 * Returns
6600 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6601 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6602 * move charge. if @target is not NULL, the page is stored in target->page
6603 * with extra refcnt got(Callers should handle it).
02491447
DN
6604 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6605 * target for charge migration. if @target is not NULL, the entry is stored
6606 * in target->ent.
4ffef5fe
DN
6607 *
6608 * Called with pte lock held.
6609 */
4ffef5fe
DN
6610union mc_target {
6611 struct page *page;
02491447 6612 swp_entry_t ent;
4ffef5fe
DN
6613};
6614
4ffef5fe 6615enum mc_target_type {
8d32ff84 6616 MC_TARGET_NONE = 0,
4ffef5fe 6617 MC_TARGET_PAGE,
02491447 6618 MC_TARGET_SWAP,
4ffef5fe
DN
6619};
6620
90254a65
DN
6621static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6622 unsigned long addr, pte_t ptent)
4ffef5fe 6623{
90254a65 6624 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6625
90254a65
DN
6626 if (!page || !page_mapped(page))
6627 return NULL;
6628 if (PageAnon(page)) {
6629 /* we don't move shared anon */
4b91355e 6630 if (!move_anon())
90254a65 6631 return NULL;
87946a72
DN
6632 } else if (!move_file())
6633 /* we ignore mapcount for file pages */
90254a65
DN
6634 return NULL;
6635 if (!get_page_unless_zero(page))
6636 return NULL;
6637
6638 return page;
6639}
6640
4b91355e 6641#ifdef CONFIG_SWAP
90254a65
DN
6642static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6643 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6644{
90254a65
DN
6645 struct page *page = NULL;
6646 swp_entry_t ent = pte_to_swp_entry(ptent);
6647
6648 if (!move_anon() || non_swap_entry(ent))
6649 return NULL;
4b91355e
KH
6650 /*
6651 * Because lookup_swap_cache() updates some statistics counter,
6652 * we call find_get_page() with swapper_space directly.
6653 */
33806f06 6654 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6655 if (do_swap_account)
6656 entry->val = ent.val;
6657
6658 return page;
6659}
4b91355e
KH
6660#else
6661static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6662 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6663{
6664 return NULL;
6665}
6666#endif
90254a65 6667
87946a72
DN
6668static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6669 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6670{
6671 struct page *page = NULL;
87946a72
DN
6672 struct address_space *mapping;
6673 pgoff_t pgoff;
6674
6675 if (!vma->vm_file) /* anonymous vma */
6676 return NULL;
6677 if (!move_file())
6678 return NULL;
6679
87946a72
DN
6680 mapping = vma->vm_file->f_mapping;
6681 if (pte_none(ptent))
6682 pgoff = linear_page_index(vma, addr);
6683 else /* pte_file(ptent) is true */
6684 pgoff = pte_to_pgoff(ptent);
6685
6686 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6687 page = find_get_page(mapping, pgoff);
6688
6689#ifdef CONFIG_SWAP
6690 /* shmem/tmpfs may report page out on swap: account for that too. */
6691 if (radix_tree_exceptional_entry(page)) {
6692 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6693 if (do_swap_account)
aa3b1895 6694 *entry = swap;
33806f06 6695 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6696 }
aa3b1895 6697#endif
87946a72
DN
6698 return page;
6699}
6700
8d32ff84 6701static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6702 unsigned long addr, pte_t ptent, union mc_target *target)
6703{
6704 struct page *page = NULL;
6705 struct page_cgroup *pc;
8d32ff84 6706 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6707 swp_entry_t ent = { .val = 0 };
6708
6709 if (pte_present(ptent))
6710 page = mc_handle_present_pte(vma, addr, ptent);
6711 else if (is_swap_pte(ptent))
6712 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6713 else if (pte_none(ptent) || pte_file(ptent))
6714 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6715
6716 if (!page && !ent.val)
8d32ff84 6717 return ret;
02491447
DN
6718 if (page) {
6719 pc = lookup_page_cgroup(page);
6720 /*
6721 * Do only loose check w/o page_cgroup lock.
6722 * mem_cgroup_move_account() checks the pc is valid or not under
6723 * the lock.
6724 */
6725 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6726 ret = MC_TARGET_PAGE;
6727 if (target)
6728 target->page = page;
6729 }
6730 if (!ret || !target)
6731 put_page(page);
6732 }
90254a65
DN
6733 /* There is a swap entry and a page doesn't exist or isn't charged */
6734 if (ent.val && !ret &&
34c00c31 6735 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6736 ret = MC_TARGET_SWAP;
6737 if (target)
6738 target->ent = ent;
4ffef5fe 6739 }
4ffef5fe
DN
6740 return ret;
6741}
6742
12724850
NH
6743#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6744/*
6745 * We don't consider swapping or file mapped pages because THP does not
6746 * support them for now.
6747 * Caller should make sure that pmd_trans_huge(pmd) is true.
6748 */
6749static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6750 unsigned long addr, pmd_t pmd, union mc_target *target)
6751{
6752 struct page *page = NULL;
6753 struct page_cgroup *pc;
6754 enum mc_target_type ret = MC_TARGET_NONE;
6755
6756 page = pmd_page(pmd);
309381fe 6757 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6758 if (!move_anon())
6759 return ret;
6760 pc = lookup_page_cgroup(page);
6761 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6762 ret = MC_TARGET_PAGE;
6763 if (target) {
6764 get_page(page);
6765 target->page = page;
6766 }
6767 }
6768 return ret;
6769}
6770#else
6771static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6772 unsigned long addr, pmd_t pmd, union mc_target *target)
6773{
6774 return MC_TARGET_NONE;
6775}
6776#endif
6777
4ffef5fe
DN
6778static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6779 unsigned long addr, unsigned long end,
6780 struct mm_walk *walk)
6781{
6782 struct vm_area_struct *vma = walk->private;
6783 pte_t *pte;
6784 spinlock_t *ptl;
6785
bf929152 6786 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6787 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6788 mc.precharge += HPAGE_PMD_NR;
bf929152 6789 spin_unlock(ptl);
1a5a9906 6790 return 0;
12724850 6791 }
03319327 6792
45f83cef
AA
6793 if (pmd_trans_unstable(pmd))
6794 return 0;
4ffef5fe
DN
6795 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6796 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6797 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6798 mc.precharge++; /* increment precharge temporarily */
6799 pte_unmap_unlock(pte - 1, ptl);
6800 cond_resched();
6801
7dc74be0
DN
6802 return 0;
6803}
6804
4ffef5fe
DN
6805static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6806{
6807 unsigned long precharge;
6808 struct vm_area_struct *vma;
6809
dfe076b0 6810 down_read(&mm->mmap_sem);
4ffef5fe
DN
6811 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6812 struct mm_walk mem_cgroup_count_precharge_walk = {
6813 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6814 .mm = mm,
6815 .private = vma,
6816 };
6817 if (is_vm_hugetlb_page(vma))
6818 continue;
4ffef5fe
DN
6819 walk_page_range(vma->vm_start, vma->vm_end,
6820 &mem_cgroup_count_precharge_walk);
6821 }
dfe076b0 6822 up_read(&mm->mmap_sem);
4ffef5fe
DN
6823
6824 precharge = mc.precharge;
6825 mc.precharge = 0;
6826
6827 return precharge;
6828}
6829
4ffef5fe
DN
6830static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6831{
dfe076b0
DN
6832 unsigned long precharge = mem_cgroup_count_precharge(mm);
6833
6834 VM_BUG_ON(mc.moving_task);
6835 mc.moving_task = current;
6836 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6837}
6838
dfe076b0
DN
6839/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6840static void __mem_cgroup_clear_mc(void)
4ffef5fe 6841{
2bd9bb20
KH
6842 struct mem_cgroup *from = mc.from;
6843 struct mem_cgroup *to = mc.to;
4050377b 6844 int i;
2bd9bb20 6845
4ffef5fe 6846 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6847 if (mc.precharge) {
6848 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6849 mc.precharge = 0;
6850 }
6851 /*
6852 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6853 * we must uncharge here.
6854 */
6855 if (mc.moved_charge) {
6856 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6857 mc.moved_charge = 0;
4ffef5fe 6858 }
483c30b5
DN
6859 /* we must fixup refcnts and charges */
6860 if (mc.moved_swap) {
483c30b5
DN
6861 /* uncharge swap account from the old cgroup */
6862 if (!mem_cgroup_is_root(mc.from))
6863 res_counter_uncharge(&mc.from->memsw,
6864 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6865
6866 for (i = 0; i < mc.moved_swap; i++)
6867 css_put(&mc.from->css);
483c30b5
DN
6868
6869 if (!mem_cgroup_is_root(mc.to)) {
6870 /*
6871 * we charged both to->res and to->memsw, so we should
6872 * uncharge to->res.
6873 */
6874 res_counter_uncharge(&mc.to->res,
6875 PAGE_SIZE * mc.moved_swap);
483c30b5 6876 }
4050377b 6877 /* we've already done css_get(mc.to) */
483c30b5
DN
6878 mc.moved_swap = 0;
6879 }
dfe076b0
DN
6880 memcg_oom_recover(from);
6881 memcg_oom_recover(to);
6882 wake_up_all(&mc.waitq);
6883}
6884
6885static void mem_cgroup_clear_mc(void)
6886{
6887 struct mem_cgroup *from = mc.from;
6888
6889 /*
6890 * we must clear moving_task before waking up waiters at the end of
6891 * task migration.
6892 */
6893 mc.moving_task = NULL;
6894 __mem_cgroup_clear_mc();
2bd9bb20 6895 spin_lock(&mc.lock);
4ffef5fe
DN
6896 mc.from = NULL;
6897 mc.to = NULL;
2bd9bb20 6898 spin_unlock(&mc.lock);
32047e2a 6899 mem_cgroup_end_move(from);
4ffef5fe
DN
6900}
6901
eb95419b 6902static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6903 struct cgroup_taskset *tset)
7dc74be0 6904{
2f7ee569 6905 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6906 int ret = 0;
eb95419b 6907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6908 unsigned long move_charge_at_immigrate;
7dc74be0 6909
ee5e8472
GC
6910 /*
6911 * We are now commited to this value whatever it is. Changes in this
6912 * tunable will only affect upcoming migrations, not the current one.
6913 * So we need to save it, and keep it going.
6914 */
6915 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6916 if (move_charge_at_immigrate) {
7dc74be0
DN
6917 struct mm_struct *mm;
6918 struct mem_cgroup *from = mem_cgroup_from_task(p);
6919
c0ff4b85 6920 VM_BUG_ON(from == memcg);
7dc74be0
DN
6921
6922 mm = get_task_mm(p);
6923 if (!mm)
6924 return 0;
7dc74be0 6925 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6926 if (mm->owner == p) {
6927 VM_BUG_ON(mc.from);
6928 VM_BUG_ON(mc.to);
6929 VM_BUG_ON(mc.precharge);
854ffa8d 6930 VM_BUG_ON(mc.moved_charge);
483c30b5 6931 VM_BUG_ON(mc.moved_swap);
32047e2a 6932 mem_cgroup_start_move(from);
2bd9bb20 6933 spin_lock(&mc.lock);
4ffef5fe 6934 mc.from = from;
c0ff4b85 6935 mc.to = memcg;
ee5e8472 6936 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6937 spin_unlock(&mc.lock);
dfe076b0 6938 /* We set mc.moving_task later */
4ffef5fe
DN
6939
6940 ret = mem_cgroup_precharge_mc(mm);
6941 if (ret)
6942 mem_cgroup_clear_mc();
dfe076b0
DN
6943 }
6944 mmput(mm);
7dc74be0
DN
6945 }
6946 return ret;
6947}
6948
eb95419b 6949static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6950 struct cgroup_taskset *tset)
7dc74be0 6951{
4ffef5fe 6952 mem_cgroup_clear_mc();
7dc74be0
DN
6953}
6954
4ffef5fe
DN
6955static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6956 unsigned long addr, unsigned long end,
6957 struct mm_walk *walk)
7dc74be0 6958{
4ffef5fe
DN
6959 int ret = 0;
6960 struct vm_area_struct *vma = walk->private;
6961 pte_t *pte;
6962 spinlock_t *ptl;
12724850
NH
6963 enum mc_target_type target_type;
6964 union mc_target target;
6965 struct page *page;
6966 struct page_cgroup *pc;
4ffef5fe 6967
12724850
NH
6968 /*
6969 * We don't take compound_lock() here but no race with splitting thp
6970 * happens because:
6971 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6972 * under splitting, which means there's no concurrent thp split,
6973 * - if another thread runs into split_huge_page() just after we
6974 * entered this if-block, the thread must wait for page table lock
6975 * to be unlocked in __split_huge_page_splitting(), where the main
6976 * part of thp split is not executed yet.
6977 */
bf929152 6978 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6979 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6980 spin_unlock(ptl);
12724850
NH
6981 return 0;
6982 }
6983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6984 if (target_type == MC_TARGET_PAGE) {
6985 page = target.page;
6986 if (!isolate_lru_page(page)) {
6987 pc = lookup_page_cgroup(page);
6988 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6989 pc, mc.from, mc.to)) {
12724850
NH
6990 mc.precharge -= HPAGE_PMD_NR;
6991 mc.moved_charge += HPAGE_PMD_NR;
6992 }
6993 putback_lru_page(page);
6994 }
6995 put_page(page);
6996 }
bf929152 6997 spin_unlock(ptl);
1a5a9906 6998 return 0;
12724850
NH
6999 }
7000
45f83cef
AA
7001 if (pmd_trans_unstable(pmd))
7002 return 0;
4ffef5fe
DN
7003retry:
7004 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7005 for (; addr != end; addr += PAGE_SIZE) {
7006 pte_t ptent = *(pte++);
02491447 7007 swp_entry_t ent;
4ffef5fe
DN
7008
7009 if (!mc.precharge)
7010 break;
7011
8d32ff84 7012 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7013 case MC_TARGET_PAGE:
7014 page = target.page;
7015 if (isolate_lru_page(page))
7016 goto put;
7017 pc = lookup_page_cgroup(page);
7ec99d62 7018 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7019 mc.from, mc.to)) {
4ffef5fe 7020 mc.precharge--;
854ffa8d
DN
7021 /* we uncharge from mc.from later. */
7022 mc.moved_charge++;
4ffef5fe
DN
7023 }
7024 putback_lru_page(page);
8d32ff84 7025put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7026 put_page(page);
7027 break;
02491447
DN
7028 case MC_TARGET_SWAP:
7029 ent = target.ent;
e91cbb42 7030 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7031 mc.precharge--;
483c30b5
DN
7032 /* we fixup refcnts and charges later. */
7033 mc.moved_swap++;
7034 }
02491447 7035 break;
4ffef5fe
DN
7036 default:
7037 break;
7038 }
7039 }
7040 pte_unmap_unlock(pte - 1, ptl);
7041 cond_resched();
7042
7043 if (addr != end) {
7044 /*
7045 * We have consumed all precharges we got in can_attach().
7046 * We try charge one by one, but don't do any additional
7047 * charges to mc.to if we have failed in charge once in attach()
7048 * phase.
7049 */
854ffa8d 7050 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7051 if (!ret)
7052 goto retry;
7053 }
7054
7055 return ret;
7056}
7057
7058static void mem_cgroup_move_charge(struct mm_struct *mm)
7059{
7060 struct vm_area_struct *vma;
7061
7062 lru_add_drain_all();
dfe076b0
DN
7063retry:
7064 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7065 /*
7066 * Someone who are holding the mmap_sem might be waiting in
7067 * waitq. So we cancel all extra charges, wake up all waiters,
7068 * and retry. Because we cancel precharges, we might not be able
7069 * to move enough charges, but moving charge is a best-effort
7070 * feature anyway, so it wouldn't be a big problem.
7071 */
7072 __mem_cgroup_clear_mc();
7073 cond_resched();
7074 goto retry;
7075 }
4ffef5fe
DN
7076 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7077 int ret;
7078 struct mm_walk mem_cgroup_move_charge_walk = {
7079 .pmd_entry = mem_cgroup_move_charge_pte_range,
7080 .mm = mm,
7081 .private = vma,
7082 };
7083 if (is_vm_hugetlb_page(vma))
7084 continue;
4ffef5fe
DN
7085 ret = walk_page_range(vma->vm_start, vma->vm_end,
7086 &mem_cgroup_move_charge_walk);
7087 if (ret)
7088 /*
7089 * means we have consumed all precharges and failed in
7090 * doing additional charge. Just abandon here.
7091 */
7092 break;
7093 }
dfe076b0 7094 up_read(&mm->mmap_sem);
7dc74be0
DN
7095}
7096
eb95419b 7097static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7098 struct cgroup_taskset *tset)
67e465a7 7099{
2f7ee569 7100 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7101 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7102
dfe076b0 7103 if (mm) {
a433658c
KM
7104 if (mc.to)
7105 mem_cgroup_move_charge(mm);
dfe076b0
DN
7106 mmput(mm);
7107 }
a433658c
KM
7108 if (mc.to)
7109 mem_cgroup_clear_mc();
67e465a7 7110}
5cfb80a7 7111#else /* !CONFIG_MMU */
eb95419b 7112static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7113 struct cgroup_taskset *tset)
5cfb80a7
DN
7114{
7115 return 0;
7116}
eb95419b 7117static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7118 struct cgroup_taskset *tset)
5cfb80a7
DN
7119{
7120}
eb95419b 7121static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7122 struct cgroup_taskset *tset)
5cfb80a7
DN
7123{
7124}
7125#endif
67e465a7 7126
f00baae7
TH
7127/*
7128 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7129 * to verify sane_behavior flag on each mount attempt.
7130 */
eb95419b 7131static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7132{
7133 /*
7134 * use_hierarchy is forced with sane_behavior. cgroup core
7135 * guarantees that @root doesn't have any children, so turning it
7136 * on for the root memcg is enough.
7137 */
eb95419b
TH
7138 if (cgroup_sane_behavior(root_css->cgroup))
7139 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7140}
7141
073219e9 7142struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7143 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7144 .css_online = mem_cgroup_css_online,
92fb9748
TH
7145 .css_offline = mem_cgroup_css_offline,
7146 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7147 .can_attach = mem_cgroup_can_attach,
7148 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7149 .attach = mem_cgroup_move_task,
f00baae7 7150 .bind = mem_cgroup_bind,
6bc10349 7151 .base_cftypes = mem_cgroup_files,
6d12e2d8 7152 .early_init = 0,
8cdea7c0 7153};
c077719b 7154
c255a458 7155#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7156static int __init enable_swap_account(char *s)
7157{
a2c8990a 7158 if (!strcmp(s, "1"))
a42c390c 7159 really_do_swap_account = 1;
a2c8990a 7160 else if (!strcmp(s, "0"))
a42c390c
MH
7161 really_do_swap_account = 0;
7162 return 1;
7163}
a2c8990a 7164__setup("swapaccount=", enable_swap_account);
c077719b 7165
2d11085e
MH
7166static void __init memsw_file_init(void)
7167{
073219e9 7168 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7169}
7170
7171static void __init enable_swap_cgroup(void)
7172{
7173 if (!mem_cgroup_disabled() && really_do_swap_account) {
7174 do_swap_account = 1;
7175 memsw_file_init();
7176 }
2d11085e 7177}
6acc8b02 7178
2d11085e 7179#else
6acc8b02 7180static void __init enable_swap_cgroup(void)
2d11085e
MH
7181{
7182}
c077719b 7183#endif
2d11085e
MH
7184
7185/*
1081312f
MH
7186 * subsys_initcall() for memory controller.
7187 *
7188 * Some parts like hotcpu_notifier() have to be initialized from this context
7189 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7190 * everything that doesn't depend on a specific mem_cgroup structure should
7191 * be initialized from here.
2d11085e
MH
7192 */
7193static int __init mem_cgroup_init(void)
7194{
7195 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7196 enable_swap_cgroup();
bb4cc1a8 7197 mem_cgroup_soft_limit_tree_init();
e4777496 7198 memcg_stock_init();
2d11085e
MH
7199 return 0;
7200}
7201subsys_initcall(mem_cgroup_init);