]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm: vmscan: convert global reclaim to per-memcg LRU lists
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
072c56c1
KH
137 /*
138 * spin_lock to protect the per cgroup LRU
139 */
b69408e8
CL
140 struct list_head lists[NR_LRU_LISTS];
141 unsigned long count[NR_LRU_LISTS];
3e2f41f1 142
527a5ec9
JW
143 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
144
3e2f41f1 145 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
146 struct rb_node tree_node; /* RB tree node */
147 unsigned long long usage_in_excess;/* Set to the value by which */
148 /* the soft limit is exceeded*/
149 bool on_tree;
4e416953
BS
150 struct mem_cgroup *mem; /* Back pointer, we cannot */
151 /* use container_of */
6d12e2d8
KH
152};
153/* Macro for accessing counter */
154#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
155
156struct mem_cgroup_per_node {
157 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
158};
159
160struct mem_cgroup_lru_info {
161 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162};
163
f64c3f54
BS
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 u64 threshold;
187};
188
9490ff27 189/* For threshold */
2e72b634
KS
190struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
c0ff4b85
R
216static void mem_cgroup_threshold(struct mem_cgroup *memcg);
217static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 218
8cdea7c0
BS
219/*
220 * The memory controller data structure. The memory controller controls both
221 * page cache and RSS per cgroup. We would eventually like to provide
222 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
223 * to help the administrator determine what knobs to tune.
224 *
225 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
226 * we hit the water mark. May be even add a low water mark, such that
227 * no reclaim occurs from a cgroup at it's low water mark, this is
228 * a feature that will be implemented much later in the future.
8cdea7c0
BS
229 */
230struct mem_cgroup {
231 struct cgroup_subsys_state css;
232 /*
233 * the counter to account for memory usage
234 */
235 struct res_counter res;
8c7c6e34
KH
236 /*
237 * the counter to account for mem+swap usage.
238 */
239 struct res_counter memsw;
78fb7466
PE
240 /*
241 * Per cgroup active and inactive list, similar to the
242 * per zone LRU lists.
78fb7466 243 */
6d12e2d8 244 struct mem_cgroup_lru_info info;
889976db
YH
245 int last_scanned_node;
246#if MAX_NUMNODES > 1
247 nodemask_t scan_nodes;
453a9bf3
KH
248 atomic_t numainfo_events;
249 atomic_t numainfo_updating;
889976db 250#endif
18f59ea7
BS
251 /*
252 * Should the accounting and control be hierarchical, per subtree?
253 */
254 bool use_hierarchy;
79dfdacc
MH
255
256 bool oom_lock;
257 atomic_t under_oom;
258
8c7c6e34 259 atomic_t refcnt;
14797e23 260
1f4c025b 261 int swappiness;
3c11ecf4
KH
262 /* OOM-Killer disable */
263 int oom_kill_disable;
a7885eb8 264
22a668d7
KH
265 /* set when res.limit == memsw.limit */
266 bool memsw_is_minimum;
267
2e72b634
KS
268 /* protect arrays of thresholds */
269 struct mutex thresholds_lock;
270
271 /* thresholds for memory usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds thresholds;
907860ed 273
2e72b634 274 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 275 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 276
9490ff27
KH
277 /* For oom notifier event fd */
278 struct list_head oom_notify;
185efc0f 279
7dc74be0
DN
280 /*
281 * Should we move charges of a task when a task is moved into this
282 * mem_cgroup ? And what type of charges should we move ?
283 */
284 unsigned long move_charge_at_immigrate;
d52aa412 285 /*
c62b1a3b 286 * percpu counter.
d52aa412 287 */
c62b1a3b 288 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
289 /*
290 * used when a cpu is offlined or other synchronizations
291 * See mem_cgroup_read_stat().
292 */
293 struct mem_cgroup_stat_cpu nocpu_base;
294 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
295
296#ifdef CONFIG_INET
297 struct tcp_memcontrol tcp_mem;
298#endif
8cdea7c0
BS
299};
300
7dc74be0
DN
301/* Stuffs for move charges at task migration. */
302/*
303 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
304 * left-shifted bitmap of these types.
305 */
306enum move_type {
4ffef5fe 307 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 308 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
309 NR_MOVE_TYPE,
310};
311
4ffef5fe
DN
312/* "mc" and its members are protected by cgroup_mutex */
313static struct move_charge_struct {
b1dd693e 314 spinlock_t lock; /* for from, to */
4ffef5fe
DN
315 struct mem_cgroup *from;
316 struct mem_cgroup *to;
317 unsigned long precharge;
854ffa8d 318 unsigned long moved_charge;
483c30b5 319 unsigned long moved_swap;
8033b97c
DN
320 struct task_struct *moving_task; /* a task moving charges */
321 wait_queue_head_t waitq; /* a waitq for other context */
322} mc = {
2bd9bb20 323 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
324 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
325};
4ffef5fe 326
90254a65
DN
327static bool move_anon(void)
328{
329 return test_bit(MOVE_CHARGE_TYPE_ANON,
330 &mc.to->move_charge_at_immigrate);
331}
332
87946a72
DN
333static bool move_file(void)
334{
335 return test_bit(MOVE_CHARGE_TYPE_FILE,
336 &mc.to->move_charge_at_immigrate);
337}
338
4e416953
BS
339/*
340 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
341 * limit reclaim to prevent infinite loops, if they ever occur.
342 */
343#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
344#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
345
217bc319
KH
346enum charge_type {
347 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
348 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 349 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 350 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 351 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 352 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
353 NR_CHARGE_TYPE,
354};
355
8c7c6e34 356/* for encoding cft->private value on file */
65c64ce8
GC
357#define _MEM (0)
358#define _MEMSWAP (1)
359#define _OOM_TYPE (2)
8c7c6e34
KH
360#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
361#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
362#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
363/* Used for OOM nofiier */
364#define OOM_CONTROL (0)
8c7c6e34 365
75822b44
BS
366/*
367 * Reclaim flags for mem_cgroup_hierarchical_reclaim
368 */
369#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
370#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
371#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
372#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
373
c0ff4b85
R
374static void mem_cgroup_get(struct mem_cgroup *memcg);
375static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
376
377/* Writing them here to avoid exposing memcg's inner layout */
378#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
379#ifdef CONFIG_INET
380#include <net/sock.h>
d1a4c0b3 381#include <net/ip.h>
e1aab161
GC
382
383static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
384void sock_update_memcg(struct sock *sk)
385{
e1aab161
GC
386 if (static_branch(&memcg_socket_limit_enabled)) {
387 struct mem_cgroup *memcg;
388
389 BUG_ON(!sk->sk_prot->proto_cgroup);
390
f3f511e1
GC
391 /* Socket cloning can throw us here with sk_cgrp already
392 * filled. It won't however, necessarily happen from
393 * process context. So the test for root memcg given
394 * the current task's memcg won't help us in this case.
395 *
396 * Respecting the original socket's memcg is a better
397 * decision in this case.
398 */
399 if (sk->sk_cgrp) {
400 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
401 mem_cgroup_get(sk->sk_cgrp->memcg);
402 return;
403 }
404
e1aab161
GC
405 rcu_read_lock();
406 memcg = mem_cgroup_from_task(current);
407 if (!mem_cgroup_is_root(memcg)) {
408 mem_cgroup_get(memcg);
409 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
410 }
411 rcu_read_unlock();
412 }
413}
414EXPORT_SYMBOL(sock_update_memcg);
415
416void sock_release_memcg(struct sock *sk)
417{
418 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
419 struct mem_cgroup *memcg;
420 WARN_ON(!sk->sk_cgrp->memcg);
421 memcg = sk->sk_cgrp->memcg;
422 mem_cgroup_put(memcg);
423 }
424}
d1a4c0b3
GC
425
426struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
427{
428 if (!memcg || mem_cgroup_is_root(memcg))
429 return NULL;
430
431 return &memcg->tcp_mem.cg_proto;
432}
433EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
434#endif /* CONFIG_INET */
435#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
436
c0ff4b85 437static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 438
f64c3f54 439static struct mem_cgroup_per_zone *
c0ff4b85 440mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 441{
c0ff4b85 442 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
443}
444
c0ff4b85 445struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 446{
c0ff4b85 447 return &memcg->css;
d324236b
WF
448}
449
f64c3f54 450static struct mem_cgroup_per_zone *
c0ff4b85 451page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 452{
97a6c37b
JW
453 int nid = page_to_nid(page);
454 int zid = page_zonenum(page);
f64c3f54 455
c0ff4b85 456 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
457}
458
459static struct mem_cgroup_tree_per_zone *
460soft_limit_tree_node_zone(int nid, int zid)
461{
462 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
463}
464
465static struct mem_cgroup_tree_per_zone *
466soft_limit_tree_from_page(struct page *page)
467{
468 int nid = page_to_nid(page);
469 int zid = page_zonenum(page);
470
471 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
472}
473
474static void
c0ff4b85 475__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 476 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
477 struct mem_cgroup_tree_per_zone *mctz,
478 unsigned long long new_usage_in_excess)
f64c3f54
BS
479{
480 struct rb_node **p = &mctz->rb_root.rb_node;
481 struct rb_node *parent = NULL;
482 struct mem_cgroup_per_zone *mz_node;
483
484 if (mz->on_tree)
485 return;
486
ef8745c1
KH
487 mz->usage_in_excess = new_usage_in_excess;
488 if (!mz->usage_in_excess)
489 return;
f64c3f54
BS
490 while (*p) {
491 parent = *p;
492 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
493 tree_node);
494 if (mz->usage_in_excess < mz_node->usage_in_excess)
495 p = &(*p)->rb_left;
496 /*
497 * We can't avoid mem cgroups that are over their soft
498 * limit by the same amount
499 */
500 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
501 p = &(*p)->rb_right;
502 }
503 rb_link_node(&mz->tree_node, parent, p);
504 rb_insert_color(&mz->tree_node, &mctz->rb_root);
505 mz->on_tree = true;
4e416953
BS
506}
507
508static void
c0ff4b85 509__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
510 struct mem_cgroup_per_zone *mz,
511 struct mem_cgroup_tree_per_zone *mctz)
512{
513 if (!mz->on_tree)
514 return;
515 rb_erase(&mz->tree_node, &mctz->rb_root);
516 mz->on_tree = false;
517}
518
f64c3f54 519static void
c0ff4b85 520mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
521 struct mem_cgroup_per_zone *mz,
522 struct mem_cgroup_tree_per_zone *mctz)
523{
524 spin_lock(&mctz->lock);
c0ff4b85 525 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
526 spin_unlock(&mctz->lock);
527}
528
f64c3f54 529
c0ff4b85 530static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 531{
ef8745c1 532 unsigned long long excess;
f64c3f54
BS
533 struct mem_cgroup_per_zone *mz;
534 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
535 int nid = page_to_nid(page);
536 int zid = page_zonenum(page);
f64c3f54
BS
537 mctz = soft_limit_tree_from_page(page);
538
539 /*
4e649152
KH
540 * Necessary to update all ancestors when hierarchy is used.
541 * because their event counter is not touched.
f64c3f54 542 */
c0ff4b85
R
543 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
544 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
545 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
546 /*
547 * We have to update the tree if mz is on RB-tree or
548 * mem is over its softlimit.
549 */
ef8745c1 550 if (excess || mz->on_tree) {
4e649152
KH
551 spin_lock(&mctz->lock);
552 /* if on-tree, remove it */
553 if (mz->on_tree)
c0ff4b85 554 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 555 /*
ef8745c1
KH
556 * Insert again. mz->usage_in_excess will be updated.
557 * If excess is 0, no tree ops.
4e649152 558 */
c0ff4b85 559 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
560 spin_unlock(&mctz->lock);
561 }
f64c3f54
BS
562 }
563}
564
c0ff4b85 565static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
566{
567 int node, zone;
568 struct mem_cgroup_per_zone *mz;
569 struct mem_cgroup_tree_per_zone *mctz;
570
571 for_each_node_state(node, N_POSSIBLE) {
572 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 573 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 574 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 575 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
576 }
577 }
578}
579
4e416953
BS
580static struct mem_cgroup_per_zone *
581__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
582{
583 struct rb_node *rightmost = NULL;
26251eaf 584 struct mem_cgroup_per_zone *mz;
4e416953
BS
585
586retry:
26251eaf 587 mz = NULL;
4e416953
BS
588 rightmost = rb_last(&mctz->rb_root);
589 if (!rightmost)
590 goto done; /* Nothing to reclaim from */
591
592 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
593 /*
594 * Remove the node now but someone else can add it back,
595 * we will to add it back at the end of reclaim to its correct
596 * position in the tree.
597 */
598 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
599 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
600 !css_tryget(&mz->mem->css))
601 goto retry;
602done:
603 return mz;
604}
605
606static struct mem_cgroup_per_zone *
607mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
608{
609 struct mem_cgroup_per_zone *mz;
610
611 spin_lock(&mctz->lock);
612 mz = __mem_cgroup_largest_soft_limit_node(mctz);
613 spin_unlock(&mctz->lock);
614 return mz;
615}
616
711d3d2c
KH
617/*
618 * Implementation Note: reading percpu statistics for memcg.
619 *
620 * Both of vmstat[] and percpu_counter has threshold and do periodic
621 * synchronization to implement "quick" read. There are trade-off between
622 * reading cost and precision of value. Then, we may have a chance to implement
623 * a periodic synchronizion of counter in memcg's counter.
624 *
625 * But this _read() function is used for user interface now. The user accounts
626 * memory usage by memory cgroup and he _always_ requires exact value because
627 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
628 * have to visit all online cpus and make sum. So, for now, unnecessary
629 * synchronization is not implemented. (just implemented for cpu hotplug)
630 *
631 * If there are kernel internal actions which can make use of some not-exact
632 * value, and reading all cpu value can be performance bottleneck in some
633 * common workload, threashold and synchonization as vmstat[] should be
634 * implemented.
635 */
c0ff4b85 636static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 637 enum mem_cgroup_stat_index idx)
c62b1a3b 638{
7a159cc9 639 long val = 0;
c62b1a3b 640 int cpu;
c62b1a3b 641
711d3d2c
KH
642 get_online_cpus();
643 for_each_online_cpu(cpu)
c0ff4b85 644 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 645#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
646 spin_lock(&memcg->pcp_counter_lock);
647 val += memcg->nocpu_base.count[idx];
648 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
649#endif
650 put_online_cpus();
c62b1a3b
KH
651 return val;
652}
653
c0ff4b85 654static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
655 bool charge)
656{
657 int val = (charge) ? 1 : -1;
c0ff4b85 658 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
659}
660
c0ff4b85 661void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
456f998e 662{
c0ff4b85 663 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
456f998e
YH
664}
665
c0ff4b85 666void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
456f998e 667{
c0ff4b85 668 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
456f998e
YH
669}
670
c0ff4b85 671static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
672 enum mem_cgroup_events_index idx)
673{
674 unsigned long val = 0;
675 int cpu;
676
677 for_each_online_cpu(cpu)
c0ff4b85 678 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 679#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
680 spin_lock(&memcg->pcp_counter_lock);
681 val += memcg->nocpu_base.events[idx];
682 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
683#endif
684 return val;
685}
686
c0ff4b85 687static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 688 bool file, int nr_pages)
d52aa412 689{
c62b1a3b
KH
690 preempt_disable();
691
e401f176 692 if (file)
c0ff4b85
R
693 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
694 nr_pages);
d52aa412 695 else
c0ff4b85
R
696 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
697 nr_pages);
55e462b0 698
e401f176
KH
699 /* pagein of a big page is an event. So, ignore page size */
700 if (nr_pages > 0)
c0ff4b85 701 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 702 else {
c0ff4b85 703 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
704 nr_pages = -nr_pages; /* for event */
705 }
e401f176 706
c0ff4b85 707 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 708
c62b1a3b 709 preempt_enable();
6d12e2d8
KH
710}
711
bb2a0de9 712unsigned long
c0ff4b85 713mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 714 unsigned int lru_mask)
889976db
YH
715{
716 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
717 enum lru_list l;
718 unsigned long ret = 0;
719
c0ff4b85 720 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
721
722 for_each_lru(l) {
723 if (BIT(l) & lru_mask)
724 ret += MEM_CGROUP_ZSTAT(mz, l);
725 }
726 return ret;
727}
728
729static unsigned long
c0ff4b85 730mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
731 int nid, unsigned int lru_mask)
732{
889976db
YH
733 u64 total = 0;
734 int zid;
735
bb2a0de9 736 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
737 total += mem_cgroup_zone_nr_lru_pages(memcg,
738 nid, zid, lru_mask);
bb2a0de9 739
889976db
YH
740 return total;
741}
bb2a0de9 742
c0ff4b85 743static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 744 unsigned int lru_mask)
6d12e2d8 745{
889976db 746 int nid;
6d12e2d8
KH
747 u64 total = 0;
748
bb2a0de9 749 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 750 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 751 return total;
d52aa412
KH
752}
753
c0ff4b85 754static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
7a159cc9
JW
755{
756 unsigned long val, next;
757
4799401f
SR
758 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
759 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9
JW
760 /* from time_after() in jiffies.h */
761 return ((long)next - (long)val < 0);
762}
763
c0ff4b85 764static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
d2265e6f 765{
7a159cc9 766 unsigned long val, next;
d2265e6f 767
4799401f 768 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 769
7a159cc9
JW
770 switch (target) {
771 case MEM_CGROUP_TARGET_THRESH:
772 next = val + THRESHOLDS_EVENTS_TARGET;
773 break;
774 case MEM_CGROUP_TARGET_SOFTLIMIT:
775 next = val + SOFTLIMIT_EVENTS_TARGET;
776 break;
453a9bf3
KH
777 case MEM_CGROUP_TARGET_NUMAINFO:
778 next = val + NUMAINFO_EVENTS_TARGET;
779 break;
7a159cc9
JW
780 default:
781 return;
782 }
783
4799401f 784 __this_cpu_write(memcg->stat->targets[target], next);
d2265e6f
KH
785}
786
787/*
788 * Check events in order.
789 *
790 */
c0ff4b85 791static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 792{
4799401f 793 preempt_disable();
d2265e6f 794 /* threshold event is triggered in finer grain than soft limit */
c0ff4b85
R
795 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
796 mem_cgroup_threshold(memcg);
797 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
798 if (unlikely(__memcg_event_check(memcg,
453a9bf3 799 MEM_CGROUP_TARGET_SOFTLIMIT))) {
c0ff4b85
R
800 mem_cgroup_update_tree(memcg, page);
801 __mem_cgroup_target_update(memcg,
453a9bf3
KH
802 MEM_CGROUP_TARGET_SOFTLIMIT);
803 }
804#if MAX_NUMNODES > 1
c0ff4b85 805 if (unlikely(__memcg_event_check(memcg,
453a9bf3 806 MEM_CGROUP_TARGET_NUMAINFO))) {
c0ff4b85
R
807 atomic_inc(&memcg->numainfo_events);
808 __mem_cgroup_target_update(memcg,
453a9bf3 809 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 810 }
453a9bf3 811#endif
d2265e6f 812 }
4799401f 813 preempt_enable();
d2265e6f
KH
814}
815
d1a4c0b3 816struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
817{
818 return container_of(cgroup_subsys_state(cont,
819 mem_cgroup_subsys_id), struct mem_cgroup,
820 css);
821}
822
cf475ad2 823struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 824{
31a78f23
BS
825 /*
826 * mm_update_next_owner() may clear mm->owner to NULL
827 * if it races with swapoff, page migration, etc.
828 * So this can be called with p == NULL.
829 */
830 if (unlikely(!p))
831 return NULL;
832
78fb7466
PE
833 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
834 struct mem_cgroup, css);
835}
836
a433658c 837struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 838{
c0ff4b85 839 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
840
841 if (!mm)
842 return NULL;
54595fe2
KH
843 /*
844 * Because we have no locks, mm->owner's may be being moved to other
845 * cgroup. We use css_tryget() here even if this looks
846 * pessimistic (rather than adding locks here).
847 */
848 rcu_read_lock();
849 do {
c0ff4b85
R
850 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 if (unlikely(!memcg))
54595fe2 852 break;
c0ff4b85 853 } while (!css_tryget(&memcg->css));
54595fe2 854 rcu_read_unlock();
c0ff4b85 855 return memcg;
54595fe2
KH
856}
857
5660048c
JW
858/**
859 * mem_cgroup_iter - iterate over memory cgroup hierarchy
860 * @root: hierarchy root
861 * @prev: previously returned memcg, NULL on first invocation
862 * @reclaim: cookie for shared reclaim walks, NULL for full walks
863 *
864 * Returns references to children of the hierarchy below @root, or
865 * @root itself, or %NULL after a full round-trip.
866 *
867 * Caller must pass the return value in @prev on subsequent
868 * invocations for reference counting, or use mem_cgroup_iter_break()
869 * to cancel a hierarchy walk before the round-trip is complete.
870 *
871 * Reclaimers can specify a zone and a priority level in @reclaim to
872 * divide up the memcgs in the hierarchy among all concurrent
873 * reclaimers operating on the same zone and priority.
874 */
875struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
876 struct mem_cgroup *prev,
877 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 878{
9f3a0d09
JW
879 struct mem_cgroup *memcg = NULL;
880 int id = 0;
711d3d2c 881
5660048c
JW
882 if (mem_cgroup_disabled())
883 return NULL;
884
9f3a0d09
JW
885 if (!root)
886 root = root_mem_cgroup;
7d74b06f 887
9f3a0d09
JW
888 if (prev && !reclaim)
889 id = css_id(&prev->css);
14067bb3 890
9f3a0d09
JW
891 if (prev && prev != root)
892 css_put(&prev->css);
14067bb3 893
9f3a0d09
JW
894 if (!root->use_hierarchy && root != root_mem_cgroup) {
895 if (prev)
896 return NULL;
897 return root;
898 }
14067bb3 899
9f3a0d09 900 while (!memcg) {
527a5ec9 901 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 902 struct cgroup_subsys_state *css;
711d3d2c 903
527a5ec9
JW
904 if (reclaim) {
905 int nid = zone_to_nid(reclaim->zone);
906 int zid = zone_idx(reclaim->zone);
907 struct mem_cgroup_per_zone *mz;
908
909 mz = mem_cgroup_zoneinfo(root, nid, zid);
910 iter = &mz->reclaim_iter[reclaim->priority];
911 if (prev && reclaim->generation != iter->generation)
912 return NULL;
913 id = iter->position;
914 }
7d74b06f 915
9f3a0d09
JW
916 rcu_read_lock();
917 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
918 if (css) {
919 if (css == &root->css || css_tryget(css))
920 memcg = container_of(css,
921 struct mem_cgroup, css);
922 } else
923 id = 0;
14067bb3 924 rcu_read_unlock();
14067bb3 925
527a5ec9
JW
926 if (reclaim) {
927 iter->position = id;
928 if (!css)
929 iter->generation++;
930 else if (!prev && memcg)
931 reclaim->generation = iter->generation;
932 }
9f3a0d09
JW
933
934 if (prev && !css)
935 return NULL;
936 }
937 return memcg;
14067bb3 938}
7d74b06f 939
5660048c
JW
940/**
941 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
942 * @root: hierarchy root
943 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
944 */
945void mem_cgroup_iter_break(struct mem_cgroup *root,
946 struct mem_cgroup *prev)
9f3a0d09
JW
947{
948 if (!root)
949 root = root_mem_cgroup;
950 if (prev && prev != root)
951 css_put(&prev->css);
952}
7d74b06f 953
9f3a0d09
JW
954/*
955 * Iteration constructs for visiting all cgroups (under a tree). If
956 * loops are exited prematurely (break), mem_cgroup_iter_break() must
957 * be used for reference counting.
958 */
959#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 960 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 961 iter != NULL; \
527a5ec9 962 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 963
9f3a0d09 964#define for_each_mem_cgroup(iter) \
527a5ec9 965 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 966 iter != NULL; \
527a5ec9 967 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 968
c0ff4b85 969static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 970{
c0ff4b85 971 return (memcg == root_mem_cgroup);
4b3bde4c
BS
972}
973
456f998e
YH
974void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
975{
c0ff4b85 976 struct mem_cgroup *memcg;
456f998e
YH
977
978 if (!mm)
979 return;
980
981 rcu_read_lock();
c0ff4b85
R
982 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
983 if (unlikely(!memcg))
456f998e
YH
984 goto out;
985
986 switch (idx) {
987 case PGMAJFAULT:
c0ff4b85 988 mem_cgroup_pgmajfault(memcg, 1);
456f998e
YH
989 break;
990 case PGFAULT:
c0ff4b85 991 mem_cgroup_pgfault(memcg, 1);
456f998e
YH
992 break;
993 default:
994 BUG();
995 }
996out:
997 rcu_read_unlock();
998}
999EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1000
08e552c6
KH
1001/*
1002 * Following LRU functions are allowed to be used without PCG_LOCK.
1003 * Operations are called by routine of global LRU independently from memcg.
1004 * What we have to take care of here is validness of pc->mem_cgroup.
1005 *
1006 * Changes to pc->mem_cgroup happens when
1007 * 1. charge
1008 * 2. moving account
1009 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1010 * It is added to LRU before charge.
1011 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1012 * When moving account, the page is not on LRU. It's isolated.
1013 */
4f98a2fe 1014
08e552c6
KH
1015void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1016{
1017 struct page_cgroup *pc;
08e552c6 1018 struct mem_cgroup_per_zone *mz;
6d12e2d8 1019
f8d66542 1020 if (mem_cgroup_disabled())
08e552c6
KH
1021 return;
1022 pc = lookup_page_cgroup(page);
1023 /* can happen while we handle swapcache. */
4b3bde4c 1024 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 1025 return;
4b3bde4c 1026 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
1027 /*
1028 * We don't check PCG_USED bit. It's cleared when the "page" is finally
1029 * removed from global LRU.
1030 */
97a6c37b 1031 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1032 /* huge page split is done under lru_lock. so, we have no races. */
1033 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c 1034 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 1035 list_del_init(&pc->lru);
6d12e2d8
KH
1036}
1037
08e552c6 1038void mem_cgroup_del_lru(struct page *page)
6d12e2d8 1039{
08e552c6
KH
1040 mem_cgroup_del_lru_list(page, page_lru(page));
1041}
b69408e8 1042
3f58a829
MK
1043/*
1044 * Writeback is about to end against a page which has been marked for immediate
1045 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1046 * inactive list.
1047 */
1048void mem_cgroup_rotate_reclaimable_page(struct page *page)
1049{
1050 struct mem_cgroup_per_zone *mz;
1051 struct page_cgroup *pc;
1052 enum lru_list lru = page_lru(page);
1053
1054 if (mem_cgroup_disabled())
1055 return;
1056
1057 pc = lookup_page_cgroup(page);
ad2b8e60 1058 /* unused page is not rotated. */
3f58a829
MK
1059 if (!PageCgroupUsed(pc))
1060 return;
1061 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062 smp_rmb();
97a6c37b 1063 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1064 list_move_tail(&pc->lru, &mz->lists[lru]);
1065}
1066
08e552c6
KH
1067void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1068{
1069 struct mem_cgroup_per_zone *mz;
1070 struct page_cgroup *pc;
b69408e8 1071
f8d66542 1072 if (mem_cgroup_disabled())
08e552c6 1073 return;
6d12e2d8 1074
08e552c6 1075 pc = lookup_page_cgroup(page);
ad2b8e60 1076 /* unused page is not rotated. */
713735b4
JW
1077 if (!PageCgroupUsed(pc))
1078 return;
1079 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1080 smp_rmb();
97a6c37b 1081 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1082 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1083}
1084
08e552c6 1085void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1086{
08e552c6
KH
1087 struct page_cgroup *pc;
1088 struct mem_cgroup_per_zone *mz;
6d12e2d8 1089
f8d66542 1090 if (mem_cgroup_disabled())
08e552c6
KH
1091 return;
1092 pc = lookup_page_cgroup(page);
4b3bde4c 1093 VM_BUG_ON(PageCgroupAcctLRU(pc));
a61ed3ce
JW
1094 /*
1095 * putback: charge:
1096 * SetPageLRU SetPageCgroupUsed
1097 * smp_mb smp_mb
1098 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1099 *
1100 * Ensure that one of the two sides adds the page to the memcg
1101 * LRU during a race.
1102 */
1103 smp_mb();
08e552c6 1104 if (!PageCgroupUsed(pc))
894bc310 1105 return;
713735b4
JW
1106 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1107 smp_rmb();
97a6c37b 1108 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1109 /* huge page split is done under lru_lock. so, we have no races. */
1110 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c 1111 SetPageCgroupAcctLRU(pc);
08e552c6
KH
1112 list_add(&pc->lru, &mz->lists[lru]);
1113}
544122e5 1114
08e552c6 1115/*
5a6475a4
KH
1116 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1117 * while it's linked to lru because the page may be reused after it's fully
1118 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1119 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1120 */
5a6475a4 1121static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1122{
544122e5
KH
1123 unsigned long flags;
1124 struct zone *zone = page_zone(page);
1125 struct page_cgroup *pc = lookup_page_cgroup(page);
1126
5a6475a4
KH
1127 /*
1128 * Doing this check without taking ->lru_lock seems wrong but this
1129 * is safe. Because if page_cgroup's USED bit is unset, the page
1130 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1131 * set, the commit after this will fail, anyway.
1132 * This all charge/uncharge is done under some mutual execustion.
1133 * So, we don't need to taking care of changes in USED bit.
1134 */
1135 if (likely(!PageLRU(page)))
1136 return;
1137
544122e5
KH
1138 spin_lock_irqsave(&zone->lru_lock, flags);
1139 /*
1140 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1141 * is guarded by lock_page() because the page is SwapCache.
1142 */
1143 if (!PageCgroupUsed(pc))
1144 mem_cgroup_del_lru_list(page, page_lru(page));
1145 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1146}
1147
5a6475a4 1148static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1149{
1150 unsigned long flags;
1151 struct zone *zone = page_zone(page);
1152 struct page_cgroup *pc = lookup_page_cgroup(page);
a61ed3ce
JW
1153 /*
1154 * putback: charge:
1155 * SetPageLRU SetPageCgroupUsed
1156 * smp_mb smp_mb
1157 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1158 *
1159 * Ensure that one of the two sides adds the page to the memcg
1160 * LRU during a race.
1161 */
1162 smp_mb();
5a6475a4
KH
1163 /* taking care of that the page is added to LRU while we commit it */
1164 if (likely(!PageLRU(page)))
1165 return;
544122e5
KH
1166 spin_lock_irqsave(&zone->lru_lock, flags);
1167 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1168 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1169 mem_cgroup_add_lru_list(page, page_lru(page));
1170 spin_unlock_irqrestore(&zone->lru_lock, flags);
1171}
1172
1173
08e552c6
KH
1174void mem_cgroup_move_lists(struct page *page,
1175 enum lru_list from, enum lru_list to)
1176{
f8d66542 1177 if (mem_cgroup_disabled())
08e552c6
KH
1178 return;
1179 mem_cgroup_del_lru_list(page, from);
1180 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1181}
1182
3e92041d 1183/*
c0ff4b85 1184 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1185 * hierarchy subtree
1186 */
c0ff4b85
R
1187static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1188 struct mem_cgroup *memcg)
3e92041d 1189{
c0ff4b85
R
1190 if (root_memcg != memcg) {
1191 return (root_memcg->use_hierarchy &&
1192 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1193 }
1194
1195 return true;
1196}
1197
c0ff4b85 1198int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1199{
1200 int ret;
0b7f569e 1201 struct mem_cgroup *curr = NULL;
158e0a2d 1202 struct task_struct *p;
4c4a2214 1203
158e0a2d
KH
1204 p = find_lock_task_mm(task);
1205 if (!p)
1206 return 0;
1207 curr = try_get_mem_cgroup_from_mm(p->mm);
1208 task_unlock(p);
0b7f569e
KH
1209 if (!curr)
1210 return 0;
d31f56db 1211 /*
c0ff4b85 1212 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1213 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1214 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1215 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1216 */
c0ff4b85 1217 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1218 css_put(&curr->css);
4c4a2214
DR
1219 return ret;
1220}
1221
9b272977 1222int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1223{
9b272977
JW
1224 unsigned long inactive_ratio;
1225 int nid = zone_to_nid(zone);
1226 int zid = zone_idx(zone);
14797e23 1227 unsigned long inactive;
9b272977 1228 unsigned long active;
c772be93 1229 unsigned long gb;
14797e23 1230
9b272977
JW
1231 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1232 BIT(LRU_INACTIVE_ANON));
1233 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1234 BIT(LRU_ACTIVE_ANON));
14797e23 1235
c772be93
KM
1236 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1237 if (gb)
1238 inactive_ratio = int_sqrt(10 * gb);
1239 else
1240 inactive_ratio = 1;
1241
9b272977 1242 return inactive * inactive_ratio < active;
14797e23
KM
1243}
1244
9b272977 1245int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1246{
1247 unsigned long active;
1248 unsigned long inactive;
9b272977
JW
1249 int zid = zone_idx(zone);
1250 int nid = zone_to_nid(zone);
56e49d21 1251
9b272977
JW
1252 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1253 BIT(LRU_INACTIVE_FILE));
1254 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1255 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1256
1257 return (active > inactive);
1258}
1259
3e2f41f1
KM
1260struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1261 struct zone *zone)
1262{
13d7e3a2 1263 int nid = zone_to_nid(zone);
3e2f41f1
KM
1264 int zid = zone_idx(zone);
1265 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1266
1267 return &mz->reclaim_stat;
1268}
1269
1270struct zone_reclaim_stat *
1271mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1272{
1273 struct page_cgroup *pc;
1274 struct mem_cgroup_per_zone *mz;
1275
1276 if (mem_cgroup_disabled())
1277 return NULL;
1278
1279 pc = lookup_page_cgroup(page);
bd112db8
DN
1280 if (!PageCgroupUsed(pc))
1281 return NULL;
713735b4
JW
1282 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1283 smp_rmb();
97a6c37b 1284 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1285 return &mz->reclaim_stat;
1286}
1287
66e1707b
BS
1288unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1289 struct list_head *dst,
1290 unsigned long *scanned, int order,
4356f21d
MK
1291 isolate_mode_t mode,
1292 struct zone *z,
66e1707b 1293 struct mem_cgroup *mem_cont,
4f98a2fe 1294 int active, int file)
66e1707b
BS
1295{
1296 unsigned long nr_taken = 0;
1297 struct page *page;
1298 unsigned long scan;
1299 LIST_HEAD(pc_list);
1300 struct list_head *src;
ff7283fa 1301 struct page_cgroup *pc, *tmp;
13d7e3a2 1302 int nid = zone_to_nid(z);
1ecaab2b
KH
1303 int zid = zone_idx(z);
1304 struct mem_cgroup_per_zone *mz;
b7c46d15 1305 int lru = LRU_FILE * file + active;
2ffebca6 1306 int ret;
66e1707b 1307
cf475ad2 1308 BUG_ON(!mem_cont);
1ecaab2b 1309 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1310 src = &mz->lists[lru];
66e1707b 1311
ff7283fa
KH
1312 scan = 0;
1313 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1314 if (scan >= nr_to_scan)
ff7283fa 1315 break;
08e552c6 1316
52d4b9ac
KH
1317 if (unlikely(!PageCgroupUsed(pc)))
1318 continue;
5564e88b 1319
6b3ae58e 1320 page = lookup_cgroup_page(pc);
5564e88b 1321
436c6541 1322 if (unlikely(!PageLRU(page)))
ff7283fa 1323 continue;
ff7283fa 1324
436c6541 1325 scan++;
2ffebca6
KH
1326 ret = __isolate_lru_page(page, mode, file);
1327 switch (ret) {
1328 case 0:
66e1707b 1329 list_move(&page->lru, dst);
2ffebca6 1330 mem_cgroup_del_lru(page);
2c888cfb 1331 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1332 break;
1333 case -EBUSY:
1334 /* we don't affect global LRU but rotate in our LRU */
1335 mem_cgroup_rotate_lru_list(page, page_lru(page));
1336 break;
1337 default:
1338 break;
66e1707b
BS
1339 }
1340 }
1341
66e1707b 1342 *scanned = scan;
cc8e970c
KM
1343
1344 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1345 0, 0, 0, mode);
1346
66e1707b
BS
1347 return nr_taken;
1348}
1349
6d61ef40
BS
1350#define mem_cgroup_from_res_counter(counter, member) \
1351 container_of(counter, struct mem_cgroup, member)
1352
19942822 1353/**
9d11ea9f
JW
1354 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1355 * @mem: the memory cgroup
19942822 1356 *
9d11ea9f 1357 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1358 * pages.
19942822 1359 */
c0ff4b85 1360static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1361{
9d11ea9f
JW
1362 unsigned long long margin;
1363
c0ff4b85 1364 margin = res_counter_margin(&memcg->res);
9d11ea9f 1365 if (do_swap_account)
c0ff4b85 1366 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1367 return margin >> PAGE_SHIFT;
19942822
JW
1368}
1369
1f4c025b 1370int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1371{
1372 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1373
1374 /* root ? */
1375 if (cgrp->parent == NULL)
1376 return vm_swappiness;
1377
bf1ff263 1378 return memcg->swappiness;
a7885eb8
KM
1379}
1380
c0ff4b85 1381static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1382{
1383 int cpu;
1489ebad
KH
1384
1385 get_online_cpus();
c0ff4b85 1386 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1387 for_each_online_cpu(cpu)
c0ff4b85
R
1388 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1389 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1390 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1391 put_online_cpus();
32047e2a
KH
1392
1393 synchronize_rcu();
1394}
1395
c0ff4b85 1396static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1397{
1398 int cpu;
1399
c0ff4b85 1400 if (!memcg)
32047e2a 1401 return;
1489ebad 1402 get_online_cpus();
c0ff4b85 1403 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1404 for_each_online_cpu(cpu)
c0ff4b85
R
1405 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1406 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1407 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1408 put_online_cpus();
32047e2a
KH
1409}
1410/*
1411 * 2 routines for checking "mem" is under move_account() or not.
1412 *
1413 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1414 * for avoiding race in accounting. If true,
1415 * pc->mem_cgroup may be overwritten.
1416 *
1417 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1418 * under hierarchy of moving cgroups. This is for
1419 * waiting at hith-memory prressure caused by "move".
1420 */
1421
c0ff4b85 1422static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1423{
1424 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1425 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1426}
4b534334 1427
c0ff4b85 1428static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1429{
2bd9bb20
KH
1430 struct mem_cgroup *from;
1431 struct mem_cgroup *to;
4b534334 1432 bool ret = false;
2bd9bb20
KH
1433 /*
1434 * Unlike task_move routines, we access mc.to, mc.from not under
1435 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1436 */
1437 spin_lock(&mc.lock);
1438 from = mc.from;
1439 to = mc.to;
1440 if (!from)
1441 goto unlock;
3e92041d 1442
c0ff4b85
R
1443 ret = mem_cgroup_same_or_subtree(memcg, from)
1444 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1445unlock:
1446 spin_unlock(&mc.lock);
4b534334
KH
1447 return ret;
1448}
1449
c0ff4b85 1450static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1451{
1452 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1453 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1454 DEFINE_WAIT(wait);
1455 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1456 /* moving charge context might have finished. */
1457 if (mc.moving_task)
1458 schedule();
1459 finish_wait(&mc.waitq, &wait);
1460 return true;
1461 }
1462 }
1463 return false;
1464}
1465
e222432b 1466/**
6a6135b6 1467 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1468 * @memcg: The memory cgroup that went over limit
1469 * @p: Task that is going to be killed
1470 *
1471 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1472 * enabled
1473 */
1474void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1475{
1476 struct cgroup *task_cgrp;
1477 struct cgroup *mem_cgrp;
1478 /*
1479 * Need a buffer in BSS, can't rely on allocations. The code relies
1480 * on the assumption that OOM is serialized for memory controller.
1481 * If this assumption is broken, revisit this code.
1482 */
1483 static char memcg_name[PATH_MAX];
1484 int ret;
1485
d31f56db 1486 if (!memcg || !p)
e222432b
BS
1487 return;
1488
1489
1490 rcu_read_lock();
1491
1492 mem_cgrp = memcg->css.cgroup;
1493 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1494
1495 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1496 if (ret < 0) {
1497 /*
1498 * Unfortunately, we are unable to convert to a useful name
1499 * But we'll still print out the usage information
1500 */
1501 rcu_read_unlock();
1502 goto done;
1503 }
1504 rcu_read_unlock();
1505
1506 printk(KERN_INFO "Task in %s killed", memcg_name);
1507
1508 rcu_read_lock();
1509 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1510 if (ret < 0) {
1511 rcu_read_unlock();
1512 goto done;
1513 }
1514 rcu_read_unlock();
1515
1516 /*
1517 * Continues from above, so we don't need an KERN_ level
1518 */
1519 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1520done:
1521
1522 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1523 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1524 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1525 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1526 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1527 "failcnt %llu\n",
1528 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1529 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1530 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1531}
1532
81d39c20
KH
1533/*
1534 * This function returns the number of memcg under hierarchy tree. Returns
1535 * 1(self count) if no children.
1536 */
c0ff4b85 1537static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1538{
1539 int num = 0;
7d74b06f
KH
1540 struct mem_cgroup *iter;
1541
c0ff4b85 1542 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1543 num++;
81d39c20
KH
1544 return num;
1545}
1546
a63d83f4
DR
1547/*
1548 * Return the memory (and swap, if configured) limit for a memcg.
1549 */
1550u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1551{
1552 u64 limit;
1553 u64 memsw;
1554
f3e8eb70
JW
1555 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1556 limit += total_swap_pages << PAGE_SHIFT;
1557
a63d83f4
DR
1558 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1559 /*
1560 * If memsw is finite and limits the amount of swap space available
1561 * to this memcg, return that limit.
1562 */
1563 return min(limit, memsw);
1564}
1565
5660048c
JW
1566static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1567 gfp_t gfp_mask,
1568 unsigned long flags)
1569{
1570 unsigned long total = 0;
1571 bool noswap = false;
1572 int loop;
1573
1574 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1575 noswap = true;
1576 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1577 noswap = true;
1578
1579 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1580 if (loop)
1581 drain_all_stock_async(memcg);
1582 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1583 /*
1584 * Allow limit shrinkers, which are triggered directly
1585 * by userspace, to catch signals and stop reclaim
1586 * after minimal progress, regardless of the margin.
1587 */
1588 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1589 break;
1590 if (mem_cgroup_margin(memcg))
1591 break;
1592 /*
1593 * If nothing was reclaimed after two attempts, there
1594 * may be no reclaimable pages in this hierarchy.
1595 */
1596 if (loop && !total)
1597 break;
1598 }
1599 return total;
1600}
1601
4d0c066d
KH
1602/**
1603 * test_mem_cgroup_node_reclaimable
1604 * @mem: the target memcg
1605 * @nid: the node ID to be checked.
1606 * @noswap : specify true here if the user wants flle only information.
1607 *
1608 * This function returns whether the specified memcg contains any
1609 * reclaimable pages on a node. Returns true if there are any reclaimable
1610 * pages in the node.
1611 */
c0ff4b85 1612static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1613 int nid, bool noswap)
1614{
c0ff4b85 1615 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1616 return true;
1617 if (noswap || !total_swap_pages)
1618 return false;
c0ff4b85 1619 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1620 return true;
1621 return false;
1622
1623}
889976db
YH
1624#if MAX_NUMNODES > 1
1625
1626/*
1627 * Always updating the nodemask is not very good - even if we have an empty
1628 * list or the wrong list here, we can start from some node and traverse all
1629 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630 *
1631 */
c0ff4b85 1632static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1633{
1634 int nid;
453a9bf3
KH
1635 /*
1636 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 * pagein/pageout changes since the last update.
1638 */
c0ff4b85 1639 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1640 return;
c0ff4b85 1641 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1642 return;
1643
889976db 1644 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1645 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1646
1647 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1648
c0ff4b85
R
1649 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650 node_clear(nid, memcg->scan_nodes);
889976db 1651 }
453a9bf3 1652
c0ff4b85
R
1653 atomic_set(&memcg->numainfo_events, 0);
1654 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1655}
1656
1657/*
1658 * Selecting a node where we start reclaim from. Because what we need is just
1659 * reducing usage counter, start from anywhere is O,K. Considering
1660 * memory reclaim from current node, there are pros. and cons.
1661 *
1662 * Freeing memory from current node means freeing memory from a node which
1663 * we'll use or we've used. So, it may make LRU bad. And if several threads
1664 * hit limits, it will see a contention on a node. But freeing from remote
1665 * node means more costs for memory reclaim because of memory latency.
1666 *
1667 * Now, we use round-robin. Better algorithm is welcomed.
1668 */
c0ff4b85 1669int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1670{
1671 int node;
1672
c0ff4b85
R
1673 mem_cgroup_may_update_nodemask(memcg);
1674 node = memcg->last_scanned_node;
889976db 1675
c0ff4b85 1676 node = next_node(node, memcg->scan_nodes);
889976db 1677 if (node == MAX_NUMNODES)
c0ff4b85 1678 node = first_node(memcg->scan_nodes);
889976db
YH
1679 /*
1680 * We call this when we hit limit, not when pages are added to LRU.
1681 * No LRU may hold pages because all pages are UNEVICTABLE or
1682 * memcg is too small and all pages are not on LRU. In that case,
1683 * we use curret node.
1684 */
1685 if (unlikely(node == MAX_NUMNODES))
1686 node = numa_node_id();
1687
c0ff4b85 1688 memcg->last_scanned_node = node;
889976db
YH
1689 return node;
1690}
1691
4d0c066d
KH
1692/*
1693 * Check all nodes whether it contains reclaimable pages or not.
1694 * For quick scan, we make use of scan_nodes. This will allow us to skip
1695 * unused nodes. But scan_nodes is lazily updated and may not cotain
1696 * enough new information. We need to do double check.
1697 */
c0ff4b85 1698bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1699{
1700 int nid;
1701
1702 /*
1703 * quick check...making use of scan_node.
1704 * We can skip unused nodes.
1705 */
c0ff4b85
R
1706 if (!nodes_empty(memcg->scan_nodes)) {
1707 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1708 nid < MAX_NUMNODES;
c0ff4b85 1709 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1710
c0ff4b85 1711 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1712 return true;
1713 }
1714 }
1715 /*
1716 * Check rest of nodes.
1717 */
1718 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1719 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1720 continue;
c0ff4b85 1721 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1722 return true;
1723 }
1724 return false;
1725}
1726
889976db 1727#else
c0ff4b85 1728int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1729{
1730 return 0;
1731}
4d0c066d 1732
c0ff4b85 1733bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1734{
c0ff4b85 1735 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1736}
889976db
YH
1737#endif
1738
5660048c
JW
1739static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1740 struct zone *zone,
1741 gfp_t gfp_mask,
1742 unsigned long *total_scanned)
6d61ef40 1743{
9f3a0d09 1744 struct mem_cgroup *victim = NULL;
5660048c 1745 int total = 0;
04046e1a 1746 int loop = 0;
9d11ea9f 1747 unsigned long excess;
185efc0f 1748 unsigned long nr_scanned;
527a5ec9
JW
1749 struct mem_cgroup_reclaim_cookie reclaim = {
1750 .zone = zone,
1751 .priority = 0,
1752 };
9d11ea9f 1753
c0ff4b85 1754 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1755
4e416953 1756 while (1) {
527a5ec9 1757 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1758 if (!victim) {
04046e1a 1759 loop++;
4e416953
BS
1760 if (loop >= 2) {
1761 /*
1762 * If we have not been able to reclaim
1763 * anything, it might because there are
1764 * no reclaimable pages under this hierarchy
1765 */
5660048c 1766 if (!total)
4e416953 1767 break;
4e416953 1768 /*
25985edc 1769 * We want to do more targeted reclaim.
4e416953
BS
1770 * excess >> 2 is not to excessive so as to
1771 * reclaim too much, nor too less that we keep
1772 * coming back to reclaim from this cgroup
1773 */
1774 if (total >= (excess >> 2) ||
9f3a0d09 1775 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1776 break;
4e416953 1777 }
9f3a0d09 1778 continue;
4e416953 1779 }
5660048c 1780 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1781 continue;
5660048c
JW
1782 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1783 zone, &nr_scanned);
1784 *total_scanned += nr_scanned;
1785 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1786 break;
6d61ef40 1787 }
9f3a0d09 1788 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1789 return total;
6d61ef40
BS
1790}
1791
867578cb
KH
1792/*
1793 * Check OOM-Killer is already running under our hierarchy.
1794 * If someone is running, return false.
1af8efe9 1795 * Has to be called with memcg_oom_lock
867578cb 1796 */
c0ff4b85 1797static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1798{
79dfdacc 1799 struct mem_cgroup *iter, *failed = NULL;
a636b327 1800
9f3a0d09 1801 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1802 if (iter->oom_lock) {
79dfdacc
MH
1803 /*
1804 * this subtree of our hierarchy is already locked
1805 * so we cannot give a lock.
1806 */
79dfdacc 1807 failed = iter;
9f3a0d09
JW
1808 mem_cgroup_iter_break(memcg, iter);
1809 break;
23751be0
JW
1810 } else
1811 iter->oom_lock = true;
7d74b06f 1812 }
867578cb 1813
79dfdacc 1814 if (!failed)
23751be0 1815 return true;
79dfdacc
MH
1816
1817 /*
1818 * OK, we failed to lock the whole subtree so we have to clean up
1819 * what we set up to the failing subtree
1820 */
9f3a0d09 1821 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1822 if (iter == failed) {
9f3a0d09
JW
1823 mem_cgroup_iter_break(memcg, iter);
1824 break;
79dfdacc
MH
1825 }
1826 iter->oom_lock = false;
1827 }
23751be0 1828 return false;
a636b327 1829}
0b7f569e 1830
79dfdacc 1831/*
1af8efe9 1832 * Has to be called with memcg_oom_lock
79dfdacc 1833 */
c0ff4b85 1834static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1835{
7d74b06f
KH
1836 struct mem_cgroup *iter;
1837
c0ff4b85 1838 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1839 iter->oom_lock = false;
1840 return 0;
1841}
1842
c0ff4b85 1843static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1844{
1845 struct mem_cgroup *iter;
1846
c0ff4b85 1847 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1848 atomic_inc(&iter->under_oom);
1849}
1850
c0ff4b85 1851static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1852{
1853 struct mem_cgroup *iter;
1854
867578cb
KH
1855 /*
1856 * When a new child is created while the hierarchy is under oom,
1857 * mem_cgroup_oom_lock() may not be called. We have to use
1858 * atomic_add_unless() here.
1859 */
c0ff4b85 1860 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1861 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1862}
1863
1af8efe9 1864static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1865static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1866
dc98df5a
KH
1867struct oom_wait_info {
1868 struct mem_cgroup *mem;
1869 wait_queue_t wait;
1870};
1871
1872static int memcg_oom_wake_function(wait_queue_t *wait,
1873 unsigned mode, int sync, void *arg)
1874{
c0ff4b85
R
1875 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1876 *oom_wait_memcg;
dc98df5a
KH
1877 struct oom_wait_info *oom_wait_info;
1878
1879 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1880 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1881
dc98df5a
KH
1882 /*
1883 * Both of oom_wait_info->mem and wake_mem are stable under us.
1884 * Then we can use css_is_ancestor without taking care of RCU.
1885 */
c0ff4b85
R
1886 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1887 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1888 return 0;
dc98df5a
KH
1889 return autoremove_wake_function(wait, mode, sync, arg);
1890}
1891
c0ff4b85 1892static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1893{
c0ff4b85
R
1894 /* for filtering, pass "memcg" as argument. */
1895 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1896}
1897
c0ff4b85 1898static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1899{
c0ff4b85
R
1900 if (memcg && atomic_read(&memcg->under_oom))
1901 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1902}
1903
867578cb
KH
1904/*
1905 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1906 */
c0ff4b85 1907bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1908{
dc98df5a 1909 struct oom_wait_info owait;
3c11ecf4 1910 bool locked, need_to_kill;
867578cb 1911
c0ff4b85 1912 owait.mem = memcg;
dc98df5a
KH
1913 owait.wait.flags = 0;
1914 owait.wait.func = memcg_oom_wake_function;
1915 owait.wait.private = current;
1916 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1917 need_to_kill = true;
c0ff4b85 1918 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1919
c0ff4b85 1920 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1921 spin_lock(&memcg_oom_lock);
c0ff4b85 1922 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1923 /*
1924 * Even if signal_pending(), we can't quit charge() loop without
1925 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1926 * under OOM is always welcomed, use TASK_KILLABLE here.
1927 */
3c11ecf4 1928 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1929 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1930 need_to_kill = false;
1931 if (locked)
c0ff4b85 1932 mem_cgroup_oom_notify(memcg);
1af8efe9 1933 spin_unlock(&memcg_oom_lock);
867578cb 1934
3c11ecf4
KH
1935 if (need_to_kill) {
1936 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1937 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1938 } else {
867578cb 1939 schedule();
dc98df5a 1940 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1941 }
1af8efe9 1942 spin_lock(&memcg_oom_lock);
79dfdacc 1943 if (locked)
c0ff4b85
R
1944 mem_cgroup_oom_unlock(memcg);
1945 memcg_wakeup_oom(memcg);
1af8efe9 1946 spin_unlock(&memcg_oom_lock);
867578cb 1947
c0ff4b85 1948 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1949
867578cb
KH
1950 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1951 return false;
1952 /* Give chance to dying process */
715a5ee8 1953 schedule_timeout_uninterruptible(1);
867578cb 1954 return true;
0b7f569e
KH
1955}
1956
d69b042f
BS
1957/*
1958 * Currently used to update mapped file statistics, but the routine can be
1959 * generalized to update other statistics as well.
32047e2a
KH
1960 *
1961 * Notes: Race condition
1962 *
1963 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1964 * it tends to be costly. But considering some conditions, we doesn't need
1965 * to do so _always_.
1966 *
1967 * Considering "charge", lock_page_cgroup() is not required because all
1968 * file-stat operations happen after a page is attached to radix-tree. There
1969 * are no race with "charge".
1970 *
1971 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1972 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1973 * if there are race with "uncharge". Statistics itself is properly handled
1974 * by flags.
1975 *
1976 * Considering "move", this is an only case we see a race. To make the race
1977 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1978 * possibility of race condition. If there is, we take a lock.
d69b042f 1979 */
26174efd 1980
2a7106f2
GT
1981void mem_cgroup_update_page_stat(struct page *page,
1982 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1983{
c0ff4b85 1984 struct mem_cgroup *memcg;
32047e2a
KH
1985 struct page_cgroup *pc = lookup_page_cgroup(page);
1986 bool need_unlock = false;
dbd4ea78 1987 unsigned long uninitialized_var(flags);
d69b042f 1988
d69b042f
BS
1989 if (unlikely(!pc))
1990 return;
1991
32047e2a 1992 rcu_read_lock();
c0ff4b85
R
1993 memcg = pc->mem_cgroup;
1994 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1995 goto out;
1996 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1997 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1998 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1999 move_lock_page_cgroup(pc, &flags);
32047e2a 2000 need_unlock = true;
c0ff4b85
R
2001 memcg = pc->mem_cgroup;
2002 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
2003 goto out;
2004 }
26174efd 2005
26174efd 2006 switch (idx) {
2a7106f2 2007 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2008 if (val > 0)
2009 SetPageCgroupFileMapped(pc);
2010 else if (!page_mapped(page))
0c270f8f 2011 ClearPageCgroupFileMapped(pc);
2a7106f2 2012 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2013 break;
2014 default:
2015 BUG();
8725d541 2016 }
d69b042f 2017
c0ff4b85 2018 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 2019
32047e2a
KH
2020out:
2021 if (unlikely(need_unlock))
dbd4ea78 2022 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2023 rcu_read_unlock();
2024 return;
d69b042f 2025}
2a7106f2 2026EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2027
cdec2e42
KH
2028/*
2029 * size of first charge trial. "32" comes from vmscan.c's magic value.
2030 * TODO: maybe necessary to use big numbers in big irons.
2031 */
7ec99d62 2032#define CHARGE_BATCH 32U
cdec2e42
KH
2033struct memcg_stock_pcp {
2034 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2035 unsigned int nr_pages;
cdec2e42 2036 struct work_struct work;
26fe6168
KH
2037 unsigned long flags;
2038#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2039};
2040static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2041static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2042
2043/*
11c9ea4e 2044 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2045 * from local stock and true is returned. If the stock is 0 or charges from a
2046 * cgroup which is not current target, returns false. This stock will be
2047 * refilled.
2048 */
c0ff4b85 2049static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2050{
2051 struct memcg_stock_pcp *stock;
2052 bool ret = true;
2053
2054 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2055 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2056 stock->nr_pages--;
cdec2e42
KH
2057 else /* need to call res_counter_charge */
2058 ret = false;
2059 put_cpu_var(memcg_stock);
2060 return ret;
2061}
2062
2063/*
2064 * Returns stocks cached in percpu to res_counter and reset cached information.
2065 */
2066static void drain_stock(struct memcg_stock_pcp *stock)
2067{
2068 struct mem_cgroup *old = stock->cached;
2069
11c9ea4e
JW
2070 if (stock->nr_pages) {
2071 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2072
2073 res_counter_uncharge(&old->res, bytes);
cdec2e42 2074 if (do_swap_account)
11c9ea4e
JW
2075 res_counter_uncharge(&old->memsw, bytes);
2076 stock->nr_pages = 0;
cdec2e42
KH
2077 }
2078 stock->cached = NULL;
cdec2e42
KH
2079}
2080
2081/*
2082 * This must be called under preempt disabled or must be called by
2083 * a thread which is pinned to local cpu.
2084 */
2085static void drain_local_stock(struct work_struct *dummy)
2086{
2087 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2088 drain_stock(stock);
26fe6168 2089 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2090}
2091
2092/*
2093 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2094 * This will be consumed by consume_stock() function, later.
cdec2e42 2095 */
c0ff4b85 2096static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2097{
2098 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2099
c0ff4b85 2100 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2101 drain_stock(stock);
c0ff4b85 2102 stock->cached = memcg;
cdec2e42 2103 }
11c9ea4e 2104 stock->nr_pages += nr_pages;
cdec2e42
KH
2105 put_cpu_var(memcg_stock);
2106}
2107
2108/*
c0ff4b85 2109 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2110 * of the hierarchy under it. sync flag says whether we should block
2111 * until the work is done.
cdec2e42 2112 */
c0ff4b85 2113static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2114{
26fe6168 2115 int cpu, curcpu;
d38144b7 2116
cdec2e42 2117 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2118 get_online_cpus();
5af12d0e 2119 curcpu = get_cpu();
cdec2e42
KH
2120 for_each_online_cpu(cpu) {
2121 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2122 struct mem_cgroup *memcg;
26fe6168 2123
c0ff4b85
R
2124 memcg = stock->cached;
2125 if (!memcg || !stock->nr_pages)
26fe6168 2126 continue;
c0ff4b85 2127 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2128 continue;
d1a05b69
MH
2129 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2130 if (cpu == curcpu)
2131 drain_local_stock(&stock->work);
2132 else
2133 schedule_work_on(cpu, &stock->work);
2134 }
cdec2e42 2135 }
5af12d0e 2136 put_cpu();
d38144b7
MH
2137
2138 if (!sync)
2139 goto out;
2140
2141 for_each_online_cpu(cpu) {
2142 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2143 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2144 flush_work(&stock->work);
2145 }
2146out:
cdec2e42 2147 put_online_cpus();
d38144b7
MH
2148}
2149
2150/*
2151 * Tries to drain stocked charges in other cpus. This function is asynchronous
2152 * and just put a work per cpu for draining localy on each cpu. Caller can
2153 * expects some charges will be back to res_counter later but cannot wait for
2154 * it.
2155 */
c0ff4b85 2156static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2157{
9f50fad6
MH
2158 /*
2159 * If someone calls draining, avoid adding more kworker runs.
2160 */
2161 if (!mutex_trylock(&percpu_charge_mutex))
2162 return;
c0ff4b85 2163 drain_all_stock(root_memcg, false);
9f50fad6 2164 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2165}
2166
2167/* This is a synchronous drain interface. */
c0ff4b85 2168static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2169{
2170 /* called when force_empty is called */
9f50fad6 2171 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2172 drain_all_stock(root_memcg, true);
9f50fad6 2173 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2174}
2175
711d3d2c
KH
2176/*
2177 * This function drains percpu counter value from DEAD cpu and
2178 * move it to local cpu. Note that this function can be preempted.
2179 */
c0ff4b85 2180static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2181{
2182 int i;
2183
c0ff4b85 2184 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2185 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2186 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2187
c0ff4b85
R
2188 per_cpu(memcg->stat->count[i], cpu) = 0;
2189 memcg->nocpu_base.count[i] += x;
711d3d2c 2190 }
e9f8974f 2191 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2192 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2193
c0ff4b85
R
2194 per_cpu(memcg->stat->events[i], cpu) = 0;
2195 memcg->nocpu_base.events[i] += x;
e9f8974f 2196 }
1489ebad 2197 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2198 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2199 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2200}
2201
c0ff4b85 2202static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2203{
2204 int idx = MEM_CGROUP_ON_MOVE;
2205
c0ff4b85
R
2206 spin_lock(&memcg->pcp_counter_lock);
2207 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2208 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2209}
2210
2211static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2212 unsigned long action,
2213 void *hcpu)
2214{
2215 int cpu = (unsigned long)hcpu;
2216 struct memcg_stock_pcp *stock;
711d3d2c 2217 struct mem_cgroup *iter;
cdec2e42 2218
1489ebad 2219 if ((action == CPU_ONLINE)) {
9f3a0d09 2220 for_each_mem_cgroup(iter)
1489ebad
KH
2221 synchronize_mem_cgroup_on_move(iter, cpu);
2222 return NOTIFY_OK;
2223 }
2224
711d3d2c 2225 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2226 return NOTIFY_OK;
711d3d2c 2227
9f3a0d09 2228 for_each_mem_cgroup(iter)
711d3d2c
KH
2229 mem_cgroup_drain_pcp_counter(iter, cpu);
2230
cdec2e42
KH
2231 stock = &per_cpu(memcg_stock, cpu);
2232 drain_stock(stock);
2233 return NOTIFY_OK;
2234}
2235
4b534334
KH
2236
2237/* See __mem_cgroup_try_charge() for details */
2238enum {
2239 CHARGE_OK, /* success */
2240 CHARGE_RETRY, /* need to retry but retry is not bad */
2241 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2242 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2243 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2244};
2245
c0ff4b85 2246static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2247 unsigned int nr_pages, bool oom_check)
4b534334 2248{
7ec99d62 2249 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2250 struct mem_cgroup *mem_over_limit;
2251 struct res_counter *fail_res;
2252 unsigned long flags = 0;
2253 int ret;
2254
c0ff4b85 2255 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2256
2257 if (likely(!ret)) {
2258 if (!do_swap_account)
2259 return CHARGE_OK;
c0ff4b85 2260 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2261 if (likely(!ret))
2262 return CHARGE_OK;
2263
c0ff4b85 2264 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2265 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2266 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2267 } else
2268 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2269 /*
7ec99d62
JW
2270 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2271 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2272 *
2273 * Never reclaim on behalf of optional batching, retry with a
2274 * single page instead.
2275 */
7ec99d62 2276 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2277 return CHARGE_RETRY;
2278
2279 if (!(gfp_mask & __GFP_WAIT))
2280 return CHARGE_WOULDBLOCK;
2281
5660048c 2282 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2283 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2284 return CHARGE_RETRY;
4b534334 2285 /*
19942822
JW
2286 * Even though the limit is exceeded at this point, reclaim
2287 * may have been able to free some pages. Retry the charge
2288 * before killing the task.
2289 *
2290 * Only for regular pages, though: huge pages are rather
2291 * unlikely to succeed so close to the limit, and we fall back
2292 * to regular pages anyway in case of failure.
4b534334 2293 */
7ec99d62 2294 if (nr_pages == 1 && ret)
4b534334
KH
2295 return CHARGE_RETRY;
2296
2297 /*
2298 * At task move, charge accounts can be doubly counted. So, it's
2299 * better to wait until the end of task_move if something is going on.
2300 */
2301 if (mem_cgroup_wait_acct_move(mem_over_limit))
2302 return CHARGE_RETRY;
2303
2304 /* If we don't need to call oom-killer at el, return immediately */
2305 if (!oom_check)
2306 return CHARGE_NOMEM;
2307 /* check OOM */
2308 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2309 return CHARGE_OOM_DIE;
2310
2311 return CHARGE_RETRY;
2312}
2313
f817ed48
KH
2314/*
2315 * Unlike exported interface, "oom" parameter is added. if oom==true,
2316 * oom-killer can be invoked.
8a9f3ccd 2317 */
f817ed48 2318static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2319 gfp_t gfp_mask,
7ec99d62 2320 unsigned int nr_pages,
c0ff4b85 2321 struct mem_cgroup **ptr,
7ec99d62 2322 bool oom)
8a9f3ccd 2323{
7ec99d62 2324 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2325 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2326 struct mem_cgroup *memcg = NULL;
4b534334 2327 int ret;
a636b327 2328
867578cb
KH
2329 /*
2330 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2331 * in system level. So, allow to go ahead dying process in addition to
2332 * MEMDIE process.
2333 */
2334 if (unlikely(test_thread_flag(TIF_MEMDIE)
2335 || fatal_signal_pending(current)))
2336 goto bypass;
a636b327 2337
8a9f3ccd 2338 /*
3be91277
HD
2339 * We always charge the cgroup the mm_struct belongs to.
2340 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2341 * thread group leader migrates. It's possible that mm is not
2342 * set, if so charge the init_mm (happens for pagecache usage).
2343 */
c0ff4b85 2344 if (!*ptr && !mm)
f75ca962
KH
2345 goto bypass;
2346again:
c0ff4b85
R
2347 if (*ptr) { /* css should be a valid one */
2348 memcg = *ptr;
2349 VM_BUG_ON(css_is_removed(&memcg->css));
2350 if (mem_cgroup_is_root(memcg))
f75ca962 2351 goto done;
c0ff4b85 2352 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2353 goto done;
c0ff4b85 2354 css_get(&memcg->css);
4b534334 2355 } else {
f75ca962 2356 struct task_struct *p;
54595fe2 2357
f75ca962
KH
2358 rcu_read_lock();
2359 p = rcu_dereference(mm->owner);
f75ca962 2360 /*
ebb76ce1 2361 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2362 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2363 * race with swapoff. Then, we have small risk of mis-accouning.
2364 * But such kind of mis-account by race always happens because
2365 * we don't have cgroup_mutex(). It's overkill and we allo that
2366 * small race, here.
2367 * (*) swapoff at el will charge against mm-struct not against
2368 * task-struct. So, mm->owner can be NULL.
f75ca962 2369 */
c0ff4b85
R
2370 memcg = mem_cgroup_from_task(p);
2371 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2372 rcu_read_unlock();
2373 goto done;
2374 }
c0ff4b85 2375 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2376 /*
2377 * It seems dagerous to access memcg without css_get().
2378 * But considering how consume_stok works, it's not
2379 * necessary. If consume_stock success, some charges
2380 * from this memcg are cached on this cpu. So, we
2381 * don't need to call css_get()/css_tryget() before
2382 * calling consume_stock().
2383 */
2384 rcu_read_unlock();
2385 goto done;
2386 }
2387 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2388 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2389 rcu_read_unlock();
2390 goto again;
2391 }
2392 rcu_read_unlock();
2393 }
8a9f3ccd 2394
4b534334
KH
2395 do {
2396 bool oom_check;
7a81b88c 2397
4b534334 2398 /* If killed, bypass charge */
f75ca962 2399 if (fatal_signal_pending(current)) {
c0ff4b85 2400 css_put(&memcg->css);
4b534334 2401 goto bypass;
f75ca962 2402 }
6d61ef40 2403
4b534334
KH
2404 oom_check = false;
2405 if (oom && !nr_oom_retries) {
2406 oom_check = true;
2407 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2408 }
66e1707b 2409
c0ff4b85 2410 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2411 switch (ret) {
2412 case CHARGE_OK:
2413 break;
2414 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2415 batch = nr_pages;
c0ff4b85
R
2416 css_put(&memcg->css);
2417 memcg = NULL;
f75ca962 2418 goto again;
4b534334 2419 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2420 css_put(&memcg->css);
4b534334
KH
2421 goto nomem;
2422 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2423 if (!oom) {
c0ff4b85 2424 css_put(&memcg->css);
867578cb 2425 goto nomem;
f75ca962 2426 }
4b534334
KH
2427 /* If oom, we never return -ENOMEM */
2428 nr_oom_retries--;
2429 break;
2430 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2431 css_put(&memcg->css);
867578cb 2432 goto bypass;
66e1707b 2433 }
4b534334
KH
2434 } while (ret != CHARGE_OK);
2435
7ec99d62 2436 if (batch > nr_pages)
c0ff4b85
R
2437 refill_stock(memcg, batch - nr_pages);
2438 css_put(&memcg->css);
0c3e73e8 2439done:
c0ff4b85 2440 *ptr = memcg;
7a81b88c
KH
2441 return 0;
2442nomem:
c0ff4b85 2443 *ptr = NULL;
7a81b88c 2444 return -ENOMEM;
867578cb 2445bypass:
c0ff4b85 2446 *ptr = NULL;
867578cb 2447 return 0;
7a81b88c 2448}
8a9f3ccd 2449
a3032a2c
DN
2450/*
2451 * Somemtimes we have to undo a charge we got by try_charge().
2452 * This function is for that and do uncharge, put css's refcnt.
2453 * gotten by try_charge().
2454 */
c0ff4b85 2455static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2456 unsigned int nr_pages)
a3032a2c 2457{
c0ff4b85 2458 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2459 unsigned long bytes = nr_pages * PAGE_SIZE;
2460
c0ff4b85 2461 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2462 if (do_swap_account)
c0ff4b85 2463 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2464 }
854ffa8d
DN
2465}
2466
a3b2d692
KH
2467/*
2468 * A helper function to get mem_cgroup from ID. must be called under
2469 * rcu_read_lock(). The caller must check css_is_removed() or some if
2470 * it's concern. (dropping refcnt from swap can be called against removed
2471 * memcg.)
2472 */
2473static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2474{
2475 struct cgroup_subsys_state *css;
2476
2477 /* ID 0 is unused ID */
2478 if (!id)
2479 return NULL;
2480 css = css_lookup(&mem_cgroup_subsys, id);
2481 if (!css)
2482 return NULL;
2483 return container_of(css, struct mem_cgroup, css);
2484}
2485
e42d9d5d 2486struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2487{
c0ff4b85 2488 struct mem_cgroup *memcg = NULL;
3c776e64 2489 struct page_cgroup *pc;
a3b2d692 2490 unsigned short id;
b5a84319
KH
2491 swp_entry_t ent;
2492
3c776e64
DN
2493 VM_BUG_ON(!PageLocked(page));
2494
3c776e64 2495 pc = lookup_page_cgroup(page);
c0bd3f63 2496 lock_page_cgroup(pc);
a3b2d692 2497 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2498 memcg = pc->mem_cgroup;
2499 if (memcg && !css_tryget(&memcg->css))
2500 memcg = NULL;
e42d9d5d 2501 } else if (PageSwapCache(page)) {
3c776e64 2502 ent.val = page_private(page);
a3b2d692
KH
2503 id = lookup_swap_cgroup(ent);
2504 rcu_read_lock();
c0ff4b85
R
2505 memcg = mem_cgroup_lookup(id);
2506 if (memcg && !css_tryget(&memcg->css))
2507 memcg = NULL;
a3b2d692 2508 rcu_read_unlock();
3c776e64 2509 }
c0bd3f63 2510 unlock_page_cgroup(pc);
c0ff4b85 2511 return memcg;
b5a84319
KH
2512}
2513
c0ff4b85 2514static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2515 struct page *page,
7ec99d62 2516 unsigned int nr_pages,
ca3e0214 2517 struct page_cgroup *pc,
7ec99d62 2518 enum charge_type ctype)
7a81b88c 2519{
ca3e0214
KH
2520 lock_page_cgroup(pc);
2521 if (unlikely(PageCgroupUsed(pc))) {
2522 unlock_page_cgroup(pc);
c0ff4b85 2523 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2524 return;
2525 }
2526 /*
2527 * we don't need page_cgroup_lock about tail pages, becase they are not
2528 * accessed by any other context at this point.
2529 */
c0ff4b85 2530 pc->mem_cgroup = memcg;
261fb61a
KH
2531 /*
2532 * We access a page_cgroup asynchronously without lock_page_cgroup().
2533 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2534 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2535 * before USED bit, we need memory barrier here.
2536 * See mem_cgroup_add_lru_list(), etc.
2537 */
08e552c6 2538 smp_wmb();
4b3bde4c
BS
2539 switch (ctype) {
2540 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2541 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2542 SetPageCgroupCache(pc);
2543 SetPageCgroupUsed(pc);
2544 break;
2545 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2546 ClearPageCgroupCache(pc);
2547 SetPageCgroupUsed(pc);
2548 break;
2549 default:
2550 break;
2551 }
3be91277 2552
c0ff4b85 2553 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2554 unlock_page_cgroup(pc);
430e4863
KH
2555 /*
2556 * "charge_statistics" updated event counter. Then, check it.
2557 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2558 * if they exceeds softlimit.
2559 */
c0ff4b85 2560 memcg_check_events(memcg, page);
7a81b88c 2561}
66e1707b 2562
ca3e0214
KH
2563#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2564
2565#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2566 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2567/*
2568 * Because tail pages are not marked as "used", set it. We're under
2569 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2570 */
2571void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2572{
2573 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2575 unsigned long flags;
2576
3d37c4a9
KH
2577 if (mem_cgroup_disabled())
2578 return;
ca3e0214 2579 /*
ece35ca8 2580 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2581 * page state accounting.
2582 */
2583 move_lock_page_cgroup(head_pc, &flags);
2584
2585 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2586 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2587 if (PageCgroupAcctLRU(head_pc)) {
2588 enum lru_list lru;
2589 struct mem_cgroup_per_zone *mz;
2590
2591 /*
2592 * LRU flags cannot be copied because we need to add tail
2593 *.page to LRU by generic call and our hook will be called.
2594 * We hold lru_lock, then, reduce counter directly.
2595 */
2596 lru = page_lru(head);
97a6c37b 2597 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2598 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2599 }
ca3e0214
KH
2600 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2601 move_unlock_page_cgroup(head_pc, &flags);
2602}
2603#endif
2604
f817ed48 2605/**
de3638d9 2606 * mem_cgroup_move_account - move account of the page
5564e88b 2607 * @page: the page
7ec99d62 2608 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2609 * @pc: page_cgroup of the page.
2610 * @from: mem_cgroup which the page is moved from.
2611 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2612 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2613 *
2614 * The caller must confirm following.
08e552c6 2615 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2616 * - compound_lock is held when nr_pages > 1
f817ed48 2617 *
854ffa8d 2618 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2619 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2620 * true, this function does "uncharge" from old cgroup, but it doesn't if
2621 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2622 */
7ec99d62
JW
2623static int mem_cgroup_move_account(struct page *page,
2624 unsigned int nr_pages,
2625 struct page_cgroup *pc,
2626 struct mem_cgroup *from,
2627 struct mem_cgroup *to,
2628 bool uncharge)
f817ed48 2629{
de3638d9
JW
2630 unsigned long flags;
2631 int ret;
987eba66 2632
f817ed48 2633 VM_BUG_ON(from == to);
5564e88b 2634 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2635 /*
2636 * The page is isolated from LRU. So, collapse function
2637 * will not handle this page. But page splitting can happen.
2638 * Do this check under compound_page_lock(). The caller should
2639 * hold it.
2640 */
2641 ret = -EBUSY;
7ec99d62 2642 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2643 goto out;
2644
2645 lock_page_cgroup(pc);
2646
2647 ret = -EINVAL;
2648 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2649 goto unlock;
2650
2651 move_lock_page_cgroup(pc, &flags);
f817ed48 2652
8725d541 2653 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2654 /* Update mapped_file data for mem_cgroup */
2655 preempt_disable();
2656 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2657 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2658 preempt_enable();
d69b042f 2659 }
987eba66 2660 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2661 if (uncharge)
2662 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2663 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2664
854ffa8d 2665 /* caller should have done css_get */
08e552c6 2666 pc->mem_cgroup = to;
987eba66 2667 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2668 /*
2669 * We charges against "to" which may not have any tasks. Then, "to"
2670 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2671 * this function is just force_empty() and move charge, so it's
25985edc 2672 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2673 * status here.
88703267 2674 */
de3638d9
JW
2675 move_unlock_page_cgroup(pc, &flags);
2676 ret = 0;
2677unlock:
57f9fd7d 2678 unlock_page_cgroup(pc);
d2265e6f
KH
2679 /*
2680 * check events
2681 */
5564e88b
JW
2682 memcg_check_events(to, page);
2683 memcg_check_events(from, page);
de3638d9 2684out:
f817ed48
KH
2685 return ret;
2686}
2687
2688/*
2689 * move charges to its parent.
2690 */
2691
5564e88b
JW
2692static int mem_cgroup_move_parent(struct page *page,
2693 struct page_cgroup *pc,
f817ed48
KH
2694 struct mem_cgroup *child,
2695 gfp_t gfp_mask)
2696{
2697 struct cgroup *cg = child->css.cgroup;
2698 struct cgroup *pcg = cg->parent;
2699 struct mem_cgroup *parent;
7ec99d62 2700 unsigned int nr_pages;
4be4489f 2701 unsigned long uninitialized_var(flags);
f817ed48
KH
2702 int ret;
2703
2704 /* Is ROOT ? */
2705 if (!pcg)
2706 return -EINVAL;
2707
57f9fd7d
DN
2708 ret = -EBUSY;
2709 if (!get_page_unless_zero(page))
2710 goto out;
2711 if (isolate_lru_page(page))
2712 goto put;
52dbb905 2713
7ec99d62 2714 nr_pages = hpage_nr_pages(page);
08e552c6 2715
f817ed48 2716 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2717 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2718 if (ret || !parent)
57f9fd7d 2719 goto put_back;
f817ed48 2720
7ec99d62 2721 if (nr_pages > 1)
987eba66
KH
2722 flags = compound_lock_irqsave(page);
2723
7ec99d62 2724 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2725 if (ret)
7ec99d62 2726 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2727
7ec99d62 2728 if (nr_pages > 1)
987eba66 2729 compound_unlock_irqrestore(page, flags);
8dba474f 2730put_back:
08e552c6 2731 putback_lru_page(page);
57f9fd7d 2732put:
40d58138 2733 put_page(page);
57f9fd7d 2734out:
f817ed48
KH
2735 return ret;
2736}
2737
7a81b88c
KH
2738/*
2739 * Charge the memory controller for page usage.
2740 * Return
2741 * 0 if the charge was successful
2742 * < 0 if the cgroup is over its limit
2743 */
2744static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2745 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2746{
c0ff4b85 2747 struct mem_cgroup *memcg = NULL;
7ec99d62 2748 unsigned int nr_pages = 1;
7a81b88c 2749 struct page_cgroup *pc;
8493ae43 2750 bool oom = true;
7a81b88c 2751 int ret;
ec168510 2752
37c2ac78 2753 if (PageTransHuge(page)) {
7ec99d62 2754 nr_pages <<= compound_order(page);
37c2ac78 2755 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2756 /*
2757 * Never OOM-kill a process for a huge page. The
2758 * fault handler will fall back to regular pages.
2759 */
2760 oom = false;
37c2ac78 2761 }
7a81b88c
KH
2762
2763 pc = lookup_page_cgroup(page);
af4a6621 2764 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2765
c0ff4b85
R
2766 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2767 if (ret || !memcg)
7a81b88c
KH
2768 return ret;
2769
c0ff4b85 2770 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2771 return 0;
8a9f3ccd
BS
2772}
2773
7a81b88c
KH
2774int mem_cgroup_newpage_charge(struct page *page,
2775 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2776{
f8d66542 2777 if (mem_cgroup_disabled())
cede86ac 2778 return 0;
69029cd5
KH
2779 /*
2780 * If already mapped, we don't have to account.
2781 * If page cache, page->mapping has address_space.
2782 * But page->mapping may have out-of-use anon_vma pointer,
2783 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2784 * is NULL.
2785 */
2786 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2787 return 0;
2788 if (unlikely(!mm))
2789 mm = &init_mm;
217bc319 2790 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2791 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2792}
2793
83aae4c7
DN
2794static void
2795__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2796 enum charge_type ctype);
2797
5a6475a4 2798static void
c0ff4b85 2799__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2800 enum charge_type ctype)
2801{
2802 struct page_cgroup *pc = lookup_page_cgroup(page);
2803 /*
2804 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2805 * is already on LRU. It means the page may on some other page_cgroup's
2806 * LRU. Take care of it.
2807 */
2808 mem_cgroup_lru_del_before_commit(page);
c0ff4b85 2809 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
5a6475a4
KH
2810 mem_cgroup_lru_add_after_commit(page);
2811 return;
2812}
2813
e1a1cd59
BS
2814int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2815 gfp_t gfp_mask)
8697d331 2816{
c0ff4b85 2817 struct mem_cgroup *memcg = NULL;
b5a84319
KH
2818 int ret;
2819
f8d66542 2820 if (mem_cgroup_disabled())
cede86ac 2821 return 0;
52d4b9ac
KH
2822 if (PageCompound(page))
2823 return 0;
accf163e 2824
73045c47 2825 if (unlikely(!mm))
8697d331 2826 mm = &init_mm;
accf163e 2827
5a6475a4 2828 if (page_is_file_cache(page)) {
c0ff4b85
R
2829 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2830 if (ret || !memcg)
5a6475a4 2831 return ret;
b5a84319 2832
5a6475a4
KH
2833 /*
2834 * FUSE reuses pages without going through the final
2835 * put that would remove them from the LRU list, make
2836 * sure that they get relinked properly.
2837 */
c0ff4b85 2838 __mem_cgroup_commit_charge_lrucare(page, memcg,
5a6475a4
KH
2839 MEM_CGROUP_CHARGE_TYPE_CACHE);
2840 return ret;
2841 }
83aae4c7
DN
2842 /* shmem */
2843 if (PageSwapCache(page)) {
c0ff4b85 2844 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2845 if (!ret)
c0ff4b85 2846 __mem_cgroup_commit_charge_swapin(page, memcg,
83aae4c7
DN
2847 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2848 } else
2849 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2850 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2851
b5a84319 2852 return ret;
e8589cc1
KH
2853}
2854
54595fe2
KH
2855/*
2856 * While swap-in, try_charge -> commit or cancel, the page is locked.
2857 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2858 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2859 * "commit()" or removed by "cancel()"
2860 */
8c7c6e34
KH
2861int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2862 struct page *page,
2863 gfp_t mask, struct mem_cgroup **ptr)
2864{
c0ff4b85 2865 struct mem_cgroup *memcg;
54595fe2 2866 int ret;
8c7c6e34 2867
56039efa
KH
2868 *ptr = NULL;
2869
f8d66542 2870 if (mem_cgroup_disabled())
8c7c6e34
KH
2871 return 0;
2872
2873 if (!do_swap_account)
2874 goto charge_cur_mm;
8c7c6e34
KH
2875 /*
2876 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2877 * the pte, and even removed page from swap cache: in those cases
2878 * do_swap_page()'s pte_same() test will fail; but there's also a
2879 * KSM case which does need to charge the page.
8c7c6e34
KH
2880 */
2881 if (!PageSwapCache(page))
407f9c8b 2882 goto charge_cur_mm;
c0ff4b85
R
2883 memcg = try_get_mem_cgroup_from_page(page);
2884 if (!memcg)
54595fe2 2885 goto charge_cur_mm;
c0ff4b85 2886 *ptr = memcg;
7ec99d62 2887 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
c0ff4b85 2888 css_put(&memcg->css);
54595fe2 2889 return ret;
8c7c6e34
KH
2890charge_cur_mm:
2891 if (unlikely(!mm))
2892 mm = &init_mm;
7ec99d62 2893 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2894}
2895
83aae4c7
DN
2896static void
2897__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2898 enum charge_type ctype)
7a81b88c 2899{
f8d66542 2900 if (mem_cgroup_disabled())
7a81b88c
KH
2901 return;
2902 if (!ptr)
2903 return;
88703267 2904 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2905
2906 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2907 /*
2908 * Now swap is on-memory. This means this page may be
2909 * counted both as mem and swap....double count.
03f3c433
KH
2910 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2911 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2912 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2913 */
03f3c433 2914 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2915 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2916 unsigned short id;
8c7c6e34 2917 struct mem_cgroup *memcg;
a3b2d692
KH
2918
2919 id = swap_cgroup_record(ent, 0);
2920 rcu_read_lock();
2921 memcg = mem_cgroup_lookup(id);
8c7c6e34 2922 if (memcg) {
a3b2d692
KH
2923 /*
2924 * This recorded memcg can be obsolete one. So, avoid
2925 * calling css_tryget
2926 */
0c3e73e8 2927 if (!mem_cgroup_is_root(memcg))
4e649152 2928 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2929 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2930 mem_cgroup_put(memcg);
2931 }
a3b2d692 2932 rcu_read_unlock();
8c7c6e34 2933 }
88703267
KH
2934 /*
2935 * At swapin, we may charge account against cgroup which has no tasks.
2936 * So, rmdir()->pre_destroy() can be called while we do this charge.
2937 * In that case, we need to call pre_destroy() again. check it here.
2938 */
2939 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2940}
2941
83aae4c7
DN
2942void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2943{
2944 __mem_cgroup_commit_charge_swapin(page, ptr,
2945 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2946}
2947
c0ff4b85 2948void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2949{
f8d66542 2950 if (mem_cgroup_disabled())
7a81b88c 2951 return;
c0ff4b85 2952 if (!memcg)
7a81b88c 2953 return;
c0ff4b85 2954 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2955}
2956
c0ff4b85 2957static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2958 unsigned int nr_pages,
2959 const enum charge_type ctype)
569b846d
KH
2960{
2961 struct memcg_batch_info *batch = NULL;
2962 bool uncharge_memsw = true;
7ec99d62 2963
569b846d
KH
2964 /* If swapout, usage of swap doesn't decrease */
2965 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2966 uncharge_memsw = false;
569b846d
KH
2967
2968 batch = &current->memcg_batch;
2969 /*
2970 * In usual, we do css_get() when we remember memcg pointer.
2971 * But in this case, we keep res->usage until end of a series of
2972 * uncharges. Then, it's ok to ignore memcg's refcnt.
2973 */
2974 if (!batch->memcg)
c0ff4b85 2975 batch->memcg = memcg;
3c11ecf4
KH
2976 /*
2977 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2978 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2979 * the same cgroup and we have chance to coalesce uncharges.
2980 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2981 * because we want to do uncharge as soon as possible.
2982 */
2983
2984 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2985 goto direct_uncharge;
2986
7ec99d62 2987 if (nr_pages > 1)
ec168510
AA
2988 goto direct_uncharge;
2989
569b846d
KH
2990 /*
2991 * In typical case, batch->memcg == mem. This means we can
2992 * merge a series of uncharges to an uncharge of res_counter.
2993 * If not, we uncharge res_counter ony by one.
2994 */
c0ff4b85 2995 if (batch->memcg != memcg)
569b846d
KH
2996 goto direct_uncharge;
2997 /* remember freed charge and uncharge it later */
7ffd4ca7 2998 batch->nr_pages++;
569b846d 2999 if (uncharge_memsw)
7ffd4ca7 3000 batch->memsw_nr_pages++;
569b846d
KH
3001 return;
3002direct_uncharge:
c0ff4b85 3003 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3004 if (uncharge_memsw)
c0ff4b85
R
3005 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3006 if (unlikely(batch->memcg != memcg))
3007 memcg_oom_recover(memcg);
569b846d
KH
3008 return;
3009}
7a81b88c 3010
8a9f3ccd 3011/*
69029cd5 3012 * uncharge if !page_mapped(page)
8a9f3ccd 3013 */
8c7c6e34 3014static struct mem_cgroup *
69029cd5 3015__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3016{
c0ff4b85 3017 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3018 unsigned int nr_pages = 1;
3019 struct page_cgroup *pc;
8a9f3ccd 3020
f8d66542 3021 if (mem_cgroup_disabled())
8c7c6e34 3022 return NULL;
4077960e 3023
d13d1443 3024 if (PageSwapCache(page))
8c7c6e34 3025 return NULL;
d13d1443 3026
37c2ac78 3027 if (PageTransHuge(page)) {
7ec99d62 3028 nr_pages <<= compound_order(page);
37c2ac78
AA
3029 VM_BUG_ON(!PageTransHuge(page));
3030 }
8697d331 3031 /*
3c541e14 3032 * Check if our page_cgroup is valid
8697d331 3033 */
52d4b9ac
KH
3034 pc = lookup_page_cgroup(page);
3035 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3036 return NULL;
b9c565d5 3037
52d4b9ac 3038 lock_page_cgroup(pc);
d13d1443 3039
c0ff4b85 3040 memcg = pc->mem_cgroup;
8c7c6e34 3041
d13d1443
KH
3042 if (!PageCgroupUsed(pc))
3043 goto unlock_out;
3044
3045 switch (ctype) {
3046 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3047 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3048 /* See mem_cgroup_prepare_migration() */
3049 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3050 goto unlock_out;
3051 break;
3052 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3053 if (!PageAnon(page)) { /* Shared memory */
3054 if (page->mapping && !page_is_file_cache(page))
3055 goto unlock_out;
3056 } else if (page_mapped(page)) /* Anon */
3057 goto unlock_out;
3058 break;
3059 default:
3060 break;
52d4b9ac 3061 }
d13d1443 3062
c0ff4b85 3063 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 3064
52d4b9ac 3065 ClearPageCgroupUsed(pc);
544122e5
KH
3066 /*
3067 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3068 * freed from LRU. This is safe because uncharged page is expected not
3069 * to be reused (freed soon). Exception is SwapCache, it's handled by
3070 * special functions.
3071 */
b9c565d5 3072
52d4b9ac 3073 unlock_page_cgroup(pc);
f75ca962 3074 /*
c0ff4b85 3075 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3076 * will never be freed.
3077 */
c0ff4b85 3078 memcg_check_events(memcg, page);
f75ca962 3079 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3080 mem_cgroup_swap_statistics(memcg, true);
3081 mem_cgroup_get(memcg);
f75ca962 3082 }
c0ff4b85
R
3083 if (!mem_cgroup_is_root(memcg))
3084 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3085
c0ff4b85 3086 return memcg;
d13d1443
KH
3087
3088unlock_out:
3089 unlock_page_cgroup(pc);
8c7c6e34 3090 return NULL;
3c541e14
BS
3091}
3092
69029cd5
KH
3093void mem_cgroup_uncharge_page(struct page *page)
3094{
52d4b9ac
KH
3095 /* early check. */
3096 if (page_mapped(page))
3097 return;
3098 if (page->mapping && !PageAnon(page))
3099 return;
69029cd5
KH
3100 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3101}
3102
3103void mem_cgroup_uncharge_cache_page(struct page *page)
3104{
3105 VM_BUG_ON(page_mapped(page));
b7abea96 3106 VM_BUG_ON(page->mapping);
69029cd5
KH
3107 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3108}
3109
569b846d
KH
3110/*
3111 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3112 * In that cases, pages are freed continuously and we can expect pages
3113 * are in the same memcg. All these calls itself limits the number of
3114 * pages freed at once, then uncharge_start/end() is called properly.
3115 * This may be called prural(2) times in a context,
3116 */
3117
3118void mem_cgroup_uncharge_start(void)
3119{
3120 current->memcg_batch.do_batch++;
3121 /* We can do nest. */
3122 if (current->memcg_batch.do_batch == 1) {
3123 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3124 current->memcg_batch.nr_pages = 0;
3125 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3126 }
3127}
3128
3129void mem_cgroup_uncharge_end(void)
3130{
3131 struct memcg_batch_info *batch = &current->memcg_batch;
3132
3133 if (!batch->do_batch)
3134 return;
3135
3136 batch->do_batch--;
3137 if (batch->do_batch) /* If stacked, do nothing. */
3138 return;
3139
3140 if (!batch->memcg)
3141 return;
3142 /*
3143 * This "batch->memcg" is valid without any css_get/put etc...
3144 * bacause we hide charges behind us.
3145 */
7ffd4ca7
JW
3146 if (batch->nr_pages)
3147 res_counter_uncharge(&batch->memcg->res,
3148 batch->nr_pages * PAGE_SIZE);
3149 if (batch->memsw_nr_pages)
3150 res_counter_uncharge(&batch->memcg->memsw,
3151 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3152 memcg_oom_recover(batch->memcg);
569b846d
KH
3153 /* forget this pointer (for sanity check) */
3154 batch->memcg = NULL;
3155}
3156
e767e056 3157#ifdef CONFIG_SWAP
8c7c6e34 3158/*
e767e056 3159 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3160 * memcg information is recorded to swap_cgroup of "ent"
3161 */
8a9478ca
KH
3162void
3163mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3164{
3165 struct mem_cgroup *memcg;
8a9478ca
KH
3166 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3167
3168 if (!swapout) /* this was a swap cache but the swap is unused ! */
3169 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3170
3171 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3172
f75ca962
KH
3173 /*
3174 * record memcg information, if swapout && memcg != NULL,
3175 * mem_cgroup_get() was called in uncharge().
3176 */
3177 if (do_swap_account && swapout && memcg)
a3b2d692 3178 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3179}
e767e056 3180#endif
8c7c6e34
KH
3181
3182#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3183/*
3184 * called from swap_entry_free(). remove record in swap_cgroup and
3185 * uncharge "memsw" account.
3186 */
3187void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3188{
8c7c6e34 3189 struct mem_cgroup *memcg;
a3b2d692 3190 unsigned short id;
8c7c6e34
KH
3191
3192 if (!do_swap_account)
3193 return;
3194
a3b2d692
KH
3195 id = swap_cgroup_record(ent, 0);
3196 rcu_read_lock();
3197 memcg = mem_cgroup_lookup(id);
8c7c6e34 3198 if (memcg) {
a3b2d692
KH
3199 /*
3200 * We uncharge this because swap is freed.
3201 * This memcg can be obsolete one. We avoid calling css_tryget
3202 */
0c3e73e8 3203 if (!mem_cgroup_is_root(memcg))
4e649152 3204 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3205 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3206 mem_cgroup_put(memcg);
3207 }
a3b2d692 3208 rcu_read_unlock();
d13d1443 3209}
02491447
DN
3210
3211/**
3212 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3213 * @entry: swap entry to be moved
3214 * @from: mem_cgroup which the entry is moved from
3215 * @to: mem_cgroup which the entry is moved to
483c30b5 3216 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3217 *
3218 * It succeeds only when the swap_cgroup's record for this entry is the same
3219 * as the mem_cgroup's id of @from.
3220 *
3221 * Returns 0 on success, -EINVAL on failure.
3222 *
3223 * The caller must have charged to @to, IOW, called res_counter_charge() about
3224 * both res and memsw, and called css_get().
3225 */
3226static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3227 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3228{
3229 unsigned short old_id, new_id;
3230
3231 old_id = css_id(&from->css);
3232 new_id = css_id(&to->css);
3233
3234 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3235 mem_cgroup_swap_statistics(from, false);
483c30b5 3236 mem_cgroup_swap_statistics(to, true);
02491447 3237 /*
483c30b5
DN
3238 * This function is only called from task migration context now.
3239 * It postpones res_counter and refcount handling till the end
3240 * of task migration(mem_cgroup_clear_mc()) for performance
3241 * improvement. But we cannot postpone mem_cgroup_get(to)
3242 * because if the process that has been moved to @to does
3243 * swap-in, the refcount of @to might be decreased to 0.
02491447 3244 */
02491447 3245 mem_cgroup_get(to);
483c30b5
DN
3246 if (need_fixup) {
3247 if (!mem_cgroup_is_root(from))
3248 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3249 mem_cgroup_put(from);
3250 /*
3251 * we charged both to->res and to->memsw, so we should
3252 * uncharge to->res.
3253 */
3254 if (!mem_cgroup_is_root(to))
3255 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3256 }
02491447
DN
3257 return 0;
3258 }
3259 return -EINVAL;
3260}
3261#else
3262static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3263 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3264{
3265 return -EINVAL;
3266}
8c7c6e34 3267#endif
d13d1443 3268
ae41be37 3269/*
01b1ae63
KH
3270 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3271 * page belongs to.
ae41be37 3272 */
ac39cf8c 3273int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3274 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3275{
c0ff4b85 3276 struct mem_cgroup *memcg = NULL;
7ec99d62 3277 struct page_cgroup *pc;
ac39cf8c 3278 enum charge_type ctype;
e8589cc1 3279 int ret = 0;
8869b8f6 3280
56039efa
KH
3281 *ptr = NULL;
3282
ec168510 3283 VM_BUG_ON(PageTransHuge(page));
f8d66542 3284 if (mem_cgroup_disabled())
4077960e
BS
3285 return 0;
3286
52d4b9ac
KH
3287 pc = lookup_page_cgroup(page);
3288 lock_page_cgroup(pc);
3289 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3290 memcg = pc->mem_cgroup;
3291 css_get(&memcg->css);
ac39cf8c
AM
3292 /*
3293 * At migrating an anonymous page, its mapcount goes down
3294 * to 0 and uncharge() will be called. But, even if it's fully
3295 * unmapped, migration may fail and this page has to be
3296 * charged again. We set MIGRATION flag here and delay uncharge
3297 * until end_migration() is called
3298 *
3299 * Corner Case Thinking
3300 * A)
3301 * When the old page was mapped as Anon and it's unmap-and-freed
3302 * while migration was ongoing.
3303 * If unmap finds the old page, uncharge() of it will be delayed
3304 * until end_migration(). If unmap finds a new page, it's
3305 * uncharged when it make mapcount to be 1->0. If unmap code
3306 * finds swap_migration_entry, the new page will not be mapped
3307 * and end_migration() will find it(mapcount==0).
3308 *
3309 * B)
3310 * When the old page was mapped but migraion fails, the kernel
3311 * remaps it. A charge for it is kept by MIGRATION flag even
3312 * if mapcount goes down to 0. We can do remap successfully
3313 * without charging it again.
3314 *
3315 * C)
3316 * The "old" page is under lock_page() until the end of
3317 * migration, so, the old page itself will not be swapped-out.
3318 * If the new page is swapped out before end_migraton, our
3319 * hook to usual swap-out path will catch the event.
3320 */
3321 if (PageAnon(page))
3322 SetPageCgroupMigration(pc);
e8589cc1 3323 }
52d4b9ac 3324 unlock_page_cgroup(pc);
ac39cf8c
AM
3325 /*
3326 * If the page is not charged at this point,
3327 * we return here.
3328 */
c0ff4b85 3329 if (!memcg)
ac39cf8c 3330 return 0;
01b1ae63 3331
c0ff4b85 3332 *ptr = memcg;
7ec99d62 3333 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
c0ff4b85 3334 css_put(&memcg->css);/* drop extra refcnt */
ac39cf8c
AM
3335 if (ret || *ptr == NULL) {
3336 if (PageAnon(page)) {
3337 lock_page_cgroup(pc);
3338 ClearPageCgroupMigration(pc);
3339 unlock_page_cgroup(pc);
3340 /*
3341 * The old page may be fully unmapped while we kept it.
3342 */
3343 mem_cgroup_uncharge_page(page);
3344 }
3345 return -ENOMEM;
e8589cc1 3346 }
ac39cf8c
AM
3347 /*
3348 * We charge new page before it's used/mapped. So, even if unlock_page()
3349 * is called before end_migration, we can catch all events on this new
3350 * page. In the case new page is migrated but not remapped, new page's
3351 * mapcount will be finally 0 and we call uncharge in end_migration().
3352 */
3353 pc = lookup_page_cgroup(newpage);
3354 if (PageAnon(page))
3355 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3356 else if (page_is_file_cache(page))
3357 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3358 else
3359 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3360 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3361 return ret;
ae41be37 3362}
8869b8f6 3363
69029cd5 3364/* remove redundant charge if migration failed*/
c0ff4b85 3365void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3366 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3367{
ac39cf8c 3368 struct page *used, *unused;
01b1ae63 3369 struct page_cgroup *pc;
01b1ae63 3370
c0ff4b85 3371 if (!memcg)
01b1ae63 3372 return;
ac39cf8c 3373 /* blocks rmdir() */
c0ff4b85 3374 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3375 if (!migration_ok) {
ac39cf8c
AM
3376 used = oldpage;
3377 unused = newpage;
01b1ae63 3378 } else {
ac39cf8c 3379 used = newpage;
01b1ae63
KH
3380 unused = oldpage;
3381 }
69029cd5 3382 /*
ac39cf8c
AM
3383 * We disallowed uncharge of pages under migration because mapcount
3384 * of the page goes down to zero, temporarly.
3385 * Clear the flag and check the page should be charged.
01b1ae63 3386 */
ac39cf8c
AM
3387 pc = lookup_page_cgroup(oldpage);
3388 lock_page_cgroup(pc);
3389 ClearPageCgroupMigration(pc);
3390 unlock_page_cgroup(pc);
01b1ae63 3391
ac39cf8c
AM
3392 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3393
01b1ae63 3394 /*
ac39cf8c
AM
3395 * If a page is a file cache, radix-tree replacement is very atomic
3396 * and we can skip this check. When it was an Anon page, its mapcount
3397 * goes down to 0. But because we added MIGRATION flage, it's not
3398 * uncharged yet. There are several case but page->mapcount check
3399 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3400 * check. (see prepare_charge() also)
69029cd5 3401 */
ac39cf8c
AM
3402 if (PageAnon(used))
3403 mem_cgroup_uncharge_page(used);
88703267 3404 /*
ac39cf8c
AM
3405 * At migration, we may charge account against cgroup which has no
3406 * tasks.
88703267
KH
3407 * So, rmdir()->pre_destroy() can be called while we do this charge.
3408 * In that case, we need to call pre_destroy() again. check it here.
3409 */
c0ff4b85 3410 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3411}
78fb7466 3412
ab936cbc
KH
3413/*
3414 * At replace page cache, newpage is not under any memcg but it's on
3415 * LRU. So, this function doesn't touch res_counter but handles LRU
3416 * in correct way. Both pages are locked so we cannot race with uncharge.
3417 */
3418void mem_cgroup_replace_page_cache(struct page *oldpage,
3419 struct page *newpage)
3420{
3421 struct mem_cgroup *memcg;
3422 struct page_cgroup *pc;
3423 struct zone *zone;
3424 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3425 unsigned long flags;
3426
3427 if (mem_cgroup_disabled())
3428 return;
3429
3430 pc = lookup_page_cgroup(oldpage);
3431 /* fix accounting on old pages */
3432 lock_page_cgroup(pc);
3433 memcg = pc->mem_cgroup;
3434 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3435 ClearPageCgroupUsed(pc);
3436 unlock_page_cgroup(pc);
3437
3438 if (PageSwapBacked(oldpage))
3439 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3440
3441 zone = page_zone(newpage);
3442 pc = lookup_page_cgroup(newpage);
3443 /*
3444 * Even if newpage->mapping was NULL before starting replacement,
3445 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3446 * LRU while we overwrite pc->mem_cgroup.
3447 */
3448 spin_lock_irqsave(&zone->lru_lock, flags);
3449 if (PageLRU(newpage))
3450 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3451 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3452 if (PageLRU(newpage))
3453 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3454 spin_unlock_irqrestore(&zone->lru_lock, flags);
3455}
3456
f212ad7c
DN
3457#ifdef CONFIG_DEBUG_VM
3458static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3459{
3460 struct page_cgroup *pc;
3461
3462 pc = lookup_page_cgroup(page);
3463 if (likely(pc) && PageCgroupUsed(pc))
3464 return pc;
3465 return NULL;
3466}
3467
3468bool mem_cgroup_bad_page_check(struct page *page)
3469{
3470 if (mem_cgroup_disabled())
3471 return false;
3472
3473 return lookup_page_cgroup_used(page) != NULL;
3474}
3475
3476void mem_cgroup_print_bad_page(struct page *page)
3477{
3478 struct page_cgroup *pc;
3479
3480 pc = lookup_page_cgroup_used(page);
3481 if (pc) {
3482 int ret = -1;
3483 char *path;
3484
3485 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3486 pc, pc->flags, pc->mem_cgroup);
3487
3488 path = kmalloc(PATH_MAX, GFP_KERNEL);
3489 if (path) {
3490 rcu_read_lock();
3491 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3492 path, PATH_MAX);
3493 rcu_read_unlock();
3494 }
3495
3496 printk(KERN_CONT "(%s)\n",
3497 (ret < 0) ? "cannot get the path" : path);
3498 kfree(path);
3499 }
3500}
3501#endif
3502
8c7c6e34
KH
3503static DEFINE_MUTEX(set_limit_mutex);
3504
d38d2a75 3505static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3506 unsigned long long val)
628f4235 3507{
81d39c20 3508 int retry_count;
3c11ecf4 3509 u64 memswlimit, memlimit;
628f4235 3510 int ret = 0;
81d39c20
KH
3511 int children = mem_cgroup_count_children(memcg);
3512 u64 curusage, oldusage;
3c11ecf4 3513 int enlarge;
81d39c20
KH
3514
3515 /*
3516 * For keeping hierarchical_reclaim simple, how long we should retry
3517 * is depends on callers. We set our retry-count to be function
3518 * of # of children which we should visit in this loop.
3519 */
3520 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3521
3522 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3523
3c11ecf4 3524 enlarge = 0;
8c7c6e34 3525 while (retry_count) {
628f4235
KH
3526 if (signal_pending(current)) {
3527 ret = -EINTR;
3528 break;
3529 }
8c7c6e34
KH
3530 /*
3531 * Rather than hide all in some function, I do this in
3532 * open coded manner. You see what this really does.
c0ff4b85 3533 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3534 */
3535 mutex_lock(&set_limit_mutex);
3536 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3537 if (memswlimit < val) {
3538 ret = -EINVAL;
3539 mutex_unlock(&set_limit_mutex);
628f4235
KH
3540 break;
3541 }
3c11ecf4
KH
3542
3543 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3544 if (memlimit < val)
3545 enlarge = 1;
3546
8c7c6e34 3547 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3548 if (!ret) {
3549 if (memswlimit == val)
3550 memcg->memsw_is_minimum = true;
3551 else
3552 memcg->memsw_is_minimum = false;
3553 }
8c7c6e34
KH
3554 mutex_unlock(&set_limit_mutex);
3555
3556 if (!ret)
3557 break;
3558
5660048c
JW
3559 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3560 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3561 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3562 /* Usage is reduced ? */
3563 if (curusage >= oldusage)
3564 retry_count--;
3565 else
3566 oldusage = curusage;
8c7c6e34 3567 }
3c11ecf4
KH
3568 if (!ret && enlarge)
3569 memcg_oom_recover(memcg);
14797e23 3570
8c7c6e34
KH
3571 return ret;
3572}
3573
338c8431
LZ
3574static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3575 unsigned long long val)
8c7c6e34 3576{
81d39c20 3577 int retry_count;
3c11ecf4 3578 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3579 int children = mem_cgroup_count_children(memcg);
3580 int ret = -EBUSY;
3c11ecf4 3581 int enlarge = 0;
8c7c6e34 3582
81d39c20
KH
3583 /* see mem_cgroup_resize_res_limit */
3584 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3585 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3586 while (retry_count) {
3587 if (signal_pending(current)) {
3588 ret = -EINTR;
3589 break;
3590 }
3591 /*
3592 * Rather than hide all in some function, I do this in
3593 * open coded manner. You see what this really does.
c0ff4b85 3594 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3595 */
3596 mutex_lock(&set_limit_mutex);
3597 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3598 if (memlimit > val) {
3599 ret = -EINVAL;
3600 mutex_unlock(&set_limit_mutex);
3601 break;
3602 }
3c11ecf4
KH
3603 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3604 if (memswlimit < val)
3605 enlarge = 1;
8c7c6e34 3606 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3607 if (!ret) {
3608 if (memlimit == val)
3609 memcg->memsw_is_minimum = true;
3610 else
3611 memcg->memsw_is_minimum = false;
3612 }
8c7c6e34
KH
3613 mutex_unlock(&set_limit_mutex);
3614
3615 if (!ret)
3616 break;
3617
5660048c
JW
3618 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3619 MEM_CGROUP_RECLAIM_NOSWAP |
3620 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3621 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3622 /* Usage is reduced ? */
8c7c6e34 3623 if (curusage >= oldusage)
628f4235 3624 retry_count--;
81d39c20
KH
3625 else
3626 oldusage = curusage;
628f4235 3627 }
3c11ecf4
KH
3628 if (!ret && enlarge)
3629 memcg_oom_recover(memcg);
628f4235
KH
3630 return ret;
3631}
3632
4e416953 3633unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3634 gfp_t gfp_mask,
3635 unsigned long *total_scanned)
4e416953
BS
3636{
3637 unsigned long nr_reclaimed = 0;
3638 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3639 unsigned long reclaimed;
3640 int loop = 0;
3641 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3642 unsigned long long excess;
0ae5e89c 3643 unsigned long nr_scanned;
4e416953
BS
3644
3645 if (order > 0)
3646 return 0;
3647
00918b6a 3648 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3649 /*
3650 * This loop can run a while, specially if mem_cgroup's continuously
3651 * keep exceeding their soft limit and putting the system under
3652 * pressure
3653 */
3654 do {
3655 if (next_mz)
3656 mz = next_mz;
3657 else
3658 mz = mem_cgroup_largest_soft_limit_node(mctz);
3659 if (!mz)
3660 break;
3661
0ae5e89c 3662 nr_scanned = 0;
5660048c
JW
3663 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3664 gfp_mask, &nr_scanned);
4e416953 3665 nr_reclaimed += reclaimed;
0ae5e89c 3666 *total_scanned += nr_scanned;
4e416953
BS
3667 spin_lock(&mctz->lock);
3668
3669 /*
3670 * If we failed to reclaim anything from this memory cgroup
3671 * it is time to move on to the next cgroup
3672 */
3673 next_mz = NULL;
3674 if (!reclaimed) {
3675 do {
3676 /*
3677 * Loop until we find yet another one.
3678 *
3679 * By the time we get the soft_limit lock
3680 * again, someone might have aded the
3681 * group back on the RB tree. Iterate to
3682 * make sure we get a different mem.
3683 * mem_cgroup_largest_soft_limit_node returns
3684 * NULL if no other cgroup is present on
3685 * the tree
3686 */
3687 next_mz =
3688 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3689 if (next_mz == mz)
4e416953 3690 css_put(&next_mz->mem->css);
39cc98f1 3691 else /* next_mz == NULL or other memcg */
4e416953
BS
3692 break;
3693 } while (1);
3694 }
4e416953 3695 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3696 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3697 /*
3698 * One school of thought says that we should not add
3699 * back the node to the tree if reclaim returns 0.
3700 * But our reclaim could return 0, simply because due
3701 * to priority we are exposing a smaller subset of
3702 * memory to reclaim from. Consider this as a longer
3703 * term TODO.
3704 */
ef8745c1
KH
3705 /* If excess == 0, no tree ops */
3706 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3707 spin_unlock(&mctz->lock);
3708 css_put(&mz->mem->css);
3709 loop++;
3710 /*
3711 * Could not reclaim anything and there are no more
3712 * mem cgroups to try or we seem to be looping without
3713 * reclaiming anything.
3714 */
3715 if (!nr_reclaimed &&
3716 (next_mz == NULL ||
3717 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3718 break;
3719 } while (!nr_reclaimed);
3720 if (next_mz)
3721 css_put(&next_mz->mem->css);
3722 return nr_reclaimed;
3723}
3724
cc847582
KH
3725/*
3726 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3727 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3728 */
c0ff4b85 3729static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3730 int node, int zid, enum lru_list lru)
cc847582 3731{
08e552c6
KH
3732 struct zone *zone;
3733 struct mem_cgroup_per_zone *mz;
f817ed48 3734 struct page_cgroup *pc, *busy;
08e552c6 3735 unsigned long flags, loop;
072c56c1 3736 struct list_head *list;
f817ed48 3737 int ret = 0;
072c56c1 3738
08e552c6 3739 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3740 mz = mem_cgroup_zoneinfo(memcg, node, zid);
b69408e8 3741 list = &mz->lists[lru];
cc847582 3742
f817ed48
KH
3743 loop = MEM_CGROUP_ZSTAT(mz, lru);
3744 /* give some margin against EBUSY etc...*/
3745 loop += 256;
3746 busy = NULL;
3747 while (loop--) {
5564e88b
JW
3748 struct page *page;
3749
f817ed48 3750 ret = 0;
08e552c6 3751 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3752 if (list_empty(list)) {
08e552c6 3753 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3754 break;
f817ed48
KH
3755 }
3756 pc = list_entry(list->prev, struct page_cgroup, lru);
3757 if (busy == pc) {
3758 list_move(&pc->lru, list);
648bcc77 3759 busy = NULL;
08e552c6 3760 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3761 continue;
3762 }
08e552c6 3763 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3764
6b3ae58e 3765 page = lookup_cgroup_page(pc);
5564e88b 3766
c0ff4b85 3767 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3768 if (ret == -ENOMEM)
52d4b9ac 3769 break;
f817ed48
KH
3770
3771 if (ret == -EBUSY || ret == -EINVAL) {
3772 /* found lock contention or "pc" is obsolete. */
3773 busy = pc;
3774 cond_resched();
3775 } else
3776 busy = NULL;
cc847582 3777 }
08e552c6 3778
f817ed48
KH
3779 if (!ret && !list_empty(list))
3780 return -EBUSY;
3781 return ret;
cc847582
KH
3782}
3783
3784/*
3785 * make mem_cgroup's charge to be 0 if there is no task.
3786 * This enables deleting this mem_cgroup.
3787 */
c0ff4b85 3788static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3789{
f817ed48
KH
3790 int ret;
3791 int node, zid, shrink;
3792 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3793 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3794
c0ff4b85 3795 css_get(&memcg->css);
f817ed48
KH
3796
3797 shrink = 0;
c1e862c1
KH
3798 /* should free all ? */
3799 if (free_all)
3800 goto try_to_free;
f817ed48 3801move_account:
fce66477 3802 do {
f817ed48 3803 ret = -EBUSY;
c1e862c1
KH
3804 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3805 goto out;
3806 ret = -EINTR;
3807 if (signal_pending(current))
cc847582 3808 goto out;
52d4b9ac
KH
3809 /* This is for making all *used* pages to be on LRU. */
3810 lru_add_drain_all();
c0ff4b85 3811 drain_all_stock_sync(memcg);
f817ed48 3812 ret = 0;
c0ff4b85 3813 mem_cgroup_start_move(memcg);
299b4eaa 3814 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3815 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3816 enum lru_list l;
f817ed48 3817 for_each_lru(l) {
c0ff4b85 3818 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3819 node, zid, l);
f817ed48
KH
3820 if (ret)
3821 break;
3822 }
1ecaab2b 3823 }
f817ed48
KH
3824 if (ret)
3825 break;
3826 }
c0ff4b85
R
3827 mem_cgroup_end_move(memcg);
3828 memcg_oom_recover(memcg);
f817ed48
KH
3829 /* it seems parent cgroup doesn't have enough mem */
3830 if (ret == -ENOMEM)
3831 goto try_to_free;
52d4b9ac 3832 cond_resched();
fce66477 3833 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3834 } while (memcg->res.usage > 0 || ret);
cc847582 3835out:
c0ff4b85 3836 css_put(&memcg->css);
cc847582 3837 return ret;
f817ed48
KH
3838
3839try_to_free:
c1e862c1
KH
3840 /* returns EBUSY if there is a task or if we come here twice. */
3841 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3842 ret = -EBUSY;
3843 goto out;
3844 }
c1e862c1
KH
3845 /* we call try-to-free pages for make this cgroup empty */
3846 lru_add_drain_all();
f817ed48
KH
3847 /* try to free all pages in this cgroup */
3848 shrink = 1;
c0ff4b85 3849 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3850 int progress;
c1e862c1
KH
3851
3852 if (signal_pending(current)) {
3853 ret = -EINTR;
3854 goto out;
3855 }
c0ff4b85 3856 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3857 false);
c1e862c1 3858 if (!progress) {
f817ed48 3859 nr_retries--;
c1e862c1 3860 /* maybe some writeback is necessary */
8aa7e847 3861 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3862 }
f817ed48
KH
3863
3864 }
08e552c6 3865 lru_add_drain();
f817ed48 3866 /* try move_account...there may be some *locked* pages. */
fce66477 3867 goto move_account;
cc847582
KH
3868}
3869
c1e862c1
KH
3870int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3871{
3872 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3873}
3874
3875
18f59ea7
BS
3876static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3877{
3878 return mem_cgroup_from_cont(cont)->use_hierarchy;
3879}
3880
3881static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3882 u64 val)
3883{
3884 int retval = 0;
c0ff4b85 3885 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3886 struct cgroup *parent = cont->parent;
c0ff4b85 3887 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3888
3889 if (parent)
c0ff4b85 3890 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3891
3892 cgroup_lock();
3893 /*
af901ca1 3894 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3895 * in the child subtrees. If it is unset, then the change can
3896 * occur, provided the current cgroup has no children.
3897 *
3898 * For the root cgroup, parent_mem is NULL, we allow value to be
3899 * set if there are no children.
3900 */
c0ff4b85 3901 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3902 (val == 1 || val == 0)) {
3903 if (list_empty(&cont->children))
c0ff4b85 3904 memcg->use_hierarchy = val;
18f59ea7
BS
3905 else
3906 retval = -EBUSY;
3907 } else
3908 retval = -EINVAL;
3909 cgroup_unlock();
3910
3911 return retval;
3912}
3913
0c3e73e8 3914
c0ff4b85 3915static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3916 enum mem_cgroup_stat_index idx)
0c3e73e8 3917{
7d74b06f 3918 struct mem_cgroup *iter;
7a159cc9 3919 long val = 0;
0c3e73e8 3920
7a159cc9 3921 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3922 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3923 val += mem_cgroup_read_stat(iter, idx);
3924
3925 if (val < 0) /* race ? */
3926 val = 0;
3927 return val;
0c3e73e8
BS
3928}
3929
c0ff4b85 3930static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3931{
7d74b06f 3932 u64 val;
104f3928 3933
c0ff4b85 3934 if (!mem_cgroup_is_root(memcg)) {
104f3928 3935 if (!swap)
65c64ce8 3936 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3937 else
65c64ce8 3938 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3939 }
3940
c0ff4b85
R
3941 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3942 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3943
7d74b06f 3944 if (swap)
c0ff4b85 3945 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3946
3947 return val << PAGE_SHIFT;
3948}
3949
2c3daa72 3950static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3951{
c0ff4b85 3952 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3953 u64 val;
8c7c6e34
KH
3954 int type, name;
3955
3956 type = MEMFILE_TYPE(cft->private);
3957 name = MEMFILE_ATTR(cft->private);
3958 switch (type) {
3959 case _MEM:
104f3928 3960 if (name == RES_USAGE)
c0ff4b85 3961 val = mem_cgroup_usage(memcg, false);
104f3928 3962 else
c0ff4b85 3963 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3964 break;
3965 case _MEMSWAP:
104f3928 3966 if (name == RES_USAGE)
c0ff4b85 3967 val = mem_cgroup_usage(memcg, true);
104f3928 3968 else
c0ff4b85 3969 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3970 break;
3971 default:
3972 BUG();
3973 break;
3974 }
3975 return val;
8cdea7c0 3976}
628f4235
KH
3977/*
3978 * The user of this function is...
3979 * RES_LIMIT.
3980 */
856c13aa
PM
3981static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3982 const char *buffer)
8cdea7c0 3983{
628f4235 3984 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3985 int type, name;
628f4235
KH
3986 unsigned long long val;
3987 int ret;
3988
8c7c6e34
KH
3989 type = MEMFILE_TYPE(cft->private);
3990 name = MEMFILE_ATTR(cft->private);
3991 switch (name) {
628f4235 3992 case RES_LIMIT:
4b3bde4c
BS
3993 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3994 ret = -EINVAL;
3995 break;
3996 }
628f4235
KH
3997 /* This function does all necessary parse...reuse it */
3998 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3999 if (ret)
4000 break;
4001 if (type == _MEM)
628f4235 4002 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4003 else
4004 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4005 break;
296c81d8
BS
4006 case RES_SOFT_LIMIT:
4007 ret = res_counter_memparse_write_strategy(buffer, &val);
4008 if (ret)
4009 break;
4010 /*
4011 * For memsw, soft limits are hard to implement in terms
4012 * of semantics, for now, we support soft limits for
4013 * control without swap
4014 */
4015 if (type == _MEM)
4016 ret = res_counter_set_soft_limit(&memcg->res, val);
4017 else
4018 ret = -EINVAL;
4019 break;
628f4235
KH
4020 default:
4021 ret = -EINVAL; /* should be BUG() ? */
4022 break;
4023 }
4024 return ret;
8cdea7c0
BS
4025}
4026
fee7b548
KH
4027static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4028 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4029{
4030 struct cgroup *cgroup;
4031 unsigned long long min_limit, min_memsw_limit, tmp;
4032
4033 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4034 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4035 cgroup = memcg->css.cgroup;
4036 if (!memcg->use_hierarchy)
4037 goto out;
4038
4039 while (cgroup->parent) {
4040 cgroup = cgroup->parent;
4041 memcg = mem_cgroup_from_cont(cgroup);
4042 if (!memcg->use_hierarchy)
4043 break;
4044 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4045 min_limit = min(min_limit, tmp);
4046 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4047 min_memsw_limit = min(min_memsw_limit, tmp);
4048 }
4049out:
4050 *mem_limit = min_limit;
4051 *memsw_limit = min_memsw_limit;
4052 return;
4053}
4054
29f2a4da 4055static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4056{
c0ff4b85 4057 struct mem_cgroup *memcg;
8c7c6e34 4058 int type, name;
c84872e1 4059
c0ff4b85 4060 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4061 type = MEMFILE_TYPE(event);
4062 name = MEMFILE_ATTR(event);
4063 switch (name) {
29f2a4da 4064 case RES_MAX_USAGE:
8c7c6e34 4065 if (type == _MEM)
c0ff4b85 4066 res_counter_reset_max(&memcg->res);
8c7c6e34 4067 else
c0ff4b85 4068 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4069 break;
4070 case RES_FAILCNT:
8c7c6e34 4071 if (type == _MEM)
c0ff4b85 4072 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4073 else
c0ff4b85 4074 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4075 break;
4076 }
f64c3f54 4077
85cc59db 4078 return 0;
c84872e1
PE
4079}
4080
7dc74be0
DN
4081static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4082 struct cftype *cft)
4083{
4084 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4085}
4086
02491447 4087#ifdef CONFIG_MMU
7dc74be0
DN
4088static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4089 struct cftype *cft, u64 val)
4090{
c0ff4b85 4091 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4092
4093 if (val >= (1 << NR_MOVE_TYPE))
4094 return -EINVAL;
4095 /*
4096 * We check this value several times in both in can_attach() and
4097 * attach(), so we need cgroup lock to prevent this value from being
4098 * inconsistent.
4099 */
4100 cgroup_lock();
c0ff4b85 4101 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4102 cgroup_unlock();
4103
4104 return 0;
4105}
02491447
DN
4106#else
4107static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4108 struct cftype *cft, u64 val)
4109{
4110 return -ENOSYS;
4111}
4112#endif
7dc74be0 4113
14067bb3
KH
4114
4115/* For read statistics */
4116enum {
4117 MCS_CACHE,
4118 MCS_RSS,
d8046582 4119 MCS_FILE_MAPPED,
14067bb3
KH
4120 MCS_PGPGIN,
4121 MCS_PGPGOUT,
1dd3a273 4122 MCS_SWAP,
456f998e
YH
4123 MCS_PGFAULT,
4124 MCS_PGMAJFAULT,
14067bb3
KH
4125 MCS_INACTIVE_ANON,
4126 MCS_ACTIVE_ANON,
4127 MCS_INACTIVE_FILE,
4128 MCS_ACTIVE_FILE,
4129 MCS_UNEVICTABLE,
4130 NR_MCS_STAT,
4131};
4132
4133struct mcs_total_stat {
4134 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4135};
4136
14067bb3
KH
4137struct {
4138 char *local_name;
4139 char *total_name;
4140} memcg_stat_strings[NR_MCS_STAT] = {
4141 {"cache", "total_cache"},
4142 {"rss", "total_rss"},
d69b042f 4143 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4144 {"pgpgin", "total_pgpgin"},
4145 {"pgpgout", "total_pgpgout"},
1dd3a273 4146 {"swap", "total_swap"},
456f998e
YH
4147 {"pgfault", "total_pgfault"},
4148 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4149 {"inactive_anon", "total_inactive_anon"},
4150 {"active_anon", "total_active_anon"},
4151 {"inactive_file", "total_inactive_file"},
4152 {"active_file", "total_active_file"},
4153 {"unevictable", "total_unevictable"}
4154};
4155
4156
7d74b06f 4157static void
c0ff4b85 4158mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4159{
14067bb3
KH
4160 s64 val;
4161
4162 /* per cpu stat */
c0ff4b85 4163 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4164 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4165 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4166 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4167 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4168 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4169 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4170 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4171 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4172 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4173 if (do_swap_account) {
c0ff4b85 4174 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4175 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4176 }
c0ff4b85 4177 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4178 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4179 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4180 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4181
4182 /* per zone stat */
c0ff4b85 4183 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4184 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4185 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4186 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4187 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4188 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4189 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4190 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4191 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4192 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4193}
4194
4195static void
c0ff4b85 4196mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4197{
7d74b06f
KH
4198 struct mem_cgroup *iter;
4199
c0ff4b85 4200 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4201 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4202}
4203
406eb0c9
YH
4204#ifdef CONFIG_NUMA
4205static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4206{
4207 int nid;
4208 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4209 unsigned long node_nr;
4210 struct cgroup *cont = m->private;
4211 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4212
bb2a0de9 4213 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4214 seq_printf(m, "total=%lu", total_nr);
4215 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4216 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4217 seq_printf(m, " N%d=%lu", nid, node_nr);
4218 }
4219 seq_putc(m, '\n');
4220
bb2a0de9 4221 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4222 seq_printf(m, "file=%lu", file_nr);
4223 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4224 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4225 LRU_ALL_FILE);
406eb0c9
YH
4226 seq_printf(m, " N%d=%lu", nid, node_nr);
4227 }
4228 seq_putc(m, '\n');
4229
bb2a0de9 4230 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4231 seq_printf(m, "anon=%lu", anon_nr);
4232 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4233 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4234 LRU_ALL_ANON);
406eb0c9
YH
4235 seq_printf(m, " N%d=%lu", nid, node_nr);
4236 }
4237 seq_putc(m, '\n');
4238
bb2a0de9 4239 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4240 seq_printf(m, "unevictable=%lu", unevictable_nr);
4241 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4242 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4243 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4244 seq_printf(m, " N%d=%lu", nid, node_nr);
4245 }
4246 seq_putc(m, '\n');
4247 return 0;
4248}
4249#endif /* CONFIG_NUMA */
4250
c64745cf
PM
4251static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4252 struct cgroup_map_cb *cb)
d2ceb9b7 4253{
d2ceb9b7 4254 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4255 struct mcs_total_stat mystat;
d2ceb9b7
KH
4256 int i;
4257
14067bb3
KH
4258 memset(&mystat, 0, sizeof(mystat));
4259 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4260
406eb0c9 4261
1dd3a273
DN
4262 for (i = 0; i < NR_MCS_STAT; i++) {
4263 if (i == MCS_SWAP && !do_swap_account)
4264 continue;
14067bb3 4265 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4266 }
7b854121 4267
14067bb3 4268 /* Hierarchical information */
fee7b548
KH
4269 {
4270 unsigned long long limit, memsw_limit;
4271 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4272 cb->fill(cb, "hierarchical_memory_limit", limit);
4273 if (do_swap_account)
4274 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4275 }
7f016ee8 4276
14067bb3
KH
4277 memset(&mystat, 0, sizeof(mystat));
4278 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4279 for (i = 0; i < NR_MCS_STAT; i++) {
4280 if (i == MCS_SWAP && !do_swap_account)
4281 continue;
14067bb3 4282 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4283 }
14067bb3 4284
7f016ee8 4285#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4286 {
4287 int nid, zid;
4288 struct mem_cgroup_per_zone *mz;
4289 unsigned long recent_rotated[2] = {0, 0};
4290 unsigned long recent_scanned[2] = {0, 0};
4291
4292 for_each_online_node(nid)
4293 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4294 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4295
4296 recent_rotated[0] +=
4297 mz->reclaim_stat.recent_rotated[0];
4298 recent_rotated[1] +=
4299 mz->reclaim_stat.recent_rotated[1];
4300 recent_scanned[0] +=
4301 mz->reclaim_stat.recent_scanned[0];
4302 recent_scanned[1] +=
4303 mz->reclaim_stat.recent_scanned[1];
4304 }
4305 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4306 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4307 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4308 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4309 }
4310#endif
4311
d2ceb9b7
KH
4312 return 0;
4313}
4314
a7885eb8
KM
4315static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4316{
4317 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4318
1f4c025b 4319 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4320}
4321
4322static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4323 u64 val)
4324{
4325 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4326 struct mem_cgroup *parent;
068b38c1 4327
a7885eb8
KM
4328 if (val > 100)
4329 return -EINVAL;
4330
4331 if (cgrp->parent == NULL)
4332 return -EINVAL;
4333
4334 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4335
4336 cgroup_lock();
4337
a7885eb8
KM
4338 /* If under hierarchy, only empty-root can set this value */
4339 if ((parent->use_hierarchy) ||
068b38c1
LZ
4340 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4341 cgroup_unlock();
a7885eb8 4342 return -EINVAL;
068b38c1 4343 }
a7885eb8 4344
a7885eb8 4345 memcg->swappiness = val;
a7885eb8 4346
068b38c1
LZ
4347 cgroup_unlock();
4348
a7885eb8
KM
4349 return 0;
4350}
4351
2e72b634
KS
4352static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4353{
4354 struct mem_cgroup_threshold_ary *t;
4355 u64 usage;
4356 int i;
4357
4358 rcu_read_lock();
4359 if (!swap)
2c488db2 4360 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4361 else
2c488db2 4362 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4363
4364 if (!t)
4365 goto unlock;
4366
4367 usage = mem_cgroup_usage(memcg, swap);
4368
4369 /*
4370 * current_threshold points to threshold just below usage.
4371 * If it's not true, a threshold was crossed after last
4372 * call of __mem_cgroup_threshold().
4373 */
5407a562 4374 i = t->current_threshold;
2e72b634
KS
4375
4376 /*
4377 * Iterate backward over array of thresholds starting from
4378 * current_threshold and check if a threshold is crossed.
4379 * If none of thresholds below usage is crossed, we read
4380 * only one element of the array here.
4381 */
4382 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4383 eventfd_signal(t->entries[i].eventfd, 1);
4384
4385 /* i = current_threshold + 1 */
4386 i++;
4387
4388 /*
4389 * Iterate forward over array of thresholds starting from
4390 * current_threshold+1 and check if a threshold is crossed.
4391 * If none of thresholds above usage is crossed, we read
4392 * only one element of the array here.
4393 */
4394 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4395 eventfd_signal(t->entries[i].eventfd, 1);
4396
4397 /* Update current_threshold */
5407a562 4398 t->current_threshold = i - 1;
2e72b634
KS
4399unlock:
4400 rcu_read_unlock();
4401}
4402
4403static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4404{
ad4ca5f4
KS
4405 while (memcg) {
4406 __mem_cgroup_threshold(memcg, false);
4407 if (do_swap_account)
4408 __mem_cgroup_threshold(memcg, true);
4409
4410 memcg = parent_mem_cgroup(memcg);
4411 }
2e72b634
KS
4412}
4413
4414static int compare_thresholds(const void *a, const void *b)
4415{
4416 const struct mem_cgroup_threshold *_a = a;
4417 const struct mem_cgroup_threshold *_b = b;
4418
4419 return _a->threshold - _b->threshold;
4420}
4421
c0ff4b85 4422static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4423{
4424 struct mem_cgroup_eventfd_list *ev;
4425
c0ff4b85 4426 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4427 eventfd_signal(ev->eventfd, 1);
4428 return 0;
4429}
4430
c0ff4b85 4431static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4432{
7d74b06f
KH
4433 struct mem_cgroup *iter;
4434
c0ff4b85 4435 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4436 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4437}
4438
4439static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4440 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4441{
4442 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4443 struct mem_cgroup_thresholds *thresholds;
4444 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4445 int type = MEMFILE_TYPE(cft->private);
4446 u64 threshold, usage;
2c488db2 4447 int i, size, ret;
2e72b634
KS
4448
4449 ret = res_counter_memparse_write_strategy(args, &threshold);
4450 if (ret)
4451 return ret;
4452
4453 mutex_lock(&memcg->thresholds_lock);
2c488db2 4454
2e72b634 4455 if (type == _MEM)
2c488db2 4456 thresholds = &memcg->thresholds;
2e72b634 4457 else if (type == _MEMSWAP)
2c488db2 4458 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4459 else
4460 BUG();
4461
4462 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4463
4464 /* Check if a threshold crossed before adding a new one */
2c488db2 4465 if (thresholds->primary)
2e72b634
KS
4466 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4467
2c488db2 4468 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4469
4470 /* Allocate memory for new array of thresholds */
2c488db2 4471 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4472 GFP_KERNEL);
2c488db2 4473 if (!new) {
2e72b634
KS
4474 ret = -ENOMEM;
4475 goto unlock;
4476 }
2c488db2 4477 new->size = size;
2e72b634
KS
4478
4479 /* Copy thresholds (if any) to new array */
2c488db2
KS
4480 if (thresholds->primary) {
4481 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4482 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4483 }
4484
2e72b634 4485 /* Add new threshold */
2c488db2
KS
4486 new->entries[size - 1].eventfd = eventfd;
4487 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4488
4489 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4490 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4491 compare_thresholds, NULL);
4492
4493 /* Find current threshold */
2c488db2 4494 new->current_threshold = -1;
2e72b634 4495 for (i = 0; i < size; i++) {
2c488db2 4496 if (new->entries[i].threshold < usage) {
2e72b634 4497 /*
2c488db2
KS
4498 * new->current_threshold will not be used until
4499 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4500 * it here.
4501 */
2c488db2 4502 ++new->current_threshold;
2e72b634
KS
4503 }
4504 }
4505
2c488db2
KS
4506 /* Free old spare buffer and save old primary buffer as spare */
4507 kfree(thresholds->spare);
4508 thresholds->spare = thresholds->primary;
4509
4510 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4511
907860ed 4512 /* To be sure that nobody uses thresholds */
2e72b634
KS
4513 synchronize_rcu();
4514
2e72b634
KS
4515unlock:
4516 mutex_unlock(&memcg->thresholds_lock);
4517
4518 return ret;
4519}
4520
907860ed 4521static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4522 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4523{
4524 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4525 struct mem_cgroup_thresholds *thresholds;
4526 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4527 int type = MEMFILE_TYPE(cft->private);
4528 u64 usage;
2c488db2 4529 int i, j, size;
2e72b634
KS
4530
4531 mutex_lock(&memcg->thresholds_lock);
4532 if (type == _MEM)
2c488db2 4533 thresholds = &memcg->thresholds;
2e72b634 4534 else if (type == _MEMSWAP)
2c488db2 4535 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4536 else
4537 BUG();
4538
4539 /*
4540 * Something went wrong if we trying to unregister a threshold
4541 * if we don't have thresholds
4542 */
4543 BUG_ON(!thresholds);
4544
4545 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4546
4547 /* Check if a threshold crossed before removing */
4548 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4549
4550 /* Calculate new number of threshold */
2c488db2
KS
4551 size = 0;
4552 for (i = 0; i < thresholds->primary->size; i++) {
4553 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4554 size++;
4555 }
4556
2c488db2 4557 new = thresholds->spare;
907860ed 4558
2e72b634
KS
4559 /* Set thresholds array to NULL if we don't have thresholds */
4560 if (!size) {
2c488db2
KS
4561 kfree(new);
4562 new = NULL;
907860ed 4563 goto swap_buffers;
2e72b634
KS
4564 }
4565
2c488db2 4566 new->size = size;
2e72b634
KS
4567
4568 /* Copy thresholds and find current threshold */
2c488db2
KS
4569 new->current_threshold = -1;
4570 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4571 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4572 continue;
4573
2c488db2
KS
4574 new->entries[j] = thresholds->primary->entries[i];
4575 if (new->entries[j].threshold < usage) {
2e72b634 4576 /*
2c488db2 4577 * new->current_threshold will not be used
2e72b634
KS
4578 * until rcu_assign_pointer(), so it's safe to increment
4579 * it here.
4580 */
2c488db2 4581 ++new->current_threshold;
2e72b634
KS
4582 }
4583 j++;
4584 }
4585
907860ed 4586swap_buffers:
2c488db2
KS
4587 /* Swap primary and spare array */
4588 thresholds->spare = thresholds->primary;
4589 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4590
907860ed 4591 /* To be sure that nobody uses thresholds */
2e72b634
KS
4592 synchronize_rcu();
4593
2e72b634 4594 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4595}
c1e862c1 4596
9490ff27
KH
4597static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4598 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4599{
4600 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4601 struct mem_cgroup_eventfd_list *event;
4602 int type = MEMFILE_TYPE(cft->private);
4603
4604 BUG_ON(type != _OOM_TYPE);
4605 event = kmalloc(sizeof(*event), GFP_KERNEL);
4606 if (!event)
4607 return -ENOMEM;
4608
1af8efe9 4609 spin_lock(&memcg_oom_lock);
9490ff27
KH
4610
4611 event->eventfd = eventfd;
4612 list_add(&event->list, &memcg->oom_notify);
4613
4614 /* already in OOM ? */
79dfdacc 4615 if (atomic_read(&memcg->under_oom))
9490ff27 4616 eventfd_signal(eventfd, 1);
1af8efe9 4617 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4618
4619 return 0;
4620}
4621
907860ed 4622static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4623 struct cftype *cft, struct eventfd_ctx *eventfd)
4624{
c0ff4b85 4625 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4626 struct mem_cgroup_eventfd_list *ev, *tmp;
4627 int type = MEMFILE_TYPE(cft->private);
4628
4629 BUG_ON(type != _OOM_TYPE);
4630
1af8efe9 4631 spin_lock(&memcg_oom_lock);
9490ff27 4632
c0ff4b85 4633 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4634 if (ev->eventfd == eventfd) {
4635 list_del(&ev->list);
4636 kfree(ev);
4637 }
4638 }
4639
1af8efe9 4640 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4641}
4642
3c11ecf4
KH
4643static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4644 struct cftype *cft, struct cgroup_map_cb *cb)
4645{
c0ff4b85 4646 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4647
c0ff4b85 4648 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4649
c0ff4b85 4650 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4651 cb->fill(cb, "under_oom", 1);
4652 else
4653 cb->fill(cb, "under_oom", 0);
4654 return 0;
4655}
4656
3c11ecf4
KH
4657static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4658 struct cftype *cft, u64 val)
4659{
c0ff4b85 4660 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4661 struct mem_cgroup *parent;
4662
4663 /* cannot set to root cgroup and only 0 and 1 are allowed */
4664 if (!cgrp->parent || !((val == 0) || (val == 1)))
4665 return -EINVAL;
4666
4667 parent = mem_cgroup_from_cont(cgrp->parent);
4668
4669 cgroup_lock();
4670 /* oom-kill-disable is a flag for subhierarchy. */
4671 if ((parent->use_hierarchy) ||
c0ff4b85 4672 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4673 cgroup_unlock();
4674 return -EINVAL;
4675 }
c0ff4b85 4676 memcg->oom_kill_disable = val;
4d845ebf 4677 if (!val)
c0ff4b85 4678 memcg_oom_recover(memcg);
3c11ecf4
KH
4679 cgroup_unlock();
4680 return 0;
4681}
4682
406eb0c9
YH
4683#ifdef CONFIG_NUMA
4684static const struct file_operations mem_control_numa_stat_file_operations = {
4685 .read = seq_read,
4686 .llseek = seq_lseek,
4687 .release = single_release,
4688};
4689
4690static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4691{
4692 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4693
4694 file->f_op = &mem_control_numa_stat_file_operations;
4695 return single_open(file, mem_control_numa_stat_show, cont);
4696}
4697#endif /* CONFIG_NUMA */
4698
e5671dfa 4699#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4700static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4701{
d1a4c0b3
GC
4702 /*
4703 * Part of this would be better living in a separate allocation
4704 * function, leaving us with just the cgroup tree population work.
4705 * We, however, depend on state such as network's proto_list that
4706 * is only initialized after cgroup creation. I found the less
4707 * cumbersome way to deal with it to defer it all to populate time
4708 */
65c64ce8 4709 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4710};
4711
d1a4c0b3
GC
4712static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4713 struct cgroup *cont)
4714{
4715 mem_cgroup_sockets_destroy(cont, ss);
4716}
e5671dfa
GC
4717#else
4718static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4719{
4720 return 0;
4721}
d1a4c0b3
GC
4722
4723static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4724 struct cgroup *cont)
4725{
4726}
e5671dfa
GC
4727#endif
4728
8cdea7c0
BS
4729static struct cftype mem_cgroup_files[] = {
4730 {
0eea1030 4731 .name = "usage_in_bytes",
8c7c6e34 4732 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4733 .read_u64 = mem_cgroup_read,
9490ff27
KH
4734 .register_event = mem_cgroup_usage_register_event,
4735 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4736 },
c84872e1
PE
4737 {
4738 .name = "max_usage_in_bytes",
8c7c6e34 4739 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4740 .trigger = mem_cgroup_reset,
c84872e1
PE
4741 .read_u64 = mem_cgroup_read,
4742 },
8cdea7c0 4743 {
0eea1030 4744 .name = "limit_in_bytes",
8c7c6e34 4745 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4746 .write_string = mem_cgroup_write,
2c3daa72 4747 .read_u64 = mem_cgroup_read,
8cdea7c0 4748 },
296c81d8
BS
4749 {
4750 .name = "soft_limit_in_bytes",
4751 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4752 .write_string = mem_cgroup_write,
4753 .read_u64 = mem_cgroup_read,
4754 },
8cdea7c0
BS
4755 {
4756 .name = "failcnt",
8c7c6e34 4757 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4758 .trigger = mem_cgroup_reset,
2c3daa72 4759 .read_u64 = mem_cgroup_read,
8cdea7c0 4760 },
d2ceb9b7
KH
4761 {
4762 .name = "stat",
c64745cf 4763 .read_map = mem_control_stat_show,
d2ceb9b7 4764 },
c1e862c1
KH
4765 {
4766 .name = "force_empty",
4767 .trigger = mem_cgroup_force_empty_write,
4768 },
18f59ea7
BS
4769 {
4770 .name = "use_hierarchy",
4771 .write_u64 = mem_cgroup_hierarchy_write,
4772 .read_u64 = mem_cgroup_hierarchy_read,
4773 },
a7885eb8
KM
4774 {
4775 .name = "swappiness",
4776 .read_u64 = mem_cgroup_swappiness_read,
4777 .write_u64 = mem_cgroup_swappiness_write,
4778 },
7dc74be0
DN
4779 {
4780 .name = "move_charge_at_immigrate",
4781 .read_u64 = mem_cgroup_move_charge_read,
4782 .write_u64 = mem_cgroup_move_charge_write,
4783 },
9490ff27
KH
4784 {
4785 .name = "oom_control",
3c11ecf4
KH
4786 .read_map = mem_cgroup_oom_control_read,
4787 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4788 .register_event = mem_cgroup_oom_register_event,
4789 .unregister_event = mem_cgroup_oom_unregister_event,
4790 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4791 },
406eb0c9
YH
4792#ifdef CONFIG_NUMA
4793 {
4794 .name = "numa_stat",
4795 .open = mem_control_numa_stat_open,
89577127 4796 .mode = S_IRUGO,
406eb0c9
YH
4797 },
4798#endif
8cdea7c0
BS
4799};
4800
8c7c6e34
KH
4801#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4802static struct cftype memsw_cgroup_files[] = {
4803 {
4804 .name = "memsw.usage_in_bytes",
4805 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4806 .read_u64 = mem_cgroup_read,
9490ff27
KH
4807 .register_event = mem_cgroup_usage_register_event,
4808 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4809 },
4810 {
4811 .name = "memsw.max_usage_in_bytes",
4812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4813 .trigger = mem_cgroup_reset,
4814 .read_u64 = mem_cgroup_read,
4815 },
4816 {
4817 .name = "memsw.limit_in_bytes",
4818 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4819 .write_string = mem_cgroup_write,
4820 .read_u64 = mem_cgroup_read,
4821 },
4822 {
4823 .name = "memsw.failcnt",
4824 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4825 .trigger = mem_cgroup_reset,
4826 .read_u64 = mem_cgroup_read,
4827 },
4828};
4829
4830static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4831{
4832 if (!do_swap_account)
4833 return 0;
4834 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4835 ARRAY_SIZE(memsw_cgroup_files));
4836};
4837#else
4838static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4839{
4840 return 0;
4841}
4842#endif
4843
c0ff4b85 4844static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4845{
4846 struct mem_cgroup_per_node *pn;
1ecaab2b 4847 struct mem_cgroup_per_zone *mz;
b69408e8 4848 enum lru_list l;
41e3355d 4849 int zone, tmp = node;
1ecaab2b
KH
4850 /*
4851 * This routine is called against possible nodes.
4852 * But it's BUG to call kmalloc() against offline node.
4853 *
4854 * TODO: this routine can waste much memory for nodes which will
4855 * never be onlined. It's better to use memory hotplug callback
4856 * function.
4857 */
41e3355d
KH
4858 if (!node_state(node, N_NORMAL_MEMORY))
4859 tmp = -1;
17295c88 4860 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4861 if (!pn)
4862 return 1;
1ecaab2b 4863
1ecaab2b
KH
4864 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4865 mz = &pn->zoneinfo[zone];
b69408e8
CL
4866 for_each_lru(l)
4867 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4868 mz->usage_in_excess = 0;
4e416953 4869 mz->on_tree = false;
c0ff4b85 4870 mz->mem = memcg;
1ecaab2b 4871 }
0a619e58 4872 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4873 return 0;
4874}
4875
c0ff4b85 4876static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4877{
c0ff4b85 4878 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4879}
4880
33327948
KH
4881static struct mem_cgroup *mem_cgroup_alloc(void)
4882{
4883 struct mem_cgroup *mem;
c62b1a3b 4884 int size = sizeof(struct mem_cgroup);
33327948 4885
c62b1a3b 4886 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4887 if (size < PAGE_SIZE)
17295c88 4888 mem = kzalloc(size, GFP_KERNEL);
33327948 4889 else
17295c88 4890 mem = vzalloc(size);
33327948 4891
e7bbcdf3
DC
4892 if (!mem)
4893 return NULL;
4894
c62b1a3b 4895 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4896 if (!mem->stat)
4897 goto out_free;
711d3d2c 4898 spin_lock_init(&mem->pcp_counter_lock);
33327948 4899 return mem;
d2e61b8d
DC
4900
4901out_free:
4902 if (size < PAGE_SIZE)
4903 kfree(mem);
4904 else
4905 vfree(mem);
4906 return NULL;
33327948
KH
4907}
4908
8c7c6e34
KH
4909/*
4910 * At destroying mem_cgroup, references from swap_cgroup can remain.
4911 * (scanning all at force_empty is too costly...)
4912 *
4913 * Instead of clearing all references at force_empty, we remember
4914 * the number of reference from swap_cgroup and free mem_cgroup when
4915 * it goes down to 0.
4916 *
8c7c6e34
KH
4917 * Removal of cgroup itself succeeds regardless of refs from swap.
4918 */
4919
c0ff4b85 4920static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4921{
08e552c6
KH
4922 int node;
4923
c0ff4b85
R
4924 mem_cgroup_remove_from_trees(memcg);
4925 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4926
08e552c6 4927 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4928 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4929
c0ff4b85 4930 free_percpu(memcg->stat);
c62b1a3b 4931 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4932 kfree(memcg);
33327948 4933 else
c0ff4b85 4934 vfree(memcg);
33327948
KH
4935}
4936
c0ff4b85 4937static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4938{
c0ff4b85 4939 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4940}
4941
c0ff4b85 4942static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4943{
c0ff4b85
R
4944 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4945 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4946 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4947 if (parent)
4948 mem_cgroup_put(parent);
4949 }
8c7c6e34
KH
4950}
4951
c0ff4b85 4952static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4953{
c0ff4b85 4954 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4955}
4956
7bcc1bb1
DN
4957/*
4958 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4959 */
e1aab161 4960struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4961{
c0ff4b85 4962 if (!memcg->res.parent)
7bcc1bb1 4963 return NULL;
c0ff4b85 4964 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4965}
e1aab161 4966EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4967
c077719b
KH
4968#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4969static void __init enable_swap_cgroup(void)
4970{
f8d66542 4971 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4972 do_swap_account = 1;
4973}
4974#else
4975static void __init enable_swap_cgroup(void)
4976{
4977}
4978#endif
4979
f64c3f54
BS
4980static int mem_cgroup_soft_limit_tree_init(void)
4981{
4982 struct mem_cgroup_tree_per_node *rtpn;
4983 struct mem_cgroup_tree_per_zone *rtpz;
4984 int tmp, node, zone;
4985
4986 for_each_node_state(node, N_POSSIBLE) {
4987 tmp = node;
4988 if (!node_state(node, N_NORMAL_MEMORY))
4989 tmp = -1;
4990 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4991 if (!rtpn)
4992 return 1;
4993
4994 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4995
4996 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4997 rtpz = &rtpn->rb_tree_per_zone[zone];
4998 rtpz->rb_root = RB_ROOT;
4999 spin_lock_init(&rtpz->lock);
5000 }
5001 }
5002 return 0;
5003}
5004
0eb253e2 5005static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5006mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5007{
c0ff4b85 5008 struct mem_cgroup *memcg, *parent;
04046e1a 5009 long error = -ENOMEM;
6d12e2d8 5010 int node;
8cdea7c0 5011
c0ff4b85
R
5012 memcg = mem_cgroup_alloc();
5013 if (!memcg)
04046e1a 5014 return ERR_PTR(error);
78fb7466 5015
6d12e2d8 5016 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 5017 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5018 goto free_out;
f64c3f54 5019
c077719b 5020 /* root ? */
28dbc4b6 5021 if (cont->parent == NULL) {
cdec2e42 5022 int cpu;
c077719b 5023 enable_swap_cgroup();
28dbc4b6 5024 parent = NULL;
f64c3f54
BS
5025 if (mem_cgroup_soft_limit_tree_init())
5026 goto free_out;
a41c58a6 5027 root_mem_cgroup = memcg;
cdec2e42
KH
5028 for_each_possible_cpu(cpu) {
5029 struct memcg_stock_pcp *stock =
5030 &per_cpu(memcg_stock, cpu);
5031 INIT_WORK(&stock->work, drain_local_stock);
5032 }
711d3d2c 5033 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5034 } else {
28dbc4b6 5035 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5036 memcg->use_hierarchy = parent->use_hierarchy;
5037 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5038 }
28dbc4b6 5039
18f59ea7 5040 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5041 res_counter_init(&memcg->res, &parent->res);
5042 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5043 /*
5044 * We increment refcnt of the parent to ensure that we can
5045 * safely access it on res_counter_charge/uncharge.
5046 * This refcnt will be decremented when freeing this
5047 * mem_cgroup(see mem_cgroup_put).
5048 */
5049 mem_cgroup_get(parent);
18f59ea7 5050 } else {
c0ff4b85
R
5051 res_counter_init(&memcg->res, NULL);
5052 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5053 }
c0ff4b85
R
5054 memcg->last_scanned_node = MAX_NUMNODES;
5055 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5056
a7885eb8 5057 if (parent)
c0ff4b85
R
5058 memcg->swappiness = mem_cgroup_swappiness(parent);
5059 atomic_set(&memcg->refcnt, 1);
5060 memcg->move_charge_at_immigrate = 0;
5061 mutex_init(&memcg->thresholds_lock);
5062 return &memcg->css;
6d12e2d8 5063free_out:
c0ff4b85 5064 __mem_cgroup_free(memcg);
04046e1a 5065 return ERR_PTR(error);
8cdea7c0
BS
5066}
5067
ec64f515 5068static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5069 struct cgroup *cont)
5070{
c0ff4b85 5071 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5072
c0ff4b85 5073 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5074}
5075
8cdea7c0
BS
5076static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5077 struct cgroup *cont)
5078{
c0ff4b85 5079 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5080
d1a4c0b3
GC
5081 kmem_cgroup_destroy(ss, cont);
5082
c0ff4b85 5083 mem_cgroup_put(memcg);
8cdea7c0
BS
5084}
5085
5086static int mem_cgroup_populate(struct cgroup_subsys *ss,
5087 struct cgroup *cont)
5088{
8c7c6e34
KH
5089 int ret;
5090
5091 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5092 ARRAY_SIZE(mem_cgroup_files));
5093
5094 if (!ret)
5095 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5096
5097 if (!ret)
5098 ret = register_kmem_files(cont, ss);
5099
8c7c6e34 5100 return ret;
8cdea7c0
BS
5101}
5102
02491447 5103#ifdef CONFIG_MMU
7dc74be0 5104/* Handlers for move charge at task migration. */
854ffa8d
DN
5105#define PRECHARGE_COUNT_AT_ONCE 256
5106static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5107{
854ffa8d
DN
5108 int ret = 0;
5109 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5110 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5111
c0ff4b85 5112 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5113 mc.precharge += count;
5114 /* we don't need css_get for root */
5115 return ret;
5116 }
5117 /* try to charge at once */
5118 if (count > 1) {
5119 struct res_counter *dummy;
5120 /*
c0ff4b85 5121 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5122 * by cgroup_lock_live_cgroup() that it is not removed and we
5123 * are still under the same cgroup_mutex. So we can postpone
5124 * css_get().
5125 */
c0ff4b85 5126 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5127 goto one_by_one;
c0ff4b85 5128 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5129 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5130 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5131 goto one_by_one;
5132 }
5133 mc.precharge += count;
854ffa8d
DN
5134 return ret;
5135 }
5136one_by_one:
5137 /* fall back to one by one charge */
5138 while (count--) {
5139 if (signal_pending(current)) {
5140 ret = -EINTR;
5141 break;
5142 }
5143 if (!batch_count--) {
5144 batch_count = PRECHARGE_COUNT_AT_ONCE;
5145 cond_resched();
5146 }
c0ff4b85
R
5147 ret = __mem_cgroup_try_charge(NULL,
5148 GFP_KERNEL, 1, &memcg, false);
5149 if (ret || !memcg)
854ffa8d
DN
5150 /* mem_cgroup_clear_mc() will do uncharge later */
5151 return -ENOMEM;
5152 mc.precharge++;
5153 }
4ffef5fe
DN
5154 return ret;
5155}
5156
5157/**
5158 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5159 * @vma: the vma the pte to be checked belongs
5160 * @addr: the address corresponding to the pte to be checked
5161 * @ptent: the pte to be checked
02491447 5162 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5163 *
5164 * Returns
5165 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5166 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5167 * move charge. if @target is not NULL, the page is stored in target->page
5168 * with extra refcnt got(Callers should handle it).
02491447
DN
5169 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5170 * target for charge migration. if @target is not NULL, the entry is stored
5171 * in target->ent.
4ffef5fe
DN
5172 *
5173 * Called with pte lock held.
5174 */
4ffef5fe
DN
5175union mc_target {
5176 struct page *page;
02491447 5177 swp_entry_t ent;
4ffef5fe
DN
5178};
5179
4ffef5fe
DN
5180enum mc_target_type {
5181 MC_TARGET_NONE, /* not used */
5182 MC_TARGET_PAGE,
02491447 5183 MC_TARGET_SWAP,
4ffef5fe
DN
5184};
5185
90254a65
DN
5186static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5187 unsigned long addr, pte_t ptent)
4ffef5fe 5188{
90254a65 5189 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5190
90254a65
DN
5191 if (!page || !page_mapped(page))
5192 return NULL;
5193 if (PageAnon(page)) {
5194 /* we don't move shared anon */
5195 if (!move_anon() || page_mapcount(page) > 2)
5196 return NULL;
87946a72
DN
5197 } else if (!move_file())
5198 /* we ignore mapcount for file pages */
90254a65
DN
5199 return NULL;
5200 if (!get_page_unless_zero(page))
5201 return NULL;
5202
5203 return page;
5204}
5205
5206static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5207 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5208{
5209 int usage_count;
5210 struct page *page = NULL;
5211 swp_entry_t ent = pte_to_swp_entry(ptent);
5212
5213 if (!move_anon() || non_swap_entry(ent))
5214 return NULL;
5215 usage_count = mem_cgroup_count_swap_user(ent, &page);
5216 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5217 if (page)
5218 put_page(page);
90254a65 5219 return NULL;
02491447 5220 }
90254a65
DN
5221 if (do_swap_account)
5222 entry->val = ent.val;
5223
5224 return page;
5225}
5226
87946a72
DN
5227static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5228 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5229{
5230 struct page *page = NULL;
5231 struct inode *inode;
5232 struct address_space *mapping;
5233 pgoff_t pgoff;
5234
5235 if (!vma->vm_file) /* anonymous vma */
5236 return NULL;
5237 if (!move_file())
5238 return NULL;
5239
5240 inode = vma->vm_file->f_path.dentry->d_inode;
5241 mapping = vma->vm_file->f_mapping;
5242 if (pte_none(ptent))
5243 pgoff = linear_page_index(vma, addr);
5244 else /* pte_file(ptent) is true */
5245 pgoff = pte_to_pgoff(ptent);
5246
5247 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5248 page = find_get_page(mapping, pgoff);
5249
5250#ifdef CONFIG_SWAP
5251 /* shmem/tmpfs may report page out on swap: account for that too. */
5252 if (radix_tree_exceptional_entry(page)) {
5253 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5254 if (do_swap_account)
aa3b1895
HD
5255 *entry = swap;
5256 page = find_get_page(&swapper_space, swap.val);
87946a72 5257 }
aa3b1895 5258#endif
87946a72
DN
5259 return page;
5260}
5261
90254a65
DN
5262static int is_target_pte_for_mc(struct vm_area_struct *vma,
5263 unsigned long addr, pte_t ptent, union mc_target *target)
5264{
5265 struct page *page = NULL;
5266 struct page_cgroup *pc;
5267 int ret = 0;
5268 swp_entry_t ent = { .val = 0 };
5269
5270 if (pte_present(ptent))
5271 page = mc_handle_present_pte(vma, addr, ptent);
5272 else if (is_swap_pte(ptent))
5273 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5274 else if (pte_none(ptent) || pte_file(ptent))
5275 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5276
5277 if (!page && !ent.val)
5278 return 0;
02491447
DN
5279 if (page) {
5280 pc = lookup_page_cgroup(page);
5281 /*
5282 * Do only loose check w/o page_cgroup lock.
5283 * mem_cgroup_move_account() checks the pc is valid or not under
5284 * the lock.
5285 */
5286 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5287 ret = MC_TARGET_PAGE;
5288 if (target)
5289 target->page = page;
5290 }
5291 if (!ret || !target)
5292 put_page(page);
5293 }
90254a65
DN
5294 /* There is a swap entry and a page doesn't exist or isn't charged */
5295 if (ent.val && !ret &&
7f0f1546
KH
5296 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5297 ret = MC_TARGET_SWAP;
5298 if (target)
5299 target->ent = ent;
4ffef5fe 5300 }
4ffef5fe
DN
5301 return ret;
5302}
5303
5304static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5305 unsigned long addr, unsigned long end,
5306 struct mm_walk *walk)
5307{
5308 struct vm_area_struct *vma = walk->private;
5309 pte_t *pte;
5310 spinlock_t *ptl;
5311
03319327
DH
5312 split_huge_page_pmd(walk->mm, pmd);
5313
4ffef5fe
DN
5314 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5315 for (; addr != end; pte++, addr += PAGE_SIZE)
5316 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5317 mc.precharge++; /* increment precharge temporarily */
5318 pte_unmap_unlock(pte - 1, ptl);
5319 cond_resched();
5320
7dc74be0
DN
5321 return 0;
5322}
5323
4ffef5fe
DN
5324static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5325{
5326 unsigned long precharge;
5327 struct vm_area_struct *vma;
5328
dfe076b0 5329 down_read(&mm->mmap_sem);
4ffef5fe
DN
5330 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5331 struct mm_walk mem_cgroup_count_precharge_walk = {
5332 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5333 .mm = mm,
5334 .private = vma,
5335 };
5336 if (is_vm_hugetlb_page(vma))
5337 continue;
4ffef5fe
DN
5338 walk_page_range(vma->vm_start, vma->vm_end,
5339 &mem_cgroup_count_precharge_walk);
5340 }
dfe076b0 5341 up_read(&mm->mmap_sem);
4ffef5fe
DN
5342
5343 precharge = mc.precharge;
5344 mc.precharge = 0;
5345
5346 return precharge;
5347}
5348
4ffef5fe
DN
5349static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5350{
dfe076b0
DN
5351 unsigned long precharge = mem_cgroup_count_precharge(mm);
5352
5353 VM_BUG_ON(mc.moving_task);
5354 mc.moving_task = current;
5355 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5356}
5357
dfe076b0
DN
5358/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5359static void __mem_cgroup_clear_mc(void)
4ffef5fe 5360{
2bd9bb20
KH
5361 struct mem_cgroup *from = mc.from;
5362 struct mem_cgroup *to = mc.to;
5363
4ffef5fe 5364 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5365 if (mc.precharge) {
5366 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5367 mc.precharge = 0;
5368 }
5369 /*
5370 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5371 * we must uncharge here.
5372 */
5373 if (mc.moved_charge) {
5374 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5375 mc.moved_charge = 0;
4ffef5fe 5376 }
483c30b5
DN
5377 /* we must fixup refcnts and charges */
5378 if (mc.moved_swap) {
483c30b5
DN
5379 /* uncharge swap account from the old cgroup */
5380 if (!mem_cgroup_is_root(mc.from))
5381 res_counter_uncharge(&mc.from->memsw,
5382 PAGE_SIZE * mc.moved_swap);
5383 __mem_cgroup_put(mc.from, mc.moved_swap);
5384
5385 if (!mem_cgroup_is_root(mc.to)) {
5386 /*
5387 * we charged both to->res and to->memsw, so we should
5388 * uncharge to->res.
5389 */
5390 res_counter_uncharge(&mc.to->res,
5391 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5392 }
5393 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5394 mc.moved_swap = 0;
5395 }
dfe076b0
DN
5396 memcg_oom_recover(from);
5397 memcg_oom_recover(to);
5398 wake_up_all(&mc.waitq);
5399}
5400
5401static void mem_cgroup_clear_mc(void)
5402{
5403 struct mem_cgroup *from = mc.from;
5404
5405 /*
5406 * we must clear moving_task before waking up waiters at the end of
5407 * task migration.
5408 */
5409 mc.moving_task = NULL;
5410 __mem_cgroup_clear_mc();
2bd9bb20 5411 spin_lock(&mc.lock);
4ffef5fe
DN
5412 mc.from = NULL;
5413 mc.to = NULL;
2bd9bb20 5414 spin_unlock(&mc.lock);
32047e2a 5415 mem_cgroup_end_move(from);
4ffef5fe
DN
5416}
5417
7dc74be0
DN
5418static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5419 struct cgroup *cgroup,
2f7ee569 5420 struct cgroup_taskset *tset)
7dc74be0 5421{
2f7ee569 5422 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5423 int ret = 0;
c0ff4b85 5424 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5425
c0ff4b85 5426 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5427 struct mm_struct *mm;
5428 struct mem_cgroup *from = mem_cgroup_from_task(p);
5429
c0ff4b85 5430 VM_BUG_ON(from == memcg);
7dc74be0
DN
5431
5432 mm = get_task_mm(p);
5433 if (!mm)
5434 return 0;
7dc74be0 5435 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5436 if (mm->owner == p) {
5437 VM_BUG_ON(mc.from);
5438 VM_BUG_ON(mc.to);
5439 VM_BUG_ON(mc.precharge);
854ffa8d 5440 VM_BUG_ON(mc.moved_charge);
483c30b5 5441 VM_BUG_ON(mc.moved_swap);
32047e2a 5442 mem_cgroup_start_move(from);
2bd9bb20 5443 spin_lock(&mc.lock);
4ffef5fe 5444 mc.from = from;
c0ff4b85 5445 mc.to = memcg;
2bd9bb20 5446 spin_unlock(&mc.lock);
dfe076b0 5447 /* We set mc.moving_task later */
4ffef5fe
DN
5448
5449 ret = mem_cgroup_precharge_mc(mm);
5450 if (ret)
5451 mem_cgroup_clear_mc();
dfe076b0
DN
5452 }
5453 mmput(mm);
7dc74be0
DN
5454 }
5455 return ret;
5456}
5457
5458static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5459 struct cgroup *cgroup,
2f7ee569 5460 struct cgroup_taskset *tset)
7dc74be0 5461{
4ffef5fe 5462 mem_cgroup_clear_mc();
7dc74be0
DN
5463}
5464
4ffef5fe
DN
5465static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5466 unsigned long addr, unsigned long end,
5467 struct mm_walk *walk)
7dc74be0 5468{
4ffef5fe
DN
5469 int ret = 0;
5470 struct vm_area_struct *vma = walk->private;
5471 pte_t *pte;
5472 spinlock_t *ptl;
5473
03319327 5474 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5475retry:
5476 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5477 for (; addr != end; addr += PAGE_SIZE) {
5478 pte_t ptent = *(pte++);
5479 union mc_target target;
5480 int type;
5481 struct page *page;
5482 struct page_cgroup *pc;
02491447 5483 swp_entry_t ent;
4ffef5fe
DN
5484
5485 if (!mc.precharge)
5486 break;
5487
5488 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5489 switch (type) {
5490 case MC_TARGET_PAGE:
5491 page = target.page;
5492 if (isolate_lru_page(page))
5493 goto put;
5494 pc = lookup_page_cgroup(page);
7ec99d62
JW
5495 if (!mem_cgroup_move_account(page, 1, pc,
5496 mc.from, mc.to, false)) {
4ffef5fe 5497 mc.precharge--;
854ffa8d
DN
5498 /* we uncharge from mc.from later. */
5499 mc.moved_charge++;
4ffef5fe
DN
5500 }
5501 putback_lru_page(page);
5502put: /* is_target_pte_for_mc() gets the page */
5503 put_page(page);
5504 break;
02491447
DN
5505 case MC_TARGET_SWAP:
5506 ent = target.ent;
483c30b5
DN
5507 if (!mem_cgroup_move_swap_account(ent,
5508 mc.from, mc.to, false)) {
02491447 5509 mc.precharge--;
483c30b5
DN
5510 /* we fixup refcnts and charges later. */
5511 mc.moved_swap++;
5512 }
02491447 5513 break;
4ffef5fe
DN
5514 default:
5515 break;
5516 }
5517 }
5518 pte_unmap_unlock(pte - 1, ptl);
5519 cond_resched();
5520
5521 if (addr != end) {
5522 /*
5523 * We have consumed all precharges we got in can_attach().
5524 * We try charge one by one, but don't do any additional
5525 * charges to mc.to if we have failed in charge once in attach()
5526 * phase.
5527 */
854ffa8d 5528 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5529 if (!ret)
5530 goto retry;
5531 }
5532
5533 return ret;
5534}
5535
5536static void mem_cgroup_move_charge(struct mm_struct *mm)
5537{
5538 struct vm_area_struct *vma;
5539
5540 lru_add_drain_all();
dfe076b0
DN
5541retry:
5542 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5543 /*
5544 * Someone who are holding the mmap_sem might be waiting in
5545 * waitq. So we cancel all extra charges, wake up all waiters,
5546 * and retry. Because we cancel precharges, we might not be able
5547 * to move enough charges, but moving charge is a best-effort
5548 * feature anyway, so it wouldn't be a big problem.
5549 */
5550 __mem_cgroup_clear_mc();
5551 cond_resched();
5552 goto retry;
5553 }
4ffef5fe
DN
5554 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5555 int ret;
5556 struct mm_walk mem_cgroup_move_charge_walk = {
5557 .pmd_entry = mem_cgroup_move_charge_pte_range,
5558 .mm = mm,
5559 .private = vma,
5560 };
5561 if (is_vm_hugetlb_page(vma))
5562 continue;
4ffef5fe
DN
5563 ret = walk_page_range(vma->vm_start, vma->vm_end,
5564 &mem_cgroup_move_charge_walk);
5565 if (ret)
5566 /*
5567 * means we have consumed all precharges and failed in
5568 * doing additional charge. Just abandon here.
5569 */
5570 break;
5571 }
dfe076b0 5572 up_read(&mm->mmap_sem);
7dc74be0
DN
5573}
5574
67e465a7
BS
5575static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5576 struct cgroup *cont,
2f7ee569 5577 struct cgroup_taskset *tset)
67e465a7 5578{
2f7ee569 5579 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5580 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5581
dfe076b0 5582 if (mm) {
a433658c
KM
5583 if (mc.to)
5584 mem_cgroup_move_charge(mm);
5585 put_swap_token(mm);
dfe076b0
DN
5586 mmput(mm);
5587 }
a433658c
KM
5588 if (mc.to)
5589 mem_cgroup_clear_mc();
67e465a7 5590}
5cfb80a7
DN
5591#else /* !CONFIG_MMU */
5592static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5593 struct cgroup *cgroup,
2f7ee569 5594 struct cgroup_taskset *tset)
5cfb80a7
DN
5595{
5596 return 0;
5597}
5598static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5599 struct cgroup *cgroup,
2f7ee569 5600 struct cgroup_taskset *tset)
5cfb80a7
DN
5601{
5602}
5603static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5604 struct cgroup *cont,
2f7ee569 5605 struct cgroup_taskset *tset)
5cfb80a7
DN
5606{
5607}
5608#endif
67e465a7 5609
8cdea7c0
BS
5610struct cgroup_subsys mem_cgroup_subsys = {
5611 .name = "memory",
5612 .subsys_id = mem_cgroup_subsys_id,
5613 .create = mem_cgroup_create,
df878fb0 5614 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5615 .destroy = mem_cgroup_destroy,
5616 .populate = mem_cgroup_populate,
7dc74be0
DN
5617 .can_attach = mem_cgroup_can_attach,
5618 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5619 .attach = mem_cgroup_move_task,
6d12e2d8 5620 .early_init = 0,
04046e1a 5621 .use_id = 1,
8cdea7c0 5622};
c077719b
KH
5623
5624#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5625static int __init enable_swap_account(char *s)
5626{
5627 /* consider enabled if no parameter or 1 is given */
a2c8990a 5628 if (!strcmp(s, "1"))
a42c390c 5629 really_do_swap_account = 1;
a2c8990a 5630 else if (!strcmp(s, "0"))
a42c390c
MH
5631 really_do_swap_account = 0;
5632 return 1;
5633}
a2c8990a 5634__setup("swapaccount=", enable_swap_account);
c077719b 5635
c077719b 5636#endif