]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm, memcg: prevent memory.min load/store tearing
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
f627c2f5 837 bool compound, int nr_pages)
d52aa412 838{
b2402857
KH
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
0a31bc97 843 if (PageAnon(page))
c9019e9b 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 845 else {
c9019e9b 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 847 if (PageSwapBacked(page))
c9019e9b 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 849 }
55e462b0 850
f627c2f5
KS
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 854 }
b070e65c 855
e401f176
KH
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
c9019e9b 858 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 859 else {
c9019e9b 860 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
861 nr_pages = -nr_pages; /* for event */
862 }
e401f176 863
871789d4 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
865}
866
f53d7ce3
JW
867static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
7a159cc9
JW
869{
870 unsigned long val, next;
871
871789d4
CD
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 874 /* from time_after() in jiffies.h */
6a1a8b80 875 if ((long)(next - val) < 0) {
f53d7ce3
JW
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
bb4cc1a8
AM
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
f53d7ce3
JW
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
f53d7ce3 902
bb4cc1a8
AM
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 905 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
0a31bc97 908 }
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
073219e9 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 922}
33398cf2 923EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 924
d46eb14b
SB
925/**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 934{
d46eb14b
SB
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
0b7f569e 939
54595fe2
KH
940 rcu_read_lock();
941 do {
6f6acb00
MH
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
df381975 948 memcg = root_mem_cgroup;
6f6acb00
MH
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
00d484f3 954 } while (!css_tryget(&memcg->css));
54595fe2 955 rcu_read_unlock();
c0ff4b85 956 return memcg;
54595fe2 957}
d46eb14b
SB
958EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
f745c6f5
SB
960/**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968{
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
8965aa28
SB
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980}
981EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
d46eb14b
SB
983/**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987{
988 if (unlikely(current->active_memcg)) {
8965aa28 989 struct mem_cgroup *memcg;
d46eb14b
SB
990
991 rcu_read_lock();
8965aa28
SB
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
d46eb14b
SB
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001}
54595fe2 1002
5660048c
JW
1003/**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
b213b54f 1016 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1017 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1018 * reclaimers operating on the same node and priority.
5660048c 1019 */
694fbc0f 1020struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1021 struct mem_cgroup *prev,
694fbc0f 1022 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1023{
33398cf2 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1025 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1026 struct mem_cgroup *memcg = NULL;
5ac8fb31 1027 struct mem_cgroup *pos = NULL;
711d3d2c 1028
694fbc0f
AM
1029 if (mem_cgroup_disabled())
1030 return NULL;
5660048c 1031
9f3a0d09
JW
1032 if (!root)
1033 root = root_mem_cgroup;
7d74b06f 1034
9f3a0d09 1035 if (prev && !reclaim)
5ac8fb31 1036 pos = prev;
14067bb3 1037
9f3a0d09
JW
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
5ac8fb31 1040 goto out;
694fbc0f 1041 return root;
9f3a0d09 1042 }
14067bb3 1043
542f85f9 1044 rcu_read_lock();
5f578161 1045
5ac8fb31 1046 if (reclaim) {
ef8f2327 1047 struct mem_cgroup_per_node *mz;
5ac8fb31 1048
ef8f2327 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1050 iter = &mz->iter;
5ac8fb31
JW
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
6df38689 1055 while (1) {
4db0c3c2 1056 pos = READ_ONCE(iter->position);
6df38689
VD
1057 if (!pos || css_tryget(&pos->css))
1058 break;
5ac8fb31 1059 /*
6df38689
VD
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
5ac8fb31 1066 */
6df38689
VD
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
5ac8fb31
JW
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
527a5ec9 1086 }
7d74b06f 1087
5ac8fb31
JW
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
14067bb3 1094
5ac8fb31
JW
1095 if (css == &root->css)
1096 break;
14067bb3 1097
0b8f73e1
JW
1098 if (css_tryget(css))
1099 break;
9f3a0d09 1100
5ac8fb31 1101 memcg = NULL;
9f3a0d09 1102 }
5ac8fb31
JW
1103
1104 if (reclaim) {
5ac8fb31 1105 /*
6df38689
VD
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1109 */
6df38689
VD
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
5ac8fb31
JW
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
9f3a0d09 1119 }
5ac8fb31 1120
542f85f9
MH
1121out_unlock:
1122 rcu_read_unlock();
5ac8fb31 1123out:
c40046f3
MH
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
9f3a0d09 1127 return memcg;
14067bb3 1128}
7d74b06f 1129
5660048c
JW
1130/**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
9f3a0d09
JW
1137{
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142}
7d74b06f 1143
54a83d6b
MC
1144static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
6df38689 1146{
6df38689 1147 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
6df38689 1150
54a83d6b
MC
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1155 }
1156}
1157
54a83d6b
MC
1158static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159{
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177}
1178
7c5f64f8
VD
1179/**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194{
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
f168a9a5 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214}
1215
925b7673 1216/**
dfe0e773 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1218 * @page: the page
f144c390 1219 * @pgdat: pgdat of the page
dfe0e773
JW
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1224 */
599d0c95 1225struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1226{
ef8f2327 1227 struct mem_cgroup_per_node *mz;
925b7673 1228 struct mem_cgroup *memcg;
bea8c150 1229 struct lruvec *lruvec;
6d12e2d8 1230
bea8c150 1231 if (mem_cgroup_disabled()) {
867e5e1d 1232 lruvec = &pgdat->__lruvec;
bea8c150
HD
1233 goto out;
1234 }
925b7673 1235
1306a85a 1236 memcg = page->mem_cgroup;
7512102c 1237 /*
dfe0e773 1238 * Swapcache readahead pages are added to the LRU - and
29833315 1239 * possibly migrated - before they are charged.
7512102c 1240 */
29833315
JW
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
7512102c 1243
ef8f2327 1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1245 lruvec = &mz->lruvec;
1246out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
599d0c95
MG
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
bea8c150 1254 return lruvec;
08e552c6 1255}
b69408e8 1256
925b7673 1257/**
fa9add64
HD
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
b4536f0c 1261 * @zid: zone id of the accounted pages
fa9add64 1262 * @nr_pages: positive when adding or negative when removing
925b7673 1263 *
ca707239
HD
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1267 */
fa9add64 1268void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1269 int zid, int nr_pages)
3f58a829 1270{
ef8f2327 1271 struct mem_cgroup_per_node *mz;
fa9add64 1272 unsigned long *lru_size;
ca707239 1273 long size;
3f58a829
MK
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
ef8f2327 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1279 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
b4536f0c
MH
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
08e552c6 1294}
544122e5 1295
19942822 1296/**
9d11ea9f 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1298 * @memcg: the memory cgroup
19942822 1299 *
9d11ea9f 1300 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1301 * pages.
19942822 1302 */
c0ff4b85 1303static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1304{
3e32cb2e
JW
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
9d11ea9f 1308
3e32cb2e 1309 count = page_counter_read(&memcg->memory);
bbec2e15 1310 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1311 if (count < limit)
1312 margin = limit - count;
1313
7941d214 1314 if (do_memsw_account()) {
3e32cb2e 1315 count = page_counter_read(&memcg->memsw);
bbec2e15 1316 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
cbedbac3
LR
1319 else
1320 margin = 0;
3e32cb2e
JW
1321 }
1322
1323 return margin;
19942822
JW
1324}
1325
32047e2a 1326/*
bdcbb659 1327 * A routine for checking "mem" is under move_account() or not.
32047e2a 1328 *
bdcbb659
QH
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
32047e2a 1332 */
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
2314b42d
JW
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
c8713d0b
JW
1371static char *memory_stat_format(struct mem_cgroup *memcg)
1372{
1373 struct seq_buf s;
1374 int i;
71cd3113 1375
c8713d0b
JW
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
ebc5d83d
KK
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456
ebc5d83d
KK
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1473
1474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1476 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483
1484 return s.buffer;
1485}
71cd3113 1486
58cf188e 1487#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1488/**
f0c867d9 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
e222432b
BS
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1493 *
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1496 */
f0c867d9 1497void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1498{
e222432b
BS
1499 rcu_read_lock();
1500
f0c867d9 1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
2415b9f5 1506 if (p) {
f0c867d9 1507 pr_cont(",task_memcg=");
2415b9f5 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1509 }
e222432b 1510 rcu_read_unlock();
f0c867d9 1511}
1512
1513/**
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1517 */
1518void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519{
c8713d0b 1520 char *buf;
e222432b 1521
3e32cb2e
JW
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
15b42562 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
1528 K((u64)memcg->swap.max), memcg->swap.failcnt);
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1536 }
c8713d0b
JW
1537
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
e222432b
BS
1546}
1547
a63d83f4
DR
1548/*
1549 * Return the memory (and swap, if configured) limit for a memcg.
1550 */
bbec2e15 1551unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1552{
bbec2e15 1553 unsigned long max;
f3e8eb70 1554
15b42562 1555 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1556 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
9a5a8f19 1559
bbec2e15
RG
1560 memsw_max = memcg->memsw.max;
1561 swap_max = memcg->swap.max;
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
9a5a8f19 1564 }
bbec2e15 1565 return max;
a63d83f4
DR
1566}
1567
9783aa99
CD
1568unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569{
1570 return page_counter_read(&memcg->memory);
1571}
1572
b6e6edcf 1573static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1574 int order)
9cbb78bb 1575{
6e0fc46d
DR
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
2a966b77 1579 .memcg = memcg,
6e0fc46d
DR
1580 .gfp_mask = gfp_mask,
1581 .order = order,
6e0fc46d 1582 };
7c5f64f8 1583 bool ret;
9cbb78bb 1584
7775face
TH
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1587 /*
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1590 */
1591 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1592 mutex_unlock(&oom_lock);
7c5f64f8 1593 return ret;
9cbb78bb
DR
1594}
1595
0608f43d 1596static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1597 pg_data_t *pgdat,
0608f43d
AM
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1600{
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1607 .pgdat = pgdat,
0608f43d
AM
1608 };
1609
3e32cb2e 1610 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1611
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1617 /*
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1621 */
1622 if (!total)
1623 break;
1624 /*
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1629 */
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1633 }
1634 continue;
1635 }
a9dd0a83 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1637 pgdat, &nr_scanned);
0608f43d 1638 *total_scanned += nr_scanned;
3e32cb2e 1639 if (!soft_limit_excess(root_memcg))
0608f43d 1640 break;
6d61ef40 1641 }
0608f43d
AM
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
6d61ef40
BS
1644}
1645
0056f4e6
JW
1646#ifdef CONFIG_LOCKDEP
1647static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1649};
1650#endif
1651
fb2a6fc5
JW
1652static DEFINE_SPINLOCK(memcg_oom_lock);
1653
867578cb
KH
1654/*
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1657 */
fb2a6fc5 1658static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1659{
79dfdacc 1660 struct mem_cgroup *iter, *failed = NULL;
a636b327 1661
fb2a6fc5
JW
1662 spin_lock(&memcg_oom_lock);
1663
9f3a0d09 1664 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1665 if (iter->oom_lock) {
79dfdacc
MH
1666 /*
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1669 */
79dfdacc 1670 failed = iter;
9f3a0d09
JW
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
23751be0
JW
1673 } else
1674 iter->oom_lock = true;
7d74b06f 1675 }
867578cb 1676
fb2a6fc5
JW
1677 if (failed) {
1678 /*
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1681 */
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1686 }
1687 iter->oom_lock = false;
79dfdacc 1688 }
0056f4e6
JW
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1691
1692 spin_unlock(&memcg_oom_lock);
1693
1694 return !failed;
a636b327 1695}
0b7f569e 1696
fb2a6fc5 1697static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1698{
7d74b06f
KH
1699 struct mem_cgroup *iter;
1700
fb2a6fc5 1701 spin_lock(&memcg_oom_lock);
5facae4f 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1703 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1704 iter->oom_lock = false;
fb2a6fc5 1705 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1706}
1707
c0ff4b85 1708static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1709{
1710 struct mem_cgroup *iter;
1711
c2b42d3c 1712 spin_lock(&memcg_oom_lock);
c0ff4b85 1713 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1716}
1717
c0ff4b85 1718static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1719{
1720 struct mem_cgroup *iter;
1721
867578cb
KH
1722 /*
1723 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1725 */
c2b42d3c 1726 spin_lock(&memcg_oom_lock);
c0ff4b85 1727 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1731}
1732
867578cb
KH
1733static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734
dc98df5a 1735struct oom_wait_info {
d79154bb 1736 struct mem_cgroup *memcg;
ac6424b9 1737 wait_queue_entry_t wait;
dc98df5a
KH
1738};
1739
ac6424b9 1740static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1741 unsigned mode, int sync, void *arg)
1742{
d79154bb
HD
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1745 struct oom_wait_info *oom_wait_info;
1746
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1748 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1749
2314b42d
JW
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1752 return 0;
dc98df5a
KH
1753 return autoremove_wake_function(wait, mode, sync, arg);
1754}
1755
c0ff4b85 1756static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1757{
c2b42d3c
TH
1758 /*
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1765 */
1766 if (memcg && memcg->under_oom)
f4b90b70 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1768}
1769
29ef680a
MH
1770enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1775};
1776
1777static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1778{
7056d3a3
MH
1779 enum oom_status ret;
1780 bool locked;
1781
29ef680a
MH
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1784
7a1adfdd
RG
1785 memcg_memory_event(memcg, MEMCG_OOM);
1786
867578cb 1787 /*
49426420
JW
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1791 *
29ef680a
MH
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
49426420 1796 *
29ef680a
MH
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1801 *
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
867578cb 1804 */
29ef680a
MH
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1812
1813 return OOM_ASYNC;
1814 }
1815
7056d3a3
MH
1816 mem_cgroup_mark_under_oom(memcg);
1817
1818 locked = mem_cgroup_oom_trylock(memcg);
1819
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1822
1823 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1828
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
29ef680a 1831
7056d3a3 1832 return ret;
3812c8c8
JW
1833}
1834
1835/**
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1837 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1838 *
49426420
JW
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
3812c8c8 1841 *
49426420 1842 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1847 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1848 *
1849 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1850 * completed, %false otherwise.
3812c8c8 1851 */
49426420 1852bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1853{
626ebc41 1854 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1855 struct oom_wait_info owait;
49426420 1856 bool locked;
3812c8c8
JW
1857
1858 /* OOM is global, do not handle */
3812c8c8 1859 if (!memcg)
49426420 1860 return false;
3812c8c8 1861
7c5f64f8 1862 if (!handle)
49426420 1863 goto cleanup;
3812c8c8
JW
1864
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
2055da97 1869 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1870
3812c8c8 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
49426420 1884 } else {
3812c8c8 1885 schedule();
49426420
JW
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1888 }
1889
1890 if (locked) {
fb2a6fc5
JW
1891 mem_cgroup_oom_unlock(memcg);
1892 /*
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1896 */
1897 memcg_oom_recover(memcg);
1898 }
49426420 1899cleanup:
626ebc41 1900 current->memcg_in_oom = NULL;
3812c8c8 1901 css_put(&memcg->css);
867578cb 1902 return true;
0b7f569e
KH
1903}
1904
3d8b38eb
RG
1905/**
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909 *
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1912 *
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914 */
1915struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1917{
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1920
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1923
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1926
1927 rcu_read_lock();
1928
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1932
1933 /*
1934 * Traverse the memory cgroup hierarchy from the victim task's
1935 * cgroup up to the OOMing cgroup (or root) to find the
1936 * highest-level memory cgroup with oom.group set.
1937 */
1938 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1939 if (memcg->oom_group)
1940 oom_group = memcg;
1941
1942 if (memcg == oom_domain)
1943 break;
1944 }
1945
1946 if (oom_group)
1947 css_get(&oom_group->css);
1948out:
1949 rcu_read_unlock();
1950
1951 return oom_group;
1952}
1953
1954void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1955{
1956 pr_info("Tasks in ");
1957 pr_cont_cgroup_path(memcg->css.cgroup);
1958 pr_cont(" are going to be killed due to memory.oom.group set\n");
1959}
1960
d7365e78 1961/**
81f8c3a4
JW
1962 * lock_page_memcg - lock a page->mem_cgroup binding
1963 * @page: the page
32047e2a 1964 *
81f8c3a4 1965 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1966 * another cgroup.
1967 *
1968 * It ensures lifetime of the returned memcg. Caller is responsible
1969 * for the lifetime of the page; __unlock_page_memcg() is available
1970 * when @page might get freed inside the locked section.
d69b042f 1971 */
739f79fc 1972struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1973{
1974 struct mem_cgroup *memcg;
6de22619 1975 unsigned long flags;
89c06bd5 1976
6de22619
JW
1977 /*
1978 * The RCU lock is held throughout the transaction. The fast
1979 * path can get away without acquiring the memcg->move_lock
1980 * because page moving starts with an RCU grace period.
739f79fc
JW
1981 *
1982 * The RCU lock also protects the memcg from being freed when
1983 * the page state that is going to change is the only thing
1984 * preventing the page itself from being freed. E.g. writeback
1985 * doesn't hold a page reference and relies on PG_writeback to
1986 * keep off truncation, migration and so forth.
1987 */
d7365e78
JW
1988 rcu_read_lock();
1989
1990 if (mem_cgroup_disabled())
739f79fc 1991 return NULL;
89c06bd5 1992again:
1306a85a 1993 memcg = page->mem_cgroup;
29833315 1994 if (unlikely(!memcg))
739f79fc 1995 return NULL;
d7365e78 1996
bdcbb659 1997 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1998 return memcg;
89c06bd5 1999
6de22619 2000 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2001 if (memcg != page->mem_cgroup) {
6de22619 2002 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2003 goto again;
2004 }
6de22619
JW
2005
2006 /*
2007 * When charge migration first begins, we can have locked and
2008 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2009 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2010 */
2011 memcg->move_lock_task = current;
2012 memcg->move_lock_flags = flags;
d7365e78 2013
739f79fc 2014 return memcg;
89c06bd5 2015}
81f8c3a4 2016EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2017
d7365e78 2018/**
739f79fc
JW
2019 * __unlock_page_memcg - unlock and unpin a memcg
2020 * @memcg: the memcg
2021 *
2022 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2023 */
739f79fc 2024void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2025{
6de22619
JW
2026 if (memcg && memcg->move_lock_task == current) {
2027 unsigned long flags = memcg->move_lock_flags;
2028
2029 memcg->move_lock_task = NULL;
2030 memcg->move_lock_flags = 0;
2031
2032 spin_unlock_irqrestore(&memcg->move_lock, flags);
2033 }
89c06bd5 2034
d7365e78 2035 rcu_read_unlock();
89c06bd5 2036}
739f79fc
JW
2037
2038/**
2039 * unlock_page_memcg - unlock a page->mem_cgroup binding
2040 * @page: the page
2041 */
2042void unlock_page_memcg(struct page *page)
2043{
2044 __unlock_page_memcg(page->mem_cgroup);
2045}
81f8c3a4 2046EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2047
cdec2e42
KH
2048struct memcg_stock_pcp {
2049 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2050 unsigned int nr_pages;
cdec2e42 2051 struct work_struct work;
26fe6168 2052 unsigned long flags;
a0db00fc 2053#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2054};
2055static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2056static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2057
a0956d54
SS
2058/**
2059 * consume_stock: Try to consume stocked charge on this cpu.
2060 * @memcg: memcg to consume from.
2061 * @nr_pages: how many pages to charge.
2062 *
2063 * The charges will only happen if @memcg matches the current cpu's memcg
2064 * stock, and at least @nr_pages are available in that stock. Failure to
2065 * service an allocation will refill the stock.
2066 *
2067 * returns true if successful, false otherwise.
cdec2e42 2068 */
a0956d54 2069static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2070{
2071 struct memcg_stock_pcp *stock;
db2ba40c 2072 unsigned long flags;
3e32cb2e 2073 bool ret = false;
cdec2e42 2074
a983b5eb 2075 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2076 return ret;
a0956d54 2077
db2ba40c
JW
2078 local_irq_save(flags);
2079
2080 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2081 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2082 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2083 ret = true;
2084 }
db2ba40c
JW
2085
2086 local_irq_restore(flags);
2087
cdec2e42
KH
2088 return ret;
2089}
2090
2091/*
3e32cb2e 2092 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2093 */
2094static void drain_stock(struct memcg_stock_pcp *stock)
2095{
2096 struct mem_cgroup *old = stock->cached;
2097
11c9ea4e 2098 if (stock->nr_pages) {
3e32cb2e 2099 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2100 if (do_memsw_account())
3e32cb2e 2101 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2102 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2103 stock->nr_pages = 0;
cdec2e42
KH
2104 }
2105 stock->cached = NULL;
cdec2e42
KH
2106}
2107
cdec2e42
KH
2108static void drain_local_stock(struct work_struct *dummy)
2109{
db2ba40c
JW
2110 struct memcg_stock_pcp *stock;
2111 unsigned long flags;
2112
72f0184c
MH
2113 /*
2114 * The only protection from memory hotplug vs. drain_stock races is
2115 * that we always operate on local CPU stock here with IRQ disabled
2116 */
db2ba40c
JW
2117 local_irq_save(flags);
2118
2119 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2120 drain_stock(stock);
26fe6168 2121 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2122
2123 local_irq_restore(flags);
cdec2e42
KH
2124}
2125
2126/*
3e32cb2e 2127 * Cache charges(val) to local per_cpu area.
320cc51d 2128 * This will be consumed by consume_stock() function, later.
cdec2e42 2129 */
c0ff4b85 2130static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2131{
db2ba40c
JW
2132 struct memcg_stock_pcp *stock;
2133 unsigned long flags;
2134
2135 local_irq_save(flags);
cdec2e42 2136
db2ba40c 2137 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2138 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2139 drain_stock(stock);
c0ff4b85 2140 stock->cached = memcg;
cdec2e42 2141 }
11c9ea4e 2142 stock->nr_pages += nr_pages;
db2ba40c 2143
a983b5eb 2144 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2145 drain_stock(stock);
2146
db2ba40c 2147 local_irq_restore(flags);
cdec2e42
KH
2148}
2149
2150/*
c0ff4b85 2151 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2152 * of the hierarchy under it.
cdec2e42 2153 */
6d3d6aa2 2154static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2155{
26fe6168 2156 int cpu, curcpu;
d38144b7 2157
6d3d6aa2
JW
2158 /* If someone's already draining, avoid adding running more workers. */
2159 if (!mutex_trylock(&percpu_charge_mutex))
2160 return;
72f0184c
MH
2161 /*
2162 * Notify other cpus that system-wide "drain" is running
2163 * We do not care about races with the cpu hotplug because cpu down
2164 * as well as workers from this path always operate on the local
2165 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2166 */
5af12d0e 2167 curcpu = get_cpu();
cdec2e42
KH
2168 for_each_online_cpu(cpu) {
2169 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2170 struct mem_cgroup *memcg;
e1a366be 2171 bool flush = false;
26fe6168 2172
e1a366be 2173 rcu_read_lock();
c0ff4b85 2174 memcg = stock->cached;
e1a366be
RG
2175 if (memcg && stock->nr_pages &&
2176 mem_cgroup_is_descendant(memcg, root_memcg))
2177 flush = true;
2178 rcu_read_unlock();
2179
2180 if (flush &&
2181 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2182 if (cpu == curcpu)
2183 drain_local_stock(&stock->work);
2184 else
2185 schedule_work_on(cpu, &stock->work);
2186 }
cdec2e42 2187 }
5af12d0e 2188 put_cpu();
9f50fad6 2189 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2190}
2191
308167fc 2192static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2193{
cdec2e42 2194 struct memcg_stock_pcp *stock;
42a30035 2195 struct mem_cgroup *memcg, *mi;
cdec2e42 2196
cdec2e42
KH
2197 stock = &per_cpu(memcg_stock, cpu);
2198 drain_stock(stock);
a983b5eb
JW
2199
2200 for_each_mem_cgroup(memcg) {
2201 int i;
2202
2203 for (i = 0; i < MEMCG_NR_STAT; i++) {
2204 int nid;
2205 long x;
2206
871789d4 2207 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2208 if (x)
42a30035
JW
2209 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2210 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2211
2212 if (i >= NR_VM_NODE_STAT_ITEMS)
2213 continue;
2214
2215 for_each_node(nid) {
2216 struct mem_cgroup_per_node *pn;
2217
2218 pn = mem_cgroup_nodeinfo(memcg, nid);
2219 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2220 if (x)
42a30035
JW
2221 do {
2222 atomic_long_add(x, &pn->lruvec_stat[i]);
2223 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2224 }
2225 }
2226
e27be240 2227 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2228 long x;
2229
871789d4 2230 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2231 if (x)
42a30035
JW
2232 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2233 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2234 }
2235 }
2236
308167fc 2237 return 0;
cdec2e42
KH
2238}
2239
f7e1cb6e
JW
2240static void reclaim_high(struct mem_cgroup *memcg,
2241 unsigned int nr_pages,
2242 gfp_t gfp_mask)
2243{
2244 do {
f6f989c5 2245 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
f7e1cb6e 2246 continue;
e27be240 2247 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2248 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2249 } while ((memcg = parent_mem_cgroup(memcg)));
2250}
2251
2252static void high_work_func(struct work_struct *work)
2253{
2254 struct mem_cgroup *memcg;
2255
2256 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2257 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2258}
2259
0e4b01df
CD
2260/*
2261 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2262 * enough to still cause a significant slowdown in most cases, while still
2263 * allowing diagnostics and tracing to proceed without becoming stuck.
2264 */
2265#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2266
2267/*
2268 * When calculating the delay, we use these either side of the exponentiation to
2269 * maintain precision and scale to a reasonable number of jiffies (see the table
2270 * below.
2271 *
2272 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2273 * overage ratio to a delay.
2274 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2275 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2276 * to produce a reasonable delay curve.
2277 *
2278 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2279 * reasonable delay curve compared to precision-adjusted overage, not
2280 * penalising heavily at first, but still making sure that growth beyond the
2281 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2282 * example, with a high of 100 megabytes:
2283 *
2284 * +-------+------------------------+
2285 * | usage | time to allocate in ms |
2286 * +-------+------------------------+
2287 * | 100M | 0 |
2288 * | 101M | 6 |
2289 * | 102M | 25 |
2290 * | 103M | 57 |
2291 * | 104M | 102 |
2292 * | 105M | 159 |
2293 * | 106M | 230 |
2294 * | 107M | 313 |
2295 * | 108M | 409 |
2296 * | 109M | 518 |
2297 * | 110M | 639 |
2298 * | 111M | 774 |
2299 * | 112M | 921 |
2300 * | 113M | 1081 |
2301 * | 114M | 1254 |
2302 * | 115M | 1439 |
2303 * | 116M | 1638 |
2304 * | 117M | 1849 |
2305 * | 118M | 2000 |
2306 * | 119M | 2000 |
2307 * | 120M | 2000 |
2308 * +-------+------------------------+
2309 */
2310 #define MEMCG_DELAY_PRECISION_SHIFT 20
2311 #define MEMCG_DELAY_SCALING_SHIFT 14
2312
b23afb93 2313/*
e26733e0
CD
2314 * Get the number of jiffies that we should penalise a mischievous cgroup which
2315 * is exceeding its memory.high by checking both it and its ancestors.
b23afb93 2316 */
e26733e0
CD
2317static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2318 unsigned int nr_pages)
b23afb93 2319{
e26733e0
CD
2320 unsigned long penalty_jiffies;
2321 u64 max_overage = 0;
b23afb93 2322
e26733e0
CD
2323 do {
2324 unsigned long usage, high;
2325 u64 overage;
b23afb93 2326
e26733e0
CD
2327 usage = page_counter_read(&memcg->memory);
2328 high = READ_ONCE(memcg->high);
2329
2330 /*
2331 * Prevent division by 0 in overage calculation by acting as if
2332 * it was a threshold of 1 page
2333 */
2334 high = max(high, 1UL);
2335
2336 overage = usage - high;
2337 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2338 overage = div64_u64(overage, high);
2339
2340 if (overage > max_overage)
2341 max_overage = overage;
2342 } while ((memcg = parent_mem_cgroup(memcg)) &&
2343 !mem_cgroup_is_root(memcg));
2344
2345 if (!max_overage)
2346 return 0;
0e4b01df
CD
2347
2348 /*
0e4b01df
CD
2349 * We use overage compared to memory.high to calculate the number of
2350 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2351 * fairly lenient on small overages, and increasingly harsh when the
2352 * memcg in question makes it clear that it has no intention of stopping
2353 * its crazy behaviour, so we exponentially increase the delay based on
2354 * overage amount.
2355 */
e26733e0
CD
2356 penalty_jiffies = max_overage * max_overage * HZ;
2357 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2358 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2359
2360 /*
2361 * Factor in the task's own contribution to the overage, such that four
2362 * N-sized allocations are throttled approximately the same as one
2363 * 4N-sized allocation.
2364 *
2365 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2366 * larger the current charge patch is than that.
2367 */
2368 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2369
2370 /*
2371 * Clamp the max delay per usermode return so as to still keep the
2372 * application moving forwards and also permit diagnostics, albeit
2373 * extremely slowly.
2374 */
e26733e0
CD
2375 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2376}
2377
2378/*
2379 * Scheduled by try_charge() to be executed from the userland return path
2380 * and reclaims memory over the high limit.
2381 */
2382void mem_cgroup_handle_over_high(void)
2383{
2384 unsigned long penalty_jiffies;
2385 unsigned long pflags;
2386 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2387 struct mem_cgroup *memcg;
2388
2389 if (likely(!nr_pages))
2390 return;
2391
2392 memcg = get_mem_cgroup_from_mm(current->mm);
2393 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2394 current->memcg_nr_pages_over_high = 0;
2395
2396 /*
2397 * memory.high is breached and reclaim is unable to keep up. Throttle
2398 * allocators proactively to slow down excessive growth.
2399 */
2400 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
0e4b01df
CD
2401
2402 /*
2403 * Don't sleep if the amount of jiffies this memcg owes us is so low
2404 * that it's not even worth doing, in an attempt to be nice to those who
2405 * go only a small amount over their memory.high value and maybe haven't
2406 * been aggressively reclaimed enough yet.
2407 */
2408 if (penalty_jiffies <= HZ / 100)
2409 goto out;
2410
2411 /*
2412 * If we exit early, we're guaranteed to die (since
2413 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2414 * need to account for any ill-begotten jiffies to pay them off later.
2415 */
2416 psi_memstall_enter(&pflags);
2417 schedule_timeout_killable(penalty_jiffies);
2418 psi_memstall_leave(&pflags);
2419
2420out:
2421 css_put(&memcg->css);
b23afb93
TH
2422}
2423
00501b53
JW
2424static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2425 unsigned int nr_pages)
8a9f3ccd 2426{
a983b5eb 2427 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2428 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2429 struct mem_cgroup *mem_over_limit;
3e32cb2e 2430 struct page_counter *counter;
6539cc05 2431 unsigned long nr_reclaimed;
b70a2a21
JW
2432 bool may_swap = true;
2433 bool drained = false;
29ef680a 2434 enum oom_status oom_status;
a636b327 2435
ce00a967 2436 if (mem_cgroup_is_root(memcg))
10d53c74 2437 return 0;
6539cc05 2438retry:
b6b6cc72 2439 if (consume_stock(memcg, nr_pages))
10d53c74 2440 return 0;
8a9f3ccd 2441
7941d214 2442 if (!do_memsw_account() ||
6071ca52
JW
2443 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2444 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2445 goto done_restock;
7941d214 2446 if (do_memsw_account())
3e32cb2e
JW
2447 page_counter_uncharge(&memcg->memsw, batch);
2448 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2449 } else {
3e32cb2e 2450 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2451 may_swap = false;
3fbe7244 2452 }
7a81b88c 2453
6539cc05
JW
2454 if (batch > nr_pages) {
2455 batch = nr_pages;
2456 goto retry;
2457 }
6d61ef40 2458
869712fd
JW
2459 /*
2460 * Memcg doesn't have a dedicated reserve for atomic
2461 * allocations. But like the global atomic pool, we need to
2462 * put the burden of reclaim on regular allocation requests
2463 * and let these go through as privileged allocations.
2464 */
2465 if (gfp_mask & __GFP_ATOMIC)
2466 goto force;
2467
06b078fc
JW
2468 /*
2469 * Unlike in global OOM situations, memcg is not in a physical
2470 * memory shortage. Allow dying and OOM-killed tasks to
2471 * bypass the last charges so that they can exit quickly and
2472 * free their memory.
2473 */
7775face 2474 if (unlikely(should_force_charge()))
10d53c74 2475 goto force;
06b078fc 2476
89a28483
JW
2477 /*
2478 * Prevent unbounded recursion when reclaim operations need to
2479 * allocate memory. This might exceed the limits temporarily,
2480 * but we prefer facilitating memory reclaim and getting back
2481 * under the limit over triggering OOM kills in these cases.
2482 */
2483 if (unlikely(current->flags & PF_MEMALLOC))
2484 goto force;
2485
06b078fc
JW
2486 if (unlikely(task_in_memcg_oom(current)))
2487 goto nomem;
2488
d0164adc 2489 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2490 goto nomem;
4b534334 2491
e27be240 2492 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2493
b70a2a21
JW
2494 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2495 gfp_mask, may_swap);
6539cc05 2496
61e02c74 2497 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2498 goto retry;
28c34c29 2499
b70a2a21 2500 if (!drained) {
6d3d6aa2 2501 drain_all_stock(mem_over_limit);
b70a2a21
JW
2502 drained = true;
2503 goto retry;
2504 }
2505
28c34c29
JW
2506 if (gfp_mask & __GFP_NORETRY)
2507 goto nomem;
6539cc05
JW
2508 /*
2509 * Even though the limit is exceeded at this point, reclaim
2510 * may have been able to free some pages. Retry the charge
2511 * before killing the task.
2512 *
2513 * Only for regular pages, though: huge pages are rather
2514 * unlikely to succeed so close to the limit, and we fall back
2515 * to regular pages anyway in case of failure.
2516 */
61e02c74 2517 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2518 goto retry;
2519 /*
2520 * At task move, charge accounts can be doubly counted. So, it's
2521 * better to wait until the end of task_move if something is going on.
2522 */
2523 if (mem_cgroup_wait_acct_move(mem_over_limit))
2524 goto retry;
2525
9b130619
JW
2526 if (nr_retries--)
2527 goto retry;
2528
38d38493 2529 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2530 goto nomem;
2531
06b078fc 2532 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2533 goto force;
06b078fc 2534
6539cc05 2535 if (fatal_signal_pending(current))
10d53c74 2536 goto force;
6539cc05 2537
29ef680a
MH
2538 /*
2539 * keep retrying as long as the memcg oom killer is able to make
2540 * a forward progress or bypass the charge if the oom killer
2541 * couldn't make any progress.
2542 */
2543 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2544 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2545 switch (oom_status) {
2546 case OOM_SUCCESS:
2547 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2548 goto retry;
2549 case OOM_FAILED:
2550 goto force;
2551 default:
2552 goto nomem;
2553 }
7a81b88c 2554nomem:
6d1fdc48 2555 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2556 return -ENOMEM;
10d53c74
TH
2557force:
2558 /*
2559 * The allocation either can't fail or will lead to more memory
2560 * being freed very soon. Allow memory usage go over the limit
2561 * temporarily by force charging it.
2562 */
2563 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2564 if (do_memsw_account())
10d53c74
TH
2565 page_counter_charge(&memcg->memsw, nr_pages);
2566 css_get_many(&memcg->css, nr_pages);
2567
2568 return 0;
6539cc05
JW
2569
2570done_restock:
e8ea14cc 2571 css_get_many(&memcg->css, batch);
6539cc05
JW
2572 if (batch > nr_pages)
2573 refill_stock(memcg, batch - nr_pages);
b23afb93 2574
241994ed 2575 /*
b23afb93
TH
2576 * If the hierarchy is above the normal consumption range, schedule
2577 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2578 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2579 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2580 * not recorded as it most likely matches current's and won't
2581 * change in the meantime. As high limit is checked again before
2582 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2583 */
2584 do {
f6f989c5 2585 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
f7e1cb6e
JW
2586 /* Don't bother a random interrupted task */
2587 if (in_interrupt()) {
2588 schedule_work(&memcg->high_work);
2589 break;
2590 }
9516a18a 2591 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2592 set_notify_resume(current);
2593 break;
2594 }
241994ed 2595 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2596
2597 return 0;
7a81b88c 2598}
8a9f3ccd 2599
00501b53 2600static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2601{
ce00a967
JW
2602 if (mem_cgroup_is_root(memcg))
2603 return;
2604
3e32cb2e 2605 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2606 if (do_memsw_account())
3e32cb2e 2607 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2608
e8ea14cc 2609 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2610}
2611
0a31bc97
JW
2612static void lock_page_lru(struct page *page, int *isolated)
2613{
f4b7e272 2614 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2615
f4b7e272 2616 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2617 if (PageLRU(page)) {
2618 struct lruvec *lruvec;
2619
f4b7e272 2620 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2621 ClearPageLRU(page);
2622 del_page_from_lru_list(page, lruvec, page_lru(page));
2623 *isolated = 1;
2624 } else
2625 *isolated = 0;
2626}
2627
2628static void unlock_page_lru(struct page *page, int isolated)
2629{
f4b7e272 2630 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2631
2632 if (isolated) {
2633 struct lruvec *lruvec;
2634
f4b7e272 2635 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2636 VM_BUG_ON_PAGE(PageLRU(page), page);
2637 SetPageLRU(page);
2638 add_page_to_lru_list(page, lruvec, page_lru(page));
2639 }
f4b7e272 2640 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2641}
2642
00501b53 2643static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2644 bool lrucare)
7a81b88c 2645{
0a31bc97 2646 int isolated;
9ce70c02 2647
1306a85a 2648 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2649
2650 /*
2651 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2652 * may already be on some other mem_cgroup's LRU. Take care of it.
2653 */
0a31bc97
JW
2654 if (lrucare)
2655 lock_page_lru(page, &isolated);
9ce70c02 2656
0a31bc97
JW
2657 /*
2658 * Nobody should be changing or seriously looking at
1306a85a 2659 * page->mem_cgroup at this point:
0a31bc97
JW
2660 *
2661 * - the page is uncharged
2662 *
2663 * - the page is off-LRU
2664 *
2665 * - an anonymous fault has exclusive page access, except for
2666 * a locked page table
2667 *
2668 * - a page cache insertion, a swapin fault, or a migration
2669 * have the page locked
2670 */
1306a85a 2671 page->mem_cgroup = memcg;
9ce70c02 2672
0a31bc97
JW
2673 if (lrucare)
2674 unlock_page_lru(page, isolated);
7a81b88c 2675}
66e1707b 2676
84c07d11 2677#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2678/*
2679 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2680 *
2681 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2682 * cgroup_mutex, etc.
2683 */
2684struct mem_cgroup *mem_cgroup_from_obj(void *p)
2685{
2686 struct page *page;
2687
2688 if (mem_cgroup_disabled())
2689 return NULL;
2690
2691 page = virt_to_head_page(p);
2692
2693 /*
2694 * Slab pages don't have page->mem_cgroup set because corresponding
2695 * kmem caches can be reparented during the lifetime. That's why
2696 * memcg_from_slab_page() should be used instead.
2697 */
2698 if (PageSlab(page))
2699 return memcg_from_slab_page(page);
2700
2701 /* All other pages use page->mem_cgroup */
2702 return page->mem_cgroup;
2703}
2704
f3bb3043 2705static int memcg_alloc_cache_id(void)
55007d84 2706{
f3bb3043
VD
2707 int id, size;
2708 int err;
2709
dbcf73e2 2710 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2711 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2712 if (id < 0)
2713 return id;
55007d84 2714
dbcf73e2 2715 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2716 return id;
2717
2718 /*
2719 * There's no space for the new id in memcg_caches arrays,
2720 * so we have to grow them.
2721 */
05257a1a 2722 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2723
2724 size = 2 * (id + 1);
55007d84
GC
2725 if (size < MEMCG_CACHES_MIN_SIZE)
2726 size = MEMCG_CACHES_MIN_SIZE;
2727 else if (size > MEMCG_CACHES_MAX_SIZE)
2728 size = MEMCG_CACHES_MAX_SIZE;
2729
f3bb3043 2730 err = memcg_update_all_caches(size);
60d3fd32
VD
2731 if (!err)
2732 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2733 if (!err)
2734 memcg_nr_cache_ids = size;
2735
2736 up_write(&memcg_cache_ids_sem);
2737
f3bb3043 2738 if (err) {
dbcf73e2 2739 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2740 return err;
2741 }
2742 return id;
2743}
2744
2745static void memcg_free_cache_id(int id)
2746{
dbcf73e2 2747 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2748}
2749
d5b3cf71 2750struct memcg_kmem_cache_create_work {
5722d094
VD
2751 struct mem_cgroup *memcg;
2752 struct kmem_cache *cachep;
2753 struct work_struct work;
2754};
2755
d5b3cf71 2756static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2757{
d5b3cf71
VD
2758 struct memcg_kmem_cache_create_work *cw =
2759 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2760 struct mem_cgroup *memcg = cw->memcg;
2761 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2762
d5b3cf71 2763 memcg_create_kmem_cache(memcg, cachep);
bd673145 2764
5722d094 2765 css_put(&memcg->css);
d7f25f8a
GC
2766 kfree(cw);
2767}
2768
2769/*
2770 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2771 */
85cfb245 2772static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2773 struct kmem_cache *cachep)
d7f25f8a 2774{
d5b3cf71 2775 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2776
f0a3a24b
RG
2777 if (!css_tryget_online(&memcg->css))
2778 return;
2779
c892fd82 2780 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2781 if (!cw)
d7f25f8a 2782 return;
8135be5a 2783
d7f25f8a
GC
2784 cw->memcg = memcg;
2785 cw->cachep = cachep;
d5b3cf71 2786 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2787
17cc4dfe 2788 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2789}
2790
45264778
VD
2791static inline bool memcg_kmem_bypass(void)
2792{
2793 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2794 return true;
2795 return false;
2796}
2797
2798/**
2799 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2800 * @cachep: the original global kmem cache
2801 *
d7f25f8a
GC
2802 * Return the kmem_cache we're supposed to use for a slab allocation.
2803 * We try to use the current memcg's version of the cache.
2804 *
45264778
VD
2805 * If the cache does not exist yet, if we are the first user of it, we
2806 * create it asynchronously in a workqueue and let the current allocation
2807 * go through with the original cache.
d7f25f8a 2808 *
45264778
VD
2809 * This function takes a reference to the cache it returns to assure it
2810 * won't get destroyed while we are working with it. Once the caller is
2811 * done with it, memcg_kmem_put_cache() must be called to release the
2812 * reference.
d7f25f8a 2813 */
45264778 2814struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2815{
2816 struct mem_cgroup *memcg;
959c8963 2817 struct kmem_cache *memcg_cachep;
f0a3a24b 2818 struct memcg_cache_array *arr;
2a4db7eb 2819 int kmemcg_id;
d7f25f8a 2820
f7ce3190 2821 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2822
45264778 2823 if (memcg_kmem_bypass())
230e9fc2
VD
2824 return cachep;
2825
f0a3a24b
RG
2826 rcu_read_lock();
2827
2828 if (unlikely(current->active_memcg))
2829 memcg = current->active_memcg;
2830 else
2831 memcg = mem_cgroup_from_task(current);
2832
2833 if (!memcg || memcg == root_mem_cgroup)
2834 goto out_unlock;
2835
4db0c3c2 2836 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2837 if (kmemcg_id < 0)
f0a3a24b 2838 goto out_unlock;
d7f25f8a 2839
f0a3a24b
RG
2840 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2841
2842 /*
2843 * Make sure we will access the up-to-date value. The code updating
2844 * memcg_caches issues a write barrier to match the data dependency
2845 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2846 */
2847 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2848
2849 /*
2850 * If we are in a safe context (can wait, and not in interrupt
2851 * context), we could be be predictable and return right away.
2852 * This would guarantee that the allocation being performed
2853 * already belongs in the new cache.
2854 *
2855 * However, there are some clashes that can arrive from locking.
2856 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2857 * memcg_create_kmem_cache, this means no further allocation
2858 * could happen with the slab_mutex held. So it's better to
2859 * defer everything.
f0a3a24b
RG
2860 *
2861 * If the memcg is dying or memcg_cache is about to be released,
2862 * don't bother creating new kmem_caches. Because memcg_cachep
2863 * is ZEROed as the fist step of kmem offlining, we don't need
2864 * percpu_ref_tryget_live() here. css_tryget_online() check in
2865 * memcg_schedule_kmem_cache_create() will prevent us from
2866 * creation of a new kmem_cache.
ca0dde97 2867 */
f0a3a24b
RG
2868 if (unlikely(!memcg_cachep))
2869 memcg_schedule_kmem_cache_create(memcg, cachep);
2870 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2871 cachep = memcg_cachep;
2872out_unlock:
2873 rcu_read_unlock();
ca0dde97 2874 return cachep;
d7f25f8a 2875}
d7f25f8a 2876
45264778
VD
2877/**
2878 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2879 * @cachep: the cache returned by memcg_kmem_get_cache
2880 */
2881void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2882{
2883 if (!is_root_cache(cachep))
f0a3a24b 2884 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2885}
2886
45264778 2887/**
4b13f64d 2888 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2889 * @memcg: memory cgroup to charge
45264778 2890 * @gfp: reclaim mode
92d0510c 2891 * @nr_pages: number of pages to charge
45264778
VD
2892 *
2893 * Returns 0 on success, an error code on failure.
2894 */
4b13f64d
RG
2895int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2896 unsigned int nr_pages)
7ae1e1d0 2897{
f3ccb2c4 2898 struct page_counter *counter;
7ae1e1d0
GC
2899 int ret;
2900
f3ccb2c4 2901 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2902 if (ret)
f3ccb2c4 2903 return ret;
52c29b04
JW
2904
2905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2906 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2907
2908 /*
2909 * Enforce __GFP_NOFAIL allocation because callers are not
2910 * prepared to see failures and likely do not have any failure
2911 * handling code.
2912 */
2913 if (gfp & __GFP_NOFAIL) {
2914 page_counter_charge(&memcg->kmem, nr_pages);
2915 return 0;
2916 }
52c29b04
JW
2917 cancel_charge(memcg, nr_pages);
2918 return -ENOMEM;
7ae1e1d0 2919 }
f3ccb2c4 2920 return 0;
7ae1e1d0
GC
2921}
2922
4b13f64d
RG
2923/**
2924 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2925 * @memcg: memcg to uncharge
2926 * @nr_pages: number of pages to uncharge
2927 */
2928void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2929{
2930 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2931 page_counter_uncharge(&memcg->kmem, nr_pages);
2932
2933 page_counter_uncharge(&memcg->memory, nr_pages);
2934 if (do_memsw_account())
2935 page_counter_uncharge(&memcg->memsw, nr_pages);
2936}
2937
45264778 2938/**
f4b00eab 2939 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2940 * @page: page to charge
2941 * @gfp: reclaim mode
2942 * @order: allocation order
2943 *
2944 * Returns 0 on success, an error code on failure.
2945 */
f4b00eab 2946int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2947{
f3ccb2c4 2948 struct mem_cgroup *memcg;
fcff7d7e 2949 int ret = 0;
7ae1e1d0 2950
60cd4bcd 2951 if (memcg_kmem_bypass())
45264778
VD
2952 return 0;
2953
d46eb14b 2954 memcg = get_mem_cgroup_from_current();
c4159a75 2955 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2956 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2957 if (!ret) {
2958 page->mem_cgroup = memcg;
c4159a75 2959 __SetPageKmemcg(page);
4d96ba35 2960 }
c4159a75 2961 }
7ae1e1d0 2962 css_put(&memcg->css);
d05e83a6 2963 return ret;
7ae1e1d0 2964}
49a18eae 2965
45264778 2966/**
f4b00eab 2967 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2968 * @page: page to uncharge
2969 * @order: allocation order
2970 */
f4b00eab 2971void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2972{
1306a85a 2973 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2974 unsigned int nr_pages = 1 << order;
7ae1e1d0 2975
7ae1e1d0
GC
2976 if (!memcg)
2977 return;
2978
309381fe 2979 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 2980 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 2981 page->mem_cgroup = NULL;
c4159a75
VD
2982
2983 /* slab pages do not have PageKmemcg flag set */
2984 if (PageKmemcg(page))
2985 __ClearPageKmemcg(page);
2986
f3ccb2c4 2987 css_put_many(&memcg->css, nr_pages);
60d3fd32 2988}
84c07d11 2989#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2990
ca3e0214
KH
2991#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2992
ca3e0214
KH
2993/*
2994 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2995 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2996 */
e94c8a9c 2997void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2998{
e94c8a9c 2999 int i;
ca3e0214 3000
3d37c4a9
KH
3001 if (mem_cgroup_disabled())
3002 return;
b070e65c 3003
29833315 3004 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3005 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3006
c9019e9b 3007 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3008}
12d27107 3009#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3010
c255a458 3011#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3012/**
3013 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3014 * @entry: swap entry to be moved
3015 * @from: mem_cgroup which the entry is moved from
3016 * @to: mem_cgroup which the entry is moved to
3017 *
3018 * It succeeds only when the swap_cgroup's record for this entry is the same
3019 * as the mem_cgroup's id of @from.
3020 *
3021 * Returns 0 on success, -EINVAL on failure.
3022 *
3e32cb2e 3023 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3024 * both res and memsw, and called css_get().
3025 */
3026static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3027 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3028{
3029 unsigned short old_id, new_id;
3030
34c00c31
LZ
3031 old_id = mem_cgroup_id(from);
3032 new_id = mem_cgroup_id(to);
02491447
DN
3033
3034 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3035 mod_memcg_state(from, MEMCG_SWAP, -1);
3036 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3037 return 0;
3038 }
3039 return -EINVAL;
3040}
3041#else
3042static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3043 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3044{
3045 return -EINVAL;
3046}
8c7c6e34 3047#endif
d13d1443 3048
bbec2e15 3049static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3050
bbec2e15
RG
3051static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3052 unsigned long max, bool memsw)
628f4235 3053{
3e32cb2e 3054 bool enlarge = false;
bb4a7ea2 3055 bool drained = false;
3e32cb2e 3056 int ret;
c054a78c
YZ
3057 bool limits_invariant;
3058 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3059
3e32cb2e 3060 do {
628f4235
KH
3061 if (signal_pending(current)) {
3062 ret = -EINTR;
3063 break;
3064 }
3e32cb2e 3065
bbec2e15 3066 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3067 /*
3068 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3069 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3070 */
15b42562 3071 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3072 max <= memcg->memsw.max;
c054a78c 3073 if (!limits_invariant) {
bbec2e15 3074 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3075 ret = -EINVAL;
8c7c6e34
KH
3076 break;
3077 }
bbec2e15 3078 if (max > counter->max)
3e32cb2e 3079 enlarge = true;
bbec2e15
RG
3080 ret = page_counter_set_max(counter, max);
3081 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3082
3083 if (!ret)
3084 break;
3085
bb4a7ea2
SB
3086 if (!drained) {
3087 drain_all_stock(memcg);
3088 drained = true;
3089 continue;
3090 }
3091
1ab5c056
AR
3092 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3093 GFP_KERNEL, !memsw)) {
3094 ret = -EBUSY;
3095 break;
3096 }
3097 } while (true);
3e32cb2e 3098
3c11ecf4
KH
3099 if (!ret && enlarge)
3100 memcg_oom_recover(memcg);
3e32cb2e 3101
628f4235
KH
3102 return ret;
3103}
3104
ef8f2327 3105unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3106 gfp_t gfp_mask,
3107 unsigned long *total_scanned)
3108{
3109 unsigned long nr_reclaimed = 0;
ef8f2327 3110 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3111 unsigned long reclaimed;
3112 int loop = 0;
ef8f2327 3113 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3114 unsigned long excess;
0608f43d
AM
3115 unsigned long nr_scanned;
3116
3117 if (order > 0)
3118 return 0;
3119
ef8f2327 3120 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3121
3122 /*
3123 * Do not even bother to check the largest node if the root
3124 * is empty. Do it lockless to prevent lock bouncing. Races
3125 * are acceptable as soft limit is best effort anyway.
3126 */
bfc7228b 3127 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3128 return 0;
3129
0608f43d
AM
3130 /*
3131 * This loop can run a while, specially if mem_cgroup's continuously
3132 * keep exceeding their soft limit and putting the system under
3133 * pressure
3134 */
3135 do {
3136 if (next_mz)
3137 mz = next_mz;
3138 else
3139 mz = mem_cgroup_largest_soft_limit_node(mctz);
3140 if (!mz)
3141 break;
3142
3143 nr_scanned = 0;
ef8f2327 3144 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3145 gfp_mask, &nr_scanned);
3146 nr_reclaimed += reclaimed;
3147 *total_scanned += nr_scanned;
0a31bc97 3148 spin_lock_irq(&mctz->lock);
bc2f2e7f 3149 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3150
3151 /*
3152 * If we failed to reclaim anything from this memory cgroup
3153 * it is time to move on to the next cgroup
3154 */
3155 next_mz = NULL;
bc2f2e7f
VD
3156 if (!reclaimed)
3157 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3158
3e32cb2e 3159 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3160 /*
3161 * One school of thought says that we should not add
3162 * back the node to the tree if reclaim returns 0.
3163 * But our reclaim could return 0, simply because due
3164 * to priority we are exposing a smaller subset of
3165 * memory to reclaim from. Consider this as a longer
3166 * term TODO.
3167 */
3168 /* If excess == 0, no tree ops */
cf2c8127 3169 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3170 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3171 css_put(&mz->memcg->css);
3172 loop++;
3173 /*
3174 * Could not reclaim anything and there are no more
3175 * mem cgroups to try or we seem to be looping without
3176 * reclaiming anything.
3177 */
3178 if (!nr_reclaimed &&
3179 (next_mz == NULL ||
3180 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3181 break;
3182 } while (!nr_reclaimed);
3183 if (next_mz)
3184 css_put(&next_mz->memcg->css);
3185 return nr_reclaimed;
3186}
3187
ea280e7b
TH
3188/*
3189 * Test whether @memcg has children, dead or alive. Note that this
3190 * function doesn't care whether @memcg has use_hierarchy enabled and
3191 * returns %true if there are child csses according to the cgroup
3192 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3193 */
b5f99b53
GC
3194static inline bool memcg_has_children(struct mem_cgroup *memcg)
3195{
ea280e7b
TH
3196 bool ret;
3197
ea280e7b
TH
3198 rcu_read_lock();
3199 ret = css_next_child(NULL, &memcg->css);
3200 rcu_read_unlock();
3201 return ret;
b5f99b53
GC
3202}
3203
c26251f9 3204/*
51038171 3205 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3206 *
3207 * Caller is responsible for holding css reference for memcg.
3208 */
3209static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3210{
3211 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3212
c1e862c1
KH
3213 /* we call try-to-free pages for make this cgroup empty */
3214 lru_add_drain_all();
d12c60f6
JS
3215
3216 drain_all_stock(memcg);
3217
f817ed48 3218 /* try to free all pages in this cgroup */
3e32cb2e 3219 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3220 int progress;
c1e862c1 3221
c26251f9
MH
3222 if (signal_pending(current))
3223 return -EINTR;
3224
b70a2a21
JW
3225 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3226 GFP_KERNEL, true);
c1e862c1 3227 if (!progress) {
f817ed48 3228 nr_retries--;
c1e862c1 3229 /* maybe some writeback is necessary */
8aa7e847 3230 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3231 }
f817ed48
KH
3232
3233 }
ab5196c2
MH
3234
3235 return 0;
cc847582
KH
3236}
3237
6770c64e
TH
3238static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3239 char *buf, size_t nbytes,
3240 loff_t off)
c1e862c1 3241{
6770c64e 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3243
d8423011
MH
3244 if (mem_cgroup_is_root(memcg))
3245 return -EINVAL;
6770c64e 3246 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3247}
3248
182446d0
TH
3249static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3250 struct cftype *cft)
18f59ea7 3251{
182446d0 3252 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3253}
3254
182446d0
TH
3255static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3256 struct cftype *cft, u64 val)
18f59ea7
BS
3257{
3258 int retval = 0;
182446d0 3259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3260 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3261
567fb435 3262 if (memcg->use_hierarchy == val)
0b8f73e1 3263 return 0;
567fb435 3264
18f59ea7 3265 /*
af901ca1 3266 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3267 * in the child subtrees. If it is unset, then the change can
3268 * occur, provided the current cgroup has no children.
3269 *
3270 * For the root cgroup, parent_mem is NULL, we allow value to be
3271 * set if there are no children.
3272 */
c0ff4b85 3273 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3274 (val == 1 || val == 0)) {
ea280e7b 3275 if (!memcg_has_children(memcg))
c0ff4b85 3276 memcg->use_hierarchy = val;
18f59ea7
BS
3277 else
3278 retval = -EBUSY;
3279 } else
3280 retval = -EINVAL;
567fb435 3281
18f59ea7
BS
3282 return retval;
3283}
3284
6f646156 3285static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3286{
42a30035 3287 unsigned long val;
ce00a967 3288
3e32cb2e 3289 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3290 val = memcg_page_state(memcg, MEMCG_CACHE) +
3291 memcg_page_state(memcg, MEMCG_RSS);
3292 if (swap)
3293 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3294 } else {
ce00a967 3295 if (!swap)
3e32cb2e 3296 val = page_counter_read(&memcg->memory);
ce00a967 3297 else
3e32cb2e 3298 val = page_counter_read(&memcg->memsw);
ce00a967 3299 }
c12176d3 3300 return val;
ce00a967
JW
3301}
3302
3e32cb2e
JW
3303enum {
3304 RES_USAGE,
3305 RES_LIMIT,
3306 RES_MAX_USAGE,
3307 RES_FAILCNT,
3308 RES_SOFT_LIMIT,
3309};
ce00a967 3310
791badbd 3311static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3312 struct cftype *cft)
8cdea7c0 3313{
182446d0 3314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3315 struct page_counter *counter;
af36f906 3316
3e32cb2e 3317 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3318 case _MEM:
3e32cb2e
JW
3319 counter = &memcg->memory;
3320 break;
8c7c6e34 3321 case _MEMSWAP:
3e32cb2e
JW
3322 counter = &memcg->memsw;
3323 break;
510fc4e1 3324 case _KMEM:
3e32cb2e 3325 counter = &memcg->kmem;
510fc4e1 3326 break;
d55f90bf 3327 case _TCP:
0db15298 3328 counter = &memcg->tcpmem;
d55f90bf 3329 break;
8c7c6e34
KH
3330 default:
3331 BUG();
8c7c6e34 3332 }
3e32cb2e
JW
3333
3334 switch (MEMFILE_ATTR(cft->private)) {
3335 case RES_USAGE:
3336 if (counter == &memcg->memory)
c12176d3 3337 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3338 if (counter == &memcg->memsw)
c12176d3 3339 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3340 return (u64)page_counter_read(counter) * PAGE_SIZE;
3341 case RES_LIMIT:
bbec2e15 3342 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3343 case RES_MAX_USAGE:
3344 return (u64)counter->watermark * PAGE_SIZE;
3345 case RES_FAILCNT:
3346 return counter->failcnt;
3347 case RES_SOFT_LIMIT:
3348 return (u64)memcg->soft_limit * PAGE_SIZE;
3349 default:
3350 BUG();
3351 }
8cdea7c0 3352}
510fc4e1 3353
4a87e2a2 3354static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3355{
4a87e2a2 3356 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3357 struct mem_cgroup *mi;
3358 int node, cpu, i;
c350a99e
RG
3359
3360 for_each_online_cpu(cpu)
4a87e2a2 3361 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3362 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3363
3364 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3365 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3366 atomic_long_add(stat[i], &mi->vmstats[i]);
3367
3368 for_each_node(node) {
3369 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3370 struct mem_cgroup_per_node *pi;
3371
4a87e2a2 3372 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3373 stat[i] = 0;
3374
3375 for_each_online_cpu(cpu)
4a87e2a2 3376 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3377 stat[i] += per_cpu(
3378 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3379
3380 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3381 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3382 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3383 }
3384}
3385
bb65f89b
RG
3386static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3387{
3388 unsigned long events[NR_VM_EVENT_ITEMS];
3389 struct mem_cgroup *mi;
3390 int cpu, i;
3391
3392 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3393 events[i] = 0;
3394
3395 for_each_online_cpu(cpu)
3396 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3397 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3398 cpu);
bb65f89b
RG
3399
3400 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3401 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3402 atomic_long_add(events[i], &mi->vmevents[i]);
3403}
3404
84c07d11 3405#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3406static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3407{
d6441637
VD
3408 int memcg_id;
3409
b313aeee
VD
3410 if (cgroup_memory_nokmem)
3411 return 0;
3412
2a4db7eb 3413 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3414 BUG_ON(memcg->kmem_state);
d6441637 3415
f3bb3043 3416 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3417 if (memcg_id < 0)
3418 return memcg_id;
d6441637 3419
ef12947c 3420 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3421 /*
567e9ab2 3422 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3423 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3424 * guarantee no one starts accounting before all call sites are
3425 * patched.
3426 */
900a38f0 3427 memcg->kmemcg_id = memcg_id;
567e9ab2 3428 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3429 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3430
3431 return 0;
d6441637
VD
3432}
3433
8e0a8912
JW
3434static void memcg_offline_kmem(struct mem_cgroup *memcg)
3435{
3436 struct cgroup_subsys_state *css;
3437 struct mem_cgroup *parent, *child;
3438 int kmemcg_id;
3439
3440 if (memcg->kmem_state != KMEM_ONLINE)
3441 return;
3442 /*
3443 * Clear the online state before clearing memcg_caches array
3444 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3445 * guarantees that no cache will be created for this cgroup
3446 * after we are done (see memcg_create_kmem_cache()).
3447 */
3448 memcg->kmem_state = KMEM_ALLOCATED;
3449
8e0a8912
JW
3450 parent = parent_mem_cgroup(memcg);
3451 if (!parent)
3452 parent = root_mem_cgroup;
3453
bee07b33 3454 /*
4a87e2a2 3455 * Deactivate and reparent kmem_caches.
bee07b33 3456 */
fb2f2b0a
RG
3457 memcg_deactivate_kmem_caches(memcg, parent);
3458
3459 kmemcg_id = memcg->kmemcg_id;
3460 BUG_ON(kmemcg_id < 0);
3461
8e0a8912
JW
3462 /*
3463 * Change kmemcg_id of this cgroup and all its descendants to the
3464 * parent's id, and then move all entries from this cgroup's list_lrus
3465 * to ones of the parent. After we have finished, all list_lrus
3466 * corresponding to this cgroup are guaranteed to remain empty. The
3467 * ordering is imposed by list_lru_node->lock taken by
3468 * memcg_drain_all_list_lrus().
3469 */
3a06bb78 3470 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3471 css_for_each_descendant_pre(css, &memcg->css) {
3472 child = mem_cgroup_from_css(css);
3473 BUG_ON(child->kmemcg_id != kmemcg_id);
3474 child->kmemcg_id = parent->kmemcg_id;
3475 if (!memcg->use_hierarchy)
3476 break;
3477 }
3a06bb78
TH
3478 rcu_read_unlock();
3479
9bec5c35 3480 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3481
3482 memcg_free_cache_id(kmemcg_id);
3483}
3484
3485static void memcg_free_kmem(struct mem_cgroup *memcg)
3486{
0b8f73e1
JW
3487 /* css_alloc() failed, offlining didn't happen */
3488 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3489 memcg_offline_kmem(memcg);
3490
8e0a8912 3491 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3492 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3493 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3494 }
8e0a8912 3495}
d6441637 3496#else
0b8f73e1 3497static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3498{
3499 return 0;
3500}
3501static void memcg_offline_kmem(struct mem_cgroup *memcg)
3502{
3503}
3504static void memcg_free_kmem(struct mem_cgroup *memcg)
3505{
3506}
84c07d11 3507#endif /* CONFIG_MEMCG_KMEM */
127424c8 3508
bbec2e15
RG
3509static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3510 unsigned long max)
d6441637 3511{
b313aeee 3512 int ret;
127424c8 3513
bbec2e15
RG
3514 mutex_lock(&memcg_max_mutex);
3515 ret = page_counter_set_max(&memcg->kmem, max);
3516 mutex_unlock(&memcg_max_mutex);
127424c8 3517 return ret;
d6441637 3518}
510fc4e1 3519
bbec2e15 3520static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3521{
3522 int ret;
3523
bbec2e15 3524 mutex_lock(&memcg_max_mutex);
d55f90bf 3525
bbec2e15 3526 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3527 if (ret)
3528 goto out;
3529
0db15298 3530 if (!memcg->tcpmem_active) {
d55f90bf
VD
3531 /*
3532 * The active flag needs to be written after the static_key
3533 * update. This is what guarantees that the socket activation
2d758073
JW
3534 * function is the last one to run. See mem_cgroup_sk_alloc()
3535 * for details, and note that we don't mark any socket as
3536 * belonging to this memcg until that flag is up.
d55f90bf
VD
3537 *
3538 * We need to do this, because static_keys will span multiple
3539 * sites, but we can't control their order. If we mark a socket
3540 * as accounted, but the accounting functions are not patched in
3541 * yet, we'll lose accounting.
3542 *
2d758073 3543 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3544 * because when this value change, the code to process it is not
3545 * patched in yet.
3546 */
3547 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3548 memcg->tcpmem_active = true;
d55f90bf
VD
3549 }
3550out:
bbec2e15 3551 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3552 return ret;
3553}
d55f90bf 3554
628f4235
KH
3555/*
3556 * The user of this function is...
3557 * RES_LIMIT.
3558 */
451af504
TH
3559static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3560 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3561{
451af504 3562 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3563 unsigned long nr_pages;
628f4235
KH
3564 int ret;
3565
451af504 3566 buf = strstrip(buf);
650c5e56 3567 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3568 if (ret)
3569 return ret;
af36f906 3570
3e32cb2e 3571 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3572 case RES_LIMIT:
4b3bde4c
BS
3573 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3574 ret = -EINVAL;
3575 break;
3576 }
3e32cb2e
JW
3577 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3578 case _MEM:
bbec2e15 3579 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3580 break;
3e32cb2e 3581 case _MEMSWAP:
bbec2e15 3582 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3583 break;
3e32cb2e 3584 case _KMEM:
0158115f
MH
3585 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3586 "Please report your usecase to linux-mm@kvack.org if you "
3587 "depend on this functionality.\n");
bbec2e15 3588 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3589 break;
d55f90bf 3590 case _TCP:
bbec2e15 3591 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3592 break;
3e32cb2e 3593 }
296c81d8 3594 break;
3e32cb2e
JW
3595 case RES_SOFT_LIMIT:
3596 memcg->soft_limit = nr_pages;
3597 ret = 0;
628f4235
KH
3598 break;
3599 }
451af504 3600 return ret ?: nbytes;
8cdea7c0
BS
3601}
3602
6770c64e
TH
3603static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3604 size_t nbytes, loff_t off)
c84872e1 3605{
6770c64e 3606 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3607 struct page_counter *counter;
c84872e1 3608
3e32cb2e
JW
3609 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3610 case _MEM:
3611 counter = &memcg->memory;
3612 break;
3613 case _MEMSWAP:
3614 counter = &memcg->memsw;
3615 break;
3616 case _KMEM:
3617 counter = &memcg->kmem;
3618 break;
d55f90bf 3619 case _TCP:
0db15298 3620 counter = &memcg->tcpmem;
d55f90bf 3621 break;
3e32cb2e
JW
3622 default:
3623 BUG();
3624 }
af36f906 3625
3e32cb2e 3626 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3627 case RES_MAX_USAGE:
3e32cb2e 3628 page_counter_reset_watermark(counter);
29f2a4da
PE
3629 break;
3630 case RES_FAILCNT:
3e32cb2e 3631 counter->failcnt = 0;
29f2a4da 3632 break;
3e32cb2e
JW
3633 default:
3634 BUG();
29f2a4da 3635 }
f64c3f54 3636
6770c64e 3637 return nbytes;
c84872e1
PE
3638}
3639
182446d0 3640static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3641 struct cftype *cft)
3642{
182446d0 3643 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3644}
3645
02491447 3646#ifdef CONFIG_MMU
182446d0 3647static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3648 struct cftype *cft, u64 val)
3649{
182446d0 3650 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3651
1dfab5ab 3652 if (val & ~MOVE_MASK)
7dc74be0 3653 return -EINVAL;
ee5e8472 3654
7dc74be0 3655 /*
ee5e8472
GC
3656 * No kind of locking is needed in here, because ->can_attach() will
3657 * check this value once in the beginning of the process, and then carry
3658 * on with stale data. This means that changes to this value will only
3659 * affect task migrations starting after the change.
7dc74be0 3660 */
c0ff4b85 3661 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3662 return 0;
3663}
02491447 3664#else
182446d0 3665static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3666 struct cftype *cft, u64 val)
3667{
3668 return -ENOSYS;
3669}
3670#endif
7dc74be0 3671
406eb0c9 3672#ifdef CONFIG_NUMA
113b7dfd
JW
3673
3674#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3675#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3676#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3677
3678static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3679 int nid, unsigned int lru_mask)
3680{
867e5e1d 3681 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3682 unsigned long nr = 0;
3683 enum lru_list lru;
3684
3685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3686
3687 for_each_lru(lru) {
3688 if (!(BIT(lru) & lru_mask))
3689 continue;
205b20cc 3690 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3691 }
3692 return nr;
3693}
3694
3695static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3696 unsigned int lru_mask)
3697{
3698 unsigned long nr = 0;
3699 enum lru_list lru;
3700
3701 for_each_lru(lru) {
3702 if (!(BIT(lru) & lru_mask))
3703 continue;
205b20cc 3704 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3705 }
3706 return nr;
3707}
3708
2da8ca82 3709static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3710{
25485de6
GT
3711 struct numa_stat {
3712 const char *name;
3713 unsigned int lru_mask;
3714 };
3715
3716 static const struct numa_stat stats[] = {
3717 { "total", LRU_ALL },
3718 { "file", LRU_ALL_FILE },
3719 { "anon", LRU_ALL_ANON },
3720 { "unevictable", BIT(LRU_UNEVICTABLE) },
3721 };
3722 const struct numa_stat *stat;
406eb0c9 3723 int nid;
25485de6 3724 unsigned long nr;
aa9694bb 3725 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3726
25485de6
GT
3727 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3728 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3729 seq_printf(m, "%s=%lu", stat->name, nr);
3730 for_each_node_state(nid, N_MEMORY) {
3731 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3732 stat->lru_mask);
3733 seq_printf(m, " N%d=%lu", nid, nr);
3734 }
3735 seq_putc(m, '\n');
406eb0c9 3736 }
406eb0c9 3737
071aee13
YH
3738 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3739 struct mem_cgroup *iter;
3740
3741 nr = 0;
3742 for_each_mem_cgroup_tree(iter, memcg)
3743 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3744 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3745 for_each_node_state(nid, N_MEMORY) {
3746 nr = 0;
3747 for_each_mem_cgroup_tree(iter, memcg)
3748 nr += mem_cgroup_node_nr_lru_pages(
3749 iter, nid, stat->lru_mask);
3750 seq_printf(m, " N%d=%lu", nid, nr);
3751 }
3752 seq_putc(m, '\n');
406eb0c9 3753 }
406eb0c9 3754
406eb0c9
YH
3755 return 0;
3756}
3757#endif /* CONFIG_NUMA */
3758
c8713d0b
JW
3759static const unsigned int memcg1_stats[] = {
3760 MEMCG_CACHE,
3761 MEMCG_RSS,
3762 MEMCG_RSS_HUGE,
3763 NR_SHMEM,
3764 NR_FILE_MAPPED,
3765 NR_FILE_DIRTY,
3766 NR_WRITEBACK,
3767 MEMCG_SWAP,
3768};
3769
3770static const char *const memcg1_stat_names[] = {
3771 "cache",
3772 "rss",
3773 "rss_huge",
3774 "shmem",
3775 "mapped_file",
3776 "dirty",
3777 "writeback",
3778 "swap",
3779};
3780
df0e53d0 3781/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3782static const unsigned int memcg1_events[] = {
df0e53d0
JW
3783 PGPGIN,
3784 PGPGOUT,
3785 PGFAULT,
3786 PGMAJFAULT,
3787};
3788
2da8ca82 3789static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3790{
aa9694bb 3791 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3792 unsigned long memory, memsw;
af7c4b0e
JW
3793 struct mem_cgroup *mi;
3794 unsigned int i;
406eb0c9 3795
71cd3113 3796 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3797
71cd3113
JW
3798 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3799 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3800 continue;
71cd3113 3801 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3802 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3803 PAGE_SIZE);
1dd3a273 3804 }
7b854121 3805
df0e53d0 3806 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3807 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3808 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3809
3810 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3811 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3812 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3813 PAGE_SIZE);
af7c4b0e 3814
14067bb3 3815 /* Hierarchical information */
3e32cb2e
JW
3816 memory = memsw = PAGE_COUNTER_MAX;
3817 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3818 memory = min(memory, READ_ONCE(mi->memory.max));
3819 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3820 }
3e32cb2e
JW
3821 seq_printf(m, "hierarchical_memory_limit %llu\n",
3822 (u64)memory * PAGE_SIZE);
7941d214 3823 if (do_memsw_account())
3e32cb2e
JW
3824 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3825 (u64)memsw * PAGE_SIZE);
7f016ee8 3826
8de7ecc6 3827 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3828 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3829 continue;
8de7ecc6 3830 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3831 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3832 PAGE_SIZE);
af7c4b0e
JW
3833 }
3834
8de7ecc6 3835 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3836 seq_printf(m, "total_%s %llu\n",
3837 vm_event_name(memcg1_events[i]),
dd923990 3838 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3839
8de7ecc6 3840 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3841 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3842 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3843 PAGE_SIZE);
14067bb3 3844
7f016ee8 3845#ifdef CONFIG_DEBUG_VM
7f016ee8 3846 {
ef8f2327
MG
3847 pg_data_t *pgdat;
3848 struct mem_cgroup_per_node *mz;
89abfab1 3849 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3850 unsigned long recent_rotated[2] = {0, 0};
3851 unsigned long recent_scanned[2] = {0, 0};
3852
ef8f2327
MG
3853 for_each_online_pgdat(pgdat) {
3854 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3855 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3856
ef8f2327
MG
3857 recent_rotated[0] += rstat->recent_rotated[0];
3858 recent_rotated[1] += rstat->recent_rotated[1];
3859 recent_scanned[0] += rstat->recent_scanned[0];
3860 recent_scanned[1] += rstat->recent_scanned[1];
3861 }
78ccf5b5
JW
3862 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3863 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3864 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3865 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3866 }
3867#endif
3868
d2ceb9b7
KH
3869 return 0;
3870}
3871
182446d0
TH
3872static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3873 struct cftype *cft)
a7885eb8 3874{
182446d0 3875 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3876
1f4c025b 3877 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3878}
3879
182446d0
TH
3880static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3881 struct cftype *cft, u64 val)
a7885eb8 3882{
182446d0 3883 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3884
3dae7fec 3885 if (val > 100)
a7885eb8
KM
3886 return -EINVAL;
3887
14208b0e 3888 if (css->parent)
3dae7fec
JW
3889 memcg->swappiness = val;
3890 else
3891 vm_swappiness = val;
068b38c1 3892
a7885eb8
KM
3893 return 0;
3894}
3895
2e72b634
KS
3896static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3897{
3898 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3899 unsigned long usage;
2e72b634
KS
3900 int i;
3901
3902 rcu_read_lock();
3903 if (!swap)
2c488db2 3904 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3905 else
2c488db2 3906 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3907
3908 if (!t)
3909 goto unlock;
3910
ce00a967 3911 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3912
3913 /*
748dad36 3914 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3915 * If it's not true, a threshold was crossed after last
3916 * call of __mem_cgroup_threshold().
3917 */
5407a562 3918 i = t->current_threshold;
2e72b634
KS
3919
3920 /*
3921 * Iterate backward over array of thresholds starting from
3922 * current_threshold and check if a threshold is crossed.
3923 * If none of thresholds below usage is crossed, we read
3924 * only one element of the array here.
3925 */
3926 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3927 eventfd_signal(t->entries[i].eventfd, 1);
3928
3929 /* i = current_threshold + 1 */
3930 i++;
3931
3932 /*
3933 * Iterate forward over array of thresholds starting from
3934 * current_threshold+1 and check if a threshold is crossed.
3935 * If none of thresholds above usage is crossed, we read
3936 * only one element of the array here.
3937 */
3938 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3939 eventfd_signal(t->entries[i].eventfd, 1);
3940
3941 /* Update current_threshold */
5407a562 3942 t->current_threshold = i - 1;
2e72b634
KS
3943unlock:
3944 rcu_read_unlock();
3945}
3946
3947static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3948{
ad4ca5f4
KS
3949 while (memcg) {
3950 __mem_cgroup_threshold(memcg, false);
7941d214 3951 if (do_memsw_account())
ad4ca5f4
KS
3952 __mem_cgroup_threshold(memcg, true);
3953
3954 memcg = parent_mem_cgroup(memcg);
3955 }
2e72b634
KS
3956}
3957
3958static int compare_thresholds(const void *a, const void *b)
3959{
3960 const struct mem_cgroup_threshold *_a = a;
3961 const struct mem_cgroup_threshold *_b = b;
3962
2bff24a3
GT
3963 if (_a->threshold > _b->threshold)
3964 return 1;
3965
3966 if (_a->threshold < _b->threshold)
3967 return -1;
3968
3969 return 0;
2e72b634
KS
3970}
3971
c0ff4b85 3972static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3973{
3974 struct mem_cgroup_eventfd_list *ev;
3975
2bcf2e92
MH
3976 spin_lock(&memcg_oom_lock);
3977
c0ff4b85 3978 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3979 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3980
3981 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3982 return 0;
3983}
3984
c0ff4b85 3985static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3986{
7d74b06f
KH
3987 struct mem_cgroup *iter;
3988
c0ff4b85 3989 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3990 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3991}
3992
59b6f873 3993static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3994 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3995{
2c488db2
KS
3996 struct mem_cgroup_thresholds *thresholds;
3997 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3998 unsigned long threshold;
3999 unsigned long usage;
2c488db2 4000 int i, size, ret;
2e72b634 4001
650c5e56 4002 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4003 if (ret)
4004 return ret;
4005
4006 mutex_lock(&memcg->thresholds_lock);
2c488db2 4007
05b84301 4008 if (type == _MEM) {
2c488db2 4009 thresholds = &memcg->thresholds;
ce00a967 4010 usage = mem_cgroup_usage(memcg, false);
05b84301 4011 } else if (type == _MEMSWAP) {
2c488db2 4012 thresholds = &memcg->memsw_thresholds;
ce00a967 4013 usage = mem_cgroup_usage(memcg, true);
05b84301 4014 } else
2e72b634
KS
4015 BUG();
4016
2e72b634 4017 /* Check if a threshold crossed before adding a new one */
2c488db2 4018 if (thresholds->primary)
2e72b634
KS
4019 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4020
2c488db2 4021 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4022
4023 /* Allocate memory for new array of thresholds */
67b8046f 4024 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4025 if (!new) {
2e72b634
KS
4026 ret = -ENOMEM;
4027 goto unlock;
4028 }
2c488db2 4029 new->size = size;
2e72b634
KS
4030
4031 /* Copy thresholds (if any) to new array */
2c488db2
KS
4032 if (thresholds->primary) {
4033 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4034 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4035 }
4036
2e72b634 4037 /* Add new threshold */
2c488db2
KS
4038 new->entries[size - 1].eventfd = eventfd;
4039 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4040
4041 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4042 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4043 compare_thresholds, NULL);
4044
4045 /* Find current threshold */
2c488db2 4046 new->current_threshold = -1;
2e72b634 4047 for (i = 0; i < size; i++) {
748dad36 4048 if (new->entries[i].threshold <= usage) {
2e72b634 4049 /*
2c488db2
KS
4050 * new->current_threshold will not be used until
4051 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4052 * it here.
4053 */
2c488db2 4054 ++new->current_threshold;
748dad36
SZ
4055 } else
4056 break;
2e72b634
KS
4057 }
4058
2c488db2
KS
4059 /* Free old spare buffer and save old primary buffer as spare */
4060 kfree(thresholds->spare);
4061 thresholds->spare = thresholds->primary;
4062
4063 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4064
907860ed 4065 /* To be sure that nobody uses thresholds */
2e72b634
KS
4066 synchronize_rcu();
4067
2e72b634
KS
4068unlock:
4069 mutex_unlock(&memcg->thresholds_lock);
4070
4071 return ret;
4072}
4073
59b6f873 4074static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4075 struct eventfd_ctx *eventfd, const char *args)
4076{
59b6f873 4077 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4078}
4079
59b6f873 4080static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4081 struct eventfd_ctx *eventfd, const char *args)
4082{
59b6f873 4083 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4084}
4085
59b6f873 4086static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4087 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4088{
2c488db2
KS
4089 struct mem_cgroup_thresholds *thresholds;
4090 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4091 unsigned long usage;
7d36665a 4092 int i, j, size, entries;
2e72b634
KS
4093
4094 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4095
4096 if (type == _MEM) {
2c488db2 4097 thresholds = &memcg->thresholds;
ce00a967 4098 usage = mem_cgroup_usage(memcg, false);
05b84301 4099 } else if (type == _MEMSWAP) {
2c488db2 4100 thresholds = &memcg->memsw_thresholds;
ce00a967 4101 usage = mem_cgroup_usage(memcg, true);
05b84301 4102 } else
2e72b634
KS
4103 BUG();
4104
371528ca
AV
4105 if (!thresholds->primary)
4106 goto unlock;
4107
2e72b634
KS
4108 /* Check if a threshold crossed before removing */
4109 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4110
4111 /* Calculate new number of threshold */
7d36665a 4112 size = entries = 0;
2c488db2
KS
4113 for (i = 0; i < thresholds->primary->size; i++) {
4114 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4115 size++;
7d36665a
CX
4116 else
4117 entries++;
2e72b634
KS
4118 }
4119
2c488db2 4120 new = thresholds->spare;
907860ed 4121
7d36665a
CX
4122 /* If no items related to eventfd have been cleared, nothing to do */
4123 if (!entries)
4124 goto unlock;
4125
2e72b634
KS
4126 /* Set thresholds array to NULL if we don't have thresholds */
4127 if (!size) {
2c488db2
KS
4128 kfree(new);
4129 new = NULL;
907860ed 4130 goto swap_buffers;
2e72b634
KS
4131 }
4132
2c488db2 4133 new->size = size;
2e72b634
KS
4134
4135 /* Copy thresholds and find current threshold */
2c488db2
KS
4136 new->current_threshold = -1;
4137 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4138 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4139 continue;
4140
2c488db2 4141 new->entries[j] = thresholds->primary->entries[i];
748dad36 4142 if (new->entries[j].threshold <= usage) {
2e72b634 4143 /*
2c488db2 4144 * new->current_threshold will not be used
2e72b634
KS
4145 * until rcu_assign_pointer(), so it's safe to increment
4146 * it here.
4147 */
2c488db2 4148 ++new->current_threshold;
2e72b634
KS
4149 }
4150 j++;
4151 }
4152
907860ed 4153swap_buffers:
2c488db2
KS
4154 /* Swap primary and spare array */
4155 thresholds->spare = thresholds->primary;
8c757763 4156
2c488db2 4157 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4158
907860ed 4159 /* To be sure that nobody uses thresholds */
2e72b634 4160 synchronize_rcu();
6611d8d7
MC
4161
4162 /* If all events are unregistered, free the spare array */
4163 if (!new) {
4164 kfree(thresholds->spare);
4165 thresholds->spare = NULL;
4166 }
371528ca 4167unlock:
2e72b634 4168 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4169}
c1e862c1 4170
59b6f873 4171static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4172 struct eventfd_ctx *eventfd)
4173{
59b6f873 4174 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4175}
4176
59b6f873 4177static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4178 struct eventfd_ctx *eventfd)
4179{
59b6f873 4180 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4181}
4182
59b6f873 4183static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4184 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4185{
9490ff27 4186 struct mem_cgroup_eventfd_list *event;
9490ff27 4187
9490ff27
KH
4188 event = kmalloc(sizeof(*event), GFP_KERNEL);
4189 if (!event)
4190 return -ENOMEM;
4191
1af8efe9 4192 spin_lock(&memcg_oom_lock);
9490ff27
KH
4193
4194 event->eventfd = eventfd;
4195 list_add(&event->list, &memcg->oom_notify);
4196
4197 /* already in OOM ? */
c2b42d3c 4198 if (memcg->under_oom)
9490ff27 4199 eventfd_signal(eventfd, 1);
1af8efe9 4200 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4201
4202 return 0;
4203}
4204
59b6f873 4205static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4206 struct eventfd_ctx *eventfd)
9490ff27 4207{
9490ff27 4208 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4209
1af8efe9 4210 spin_lock(&memcg_oom_lock);
9490ff27 4211
c0ff4b85 4212 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4213 if (ev->eventfd == eventfd) {
4214 list_del(&ev->list);
4215 kfree(ev);
4216 }
4217 }
4218
1af8efe9 4219 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4220}
4221
2da8ca82 4222static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4223{
aa9694bb 4224 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4225
791badbd 4226 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4227 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4228 seq_printf(sf, "oom_kill %lu\n",
4229 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4230 return 0;
4231}
4232
182446d0 4233static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4234 struct cftype *cft, u64 val)
4235{
182446d0 4236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4237
4238 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4239 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4240 return -EINVAL;
4241
c0ff4b85 4242 memcg->oom_kill_disable = val;
4d845ebf 4243 if (!val)
c0ff4b85 4244 memcg_oom_recover(memcg);
3dae7fec 4245
3c11ecf4
KH
4246 return 0;
4247}
4248
52ebea74
TH
4249#ifdef CONFIG_CGROUP_WRITEBACK
4250
3a8e9ac8
TH
4251#include <trace/events/writeback.h>
4252
841710aa
TH
4253static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4254{
4255 return wb_domain_init(&memcg->cgwb_domain, gfp);
4256}
4257
4258static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4259{
4260 wb_domain_exit(&memcg->cgwb_domain);
4261}
4262
2529bb3a
TH
4263static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4264{
4265 wb_domain_size_changed(&memcg->cgwb_domain);
4266}
4267
841710aa
TH
4268struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4269{
4270 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4271
4272 if (!memcg->css.parent)
4273 return NULL;
4274
4275 return &memcg->cgwb_domain;
4276}
4277
0b3d6e6f
GT
4278/*
4279 * idx can be of type enum memcg_stat_item or node_stat_item.
4280 * Keep in sync with memcg_exact_page().
4281 */
4282static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4283{
871789d4 4284 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4285 int cpu;
4286
4287 for_each_online_cpu(cpu)
871789d4 4288 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4289 if (x < 0)
4290 x = 0;
4291 return x;
4292}
4293
c2aa723a
TH
4294/**
4295 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4296 * @wb: bdi_writeback in question
c5edf9cd
TH
4297 * @pfilepages: out parameter for number of file pages
4298 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4299 * @pdirty: out parameter for number of dirty pages
4300 * @pwriteback: out parameter for number of pages under writeback
4301 *
c5edf9cd
TH
4302 * Determine the numbers of file, headroom, dirty, and writeback pages in
4303 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4304 * is a bit more involved.
c2aa723a 4305 *
c5edf9cd
TH
4306 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4307 * headroom is calculated as the lowest headroom of itself and the
4308 * ancestors. Note that this doesn't consider the actual amount of
4309 * available memory in the system. The caller should further cap
4310 * *@pheadroom accordingly.
c2aa723a 4311 */
c5edf9cd
TH
4312void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4313 unsigned long *pheadroom, unsigned long *pdirty,
4314 unsigned long *pwriteback)
c2aa723a
TH
4315{
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4317 struct mem_cgroup *parent;
c2aa723a 4318
0b3d6e6f 4319 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4320
4321 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4322 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4323 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4324 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4325 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4326
c2aa723a 4327 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4328 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
f6f989c5 4329 READ_ONCE(memcg->high));
c2aa723a
TH
4330 unsigned long used = page_counter_read(&memcg->memory);
4331
c5edf9cd 4332 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4333 memcg = parent;
4334 }
c2aa723a
TH
4335}
4336
97b27821
TH
4337/*
4338 * Foreign dirty flushing
4339 *
4340 * There's an inherent mismatch between memcg and writeback. The former
4341 * trackes ownership per-page while the latter per-inode. This was a
4342 * deliberate design decision because honoring per-page ownership in the
4343 * writeback path is complicated, may lead to higher CPU and IO overheads
4344 * and deemed unnecessary given that write-sharing an inode across
4345 * different cgroups isn't a common use-case.
4346 *
4347 * Combined with inode majority-writer ownership switching, this works well
4348 * enough in most cases but there are some pathological cases. For
4349 * example, let's say there are two cgroups A and B which keep writing to
4350 * different but confined parts of the same inode. B owns the inode and
4351 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4352 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4353 * triggering background writeback. A will be slowed down without a way to
4354 * make writeback of the dirty pages happen.
4355 *
4356 * Conditions like the above can lead to a cgroup getting repatedly and
4357 * severely throttled after making some progress after each
4358 * dirty_expire_interval while the underyling IO device is almost
4359 * completely idle.
4360 *
4361 * Solving this problem completely requires matching the ownership tracking
4362 * granularities between memcg and writeback in either direction. However,
4363 * the more egregious behaviors can be avoided by simply remembering the
4364 * most recent foreign dirtying events and initiating remote flushes on
4365 * them when local writeback isn't enough to keep the memory clean enough.
4366 *
4367 * The following two functions implement such mechanism. When a foreign
4368 * page - a page whose memcg and writeback ownerships don't match - is
4369 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4370 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4371 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4372 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4373 * foreign bdi_writebacks which haven't expired. Both the numbers of
4374 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4375 * limited to MEMCG_CGWB_FRN_CNT.
4376 *
4377 * The mechanism only remembers IDs and doesn't hold any object references.
4378 * As being wrong occasionally doesn't matter, updates and accesses to the
4379 * records are lockless and racy.
4380 */
4381void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4382 struct bdi_writeback *wb)
4383{
4384 struct mem_cgroup *memcg = page->mem_cgroup;
4385 struct memcg_cgwb_frn *frn;
4386 u64 now = get_jiffies_64();
4387 u64 oldest_at = now;
4388 int oldest = -1;
4389 int i;
4390
3a8e9ac8
TH
4391 trace_track_foreign_dirty(page, wb);
4392
97b27821
TH
4393 /*
4394 * Pick the slot to use. If there is already a slot for @wb, keep
4395 * using it. If not replace the oldest one which isn't being
4396 * written out.
4397 */
4398 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4399 frn = &memcg->cgwb_frn[i];
4400 if (frn->bdi_id == wb->bdi->id &&
4401 frn->memcg_id == wb->memcg_css->id)
4402 break;
4403 if (time_before64(frn->at, oldest_at) &&
4404 atomic_read(&frn->done.cnt) == 1) {
4405 oldest = i;
4406 oldest_at = frn->at;
4407 }
4408 }
4409
4410 if (i < MEMCG_CGWB_FRN_CNT) {
4411 /*
4412 * Re-using an existing one. Update timestamp lazily to
4413 * avoid making the cacheline hot. We want them to be
4414 * reasonably up-to-date and significantly shorter than
4415 * dirty_expire_interval as that's what expires the record.
4416 * Use the shorter of 1s and dirty_expire_interval / 8.
4417 */
4418 unsigned long update_intv =
4419 min_t(unsigned long, HZ,
4420 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4421
4422 if (time_before64(frn->at, now - update_intv))
4423 frn->at = now;
4424 } else if (oldest >= 0) {
4425 /* replace the oldest free one */
4426 frn = &memcg->cgwb_frn[oldest];
4427 frn->bdi_id = wb->bdi->id;
4428 frn->memcg_id = wb->memcg_css->id;
4429 frn->at = now;
4430 }
4431}
4432
4433/* issue foreign writeback flushes for recorded foreign dirtying events */
4434void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4435{
4436 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4437 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4438 u64 now = jiffies_64;
4439 int i;
4440
4441 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4442 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4443
4444 /*
4445 * If the record is older than dirty_expire_interval,
4446 * writeback on it has already started. No need to kick it
4447 * off again. Also, don't start a new one if there's
4448 * already one in flight.
4449 */
4450 if (time_after64(frn->at, now - intv) &&
4451 atomic_read(&frn->done.cnt) == 1) {
4452 frn->at = 0;
3a8e9ac8 4453 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4454 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4455 WB_REASON_FOREIGN_FLUSH,
4456 &frn->done);
4457 }
4458 }
4459}
4460
841710aa
TH
4461#else /* CONFIG_CGROUP_WRITEBACK */
4462
4463static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4464{
4465 return 0;
4466}
4467
4468static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4469{
4470}
4471
2529bb3a
TH
4472static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473{
4474}
4475
52ebea74
TH
4476#endif /* CONFIG_CGROUP_WRITEBACK */
4477
3bc942f3
TH
4478/*
4479 * DO NOT USE IN NEW FILES.
4480 *
4481 * "cgroup.event_control" implementation.
4482 *
4483 * This is way over-engineered. It tries to support fully configurable
4484 * events for each user. Such level of flexibility is completely
4485 * unnecessary especially in the light of the planned unified hierarchy.
4486 *
4487 * Please deprecate this and replace with something simpler if at all
4488 * possible.
4489 */
4490
79bd9814
TH
4491/*
4492 * Unregister event and free resources.
4493 *
4494 * Gets called from workqueue.
4495 */
3bc942f3 4496static void memcg_event_remove(struct work_struct *work)
79bd9814 4497{
3bc942f3
TH
4498 struct mem_cgroup_event *event =
4499 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4500 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4501
4502 remove_wait_queue(event->wqh, &event->wait);
4503
59b6f873 4504 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4505
4506 /* Notify userspace the event is going away. */
4507 eventfd_signal(event->eventfd, 1);
4508
4509 eventfd_ctx_put(event->eventfd);
4510 kfree(event);
59b6f873 4511 css_put(&memcg->css);
79bd9814
TH
4512}
4513
4514/*
a9a08845 4515 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4516 *
4517 * Called with wqh->lock held and interrupts disabled.
4518 */
ac6424b9 4519static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4520 int sync, void *key)
79bd9814 4521{
3bc942f3
TH
4522 struct mem_cgroup_event *event =
4523 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4524 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4525 __poll_t flags = key_to_poll(key);
79bd9814 4526
a9a08845 4527 if (flags & EPOLLHUP) {
79bd9814
TH
4528 /*
4529 * If the event has been detached at cgroup removal, we
4530 * can simply return knowing the other side will cleanup
4531 * for us.
4532 *
4533 * We can't race against event freeing since the other
4534 * side will require wqh->lock via remove_wait_queue(),
4535 * which we hold.
4536 */
fba94807 4537 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4538 if (!list_empty(&event->list)) {
4539 list_del_init(&event->list);
4540 /*
4541 * We are in atomic context, but cgroup_event_remove()
4542 * may sleep, so we have to call it in workqueue.
4543 */
4544 schedule_work(&event->remove);
4545 }
fba94807 4546 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4547 }
4548
4549 return 0;
4550}
4551
3bc942f3 4552static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4553 wait_queue_head_t *wqh, poll_table *pt)
4554{
3bc942f3
TH
4555 struct mem_cgroup_event *event =
4556 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4557
4558 event->wqh = wqh;
4559 add_wait_queue(wqh, &event->wait);
4560}
4561
4562/*
3bc942f3
TH
4563 * DO NOT USE IN NEW FILES.
4564 *
79bd9814
TH
4565 * Parse input and register new cgroup event handler.
4566 *
4567 * Input must be in format '<event_fd> <control_fd> <args>'.
4568 * Interpretation of args is defined by control file implementation.
4569 */
451af504
TH
4570static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4571 char *buf, size_t nbytes, loff_t off)
79bd9814 4572{
451af504 4573 struct cgroup_subsys_state *css = of_css(of);
fba94807 4574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4575 struct mem_cgroup_event *event;
79bd9814
TH
4576 struct cgroup_subsys_state *cfile_css;
4577 unsigned int efd, cfd;
4578 struct fd efile;
4579 struct fd cfile;
fba94807 4580 const char *name;
79bd9814
TH
4581 char *endp;
4582 int ret;
4583
451af504
TH
4584 buf = strstrip(buf);
4585
4586 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4587 if (*endp != ' ')
4588 return -EINVAL;
451af504 4589 buf = endp + 1;
79bd9814 4590
451af504 4591 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4592 if ((*endp != ' ') && (*endp != '\0'))
4593 return -EINVAL;
451af504 4594 buf = endp + 1;
79bd9814
TH
4595
4596 event = kzalloc(sizeof(*event), GFP_KERNEL);
4597 if (!event)
4598 return -ENOMEM;
4599
59b6f873 4600 event->memcg = memcg;
79bd9814 4601 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4602 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4603 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4604 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4605
4606 efile = fdget(efd);
4607 if (!efile.file) {
4608 ret = -EBADF;
4609 goto out_kfree;
4610 }
4611
4612 event->eventfd = eventfd_ctx_fileget(efile.file);
4613 if (IS_ERR(event->eventfd)) {
4614 ret = PTR_ERR(event->eventfd);
4615 goto out_put_efile;
4616 }
4617
4618 cfile = fdget(cfd);
4619 if (!cfile.file) {
4620 ret = -EBADF;
4621 goto out_put_eventfd;
4622 }
4623
4624 /* the process need read permission on control file */
4625 /* AV: shouldn't we check that it's been opened for read instead? */
4626 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4627 if (ret < 0)
4628 goto out_put_cfile;
4629
fba94807
TH
4630 /*
4631 * Determine the event callbacks and set them in @event. This used
4632 * to be done via struct cftype but cgroup core no longer knows
4633 * about these events. The following is crude but the whole thing
4634 * is for compatibility anyway.
3bc942f3
TH
4635 *
4636 * DO NOT ADD NEW FILES.
fba94807 4637 */
b583043e 4638 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4639
4640 if (!strcmp(name, "memory.usage_in_bytes")) {
4641 event->register_event = mem_cgroup_usage_register_event;
4642 event->unregister_event = mem_cgroup_usage_unregister_event;
4643 } else if (!strcmp(name, "memory.oom_control")) {
4644 event->register_event = mem_cgroup_oom_register_event;
4645 event->unregister_event = mem_cgroup_oom_unregister_event;
4646 } else if (!strcmp(name, "memory.pressure_level")) {
4647 event->register_event = vmpressure_register_event;
4648 event->unregister_event = vmpressure_unregister_event;
4649 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4650 event->register_event = memsw_cgroup_usage_register_event;
4651 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4652 } else {
4653 ret = -EINVAL;
4654 goto out_put_cfile;
4655 }
4656
79bd9814 4657 /*
b5557c4c
TH
4658 * Verify @cfile should belong to @css. Also, remaining events are
4659 * automatically removed on cgroup destruction but the removal is
4660 * asynchronous, so take an extra ref on @css.
79bd9814 4661 */
b583043e 4662 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4663 &memory_cgrp_subsys);
79bd9814 4664 ret = -EINVAL;
5a17f543 4665 if (IS_ERR(cfile_css))
79bd9814 4666 goto out_put_cfile;
5a17f543
TH
4667 if (cfile_css != css) {
4668 css_put(cfile_css);
79bd9814 4669 goto out_put_cfile;
5a17f543 4670 }
79bd9814 4671
451af504 4672 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4673 if (ret)
4674 goto out_put_css;
4675
9965ed17 4676 vfs_poll(efile.file, &event->pt);
79bd9814 4677
fba94807
TH
4678 spin_lock(&memcg->event_list_lock);
4679 list_add(&event->list, &memcg->event_list);
4680 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4681
4682 fdput(cfile);
4683 fdput(efile);
4684
451af504 4685 return nbytes;
79bd9814
TH
4686
4687out_put_css:
b5557c4c 4688 css_put(css);
79bd9814
TH
4689out_put_cfile:
4690 fdput(cfile);
4691out_put_eventfd:
4692 eventfd_ctx_put(event->eventfd);
4693out_put_efile:
4694 fdput(efile);
4695out_kfree:
4696 kfree(event);
4697
4698 return ret;
4699}
4700
241994ed 4701static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4702 {
0eea1030 4703 .name = "usage_in_bytes",
8c7c6e34 4704 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4705 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4706 },
c84872e1
PE
4707 {
4708 .name = "max_usage_in_bytes",
8c7c6e34 4709 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4710 .write = mem_cgroup_reset,
791badbd 4711 .read_u64 = mem_cgroup_read_u64,
c84872e1 4712 },
8cdea7c0 4713 {
0eea1030 4714 .name = "limit_in_bytes",
8c7c6e34 4715 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4716 .write = mem_cgroup_write,
791badbd 4717 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4718 },
296c81d8
BS
4719 {
4720 .name = "soft_limit_in_bytes",
4721 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4722 .write = mem_cgroup_write,
791badbd 4723 .read_u64 = mem_cgroup_read_u64,
296c81d8 4724 },
8cdea7c0
BS
4725 {
4726 .name = "failcnt",
8c7c6e34 4727 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4728 .write = mem_cgroup_reset,
791badbd 4729 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4730 },
d2ceb9b7
KH
4731 {
4732 .name = "stat",
2da8ca82 4733 .seq_show = memcg_stat_show,
d2ceb9b7 4734 },
c1e862c1
KH
4735 {
4736 .name = "force_empty",
6770c64e 4737 .write = mem_cgroup_force_empty_write,
c1e862c1 4738 },
18f59ea7
BS
4739 {
4740 .name = "use_hierarchy",
4741 .write_u64 = mem_cgroup_hierarchy_write,
4742 .read_u64 = mem_cgroup_hierarchy_read,
4743 },
79bd9814 4744 {
3bc942f3 4745 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4746 .write = memcg_write_event_control,
7dbdb199 4747 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4748 },
a7885eb8
KM
4749 {
4750 .name = "swappiness",
4751 .read_u64 = mem_cgroup_swappiness_read,
4752 .write_u64 = mem_cgroup_swappiness_write,
4753 },
7dc74be0
DN
4754 {
4755 .name = "move_charge_at_immigrate",
4756 .read_u64 = mem_cgroup_move_charge_read,
4757 .write_u64 = mem_cgroup_move_charge_write,
4758 },
9490ff27
KH
4759 {
4760 .name = "oom_control",
2da8ca82 4761 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4762 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
70ddf637
AV
4765 {
4766 .name = "pressure_level",
70ddf637 4767 },
406eb0c9
YH
4768#ifdef CONFIG_NUMA
4769 {
4770 .name = "numa_stat",
2da8ca82 4771 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4772 },
4773#endif
510fc4e1
GC
4774 {
4775 .name = "kmem.limit_in_bytes",
4776 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4777 .write = mem_cgroup_write,
791badbd 4778 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4779 },
4780 {
4781 .name = "kmem.usage_in_bytes",
4782 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4783 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4784 },
4785 {
4786 .name = "kmem.failcnt",
4787 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4788 .write = mem_cgroup_reset,
791badbd 4789 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4790 },
4791 {
4792 .name = "kmem.max_usage_in_bytes",
4793 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4794 .write = mem_cgroup_reset,
791badbd 4795 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4796 },
a87425a3
YS
4797#if defined(CONFIG_MEMCG_KMEM) && \
4798 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4799 {
4800 .name = "kmem.slabinfo",
bc2791f8
TH
4801 .seq_start = memcg_slab_start,
4802 .seq_next = memcg_slab_next,
4803 .seq_stop = memcg_slab_stop,
b047501c 4804 .seq_show = memcg_slab_show,
749c5415
GC
4805 },
4806#endif
d55f90bf
VD
4807 {
4808 .name = "kmem.tcp.limit_in_bytes",
4809 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4810 .write = mem_cgroup_write,
4811 .read_u64 = mem_cgroup_read_u64,
4812 },
4813 {
4814 .name = "kmem.tcp.usage_in_bytes",
4815 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4816 .read_u64 = mem_cgroup_read_u64,
4817 },
4818 {
4819 .name = "kmem.tcp.failcnt",
4820 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4821 .write = mem_cgroup_reset,
4822 .read_u64 = mem_cgroup_read_u64,
4823 },
4824 {
4825 .name = "kmem.tcp.max_usage_in_bytes",
4826 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4827 .write = mem_cgroup_reset,
4828 .read_u64 = mem_cgroup_read_u64,
4829 },
6bc10349 4830 { }, /* terminate */
af36f906 4831};
8c7c6e34 4832
73f576c0
JW
4833/*
4834 * Private memory cgroup IDR
4835 *
4836 * Swap-out records and page cache shadow entries need to store memcg
4837 * references in constrained space, so we maintain an ID space that is
4838 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4839 * memory-controlled cgroups to 64k.
4840 *
4841 * However, there usually are many references to the oflline CSS after
4842 * the cgroup has been destroyed, such as page cache or reclaimable
4843 * slab objects, that don't need to hang on to the ID. We want to keep
4844 * those dead CSS from occupying IDs, or we might quickly exhaust the
4845 * relatively small ID space and prevent the creation of new cgroups
4846 * even when there are much fewer than 64k cgroups - possibly none.
4847 *
4848 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4849 * be freed and recycled when it's no longer needed, which is usually
4850 * when the CSS is offlined.
4851 *
4852 * The only exception to that are records of swapped out tmpfs/shmem
4853 * pages that need to be attributed to live ancestors on swapin. But
4854 * those references are manageable from userspace.
4855 */
4856
4857static DEFINE_IDR(mem_cgroup_idr);
4858
7e97de0b
KT
4859static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4860{
4861 if (memcg->id.id > 0) {
4862 idr_remove(&mem_cgroup_idr, memcg->id.id);
4863 memcg->id.id = 0;
4864 }
4865}
4866
c1514c0a
VF
4867static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4868 unsigned int n)
73f576c0 4869{
1c2d479a 4870 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4871}
4872
615d66c3 4873static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4874{
1c2d479a 4875 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4876 mem_cgroup_id_remove(memcg);
73f576c0
JW
4877
4878 /* Memcg ID pins CSS */
4879 css_put(&memcg->css);
4880 }
4881}
4882
615d66c3
VD
4883static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4884{
4885 mem_cgroup_id_put_many(memcg, 1);
4886}
4887
73f576c0
JW
4888/**
4889 * mem_cgroup_from_id - look up a memcg from a memcg id
4890 * @id: the memcg id to look up
4891 *
4892 * Caller must hold rcu_read_lock().
4893 */
4894struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4895{
4896 WARN_ON_ONCE(!rcu_read_lock_held());
4897 return idr_find(&mem_cgroup_idr, id);
4898}
4899
ef8f2327 4900static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4901{
4902 struct mem_cgroup_per_node *pn;
ef8f2327 4903 int tmp = node;
1ecaab2b
KH
4904 /*
4905 * This routine is called against possible nodes.
4906 * But it's BUG to call kmalloc() against offline node.
4907 *
4908 * TODO: this routine can waste much memory for nodes which will
4909 * never be onlined. It's better to use memory hotplug callback
4910 * function.
4911 */
41e3355d
KH
4912 if (!node_state(node, N_NORMAL_MEMORY))
4913 tmp = -1;
17295c88 4914 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4915 if (!pn)
4916 return 1;
1ecaab2b 4917
815744d7
JW
4918 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4919 if (!pn->lruvec_stat_local) {
4920 kfree(pn);
4921 return 1;
4922 }
4923
a983b5eb
JW
4924 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4925 if (!pn->lruvec_stat_cpu) {
815744d7 4926 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4927 kfree(pn);
4928 return 1;
4929 }
4930
ef8f2327
MG
4931 lruvec_init(&pn->lruvec);
4932 pn->usage_in_excess = 0;
4933 pn->on_tree = false;
4934 pn->memcg = memcg;
4935
54f72fe0 4936 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4937 return 0;
4938}
4939
ef8f2327 4940static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4941{
00f3ca2c
JW
4942 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4943
4eaf431f
MH
4944 if (!pn)
4945 return;
4946
a983b5eb 4947 free_percpu(pn->lruvec_stat_cpu);
815744d7 4948 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4949 kfree(pn);
1ecaab2b
KH
4950}
4951
40e952f9 4952static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4953{
c8b2a36f 4954 int node;
59927fb9 4955
c8b2a36f 4956 for_each_node(node)
ef8f2327 4957 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4958 free_percpu(memcg->vmstats_percpu);
815744d7 4959 free_percpu(memcg->vmstats_local);
8ff69e2c 4960 kfree(memcg);
59927fb9 4961}
3afe36b1 4962
40e952f9
TE
4963static void mem_cgroup_free(struct mem_cgroup *memcg)
4964{
4965 memcg_wb_domain_exit(memcg);
7961eee3
SB
4966 /*
4967 * Flush percpu vmstats and vmevents to guarantee the value correctness
4968 * on parent's and all ancestor levels.
4969 */
4a87e2a2 4970 memcg_flush_percpu_vmstats(memcg);
7961eee3 4971 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4972 __mem_cgroup_free(memcg);
4973}
4974
0b8f73e1 4975static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4976{
d142e3e6 4977 struct mem_cgroup *memcg;
b9726c26 4978 unsigned int size;
6d12e2d8 4979 int node;
97b27821 4980 int __maybe_unused i;
8cdea7c0 4981
0b8f73e1
JW
4982 size = sizeof(struct mem_cgroup);
4983 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4984
4985 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4986 if (!memcg)
0b8f73e1
JW
4987 return NULL;
4988
73f576c0
JW
4989 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4990 1, MEM_CGROUP_ID_MAX,
4991 GFP_KERNEL);
4992 if (memcg->id.id < 0)
4993 goto fail;
4994
815744d7
JW
4995 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4996 if (!memcg->vmstats_local)
4997 goto fail;
4998
871789d4
CD
4999 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5000 if (!memcg->vmstats_percpu)
0b8f73e1 5001 goto fail;
78fb7466 5002
3ed28fa1 5003 for_each_node(node)
ef8f2327 5004 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5005 goto fail;
f64c3f54 5006
0b8f73e1
JW
5007 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5008 goto fail;
28dbc4b6 5009
f7e1cb6e 5010 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5011 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5012 mutex_init(&memcg->thresholds_lock);
5013 spin_lock_init(&memcg->move_lock);
70ddf637 5014 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5015 INIT_LIST_HEAD(&memcg->event_list);
5016 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5017 memcg->socket_pressure = jiffies;
84c07d11 5018#ifdef CONFIG_MEMCG_KMEM
900a38f0 5019 memcg->kmemcg_id = -1;
900a38f0 5020#endif
52ebea74
TH
5021#ifdef CONFIG_CGROUP_WRITEBACK
5022 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5023 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5024 memcg->cgwb_frn[i].done =
5025 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5026#endif
5027#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5028 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5029 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5030 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5031#endif
73f576c0 5032 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5033 return memcg;
5034fail:
7e97de0b 5035 mem_cgroup_id_remove(memcg);
40e952f9 5036 __mem_cgroup_free(memcg);
0b8f73e1 5037 return NULL;
d142e3e6
GC
5038}
5039
0b8f73e1
JW
5040static struct cgroup_subsys_state * __ref
5041mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5042{
0b8f73e1
JW
5043 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5044 struct mem_cgroup *memcg;
5045 long error = -ENOMEM;
d142e3e6 5046
0b8f73e1
JW
5047 memcg = mem_cgroup_alloc();
5048 if (!memcg)
5049 return ERR_PTR(error);
d142e3e6 5050
f6f989c5 5051 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
0b8f73e1
JW
5052 memcg->soft_limit = PAGE_COUNTER_MAX;
5053 if (parent) {
5054 memcg->swappiness = mem_cgroup_swappiness(parent);
5055 memcg->oom_kill_disable = parent->oom_kill_disable;
5056 }
5057 if (parent && parent->use_hierarchy) {
5058 memcg->use_hierarchy = true;
3e32cb2e 5059 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5060 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5061 page_counter_init(&memcg->memsw, &parent->memsw);
5062 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5063 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5064 } else {
3e32cb2e 5065 page_counter_init(&memcg->memory, NULL);
37e84351 5066 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5067 page_counter_init(&memcg->memsw, NULL);
5068 page_counter_init(&memcg->kmem, NULL);
0db15298 5069 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5070 /*
5071 * Deeper hierachy with use_hierarchy == false doesn't make
5072 * much sense so let cgroup subsystem know about this
5073 * unfortunate state in our controller.
5074 */
d142e3e6 5075 if (parent != root_mem_cgroup)
073219e9 5076 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5077 }
d6441637 5078
0b8f73e1
JW
5079 /* The following stuff does not apply to the root */
5080 if (!parent) {
fb2f2b0a
RG
5081#ifdef CONFIG_MEMCG_KMEM
5082 INIT_LIST_HEAD(&memcg->kmem_caches);
5083#endif
0b8f73e1
JW
5084 root_mem_cgroup = memcg;
5085 return &memcg->css;
5086 }
5087
b313aeee 5088 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5089 if (error)
5090 goto fail;
127424c8 5091
f7e1cb6e 5092 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5093 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5094
0b8f73e1
JW
5095 return &memcg->css;
5096fail:
7e97de0b 5097 mem_cgroup_id_remove(memcg);
0b8f73e1 5098 mem_cgroup_free(memcg);
ea3a9645 5099 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5100}
5101
73f576c0 5102static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5103{
58fa2a55
VD
5104 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5105
0a4465d3
KT
5106 /*
5107 * A memcg must be visible for memcg_expand_shrinker_maps()
5108 * by the time the maps are allocated. So, we allocate maps
5109 * here, when for_each_mem_cgroup() can't skip it.
5110 */
5111 if (memcg_alloc_shrinker_maps(memcg)) {
5112 mem_cgroup_id_remove(memcg);
5113 return -ENOMEM;
5114 }
5115
73f576c0 5116 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5117 refcount_set(&memcg->id.ref, 1);
73f576c0 5118 css_get(css);
2f7dd7a4 5119 return 0;
8cdea7c0
BS
5120}
5121
eb95419b 5122static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5123{
eb95419b 5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5125 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5126
5127 /*
5128 * Unregister events and notify userspace.
5129 * Notify userspace about cgroup removing only after rmdir of cgroup
5130 * directory to avoid race between userspace and kernelspace.
5131 */
fba94807
TH
5132 spin_lock(&memcg->event_list_lock);
5133 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5134 list_del_init(&event->list);
5135 schedule_work(&event->remove);
5136 }
fba94807 5137 spin_unlock(&memcg->event_list_lock);
ec64f515 5138
bf8d5d52 5139 page_counter_set_min(&memcg->memory, 0);
23067153 5140 page_counter_set_low(&memcg->memory, 0);
63677c74 5141
567e9ab2 5142 memcg_offline_kmem(memcg);
52ebea74 5143 wb_memcg_offline(memcg);
73f576c0 5144
591edfb1
RG
5145 drain_all_stock(memcg);
5146
73f576c0 5147 mem_cgroup_id_put(memcg);
df878fb0
KH
5148}
5149
6df38689
VD
5150static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5151{
5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5153
5154 invalidate_reclaim_iterators(memcg);
5155}
5156
eb95419b 5157static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5158{
eb95419b 5159 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5160 int __maybe_unused i;
c268e994 5161
97b27821
TH
5162#ifdef CONFIG_CGROUP_WRITEBACK
5163 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5164 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5165#endif
f7e1cb6e 5166 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5167 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5168
0db15298 5169 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5170 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5171
0b8f73e1
JW
5172 vmpressure_cleanup(&memcg->vmpressure);
5173 cancel_work_sync(&memcg->high_work);
5174 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5175 memcg_free_shrinker_maps(memcg);
d886f4e4 5176 memcg_free_kmem(memcg);
0b8f73e1 5177 mem_cgroup_free(memcg);
8cdea7c0
BS
5178}
5179
1ced953b
TH
5180/**
5181 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5182 * @css: the target css
5183 *
5184 * Reset the states of the mem_cgroup associated with @css. This is
5185 * invoked when the userland requests disabling on the default hierarchy
5186 * but the memcg is pinned through dependency. The memcg should stop
5187 * applying policies and should revert to the vanilla state as it may be
5188 * made visible again.
5189 *
5190 * The current implementation only resets the essential configurations.
5191 * This needs to be expanded to cover all the visible parts.
5192 */
5193static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5194{
5195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5196
bbec2e15
RG
5197 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5198 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5199 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5200 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5201 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5202 page_counter_set_min(&memcg->memory, 0);
23067153 5203 page_counter_set_low(&memcg->memory, 0);
f6f989c5 5204 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
24d404dc 5205 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5206 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5207}
5208
02491447 5209#ifdef CONFIG_MMU
7dc74be0 5210/* Handlers for move charge at task migration. */
854ffa8d 5211static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5212{
05b84301 5213 int ret;
9476db97 5214
d0164adc
MG
5215 /* Try a single bulk charge without reclaim first, kswapd may wake */
5216 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5217 if (!ret) {
854ffa8d 5218 mc.precharge += count;
854ffa8d
DN
5219 return ret;
5220 }
9476db97 5221
3674534b 5222 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5223 while (count--) {
3674534b 5224 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5225 if (ret)
38c5d72f 5226 return ret;
854ffa8d 5227 mc.precharge++;
9476db97 5228 cond_resched();
854ffa8d 5229 }
9476db97 5230 return 0;
4ffef5fe
DN
5231}
5232
4ffef5fe
DN
5233union mc_target {
5234 struct page *page;
02491447 5235 swp_entry_t ent;
4ffef5fe
DN
5236};
5237
4ffef5fe 5238enum mc_target_type {
8d32ff84 5239 MC_TARGET_NONE = 0,
4ffef5fe 5240 MC_TARGET_PAGE,
02491447 5241 MC_TARGET_SWAP,
c733a828 5242 MC_TARGET_DEVICE,
4ffef5fe
DN
5243};
5244
90254a65
DN
5245static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5246 unsigned long addr, pte_t ptent)
4ffef5fe 5247{
25b2995a 5248 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5249
90254a65
DN
5250 if (!page || !page_mapped(page))
5251 return NULL;
5252 if (PageAnon(page)) {
1dfab5ab 5253 if (!(mc.flags & MOVE_ANON))
90254a65 5254 return NULL;
1dfab5ab
JW
5255 } else {
5256 if (!(mc.flags & MOVE_FILE))
5257 return NULL;
5258 }
90254a65
DN
5259 if (!get_page_unless_zero(page))
5260 return NULL;
5261
5262 return page;
5263}
5264
c733a828 5265#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5266static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5267 pte_t ptent, swp_entry_t *entry)
90254a65 5268{
90254a65
DN
5269 struct page *page = NULL;
5270 swp_entry_t ent = pte_to_swp_entry(ptent);
5271
1dfab5ab 5272 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5273 return NULL;
c733a828
JG
5274
5275 /*
5276 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5277 * a device and because they are not accessible by CPU they are store
5278 * as special swap entry in the CPU page table.
5279 */
5280 if (is_device_private_entry(ent)) {
5281 page = device_private_entry_to_page(ent);
5282 /*
5283 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5284 * a refcount of 1 when free (unlike normal page)
5285 */
5286 if (!page_ref_add_unless(page, 1, 1))
5287 return NULL;
5288 return page;
5289 }
5290
4b91355e
KH
5291 /*
5292 * Because lookup_swap_cache() updates some statistics counter,
5293 * we call find_get_page() with swapper_space directly.
5294 */
f6ab1f7f 5295 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5296 if (do_memsw_account())
90254a65
DN
5297 entry->val = ent.val;
5298
5299 return page;
5300}
4b91355e
KH
5301#else
5302static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5303 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5304{
5305 return NULL;
5306}
5307#endif
90254a65 5308
87946a72
DN
5309static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5310 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5311{
5312 struct page *page = NULL;
87946a72
DN
5313 struct address_space *mapping;
5314 pgoff_t pgoff;
5315
5316 if (!vma->vm_file) /* anonymous vma */
5317 return NULL;
1dfab5ab 5318 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5319 return NULL;
5320
87946a72 5321 mapping = vma->vm_file->f_mapping;
0661a336 5322 pgoff = linear_page_index(vma, addr);
87946a72
DN
5323
5324 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5325#ifdef CONFIG_SWAP
5326 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5327 if (shmem_mapping(mapping)) {
5328 page = find_get_entry(mapping, pgoff);
3159f943 5329 if (xa_is_value(page)) {
139b6a6f 5330 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5331 if (do_memsw_account())
139b6a6f 5332 *entry = swp;
f6ab1f7f
HY
5333 page = find_get_page(swap_address_space(swp),
5334 swp_offset(swp));
139b6a6f
JW
5335 }
5336 } else
5337 page = find_get_page(mapping, pgoff);
5338#else
5339 page = find_get_page(mapping, pgoff);
aa3b1895 5340#endif
87946a72
DN
5341 return page;
5342}
5343
b1b0deab
CG
5344/**
5345 * mem_cgroup_move_account - move account of the page
5346 * @page: the page
25843c2b 5347 * @compound: charge the page as compound or small page
b1b0deab
CG
5348 * @from: mem_cgroup which the page is moved from.
5349 * @to: mem_cgroup which the page is moved to. @from != @to.
5350 *
3ac808fd 5351 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5352 *
5353 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5354 * from old cgroup.
5355 */
5356static int mem_cgroup_move_account(struct page *page,
f627c2f5 5357 bool compound,
b1b0deab
CG
5358 struct mem_cgroup *from,
5359 struct mem_cgroup *to)
5360{
ae8af438
KK
5361 struct lruvec *from_vec, *to_vec;
5362 struct pglist_data *pgdat;
b1b0deab 5363 unsigned long flags;
f627c2f5 5364 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5365 int ret;
c4843a75 5366 bool anon;
b1b0deab
CG
5367
5368 VM_BUG_ON(from == to);
5369 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5370 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5371
5372 /*
6a93ca8f 5373 * Prevent mem_cgroup_migrate() from looking at
45637bab 5374 * page->mem_cgroup of its source page while we change it.
b1b0deab 5375 */
f627c2f5 5376 ret = -EBUSY;
b1b0deab
CG
5377 if (!trylock_page(page))
5378 goto out;
5379
5380 ret = -EINVAL;
5381 if (page->mem_cgroup != from)
5382 goto out_unlock;
5383
c4843a75
GT
5384 anon = PageAnon(page);
5385
ae8af438 5386 pgdat = page_pgdat(page);
867e5e1d
JW
5387 from_vec = mem_cgroup_lruvec(from, pgdat);
5388 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5389
b1b0deab
CG
5390 spin_lock_irqsave(&from->move_lock, flags);
5391
c4843a75 5392 if (!anon && page_mapped(page)) {
ae8af438
KK
5393 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5394 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5395 }
5396
c4843a75
GT
5397 /*
5398 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5399 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5400 * So mapping should be stable for dirty pages.
5401 */
5402 if (!anon && PageDirty(page)) {
5403 struct address_space *mapping = page_mapping(page);
5404
5405 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5406 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5407 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5408 }
5409 }
5410
b1b0deab 5411 if (PageWriteback(page)) {
ae8af438
KK
5412 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5413 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5414 }
5415
5416 /*
5417 * It is safe to change page->mem_cgroup here because the page
5418 * is referenced, charged, and isolated - we can't race with
5419 * uncharging, charging, migration, or LRU putback.
5420 */
5421
5422 /* caller should have done css_get */
5423 page->mem_cgroup = to;
87eaceb3 5424
b1b0deab
CG
5425 spin_unlock_irqrestore(&from->move_lock, flags);
5426
5427 ret = 0;
5428
5429 local_irq_disable();
f627c2f5 5430 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5431 memcg_check_events(to, page);
f627c2f5 5432 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5433 memcg_check_events(from, page);
5434 local_irq_enable();
5435out_unlock:
5436 unlock_page(page);
5437out:
5438 return ret;
5439}
5440
7cf7806c
LR
5441/**
5442 * get_mctgt_type - get target type of moving charge
5443 * @vma: the vma the pte to be checked belongs
5444 * @addr: the address corresponding to the pte to be checked
5445 * @ptent: the pte to be checked
5446 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5447 *
5448 * Returns
5449 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5450 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5451 * move charge. if @target is not NULL, the page is stored in target->page
5452 * with extra refcnt got(Callers should handle it).
5453 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5454 * target for charge migration. if @target is not NULL, the entry is stored
5455 * in target->ent.
25b2995a
CH
5456 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5457 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5458 * For now we such page is charge like a regular page would be as for all
5459 * intent and purposes it is just special memory taking the place of a
5460 * regular page.
c733a828
JG
5461 *
5462 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5463 *
5464 * Called with pte lock held.
5465 */
5466
8d32ff84 5467static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5468 unsigned long addr, pte_t ptent, union mc_target *target)
5469{
5470 struct page *page = NULL;
8d32ff84 5471 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5472 swp_entry_t ent = { .val = 0 };
5473
5474 if (pte_present(ptent))
5475 page = mc_handle_present_pte(vma, addr, ptent);
5476 else if (is_swap_pte(ptent))
48406ef8 5477 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5478 else if (pte_none(ptent))
87946a72 5479 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5480
5481 if (!page && !ent.val)
8d32ff84 5482 return ret;
02491447 5483 if (page) {
02491447 5484 /*
0a31bc97 5485 * Do only loose check w/o serialization.
1306a85a 5486 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5487 * not under LRU exclusion.
02491447 5488 */
1306a85a 5489 if (page->mem_cgroup == mc.from) {
02491447 5490 ret = MC_TARGET_PAGE;
25b2995a 5491 if (is_device_private_page(page))
c733a828 5492 ret = MC_TARGET_DEVICE;
02491447
DN
5493 if (target)
5494 target->page = page;
5495 }
5496 if (!ret || !target)
5497 put_page(page);
5498 }
3e14a57b
HY
5499 /*
5500 * There is a swap entry and a page doesn't exist or isn't charged.
5501 * But we cannot move a tail-page in a THP.
5502 */
5503 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5504 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5505 ret = MC_TARGET_SWAP;
5506 if (target)
5507 target->ent = ent;
4ffef5fe 5508 }
4ffef5fe
DN
5509 return ret;
5510}
5511
12724850
NH
5512#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5513/*
d6810d73
HY
5514 * We don't consider PMD mapped swapping or file mapped pages because THP does
5515 * not support them for now.
12724850
NH
5516 * Caller should make sure that pmd_trans_huge(pmd) is true.
5517 */
5518static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5519 unsigned long addr, pmd_t pmd, union mc_target *target)
5520{
5521 struct page *page = NULL;
12724850
NH
5522 enum mc_target_type ret = MC_TARGET_NONE;
5523
84c3fc4e
ZY
5524 if (unlikely(is_swap_pmd(pmd))) {
5525 VM_BUG_ON(thp_migration_supported() &&
5526 !is_pmd_migration_entry(pmd));
5527 return ret;
5528 }
12724850 5529 page = pmd_page(pmd);
309381fe 5530 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5531 if (!(mc.flags & MOVE_ANON))
12724850 5532 return ret;
1306a85a 5533 if (page->mem_cgroup == mc.from) {
12724850
NH
5534 ret = MC_TARGET_PAGE;
5535 if (target) {
5536 get_page(page);
5537 target->page = page;
5538 }
5539 }
5540 return ret;
5541}
5542#else
5543static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5544 unsigned long addr, pmd_t pmd, union mc_target *target)
5545{
5546 return MC_TARGET_NONE;
5547}
5548#endif
5549
4ffef5fe
DN
5550static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5551 unsigned long addr, unsigned long end,
5552 struct mm_walk *walk)
5553{
26bcd64a 5554 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5555 pte_t *pte;
5556 spinlock_t *ptl;
5557
b6ec57f4
KS
5558 ptl = pmd_trans_huge_lock(pmd, vma);
5559 if (ptl) {
c733a828
JG
5560 /*
5561 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5562 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5563 * this might change.
c733a828 5564 */
12724850
NH
5565 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5566 mc.precharge += HPAGE_PMD_NR;
bf929152 5567 spin_unlock(ptl);
1a5a9906 5568 return 0;
12724850 5569 }
03319327 5570
45f83cef
AA
5571 if (pmd_trans_unstable(pmd))
5572 return 0;
4ffef5fe
DN
5573 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5574 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5575 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5576 mc.precharge++; /* increment precharge temporarily */
5577 pte_unmap_unlock(pte - 1, ptl);
5578 cond_resched();
5579
7dc74be0
DN
5580 return 0;
5581}
5582
7b86ac33
CH
5583static const struct mm_walk_ops precharge_walk_ops = {
5584 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5585};
5586
4ffef5fe
DN
5587static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5588{
5589 unsigned long precharge;
4ffef5fe 5590
dfe076b0 5591 down_read(&mm->mmap_sem);
7b86ac33 5592 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5593 up_read(&mm->mmap_sem);
4ffef5fe
DN
5594
5595 precharge = mc.precharge;
5596 mc.precharge = 0;
5597
5598 return precharge;
5599}
5600
4ffef5fe
DN
5601static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5602{
dfe076b0
DN
5603 unsigned long precharge = mem_cgroup_count_precharge(mm);
5604
5605 VM_BUG_ON(mc.moving_task);
5606 mc.moving_task = current;
5607 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5608}
5609
dfe076b0
DN
5610/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5611static void __mem_cgroup_clear_mc(void)
4ffef5fe 5612{
2bd9bb20
KH
5613 struct mem_cgroup *from = mc.from;
5614 struct mem_cgroup *to = mc.to;
5615
4ffef5fe 5616 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5617 if (mc.precharge) {
00501b53 5618 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5619 mc.precharge = 0;
5620 }
5621 /*
5622 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5623 * we must uncharge here.
5624 */
5625 if (mc.moved_charge) {
00501b53 5626 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5627 mc.moved_charge = 0;
4ffef5fe 5628 }
483c30b5
DN
5629 /* we must fixup refcnts and charges */
5630 if (mc.moved_swap) {
483c30b5 5631 /* uncharge swap account from the old cgroup */
ce00a967 5632 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5633 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5634
615d66c3
VD
5635 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5636
05b84301 5637 /*
3e32cb2e
JW
5638 * we charged both to->memory and to->memsw, so we
5639 * should uncharge to->memory.
05b84301 5640 */
ce00a967 5641 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5642 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5643
615d66c3
VD
5644 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5645 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5646
483c30b5
DN
5647 mc.moved_swap = 0;
5648 }
dfe076b0
DN
5649 memcg_oom_recover(from);
5650 memcg_oom_recover(to);
5651 wake_up_all(&mc.waitq);
5652}
5653
5654static void mem_cgroup_clear_mc(void)
5655{
264a0ae1
TH
5656 struct mm_struct *mm = mc.mm;
5657
dfe076b0
DN
5658 /*
5659 * we must clear moving_task before waking up waiters at the end of
5660 * task migration.
5661 */
5662 mc.moving_task = NULL;
5663 __mem_cgroup_clear_mc();
2bd9bb20 5664 spin_lock(&mc.lock);
4ffef5fe
DN
5665 mc.from = NULL;
5666 mc.to = NULL;
264a0ae1 5667 mc.mm = NULL;
2bd9bb20 5668 spin_unlock(&mc.lock);
264a0ae1
TH
5669
5670 mmput(mm);
4ffef5fe
DN
5671}
5672
1f7dd3e5 5673static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5674{
1f7dd3e5 5675 struct cgroup_subsys_state *css;
eed67d75 5676 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5677 struct mem_cgroup *from;
4530eddb 5678 struct task_struct *leader, *p;
9f2115f9 5679 struct mm_struct *mm;
1dfab5ab 5680 unsigned long move_flags;
9f2115f9 5681 int ret = 0;
7dc74be0 5682
1f7dd3e5
TH
5683 /* charge immigration isn't supported on the default hierarchy */
5684 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5685 return 0;
5686
4530eddb
TH
5687 /*
5688 * Multi-process migrations only happen on the default hierarchy
5689 * where charge immigration is not used. Perform charge
5690 * immigration if @tset contains a leader and whine if there are
5691 * multiple.
5692 */
5693 p = NULL;
1f7dd3e5 5694 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5695 WARN_ON_ONCE(p);
5696 p = leader;
1f7dd3e5 5697 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5698 }
5699 if (!p)
5700 return 0;
5701
1f7dd3e5
TH
5702 /*
5703 * We are now commited to this value whatever it is. Changes in this
5704 * tunable will only affect upcoming migrations, not the current one.
5705 * So we need to save it, and keep it going.
5706 */
5707 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5708 if (!move_flags)
5709 return 0;
5710
9f2115f9
TH
5711 from = mem_cgroup_from_task(p);
5712
5713 VM_BUG_ON(from == memcg);
5714
5715 mm = get_task_mm(p);
5716 if (!mm)
5717 return 0;
5718 /* We move charges only when we move a owner of the mm */
5719 if (mm->owner == p) {
5720 VM_BUG_ON(mc.from);
5721 VM_BUG_ON(mc.to);
5722 VM_BUG_ON(mc.precharge);
5723 VM_BUG_ON(mc.moved_charge);
5724 VM_BUG_ON(mc.moved_swap);
5725
5726 spin_lock(&mc.lock);
264a0ae1 5727 mc.mm = mm;
9f2115f9
TH
5728 mc.from = from;
5729 mc.to = memcg;
5730 mc.flags = move_flags;
5731 spin_unlock(&mc.lock);
5732 /* We set mc.moving_task later */
5733
5734 ret = mem_cgroup_precharge_mc(mm);
5735 if (ret)
5736 mem_cgroup_clear_mc();
264a0ae1
TH
5737 } else {
5738 mmput(mm);
7dc74be0
DN
5739 }
5740 return ret;
5741}
5742
1f7dd3e5 5743static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5744{
4e2f245d
JW
5745 if (mc.to)
5746 mem_cgroup_clear_mc();
7dc74be0
DN
5747}
5748
4ffef5fe
DN
5749static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5750 unsigned long addr, unsigned long end,
5751 struct mm_walk *walk)
7dc74be0 5752{
4ffef5fe 5753 int ret = 0;
26bcd64a 5754 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5755 pte_t *pte;
5756 spinlock_t *ptl;
12724850
NH
5757 enum mc_target_type target_type;
5758 union mc_target target;
5759 struct page *page;
4ffef5fe 5760
b6ec57f4
KS
5761 ptl = pmd_trans_huge_lock(pmd, vma);
5762 if (ptl) {
62ade86a 5763 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5764 spin_unlock(ptl);
12724850
NH
5765 return 0;
5766 }
5767 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5768 if (target_type == MC_TARGET_PAGE) {
5769 page = target.page;
5770 if (!isolate_lru_page(page)) {
f627c2f5 5771 if (!mem_cgroup_move_account(page, true,
1306a85a 5772 mc.from, mc.to)) {
12724850
NH
5773 mc.precharge -= HPAGE_PMD_NR;
5774 mc.moved_charge += HPAGE_PMD_NR;
5775 }
5776 putback_lru_page(page);
5777 }
5778 put_page(page);
c733a828
JG
5779 } else if (target_type == MC_TARGET_DEVICE) {
5780 page = target.page;
5781 if (!mem_cgroup_move_account(page, true,
5782 mc.from, mc.to)) {
5783 mc.precharge -= HPAGE_PMD_NR;
5784 mc.moved_charge += HPAGE_PMD_NR;
5785 }
5786 put_page(page);
12724850 5787 }
bf929152 5788 spin_unlock(ptl);
1a5a9906 5789 return 0;
12724850
NH
5790 }
5791
45f83cef
AA
5792 if (pmd_trans_unstable(pmd))
5793 return 0;
4ffef5fe
DN
5794retry:
5795 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5796 for (; addr != end; addr += PAGE_SIZE) {
5797 pte_t ptent = *(pte++);
c733a828 5798 bool device = false;
02491447 5799 swp_entry_t ent;
4ffef5fe
DN
5800
5801 if (!mc.precharge)
5802 break;
5803
8d32ff84 5804 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5805 case MC_TARGET_DEVICE:
5806 device = true;
5807 /* fall through */
4ffef5fe
DN
5808 case MC_TARGET_PAGE:
5809 page = target.page;
53f9263b
KS
5810 /*
5811 * We can have a part of the split pmd here. Moving it
5812 * can be done but it would be too convoluted so simply
5813 * ignore such a partial THP and keep it in original
5814 * memcg. There should be somebody mapping the head.
5815 */
5816 if (PageTransCompound(page))
5817 goto put;
c733a828 5818 if (!device && isolate_lru_page(page))
4ffef5fe 5819 goto put;
f627c2f5
KS
5820 if (!mem_cgroup_move_account(page, false,
5821 mc.from, mc.to)) {
4ffef5fe 5822 mc.precharge--;
854ffa8d
DN
5823 /* we uncharge from mc.from later. */
5824 mc.moved_charge++;
4ffef5fe 5825 }
c733a828
JG
5826 if (!device)
5827 putback_lru_page(page);
8d32ff84 5828put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5829 put_page(page);
5830 break;
02491447
DN
5831 case MC_TARGET_SWAP:
5832 ent = target.ent;
e91cbb42 5833 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5834 mc.precharge--;
483c30b5
DN
5835 /* we fixup refcnts and charges later. */
5836 mc.moved_swap++;
5837 }
02491447 5838 break;
4ffef5fe
DN
5839 default:
5840 break;
5841 }
5842 }
5843 pte_unmap_unlock(pte - 1, ptl);
5844 cond_resched();
5845
5846 if (addr != end) {
5847 /*
5848 * We have consumed all precharges we got in can_attach().
5849 * We try charge one by one, but don't do any additional
5850 * charges to mc.to if we have failed in charge once in attach()
5851 * phase.
5852 */
854ffa8d 5853 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5854 if (!ret)
5855 goto retry;
5856 }
5857
5858 return ret;
5859}
5860
7b86ac33
CH
5861static const struct mm_walk_ops charge_walk_ops = {
5862 .pmd_entry = mem_cgroup_move_charge_pte_range,
5863};
5864
264a0ae1 5865static void mem_cgroup_move_charge(void)
4ffef5fe 5866{
4ffef5fe 5867 lru_add_drain_all();
312722cb 5868 /*
81f8c3a4
JW
5869 * Signal lock_page_memcg() to take the memcg's move_lock
5870 * while we're moving its pages to another memcg. Then wait
5871 * for already started RCU-only updates to finish.
312722cb
JW
5872 */
5873 atomic_inc(&mc.from->moving_account);
5874 synchronize_rcu();
dfe076b0 5875retry:
264a0ae1 5876 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5877 /*
5878 * Someone who are holding the mmap_sem might be waiting in
5879 * waitq. So we cancel all extra charges, wake up all waiters,
5880 * and retry. Because we cancel precharges, we might not be able
5881 * to move enough charges, but moving charge is a best-effort
5882 * feature anyway, so it wouldn't be a big problem.
5883 */
5884 __mem_cgroup_clear_mc();
5885 cond_resched();
5886 goto retry;
5887 }
26bcd64a
NH
5888 /*
5889 * When we have consumed all precharges and failed in doing
5890 * additional charge, the page walk just aborts.
5891 */
7b86ac33
CH
5892 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5893 NULL);
0247f3f4 5894
264a0ae1 5895 up_read(&mc.mm->mmap_sem);
312722cb 5896 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5897}
5898
264a0ae1 5899static void mem_cgroup_move_task(void)
67e465a7 5900{
264a0ae1
TH
5901 if (mc.to) {
5902 mem_cgroup_move_charge();
a433658c 5903 mem_cgroup_clear_mc();
264a0ae1 5904 }
67e465a7 5905}
5cfb80a7 5906#else /* !CONFIG_MMU */
1f7dd3e5 5907static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5908{
5909 return 0;
5910}
1f7dd3e5 5911static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5912{
5913}
264a0ae1 5914static void mem_cgroup_move_task(void)
5cfb80a7
DN
5915{
5916}
5917#endif
67e465a7 5918
f00baae7
TH
5919/*
5920 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5921 * to verify whether we're attached to the default hierarchy on each mount
5922 * attempt.
f00baae7 5923 */
eb95419b 5924static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5925{
5926 /*
aa6ec29b 5927 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5928 * guarantees that @root doesn't have any children, so turning it
5929 * on for the root memcg is enough.
5930 */
9e10a130 5931 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5932 root_mem_cgroup->use_hierarchy = true;
5933 else
5934 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5935}
5936
677dc973
CD
5937static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5938{
5939 if (value == PAGE_COUNTER_MAX)
5940 seq_puts(m, "max\n");
5941 else
5942 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5943
5944 return 0;
5945}
5946
241994ed
JW
5947static u64 memory_current_read(struct cgroup_subsys_state *css,
5948 struct cftype *cft)
5949{
f5fc3c5d
JW
5950 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5951
5952 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5953}
5954
bf8d5d52
RG
5955static int memory_min_show(struct seq_file *m, void *v)
5956{
677dc973
CD
5957 return seq_puts_memcg_tunable(m,
5958 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5959}
5960
5961static ssize_t memory_min_write(struct kernfs_open_file *of,
5962 char *buf, size_t nbytes, loff_t off)
5963{
5964 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5965 unsigned long min;
5966 int err;
5967
5968 buf = strstrip(buf);
5969 err = page_counter_memparse(buf, "max", &min);
5970 if (err)
5971 return err;
5972
5973 page_counter_set_min(&memcg->memory, min);
5974
5975 return nbytes;
5976}
5977
241994ed
JW
5978static int memory_low_show(struct seq_file *m, void *v)
5979{
677dc973
CD
5980 return seq_puts_memcg_tunable(m,
5981 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5982}
5983
5984static ssize_t memory_low_write(struct kernfs_open_file *of,
5985 char *buf, size_t nbytes, loff_t off)
5986{
5987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5988 unsigned long low;
5989 int err;
5990
5991 buf = strstrip(buf);
d2973697 5992 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5993 if (err)
5994 return err;
5995
23067153 5996 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5997
5998 return nbytes;
5999}
6000
6001static int memory_high_show(struct seq_file *m, void *v)
6002{
677dc973 6003 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6004}
6005
6006static ssize_t memory_high_write(struct kernfs_open_file *of,
6007 char *buf, size_t nbytes, loff_t off)
6008{
6009 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6010 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6011 bool drained = false;
241994ed
JW
6012 unsigned long high;
6013 int err;
6014
6015 buf = strstrip(buf);
d2973697 6016 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6017 if (err)
6018 return err;
6019
f6f989c5 6020 WRITE_ONCE(memcg->high, high);
241994ed 6021
8c8c383c
JW
6022 for (;;) {
6023 unsigned long nr_pages = page_counter_read(&memcg->memory);
6024 unsigned long reclaimed;
6025
6026 if (nr_pages <= high)
6027 break;
6028
6029 if (signal_pending(current))
6030 break;
6031
6032 if (!drained) {
6033 drain_all_stock(memcg);
6034 drained = true;
6035 continue;
6036 }
6037
6038 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6039 GFP_KERNEL, true);
6040
6041 if (!reclaimed && !nr_retries--)
6042 break;
6043 }
588083bb 6044
241994ed
JW
6045 return nbytes;
6046}
6047
6048static int memory_max_show(struct seq_file *m, void *v)
6049{
677dc973
CD
6050 return seq_puts_memcg_tunable(m,
6051 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6052}
6053
6054static ssize_t memory_max_write(struct kernfs_open_file *of,
6055 char *buf, size_t nbytes, loff_t off)
6056{
6057 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6058 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6059 bool drained = false;
241994ed
JW
6060 unsigned long max;
6061 int err;
6062
6063 buf = strstrip(buf);
d2973697 6064 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6065 if (err)
6066 return err;
6067
bbec2e15 6068 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6069
6070 for (;;) {
6071 unsigned long nr_pages = page_counter_read(&memcg->memory);
6072
6073 if (nr_pages <= max)
6074 break;
6075
7249c9f0 6076 if (signal_pending(current))
b6e6edcf 6077 break;
b6e6edcf
JW
6078
6079 if (!drained) {
6080 drain_all_stock(memcg);
6081 drained = true;
6082 continue;
6083 }
6084
6085 if (nr_reclaims) {
6086 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6087 GFP_KERNEL, true))
6088 nr_reclaims--;
6089 continue;
6090 }
6091
e27be240 6092 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6093 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6094 break;
6095 }
241994ed 6096
2529bb3a 6097 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6098 return nbytes;
6099}
6100
1e577f97
SB
6101static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6102{
6103 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6104 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6105 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6106 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6107 seq_printf(m, "oom_kill %lu\n",
6108 atomic_long_read(&events[MEMCG_OOM_KILL]));
6109}
6110
241994ed
JW
6111static int memory_events_show(struct seq_file *m, void *v)
6112{
aa9694bb 6113 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6114
1e577f97
SB
6115 __memory_events_show(m, memcg->memory_events);
6116 return 0;
6117}
6118
6119static int memory_events_local_show(struct seq_file *m, void *v)
6120{
6121 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6122
1e577f97 6123 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6124 return 0;
6125}
6126
587d9f72
JW
6127static int memory_stat_show(struct seq_file *m, void *v)
6128{
aa9694bb 6129 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6130 char *buf;
1ff9e6e1 6131
c8713d0b
JW
6132 buf = memory_stat_format(memcg);
6133 if (!buf)
6134 return -ENOMEM;
6135 seq_puts(m, buf);
6136 kfree(buf);
587d9f72
JW
6137 return 0;
6138}
6139
3d8b38eb
RG
6140static int memory_oom_group_show(struct seq_file *m, void *v)
6141{
aa9694bb 6142 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6143
6144 seq_printf(m, "%d\n", memcg->oom_group);
6145
6146 return 0;
6147}
6148
6149static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6150 char *buf, size_t nbytes, loff_t off)
6151{
6152 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6153 int ret, oom_group;
6154
6155 buf = strstrip(buf);
6156 if (!buf)
6157 return -EINVAL;
6158
6159 ret = kstrtoint(buf, 0, &oom_group);
6160 if (ret)
6161 return ret;
6162
6163 if (oom_group != 0 && oom_group != 1)
6164 return -EINVAL;
6165
6166 memcg->oom_group = oom_group;
6167
6168 return nbytes;
6169}
6170
241994ed
JW
6171static struct cftype memory_files[] = {
6172 {
6173 .name = "current",
f5fc3c5d 6174 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6175 .read_u64 = memory_current_read,
6176 },
bf8d5d52
RG
6177 {
6178 .name = "min",
6179 .flags = CFTYPE_NOT_ON_ROOT,
6180 .seq_show = memory_min_show,
6181 .write = memory_min_write,
6182 },
241994ed
JW
6183 {
6184 .name = "low",
6185 .flags = CFTYPE_NOT_ON_ROOT,
6186 .seq_show = memory_low_show,
6187 .write = memory_low_write,
6188 },
6189 {
6190 .name = "high",
6191 .flags = CFTYPE_NOT_ON_ROOT,
6192 .seq_show = memory_high_show,
6193 .write = memory_high_write,
6194 },
6195 {
6196 .name = "max",
6197 .flags = CFTYPE_NOT_ON_ROOT,
6198 .seq_show = memory_max_show,
6199 .write = memory_max_write,
6200 },
6201 {
6202 .name = "events",
6203 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6204 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6205 .seq_show = memory_events_show,
6206 },
1e577f97
SB
6207 {
6208 .name = "events.local",
6209 .flags = CFTYPE_NOT_ON_ROOT,
6210 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6211 .seq_show = memory_events_local_show,
6212 },
587d9f72
JW
6213 {
6214 .name = "stat",
6215 .flags = CFTYPE_NOT_ON_ROOT,
6216 .seq_show = memory_stat_show,
6217 },
3d8b38eb
RG
6218 {
6219 .name = "oom.group",
6220 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6221 .seq_show = memory_oom_group_show,
6222 .write = memory_oom_group_write,
6223 },
241994ed
JW
6224 { } /* terminate */
6225};
6226
073219e9 6227struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6228 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6229 .css_online = mem_cgroup_css_online,
92fb9748 6230 .css_offline = mem_cgroup_css_offline,
6df38689 6231 .css_released = mem_cgroup_css_released,
92fb9748 6232 .css_free = mem_cgroup_css_free,
1ced953b 6233 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6234 .can_attach = mem_cgroup_can_attach,
6235 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6236 .post_attach = mem_cgroup_move_task,
f00baae7 6237 .bind = mem_cgroup_bind,
241994ed
JW
6238 .dfl_cftypes = memory_files,
6239 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6240 .early_init = 0,
8cdea7c0 6241};
c077719b 6242
bc50bcc6
JW
6243/*
6244 * This function calculates an individual cgroup's effective
6245 * protection which is derived from its own memory.min/low, its
6246 * parent's and siblings' settings, as well as the actual memory
6247 * distribution in the tree.
6248 *
6249 * The following rules apply to the effective protection values:
6250 *
6251 * 1. At the first level of reclaim, effective protection is equal to
6252 * the declared protection in memory.min and memory.low.
6253 *
6254 * 2. To enable safe delegation of the protection configuration, at
6255 * subsequent levels the effective protection is capped to the
6256 * parent's effective protection.
6257 *
6258 * 3. To make complex and dynamic subtrees easier to configure, the
6259 * user is allowed to overcommit the declared protection at a given
6260 * level. If that is the case, the parent's effective protection is
6261 * distributed to the children in proportion to how much protection
6262 * they have declared and how much of it they are utilizing.
6263 *
6264 * This makes distribution proportional, but also work-conserving:
6265 * if one cgroup claims much more protection than it uses memory,
6266 * the unused remainder is available to its siblings.
6267 *
6268 * 4. Conversely, when the declared protection is undercommitted at a
6269 * given level, the distribution of the larger parental protection
6270 * budget is NOT proportional. A cgroup's protection from a sibling
6271 * is capped to its own memory.min/low setting.
6272 *
8a931f80
JW
6273 * 5. However, to allow protecting recursive subtrees from each other
6274 * without having to declare each individual cgroup's fixed share
6275 * of the ancestor's claim to protection, any unutilized -
6276 * "floating" - protection from up the tree is distributed in
6277 * proportion to each cgroup's *usage*. This makes the protection
6278 * neutral wrt sibling cgroups and lets them compete freely over
6279 * the shared parental protection budget, but it protects the
6280 * subtree as a whole from neighboring subtrees.
6281 *
6282 * Note that 4. and 5. are not in conflict: 4. is about protecting
6283 * against immediate siblings whereas 5. is about protecting against
6284 * neighboring subtrees.
bc50bcc6
JW
6285 */
6286static unsigned long effective_protection(unsigned long usage,
8a931f80 6287 unsigned long parent_usage,
bc50bcc6
JW
6288 unsigned long setting,
6289 unsigned long parent_effective,
6290 unsigned long siblings_protected)
6291{
6292 unsigned long protected;
8a931f80 6293 unsigned long ep;
bc50bcc6
JW
6294
6295 protected = min(usage, setting);
6296 /*
6297 * If all cgroups at this level combined claim and use more
6298 * protection then what the parent affords them, distribute
6299 * shares in proportion to utilization.
6300 *
6301 * We are using actual utilization rather than the statically
6302 * claimed protection in order to be work-conserving: claimed
6303 * but unused protection is available to siblings that would
6304 * otherwise get a smaller chunk than what they claimed.
6305 */
6306 if (siblings_protected > parent_effective)
6307 return protected * parent_effective / siblings_protected;
6308
6309 /*
6310 * Ok, utilized protection of all children is within what the
6311 * parent affords them, so we know whatever this child claims
6312 * and utilizes is effectively protected.
6313 *
6314 * If there is unprotected usage beyond this value, reclaim
6315 * will apply pressure in proportion to that amount.
6316 *
6317 * If there is unutilized protection, the cgroup will be fully
6318 * shielded from reclaim, but we do return a smaller value for
6319 * protection than what the group could enjoy in theory. This
6320 * is okay. With the overcommit distribution above, effective
6321 * protection is always dependent on how memory is actually
6322 * consumed among the siblings anyway.
6323 */
8a931f80
JW
6324 ep = protected;
6325
6326 /*
6327 * If the children aren't claiming (all of) the protection
6328 * afforded to them by the parent, distribute the remainder in
6329 * proportion to the (unprotected) memory of each cgroup. That
6330 * way, cgroups that aren't explicitly prioritized wrt each
6331 * other compete freely over the allowance, but they are
6332 * collectively protected from neighboring trees.
6333 *
6334 * We're using unprotected memory for the weight so that if
6335 * some cgroups DO claim explicit protection, we don't protect
6336 * the same bytes twice.
6337 */
6338 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6339 return ep;
6340
6341 if (parent_effective > siblings_protected && usage > protected) {
6342 unsigned long unclaimed;
6343
6344 unclaimed = parent_effective - siblings_protected;
6345 unclaimed *= usage - protected;
6346 unclaimed /= parent_usage - siblings_protected;
6347
6348 ep += unclaimed;
6349 }
6350
6351 return ep;
bc50bcc6
JW
6352}
6353
241994ed 6354/**
bf8d5d52 6355 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6356 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6357 * @memcg: the memory cgroup to check
6358 *
23067153
RG
6359 * WARNING: This function is not stateless! It can only be used as part
6360 * of a top-down tree iteration, not for isolated queries.
34c81057 6361 *
bf8d5d52
RG
6362 * Returns one of the following:
6363 * MEMCG_PROT_NONE: cgroup memory is not protected
6364 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6365 * an unprotected supply of reclaimable memory from other cgroups.
6366 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6367 */
bf8d5d52
RG
6368enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6369 struct mem_cgroup *memcg)
241994ed 6370{
8a931f80 6371 unsigned long usage, parent_usage;
23067153
RG
6372 struct mem_cgroup *parent;
6373
241994ed 6374 if (mem_cgroup_disabled())
bf8d5d52 6375 return MEMCG_PROT_NONE;
241994ed 6376
34c81057
SC
6377 if (!root)
6378 root = root_mem_cgroup;
6379 if (memcg == root)
bf8d5d52 6380 return MEMCG_PROT_NONE;
241994ed 6381
23067153 6382 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6383 if (!usage)
6384 return MEMCG_PROT_NONE;
6385
bf8d5d52 6386 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6387 /* No parent means a non-hierarchical mode on v1 memcg */
6388 if (!parent)
6389 return MEMCG_PROT_NONE;
6390
bc50bcc6 6391 if (parent == root) {
c3d53200 6392 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6393 memcg->memory.elow = memcg->memory.low;
6394 goto out;
bf8d5d52
RG
6395 }
6396
8a931f80
JW
6397 parent_usage = page_counter_read(&parent->memory);
6398
6399 memcg->memory.emin = effective_protection(usage, parent_usage,
c3d53200
CD
6400 READ_ONCE(memcg->memory.min),
6401 READ_ONCE(parent->memory.emin),
bc50bcc6 6402 atomic_long_read(&parent->memory.children_min_usage));
23067153 6403
8a931f80 6404 memcg->memory.elow = effective_protection(usage, parent_usage,
bc50bcc6
JW
6405 memcg->memory.low, READ_ONCE(parent->memory.elow),
6406 atomic_long_read(&parent->memory.children_low_usage));
23067153 6407
bc50bcc6
JW
6408out:
6409 if (usage <= memcg->memory.emin)
bf8d5d52 6410 return MEMCG_PROT_MIN;
bc50bcc6 6411 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6412 return MEMCG_PROT_LOW;
6413 else
6414 return MEMCG_PROT_NONE;
241994ed
JW
6415}
6416
00501b53
JW
6417/**
6418 * mem_cgroup_try_charge - try charging a page
6419 * @page: page to charge
6420 * @mm: mm context of the victim
6421 * @gfp_mask: reclaim mode
6422 * @memcgp: charged memcg return
25843c2b 6423 * @compound: charge the page as compound or small page
00501b53
JW
6424 *
6425 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6426 * pages according to @gfp_mask if necessary.
6427 *
6428 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6429 * Otherwise, an error code is returned.
6430 *
6431 * After page->mapping has been set up, the caller must finalize the
6432 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6433 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6434 */
6435int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6436 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6437 bool compound)
00501b53
JW
6438{
6439 struct mem_cgroup *memcg = NULL;
f627c2f5 6440 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6441 int ret = 0;
6442
6443 if (mem_cgroup_disabled())
6444 goto out;
6445
6446 if (PageSwapCache(page)) {
00501b53
JW
6447 /*
6448 * Every swap fault against a single page tries to charge the
6449 * page, bail as early as possible. shmem_unuse() encounters
6450 * already charged pages, too. The USED bit is protected by
6451 * the page lock, which serializes swap cache removal, which
6452 * in turn serializes uncharging.
6453 */
e993d905 6454 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6455 if (compound_head(page)->mem_cgroup)
00501b53 6456 goto out;
e993d905 6457
37e84351 6458 if (do_swap_account) {
e993d905
VD
6459 swp_entry_t ent = { .val = page_private(page), };
6460 unsigned short id = lookup_swap_cgroup_id(ent);
6461
6462 rcu_read_lock();
6463 memcg = mem_cgroup_from_id(id);
6464 if (memcg && !css_tryget_online(&memcg->css))
6465 memcg = NULL;
6466 rcu_read_unlock();
6467 }
00501b53
JW
6468 }
6469
00501b53
JW
6470 if (!memcg)
6471 memcg = get_mem_cgroup_from_mm(mm);
6472
6473 ret = try_charge(memcg, gfp_mask, nr_pages);
6474
6475 css_put(&memcg->css);
00501b53
JW
6476out:
6477 *memcgp = memcg;
6478 return ret;
6479}
6480
2cf85583
TH
6481int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6482 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6483 bool compound)
6484{
6485 struct mem_cgroup *memcg;
6486 int ret;
6487
6488 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6489 memcg = *memcgp;
6490 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6491 return ret;
6492}
6493
00501b53
JW
6494/**
6495 * mem_cgroup_commit_charge - commit a page charge
6496 * @page: page to charge
6497 * @memcg: memcg to charge the page to
6498 * @lrucare: page might be on LRU already
25843c2b 6499 * @compound: charge the page as compound or small page
00501b53
JW
6500 *
6501 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6502 * after page->mapping has been set up. This must happen atomically
6503 * as part of the page instantiation, i.e. under the page table lock
6504 * for anonymous pages, under the page lock for page and swap cache.
6505 *
6506 * In addition, the page must not be on the LRU during the commit, to
6507 * prevent racing with task migration. If it might be, use @lrucare.
6508 *
6509 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6510 */
6511void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6512 bool lrucare, bool compound)
00501b53 6513{
f627c2f5 6514 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6515
6516 VM_BUG_ON_PAGE(!page->mapping, page);
6517 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6518
6519 if (mem_cgroup_disabled())
6520 return;
6521 /*
6522 * Swap faults will attempt to charge the same page multiple
6523 * times. But reuse_swap_page() might have removed the page
6524 * from swapcache already, so we can't check PageSwapCache().
6525 */
6526 if (!memcg)
6527 return;
6528
6abb5a86
JW
6529 commit_charge(page, memcg, lrucare);
6530
6abb5a86 6531 local_irq_disable();
f627c2f5 6532 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6533 memcg_check_events(memcg, page);
6534 local_irq_enable();
00501b53 6535
7941d214 6536 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6537 swp_entry_t entry = { .val = page_private(page) };
6538 /*
6539 * The swap entry might not get freed for a long time,
6540 * let's not wait for it. The page already received a
6541 * memory+swap charge, drop the swap entry duplicate.
6542 */
38d8b4e6 6543 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6544 }
6545}
6546
6547/**
6548 * mem_cgroup_cancel_charge - cancel a page charge
6549 * @page: page to charge
6550 * @memcg: memcg to charge the page to
25843c2b 6551 * @compound: charge the page as compound or small page
00501b53
JW
6552 *
6553 * Cancel a charge transaction started by mem_cgroup_try_charge().
6554 */
f627c2f5
KS
6555void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6556 bool compound)
00501b53 6557{
f627c2f5 6558 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6559
6560 if (mem_cgroup_disabled())
6561 return;
6562 /*
6563 * Swap faults will attempt to charge the same page multiple
6564 * times. But reuse_swap_page() might have removed the page
6565 * from swapcache already, so we can't check PageSwapCache().
6566 */
6567 if (!memcg)
6568 return;
6569
00501b53
JW
6570 cancel_charge(memcg, nr_pages);
6571}
6572
a9d5adee
JG
6573struct uncharge_gather {
6574 struct mem_cgroup *memcg;
6575 unsigned long pgpgout;
6576 unsigned long nr_anon;
6577 unsigned long nr_file;
6578 unsigned long nr_kmem;
6579 unsigned long nr_huge;
6580 unsigned long nr_shmem;
6581 struct page *dummy_page;
6582};
6583
6584static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6585{
a9d5adee
JG
6586 memset(ug, 0, sizeof(*ug));
6587}
6588
6589static void uncharge_batch(const struct uncharge_gather *ug)
6590{
6591 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6592 unsigned long flags;
6593
a9d5adee
JG
6594 if (!mem_cgroup_is_root(ug->memcg)) {
6595 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6596 if (do_memsw_account())
a9d5adee
JG
6597 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6599 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6600 memcg_oom_recover(ug->memcg);
ce00a967 6601 }
747db954
JW
6602
6603 local_irq_save(flags);
c9019e9b
JW
6604 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6605 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6606 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6607 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6608 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6609 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6610 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6611 local_irq_restore(flags);
e8ea14cc 6612
a9d5adee
JG
6613 if (!mem_cgroup_is_root(ug->memcg))
6614 css_put_many(&ug->memcg->css, nr_pages);
6615}
6616
6617static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6618{
6619 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6620 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6621 !PageHWPoison(page) , page);
a9d5adee
JG
6622
6623 if (!page->mem_cgroup)
6624 return;
6625
6626 /*
6627 * Nobody should be changing or seriously looking at
6628 * page->mem_cgroup at this point, we have fully
6629 * exclusive access to the page.
6630 */
6631
6632 if (ug->memcg != page->mem_cgroup) {
6633 if (ug->memcg) {
6634 uncharge_batch(ug);
6635 uncharge_gather_clear(ug);
6636 }
6637 ug->memcg = page->mem_cgroup;
6638 }
6639
6640 if (!PageKmemcg(page)) {
6641 unsigned int nr_pages = 1;
6642
6643 if (PageTransHuge(page)) {
d8c6546b 6644 nr_pages = compound_nr(page);
a9d5adee
JG
6645 ug->nr_huge += nr_pages;
6646 }
6647 if (PageAnon(page))
6648 ug->nr_anon += nr_pages;
6649 else {
6650 ug->nr_file += nr_pages;
6651 if (PageSwapBacked(page))
6652 ug->nr_shmem += nr_pages;
6653 }
6654 ug->pgpgout++;
6655 } else {
d8c6546b 6656 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6657 __ClearPageKmemcg(page);
6658 }
6659
6660 ug->dummy_page = page;
6661 page->mem_cgroup = NULL;
747db954
JW
6662}
6663
6664static void uncharge_list(struct list_head *page_list)
6665{
a9d5adee 6666 struct uncharge_gather ug;
747db954 6667 struct list_head *next;
a9d5adee
JG
6668
6669 uncharge_gather_clear(&ug);
747db954 6670
8b592656
JW
6671 /*
6672 * Note that the list can be a single page->lru; hence the
6673 * do-while loop instead of a simple list_for_each_entry().
6674 */
747db954
JW
6675 next = page_list->next;
6676 do {
a9d5adee
JG
6677 struct page *page;
6678
747db954
JW
6679 page = list_entry(next, struct page, lru);
6680 next = page->lru.next;
6681
a9d5adee 6682 uncharge_page(page, &ug);
747db954
JW
6683 } while (next != page_list);
6684
a9d5adee
JG
6685 if (ug.memcg)
6686 uncharge_batch(&ug);
747db954
JW
6687}
6688
0a31bc97
JW
6689/**
6690 * mem_cgroup_uncharge - uncharge a page
6691 * @page: page to uncharge
6692 *
6693 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6694 * mem_cgroup_commit_charge().
6695 */
6696void mem_cgroup_uncharge(struct page *page)
6697{
a9d5adee
JG
6698 struct uncharge_gather ug;
6699
0a31bc97
JW
6700 if (mem_cgroup_disabled())
6701 return;
6702
747db954 6703 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6704 if (!page->mem_cgroup)
0a31bc97
JW
6705 return;
6706
a9d5adee
JG
6707 uncharge_gather_clear(&ug);
6708 uncharge_page(page, &ug);
6709 uncharge_batch(&ug);
747db954 6710}
0a31bc97 6711
747db954
JW
6712/**
6713 * mem_cgroup_uncharge_list - uncharge a list of page
6714 * @page_list: list of pages to uncharge
6715 *
6716 * Uncharge a list of pages previously charged with
6717 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6718 */
6719void mem_cgroup_uncharge_list(struct list_head *page_list)
6720{
6721 if (mem_cgroup_disabled())
6722 return;
0a31bc97 6723
747db954
JW
6724 if (!list_empty(page_list))
6725 uncharge_list(page_list);
0a31bc97
JW
6726}
6727
6728/**
6a93ca8f
JW
6729 * mem_cgroup_migrate - charge a page's replacement
6730 * @oldpage: currently circulating page
6731 * @newpage: replacement page
0a31bc97 6732 *
6a93ca8f
JW
6733 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6734 * be uncharged upon free.
0a31bc97
JW
6735 *
6736 * Both pages must be locked, @newpage->mapping must be set up.
6737 */
6a93ca8f 6738void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6739{
29833315 6740 struct mem_cgroup *memcg;
44b7a8d3 6741 unsigned int nr_pages;
d93c4130 6742 unsigned long flags;
0a31bc97
JW
6743
6744 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6745 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6746 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6747 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6748 newpage);
0a31bc97
JW
6749
6750 if (mem_cgroup_disabled())
6751 return;
6752
6753 /* Page cache replacement: new page already charged? */
1306a85a 6754 if (newpage->mem_cgroup)
0a31bc97
JW
6755 return;
6756
45637bab 6757 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6758 memcg = oldpage->mem_cgroup;
29833315 6759 if (!memcg)
0a31bc97
JW
6760 return;
6761
44b7a8d3 6762 /* Force-charge the new page. The old one will be freed soon */
92855270 6763 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6764
6765 page_counter_charge(&memcg->memory, nr_pages);
6766 if (do_memsw_account())
6767 page_counter_charge(&memcg->memsw, nr_pages);
6768 css_get_many(&memcg->css, nr_pages);
0a31bc97 6769
9cf7666a 6770 commit_charge(newpage, memcg, false);
44b7a8d3 6771
d93c4130 6772 local_irq_save(flags);
92855270
KC
6773 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6774 nr_pages);
44b7a8d3 6775 memcg_check_events(memcg, newpage);
d93c4130 6776 local_irq_restore(flags);
0a31bc97
JW
6777}
6778
ef12947c 6779DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6780EXPORT_SYMBOL(memcg_sockets_enabled_key);
6781
2d758073 6782void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6783{
6784 struct mem_cgroup *memcg;
6785
2d758073
JW
6786 if (!mem_cgroup_sockets_enabled)
6787 return;
6788
e876ecc6
SB
6789 /* Do not associate the sock with unrelated interrupted task's memcg. */
6790 if (in_interrupt())
6791 return;
6792
11092087
JW
6793 rcu_read_lock();
6794 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6795 if (memcg == root_mem_cgroup)
6796 goto out;
0db15298 6797 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6798 goto out;
8965aa28 6799 if (css_tryget(&memcg->css))
11092087 6800 sk->sk_memcg = memcg;
f7e1cb6e 6801out:
11092087
JW
6802 rcu_read_unlock();
6803}
11092087 6804
2d758073 6805void mem_cgroup_sk_free(struct sock *sk)
11092087 6806{
2d758073
JW
6807 if (sk->sk_memcg)
6808 css_put(&sk->sk_memcg->css);
11092087
JW
6809}
6810
6811/**
6812 * mem_cgroup_charge_skmem - charge socket memory
6813 * @memcg: memcg to charge
6814 * @nr_pages: number of pages to charge
6815 *
6816 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6817 * @memcg's configured limit, %false if the charge had to be forced.
6818 */
6819bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6820{
f7e1cb6e 6821 gfp_t gfp_mask = GFP_KERNEL;
11092087 6822
f7e1cb6e 6823 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6824 struct page_counter *fail;
f7e1cb6e 6825
0db15298
JW
6826 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6827 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6828 return true;
6829 }
0db15298
JW
6830 page_counter_charge(&memcg->tcpmem, nr_pages);
6831 memcg->tcpmem_pressure = 1;
f7e1cb6e 6832 return false;
11092087 6833 }
d886f4e4 6834
f7e1cb6e
JW
6835 /* Don't block in the packet receive path */
6836 if (in_softirq())
6837 gfp_mask = GFP_NOWAIT;
6838
c9019e9b 6839 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6840
f7e1cb6e
JW
6841 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6842 return true;
6843
6844 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6845 return false;
6846}
6847
6848/**
6849 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6850 * @memcg: memcg to uncharge
6851 * @nr_pages: number of pages to uncharge
11092087
JW
6852 */
6853void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6854{
f7e1cb6e 6855 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6856 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6857 return;
6858 }
d886f4e4 6859
c9019e9b 6860 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6861
475d0487 6862 refill_stock(memcg, nr_pages);
11092087
JW
6863}
6864
f7e1cb6e
JW
6865static int __init cgroup_memory(char *s)
6866{
6867 char *token;
6868
6869 while ((token = strsep(&s, ",")) != NULL) {
6870 if (!*token)
6871 continue;
6872 if (!strcmp(token, "nosocket"))
6873 cgroup_memory_nosocket = true;
04823c83
VD
6874 if (!strcmp(token, "nokmem"))
6875 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6876 }
6877 return 0;
6878}
6879__setup("cgroup.memory=", cgroup_memory);
11092087 6880
2d11085e 6881/*
1081312f
MH
6882 * subsys_initcall() for memory controller.
6883 *
308167fc
SAS
6884 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6885 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6886 * basically everything that doesn't depend on a specific mem_cgroup structure
6887 * should be initialized from here.
2d11085e
MH
6888 */
6889static int __init mem_cgroup_init(void)
6890{
95a045f6
JW
6891 int cpu, node;
6892
84c07d11 6893#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6894 /*
6895 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6896 * so use a workqueue with limited concurrency to avoid stalling
6897 * all worker threads in case lots of cgroups are created and
6898 * destroyed simultaneously.
13583c3d 6899 */
17cc4dfe
TH
6900 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6901 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6902#endif
6903
308167fc
SAS
6904 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6905 memcg_hotplug_cpu_dead);
95a045f6
JW
6906
6907 for_each_possible_cpu(cpu)
6908 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6909 drain_local_stock);
6910
6911 for_each_node(node) {
6912 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6913
6914 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6915 node_online(node) ? node : NUMA_NO_NODE);
6916
ef8f2327 6917 rtpn->rb_root = RB_ROOT;
fa90b2fd 6918 rtpn->rb_rightmost = NULL;
ef8f2327 6919 spin_lock_init(&rtpn->lock);
95a045f6
JW
6920 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6921 }
6922
2d11085e
MH
6923 return 0;
6924}
6925subsys_initcall(mem_cgroup_init);
21afa38e
JW
6926
6927#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6928static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6929{
1c2d479a 6930 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6931 /*
6932 * The root cgroup cannot be destroyed, so it's refcount must
6933 * always be >= 1.
6934 */
6935 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6936 VM_BUG_ON(1);
6937 break;
6938 }
6939 memcg = parent_mem_cgroup(memcg);
6940 if (!memcg)
6941 memcg = root_mem_cgroup;
6942 }
6943 return memcg;
6944}
6945
21afa38e
JW
6946/**
6947 * mem_cgroup_swapout - transfer a memsw charge to swap
6948 * @page: page whose memsw charge to transfer
6949 * @entry: swap entry to move the charge to
6950 *
6951 * Transfer the memsw charge of @page to @entry.
6952 */
6953void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6954{
1f47b61f 6955 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6956 unsigned int nr_entries;
21afa38e
JW
6957 unsigned short oldid;
6958
6959 VM_BUG_ON_PAGE(PageLRU(page), page);
6960 VM_BUG_ON_PAGE(page_count(page), page);
6961
7941d214 6962 if (!do_memsw_account())
21afa38e
JW
6963 return;
6964
6965 memcg = page->mem_cgroup;
6966
6967 /* Readahead page, never charged */
6968 if (!memcg)
6969 return;
6970
1f47b61f
VD
6971 /*
6972 * In case the memcg owning these pages has been offlined and doesn't
6973 * have an ID allocated to it anymore, charge the closest online
6974 * ancestor for the swap instead and transfer the memory+swap charge.
6975 */
6976 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6977 nr_entries = hpage_nr_pages(page);
6978 /* Get references for the tail pages, too */
6979 if (nr_entries > 1)
6980 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6981 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6982 nr_entries);
21afa38e 6983 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6984 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6985
6986 page->mem_cgroup = NULL;
6987
6988 if (!mem_cgroup_is_root(memcg))
d6810d73 6989 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6990
1f47b61f
VD
6991 if (memcg != swap_memcg) {
6992 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6993 page_counter_charge(&swap_memcg->memsw, nr_entries);
6994 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6995 }
6996
ce9ce665
SAS
6997 /*
6998 * Interrupts should be disabled here because the caller holds the
b93b0163 6999 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7000 * important here to have the interrupts disabled because it is the
b93b0163 7001 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7002 */
7003 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7004 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7005 -nr_entries);
21afa38e 7006 memcg_check_events(memcg, page);
73f576c0
JW
7007
7008 if (!mem_cgroup_is_root(memcg))
d08afa14 7009 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7010}
7011
38d8b4e6
HY
7012/**
7013 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7014 * @page: page being added to swap
7015 * @entry: swap entry to charge
7016 *
38d8b4e6 7017 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7018 *
7019 * Returns 0 on success, -ENOMEM on failure.
7020 */
7021int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7022{
38d8b4e6 7023 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7024 struct page_counter *counter;
38d8b4e6 7025 struct mem_cgroup *memcg;
37e84351
VD
7026 unsigned short oldid;
7027
7028 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7029 return 0;
7030
7031 memcg = page->mem_cgroup;
7032
7033 /* Readahead page, never charged */
7034 if (!memcg)
7035 return 0;
7036
f3a53a3a
TH
7037 if (!entry.val) {
7038 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7039 return 0;
f3a53a3a 7040 }
bb98f2c5 7041
1f47b61f
VD
7042 memcg = mem_cgroup_id_get_online(memcg);
7043
37e84351 7044 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7045 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7046 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7047 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7048 mem_cgroup_id_put(memcg);
37e84351 7049 return -ENOMEM;
1f47b61f 7050 }
37e84351 7051
38d8b4e6
HY
7052 /* Get references for the tail pages, too */
7053 if (nr_pages > 1)
7054 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7055 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7056 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7057 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7058
37e84351
VD
7059 return 0;
7060}
7061
21afa38e 7062/**
38d8b4e6 7063 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7064 * @entry: swap entry to uncharge
38d8b4e6 7065 * @nr_pages: the amount of swap space to uncharge
21afa38e 7066 */
38d8b4e6 7067void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7068{
7069 struct mem_cgroup *memcg;
7070 unsigned short id;
7071
37e84351 7072 if (!do_swap_account)
21afa38e
JW
7073 return;
7074
38d8b4e6 7075 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7076 rcu_read_lock();
adbe427b 7077 memcg = mem_cgroup_from_id(id);
21afa38e 7078 if (memcg) {
37e84351
VD
7079 if (!mem_cgroup_is_root(memcg)) {
7080 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7081 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7082 else
38d8b4e6 7083 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7084 }
c9019e9b 7085 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7086 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7087 }
7088 rcu_read_unlock();
7089}
7090
d8b38438
VD
7091long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7092{
7093 long nr_swap_pages = get_nr_swap_pages();
7094
7095 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7096 return nr_swap_pages;
7097 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7098 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7099 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7100 page_counter_read(&memcg->swap));
7101 return nr_swap_pages;
7102}
7103
5ccc5aba
VD
7104bool mem_cgroup_swap_full(struct page *page)
7105{
7106 struct mem_cgroup *memcg;
7107
7108 VM_BUG_ON_PAGE(!PageLocked(page), page);
7109
7110 if (vm_swap_full())
7111 return true;
7112 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7113 return false;
7114
7115 memcg = page->mem_cgroup;
7116 if (!memcg)
7117 return false;
7118
7119 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7120 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7121 return true;
7122
7123 return false;
7124}
7125
21afa38e
JW
7126/* for remember boot option*/
7127#ifdef CONFIG_MEMCG_SWAP_ENABLED
7128static int really_do_swap_account __initdata = 1;
7129#else
7130static int really_do_swap_account __initdata;
7131#endif
7132
7133static int __init enable_swap_account(char *s)
7134{
7135 if (!strcmp(s, "1"))
7136 really_do_swap_account = 1;
7137 else if (!strcmp(s, "0"))
7138 really_do_swap_account = 0;
7139 return 1;
7140}
7141__setup("swapaccount=", enable_swap_account);
7142
37e84351
VD
7143static u64 swap_current_read(struct cgroup_subsys_state *css,
7144 struct cftype *cft)
7145{
7146 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7147
7148 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7149}
7150
7151static int swap_max_show(struct seq_file *m, void *v)
7152{
677dc973
CD
7153 return seq_puts_memcg_tunable(m,
7154 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7155}
7156
7157static ssize_t swap_max_write(struct kernfs_open_file *of,
7158 char *buf, size_t nbytes, loff_t off)
7159{
7160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7161 unsigned long max;
7162 int err;
7163
7164 buf = strstrip(buf);
7165 err = page_counter_memparse(buf, "max", &max);
7166 if (err)
7167 return err;
7168
be09102b 7169 xchg(&memcg->swap.max, max);
37e84351
VD
7170
7171 return nbytes;
7172}
7173
f3a53a3a
TH
7174static int swap_events_show(struct seq_file *m, void *v)
7175{
aa9694bb 7176 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7177
7178 seq_printf(m, "max %lu\n",
7179 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7180 seq_printf(m, "fail %lu\n",
7181 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7182
7183 return 0;
7184}
7185
37e84351
VD
7186static struct cftype swap_files[] = {
7187 {
7188 .name = "swap.current",
7189 .flags = CFTYPE_NOT_ON_ROOT,
7190 .read_u64 = swap_current_read,
7191 },
7192 {
7193 .name = "swap.max",
7194 .flags = CFTYPE_NOT_ON_ROOT,
7195 .seq_show = swap_max_show,
7196 .write = swap_max_write,
7197 },
f3a53a3a
TH
7198 {
7199 .name = "swap.events",
7200 .flags = CFTYPE_NOT_ON_ROOT,
7201 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7202 .seq_show = swap_events_show,
7203 },
37e84351
VD
7204 { } /* terminate */
7205};
7206
21afa38e
JW
7207static struct cftype memsw_cgroup_files[] = {
7208 {
7209 .name = "memsw.usage_in_bytes",
7210 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7211 .read_u64 = mem_cgroup_read_u64,
7212 },
7213 {
7214 .name = "memsw.max_usage_in_bytes",
7215 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7216 .write = mem_cgroup_reset,
7217 .read_u64 = mem_cgroup_read_u64,
7218 },
7219 {
7220 .name = "memsw.limit_in_bytes",
7221 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7222 .write = mem_cgroup_write,
7223 .read_u64 = mem_cgroup_read_u64,
7224 },
7225 {
7226 .name = "memsw.failcnt",
7227 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7228 .write = mem_cgroup_reset,
7229 .read_u64 = mem_cgroup_read_u64,
7230 },
7231 { }, /* terminate */
7232};
7233
7234static int __init mem_cgroup_swap_init(void)
7235{
7236 if (!mem_cgroup_disabled() && really_do_swap_account) {
7237 do_swap_account = 1;
37e84351
VD
7238 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7239 swap_files));
21afa38e
JW
7240 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7241 memsw_cgroup_files));
7242 }
7243 return 0;
7244}
7245subsys_initcall(mem_cgroup_swap_init);
7246
7247#endif /* CONFIG_MEMCG_SWAP */