]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: convert NR_FILE_THPS account to pages
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
258static void obj_cgroup_release(struct percpu_ref *ref)
259{
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300}
301
302static struct obj_cgroup *obj_cgroup_alloc(void)
303{
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319}
320
321static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323{
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346}
347
55007d84 348/*
9855609b 349 * This will be used as a shrinker list's index.
b8627835
LZ
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
55007d84 355 *
dbcf73e2
VD
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
55007d84 358 */
dbcf73e2
VD
359static DEFINE_IDA(memcg_cache_ida);
360int memcg_nr_cache_ids;
749c5415 361
05257a1a
VD
362/* Protects memcg_nr_cache_ids */
363static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365void memcg_get_cache_ids(void)
366{
367 down_read(&memcg_cache_ids_sem);
368}
369
370void memcg_put_cache_ids(void)
371{
372 up_read(&memcg_cache_ids_sem);
373}
374
55007d84
GC
375/*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
b8627835 381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
385 * increase ours as well if it increases.
386 */
387#define MEMCG_CACHES_MIN_SIZE 4
b8627835 388#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 389
d7f25f8a
GC
390/*
391 * A lot of the calls to the cache allocation functions are expected to be
272911a4 392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
ef12947c 396DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 397EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 398#endif
17cc4dfe 399
0a4465d3
KT
400static int memcg_shrinker_map_size;
401static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404{
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406}
407
408static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410{
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
86daf94e 423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436}
437
438static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439{
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454}
455
456static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457{
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
86daf94e 467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478}
479
480int memcg_expand_shrinker_maps(int new_id)
481{
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 500 goto unlock;
75866af6 501 }
0a4465d3
KT
502 }
503unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508}
fae91d6d
KT
509
510void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511{
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
fae91d6d
KT
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522}
523
ad7fa852
TH
524/**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
ad7fa852
TH
534 */
535struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536{
537 struct mem_cgroup *memcg;
538
bcfe06bf 539 memcg = page_memcg(page);
ad7fa852 540
9e10a130 541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
542 memcg = root_mem_cgroup;
543
ad7fa852
TH
544 return &memcg->css;
545}
546
2fc04524
VD
547/**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560ino_t page_cgroup_ino(struct page *page)
561{
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
bcfe06bf 566 memcg = page_memcg_check(page);
286e04b8 567
2fc04524
VD
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574}
575
ef8f2327
MG
576static struct mem_cgroup_per_node *
577mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
97a6c37b 579 int nid = page_to_nid(page);
f64c3f54 580
ef8f2327 581 return memcg->nodeinfo[nid];
f64c3f54
BS
582}
583
ef8f2327
MG
584static struct mem_cgroup_tree_per_node *
585soft_limit_tree_node(int nid)
bb4cc1a8 586{
ef8f2327 587 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
588}
589
ef8f2327 590static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
591soft_limit_tree_from_page(struct page *page)
592{
593 int nid = page_to_nid(page);
bb4cc1a8 594
ef8f2327 595 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
596}
597
ef8f2327
MG
598static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 600 unsigned long new_usage_in_excess)
bb4cc1a8
AM
601{
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
ef8f2327 604 struct mem_cgroup_per_node *mz_node;
fa90b2fd 605 bool rightmost = true;
bb4cc1a8
AM
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
ef8f2327 615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 616 tree_node);
fa90b2fd 617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 618 p = &(*p)->rb_left;
fa90b2fd 619 rightmost = false;
378876b0 620 } else {
bb4cc1a8 621 p = &(*p)->rb_right;
378876b0 622 }
bb4cc1a8 623 }
fa90b2fd
DB
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
bb4cc1a8
AM
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631}
632
ef8f2327
MG
633static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
635{
636 if (!mz->on_tree)
637 return;
fa90b2fd
DB
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
bb4cc1a8
AM
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644}
645
ef8f2327
MG
646static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 648{
0a31bc97
JW
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 652 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 653 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
654}
655
3e32cb2e
JW
656static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657{
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666}
bb4cc1a8
AM
667
668static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669{
3e32cb2e 670 unsigned long excess;
ef8f2327
MG
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 673
e231875b 674 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
675 if (!mctz)
676 return;
bb4cc1a8
AM
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 682 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 683 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
0a31bc97
JW
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
692 /* if on-tree, remove it */
693 if (mz->on_tree)
cf2c8127 694 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
cf2c8127 699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 700 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
701 }
702 }
703}
704
705static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706{
ef8f2327
MG
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
bb4cc1a8 710
e231875b 711 for_each_node(nid) {
ef8f2327
MG
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
716 }
717}
718
ef8f2327
MG
719static struct mem_cgroup_per_node *
720__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 721{
ef8f2327 722 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
723
724retry:
725 mz = NULL;
fa90b2fd 726 if (!mctz->rb_rightmost)
bb4cc1a8
AM
727 goto done; /* Nothing to reclaim from */
728
fa90b2fd
DB
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
cf2c8127 736 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 737 if (!soft_limit_excess(mz->memcg) ||
8965aa28 738 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
739 goto retry;
740done:
741 return mz;
742}
743
ef8f2327
MG
744static struct mem_cgroup_per_node *
745mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 746{
ef8f2327 747 struct mem_cgroup_per_node *mz;
bb4cc1a8 748
0a31bc97 749 spin_lock_irq(&mctz->lock);
bb4cc1a8 750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 751 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
752 return mz;
753}
754
db9adbcb
JW
755/**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762{
ea426c2a 763 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
764
765 if (mem_cgroup_disabled())
766 return;
767
772616b0 768 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
769 threshold <<= PAGE_SHIFT;
770
db9adbcb 771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 772 if (unlikely(abs(x) > threshold)) {
42a30035
JW
773 struct mem_cgroup *mi;
774
766a4c19
YS
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785}
786
42a30035
JW
787static struct mem_cgroup_per_node *
788parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789{
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796}
797
eedc4e5a
RG
798void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
db9adbcb
JW
800{
801 struct mem_cgroup_per_node *pn;
42a30035 802 struct mem_cgroup *memcg;
ea426c2a 803 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 804
db9adbcb 805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 806 memcg = pn->memcg;
db9adbcb
JW
807
808 /* Update memcg */
42a30035 809 __mod_memcg_state(memcg, idx, val);
db9adbcb 810
b4c46484
RG
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
ea426c2a
RG
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
db9adbcb 817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 818 if (unlikely(abs(x) > threshold)) {
eedc4e5a 819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
820 struct mem_cgroup_per_node *pi;
821
42a30035
JW
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827}
828
eedc4e5a
RG
829/**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841{
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848}
849
c47d5032
SB
850void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852{
853 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 854 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 859 if (!memcg) {
c47d5032
SB
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
d635a69d 864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
865 __mod_lruvec_state(lruvec, idx, val);
866}
f0c0c115 867EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 868
da3ceeff 869void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 870{
4f103c63 871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
4f103c63 876 memcg = mem_cgroup_from_obj(p);
ec9f0238 877
8faeb1ff
MS
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
ec9f0238
RG
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
867e5e1d 887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891}
892
db9adbcb
JW
893/**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901{
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
909 struct mem_cgroup *mi;
910
766a4c19
YS
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921}
922
42a30035 923static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 924{
871789d4 925 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
926}
927
42a30035
JW
928static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929{
815744d7
JW
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
42a30035
JW
936}
937
c0ff4b85 938static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 939 struct page *page,
3fba69a5 940 int nr_pages)
d52aa412 941{
e401f176
KH
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
c9019e9b 944 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 945 else {
c9019e9b 946 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
947 nr_pages = -nr_pages; /* for event */
948 }
e401f176 949
871789d4 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
951}
952
f53d7ce3
JW
953static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
7a159cc9
JW
955{
956 unsigned long val, next;
957
871789d4
CD
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 960 /* from time_after() in jiffies.h */
6a1a8b80 961 if ((long)(next - val) < 0) {
f53d7ce3
JW
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
bb4cc1a8
AM
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
f53d7ce3
JW
969 default:
970 break;
971 }
871789d4 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 973 return true;
7a159cc9 974 }
f53d7ce3 975 return false;
d2265e6f
KH
976}
977
978/*
979 * Check events in order.
980 *
981 */
c0ff4b85 982static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
983{
984 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 987 bool do_softlimit;
f53d7ce3 988
bb4cc1a8
AM
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 991 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
0a31bc97 994 }
d2265e6f
KH
995}
996
cf475ad2 997struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 998{
31a78f23
BS
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
073219e9 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1008}
33398cf2 1009EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1010
d46eb14b
SB
1011/**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1020{
d46eb14b
SB
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
0b7f569e 1025
54595fe2
KH
1026 rcu_read_lock();
1027 do {
6f6acb00
MH
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
df381975 1034 memcg = root_mem_cgroup;
6f6acb00
MH
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
00d484f3 1040 } while (!css_tryget(&memcg->css));
54595fe2 1041 rcu_read_unlock();
c0ff4b85 1042 return memcg;
54595fe2 1043}
d46eb14b
SB
1044EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
f745c6f5
SB
1046/**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054{
bcfe06bf 1055 struct mem_cgroup *memcg = page_memcg(page);
f745c6f5
SB
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
8965aa28
SB
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066}
1067EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
37d5985c 1069static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1070{
37d5985c
RG
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075}
279c3393 1076
37d5985c
RG
1077static __always_inline struct mem_cgroup *get_active_memcg(void)
1078{
1079 struct mem_cgroup *memcg;
d46eb14b 1080
37d5985c
RG
1081 rcu_read_lock();
1082 memcg = active_memcg();
1083 if (memcg) {
8965aa28 1084 /* current->active_memcg must hold a ref. */
37d5985c 1085 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1086 memcg = root_mem_cgroup;
1087 else
d46eb14b 1088 memcg = current->active_memcg;
d46eb14b 1089 }
37d5985c
RG
1090 rcu_read_unlock();
1091
1092 return memcg;
1093}
1094
4127c650
RG
1095static __always_inline bool memcg_kmem_bypass(void)
1096{
1097 /* Allow remote memcg charging from any context. */
1098 if (unlikely(active_memcg()))
1099 return false;
1100
1101 /* Memcg to charge can't be determined. */
1102 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1103 return true;
1104
1105 return false;
1106}
1107
37d5985c
RG
1108/**
1109 * If active memcg is set, do not fallback to current->mm->memcg.
1110 */
1111static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1112{
1113 if (memcg_kmem_bypass())
1114 return NULL;
1115
1116 if (unlikely(active_memcg()))
1117 return get_active_memcg();
1118
d46eb14b
SB
1119 return get_mem_cgroup_from_mm(current->mm);
1120}
54595fe2 1121
5660048c
JW
1122/**
1123 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1124 * @root: hierarchy root
1125 * @prev: previously returned memcg, NULL on first invocation
1126 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1127 *
1128 * Returns references to children of the hierarchy below @root, or
1129 * @root itself, or %NULL after a full round-trip.
1130 *
1131 * Caller must pass the return value in @prev on subsequent
1132 * invocations for reference counting, or use mem_cgroup_iter_break()
1133 * to cancel a hierarchy walk before the round-trip is complete.
1134 *
05bdc520
ML
1135 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1136 * in the hierarchy among all concurrent reclaimers operating on the
1137 * same node.
5660048c 1138 */
694fbc0f 1139struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1140 struct mem_cgroup *prev,
694fbc0f 1141 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1142{
3f649ab7 1143 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1144 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1145 struct mem_cgroup *memcg = NULL;
5ac8fb31 1146 struct mem_cgroup *pos = NULL;
711d3d2c 1147
694fbc0f
AM
1148 if (mem_cgroup_disabled())
1149 return NULL;
5660048c 1150
9f3a0d09
JW
1151 if (!root)
1152 root = root_mem_cgroup;
7d74b06f 1153
9f3a0d09 1154 if (prev && !reclaim)
5ac8fb31 1155 pos = prev;
14067bb3 1156
542f85f9 1157 rcu_read_lock();
5f578161 1158
5ac8fb31 1159 if (reclaim) {
ef8f2327 1160 struct mem_cgroup_per_node *mz;
5ac8fb31 1161
ef8f2327 1162 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1163 iter = &mz->iter;
5ac8fb31
JW
1164
1165 if (prev && reclaim->generation != iter->generation)
1166 goto out_unlock;
1167
6df38689 1168 while (1) {
4db0c3c2 1169 pos = READ_ONCE(iter->position);
6df38689
VD
1170 if (!pos || css_tryget(&pos->css))
1171 break;
5ac8fb31 1172 /*
6df38689
VD
1173 * css reference reached zero, so iter->position will
1174 * be cleared by ->css_released. However, we should not
1175 * rely on this happening soon, because ->css_released
1176 * is called from a work queue, and by busy-waiting we
1177 * might block it. So we clear iter->position right
1178 * away.
5ac8fb31 1179 */
6df38689
VD
1180 (void)cmpxchg(&iter->position, pos, NULL);
1181 }
5ac8fb31
JW
1182 }
1183
1184 if (pos)
1185 css = &pos->css;
1186
1187 for (;;) {
1188 css = css_next_descendant_pre(css, &root->css);
1189 if (!css) {
1190 /*
1191 * Reclaimers share the hierarchy walk, and a
1192 * new one might jump in right at the end of
1193 * the hierarchy - make sure they see at least
1194 * one group and restart from the beginning.
1195 */
1196 if (!prev)
1197 continue;
1198 break;
527a5ec9 1199 }
7d74b06f 1200
5ac8fb31
JW
1201 /*
1202 * Verify the css and acquire a reference. The root
1203 * is provided by the caller, so we know it's alive
1204 * and kicking, and don't take an extra reference.
1205 */
1206 memcg = mem_cgroup_from_css(css);
14067bb3 1207
5ac8fb31
JW
1208 if (css == &root->css)
1209 break;
14067bb3 1210
0b8f73e1
JW
1211 if (css_tryget(css))
1212 break;
9f3a0d09 1213
5ac8fb31 1214 memcg = NULL;
9f3a0d09 1215 }
5ac8fb31
JW
1216
1217 if (reclaim) {
5ac8fb31 1218 /*
6df38689
VD
1219 * The position could have already been updated by a competing
1220 * thread, so check that the value hasn't changed since we read
1221 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1222 */
6df38689
VD
1223 (void)cmpxchg(&iter->position, pos, memcg);
1224
5ac8fb31
JW
1225 if (pos)
1226 css_put(&pos->css);
1227
1228 if (!memcg)
1229 iter->generation++;
1230 else if (!prev)
1231 reclaim->generation = iter->generation;
9f3a0d09 1232 }
5ac8fb31 1233
542f85f9
MH
1234out_unlock:
1235 rcu_read_unlock();
c40046f3
MH
1236 if (prev && prev != root)
1237 css_put(&prev->css);
1238
9f3a0d09 1239 return memcg;
14067bb3 1240}
7d74b06f 1241
5660048c
JW
1242/**
1243 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1244 * @root: hierarchy root
1245 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1246 */
1247void mem_cgroup_iter_break(struct mem_cgroup *root,
1248 struct mem_cgroup *prev)
9f3a0d09
JW
1249{
1250 if (!root)
1251 root = root_mem_cgroup;
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1254}
7d74b06f 1255
54a83d6b
MC
1256static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1257 struct mem_cgroup *dead_memcg)
6df38689 1258{
6df38689 1259 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1260 struct mem_cgroup_per_node *mz;
1261 int nid;
6df38689 1262
54a83d6b
MC
1263 for_each_node(nid) {
1264 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1265 iter = &mz->iter;
1266 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1267 }
1268}
1269
54a83d6b
MC
1270static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1271{
1272 struct mem_cgroup *memcg = dead_memcg;
1273 struct mem_cgroup *last;
1274
1275 do {
1276 __invalidate_reclaim_iterators(memcg, dead_memcg);
1277 last = memcg;
1278 } while ((memcg = parent_mem_cgroup(memcg)));
1279
1280 /*
1281 * When cgruop1 non-hierarchy mode is used,
1282 * parent_mem_cgroup() does not walk all the way up to the
1283 * cgroup root (root_mem_cgroup). So we have to handle
1284 * dead_memcg from cgroup root separately.
1285 */
1286 if (last != root_mem_cgroup)
1287 __invalidate_reclaim_iterators(root_mem_cgroup,
1288 dead_memcg);
1289}
1290
7c5f64f8
VD
1291/**
1292 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1293 * @memcg: hierarchy root
1294 * @fn: function to call for each task
1295 * @arg: argument passed to @fn
1296 *
1297 * This function iterates over tasks attached to @memcg or to any of its
1298 * descendants and calls @fn for each task. If @fn returns a non-zero
1299 * value, the function breaks the iteration loop and returns the value.
1300 * Otherwise, it will iterate over all tasks and return 0.
1301 *
1302 * This function must not be called for the root memory cgroup.
1303 */
1304int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1305 int (*fn)(struct task_struct *, void *), void *arg)
1306{
1307 struct mem_cgroup *iter;
1308 int ret = 0;
1309
1310 BUG_ON(memcg == root_mem_cgroup);
1311
1312 for_each_mem_cgroup_tree(iter, memcg) {
1313 struct css_task_iter it;
1314 struct task_struct *task;
1315
f168a9a5 1316 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1317 while (!ret && (task = css_task_iter_next(&it)))
1318 ret = fn(task, arg);
1319 css_task_iter_end(&it);
1320 if (ret) {
1321 mem_cgroup_iter_break(memcg, iter);
1322 break;
1323 }
1324 }
1325 return ret;
1326}
1327
6168d0da
AS
1328#ifdef CONFIG_DEBUG_VM
1329void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1330{
1331 struct mem_cgroup *memcg;
1332
1333 if (mem_cgroup_disabled())
1334 return;
1335
1336 memcg = page_memcg(page);
1337
1338 if (!memcg)
1339 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1340 else
1341 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1342}
1343#endif
1344
6168d0da
AS
1345/**
1346 * lock_page_lruvec - lock and return lruvec for a given page.
1347 * @page: the page
1348 *
1349 * This series functions should be used in either conditions:
1350 * PageLRU is cleared or unset
1351 * or page->_refcount is zero
1352 * or page is locked.
1353 */
1354struct lruvec *lock_page_lruvec(struct page *page)
1355{
1356 struct lruvec *lruvec;
1357 struct pglist_data *pgdat = page_pgdat(page);
1358
1359 rcu_read_lock();
1360 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1361 spin_lock(&lruvec->lru_lock);
1362 rcu_read_unlock();
1363
1364 lruvec_memcg_debug(lruvec, page);
1365
1366 return lruvec;
1367}
1368
1369struct lruvec *lock_page_lruvec_irq(struct page *page)
1370{
1371 struct lruvec *lruvec;
1372 struct pglist_data *pgdat = page_pgdat(page);
1373
1374 rcu_read_lock();
1375 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1376 spin_lock_irq(&lruvec->lru_lock);
1377 rcu_read_unlock();
1378
1379 lruvec_memcg_debug(lruvec, page);
1380
1381 return lruvec;
1382}
1383
1384struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1385{
1386 struct lruvec *lruvec;
1387 struct pglist_data *pgdat = page_pgdat(page);
1388
1389 rcu_read_lock();
1390 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1391 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1392 rcu_read_unlock();
1393
1394 lruvec_memcg_debug(lruvec, page);
1395
1396 return lruvec;
1397}
1398
925b7673 1399/**
fa9add64
HD
1400 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1401 * @lruvec: mem_cgroup per zone lru vector
1402 * @lru: index of lru list the page is sitting on
b4536f0c 1403 * @zid: zone id of the accounted pages
fa9add64 1404 * @nr_pages: positive when adding or negative when removing
925b7673 1405 *
ca707239
HD
1406 * This function must be called under lru_lock, just before a page is added
1407 * to or just after a page is removed from an lru list (that ordering being
1408 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1409 */
fa9add64 1410void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1411 int zid, int nr_pages)
3f58a829 1412{
ef8f2327 1413 struct mem_cgroup_per_node *mz;
fa9add64 1414 unsigned long *lru_size;
ca707239 1415 long size;
3f58a829
MK
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
ef8f2327 1420 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1421 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1422
1423 if (nr_pages < 0)
1424 *lru_size += nr_pages;
1425
1426 size = *lru_size;
b4536f0c
MH
1427 if (WARN_ONCE(size < 0,
1428 "%s(%p, %d, %d): lru_size %ld\n",
1429 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1430 VM_BUG_ON(1);
1431 *lru_size = 0;
1432 }
1433
1434 if (nr_pages > 0)
1435 *lru_size += nr_pages;
08e552c6 1436}
544122e5 1437
19942822 1438/**
9d11ea9f 1439 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1440 * @memcg: the memory cgroup
19942822 1441 *
9d11ea9f 1442 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1443 * pages.
19942822 1444 */
c0ff4b85 1445static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1446{
3e32cb2e
JW
1447 unsigned long margin = 0;
1448 unsigned long count;
1449 unsigned long limit;
9d11ea9f 1450
3e32cb2e 1451 count = page_counter_read(&memcg->memory);
bbec2e15 1452 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1453 if (count < limit)
1454 margin = limit - count;
1455
7941d214 1456 if (do_memsw_account()) {
3e32cb2e 1457 count = page_counter_read(&memcg->memsw);
bbec2e15 1458 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1459 if (count < limit)
3e32cb2e 1460 margin = min(margin, limit - count);
cbedbac3
LR
1461 else
1462 margin = 0;
3e32cb2e
JW
1463 }
1464
1465 return margin;
19942822
JW
1466}
1467
32047e2a 1468/*
bdcbb659 1469 * A routine for checking "mem" is under move_account() or not.
32047e2a 1470 *
bdcbb659
QH
1471 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1472 * moving cgroups. This is for waiting at high-memory pressure
1473 * caused by "move".
32047e2a 1474 */
c0ff4b85 1475static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1476{
2bd9bb20
KH
1477 struct mem_cgroup *from;
1478 struct mem_cgroup *to;
4b534334 1479 bool ret = false;
2bd9bb20
KH
1480 /*
1481 * Unlike task_move routines, we access mc.to, mc.from not under
1482 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1483 */
1484 spin_lock(&mc.lock);
1485 from = mc.from;
1486 to = mc.to;
1487 if (!from)
1488 goto unlock;
3e92041d 1489
2314b42d
JW
1490 ret = mem_cgroup_is_descendant(from, memcg) ||
1491 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1492unlock:
1493 spin_unlock(&mc.lock);
4b534334
KH
1494 return ret;
1495}
1496
c0ff4b85 1497static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1498{
1499 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1500 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1501 DEFINE_WAIT(wait);
1502 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1503 /* moving charge context might have finished. */
1504 if (mc.moving_task)
1505 schedule();
1506 finish_wait(&mc.waitq, &wait);
1507 return true;
1508 }
1509 }
1510 return false;
1511}
1512
5f9a4f4a
MS
1513struct memory_stat {
1514 const char *name;
1515 unsigned int ratio;
1516 unsigned int idx;
1517};
1518
1519static struct memory_stat memory_stats[] = {
1520 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1521 { "file", PAGE_SIZE, NR_FILE_PAGES },
1522 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
f0c0c115 1523 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
5f9a4f4a
MS
1524 { "percpu", 1, MEMCG_PERCPU_B },
1525 { "sock", PAGE_SIZE, MEMCG_SOCK },
1526 { "shmem", PAGE_SIZE, NR_SHMEM },
1527 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1528 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1529 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1531 /*
1532 * The ratio will be initialized in memory_stats_init(). Because
1533 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1534 * constant(e.g. powerpc).
1535 */
69473e5d 1536 { "anon_thp", PAGE_SIZE, NR_ANON_THPS },
bf9ecead 1537 { "file_thp", PAGE_SIZE, NR_FILE_THPS },
b8eddff8 1538 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1539#endif
1540 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1541 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1542 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1543 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1544 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1545
1546 /*
1547 * Note: The slab_reclaimable and slab_unreclaimable must be
1548 * together and slab_reclaimable must be in front.
1549 */
1550 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1551 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1552
1553 /* The memory events */
1554 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1555 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1556 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1557 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1558 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1559 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1560 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1561};
1562
1563static int __init memory_stats_init(void)
1564{
1565 int i;
1566
1567 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
bf9ecead 1569 if (memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1570 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1571#endif
1572 VM_BUG_ON(!memory_stats[i].ratio);
1573 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1574 }
1575
1576 return 0;
1577}
1578pure_initcall(memory_stats_init);
1579
c8713d0b
JW
1580static char *memory_stat_format(struct mem_cgroup *memcg)
1581{
1582 struct seq_buf s;
1583 int i;
71cd3113 1584
c8713d0b
JW
1585 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1586 if (!s.buffer)
1587 return NULL;
1588
1589 /*
1590 * Provide statistics on the state of the memory subsystem as
1591 * well as cumulative event counters that show past behavior.
1592 *
1593 * This list is ordered following a combination of these gradients:
1594 * 1) generic big picture -> specifics and details
1595 * 2) reflecting userspace activity -> reflecting kernel heuristics
1596 *
1597 * Current memory state:
1598 */
1599
5f9a4f4a
MS
1600 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1601 u64 size;
c8713d0b 1602
5f9a4f4a
MS
1603 size = memcg_page_state(memcg, memory_stats[i].idx);
1604 size *= memory_stats[i].ratio;
1605 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1606
5f9a4f4a
MS
1607 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1608 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1609 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1610 seq_buf_printf(&s, "slab %llu\n", size);
1611 }
1612 }
c8713d0b
JW
1613
1614 /* Accumulated memory events */
1615
ebc5d83d
KK
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1617 memcg_events(memcg, PGFAULT));
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1619 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1620 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1621 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1622 seq_buf_printf(&s, "pgscan %lu\n",
1623 memcg_events(memcg, PGSCAN_KSWAPD) +
1624 memcg_events(memcg, PGSCAN_DIRECT));
1625 seq_buf_printf(&s, "pgsteal %lu\n",
1626 memcg_events(memcg, PGSTEAL_KSWAPD) +
1627 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1628 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1629 memcg_events(memcg, PGACTIVATE));
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1631 memcg_events(memcg, PGDEACTIVATE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1633 memcg_events(memcg, PGLAZYFREE));
1634 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1635 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1636
1637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1638 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1639 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1640 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1641 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1642#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1643
1644 /* The above should easily fit into one page */
1645 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1646
1647 return s.buffer;
1648}
71cd3113 1649
58cf188e 1650#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1651/**
f0c867d9 1652 * mem_cgroup_print_oom_context: Print OOM information relevant to
1653 * memory controller.
e222432b
BS
1654 * @memcg: The memory cgroup that went over limit
1655 * @p: Task that is going to be killed
1656 *
1657 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1658 * enabled
1659 */
f0c867d9 1660void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1661{
e222432b
BS
1662 rcu_read_lock();
1663
f0c867d9 1664 if (memcg) {
1665 pr_cont(",oom_memcg=");
1666 pr_cont_cgroup_path(memcg->css.cgroup);
1667 } else
1668 pr_cont(",global_oom");
2415b9f5 1669 if (p) {
f0c867d9 1670 pr_cont(",task_memcg=");
2415b9f5 1671 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1672 }
e222432b 1673 rcu_read_unlock();
f0c867d9 1674}
1675
1676/**
1677 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1678 * memory controller.
1679 * @memcg: The memory cgroup that went over limit
1680 */
1681void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1682{
c8713d0b 1683 char *buf;
e222432b 1684
3e32cb2e
JW
1685 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1686 K((u64)page_counter_read(&memcg->memory)),
15b42562 1687 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1688 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1689 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1690 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1691 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1692 else {
1693 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1694 K((u64)page_counter_read(&memcg->memsw)),
1695 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1697 K((u64)page_counter_read(&memcg->kmem)),
1698 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1699 }
c8713d0b
JW
1700
1701 pr_info("Memory cgroup stats for ");
1702 pr_cont_cgroup_path(memcg->css.cgroup);
1703 pr_cont(":");
1704 buf = memory_stat_format(memcg);
1705 if (!buf)
1706 return;
1707 pr_info("%s", buf);
1708 kfree(buf);
e222432b
BS
1709}
1710
a63d83f4
DR
1711/*
1712 * Return the memory (and swap, if configured) limit for a memcg.
1713 */
bbec2e15 1714unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1715{
8d387a5f
WL
1716 unsigned long max = READ_ONCE(memcg->memory.max);
1717
1718 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1719 if (mem_cgroup_swappiness(memcg))
1720 max += min(READ_ONCE(memcg->swap.max),
1721 (unsigned long)total_swap_pages);
1722 } else { /* v1 */
1723 if (mem_cgroup_swappiness(memcg)) {
1724 /* Calculate swap excess capacity from memsw limit */
1725 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1726
1727 max += min(swap, (unsigned long)total_swap_pages);
1728 }
9a5a8f19 1729 }
bbec2e15 1730 return max;
a63d83f4
DR
1731}
1732
9783aa99
CD
1733unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1734{
1735 return page_counter_read(&memcg->memory);
1736}
1737
b6e6edcf 1738static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1739 int order)
9cbb78bb 1740{
6e0fc46d
DR
1741 struct oom_control oc = {
1742 .zonelist = NULL,
1743 .nodemask = NULL,
2a966b77 1744 .memcg = memcg,
6e0fc46d
DR
1745 .gfp_mask = gfp_mask,
1746 .order = order,
6e0fc46d 1747 };
1378b37d 1748 bool ret = true;
9cbb78bb 1749
7775face
TH
1750 if (mutex_lock_killable(&oom_lock))
1751 return true;
1378b37d
YS
1752
1753 if (mem_cgroup_margin(memcg) >= (1 << order))
1754 goto unlock;
1755
7775face
TH
1756 /*
1757 * A few threads which were not waiting at mutex_lock_killable() can
1758 * fail to bail out. Therefore, check again after holding oom_lock.
1759 */
1760 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1761
1762unlock:
dc56401f 1763 mutex_unlock(&oom_lock);
7c5f64f8 1764 return ret;
9cbb78bb
DR
1765}
1766
0608f43d 1767static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1768 pg_data_t *pgdat,
0608f43d
AM
1769 gfp_t gfp_mask,
1770 unsigned long *total_scanned)
1771{
1772 struct mem_cgroup *victim = NULL;
1773 int total = 0;
1774 int loop = 0;
1775 unsigned long excess;
1776 unsigned long nr_scanned;
1777 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1778 .pgdat = pgdat,
0608f43d
AM
1779 };
1780
3e32cb2e 1781 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1782
1783 while (1) {
1784 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1785 if (!victim) {
1786 loop++;
1787 if (loop >= 2) {
1788 /*
1789 * If we have not been able to reclaim
1790 * anything, it might because there are
1791 * no reclaimable pages under this hierarchy
1792 */
1793 if (!total)
1794 break;
1795 /*
1796 * We want to do more targeted reclaim.
1797 * excess >> 2 is not to excessive so as to
1798 * reclaim too much, nor too less that we keep
1799 * coming back to reclaim from this cgroup
1800 */
1801 if (total >= (excess >> 2) ||
1802 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1803 break;
1804 }
1805 continue;
1806 }
a9dd0a83 1807 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1808 pgdat, &nr_scanned);
0608f43d 1809 *total_scanned += nr_scanned;
3e32cb2e 1810 if (!soft_limit_excess(root_memcg))
0608f43d 1811 break;
6d61ef40 1812 }
0608f43d
AM
1813 mem_cgroup_iter_break(root_memcg, victim);
1814 return total;
6d61ef40
BS
1815}
1816
0056f4e6
JW
1817#ifdef CONFIG_LOCKDEP
1818static struct lockdep_map memcg_oom_lock_dep_map = {
1819 .name = "memcg_oom_lock",
1820};
1821#endif
1822
fb2a6fc5
JW
1823static DEFINE_SPINLOCK(memcg_oom_lock);
1824
867578cb
KH
1825/*
1826 * Check OOM-Killer is already running under our hierarchy.
1827 * If someone is running, return false.
1828 */
fb2a6fc5 1829static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1830{
79dfdacc 1831 struct mem_cgroup *iter, *failed = NULL;
a636b327 1832
fb2a6fc5
JW
1833 spin_lock(&memcg_oom_lock);
1834
9f3a0d09 1835 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1836 if (iter->oom_lock) {
79dfdacc
MH
1837 /*
1838 * this subtree of our hierarchy is already locked
1839 * so we cannot give a lock.
1840 */
79dfdacc 1841 failed = iter;
9f3a0d09
JW
1842 mem_cgroup_iter_break(memcg, iter);
1843 break;
23751be0
JW
1844 } else
1845 iter->oom_lock = true;
7d74b06f 1846 }
867578cb 1847
fb2a6fc5
JW
1848 if (failed) {
1849 /*
1850 * OK, we failed to lock the whole subtree so we have
1851 * to clean up what we set up to the failing subtree
1852 */
1853 for_each_mem_cgroup_tree(iter, memcg) {
1854 if (iter == failed) {
1855 mem_cgroup_iter_break(memcg, iter);
1856 break;
1857 }
1858 iter->oom_lock = false;
79dfdacc 1859 }
0056f4e6
JW
1860 } else
1861 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1862
1863 spin_unlock(&memcg_oom_lock);
1864
1865 return !failed;
a636b327 1866}
0b7f569e 1867
fb2a6fc5 1868static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1869{
7d74b06f
KH
1870 struct mem_cgroup *iter;
1871
fb2a6fc5 1872 spin_lock(&memcg_oom_lock);
5facae4f 1873 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1874 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1875 iter->oom_lock = false;
fb2a6fc5 1876 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1877}
1878
c0ff4b85 1879static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1880{
1881 struct mem_cgroup *iter;
1882
c2b42d3c 1883 spin_lock(&memcg_oom_lock);
c0ff4b85 1884 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1885 iter->under_oom++;
1886 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1887}
1888
c0ff4b85 1889static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1890{
1891 struct mem_cgroup *iter;
1892
867578cb 1893 /*
7a52d4d8
ML
1894 * Be careful about under_oom underflows becase a child memcg
1895 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1896 */
c2b42d3c 1897 spin_lock(&memcg_oom_lock);
c0ff4b85 1898 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1899 if (iter->under_oom > 0)
1900 iter->under_oom--;
1901 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1902}
1903
867578cb
KH
1904static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1905
dc98df5a 1906struct oom_wait_info {
d79154bb 1907 struct mem_cgroup *memcg;
ac6424b9 1908 wait_queue_entry_t wait;
dc98df5a
KH
1909};
1910
ac6424b9 1911static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1912 unsigned mode, int sync, void *arg)
1913{
d79154bb
HD
1914 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1915 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1916 struct oom_wait_info *oom_wait_info;
1917
1918 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1919 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1920
2314b42d
JW
1921 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1922 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1923 return 0;
dc98df5a
KH
1924 return autoremove_wake_function(wait, mode, sync, arg);
1925}
1926
c0ff4b85 1927static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1928{
c2b42d3c
TH
1929 /*
1930 * For the following lockless ->under_oom test, the only required
1931 * guarantee is that it must see the state asserted by an OOM when
1932 * this function is called as a result of userland actions
1933 * triggered by the notification of the OOM. This is trivially
1934 * achieved by invoking mem_cgroup_mark_under_oom() before
1935 * triggering notification.
1936 */
1937 if (memcg && memcg->under_oom)
f4b90b70 1938 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1939}
1940
29ef680a
MH
1941enum oom_status {
1942 OOM_SUCCESS,
1943 OOM_FAILED,
1944 OOM_ASYNC,
1945 OOM_SKIPPED
1946};
1947
1948static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1949{
7056d3a3
MH
1950 enum oom_status ret;
1951 bool locked;
1952
29ef680a
MH
1953 if (order > PAGE_ALLOC_COSTLY_ORDER)
1954 return OOM_SKIPPED;
1955
7a1adfdd
RG
1956 memcg_memory_event(memcg, MEMCG_OOM);
1957
867578cb 1958 /*
49426420
JW
1959 * We are in the middle of the charge context here, so we
1960 * don't want to block when potentially sitting on a callstack
1961 * that holds all kinds of filesystem and mm locks.
1962 *
29ef680a
MH
1963 * cgroup1 allows disabling the OOM killer and waiting for outside
1964 * handling until the charge can succeed; remember the context and put
1965 * the task to sleep at the end of the page fault when all locks are
1966 * released.
49426420 1967 *
29ef680a
MH
1968 * On the other hand, in-kernel OOM killer allows for an async victim
1969 * memory reclaim (oom_reaper) and that means that we are not solely
1970 * relying on the oom victim to make a forward progress and we can
1971 * invoke the oom killer here.
1972 *
1973 * Please note that mem_cgroup_out_of_memory might fail to find a
1974 * victim and then we have to bail out from the charge path.
867578cb 1975 */
29ef680a
MH
1976 if (memcg->oom_kill_disable) {
1977 if (!current->in_user_fault)
1978 return OOM_SKIPPED;
1979 css_get(&memcg->css);
1980 current->memcg_in_oom = memcg;
1981 current->memcg_oom_gfp_mask = mask;
1982 current->memcg_oom_order = order;
1983
1984 return OOM_ASYNC;
1985 }
1986
7056d3a3
MH
1987 mem_cgroup_mark_under_oom(memcg);
1988
1989 locked = mem_cgroup_oom_trylock(memcg);
1990
1991 if (locked)
1992 mem_cgroup_oom_notify(memcg);
1993
1994 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1995 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1996 ret = OOM_SUCCESS;
1997 else
1998 ret = OOM_FAILED;
1999
2000 if (locked)
2001 mem_cgroup_oom_unlock(memcg);
29ef680a 2002
7056d3a3 2003 return ret;
3812c8c8
JW
2004}
2005
2006/**
2007 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2008 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2009 *
49426420
JW
2010 * This has to be called at the end of a page fault if the memcg OOM
2011 * handler was enabled.
3812c8c8 2012 *
49426420 2013 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2014 * sleep on a waitqueue until the userspace task resolves the
2015 * situation. Sleeping directly in the charge context with all kinds
2016 * of locks held is not a good idea, instead we remember an OOM state
2017 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2018 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2019 *
2020 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2021 * completed, %false otherwise.
3812c8c8 2022 */
49426420 2023bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2024{
626ebc41 2025 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2026 struct oom_wait_info owait;
49426420 2027 bool locked;
3812c8c8
JW
2028
2029 /* OOM is global, do not handle */
3812c8c8 2030 if (!memcg)
49426420 2031 return false;
3812c8c8 2032
7c5f64f8 2033 if (!handle)
49426420 2034 goto cleanup;
3812c8c8
JW
2035
2036 owait.memcg = memcg;
2037 owait.wait.flags = 0;
2038 owait.wait.func = memcg_oom_wake_function;
2039 owait.wait.private = current;
2055da97 2040 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2041
3812c8c8 2042 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2043 mem_cgroup_mark_under_oom(memcg);
2044
2045 locked = mem_cgroup_oom_trylock(memcg);
2046
2047 if (locked)
2048 mem_cgroup_oom_notify(memcg);
2049
2050 if (locked && !memcg->oom_kill_disable) {
2051 mem_cgroup_unmark_under_oom(memcg);
2052 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2053 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2054 current->memcg_oom_order);
49426420 2055 } else {
3812c8c8 2056 schedule();
49426420
JW
2057 mem_cgroup_unmark_under_oom(memcg);
2058 finish_wait(&memcg_oom_waitq, &owait.wait);
2059 }
2060
2061 if (locked) {
fb2a6fc5
JW
2062 mem_cgroup_oom_unlock(memcg);
2063 /*
2064 * There is no guarantee that an OOM-lock contender
2065 * sees the wakeups triggered by the OOM kill
2066 * uncharges. Wake any sleepers explicitely.
2067 */
2068 memcg_oom_recover(memcg);
2069 }
49426420 2070cleanup:
626ebc41 2071 current->memcg_in_oom = NULL;
3812c8c8 2072 css_put(&memcg->css);
867578cb 2073 return true;
0b7f569e
KH
2074}
2075
3d8b38eb
RG
2076/**
2077 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2078 * @victim: task to be killed by the OOM killer
2079 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2080 *
2081 * Returns a pointer to a memory cgroup, which has to be cleaned up
2082 * by killing all belonging OOM-killable tasks.
2083 *
2084 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2085 */
2086struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2087 struct mem_cgroup *oom_domain)
2088{
2089 struct mem_cgroup *oom_group = NULL;
2090 struct mem_cgroup *memcg;
2091
2092 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2093 return NULL;
2094
2095 if (!oom_domain)
2096 oom_domain = root_mem_cgroup;
2097
2098 rcu_read_lock();
2099
2100 memcg = mem_cgroup_from_task(victim);
2101 if (memcg == root_mem_cgroup)
2102 goto out;
2103
48fe267c
RG
2104 /*
2105 * If the victim task has been asynchronously moved to a different
2106 * memory cgroup, we might end up killing tasks outside oom_domain.
2107 * In this case it's better to ignore memory.group.oom.
2108 */
2109 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2110 goto out;
2111
3d8b38eb
RG
2112 /*
2113 * Traverse the memory cgroup hierarchy from the victim task's
2114 * cgroup up to the OOMing cgroup (or root) to find the
2115 * highest-level memory cgroup with oom.group set.
2116 */
2117 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2118 if (memcg->oom_group)
2119 oom_group = memcg;
2120
2121 if (memcg == oom_domain)
2122 break;
2123 }
2124
2125 if (oom_group)
2126 css_get(&oom_group->css);
2127out:
2128 rcu_read_unlock();
2129
2130 return oom_group;
2131}
2132
2133void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2134{
2135 pr_info("Tasks in ");
2136 pr_cont_cgroup_path(memcg->css.cgroup);
2137 pr_cont(" are going to be killed due to memory.oom.group set\n");
2138}
2139
d7365e78 2140/**
bcfe06bf 2141 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2142 * @page: the page
32047e2a 2143 *
81f8c3a4 2144 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2145 * another cgroup.
2146 *
2147 * It ensures lifetime of the returned memcg. Caller is responsible
2148 * for the lifetime of the page; __unlock_page_memcg() is available
2149 * when @page might get freed inside the locked section.
d69b042f 2150 */
739f79fc 2151struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2152{
9da7b521 2153 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2154 struct mem_cgroup *memcg;
6de22619 2155 unsigned long flags;
89c06bd5 2156
6de22619
JW
2157 /*
2158 * The RCU lock is held throughout the transaction. The fast
2159 * path can get away without acquiring the memcg->move_lock
2160 * because page moving starts with an RCU grace period.
739f79fc
JW
2161 *
2162 * The RCU lock also protects the memcg from being freed when
2163 * the page state that is going to change is the only thing
2164 * preventing the page itself from being freed. E.g. writeback
2165 * doesn't hold a page reference and relies on PG_writeback to
2166 * keep off truncation, migration and so forth.
2167 */
d7365e78
JW
2168 rcu_read_lock();
2169
2170 if (mem_cgroup_disabled())
739f79fc 2171 return NULL;
89c06bd5 2172again:
bcfe06bf 2173 memcg = page_memcg(head);
29833315 2174 if (unlikely(!memcg))
739f79fc 2175 return NULL;
d7365e78 2176
20ad50d6
AS
2177#ifdef CONFIG_PROVE_LOCKING
2178 local_irq_save(flags);
2179 might_lock(&memcg->move_lock);
2180 local_irq_restore(flags);
2181#endif
2182
bdcbb659 2183 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2184 return memcg;
89c06bd5 2185
6de22619 2186 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2187 if (memcg != page_memcg(head)) {
6de22619 2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2189 goto again;
2190 }
6de22619
JW
2191
2192 /*
2193 * When charge migration first begins, we can have locked and
2194 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2195 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2196 */
2197 memcg->move_lock_task = current;
2198 memcg->move_lock_flags = flags;
d7365e78 2199
739f79fc 2200 return memcg;
89c06bd5 2201}
81f8c3a4 2202EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2203
d7365e78 2204/**
739f79fc
JW
2205 * __unlock_page_memcg - unlock and unpin a memcg
2206 * @memcg: the memcg
2207 *
2208 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2209 */
739f79fc 2210void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2211{
6de22619
JW
2212 if (memcg && memcg->move_lock_task == current) {
2213 unsigned long flags = memcg->move_lock_flags;
2214
2215 memcg->move_lock_task = NULL;
2216 memcg->move_lock_flags = 0;
2217
2218 spin_unlock_irqrestore(&memcg->move_lock, flags);
2219 }
89c06bd5 2220
d7365e78 2221 rcu_read_unlock();
89c06bd5 2222}
739f79fc
JW
2223
2224/**
bcfe06bf 2225 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2226 * @page: the page
2227 */
2228void unlock_page_memcg(struct page *page)
2229{
9da7b521
JW
2230 struct page *head = compound_head(page);
2231
bcfe06bf 2232 __unlock_page_memcg(page_memcg(head));
739f79fc 2233}
81f8c3a4 2234EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2235
cdec2e42
KH
2236struct memcg_stock_pcp {
2237 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2238 unsigned int nr_pages;
bf4f0599
RG
2239
2240#ifdef CONFIG_MEMCG_KMEM
2241 struct obj_cgroup *cached_objcg;
2242 unsigned int nr_bytes;
2243#endif
2244
cdec2e42 2245 struct work_struct work;
26fe6168 2246 unsigned long flags;
a0db00fc 2247#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2248};
2249static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2250static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2251
bf4f0599
RG
2252#ifdef CONFIG_MEMCG_KMEM
2253static void drain_obj_stock(struct memcg_stock_pcp *stock);
2254static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2255 struct mem_cgroup *root_memcg);
2256
2257#else
2258static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2259{
2260}
2261static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2262 struct mem_cgroup *root_memcg)
2263{
2264 return false;
2265}
2266#endif
2267
a0956d54
SS
2268/**
2269 * consume_stock: Try to consume stocked charge on this cpu.
2270 * @memcg: memcg to consume from.
2271 * @nr_pages: how many pages to charge.
2272 *
2273 * The charges will only happen if @memcg matches the current cpu's memcg
2274 * stock, and at least @nr_pages are available in that stock. Failure to
2275 * service an allocation will refill the stock.
2276 *
2277 * returns true if successful, false otherwise.
cdec2e42 2278 */
a0956d54 2279static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2280{
2281 struct memcg_stock_pcp *stock;
db2ba40c 2282 unsigned long flags;
3e32cb2e 2283 bool ret = false;
cdec2e42 2284
a983b5eb 2285 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2286 return ret;
a0956d54 2287
db2ba40c
JW
2288 local_irq_save(flags);
2289
2290 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2291 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2292 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2293 ret = true;
2294 }
db2ba40c
JW
2295
2296 local_irq_restore(flags);
2297
cdec2e42
KH
2298 return ret;
2299}
2300
2301/*
3e32cb2e 2302 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2303 */
2304static void drain_stock(struct memcg_stock_pcp *stock)
2305{
2306 struct mem_cgroup *old = stock->cached;
2307
1a3e1f40
JW
2308 if (!old)
2309 return;
2310
11c9ea4e 2311 if (stock->nr_pages) {
3e32cb2e 2312 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2313 if (do_memsw_account())
3e32cb2e 2314 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2315 stock->nr_pages = 0;
cdec2e42 2316 }
1a3e1f40
JW
2317
2318 css_put(&old->css);
cdec2e42 2319 stock->cached = NULL;
cdec2e42
KH
2320}
2321
cdec2e42
KH
2322static void drain_local_stock(struct work_struct *dummy)
2323{
db2ba40c
JW
2324 struct memcg_stock_pcp *stock;
2325 unsigned long flags;
2326
72f0184c
MH
2327 /*
2328 * The only protection from memory hotplug vs. drain_stock races is
2329 * that we always operate on local CPU stock here with IRQ disabled
2330 */
db2ba40c
JW
2331 local_irq_save(flags);
2332
2333 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2334 drain_obj_stock(stock);
cdec2e42 2335 drain_stock(stock);
26fe6168 2336 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2337
2338 local_irq_restore(flags);
cdec2e42
KH
2339}
2340
2341/*
3e32cb2e 2342 * Cache charges(val) to local per_cpu area.
320cc51d 2343 * This will be consumed by consume_stock() function, later.
cdec2e42 2344 */
c0ff4b85 2345static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2346{
db2ba40c
JW
2347 struct memcg_stock_pcp *stock;
2348 unsigned long flags;
2349
2350 local_irq_save(flags);
cdec2e42 2351
db2ba40c 2352 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2353 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2354 drain_stock(stock);
1a3e1f40 2355 css_get(&memcg->css);
c0ff4b85 2356 stock->cached = memcg;
cdec2e42 2357 }
11c9ea4e 2358 stock->nr_pages += nr_pages;
db2ba40c 2359
a983b5eb 2360 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2361 drain_stock(stock);
2362
db2ba40c 2363 local_irq_restore(flags);
cdec2e42
KH
2364}
2365
2366/*
c0ff4b85 2367 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2368 * of the hierarchy under it.
cdec2e42 2369 */
6d3d6aa2 2370static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2371{
26fe6168 2372 int cpu, curcpu;
d38144b7 2373
6d3d6aa2
JW
2374 /* If someone's already draining, avoid adding running more workers. */
2375 if (!mutex_trylock(&percpu_charge_mutex))
2376 return;
72f0184c
MH
2377 /*
2378 * Notify other cpus that system-wide "drain" is running
2379 * We do not care about races with the cpu hotplug because cpu down
2380 * as well as workers from this path always operate on the local
2381 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2382 */
5af12d0e 2383 curcpu = get_cpu();
cdec2e42
KH
2384 for_each_online_cpu(cpu) {
2385 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2386 struct mem_cgroup *memcg;
e1a366be 2387 bool flush = false;
26fe6168 2388
e1a366be 2389 rcu_read_lock();
c0ff4b85 2390 memcg = stock->cached;
e1a366be
RG
2391 if (memcg && stock->nr_pages &&
2392 mem_cgroup_is_descendant(memcg, root_memcg))
2393 flush = true;
bf4f0599
RG
2394 if (obj_stock_flush_required(stock, root_memcg))
2395 flush = true;
e1a366be
RG
2396 rcu_read_unlock();
2397
2398 if (flush &&
2399 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2400 if (cpu == curcpu)
2401 drain_local_stock(&stock->work);
2402 else
2403 schedule_work_on(cpu, &stock->work);
2404 }
cdec2e42 2405 }
5af12d0e 2406 put_cpu();
9f50fad6 2407 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2408}
2409
308167fc 2410static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2411{
cdec2e42 2412 struct memcg_stock_pcp *stock;
42a30035 2413 struct mem_cgroup *memcg, *mi;
cdec2e42 2414
cdec2e42
KH
2415 stock = &per_cpu(memcg_stock, cpu);
2416 drain_stock(stock);
a983b5eb
JW
2417
2418 for_each_mem_cgroup(memcg) {
2419 int i;
2420
2421 for (i = 0; i < MEMCG_NR_STAT; i++) {
2422 int nid;
2423 long x;
2424
871789d4 2425 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2426 if (x)
42a30035
JW
2427 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2428 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2429
2430 if (i >= NR_VM_NODE_STAT_ITEMS)
2431 continue;
2432
2433 for_each_node(nid) {
2434 struct mem_cgroup_per_node *pn;
2435
2436 pn = mem_cgroup_nodeinfo(memcg, nid);
2437 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2438 if (x)
42a30035
JW
2439 do {
2440 atomic_long_add(x, &pn->lruvec_stat[i]);
2441 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2442 }
2443 }
2444
e27be240 2445 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2446 long x;
2447
871789d4 2448 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2449 if (x)
42a30035
JW
2450 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2451 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2452 }
2453 }
2454
308167fc 2455 return 0;
cdec2e42
KH
2456}
2457
b3ff9291
CD
2458static unsigned long reclaim_high(struct mem_cgroup *memcg,
2459 unsigned int nr_pages,
2460 gfp_t gfp_mask)
f7e1cb6e 2461{
b3ff9291
CD
2462 unsigned long nr_reclaimed = 0;
2463
f7e1cb6e 2464 do {
e22c6ed9
JW
2465 unsigned long pflags;
2466
d1663a90
JK
2467 if (page_counter_read(&memcg->memory) <=
2468 READ_ONCE(memcg->memory.high))
f7e1cb6e 2469 continue;
e22c6ed9 2470
e27be240 2471 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2472
2473 psi_memstall_enter(&pflags);
b3ff9291
CD
2474 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2475 gfp_mask, true);
e22c6ed9 2476 psi_memstall_leave(&pflags);
4bf17307
CD
2477 } while ((memcg = parent_mem_cgroup(memcg)) &&
2478 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2479
2480 return nr_reclaimed;
f7e1cb6e
JW
2481}
2482
2483static void high_work_func(struct work_struct *work)
2484{
2485 struct mem_cgroup *memcg;
2486
2487 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2488 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2489}
2490
0e4b01df
CD
2491/*
2492 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2493 * enough to still cause a significant slowdown in most cases, while still
2494 * allowing diagnostics and tracing to proceed without becoming stuck.
2495 */
2496#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2497
2498/*
2499 * When calculating the delay, we use these either side of the exponentiation to
2500 * maintain precision and scale to a reasonable number of jiffies (see the table
2501 * below.
2502 *
2503 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2504 * overage ratio to a delay.
ac5ddd0f 2505 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2506 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2507 * to produce a reasonable delay curve.
2508 *
2509 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2510 * reasonable delay curve compared to precision-adjusted overage, not
2511 * penalising heavily at first, but still making sure that growth beyond the
2512 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2513 * example, with a high of 100 megabytes:
2514 *
2515 * +-------+------------------------+
2516 * | usage | time to allocate in ms |
2517 * +-------+------------------------+
2518 * | 100M | 0 |
2519 * | 101M | 6 |
2520 * | 102M | 25 |
2521 * | 103M | 57 |
2522 * | 104M | 102 |
2523 * | 105M | 159 |
2524 * | 106M | 230 |
2525 * | 107M | 313 |
2526 * | 108M | 409 |
2527 * | 109M | 518 |
2528 * | 110M | 639 |
2529 * | 111M | 774 |
2530 * | 112M | 921 |
2531 * | 113M | 1081 |
2532 * | 114M | 1254 |
2533 * | 115M | 1439 |
2534 * | 116M | 1638 |
2535 * | 117M | 1849 |
2536 * | 118M | 2000 |
2537 * | 119M | 2000 |
2538 * | 120M | 2000 |
2539 * +-------+------------------------+
2540 */
2541 #define MEMCG_DELAY_PRECISION_SHIFT 20
2542 #define MEMCG_DELAY_SCALING_SHIFT 14
2543
8a5dbc65 2544static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2545{
8a5dbc65 2546 u64 overage;
b23afb93 2547
8a5dbc65
JK
2548 if (usage <= high)
2549 return 0;
e26733e0 2550
8a5dbc65
JK
2551 /*
2552 * Prevent division by 0 in overage calculation by acting as if
2553 * it was a threshold of 1 page
2554 */
2555 high = max(high, 1UL);
9b8b1754 2556
8a5dbc65
JK
2557 overage = usage - high;
2558 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2559 return div64_u64(overage, high);
2560}
e26733e0 2561
8a5dbc65
JK
2562static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2563{
2564 u64 overage, max_overage = 0;
e26733e0 2565
8a5dbc65
JK
2566 do {
2567 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2568 READ_ONCE(memcg->memory.high));
8a5dbc65 2569 max_overage = max(overage, max_overage);
e26733e0
CD
2570 } while ((memcg = parent_mem_cgroup(memcg)) &&
2571 !mem_cgroup_is_root(memcg));
2572
8a5dbc65
JK
2573 return max_overage;
2574}
2575
4b82ab4f
JK
2576static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2577{
2578 u64 overage, max_overage = 0;
2579
2580 do {
2581 overage = calculate_overage(page_counter_read(&memcg->swap),
2582 READ_ONCE(memcg->swap.high));
2583 if (overage)
2584 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2585 max_overage = max(overage, max_overage);
2586 } while ((memcg = parent_mem_cgroup(memcg)) &&
2587 !mem_cgroup_is_root(memcg));
2588
2589 return max_overage;
2590}
2591
8a5dbc65
JK
2592/*
2593 * Get the number of jiffies that we should penalise a mischievous cgroup which
2594 * is exceeding its memory.high by checking both it and its ancestors.
2595 */
2596static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2597 unsigned int nr_pages,
2598 u64 max_overage)
2599{
2600 unsigned long penalty_jiffies;
2601
e26733e0
CD
2602 if (!max_overage)
2603 return 0;
0e4b01df
CD
2604
2605 /*
0e4b01df
CD
2606 * We use overage compared to memory.high to calculate the number of
2607 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2608 * fairly lenient on small overages, and increasingly harsh when the
2609 * memcg in question makes it clear that it has no intention of stopping
2610 * its crazy behaviour, so we exponentially increase the delay based on
2611 * overage amount.
2612 */
e26733e0
CD
2613 penalty_jiffies = max_overage * max_overage * HZ;
2614 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2615 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2616
2617 /*
2618 * Factor in the task's own contribution to the overage, such that four
2619 * N-sized allocations are throttled approximately the same as one
2620 * 4N-sized allocation.
2621 *
2622 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2623 * larger the current charge patch is than that.
2624 */
ff144e69 2625 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2626}
2627
2628/*
2629 * Scheduled by try_charge() to be executed from the userland return path
2630 * and reclaims memory over the high limit.
2631 */
2632void mem_cgroup_handle_over_high(void)
2633{
2634 unsigned long penalty_jiffies;
2635 unsigned long pflags;
b3ff9291 2636 unsigned long nr_reclaimed;
e26733e0 2637 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2638 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2639 struct mem_cgroup *memcg;
b3ff9291 2640 bool in_retry = false;
e26733e0
CD
2641
2642 if (likely(!nr_pages))
2643 return;
2644
2645 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2646 current->memcg_nr_pages_over_high = 0;
2647
b3ff9291
CD
2648retry_reclaim:
2649 /*
2650 * The allocating task should reclaim at least the batch size, but for
2651 * subsequent retries we only want to do what's necessary to prevent oom
2652 * or breaching resource isolation.
2653 *
2654 * This is distinct from memory.max or page allocator behaviour because
2655 * memory.high is currently batched, whereas memory.max and the page
2656 * allocator run every time an allocation is made.
2657 */
2658 nr_reclaimed = reclaim_high(memcg,
2659 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2660 GFP_KERNEL);
2661
e26733e0
CD
2662 /*
2663 * memory.high is breached and reclaim is unable to keep up. Throttle
2664 * allocators proactively to slow down excessive growth.
2665 */
8a5dbc65
JK
2666 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2667 mem_find_max_overage(memcg));
0e4b01df 2668
4b82ab4f
JK
2669 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2670 swap_find_max_overage(memcg));
2671
ff144e69
JK
2672 /*
2673 * Clamp the max delay per usermode return so as to still keep the
2674 * application moving forwards and also permit diagnostics, albeit
2675 * extremely slowly.
2676 */
2677 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2678
0e4b01df
CD
2679 /*
2680 * Don't sleep if the amount of jiffies this memcg owes us is so low
2681 * that it's not even worth doing, in an attempt to be nice to those who
2682 * go only a small amount over their memory.high value and maybe haven't
2683 * been aggressively reclaimed enough yet.
2684 */
2685 if (penalty_jiffies <= HZ / 100)
2686 goto out;
2687
b3ff9291
CD
2688 /*
2689 * If reclaim is making forward progress but we're still over
2690 * memory.high, we want to encourage that rather than doing allocator
2691 * throttling.
2692 */
2693 if (nr_reclaimed || nr_retries--) {
2694 in_retry = true;
2695 goto retry_reclaim;
2696 }
2697
0e4b01df
CD
2698 /*
2699 * If we exit early, we're guaranteed to die (since
2700 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2701 * need to account for any ill-begotten jiffies to pay them off later.
2702 */
2703 psi_memstall_enter(&pflags);
2704 schedule_timeout_killable(penalty_jiffies);
2705 psi_memstall_leave(&pflags);
2706
2707out:
2708 css_put(&memcg->css);
b23afb93
TH
2709}
2710
00501b53
JW
2711static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2712 unsigned int nr_pages)
8a9f3ccd 2713{
a983b5eb 2714 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2715 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2716 struct mem_cgroup *mem_over_limit;
3e32cb2e 2717 struct page_counter *counter;
e22c6ed9 2718 enum oom_status oom_status;
6539cc05 2719 unsigned long nr_reclaimed;
b70a2a21
JW
2720 bool may_swap = true;
2721 bool drained = false;
e22c6ed9 2722 unsigned long pflags;
a636b327 2723
ce00a967 2724 if (mem_cgroup_is_root(memcg))
10d53c74 2725 return 0;
6539cc05 2726retry:
b6b6cc72 2727 if (consume_stock(memcg, nr_pages))
10d53c74 2728 return 0;
8a9f3ccd 2729
7941d214 2730 if (!do_memsw_account() ||
6071ca52
JW
2731 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2732 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2733 goto done_restock;
7941d214 2734 if (do_memsw_account())
3e32cb2e
JW
2735 page_counter_uncharge(&memcg->memsw, batch);
2736 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2737 } else {
3e32cb2e 2738 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2739 may_swap = false;
3fbe7244 2740 }
7a81b88c 2741
6539cc05
JW
2742 if (batch > nr_pages) {
2743 batch = nr_pages;
2744 goto retry;
2745 }
6d61ef40 2746
869712fd
JW
2747 /*
2748 * Memcg doesn't have a dedicated reserve for atomic
2749 * allocations. But like the global atomic pool, we need to
2750 * put the burden of reclaim on regular allocation requests
2751 * and let these go through as privileged allocations.
2752 */
2753 if (gfp_mask & __GFP_ATOMIC)
2754 goto force;
2755
06b078fc
JW
2756 /*
2757 * Unlike in global OOM situations, memcg is not in a physical
2758 * memory shortage. Allow dying and OOM-killed tasks to
2759 * bypass the last charges so that they can exit quickly and
2760 * free their memory.
2761 */
7775face 2762 if (unlikely(should_force_charge()))
10d53c74 2763 goto force;
06b078fc 2764
89a28483
JW
2765 /*
2766 * Prevent unbounded recursion when reclaim operations need to
2767 * allocate memory. This might exceed the limits temporarily,
2768 * but we prefer facilitating memory reclaim and getting back
2769 * under the limit over triggering OOM kills in these cases.
2770 */
2771 if (unlikely(current->flags & PF_MEMALLOC))
2772 goto force;
2773
06b078fc
JW
2774 if (unlikely(task_in_memcg_oom(current)))
2775 goto nomem;
2776
d0164adc 2777 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2778 goto nomem;
4b534334 2779
e27be240 2780 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2781
e22c6ed9 2782 psi_memstall_enter(&pflags);
b70a2a21
JW
2783 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2784 gfp_mask, may_swap);
e22c6ed9 2785 psi_memstall_leave(&pflags);
6539cc05 2786
61e02c74 2787 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2788 goto retry;
28c34c29 2789
b70a2a21 2790 if (!drained) {
6d3d6aa2 2791 drain_all_stock(mem_over_limit);
b70a2a21
JW
2792 drained = true;
2793 goto retry;
2794 }
2795
28c34c29
JW
2796 if (gfp_mask & __GFP_NORETRY)
2797 goto nomem;
6539cc05
JW
2798 /*
2799 * Even though the limit is exceeded at this point, reclaim
2800 * may have been able to free some pages. Retry the charge
2801 * before killing the task.
2802 *
2803 * Only for regular pages, though: huge pages are rather
2804 * unlikely to succeed so close to the limit, and we fall back
2805 * to regular pages anyway in case of failure.
2806 */
61e02c74 2807 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2808 goto retry;
2809 /*
2810 * At task move, charge accounts can be doubly counted. So, it's
2811 * better to wait until the end of task_move if something is going on.
2812 */
2813 if (mem_cgroup_wait_acct_move(mem_over_limit))
2814 goto retry;
2815
9b130619
JW
2816 if (nr_retries--)
2817 goto retry;
2818
38d38493 2819 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2820 goto nomem;
2821
06b078fc 2822 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2823 goto force;
06b078fc 2824
6539cc05 2825 if (fatal_signal_pending(current))
10d53c74 2826 goto force;
6539cc05 2827
29ef680a
MH
2828 /*
2829 * keep retrying as long as the memcg oom killer is able to make
2830 * a forward progress or bypass the charge if the oom killer
2831 * couldn't make any progress.
2832 */
2833 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2834 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2835 switch (oom_status) {
2836 case OOM_SUCCESS:
d977aa93 2837 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2838 goto retry;
2839 case OOM_FAILED:
2840 goto force;
2841 default:
2842 goto nomem;
2843 }
7a81b88c 2844nomem:
6d1fdc48 2845 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2846 return -ENOMEM;
10d53c74
TH
2847force:
2848 /*
2849 * The allocation either can't fail or will lead to more memory
2850 * being freed very soon. Allow memory usage go over the limit
2851 * temporarily by force charging it.
2852 */
2853 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2854 if (do_memsw_account())
10d53c74 2855 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2856
2857 return 0;
6539cc05
JW
2858
2859done_restock:
2860 if (batch > nr_pages)
2861 refill_stock(memcg, batch - nr_pages);
b23afb93 2862
241994ed 2863 /*
b23afb93
TH
2864 * If the hierarchy is above the normal consumption range, schedule
2865 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2866 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2867 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2868 * not recorded as it most likely matches current's and won't
2869 * change in the meantime. As high limit is checked again before
2870 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2871 */
2872 do {
4b82ab4f
JK
2873 bool mem_high, swap_high;
2874
2875 mem_high = page_counter_read(&memcg->memory) >
2876 READ_ONCE(memcg->memory.high);
2877 swap_high = page_counter_read(&memcg->swap) >
2878 READ_ONCE(memcg->swap.high);
2879
2880 /* Don't bother a random interrupted task */
2881 if (in_interrupt()) {
2882 if (mem_high) {
f7e1cb6e
JW
2883 schedule_work(&memcg->high_work);
2884 break;
2885 }
4b82ab4f
JK
2886 continue;
2887 }
2888
2889 if (mem_high || swap_high) {
2890 /*
2891 * The allocating tasks in this cgroup will need to do
2892 * reclaim or be throttled to prevent further growth
2893 * of the memory or swap footprints.
2894 *
2895 * Target some best-effort fairness between the tasks,
2896 * and distribute reclaim work and delay penalties
2897 * based on how much each task is actually allocating.
2898 */
9516a18a 2899 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2900 set_notify_resume(current);
2901 break;
2902 }
241994ed 2903 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2904
2905 return 0;
7a81b88c 2906}
8a9f3ccd 2907
f0e45fb4 2908#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2909static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2910{
ce00a967
JW
2911 if (mem_cgroup_is_root(memcg))
2912 return;
2913
3e32cb2e 2914 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2915 if (do_memsw_account())
3e32cb2e 2916 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2917}
f0e45fb4 2918#endif
d01dd17f 2919
d9eb1ea2 2920static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2921{
bcfe06bf 2922 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2923 /*
a5eb011a 2924 * Any of the following ensures page's memcg stability:
0a31bc97 2925 *
a0b5b414
JW
2926 * - the page lock
2927 * - LRU isolation
2928 * - lock_page_memcg()
2929 * - exclusive reference
0a31bc97 2930 */
bcfe06bf 2931 page->memcg_data = (unsigned long)memcg;
7a81b88c 2932}
66e1707b 2933
84c07d11 2934#ifdef CONFIG_MEMCG_KMEM
10befea9 2935int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2936 gfp_t gfp, bool new_page)
10befea9
RG
2937{
2938 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2939 unsigned long memcg_data;
10befea9
RG
2940 void *vec;
2941
2942 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2943 page_to_nid(page));
2944 if (!vec)
2945 return -ENOMEM;
2946
2e9bd483
RG
2947 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2948 if (new_page) {
2949 /*
2950 * If the slab page is brand new and nobody can yet access
2951 * it's memcg_data, no synchronization is required and
2952 * memcg_data can be simply assigned.
2953 */
2954 page->memcg_data = memcg_data;
2955 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2956 /*
2957 * If the slab page is already in use, somebody can allocate
2958 * and assign obj_cgroups in parallel. In this case the existing
2959 * objcg vector should be reused.
2960 */
10befea9 2961 kfree(vec);
2e9bd483
RG
2962 return 0;
2963 }
10befea9 2964
2e9bd483 2965 kmemleak_not_leak(vec);
10befea9
RG
2966 return 0;
2967}
2968
8380ce47
RG
2969/*
2970 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2971 *
bcfe06bf
RG
2972 * A passed kernel object can be a slab object or a generic kernel page, so
2973 * different mechanisms for getting the memory cgroup pointer should be used.
2974 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2975 * can not know for sure how the kernel object is implemented.
2976 * mem_cgroup_from_obj() can be safely used in such cases.
2977 *
8380ce47
RG
2978 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2979 * cgroup_mutex, etc.
2980 */
2981struct mem_cgroup *mem_cgroup_from_obj(void *p)
2982{
2983 struct page *page;
2984
2985 if (mem_cgroup_disabled())
2986 return NULL;
2987
2988 page = virt_to_head_page(p);
2989
2990 /*
9855609b
RG
2991 * Slab objects are accounted individually, not per-page.
2992 * Memcg membership data for each individual object is saved in
2993 * the page->obj_cgroups.
8380ce47 2994 */
270c6a71 2995 if (page_objcgs_check(page)) {
9855609b
RG
2996 struct obj_cgroup *objcg;
2997 unsigned int off;
2998
2999 off = obj_to_index(page->slab_cache, page, p);
270c6a71 3000 objcg = page_objcgs(page)[off];
10befea9
RG
3001 if (objcg)
3002 return obj_cgroup_memcg(objcg);
3003
3004 return NULL;
9855609b 3005 }
8380ce47 3006
bcfe06bf
RG
3007 /*
3008 * page_memcg_check() is used here, because page_has_obj_cgroups()
3009 * check above could fail because the object cgroups vector wasn't set
3010 * at that moment, but it can be set concurrently.
3011 * page_memcg_check(page) will guarantee that a proper memory
3012 * cgroup pointer or NULL will be returned.
3013 */
3014 return page_memcg_check(page);
8380ce47
RG
3015}
3016
bf4f0599
RG
3017__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3018{
3019 struct obj_cgroup *objcg = NULL;
3020 struct mem_cgroup *memcg;
3021
279c3393
RG
3022 if (memcg_kmem_bypass())
3023 return NULL;
3024
bf4f0599 3025 rcu_read_lock();
37d5985c
RG
3026 if (unlikely(active_memcg()))
3027 memcg = active_memcg();
bf4f0599
RG
3028 else
3029 memcg = mem_cgroup_from_task(current);
3030
3031 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3032 objcg = rcu_dereference(memcg->objcg);
3033 if (objcg && obj_cgroup_tryget(objcg))
3034 break;
2f7659a3 3035 objcg = NULL;
bf4f0599
RG
3036 }
3037 rcu_read_unlock();
3038
3039 return objcg;
3040}
3041
f3bb3043 3042static int memcg_alloc_cache_id(void)
55007d84 3043{
f3bb3043
VD
3044 int id, size;
3045 int err;
3046
dbcf73e2 3047 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3048 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3049 if (id < 0)
3050 return id;
55007d84 3051
dbcf73e2 3052 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3053 return id;
3054
3055 /*
3056 * There's no space for the new id in memcg_caches arrays,
3057 * so we have to grow them.
3058 */
05257a1a 3059 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3060
3061 size = 2 * (id + 1);
55007d84
GC
3062 if (size < MEMCG_CACHES_MIN_SIZE)
3063 size = MEMCG_CACHES_MIN_SIZE;
3064 else if (size > MEMCG_CACHES_MAX_SIZE)
3065 size = MEMCG_CACHES_MAX_SIZE;
3066
9855609b 3067 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3068 if (!err)
3069 memcg_nr_cache_ids = size;
3070
3071 up_write(&memcg_cache_ids_sem);
3072
f3bb3043 3073 if (err) {
dbcf73e2 3074 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3075 return err;
3076 }
3077 return id;
3078}
3079
3080static void memcg_free_cache_id(int id)
3081{
dbcf73e2 3082 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3083}
3084
45264778 3085/**
4b13f64d 3086 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3087 * @memcg: memory cgroup to charge
45264778 3088 * @gfp: reclaim mode
92d0510c 3089 * @nr_pages: number of pages to charge
45264778
VD
3090 *
3091 * Returns 0 on success, an error code on failure.
3092 */
4b13f64d
RG
3093int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3094 unsigned int nr_pages)
7ae1e1d0 3095{
f3ccb2c4 3096 struct page_counter *counter;
7ae1e1d0
GC
3097 int ret;
3098
f3ccb2c4 3099 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3100 if (ret)
f3ccb2c4 3101 return ret;
52c29b04
JW
3102
3103 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3104 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3105
3106 /*
3107 * Enforce __GFP_NOFAIL allocation because callers are not
3108 * prepared to see failures and likely do not have any failure
3109 * handling code.
3110 */
3111 if (gfp & __GFP_NOFAIL) {
3112 page_counter_charge(&memcg->kmem, nr_pages);
3113 return 0;
3114 }
52c29b04
JW
3115 cancel_charge(memcg, nr_pages);
3116 return -ENOMEM;
7ae1e1d0 3117 }
f3ccb2c4 3118 return 0;
7ae1e1d0
GC
3119}
3120
4b13f64d
RG
3121/**
3122 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3123 * @memcg: memcg to uncharge
3124 * @nr_pages: number of pages to uncharge
3125 */
3126void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3127{
3128 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3129 page_counter_uncharge(&memcg->kmem, nr_pages);
3130
3de7d4f2 3131 refill_stock(memcg, nr_pages);
4b13f64d
RG
3132}
3133
45264778 3134/**
f4b00eab 3135 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3136 * @page: page to charge
3137 * @gfp: reclaim mode
3138 * @order: allocation order
3139 *
3140 * Returns 0 on success, an error code on failure.
3141 */
f4b00eab 3142int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3143{
f3ccb2c4 3144 struct mem_cgroup *memcg;
fcff7d7e 3145 int ret = 0;
7ae1e1d0 3146
d46eb14b 3147 memcg = get_mem_cgroup_from_current();
279c3393 3148 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3149 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3150 if (!ret) {
18b2db3b
RG
3151 page->memcg_data = (unsigned long)memcg |
3152 MEMCG_DATA_KMEM;
1a3e1f40 3153 return 0;
4d96ba35 3154 }
279c3393 3155 css_put(&memcg->css);
c4159a75 3156 }
d05e83a6 3157 return ret;
7ae1e1d0 3158}
49a18eae 3159
45264778 3160/**
f4b00eab 3161 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3162 * @page: page to uncharge
3163 * @order: allocation order
3164 */
f4b00eab 3165void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3166{
bcfe06bf 3167 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3168 unsigned int nr_pages = 1 << order;
7ae1e1d0 3169
7ae1e1d0
GC
3170 if (!memcg)
3171 return;
3172
309381fe 3173 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3174 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3175 page->memcg_data = 0;
1a3e1f40 3176 css_put(&memcg->css);
60d3fd32 3177}
bf4f0599
RG
3178
3179static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3180{
3181 struct memcg_stock_pcp *stock;
3182 unsigned long flags;
3183 bool ret = false;
3184
3185 local_irq_save(flags);
3186
3187 stock = this_cpu_ptr(&memcg_stock);
3188 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3189 stock->nr_bytes -= nr_bytes;
3190 ret = true;
3191 }
3192
3193 local_irq_restore(flags);
3194
3195 return ret;
3196}
3197
3198static void drain_obj_stock(struct memcg_stock_pcp *stock)
3199{
3200 struct obj_cgroup *old = stock->cached_objcg;
3201
3202 if (!old)
3203 return;
3204
3205 if (stock->nr_bytes) {
3206 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3207 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3208
3209 if (nr_pages) {
3210 rcu_read_lock();
3211 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3212 rcu_read_unlock();
3213 }
3214
3215 /*
3216 * The leftover is flushed to the centralized per-memcg value.
3217 * On the next attempt to refill obj stock it will be moved
3218 * to a per-cpu stock (probably, on an other CPU), see
3219 * refill_obj_stock().
3220 *
3221 * How often it's flushed is a trade-off between the memory
3222 * limit enforcement accuracy and potential CPU contention,
3223 * so it might be changed in the future.
3224 */
3225 atomic_add(nr_bytes, &old->nr_charged_bytes);
3226 stock->nr_bytes = 0;
3227 }
3228
3229 obj_cgroup_put(old);
3230 stock->cached_objcg = NULL;
3231}
3232
3233static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3234 struct mem_cgroup *root_memcg)
3235{
3236 struct mem_cgroup *memcg;
3237
3238 if (stock->cached_objcg) {
3239 memcg = obj_cgroup_memcg(stock->cached_objcg);
3240 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3241 return true;
3242 }
3243
3244 return false;
3245}
3246
3247static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3248{
3249 struct memcg_stock_pcp *stock;
3250 unsigned long flags;
3251
3252 local_irq_save(flags);
3253
3254 stock = this_cpu_ptr(&memcg_stock);
3255 if (stock->cached_objcg != objcg) { /* reset if necessary */
3256 drain_obj_stock(stock);
3257 obj_cgroup_get(objcg);
3258 stock->cached_objcg = objcg;
3259 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3260 }
3261 stock->nr_bytes += nr_bytes;
3262
3263 if (stock->nr_bytes > PAGE_SIZE)
3264 drain_obj_stock(stock);
3265
3266 local_irq_restore(flags);
3267}
3268
3269int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3270{
3271 struct mem_cgroup *memcg;
3272 unsigned int nr_pages, nr_bytes;
3273 int ret;
3274
3275 if (consume_obj_stock(objcg, size))
3276 return 0;
3277
3278 /*
3279 * In theory, memcg->nr_charged_bytes can have enough
3280 * pre-charged bytes to satisfy the allocation. However,
3281 * flushing memcg->nr_charged_bytes requires two atomic
3282 * operations, and memcg->nr_charged_bytes can't be big,
3283 * so it's better to ignore it and try grab some new pages.
3284 * memcg->nr_charged_bytes will be flushed in
3285 * refill_obj_stock(), called from this function or
3286 * independently later.
3287 */
3288 rcu_read_lock();
eefbfa7f 3289retry:
bf4f0599 3290 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3291 if (unlikely(!css_tryget(&memcg->css)))
3292 goto retry;
bf4f0599
RG
3293 rcu_read_unlock();
3294
3295 nr_pages = size >> PAGE_SHIFT;
3296 nr_bytes = size & (PAGE_SIZE - 1);
3297
3298 if (nr_bytes)
3299 nr_pages += 1;
3300
3301 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3302 if (!ret && nr_bytes)
3303 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3304
3305 css_put(&memcg->css);
3306 return ret;
3307}
3308
3309void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3310{
3311 refill_obj_stock(objcg, size);
3312}
3313
84c07d11 3314#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3315
ca3e0214 3316#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ca3e0214 3317/*
6168d0da 3318 * Because page_memcg(head) is not set on compound tails, set it now.
ca3e0214 3319 */
e94c8a9c 3320void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3321{
bcfe06bf 3322 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3323 int i;
ca3e0214 3324
3d37c4a9
KH
3325 if (mem_cgroup_disabled())
3326 return;
b070e65c 3327
1a3e1f40
JW
3328 for (i = 1; i < HPAGE_PMD_NR; i++) {
3329 css_get(&memcg->css);
bcfe06bf 3330 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3331 }
ca3e0214 3332}
12d27107 3333#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3334
c255a458 3335#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3336/**
3337 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3338 * @entry: swap entry to be moved
3339 * @from: mem_cgroup which the entry is moved from
3340 * @to: mem_cgroup which the entry is moved to
3341 *
3342 * It succeeds only when the swap_cgroup's record for this entry is the same
3343 * as the mem_cgroup's id of @from.
3344 *
3345 * Returns 0 on success, -EINVAL on failure.
3346 *
3e32cb2e 3347 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3348 * both res and memsw, and called css_get().
3349 */
3350static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3351 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3352{
3353 unsigned short old_id, new_id;
3354
34c00c31
LZ
3355 old_id = mem_cgroup_id(from);
3356 new_id = mem_cgroup_id(to);
02491447
DN
3357
3358 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3359 mod_memcg_state(from, MEMCG_SWAP, -1);
3360 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3361 return 0;
3362 }
3363 return -EINVAL;
3364}
3365#else
3366static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3367 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3368{
3369 return -EINVAL;
3370}
8c7c6e34 3371#endif
d13d1443 3372
bbec2e15 3373static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3374
bbec2e15
RG
3375static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3376 unsigned long max, bool memsw)
628f4235 3377{
3e32cb2e 3378 bool enlarge = false;
bb4a7ea2 3379 bool drained = false;
3e32cb2e 3380 int ret;
c054a78c
YZ
3381 bool limits_invariant;
3382 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3383
3e32cb2e 3384 do {
628f4235
KH
3385 if (signal_pending(current)) {
3386 ret = -EINTR;
3387 break;
3388 }
3e32cb2e 3389
bbec2e15 3390 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3391 /*
3392 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3393 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3394 */
15b42562 3395 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3396 max <= memcg->memsw.max;
c054a78c 3397 if (!limits_invariant) {
bbec2e15 3398 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3399 ret = -EINVAL;
8c7c6e34
KH
3400 break;
3401 }
bbec2e15 3402 if (max > counter->max)
3e32cb2e 3403 enlarge = true;
bbec2e15
RG
3404 ret = page_counter_set_max(counter, max);
3405 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3406
3407 if (!ret)
3408 break;
3409
bb4a7ea2
SB
3410 if (!drained) {
3411 drain_all_stock(memcg);
3412 drained = true;
3413 continue;
3414 }
3415
1ab5c056
AR
3416 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3417 GFP_KERNEL, !memsw)) {
3418 ret = -EBUSY;
3419 break;
3420 }
3421 } while (true);
3e32cb2e 3422
3c11ecf4
KH
3423 if (!ret && enlarge)
3424 memcg_oom_recover(memcg);
3e32cb2e 3425
628f4235
KH
3426 return ret;
3427}
3428
ef8f2327 3429unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3430 gfp_t gfp_mask,
3431 unsigned long *total_scanned)
3432{
3433 unsigned long nr_reclaimed = 0;
ef8f2327 3434 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3435 unsigned long reclaimed;
3436 int loop = 0;
ef8f2327 3437 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3438 unsigned long excess;
0608f43d
AM
3439 unsigned long nr_scanned;
3440
3441 if (order > 0)
3442 return 0;
3443
ef8f2327 3444 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3445
3446 /*
3447 * Do not even bother to check the largest node if the root
3448 * is empty. Do it lockless to prevent lock bouncing. Races
3449 * are acceptable as soft limit is best effort anyway.
3450 */
bfc7228b 3451 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3452 return 0;
3453
0608f43d
AM
3454 /*
3455 * This loop can run a while, specially if mem_cgroup's continuously
3456 * keep exceeding their soft limit and putting the system under
3457 * pressure
3458 */
3459 do {
3460 if (next_mz)
3461 mz = next_mz;
3462 else
3463 mz = mem_cgroup_largest_soft_limit_node(mctz);
3464 if (!mz)
3465 break;
3466
3467 nr_scanned = 0;
ef8f2327 3468 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3469 gfp_mask, &nr_scanned);
3470 nr_reclaimed += reclaimed;
3471 *total_scanned += nr_scanned;
0a31bc97 3472 spin_lock_irq(&mctz->lock);
bc2f2e7f 3473 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3474
3475 /*
3476 * If we failed to reclaim anything from this memory cgroup
3477 * it is time to move on to the next cgroup
3478 */
3479 next_mz = NULL;
bc2f2e7f
VD
3480 if (!reclaimed)
3481 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3482
3e32cb2e 3483 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3484 /*
3485 * One school of thought says that we should not add
3486 * back the node to the tree if reclaim returns 0.
3487 * But our reclaim could return 0, simply because due
3488 * to priority we are exposing a smaller subset of
3489 * memory to reclaim from. Consider this as a longer
3490 * term TODO.
3491 */
3492 /* If excess == 0, no tree ops */
cf2c8127 3493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3494 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3495 css_put(&mz->memcg->css);
3496 loop++;
3497 /*
3498 * Could not reclaim anything and there are no more
3499 * mem cgroups to try or we seem to be looping without
3500 * reclaiming anything.
3501 */
3502 if (!nr_reclaimed &&
3503 (next_mz == NULL ||
3504 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3505 break;
3506 } while (!nr_reclaimed);
3507 if (next_mz)
3508 css_put(&next_mz->memcg->css);
3509 return nr_reclaimed;
3510}
3511
c26251f9 3512/*
51038171 3513 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3514 *
3515 * Caller is responsible for holding css reference for memcg.
3516 */
3517static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3518{
d977aa93 3519 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3520
c1e862c1
KH
3521 /* we call try-to-free pages for make this cgroup empty */
3522 lru_add_drain_all();
d12c60f6
JS
3523
3524 drain_all_stock(memcg);
3525
f817ed48 3526 /* try to free all pages in this cgroup */
3e32cb2e 3527 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3528 int progress;
c1e862c1 3529
c26251f9
MH
3530 if (signal_pending(current))
3531 return -EINTR;
3532
b70a2a21
JW
3533 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3534 GFP_KERNEL, true);
c1e862c1 3535 if (!progress) {
f817ed48 3536 nr_retries--;
c1e862c1 3537 /* maybe some writeback is necessary */
8aa7e847 3538 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3539 }
f817ed48
KH
3540
3541 }
ab5196c2
MH
3542
3543 return 0;
cc847582
KH
3544}
3545
6770c64e
TH
3546static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3547 char *buf, size_t nbytes,
3548 loff_t off)
c1e862c1 3549{
6770c64e 3550 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3551
d8423011
MH
3552 if (mem_cgroup_is_root(memcg))
3553 return -EINVAL;
6770c64e 3554 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3555}
3556
182446d0
TH
3557static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3558 struct cftype *cft)
18f59ea7 3559{
bef8620c 3560 return 1;
18f59ea7
BS
3561}
3562
182446d0
TH
3563static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3564 struct cftype *cft, u64 val)
18f59ea7 3565{
bef8620c 3566 if (val == 1)
0b8f73e1 3567 return 0;
567fb435 3568
bef8620c
RG
3569 pr_warn_once("Non-hierarchical mode is deprecated. "
3570 "Please report your usecase to linux-mm@kvack.org if you "
3571 "depend on this functionality.\n");
567fb435 3572
bef8620c 3573 return -EINVAL;
18f59ea7
BS
3574}
3575
6f646156 3576static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3577{
42a30035 3578 unsigned long val;
ce00a967 3579
3e32cb2e 3580 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3581 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3582 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3583 if (swap)
3584 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3585 } else {
ce00a967 3586 if (!swap)
3e32cb2e 3587 val = page_counter_read(&memcg->memory);
ce00a967 3588 else
3e32cb2e 3589 val = page_counter_read(&memcg->memsw);
ce00a967 3590 }
c12176d3 3591 return val;
ce00a967
JW
3592}
3593
3e32cb2e
JW
3594enum {
3595 RES_USAGE,
3596 RES_LIMIT,
3597 RES_MAX_USAGE,
3598 RES_FAILCNT,
3599 RES_SOFT_LIMIT,
3600};
ce00a967 3601
791badbd 3602static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3603 struct cftype *cft)
8cdea7c0 3604{
182446d0 3605 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3606 struct page_counter *counter;
af36f906 3607
3e32cb2e 3608 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3609 case _MEM:
3e32cb2e
JW
3610 counter = &memcg->memory;
3611 break;
8c7c6e34 3612 case _MEMSWAP:
3e32cb2e
JW
3613 counter = &memcg->memsw;
3614 break;
510fc4e1 3615 case _KMEM:
3e32cb2e 3616 counter = &memcg->kmem;
510fc4e1 3617 break;
d55f90bf 3618 case _TCP:
0db15298 3619 counter = &memcg->tcpmem;
d55f90bf 3620 break;
8c7c6e34
KH
3621 default:
3622 BUG();
8c7c6e34 3623 }
3e32cb2e
JW
3624
3625 switch (MEMFILE_ATTR(cft->private)) {
3626 case RES_USAGE:
3627 if (counter == &memcg->memory)
c12176d3 3628 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3629 if (counter == &memcg->memsw)
c12176d3 3630 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3631 return (u64)page_counter_read(counter) * PAGE_SIZE;
3632 case RES_LIMIT:
bbec2e15 3633 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3634 case RES_MAX_USAGE:
3635 return (u64)counter->watermark * PAGE_SIZE;
3636 case RES_FAILCNT:
3637 return counter->failcnt;
3638 case RES_SOFT_LIMIT:
3639 return (u64)memcg->soft_limit * PAGE_SIZE;
3640 default:
3641 BUG();
3642 }
8cdea7c0 3643}
510fc4e1 3644
4a87e2a2 3645static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3646{
4a87e2a2 3647 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3648 struct mem_cgroup *mi;
3649 int node, cpu, i;
c350a99e
RG
3650
3651 for_each_online_cpu(cpu)
4a87e2a2 3652 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3653 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3654
3655 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3656 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3657 atomic_long_add(stat[i], &mi->vmstats[i]);
3658
3659 for_each_node(node) {
3660 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3661 struct mem_cgroup_per_node *pi;
3662
4a87e2a2 3663 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3664 stat[i] = 0;
3665
3666 for_each_online_cpu(cpu)
4a87e2a2 3667 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3668 stat[i] += per_cpu(
3669 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3670
3671 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3672 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3673 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3674 }
3675}
3676
bb65f89b
RG
3677static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3678{
3679 unsigned long events[NR_VM_EVENT_ITEMS];
3680 struct mem_cgroup *mi;
3681 int cpu, i;
3682
3683 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3684 events[i] = 0;
3685
3686 for_each_online_cpu(cpu)
3687 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3688 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3689 cpu);
bb65f89b
RG
3690
3691 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3692 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3693 atomic_long_add(events[i], &mi->vmevents[i]);
3694}
3695
84c07d11 3696#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3697static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3698{
bf4f0599 3699 struct obj_cgroup *objcg;
d6441637
VD
3700 int memcg_id;
3701
b313aeee
VD
3702 if (cgroup_memory_nokmem)
3703 return 0;
3704
2a4db7eb 3705 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3706 BUG_ON(memcg->kmem_state);
d6441637 3707
f3bb3043 3708 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3709 if (memcg_id < 0)
3710 return memcg_id;
d6441637 3711
bf4f0599
RG
3712 objcg = obj_cgroup_alloc();
3713 if (!objcg) {
3714 memcg_free_cache_id(memcg_id);
3715 return -ENOMEM;
3716 }
3717 objcg->memcg = memcg;
3718 rcu_assign_pointer(memcg->objcg, objcg);
3719
d648bcc7
RG
3720 static_branch_enable(&memcg_kmem_enabled_key);
3721
900a38f0 3722 memcg->kmemcg_id = memcg_id;
567e9ab2 3723 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3724
3725 return 0;
d6441637
VD
3726}
3727
8e0a8912
JW
3728static void memcg_offline_kmem(struct mem_cgroup *memcg)
3729{
3730 struct cgroup_subsys_state *css;
3731 struct mem_cgroup *parent, *child;
3732 int kmemcg_id;
3733
3734 if (memcg->kmem_state != KMEM_ONLINE)
3735 return;
9855609b 3736
8e0a8912
JW
3737 memcg->kmem_state = KMEM_ALLOCATED;
3738
8e0a8912
JW
3739 parent = parent_mem_cgroup(memcg);
3740 if (!parent)
3741 parent = root_mem_cgroup;
3742
bf4f0599 3743 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3744
3745 kmemcg_id = memcg->kmemcg_id;
3746 BUG_ON(kmemcg_id < 0);
3747
8e0a8912
JW
3748 /*
3749 * Change kmemcg_id of this cgroup and all its descendants to the
3750 * parent's id, and then move all entries from this cgroup's list_lrus
3751 * to ones of the parent. After we have finished, all list_lrus
3752 * corresponding to this cgroup are guaranteed to remain empty. The
3753 * ordering is imposed by list_lru_node->lock taken by
3754 * memcg_drain_all_list_lrus().
3755 */
3a06bb78 3756 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3757 css_for_each_descendant_pre(css, &memcg->css) {
3758 child = mem_cgroup_from_css(css);
3759 BUG_ON(child->kmemcg_id != kmemcg_id);
3760 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3761 }
3a06bb78
TH
3762 rcu_read_unlock();
3763
9bec5c35 3764 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3765
3766 memcg_free_cache_id(kmemcg_id);
3767}
3768
3769static void memcg_free_kmem(struct mem_cgroup *memcg)
3770{
0b8f73e1
JW
3771 /* css_alloc() failed, offlining didn't happen */
3772 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3773 memcg_offline_kmem(memcg);
8e0a8912 3774}
d6441637 3775#else
0b8f73e1 3776static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3777{
3778 return 0;
3779}
3780static void memcg_offline_kmem(struct mem_cgroup *memcg)
3781{
3782}
3783static void memcg_free_kmem(struct mem_cgroup *memcg)
3784{
3785}
84c07d11 3786#endif /* CONFIG_MEMCG_KMEM */
127424c8 3787
bbec2e15
RG
3788static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3789 unsigned long max)
d6441637 3790{
b313aeee 3791 int ret;
127424c8 3792
bbec2e15
RG
3793 mutex_lock(&memcg_max_mutex);
3794 ret = page_counter_set_max(&memcg->kmem, max);
3795 mutex_unlock(&memcg_max_mutex);
127424c8 3796 return ret;
d6441637 3797}
510fc4e1 3798
bbec2e15 3799static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3800{
3801 int ret;
3802
bbec2e15 3803 mutex_lock(&memcg_max_mutex);
d55f90bf 3804
bbec2e15 3805 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3806 if (ret)
3807 goto out;
3808
0db15298 3809 if (!memcg->tcpmem_active) {
d55f90bf
VD
3810 /*
3811 * The active flag needs to be written after the static_key
3812 * update. This is what guarantees that the socket activation
2d758073
JW
3813 * function is the last one to run. See mem_cgroup_sk_alloc()
3814 * for details, and note that we don't mark any socket as
3815 * belonging to this memcg until that flag is up.
d55f90bf
VD
3816 *
3817 * We need to do this, because static_keys will span multiple
3818 * sites, but we can't control their order. If we mark a socket
3819 * as accounted, but the accounting functions are not patched in
3820 * yet, we'll lose accounting.
3821 *
2d758073 3822 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3823 * because when this value change, the code to process it is not
3824 * patched in yet.
3825 */
3826 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3827 memcg->tcpmem_active = true;
d55f90bf
VD
3828 }
3829out:
bbec2e15 3830 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3831 return ret;
3832}
d55f90bf 3833
628f4235
KH
3834/*
3835 * The user of this function is...
3836 * RES_LIMIT.
3837 */
451af504
TH
3838static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3839 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3840{
451af504 3841 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3842 unsigned long nr_pages;
628f4235
KH
3843 int ret;
3844
451af504 3845 buf = strstrip(buf);
650c5e56 3846 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3847 if (ret)
3848 return ret;
af36f906 3849
3e32cb2e 3850 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3851 case RES_LIMIT:
4b3bde4c
BS
3852 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3853 ret = -EINVAL;
3854 break;
3855 }
3e32cb2e
JW
3856 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3857 case _MEM:
bbec2e15 3858 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3859 break;
3e32cb2e 3860 case _MEMSWAP:
bbec2e15 3861 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3862 break;
3e32cb2e 3863 case _KMEM:
0158115f
MH
3864 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3865 "Please report your usecase to linux-mm@kvack.org if you "
3866 "depend on this functionality.\n");
bbec2e15 3867 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3868 break;
d55f90bf 3869 case _TCP:
bbec2e15 3870 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3871 break;
3e32cb2e 3872 }
296c81d8 3873 break;
3e32cb2e
JW
3874 case RES_SOFT_LIMIT:
3875 memcg->soft_limit = nr_pages;
3876 ret = 0;
628f4235
KH
3877 break;
3878 }
451af504 3879 return ret ?: nbytes;
8cdea7c0
BS
3880}
3881
6770c64e
TH
3882static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3883 size_t nbytes, loff_t off)
c84872e1 3884{
6770c64e 3885 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3886 struct page_counter *counter;
c84872e1 3887
3e32cb2e
JW
3888 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3889 case _MEM:
3890 counter = &memcg->memory;
3891 break;
3892 case _MEMSWAP:
3893 counter = &memcg->memsw;
3894 break;
3895 case _KMEM:
3896 counter = &memcg->kmem;
3897 break;
d55f90bf 3898 case _TCP:
0db15298 3899 counter = &memcg->tcpmem;
d55f90bf 3900 break;
3e32cb2e
JW
3901 default:
3902 BUG();
3903 }
af36f906 3904
3e32cb2e 3905 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3906 case RES_MAX_USAGE:
3e32cb2e 3907 page_counter_reset_watermark(counter);
29f2a4da
PE
3908 break;
3909 case RES_FAILCNT:
3e32cb2e 3910 counter->failcnt = 0;
29f2a4da 3911 break;
3e32cb2e
JW
3912 default:
3913 BUG();
29f2a4da 3914 }
f64c3f54 3915
6770c64e 3916 return nbytes;
c84872e1
PE
3917}
3918
182446d0 3919static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3920 struct cftype *cft)
3921{
182446d0 3922 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3923}
3924
02491447 3925#ifdef CONFIG_MMU
182446d0 3926static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3927 struct cftype *cft, u64 val)
3928{
182446d0 3929 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3930
1dfab5ab 3931 if (val & ~MOVE_MASK)
7dc74be0 3932 return -EINVAL;
ee5e8472 3933
7dc74be0 3934 /*
ee5e8472
GC
3935 * No kind of locking is needed in here, because ->can_attach() will
3936 * check this value once in the beginning of the process, and then carry
3937 * on with stale data. This means that changes to this value will only
3938 * affect task migrations starting after the change.
7dc74be0 3939 */
c0ff4b85 3940 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3941 return 0;
3942}
02491447 3943#else
182446d0 3944static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3945 struct cftype *cft, u64 val)
3946{
3947 return -ENOSYS;
3948}
3949#endif
7dc74be0 3950
406eb0c9 3951#ifdef CONFIG_NUMA
113b7dfd
JW
3952
3953#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3954#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3955#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3956
3957static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3958 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3959{
867e5e1d 3960 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3961 unsigned long nr = 0;
3962 enum lru_list lru;
3963
3964 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3965
3966 for_each_lru(lru) {
3967 if (!(BIT(lru) & lru_mask))
3968 continue;
dd8657b6
SB
3969 if (tree)
3970 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3971 else
3972 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3973 }
3974 return nr;
3975}
3976
3977static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3978 unsigned int lru_mask,
3979 bool tree)
113b7dfd
JW
3980{
3981 unsigned long nr = 0;
3982 enum lru_list lru;
3983
3984 for_each_lru(lru) {
3985 if (!(BIT(lru) & lru_mask))
3986 continue;
dd8657b6
SB
3987 if (tree)
3988 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3989 else
3990 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3991 }
3992 return nr;
3993}
3994
2da8ca82 3995static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3996{
25485de6
GT
3997 struct numa_stat {
3998 const char *name;
3999 unsigned int lru_mask;
4000 };
4001
4002 static const struct numa_stat stats[] = {
4003 { "total", LRU_ALL },
4004 { "file", LRU_ALL_FILE },
4005 { "anon", LRU_ALL_ANON },
4006 { "unevictable", BIT(LRU_UNEVICTABLE) },
4007 };
4008 const struct numa_stat *stat;
406eb0c9 4009 int nid;
aa9694bb 4010 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4011
25485de6 4012 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4013 seq_printf(m, "%s=%lu", stat->name,
4014 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4015 false));
4016 for_each_node_state(nid, N_MEMORY)
4017 seq_printf(m, " N%d=%lu", nid,
4018 mem_cgroup_node_nr_lru_pages(memcg, nid,
4019 stat->lru_mask, false));
25485de6 4020 seq_putc(m, '\n');
406eb0c9 4021 }
406eb0c9 4022
071aee13 4023 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4024
4025 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4026 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4027 true));
4028 for_each_node_state(nid, N_MEMORY)
4029 seq_printf(m, " N%d=%lu", nid,
4030 mem_cgroup_node_nr_lru_pages(memcg, nid,
4031 stat->lru_mask, true));
071aee13 4032 seq_putc(m, '\n');
406eb0c9 4033 }
406eb0c9 4034
406eb0c9
YH
4035 return 0;
4036}
4037#endif /* CONFIG_NUMA */
4038
c8713d0b 4039static const unsigned int memcg1_stats[] = {
0d1c2072 4040 NR_FILE_PAGES,
be5d0a74 4041 NR_ANON_MAPPED,
468c3982
JW
4042#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4043 NR_ANON_THPS,
4044#endif
c8713d0b
JW
4045 NR_SHMEM,
4046 NR_FILE_MAPPED,
4047 NR_FILE_DIRTY,
4048 NR_WRITEBACK,
4049 MEMCG_SWAP,
4050};
4051
4052static const char *const memcg1_stat_names[] = {
4053 "cache",
4054 "rss",
468c3982 4055#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4056 "rss_huge",
468c3982 4057#endif
c8713d0b
JW
4058 "shmem",
4059 "mapped_file",
4060 "dirty",
4061 "writeback",
4062 "swap",
4063};
4064
df0e53d0 4065/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4066static const unsigned int memcg1_events[] = {
df0e53d0
JW
4067 PGPGIN,
4068 PGPGOUT,
4069 PGFAULT,
4070 PGMAJFAULT,
4071};
4072
2da8ca82 4073static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4074{
aa9694bb 4075 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4076 unsigned long memory, memsw;
af7c4b0e
JW
4077 struct mem_cgroup *mi;
4078 unsigned int i;
406eb0c9 4079
71cd3113 4080 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4081
71cd3113 4082 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4083 unsigned long nr;
4084
71cd3113 4085 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4086 continue;
468c3982 4087 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4088 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4089 }
7b854121 4090
df0e53d0 4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4092 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4093 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4096 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4097 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4098 PAGE_SIZE);
af7c4b0e 4099
14067bb3 4100 /* Hierarchical information */
3e32cb2e
JW
4101 memory = memsw = PAGE_COUNTER_MAX;
4102 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4103 memory = min(memory, READ_ONCE(mi->memory.max));
4104 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4105 }
3e32cb2e
JW
4106 seq_printf(m, "hierarchical_memory_limit %llu\n",
4107 (u64)memory * PAGE_SIZE);
7941d214 4108 if (do_memsw_account())
3e32cb2e
JW
4109 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110 (u64)memsw * PAGE_SIZE);
7f016ee8 4111
8de7ecc6 4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4113 unsigned long nr;
4114
71cd3113 4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4116 continue;
7de2e9f1 4117 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4118 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4119 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4120 }
4121
8de7ecc6 4122 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4123 seq_printf(m, "total_%s %llu\n",
4124 vm_event_name(memcg1_events[i]),
dd923990 4125 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4126
8de7ecc6 4127 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4128 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4129 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4130 PAGE_SIZE);
14067bb3 4131
7f016ee8 4132#ifdef CONFIG_DEBUG_VM
7f016ee8 4133 {
ef8f2327
MG
4134 pg_data_t *pgdat;
4135 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4136 unsigned long anon_cost = 0;
4137 unsigned long file_cost = 0;
7f016ee8 4138
ef8f2327
MG
4139 for_each_online_pgdat(pgdat) {
4140 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4141
1431d4d1
JW
4142 anon_cost += mz->lruvec.anon_cost;
4143 file_cost += mz->lruvec.file_cost;
ef8f2327 4144 }
1431d4d1
JW
4145 seq_printf(m, "anon_cost %lu\n", anon_cost);
4146 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4147 }
4148#endif
4149
d2ceb9b7
KH
4150 return 0;
4151}
4152
182446d0
TH
4153static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4154 struct cftype *cft)
a7885eb8 4155{
182446d0 4156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4157
1f4c025b 4158 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4159}
4160
182446d0
TH
4161static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4162 struct cftype *cft, u64 val)
a7885eb8 4163{
182446d0 4164 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4165
3dae7fec 4166 if (val > 100)
a7885eb8
KM
4167 return -EINVAL;
4168
14208b0e 4169 if (css->parent)
3dae7fec
JW
4170 memcg->swappiness = val;
4171 else
4172 vm_swappiness = val;
068b38c1 4173
a7885eb8
KM
4174 return 0;
4175}
4176
2e72b634
KS
4177static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4178{
4179 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4180 unsigned long usage;
2e72b634
KS
4181 int i;
4182
4183 rcu_read_lock();
4184 if (!swap)
2c488db2 4185 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4186 else
2c488db2 4187 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4188
4189 if (!t)
4190 goto unlock;
4191
ce00a967 4192 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4193
4194 /*
748dad36 4195 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4196 * If it's not true, a threshold was crossed after last
4197 * call of __mem_cgroup_threshold().
4198 */
5407a562 4199 i = t->current_threshold;
2e72b634
KS
4200
4201 /*
4202 * Iterate backward over array of thresholds starting from
4203 * current_threshold and check if a threshold is crossed.
4204 * If none of thresholds below usage is crossed, we read
4205 * only one element of the array here.
4206 */
4207 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4208 eventfd_signal(t->entries[i].eventfd, 1);
4209
4210 /* i = current_threshold + 1 */
4211 i++;
4212
4213 /*
4214 * Iterate forward over array of thresholds starting from
4215 * current_threshold+1 and check if a threshold is crossed.
4216 * If none of thresholds above usage is crossed, we read
4217 * only one element of the array here.
4218 */
4219 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4220 eventfd_signal(t->entries[i].eventfd, 1);
4221
4222 /* Update current_threshold */
5407a562 4223 t->current_threshold = i - 1;
2e72b634
KS
4224unlock:
4225 rcu_read_unlock();
4226}
4227
4228static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4229{
ad4ca5f4
KS
4230 while (memcg) {
4231 __mem_cgroup_threshold(memcg, false);
7941d214 4232 if (do_memsw_account())
ad4ca5f4
KS
4233 __mem_cgroup_threshold(memcg, true);
4234
4235 memcg = parent_mem_cgroup(memcg);
4236 }
2e72b634
KS
4237}
4238
4239static int compare_thresholds(const void *a, const void *b)
4240{
4241 const struct mem_cgroup_threshold *_a = a;
4242 const struct mem_cgroup_threshold *_b = b;
4243
2bff24a3
GT
4244 if (_a->threshold > _b->threshold)
4245 return 1;
4246
4247 if (_a->threshold < _b->threshold)
4248 return -1;
4249
4250 return 0;
2e72b634
KS
4251}
4252
c0ff4b85 4253static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4254{
4255 struct mem_cgroup_eventfd_list *ev;
4256
2bcf2e92
MH
4257 spin_lock(&memcg_oom_lock);
4258
c0ff4b85 4259 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4260 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4261
4262 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4263 return 0;
4264}
4265
c0ff4b85 4266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4267{
7d74b06f
KH
4268 struct mem_cgroup *iter;
4269
c0ff4b85 4270 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4271 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4272}
4273
59b6f873 4274static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4275 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4276{
2c488db2
KS
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4279 unsigned long threshold;
4280 unsigned long usage;
2c488db2 4281 int i, size, ret;
2e72b634 4282
650c5e56 4283 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4284 if (ret)
4285 return ret;
4286
4287 mutex_lock(&memcg->thresholds_lock);
2c488db2 4288
05b84301 4289 if (type == _MEM) {
2c488db2 4290 thresholds = &memcg->thresholds;
ce00a967 4291 usage = mem_cgroup_usage(memcg, false);
05b84301 4292 } else if (type == _MEMSWAP) {
2c488db2 4293 thresholds = &memcg->memsw_thresholds;
ce00a967 4294 usage = mem_cgroup_usage(memcg, true);
05b84301 4295 } else
2e72b634
KS
4296 BUG();
4297
2e72b634 4298 /* Check if a threshold crossed before adding a new one */
2c488db2 4299 if (thresholds->primary)
2e72b634
KS
4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
2c488db2 4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4303
4304 /* Allocate memory for new array of thresholds */
67b8046f 4305 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4306 if (!new) {
2e72b634
KS
4307 ret = -ENOMEM;
4308 goto unlock;
4309 }
2c488db2 4310 new->size = size;
2e72b634
KS
4311
4312 /* Copy thresholds (if any) to new array */
e90342e6
GS
4313 if (thresholds->primary)
4314 memcpy(new->entries, thresholds->primary->entries,
4315 flex_array_size(new, entries, size - 1));
2c488db2 4316
2e72b634 4317 /* Add new threshold */
2c488db2
KS
4318 new->entries[size - 1].eventfd = eventfd;
4319 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4320
4321 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4322 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4323 compare_thresholds, NULL);
4324
4325 /* Find current threshold */
2c488db2 4326 new->current_threshold = -1;
2e72b634 4327 for (i = 0; i < size; i++) {
748dad36 4328 if (new->entries[i].threshold <= usage) {
2e72b634 4329 /*
2c488db2
KS
4330 * new->current_threshold will not be used until
4331 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4332 * it here.
4333 */
2c488db2 4334 ++new->current_threshold;
748dad36
SZ
4335 } else
4336 break;
2e72b634
KS
4337 }
4338
2c488db2
KS
4339 /* Free old spare buffer and save old primary buffer as spare */
4340 kfree(thresholds->spare);
4341 thresholds->spare = thresholds->primary;
4342
4343 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4344
907860ed 4345 /* To be sure that nobody uses thresholds */
2e72b634
KS
4346 synchronize_rcu();
4347
2e72b634
KS
4348unlock:
4349 mutex_unlock(&memcg->thresholds_lock);
4350
4351 return ret;
4352}
4353
59b6f873 4354static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4355 struct eventfd_ctx *eventfd, const char *args)
4356{
59b6f873 4357 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4358}
4359
59b6f873 4360static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4361 struct eventfd_ctx *eventfd, const char *args)
4362{
59b6f873 4363 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4364}
4365
59b6f873 4366static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4367 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4368{
2c488db2
KS
4369 struct mem_cgroup_thresholds *thresholds;
4370 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4371 unsigned long usage;
7d36665a 4372 int i, j, size, entries;
2e72b634
KS
4373
4374 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4375
4376 if (type == _MEM) {
2c488db2 4377 thresholds = &memcg->thresholds;
ce00a967 4378 usage = mem_cgroup_usage(memcg, false);
05b84301 4379 } else if (type == _MEMSWAP) {
2c488db2 4380 thresholds = &memcg->memsw_thresholds;
ce00a967 4381 usage = mem_cgroup_usage(memcg, true);
05b84301 4382 } else
2e72b634
KS
4383 BUG();
4384
371528ca
AV
4385 if (!thresholds->primary)
4386 goto unlock;
4387
2e72b634
KS
4388 /* Check if a threshold crossed before removing */
4389 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4390
4391 /* Calculate new number of threshold */
7d36665a 4392 size = entries = 0;
2c488db2
KS
4393 for (i = 0; i < thresholds->primary->size; i++) {
4394 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4395 size++;
7d36665a
CX
4396 else
4397 entries++;
2e72b634
KS
4398 }
4399
2c488db2 4400 new = thresholds->spare;
907860ed 4401
7d36665a
CX
4402 /* If no items related to eventfd have been cleared, nothing to do */
4403 if (!entries)
4404 goto unlock;
4405
2e72b634
KS
4406 /* Set thresholds array to NULL if we don't have thresholds */
4407 if (!size) {
2c488db2
KS
4408 kfree(new);
4409 new = NULL;
907860ed 4410 goto swap_buffers;
2e72b634
KS
4411 }
4412
2c488db2 4413 new->size = size;
2e72b634
KS
4414
4415 /* Copy thresholds and find current threshold */
2c488db2
KS
4416 new->current_threshold = -1;
4417 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4418 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4419 continue;
4420
2c488db2 4421 new->entries[j] = thresholds->primary->entries[i];
748dad36 4422 if (new->entries[j].threshold <= usage) {
2e72b634 4423 /*
2c488db2 4424 * new->current_threshold will not be used
2e72b634
KS
4425 * until rcu_assign_pointer(), so it's safe to increment
4426 * it here.
4427 */
2c488db2 4428 ++new->current_threshold;
2e72b634
KS
4429 }
4430 j++;
4431 }
4432
907860ed 4433swap_buffers:
2c488db2
KS
4434 /* Swap primary and spare array */
4435 thresholds->spare = thresholds->primary;
8c757763 4436
2c488db2 4437 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4438
907860ed 4439 /* To be sure that nobody uses thresholds */
2e72b634 4440 synchronize_rcu();
6611d8d7
MC
4441
4442 /* If all events are unregistered, free the spare array */
4443 if (!new) {
4444 kfree(thresholds->spare);
4445 thresholds->spare = NULL;
4446 }
371528ca 4447unlock:
2e72b634 4448 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4449}
c1e862c1 4450
59b6f873 4451static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4452 struct eventfd_ctx *eventfd)
4453{
59b6f873 4454 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4455}
4456
59b6f873 4457static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4458 struct eventfd_ctx *eventfd)
4459{
59b6f873 4460 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4461}
4462
59b6f873 4463static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4464 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4465{
9490ff27 4466 struct mem_cgroup_eventfd_list *event;
9490ff27 4467
9490ff27
KH
4468 event = kmalloc(sizeof(*event), GFP_KERNEL);
4469 if (!event)
4470 return -ENOMEM;
4471
1af8efe9 4472 spin_lock(&memcg_oom_lock);
9490ff27
KH
4473
4474 event->eventfd = eventfd;
4475 list_add(&event->list, &memcg->oom_notify);
4476
4477 /* already in OOM ? */
c2b42d3c 4478 if (memcg->under_oom)
9490ff27 4479 eventfd_signal(eventfd, 1);
1af8efe9 4480 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4481
4482 return 0;
4483}
4484
59b6f873 4485static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4486 struct eventfd_ctx *eventfd)
9490ff27 4487{
9490ff27 4488 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4489
1af8efe9 4490 spin_lock(&memcg_oom_lock);
9490ff27 4491
c0ff4b85 4492 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4493 if (ev->eventfd == eventfd) {
4494 list_del(&ev->list);
4495 kfree(ev);
4496 }
4497 }
4498
1af8efe9 4499 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4500}
4501
2da8ca82 4502static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4503{
aa9694bb 4504 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4505
791badbd 4506 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4507 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4508 seq_printf(sf, "oom_kill %lu\n",
4509 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4510 return 0;
4511}
4512
182446d0 4513static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4514 struct cftype *cft, u64 val)
4515{
182446d0 4516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4517
4518 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4519 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4520 return -EINVAL;
4521
c0ff4b85 4522 memcg->oom_kill_disable = val;
4d845ebf 4523 if (!val)
c0ff4b85 4524 memcg_oom_recover(memcg);
3dae7fec 4525
3c11ecf4
KH
4526 return 0;
4527}
4528
52ebea74
TH
4529#ifdef CONFIG_CGROUP_WRITEBACK
4530
3a8e9ac8
TH
4531#include <trace/events/writeback.h>
4532
841710aa
TH
4533static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4534{
4535 return wb_domain_init(&memcg->cgwb_domain, gfp);
4536}
4537
4538static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4539{
4540 wb_domain_exit(&memcg->cgwb_domain);
4541}
4542
2529bb3a
TH
4543static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4544{
4545 wb_domain_size_changed(&memcg->cgwb_domain);
4546}
4547
841710aa
TH
4548struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4549{
4550 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4551
4552 if (!memcg->css.parent)
4553 return NULL;
4554
4555 return &memcg->cgwb_domain;
4556}
4557
0b3d6e6f
GT
4558/*
4559 * idx can be of type enum memcg_stat_item or node_stat_item.
4560 * Keep in sync with memcg_exact_page().
4561 */
4562static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4563{
871789d4 4564 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4565 int cpu;
4566
4567 for_each_online_cpu(cpu)
871789d4 4568 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4569 if (x < 0)
4570 x = 0;
4571 return x;
4572}
4573
c2aa723a
TH
4574/**
4575 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4576 * @wb: bdi_writeback in question
c5edf9cd
TH
4577 * @pfilepages: out parameter for number of file pages
4578 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4579 * @pdirty: out parameter for number of dirty pages
4580 * @pwriteback: out parameter for number of pages under writeback
4581 *
c5edf9cd
TH
4582 * Determine the numbers of file, headroom, dirty, and writeback pages in
4583 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4584 * is a bit more involved.
c2aa723a 4585 *
c5edf9cd
TH
4586 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4587 * headroom is calculated as the lowest headroom of itself and the
4588 * ancestors. Note that this doesn't consider the actual amount of
4589 * available memory in the system. The caller should further cap
4590 * *@pheadroom accordingly.
c2aa723a 4591 */
c5edf9cd
TH
4592void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4593 unsigned long *pheadroom, unsigned long *pdirty,
4594 unsigned long *pwriteback)
c2aa723a
TH
4595{
4596 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4597 struct mem_cgroup *parent;
c2aa723a 4598
0b3d6e6f 4599 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4600
0b3d6e6f 4601 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4602 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4603 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4604 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4605
c2aa723a 4606 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4607 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4608 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4609 unsigned long used = page_counter_read(&memcg->memory);
4610
c5edf9cd 4611 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4612 memcg = parent;
4613 }
c2aa723a
TH
4614}
4615
97b27821
TH
4616/*
4617 * Foreign dirty flushing
4618 *
4619 * There's an inherent mismatch between memcg and writeback. The former
4620 * trackes ownership per-page while the latter per-inode. This was a
4621 * deliberate design decision because honoring per-page ownership in the
4622 * writeback path is complicated, may lead to higher CPU and IO overheads
4623 * and deemed unnecessary given that write-sharing an inode across
4624 * different cgroups isn't a common use-case.
4625 *
4626 * Combined with inode majority-writer ownership switching, this works well
4627 * enough in most cases but there are some pathological cases. For
4628 * example, let's say there are two cgroups A and B which keep writing to
4629 * different but confined parts of the same inode. B owns the inode and
4630 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4631 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4632 * triggering background writeback. A will be slowed down without a way to
4633 * make writeback of the dirty pages happen.
4634 *
4635 * Conditions like the above can lead to a cgroup getting repatedly and
4636 * severely throttled after making some progress after each
4637 * dirty_expire_interval while the underyling IO device is almost
4638 * completely idle.
4639 *
4640 * Solving this problem completely requires matching the ownership tracking
4641 * granularities between memcg and writeback in either direction. However,
4642 * the more egregious behaviors can be avoided by simply remembering the
4643 * most recent foreign dirtying events and initiating remote flushes on
4644 * them when local writeback isn't enough to keep the memory clean enough.
4645 *
4646 * The following two functions implement such mechanism. When a foreign
4647 * page - a page whose memcg and writeback ownerships don't match - is
4648 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4649 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4650 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4651 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4652 * foreign bdi_writebacks which haven't expired. Both the numbers of
4653 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4654 * limited to MEMCG_CGWB_FRN_CNT.
4655 *
4656 * The mechanism only remembers IDs and doesn't hold any object references.
4657 * As being wrong occasionally doesn't matter, updates and accesses to the
4658 * records are lockless and racy.
4659 */
4660void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4661 struct bdi_writeback *wb)
4662{
bcfe06bf 4663 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4664 struct memcg_cgwb_frn *frn;
4665 u64 now = get_jiffies_64();
4666 u64 oldest_at = now;
4667 int oldest = -1;
4668 int i;
4669
3a8e9ac8
TH
4670 trace_track_foreign_dirty(page, wb);
4671
97b27821
TH
4672 /*
4673 * Pick the slot to use. If there is already a slot for @wb, keep
4674 * using it. If not replace the oldest one which isn't being
4675 * written out.
4676 */
4677 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4678 frn = &memcg->cgwb_frn[i];
4679 if (frn->bdi_id == wb->bdi->id &&
4680 frn->memcg_id == wb->memcg_css->id)
4681 break;
4682 if (time_before64(frn->at, oldest_at) &&
4683 atomic_read(&frn->done.cnt) == 1) {
4684 oldest = i;
4685 oldest_at = frn->at;
4686 }
4687 }
4688
4689 if (i < MEMCG_CGWB_FRN_CNT) {
4690 /*
4691 * Re-using an existing one. Update timestamp lazily to
4692 * avoid making the cacheline hot. We want them to be
4693 * reasonably up-to-date and significantly shorter than
4694 * dirty_expire_interval as that's what expires the record.
4695 * Use the shorter of 1s and dirty_expire_interval / 8.
4696 */
4697 unsigned long update_intv =
4698 min_t(unsigned long, HZ,
4699 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4700
4701 if (time_before64(frn->at, now - update_intv))
4702 frn->at = now;
4703 } else if (oldest >= 0) {
4704 /* replace the oldest free one */
4705 frn = &memcg->cgwb_frn[oldest];
4706 frn->bdi_id = wb->bdi->id;
4707 frn->memcg_id = wb->memcg_css->id;
4708 frn->at = now;
4709 }
4710}
4711
4712/* issue foreign writeback flushes for recorded foreign dirtying events */
4713void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4714{
4715 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4716 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4717 u64 now = jiffies_64;
4718 int i;
4719
4720 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4721 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4722
4723 /*
4724 * If the record is older than dirty_expire_interval,
4725 * writeback on it has already started. No need to kick it
4726 * off again. Also, don't start a new one if there's
4727 * already one in flight.
4728 */
4729 if (time_after64(frn->at, now - intv) &&
4730 atomic_read(&frn->done.cnt) == 1) {
4731 frn->at = 0;
3a8e9ac8 4732 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4733 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4734 WB_REASON_FOREIGN_FLUSH,
4735 &frn->done);
4736 }
4737 }
4738}
4739
841710aa
TH
4740#else /* CONFIG_CGROUP_WRITEBACK */
4741
4742static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4743{
4744 return 0;
4745}
4746
4747static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4748{
4749}
4750
2529bb3a
TH
4751static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4752{
4753}
4754
52ebea74
TH
4755#endif /* CONFIG_CGROUP_WRITEBACK */
4756
3bc942f3
TH
4757/*
4758 * DO NOT USE IN NEW FILES.
4759 *
4760 * "cgroup.event_control" implementation.
4761 *
4762 * This is way over-engineered. It tries to support fully configurable
4763 * events for each user. Such level of flexibility is completely
4764 * unnecessary especially in the light of the planned unified hierarchy.
4765 *
4766 * Please deprecate this and replace with something simpler if at all
4767 * possible.
4768 */
4769
79bd9814
TH
4770/*
4771 * Unregister event and free resources.
4772 *
4773 * Gets called from workqueue.
4774 */
3bc942f3 4775static void memcg_event_remove(struct work_struct *work)
79bd9814 4776{
3bc942f3
TH
4777 struct mem_cgroup_event *event =
4778 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4779 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4780
4781 remove_wait_queue(event->wqh, &event->wait);
4782
59b6f873 4783 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4784
4785 /* Notify userspace the event is going away. */
4786 eventfd_signal(event->eventfd, 1);
4787
4788 eventfd_ctx_put(event->eventfd);
4789 kfree(event);
59b6f873 4790 css_put(&memcg->css);
79bd9814
TH
4791}
4792
4793/*
a9a08845 4794 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4795 *
4796 * Called with wqh->lock held and interrupts disabled.
4797 */
ac6424b9 4798static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4799 int sync, void *key)
79bd9814 4800{
3bc942f3
TH
4801 struct mem_cgroup_event *event =
4802 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4803 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4804 __poll_t flags = key_to_poll(key);
79bd9814 4805
a9a08845 4806 if (flags & EPOLLHUP) {
79bd9814
TH
4807 /*
4808 * If the event has been detached at cgroup removal, we
4809 * can simply return knowing the other side will cleanup
4810 * for us.
4811 *
4812 * We can't race against event freeing since the other
4813 * side will require wqh->lock via remove_wait_queue(),
4814 * which we hold.
4815 */
fba94807 4816 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4817 if (!list_empty(&event->list)) {
4818 list_del_init(&event->list);
4819 /*
4820 * We are in atomic context, but cgroup_event_remove()
4821 * may sleep, so we have to call it in workqueue.
4822 */
4823 schedule_work(&event->remove);
4824 }
fba94807 4825 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4826 }
4827
4828 return 0;
4829}
4830
3bc942f3 4831static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4832 wait_queue_head_t *wqh, poll_table *pt)
4833{
3bc942f3
TH
4834 struct mem_cgroup_event *event =
4835 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4836
4837 event->wqh = wqh;
4838 add_wait_queue(wqh, &event->wait);
4839}
4840
4841/*
3bc942f3
TH
4842 * DO NOT USE IN NEW FILES.
4843 *
79bd9814
TH
4844 * Parse input and register new cgroup event handler.
4845 *
4846 * Input must be in format '<event_fd> <control_fd> <args>'.
4847 * Interpretation of args is defined by control file implementation.
4848 */
451af504
TH
4849static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4850 char *buf, size_t nbytes, loff_t off)
79bd9814 4851{
451af504 4852 struct cgroup_subsys_state *css = of_css(of);
fba94807 4853 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4854 struct mem_cgroup_event *event;
79bd9814
TH
4855 struct cgroup_subsys_state *cfile_css;
4856 unsigned int efd, cfd;
4857 struct fd efile;
4858 struct fd cfile;
fba94807 4859 const char *name;
79bd9814
TH
4860 char *endp;
4861 int ret;
4862
451af504
TH
4863 buf = strstrip(buf);
4864
4865 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4866 if (*endp != ' ')
4867 return -EINVAL;
451af504 4868 buf = endp + 1;
79bd9814 4869
451af504 4870 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4871 if ((*endp != ' ') && (*endp != '\0'))
4872 return -EINVAL;
451af504 4873 buf = endp + 1;
79bd9814
TH
4874
4875 event = kzalloc(sizeof(*event), GFP_KERNEL);
4876 if (!event)
4877 return -ENOMEM;
4878
59b6f873 4879 event->memcg = memcg;
79bd9814 4880 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4881 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4882 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4883 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4884
4885 efile = fdget(efd);
4886 if (!efile.file) {
4887 ret = -EBADF;
4888 goto out_kfree;
4889 }
4890
4891 event->eventfd = eventfd_ctx_fileget(efile.file);
4892 if (IS_ERR(event->eventfd)) {
4893 ret = PTR_ERR(event->eventfd);
4894 goto out_put_efile;
4895 }
4896
4897 cfile = fdget(cfd);
4898 if (!cfile.file) {
4899 ret = -EBADF;
4900 goto out_put_eventfd;
4901 }
4902
4903 /* the process need read permission on control file */
4904 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4905 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4906 if (ret < 0)
4907 goto out_put_cfile;
4908
fba94807
TH
4909 /*
4910 * Determine the event callbacks and set them in @event. This used
4911 * to be done via struct cftype but cgroup core no longer knows
4912 * about these events. The following is crude but the whole thing
4913 * is for compatibility anyway.
3bc942f3
TH
4914 *
4915 * DO NOT ADD NEW FILES.
fba94807 4916 */
b583043e 4917 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4918
4919 if (!strcmp(name, "memory.usage_in_bytes")) {
4920 event->register_event = mem_cgroup_usage_register_event;
4921 event->unregister_event = mem_cgroup_usage_unregister_event;
4922 } else if (!strcmp(name, "memory.oom_control")) {
4923 event->register_event = mem_cgroup_oom_register_event;
4924 event->unregister_event = mem_cgroup_oom_unregister_event;
4925 } else if (!strcmp(name, "memory.pressure_level")) {
4926 event->register_event = vmpressure_register_event;
4927 event->unregister_event = vmpressure_unregister_event;
4928 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4929 event->register_event = memsw_cgroup_usage_register_event;
4930 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4931 } else {
4932 ret = -EINVAL;
4933 goto out_put_cfile;
4934 }
4935
79bd9814 4936 /*
b5557c4c
TH
4937 * Verify @cfile should belong to @css. Also, remaining events are
4938 * automatically removed on cgroup destruction but the removal is
4939 * asynchronous, so take an extra ref on @css.
79bd9814 4940 */
b583043e 4941 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4942 &memory_cgrp_subsys);
79bd9814 4943 ret = -EINVAL;
5a17f543 4944 if (IS_ERR(cfile_css))
79bd9814 4945 goto out_put_cfile;
5a17f543
TH
4946 if (cfile_css != css) {
4947 css_put(cfile_css);
79bd9814 4948 goto out_put_cfile;
5a17f543 4949 }
79bd9814 4950
451af504 4951 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4952 if (ret)
4953 goto out_put_css;
4954
9965ed17 4955 vfs_poll(efile.file, &event->pt);
79bd9814 4956
fba94807
TH
4957 spin_lock(&memcg->event_list_lock);
4958 list_add(&event->list, &memcg->event_list);
4959 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4960
4961 fdput(cfile);
4962 fdput(efile);
4963
451af504 4964 return nbytes;
79bd9814
TH
4965
4966out_put_css:
b5557c4c 4967 css_put(css);
79bd9814
TH
4968out_put_cfile:
4969 fdput(cfile);
4970out_put_eventfd:
4971 eventfd_ctx_put(event->eventfd);
4972out_put_efile:
4973 fdput(efile);
4974out_kfree:
4975 kfree(event);
4976
4977 return ret;
4978}
4979
241994ed 4980static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4981 {
0eea1030 4982 .name = "usage_in_bytes",
8c7c6e34 4983 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4984 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4985 },
c84872e1
PE
4986 {
4987 .name = "max_usage_in_bytes",
8c7c6e34 4988 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4989 .write = mem_cgroup_reset,
791badbd 4990 .read_u64 = mem_cgroup_read_u64,
c84872e1 4991 },
8cdea7c0 4992 {
0eea1030 4993 .name = "limit_in_bytes",
8c7c6e34 4994 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4995 .write = mem_cgroup_write,
791badbd 4996 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4997 },
296c81d8
BS
4998 {
4999 .name = "soft_limit_in_bytes",
5000 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5001 .write = mem_cgroup_write,
791badbd 5002 .read_u64 = mem_cgroup_read_u64,
296c81d8 5003 },
8cdea7c0
BS
5004 {
5005 .name = "failcnt",
8c7c6e34 5006 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5007 .write = mem_cgroup_reset,
791badbd 5008 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5009 },
d2ceb9b7
KH
5010 {
5011 .name = "stat",
2da8ca82 5012 .seq_show = memcg_stat_show,
d2ceb9b7 5013 },
c1e862c1
KH
5014 {
5015 .name = "force_empty",
6770c64e 5016 .write = mem_cgroup_force_empty_write,
c1e862c1 5017 },
18f59ea7
BS
5018 {
5019 .name = "use_hierarchy",
5020 .write_u64 = mem_cgroup_hierarchy_write,
5021 .read_u64 = mem_cgroup_hierarchy_read,
5022 },
79bd9814 5023 {
3bc942f3 5024 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5025 .write = memcg_write_event_control,
7dbdb199 5026 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5027 },
a7885eb8
KM
5028 {
5029 .name = "swappiness",
5030 .read_u64 = mem_cgroup_swappiness_read,
5031 .write_u64 = mem_cgroup_swappiness_write,
5032 },
7dc74be0
DN
5033 {
5034 .name = "move_charge_at_immigrate",
5035 .read_u64 = mem_cgroup_move_charge_read,
5036 .write_u64 = mem_cgroup_move_charge_write,
5037 },
9490ff27
KH
5038 {
5039 .name = "oom_control",
2da8ca82 5040 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5041 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5042 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5043 },
70ddf637
AV
5044 {
5045 .name = "pressure_level",
70ddf637 5046 },
406eb0c9
YH
5047#ifdef CONFIG_NUMA
5048 {
5049 .name = "numa_stat",
2da8ca82 5050 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5051 },
5052#endif
510fc4e1
GC
5053 {
5054 .name = "kmem.limit_in_bytes",
5055 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5056 .write = mem_cgroup_write,
791badbd 5057 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5058 },
5059 {
5060 .name = "kmem.usage_in_bytes",
5061 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5062 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5063 },
5064 {
5065 .name = "kmem.failcnt",
5066 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5067 .write = mem_cgroup_reset,
791badbd 5068 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5069 },
5070 {
5071 .name = "kmem.max_usage_in_bytes",
5072 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5073 .write = mem_cgroup_reset,
791badbd 5074 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5075 },
a87425a3
YS
5076#if defined(CONFIG_MEMCG_KMEM) && \
5077 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5078 {
5079 .name = "kmem.slabinfo",
b047501c 5080 .seq_show = memcg_slab_show,
749c5415
GC
5081 },
5082#endif
d55f90bf
VD
5083 {
5084 .name = "kmem.tcp.limit_in_bytes",
5085 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5086 .write = mem_cgroup_write,
5087 .read_u64 = mem_cgroup_read_u64,
5088 },
5089 {
5090 .name = "kmem.tcp.usage_in_bytes",
5091 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5092 .read_u64 = mem_cgroup_read_u64,
5093 },
5094 {
5095 .name = "kmem.tcp.failcnt",
5096 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5097 .write = mem_cgroup_reset,
5098 .read_u64 = mem_cgroup_read_u64,
5099 },
5100 {
5101 .name = "kmem.tcp.max_usage_in_bytes",
5102 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5103 .write = mem_cgroup_reset,
5104 .read_u64 = mem_cgroup_read_u64,
5105 },
6bc10349 5106 { }, /* terminate */
af36f906 5107};
8c7c6e34 5108
73f576c0
JW
5109/*
5110 * Private memory cgroup IDR
5111 *
5112 * Swap-out records and page cache shadow entries need to store memcg
5113 * references in constrained space, so we maintain an ID space that is
5114 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5115 * memory-controlled cgroups to 64k.
5116 *
b8f2935f 5117 * However, there usually are many references to the offline CSS after
73f576c0
JW
5118 * the cgroup has been destroyed, such as page cache or reclaimable
5119 * slab objects, that don't need to hang on to the ID. We want to keep
5120 * those dead CSS from occupying IDs, or we might quickly exhaust the
5121 * relatively small ID space and prevent the creation of new cgroups
5122 * even when there are much fewer than 64k cgroups - possibly none.
5123 *
5124 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5125 * be freed and recycled when it's no longer needed, which is usually
5126 * when the CSS is offlined.
5127 *
5128 * The only exception to that are records of swapped out tmpfs/shmem
5129 * pages that need to be attributed to live ancestors on swapin. But
5130 * those references are manageable from userspace.
5131 */
5132
5133static DEFINE_IDR(mem_cgroup_idr);
5134
7e97de0b
KT
5135static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5136{
5137 if (memcg->id.id > 0) {
5138 idr_remove(&mem_cgroup_idr, memcg->id.id);
5139 memcg->id.id = 0;
5140 }
5141}
5142
c1514c0a
VF
5143static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5144 unsigned int n)
73f576c0 5145{
1c2d479a 5146 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5147}
5148
615d66c3 5149static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5150{
1c2d479a 5151 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5152 mem_cgroup_id_remove(memcg);
73f576c0
JW
5153
5154 /* Memcg ID pins CSS */
5155 css_put(&memcg->css);
5156 }
5157}
5158
615d66c3
VD
5159static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5160{
5161 mem_cgroup_id_put_many(memcg, 1);
5162}
5163
73f576c0
JW
5164/**
5165 * mem_cgroup_from_id - look up a memcg from a memcg id
5166 * @id: the memcg id to look up
5167 *
5168 * Caller must hold rcu_read_lock().
5169 */
5170struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5171{
5172 WARN_ON_ONCE(!rcu_read_lock_held());
5173 return idr_find(&mem_cgroup_idr, id);
5174}
5175
ef8f2327 5176static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5177{
5178 struct mem_cgroup_per_node *pn;
ef8f2327 5179 int tmp = node;
1ecaab2b
KH
5180 /*
5181 * This routine is called against possible nodes.
5182 * But it's BUG to call kmalloc() against offline node.
5183 *
5184 * TODO: this routine can waste much memory for nodes which will
5185 * never be onlined. It's better to use memory hotplug callback
5186 * function.
5187 */
41e3355d
KH
5188 if (!node_state(node, N_NORMAL_MEMORY))
5189 tmp = -1;
17295c88 5190 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5191 if (!pn)
5192 return 1;
1ecaab2b 5193
3e38e0aa
RG
5194 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5195 GFP_KERNEL_ACCOUNT);
815744d7
JW
5196 if (!pn->lruvec_stat_local) {
5197 kfree(pn);
5198 return 1;
5199 }
5200
f3344adf 5201 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct batched_lruvec_stat,
3e38e0aa 5202 GFP_KERNEL_ACCOUNT);
a983b5eb 5203 if (!pn->lruvec_stat_cpu) {
815744d7 5204 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5205 kfree(pn);
5206 return 1;
5207 }
5208
ef8f2327
MG
5209 lruvec_init(&pn->lruvec);
5210 pn->usage_in_excess = 0;
5211 pn->on_tree = false;
5212 pn->memcg = memcg;
5213
54f72fe0 5214 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5215 return 0;
5216}
5217
ef8f2327 5218static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5219{
00f3ca2c
JW
5220 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5221
4eaf431f
MH
5222 if (!pn)
5223 return;
5224
a983b5eb 5225 free_percpu(pn->lruvec_stat_cpu);
815744d7 5226 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5227 kfree(pn);
1ecaab2b
KH
5228}
5229
40e952f9 5230static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5231{
c8b2a36f 5232 int node;
59927fb9 5233
c8b2a36f 5234 for_each_node(node)
ef8f2327 5235 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5236 free_percpu(memcg->vmstats_percpu);
815744d7 5237 free_percpu(memcg->vmstats_local);
8ff69e2c 5238 kfree(memcg);
59927fb9 5239}
3afe36b1 5240
40e952f9
TE
5241static void mem_cgroup_free(struct mem_cgroup *memcg)
5242{
5243 memcg_wb_domain_exit(memcg);
7961eee3
SB
5244 /*
5245 * Flush percpu vmstats and vmevents to guarantee the value correctness
5246 * on parent's and all ancestor levels.
5247 */
4a87e2a2 5248 memcg_flush_percpu_vmstats(memcg);
7961eee3 5249 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5250 __mem_cgroup_free(memcg);
5251}
5252
0b8f73e1 5253static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5254{
d142e3e6 5255 struct mem_cgroup *memcg;
b9726c26 5256 unsigned int size;
6d12e2d8 5257 int node;
97b27821 5258 int __maybe_unused i;
11d67612 5259 long error = -ENOMEM;
8cdea7c0 5260
0b8f73e1
JW
5261 size = sizeof(struct mem_cgroup);
5262 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5263
5264 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5265 if (!memcg)
11d67612 5266 return ERR_PTR(error);
0b8f73e1 5267
73f576c0
JW
5268 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5269 1, MEM_CGROUP_ID_MAX,
5270 GFP_KERNEL);
11d67612
YS
5271 if (memcg->id.id < 0) {
5272 error = memcg->id.id;
73f576c0 5273 goto fail;
11d67612 5274 }
73f576c0 5275
3e38e0aa
RG
5276 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5277 GFP_KERNEL_ACCOUNT);
815744d7
JW
5278 if (!memcg->vmstats_local)
5279 goto fail;
5280
3e38e0aa
RG
5281 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5282 GFP_KERNEL_ACCOUNT);
871789d4 5283 if (!memcg->vmstats_percpu)
0b8f73e1 5284 goto fail;
78fb7466 5285
3ed28fa1 5286 for_each_node(node)
ef8f2327 5287 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5288 goto fail;
f64c3f54 5289
0b8f73e1
JW
5290 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5291 goto fail;
28dbc4b6 5292
f7e1cb6e 5293 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5294 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5295 mutex_init(&memcg->thresholds_lock);
5296 spin_lock_init(&memcg->move_lock);
70ddf637 5297 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5298 INIT_LIST_HEAD(&memcg->event_list);
5299 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5300 memcg->socket_pressure = jiffies;
84c07d11 5301#ifdef CONFIG_MEMCG_KMEM
900a38f0 5302 memcg->kmemcg_id = -1;
bf4f0599 5303 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5304#endif
52ebea74
TH
5305#ifdef CONFIG_CGROUP_WRITEBACK
5306 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5307 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5308 memcg->cgwb_frn[i].done =
5309 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5310#endif
5311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5312 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5313 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5314 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5315#endif
73f576c0 5316 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5317 return memcg;
5318fail:
7e97de0b 5319 mem_cgroup_id_remove(memcg);
40e952f9 5320 __mem_cgroup_free(memcg);
11d67612 5321 return ERR_PTR(error);
d142e3e6
GC
5322}
5323
0b8f73e1
JW
5324static struct cgroup_subsys_state * __ref
5325mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5326{
0b8f73e1 5327 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5328 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5329 long error = -ENOMEM;
d142e3e6 5330
b87d8cef 5331 old_memcg = set_active_memcg(parent);
0b8f73e1 5332 memcg = mem_cgroup_alloc();
b87d8cef 5333 set_active_memcg(old_memcg);
11d67612
YS
5334 if (IS_ERR(memcg))
5335 return ERR_CAST(memcg);
d142e3e6 5336
d1663a90 5337 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5338 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5339 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5340 if (parent) {
5341 memcg->swappiness = mem_cgroup_swappiness(parent);
5342 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5343
3e32cb2e 5344 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5345 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5346 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5347 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5348 } else {
bef8620c
RG
5349 page_counter_init(&memcg->memory, NULL);
5350 page_counter_init(&memcg->swap, NULL);
5351 page_counter_init(&memcg->kmem, NULL);
5352 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5353
0b8f73e1
JW
5354 root_mem_cgroup = memcg;
5355 return &memcg->css;
5356 }
5357
bef8620c 5358 /* The following stuff does not apply to the root */
b313aeee 5359 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5360 if (error)
5361 goto fail;
127424c8 5362
f7e1cb6e 5363 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5364 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5365
0b8f73e1
JW
5366 return &memcg->css;
5367fail:
7e97de0b 5368 mem_cgroup_id_remove(memcg);
0b8f73e1 5369 mem_cgroup_free(memcg);
11d67612 5370 return ERR_PTR(error);
0b8f73e1
JW
5371}
5372
73f576c0 5373static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5374{
58fa2a55
VD
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376
0a4465d3
KT
5377 /*
5378 * A memcg must be visible for memcg_expand_shrinker_maps()
5379 * by the time the maps are allocated. So, we allocate maps
5380 * here, when for_each_mem_cgroup() can't skip it.
5381 */
5382 if (memcg_alloc_shrinker_maps(memcg)) {
5383 mem_cgroup_id_remove(memcg);
5384 return -ENOMEM;
5385 }
5386
73f576c0 5387 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5388 refcount_set(&memcg->id.ref, 1);
73f576c0 5389 css_get(css);
2f7dd7a4 5390 return 0;
8cdea7c0
BS
5391}
5392
eb95419b 5393static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5394{
eb95419b 5395 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5396 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5397
5398 /*
5399 * Unregister events and notify userspace.
5400 * Notify userspace about cgroup removing only after rmdir of cgroup
5401 * directory to avoid race between userspace and kernelspace.
5402 */
fba94807
TH
5403 spin_lock(&memcg->event_list_lock);
5404 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5405 list_del_init(&event->list);
5406 schedule_work(&event->remove);
5407 }
fba94807 5408 spin_unlock(&memcg->event_list_lock);
ec64f515 5409
bf8d5d52 5410 page_counter_set_min(&memcg->memory, 0);
23067153 5411 page_counter_set_low(&memcg->memory, 0);
63677c74 5412
567e9ab2 5413 memcg_offline_kmem(memcg);
52ebea74 5414 wb_memcg_offline(memcg);
73f576c0 5415
591edfb1
RG
5416 drain_all_stock(memcg);
5417
73f576c0 5418 mem_cgroup_id_put(memcg);
df878fb0
KH
5419}
5420
6df38689
VD
5421static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5422{
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5424
5425 invalidate_reclaim_iterators(memcg);
5426}
5427
eb95419b 5428static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5429{
eb95419b 5430 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5431 int __maybe_unused i;
c268e994 5432
97b27821
TH
5433#ifdef CONFIG_CGROUP_WRITEBACK
5434 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5435 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5436#endif
f7e1cb6e 5437 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5438 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5439
0db15298 5440 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5441 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5442
0b8f73e1
JW
5443 vmpressure_cleanup(&memcg->vmpressure);
5444 cancel_work_sync(&memcg->high_work);
5445 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5446 memcg_free_shrinker_maps(memcg);
d886f4e4 5447 memcg_free_kmem(memcg);
0b8f73e1 5448 mem_cgroup_free(memcg);
8cdea7c0
BS
5449}
5450
1ced953b
TH
5451/**
5452 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5453 * @css: the target css
5454 *
5455 * Reset the states of the mem_cgroup associated with @css. This is
5456 * invoked when the userland requests disabling on the default hierarchy
5457 * but the memcg is pinned through dependency. The memcg should stop
5458 * applying policies and should revert to the vanilla state as it may be
5459 * made visible again.
5460 *
5461 * The current implementation only resets the essential configurations.
5462 * This needs to be expanded to cover all the visible parts.
5463 */
5464static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5465{
5466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5467
bbec2e15
RG
5468 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5469 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5470 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5471 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5472 page_counter_set_min(&memcg->memory, 0);
23067153 5473 page_counter_set_low(&memcg->memory, 0);
d1663a90 5474 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5475 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5476 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5477 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5478}
5479
02491447 5480#ifdef CONFIG_MMU
7dc74be0 5481/* Handlers for move charge at task migration. */
854ffa8d 5482static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5483{
05b84301 5484 int ret;
9476db97 5485
d0164adc
MG
5486 /* Try a single bulk charge without reclaim first, kswapd may wake */
5487 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5488 if (!ret) {
854ffa8d 5489 mc.precharge += count;
854ffa8d
DN
5490 return ret;
5491 }
9476db97 5492
3674534b 5493 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5494 while (count--) {
3674534b 5495 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5496 if (ret)
38c5d72f 5497 return ret;
854ffa8d 5498 mc.precharge++;
9476db97 5499 cond_resched();
854ffa8d 5500 }
9476db97 5501 return 0;
4ffef5fe
DN
5502}
5503
4ffef5fe
DN
5504union mc_target {
5505 struct page *page;
02491447 5506 swp_entry_t ent;
4ffef5fe
DN
5507};
5508
4ffef5fe 5509enum mc_target_type {
8d32ff84 5510 MC_TARGET_NONE = 0,
4ffef5fe 5511 MC_TARGET_PAGE,
02491447 5512 MC_TARGET_SWAP,
c733a828 5513 MC_TARGET_DEVICE,
4ffef5fe
DN
5514};
5515
90254a65
DN
5516static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5517 unsigned long addr, pte_t ptent)
4ffef5fe 5518{
25b2995a 5519 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5520
90254a65
DN
5521 if (!page || !page_mapped(page))
5522 return NULL;
5523 if (PageAnon(page)) {
1dfab5ab 5524 if (!(mc.flags & MOVE_ANON))
90254a65 5525 return NULL;
1dfab5ab
JW
5526 } else {
5527 if (!(mc.flags & MOVE_FILE))
5528 return NULL;
5529 }
90254a65
DN
5530 if (!get_page_unless_zero(page))
5531 return NULL;
5532
5533 return page;
5534}
5535
c733a828 5536#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5537static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5538 pte_t ptent, swp_entry_t *entry)
90254a65 5539{
90254a65
DN
5540 struct page *page = NULL;
5541 swp_entry_t ent = pte_to_swp_entry(ptent);
5542
9a137153 5543 if (!(mc.flags & MOVE_ANON))
90254a65 5544 return NULL;
c733a828
JG
5545
5546 /*
5547 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5548 * a device and because they are not accessible by CPU they are store
5549 * as special swap entry in the CPU page table.
5550 */
5551 if (is_device_private_entry(ent)) {
5552 page = device_private_entry_to_page(ent);
5553 /*
5554 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5555 * a refcount of 1 when free (unlike normal page)
5556 */
5557 if (!page_ref_add_unless(page, 1, 1))
5558 return NULL;
5559 return page;
5560 }
5561
9a137153
RC
5562 if (non_swap_entry(ent))
5563 return NULL;
5564
4b91355e
KH
5565 /*
5566 * Because lookup_swap_cache() updates some statistics counter,
5567 * we call find_get_page() with swapper_space directly.
5568 */
f6ab1f7f 5569 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5570 entry->val = ent.val;
90254a65
DN
5571
5572 return page;
5573}
4b91355e
KH
5574#else
5575static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5576 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5577{
5578 return NULL;
5579}
5580#endif
90254a65 5581
87946a72
DN
5582static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5583 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5584{
87946a72
DN
5585 if (!vma->vm_file) /* anonymous vma */
5586 return NULL;
1dfab5ab 5587 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5588 return NULL;
5589
87946a72 5590 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5591 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5592 return find_get_incore_page(vma->vm_file->f_mapping,
5593 linear_page_index(vma, addr));
87946a72
DN
5594}
5595
b1b0deab
CG
5596/**
5597 * mem_cgroup_move_account - move account of the page
5598 * @page: the page
25843c2b 5599 * @compound: charge the page as compound or small page
b1b0deab
CG
5600 * @from: mem_cgroup which the page is moved from.
5601 * @to: mem_cgroup which the page is moved to. @from != @to.
5602 *
3ac808fd 5603 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5604 *
5605 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5606 * from old cgroup.
5607 */
5608static int mem_cgroup_move_account(struct page *page,
f627c2f5 5609 bool compound,
b1b0deab
CG
5610 struct mem_cgroup *from,
5611 struct mem_cgroup *to)
5612{
ae8af438
KK
5613 struct lruvec *from_vec, *to_vec;
5614 struct pglist_data *pgdat;
6c357848 5615 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5616 int ret;
5617
5618 VM_BUG_ON(from == to);
5619 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5620 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5621
5622 /*
6a93ca8f 5623 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5624 * page's memory cgroup of its source page while we change it.
b1b0deab 5625 */
f627c2f5 5626 ret = -EBUSY;
b1b0deab
CG
5627 if (!trylock_page(page))
5628 goto out;
5629
5630 ret = -EINVAL;
bcfe06bf 5631 if (page_memcg(page) != from)
b1b0deab
CG
5632 goto out_unlock;
5633
ae8af438 5634 pgdat = page_pgdat(page);
867e5e1d
JW
5635 from_vec = mem_cgroup_lruvec(from, pgdat);
5636 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5637
abb242f5 5638 lock_page_memcg(page);
b1b0deab 5639
be5d0a74
JW
5640 if (PageAnon(page)) {
5641 if (page_mapped(page)) {
5642 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5643 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5644 if (PageTransHuge(page)) {
69473e5d
MS
5645 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5646 -nr_pages);
5647 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5648 nr_pages);
468c3982 5649 }
be5d0a74
JW
5650 }
5651 } else {
0d1c2072
JW
5652 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5654
5655 if (PageSwapBacked(page)) {
5656 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5657 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5658 }
5659
49e50d27
JW
5660 if (page_mapped(page)) {
5661 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5662 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5663 }
b1b0deab 5664
49e50d27
JW
5665 if (PageDirty(page)) {
5666 struct address_space *mapping = page_mapping(page);
c4843a75 5667
f56753ac 5668 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5669 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5670 -nr_pages);
5671 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5672 nr_pages);
5673 }
c4843a75
GT
5674 }
5675 }
5676
b1b0deab 5677 if (PageWriteback(page)) {
ae8af438
KK
5678 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5679 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5680 }
5681
5682 /*
abb242f5
JW
5683 * All state has been migrated, let's switch to the new memcg.
5684 *
bcfe06bf 5685 * It is safe to change page's memcg here because the page
abb242f5
JW
5686 * is referenced, charged, isolated, and locked: we can't race
5687 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5688 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5689 *
5690 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5691 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5692 * new memcg that isn't locked, the above state can change
5693 * concurrently again. Make sure we're truly done with it.
b1b0deab 5694 */
abb242f5 5695 smp_mb();
b1b0deab 5696
1a3e1f40
JW
5697 css_get(&to->css);
5698 css_put(&from->css);
5699
bcfe06bf 5700 page->memcg_data = (unsigned long)to;
87eaceb3 5701
abb242f5 5702 __unlock_page_memcg(from);
b1b0deab
CG
5703
5704 ret = 0;
5705
5706 local_irq_disable();
3fba69a5 5707 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5708 memcg_check_events(to, page);
3fba69a5 5709 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5710 memcg_check_events(from, page);
5711 local_irq_enable();
5712out_unlock:
5713 unlock_page(page);
5714out:
5715 return ret;
5716}
5717
7cf7806c
LR
5718/**
5719 * get_mctgt_type - get target type of moving charge
5720 * @vma: the vma the pte to be checked belongs
5721 * @addr: the address corresponding to the pte to be checked
5722 * @ptent: the pte to be checked
5723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5724 *
5725 * Returns
5726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5728 * move charge. if @target is not NULL, the page is stored in target->page
5729 * with extra refcnt got(Callers should handle it).
5730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5731 * target for charge migration. if @target is not NULL, the entry is stored
5732 * in target->ent.
25b2995a
CH
5733 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5734 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5735 * For now we such page is charge like a regular page would be as for all
5736 * intent and purposes it is just special memory taking the place of a
5737 * regular page.
c733a828
JG
5738 *
5739 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5740 *
5741 * Called with pte lock held.
5742 */
5743
8d32ff84 5744static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5745 unsigned long addr, pte_t ptent, union mc_target *target)
5746{
5747 struct page *page = NULL;
8d32ff84 5748 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5749 swp_entry_t ent = { .val = 0 };
5750
5751 if (pte_present(ptent))
5752 page = mc_handle_present_pte(vma, addr, ptent);
5753 else if (is_swap_pte(ptent))
48406ef8 5754 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5755 else if (pte_none(ptent))
87946a72 5756 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5757
5758 if (!page && !ent.val)
8d32ff84 5759 return ret;
02491447 5760 if (page) {
02491447 5761 /*
0a31bc97 5762 * Do only loose check w/o serialization.
1306a85a 5763 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5764 * not under LRU exclusion.
02491447 5765 */
bcfe06bf 5766 if (page_memcg(page) == mc.from) {
02491447 5767 ret = MC_TARGET_PAGE;
25b2995a 5768 if (is_device_private_page(page))
c733a828 5769 ret = MC_TARGET_DEVICE;
02491447
DN
5770 if (target)
5771 target->page = page;
5772 }
5773 if (!ret || !target)
5774 put_page(page);
5775 }
3e14a57b
HY
5776 /*
5777 * There is a swap entry and a page doesn't exist or isn't charged.
5778 * But we cannot move a tail-page in a THP.
5779 */
5780 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5781 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5782 ret = MC_TARGET_SWAP;
5783 if (target)
5784 target->ent = ent;
4ffef5fe 5785 }
4ffef5fe
DN
5786 return ret;
5787}
5788
12724850
NH
5789#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5790/*
d6810d73
HY
5791 * We don't consider PMD mapped swapping or file mapped pages because THP does
5792 * not support them for now.
12724850
NH
5793 * Caller should make sure that pmd_trans_huge(pmd) is true.
5794 */
5795static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5796 unsigned long addr, pmd_t pmd, union mc_target *target)
5797{
5798 struct page *page = NULL;
12724850
NH
5799 enum mc_target_type ret = MC_TARGET_NONE;
5800
84c3fc4e
ZY
5801 if (unlikely(is_swap_pmd(pmd))) {
5802 VM_BUG_ON(thp_migration_supported() &&
5803 !is_pmd_migration_entry(pmd));
5804 return ret;
5805 }
12724850 5806 page = pmd_page(pmd);
309381fe 5807 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5808 if (!(mc.flags & MOVE_ANON))
12724850 5809 return ret;
bcfe06bf 5810 if (page_memcg(page) == mc.from) {
12724850
NH
5811 ret = MC_TARGET_PAGE;
5812 if (target) {
5813 get_page(page);
5814 target->page = page;
5815 }
5816 }
5817 return ret;
5818}
5819#else
5820static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5821 unsigned long addr, pmd_t pmd, union mc_target *target)
5822{
5823 return MC_TARGET_NONE;
5824}
5825#endif
5826
4ffef5fe
DN
5827static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5828 unsigned long addr, unsigned long end,
5829 struct mm_walk *walk)
5830{
26bcd64a 5831 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5832 pte_t *pte;
5833 spinlock_t *ptl;
5834
b6ec57f4
KS
5835 ptl = pmd_trans_huge_lock(pmd, vma);
5836 if (ptl) {
c733a828
JG
5837 /*
5838 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5839 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5840 * this might change.
c733a828 5841 */
12724850
NH
5842 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5843 mc.precharge += HPAGE_PMD_NR;
bf929152 5844 spin_unlock(ptl);
1a5a9906 5845 return 0;
12724850 5846 }
03319327 5847
45f83cef
AA
5848 if (pmd_trans_unstable(pmd))
5849 return 0;
4ffef5fe
DN
5850 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5851 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5852 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5853 mc.precharge++; /* increment precharge temporarily */
5854 pte_unmap_unlock(pte - 1, ptl);
5855 cond_resched();
5856
7dc74be0
DN
5857 return 0;
5858}
5859
7b86ac33
CH
5860static const struct mm_walk_ops precharge_walk_ops = {
5861 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5862};
5863
4ffef5fe
DN
5864static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5865{
5866 unsigned long precharge;
4ffef5fe 5867
d8ed45c5 5868 mmap_read_lock(mm);
7b86ac33 5869 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5870 mmap_read_unlock(mm);
4ffef5fe
DN
5871
5872 precharge = mc.precharge;
5873 mc.precharge = 0;
5874
5875 return precharge;
5876}
5877
4ffef5fe
DN
5878static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5879{
dfe076b0
DN
5880 unsigned long precharge = mem_cgroup_count_precharge(mm);
5881
5882 VM_BUG_ON(mc.moving_task);
5883 mc.moving_task = current;
5884 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5885}
5886
dfe076b0
DN
5887/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5888static void __mem_cgroup_clear_mc(void)
4ffef5fe 5889{
2bd9bb20
KH
5890 struct mem_cgroup *from = mc.from;
5891 struct mem_cgroup *to = mc.to;
5892
4ffef5fe 5893 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5894 if (mc.precharge) {
00501b53 5895 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5896 mc.precharge = 0;
5897 }
5898 /*
5899 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5900 * we must uncharge here.
5901 */
5902 if (mc.moved_charge) {
00501b53 5903 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5904 mc.moved_charge = 0;
4ffef5fe 5905 }
483c30b5
DN
5906 /* we must fixup refcnts and charges */
5907 if (mc.moved_swap) {
483c30b5 5908 /* uncharge swap account from the old cgroup */
ce00a967 5909 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5910 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5911
615d66c3
VD
5912 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5913
05b84301 5914 /*
3e32cb2e
JW
5915 * we charged both to->memory and to->memsw, so we
5916 * should uncharge to->memory.
05b84301 5917 */
ce00a967 5918 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5919 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5920
483c30b5
DN
5921 mc.moved_swap = 0;
5922 }
dfe076b0
DN
5923 memcg_oom_recover(from);
5924 memcg_oom_recover(to);
5925 wake_up_all(&mc.waitq);
5926}
5927
5928static void mem_cgroup_clear_mc(void)
5929{
264a0ae1
TH
5930 struct mm_struct *mm = mc.mm;
5931
dfe076b0
DN
5932 /*
5933 * we must clear moving_task before waking up waiters at the end of
5934 * task migration.
5935 */
5936 mc.moving_task = NULL;
5937 __mem_cgroup_clear_mc();
2bd9bb20 5938 spin_lock(&mc.lock);
4ffef5fe
DN
5939 mc.from = NULL;
5940 mc.to = NULL;
264a0ae1 5941 mc.mm = NULL;
2bd9bb20 5942 spin_unlock(&mc.lock);
264a0ae1
TH
5943
5944 mmput(mm);
4ffef5fe
DN
5945}
5946
1f7dd3e5 5947static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5948{
1f7dd3e5 5949 struct cgroup_subsys_state *css;
eed67d75 5950 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5951 struct mem_cgroup *from;
4530eddb 5952 struct task_struct *leader, *p;
9f2115f9 5953 struct mm_struct *mm;
1dfab5ab 5954 unsigned long move_flags;
9f2115f9 5955 int ret = 0;
7dc74be0 5956
1f7dd3e5
TH
5957 /* charge immigration isn't supported on the default hierarchy */
5958 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5959 return 0;
5960
4530eddb
TH
5961 /*
5962 * Multi-process migrations only happen on the default hierarchy
5963 * where charge immigration is not used. Perform charge
5964 * immigration if @tset contains a leader and whine if there are
5965 * multiple.
5966 */
5967 p = NULL;
1f7dd3e5 5968 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5969 WARN_ON_ONCE(p);
5970 p = leader;
1f7dd3e5 5971 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5972 }
5973 if (!p)
5974 return 0;
5975
1f7dd3e5
TH
5976 /*
5977 * We are now commited to this value whatever it is. Changes in this
5978 * tunable will only affect upcoming migrations, not the current one.
5979 * So we need to save it, and keep it going.
5980 */
5981 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5982 if (!move_flags)
5983 return 0;
5984
9f2115f9
TH
5985 from = mem_cgroup_from_task(p);
5986
5987 VM_BUG_ON(from == memcg);
5988
5989 mm = get_task_mm(p);
5990 if (!mm)
5991 return 0;
5992 /* We move charges only when we move a owner of the mm */
5993 if (mm->owner == p) {
5994 VM_BUG_ON(mc.from);
5995 VM_BUG_ON(mc.to);
5996 VM_BUG_ON(mc.precharge);
5997 VM_BUG_ON(mc.moved_charge);
5998 VM_BUG_ON(mc.moved_swap);
5999
6000 spin_lock(&mc.lock);
264a0ae1 6001 mc.mm = mm;
9f2115f9
TH
6002 mc.from = from;
6003 mc.to = memcg;
6004 mc.flags = move_flags;
6005 spin_unlock(&mc.lock);
6006 /* We set mc.moving_task later */
6007
6008 ret = mem_cgroup_precharge_mc(mm);
6009 if (ret)
6010 mem_cgroup_clear_mc();
264a0ae1
TH
6011 } else {
6012 mmput(mm);
7dc74be0
DN
6013 }
6014 return ret;
6015}
6016
1f7dd3e5 6017static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6018{
4e2f245d
JW
6019 if (mc.to)
6020 mem_cgroup_clear_mc();
7dc74be0
DN
6021}
6022
4ffef5fe
DN
6023static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6024 unsigned long addr, unsigned long end,
6025 struct mm_walk *walk)
7dc74be0 6026{
4ffef5fe 6027 int ret = 0;
26bcd64a 6028 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6029 pte_t *pte;
6030 spinlock_t *ptl;
12724850
NH
6031 enum mc_target_type target_type;
6032 union mc_target target;
6033 struct page *page;
4ffef5fe 6034
b6ec57f4
KS
6035 ptl = pmd_trans_huge_lock(pmd, vma);
6036 if (ptl) {
62ade86a 6037 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6038 spin_unlock(ptl);
12724850
NH
6039 return 0;
6040 }
6041 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6042 if (target_type == MC_TARGET_PAGE) {
6043 page = target.page;
6044 if (!isolate_lru_page(page)) {
f627c2f5 6045 if (!mem_cgroup_move_account(page, true,
1306a85a 6046 mc.from, mc.to)) {
12724850
NH
6047 mc.precharge -= HPAGE_PMD_NR;
6048 mc.moved_charge += HPAGE_PMD_NR;
6049 }
6050 putback_lru_page(page);
6051 }
6052 put_page(page);
c733a828
JG
6053 } else if (target_type == MC_TARGET_DEVICE) {
6054 page = target.page;
6055 if (!mem_cgroup_move_account(page, true,
6056 mc.from, mc.to)) {
6057 mc.precharge -= HPAGE_PMD_NR;
6058 mc.moved_charge += HPAGE_PMD_NR;
6059 }
6060 put_page(page);
12724850 6061 }
bf929152 6062 spin_unlock(ptl);
1a5a9906 6063 return 0;
12724850
NH
6064 }
6065
45f83cef
AA
6066 if (pmd_trans_unstable(pmd))
6067 return 0;
4ffef5fe
DN
6068retry:
6069 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6070 for (; addr != end; addr += PAGE_SIZE) {
6071 pte_t ptent = *(pte++);
c733a828 6072 bool device = false;
02491447 6073 swp_entry_t ent;
4ffef5fe
DN
6074
6075 if (!mc.precharge)
6076 break;
6077
8d32ff84 6078 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6079 case MC_TARGET_DEVICE:
6080 device = true;
e4a9bc58 6081 fallthrough;
4ffef5fe
DN
6082 case MC_TARGET_PAGE:
6083 page = target.page;
53f9263b
KS
6084 /*
6085 * We can have a part of the split pmd here. Moving it
6086 * can be done but it would be too convoluted so simply
6087 * ignore such a partial THP and keep it in original
6088 * memcg. There should be somebody mapping the head.
6089 */
6090 if (PageTransCompound(page))
6091 goto put;
c733a828 6092 if (!device && isolate_lru_page(page))
4ffef5fe 6093 goto put;
f627c2f5
KS
6094 if (!mem_cgroup_move_account(page, false,
6095 mc.from, mc.to)) {
4ffef5fe 6096 mc.precharge--;
854ffa8d
DN
6097 /* we uncharge from mc.from later. */
6098 mc.moved_charge++;
4ffef5fe 6099 }
c733a828
JG
6100 if (!device)
6101 putback_lru_page(page);
8d32ff84 6102put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6103 put_page(page);
6104 break;
02491447
DN
6105 case MC_TARGET_SWAP:
6106 ent = target.ent;
e91cbb42 6107 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6108 mc.precharge--;
8d22a935
HD
6109 mem_cgroup_id_get_many(mc.to, 1);
6110 /* we fixup other refcnts and charges later. */
483c30b5
DN
6111 mc.moved_swap++;
6112 }
02491447 6113 break;
4ffef5fe
DN
6114 default:
6115 break;
6116 }
6117 }
6118 pte_unmap_unlock(pte - 1, ptl);
6119 cond_resched();
6120
6121 if (addr != end) {
6122 /*
6123 * We have consumed all precharges we got in can_attach().
6124 * We try charge one by one, but don't do any additional
6125 * charges to mc.to if we have failed in charge once in attach()
6126 * phase.
6127 */
854ffa8d 6128 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6129 if (!ret)
6130 goto retry;
6131 }
6132
6133 return ret;
6134}
6135
7b86ac33
CH
6136static const struct mm_walk_ops charge_walk_ops = {
6137 .pmd_entry = mem_cgroup_move_charge_pte_range,
6138};
6139
264a0ae1 6140static void mem_cgroup_move_charge(void)
4ffef5fe 6141{
4ffef5fe 6142 lru_add_drain_all();
312722cb 6143 /*
81f8c3a4
JW
6144 * Signal lock_page_memcg() to take the memcg's move_lock
6145 * while we're moving its pages to another memcg. Then wait
6146 * for already started RCU-only updates to finish.
312722cb
JW
6147 */
6148 atomic_inc(&mc.from->moving_account);
6149 synchronize_rcu();
dfe076b0 6150retry:
d8ed45c5 6151 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6152 /*
c1e8d7c6 6153 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6154 * waitq. So we cancel all extra charges, wake up all waiters,
6155 * and retry. Because we cancel precharges, we might not be able
6156 * to move enough charges, but moving charge is a best-effort
6157 * feature anyway, so it wouldn't be a big problem.
6158 */
6159 __mem_cgroup_clear_mc();
6160 cond_resched();
6161 goto retry;
6162 }
26bcd64a
NH
6163 /*
6164 * When we have consumed all precharges and failed in doing
6165 * additional charge, the page walk just aborts.
6166 */
7b86ac33
CH
6167 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6168 NULL);
0247f3f4 6169
d8ed45c5 6170 mmap_read_unlock(mc.mm);
312722cb 6171 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6172}
6173
264a0ae1 6174static void mem_cgroup_move_task(void)
67e465a7 6175{
264a0ae1
TH
6176 if (mc.to) {
6177 mem_cgroup_move_charge();
a433658c 6178 mem_cgroup_clear_mc();
264a0ae1 6179 }
67e465a7 6180}
5cfb80a7 6181#else /* !CONFIG_MMU */
1f7dd3e5 6182static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6183{
6184 return 0;
6185}
1f7dd3e5 6186static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6187{
6188}
264a0ae1 6189static void mem_cgroup_move_task(void)
5cfb80a7
DN
6190{
6191}
6192#endif
67e465a7 6193
677dc973
CD
6194static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6195{
6196 if (value == PAGE_COUNTER_MAX)
6197 seq_puts(m, "max\n");
6198 else
6199 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6200
6201 return 0;
6202}
6203
241994ed
JW
6204static u64 memory_current_read(struct cgroup_subsys_state *css,
6205 struct cftype *cft)
6206{
f5fc3c5d
JW
6207 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6208
6209 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6210}
6211
bf8d5d52
RG
6212static int memory_min_show(struct seq_file *m, void *v)
6213{
677dc973
CD
6214 return seq_puts_memcg_tunable(m,
6215 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6216}
6217
6218static ssize_t memory_min_write(struct kernfs_open_file *of,
6219 char *buf, size_t nbytes, loff_t off)
6220{
6221 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6222 unsigned long min;
6223 int err;
6224
6225 buf = strstrip(buf);
6226 err = page_counter_memparse(buf, "max", &min);
6227 if (err)
6228 return err;
6229
6230 page_counter_set_min(&memcg->memory, min);
6231
6232 return nbytes;
6233}
6234
241994ed
JW
6235static int memory_low_show(struct seq_file *m, void *v)
6236{
677dc973
CD
6237 return seq_puts_memcg_tunable(m,
6238 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6239}
6240
6241static ssize_t memory_low_write(struct kernfs_open_file *of,
6242 char *buf, size_t nbytes, loff_t off)
6243{
6244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6245 unsigned long low;
6246 int err;
6247
6248 buf = strstrip(buf);
d2973697 6249 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6250 if (err)
6251 return err;
6252
23067153 6253 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6254
6255 return nbytes;
6256}
6257
6258static int memory_high_show(struct seq_file *m, void *v)
6259{
d1663a90
JK
6260 return seq_puts_memcg_tunable(m,
6261 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6262}
6263
6264static ssize_t memory_high_write(struct kernfs_open_file *of,
6265 char *buf, size_t nbytes, loff_t off)
6266{
6267 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6268 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6269 bool drained = false;
241994ed
JW
6270 unsigned long high;
6271 int err;
6272
6273 buf = strstrip(buf);
d2973697 6274 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6275 if (err)
6276 return err;
6277
e82553c1
JW
6278 page_counter_set_high(&memcg->memory, high);
6279
8c8c383c
JW
6280 for (;;) {
6281 unsigned long nr_pages = page_counter_read(&memcg->memory);
6282 unsigned long reclaimed;
6283
6284 if (nr_pages <= high)
6285 break;
6286
6287 if (signal_pending(current))
6288 break;
6289
6290 if (!drained) {
6291 drain_all_stock(memcg);
6292 drained = true;
6293 continue;
6294 }
6295
6296 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6297 GFP_KERNEL, true);
6298
6299 if (!reclaimed && !nr_retries--)
6300 break;
6301 }
588083bb 6302
19ce33ac 6303 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6304 return nbytes;
6305}
6306
6307static int memory_max_show(struct seq_file *m, void *v)
6308{
677dc973
CD
6309 return seq_puts_memcg_tunable(m,
6310 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6311}
6312
6313static ssize_t memory_max_write(struct kernfs_open_file *of,
6314 char *buf, size_t nbytes, loff_t off)
6315{
6316 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6317 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6318 bool drained = false;
241994ed
JW
6319 unsigned long max;
6320 int err;
6321
6322 buf = strstrip(buf);
d2973697 6323 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6324 if (err)
6325 return err;
6326
bbec2e15 6327 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6328
6329 for (;;) {
6330 unsigned long nr_pages = page_counter_read(&memcg->memory);
6331
6332 if (nr_pages <= max)
6333 break;
6334
7249c9f0 6335 if (signal_pending(current))
b6e6edcf 6336 break;
b6e6edcf
JW
6337
6338 if (!drained) {
6339 drain_all_stock(memcg);
6340 drained = true;
6341 continue;
6342 }
6343
6344 if (nr_reclaims) {
6345 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6346 GFP_KERNEL, true))
6347 nr_reclaims--;
6348 continue;
6349 }
6350
e27be240 6351 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6352 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6353 break;
6354 }
241994ed 6355
2529bb3a 6356 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6357 return nbytes;
6358}
6359
1e577f97
SB
6360static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6361{
6362 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6363 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6364 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6365 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6366 seq_printf(m, "oom_kill %lu\n",
6367 atomic_long_read(&events[MEMCG_OOM_KILL]));
6368}
6369
241994ed
JW
6370static int memory_events_show(struct seq_file *m, void *v)
6371{
aa9694bb 6372 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6373
1e577f97
SB
6374 __memory_events_show(m, memcg->memory_events);
6375 return 0;
6376}
6377
6378static int memory_events_local_show(struct seq_file *m, void *v)
6379{
6380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6381
1e577f97 6382 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6383 return 0;
6384}
6385
587d9f72
JW
6386static int memory_stat_show(struct seq_file *m, void *v)
6387{
aa9694bb 6388 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6389 char *buf;
1ff9e6e1 6390
c8713d0b
JW
6391 buf = memory_stat_format(memcg);
6392 if (!buf)
6393 return -ENOMEM;
6394 seq_puts(m, buf);
6395 kfree(buf);
587d9f72
JW
6396 return 0;
6397}
6398
5f9a4f4a
MS
6399#ifdef CONFIG_NUMA
6400static int memory_numa_stat_show(struct seq_file *m, void *v)
6401{
6402 int i;
6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6404
6405 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6406 int nid;
6407
6408 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6409 continue;
6410
6411 seq_printf(m, "%s", memory_stats[i].name);
6412 for_each_node_state(nid, N_MEMORY) {
6413 u64 size;
6414 struct lruvec *lruvec;
6415
6416 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6417 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6418 size *= memory_stats[i].ratio;
6419 seq_printf(m, " N%d=%llu", nid, size);
6420 }
6421 seq_putc(m, '\n');
6422 }
6423
6424 return 0;
6425}
6426#endif
6427
3d8b38eb
RG
6428static int memory_oom_group_show(struct seq_file *m, void *v)
6429{
aa9694bb 6430 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6431
6432 seq_printf(m, "%d\n", memcg->oom_group);
6433
6434 return 0;
6435}
6436
6437static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6438 char *buf, size_t nbytes, loff_t off)
6439{
6440 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6441 int ret, oom_group;
6442
6443 buf = strstrip(buf);
6444 if (!buf)
6445 return -EINVAL;
6446
6447 ret = kstrtoint(buf, 0, &oom_group);
6448 if (ret)
6449 return ret;
6450
6451 if (oom_group != 0 && oom_group != 1)
6452 return -EINVAL;
6453
6454 memcg->oom_group = oom_group;
6455
6456 return nbytes;
6457}
6458
241994ed
JW
6459static struct cftype memory_files[] = {
6460 {
6461 .name = "current",
f5fc3c5d 6462 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6463 .read_u64 = memory_current_read,
6464 },
bf8d5d52
RG
6465 {
6466 .name = "min",
6467 .flags = CFTYPE_NOT_ON_ROOT,
6468 .seq_show = memory_min_show,
6469 .write = memory_min_write,
6470 },
241994ed
JW
6471 {
6472 .name = "low",
6473 .flags = CFTYPE_NOT_ON_ROOT,
6474 .seq_show = memory_low_show,
6475 .write = memory_low_write,
6476 },
6477 {
6478 .name = "high",
6479 .flags = CFTYPE_NOT_ON_ROOT,
6480 .seq_show = memory_high_show,
6481 .write = memory_high_write,
6482 },
6483 {
6484 .name = "max",
6485 .flags = CFTYPE_NOT_ON_ROOT,
6486 .seq_show = memory_max_show,
6487 .write = memory_max_write,
6488 },
6489 {
6490 .name = "events",
6491 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6492 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6493 .seq_show = memory_events_show,
6494 },
1e577f97
SB
6495 {
6496 .name = "events.local",
6497 .flags = CFTYPE_NOT_ON_ROOT,
6498 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6499 .seq_show = memory_events_local_show,
6500 },
587d9f72
JW
6501 {
6502 .name = "stat",
587d9f72
JW
6503 .seq_show = memory_stat_show,
6504 },
5f9a4f4a
MS
6505#ifdef CONFIG_NUMA
6506 {
6507 .name = "numa_stat",
6508 .seq_show = memory_numa_stat_show,
6509 },
6510#endif
3d8b38eb
RG
6511 {
6512 .name = "oom.group",
6513 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6514 .seq_show = memory_oom_group_show,
6515 .write = memory_oom_group_write,
6516 },
241994ed
JW
6517 { } /* terminate */
6518};
6519
073219e9 6520struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6521 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6522 .css_online = mem_cgroup_css_online,
92fb9748 6523 .css_offline = mem_cgroup_css_offline,
6df38689 6524 .css_released = mem_cgroup_css_released,
92fb9748 6525 .css_free = mem_cgroup_css_free,
1ced953b 6526 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6527 .can_attach = mem_cgroup_can_attach,
6528 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6529 .post_attach = mem_cgroup_move_task,
241994ed
JW
6530 .dfl_cftypes = memory_files,
6531 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6532 .early_init = 0,
8cdea7c0 6533};
c077719b 6534
bc50bcc6
JW
6535/*
6536 * This function calculates an individual cgroup's effective
6537 * protection which is derived from its own memory.min/low, its
6538 * parent's and siblings' settings, as well as the actual memory
6539 * distribution in the tree.
6540 *
6541 * The following rules apply to the effective protection values:
6542 *
6543 * 1. At the first level of reclaim, effective protection is equal to
6544 * the declared protection in memory.min and memory.low.
6545 *
6546 * 2. To enable safe delegation of the protection configuration, at
6547 * subsequent levels the effective protection is capped to the
6548 * parent's effective protection.
6549 *
6550 * 3. To make complex and dynamic subtrees easier to configure, the
6551 * user is allowed to overcommit the declared protection at a given
6552 * level. If that is the case, the parent's effective protection is
6553 * distributed to the children in proportion to how much protection
6554 * they have declared and how much of it they are utilizing.
6555 *
6556 * This makes distribution proportional, but also work-conserving:
6557 * if one cgroup claims much more protection than it uses memory,
6558 * the unused remainder is available to its siblings.
6559 *
6560 * 4. Conversely, when the declared protection is undercommitted at a
6561 * given level, the distribution of the larger parental protection
6562 * budget is NOT proportional. A cgroup's protection from a sibling
6563 * is capped to its own memory.min/low setting.
6564 *
8a931f80
JW
6565 * 5. However, to allow protecting recursive subtrees from each other
6566 * without having to declare each individual cgroup's fixed share
6567 * of the ancestor's claim to protection, any unutilized -
6568 * "floating" - protection from up the tree is distributed in
6569 * proportion to each cgroup's *usage*. This makes the protection
6570 * neutral wrt sibling cgroups and lets them compete freely over
6571 * the shared parental protection budget, but it protects the
6572 * subtree as a whole from neighboring subtrees.
6573 *
6574 * Note that 4. and 5. are not in conflict: 4. is about protecting
6575 * against immediate siblings whereas 5. is about protecting against
6576 * neighboring subtrees.
bc50bcc6
JW
6577 */
6578static unsigned long effective_protection(unsigned long usage,
8a931f80 6579 unsigned long parent_usage,
bc50bcc6
JW
6580 unsigned long setting,
6581 unsigned long parent_effective,
6582 unsigned long siblings_protected)
6583{
6584 unsigned long protected;
8a931f80 6585 unsigned long ep;
bc50bcc6
JW
6586
6587 protected = min(usage, setting);
6588 /*
6589 * If all cgroups at this level combined claim and use more
6590 * protection then what the parent affords them, distribute
6591 * shares in proportion to utilization.
6592 *
6593 * We are using actual utilization rather than the statically
6594 * claimed protection in order to be work-conserving: claimed
6595 * but unused protection is available to siblings that would
6596 * otherwise get a smaller chunk than what they claimed.
6597 */
6598 if (siblings_protected > parent_effective)
6599 return protected * parent_effective / siblings_protected;
6600
6601 /*
6602 * Ok, utilized protection of all children is within what the
6603 * parent affords them, so we know whatever this child claims
6604 * and utilizes is effectively protected.
6605 *
6606 * If there is unprotected usage beyond this value, reclaim
6607 * will apply pressure in proportion to that amount.
6608 *
6609 * If there is unutilized protection, the cgroup will be fully
6610 * shielded from reclaim, but we do return a smaller value for
6611 * protection than what the group could enjoy in theory. This
6612 * is okay. With the overcommit distribution above, effective
6613 * protection is always dependent on how memory is actually
6614 * consumed among the siblings anyway.
6615 */
8a931f80
JW
6616 ep = protected;
6617
6618 /*
6619 * If the children aren't claiming (all of) the protection
6620 * afforded to them by the parent, distribute the remainder in
6621 * proportion to the (unprotected) memory of each cgroup. That
6622 * way, cgroups that aren't explicitly prioritized wrt each
6623 * other compete freely over the allowance, but they are
6624 * collectively protected from neighboring trees.
6625 *
6626 * We're using unprotected memory for the weight so that if
6627 * some cgroups DO claim explicit protection, we don't protect
6628 * the same bytes twice.
cd324edc
JW
6629 *
6630 * Check both usage and parent_usage against the respective
6631 * protected values. One should imply the other, but they
6632 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6633 */
6634 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6635 return ep;
cd324edc
JW
6636 if (parent_effective > siblings_protected &&
6637 parent_usage > siblings_protected &&
6638 usage > protected) {
8a931f80
JW
6639 unsigned long unclaimed;
6640
6641 unclaimed = parent_effective - siblings_protected;
6642 unclaimed *= usage - protected;
6643 unclaimed /= parent_usage - siblings_protected;
6644
6645 ep += unclaimed;
6646 }
6647
6648 return ep;
bc50bcc6
JW
6649}
6650
241994ed 6651/**
bf8d5d52 6652 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6653 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6654 * @memcg: the memory cgroup to check
6655 *
23067153
RG
6656 * WARNING: This function is not stateless! It can only be used as part
6657 * of a top-down tree iteration, not for isolated queries.
241994ed 6658 */
45c7f7e1
CD
6659void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6660 struct mem_cgroup *memcg)
241994ed 6661{
8a931f80 6662 unsigned long usage, parent_usage;
23067153
RG
6663 struct mem_cgroup *parent;
6664
241994ed 6665 if (mem_cgroup_disabled())
45c7f7e1 6666 return;
241994ed 6667
34c81057
SC
6668 if (!root)
6669 root = root_mem_cgroup;
22f7496f
YS
6670
6671 /*
6672 * Effective values of the reclaim targets are ignored so they
6673 * can be stale. Have a look at mem_cgroup_protection for more
6674 * details.
6675 * TODO: calculation should be more robust so that we do not need
6676 * that special casing.
6677 */
34c81057 6678 if (memcg == root)
45c7f7e1 6679 return;
241994ed 6680
23067153 6681 usage = page_counter_read(&memcg->memory);
bf8d5d52 6682 if (!usage)
45c7f7e1 6683 return;
bf8d5d52 6684
bf8d5d52 6685 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6686 /* No parent means a non-hierarchical mode on v1 memcg */
6687 if (!parent)
45c7f7e1 6688 return;
df2a4196 6689
bc50bcc6 6690 if (parent == root) {
c3d53200 6691 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6692 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6693 return;
bf8d5d52
RG
6694 }
6695
8a931f80
JW
6696 parent_usage = page_counter_read(&parent->memory);
6697
b3a7822e 6698 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6699 READ_ONCE(memcg->memory.min),
6700 READ_ONCE(parent->memory.emin),
b3a7822e 6701 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6702
b3a7822e 6703 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6704 READ_ONCE(memcg->memory.low),
6705 READ_ONCE(parent->memory.elow),
b3a7822e 6706 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6707}
6708
00501b53 6709/**
f0e45fb4 6710 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6711 * @page: page to charge
6712 * @mm: mm context of the victim
6713 * @gfp_mask: reclaim mode
00501b53
JW
6714 *
6715 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6716 * pages according to @gfp_mask if necessary.
6717 *
f0e45fb4 6718 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6719 */
d9eb1ea2 6720int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6721{
6c357848 6722 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6723 struct mem_cgroup *memcg = NULL;
00501b53
JW
6724 int ret = 0;
6725
6726 if (mem_cgroup_disabled())
6727 goto out;
6728
6729 if (PageSwapCache(page)) {
2d1c4980
JW
6730 swp_entry_t ent = { .val = page_private(page), };
6731 unsigned short id;
6732
00501b53
JW
6733 /*
6734 * Every swap fault against a single page tries to charge the
6735 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6736 * already charged pages, too. page and memcg binding is
6737 * protected by the page lock, which serializes swap cache
6738 * removal, which in turn serializes uncharging.
00501b53 6739 */
e993d905 6740 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6741 if (page_memcg(compound_head(page)))
00501b53 6742 goto out;
e993d905 6743
2d1c4980
JW
6744 id = lookup_swap_cgroup_id(ent);
6745 rcu_read_lock();
6746 memcg = mem_cgroup_from_id(id);
6747 if (memcg && !css_tryget_online(&memcg->css))
6748 memcg = NULL;
6749 rcu_read_unlock();
00501b53
JW
6750 }
6751
00501b53
JW
6752 if (!memcg)
6753 memcg = get_mem_cgroup_from_mm(mm);
6754
6755 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6756 if (ret)
6757 goto out_put;
00501b53 6758
1a3e1f40 6759 css_get(&memcg->css);
d9eb1ea2 6760 commit_charge(page, memcg);
6abb5a86 6761
6abb5a86 6762 local_irq_disable();
3fba69a5 6763 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6764 memcg_check_events(memcg, page);
6765 local_irq_enable();
00501b53 6766
2d1c4980 6767 if (PageSwapCache(page)) {
00501b53
JW
6768 swp_entry_t entry = { .val = page_private(page) };
6769 /*
6770 * The swap entry might not get freed for a long time,
6771 * let's not wait for it. The page already received a
6772 * memory+swap charge, drop the swap entry duplicate.
6773 */
38d8b4e6 6774 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6775 }
00501b53 6776
f0e45fb4
JW
6777out_put:
6778 css_put(&memcg->css);
6779out:
6780 return ret;
3fea5a49
JW
6781}
6782
a9d5adee
JG
6783struct uncharge_gather {
6784 struct mem_cgroup *memcg;
9f762dbe 6785 unsigned long nr_pages;
a9d5adee 6786 unsigned long pgpgout;
a9d5adee 6787 unsigned long nr_kmem;
a9d5adee
JG
6788 struct page *dummy_page;
6789};
6790
6791static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6792{
a9d5adee
JG
6793 memset(ug, 0, sizeof(*ug));
6794}
6795
6796static void uncharge_batch(const struct uncharge_gather *ug)
6797{
747db954
JW
6798 unsigned long flags;
6799
a9d5adee 6800 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6801 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6802 if (do_memsw_account())
9f762dbe 6803 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6804 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6805 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6806 memcg_oom_recover(ug->memcg);
ce00a967 6807 }
747db954
JW
6808
6809 local_irq_save(flags);
c9019e9b 6810 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6811 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6812 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6813 local_irq_restore(flags);
f1796544
MH
6814
6815 /* drop reference from uncharge_page */
6816 css_put(&ug->memcg->css);
a9d5adee
JG
6817}
6818
6819static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6820{
9f762dbe
JW
6821 unsigned long nr_pages;
6822
a9d5adee 6823 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6824
bcfe06bf 6825 if (!page_memcg(page))
a9d5adee
JG
6826 return;
6827
6828 /*
6829 * Nobody should be changing or seriously looking at
bcfe06bf 6830 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6831 * exclusive access to the page.
6832 */
6833
bcfe06bf 6834 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6835 if (ug->memcg) {
6836 uncharge_batch(ug);
6837 uncharge_gather_clear(ug);
6838 }
bcfe06bf 6839 ug->memcg = page_memcg(page);
f1796544
MH
6840
6841 /* pairs with css_put in uncharge_batch */
6842 css_get(&ug->memcg->css);
a9d5adee
JG
6843 }
6844
9f762dbe
JW
6845 nr_pages = compound_nr(page);
6846 ug->nr_pages += nr_pages;
a9d5adee 6847
18b2db3b 6848 if (PageMemcgKmem(page))
9f762dbe 6849 ug->nr_kmem += nr_pages;
18b2db3b
RG
6850 else
6851 ug->pgpgout++;
a9d5adee
JG
6852
6853 ug->dummy_page = page;
bcfe06bf 6854 page->memcg_data = 0;
1a3e1f40 6855 css_put(&ug->memcg->css);
747db954
JW
6856}
6857
6858static void uncharge_list(struct list_head *page_list)
6859{
a9d5adee 6860 struct uncharge_gather ug;
747db954 6861 struct list_head *next;
a9d5adee
JG
6862
6863 uncharge_gather_clear(&ug);
747db954 6864
8b592656
JW
6865 /*
6866 * Note that the list can be a single page->lru; hence the
6867 * do-while loop instead of a simple list_for_each_entry().
6868 */
747db954
JW
6869 next = page_list->next;
6870 do {
a9d5adee
JG
6871 struct page *page;
6872
747db954
JW
6873 page = list_entry(next, struct page, lru);
6874 next = page->lru.next;
6875
a9d5adee 6876 uncharge_page(page, &ug);
747db954
JW
6877 } while (next != page_list);
6878
a9d5adee
JG
6879 if (ug.memcg)
6880 uncharge_batch(&ug);
747db954
JW
6881}
6882
0a31bc97
JW
6883/**
6884 * mem_cgroup_uncharge - uncharge a page
6885 * @page: page to uncharge
6886 *
f0e45fb4 6887 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6888 */
6889void mem_cgroup_uncharge(struct page *page)
6890{
a9d5adee
JG
6891 struct uncharge_gather ug;
6892
0a31bc97
JW
6893 if (mem_cgroup_disabled())
6894 return;
6895
747db954 6896 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6897 if (!page_memcg(page))
0a31bc97
JW
6898 return;
6899
a9d5adee
JG
6900 uncharge_gather_clear(&ug);
6901 uncharge_page(page, &ug);
6902 uncharge_batch(&ug);
747db954 6903}
0a31bc97 6904
747db954
JW
6905/**
6906 * mem_cgroup_uncharge_list - uncharge a list of page
6907 * @page_list: list of pages to uncharge
6908 *
6909 * Uncharge a list of pages previously charged with
f0e45fb4 6910 * mem_cgroup_charge().
747db954
JW
6911 */
6912void mem_cgroup_uncharge_list(struct list_head *page_list)
6913{
6914 if (mem_cgroup_disabled())
6915 return;
0a31bc97 6916
747db954
JW
6917 if (!list_empty(page_list))
6918 uncharge_list(page_list);
0a31bc97
JW
6919}
6920
6921/**
6a93ca8f
JW
6922 * mem_cgroup_migrate - charge a page's replacement
6923 * @oldpage: currently circulating page
6924 * @newpage: replacement page
0a31bc97 6925 *
6a93ca8f
JW
6926 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6927 * be uncharged upon free.
0a31bc97
JW
6928 *
6929 * Both pages must be locked, @newpage->mapping must be set up.
6930 */
6a93ca8f 6931void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6932{
29833315 6933 struct mem_cgroup *memcg;
44b7a8d3 6934 unsigned int nr_pages;
d93c4130 6935 unsigned long flags;
0a31bc97
JW
6936
6937 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6938 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6939 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6940 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6941 newpage);
0a31bc97
JW
6942
6943 if (mem_cgroup_disabled())
6944 return;
6945
6946 /* Page cache replacement: new page already charged? */
bcfe06bf 6947 if (page_memcg(newpage))
0a31bc97
JW
6948 return;
6949
bcfe06bf 6950 memcg = page_memcg(oldpage);
a4055888 6951 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6952 if (!memcg)
0a31bc97
JW
6953 return;
6954
44b7a8d3 6955 /* Force-charge the new page. The old one will be freed soon */
6c357848 6956 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6957
6958 page_counter_charge(&memcg->memory, nr_pages);
6959 if (do_memsw_account())
6960 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6961
1a3e1f40 6962 css_get(&memcg->css);
d9eb1ea2 6963 commit_charge(newpage, memcg);
44b7a8d3 6964
d93c4130 6965 local_irq_save(flags);
3fba69a5 6966 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6967 memcg_check_events(memcg, newpage);
d93c4130 6968 local_irq_restore(flags);
0a31bc97
JW
6969}
6970
ef12947c 6971DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6972EXPORT_SYMBOL(memcg_sockets_enabled_key);
6973
2d758073 6974void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6975{
6976 struct mem_cgroup *memcg;
6977
2d758073
JW
6978 if (!mem_cgroup_sockets_enabled)
6979 return;
6980
e876ecc6
SB
6981 /* Do not associate the sock with unrelated interrupted task's memcg. */
6982 if (in_interrupt())
6983 return;
6984
11092087
JW
6985 rcu_read_lock();
6986 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6987 if (memcg == root_mem_cgroup)
6988 goto out;
0db15298 6989 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6990 goto out;
8965aa28 6991 if (css_tryget(&memcg->css))
11092087 6992 sk->sk_memcg = memcg;
f7e1cb6e 6993out:
11092087
JW
6994 rcu_read_unlock();
6995}
11092087 6996
2d758073 6997void mem_cgroup_sk_free(struct sock *sk)
11092087 6998{
2d758073
JW
6999 if (sk->sk_memcg)
7000 css_put(&sk->sk_memcg->css);
11092087
JW
7001}
7002
7003/**
7004 * mem_cgroup_charge_skmem - charge socket memory
7005 * @memcg: memcg to charge
7006 * @nr_pages: number of pages to charge
7007 *
7008 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7009 * @memcg's configured limit, %false if the charge had to be forced.
7010 */
7011bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7012{
f7e1cb6e 7013 gfp_t gfp_mask = GFP_KERNEL;
11092087 7014
f7e1cb6e 7015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7016 struct page_counter *fail;
f7e1cb6e 7017
0db15298
JW
7018 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7019 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7020 return true;
7021 }
0db15298
JW
7022 page_counter_charge(&memcg->tcpmem, nr_pages);
7023 memcg->tcpmem_pressure = 1;
f7e1cb6e 7024 return false;
11092087 7025 }
d886f4e4 7026
f7e1cb6e
JW
7027 /* Don't block in the packet receive path */
7028 if (in_softirq())
7029 gfp_mask = GFP_NOWAIT;
7030
c9019e9b 7031 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7032
f7e1cb6e
JW
7033 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7034 return true;
7035
7036 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7037 return false;
7038}
7039
7040/**
7041 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7042 * @memcg: memcg to uncharge
7043 * @nr_pages: number of pages to uncharge
11092087
JW
7044 */
7045void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7046{
f7e1cb6e 7047 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7048 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7049 return;
7050 }
d886f4e4 7051
c9019e9b 7052 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7053
475d0487 7054 refill_stock(memcg, nr_pages);
11092087
JW
7055}
7056
f7e1cb6e
JW
7057static int __init cgroup_memory(char *s)
7058{
7059 char *token;
7060
7061 while ((token = strsep(&s, ",")) != NULL) {
7062 if (!*token)
7063 continue;
7064 if (!strcmp(token, "nosocket"))
7065 cgroup_memory_nosocket = true;
04823c83
VD
7066 if (!strcmp(token, "nokmem"))
7067 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7068 }
7069 return 0;
7070}
7071__setup("cgroup.memory=", cgroup_memory);
11092087 7072
2d11085e 7073/*
1081312f
MH
7074 * subsys_initcall() for memory controller.
7075 *
308167fc
SAS
7076 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7077 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7078 * basically everything that doesn't depend on a specific mem_cgroup structure
7079 * should be initialized from here.
2d11085e
MH
7080 */
7081static int __init mem_cgroup_init(void)
7082{
95a045f6
JW
7083 int cpu, node;
7084
f3344adf
MS
7085 /*
7086 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7087 * used for per-memcg-per-cpu caching of per-node statistics. In order
7088 * to work fine, we should make sure that the overfill threshold can't
7089 * exceed S32_MAX / PAGE_SIZE.
7090 */
7091 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7092
308167fc
SAS
7093 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7094 memcg_hotplug_cpu_dead);
95a045f6
JW
7095
7096 for_each_possible_cpu(cpu)
7097 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7098 drain_local_stock);
7099
7100 for_each_node(node) {
7101 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7102
7103 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7104 node_online(node) ? node : NUMA_NO_NODE);
7105
ef8f2327 7106 rtpn->rb_root = RB_ROOT;
fa90b2fd 7107 rtpn->rb_rightmost = NULL;
ef8f2327 7108 spin_lock_init(&rtpn->lock);
95a045f6
JW
7109 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7110 }
7111
2d11085e
MH
7112 return 0;
7113}
7114subsys_initcall(mem_cgroup_init);
21afa38e
JW
7115
7116#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7117static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7118{
1c2d479a 7119 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7120 /*
7121 * The root cgroup cannot be destroyed, so it's refcount must
7122 * always be >= 1.
7123 */
7124 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7125 VM_BUG_ON(1);
7126 break;
7127 }
7128 memcg = parent_mem_cgroup(memcg);
7129 if (!memcg)
7130 memcg = root_mem_cgroup;
7131 }
7132 return memcg;
7133}
7134
21afa38e
JW
7135/**
7136 * mem_cgroup_swapout - transfer a memsw charge to swap
7137 * @page: page whose memsw charge to transfer
7138 * @entry: swap entry to move the charge to
7139 *
7140 * Transfer the memsw charge of @page to @entry.
7141 */
7142void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7143{
1f47b61f 7144 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7145 unsigned int nr_entries;
21afa38e
JW
7146 unsigned short oldid;
7147
7148 VM_BUG_ON_PAGE(PageLRU(page), page);
7149 VM_BUG_ON_PAGE(page_count(page), page);
7150
76358ab5
AS
7151 if (mem_cgroup_disabled())
7152 return;
7153
2d1c4980 7154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7155 return;
7156
bcfe06bf 7157 memcg = page_memcg(page);
21afa38e 7158
a4055888 7159 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7160 if (!memcg)
7161 return;
7162
1f47b61f
VD
7163 /*
7164 * In case the memcg owning these pages has been offlined and doesn't
7165 * have an ID allocated to it anymore, charge the closest online
7166 * ancestor for the swap instead and transfer the memory+swap charge.
7167 */
7168 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7169 nr_entries = thp_nr_pages(page);
d6810d73
HY
7170 /* Get references for the tail pages, too */
7171 if (nr_entries > 1)
7172 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7173 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7174 nr_entries);
21afa38e 7175 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7176 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7177
bcfe06bf 7178 page->memcg_data = 0;
21afa38e
JW
7179
7180 if (!mem_cgroup_is_root(memcg))
d6810d73 7181 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7182
2d1c4980 7183 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7184 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7185 page_counter_charge(&swap_memcg->memsw, nr_entries);
7186 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7187 }
7188
ce9ce665
SAS
7189 /*
7190 * Interrupts should be disabled here because the caller holds the
b93b0163 7191 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7192 * important here to have the interrupts disabled because it is the
b93b0163 7193 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7194 */
7195 VM_BUG_ON(!irqs_disabled());
3fba69a5 7196 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7197 memcg_check_events(memcg, page);
73f576c0 7198
1a3e1f40 7199 css_put(&memcg->css);
21afa38e
JW
7200}
7201
38d8b4e6
HY
7202/**
7203 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7204 * @page: page being added to swap
7205 * @entry: swap entry to charge
7206 *
38d8b4e6 7207 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7208 *
7209 * Returns 0 on success, -ENOMEM on failure.
7210 */
7211int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7212{
6c357848 7213 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7214 struct page_counter *counter;
38d8b4e6 7215 struct mem_cgroup *memcg;
37e84351
VD
7216 unsigned short oldid;
7217
76358ab5
AS
7218 if (mem_cgroup_disabled())
7219 return 0;
7220
2d1c4980 7221 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7222 return 0;
7223
bcfe06bf 7224 memcg = page_memcg(page);
37e84351 7225
a4055888 7226 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7227 if (!memcg)
7228 return 0;
7229
f3a53a3a
TH
7230 if (!entry.val) {
7231 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7232 return 0;
f3a53a3a 7233 }
bb98f2c5 7234
1f47b61f
VD
7235 memcg = mem_cgroup_id_get_online(memcg);
7236
2d1c4980 7237 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7238 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7239 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7240 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7241 mem_cgroup_id_put(memcg);
37e84351 7242 return -ENOMEM;
1f47b61f 7243 }
37e84351 7244
38d8b4e6
HY
7245 /* Get references for the tail pages, too */
7246 if (nr_pages > 1)
7247 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7248 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7249 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7250 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7251
37e84351
VD
7252 return 0;
7253}
7254
21afa38e 7255/**
38d8b4e6 7256 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7257 * @entry: swap entry to uncharge
38d8b4e6 7258 * @nr_pages: the amount of swap space to uncharge
21afa38e 7259 */
38d8b4e6 7260void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7261{
7262 struct mem_cgroup *memcg;
7263 unsigned short id;
7264
38d8b4e6 7265 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7266 rcu_read_lock();
adbe427b 7267 memcg = mem_cgroup_from_id(id);
21afa38e 7268 if (memcg) {
2d1c4980 7269 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7270 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7271 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7272 else
38d8b4e6 7273 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7274 }
c9019e9b 7275 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7276 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7277 }
7278 rcu_read_unlock();
7279}
7280
d8b38438
VD
7281long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7282{
7283 long nr_swap_pages = get_nr_swap_pages();
7284
eccb52e7 7285 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7286 return nr_swap_pages;
7287 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7288 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7289 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7290 page_counter_read(&memcg->swap));
7291 return nr_swap_pages;
7292}
7293
5ccc5aba
VD
7294bool mem_cgroup_swap_full(struct page *page)
7295{
7296 struct mem_cgroup *memcg;
7297
7298 VM_BUG_ON_PAGE(!PageLocked(page), page);
7299
7300 if (vm_swap_full())
7301 return true;
eccb52e7 7302 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7303 return false;
7304
bcfe06bf 7305 memcg = page_memcg(page);
5ccc5aba
VD
7306 if (!memcg)
7307 return false;
7308
4b82ab4f
JK
7309 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7310 unsigned long usage = page_counter_read(&memcg->swap);
7311
7312 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7313 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7314 return true;
4b82ab4f 7315 }
5ccc5aba
VD
7316
7317 return false;
7318}
7319
eccb52e7 7320static int __init setup_swap_account(char *s)
21afa38e
JW
7321{
7322 if (!strcmp(s, "1"))
5ab92901 7323 cgroup_memory_noswap = false;
21afa38e 7324 else if (!strcmp(s, "0"))
5ab92901 7325 cgroup_memory_noswap = true;
21afa38e
JW
7326 return 1;
7327}
eccb52e7 7328__setup("swapaccount=", setup_swap_account);
21afa38e 7329
37e84351
VD
7330static u64 swap_current_read(struct cgroup_subsys_state *css,
7331 struct cftype *cft)
7332{
7333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7334
7335 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7336}
7337
4b82ab4f
JK
7338static int swap_high_show(struct seq_file *m, void *v)
7339{
7340 return seq_puts_memcg_tunable(m,
7341 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7342}
7343
7344static ssize_t swap_high_write(struct kernfs_open_file *of,
7345 char *buf, size_t nbytes, loff_t off)
7346{
7347 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7348 unsigned long high;
7349 int err;
7350
7351 buf = strstrip(buf);
7352 err = page_counter_memparse(buf, "max", &high);
7353 if (err)
7354 return err;
7355
7356 page_counter_set_high(&memcg->swap, high);
7357
7358 return nbytes;
7359}
7360
37e84351
VD
7361static int swap_max_show(struct seq_file *m, void *v)
7362{
677dc973
CD
7363 return seq_puts_memcg_tunable(m,
7364 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7365}
7366
7367static ssize_t swap_max_write(struct kernfs_open_file *of,
7368 char *buf, size_t nbytes, loff_t off)
7369{
7370 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7371 unsigned long max;
7372 int err;
7373
7374 buf = strstrip(buf);
7375 err = page_counter_memparse(buf, "max", &max);
7376 if (err)
7377 return err;
7378
be09102b 7379 xchg(&memcg->swap.max, max);
37e84351
VD
7380
7381 return nbytes;
7382}
7383
f3a53a3a
TH
7384static int swap_events_show(struct seq_file *m, void *v)
7385{
aa9694bb 7386 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7387
4b82ab4f
JK
7388 seq_printf(m, "high %lu\n",
7389 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7390 seq_printf(m, "max %lu\n",
7391 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7392 seq_printf(m, "fail %lu\n",
7393 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7394
7395 return 0;
7396}
7397
37e84351
VD
7398static struct cftype swap_files[] = {
7399 {
7400 .name = "swap.current",
7401 .flags = CFTYPE_NOT_ON_ROOT,
7402 .read_u64 = swap_current_read,
7403 },
4b82ab4f
JK
7404 {
7405 .name = "swap.high",
7406 .flags = CFTYPE_NOT_ON_ROOT,
7407 .seq_show = swap_high_show,
7408 .write = swap_high_write,
7409 },
37e84351
VD
7410 {
7411 .name = "swap.max",
7412 .flags = CFTYPE_NOT_ON_ROOT,
7413 .seq_show = swap_max_show,
7414 .write = swap_max_write,
7415 },
f3a53a3a
TH
7416 {
7417 .name = "swap.events",
7418 .flags = CFTYPE_NOT_ON_ROOT,
7419 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7420 .seq_show = swap_events_show,
7421 },
37e84351
VD
7422 { } /* terminate */
7423};
7424
eccb52e7 7425static struct cftype memsw_files[] = {
21afa38e
JW
7426 {
7427 .name = "memsw.usage_in_bytes",
7428 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7429 .read_u64 = mem_cgroup_read_u64,
7430 },
7431 {
7432 .name = "memsw.max_usage_in_bytes",
7433 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7434 .write = mem_cgroup_reset,
7435 .read_u64 = mem_cgroup_read_u64,
7436 },
7437 {
7438 .name = "memsw.limit_in_bytes",
7439 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7440 .write = mem_cgroup_write,
7441 .read_u64 = mem_cgroup_read_u64,
7442 },
7443 {
7444 .name = "memsw.failcnt",
7445 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7446 .write = mem_cgroup_reset,
7447 .read_u64 = mem_cgroup_read_u64,
7448 },
7449 { }, /* terminate */
7450};
7451
82ff165c
BS
7452/*
7453 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7454 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7455 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7456 * boot parameter. This may result in premature OOPS inside
7457 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7458 */
21afa38e
JW
7459static int __init mem_cgroup_swap_init(void)
7460{
2d1c4980
JW
7461 /* No memory control -> no swap control */
7462 if (mem_cgroup_disabled())
7463 cgroup_memory_noswap = true;
7464
7465 if (cgroup_memory_noswap)
eccb52e7
JW
7466 return 0;
7467
7468 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7469 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7470
21afa38e
JW
7471 return 0;
7472}
82ff165c 7473core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7474
7475#endif /* CONFIG_MEMCG_SWAP */