]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
memcg: consolidate memory cgroup lru stat functions
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
072441e2 38#include <linux/shmem_fs.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
8cdea7c0 53
8697d331
BS
54#include <asm/uaccess.h>
55
cc8e970c
KM
56#include <trace/events/vmscan.h>
57
a181b0e8 58struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 59#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 60struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 61
c077719b 62#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 63/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 64int do_swap_account __read_mostly;
a42c390c
MH
65
66/* for remember boot option*/
67#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
68static int really_do_swap_account __initdata = 1;
69#else
70static int really_do_swap_account __initdata = 0;
71#endif
72
c077719b
KH
73#else
74#define do_swap_account (0)
75#endif
76
77
d52aa412
KH
78/*
79 * Statistics for memory cgroup.
80 */
81enum mem_cgroup_stat_index {
82 /*
83 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
84 */
85 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 86 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 87 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 88 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 89 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 90 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
e9f8974f
JW
94enum mem_cgroup_events_index {
95 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
96 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
97 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
98 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
99 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
100 MEM_CGROUP_EVENTS_NSTATS,
101};
7a159cc9
JW
102/*
103 * Per memcg event counter is incremented at every pagein/pageout. With THP,
104 * it will be incremated by the number of pages. This counter is used for
105 * for trigger some periodic events. This is straightforward and better
106 * than using jiffies etc. to handle periodic memcg event.
107 */
108enum mem_cgroup_events_target {
109 MEM_CGROUP_TARGET_THRESH,
110 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 111 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
112 MEM_CGROUP_NTARGETS,
113};
114#define THRESHOLDS_EVENTS_TARGET (128)
115#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 116#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 117
d52aa412 118struct mem_cgroup_stat_cpu {
7a159cc9 119 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 120 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 121 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
122};
123
6d12e2d8
KH
124/*
125 * per-zone information in memory controller.
126 */
6d12e2d8 127struct mem_cgroup_per_zone {
072c56c1
KH
128 /*
129 * spin_lock to protect the per cgroup LRU
130 */
b69408e8
CL
131 struct list_head lists[NR_LRU_LISTS];
132 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
133
134 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
135 struct rb_node tree_node; /* RB tree node */
136 unsigned long long usage_in_excess;/* Set to the value by which */
137 /* the soft limit is exceeded*/
138 bool on_tree;
4e416953
BS
139 struct mem_cgroup *mem; /* Back pointer, we cannot */
140 /* use container_of */
6d12e2d8
KH
141};
142/* Macro for accessing counter */
143#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
144
145struct mem_cgroup_per_node {
146 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
147};
148
149struct mem_cgroup_lru_info {
150 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
151};
152
f64c3f54
BS
153/*
154 * Cgroups above their limits are maintained in a RB-Tree, independent of
155 * their hierarchy representation
156 */
157
158struct mem_cgroup_tree_per_zone {
159 struct rb_root rb_root;
160 spinlock_t lock;
161};
162
163struct mem_cgroup_tree_per_node {
164 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_tree {
168 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
169};
170
171static struct mem_cgroup_tree soft_limit_tree __read_mostly;
172
2e72b634
KS
173struct mem_cgroup_threshold {
174 struct eventfd_ctx *eventfd;
175 u64 threshold;
176};
177
9490ff27 178/* For threshold */
2e72b634
KS
179struct mem_cgroup_threshold_ary {
180 /* An array index points to threshold just below usage. */
5407a562 181 int current_threshold;
2e72b634
KS
182 /* Size of entries[] */
183 unsigned int size;
184 /* Array of thresholds */
185 struct mem_cgroup_threshold entries[0];
186};
2c488db2
KS
187
188struct mem_cgroup_thresholds {
189 /* Primary thresholds array */
190 struct mem_cgroup_threshold_ary *primary;
191 /*
192 * Spare threshold array.
193 * This is needed to make mem_cgroup_unregister_event() "never fail".
194 * It must be able to store at least primary->size - 1 entries.
195 */
196 struct mem_cgroup_threshold_ary *spare;
197};
198
9490ff27
KH
199/* for OOM */
200struct mem_cgroup_eventfd_list {
201 struct list_head list;
202 struct eventfd_ctx *eventfd;
203};
2e72b634 204
2e72b634 205static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 206static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 207
8cdea7c0
BS
208/*
209 * The memory controller data structure. The memory controller controls both
210 * page cache and RSS per cgroup. We would eventually like to provide
211 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
212 * to help the administrator determine what knobs to tune.
213 *
214 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
215 * we hit the water mark. May be even add a low water mark, such that
216 * no reclaim occurs from a cgroup at it's low water mark, this is
217 * a feature that will be implemented much later in the future.
8cdea7c0
BS
218 */
219struct mem_cgroup {
220 struct cgroup_subsys_state css;
221 /*
222 * the counter to account for memory usage
223 */
224 struct res_counter res;
8c7c6e34
KH
225 /*
226 * the counter to account for mem+swap usage.
227 */
228 struct res_counter memsw;
78fb7466
PE
229 /*
230 * Per cgroup active and inactive list, similar to the
231 * per zone LRU lists.
78fb7466 232 */
6d12e2d8 233 struct mem_cgroup_lru_info info;
6d61ef40 234 /*
af901ca1 235 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 236 * reclaimed from.
6d61ef40 237 */
04046e1a 238 int last_scanned_child;
889976db
YH
239 int last_scanned_node;
240#if MAX_NUMNODES > 1
241 nodemask_t scan_nodes;
453a9bf3
KH
242 atomic_t numainfo_events;
243 atomic_t numainfo_updating;
889976db 244#endif
18f59ea7
BS
245 /*
246 * Should the accounting and control be hierarchical, per subtree?
247 */
248 bool use_hierarchy;
867578cb 249 atomic_t oom_lock;
8c7c6e34 250 atomic_t refcnt;
14797e23 251
1f4c025b 252 int swappiness;
3c11ecf4
KH
253 /* OOM-Killer disable */
254 int oom_kill_disable;
a7885eb8 255
22a668d7
KH
256 /* set when res.limit == memsw.limit */
257 bool memsw_is_minimum;
258
2e72b634
KS
259 /* protect arrays of thresholds */
260 struct mutex thresholds_lock;
261
262 /* thresholds for memory usage. RCU-protected */
2c488db2 263 struct mem_cgroup_thresholds thresholds;
907860ed 264
2e72b634 265 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 266 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 267
9490ff27
KH
268 /* For oom notifier event fd */
269 struct list_head oom_notify;
270
7dc74be0
DN
271 /*
272 * Should we move charges of a task when a task is moved into this
273 * mem_cgroup ? And what type of charges should we move ?
274 */
275 unsigned long move_charge_at_immigrate;
d52aa412 276 /*
c62b1a3b 277 * percpu counter.
d52aa412 278 */
c62b1a3b 279 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
280 /*
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
283 */
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
8cdea7c0
BS
286};
287
7dc74be0
DN
288/* Stuffs for move charges at task migration. */
289/*
290 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
291 * left-shifted bitmap of these types.
292 */
293enum move_type {
4ffef5fe 294 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 295 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
296 NR_MOVE_TYPE,
297};
298
4ffef5fe
DN
299/* "mc" and its members are protected by cgroup_mutex */
300static struct move_charge_struct {
b1dd693e 301 spinlock_t lock; /* for from, to */
4ffef5fe
DN
302 struct mem_cgroup *from;
303 struct mem_cgroup *to;
304 unsigned long precharge;
854ffa8d 305 unsigned long moved_charge;
483c30b5 306 unsigned long moved_swap;
8033b97c
DN
307 struct task_struct *moving_task; /* a task moving charges */
308 wait_queue_head_t waitq; /* a waitq for other context */
309} mc = {
2bd9bb20 310 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
311 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
312};
4ffef5fe 313
90254a65
DN
314static bool move_anon(void)
315{
316 return test_bit(MOVE_CHARGE_TYPE_ANON,
317 &mc.to->move_charge_at_immigrate);
318}
319
87946a72
DN
320static bool move_file(void)
321{
322 return test_bit(MOVE_CHARGE_TYPE_FILE,
323 &mc.to->move_charge_at_immigrate);
324}
325
4e416953
BS
326/*
327 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
328 * limit reclaim to prevent infinite loops, if they ever occur.
329 */
330#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
331#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
332
217bc319
KH
333enum charge_type {
334 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
335 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 336 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 337 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 338 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 339 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
340 NR_CHARGE_TYPE,
341};
342
8c7c6e34
KH
343/* for encoding cft->private value on file */
344#define _MEM (0)
345#define _MEMSWAP (1)
9490ff27 346#define _OOM_TYPE (2)
8c7c6e34
KH
347#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
348#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
349#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
350/* Used for OOM nofiier */
351#define OOM_CONTROL (0)
8c7c6e34 352
75822b44
BS
353/*
354 * Reclaim flags for mem_cgroup_hierarchical_reclaim
355 */
356#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
357#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
358#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
359#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
360#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
361#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 362
8c7c6e34
KH
363static void mem_cgroup_get(struct mem_cgroup *mem);
364static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 365static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 366static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 367
f64c3f54
BS
368static struct mem_cgroup_per_zone *
369mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
370{
371 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
372}
373
d324236b
WF
374struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
375{
376 return &mem->css;
377}
378
f64c3f54 379static struct mem_cgroup_per_zone *
97a6c37b 380page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 381{
97a6c37b
JW
382 int nid = page_to_nid(page);
383 int zid = page_zonenum(page);
f64c3f54 384
f64c3f54
BS
385 return mem_cgroup_zoneinfo(mem, nid, zid);
386}
387
388static struct mem_cgroup_tree_per_zone *
389soft_limit_tree_node_zone(int nid, int zid)
390{
391 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
392}
393
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_from_page(struct page *page)
396{
397 int nid = page_to_nid(page);
398 int zid = page_zonenum(page);
399
400 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
401}
402
403static void
4e416953 404__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 405 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
406 struct mem_cgroup_tree_per_zone *mctz,
407 unsigned long long new_usage_in_excess)
f64c3f54
BS
408{
409 struct rb_node **p = &mctz->rb_root.rb_node;
410 struct rb_node *parent = NULL;
411 struct mem_cgroup_per_zone *mz_node;
412
413 if (mz->on_tree)
414 return;
415
ef8745c1
KH
416 mz->usage_in_excess = new_usage_in_excess;
417 if (!mz->usage_in_excess)
418 return;
f64c3f54
BS
419 while (*p) {
420 parent = *p;
421 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
422 tree_node);
423 if (mz->usage_in_excess < mz_node->usage_in_excess)
424 p = &(*p)->rb_left;
425 /*
426 * We can't avoid mem cgroups that are over their soft
427 * limit by the same amount
428 */
429 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
430 p = &(*p)->rb_right;
431 }
432 rb_link_node(&mz->tree_node, parent, p);
433 rb_insert_color(&mz->tree_node, &mctz->rb_root);
434 mz->on_tree = true;
4e416953
BS
435}
436
437static void
438__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 struct mem_cgroup_per_zone *mz,
440 struct mem_cgroup_tree_per_zone *mctz)
441{
442 if (!mz->on_tree)
443 return;
444 rb_erase(&mz->tree_node, &mctz->rb_root);
445 mz->on_tree = false;
446}
447
f64c3f54
BS
448static void
449mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
450 struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
452{
453 spin_lock(&mctz->lock);
4e416953 454 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
455 spin_unlock(&mctz->lock);
456}
457
f64c3f54
BS
458
459static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
460{
ef8745c1 461 unsigned long long excess;
f64c3f54
BS
462 struct mem_cgroup_per_zone *mz;
463 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
464 int nid = page_to_nid(page);
465 int zid = page_zonenum(page);
f64c3f54
BS
466 mctz = soft_limit_tree_from_page(page);
467
468 /*
4e649152
KH
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
f64c3f54 471 */
4e649152
KH
472 for (; mem; mem = parent_mem_cgroup(mem)) {
473 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 474 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
475 /*
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
478 */
ef8745c1 479 if (excess || mz->on_tree) {
4e649152
KH
480 spin_lock(&mctz->lock);
481 /* if on-tree, remove it */
482 if (mz->on_tree)
483 __mem_cgroup_remove_exceeded(mem, mz, mctz);
484 /*
ef8745c1
KH
485 * Insert again. mz->usage_in_excess will be updated.
486 * If excess is 0, no tree ops.
4e649152 487 */
ef8745c1 488 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
489 spin_unlock(&mctz->lock);
490 }
f64c3f54
BS
491 }
492}
493
494static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
495{
496 int node, zone;
497 struct mem_cgroup_per_zone *mz;
498 struct mem_cgroup_tree_per_zone *mctz;
499
500 for_each_node_state(node, N_POSSIBLE) {
501 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
502 mz = mem_cgroup_zoneinfo(mem, node, zone);
503 mctz = soft_limit_tree_node_zone(node, zone);
504 mem_cgroup_remove_exceeded(mem, mz, mctz);
505 }
506 }
507}
508
4e416953
BS
509static struct mem_cgroup_per_zone *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
511{
512 struct rb_node *rightmost = NULL;
26251eaf 513 struct mem_cgroup_per_zone *mz;
4e416953
BS
514
515retry:
26251eaf 516 mz = NULL;
4e416953
BS
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
520
521 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
522 /*
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
526 */
527 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
528 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
529 !css_tryget(&mz->mem->css))
530 goto retry;
531done:
532 return mz;
533}
534
535static struct mem_cgroup_per_zone *
536mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
537{
538 struct mem_cgroup_per_zone *mz;
539
540 spin_lock(&mctz->lock);
541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 spin_unlock(&mctz->lock);
543 return mz;
544}
545
711d3d2c
KH
546/*
547 * Implementation Note: reading percpu statistics for memcg.
548 *
549 * Both of vmstat[] and percpu_counter has threshold and do periodic
550 * synchronization to implement "quick" read. There are trade-off between
551 * reading cost and precision of value. Then, we may have a chance to implement
552 * a periodic synchronizion of counter in memcg's counter.
553 *
554 * But this _read() function is used for user interface now. The user accounts
555 * memory usage by memory cgroup and he _always_ requires exact value because
556 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
557 * have to visit all online cpus and make sum. So, for now, unnecessary
558 * synchronization is not implemented. (just implemented for cpu hotplug)
559 *
560 * If there are kernel internal actions which can make use of some not-exact
561 * value, and reading all cpu value can be performance bottleneck in some
562 * common workload, threashold and synchonization as vmstat[] should be
563 * implemented.
564 */
7a159cc9
JW
565static long mem_cgroup_read_stat(struct mem_cgroup *mem,
566 enum mem_cgroup_stat_index idx)
c62b1a3b 567{
7a159cc9 568 long val = 0;
c62b1a3b 569 int cpu;
c62b1a3b 570
711d3d2c
KH
571 get_online_cpus();
572 for_each_online_cpu(cpu)
c62b1a3b 573 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
574#ifdef CONFIG_HOTPLUG_CPU
575 spin_lock(&mem->pcp_counter_lock);
576 val += mem->nocpu_base.count[idx];
577 spin_unlock(&mem->pcp_counter_lock);
578#endif
579 put_online_cpus();
c62b1a3b
KH
580 return val;
581}
582
0c3e73e8
BS
583static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
584 bool charge)
585{
586 int val = (charge) ? 1 : -1;
c62b1a3b 587 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
588}
589
456f998e
YH
590void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
591{
592 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
593}
594
595void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
596{
597 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
598}
599
e9f8974f
JW
600static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
601 enum mem_cgroup_events_index idx)
602{
603 unsigned long val = 0;
604 int cpu;
605
606 for_each_online_cpu(cpu)
607 val += per_cpu(mem->stat->events[idx], cpu);
608#ifdef CONFIG_HOTPLUG_CPU
609 spin_lock(&mem->pcp_counter_lock);
610 val += mem->nocpu_base.events[idx];
611 spin_unlock(&mem->pcp_counter_lock);
612#endif
613 return val;
614}
615
c05555b5 616static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 617 bool file, int nr_pages)
d52aa412 618{
c62b1a3b
KH
619 preempt_disable();
620
e401f176
KH
621 if (file)
622 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 623 else
e401f176 624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 625
e401f176
KH
626 /* pagein of a big page is an event. So, ignore page size */
627 if (nr_pages > 0)
e9f8974f 628 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 629 else {
e9f8974f 630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
631 nr_pages = -nr_pages; /* for event */
632 }
e401f176 633
e9f8974f 634 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 635
c62b1a3b 636 preempt_enable();
6d12e2d8
KH
637}
638
bb2a0de9
KH
639unsigned long
640mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
641 unsigned int lru_mask)
889976db
YH
642{
643 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
644 enum lru_list l;
645 unsigned long ret = 0;
646
647 mz = mem_cgroup_zoneinfo(mem, nid, zid);
648
649 for_each_lru(l) {
650 if (BIT(l) & lru_mask)
651 ret += MEM_CGROUP_ZSTAT(mz, l);
652 }
653 return ret;
654}
655
656static unsigned long
657mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
658 int nid, unsigned int lru_mask)
659{
889976db
YH
660 u64 total = 0;
661 int zid;
662
bb2a0de9
KH
663 for (zid = 0; zid < MAX_NR_ZONES; zid++)
664 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
665
889976db
YH
666 return total;
667}
bb2a0de9
KH
668
669static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
670 unsigned int lru_mask)
6d12e2d8 671{
889976db 672 int nid;
6d12e2d8
KH
673 u64 total = 0;
674
bb2a0de9
KH
675 for_each_node_state(nid, N_HIGH_MEMORY)
676 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 677 return total;
d52aa412
KH
678}
679
7a159cc9
JW
680static bool __memcg_event_check(struct mem_cgroup *mem, int target)
681{
682 unsigned long val, next;
683
684 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
685 next = this_cpu_read(mem->stat->targets[target]);
686 /* from time_after() in jiffies.h */
687 return ((long)next - (long)val < 0);
688}
689
690static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 691{
7a159cc9 692 unsigned long val, next;
d2265e6f 693
e9f8974f 694 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 695
7a159cc9
JW
696 switch (target) {
697 case MEM_CGROUP_TARGET_THRESH:
698 next = val + THRESHOLDS_EVENTS_TARGET;
699 break;
700 case MEM_CGROUP_TARGET_SOFTLIMIT:
701 next = val + SOFTLIMIT_EVENTS_TARGET;
702 break;
453a9bf3
KH
703 case MEM_CGROUP_TARGET_NUMAINFO:
704 next = val + NUMAINFO_EVENTS_TARGET;
705 break;
7a159cc9
JW
706 default:
707 return;
708 }
709
710 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
711}
712
713/*
714 * Check events in order.
715 *
716 */
717static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
718{
719 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 720 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 721 mem_cgroup_threshold(mem);
7a159cc9
JW
722 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
723 if (unlikely(__memcg_event_check(mem,
453a9bf3 724 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 725 mem_cgroup_update_tree(mem, page);
7a159cc9 726 __mem_cgroup_target_update(mem,
453a9bf3
KH
727 MEM_CGROUP_TARGET_SOFTLIMIT);
728 }
729#if MAX_NUMNODES > 1
730 if (unlikely(__memcg_event_check(mem,
731 MEM_CGROUP_TARGET_NUMAINFO))) {
732 atomic_inc(&mem->numainfo_events);
733 __mem_cgroup_target_update(mem,
734 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 735 }
453a9bf3 736#endif
d2265e6f
KH
737 }
738}
739
d5b69e38 740static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
741{
742 return container_of(cgroup_subsys_state(cont,
743 mem_cgroup_subsys_id), struct mem_cgroup,
744 css);
745}
746
cf475ad2 747struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 748{
31a78f23
BS
749 /*
750 * mm_update_next_owner() may clear mm->owner to NULL
751 * if it races with swapoff, page migration, etc.
752 * So this can be called with p == NULL.
753 */
754 if (unlikely(!p))
755 return NULL;
756
78fb7466
PE
757 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
758 struct mem_cgroup, css);
759}
760
a433658c 761struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
762{
763 struct mem_cgroup *mem = NULL;
0b7f569e
KH
764
765 if (!mm)
766 return NULL;
54595fe2
KH
767 /*
768 * Because we have no locks, mm->owner's may be being moved to other
769 * cgroup. We use css_tryget() here even if this looks
770 * pessimistic (rather than adding locks here).
771 */
772 rcu_read_lock();
773 do {
774 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
775 if (unlikely(!mem))
776 break;
777 } while (!css_tryget(&mem->css));
778 rcu_read_unlock();
779 return mem;
780}
781
7d74b06f
KH
782/* The caller has to guarantee "mem" exists before calling this */
783static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 784{
711d3d2c
KH
785 struct cgroup_subsys_state *css;
786 int found;
787
788 if (!mem) /* ROOT cgroup has the smallest ID */
789 return root_mem_cgroup; /*css_put/get against root is ignored*/
790 if (!mem->use_hierarchy) {
791 if (css_tryget(&mem->css))
792 return mem;
793 return NULL;
794 }
795 rcu_read_lock();
796 /*
797 * searching a memory cgroup which has the smallest ID under given
798 * ROOT cgroup. (ID >= 1)
799 */
800 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
801 if (css && css_tryget(css))
802 mem = container_of(css, struct mem_cgroup, css);
803 else
804 mem = NULL;
805 rcu_read_unlock();
806 return mem;
7d74b06f
KH
807}
808
809static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
810 struct mem_cgroup *root,
811 bool cond)
812{
813 int nextid = css_id(&iter->css) + 1;
814 int found;
815 int hierarchy_used;
14067bb3 816 struct cgroup_subsys_state *css;
14067bb3 817
7d74b06f 818 hierarchy_used = iter->use_hierarchy;
14067bb3 819
7d74b06f 820 css_put(&iter->css);
711d3d2c
KH
821 /* If no ROOT, walk all, ignore hierarchy */
822 if (!cond || (root && !hierarchy_used))
7d74b06f 823 return NULL;
14067bb3 824
711d3d2c
KH
825 if (!root)
826 root = root_mem_cgroup;
827
7d74b06f
KH
828 do {
829 iter = NULL;
14067bb3 830 rcu_read_lock();
7d74b06f
KH
831
832 css = css_get_next(&mem_cgroup_subsys, nextid,
833 &root->css, &found);
14067bb3 834 if (css && css_tryget(css))
7d74b06f 835 iter = container_of(css, struct mem_cgroup, css);
14067bb3 836 rcu_read_unlock();
7d74b06f 837 /* If css is NULL, no more cgroups will be found */
14067bb3 838 nextid = found + 1;
7d74b06f 839 } while (css && !iter);
14067bb3 840
7d74b06f 841 return iter;
14067bb3 842}
7d74b06f
KH
843/*
844 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
845 * be careful that "break" loop is not allowed. We have reference count.
846 * Instead of that modify "cond" to be false and "continue" to exit the loop.
847 */
848#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
849 for (iter = mem_cgroup_start_loop(root);\
850 iter != NULL;\
851 iter = mem_cgroup_get_next(iter, root, cond))
852
853#define for_each_mem_cgroup_tree(iter, root) \
854 for_each_mem_cgroup_tree_cond(iter, root, true)
855
711d3d2c
KH
856#define for_each_mem_cgroup_all(iter) \
857 for_each_mem_cgroup_tree_cond(iter, NULL, true)
858
14067bb3 859
4b3bde4c
BS
860static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
861{
862 return (mem == root_mem_cgroup);
863}
864
456f998e
YH
865void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
866{
867 struct mem_cgroup *mem;
868
869 if (!mm)
870 return;
871
872 rcu_read_lock();
873 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
874 if (unlikely(!mem))
875 goto out;
876
877 switch (idx) {
878 case PGMAJFAULT:
879 mem_cgroup_pgmajfault(mem, 1);
880 break;
881 case PGFAULT:
882 mem_cgroup_pgfault(mem, 1);
883 break;
884 default:
885 BUG();
886 }
887out:
888 rcu_read_unlock();
889}
890EXPORT_SYMBOL(mem_cgroup_count_vm_event);
891
08e552c6
KH
892/*
893 * Following LRU functions are allowed to be used without PCG_LOCK.
894 * Operations are called by routine of global LRU independently from memcg.
895 * What we have to take care of here is validness of pc->mem_cgroup.
896 *
897 * Changes to pc->mem_cgroup happens when
898 * 1. charge
899 * 2. moving account
900 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
901 * It is added to LRU before charge.
902 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
903 * When moving account, the page is not on LRU. It's isolated.
904 */
4f98a2fe 905
08e552c6
KH
906void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
907{
908 struct page_cgroup *pc;
08e552c6 909 struct mem_cgroup_per_zone *mz;
6d12e2d8 910
f8d66542 911 if (mem_cgroup_disabled())
08e552c6
KH
912 return;
913 pc = lookup_page_cgroup(page);
914 /* can happen while we handle swapcache. */
4b3bde4c 915 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 916 return;
4b3bde4c 917 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
918 /*
919 * We don't check PCG_USED bit. It's cleared when the "page" is finally
920 * removed from global LRU.
921 */
97a6c37b 922 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
923 /* huge page split is done under lru_lock. so, we have no races. */
924 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
925 if (mem_cgroup_is_root(pc->mem_cgroup))
926 return;
927 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 928 list_del_init(&pc->lru);
6d12e2d8
KH
929}
930
08e552c6 931void mem_cgroup_del_lru(struct page *page)
6d12e2d8 932{
08e552c6
KH
933 mem_cgroup_del_lru_list(page, page_lru(page));
934}
b69408e8 935
3f58a829
MK
936/*
937 * Writeback is about to end against a page which has been marked for immediate
938 * reclaim. If it still appears to be reclaimable, move it to the tail of the
939 * inactive list.
940 */
941void mem_cgroup_rotate_reclaimable_page(struct page *page)
942{
943 struct mem_cgroup_per_zone *mz;
944 struct page_cgroup *pc;
945 enum lru_list lru = page_lru(page);
946
947 if (mem_cgroup_disabled())
948 return;
949
950 pc = lookup_page_cgroup(page);
951 /* unused or root page is not rotated. */
952 if (!PageCgroupUsed(pc))
953 return;
954 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
955 smp_rmb();
956 if (mem_cgroup_is_root(pc->mem_cgroup))
957 return;
97a6c37b 958 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
959 list_move_tail(&pc->lru, &mz->lists[lru]);
960}
961
08e552c6
KH
962void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
963{
964 struct mem_cgroup_per_zone *mz;
965 struct page_cgroup *pc;
b69408e8 966
f8d66542 967 if (mem_cgroup_disabled())
08e552c6 968 return;
6d12e2d8 969
08e552c6 970 pc = lookup_page_cgroup(page);
4b3bde4c 971 /* unused or root page is not rotated. */
713735b4
JW
972 if (!PageCgroupUsed(pc))
973 return;
974 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
975 smp_rmb();
976 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 977 return;
97a6c37b 978 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 979 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
980}
981
08e552c6 982void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 983{
08e552c6
KH
984 struct page_cgroup *pc;
985 struct mem_cgroup_per_zone *mz;
6d12e2d8 986
f8d66542 987 if (mem_cgroup_disabled())
08e552c6
KH
988 return;
989 pc = lookup_page_cgroup(page);
4b3bde4c 990 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 991 if (!PageCgroupUsed(pc))
894bc310 992 return;
713735b4
JW
993 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
994 smp_rmb();
97a6c37b 995 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
996 /* huge page split is done under lru_lock. so, we have no races. */
997 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
998 SetPageCgroupAcctLRU(pc);
999 if (mem_cgroup_is_root(pc->mem_cgroup))
1000 return;
08e552c6
KH
1001 list_add(&pc->lru, &mz->lists[lru]);
1002}
544122e5 1003
08e552c6 1004/*
5a6475a4
KH
1005 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1006 * while it's linked to lru because the page may be reused after it's fully
1007 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1008 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1009 */
5a6475a4 1010static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1011{
544122e5
KH
1012 unsigned long flags;
1013 struct zone *zone = page_zone(page);
1014 struct page_cgroup *pc = lookup_page_cgroup(page);
1015
5a6475a4
KH
1016 /*
1017 * Doing this check without taking ->lru_lock seems wrong but this
1018 * is safe. Because if page_cgroup's USED bit is unset, the page
1019 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1020 * set, the commit after this will fail, anyway.
1021 * This all charge/uncharge is done under some mutual execustion.
1022 * So, we don't need to taking care of changes in USED bit.
1023 */
1024 if (likely(!PageLRU(page)))
1025 return;
1026
544122e5
KH
1027 spin_lock_irqsave(&zone->lru_lock, flags);
1028 /*
1029 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1030 * is guarded by lock_page() because the page is SwapCache.
1031 */
1032 if (!PageCgroupUsed(pc))
1033 mem_cgroup_del_lru_list(page, page_lru(page));
1034 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1035}
1036
5a6475a4 1037static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1038{
1039 unsigned long flags;
1040 struct zone *zone = page_zone(page);
1041 struct page_cgroup *pc = lookup_page_cgroup(page);
1042
5a6475a4
KH
1043 /* taking care of that the page is added to LRU while we commit it */
1044 if (likely(!PageLRU(page)))
1045 return;
544122e5
KH
1046 spin_lock_irqsave(&zone->lru_lock, flags);
1047 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1048 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1049 mem_cgroup_add_lru_list(page, page_lru(page));
1050 spin_unlock_irqrestore(&zone->lru_lock, flags);
1051}
1052
1053
08e552c6
KH
1054void mem_cgroup_move_lists(struct page *page,
1055 enum lru_list from, enum lru_list to)
1056{
f8d66542 1057 if (mem_cgroup_disabled())
08e552c6
KH
1058 return;
1059 mem_cgroup_del_lru_list(page, from);
1060 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1061}
1062
4c4a2214
DR
1063int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1064{
1065 int ret;
0b7f569e 1066 struct mem_cgroup *curr = NULL;
158e0a2d 1067 struct task_struct *p;
4c4a2214 1068
158e0a2d
KH
1069 p = find_lock_task_mm(task);
1070 if (!p)
1071 return 0;
1072 curr = try_get_mem_cgroup_from_mm(p->mm);
1073 task_unlock(p);
0b7f569e
KH
1074 if (!curr)
1075 return 0;
d31f56db
DN
1076 /*
1077 * We should check use_hierarchy of "mem" not "curr". Because checking
1078 * use_hierarchy of "curr" here make this function true if hierarchy is
1079 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1080 * hierarchy(even if use_hierarchy is disabled in "mem").
1081 */
1082 if (mem->use_hierarchy)
0b7f569e
KH
1083 ret = css_is_ancestor(&curr->css, &mem->css);
1084 else
1085 ret = (curr == mem);
1086 css_put(&curr->css);
4c4a2214
DR
1087 return ret;
1088}
1089
c772be93 1090static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1091{
1092 unsigned long active;
1093 unsigned long inactive;
c772be93
KM
1094 unsigned long gb;
1095 unsigned long inactive_ratio;
14797e23 1096
bb2a0de9
KH
1097 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1098 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1099
c772be93
KM
1100 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1101 if (gb)
1102 inactive_ratio = int_sqrt(10 * gb);
1103 else
1104 inactive_ratio = 1;
1105
1106 if (present_pages) {
1107 present_pages[0] = inactive;
1108 present_pages[1] = active;
1109 }
1110
1111 return inactive_ratio;
1112}
1113
1114int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1115{
1116 unsigned long active;
1117 unsigned long inactive;
1118 unsigned long present_pages[2];
1119 unsigned long inactive_ratio;
1120
1121 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1122
1123 inactive = present_pages[0];
1124 active = present_pages[1];
1125
1126 if (inactive * inactive_ratio < active)
14797e23
KM
1127 return 1;
1128
1129 return 0;
1130}
1131
56e49d21
RR
1132int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1133{
1134 unsigned long active;
1135 unsigned long inactive;
1136
bb2a0de9
KH
1137 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1138 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1139
1140 return (active > inactive);
1141}
1142
3e2f41f1
KM
1143struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1144 struct zone *zone)
1145{
13d7e3a2 1146 int nid = zone_to_nid(zone);
3e2f41f1
KM
1147 int zid = zone_idx(zone);
1148 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1149
1150 return &mz->reclaim_stat;
1151}
1152
1153struct zone_reclaim_stat *
1154mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1155{
1156 struct page_cgroup *pc;
1157 struct mem_cgroup_per_zone *mz;
1158
1159 if (mem_cgroup_disabled())
1160 return NULL;
1161
1162 pc = lookup_page_cgroup(page);
bd112db8
DN
1163 if (!PageCgroupUsed(pc))
1164 return NULL;
713735b4
JW
1165 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1166 smp_rmb();
97a6c37b 1167 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1168 return &mz->reclaim_stat;
1169}
1170
66e1707b
BS
1171unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1172 struct list_head *dst,
1173 unsigned long *scanned, int order,
1174 int mode, struct zone *z,
1175 struct mem_cgroup *mem_cont,
4f98a2fe 1176 int active, int file)
66e1707b
BS
1177{
1178 unsigned long nr_taken = 0;
1179 struct page *page;
1180 unsigned long scan;
1181 LIST_HEAD(pc_list);
1182 struct list_head *src;
ff7283fa 1183 struct page_cgroup *pc, *tmp;
13d7e3a2 1184 int nid = zone_to_nid(z);
1ecaab2b
KH
1185 int zid = zone_idx(z);
1186 struct mem_cgroup_per_zone *mz;
b7c46d15 1187 int lru = LRU_FILE * file + active;
2ffebca6 1188 int ret;
66e1707b 1189
cf475ad2 1190 BUG_ON(!mem_cont);
1ecaab2b 1191 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1192 src = &mz->lists[lru];
66e1707b 1193
ff7283fa
KH
1194 scan = 0;
1195 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1196 if (scan >= nr_to_scan)
ff7283fa 1197 break;
08e552c6 1198
52d4b9ac
KH
1199 if (unlikely(!PageCgroupUsed(pc)))
1200 continue;
5564e88b 1201
6b3ae58e 1202 page = lookup_cgroup_page(pc);
5564e88b 1203
436c6541 1204 if (unlikely(!PageLRU(page)))
ff7283fa 1205 continue;
ff7283fa 1206
436c6541 1207 scan++;
2ffebca6
KH
1208 ret = __isolate_lru_page(page, mode, file);
1209 switch (ret) {
1210 case 0:
66e1707b 1211 list_move(&page->lru, dst);
2ffebca6 1212 mem_cgroup_del_lru(page);
2c888cfb 1213 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1214 break;
1215 case -EBUSY:
1216 /* we don't affect global LRU but rotate in our LRU */
1217 mem_cgroup_rotate_lru_list(page, page_lru(page));
1218 break;
1219 default:
1220 break;
66e1707b
BS
1221 }
1222 }
1223
66e1707b 1224 *scanned = scan;
cc8e970c
KM
1225
1226 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1227 0, 0, 0, mode);
1228
66e1707b
BS
1229 return nr_taken;
1230}
1231
6d61ef40
BS
1232#define mem_cgroup_from_res_counter(counter, member) \
1233 container_of(counter, struct mem_cgroup, member)
1234
19942822 1235/**
9d11ea9f
JW
1236 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1237 * @mem: the memory cgroup
19942822 1238 *
9d11ea9f 1239 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1240 * pages.
19942822 1241 */
7ec99d62 1242static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1243{
9d11ea9f
JW
1244 unsigned long long margin;
1245
1246 margin = res_counter_margin(&mem->res);
1247 if (do_swap_account)
1248 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1249 return margin >> PAGE_SHIFT;
19942822
JW
1250}
1251
1f4c025b 1252int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1253{
1254 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1255
1256 /* root ? */
1257 if (cgrp->parent == NULL)
1258 return vm_swappiness;
1259
bf1ff263 1260 return memcg->swappiness;
a7885eb8
KM
1261}
1262
32047e2a
KH
1263static void mem_cgroup_start_move(struct mem_cgroup *mem)
1264{
1265 int cpu;
1489ebad
KH
1266
1267 get_online_cpus();
1268 spin_lock(&mem->pcp_counter_lock);
1269 for_each_online_cpu(cpu)
32047e2a 1270 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1271 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1272 spin_unlock(&mem->pcp_counter_lock);
1273 put_online_cpus();
32047e2a
KH
1274
1275 synchronize_rcu();
1276}
1277
1278static void mem_cgroup_end_move(struct mem_cgroup *mem)
1279{
1280 int cpu;
1281
1282 if (!mem)
1283 return;
1489ebad
KH
1284 get_online_cpus();
1285 spin_lock(&mem->pcp_counter_lock);
1286 for_each_online_cpu(cpu)
32047e2a 1287 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1288 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1289 spin_unlock(&mem->pcp_counter_lock);
1290 put_online_cpus();
32047e2a
KH
1291}
1292/*
1293 * 2 routines for checking "mem" is under move_account() or not.
1294 *
1295 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1296 * for avoiding race in accounting. If true,
1297 * pc->mem_cgroup may be overwritten.
1298 *
1299 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1300 * under hierarchy of moving cgroups. This is for
1301 * waiting at hith-memory prressure caused by "move".
1302 */
1303
1304static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1305{
1306 VM_BUG_ON(!rcu_read_lock_held());
1307 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1308}
4b534334
KH
1309
1310static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1311{
2bd9bb20
KH
1312 struct mem_cgroup *from;
1313 struct mem_cgroup *to;
4b534334 1314 bool ret = false;
2bd9bb20
KH
1315 /*
1316 * Unlike task_move routines, we access mc.to, mc.from not under
1317 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1318 */
1319 spin_lock(&mc.lock);
1320 from = mc.from;
1321 to = mc.to;
1322 if (!from)
1323 goto unlock;
1324 if (from == mem || to == mem
1325 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1326 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1327 ret = true;
1328unlock:
1329 spin_unlock(&mc.lock);
4b534334
KH
1330 return ret;
1331}
1332
1333static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1334{
1335 if (mc.moving_task && current != mc.moving_task) {
1336 if (mem_cgroup_under_move(mem)) {
1337 DEFINE_WAIT(wait);
1338 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1339 /* moving charge context might have finished. */
1340 if (mc.moving_task)
1341 schedule();
1342 finish_wait(&mc.waitq, &wait);
1343 return true;
1344 }
1345 }
1346 return false;
1347}
1348
e222432b 1349/**
6a6135b6 1350 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1351 * @memcg: The memory cgroup that went over limit
1352 * @p: Task that is going to be killed
1353 *
1354 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1355 * enabled
1356 */
1357void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1358{
1359 struct cgroup *task_cgrp;
1360 struct cgroup *mem_cgrp;
1361 /*
1362 * Need a buffer in BSS, can't rely on allocations. The code relies
1363 * on the assumption that OOM is serialized for memory controller.
1364 * If this assumption is broken, revisit this code.
1365 */
1366 static char memcg_name[PATH_MAX];
1367 int ret;
1368
d31f56db 1369 if (!memcg || !p)
e222432b
BS
1370 return;
1371
1372
1373 rcu_read_lock();
1374
1375 mem_cgrp = memcg->css.cgroup;
1376 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1377
1378 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1379 if (ret < 0) {
1380 /*
1381 * Unfortunately, we are unable to convert to a useful name
1382 * But we'll still print out the usage information
1383 */
1384 rcu_read_unlock();
1385 goto done;
1386 }
1387 rcu_read_unlock();
1388
1389 printk(KERN_INFO "Task in %s killed", memcg_name);
1390
1391 rcu_read_lock();
1392 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1393 if (ret < 0) {
1394 rcu_read_unlock();
1395 goto done;
1396 }
1397 rcu_read_unlock();
1398
1399 /*
1400 * Continues from above, so we don't need an KERN_ level
1401 */
1402 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1403done:
1404
1405 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1406 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1407 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1408 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1409 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1410 "failcnt %llu\n",
1411 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1412 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1413 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1414}
1415
81d39c20
KH
1416/*
1417 * This function returns the number of memcg under hierarchy tree. Returns
1418 * 1(self count) if no children.
1419 */
1420static int mem_cgroup_count_children(struct mem_cgroup *mem)
1421{
1422 int num = 0;
7d74b06f
KH
1423 struct mem_cgroup *iter;
1424
1425 for_each_mem_cgroup_tree(iter, mem)
1426 num++;
81d39c20
KH
1427 return num;
1428}
1429
a63d83f4
DR
1430/*
1431 * Return the memory (and swap, if configured) limit for a memcg.
1432 */
1433u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1434{
1435 u64 limit;
1436 u64 memsw;
1437
f3e8eb70
JW
1438 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1439 limit += total_swap_pages << PAGE_SHIFT;
1440
a63d83f4
DR
1441 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1442 /*
1443 * If memsw is finite and limits the amount of swap space available
1444 * to this memcg, return that limit.
1445 */
1446 return min(limit, memsw);
1447}
1448
6d61ef40 1449/*
04046e1a
KH
1450 * Visit the first child (need not be the first child as per the ordering
1451 * of the cgroup list, since we track last_scanned_child) of @mem and use
1452 * that to reclaim free pages from.
1453 */
1454static struct mem_cgroup *
1455mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1456{
1457 struct mem_cgroup *ret = NULL;
1458 struct cgroup_subsys_state *css;
1459 int nextid, found;
1460
1461 if (!root_mem->use_hierarchy) {
1462 css_get(&root_mem->css);
1463 ret = root_mem;
1464 }
1465
1466 while (!ret) {
1467 rcu_read_lock();
1468 nextid = root_mem->last_scanned_child + 1;
1469 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1470 &found);
1471 if (css && css_tryget(css))
1472 ret = container_of(css, struct mem_cgroup, css);
1473
1474 rcu_read_unlock();
1475 /* Updates scanning parameter */
04046e1a
KH
1476 if (!css) {
1477 /* this means start scan from ID:1 */
1478 root_mem->last_scanned_child = 0;
1479 } else
1480 root_mem->last_scanned_child = found;
04046e1a
KH
1481 }
1482
1483 return ret;
1484}
1485
4d0c066d
KH
1486/**
1487 * test_mem_cgroup_node_reclaimable
1488 * @mem: the target memcg
1489 * @nid: the node ID to be checked.
1490 * @noswap : specify true here if the user wants flle only information.
1491 *
1492 * This function returns whether the specified memcg contains any
1493 * reclaimable pages on a node. Returns true if there are any reclaimable
1494 * pages in the node.
1495 */
1496static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1497 int nid, bool noswap)
1498{
bb2a0de9 1499 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1500 return true;
1501 if (noswap || !total_swap_pages)
1502 return false;
bb2a0de9 1503 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1504 return true;
1505 return false;
1506
1507}
889976db
YH
1508#if MAX_NUMNODES > 1
1509
1510/*
1511 * Always updating the nodemask is not very good - even if we have an empty
1512 * list or the wrong list here, we can start from some node and traverse all
1513 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1514 *
1515 */
1516static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1517{
1518 int nid;
453a9bf3
KH
1519 /*
1520 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1521 * pagein/pageout changes since the last update.
1522 */
1523 if (!atomic_read(&mem->numainfo_events))
1524 return;
1525 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1526 return;
1527
889976db
YH
1528 /* make a nodemask where this memcg uses memory from */
1529 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1530
1531 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1532
4d0c066d
KH
1533 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1534 node_clear(nid, mem->scan_nodes);
889976db 1535 }
453a9bf3
KH
1536
1537 atomic_set(&mem->numainfo_events, 0);
1538 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1539}
1540
1541/*
1542 * Selecting a node where we start reclaim from. Because what we need is just
1543 * reducing usage counter, start from anywhere is O,K. Considering
1544 * memory reclaim from current node, there are pros. and cons.
1545 *
1546 * Freeing memory from current node means freeing memory from a node which
1547 * we'll use or we've used. So, it may make LRU bad. And if several threads
1548 * hit limits, it will see a contention on a node. But freeing from remote
1549 * node means more costs for memory reclaim because of memory latency.
1550 *
1551 * Now, we use round-robin. Better algorithm is welcomed.
1552 */
1553int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1554{
1555 int node;
1556
1557 mem_cgroup_may_update_nodemask(mem);
1558 node = mem->last_scanned_node;
1559
1560 node = next_node(node, mem->scan_nodes);
1561 if (node == MAX_NUMNODES)
1562 node = first_node(mem->scan_nodes);
1563 /*
1564 * We call this when we hit limit, not when pages are added to LRU.
1565 * No LRU may hold pages because all pages are UNEVICTABLE or
1566 * memcg is too small and all pages are not on LRU. In that case,
1567 * we use curret node.
1568 */
1569 if (unlikely(node == MAX_NUMNODES))
1570 node = numa_node_id();
1571
1572 mem->last_scanned_node = node;
1573 return node;
1574}
1575
4d0c066d
KH
1576/*
1577 * Check all nodes whether it contains reclaimable pages or not.
1578 * For quick scan, we make use of scan_nodes. This will allow us to skip
1579 * unused nodes. But scan_nodes is lazily updated and may not cotain
1580 * enough new information. We need to do double check.
1581 */
1582bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1583{
1584 int nid;
1585
1586 /*
1587 * quick check...making use of scan_node.
1588 * We can skip unused nodes.
1589 */
1590 if (!nodes_empty(mem->scan_nodes)) {
1591 for (nid = first_node(mem->scan_nodes);
1592 nid < MAX_NUMNODES;
1593 nid = next_node(nid, mem->scan_nodes)) {
1594
1595 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1596 return true;
1597 }
1598 }
1599 /*
1600 * Check rest of nodes.
1601 */
1602 for_each_node_state(nid, N_HIGH_MEMORY) {
1603 if (node_isset(nid, mem->scan_nodes))
1604 continue;
1605 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1606 return true;
1607 }
1608 return false;
1609}
1610
889976db
YH
1611#else
1612int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1613{
1614 return 0;
1615}
4d0c066d
KH
1616
1617bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1618{
1619 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1620}
889976db
YH
1621#endif
1622
04046e1a
KH
1623/*
1624 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1625 * we reclaimed from, so that we don't end up penalizing one child extensively
1626 * based on its position in the children list.
6d61ef40
BS
1627 *
1628 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1629 *
1630 * We give up and return to the caller when we visit root_mem twice.
1631 * (other groups can be removed while we're walking....)
81d39c20
KH
1632 *
1633 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1634 */
1635static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1636 struct zone *zone,
75822b44 1637 gfp_t gfp_mask,
0ae5e89c
YH
1638 unsigned long reclaim_options,
1639 unsigned long *total_scanned)
6d61ef40 1640{
04046e1a
KH
1641 struct mem_cgroup *victim;
1642 int ret, total = 0;
1643 int loop = 0;
75822b44
BS
1644 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1645 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1646 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1647 unsigned long excess;
0ae5e89c 1648 unsigned long nr_scanned;
9d11ea9f
JW
1649
1650 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1651
22a668d7 1652 /* If memsw_is_minimum==1, swap-out is of-no-use. */
7ae534d0 1653 if (!check_soft && root_mem->memsw_is_minimum)
22a668d7
KH
1654 noswap = true;
1655
4e416953 1656 while (1) {
04046e1a 1657 victim = mem_cgroup_select_victim(root_mem);
4e416953 1658 if (victim == root_mem) {
04046e1a 1659 loop++;
fbc29a25
KH
1660 /*
1661 * We are not draining per cpu cached charges during
1662 * soft limit reclaim because global reclaim doesn't
1663 * care about charges. It tries to free some memory and
1664 * charges will not give any.
1665 */
1666 if (!check_soft && loop >= 1)
26fe6168 1667 drain_all_stock_async(root_mem);
4e416953
BS
1668 if (loop >= 2) {
1669 /*
1670 * If we have not been able to reclaim
1671 * anything, it might because there are
1672 * no reclaimable pages under this hierarchy
1673 */
1674 if (!check_soft || !total) {
1675 css_put(&victim->css);
1676 break;
1677 }
1678 /*
25985edc 1679 * We want to do more targeted reclaim.
4e416953
BS
1680 * excess >> 2 is not to excessive so as to
1681 * reclaim too much, nor too less that we keep
1682 * coming back to reclaim from this cgroup
1683 */
1684 if (total >= (excess >> 2) ||
1685 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1686 css_put(&victim->css);
1687 break;
1688 }
1689 }
1690 }
4d0c066d 1691 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1692 /* this cgroup's local usage == 0 */
1693 css_put(&victim->css);
6d61ef40
BS
1694 continue;
1695 }
04046e1a 1696 /* we use swappiness of local cgroup */
0ae5e89c 1697 if (check_soft) {
4e416953 1698 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1f4c025b 1699 noswap, zone, &nr_scanned);
0ae5e89c
YH
1700 *total_scanned += nr_scanned;
1701 } else
4e416953 1702 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1f4c025b 1703 noswap);
04046e1a 1704 css_put(&victim->css);
81d39c20
KH
1705 /*
1706 * At shrinking usage, we can't check we should stop here or
1707 * reclaim more. It's depends on callers. last_scanned_child
1708 * will work enough for keeping fairness under tree.
1709 */
1710 if (shrink)
1711 return ret;
04046e1a 1712 total += ret;
4e416953 1713 if (check_soft) {
9d11ea9f 1714 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1715 return total;
9d11ea9f 1716 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1717 return total;
6d61ef40 1718 }
04046e1a 1719 return total;
6d61ef40
BS
1720}
1721
867578cb
KH
1722/*
1723 * Check OOM-Killer is already running under our hierarchy.
1724 * If someone is running, return false.
1725 */
1726static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1727{
7d74b06f
KH
1728 int x, lock_count = 0;
1729 struct mem_cgroup *iter;
a636b327 1730
7d74b06f
KH
1731 for_each_mem_cgroup_tree(iter, mem) {
1732 x = atomic_inc_return(&iter->oom_lock);
1733 lock_count = max(x, lock_count);
1734 }
867578cb
KH
1735
1736 if (lock_count == 1)
1737 return true;
1738 return false;
a636b327 1739}
0b7f569e 1740
7d74b06f 1741static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1742{
7d74b06f
KH
1743 struct mem_cgroup *iter;
1744
867578cb
KH
1745 /*
1746 * When a new child is created while the hierarchy is under oom,
1747 * mem_cgroup_oom_lock() may not be called. We have to use
1748 * atomic_add_unless() here.
1749 */
7d74b06f
KH
1750 for_each_mem_cgroup_tree(iter, mem)
1751 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1752 return 0;
1753}
1754
867578cb
KH
1755
1756static DEFINE_MUTEX(memcg_oom_mutex);
1757static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1758
dc98df5a
KH
1759struct oom_wait_info {
1760 struct mem_cgroup *mem;
1761 wait_queue_t wait;
1762};
1763
1764static int memcg_oom_wake_function(wait_queue_t *wait,
1765 unsigned mode, int sync, void *arg)
1766{
1767 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1768 struct oom_wait_info *oom_wait_info;
1769
1770 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1771
1772 if (oom_wait_info->mem == wake_mem)
1773 goto wakeup;
1774 /* if no hierarchy, no match */
1775 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1776 return 0;
1777 /*
1778 * Both of oom_wait_info->mem and wake_mem are stable under us.
1779 * Then we can use css_is_ancestor without taking care of RCU.
1780 */
1781 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1782 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1783 return 0;
1784
1785wakeup:
1786 return autoremove_wake_function(wait, mode, sync, arg);
1787}
1788
1789static void memcg_wakeup_oom(struct mem_cgroup *mem)
1790{
1791 /* for filtering, pass "mem" as argument. */
1792 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1793}
1794
3c11ecf4
KH
1795static void memcg_oom_recover(struct mem_cgroup *mem)
1796{
2bd9bb20 1797 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1798 memcg_wakeup_oom(mem);
1799}
1800
867578cb
KH
1801/*
1802 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1803 */
1804bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1805{
dc98df5a 1806 struct oom_wait_info owait;
3c11ecf4 1807 bool locked, need_to_kill;
867578cb 1808
dc98df5a
KH
1809 owait.mem = mem;
1810 owait.wait.flags = 0;
1811 owait.wait.func = memcg_oom_wake_function;
1812 owait.wait.private = current;
1813 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1814 need_to_kill = true;
867578cb
KH
1815 /* At first, try to OOM lock hierarchy under mem.*/
1816 mutex_lock(&memcg_oom_mutex);
1817 locked = mem_cgroup_oom_lock(mem);
1818 /*
1819 * Even if signal_pending(), we can't quit charge() loop without
1820 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1821 * under OOM is always welcomed, use TASK_KILLABLE here.
1822 */
3c11ecf4
KH
1823 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1824 if (!locked || mem->oom_kill_disable)
1825 need_to_kill = false;
1826 if (locked)
9490ff27 1827 mem_cgroup_oom_notify(mem);
867578cb
KH
1828 mutex_unlock(&memcg_oom_mutex);
1829
3c11ecf4
KH
1830 if (need_to_kill) {
1831 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1832 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1833 } else {
867578cb 1834 schedule();
dc98df5a 1835 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1836 }
1837 mutex_lock(&memcg_oom_mutex);
1838 mem_cgroup_oom_unlock(mem);
dc98df5a 1839 memcg_wakeup_oom(mem);
867578cb
KH
1840 mutex_unlock(&memcg_oom_mutex);
1841
1842 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1843 return false;
1844 /* Give chance to dying process */
1845 schedule_timeout(1);
1846 return true;
0b7f569e
KH
1847}
1848
d69b042f
BS
1849/*
1850 * Currently used to update mapped file statistics, but the routine can be
1851 * generalized to update other statistics as well.
32047e2a
KH
1852 *
1853 * Notes: Race condition
1854 *
1855 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1856 * it tends to be costly. But considering some conditions, we doesn't need
1857 * to do so _always_.
1858 *
1859 * Considering "charge", lock_page_cgroup() is not required because all
1860 * file-stat operations happen after a page is attached to radix-tree. There
1861 * are no race with "charge".
1862 *
1863 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1864 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1865 * if there are race with "uncharge". Statistics itself is properly handled
1866 * by flags.
1867 *
1868 * Considering "move", this is an only case we see a race. To make the race
1869 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1870 * possibility of race condition. If there is, we take a lock.
d69b042f 1871 */
26174efd 1872
2a7106f2
GT
1873void mem_cgroup_update_page_stat(struct page *page,
1874 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1875{
1876 struct mem_cgroup *mem;
32047e2a
KH
1877 struct page_cgroup *pc = lookup_page_cgroup(page);
1878 bool need_unlock = false;
dbd4ea78 1879 unsigned long uninitialized_var(flags);
d69b042f 1880
d69b042f
BS
1881 if (unlikely(!pc))
1882 return;
1883
32047e2a 1884 rcu_read_lock();
d69b042f 1885 mem = pc->mem_cgroup;
32047e2a
KH
1886 if (unlikely(!mem || !PageCgroupUsed(pc)))
1887 goto out;
1888 /* pc->mem_cgroup is unstable ? */
ca3e0214 1889 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1890 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1891 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1892 need_unlock = true;
1893 mem = pc->mem_cgroup;
1894 if (!mem || !PageCgroupUsed(pc))
1895 goto out;
1896 }
26174efd 1897
26174efd 1898 switch (idx) {
2a7106f2 1899 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1900 if (val > 0)
1901 SetPageCgroupFileMapped(pc);
1902 else if (!page_mapped(page))
0c270f8f 1903 ClearPageCgroupFileMapped(pc);
2a7106f2 1904 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1905 break;
1906 default:
1907 BUG();
8725d541 1908 }
d69b042f 1909
2a7106f2
GT
1910 this_cpu_add(mem->stat->count[idx], val);
1911
32047e2a
KH
1912out:
1913 if (unlikely(need_unlock))
dbd4ea78 1914 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1915 rcu_read_unlock();
1916 return;
d69b042f 1917}
2a7106f2 1918EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1919
cdec2e42
KH
1920/*
1921 * size of first charge trial. "32" comes from vmscan.c's magic value.
1922 * TODO: maybe necessary to use big numbers in big irons.
1923 */
7ec99d62 1924#define CHARGE_BATCH 32U
cdec2e42
KH
1925struct memcg_stock_pcp {
1926 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1927 unsigned int nr_pages;
cdec2e42 1928 struct work_struct work;
26fe6168
KH
1929 unsigned long flags;
1930#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1931};
1932static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
26fe6168 1933static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1934
1935/*
11c9ea4e 1936 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1937 * from local stock and true is returned. If the stock is 0 or charges from a
1938 * cgroup which is not current target, returns false. This stock will be
1939 * refilled.
1940 */
1941static bool consume_stock(struct mem_cgroup *mem)
1942{
1943 struct memcg_stock_pcp *stock;
1944 bool ret = true;
1945
1946 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
1947 if (mem == stock->cached && stock->nr_pages)
1948 stock->nr_pages--;
cdec2e42
KH
1949 else /* need to call res_counter_charge */
1950 ret = false;
1951 put_cpu_var(memcg_stock);
1952 return ret;
1953}
1954
1955/*
1956 * Returns stocks cached in percpu to res_counter and reset cached information.
1957 */
1958static void drain_stock(struct memcg_stock_pcp *stock)
1959{
1960 struct mem_cgroup *old = stock->cached;
1961
11c9ea4e
JW
1962 if (stock->nr_pages) {
1963 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1964
1965 res_counter_uncharge(&old->res, bytes);
cdec2e42 1966 if (do_swap_account)
11c9ea4e
JW
1967 res_counter_uncharge(&old->memsw, bytes);
1968 stock->nr_pages = 0;
cdec2e42
KH
1969 }
1970 stock->cached = NULL;
cdec2e42
KH
1971}
1972
1973/*
1974 * This must be called under preempt disabled or must be called by
1975 * a thread which is pinned to local cpu.
1976 */
1977static void drain_local_stock(struct work_struct *dummy)
1978{
1979 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1980 drain_stock(stock);
26fe6168 1981 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1982}
1983
1984/*
1985 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1986 * This will be consumed by consume_stock() function, later.
cdec2e42 1987 */
11c9ea4e 1988static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
1989{
1990 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1991
1992 if (stock->cached != mem) { /* reset if necessary */
1993 drain_stock(stock);
1994 stock->cached = mem;
1995 }
11c9ea4e 1996 stock->nr_pages += nr_pages;
cdec2e42
KH
1997 put_cpu_var(memcg_stock);
1998}
1999
2000/*
2001 * Tries to drain stocked charges in other cpus. This function is asynchronous
2002 * and just put a work per cpu for draining localy on each cpu. Caller can
2003 * expects some charges will be back to res_counter later but cannot wait for
2004 * it.
2005 */
26fe6168 2006static void drain_all_stock_async(struct mem_cgroup *root_mem)
cdec2e42 2007{
26fe6168
KH
2008 int cpu, curcpu;
2009 /*
2010 * If someone calls draining, avoid adding more kworker runs.
cdec2e42 2011 */
26fe6168 2012 if (!mutex_trylock(&percpu_charge_mutex))
cdec2e42
KH
2013 return;
2014 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2015 get_online_cpus();
26fe6168
KH
2016 /*
2017 * Get a hint for avoiding draining charges on the current cpu,
2018 * which must be exhausted by our charging. It is not required that
2019 * this be a precise check, so we use raw_smp_processor_id() instead of
2020 * getcpu()/putcpu().
2021 */
2022 curcpu = raw_smp_processor_id();
cdec2e42
KH
2023 for_each_online_cpu(cpu) {
2024 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2025 struct mem_cgroup *mem;
2026
2027 if (cpu == curcpu)
2028 continue;
2029
2030 mem = stock->cached;
2031 if (!mem)
2032 continue;
2033 if (mem != root_mem) {
2034 if (!root_mem->use_hierarchy)
2035 continue;
2036 /* check whether "mem" is under tree of "root_mem" */
2037 if (!css_is_ancestor(&mem->css, &root_mem->css))
2038 continue;
2039 }
2040 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2041 schedule_work_on(cpu, &stock->work);
cdec2e42
KH
2042 }
2043 put_online_cpus();
26fe6168 2044 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2045 /* We don't wait for flush_work */
2046}
2047
2048/* This is a synchronous drain interface. */
2049static void drain_all_stock_sync(void)
2050{
2051 /* called when force_empty is called */
26fe6168 2052 mutex_lock(&percpu_charge_mutex);
cdec2e42 2053 schedule_on_each_cpu(drain_local_stock);
26fe6168 2054 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2055}
2056
711d3d2c
KH
2057/*
2058 * This function drains percpu counter value from DEAD cpu and
2059 * move it to local cpu. Note that this function can be preempted.
2060 */
2061static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2062{
2063 int i;
2064
2065 spin_lock(&mem->pcp_counter_lock);
2066 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2067 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2068
2069 per_cpu(mem->stat->count[i], cpu) = 0;
2070 mem->nocpu_base.count[i] += x;
2071 }
e9f8974f
JW
2072 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2073 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2074
2075 per_cpu(mem->stat->events[i], cpu) = 0;
2076 mem->nocpu_base.events[i] += x;
2077 }
1489ebad
KH
2078 /* need to clear ON_MOVE value, works as a kind of lock. */
2079 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2080 spin_unlock(&mem->pcp_counter_lock);
2081}
2082
2083static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2084{
2085 int idx = MEM_CGROUP_ON_MOVE;
2086
2087 spin_lock(&mem->pcp_counter_lock);
2088 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2089 spin_unlock(&mem->pcp_counter_lock);
2090}
2091
2092static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2093 unsigned long action,
2094 void *hcpu)
2095{
2096 int cpu = (unsigned long)hcpu;
2097 struct memcg_stock_pcp *stock;
711d3d2c 2098 struct mem_cgroup *iter;
cdec2e42 2099
1489ebad
KH
2100 if ((action == CPU_ONLINE)) {
2101 for_each_mem_cgroup_all(iter)
2102 synchronize_mem_cgroup_on_move(iter, cpu);
2103 return NOTIFY_OK;
2104 }
2105
711d3d2c 2106 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2107 return NOTIFY_OK;
711d3d2c
KH
2108
2109 for_each_mem_cgroup_all(iter)
2110 mem_cgroup_drain_pcp_counter(iter, cpu);
2111
cdec2e42
KH
2112 stock = &per_cpu(memcg_stock, cpu);
2113 drain_stock(stock);
2114 return NOTIFY_OK;
2115}
2116
4b534334
KH
2117
2118/* See __mem_cgroup_try_charge() for details */
2119enum {
2120 CHARGE_OK, /* success */
2121 CHARGE_RETRY, /* need to retry but retry is not bad */
2122 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2123 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2124 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2125};
2126
7ec99d62
JW
2127static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2128 unsigned int nr_pages, bool oom_check)
4b534334 2129{
7ec99d62 2130 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2131 struct mem_cgroup *mem_over_limit;
2132 struct res_counter *fail_res;
2133 unsigned long flags = 0;
2134 int ret;
2135
2136 ret = res_counter_charge(&mem->res, csize, &fail_res);
2137
2138 if (likely(!ret)) {
2139 if (!do_swap_account)
2140 return CHARGE_OK;
2141 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2142 if (likely(!ret))
2143 return CHARGE_OK;
2144
01c88e2d 2145 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2146 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2147 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2148 } else
2149 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2150 /*
7ec99d62
JW
2151 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2152 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2153 *
2154 * Never reclaim on behalf of optional batching, retry with a
2155 * single page instead.
2156 */
7ec99d62 2157 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2158 return CHARGE_RETRY;
2159
2160 if (!(gfp_mask & __GFP_WAIT))
2161 return CHARGE_WOULDBLOCK;
2162
2163 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2164 gfp_mask, flags, NULL);
7ec99d62 2165 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2166 return CHARGE_RETRY;
4b534334 2167 /*
19942822
JW
2168 * Even though the limit is exceeded at this point, reclaim
2169 * may have been able to free some pages. Retry the charge
2170 * before killing the task.
2171 *
2172 * Only for regular pages, though: huge pages are rather
2173 * unlikely to succeed so close to the limit, and we fall back
2174 * to regular pages anyway in case of failure.
4b534334 2175 */
7ec99d62 2176 if (nr_pages == 1 && ret)
4b534334
KH
2177 return CHARGE_RETRY;
2178
2179 /*
2180 * At task move, charge accounts can be doubly counted. So, it's
2181 * better to wait until the end of task_move if something is going on.
2182 */
2183 if (mem_cgroup_wait_acct_move(mem_over_limit))
2184 return CHARGE_RETRY;
2185
2186 /* If we don't need to call oom-killer at el, return immediately */
2187 if (!oom_check)
2188 return CHARGE_NOMEM;
2189 /* check OOM */
2190 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2191 return CHARGE_OOM_DIE;
2192
2193 return CHARGE_RETRY;
2194}
2195
f817ed48
KH
2196/*
2197 * Unlike exported interface, "oom" parameter is added. if oom==true,
2198 * oom-killer can be invoked.
8a9f3ccd 2199 */
f817ed48 2200static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2201 gfp_t gfp_mask,
7ec99d62
JW
2202 unsigned int nr_pages,
2203 struct mem_cgroup **memcg,
2204 bool oom)
8a9f3ccd 2205{
7ec99d62 2206 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2207 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2208 struct mem_cgroup *mem = NULL;
2209 int ret;
a636b327 2210
867578cb
KH
2211 /*
2212 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2213 * in system level. So, allow to go ahead dying process in addition to
2214 * MEMDIE process.
2215 */
2216 if (unlikely(test_thread_flag(TIF_MEMDIE)
2217 || fatal_signal_pending(current)))
2218 goto bypass;
a636b327 2219
8a9f3ccd 2220 /*
3be91277
HD
2221 * We always charge the cgroup the mm_struct belongs to.
2222 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2223 * thread group leader migrates. It's possible that mm is not
2224 * set, if so charge the init_mm (happens for pagecache usage).
2225 */
f75ca962
KH
2226 if (!*memcg && !mm)
2227 goto bypass;
2228again:
2229 if (*memcg) { /* css should be a valid one */
4b534334 2230 mem = *memcg;
f75ca962
KH
2231 VM_BUG_ON(css_is_removed(&mem->css));
2232 if (mem_cgroup_is_root(mem))
2233 goto done;
7ec99d62 2234 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2235 goto done;
4b534334
KH
2236 css_get(&mem->css);
2237 } else {
f75ca962 2238 struct task_struct *p;
54595fe2 2239
f75ca962
KH
2240 rcu_read_lock();
2241 p = rcu_dereference(mm->owner);
f75ca962 2242 /*
ebb76ce1
KH
2243 * Because we don't have task_lock(), "p" can exit.
2244 * In that case, "mem" can point to root or p can be NULL with
2245 * race with swapoff. Then, we have small risk of mis-accouning.
2246 * But such kind of mis-account by race always happens because
2247 * we don't have cgroup_mutex(). It's overkill and we allo that
2248 * small race, here.
2249 * (*) swapoff at el will charge against mm-struct not against
2250 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2251 */
2252 mem = mem_cgroup_from_task(p);
ebb76ce1 2253 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2254 rcu_read_unlock();
2255 goto done;
2256 }
7ec99d62 2257 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2258 /*
2259 * It seems dagerous to access memcg without css_get().
2260 * But considering how consume_stok works, it's not
2261 * necessary. If consume_stock success, some charges
2262 * from this memcg are cached on this cpu. So, we
2263 * don't need to call css_get()/css_tryget() before
2264 * calling consume_stock().
2265 */
2266 rcu_read_unlock();
2267 goto done;
2268 }
2269 /* after here, we may be blocked. we need to get refcnt */
2270 if (!css_tryget(&mem->css)) {
2271 rcu_read_unlock();
2272 goto again;
2273 }
2274 rcu_read_unlock();
2275 }
8a9f3ccd 2276
4b534334
KH
2277 do {
2278 bool oom_check;
7a81b88c 2279
4b534334 2280 /* If killed, bypass charge */
f75ca962
KH
2281 if (fatal_signal_pending(current)) {
2282 css_put(&mem->css);
4b534334 2283 goto bypass;
f75ca962 2284 }
6d61ef40 2285
4b534334
KH
2286 oom_check = false;
2287 if (oom && !nr_oom_retries) {
2288 oom_check = true;
2289 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2290 }
66e1707b 2291
7ec99d62 2292 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2293 switch (ret) {
2294 case CHARGE_OK:
2295 break;
2296 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2297 batch = nr_pages;
f75ca962
KH
2298 css_put(&mem->css);
2299 mem = NULL;
2300 goto again;
4b534334 2301 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2302 css_put(&mem->css);
4b534334
KH
2303 goto nomem;
2304 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2305 if (!oom) {
2306 css_put(&mem->css);
867578cb 2307 goto nomem;
f75ca962 2308 }
4b534334
KH
2309 /* If oom, we never return -ENOMEM */
2310 nr_oom_retries--;
2311 break;
2312 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2313 css_put(&mem->css);
867578cb 2314 goto bypass;
66e1707b 2315 }
4b534334
KH
2316 } while (ret != CHARGE_OK);
2317
7ec99d62
JW
2318 if (batch > nr_pages)
2319 refill_stock(mem, batch - nr_pages);
f75ca962 2320 css_put(&mem->css);
0c3e73e8 2321done:
f75ca962 2322 *memcg = mem;
7a81b88c
KH
2323 return 0;
2324nomem:
f75ca962 2325 *memcg = NULL;
7a81b88c 2326 return -ENOMEM;
867578cb
KH
2327bypass:
2328 *memcg = NULL;
2329 return 0;
7a81b88c 2330}
8a9f3ccd 2331
a3032a2c
DN
2332/*
2333 * Somemtimes we have to undo a charge we got by try_charge().
2334 * This function is for that and do uncharge, put css's refcnt.
2335 * gotten by try_charge().
2336 */
854ffa8d 2337static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2338 unsigned int nr_pages)
a3032a2c
DN
2339{
2340 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2341 unsigned long bytes = nr_pages * PAGE_SIZE;
2342
2343 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2344 if (do_swap_account)
e7018b8d 2345 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2346 }
854ffa8d
DN
2347}
2348
a3b2d692
KH
2349/*
2350 * A helper function to get mem_cgroup from ID. must be called under
2351 * rcu_read_lock(). The caller must check css_is_removed() or some if
2352 * it's concern. (dropping refcnt from swap can be called against removed
2353 * memcg.)
2354 */
2355static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2356{
2357 struct cgroup_subsys_state *css;
2358
2359 /* ID 0 is unused ID */
2360 if (!id)
2361 return NULL;
2362 css = css_lookup(&mem_cgroup_subsys, id);
2363 if (!css)
2364 return NULL;
2365 return container_of(css, struct mem_cgroup, css);
2366}
2367
e42d9d5d 2368struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2369{
e42d9d5d 2370 struct mem_cgroup *mem = NULL;
3c776e64 2371 struct page_cgroup *pc;
a3b2d692 2372 unsigned short id;
b5a84319
KH
2373 swp_entry_t ent;
2374
3c776e64
DN
2375 VM_BUG_ON(!PageLocked(page));
2376
3c776e64 2377 pc = lookup_page_cgroup(page);
c0bd3f63 2378 lock_page_cgroup(pc);
a3b2d692 2379 if (PageCgroupUsed(pc)) {
3c776e64 2380 mem = pc->mem_cgroup;
a3b2d692
KH
2381 if (mem && !css_tryget(&mem->css))
2382 mem = NULL;
e42d9d5d 2383 } else if (PageSwapCache(page)) {
3c776e64 2384 ent.val = page_private(page);
a3b2d692
KH
2385 id = lookup_swap_cgroup(ent);
2386 rcu_read_lock();
2387 mem = mem_cgroup_lookup(id);
2388 if (mem && !css_tryget(&mem->css))
2389 mem = NULL;
2390 rcu_read_unlock();
3c776e64 2391 }
c0bd3f63 2392 unlock_page_cgroup(pc);
b5a84319
KH
2393 return mem;
2394}
2395
ca3e0214 2396static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2397 struct page *page,
7ec99d62 2398 unsigned int nr_pages,
ca3e0214 2399 struct page_cgroup *pc,
7ec99d62 2400 enum charge_type ctype)
7a81b88c 2401{
ca3e0214
KH
2402 lock_page_cgroup(pc);
2403 if (unlikely(PageCgroupUsed(pc))) {
2404 unlock_page_cgroup(pc);
e7018b8d 2405 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2406 return;
2407 }
2408 /*
2409 * we don't need page_cgroup_lock about tail pages, becase they are not
2410 * accessed by any other context at this point.
2411 */
8a9f3ccd 2412 pc->mem_cgroup = mem;
261fb61a
KH
2413 /*
2414 * We access a page_cgroup asynchronously without lock_page_cgroup().
2415 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2416 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2417 * before USED bit, we need memory barrier here.
2418 * See mem_cgroup_add_lru_list(), etc.
2419 */
08e552c6 2420 smp_wmb();
4b3bde4c
BS
2421 switch (ctype) {
2422 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2423 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2424 SetPageCgroupCache(pc);
2425 SetPageCgroupUsed(pc);
2426 break;
2427 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2428 ClearPageCgroupCache(pc);
2429 SetPageCgroupUsed(pc);
2430 break;
2431 default:
2432 break;
2433 }
3be91277 2434
ca3e0214 2435 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2436 unlock_page_cgroup(pc);
430e4863
KH
2437 /*
2438 * "charge_statistics" updated event counter. Then, check it.
2439 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2440 * if they exceeds softlimit.
2441 */
5564e88b 2442 memcg_check_events(mem, page);
7a81b88c 2443}
66e1707b 2444
ca3e0214
KH
2445#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2446
2447#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2448 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2449/*
2450 * Because tail pages are not marked as "used", set it. We're under
2451 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2452 */
2453void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2454{
2455 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2456 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2457 unsigned long flags;
2458
3d37c4a9
KH
2459 if (mem_cgroup_disabled())
2460 return;
ca3e0214 2461 /*
ece35ca8 2462 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2463 * page state accounting.
2464 */
2465 move_lock_page_cgroup(head_pc, &flags);
2466
2467 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2468 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2469 if (PageCgroupAcctLRU(head_pc)) {
2470 enum lru_list lru;
2471 struct mem_cgroup_per_zone *mz;
2472
2473 /*
2474 * LRU flags cannot be copied because we need to add tail
2475 *.page to LRU by generic call and our hook will be called.
2476 * We hold lru_lock, then, reduce counter directly.
2477 */
2478 lru = page_lru(head);
97a6c37b 2479 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2480 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2481 }
ca3e0214
KH
2482 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2483 move_unlock_page_cgroup(head_pc, &flags);
2484}
2485#endif
2486
f817ed48 2487/**
de3638d9 2488 * mem_cgroup_move_account - move account of the page
5564e88b 2489 * @page: the page
7ec99d62 2490 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2491 * @pc: page_cgroup of the page.
2492 * @from: mem_cgroup which the page is moved from.
2493 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2494 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2495 *
2496 * The caller must confirm following.
08e552c6 2497 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2498 * - compound_lock is held when nr_pages > 1
f817ed48 2499 *
854ffa8d 2500 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2501 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2502 * true, this function does "uncharge" from old cgroup, but it doesn't if
2503 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2504 */
7ec99d62
JW
2505static int mem_cgroup_move_account(struct page *page,
2506 unsigned int nr_pages,
2507 struct page_cgroup *pc,
2508 struct mem_cgroup *from,
2509 struct mem_cgroup *to,
2510 bool uncharge)
f817ed48 2511{
de3638d9
JW
2512 unsigned long flags;
2513 int ret;
987eba66 2514
f817ed48 2515 VM_BUG_ON(from == to);
5564e88b 2516 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2517 /*
2518 * The page is isolated from LRU. So, collapse function
2519 * will not handle this page. But page splitting can happen.
2520 * Do this check under compound_page_lock(). The caller should
2521 * hold it.
2522 */
2523 ret = -EBUSY;
7ec99d62 2524 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2525 goto out;
2526
2527 lock_page_cgroup(pc);
2528
2529 ret = -EINVAL;
2530 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2531 goto unlock;
2532
2533 move_lock_page_cgroup(pc, &flags);
f817ed48 2534
8725d541 2535 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2536 /* Update mapped_file data for mem_cgroup */
2537 preempt_disable();
2538 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2539 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2540 preempt_enable();
d69b042f 2541 }
987eba66 2542 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2543 if (uncharge)
2544 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2545 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2546
854ffa8d 2547 /* caller should have done css_get */
08e552c6 2548 pc->mem_cgroup = to;
987eba66 2549 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2550 /*
2551 * We charges against "to" which may not have any tasks. Then, "to"
2552 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2553 * this function is just force_empty() and move charge, so it's
25985edc 2554 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2555 * status here.
88703267 2556 */
de3638d9
JW
2557 move_unlock_page_cgroup(pc, &flags);
2558 ret = 0;
2559unlock:
57f9fd7d 2560 unlock_page_cgroup(pc);
d2265e6f
KH
2561 /*
2562 * check events
2563 */
5564e88b
JW
2564 memcg_check_events(to, page);
2565 memcg_check_events(from, page);
de3638d9 2566out:
f817ed48
KH
2567 return ret;
2568}
2569
2570/*
2571 * move charges to its parent.
2572 */
2573
5564e88b
JW
2574static int mem_cgroup_move_parent(struct page *page,
2575 struct page_cgroup *pc,
f817ed48
KH
2576 struct mem_cgroup *child,
2577 gfp_t gfp_mask)
2578{
2579 struct cgroup *cg = child->css.cgroup;
2580 struct cgroup *pcg = cg->parent;
2581 struct mem_cgroup *parent;
7ec99d62 2582 unsigned int nr_pages;
4be4489f 2583 unsigned long uninitialized_var(flags);
f817ed48
KH
2584 int ret;
2585
2586 /* Is ROOT ? */
2587 if (!pcg)
2588 return -EINVAL;
2589
57f9fd7d
DN
2590 ret = -EBUSY;
2591 if (!get_page_unless_zero(page))
2592 goto out;
2593 if (isolate_lru_page(page))
2594 goto put;
52dbb905 2595
7ec99d62 2596 nr_pages = hpage_nr_pages(page);
08e552c6 2597
f817ed48 2598 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2599 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2600 if (ret || !parent)
57f9fd7d 2601 goto put_back;
f817ed48 2602
7ec99d62 2603 if (nr_pages > 1)
987eba66
KH
2604 flags = compound_lock_irqsave(page);
2605
7ec99d62 2606 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2607 if (ret)
7ec99d62 2608 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2609
7ec99d62 2610 if (nr_pages > 1)
987eba66 2611 compound_unlock_irqrestore(page, flags);
8dba474f 2612put_back:
08e552c6 2613 putback_lru_page(page);
57f9fd7d 2614put:
40d58138 2615 put_page(page);
57f9fd7d 2616out:
f817ed48
KH
2617 return ret;
2618}
2619
7a81b88c
KH
2620/*
2621 * Charge the memory controller for page usage.
2622 * Return
2623 * 0 if the charge was successful
2624 * < 0 if the cgroup is over its limit
2625 */
2626static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2627 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2628{
73045c47 2629 struct mem_cgroup *mem = NULL;
7ec99d62 2630 unsigned int nr_pages = 1;
7a81b88c 2631 struct page_cgroup *pc;
8493ae43 2632 bool oom = true;
7a81b88c 2633 int ret;
ec168510 2634
37c2ac78 2635 if (PageTransHuge(page)) {
7ec99d62 2636 nr_pages <<= compound_order(page);
37c2ac78 2637 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2638 /*
2639 * Never OOM-kill a process for a huge page. The
2640 * fault handler will fall back to regular pages.
2641 */
2642 oom = false;
37c2ac78 2643 }
7a81b88c
KH
2644
2645 pc = lookup_page_cgroup(page);
af4a6621 2646 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2647
7ec99d62 2648 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2649 if (ret || !mem)
7a81b88c
KH
2650 return ret;
2651
7ec99d62 2652 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2653 return 0;
8a9f3ccd
BS
2654}
2655
7a81b88c
KH
2656int mem_cgroup_newpage_charge(struct page *page,
2657 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2658{
f8d66542 2659 if (mem_cgroup_disabled())
cede86ac 2660 return 0;
69029cd5
KH
2661 /*
2662 * If already mapped, we don't have to account.
2663 * If page cache, page->mapping has address_space.
2664 * But page->mapping may have out-of-use anon_vma pointer,
2665 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2666 * is NULL.
2667 */
2668 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2669 return 0;
2670 if (unlikely(!mm))
2671 mm = &init_mm;
217bc319 2672 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2673 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2674}
2675
83aae4c7
DN
2676static void
2677__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2678 enum charge_type ctype);
2679
5a6475a4
KH
2680static void
2681__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2682 enum charge_type ctype)
2683{
2684 struct page_cgroup *pc = lookup_page_cgroup(page);
2685 /*
2686 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2687 * is already on LRU. It means the page may on some other page_cgroup's
2688 * LRU. Take care of it.
2689 */
2690 mem_cgroup_lru_del_before_commit(page);
2691 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2692 mem_cgroup_lru_add_after_commit(page);
2693 return;
2694}
2695
e1a1cd59
BS
2696int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2697 gfp_t gfp_mask)
8697d331 2698{
5a6475a4 2699 struct mem_cgroup *mem = NULL;
b5a84319
KH
2700 int ret;
2701
f8d66542 2702 if (mem_cgroup_disabled())
cede86ac 2703 return 0;
52d4b9ac
KH
2704 if (PageCompound(page))
2705 return 0;
accf163e
KH
2706 /*
2707 * Corner case handling. This is called from add_to_page_cache()
2708 * in usual. But some FS (shmem) precharges this page before calling it
2709 * and call add_to_page_cache() with GFP_NOWAIT.
2710 *
2711 * For GFP_NOWAIT case, the page may be pre-charged before calling
2712 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2713 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2714 * And when the page is SwapCache, it should take swap information
2715 * into account. This is under lock_page() now.
accf163e
KH
2716 */
2717 if (!(gfp_mask & __GFP_WAIT)) {
2718 struct page_cgroup *pc;
2719
52d4b9ac
KH
2720 pc = lookup_page_cgroup(page);
2721 if (!pc)
2722 return 0;
2723 lock_page_cgroup(pc);
2724 if (PageCgroupUsed(pc)) {
2725 unlock_page_cgroup(pc);
accf163e
KH
2726 return 0;
2727 }
52d4b9ac 2728 unlock_page_cgroup(pc);
accf163e
KH
2729 }
2730
73045c47 2731 if (unlikely(!mm))
8697d331 2732 mm = &init_mm;
accf163e 2733
5a6475a4
KH
2734 if (page_is_file_cache(page)) {
2735 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2736 if (ret || !mem)
2737 return ret;
b5a84319 2738
5a6475a4
KH
2739 /*
2740 * FUSE reuses pages without going through the final
2741 * put that would remove them from the LRU list, make
2742 * sure that they get relinked properly.
2743 */
2744 __mem_cgroup_commit_charge_lrucare(page, mem,
2745 MEM_CGROUP_CHARGE_TYPE_CACHE);
2746 return ret;
2747 }
83aae4c7
DN
2748 /* shmem */
2749 if (PageSwapCache(page)) {
2750 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2751 if (!ret)
2752 __mem_cgroup_commit_charge_swapin(page, mem,
2753 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2754 } else
2755 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2756 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2757
b5a84319 2758 return ret;
e8589cc1
KH
2759}
2760
54595fe2
KH
2761/*
2762 * While swap-in, try_charge -> commit or cancel, the page is locked.
2763 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2764 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2765 * "commit()" or removed by "cancel()"
2766 */
8c7c6e34
KH
2767int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2768 struct page *page,
2769 gfp_t mask, struct mem_cgroup **ptr)
2770{
2771 struct mem_cgroup *mem;
54595fe2 2772 int ret;
8c7c6e34 2773
56039efa
KH
2774 *ptr = NULL;
2775
f8d66542 2776 if (mem_cgroup_disabled())
8c7c6e34
KH
2777 return 0;
2778
2779 if (!do_swap_account)
2780 goto charge_cur_mm;
8c7c6e34
KH
2781 /*
2782 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2783 * the pte, and even removed page from swap cache: in those cases
2784 * do_swap_page()'s pte_same() test will fail; but there's also a
2785 * KSM case which does need to charge the page.
8c7c6e34
KH
2786 */
2787 if (!PageSwapCache(page))
407f9c8b 2788 goto charge_cur_mm;
e42d9d5d 2789 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2790 if (!mem)
2791 goto charge_cur_mm;
8c7c6e34 2792 *ptr = mem;
7ec99d62 2793 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2794 css_put(&mem->css);
2795 return ret;
8c7c6e34
KH
2796charge_cur_mm:
2797 if (unlikely(!mm))
2798 mm = &init_mm;
7ec99d62 2799 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2800}
2801
83aae4c7
DN
2802static void
2803__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2804 enum charge_type ctype)
7a81b88c 2805{
f8d66542 2806 if (mem_cgroup_disabled())
7a81b88c
KH
2807 return;
2808 if (!ptr)
2809 return;
88703267 2810 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2811
2812 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2813 /*
2814 * Now swap is on-memory. This means this page may be
2815 * counted both as mem and swap....double count.
03f3c433
KH
2816 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2817 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2818 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2819 */
03f3c433 2820 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2821 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2822 unsigned short id;
8c7c6e34 2823 struct mem_cgroup *memcg;
a3b2d692
KH
2824
2825 id = swap_cgroup_record(ent, 0);
2826 rcu_read_lock();
2827 memcg = mem_cgroup_lookup(id);
8c7c6e34 2828 if (memcg) {
a3b2d692
KH
2829 /*
2830 * This recorded memcg can be obsolete one. So, avoid
2831 * calling css_tryget
2832 */
0c3e73e8 2833 if (!mem_cgroup_is_root(memcg))
4e649152 2834 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2835 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2836 mem_cgroup_put(memcg);
2837 }
a3b2d692 2838 rcu_read_unlock();
8c7c6e34 2839 }
88703267
KH
2840 /*
2841 * At swapin, we may charge account against cgroup which has no tasks.
2842 * So, rmdir()->pre_destroy() can be called while we do this charge.
2843 * In that case, we need to call pre_destroy() again. check it here.
2844 */
2845 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2846}
2847
83aae4c7
DN
2848void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2849{
2850 __mem_cgroup_commit_charge_swapin(page, ptr,
2851 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2852}
2853
7a81b88c
KH
2854void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2855{
f8d66542 2856 if (mem_cgroup_disabled())
7a81b88c
KH
2857 return;
2858 if (!mem)
2859 return;
e7018b8d 2860 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
2861}
2862
7ec99d62
JW
2863static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2864 unsigned int nr_pages,
2865 const enum charge_type ctype)
569b846d
KH
2866{
2867 struct memcg_batch_info *batch = NULL;
2868 bool uncharge_memsw = true;
7ec99d62 2869
569b846d
KH
2870 /* If swapout, usage of swap doesn't decrease */
2871 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2872 uncharge_memsw = false;
569b846d
KH
2873
2874 batch = &current->memcg_batch;
2875 /*
2876 * In usual, we do css_get() when we remember memcg pointer.
2877 * But in this case, we keep res->usage until end of a series of
2878 * uncharges. Then, it's ok to ignore memcg's refcnt.
2879 */
2880 if (!batch->memcg)
2881 batch->memcg = mem;
3c11ecf4
KH
2882 /*
2883 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2884 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2885 * the same cgroup and we have chance to coalesce uncharges.
2886 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2887 * because we want to do uncharge as soon as possible.
2888 */
2889
2890 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2891 goto direct_uncharge;
2892
7ec99d62 2893 if (nr_pages > 1)
ec168510
AA
2894 goto direct_uncharge;
2895
569b846d
KH
2896 /*
2897 * In typical case, batch->memcg == mem. This means we can
2898 * merge a series of uncharges to an uncharge of res_counter.
2899 * If not, we uncharge res_counter ony by one.
2900 */
2901 if (batch->memcg != mem)
2902 goto direct_uncharge;
2903 /* remember freed charge and uncharge it later */
7ffd4ca7 2904 batch->nr_pages++;
569b846d 2905 if (uncharge_memsw)
7ffd4ca7 2906 batch->memsw_nr_pages++;
569b846d
KH
2907 return;
2908direct_uncharge:
7ec99d62 2909 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 2910 if (uncharge_memsw)
7ec99d62 2911 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
2912 if (unlikely(batch->memcg != mem))
2913 memcg_oom_recover(mem);
569b846d
KH
2914 return;
2915}
7a81b88c 2916
8a9f3ccd 2917/*
69029cd5 2918 * uncharge if !page_mapped(page)
8a9f3ccd 2919 */
8c7c6e34 2920static struct mem_cgroup *
69029cd5 2921__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2922{
8c7c6e34 2923 struct mem_cgroup *mem = NULL;
7ec99d62
JW
2924 unsigned int nr_pages = 1;
2925 struct page_cgroup *pc;
8a9f3ccd 2926
f8d66542 2927 if (mem_cgroup_disabled())
8c7c6e34 2928 return NULL;
4077960e 2929
d13d1443 2930 if (PageSwapCache(page))
8c7c6e34 2931 return NULL;
d13d1443 2932
37c2ac78 2933 if (PageTransHuge(page)) {
7ec99d62 2934 nr_pages <<= compound_order(page);
37c2ac78
AA
2935 VM_BUG_ON(!PageTransHuge(page));
2936 }
8697d331 2937 /*
3c541e14 2938 * Check if our page_cgroup is valid
8697d331 2939 */
52d4b9ac
KH
2940 pc = lookup_page_cgroup(page);
2941 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2942 return NULL;
b9c565d5 2943
52d4b9ac 2944 lock_page_cgroup(pc);
d13d1443 2945
8c7c6e34
KH
2946 mem = pc->mem_cgroup;
2947
d13d1443
KH
2948 if (!PageCgroupUsed(pc))
2949 goto unlock_out;
2950
2951 switch (ctype) {
2952 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2953 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2954 /* See mem_cgroup_prepare_migration() */
2955 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2956 goto unlock_out;
2957 break;
2958 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2959 if (!PageAnon(page)) { /* Shared memory */
2960 if (page->mapping && !page_is_file_cache(page))
2961 goto unlock_out;
2962 } else if (page_mapped(page)) /* Anon */
2963 goto unlock_out;
2964 break;
2965 default:
2966 break;
52d4b9ac 2967 }
d13d1443 2968
7ec99d62 2969 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 2970
52d4b9ac 2971 ClearPageCgroupUsed(pc);
544122e5
KH
2972 /*
2973 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2974 * freed from LRU. This is safe because uncharged page is expected not
2975 * to be reused (freed soon). Exception is SwapCache, it's handled by
2976 * special functions.
2977 */
b9c565d5 2978
52d4b9ac 2979 unlock_page_cgroup(pc);
f75ca962
KH
2980 /*
2981 * even after unlock, we have mem->res.usage here and this memcg
2982 * will never be freed.
2983 */
d2265e6f 2984 memcg_check_events(mem, page);
f75ca962
KH
2985 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2986 mem_cgroup_swap_statistics(mem, true);
2987 mem_cgroup_get(mem);
2988 }
2989 if (!mem_cgroup_is_root(mem))
7ec99d62 2990 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 2991
8c7c6e34 2992 return mem;
d13d1443
KH
2993
2994unlock_out:
2995 unlock_page_cgroup(pc);
8c7c6e34 2996 return NULL;
3c541e14
BS
2997}
2998
69029cd5
KH
2999void mem_cgroup_uncharge_page(struct page *page)
3000{
52d4b9ac
KH
3001 /* early check. */
3002 if (page_mapped(page))
3003 return;
3004 if (page->mapping && !PageAnon(page))
3005 return;
69029cd5
KH
3006 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3007}
3008
3009void mem_cgroup_uncharge_cache_page(struct page *page)
3010{
3011 VM_BUG_ON(page_mapped(page));
b7abea96 3012 VM_BUG_ON(page->mapping);
69029cd5
KH
3013 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3014}
3015
569b846d
KH
3016/*
3017 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3018 * In that cases, pages are freed continuously and we can expect pages
3019 * are in the same memcg. All these calls itself limits the number of
3020 * pages freed at once, then uncharge_start/end() is called properly.
3021 * This may be called prural(2) times in a context,
3022 */
3023
3024void mem_cgroup_uncharge_start(void)
3025{
3026 current->memcg_batch.do_batch++;
3027 /* We can do nest. */
3028 if (current->memcg_batch.do_batch == 1) {
3029 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3030 current->memcg_batch.nr_pages = 0;
3031 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3032 }
3033}
3034
3035void mem_cgroup_uncharge_end(void)
3036{
3037 struct memcg_batch_info *batch = &current->memcg_batch;
3038
3039 if (!batch->do_batch)
3040 return;
3041
3042 batch->do_batch--;
3043 if (batch->do_batch) /* If stacked, do nothing. */
3044 return;
3045
3046 if (!batch->memcg)
3047 return;
3048 /*
3049 * This "batch->memcg" is valid without any css_get/put etc...
3050 * bacause we hide charges behind us.
3051 */
7ffd4ca7
JW
3052 if (batch->nr_pages)
3053 res_counter_uncharge(&batch->memcg->res,
3054 batch->nr_pages * PAGE_SIZE);
3055 if (batch->memsw_nr_pages)
3056 res_counter_uncharge(&batch->memcg->memsw,
3057 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3058 memcg_oom_recover(batch->memcg);
569b846d
KH
3059 /* forget this pointer (for sanity check) */
3060 batch->memcg = NULL;
3061}
3062
e767e056 3063#ifdef CONFIG_SWAP
8c7c6e34 3064/*
e767e056 3065 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3066 * memcg information is recorded to swap_cgroup of "ent"
3067 */
8a9478ca
KH
3068void
3069mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3070{
3071 struct mem_cgroup *memcg;
8a9478ca
KH
3072 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3073
3074 if (!swapout) /* this was a swap cache but the swap is unused ! */
3075 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3076
3077 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3078
f75ca962
KH
3079 /*
3080 * record memcg information, if swapout && memcg != NULL,
3081 * mem_cgroup_get() was called in uncharge().
3082 */
3083 if (do_swap_account && swapout && memcg)
a3b2d692 3084 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3085}
e767e056 3086#endif
8c7c6e34
KH
3087
3088#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3089/*
3090 * called from swap_entry_free(). remove record in swap_cgroup and
3091 * uncharge "memsw" account.
3092 */
3093void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3094{
8c7c6e34 3095 struct mem_cgroup *memcg;
a3b2d692 3096 unsigned short id;
8c7c6e34
KH
3097
3098 if (!do_swap_account)
3099 return;
3100
a3b2d692
KH
3101 id = swap_cgroup_record(ent, 0);
3102 rcu_read_lock();
3103 memcg = mem_cgroup_lookup(id);
8c7c6e34 3104 if (memcg) {
a3b2d692
KH
3105 /*
3106 * We uncharge this because swap is freed.
3107 * This memcg can be obsolete one. We avoid calling css_tryget
3108 */
0c3e73e8 3109 if (!mem_cgroup_is_root(memcg))
4e649152 3110 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3111 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3112 mem_cgroup_put(memcg);
3113 }
a3b2d692 3114 rcu_read_unlock();
d13d1443 3115}
02491447
DN
3116
3117/**
3118 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3119 * @entry: swap entry to be moved
3120 * @from: mem_cgroup which the entry is moved from
3121 * @to: mem_cgroup which the entry is moved to
483c30b5 3122 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3123 *
3124 * It succeeds only when the swap_cgroup's record for this entry is the same
3125 * as the mem_cgroup's id of @from.
3126 *
3127 * Returns 0 on success, -EINVAL on failure.
3128 *
3129 * The caller must have charged to @to, IOW, called res_counter_charge() about
3130 * both res and memsw, and called css_get().
3131 */
3132static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3133 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3134{
3135 unsigned short old_id, new_id;
3136
3137 old_id = css_id(&from->css);
3138 new_id = css_id(&to->css);
3139
3140 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3141 mem_cgroup_swap_statistics(from, false);
483c30b5 3142 mem_cgroup_swap_statistics(to, true);
02491447 3143 /*
483c30b5
DN
3144 * This function is only called from task migration context now.
3145 * It postpones res_counter and refcount handling till the end
3146 * of task migration(mem_cgroup_clear_mc()) for performance
3147 * improvement. But we cannot postpone mem_cgroup_get(to)
3148 * because if the process that has been moved to @to does
3149 * swap-in, the refcount of @to might be decreased to 0.
02491447 3150 */
02491447 3151 mem_cgroup_get(to);
483c30b5
DN
3152 if (need_fixup) {
3153 if (!mem_cgroup_is_root(from))
3154 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3155 mem_cgroup_put(from);
3156 /*
3157 * we charged both to->res and to->memsw, so we should
3158 * uncharge to->res.
3159 */
3160 if (!mem_cgroup_is_root(to))
3161 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3162 }
02491447
DN
3163 return 0;
3164 }
3165 return -EINVAL;
3166}
3167#else
3168static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3169 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3170{
3171 return -EINVAL;
3172}
8c7c6e34 3173#endif
d13d1443 3174
ae41be37 3175/*
01b1ae63
KH
3176 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3177 * page belongs to.
ae41be37 3178 */
ac39cf8c 3179int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3180 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3181{
e8589cc1 3182 struct mem_cgroup *mem = NULL;
7ec99d62 3183 struct page_cgroup *pc;
ac39cf8c 3184 enum charge_type ctype;
e8589cc1 3185 int ret = 0;
8869b8f6 3186
56039efa
KH
3187 *ptr = NULL;
3188
ec168510 3189 VM_BUG_ON(PageTransHuge(page));
f8d66542 3190 if (mem_cgroup_disabled())
4077960e
BS
3191 return 0;
3192
52d4b9ac
KH
3193 pc = lookup_page_cgroup(page);
3194 lock_page_cgroup(pc);
3195 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3196 mem = pc->mem_cgroup;
3197 css_get(&mem->css);
ac39cf8c
AM
3198 /*
3199 * At migrating an anonymous page, its mapcount goes down
3200 * to 0 and uncharge() will be called. But, even if it's fully
3201 * unmapped, migration may fail and this page has to be
3202 * charged again. We set MIGRATION flag here and delay uncharge
3203 * until end_migration() is called
3204 *
3205 * Corner Case Thinking
3206 * A)
3207 * When the old page was mapped as Anon and it's unmap-and-freed
3208 * while migration was ongoing.
3209 * If unmap finds the old page, uncharge() of it will be delayed
3210 * until end_migration(). If unmap finds a new page, it's
3211 * uncharged when it make mapcount to be 1->0. If unmap code
3212 * finds swap_migration_entry, the new page will not be mapped
3213 * and end_migration() will find it(mapcount==0).
3214 *
3215 * B)
3216 * When the old page was mapped but migraion fails, the kernel
3217 * remaps it. A charge for it is kept by MIGRATION flag even
3218 * if mapcount goes down to 0. We can do remap successfully
3219 * without charging it again.
3220 *
3221 * C)
3222 * The "old" page is under lock_page() until the end of
3223 * migration, so, the old page itself will not be swapped-out.
3224 * If the new page is swapped out before end_migraton, our
3225 * hook to usual swap-out path will catch the event.
3226 */
3227 if (PageAnon(page))
3228 SetPageCgroupMigration(pc);
e8589cc1 3229 }
52d4b9ac 3230 unlock_page_cgroup(pc);
ac39cf8c
AM
3231 /*
3232 * If the page is not charged at this point,
3233 * we return here.
3234 */
3235 if (!mem)
3236 return 0;
01b1ae63 3237
93d5c9be 3238 *ptr = mem;
7ec99d62 3239 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
3240 css_put(&mem->css);/* drop extra refcnt */
3241 if (ret || *ptr == NULL) {
3242 if (PageAnon(page)) {
3243 lock_page_cgroup(pc);
3244 ClearPageCgroupMigration(pc);
3245 unlock_page_cgroup(pc);
3246 /*
3247 * The old page may be fully unmapped while we kept it.
3248 */
3249 mem_cgroup_uncharge_page(page);
3250 }
3251 return -ENOMEM;
e8589cc1 3252 }
ac39cf8c
AM
3253 /*
3254 * We charge new page before it's used/mapped. So, even if unlock_page()
3255 * is called before end_migration, we can catch all events on this new
3256 * page. In the case new page is migrated but not remapped, new page's
3257 * mapcount will be finally 0 and we call uncharge in end_migration().
3258 */
3259 pc = lookup_page_cgroup(newpage);
3260 if (PageAnon(page))
3261 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3262 else if (page_is_file_cache(page))
3263 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3264 else
3265 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3266 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3267 return ret;
ae41be37 3268}
8869b8f6 3269
69029cd5 3270/* remove redundant charge if migration failed*/
01b1ae63 3271void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3272 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3273{
ac39cf8c 3274 struct page *used, *unused;
01b1ae63 3275 struct page_cgroup *pc;
01b1ae63
KH
3276
3277 if (!mem)
3278 return;
ac39cf8c 3279 /* blocks rmdir() */
88703267 3280 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3281 if (!migration_ok) {
ac39cf8c
AM
3282 used = oldpage;
3283 unused = newpage;
01b1ae63 3284 } else {
ac39cf8c 3285 used = newpage;
01b1ae63
KH
3286 unused = oldpage;
3287 }
69029cd5 3288 /*
ac39cf8c
AM
3289 * We disallowed uncharge of pages under migration because mapcount
3290 * of the page goes down to zero, temporarly.
3291 * Clear the flag and check the page should be charged.
01b1ae63 3292 */
ac39cf8c
AM
3293 pc = lookup_page_cgroup(oldpage);
3294 lock_page_cgroup(pc);
3295 ClearPageCgroupMigration(pc);
3296 unlock_page_cgroup(pc);
01b1ae63 3297
ac39cf8c
AM
3298 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3299
01b1ae63 3300 /*
ac39cf8c
AM
3301 * If a page is a file cache, radix-tree replacement is very atomic
3302 * and we can skip this check. When it was an Anon page, its mapcount
3303 * goes down to 0. But because we added MIGRATION flage, it's not
3304 * uncharged yet. There are several case but page->mapcount check
3305 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3306 * check. (see prepare_charge() also)
69029cd5 3307 */
ac39cf8c
AM
3308 if (PageAnon(used))
3309 mem_cgroup_uncharge_page(used);
88703267 3310 /*
ac39cf8c
AM
3311 * At migration, we may charge account against cgroup which has no
3312 * tasks.
88703267
KH
3313 * So, rmdir()->pre_destroy() can be called while we do this charge.
3314 * In that case, we need to call pre_destroy() again. check it here.
3315 */
3316 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3317}
78fb7466 3318
c9b0ed51 3319/*
ae3abae6
DN
3320 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3321 * Calling hierarchical_reclaim is not enough because we should update
3322 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3323 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3324 * not from the memcg which this page would be charged to.
3325 * try_charge_swapin does all of these works properly.
c9b0ed51 3326 */
ae3abae6 3327int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3328 struct mm_struct *mm,
3329 gfp_t gfp_mask)
c9b0ed51 3330{
56039efa 3331 struct mem_cgroup *mem;
ae3abae6 3332 int ret;
c9b0ed51 3333
f8d66542 3334 if (mem_cgroup_disabled())
cede86ac 3335 return 0;
c9b0ed51 3336
ae3abae6
DN
3337 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3338 if (!ret)
3339 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3340
ae3abae6 3341 return ret;
c9b0ed51
KH
3342}
3343
f212ad7c
DN
3344#ifdef CONFIG_DEBUG_VM
3345static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3346{
3347 struct page_cgroup *pc;
3348
3349 pc = lookup_page_cgroup(page);
3350 if (likely(pc) && PageCgroupUsed(pc))
3351 return pc;
3352 return NULL;
3353}
3354
3355bool mem_cgroup_bad_page_check(struct page *page)
3356{
3357 if (mem_cgroup_disabled())
3358 return false;
3359
3360 return lookup_page_cgroup_used(page) != NULL;
3361}
3362
3363void mem_cgroup_print_bad_page(struct page *page)
3364{
3365 struct page_cgroup *pc;
3366
3367 pc = lookup_page_cgroup_used(page);
3368 if (pc) {
3369 int ret = -1;
3370 char *path;
3371
3372 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3373 pc, pc->flags, pc->mem_cgroup);
3374
3375 path = kmalloc(PATH_MAX, GFP_KERNEL);
3376 if (path) {
3377 rcu_read_lock();
3378 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3379 path, PATH_MAX);
3380 rcu_read_unlock();
3381 }
3382
3383 printk(KERN_CONT "(%s)\n",
3384 (ret < 0) ? "cannot get the path" : path);
3385 kfree(path);
3386 }
3387}
3388#endif
3389
8c7c6e34
KH
3390static DEFINE_MUTEX(set_limit_mutex);
3391
d38d2a75 3392static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3393 unsigned long long val)
628f4235 3394{
81d39c20 3395 int retry_count;
3c11ecf4 3396 u64 memswlimit, memlimit;
628f4235 3397 int ret = 0;
81d39c20
KH
3398 int children = mem_cgroup_count_children(memcg);
3399 u64 curusage, oldusage;
3c11ecf4 3400 int enlarge;
81d39c20
KH
3401
3402 /*
3403 * For keeping hierarchical_reclaim simple, how long we should retry
3404 * is depends on callers. We set our retry-count to be function
3405 * of # of children which we should visit in this loop.
3406 */
3407 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3408
3409 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3410
3c11ecf4 3411 enlarge = 0;
8c7c6e34 3412 while (retry_count) {
628f4235
KH
3413 if (signal_pending(current)) {
3414 ret = -EINTR;
3415 break;
3416 }
8c7c6e34
KH
3417 /*
3418 * Rather than hide all in some function, I do this in
3419 * open coded manner. You see what this really does.
3420 * We have to guarantee mem->res.limit < mem->memsw.limit.
3421 */
3422 mutex_lock(&set_limit_mutex);
3423 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3424 if (memswlimit < val) {
3425 ret = -EINVAL;
3426 mutex_unlock(&set_limit_mutex);
628f4235
KH
3427 break;
3428 }
3c11ecf4
KH
3429
3430 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3431 if (memlimit < val)
3432 enlarge = 1;
3433
8c7c6e34 3434 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3435 if (!ret) {
3436 if (memswlimit == val)
3437 memcg->memsw_is_minimum = true;
3438 else
3439 memcg->memsw_is_minimum = false;
3440 }
8c7c6e34
KH
3441 mutex_unlock(&set_limit_mutex);
3442
3443 if (!ret)
3444 break;
3445
aa20d489 3446 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3447 MEM_CGROUP_RECLAIM_SHRINK,
3448 NULL);
81d39c20
KH
3449 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3450 /* Usage is reduced ? */
3451 if (curusage >= oldusage)
3452 retry_count--;
3453 else
3454 oldusage = curusage;
8c7c6e34 3455 }
3c11ecf4
KH
3456 if (!ret && enlarge)
3457 memcg_oom_recover(memcg);
14797e23 3458
8c7c6e34
KH
3459 return ret;
3460}
3461
338c8431
LZ
3462static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3463 unsigned long long val)
8c7c6e34 3464{
81d39c20 3465 int retry_count;
3c11ecf4 3466 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3467 int children = mem_cgroup_count_children(memcg);
3468 int ret = -EBUSY;
3c11ecf4 3469 int enlarge = 0;
8c7c6e34 3470
81d39c20
KH
3471 /* see mem_cgroup_resize_res_limit */
3472 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3473 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3474 while (retry_count) {
3475 if (signal_pending(current)) {
3476 ret = -EINTR;
3477 break;
3478 }
3479 /*
3480 * Rather than hide all in some function, I do this in
3481 * open coded manner. You see what this really does.
3482 * We have to guarantee mem->res.limit < mem->memsw.limit.
3483 */
3484 mutex_lock(&set_limit_mutex);
3485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3486 if (memlimit > val) {
3487 ret = -EINVAL;
3488 mutex_unlock(&set_limit_mutex);
3489 break;
3490 }
3c11ecf4
KH
3491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3492 if (memswlimit < val)
3493 enlarge = 1;
8c7c6e34 3494 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3495 if (!ret) {
3496 if (memlimit == val)
3497 memcg->memsw_is_minimum = true;
3498 else
3499 memcg->memsw_is_minimum = false;
3500 }
8c7c6e34
KH
3501 mutex_unlock(&set_limit_mutex);
3502
3503 if (!ret)
3504 break;
3505
4e416953 3506 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3507 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3508 MEM_CGROUP_RECLAIM_SHRINK,
3509 NULL);
8c7c6e34 3510 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3511 /* Usage is reduced ? */
8c7c6e34 3512 if (curusage >= oldusage)
628f4235 3513 retry_count--;
81d39c20
KH
3514 else
3515 oldusage = curusage;
628f4235 3516 }
3c11ecf4
KH
3517 if (!ret && enlarge)
3518 memcg_oom_recover(memcg);
628f4235
KH
3519 return ret;
3520}
3521
4e416953 3522unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3523 gfp_t gfp_mask,
3524 unsigned long *total_scanned)
4e416953
BS
3525{
3526 unsigned long nr_reclaimed = 0;
3527 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3528 unsigned long reclaimed;
3529 int loop = 0;
3530 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3531 unsigned long long excess;
0ae5e89c 3532 unsigned long nr_scanned;
4e416953
BS
3533
3534 if (order > 0)
3535 return 0;
3536
00918b6a 3537 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3538 /*
3539 * This loop can run a while, specially if mem_cgroup's continuously
3540 * keep exceeding their soft limit and putting the system under
3541 * pressure
3542 */
3543 do {
3544 if (next_mz)
3545 mz = next_mz;
3546 else
3547 mz = mem_cgroup_largest_soft_limit_node(mctz);
3548 if (!mz)
3549 break;
3550
0ae5e89c 3551 nr_scanned = 0;
4e416953
BS
3552 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3553 gfp_mask,
0ae5e89c
YH
3554 MEM_CGROUP_RECLAIM_SOFT,
3555 &nr_scanned);
4e416953 3556 nr_reclaimed += reclaimed;
0ae5e89c 3557 *total_scanned += nr_scanned;
4e416953
BS
3558 spin_lock(&mctz->lock);
3559
3560 /*
3561 * If we failed to reclaim anything from this memory cgroup
3562 * it is time to move on to the next cgroup
3563 */
3564 next_mz = NULL;
3565 if (!reclaimed) {
3566 do {
3567 /*
3568 * Loop until we find yet another one.
3569 *
3570 * By the time we get the soft_limit lock
3571 * again, someone might have aded the
3572 * group back on the RB tree. Iterate to
3573 * make sure we get a different mem.
3574 * mem_cgroup_largest_soft_limit_node returns
3575 * NULL if no other cgroup is present on
3576 * the tree
3577 */
3578 next_mz =
3579 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3580 if (next_mz == mz)
4e416953 3581 css_put(&next_mz->mem->css);
39cc98f1 3582 else /* next_mz == NULL or other memcg */
4e416953
BS
3583 break;
3584 } while (1);
3585 }
4e416953 3586 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3587 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3588 /*
3589 * One school of thought says that we should not add
3590 * back the node to the tree if reclaim returns 0.
3591 * But our reclaim could return 0, simply because due
3592 * to priority we are exposing a smaller subset of
3593 * memory to reclaim from. Consider this as a longer
3594 * term TODO.
3595 */
ef8745c1
KH
3596 /* If excess == 0, no tree ops */
3597 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3598 spin_unlock(&mctz->lock);
3599 css_put(&mz->mem->css);
3600 loop++;
3601 /*
3602 * Could not reclaim anything and there are no more
3603 * mem cgroups to try or we seem to be looping without
3604 * reclaiming anything.
3605 */
3606 if (!nr_reclaimed &&
3607 (next_mz == NULL ||
3608 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3609 break;
3610 } while (!nr_reclaimed);
3611 if (next_mz)
3612 css_put(&next_mz->mem->css);
3613 return nr_reclaimed;
3614}
3615
cc847582
KH
3616/*
3617 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3618 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3619 */
f817ed48 3620static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3621 int node, int zid, enum lru_list lru)
cc847582 3622{
08e552c6
KH
3623 struct zone *zone;
3624 struct mem_cgroup_per_zone *mz;
f817ed48 3625 struct page_cgroup *pc, *busy;
08e552c6 3626 unsigned long flags, loop;
072c56c1 3627 struct list_head *list;
f817ed48 3628 int ret = 0;
072c56c1 3629
08e552c6
KH
3630 zone = &NODE_DATA(node)->node_zones[zid];
3631 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3632 list = &mz->lists[lru];
cc847582 3633
f817ed48
KH
3634 loop = MEM_CGROUP_ZSTAT(mz, lru);
3635 /* give some margin against EBUSY etc...*/
3636 loop += 256;
3637 busy = NULL;
3638 while (loop--) {
5564e88b
JW
3639 struct page *page;
3640
f817ed48 3641 ret = 0;
08e552c6 3642 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3643 if (list_empty(list)) {
08e552c6 3644 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3645 break;
f817ed48
KH
3646 }
3647 pc = list_entry(list->prev, struct page_cgroup, lru);
3648 if (busy == pc) {
3649 list_move(&pc->lru, list);
648bcc77 3650 busy = NULL;
08e552c6 3651 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3652 continue;
3653 }
08e552c6 3654 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3655
6b3ae58e 3656 page = lookup_cgroup_page(pc);
5564e88b
JW
3657
3658 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3659 if (ret == -ENOMEM)
52d4b9ac 3660 break;
f817ed48
KH
3661
3662 if (ret == -EBUSY || ret == -EINVAL) {
3663 /* found lock contention or "pc" is obsolete. */
3664 busy = pc;
3665 cond_resched();
3666 } else
3667 busy = NULL;
cc847582 3668 }
08e552c6 3669
f817ed48
KH
3670 if (!ret && !list_empty(list))
3671 return -EBUSY;
3672 return ret;
cc847582
KH
3673}
3674
3675/*
3676 * make mem_cgroup's charge to be 0 if there is no task.
3677 * This enables deleting this mem_cgroup.
3678 */
c1e862c1 3679static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3680{
f817ed48
KH
3681 int ret;
3682 int node, zid, shrink;
3683 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3684 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3685
cc847582 3686 css_get(&mem->css);
f817ed48
KH
3687
3688 shrink = 0;
c1e862c1
KH
3689 /* should free all ? */
3690 if (free_all)
3691 goto try_to_free;
f817ed48 3692move_account:
fce66477 3693 do {
f817ed48 3694 ret = -EBUSY;
c1e862c1
KH
3695 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3696 goto out;
3697 ret = -EINTR;
3698 if (signal_pending(current))
cc847582 3699 goto out;
52d4b9ac
KH
3700 /* This is for making all *used* pages to be on LRU. */
3701 lru_add_drain_all();
cdec2e42 3702 drain_all_stock_sync();
f817ed48 3703 ret = 0;
32047e2a 3704 mem_cgroup_start_move(mem);
299b4eaa 3705 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3706 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3707 enum lru_list l;
f817ed48
KH
3708 for_each_lru(l) {
3709 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3710 node, zid, l);
f817ed48
KH
3711 if (ret)
3712 break;
3713 }
1ecaab2b 3714 }
f817ed48
KH
3715 if (ret)
3716 break;
3717 }
32047e2a 3718 mem_cgroup_end_move(mem);
3c11ecf4 3719 memcg_oom_recover(mem);
f817ed48
KH
3720 /* it seems parent cgroup doesn't have enough mem */
3721 if (ret == -ENOMEM)
3722 goto try_to_free;
52d4b9ac 3723 cond_resched();
fce66477
DN
3724 /* "ret" should also be checked to ensure all lists are empty. */
3725 } while (mem->res.usage > 0 || ret);
cc847582
KH
3726out:
3727 css_put(&mem->css);
3728 return ret;
f817ed48
KH
3729
3730try_to_free:
c1e862c1
KH
3731 /* returns EBUSY if there is a task or if we come here twice. */
3732 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3733 ret = -EBUSY;
3734 goto out;
3735 }
c1e862c1
KH
3736 /* we call try-to-free pages for make this cgroup empty */
3737 lru_add_drain_all();
f817ed48
KH
3738 /* try to free all pages in this cgroup */
3739 shrink = 1;
3740 while (nr_retries && mem->res.usage > 0) {
3741 int progress;
c1e862c1
KH
3742
3743 if (signal_pending(current)) {
3744 ret = -EINTR;
3745 goto out;
3746 }
a7885eb8 3747 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1f4c025b 3748 false);
c1e862c1 3749 if (!progress) {
f817ed48 3750 nr_retries--;
c1e862c1 3751 /* maybe some writeback is necessary */
8aa7e847 3752 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3753 }
f817ed48
KH
3754
3755 }
08e552c6 3756 lru_add_drain();
f817ed48 3757 /* try move_account...there may be some *locked* pages. */
fce66477 3758 goto move_account;
cc847582
KH
3759}
3760
c1e862c1
KH
3761int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3762{
3763 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3764}
3765
3766
18f59ea7
BS
3767static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3768{
3769 return mem_cgroup_from_cont(cont)->use_hierarchy;
3770}
3771
3772static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3773 u64 val)
3774{
3775 int retval = 0;
3776 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3777 struct cgroup *parent = cont->parent;
3778 struct mem_cgroup *parent_mem = NULL;
3779
3780 if (parent)
3781 parent_mem = mem_cgroup_from_cont(parent);
3782
3783 cgroup_lock();
3784 /*
af901ca1 3785 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3786 * in the child subtrees. If it is unset, then the change can
3787 * occur, provided the current cgroup has no children.
3788 *
3789 * For the root cgroup, parent_mem is NULL, we allow value to be
3790 * set if there are no children.
3791 */
3792 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3793 (val == 1 || val == 0)) {
3794 if (list_empty(&cont->children))
3795 mem->use_hierarchy = val;
3796 else
3797 retval = -EBUSY;
3798 } else
3799 retval = -EINVAL;
3800 cgroup_unlock();
3801
3802 return retval;
3803}
3804
0c3e73e8 3805
7a159cc9
JW
3806static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3807 enum mem_cgroup_stat_index idx)
0c3e73e8 3808{
7d74b06f 3809 struct mem_cgroup *iter;
7a159cc9 3810 long val = 0;
0c3e73e8 3811
7a159cc9 3812 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3813 for_each_mem_cgroup_tree(iter, mem)
3814 val += mem_cgroup_read_stat(iter, idx);
3815
3816 if (val < 0) /* race ? */
3817 val = 0;
3818 return val;
0c3e73e8
BS
3819}
3820
104f3928
KS
3821static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3822{
7d74b06f 3823 u64 val;
104f3928
KS
3824
3825 if (!mem_cgroup_is_root(mem)) {
3826 if (!swap)
3827 return res_counter_read_u64(&mem->res, RES_USAGE);
3828 else
3829 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3830 }
3831
7a159cc9
JW
3832 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3833 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3834
7d74b06f 3835 if (swap)
7a159cc9 3836 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3837
3838 return val << PAGE_SHIFT;
3839}
3840
2c3daa72 3841static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3842{
8c7c6e34 3843 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3844 u64 val;
8c7c6e34
KH
3845 int type, name;
3846
3847 type = MEMFILE_TYPE(cft->private);
3848 name = MEMFILE_ATTR(cft->private);
3849 switch (type) {
3850 case _MEM:
104f3928
KS
3851 if (name == RES_USAGE)
3852 val = mem_cgroup_usage(mem, false);
3853 else
0c3e73e8 3854 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3855 break;
3856 case _MEMSWAP:
104f3928
KS
3857 if (name == RES_USAGE)
3858 val = mem_cgroup_usage(mem, true);
3859 else
0c3e73e8 3860 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3861 break;
3862 default:
3863 BUG();
3864 break;
3865 }
3866 return val;
8cdea7c0 3867}
628f4235
KH
3868/*
3869 * The user of this function is...
3870 * RES_LIMIT.
3871 */
856c13aa
PM
3872static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3873 const char *buffer)
8cdea7c0 3874{
628f4235 3875 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3876 int type, name;
628f4235
KH
3877 unsigned long long val;
3878 int ret;
3879
8c7c6e34
KH
3880 type = MEMFILE_TYPE(cft->private);
3881 name = MEMFILE_ATTR(cft->private);
3882 switch (name) {
628f4235 3883 case RES_LIMIT:
4b3bde4c
BS
3884 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3885 ret = -EINVAL;
3886 break;
3887 }
628f4235
KH
3888 /* This function does all necessary parse...reuse it */
3889 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3890 if (ret)
3891 break;
3892 if (type == _MEM)
628f4235 3893 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3894 else
3895 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3896 break;
296c81d8
BS
3897 case RES_SOFT_LIMIT:
3898 ret = res_counter_memparse_write_strategy(buffer, &val);
3899 if (ret)
3900 break;
3901 /*
3902 * For memsw, soft limits are hard to implement in terms
3903 * of semantics, for now, we support soft limits for
3904 * control without swap
3905 */
3906 if (type == _MEM)
3907 ret = res_counter_set_soft_limit(&memcg->res, val);
3908 else
3909 ret = -EINVAL;
3910 break;
628f4235
KH
3911 default:
3912 ret = -EINVAL; /* should be BUG() ? */
3913 break;
3914 }
3915 return ret;
8cdea7c0
BS
3916}
3917
fee7b548
KH
3918static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3919 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3920{
3921 struct cgroup *cgroup;
3922 unsigned long long min_limit, min_memsw_limit, tmp;
3923
3924 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3925 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3926 cgroup = memcg->css.cgroup;
3927 if (!memcg->use_hierarchy)
3928 goto out;
3929
3930 while (cgroup->parent) {
3931 cgroup = cgroup->parent;
3932 memcg = mem_cgroup_from_cont(cgroup);
3933 if (!memcg->use_hierarchy)
3934 break;
3935 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3936 min_limit = min(min_limit, tmp);
3937 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3938 min_memsw_limit = min(min_memsw_limit, tmp);
3939 }
3940out:
3941 *mem_limit = min_limit;
3942 *memsw_limit = min_memsw_limit;
3943 return;
3944}
3945
29f2a4da 3946static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3947{
3948 struct mem_cgroup *mem;
8c7c6e34 3949 int type, name;
c84872e1
PE
3950
3951 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3952 type = MEMFILE_TYPE(event);
3953 name = MEMFILE_ATTR(event);
3954 switch (name) {
29f2a4da 3955 case RES_MAX_USAGE:
8c7c6e34
KH
3956 if (type == _MEM)
3957 res_counter_reset_max(&mem->res);
3958 else
3959 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3960 break;
3961 case RES_FAILCNT:
8c7c6e34
KH
3962 if (type == _MEM)
3963 res_counter_reset_failcnt(&mem->res);
3964 else
3965 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3966 break;
3967 }
f64c3f54 3968
85cc59db 3969 return 0;
c84872e1
PE
3970}
3971
7dc74be0
DN
3972static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3973 struct cftype *cft)
3974{
3975 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3976}
3977
02491447 3978#ifdef CONFIG_MMU
7dc74be0
DN
3979static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3980 struct cftype *cft, u64 val)
3981{
3982 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3983
3984 if (val >= (1 << NR_MOVE_TYPE))
3985 return -EINVAL;
3986 /*
3987 * We check this value several times in both in can_attach() and
3988 * attach(), so we need cgroup lock to prevent this value from being
3989 * inconsistent.
3990 */
3991 cgroup_lock();
3992 mem->move_charge_at_immigrate = val;
3993 cgroup_unlock();
3994
3995 return 0;
3996}
02491447
DN
3997#else
3998static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3999 struct cftype *cft, u64 val)
4000{
4001 return -ENOSYS;
4002}
4003#endif
7dc74be0 4004
14067bb3
KH
4005
4006/* For read statistics */
4007enum {
4008 MCS_CACHE,
4009 MCS_RSS,
d8046582 4010 MCS_FILE_MAPPED,
14067bb3
KH
4011 MCS_PGPGIN,
4012 MCS_PGPGOUT,
1dd3a273 4013 MCS_SWAP,
456f998e
YH
4014 MCS_PGFAULT,
4015 MCS_PGMAJFAULT,
14067bb3
KH
4016 MCS_INACTIVE_ANON,
4017 MCS_ACTIVE_ANON,
4018 MCS_INACTIVE_FILE,
4019 MCS_ACTIVE_FILE,
4020 MCS_UNEVICTABLE,
4021 NR_MCS_STAT,
4022};
4023
4024struct mcs_total_stat {
4025 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4026};
4027
14067bb3
KH
4028struct {
4029 char *local_name;
4030 char *total_name;
4031} memcg_stat_strings[NR_MCS_STAT] = {
4032 {"cache", "total_cache"},
4033 {"rss", "total_rss"},
d69b042f 4034 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4035 {"pgpgin", "total_pgpgin"},
4036 {"pgpgout", "total_pgpgout"},
1dd3a273 4037 {"swap", "total_swap"},
456f998e
YH
4038 {"pgfault", "total_pgfault"},
4039 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4040 {"inactive_anon", "total_inactive_anon"},
4041 {"active_anon", "total_active_anon"},
4042 {"inactive_file", "total_inactive_file"},
4043 {"active_file", "total_active_file"},
4044 {"unevictable", "total_unevictable"}
4045};
4046
4047
7d74b06f
KH
4048static void
4049mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4050{
14067bb3
KH
4051 s64 val;
4052
4053 /* per cpu stat */
c62b1a3b 4054 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4055 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4056 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4057 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4058 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4059 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4060 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4061 s->stat[MCS_PGPGIN] += val;
e9f8974f 4062 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4063 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4064 if (do_swap_account) {
c62b1a3b 4065 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4066 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4067 }
456f998e
YH
4068 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4069 s->stat[MCS_PGFAULT] += val;
4070 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4071 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4072
4073 /* per zone stat */
bb2a0de9 4074 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4075 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4076 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4077 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4078 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4079 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4080 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4081 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4082 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4083 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4084}
4085
4086static void
4087mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4088{
7d74b06f
KH
4089 struct mem_cgroup *iter;
4090
4091 for_each_mem_cgroup_tree(iter, mem)
4092 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4093}
4094
406eb0c9
YH
4095#ifdef CONFIG_NUMA
4096static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4097{
4098 int nid;
4099 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4100 unsigned long node_nr;
4101 struct cgroup *cont = m->private;
4102 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4103
bb2a0de9 4104 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4105 seq_printf(m, "total=%lu", total_nr);
4106 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4107 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4108 seq_printf(m, " N%d=%lu", nid, node_nr);
4109 }
4110 seq_putc(m, '\n');
4111
bb2a0de9 4112 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4113 seq_printf(m, "file=%lu", file_nr);
4114 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4115 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4116 LRU_ALL_FILE);
406eb0c9
YH
4117 seq_printf(m, " N%d=%lu", nid, node_nr);
4118 }
4119 seq_putc(m, '\n');
4120
bb2a0de9 4121 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4122 seq_printf(m, "anon=%lu", anon_nr);
4123 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4124 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4125 LRU_ALL_ANON);
406eb0c9
YH
4126 seq_printf(m, " N%d=%lu", nid, node_nr);
4127 }
4128 seq_putc(m, '\n');
4129
bb2a0de9 4130 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4131 seq_printf(m, "unevictable=%lu", unevictable_nr);
4132 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4133 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4134 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4135 seq_printf(m, " N%d=%lu", nid, node_nr);
4136 }
4137 seq_putc(m, '\n');
4138 return 0;
4139}
4140#endif /* CONFIG_NUMA */
4141
c64745cf
PM
4142static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4143 struct cgroup_map_cb *cb)
d2ceb9b7 4144{
d2ceb9b7 4145 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4146 struct mcs_total_stat mystat;
d2ceb9b7
KH
4147 int i;
4148
14067bb3
KH
4149 memset(&mystat, 0, sizeof(mystat));
4150 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4151
406eb0c9 4152
1dd3a273
DN
4153 for (i = 0; i < NR_MCS_STAT; i++) {
4154 if (i == MCS_SWAP && !do_swap_account)
4155 continue;
14067bb3 4156 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4157 }
7b854121 4158
14067bb3 4159 /* Hierarchical information */
fee7b548
KH
4160 {
4161 unsigned long long limit, memsw_limit;
4162 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4163 cb->fill(cb, "hierarchical_memory_limit", limit);
4164 if (do_swap_account)
4165 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4166 }
7f016ee8 4167
14067bb3
KH
4168 memset(&mystat, 0, sizeof(mystat));
4169 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4170 for (i = 0; i < NR_MCS_STAT; i++) {
4171 if (i == MCS_SWAP && !do_swap_account)
4172 continue;
14067bb3 4173 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4174 }
14067bb3 4175
7f016ee8 4176#ifdef CONFIG_DEBUG_VM
c772be93 4177 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4178
4179 {
4180 int nid, zid;
4181 struct mem_cgroup_per_zone *mz;
4182 unsigned long recent_rotated[2] = {0, 0};
4183 unsigned long recent_scanned[2] = {0, 0};
4184
4185 for_each_online_node(nid)
4186 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4187 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4188
4189 recent_rotated[0] +=
4190 mz->reclaim_stat.recent_rotated[0];
4191 recent_rotated[1] +=
4192 mz->reclaim_stat.recent_rotated[1];
4193 recent_scanned[0] +=
4194 mz->reclaim_stat.recent_scanned[0];
4195 recent_scanned[1] +=
4196 mz->reclaim_stat.recent_scanned[1];
4197 }
4198 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4199 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4200 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4201 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4202 }
4203#endif
4204
d2ceb9b7
KH
4205 return 0;
4206}
4207
a7885eb8
KM
4208static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4209{
4210 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4211
1f4c025b 4212 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4213}
4214
4215static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4216 u64 val)
4217{
4218 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4219 struct mem_cgroup *parent;
068b38c1 4220
a7885eb8
KM
4221 if (val > 100)
4222 return -EINVAL;
4223
4224 if (cgrp->parent == NULL)
4225 return -EINVAL;
4226
4227 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4228
4229 cgroup_lock();
4230
a7885eb8
KM
4231 /* If under hierarchy, only empty-root can set this value */
4232 if ((parent->use_hierarchy) ||
068b38c1
LZ
4233 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4234 cgroup_unlock();
a7885eb8 4235 return -EINVAL;
068b38c1 4236 }
a7885eb8 4237
a7885eb8 4238 memcg->swappiness = val;
a7885eb8 4239
068b38c1
LZ
4240 cgroup_unlock();
4241
a7885eb8
KM
4242 return 0;
4243}
4244
2e72b634
KS
4245static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4246{
4247 struct mem_cgroup_threshold_ary *t;
4248 u64 usage;
4249 int i;
4250
4251 rcu_read_lock();
4252 if (!swap)
2c488db2 4253 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4254 else
2c488db2 4255 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4256
4257 if (!t)
4258 goto unlock;
4259
4260 usage = mem_cgroup_usage(memcg, swap);
4261
4262 /*
4263 * current_threshold points to threshold just below usage.
4264 * If it's not true, a threshold was crossed after last
4265 * call of __mem_cgroup_threshold().
4266 */
5407a562 4267 i = t->current_threshold;
2e72b634
KS
4268
4269 /*
4270 * Iterate backward over array of thresholds starting from
4271 * current_threshold and check if a threshold is crossed.
4272 * If none of thresholds below usage is crossed, we read
4273 * only one element of the array here.
4274 */
4275 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4276 eventfd_signal(t->entries[i].eventfd, 1);
4277
4278 /* i = current_threshold + 1 */
4279 i++;
4280
4281 /*
4282 * Iterate forward over array of thresholds starting from
4283 * current_threshold+1 and check if a threshold is crossed.
4284 * If none of thresholds above usage is crossed, we read
4285 * only one element of the array here.
4286 */
4287 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4288 eventfd_signal(t->entries[i].eventfd, 1);
4289
4290 /* Update current_threshold */
5407a562 4291 t->current_threshold = i - 1;
2e72b634
KS
4292unlock:
4293 rcu_read_unlock();
4294}
4295
4296static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4297{
ad4ca5f4
KS
4298 while (memcg) {
4299 __mem_cgroup_threshold(memcg, false);
4300 if (do_swap_account)
4301 __mem_cgroup_threshold(memcg, true);
4302
4303 memcg = parent_mem_cgroup(memcg);
4304 }
2e72b634
KS
4305}
4306
4307static int compare_thresholds(const void *a, const void *b)
4308{
4309 const struct mem_cgroup_threshold *_a = a;
4310 const struct mem_cgroup_threshold *_b = b;
4311
4312 return _a->threshold - _b->threshold;
4313}
4314
7d74b06f 4315static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4316{
4317 struct mem_cgroup_eventfd_list *ev;
4318
4319 list_for_each_entry(ev, &mem->oom_notify, list)
4320 eventfd_signal(ev->eventfd, 1);
4321 return 0;
4322}
4323
4324static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4325{
7d74b06f
KH
4326 struct mem_cgroup *iter;
4327
4328 for_each_mem_cgroup_tree(iter, mem)
4329 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4330}
4331
4332static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4333 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4334{
4335 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4336 struct mem_cgroup_thresholds *thresholds;
4337 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4338 int type = MEMFILE_TYPE(cft->private);
4339 u64 threshold, usage;
2c488db2 4340 int i, size, ret;
2e72b634
KS
4341
4342 ret = res_counter_memparse_write_strategy(args, &threshold);
4343 if (ret)
4344 return ret;
4345
4346 mutex_lock(&memcg->thresholds_lock);
2c488db2 4347
2e72b634 4348 if (type == _MEM)
2c488db2 4349 thresholds = &memcg->thresholds;
2e72b634 4350 else if (type == _MEMSWAP)
2c488db2 4351 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4352 else
4353 BUG();
4354
4355 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4356
4357 /* Check if a threshold crossed before adding a new one */
2c488db2 4358 if (thresholds->primary)
2e72b634
KS
4359 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4360
2c488db2 4361 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4362
4363 /* Allocate memory for new array of thresholds */
2c488db2 4364 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4365 GFP_KERNEL);
2c488db2 4366 if (!new) {
2e72b634
KS
4367 ret = -ENOMEM;
4368 goto unlock;
4369 }
2c488db2 4370 new->size = size;
2e72b634
KS
4371
4372 /* Copy thresholds (if any) to new array */
2c488db2
KS
4373 if (thresholds->primary) {
4374 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4375 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4376 }
4377
2e72b634 4378 /* Add new threshold */
2c488db2
KS
4379 new->entries[size - 1].eventfd = eventfd;
4380 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4381
4382 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4383 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4384 compare_thresholds, NULL);
4385
4386 /* Find current threshold */
2c488db2 4387 new->current_threshold = -1;
2e72b634 4388 for (i = 0; i < size; i++) {
2c488db2 4389 if (new->entries[i].threshold < usage) {
2e72b634 4390 /*
2c488db2
KS
4391 * new->current_threshold will not be used until
4392 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4393 * it here.
4394 */
2c488db2 4395 ++new->current_threshold;
2e72b634
KS
4396 }
4397 }
4398
2c488db2
KS
4399 /* Free old spare buffer and save old primary buffer as spare */
4400 kfree(thresholds->spare);
4401 thresholds->spare = thresholds->primary;
4402
4403 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4404
907860ed 4405 /* To be sure that nobody uses thresholds */
2e72b634
KS
4406 synchronize_rcu();
4407
2e72b634
KS
4408unlock:
4409 mutex_unlock(&memcg->thresholds_lock);
4410
4411 return ret;
4412}
4413
907860ed 4414static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4415 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4416{
4417 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4418 struct mem_cgroup_thresholds *thresholds;
4419 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4420 int type = MEMFILE_TYPE(cft->private);
4421 u64 usage;
2c488db2 4422 int i, j, size;
2e72b634
KS
4423
4424 mutex_lock(&memcg->thresholds_lock);
4425 if (type == _MEM)
2c488db2 4426 thresholds = &memcg->thresholds;
2e72b634 4427 else if (type == _MEMSWAP)
2c488db2 4428 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4429 else
4430 BUG();
4431
4432 /*
4433 * Something went wrong if we trying to unregister a threshold
4434 * if we don't have thresholds
4435 */
4436 BUG_ON(!thresholds);
4437
4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4439
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443 /* Calculate new number of threshold */
2c488db2
KS
4444 size = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4447 size++;
4448 }
4449
2c488db2 4450 new = thresholds->spare;
907860ed 4451
2e72b634
KS
4452 /* Set thresholds array to NULL if we don't have thresholds */
4453 if (!size) {
2c488db2
KS
4454 kfree(new);
4455 new = NULL;
907860ed 4456 goto swap_buffers;
2e72b634
KS
4457 }
4458
2c488db2 4459 new->size = size;
2e72b634
KS
4460
4461 /* Copy thresholds and find current threshold */
2c488db2
KS
4462 new->current_threshold = -1;
4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4465 continue;
4466
2c488db2
KS
4467 new->entries[j] = thresholds->primary->entries[i];
4468 if (new->entries[j].threshold < usage) {
2e72b634 4469 /*
2c488db2 4470 * new->current_threshold will not be used
2e72b634
KS
4471 * until rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4473 */
2c488db2 4474 ++new->current_threshold;
2e72b634
KS
4475 }
4476 j++;
4477 }
4478
907860ed 4479swap_buffers:
2c488db2
KS
4480 /* Swap primary and spare array */
4481 thresholds->spare = thresholds->primary;
4482 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4483
907860ed 4484 /* To be sure that nobody uses thresholds */
2e72b634
KS
4485 synchronize_rcu();
4486
2e72b634 4487 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4488}
c1e862c1 4489
9490ff27
KH
4490static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4491 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4492{
4493 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4494 struct mem_cgroup_eventfd_list *event;
4495 int type = MEMFILE_TYPE(cft->private);
4496
4497 BUG_ON(type != _OOM_TYPE);
4498 event = kmalloc(sizeof(*event), GFP_KERNEL);
4499 if (!event)
4500 return -ENOMEM;
4501
4502 mutex_lock(&memcg_oom_mutex);
4503
4504 event->eventfd = eventfd;
4505 list_add(&event->list, &memcg->oom_notify);
4506
4507 /* already in OOM ? */
4508 if (atomic_read(&memcg->oom_lock))
4509 eventfd_signal(eventfd, 1);
4510 mutex_unlock(&memcg_oom_mutex);
4511
4512 return 0;
4513}
4514
907860ed 4515static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4516 struct cftype *cft, struct eventfd_ctx *eventfd)
4517{
4518 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4519 struct mem_cgroup_eventfd_list *ev, *tmp;
4520 int type = MEMFILE_TYPE(cft->private);
4521
4522 BUG_ON(type != _OOM_TYPE);
4523
4524 mutex_lock(&memcg_oom_mutex);
4525
4526 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4527 if (ev->eventfd == eventfd) {
4528 list_del(&ev->list);
4529 kfree(ev);
4530 }
4531 }
4532
4533 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4534}
4535
3c11ecf4
KH
4536static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4537 struct cftype *cft, struct cgroup_map_cb *cb)
4538{
4539 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4540
4541 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4542
4543 if (atomic_read(&mem->oom_lock))
4544 cb->fill(cb, "under_oom", 1);
4545 else
4546 cb->fill(cb, "under_oom", 0);
4547 return 0;
4548}
4549
3c11ecf4
KH
4550static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4551 struct cftype *cft, u64 val)
4552{
4553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554 struct mem_cgroup *parent;
4555
4556 /* cannot set to root cgroup and only 0 and 1 are allowed */
4557 if (!cgrp->parent || !((val == 0) || (val == 1)))
4558 return -EINVAL;
4559
4560 parent = mem_cgroup_from_cont(cgrp->parent);
4561
4562 cgroup_lock();
4563 /* oom-kill-disable is a flag for subhierarchy. */
4564 if ((parent->use_hierarchy) ||
4565 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4566 cgroup_unlock();
4567 return -EINVAL;
4568 }
4569 mem->oom_kill_disable = val;
4d845ebf
KH
4570 if (!val)
4571 memcg_oom_recover(mem);
3c11ecf4
KH
4572 cgroup_unlock();
4573 return 0;
4574}
4575
406eb0c9
YH
4576#ifdef CONFIG_NUMA
4577static const struct file_operations mem_control_numa_stat_file_operations = {
4578 .read = seq_read,
4579 .llseek = seq_lseek,
4580 .release = single_release,
4581};
4582
4583static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4584{
4585 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4586
4587 file->f_op = &mem_control_numa_stat_file_operations;
4588 return single_open(file, mem_control_numa_stat_show, cont);
4589}
4590#endif /* CONFIG_NUMA */
4591
8cdea7c0
BS
4592static struct cftype mem_cgroup_files[] = {
4593 {
0eea1030 4594 .name = "usage_in_bytes",
8c7c6e34 4595 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4596 .read_u64 = mem_cgroup_read,
9490ff27
KH
4597 .register_event = mem_cgroup_usage_register_event,
4598 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4599 },
c84872e1
PE
4600 {
4601 .name = "max_usage_in_bytes",
8c7c6e34 4602 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4603 .trigger = mem_cgroup_reset,
c84872e1
PE
4604 .read_u64 = mem_cgroup_read,
4605 },
8cdea7c0 4606 {
0eea1030 4607 .name = "limit_in_bytes",
8c7c6e34 4608 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4609 .write_string = mem_cgroup_write,
2c3daa72 4610 .read_u64 = mem_cgroup_read,
8cdea7c0 4611 },
296c81d8
BS
4612 {
4613 .name = "soft_limit_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4615 .write_string = mem_cgroup_write,
4616 .read_u64 = mem_cgroup_read,
4617 },
8cdea7c0
BS
4618 {
4619 .name = "failcnt",
8c7c6e34 4620 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4621 .trigger = mem_cgroup_reset,
2c3daa72 4622 .read_u64 = mem_cgroup_read,
8cdea7c0 4623 },
d2ceb9b7
KH
4624 {
4625 .name = "stat",
c64745cf 4626 .read_map = mem_control_stat_show,
d2ceb9b7 4627 },
c1e862c1
KH
4628 {
4629 .name = "force_empty",
4630 .trigger = mem_cgroup_force_empty_write,
4631 },
18f59ea7
BS
4632 {
4633 .name = "use_hierarchy",
4634 .write_u64 = mem_cgroup_hierarchy_write,
4635 .read_u64 = mem_cgroup_hierarchy_read,
4636 },
a7885eb8
KM
4637 {
4638 .name = "swappiness",
4639 .read_u64 = mem_cgroup_swappiness_read,
4640 .write_u64 = mem_cgroup_swappiness_write,
4641 },
7dc74be0
DN
4642 {
4643 .name = "move_charge_at_immigrate",
4644 .read_u64 = mem_cgroup_move_charge_read,
4645 .write_u64 = mem_cgroup_move_charge_write,
4646 },
9490ff27
KH
4647 {
4648 .name = "oom_control",
3c11ecf4
KH
4649 .read_map = mem_cgroup_oom_control_read,
4650 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4651 .register_event = mem_cgroup_oom_register_event,
4652 .unregister_event = mem_cgroup_oom_unregister_event,
4653 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4654 },
406eb0c9
YH
4655#ifdef CONFIG_NUMA
4656 {
4657 .name = "numa_stat",
4658 .open = mem_control_numa_stat_open,
89577127 4659 .mode = S_IRUGO,
406eb0c9
YH
4660 },
4661#endif
8cdea7c0
BS
4662};
4663
8c7c6e34
KH
4664#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4665static struct cftype memsw_cgroup_files[] = {
4666 {
4667 .name = "memsw.usage_in_bytes",
4668 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4669 .read_u64 = mem_cgroup_read,
9490ff27
KH
4670 .register_event = mem_cgroup_usage_register_event,
4671 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4672 },
4673 {
4674 .name = "memsw.max_usage_in_bytes",
4675 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4676 .trigger = mem_cgroup_reset,
4677 .read_u64 = mem_cgroup_read,
4678 },
4679 {
4680 .name = "memsw.limit_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4682 .write_string = mem_cgroup_write,
4683 .read_u64 = mem_cgroup_read,
4684 },
4685 {
4686 .name = "memsw.failcnt",
4687 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4688 .trigger = mem_cgroup_reset,
4689 .read_u64 = mem_cgroup_read,
4690 },
4691};
4692
4693static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4694{
4695 if (!do_swap_account)
4696 return 0;
4697 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4698 ARRAY_SIZE(memsw_cgroup_files));
4699};
4700#else
4701static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4702{
4703 return 0;
4704}
4705#endif
4706
6d12e2d8
KH
4707static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4708{
4709 struct mem_cgroup_per_node *pn;
1ecaab2b 4710 struct mem_cgroup_per_zone *mz;
b69408e8 4711 enum lru_list l;
41e3355d 4712 int zone, tmp = node;
1ecaab2b
KH
4713 /*
4714 * This routine is called against possible nodes.
4715 * But it's BUG to call kmalloc() against offline node.
4716 *
4717 * TODO: this routine can waste much memory for nodes which will
4718 * never be onlined. It's better to use memory hotplug callback
4719 * function.
4720 */
41e3355d
KH
4721 if (!node_state(node, N_NORMAL_MEMORY))
4722 tmp = -1;
17295c88 4723 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4724 if (!pn)
4725 return 1;
1ecaab2b 4726
6d12e2d8 4727 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4728 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4729 mz = &pn->zoneinfo[zone];
b69408e8
CL
4730 for_each_lru(l)
4731 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4732 mz->usage_in_excess = 0;
4e416953
BS
4733 mz->on_tree = false;
4734 mz->mem = mem;
1ecaab2b 4735 }
6d12e2d8
KH
4736 return 0;
4737}
4738
1ecaab2b
KH
4739static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4740{
4741 kfree(mem->info.nodeinfo[node]);
4742}
4743
33327948
KH
4744static struct mem_cgroup *mem_cgroup_alloc(void)
4745{
4746 struct mem_cgroup *mem;
c62b1a3b 4747 int size = sizeof(struct mem_cgroup);
33327948 4748
c62b1a3b 4749 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4750 if (size < PAGE_SIZE)
17295c88 4751 mem = kzalloc(size, GFP_KERNEL);
33327948 4752 else
17295c88 4753 mem = vzalloc(size);
33327948 4754
e7bbcdf3
DC
4755 if (!mem)
4756 return NULL;
4757
c62b1a3b 4758 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4759 if (!mem->stat)
4760 goto out_free;
711d3d2c 4761 spin_lock_init(&mem->pcp_counter_lock);
33327948 4762 return mem;
d2e61b8d
DC
4763
4764out_free:
4765 if (size < PAGE_SIZE)
4766 kfree(mem);
4767 else
4768 vfree(mem);
4769 return NULL;
33327948
KH
4770}
4771
8c7c6e34
KH
4772/*
4773 * At destroying mem_cgroup, references from swap_cgroup can remain.
4774 * (scanning all at force_empty is too costly...)
4775 *
4776 * Instead of clearing all references at force_empty, we remember
4777 * the number of reference from swap_cgroup and free mem_cgroup when
4778 * it goes down to 0.
4779 *
8c7c6e34
KH
4780 * Removal of cgroup itself succeeds regardless of refs from swap.
4781 */
4782
a7ba0eef 4783static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4784{
08e552c6
KH
4785 int node;
4786
f64c3f54 4787 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4788 free_css_id(&mem_cgroup_subsys, &mem->css);
4789
08e552c6
KH
4790 for_each_node_state(node, N_POSSIBLE)
4791 free_mem_cgroup_per_zone_info(mem, node);
4792
c62b1a3b
KH
4793 free_percpu(mem->stat);
4794 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4795 kfree(mem);
4796 else
4797 vfree(mem);
4798}
4799
8c7c6e34
KH
4800static void mem_cgroup_get(struct mem_cgroup *mem)
4801{
4802 atomic_inc(&mem->refcnt);
4803}
4804
483c30b5 4805static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4806{
483c30b5 4807 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4808 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4809 __mem_cgroup_free(mem);
7bcc1bb1
DN
4810 if (parent)
4811 mem_cgroup_put(parent);
4812 }
8c7c6e34
KH
4813}
4814
483c30b5
DN
4815static void mem_cgroup_put(struct mem_cgroup *mem)
4816{
4817 __mem_cgroup_put(mem, 1);
4818}
4819
7bcc1bb1
DN
4820/*
4821 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4822 */
4823static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4824{
4825 if (!mem->res.parent)
4826 return NULL;
4827 return mem_cgroup_from_res_counter(mem->res.parent, res);
4828}
33327948 4829
c077719b
KH
4830#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4831static void __init enable_swap_cgroup(void)
4832{
f8d66542 4833 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4834 do_swap_account = 1;
4835}
4836#else
4837static void __init enable_swap_cgroup(void)
4838{
4839}
4840#endif
4841
f64c3f54
BS
4842static int mem_cgroup_soft_limit_tree_init(void)
4843{
4844 struct mem_cgroup_tree_per_node *rtpn;
4845 struct mem_cgroup_tree_per_zone *rtpz;
4846 int tmp, node, zone;
4847
4848 for_each_node_state(node, N_POSSIBLE) {
4849 tmp = node;
4850 if (!node_state(node, N_NORMAL_MEMORY))
4851 tmp = -1;
4852 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4853 if (!rtpn)
4854 return 1;
4855
4856 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4857
4858 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4859 rtpz = &rtpn->rb_tree_per_zone[zone];
4860 rtpz->rb_root = RB_ROOT;
4861 spin_lock_init(&rtpz->lock);
4862 }
4863 }
4864 return 0;
4865}
4866
0eb253e2 4867static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4868mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4869{
28dbc4b6 4870 struct mem_cgroup *mem, *parent;
04046e1a 4871 long error = -ENOMEM;
6d12e2d8 4872 int node;
8cdea7c0 4873
c8dad2bb
JB
4874 mem = mem_cgroup_alloc();
4875 if (!mem)
04046e1a 4876 return ERR_PTR(error);
78fb7466 4877
6d12e2d8
KH
4878 for_each_node_state(node, N_POSSIBLE)
4879 if (alloc_mem_cgroup_per_zone_info(mem, node))
4880 goto free_out;
f64c3f54 4881
c077719b 4882 /* root ? */
28dbc4b6 4883 if (cont->parent == NULL) {
cdec2e42 4884 int cpu;
c077719b 4885 enable_swap_cgroup();
28dbc4b6 4886 parent = NULL;
4b3bde4c 4887 root_mem_cgroup = mem;
f64c3f54
BS
4888 if (mem_cgroup_soft_limit_tree_init())
4889 goto free_out;
cdec2e42
KH
4890 for_each_possible_cpu(cpu) {
4891 struct memcg_stock_pcp *stock =
4892 &per_cpu(memcg_stock, cpu);
4893 INIT_WORK(&stock->work, drain_local_stock);
4894 }
711d3d2c 4895 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4896 } else {
28dbc4b6 4897 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4898 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4899 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4900 }
28dbc4b6 4901
18f59ea7
BS
4902 if (parent && parent->use_hierarchy) {
4903 res_counter_init(&mem->res, &parent->res);
4904 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4905 /*
4906 * We increment refcnt of the parent to ensure that we can
4907 * safely access it on res_counter_charge/uncharge.
4908 * This refcnt will be decremented when freeing this
4909 * mem_cgroup(see mem_cgroup_put).
4910 */
4911 mem_cgroup_get(parent);
18f59ea7
BS
4912 } else {
4913 res_counter_init(&mem->res, NULL);
4914 res_counter_init(&mem->memsw, NULL);
4915 }
04046e1a 4916 mem->last_scanned_child = 0;
889976db 4917 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 4918 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4919
a7885eb8 4920 if (parent)
1f4c025b 4921 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 4922 atomic_set(&mem->refcnt, 1);
7dc74be0 4923 mem->move_charge_at_immigrate = 0;
2e72b634 4924 mutex_init(&mem->thresholds_lock);
8cdea7c0 4925 return &mem->css;
6d12e2d8 4926free_out:
a7ba0eef 4927 __mem_cgroup_free(mem);
4b3bde4c 4928 root_mem_cgroup = NULL;
04046e1a 4929 return ERR_PTR(error);
8cdea7c0
BS
4930}
4931
ec64f515 4932static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4933 struct cgroup *cont)
4934{
4935 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4936
4937 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4938}
4939
8cdea7c0
BS
4940static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4941 struct cgroup *cont)
4942{
c268e994 4943 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4944
c268e994 4945 mem_cgroup_put(mem);
8cdea7c0
BS
4946}
4947
4948static int mem_cgroup_populate(struct cgroup_subsys *ss,
4949 struct cgroup *cont)
4950{
8c7c6e34
KH
4951 int ret;
4952
4953 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4954 ARRAY_SIZE(mem_cgroup_files));
4955
4956 if (!ret)
4957 ret = register_memsw_files(cont, ss);
4958 return ret;
8cdea7c0
BS
4959}
4960
02491447 4961#ifdef CONFIG_MMU
7dc74be0 4962/* Handlers for move charge at task migration. */
854ffa8d
DN
4963#define PRECHARGE_COUNT_AT_ONCE 256
4964static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4965{
854ffa8d
DN
4966 int ret = 0;
4967 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4968 struct mem_cgroup *mem = mc.to;
4969
854ffa8d
DN
4970 if (mem_cgroup_is_root(mem)) {
4971 mc.precharge += count;
4972 /* we don't need css_get for root */
4973 return ret;
4974 }
4975 /* try to charge at once */
4976 if (count > 1) {
4977 struct res_counter *dummy;
4978 /*
4979 * "mem" cannot be under rmdir() because we've already checked
4980 * by cgroup_lock_live_cgroup() that it is not removed and we
4981 * are still under the same cgroup_mutex. So we can postpone
4982 * css_get().
4983 */
4984 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4985 goto one_by_one;
4986 if (do_swap_account && res_counter_charge(&mem->memsw,
4987 PAGE_SIZE * count, &dummy)) {
4988 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4989 goto one_by_one;
4990 }
4991 mc.precharge += count;
854ffa8d
DN
4992 return ret;
4993 }
4994one_by_one:
4995 /* fall back to one by one charge */
4996 while (count--) {
4997 if (signal_pending(current)) {
4998 ret = -EINTR;
4999 break;
5000 }
5001 if (!batch_count--) {
5002 batch_count = PRECHARGE_COUNT_AT_ONCE;
5003 cond_resched();
5004 }
7ec99d62 5005 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5006 if (ret || !mem)
5007 /* mem_cgroup_clear_mc() will do uncharge later */
5008 return -ENOMEM;
5009 mc.precharge++;
5010 }
4ffef5fe
DN
5011 return ret;
5012}
5013
5014/**
5015 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5016 * @vma: the vma the pte to be checked belongs
5017 * @addr: the address corresponding to the pte to be checked
5018 * @ptent: the pte to be checked
02491447 5019 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5020 *
5021 * Returns
5022 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5023 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5024 * move charge. if @target is not NULL, the page is stored in target->page
5025 * with extra refcnt got(Callers should handle it).
02491447
DN
5026 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5027 * target for charge migration. if @target is not NULL, the entry is stored
5028 * in target->ent.
4ffef5fe
DN
5029 *
5030 * Called with pte lock held.
5031 */
4ffef5fe
DN
5032union mc_target {
5033 struct page *page;
02491447 5034 swp_entry_t ent;
4ffef5fe
DN
5035};
5036
4ffef5fe
DN
5037enum mc_target_type {
5038 MC_TARGET_NONE, /* not used */
5039 MC_TARGET_PAGE,
02491447 5040 MC_TARGET_SWAP,
4ffef5fe
DN
5041};
5042
90254a65
DN
5043static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5044 unsigned long addr, pte_t ptent)
4ffef5fe 5045{
90254a65 5046 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5047
90254a65
DN
5048 if (!page || !page_mapped(page))
5049 return NULL;
5050 if (PageAnon(page)) {
5051 /* we don't move shared anon */
5052 if (!move_anon() || page_mapcount(page) > 2)
5053 return NULL;
87946a72
DN
5054 } else if (!move_file())
5055 /* we ignore mapcount for file pages */
90254a65
DN
5056 return NULL;
5057 if (!get_page_unless_zero(page))
5058 return NULL;
5059
5060 return page;
5061}
5062
5063static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5064 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5065{
5066 int usage_count;
5067 struct page *page = NULL;
5068 swp_entry_t ent = pte_to_swp_entry(ptent);
5069
5070 if (!move_anon() || non_swap_entry(ent))
5071 return NULL;
5072 usage_count = mem_cgroup_count_swap_user(ent, &page);
5073 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5074 if (page)
5075 put_page(page);
90254a65 5076 return NULL;
02491447 5077 }
90254a65
DN
5078 if (do_swap_account)
5079 entry->val = ent.val;
5080
5081 return page;
5082}
5083
87946a72
DN
5084static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5085 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5086{
5087 struct page *page = NULL;
5088 struct inode *inode;
5089 struct address_space *mapping;
5090 pgoff_t pgoff;
5091
5092 if (!vma->vm_file) /* anonymous vma */
5093 return NULL;
5094 if (!move_file())
5095 return NULL;
5096
5097 inode = vma->vm_file->f_path.dentry->d_inode;
5098 mapping = vma->vm_file->f_mapping;
5099 if (pte_none(ptent))
5100 pgoff = linear_page_index(vma, addr);
5101 else /* pte_file(ptent) is true */
5102 pgoff = pte_to_pgoff(ptent);
5103
5104 /* page is moved even if it's not RSS of this task(page-faulted). */
5105 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
5106 page = find_get_page(mapping, pgoff);
5107 } else { /* shmem/tmpfs file. we should take account of swap too. */
5108 swp_entry_t ent;
5109 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
5110 if (do_swap_account)
5111 entry->val = ent.val;
5112 }
5113
5114 return page;
5115}
5116
90254a65
DN
5117static int is_target_pte_for_mc(struct vm_area_struct *vma,
5118 unsigned long addr, pte_t ptent, union mc_target *target)
5119{
5120 struct page *page = NULL;
5121 struct page_cgroup *pc;
5122 int ret = 0;
5123 swp_entry_t ent = { .val = 0 };
5124
5125 if (pte_present(ptent))
5126 page = mc_handle_present_pte(vma, addr, ptent);
5127 else if (is_swap_pte(ptent))
5128 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5129 else if (pte_none(ptent) || pte_file(ptent))
5130 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5131
5132 if (!page && !ent.val)
5133 return 0;
02491447
DN
5134 if (page) {
5135 pc = lookup_page_cgroup(page);
5136 /*
5137 * Do only loose check w/o page_cgroup lock.
5138 * mem_cgroup_move_account() checks the pc is valid or not under
5139 * the lock.
5140 */
5141 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5142 ret = MC_TARGET_PAGE;
5143 if (target)
5144 target->page = page;
5145 }
5146 if (!ret || !target)
5147 put_page(page);
5148 }
90254a65
DN
5149 /* There is a swap entry and a page doesn't exist or isn't charged */
5150 if (ent.val && !ret &&
7f0f1546
KH
5151 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5152 ret = MC_TARGET_SWAP;
5153 if (target)
5154 target->ent = ent;
4ffef5fe 5155 }
4ffef5fe
DN
5156 return ret;
5157}
5158
5159static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5160 unsigned long addr, unsigned long end,
5161 struct mm_walk *walk)
5162{
5163 struct vm_area_struct *vma = walk->private;
5164 pte_t *pte;
5165 spinlock_t *ptl;
5166
03319327
DH
5167 split_huge_page_pmd(walk->mm, pmd);
5168
4ffef5fe
DN
5169 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5170 for (; addr != end; pte++, addr += PAGE_SIZE)
5171 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5172 mc.precharge++; /* increment precharge temporarily */
5173 pte_unmap_unlock(pte - 1, ptl);
5174 cond_resched();
5175
7dc74be0
DN
5176 return 0;
5177}
5178
4ffef5fe
DN
5179static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5180{
5181 unsigned long precharge;
5182 struct vm_area_struct *vma;
5183
dfe076b0 5184 down_read(&mm->mmap_sem);
4ffef5fe
DN
5185 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5186 struct mm_walk mem_cgroup_count_precharge_walk = {
5187 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5188 .mm = mm,
5189 .private = vma,
5190 };
5191 if (is_vm_hugetlb_page(vma))
5192 continue;
4ffef5fe
DN
5193 walk_page_range(vma->vm_start, vma->vm_end,
5194 &mem_cgroup_count_precharge_walk);
5195 }
dfe076b0 5196 up_read(&mm->mmap_sem);
4ffef5fe
DN
5197
5198 precharge = mc.precharge;
5199 mc.precharge = 0;
5200
5201 return precharge;
5202}
5203
4ffef5fe
DN
5204static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5205{
dfe076b0
DN
5206 unsigned long precharge = mem_cgroup_count_precharge(mm);
5207
5208 VM_BUG_ON(mc.moving_task);
5209 mc.moving_task = current;
5210 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5211}
5212
dfe076b0
DN
5213/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5214static void __mem_cgroup_clear_mc(void)
4ffef5fe 5215{
2bd9bb20
KH
5216 struct mem_cgroup *from = mc.from;
5217 struct mem_cgroup *to = mc.to;
5218
4ffef5fe 5219 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5220 if (mc.precharge) {
5221 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5222 mc.precharge = 0;
5223 }
5224 /*
5225 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5226 * we must uncharge here.
5227 */
5228 if (mc.moved_charge) {
5229 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5230 mc.moved_charge = 0;
4ffef5fe 5231 }
483c30b5
DN
5232 /* we must fixup refcnts and charges */
5233 if (mc.moved_swap) {
483c30b5
DN
5234 /* uncharge swap account from the old cgroup */
5235 if (!mem_cgroup_is_root(mc.from))
5236 res_counter_uncharge(&mc.from->memsw,
5237 PAGE_SIZE * mc.moved_swap);
5238 __mem_cgroup_put(mc.from, mc.moved_swap);
5239
5240 if (!mem_cgroup_is_root(mc.to)) {
5241 /*
5242 * we charged both to->res and to->memsw, so we should
5243 * uncharge to->res.
5244 */
5245 res_counter_uncharge(&mc.to->res,
5246 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5247 }
5248 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5249 mc.moved_swap = 0;
5250 }
dfe076b0
DN
5251 memcg_oom_recover(from);
5252 memcg_oom_recover(to);
5253 wake_up_all(&mc.waitq);
5254}
5255
5256static void mem_cgroup_clear_mc(void)
5257{
5258 struct mem_cgroup *from = mc.from;
5259
5260 /*
5261 * we must clear moving_task before waking up waiters at the end of
5262 * task migration.
5263 */
5264 mc.moving_task = NULL;
5265 __mem_cgroup_clear_mc();
2bd9bb20 5266 spin_lock(&mc.lock);
4ffef5fe
DN
5267 mc.from = NULL;
5268 mc.to = NULL;
2bd9bb20 5269 spin_unlock(&mc.lock);
32047e2a 5270 mem_cgroup_end_move(from);
4ffef5fe
DN
5271}
5272
7dc74be0
DN
5273static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5274 struct cgroup *cgroup,
f780bdb7 5275 struct task_struct *p)
7dc74be0
DN
5276{
5277 int ret = 0;
5278 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5279
5280 if (mem->move_charge_at_immigrate) {
5281 struct mm_struct *mm;
5282 struct mem_cgroup *from = mem_cgroup_from_task(p);
5283
5284 VM_BUG_ON(from == mem);
5285
5286 mm = get_task_mm(p);
5287 if (!mm)
5288 return 0;
7dc74be0 5289 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5290 if (mm->owner == p) {
5291 VM_BUG_ON(mc.from);
5292 VM_BUG_ON(mc.to);
5293 VM_BUG_ON(mc.precharge);
854ffa8d 5294 VM_BUG_ON(mc.moved_charge);
483c30b5 5295 VM_BUG_ON(mc.moved_swap);
32047e2a 5296 mem_cgroup_start_move(from);
2bd9bb20 5297 spin_lock(&mc.lock);
4ffef5fe
DN
5298 mc.from = from;
5299 mc.to = mem;
2bd9bb20 5300 spin_unlock(&mc.lock);
dfe076b0 5301 /* We set mc.moving_task later */
4ffef5fe
DN
5302
5303 ret = mem_cgroup_precharge_mc(mm);
5304 if (ret)
5305 mem_cgroup_clear_mc();
dfe076b0
DN
5306 }
5307 mmput(mm);
7dc74be0
DN
5308 }
5309 return ret;
5310}
5311
5312static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5313 struct cgroup *cgroup,
f780bdb7 5314 struct task_struct *p)
7dc74be0 5315{
4ffef5fe 5316 mem_cgroup_clear_mc();
7dc74be0
DN
5317}
5318
4ffef5fe
DN
5319static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5320 unsigned long addr, unsigned long end,
5321 struct mm_walk *walk)
7dc74be0 5322{
4ffef5fe
DN
5323 int ret = 0;
5324 struct vm_area_struct *vma = walk->private;
5325 pte_t *pte;
5326 spinlock_t *ptl;
5327
03319327 5328 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5329retry:
5330 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5331 for (; addr != end; addr += PAGE_SIZE) {
5332 pte_t ptent = *(pte++);
5333 union mc_target target;
5334 int type;
5335 struct page *page;
5336 struct page_cgroup *pc;
02491447 5337 swp_entry_t ent;
4ffef5fe
DN
5338
5339 if (!mc.precharge)
5340 break;
5341
5342 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5343 switch (type) {
5344 case MC_TARGET_PAGE:
5345 page = target.page;
5346 if (isolate_lru_page(page))
5347 goto put;
5348 pc = lookup_page_cgroup(page);
7ec99d62
JW
5349 if (!mem_cgroup_move_account(page, 1, pc,
5350 mc.from, mc.to, false)) {
4ffef5fe 5351 mc.precharge--;
854ffa8d
DN
5352 /* we uncharge from mc.from later. */
5353 mc.moved_charge++;
4ffef5fe
DN
5354 }
5355 putback_lru_page(page);
5356put: /* is_target_pte_for_mc() gets the page */
5357 put_page(page);
5358 break;
02491447
DN
5359 case MC_TARGET_SWAP:
5360 ent = target.ent;
483c30b5
DN
5361 if (!mem_cgroup_move_swap_account(ent,
5362 mc.from, mc.to, false)) {
02491447 5363 mc.precharge--;
483c30b5
DN
5364 /* we fixup refcnts and charges later. */
5365 mc.moved_swap++;
5366 }
02491447 5367 break;
4ffef5fe
DN
5368 default:
5369 break;
5370 }
5371 }
5372 pte_unmap_unlock(pte - 1, ptl);
5373 cond_resched();
5374
5375 if (addr != end) {
5376 /*
5377 * We have consumed all precharges we got in can_attach().
5378 * We try charge one by one, but don't do any additional
5379 * charges to mc.to if we have failed in charge once in attach()
5380 * phase.
5381 */
854ffa8d 5382 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5383 if (!ret)
5384 goto retry;
5385 }
5386
5387 return ret;
5388}
5389
5390static void mem_cgroup_move_charge(struct mm_struct *mm)
5391{
5392 struct vm_area_struct *vma;
5393
5394 lru_add_drain_all();
dfe076b0
DN
5395retry:
5396 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5397 /*
5398 * Someone who are holding the mmap_sem might be waiting in
5399 * waitq. So we cancel all extra charges, wake up all waiters,
5400 * and retry. Because we cancel precharges, we might not be able
5401 * to move enough charges, but moving charge is a best-effort
5402 * feature anyway, so it wouldn't be a big problem.
5403 */
5404 __mem_cgroup_clear_mc();
5405 cond_resched();
5406 goto retry;
5407 }
4ffef5fe
DN
5408 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5409 int ret;
5410 struct mm_walk mem_cgroup_move_charge_walk = {
5411 .pmd_entry = mem_cgroup_move_charge_pte_range,
5412 .mm = mm,
5413 .private = vma,
5414 };
5415 if (is_vm_hugetlb_page(vma))
5416 continue;
4ffef5fe
DN
5417 ret = walk_page_range(vma->vm_start, vma->vm_end,
5418 &mem_cgroup_move_charge_walk);
5419 if (ret)
5420 /*
5421 * means we have consumed all precharges and failed in
5422 * doing additional charge. Just abandon here.
5423 */
5424 break;
5425 }
dfe076b0 5426 up_read(&mm->mmap_sem);
7dc74be0
DN
5427}
5428
67e465a7
BS
5429static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5430 struct cgroup *cont,
5431 struct cgroup *old_cont,
f780bdb7 5432 struct task_struct *p)
67e465a7 5433{
a433658c 5434 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5435
dfe076b0 5436 if (mm) {
a433658c
KM
5437 if (mc.to)
5438 mem_cgroup_move_charge(mm);
5439 put_swap_token(mm);
dfe076b0
DN
5440 mmput(mm);
5441 }
a433658c
KM
5442 if (mc.to)
5443 mem_cgroup_clear_mc();
67e465a7 5444}
5cfb80a7
DN
5445#else /* !CONFIG_MMU */
5446static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5447 struct cgroup *cgroup,
f780bdb7 5448 struct task_struct *p)
5cfb80a7
DN
5449{
5450 return 0;
5451}
5452static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5453 struct cgroup *cgroup,
f780bdb7 5454 struct task_struct *p)
5cfb80a7
DN
5455{
5456}
5457static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5458 struct cgroup *cont,
5459 struct cgroup *old_cont,
f780bdb7 5460 struct task_struct *p)
5cfb80a7
DN
5461{
5462}
5463#endif
67e465a7 5464
8cdea7c0
BS
5465struct cgroup_subsys mem_cgroup_subsys = {
5466 .name = "memory",
5467 .subsys_id = mem_cgroup_subsys_id,
5468 .create = mem_cgroup_create,
df878fb0 5469 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5470 .destroy = mem_cgroup_destroy,
5471 .populate = mem_cgroup_populate,
7dc74be0
DN
5472 .can_attach = mem_cgroup_can_attach,
5473 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5474 .attach = mem_cgroup_move_task,
6d12e2d8 5475 .early_init = 0,
04046e1a 5476 .use_id = 1,
8cdea7c0 5477};
c077719b
KH
5478
5479#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5480static int __init enable_swap_account(char *s)
5481{
5482 /* consider enabled if no parameter or 1 is given */
a2c8990a 5483 if (!strcmp(s, "1"))
a42c390c 5484 really_do_swap_account = 1;
a2c8990a 5485 else if (!strcmp(s, "0"))
a42c390c
MH
5486 really_do_swap_account = 0;
5487 return 1;
5488}
a2c8990a 5489__setup("swapaccount=", enable_swap_account);
c077719b 5490
c077719b 5491#endif