]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcg/slab: uncharge during kmem_cache_free_bulk()
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
f7e1cb6e
JW
76/* Socket memory accounting disabled? */
77static bool cgroup_memory_nosocket;
78
04823c83
VD
79/* Kernel memory accounting disabled? */
80static bool cgroup_memory_nokmem;
81
21afa38e 82/* Whether the swap controller is active */
c255a458 83#ifdef CONFIG_MEMCG_SWAP
eccb52e7 84bool cgroup_memory_noswap __read_mostly;
c077719b 85#else
eccb52e7 86#define cgroup_memory_noswap 1
2d1c4980 87#endif
c077719b 88
97b27821
TH
89#ifdef CONFIG_CGROUP_WRITEBACK
90static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91#endif
92
7941d214
JW
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
eccb52e7 96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
97}
98
a0db00fc
KS
99#define THRESHOLDS_EVENTS_TARGET 128
100#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 101
bb4cc1a8
AM
102/*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
ef8f2327 107struct mem_cgroup_tree_per_node {
bb4cc1a8 108 struct rb_root rb_root;
fa90b2fd 109 struct rb_node *rb_rightmost;
bb4cc1a8
AM
110 spinlock_t lock;
111};
112
bb4cc1a8
AM
113struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115};
116
117static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
9490ff27
KH
119/* for OOM */
120struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123};
2e72b634 124
79bd9814
TH
125/*
126 * cgroup_event represents events which userspace want to receive.
127 */
3bc942f3 128struct mem_cgroup_event {
79bd9814 129 /*
59b6f873 130 * memcg which the event belongs to.
79bd9814 131 */
59b6f873 132 struct mem_cgroup *memcg;
79bd9814
TH
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
fba94807
TH
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
59b6f873 146 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 147 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
59b6f873 153 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 154 struct eventfd_ctx *eventfd);
79bd9814
TH
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
ac6424b9 161 wait_queue_entry_t wait;
79bd9814
TH
162 struct work_struct remove;
163};
164
c0ff4b85
R
165static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 167
7dc74be0
DN
168/* Stuffs for move charges at task migration. */
169/*
1dfab5ab 170 * Types of charges to be moved.
7dc74be0 171 */
1dfab5ab
JW
172#define MOVE_ANON 0x1U
173#define MOVE_FILE 0x2U
174#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 175
4ffef5fe
DN
176/* "mc" and its members are protected by cgroup_mutex */
177static struct move_charge_struct {
b1dd693e 178 spinlock_t lock; /* for from, to */
264a0ae1 179 struct mm_struct *mm;
4ffef5fe
DN
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
1dfab5ab 182 unsigned long flags;
4ffef5fe 183 unsigned long precharge;
854ffa8d 184 unsigned long moved_charge;
483c30b5 185 unsigned long moved_swap;
8033b97c
DN
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188} mc = {
2bd9bb20 189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191};
4ffef5fe 192
4e416953
BS
193/*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
a0db00fc 197#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 198#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 199
8c7c6e34 200/* for encoding cft->private value on file */
86ae53e1
GC
201enum res_type {
202 _MEM,
203 _MEMSWAP,
204 _OOM_TYPE,
510fc4e1 205 _KMEM,
d55f90bf 206 _TCP,
86ae53e1
GC
207};
208
a0db00fc
KS
209#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
210#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 211#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
212/* Used for OOM nofiier */
213#define OOM_CONTROL (0)
8c7c6e34 214
b05706f1
KT
215/*
216 * Iteration constructs for visiting all cgroups (under a tree). If
217 * loops are exited prematurely (break), mem_cgroup_iter_break() must
218 * be used for reference counting.
219 */
220#define for_each_mem_cgroup_tree(iter, root) \
221 for (iter = mem_cgroup_iter(root, NULL, NULL); \
222 iter != NULL; \
223 iter = mem_cgroup_iter(root, iter, NULL))
224
225#define for_each_mem_cgroup(iter) \
226 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
227 iter != NULL; \
228 iter = mem_cgroup_iter(NULL, iter, NULL))
229
7775face
TH
230static inline bool should_force_charge(void)
231{
232 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
233 (current->flags & PF_EXITING);
234}
235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
84c07d11 249#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
250extern spinlock_t css_set_lock;
251
252static void obj_cgroup_release(struct percpu_ref *ref)
253{
254 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
255 struct mem_cgroup *memcg;
256 unsigned int nr_bytes;
257 unsigned int nr_pages;
258 unsigned long flags;
259
260 /*
261 * At this point all allocated objects are freed, and
262 * objcg->nr_charged_bytes can't have an arbitrary byte value.
263 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
264 *
265 * The following sequence can lead to it:
266 * 1) CPU0: objcg == stock->cached_objcg
267 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
268 * PAGE_SIZE bytes are charged
269 * 3) CPU1: a process from another memcg is allocating something,
270 * the stock if flushed,
271 * objcg->nr_charged_bytes = PAGE_SIZE - 92
272 * 5) CPU0: we do release this object,
273 * 92 bytes are added to stock->nr_bytes
274 * 6) CPU0: stock is flushed,
275 * 92 bytes are added to objcg->nr_charged_bytes
276 *
277 * In the result, nr_charged_bytes == PAGE_SIZE.
278 * This page will be uncharged in obj_cgroup_release().
279 */
280 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
281 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
282 nr_pages = nr_bytes >> PAGE_SHIFT;
283
284 spin_lock_irqsave(&css_set_lock, flags);
285 memcg = obj_cgroup_memcg(objcg);
286 if (nr_pages)
287 __memcg_kmem_uncharge(memcg, nr_pages);
288 list_del(&objcg->list);
289 mem_cgroup_put(memcg);
290 spin_unlock_irqrestore(&css_set_lock, flags);
291
292 percpu_ref_exit(ref);
293 kfree_rcu(objcg, rcu);
294}
295
296static struct obj_cgroup *obj_cgroup_alloc(void)
297{
298 struct obj_cgroup *objcg;
299 int ret;
300
301 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
302 if (!objcg)
303 return NULL;
304
305 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
306 GFP_KERNEL);
307 if (ret) {
308 kfree(objcg);
309 return NULL;
310 }
311 INIT_LIST_HEAD(&objcg->list);
312 return objcg;
313}
314
315static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
316 struct mem_cgroup *parent)
317{
318 struct obj_cgroup *objcg, *iter;
319
320 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
321
322 spin_lock_irq(&css_set_lock);
323
324 /* Move active objcg to the parent's list */
325 xchg(&objcg->memcg, parent);
326 css_get(&parent->css);
327 list_add(&objcg->list, &parent->objcg_list);
328
329 /* Move already reparented objcgs to the parent's list */
330 list_for_each_entry(iter, &memcg->objcg_list, list) {
331 css_get(&parent->css);
332 xchg(&iter->memcg, parent);
333 css_put(&memcg->css);
334 }
335 list_splice(&memcg->objcg_list, &parent->objcg_list);
336
337 spin_unlock_irq(&css_set_lock);
338
339 percpu_ref_kill(&objcg->refcnt);
340}
341
55007d84 342/*
9855609b 343 * This will be used as a shrinker list's index.
b8627835
LZ
344 * The main reason for not using cgroup id for this:
345 * this works better in sparse environments, where we have a lot of memcgs,
346 * but only a few kmem-limited. Or also, if we have, for instance, 200
347 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
348 * 200 entry array for that.
55007d84 349 *
dbcf73e2
VD
350 * The current size of the caches array is stored in memcg_nr_cache_ids. It
351 * will double each time we have to increase it.
55007d84 352 */
dbcf73e2
VD
353static DEFINE_IDA(memcg_cache_ida);
354int memcg_nr_cache_ids;
749c5415 355
05257a1a
VD
356/* Protects memcg_nr_cache_ids */
357static DECLARE_RWSEM(memcg_cache_ids_sem);
358
359void memcg_get_cache_ids(void)
360{
361 down_read(&memcg_cache_ids_sem);
362}
363
364void memcg_put_cache_ids(void)
365{
366 up_read(&memcg_cache_ids_sem);
367}
368
55007d84
GC
369/*
370 * MIN_SIZE is different than 1, because we would like to avoid going through
371 * the alloc/free process all the time. In a small machine, 4 kmem-limited
372 * cgroups is a reasonable guess. In the future, it could be a parameter or
373 * tunable, but that is strictly not necessary.
374 *
b8627835 375 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
376 * this constant directly from cgroup, but it is understandable that this is
377 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 378 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
379 * increase ours as well if it increases.
380 */
381#define MEMCG_CACHES_MIN_SIZE 4
b8627835 382#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 383
d7f25f8a
GC
384/*
385 * A lot of the calls to the cache allocation functions are expected to be
272911a4 386 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
387 * conditional to this static branch, we'll have to allow modules that does
388 * kmem_cache_alloc and the such to see this symbol as well
389 */
ef12947c 390DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 391EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 392#endif
17cc4dfe 393
0a4465d3
KT
394static int memcg_shrinker_map_size;
395static DEFINE_MUTEX(memcg_shrinker_map_mutex);
396
397static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
398{
399 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
400}
401
402static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
403 int size, int old_size)
404{
405 struct memcg_shrinker_map *new, *old;
406 int nid;
407
408 lockdep_assert_held(&memcg_shrinker_map_mutex);
409
410 for_each_node(nid) {
411 old = rcu_dereference_protected(
412 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
413 /* Not yet online memcg */
414 if (!old)
415 return 0;
416
86daf94e 417 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
418 if (!new)
419 return -ENOMEM;
420
421 /* Set all old bits, clear all new bits */
422 memset(new->map, (int)0xff, old_size);
423 memset((void *)new->map + old_size, 0, size - old_size);
424
425 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
426 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
427 }
428
429 return 0;
430}
431
432static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
433{
434 struct mem_cgroup_per_node *pn;
435 struct memcg_shrinker_map *map;
436 int nid;
437
438 if (mem_cgroup_is_root(memcg))
439 return;
440
441 for_each_node(nid) {
442 pn = mem_cgroup_nodeinfo(memcg, nid);
443 map = rcu_dereference_protected(pn->shrinker_map, true);
444 if (map)
445 kvfree(map);
446 rcu_assign_pointer(pn->shrinker_map, NULL);
447 }
448}
449
450static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
451{
452 struct memcg_shrinker_map *map;
453 int nid, size, ret = 0;
454
455 if (mem_cgroup_is_root(memcg))
456 return 0;
457
458 mutex_lock(&memcg_shrinker_map_mutex);
459 size = memcg_shrinker_map_size;
460 for_each_node(nid) {
86daf94e 461 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
462 if (!map) {
463 memcg_free_shrinker_maps(memcg);
464 ret = -ENOMEM;
465 break;
466 }
467 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
468 }
469 mutex_unlock(&memcg_shrinker_map_mutex);
470
471 return ret;
472}
473
474int memcg_expand_shrinker_maps(int new_id)
475{
476 int size, old_size, ret = 0;
477 struct mem_cgroup *memcg;
478
479 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
480 old_size = memcg_shrinker_map_size;
481 if (size <= old_size)
482 return 0;
483
484 mutex_lock(&memcg_shrinker_map_mutex);
485 if (!root_mem_cgroup)
486 goto unlock;
487
488 for_each_mem_cgroup(memcg) {
489 if (mem_cgroup_is_root(memcg))
490 continue;
491 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
492 if (ret) {
493 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 494 goto unlock;
75866af6 495 }
0a4465d3
KT
496 }
497unlock:
498 if (!ret)
499 memcg_shrinker_map_size = size;
500 mutex_unlock(&memcg_shrinker_map_mutex);
501 return ret;
502}
fae91d6d
KT
503
504void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
505{
506 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
507 struct memcg_shrinker_map *map;
508
509 rcu_read_lock();
510 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
511 /* Pairs with smp mb in shrink_slab() */
512 smp_mb__before_atomic();
fae91d6d
KT
513 set_bit(shrinker_id, map->map);
514 rcu_read_unlock();
515 }
516}
517
ad7fa852
TH
518/**
519 * mem_cgroup_css_from_page - css of the memcg associated with a page
520 * @page: page of interest
521 *
522 * If memcg is bound to the default hierarchy, css of the memcg associated
523 * with @page is returned. The returned css remains associated with @page
524 * until it is released.
525 *
526 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
527 * is returned.
ad7fa852
TH
528 */
529struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
530{
531 struct mem_cgroup *memcg;
532
ad7fa852
TH
533 memcg = page->mem_cgroup;
534
9e10a130 535 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
536 memcg = root_mem_cgroup;
537
ad7fa852
TH
538 return &memcg->css;
539}
540
2fc04524
VD
541/**
542 * page_cgroup_ino - return inode number of the memcg a page is charged to
543 * @page: the page
544 *
545 * Look up the closest online ancestor of the memory cgroup @page is charged to
546 * and return its inode number or 0 if @page is not charged to any cgroup. It
547 * is safe to call this function without holding a reference to @page.
548 *
549 * Note, this function is inherently racy, because there is nothing to prevent
550 * the cgroup inode from getting torn down and potentially reallocated a moment
551 * after page_cgroup_ino() returns, so it only should be used by callers that
552 * do not care (such as procfs interfaces).
553 */
554ino_t page_cgroup_ino(struct page *page)
555{
556 struct mem_cgroup *memcg;
557 unsigned long ino = 0;
558
559 rcu_read_lock();
9855609b 560 memcg = page->mem_cgroup;
286e04b8 561
9855609b
RG
562 /*
563 * The lowest bit set means that memcg isn't a valid
564 * memcg pointer, but a obj_cgroups pointer.
565 * In this case the page is shared and doesn't belong
566 * to any specific memory cgroup.
567 */
568 if ((unsigned long) memcg & 0x1UL)
569 memcg = NULL;
286e04b8 570
2fc04524
VD
571 while (memcg && !(memcg->css.flags & CSS_ONLINE))
572 memcg = parent_mem_cgroup(memcg);
573 if (memcg)
574 ino = cgroup_ino(memcg->css.cgroup);
575 rcu_read_unlock();
576 return ino;
577}
578
ef8f2327
MG
579static struct mem_cgroup_per_node *
580mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 581{
97a6c37b 582 int nid = page_to_nid(page);
f64c3f54 583
ef8f2327 584 return memcg->nodeinfo[nid];
f64c3f54
BS
585}
586
ef8f2327
MG
587static struct mem_cgroup_tree_per_node *
588soft_limit_tree_node(int nid)
bb4cc1a8 589{
ef8f2327 590 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
591}
592
ef8f2327 593static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
594soft_limit_tree_from_page(struct page *page)
595{
596 int nid = page_to_nid(page);
bb4cc1a8 597
ef8f2327 598 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
599}
600
ef8f2327
MG
601static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
602 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 603 unsigned long new_usage_in_excess)
bb4cc1a8
AM
604{
605 struct rb_node **p = &mctz->rb_root.rb_node;
606 struct rb_node *parent = NULL;
ef8f2327 607 struct mem_cgroup_per_node *mz_node;
fa90b2fd 608 bool rightmost = true;
bb4cc1a8
AM
609
610 if (mz->on_tree)
611 return;
612
613 mz->usage_in_excess = new_usage_in_excess;
614 if (!mz->usage_in_excess)
615 return;
616 while (*p) {
617 parent = *p;
ef8f2327 618 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 619 tree_node);
fa90b2fd 620 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 621 p = &(*p)->rb_left;
fa90b2fd
DB
622 rightmost = false;
623 }
624
bb4cc1a8
AM
625 /*
626 * We can't avoid mem cgroups that are over their soft
627 * limit by the same amount
628 */
629 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
630 p = &(*p)->rb_right;
631 }
fa90b2fd
DB
632
633 if (rightmost)
634 mctz->rb_rightmost = &mz->tree_node;
635
bb4cc1a8
AM
636 rb_link_node(&mz->tree_node, parent, p);
637 rb_insert_color(&mz->tree_node, &mctz->rb_root);
638 mz->on_tree = true;
639}
640
ef8f2327
MG
641static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
642 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
643{
644 if (!mz->on_tree)
645 return;
fa90b2fd
DB
646
647 if (&mz->tree_node == mctz->rb_rightmost)
648 mctz->rb_rightmost = rb_prev(&mz->tree_node);
649
bb4cc1a8
AM
650 rb_erase(&mz->tree_node, &mctz->rb_root);
651 mz->on_tree = false;
652}
653
ef8f2327
MG
654static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
655 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 656{
0a31bc97
JW
657 unsigned long flags;
658
659 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 660 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 661 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
662}
663
3e32cb2e
JW
664static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
665{
666 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 667 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
668 unsigned long excess = 0;
669
670 if (nr_pages > soft_limit)
671 excess = nr_pages - soft_limit;
672
673 return excess;
674}
bb4cc1a8
AM
675
676static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
677{
3e32cb2e 678 unsigned long excess;
ef8f2327
MG
679 struct mem_cgroup_per_node *mz;
680 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 681
e231875b 682 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
683 if (!mctz)
684 return;
bb4cc1a8
AM
685 /*
686 * Necessary to update all ancestors when hierarchy is used.
687 * because their event counter is not touched.
688 */
689 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 690 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 691 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
692 /*
693 * We have to update the tree if mz is on RB-tree or
694 * mem is over its softlimit.
695 */
696 if (excess || mz->on_tree) {
0a31bc97
JW
697 unsigned long flags;
698
699 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
700 /* if on-tree, remove it */
701 if (mz->on_tree)
cf2c8127 702 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
703 /*
704 * Insert again. mz->usage_in_excess will be updated.
705 * If excess is 0, no tree ops.
706 */
cf2c8127 707 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 708 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
709 }
710 }
711}
712
713static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
714{
ef8f2327
MG
715 struct mem_cgroup_tree_per_node *mctz;
716 struct mem_cgroup_per_node *mz;
717 int nid;
bb4cc1a8 718
e231875b 719 for_each_node(nid) {
ef8f2327
MG
720 mz = mem_cgroup_nodeinfo(memcg, nid);
721 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
722 if (mctz)
723 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
724 }
725}
726
ef8f2327
MG
727static struct mem_cgroup_per_node *
728__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 729{
ef8f2327 730 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
731
732retry:
733 mz = NULL;
fa90b2fd 734 if (!mctz->rb_rightmost)
bb4cc1a8
AM
735 goto done; /* Nothing to reclaim from */
736
fa90b2fd
DB
737 mz = rb_entry(mctz->rb_rightmost,
738 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
739 /*
740 * Remove the node now but someone else can add it back,
741 * we will to add it back at the end of reclaim to its correct
742 * position in the tree.
743 */
cf2c8127 744 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 745 if (!soft_limit_excess(mz->memcg) ||
8965aa28 746 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
747 goto retry;
748done:
749 return mz;
750}
751
ef8f2327
MG
752static struct mem_cgroup_per_node *
753mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 754{
ef8f2327 755 struct mem_cgroup_per_node *mz;
bb4cc1a8 756
0a31bc97 757 spin_lock_irq(&mctz->lock);
bb4cc1a8 758 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 759 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
760 return mz;
761}
762
db9adbcb
JW
763/**
764 * __mod_memcg_state - update cgroup memory statistics
765 * @memcg: the memory cgroup
766 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
767 * @val: delta to add to the counter, can be negative
768 */
769void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
770{
ea426c2a 771 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
772
773 if (mem_cgroup_disabled())
774 return;
775
772616b0 776 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
777 threshold <<= PAGE_SHIFT;
778
db9adbcb 779 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 780 if (unlikely(abs(x) > threshold)) {
42a30035
JW
781 struct mem_cgroup *mi;
782
766a4c19
YS
783 /*
784 * Batch local counters to keep them in sync with
785 * the hierarchical ones.
786 */
787 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
788 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
789 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
790 x = 0;
791 }
792 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
793}
794
42a30035
JW
795static struct mem_cgroup_per_node *
796parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
797{
798 struct mem_cgroup *parent;
799
800 parent = parent_mem_cgroup(pn->memcg);
801 if (!parent)
802 return NULL;
803 return mem_cgroup_nodeinfo(parent, nid);
804}
805
eedc4e5a
RG
806void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
807 int val)
db9adbcb
JW
808{
809 struct mem_cgroup_per_node *pn;
42a30035 810 struct mem_cgroup *memcg;
ea426c2a 811 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 812
db9adbcb 813 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 814 memcg = pn->memcg;
db9adbcb
JW
815
816 /* Update memcg */
42a30035 817 __mod_memcg_state(memcg, idx, val);
db9adbcb 818
b4c46484
RG
819 /* Update lruvec */
820 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
821
ea426c2a
RG
822 if (vmstat_item_in_bytes(idx))
823 threshold <<= PAGE_SHIFT;
824
db9adbcb 825 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 826 if (unlikely(abs(x) > threshold)) {
eedc4e5a 827 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
828 struct mem_cgroup_per_node *pi;
829
42a30035
JW
830 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
831 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
832 x = 0;
833 }
834 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
835}
836
eedc4e5a
RG
837/**
838 * __mod_lruvec_state - update lruvec memory statistics
839 * @lruvec: the lruvec
840 * @idx: the stat item
841 * @val: delta to add to the counter, can be negative
842 *
843 * The lruvec is the intersection of the NUMA node and a cgroup. This
844 * function updates the all three counters that are affected by a
845 * change of state at this level: per-node, per-cgroup, per-lruvec.
846 */
847void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
848 int val)
849{
850 /* Update node */
851 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
852
853 /* Update memcg and lruvec */
854 if (!mem_cgroup_disabled())
855 __mod_memcg_lruvec_state(lruvec, idx, val);
856}
857
ec9f0238
RG
858void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
859{
4f103c63 860 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
861 struct mem_cgroup *memcg;
862 struct lruvec *lruvec;
863
864 rcu_read_lock();
4f103c63 865 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
866
867 /* Untracked pages have no memcg, no lruvec. Update only the node */
868 if (!memcg || memcg == root_mem_cgroup) {
869 __mod_node_page_state(pgdat, idx, val);
870 } else {
867e5e1d 871 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
872 __mod_lruvec_state(lruvec, idx, val);
873 }
874 rcu_read_unlock();
875}
876
8380ce47
RG
877void mod_memcg_obj_state(void *p, int idx, int val)
878{
879 struct mem_cgroup *memcg;
880
881 rcu_read_lock();
882 memcg = mem_cgroup_from_obj(p);
883 if (memcg)
884 mod_memcg_state(memcg, idx, val);
885 rcu_read_unlock();
886}
887
db9adbcb
JW
888/**
889 * __count_memcg_events - account VM events in a cgroup
890 * @memcg: the memory cgroup
891 * @idx: the event item
892 * @count: the number of events that occured
893 */
894void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
895 unsigned long count)
896{
897 unsigned long x;
898
899 if (mem_cgroup_disabled())
900 return;
901
902 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
903 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
904 struct mem_cgroup *mi;
905
766a4c19
YS
906 /*
907 * Batch local counters to keep them in sync with
908 * the hierarchical ones.
909 */
910 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
911 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
912 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
913 x = 0;
914 }
915 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
916}
917
42a30035 918static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 919{
871789d4 920 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
921}
922
42a30035
JW
923static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
924{
815744d7
JW
925 long x = 0;
926 int cpu;
927
928 for_each_possible_cpu(cpu)
929 x += per_cpu(memcg->vmstats_local->events[event], cpu);
930 return x;
42a30035
JW
931}
932
c0ff4b85 933static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 934 struct page *page,
3fba69a5 935 int nr_pages)
d52aa412 936{
e401f176
KH
937 /* pagein of a big page is an event. So, ignore page size */
938 if (nr_pages > 0)
c9019e9b 939 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 940 else {
c9019e9b 941 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
942 nr_pages = -nr_pages; /* for event */
943 }
e401f176 944
871789d4 945 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
946}
947
f53d7ce3
JW
948static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
949 enum mem_cgroup_events_target target)
7a159cc9
JW
950{
951 unsigned long val, next;
952
871789d4
CD
953 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
954 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 955 /* from time_after() in jiffies.h */
6a1a8b80 956 if ((long)(next - val) < 0) {
f53d7ce3
JW
957 switch (target) {
958 case MEM_CGROUP_TARGET_THRESH:
959 next = val + THRESHOLDS_EVENTS_TARGET;
960 break;
bb4cc1a8
AM
961 case MEM_CGROUP_TARGET_SOFTLIMIT:
962 next = val + SOFTLIMIT_EVENTS_TARGET;
963 break;
f53d7ce3
JW
964 default:
965 break;
966 }
871789d4 967 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 968 return true;
7a159cc9 969 }
f53d7ce3 970 return false;
d2265e6f
KH
971}
972
973/*
974 * Check events in order.
975 *
976 */
c0ff4b85 977static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
978{
979 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
980 if (unlikely(mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 982 bool do_softlimit;
f53d7ce3 983
bb4cc1a8
AM
984 do_softlimit = mem_cgroup_event_ratelimit(memcg,
985 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 986 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
0a31bc97 989 }
d2265e6f
KH
990}
991
cf475ad2 992struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 993{
31a78f23
BS
994 /*
995 * mm_update_next_owner() may clear mm->owner to NULL
996 * if it races with swapoff, page migration, etc.
997 * So this can be called with p == NULL.
998 */
999 if (unlikely(!p))
1000 return NULL;
1001
073219e9 1002 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1003}
33398cf2 1004EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1005
d46eb14b
SB
1006/**
1007 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1008 * @mm: mm from which memcg should be extracted. It can be NULL.
1009 *
1010 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1011 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1012 * returned.
1013 */
1014struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1015{
d46eb14b
SB
1016 struct mem_cgroup *memcg;
1017
1018 if (mem_cgroup_disabled())
1019 return NULL;
0b7f569e 1020
54595fe2
KH
1021 rcu_read_lock();
1022 do {
6f6acb00
MH
1023 /*
1024 * Page cache insertions can happen withou an
1025 * actual mm context, e.g. during disk probing
1026 * on boot, loopback IO, acct() writes etc.
1027 */
1028 if (unlikely(!mm))
df381975 1029 memcg = root_mem_cgroup;
6f6acb00
MH
1030 else {
1031 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1032 if (unlikely(!memcg))
1033 memcg = root_mem_cgroup;
1034 }
00d484f3 1035 } while (!css_tryget(&memcg->css));
54595fe2 1036 rcu_read_unlock();
c0ff4b85 1037 return memcg;
54595fe2 1038}
d46eb14b
SB
1039EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1040
f745c6f5
SB
1041/**
1042 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1043 * @page: page from which memcg should be extracted.
1044 *
1045 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1046 * root_mem_cgroup is returned.
1047 */
1048struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1049{
1050 struct mem_cgroup *memcg = page->mem_cgroup;
1051
1052 if (mem_cgroup_disabled())
1053 return NULL;
1054
1055 rcu_read_lock();
8965aa28
SB
1056 /* Page should not get uncharged and freed memcg under us. */
1057 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1058 memcg = root_mem_cgroup;
1059 rcu_read_unlock();
1060 return memcg;
1061}
1062EXPORT_SYMBOL(get_mem_cgroup_from_page);
1063
d46eb14b
SB
1064/**
1065 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1066 */
1067static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1068{
1069 if (unlikely(current->active_memcg)) {
8965aa28 1070 struct mem_cgroup *memcg;
d46eb14b
SB
1071
1072 rcu_read_lock();
8965aa28
SB
1073 /* current->active_memcg must hold a ref. */
1074 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1075 memcg = root_mem_cgroup;
1076 else
d46eb14b
SB
1077 memcg = current->active_memcg;
1078 rcu_read_unlock();
1079 return memcg;
1080 }
1081 return get_mem_cgroup_from_mm(current->mm);
1082}
54595fe2 1083
5660048c
JW
1084/**
1085 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1086 * @root: hierarchy root
1087 * @prev: previously returned memcg, NULL on first invocation
1088 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1089 *
1090 * Returns references to children of the hierarchy below @root, or
1091 * @root itself, or %NULL after a full round-trip.
1092 *
1093 * Caller must pass the return value in @prev on subsequent
1094 * invocations for reference counting, or use mem_cgroup_iter_break()
1095 * to cancel a hierarchy walk before the round-trip is complete.
1096 *
05bdc520
ML
1097 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1098 * in the hierarchy among all concurrent reclaimers operating on the
1099 * same node.
5660048c 1100 */
694fbc0f 1101struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1102 struct mem_cgroup *prev,
694fbc0f 1103 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1104{
3f649ab7 1105 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1106 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1107 struct mem_cgroup *memcg = NULL;
5ac8fb31 1108 struct mem_cgroup *pos = NULL;
711d3d2c 1109
694fbc0f
AM
1110 if (mem_cgroup_disabled())
1111 return NULL;
5660048c 1112
9f3a0d09
JW
1113 if (!root)
1114 root = root_mem_cgroup;
7d74b06f 1115
9f3a0d09 1116 if (prev && !reclaim)
5ac8fb31 1117 pos = prev;
14067bb3 1118
9f3a0d09
JW
1119 if (!root->use_hierarchy && root != root_mem_cgroup) {
1120 if (prev)
5ac8fb31 1121 goto out;
694fbc0f 1122 return root;
9f3a0d09 1123 }
14067bb3 1124
542f85f9 1125 rcu_read_lock();
5f578161 1126
5ac8fb31 1127 if (reclaim) {
ef8f2327 1128 struct mem_cgroup_per_node *mz;
5ac8fb31 1129
ef8f2327 1130 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1131 iter = &mz->iter;
5ac8fb31
JW
1132
1133 if (prev && reclaim->generation != iter->generation)
1134 goto out_unlock;
1135
6df38689 1136 while (1) {
4db0c3c2 1137 pos = READ_ONCE(iter->position);
6df38689
VD
1138 if (!pos || css_tryget(&pos->css))
1139 break;
5ac8fb31 1140 /*
6df38689
VD
1141 * css reference reached zero, so iter->position will
1142 * be cleared by ->css_released. However, we should not
1143 * rely on this happening soon, because ->css_released
1144 * is called from a work queue, and by busy-waiting we
1145 * might block it. So we clear iter->position right
1146 * away.
5ac8fb31 1147 */
6df38689
VD
1148 (void)cmpxchg(&iter->position, pos, NULL);
1149 }
5ac8fb31
JW
1150 }
1151
1152 if (pos)
1153 css = &pos->css;
1154
1155 for (;;) {
1156 css = css_next_descendant_pre(css, &root->css);
1157 if (!css) {
1158 /*
1159 * Reclaimers share the hierarchy walk, and a
1160 * new one might jump in right at the end of
1161 * the hierarchy - make sure they see at least
1162 * one group and restart from the beginning.
1163 */
1164 if (!prev)
1165 continue;
1166 break;
527a5ec9 1167 }
7d74b06f 1168
5ac8fb31
JW
1169 /*
1170 * Verify the css and acquire a reference. The root
1171 * is provided by the caller, so we know it's alive
1172 * and kicking, and don't take an extra reference.
1173 */
1174 memcg = mem_cgroup_from_css(css);
14067bb3 1175
5ac8fb31
JW
1176 if (css == &root->css)
1177 break;
14067bb3 1178
0b8f73e1
JW
1179 if (css_tryget(css))
1180 break;
9f3a0d09 1181
5ac8fb31 1182 memcg = NULL;
9f3a0d09 1183 }
5ac8fb31
JW
1184
1185 if (reclaim) {
5ac8fb31 1186 /*
6df38689
VD
1187 * The position could have already been updated by a competing
1188 * thread, so check that the value hasn't changed since we read
1189 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1190 */
6df38689
VD
1191 (void)cmpxchg(&iter->position, pos, memcg);
1192
5ac8fb31
JW
1193 if (pos)
1194 css_put(&pos->css);
1195
1196 if (!memcg)
1197 iter->generation++;
1198 else if (!prev)
1199 reclaim->generation = iter->generation;
9f3a0d09 1200 }
5ac8fb31 1201
542f85f9
MH
1202out_unlock:
1203 rcu_read_unlock();
5ac8fb31 1204out:
c40046f3
MH
1205 if (prev && prev != root)
1206 css_put(&prev->css);
1207
9f3a0d09 1208 return memcg;
14067bb3 1209}
7d74b06f 1210
5660048c
JW
1211/**
1212 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1213 * @root: hierarchy root
1214 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1215 */
1216void mem_cgroup_iter_break(struct mem_cgroup *root,
1217 struct mem_cgroup *prev)
9f3a0d09
JW
1218{
1219 if (!root)
1220 root = root_mem_cgroup;
1221 if (prev && prev != root)
1222 css_put(&prev->css);
1223}
7d74b06f 1224
54a83d6b
MC
1225static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1226 struct mem_cgroup *dead_memcg)
6df38689 1227{
6df38689 1228 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1229 struct mem_cgroup_per_node *mz;
1230 int nid;
6df38689 1231
54a83d6b
MC
1232 for_each_node(nid) {
1233 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1234 iter = &mz->iter;
1235 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1236 }
1237}
1238
54a83d6b
MC
1239static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1240{
1241 struct mem_cgroup *memcg = dead_memcg;
1242 struct mem_cgroup *last;
1243
1244 do {
1245 __invalidate_reclaim_iterators(memcg, dead_memcg);
1246 last = memcg;
1247 } while ((memcg = parent_mem_cgroup(memcg)));
1248
1249 /*
1250 * When cgruop1 non-hierarchy mode is used,
1251 * parent_mem_cgroup() does not walk all the way up to the
1252 * cgroup root (root_mem_cgroup). So we have to handle
1253 * dead_memcg from cgroup root separately.
1254 */
1255 if (last != root_mem_cgroup)
1256 __invalidate_reclaim_iterators(root_mem_cgroup,
1257 dead_memcg);
1258}
1259
7c5f64f8
VD
1260/**
1261 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1262 * @memcg: hierarchy root
1263 * @fn: function to call for each task
1264 * @arg: argument passed to @fn
1265 *
1266 * This function iterates over tasks attached to @memcg or to any of its
1267 * descendants and calls @fn for each task. If @fn returns a non-zero
1268 * value, the function breaks the iteration loop and returns the value.
1269 * Otherwise, it will iterate over all tasks and return 0.
1270 *
1271 * This function must not be called for the root memory cgroup.
1272 */
1273int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1274 int (*fn)(struct task_struct *, void *), void *arg)
1275{
1276 struct mem_cgroup *iter;
1277 int ret = 0;
1278
1279 BUG_ON(memcg == root_mem_cgroup);
1280
1281 for_each_mem_cgroup_tree(iter, memcg) {
1282 struct css_task_iter it;
1283 struct task_struct *task;
1284
f168a9a5 1285 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1286 while (!ret && (task = css_task_iter_next(&it)))
1287 ret = fn(task, arg);
1288 css_task_iter_end(&it);
1289 if (ret) {
1290 mem_cgroup_iter_break(memcg, iter);
1291 break;
1292 }
1293 }
1294 return ret;
1295}
1296
925b7673 1297/**
dfe0e773 1298 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1299 * @page: the page
f144c390 1300 * @pgdat: pgdat of the page
dfe0e773 1301 *
a0b5b414
JW
1302 * This function relies on page->mem_cgroup being stable - see the
1303 * access rules in commit_charge().
925b7673 1304 */
599d0c95 1305struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1306{
ef8f2327 1307 struct mem_cgroup_per_node *mz;
925b7673 1308 struct mem_cgroup *memcg;
bea8c150 1309 struct lruvec *lruvec;
6d12e2d8 1310
bea8c150 1311 if (mem_cgroup_disabled()) {
867e5e1d 1312 lruvec = &pgdat->__lruvec;
bea8c150
HD
1313 goto out;
1314 }
925b7673 1315
1306a85a 1316 memcg = page->mem_cgroup;
7512102c 1317 /*
dfe0e773 1318 * Swapcache readahead pages are added to the LRU - and
29833315 1319 * possibly migrated - before they are charged.
7512102c 1320 */
29833315
JW
1321 if (!memcg)
1322 memcg = root_mem_cgroup;
7512102c 1323
ef8f2327 1324 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1325 lruvec = &mz->lruvec;
1326out:
1327 /*
1328 * Since a node can be onlined after the mem_cgroup was created,
1329 * we have to be prepared to initialize lruvec->zone here;
1330 * and if offlined then reonlined, we need to reinitialize it.
1331 */
599d0c95
MG
1332 if (unlikely(lruvec->pgdat != pgdat))
1333 lruvec->pgdat = pgdat;
bea8c150 1334 return lruvec;
08e552c6 1335}
b69408e8 1336
925b7673 1337/**
fa9add64
HD
1338 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1339 * @lruvec: mem_cgroup per zone lru vector
1340 * @lru: index of lru list the page is sitting on
b4536f0c 1341 * @zid: zone id of the accounted pages
fa9add64 1342 * @nr_pages: positive when adding or negative when removing
925b7673 1343 *
ca707239
HD
1344 * This function must be called under lru_lock, just before a page is added
1345 * to or just after a page is removed from an lru list (that ordering being
1346 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1347 */
fa9add64 1348void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1349 int zid, int nr_pages)
3f58a829 1350{
ef8f2327 1351 struct mem_cgroup_per_node *mz;
fa9add64 1352 unsigned long *lru_size;
ca707239 1353 long size;
3f58a829
MK
1354
1355 if (mem_cgroup_disabled())
1356 return;
1357
ef8f2327 1358 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1359 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1360
1361 if (nr_pages < 0)
1362 *lru_size += nr_pages;
1363
1364 size = *lru_size;
b4536f0c
MH
1365 if (WARN_ONCE(size < 0,
1366 "%s(%p, %d, %d): lru_size %ld\n",
1367 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1368 VM_BUG_ON(1);
1369 *lru_size = 0;
1370 }
1371
1372 if (nr_pages > 0)
1373 *lru_size += nr_pages;
08e552c6 1374}
544122e5 1375
19942822 1376/**
9d11ea9f 1377 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1378 * @memcg: the memory cgroup
19942822 1379 *
9d11ea9f 1380 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1381 * pages.
19942822 1382 */
c0ff4b85 1383static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1384{
3e32cb2e
JW
1385 unsigned long margin = 0;
1386 unsigned long count;
1387 unsigned long limit;
9d11ea9f 1388
3e32cb2e 1389 count = page_counter_read(&memcg->memory);
bbec2e15 1390 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1391 if (count < limit)
1392 margin = limit - count;
1393
7941d214 1394 if (do_memsw_account()) {
3e32cb2e 1395 count = page_counter_read(&memcg->memsw);
bbec2e15 1396 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1397 if (count < limit)
3e32cb2e 1398 margin = min(margin, limit - count);
cbedbac3
LR
1399 else
1400 margin = 0;
3e32cb2e
JW
1401 }
1402
1403 return margin;
19942822
JW
1404}
1405
32047e2a 1406/*
bdcbb659 1407 * A routine for checking "mem" is under move_account() or not.
32047e2a 1408 *
bdcbb659
QH
1409 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1410 * moving cgroups. This is for waiting at high-memory pressure
1411 * caused by "move".
32047e2a 1412 */
c0ff4b85 1413static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1414{
2bd9bb20
KH
1415 struct mem_cgroup *from;
1416 struct mem_cgroup *to;
4b534334 1417 bool ret = false;
2bd9bb20
KH
1418 /*
1419 * Unlike task_move routines, we access mc.to, mc.from not under
1420 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1421 */
1422 spin_lock(&mc.lock);
1423 from = mc.from;
1424 to = mc.to;
1425 if (!from)
1426 goto unlock;
3e92041d 1427
2314b42d
JW
1428 ret = mem_cgroup_is_descendant(from, memcg) ||
1429 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1430unlock:
1431 spin_unlock(&mc.lock);
4b534334
KH
1432 return ret;
1433}
1434
c0ff4b85 1435static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1436{
1437 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1438 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1439 DEFINE_WAIT(wait);
1440 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1441 /* moving charge context might have finished. */
1442 if (mc.moving_task)
1443 schedule();
1444 finish_wait(&mc.waitq, &wait);
1445 return true;
1446 }
1447 }
1448 return false;
1449}
1450
5f9a4f4a
MS
1451struct memory_stat {
1452 const char *name;
1453 unsigned int ratio;
1454 unsigned int idx;
1455};
1456
1457static struct memory_stat memory_stats[] = {
1458 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1459 { "file", PAGE_SIZE, NR_FILE_PAGES },
1460 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1461 { "percpu", 1, MEMCG_PERCPU_B },
1462 { "sock", PAGE_SIZE, MEMCG_SOCK },
1463 { "shmem", PAGE_SIZE, NR_SHMEM },
1464 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1465 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1466 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1467#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1468 /*
1469 * The ratio will be initialized in memory_stats_init(). Because
1470 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1471 * constant(e.g. powerpc).
1472 */
1473 { "anon_thp", 0, NR_ANON_THPS },
1474#endif
1475 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1476 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1477 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1478 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1479 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1480
1481 /*
1482 * Note: The slab_reclaimable and slab_unreclaimable must be
1483 * together and slab_reclaimable must be in front.
1484 */
1485 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1486 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1487
1488 /* The memory events */
1489 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1490 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1491 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1492 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1493 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1494 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1495 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1496};
1497
1498static int __init memory_stats_init(void)
1499{
1500 int i;
1501
1502 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1503#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1504 if (memory_stats[i].idx == NR_ANON_THPS)
1505 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1506#endif
1507 VM_BUG_ON(!memory_stats[i].ratio);
1508 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1509 }
1510
1511 return 0;
1512}
1513pure_initcall(memory_stats_init);
1514
c8713d0b
JW
1515static char *memory_stat_format(struct mem_cgroup *memcg)
1516{
1517 struct seq_buf s;
1518 int i;
71cd3113 1519
c8713d0b
JW
1520 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1521 if (!s.buffer)
1522 return NULL;
1523
1524 /*
1525 * Provide statistics on the state of the memory subsystem as
1526 * well as cumulative event counters that show past behavior.
1527 *
1528 * This list is ordered following a combination of these gradients:
1529 * 1) generic big picture -> specifics and details
1530 * 2) reflecting userspace activity -> reflecting kernel heuristics
1531 *
1532 * Current memory state:
1533 */
1534
5f9a4f4a
MS
1535 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1536 u64 size;
c8713d0b 1537
5f9a4f4a
MS
1538 size = memcg_page_state(memcg, memory_stats[i].idx);
1539 size *= memory_stats[i].ratio;
1540 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1541
5f9a4f4a
MS
1542 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1543 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1544 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1545 seq_buf_printf(&s, "slab %llu\n", size);
1546 }
1547 }
c8713d0b
JW
1548
1549 /* Accumulated memory events */
1550
ebc5d83d
KK
1551 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1552 memcg_events(memcg, PGFAULT));
1553 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1554 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1555 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1556 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1557 seq_buf_printf(&s, "pgscan %lu\n",
1558 memcg_events(memcg, PGSCAN_KSWAPD) +
1559 memcg_events(memcg, PGSCAN_DIRECT));
1560 seq_buf_printf(&s, "pgsteal %lu\n",
1561 memcg_events(memcg, PGSTEAL_KSWAPD) +
1562 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1563 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1564 memcg_events(memcg, PGACTIVATE));
1565 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1566 memcg_events(memcg, PGDEACTIVATE));
1567 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1568 memcg_events(memcg, PGLAZYFREE));
1569 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1570 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1571
1572#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1573 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1574 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1575 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1576 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1577#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1578
1579 /* The above should easily fit into one page */
1580 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1581
1582 return s.buffer;
1583}
71cd3113 1584
58cf188e 1585#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1586/**
f0c867d9 1587 * mem_cgroup_print_oom_context: Print OOM information relevant to
1588 * memory controller.
e222432b
BS
1589 * @memcg: The memory cgroup that went over limit
1590 * @p: Task that is going to be killed
1591 *
1592 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1593 * enabled
1594 */
f0c867d9 1595void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1596{
e222432b
BS
1597 rcu_read_lock();
1598
f0c867d9 1599 if (memcg) {
1600 pr_cont(",oom_memcg=");
1601 pr_cont_cgroup_path(memcg->css.cgroup);
1602 } else
1603 pr_cont(",global_oom");
2415b9f5 1604 if (p) {
f0c867d9 1605 pr_cont(",task_memcg=");
2415b9f5 1606 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1607 }
e222432b 1608 rcu_read_unlock();
f0c867d9 1609}
1610
1611/**
1612 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1613 * memory controller.
1614 * @memcg: The memory cgroup that went over limit
1615 */
1616void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1617{
c8713d0b 1618 char *buf;
e222432b 1619
3e32cb2e
JW
1620 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1621 K((u64)page_counter_read(&memcg->memory)),
15b42562 1622 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1623 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1624 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1625 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1626 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1627 else {
1628 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1629 K((u64)page_counter_read(&memcg->memsw)),
1630 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1631 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1632 K((u64)page_counter_read(&memcg->kmem)),
1633 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1634 }
c8713d0b
JW
1635
1636 pr_info("Memory cgroup stats for ");
1637 pr_cont_cgroup_path(memcg->css.cgroup);
1638 pr_cont(":");
1639 buf = memory_stat_format(memcg);
1640 if (!buf)
1641 return;
1642 pr_info("%s", buf);
1643 kfree(buf);
e222432b
BS
1644}
1645
a63d83f4
DR
1646/*
1647 * Return the memory (and swap, if configured) limit for a memcg.
1648 */
bbec2e15 1649unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1650{
8d387a5f
WL
1651 unsigned long max = READ_ONCE(memcg->memory.max);
1652
1653 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1654 if (mem_cgroup_swappiness(memcg))
1655 max += min(READ_ONCE(memcg->swap.max),
1656 (unsigned long)total_swap_pages);
1657 } else { /* v1 */
1658 if (mem_cgroup_swappiness(memcg)) {
1659 /* Calculate swap excess capacity from memsw limit */
1660 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1661
1662 max += min(swap, (unsigned long)total_swap_pages);
1663 }
9a5a8f19 1664 }
bbec2e15 1665 return max;
a63d83f4
DR
1666}
1667
9783aa99
CD
1668unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1669{
1670 return page_counter_read(&memcg->memory);
1671}
1672
b6e6edcf 1673static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1674 int order)
9cbb78bb 1675{
6e0fc46d
DR
1676 struct oom_control oc = {
1677 .zonelist = NULL,
1678 .nodemask = NULL,
2a966b77 1679 .memcg = memcg,
6e0fc46d
DR
1680 .gfp_mask = gfp_mask,
1681 .order = order,
6e0fc46d 1682 };
1378b37d 1683 bool ret = true;
9cbb78bb 1684
7775face
TH
1685 if (mutex_lock_killable(&oom_lock))
1686 return true;
1378b37d
YS
1687
1688 if (mem_cgroup_margin(memcg) >= (1 << order))
1689 goto unlock;
1690
7775face
TH
1691 /*
1692 * A few threads which were not waiting at mutex_lock_killable() can
1693 * fail to bail out. Therefore, check again after holding oom_lock.
1694 */
1695 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1696
1697unlock:
dc56401f 1698 mutex_unlock(&oom_lock);
7c5f64f8 1699 return ret;
9cbb78bb
DR
1700}
1701
0608f43d 1702static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1703 pg_data_t *pgdat,
0608f43d
AM
1704 gfp_t gfp_mask,
1705 unsigned long *total_scanned)
1706{
1707 struct mem_cgroup *victim = NULL;
1708 int total = 0;
1709 int loop = 0;
1710 unsigned long excess;
1711 unsigned long nr_scanned;
1712 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1713 .pgdat = pgdat,
0608f43d
AM
1714 };
1715
3e32cb2e 1716 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1717
1718 while (1) {
1719 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1720 if (!victim) {
1721 loop++;
1722 if (loop >= 2) {
1723 /*
1724 * If we have not been able to reclaim
1725 * anything, it might because there are
1726 * no reclaimable pages under this hierarchy
1727 */
1728 if (!total)
1729 break;
1730 /*
1731 * We want to do more targeted reclaim.
1732 * excess >> 2 is not to excessive so as to
1733 * reclaim too much, nor too less that we keep
1734 * coming back to reclaim from this cgroup
1735 */
1736 if (total >= (excess >> 2) ||
1737 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1738 break;
1739 }
1740 continue;
1741 }
a9dd0a83 1742 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1743 pgdat, &nr_scanned);
0608f43d 1744 *total_scanned += nr_scanned;
3e32cb2e 1745 if (!soft_limit_excess(root_memcg))
0608f43d 1746 break;
6d61ef40 1747 }
0608f43d
AM
1748 mem_cgroup_iter_break(root_memcg, victim);
1749 return total;
6d61ef40
BS
1750}
1751
0056f4e6
JW
1752#ifdef CONFIG_LOCKDEP
1753static struct lockdep_map memcg_oom_lock_dep_map = {
1754 .name = "memcg_oom_lock",
1755};
1756#endif
1757
fb2a6fc5
JW
1758static DEFINE_SPINLOCK(memcg_oom_lock);
1759
867578cb
KH
1760/*
1761 * Check OOM-Killer is already running under our hierarchy.
1762 * If someone is running, return false.
1763 */
fb2a6fc5 1764static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1765{
79dfdacc 1766 struct mem_cgroup *iter, *failed = NULL;
a636b327 1767
fb2a6fc5
JW
1768 spin_lock(&memcg_oom_lock);
1769
9f3a0d09 1770 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1771 if (iter->oom_lock) {
79dfdacc
MH
1772 /*
1773 * this subtree of our hierarchy is already locked
1774 * so we cannot give a lock.
1775 */
79dfdacc 1776 failed = iter;
9f3a0d09
JW
1777 mem_cgroup_iter_break(memcg, iter);
1778 break;
23751be0
JW
1779 } else
1780 iter->oom_lock = true;
7d74b06f 1781 }
867578cb 1782
fb2a6fc5
JW
1783 if (failed) {
1784 /*
1785 * OK, we failed to lock the whole subtree so we have
1786 * to clean up what we set up to the failing subtree
1787 */
1788 for_each_mem_cgroup_tree(iter, memcg) {
1789 if (iter == failed) {
1790 mem_cgroup_iter_break(memcg, iter);
1791 break;
1792 }
1793 iter->oom_lock = false;
79dfdacc 1794 }
0056f4e6
JW
1795 } else
1796 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1797
1798 spin_unlock(&memcg_oom_lock);
1799
1800 return !failed;
a636b327 1801}
0b7f569e 1802
fb2a6fc5 1803static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1804{
7d74b06f
KH
1805 struct mem_cgroup *iter;
1806
fb2a6fc5 1807 spin_lock(&memcg_oom_lock);
5facae4f 1808 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1809 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1810 iter->oom_lock = false;
fb2a6fc5 1811 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1812}
1813
c0ff4b85 1814static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1815{
1816 struct mem_cgroup *iter;
1817
c2b42d3c 1818 spin_lock(&memcg_oom_lock);
c0ff4b85 1819 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1820 iter->under_oom++;
1821 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1822}
1823
c0ff4b85 1824static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1825{
1826 struct mem_cgroup *iter;
1827
867578cb 1828 /*
7a52d4d8
ML
1829 * Be careful about under_oom underflows becase a child memcg
1830 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1831 */
c2b42d3c 1832 spin_lock(&memcg_oom_lock);
c0ff4b85 1833 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1834 if (iter->under_oom > 0)
1835 iter->under_oom--;
1836 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1837}
1838
867578cb
KH
1839static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840
dc98df5a 1841struct oom_wait_info {
d79154bb 1842 struct mem_cgroup *memcg;
ac6424b9 1843 wait_queue_entry_t wait;
dc98df5a
KH
1844};
1845
ac6424b9 1846static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1847 unsigned mode, int sync, void *arg)
1848{
d79154bb
HD
1849 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1850 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1851 struct oom_wait_info *oom_wait_info;
1852
1853 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1854 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1855
2314b42d
JW
1856 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1857 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1858 return 0;
dc98df5a
KH
1859 return autoremove_wake_function(wait, mode, sync, arg);
1860}
1861
c0ff4b85 1862static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1863{
c2b42d3c
TH
1864 /*
1865 * For the following lockless ->under_oom test, the only required
1866 * guarantee is that it must see the state asserted by an OOM when
1867 * this function is called as a result of userland actions
1868 * triggered by the notification of the OOM. This is trivially
1869 * achieved by invoking mem_cgroup_mark_under_oom() before
1870 * triggering notification.
1871 */
1872 if (memcg && memcg->under_oom)
f4b90b70 1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1874}
1875
29ef680a
MH
1876enum oom_status {
1877 OOM_SUCCESS,
1878 OOM_FAILED,
1879 OOM_ASYNC,
1880 OOM_SKIPPED
1881};
1882
1883static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1884{
7056d3a3
MH
1885 enum oom_status ret;
1886 bool locked;
1887
29ef680a
MH
1888 if (order > PAGE_ALLOC_COSTLY_ORDER)
1889 return OOM_SKIPPED;
1890
7a1adfdd
RG
1891 memcg_memory_event(memcg, MEMCG_OOM);
1892
867578cb 1893 /*
49426420
JW
1894 * We are in the middle of the charge context here, so we
1895 * don't want to block when potentially sitting on a callstack
1896 * that holds all kinds of filesystem and mm locks.
1897 *
29ef680a
MH
1898 * cgroup1 allows disabling the OOM killer and waiting for outside
1899 * handling until the charge can succeed; remember the context and put
1900 * the task to sleep at the end of the page fault when all locks are
1901 * released.
49426420 1902 *
29ef680a
MH
1903 * On the other hand, in-kernel OOM killer allows for an async victim
1904 * memory reclaim (oom_reaper) and that means that we are not solely
1905 * relying on the oom victim to make a forward progress and we can
1906 * invoke the oom killer here.
1907 *
1908 * Please note that mem_cgroup_out_of_memory might fail to find a
1909 * victim and then we have to bail out from the charge path.
867578cb 1910 */
29ef680a
MH
1911 if (memcg->oom_kill_disable) {
1912 if (!current->in_user_fault)
1913 return OOM_SKIPPED;
1914 css_get(&memcg->css);
1915 current->memcg_in_oom = memcg;
1916 current->memcg_oom_gfp_mask = mask;
1917 current->memcg_oom_order = order;
1918
1919 return OOM_ASYNC;
1920 }
1921
7056d3a3
MH
1922 mem_cgroup_mark_under_oom(memcg);
1923
1924 locked = mem_cgroup_oom_trylock(memcg);
1925
1926 if (locked)
1927 mem_cgroup_oom_notify(memcg);
1928
1929 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1930 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1931 ret = OOM_SUCCESS;
1932 else
1933 ret = OOM_FAILED;
1934
1935 if (locked)
1936 mem_cgroup_oom_unlock(memcg);
29ef680a 1937
7056d3a3 1938 return ret;
3812c8c8
JW
1939}
1940
1941/**
1942 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1943 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1944 *
49426420
JW
1945 * This has to be called at the end of a page fault if the memcg OOM
1946 * handler was enabled.
3812c8c8 1947 *
49426420 1948 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1949 * sleep on a waitqueue until the userspace task resolves the
1950 * situation. Sleeping directly in the charge context with all kinds
1951 * of locks held is not a good idea, instead we remember an OOM state
1952 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1953 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1954 *
1955 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1956 * completed, %false otherwise.
3812c8c8 1957 */
49426420 1958bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1959{
626ebc41 1960 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1961 struct oom_wait_info owait;
49426420 1962 bool locked;
3812c8c8
JW
1963
1964 /* OOM is global, do not handle */
3812c8c8 1965 if (!memcg)
49426420 1966 return false;
3812c8c8 1967
7c5f64f8 1968 if (!handle)
49426420 1969 goto cleanup;
3812c8c8
JW
1970
1971 owait.memcg = memcg;
1972 owait.wait.flags = 0;
1973 owait.wait.func = memcg_oom_wake_function;
1974 owait.wait.private = current;
2055da97 1975 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1976
3812c8c8 1977 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1978 mem_cgroup_mark_under_oom(memcg);
1979
1980 locked = mem_cgroup_oom_trylock(memcg);
1981
1982 if (locked)
1983 mem_cgroup_oom_notify(memcg);
1984
1985 if (locked && !memcg->oom_kill_disable) {
1986 mem_cgroup_unmark_under_oom(memcg);
1987 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1988 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1989 current->memcg_oom_order);
49426420 1990 } else {
3812c8c8 1991 schedule();
49426420
JW
1992 mem_cgroup_unmark_under_oom(memcg);
1993 finish_wait(&memcg_oom_waitq, &owait.wait);
1994 }
1995
1996 if (locked) {
fb2a6fc5
JW
1997 mem_cgroup_oom_unlock(memcg);
1998 /*
1999 * There is no guarantee that an OOM-lock contender
2000 * sees the wakeups triggered by the OOM kill
2001 * uncharges. Wake any sleepers explicitely.
2002 */
2003 memcg_oom_recover(memcg);
2004 }
49426420 2005cleanup:
626ebc41 2006 current->memcg_in_oom = NULL;
3812c8c8 2007 css_put(&memcg->css);
867578cb 2008 return true;
0b7f569e
KH
2009}
2010
3d8b38eb
RG
2011/**
2012 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2013 * @victim: task to be killed by the OOM killer
2014 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2015 *
2016 * Returns a pointer to a memory cgroup, which has to be cleaned up
2017 * by killing all belonging OOM-killable tasks.
2018 *
2019 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2020 */
2021struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2022 struct mem_cgroup *oom_domain)
2023{
2024 struct mem_cgroup *oom_group = NULL;
2025 struct mem_cgroup *memcg;
2026
2027 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2028 return NULL;
2029
2030 if (!oom_domain)
2031 oom_domain = root_mem_cgroup;
2032
2033 rcu_read_lock();
2034
2035 memcg = mem_cgroup_from_task(victim);
2036 if (memcg == root_mem_cgroup)
2037 goto out;
2038
48fe267c
RG
2039 /*
2040 * If the victim task has been asynchronously moved to a different
2041 * memory cgroup, we might end up killing tasks outside oom_domain.
2042 * In this case it's better to ignore memory.group.oom.
2043 */
2044 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2045 goto out;
2046
3d8b38eb
RG
2047 /*
2048 * Traverse the memory cgroup hierarchy from the victim task's
2049 * cgroup up to the OOMing cgroup (or root) to find the
2050 * highest-level memory cgroup with oom.group set.
2051 */
2052 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2053 if (memcg->oom_group)
2054 oom_group = memcg;
2055
2056 if (memcg == oom_domain)
2057 break;
2058 }
2059
2060 if (oom_group)
2061 css_get(&oom_group->css);
2062out:
2063 rcu_read_unlock();
2064
2065 return oom_group;
2066}
2067
2068void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2069{
2070 pr_info("Tasks in ");
2071 pr_cont_cgroup_path(memcg->css.cgroup);
2072 pr_cont(" are going to be killed due to memory.oom.group set\n");
2073}
2074
d7365e78 2075/**
81f8c3a4
JW
2076 * lock_page_memcg - lock a page->mem_cgroup binding
2077 * @page: the page
32047e2a 2078 *
81f8c3a4 2079 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2080 * another cgroup.
2081 *
2082 * It ensures lifetime of the returned memcg. Caller is responsible
2083 * for the lifetime of the page; __unlock_page_memcg() is available
2084 * when @page might get freed inside the locked section.
d69b042f 2085 */
739f79fc 2086struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2087{
9da7b521 2088 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2089 struct mem_cgroup *memcg;
6de22619 2090 unsigned long flags;
89c06bd5 2091
6de22619
JW
2092 /*
2093 * The RCU lock is held throughout the transaction. The fast
2094 * path can get away without acquiring the memcg->move_lock
2095 * because page moving starts with an RCU grace period.
739f79fc
JW
2096 *
2097 * The RCU lock also protects the memcg from being freed when
2098 * the page state that is going to change is the only thing
2099 * preventing the page itself from being freed. E.g. writeback
2100 * doesn't hold a page reference and relies on PG_writeback to
2101 * keep off truncation, migration and so forth.
2102 */
d7365e78
JW
2103 rcu_read_lock();
2104
2105 if (mem_cgroup_disabled())
739f79fc 2106 return NULL;
89c06bd5 2107again:
9da7b521 2108 memcg = head->mem_cgroup;
29833315 2109 if (unlikely(!memcg))
739f79fc 2110 return NULL;
d7365e78 2111
bdcbb659 2112 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2113 return memcg;
89c06bd5 2114
6de22619 2115 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2116 if (memcg != head->mem_cgroup) {
6de22619 2117 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2118 goto again;
2119 }
6de22619
JW
2120
2121 /*
2122 * When charge migration first begins, we can have locked and
2123 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2124 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2125 */
2126 memcg->move_lock_task = current;
2127 memcg->move_lock_flags = flags;
d7365e78 2128
739f79fc 2129 return memcg;
89c06bd5 2130}
81f8c3a4 2131EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2132
d7365e78 2133/**
739f79fc
JW
2134 * __unlock_page_memcg - unlock and unpin a memcg
2135 * @memcg: the memcg
2136 *
2137 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2138 */
739f79fc 2139void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2140{
6de22619
JW
2141 if (memcg && memcg->move_lock_task == current) {
2142 unsigned long flags = memcg->move_lock_flags;
2143
2144 memcg->move_lock_task = NULL;
2145 memcg->move_lock_flags = 0;
2146
2147 spin_unlock_irqrestore(&memcg->move_lock, flags);
2148 }
89c06bd5 2149
d7365e78 2150 rcu_read_unlock();
89c06bd5 2151}
739f79fc
JW
2152
2153/**
2154 * unlock_page_memcg - unlock a page->mem_cgroup binding
2155 * @page: the page
2156 */
2157void unlock_page_memcg(struct page *page)
2158{
9da7b521
JW
2159 struct page *head = compound_head(page);
2160
2161 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2162}
81f8c3a4 2163EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2164
cdec2e42
KH
2165struct memcg_stock_pcp {
2166 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2167 unsigned int nr_pages;
bf4f0599
RG
2168
2169#ifdef CONFIG_MEMCG_KMEM
2170 struct obj_cgroup *cached_objcg;
2171 unsigned int nr_bytes;
2172#endif
2173
cdec2e42 2174 struct work_struct work;
26fe6168 2175 unsigned long flags;
a0db00fc 2176#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2177};
2178static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2179static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2180
bf4f0599
RG
2181#ifdef CONFIG_MEMCG_KMEM
2182static void drain_obj_stock(struct memcg_stock_pcp *stock);
2183static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2184 struct mem_cgroup *root_memcg);
2185
2186#else
2187static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2188{
2189}
2190static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2191 struct mem_cgroup *root_memcg)
2192{
2193 return false;
2194}
2195#endif
2196
a0956d54
SS
2197/**
2198 * consume_stock: Try to consume stocked charge on this cpu.
2199 * @memcg: memcg to consume from.
2200 * @nr_pages: how many pages to charge.
2201 *
2202 * The charges will only happen if @memcg matches the current cpu's memcg
2203 * stock, and at least @nr_pages are available in that stock. Failure to
2204 * service an allocation will refill the stock.
2205 *
2206 * returns true if successful, false otherwise.
cdec2e42 2207 */
a0956d54 2208static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2209{
2210 struct memcg_stock_pcp *stock;
db2ba40c 2211 unsigned long flags;
3e32cb2e 2212 bool ret = false;
cdec2e42 2213
a983b5eb 2214 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2215 return ret;
a0956d54 2216
db2ba40c
JW
2217 local_irq_save(flags);
2218
2219 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2220 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2221 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2222 ret = true;
2223 }
db2ba40c
JW
2224
2225 local_irq_restore(flags);
2226
cdec2e42
KH
2227 return ret;
2228}
2229
2230/*
3e32cb2e 2231 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2232 */
2233static void drain_stock(struct memcg_stock_pcp *stock)
2234{
2235 struct mem_cgroup *old = stock->cached;
2236
1a3e1f40
JW
2237 if (!old)
2238 return;
2239
11c9ea4e 2240 if (stock->nr_pages) {
3e32cb2e 2241 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2242 if (do_memsw_account())
3e32cb2e 2243 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2244 stock->nr_pages = 0;
cdec2e42 2245 }
1a3e1f40
JW
2246
2247 css_put(&old->css);
cdec2e42 2248 stock->cached = NULL;
cdec2e42
KH
2249}
2250
cdec2e42
KH
2251static void drain_local_stock(struct work_struct *dummy)
2252{
db2ba40c
JW
2253 struct memcg_stock_pcp *stock;
2254 unsigned long flags;
2255
72f0184c
MH
2256 /*
2257 * The only protection from memory hotplug vs. drain_stock races is
2258 * that we always operate on local CPU stock here with IRQ disabled
2259 */
db2ba40c
JW
2260 local_irq_save(flags);
2261
2262 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2263 drain_obj_stock(stock);
cdec2e42 2264 drain_stock(stock);
26fe6168 2265 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2266
2267 local_irq_restore(flags);
cdec2e42
KH
2268}
2269
2270/*
3e32cb2e 2271 * Cache charges(val) to local per_cpu area.
320cc51d 2272 * This will be consumed by consume_stock() function, later.
cdec2e42 2273 */
c0ff4b85 2274static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2275{
db2ba40c
JW
2276 struct memcg_stock_pcp *stock;
2277 unsigned long flags;
2278
2279 local_irq_save(flags);
cdec2e42 2280
db2ba40c 2281 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2282 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2283 drain_stock(stock);
1a3e1f40 2284 css_get(&memcg->css);
c0ff4b85 2285 stock->cached = memcg;
cdec2e42 2286 }
11c9ea4e 2287 stock->nr_pages += nr_pages;
db2ba40c 2288
a983b5eb 2289 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2290 drain_stock(stock);
2291
db2ba40c 2292 local_irq_restore(flags);
cdec2e42
KH
2293}
2294
2295/*
c0ff4b85 2296 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2297 * of the hierarchy under it.
cdec2e42 2298 */
6d3d6aa2 2299static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2300{
26fe6168 2301 int cpu, curcpu;
d38144b7 2302
6d3d6aa2
JW
2303 /* If someone's already draining, avoid adding running more workers. */
2304 if (!mutex_trylock(&percpu_charge_mutex))
2305 return;
72f0184c
MH
2306 /*
2307 * Notify other cpus that system-wide "drain" is running
2308 * We do not care about races with the cpu hotplug because cpu down
2309 * as well as workers from this path always operate on the local
2310 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2311 */
5af12d0e 2312 curcpu = get_cpu();
cdec2e42
KH
2313 for_each_online_cpu(cpu) {
2314 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2315 struct mem_cgroup *memcg;
e1a366be 2316 bool flush = false;
26fe6168 2317
e1a366be 2318 rcu_read_lock();
c0ff4b85 2319 memcg = stock->cached;
e1a366be
RG
2320 if (memcg && stock->nr_pages &&
2321 mem_cgroup_is_descendant(memcg, root_memcg))
2322 flush = true;
bf4f0599
RG
2323 if (obj_stock_flush_required(stock, root_memcg))
2324 flush = true;
e1a366be
RG
2325 rcu_read_unlock();
2326
2327 if (flush &&
2328 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2329 if (cpu == curcpu)
2330 drain_local_stock(&stock->work);
2331 else
2332 schedule_work_on(cpu, &stock->work);
2333 }
cdec2e42 2334 }
5af12d0e 2335 put_cpu();
9f50fad6 2336 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2337}
2338
308167fc 2339static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2340{
cdec2e42 2341 struct memcg_stock_pcp *stock;
42a30035 2342 struct mem_cgroup *memcg, *mi;
cdec2e42 2343
cdec2e42
KH
2344 stock = &per_cpu(memcg_stock, cpu);
2345 drain_stock(stock);
a983b5eb
JW
2346
2347 for_each_mem_cgroup(memcg) {
2348 int i;
2349
2350 for (i = 0; i < MEMCG_NR_STAT; i++) {
2351 int nid;
2352 long x;
2353
871789d4 2354 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2355 if (x)
42a30035
JW
2356 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2357 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2358
2359 if (i >= NR_VM_NODE_STAT_ITEMS)
2360 continue;
2361
2362 for_each_node(nid) {
2363 struct mem_cgroup_per_node *pn;
2364
2365 pn = mem_cgroup_nodeinfo(memcg, nid);
2366 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2367 if (x)
42a30035
JW
2368 do {
2369 atomic_long_add(x, &pn->lruvec_stat[i]);
2370 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2371 }
2372 }
2373
e27be240 2374 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2375 long x;
2376
871789d4 2377 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2378 if (x)
42a30035
JW
2379 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2380 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2381 }
2382 }
2383
308167fc 2384 return 0;
cdec2e42
KH
2385}
2386
b3ff9291
CD
2387static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388 unsigned int nr_pages,
2389 gfp_t gfp_mask)
f7e1cb6e 2390{
b3ff9291
CD
2391 unsigned long nr_reclaimed = 0;
2392
f7e1cb6e 2393 do {
e22c6ed9
JW
2394 unsigned long pflags;
2395
d1663a90
JK
2396 if (page_counter_read(&memcg->memory) <=
2397 READ_ONCE(memcg->memory.high))
f7e1cb6e 2398 continue;
e22c6ed9 2399
e27be240 2400 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2401
2402 psi_memstall_enter(&pflags);
b3ff9291
CD
2403 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404 gfp_mask, true);
e22c6ed9 2405 psi_memstall_leave(&pflags);
4bf17307
CD
2406 } while ((memcg = parent_mem_cgroup(memcg)) &&
2407 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2408
2409 return nr_reclaimed;
f7e1cb6e
JW
2410}
2411
2412static void high_work_func(struct work_struct *work)
2413{
2414 struct mem_cgroup *memcg;
2415
2416 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2417 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2418}
2419
0e4b01df
CD
2420/*
2421 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2422 * enough to still cause a significant slowdown in most cases, while still
2423 * allowing diagnostics and tracing to proceed without becoming stuck.
2424 */
2425#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2426
2427/*
2428 * When calculating the delay, we use these either side of the exponentiation to
2429 * maintain precision and scale to a reasonable number of jiffies (see the table
2430 * below.
2431 *
2432 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2433 * overage ratio to a delay.
ac5ddd0f 2434 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2435 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2436 * to produce a reasonable delay curve.
2437 *
2438 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2439 * reasonable delay curve compared to precision-adjusted overage, not
2440 * penalising heavily at first, but still making sure that growth beyond the
2441 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2442 * example, with a high of 100 megabytes:
2443 *
2444 * +-------+------------------------+
2445 * | usage | time to allocate in ms |
2446 * +-------+------------------------+
2447 * | 100M | 0 |
2448 * | 101M | 6 |
2449 * | 102M | 25 |
2450 * | 103M | 57 |
2451 * | 104M | 102 |
2452 * | 105M | 159 |
2453 * | 106M | 230 |
2454 * | 107M | 313 |
2455 * | 108M | 409 |
2456 * | 109M | 518 |
2457 * | 110M | 639 |
2458 * | 111M | 774 |
2459 * | 112M | 921 |
2460 * | 113M | 1081 |
2461 * | 114M | 1254 |
2462 * | 115M | 1439 |
2463 * | 116M | 1638 |
2464 * | 117M | 1849 |
2465 * | 118M | 2000 |
2466 * | 119M | 2000 |
2467 * | 120M | 2000 |
2468 * +-------+------------------------+
2469 */
2470 #define MEMCG_DELAY_PRECISION_SHIFT 20
2471 #define MEMCG_DELAY_SCALING_SHIFT 14
2472
8a5dbc65 2473static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2474{
8a5dbc65 2475 u64 overage;
b23afb93 2476
8a5dbc65
JK
2477 if (usage <= high)
2478 return 0;
e26733e0 2479
8a5dbc65
JK
2480 /*
2481 * Prevent division by 0 in overage calculation by acting as if
2482 * it was a threshold of 1 page
2483 */
2484 high = max(high, 1UL);
9b8b1754 2485
8a5dbc65
JK
2486 overage = usage - high;
2487 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2488 return div64_u64(overage, high);
2489}
e26733e0 2490
8a5dbc65
JK
2491static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2492{
2493 u64 overage, max_overage = 0;
e26733e0 2494
8a5dbc65
JK
2495 do {
2496 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2497 READ_ONCE(memcg->memory.high));
8a5dbc65 2498 max_overage = max(overage, max_overage);
e26733e0
CD
2499 } while ((memcg = parent_mem_cgroup(memcg)) &&
2500 !mem_cgroup_is_root(memcg));
2501
8a5dbc65
JK
2502 return max_overage;
2503}
2504
4b82ab4f
JK
2505static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2506{
2507 u64 overage, max_overage = 0;
2508
2509 do {
2510 overage = calculate_overage(page_counter_read(&memcg->swap),
2511 READ_ONCE(memcg->swap.high));
2512 if (overage)
2513 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2514 max_overage = max(overage, max_overage);
2515 } while ((memcg = parent_mem_cgroup(memcg)) &&
2516 !mem_cgroup_is_root(memcg));
2517
2518 return max_overage;
2519}
2520
8a5dbc65
JK
2521/*
2522 * Get the number of jiffies that we should penalise a mischievous cgroup which
2523 * is exceeding its memory.high by checking both it and its ancestors.
2524 */
2525static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2526 unsigned int nr_pages,
2527 u64 max_overage)
2528{
2529 unsigned long penalty_jiffies;
2530
e26733e0
CD
2531 if (!max_overage)
2532 return 0;
0e4b01df
CD
2533
2534 /*
0e4b01df
CD
2535 * We use overage compared to memory.high to calculate the number of
2536 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2537 * fairly lenient on small overages, and increasingly harsh when the
2538 * memcg in question makes it clear that it has no intention of stopping
2539 * its crazy behaviour, so we exponentially increase the delay based on
2540 * overage amount.
2541 */
e26733e0
CD
2542 penalty_jiffies = max_overage * max_overage * HZ;
2543 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2544 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2545
2546 /*
2547 * Factor in the task's own contribution to the overage, such that four
2548 * N-sized allocations are throttled approximately the same as one
2549 * 4N-sized allocation.
2550 *
2551 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2552 * larger the current charge patch is than that.
2553 */
ff144e69 2554 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2555}
2556
2557/*
2558 * Scheduled by try_charge() to be executed from the userland return path
2559 * and reclaims memory over the high limit.
2560 */
2561void mem_cgroup_handle_over_high(void)
2562{
2563 unsigned long penalty_jiffies;
2564 unsigned long pflags;
b3ff9291 2565 unsigned long nr_reclaimed;
e26733e0 2566 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2567 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2568 struct mem_cgroup *memcg;
b3ff9291 2569 bool in_retry = false;
e26733e0
CD
2570
2571 if (likely(!nr_pages))
2572 return;
2573
2574 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2575 current->memcg_nr_pages_over_high = 0;
2576
b3ff9291
CD
2577retry_reclaim:
2578 /*
2579 * The allocating task should reclaim at least the batch size, but for
2580 * subsequent retries we only want to do what's necessary to prevent oom
2581 * or breaching resource isolation.
2582 *
2583 * This is distinct from memory.max or page allocator behaviour because
2584 * memory.high is currently batched, whereas memory.max and the page
2585 * allocator run every time an allocation is made.
2586 */
2587 nr_reclaimed = reclaim_high(memcg,
2588 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2589 GFP_KERNEL);
2590
e26733e0
CD
2591 /*
2592 * memory.high is breached and reclaim is unable to keep up. Throttle
2593 * allocators proactively to slow down excessive growth.
2594 */
8a5dbc65
JK
2595 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2596 mem_find_max_overage(memcg));
0e4b01df 2597
4b82ab4f
JK
2598 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2599 swap_find_max_overage(memcg));
2600
ff144e69
JK
2601 /*
2602 * Clamp the max delay per usermode return so as to still keep the
2603 * application moving forwards and also permit diagnostics, albeit
2604 * extremely slowly.
2605 */
2606 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2607
0e4b01df
CD
2608 /*
2609 * Don't sleep if the amount of jiffies this memcg owes us is so low
2610 * that it's not even worth doing, in an attempt to be nice to those who
2611 * go only a small amount over their memory.high value and maybe haven't
2612 * been aggressively reclaimed enough yet.
2613 */
2614 if (penalty_jiffies <= HZ / 100)
2615 goto out;
2616
b3ff9291
CD
2617 /*
2618 * If reclaim is making forward progress but we're still over
2619 * memory.high, we want to encourage that rather than doing allocator
2620 * throttling.
2621 */
2622 if (nr_reclaimed || nr_retries--) {
2623 in_retry = true;
2624 goto retry_reclaim;
2625 }
2626
0e4b01df
CD
2627 /*
2628 * If we exit early, we're guaranteed to die (since
2629 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2630 * need to account for any ill-begotten jiffies to pay them off later.
2631 */
2632 psi_memstall_enter(&pflags);
2633 schedule_timeout_killable(penalty_jiffies);
2634 psi_memstall_leave(&pflags);
2635
2636out:
2637 css_put(&memcg->css);
b23afb93
TH
2638}
2639
00501b53
JW
2640static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2641 unsigned int nr_pages)
8a9f3ccd 2642{
a983b5eb 2643 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2644 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2645 struct mem_cgroup *mem_over_limit;
3e32cb2e 2646 struct page_counter *counter;
e22c6ed9 2647 enum oom_status oom_status;
6539cc05 2648 unsigned long nr_reclaimed;
b70a2a21
JW
2649 bool may_swap = true;
2650 bool drained = false;
e22c6ed9 2651 unsigned long pflags;
a636b327 2652
ce00a967 2653 if (mem_cgroup_is_root(memcg))
10d53c74 2654 return 0;
6539cc05 2655retry:
b6b6cc72 2656 if (consume_stock(memcg, nr_pages))
10d53c74 2657 return 0;
8a9f3ccd 2658
7941d214 2659 if (!do_memsw_account() ||
6071ca52
JW
2660 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2662 goto done_restock;
7941d214 2663 if (do_memsw_account())
3e32cb2e
JW
2664 page_counter_uncharge(&memcg->memsw, batch);
2665 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2666 } else {
3e32cb2e 2667 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2668 may_swap = false;
3fbe7244 2669 }
7a81b88c 2670
6539cc05
JW
2671 if (batch > nr_pages) {
2672 batch = nr_pages;
2673 goto retry;
2674 }
6d61ef40 2675
869712fd
JW
2676 /*
2677 * Memcg doesn't have a dedicated reserve for atomic
2678 * allocations. But like the global atomic pool, we need to
2679 * put the burden of reclaim on regular allocation requests
2680 * and let these go through as privileged allocations.
2681 */
2682 if (gfp_mask & __GFP_ATOMIC)
2683 goto force;
2684
06b078fc
JW
2685 /*
2686 * Unlike in global OOM situations, memcg is not in a physical
2687 * memory shortage. Allow dying and OOM-killed tasks to
2688 * bypass the last charges so that they can exit quickly and
2689 * free their memory.
2690 */
7775face 2691 if (unlikely(should_force_charge()))
10d53c74 2692 goto force;
06b078fc 2693
89a28483
JW
2694 /*
2695 * Prevent unbounded recursion when reclaim operations need to
2696 * allocate memory. This might exceed the limits temporarily,
2697 * but we prefer facilitating memory reclaim and getting back
2698 * under the limit over triggering OOM kills in these cases.
2699 */
2700 if (unlikely(current->flags & PF_MEMALLOC))
2701 goto force;
2702
06b078fc
JW
2703 if (unlikely(task_in_memcg_oom(current)))
2704 goto nomem;
2705
d0164adc 2706 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2707 goto nomem;
4b534334 2708
e27be240 2709 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2710
e22c6ed9 2711 psi_memstall_enter(&pflags);
b70a2a21
JW
2712 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2713 gfp_mask, may_swap);
e22c6ed9 2714 psi_memstall_leave(&pflags);
6539cc05 2715
61e02c74 2716 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2717 goto retry;
28c34c29 2718
b70a2a21 2719 if (!drained) {
6d3d6aa2 2720 drain_all_stock(mem_over_limit);
b70a2a21
JW
2721 drained = true;
2722 goto retry;
2723 }
2724
28c34c29
JW
2725 if (gfp_mask & __GFP_NORETRY)
2726 goto nomem;
6539cc05
JW
2727 /*
2728 * Even though the limit is exceeded at this point, reclaim
2729 * may have been able to free some pages. Retry the charge
2730 * before killing the task.
2731 *
2732 * Only for regular pages, though: huge pages are rather
2733 * unlikely to succeed so close to the limit, and we fall back
2734 * to regular pages anyway in case of failure.
2735 */
61e02c74 2736 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2737 goto retry;
2738 /*
2739 * At task move, charge accounts can be doubly counted. So, it's
2740 * better to wait until the end of task_move if something is going on.
2741 */
2742 if (mem_cgroup_wait_acct_move(mem_over_limit))
2743 goto retry;
2744
9b130619
JW
2745 if (nr_retries--)
2746 goto retry;
2747
38d38493 2748 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2749 goto nomem;
2750
06b078fc 2751 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2752 goto force;
06b078fc 2753
6539cc05 2754 if (fatal_signal_pending(current))
10d53c74 2755 goto force;
6539cc05 2756
29ef680a
MH
2757 /*
2758 * keep retrying as long as the memcg oom killer is able to make
2759 * a forward progress or bypass the charge if the oom killer
2760 * couldn't make any progress.
2761 */
2762 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2763 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2764 switch (oom_status) {
2765 case OOM_SUCCESS:
d977aa93 2766 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2767 goto retry;
2768 case OOM_FAILED:
2769 goto force;
2770 default:
2771 goto nomem;
2772 }
7a81b88c 2773nomem:
6d1fdc48 2774 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2775 return -ENOMEM;
10d53c74
TH
2776force:
2777 /*
2778 * The allocation either can't fail or will lead to more memory
2779 * being freed very soon. Allow memory usage go over the limit
2780 * temporarily by force charging it.
2781 */
2782 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2783 if (do_memsw_account())
10d53c74 2784 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2785
2786 return 0;
6539cc05
JW
2787
2788done_restock:
2789 if (batch > nr_pages)
2790 refill_stock(memcg, batch - nr_pages);
b23afb93 2791
241994ed 2792 /*
b23afb93
TH
2793 * If the hierarchy is above the normal consumption range, schedule
2794 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2795 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2796 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2797 * not recorded as it most likely matches current's and won't
2798 * change in the meantime. As high limit is checked again before
2799 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2800 */
2801 do {
4b82ab4f
JK
2802 bool mem_high, swap_high;
2803
2804 mem_high = page_counter_read(&memcg->memory) >
2805 READ_ONCE(memcg->memory.high);
2806 swap_high = page_counter_read(&memcg->swap) >
2807 READ_ONCE(memcg->swap.high);
2808
2809 /* Don't bother a random interrupted task */
2810 if (in_interrupt()) {
2811 if (mem_high) {
f7e1cb6e
JW
2812 schedule_work(&memcg->high_work);
2813 break;
2814 }
4b82ab4f
JK
2815 continue;
2816 }
2817
2818 if (mem_high || swap_high) {
2819 /*
2820 * The allocating tasks in this cgroup will need to do
2821 * reclaim or be throttled to prevent further growth
2822 * of the memory or swap footprints.
2823 *
2824 * Target some best-effort fairness between the tasks,
2825 * and distribute reclaim work and delay penalties
2826 * based on how much each task is actually allocating.
2827 */
9516a18a 2828 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2829 set_notify_resume(current);
2830 break;
2831 }
241994ed 2832 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2833
2834 return 0;
7a81b88c 2835}
8a9f3ccd 2836
f0e45fb4 2837#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2838static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2839{
ce00a967
JW
2840 if (mem_cgroup_is_root(memcg))
2841 return;
2842
3e32cb2e 2843 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2844 if (do_memsw_account())
3e32cb2e 2845 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2846}
f0e45fb4 2847#endif
d01dd17f 2848
d9eb1ea2 2849static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2850{
1306a85a 2851 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2852 /*
a0b5b414 2853 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2854 *
a0b5b414
JW
2855 * - the page lock
2856 * - LRU isolation
2857 * - lock_page_memcg()
2858 * - exclusive reference
0a31bc97 2859 */
1306a85a 2860 page->mem_cgroup = memcg;
7a81b88c 2861}
66e1707b 2862
84c07d11 2863#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2864int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2865 gfp_t gfp)
2866{
2867 unsigned int objects = objs_per_slab_page(s, page);
2868 void *vec;
2869
2870 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2871 page_to_nid(page));
2872 if (!vec)
2873 return -ENOMEM;
2874
2875 if (cmpxchg(&page->obj_cgroups, NULL,
2876 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2877 kfree(vec);
2878 else
2879 kmemleak_not_leak(vec);
2880
2881 return 0;
2882}
2883
8380ce47
RG
2884/*
2885 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2886 *
2887 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2888 * cgroup_mutex, etc.
2889 */
2890struct mem_cgroup *mem_cgroup_from_obj(void *p)
2891{
2892 struct page *page;
2893
2894 if (mem_cgroup_disabled())
2895 return NULL;
2896
2897 page = virt_to_head_page(p);
2898
19b629c9
RG
2899 /*
2900 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2901 * or a pointer to obj_cgroup vector. In the latter case the lowest
2902 * bit of the pointer is set.
2903 * The page->mem_cgroup pointer can be asynchronously changed
2904 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2905 * from a valid memcg pointer to objcg vector or back.
2906 */
2907 if (!page->mem_cgroup)
2908 return NULL;
2909
8380ce47 2910 /*
9855609b
RG
2911 * Slab objects are accounted individually, not per-page.
2912 * Memcg membership data for each individual object is saved in
2913 * the page->obj_cgroups.
8380ce47 2914 */
9855609b
RG
2915 if (page_has_obj_cgroups(page)) {
2916 struct obj_cgroup *objcg;
2917 unsigned int off;
2918
2919 off = obj_to_index(page->slab_cache, page, p);
2920 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2921 if (objcg)
2922 return obj_cgroup_memcg(objcg);
2923
2924 return NULL;
9855609b 2925 }
8380ce47
RG
2926
2927 /* All other pages use page->mem_cgroup */
2928 return page->mem_cgroup;
2929}
2930
bf4f0599
RG
2931__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2932{
2933 struct obj_cgroup *objcg = NULL;
2934 struct mem_cgroup *memcg;
2935
2936 if (unlikely(!current->mm && !current->active_memcg))
2937 return NULL;
2938
2939 rcu_read_lock();
2940 if (unlikely(current->active_memcg))
2941 memcg = rcu_dereference(current->active_memcg);
2942 else
2943 memcg = mem_cgroup_from_task(current);
2944
2945 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2946 objcg = rcu_dereference(memcg->objcg);
2947 if (objcg && obj_cgroup_tryget(objcg))
2948 break;
2949 }
2950 rcu_read_unlock();
2951
2952 return objcg;
2953}
2954
f3bb3043 2955static int memcg_alloc_cache_id(void)
55007d84 2956{
f3bb3043
VD
2957 int id, size;
2958 int err;
2959
dbcf73e2 2960 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2961 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2962 if (id < 0)
2963 return id;
55007d84 2964
dbcf73e2 2965 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2966 return id;
2967
2968 /*
2969 * There's no space for the new id in memcg_caches arrays,
2970 * so we have to grow them.
2971 */
05257a1a 2972 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2973
2974 size = 2 * (id + 1);
55007d84
GC
2975 if (size < MEMCG_CACHES_MIN_SIZE)
2976 size = MEMCG_CACHES_MIN_SIZE;
2977 else if (size > MEMCG_CACHES_MAX_SIZE)
2978 size = MEMCG_CACHES_MAX_SIZE;
2979
9855609b 2980 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2981 if (!err)
2982 memcg_nr_cache_ids = size;
2983
2984 up_write(&memcg_cache_ids_sem);
2985
f3bb3043 2986 if (err) {
dbcf73e2 2987 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2988 return err;
2989 }
2990 return id;
2991}
2992
2993static void memcg_free_cache_id(int id)
2994{
dbcf73e2 2995 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2996}
2997
45264778 2998/**
4b13f64d 2999 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3000 * @memcg: memory cgroup to charge
45264778 3001 * @gfp: reclaim mode
92d0510c 3002 * @nr_pages: number of pages to charge
45264778
VD
3003 *
3004 * Returns 0 on success, an error code on failure.
3005 */
4b13f64d
RG
3006int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3007 unsigned int nr_pages)
7ae1e1d0 3008{
f3ccb2c4 3009 struct page_counter *counter;
7ae1e1d0
GC
3010 int ret;
3011
f3ccb2c4 3012 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3013 if (ret)
f3ccb2c4 3014 return ret;
52c29b04
JW
3015
3016 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3017 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3018
3019 /*
3020 * Enforce __GFP_NOFAIL allocation because callers are not
3021 * prepared to see failures and likely do not have any failure
3022 * handling code.
3023 */
3024 if (gfp & __GFP_NOFAIL) {
3025 page_counter_charge(&memcg->kmem, nr_pages);
3026 return 0;
3027 }
52c29b04
JW
3028 cancel_charge(memcg, nr_pages);
3029 return -ENOMEM;
7ae1e1d0 3030 }
f3ccb2c4 3031 return 0;
7ae1e1d0
GC
3032}
3033
4b13f64d
RG
3034/**
3035 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3036 * @memcg: memcg to uncharge
3037 * @nr_pages: number of pages to uncharge
3038 */
3039void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3040{
3041 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3042 page_counter_uncharge(&memcg->kmem, nr_pages);
3043
3044 page_counter_uncharge(&memcg->memory, nr_pages);
3045 if (do_memsw_account())
3046 page_counter_uncharge(&memcg->memsw, nr_pages);
3047}
3048
45264778 3049/**
f4b00eab 3050 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3051 * @page: page to charge
3052 * @gfp: reclaim mode
3053 * @order: allocation order
3054 *
3055 * Returns 0 on success, an error code on failure.
3056 */
f4b00eab 3057int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3058{
f3ccb2c4 3059 struct mem_cgroup *memcg;
fcff7d7e 3060 int ret = 0;
7ae1e1d0 3061
60cd4bcd 3062 if (memcg_kmem_bypass())
45264778
VD
3063 return 0;
3064
d46eb14b 3065 memcg = get_mem_cgroup_from_current();
c4159a75 3066 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 3067 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3068 if (!ret) {
3069 page->mem_cgroup = memcg;
c4159a75 3070 __SetPageKmemcg(page);
1a3e1f40 3071 return 0;
4d96ba35 3072 }
c4159a75 3073 }
7ae1e1d0 3074 css_put(&memcg->css);
d05e83a6 3075 return ret;
7ae1e1d0 3076}
49a18eae 3077
45264778 3078/**
f4b00eab 3079 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3080 * @page: page to uncharge
3081 * @order: allocation order
3082 */
f4b00eab 3083void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3084{
1306a85a 3085 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3086 unsigned int nr_pages = 1 << order;
7ae1e1d0 3087
7ae1e1d0
GC
3088 if (!memcg)
3089 return;
3090
309381fe 3091 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3092 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3093 page->mem_cgroup = NULL;
1a3e1f40 3094 css_put(&memcg->css);
c4159a75
VD
3095
3096 /* slab pages do not have PageKmemcg flag set */
3097 if (PageKmemcg(page))
3098 __ClearPageKmemcg(page);
60d3fd32 3099}
bf4f0599
RG
3100
3101static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3102{
3103 struct memcg_stock_pcp *stock;
3104 unsigned long flags;
3105 bool ret = false;
3106
3107 local_irq_save(flags);
3108
3109 stock = this_cpu_ptr(&memcg_stock);
3110 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3111 stock->nr_bytes -= nr_bytes;
3112 ret = true;
3113 }
3114
3115 local_irq_restore(flags);
3116
3117 return ret;
3118}
3119
3120static void drain_obj_stock(struct memcg_stock_pcp *stock)
3121{
3122 struct obj_cgroup *old = stock->cached_objcg;
3123
3124 if (!old)
3125 return;
3126
3127 if (stock->nr_bytes) {
3128 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3129 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3130
3131 if (nr_pages) {
3132 rcu_read_lock();
3133 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3134 rcu_read_unlock();
3135 }
3136
3137 /*
3138 * The leftover is flushed to the centralized per-memcg value.
3139 * On the next attempt to refill obj stock it will be moved
3140 * to a per-cpu stock (probably, on an other CPU), see
3141 * refill_obj_stock().
3142 *
3143 * How often it's flushed is a trade-off between the memory
3144 * limit enforcement accuracy and potential CPU contention,
3145 * so it might be changed in the future.
3146 */
3147 atomic_add(nr_bytes, &old->nr_charged_bytes);
3148 stock->nr_bytes = 0;
3149 }
3150
3151 obj_cgroup_put(old);
3152 stock->cached_objcg = NULL;
3153}
3154
3155static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3156 struct mem_cgroup *root_memcg)
3157{
3158 struct mem_cgroup *memcg;
3159
3160 if (stock->cached_objcg) {
3161 memcg = obj_cgroup_memcg(stock->cached_objcg);
3162 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3163 return true;
3164 }
3165
3166 return false;
3167}
3168
3169static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3170{
3171 struct memcg_stock_pcp *stock;
3172 unsigned long flags;
3173
3174 local_irq_save(flags);
3175
3176 stock = this_cpu_ptr(&memcg_stock);
3177 if (stock->cached_objcg != objcg) { /* reset if necessary */
3178 drain_obj_stock(stock);
3179 obj_cgroup_get(objcg);
3180 stock->cached_objcg = objcg;
3181 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3182 }
3183 stock->nr_bytes += nr_bytes;
3184
3185 if (stock->nr_bytes > PAGE_SIZE)
3186 drain_obj_stock(stock);
3187
3188 local_irq_restore(flags);
3189}
3190
3191int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3192{
3193 struct mem_cgroup *memcg;
3194 unsigned int nr_pages, nr_bytes;
3195 int ret;
3196
3197 if (consume_obj_stock(objcg, size))
3198 return 0;
3199
3200 /*
3201 * In theory, memcg->nr_charged_bytes can have enough
3202 * pre-charged bytes to satisfy the allocation. However,
3203 * flushing memcg->nr_charged_bytes requires two atomic
3204 * operations, and memcg->nr_charged_bytes can't be big,
3205 * so it's better to ignore it and try grab some new pages.
3206 * memcg->nr_charged_bytes will be flushed in
3207 * refill_obj_stock(), called from this function or
3208 * independently later.
3209 */
3210 rcu_read_lock();
3211 memcg = obj_cgroup_memcg(objcg);
3212 css_get(&memcg->css);
3213 rcu_read_unlock();
3214
3215 nr_pages = size >> PAGE_SHIFT;
3216 nr_bytes = size & (PAGE_SIZE - 1);
3217
3218 if (nr_bytes)
3219 nr_pages += 1;
3220
3221 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3222 if (!ret && nr_bytes)
3223 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3224
3225 css_put(&memcg->css);
3226 return ret;
3227}
3228
3229void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3230{
3231 refill_obj_stock(objcg, size);
3232}
3233
84c07d11 3234#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3235
ca3e0214
KH
3236#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3237
ca3e0214
KH
3238/*
3239 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3240 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3241 */
e94c8a9c 3242void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3243{
1a3e1f40 3244 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3245 int i;
ca3e0214 3246
3d37c4a9
KH
3247 if (mem_cgroup_disabled())
3248 return;
b070e65c 3249
1a3e1f40
JW
3250 for (i = 1; i < HPAGE_PMD_NR; i++) {
3251 css_get(&memcg->css);
3252 head[i].mem_cgroup = memcg;
3253 }
ca3e0214 3254}
12d27107 3255#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3256
c255a458 3257#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3258/**
3259 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3260 * @entry: swap entry to be moved
3261 * @from: mem_cgroup which the entry is moved from
3262 * @to: mem_cgroup which the entry is moved to
3263 *
3264 * It succeeds only when the swap_cgroup's record for this entry is the same
3265 * as the mem_cgroup's id of @from.
3266 *
3267 * Returns 0 on success, -EINVAL on failure.
3268 *
3e32cb2e 3269 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3270 * both res and memsw, and called css_get().
3271 */
3272static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3273 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3274{
3275 unsigned short old_id, new_id;
3276
34c00c31
LZ
3277 old_id = mem_cgroup_id(from);
3278 new_id = mem_cgroup_id(to);
02491447
DN
3279
3280 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3281 mod_memcg_state(from, MEMCG_SWAP, -1);
3282 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3283 return 0;
3284 }
3285 return -EINVAL;
3286}
3287#else
3288static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3289 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3290{
3291 return -EINVAL;
3292}
8c7c6e34 3293#endif
d13d1443 3294
bbec2e15 3295static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3296
bbec2e15
RG
3297static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3298 unsigned long max, bool memsw)
628f4235 3299{
3e32cb2e 3300 bool enlarge = false;
bb4a7ea2 3301 bool drained = false;
3e32cb2e 3302 int ret;
c054a78c
YZ
3303 bool limits_invariant;
3304 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3305
3e32cb2e 3306 do {
628f4235
KH
3307 if (signal_pending(current)) {
3308 ret = -EINTR;
3309 break;
3310 }
3e32cb2e 3311
bbec2e15 3312 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3313 /*
3314 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3315 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3316 */
15b42562 3317 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3318 max <= memcg->memsw.max;
c054a78c 3319 if (!limits_invariant) {
bbec2e15 3320 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3321 ret = -EINVAL;
8c7c6e34
KH
3322 break;
3323 }
bbec2e15 3324 if (max > counter->max)
3e32cb2e 3325 enlarge = true;
bbec2e15
RG
3326 ret = page_counter_set_max(counter, max);
3327 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3328
3329 if (!ret)
3330 break;
3331
bb4a7ea2
SB
3332 if (!drained) {
3333 drain_all_stock(memcg);
3334 drained = true;
3335 continue;
3336 }
3337
1ab5c056
AR
3338 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3339 GFP_KERNEL, !memsw)) {
3340 ret = -EBUSY;
3341 break;
3342 }
3343 } while (true);
3e32cb2e 3344
3c11ecf4
KH
3345 if (!ret && enlarge)
3346 memcg_oom_recover(memcg);
3e32cb2e 3347
628f4235
KH
3348 return ret;
3349}
3350
ef8f2327 3351unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3352 gfp_t gfp_mask,
3353 unsigned long *total_scanned)
3354{
3355 unsigned long nr_reclaimed = 0;
ef8f2327 3356 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3357 unsigned long reclaimed;
3358 int loop = 0;
ef8f2327 3359 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3360 unsigned long excess;
0608f43d
AM
3361 unsigned long nr_scanned;
3362
3363 if (order > 0)
3364 return 0;
3365
ef8f2327 3366 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3367
3368 /*
3369 * Do not even bother to check the largest node if the root
3370 * is empty. Do it lockless to prevent lock bouncing. Races
3371 * are acceptable as soft limit is best effort anyway.
3372 */
bfc7228b 3373 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3374 return 0;
3375
0608f43d
AM
3376 /*
3377 * This loop can run a while, specially if mem_cgroup's continuously
3378 * keep exceeding their soft limit and putting the system under
3379 * pressure
3380 */
3381 do {
3382 if (next_mz)
3383 mz = next_mz;
3384 else
3385 mz = mem_cgroup_largest_soft_limit_node(mctz);
3386 if (!mz)
3387 break;
3388
3389 nr_scanned = 0;
ef8f2327 3390 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3391 gfp_mask, &nr_scanned);
3392 nr_reclaimed += reclaimed;
3393 *total_scanned += nr_scanned;
0a31bc97 3394 spin_lock_irq(&mctz->lock);
bc2f2e7f 3395 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3396
3397 /*
3398 * If we failed to reclaim anything from this memory cgroup
3399 * it is time to move on to the next cgroup
3400 */
3401 next_mz = NULL;
bc2f2e7f
VD
3402 if (!reclaimed)
3403 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3404
3e32cb2e 3405 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3406 /*
3407 * One school of thought says that we should not add
3408 * back the node to the tree if reclaim returns 0.
3409 * But our reclaim could return 0, simply because due
3410 * to priority we are exposing a smaller subset of
3411 * memory to reclaim from. Consider this as a longer
3412 * term TODO.
3413 */
3414 /* If excess == 0, no tree ops */
cf2c8127 3415 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3416 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3417 css_put(&mz->memcg->css);
3418 loop++;
3419 /*
3420 * Could not reclaim anything and there are no more
3421 * mem cgroups to try or we seem to be looping without
3422 * reclaiming anything.
3423 */
3424 if (!nr_reclaimed &&
3425 (next_mz == NULL ||
3426 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3427 break;
3428 } while (!nr_reclaimed);
3429 if (next_mz)
3430 css_put(&next_mz->memcg->css);
3431 return nr_reclaimed;
3432}
3433
ea280e7b
TH
3434/*
3435 * Test whether @memcg has children, dead or alive. Note that this
3436 * function doesn't care whether @memcg has use_hierarchy enabled and
3437 * returns %true if there are child csses according to the cgroup
b8f2935f 3438 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3439 */
b5f99b53
GC
3440static inline bool memcg_has_children(struct mem_cgroup *memcg)
3441{
ea280e7b
TH
3442 bool ret;
3443
ea280e7b
TH
3444 rcu_read_lock();
3445 ret = css_next_child(NULL, &memcg->css);
3446 rcu_read_unlock();
3447 return ret;
b5f99b53
GC
3448}
3449
c26251f9 3450/*
51038171 3451 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3452 *
3453 * Caller is responsible for holding css reference for memcg.
3454 */
3455static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3456{
d977aa93 3457 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3458
c1e862c1
KH
3459 /* we call try-to-free pages for make this cgroup empty */
3460 lru_add_drain_all();
d12c60f6
JS
3461
3462 drain_all_stock(memcg);
3463
f817ed48 3464 /* try to free all pages in this cgroup */
3e32cb2e 3465 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3466 int progress;
c1e862c1 3467
c26251f9
MH
3468 if (signal_pending(current))
3469 return -EINTR;
3470
b70a2a21
JW
3471 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3472 GFP_KERNEL, true);
c1e862c1 3473 if (!progress) {
f817ed48 3474 nr_retries--;
c1e862c1 3475 /* maybe some writeback is necessary */
8aa7e847 3476 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3477 }
f817ed48
KH
3478
3479 }
ab5196c2
MH
3480
3481 return 0;
cc847582
KH
3482}
3483
6770c64e
TH
3484static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3485 char *buf, size_t nbytes,
3486 loff_t off)
c1e862c1 3487{
6770c64e 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3489
d8423011
MH
3490 if (mem_cgroup_is_root(memcg))
3491 return -EINVAL;
6770c64e 3492 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3493}
3494
182446d0
TH
3495static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3496 struct cftype *cft)
18f59ea7 3497{
182446d0 3498 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3499}
3500
182446d0
TH
3501static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3502 struct cftype *cft, u64 val)
18f59ea7
BS
3503{
3504 int retval = 0;
182446d0 3505 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3506 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3507
567fb435 3508 if (memcg->use_hierarchy == val)
0b8f73e1 3509 return 0;
567fb435 3510
18f59ea7 3511 /*
af901ca1 3512 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3513 * in the child subtrees. If it is unset, then the change can
3514 * occur, provided the current cgroup has no children.
3515 *
3516 * For the root cgroup, parent_mem is NULL, we allow value to be
3517 * set if there are no children.
3518 */
c0ff4b85 3519 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3520 (val == 1 || val == 0)) {
ea280e7b 3521 if (!memcg_has_children(memcg))
c0ff4b85 3522 memcg->use_hierarchy = val;
18f59ea7
BS
3523 else
3524 retval = -EBUSY;
3525 } else
3526 retval = -EINVAL;
567fb435 3527
18f59ea7
BS
3528 return retval;
3529}
3530
6f646156 3531static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3532{
42a30035 3533 unsigned long val;
ce00a967 3534
3e32cb2e 3535 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3536 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3537 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3538 if (swap)
3539 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3540 } else {
ce00a967 3541 if (!swap)
3e32cb2e 3542 val = page_counter_read(&memcg->memory);
ce00a967 3543 else
3e32cb2e 3544 val = page_counter_read(&memcg->memsw);
ce00a967 3545 }
c12176d3 3546 return val;
ce00a967
JW
3547}
3548
3e32cb2e
JW
3549enum {
3550 RES_USAGE,
3551 RES_LIMIT,
3552 RES_MAX_USAGE,
3553 RES_FAILCNT,
3554 RES_SOFT_LIMIT,
3555};
ce00a967 3556
791badbd 3557static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3558 struct cftype *cft)
8cdea7c0 3559{
182446d0 3560 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3561 struct page_counter *counter;
af36f906 3562
3e32cb2e 3563 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3564 case _MEM:
3e32cb2e
JW
3565 counter = &memcg->memory;
3566 break;
8c7c6e34 3567 case _MEMSWAP:
3e32cb2e
JW
3568 counter = &memcg->memsw;
3569 break;
510fc4e1 3570 case _KMEM:
3e32cb2e 3571 counter = &memcg->kmem;
510fc4e1 3572 break;
d55f90bf 3573 case _TCP:
0db15298 3574 counter = &memcg->tcpmem;
d55f90bf 3575 break;
8c7c6e34
KH
3576 default:
3577 BUG();
8c7c6e34 3578 }
3e32cb2e
JW
3579
3580 switch (MEMFILE_ATTR(cft->private)) {
3581 case RES_USAGE:
3582 if (counter == &memcg->memory)
c12176d3 3583 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3584 if (counter == &memcg->memsw)
c12176d3 3585 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3586 return (u64)page_counter_read(counter) * PAGE_SIZE;
3587 case RES_LIMIT:
bbec2e15 3588 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3589 case RES_MAX_USAGE:
3590 return (u64)counter->watermark * PAGE_SIZE;
3591 case RES_FAILCNT:
3592 return counter->failcnt;
3593 case RES_SOFT_LIMIT:
3594 return (u64)memcg->soft_limit * PAGE_SIZE;
3595 default:
3596 BUG();
3597 }
8cdea7c0 3598}
510fc4e1 3599
4a87e2a2 3600static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3601{
4a87e2a2 3602 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3603 struct mem_cgroup *mi;
3604 int node, cpu, i;
c350a99e
RG
3605
3606 for_each_online_cpu(cpu)
4a87e2a2 3607 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3608 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3609
3610 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3611 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3612 atomic_long_add(stat[i], &mi->vmstats[i]);
3613
3614 for_each_node(node) {
3615 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3616 struct mem_cgroup_per_node *pi;
3617
4a87e2a2 3618 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3619 stat[i] = 0;
3620
3621 for_each_online_cpu(cpu)
4a87e2a2 3622 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3623 stat[i] += per_cpu(
3624 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3625
3626 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3627 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3628 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3629 }
3630}
3631
bb65f89b
RG
3632static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3633{
3634 unsigned long events[NR_VM_EVENT_ITEMS];
3635 struct mem_cgroup *mi;
3636 int cpu, i;
3637
3638 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3639 events[i] = 0;
3640
3641 for_each_online_cpu(cpu)
3642 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3643 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3644 cpu);
bb65f89b
RG
3645
3646 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3647 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3648 atomic_long_add(events[i], &mi->vmevents[i]);
3649}
3650
84c07d11 3651#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3652static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3653{
bf4f0599 3654 struct obj_cgroup *objcg;
d6441637
VD
3655 int memcg_id;
3656
b313aeee
VD
3657 if (cgroup_memory_nokmem)
3658 return 0;
3659
2a4db7eb 3660 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3661 BUG_ON(memcg->kmem_state);
d6441637 3662
f3bb3043 3663 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3664 if (memcg_id < 0)
3665 return memcg_id;
d6441637 3666
bf4f0599
RG
3667 objcg = obj_cgroup_alloc();
3668 if (!objcg) {
3669 memcg_free_cache_id(memcg_id);
3670 return -ENOMEM;
3671 }
3672 objcg->memcg = memcg;
3673 rcu_assign_pointer(memcg->objcg, objcg);
3674
d648bcc7
RG
3675 static_branch_enable(&memcg_kmem_enabled_key);
3676
d6441637 3677 /*
567e9ab2 3678 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3679 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3680 * guarantee no one starts accounting before all call sites are
3681 * patched.
3682 */
900a38f0 3683 memcg->kmemcg_id = memcg_id;
567e9ab2 3684 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3685
3686 return 0;
d6441637
VD
3687}
3688
8e0a8912
JW
3689static void memcg_offline_kmem(struct mem_cgroup *memcg)
3690{
3691 struct cgroup_subsys_state *css;
3692 struct mem_cgroup *parent, *child;
3693 int kmemcg_id;
3694
3695 if (memcg->kmem_state != KMEM_ONLINE)
3696 return;
9855609b 3697
8e0a8912
JW
3698 memcg->kmem_state = KMEM_ALLOCATED;
3699
8e0a8912
JW
3700 parent = parent_mem_cgroup(memcg);
3701 if (!parent)
3702 parent = root_mem_cgroup;
3703
bf4f0599 3704 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3705
3706 kmemcg_id = memcg->kmemcg_id;
3707 BUG_ON(kmemcg_id < 0);
3708
8e0a8912
JW
3709 /*
3710 * Change kmemcg_id of this cgroup and all its descendants to the
3711 * parent's id, and then move all entries from this cgroup's list_lrus
3712 * to ones of the parent. After we have finished, all list_lrus
3713 * corresponding to this cgroup are guaranteed to remain empty. The
3714 * ordering is imposed by list_lru_node->lock taken by
3715 * memcg_drain_all_list_lrus().
3716 */
3a06bb78 3717 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3718 css_for_each_descendant_pre(css, &memcg->css) {
3719 child = mem_cgroup_from_css(css);
3720 BUG_ON(child->kmemcg_id != kmemcg_id);
3721 child->kmemcg_id = parent->kmemcg_id;
3722 if (!memcg->use_hierarchy)
3723 break;
3724 }
3a06bb78
TH
3725 rcu_read_unlock();
3726
9bec5c35 3727 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3728
3729 memcg_free_cache_id(kmemcg_id);
3730}
3731
3732static void memcg_free_kmem(struct mem_cgroup *memcg)
3733{
0b8f73e1
JW
3734 /* css_alloc() failed, offlining didn't happen */
3735 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3736 memcg_offline_kmem(memcg);
8e0a8912 3737}
d6441637 3738#else
0b8f73e1 3739static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3740{
3741 return 0;
3742}
3743static void memcg_offline_kmem(struct mem_cgroup *memcg)
3744{
3745}
3746static void memcg_free_kmem(struct mem_cgroup *memcg)
3747{
3748}
84c07d11 3749#endif /* CONFIG_MEMCG_KMEM */
127424c8 3750
bbec2e15
RG
3751static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3752 unsigned long max)
d6441637 3753{
b313aeee 3754 int ret;
127424c8 3755
bbec2e15
RG
3756 mutex_lock(&memcg_max_mutex);
3757 ret = page_counter_set_max(&memcg->kmem, max);
3758 mutex_unlock(&memcg_max_mutex);
127424c8 3759 return ret;
d6441637 3760}
510fc4e1 3761
bbec2e15 3762static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3763{
3764 int ret;
3765
bbec2e15 3766 mutex_lock(&memcg_max_mutex);
d55f90bf 3767
bbec2e15 3768 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3769 if (ret)
3770 goto out;
3771
0db15298 3772 if (!memcg->tcpmem_active) {
d55f90bf
VD
3773 /*
3774 * The active flag needs to be written after the static_key
3775 * update. This is what guarantees that the socket activation
2d758073
JW
3776 * function is the last one to run. See mem_cgroup_sk_alloc()
3777 * for details, and note that we don't mark any socket as
3778 * belonging to this memcg until that flag is up.
d55f90bf
VD
3779 *
3780 * We need to do this, because static_keys will span multiple
3781 * sites, but we can't control their order. If we mark a socket
3782 * as accounted, but the accounting functions are not patched in
3783 * yet, we'll lose accounting.
3784 *
2d758073 3785 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3786 * because when this value change, the code to process it is not
3787 * patched in yet.
3788 */
3789 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3790 memcg->tcpmem_active = true;
d55f90bf
VD
3791 }
3792out:
bbec2e15 3793 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3794 return ret;
3795}
d55f90bf 3796
628f4235
KH
3797/*
3798 * The user of this function is...
3799 * RES_LIMIT.
3800 */
451af504
TH
3801static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3802 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3803{
451af504 3804 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3805 unsigned long nr_pages;
628f4235
KH
3806 int ret;
3807
451af504 3808 buf = strstrip(buf);
650c5e56 3809 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3810 if (ret)
3811 return ret;
af36f906 3812
3e32cb2e 3813 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3814 case RES_LIMIT:
4b3bde4c
BS
3815 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3816 ret = -EINVAL;
3817 break;
3818 }
3e32cb2e
JW
3819 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3820 case _MEM:
bbec2e15 3821 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3822 break;
3e32cb2e 3823 case _MEMSWAP:
bbec2e15 3824 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3825 break;
3e32cb2e 3826 case _KMEM:
0158115f
MH
3827 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3828 "Please report your usecase to linux-mm@kvack.org if you "
3829 "depend on this functionality.\n");
bbec2e15 3830 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3831 break;
d55f90bf 3832 case _TCP:
bbec2e15 3833 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3834 break;
3e32cb2e 3835 }
296c81d8 3836 break;
3e32cb2e
JW
3837 case RES_SOFT_LIMIT:
3838 memcg->soft_limit = nr_pages;
3839 ret = 0;
628f4235
KH
3840 break;
3841 }
451af504 3842 return ret ?: nbytes;
8cdea7c0
BS
3843}
3844
6770c64e
TH
3845static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3846 size_t nbytes, loff_t off)
c84872e1 3847{
6770c64e 3848 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3849 struct page_counter *counter;
c84872e1 3850
3e32cb2e
JW
3851 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3852 case _MEM:
3853 counter = &memcg->memory;
3854 break;
3855 case _MEMSWAP:
3856 counter = &memcg->memsw;
3857 break;
3858 case _KMEM:
3859 counter = &memcg->kmem;
3860 break;
d55f90bf 3861 case _TCP:
0db15298 3862 counter = &memcg->tcpmem;
d55f90bf 3863 break;
3e32cb2e
JW
3864 default:
3865 BUG();
3866 }
af36f906 3867
3e32cb2e 3868 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3869 case RES_MAX_USAGE:
3e32cb2e 3870 page_counter_reset_watermark(counter);
29f2a4da
PE
3871 break;
3872 case RES_FAILCNT:
3e32cb2e 3873 counter->failcnt = 0;
29f2a4da 3874 break;
3e32cb2e
JW
3875 default:
3876 BUG();
29f2a4da 3877 }
f64c3f54 3878
6770c64e 3879 return nbytes;
c84872e1
PE
3880}
3881
182446d0 3882static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3883 struct cftype *cft)
3884{
182446d0 3885 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3886}
3887
02491447 3888#ifdef CONFIG_MMU
182446d0 3889static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3890 struct cftype *cft, u64 val)
3891{
182446d0 3892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3893
1dfab5ab 3894 if (val & ~MOVE_MASK)
7dc74be0 3895 return -EINVAL;
ee5e8472 3896
7dc74be0 3897 /*
ee5e8472
GC
3898 * No kind of locking is needed in here, because ->can_attach() will
3899 * check this value once in the beginning of the process, and then carry
3900 * on with stale data. This means that changes to this value will only
3901 * affect task migrations starting after the change.
7dc74be0 3902 */
c0ff4b85 3903 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3904 return 0;
3905}
02491447 3906#else
182446d0 3907static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3908 struct cftype *cft, u64 val)
3909{
3910 return -ENOSYS;
3911}
3912#endif
7dc74be0 3913
406eb0c9 3914#ifdef CONFIG_NUMA
113b7dfd
JW
3915
3916#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3917#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3918#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3919
3920static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3921 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3922{
867e5e1d 3923 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3924 unsigned long nr = 0;
3925 enum lru_list lru;
3926
3927 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3928
3929 for_each_lru(lru) {
3930 if (!(BIT(lru) & lru_mask))
3931 continue;
dd8657b6
SB
3932 if (tree)
3933 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3934 else
3935 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3936 }
3937 return nr;
3938}
3939
3940static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3941 unsigned int lru_mask,
3942 bool tree)
113b7dfd
JW
3943{
3944 unsigned long nr = 0;
3945 enum lru_list lru;
3946
3947 for_each_lru(lru) {
3948 if (!(BIT(lru) & lru_mask))
3949 continue;
dd8657b6
SB
3950 if (tree)
3951 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3952 else
3953 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3954 }
3955 return nr;
3956}
3957
2da8ca82 3958static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3959{
25485de6
GT
3960 struct numa_stat {
3961 const char *name;
3962 unsigned int lru_mask;
3963 };
3964
3965 static const struct numa_stat stats[] = {
3966 { "total", LRU_ALL },
3967 { "file", LRU_ALL_FILE },
3968 { "anon", LRU_ALL_ANON },
3969 { "unevictable", BIT(LRU_UNEVICTABLE) },
3970 };
3971 const struct numa_stat *stat;
406eb0c9 3972 int nid;
aa9694bb 3973 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3974
25485de6 3975 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3976 seq_printf(m, "%s=%lu", stat->name,
3977 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3978 false));
3979 for_each_node_state(nid, N_MEMORY)
3980 seq_printf(m, " N%d=%lu", nid,
3981 mem_cgroup_node_nr_lru_pages(memcg, nid,
3982 stat->lru_mask, false));
25485de6 3983 seq_putc(m, '\n');
406eb0c9 3984 }
406eb0c9 3985
071aee13 3986 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3987
3988 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3989 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3990 true));
3991 for_each_node_state(nid, N_MEMORY)
3992 seq_printf(m, " N%d=%lu", nid,
3993 mem_cgroup_node_nr_lru_pages(memcg, nid,
3994 stat->lru_mask, true));
071aee13 3995 seq_putc(m, '\n');
406eb0c9 3996 }
406eb0c9 3997
406eb0c9
YH
3998 return 0;
3999}
4000#endif /* CONFIG_NUMA */
4001
c8713d0b 4002static const unsigned int memcg1_stats[] = {
0d1c2072 4003 NR_FILE_PAGES,
be5d0a74 4004 NR_ANON_MAPPED,
468c3982
JW
4005#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4006 NR_ANON_THPS,
4007#endif
c8713d0b
JW
4008 NR_SHMEM,
4009 NR_FILE_MAPPED,
4010 NR_FILE_DIRTY,
4011 NR_WRITEBACK,
4012 MEMCG_SWAP,
4013};
4014
4015static const char *const memcg1_stat_names[] = {
4016 "cache",
4017 "rss",
468c3982 4018#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4019 "rss_huge",
468c3982 4020#endif
c8713d0b
JW
4021 "shmem",
4022 "mapped_file",
4023 "dirty",
4024 "writeback",
4025 "swap",
4026};
4027
df0e53d0 4028/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4029static const unsigned int memcg1_events[] = {
df0e53d0
JW
4030 PGPGIN,
4031 PGPGOUT,
4032 PGFAULT,
4033 PGMAJFAULT,
4034};
4035
2da8ca82 4036static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4037{
aa9694bb 4038 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4039 unsigned long memory, memsw;
af7c4b0e
JW
4040 struct mem_cgroup *mi;
4041 unsigned int i;
406eb0c9 4042
71cd3113 4043 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4044
71cd3113 4045 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4046 unsigned long nr;
4047
71cd3113 4048 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4049 continue;
468c3982
JW
4050 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4051#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 if (memcg1_stats[i] == NR_ANON_THPS)
4053 nr *= HPAGE_PMD_NR;
4054#endif
4055 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4056 }
7b854121 4057
df0e53d0 4058 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4059 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4060 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4061
4062 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4063 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4064 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4065 PAGE_SIZE);
af7c4b0e 4066
14067bb3 4067 /* Hierarchical information */
3e32cb2e
JW
4068 memory = memsw = PAGE_COUNTER_MAX;
4069 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4070 memory = min(memory, READ_ONCE(mi->memory.max));
4071 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4072 }
3e32cb2e
JW
4073 seq_printf(m, "hierarchical_memory_limit %llu\n",
4074 (u64)memory * PAGE_SIZE);
7941d214 4075 if (do_memsw_account())
3e32cb2e
JW
4076 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4077 (u64)memsw * PAGE_SIZE);
7f016ee8 4078
8de7ecc6 4079 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 4080 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4081 continue;
8de7ecc6 4082 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
4083 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4084 PAGE_SIZE);
af7c4b0e
JW
4085 }
4086
8de7ecc6 4087 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4088 seq_printf(m, "total_%s %llu\n",
4089 vm_event_name(memcg1_events[i]),
dd923990 4090 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4091
8de7ecc6 4092 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4093 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4094 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4095 PAGE_SIZE);
14067bb3 4096
7f016ee8 4097#ifdef CONFIG_DEBUG_VM
7f016ee8 4098 {
ef8f2327
MG
4099 pg_data_t *pgdat;
4100 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4101 unsigned long anon_cost = 0;
4102 unsigned long file_cost = 0;
7f016ee8 4103
ef8f2327
MG
4104 for_each_online_pgdat(pgdat) {
4105 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4106
1431d4d1
JW
4107 anon_cost += mz->lruvec.anon_cost;
4108 file_cost += mz->lruvec.file_cost;
ef8f2327 4109 }
1431d4d1
JW
4110 seq_printf(m, "anon_cost %lu\n", anon_cost);
4111 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4112 }
4113#endif
4114
d2ceb9b7
KH
4115 return 0;
4116}
4117
182446d0
TH
4118static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4119 struct cftype *cft)
a7885eb8 4120{
182446d0 4121 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4122
1f4c025b 4123 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4124}
4125
182446d0
TH
4126static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4127 struct cftype *cft, u64 val)
a7885eb8 4128{
182446d0 4129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4130
3dae7fec 4131 if (val > 100)
a7885eb8
KM
4132 return -EINVAL;
4133
14208b0e 4134 if (css->parent)
3dae7fec
JW
4135 memcg->swappiness = val;
4136 else
4137 vm_swappiness = val;
068b38c1 4138
a7885eb8
KM
4139 return 0;
4140}
4141
2e72b634
KS
4142static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4143{
4144 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4145 unsigned long usage;
2e72b634
KS
4146 int i;
4147
4148 rcu_read_lock();
4149 if (!swap)
2c488db2 4150 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4151 else
2c488db2 4152 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4153
4154 if (!t)
4155 goto unlock;
4156
ce00a967 4157 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4158
4159 /*
748dad36 4160 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4161 * If it's not true, a threshold was crossed after last
4162 * call of __mem_cgroup_threshold().
4163 */
5407a562 4164 i = t->current_threshold;
2e72b634
KS
4165
4166 /*
4167 * Iterate backward over array of thresholds starting from
4168 * current_threshold and check if a threshold is crossed.
4169 * If none of thresholds below usage is crossed, we read
4170 * only one element of the array here.
4171 */
4172 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4173 eventfd_signal(t->entries[i].eventfd, 1);
4174
4175 /* i = current_threshold + 1 */
4176 i++;
4177
4178 /*
4179 * Iterate forward over array of thresholds starting from
4180 * current_threshold+1 and check if a threshold is crossed.
4181 * If none of thresholds above usage is crossed, we read
4182 * only one element of the array here.
4183 */
4184 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4185 eventfd_signal(t->entries[i].eventfd, 1);
4186
4187 /* Update current_threshold */
5407a562 4188 t->current_threshold = i - 1;
2e72b634
KS
4189unlock:
4190 rcu_read_unlock();
4191}
4192
4193static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4194{
ad4ca5f4
KS
4195 while (memcg) {
4196 __mem_cgroup_threshold(memcg, false);
7941d214 4197 if (do_memsw_account())
ad4ca5f4
KS
4198 __mem_cgroup_threshold(memcg, true);
4199
4200 memcg = parent_mem_cgroup(memcg);
4201 }
2e72b634
KS
4202}
4203
4204static int compare_thresholds(const void *a, const void *b)
4205{
4206 const struct mem_cgroup_threshold *_a = a;
4207 const struct mem_cgroup_threshold *_b = b;
4208
2bff24a3
GT
4209 if (_a->threshold > _b->threshold)
4210 return 1;
4211
4212 if (_a->threshold < _b->threshold)
4213 return -1;
4214
4215 return 0;
2e72b634
KS
4216}
4217
c0ff4b85 4218static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4219{
4220 struct mem_cgroup_eventfd_list *ev;
4221
2bcf2e92
MH
4222 spin_lock(&memcg_oom_lock);
4223
c0ff4b85 4224 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4225 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4226
4227 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4228 return 0;
4229}
4230
c0ff4b85 4231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4232{
7d74b06f
KH
4233 struct mem_cgroup *iter;
4234
c0ff4b85 4235 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4236 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4237}
4238
59b6f873 4239static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4240 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4241{
2c488db2
KS
4242 struct mem_cgroup_thresholds *thresholds;
4243 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4244 unsigned long threshold;
4245 unsigned long usage;
2c488db2 4246 int i, size, ret;
2e72b634 4247
650c5e56 4248 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4249 if (ret)
4250 return ret;
4251
4252 mutex_lock(&memcg->thresholds_lock);
2c488db2 4253
05b84301 4254 if (type == _MEM) {
2c488db2 4255 thresholds = &memcg->thresholds;
ce00a967 4256 usage = mem_cgroup_usage(memcg, false);
05b84301 4257 } else if (type == _MEMSWAP) {
2c488db2 4258 thresholds = &memcg->memsw_thresholds;
ce00a967 4259 usage = mem_cgroup_usage(memcg, true);
05b84301 4260 } else
2e72b634
KS
4261 BUG();
4262
2e72b634 4263 /* Check if a threshold crossed before adding a new one */
2c488db2 4264 if (thresholds->primary)
2e72b634
KS
4265 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4266
2c488db2 4267 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4268
4269 /* Allocate memory for new array of thresholds */
67b8046f 4270 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4271 if (!new) {
2e72b634
KS
4272 ret = -ENOMEM;
4273 goto unlock;
4274 }
2c488db2 4275 new->size = size;
2e72b634
KS
4276
4277 /* Copy thresholds (if any) to new array */
e90342e6
GS
4278 if (thresholds->primary)
4279 memcpy(new->entries, thresholds->primary->entries,
4280 flex_array_size(new, entries, size - 1));
2c488db2 4281
2e72b634 4282 /* Add new threshold */
2c488db2
KS
4283 new->entries[size - 1].eventfd = eventfd;
4284 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4285
4286 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4287 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4288 compare_thresholds, NULL);
4289
4290 /* Find current threshold */
2c488db2 4291 new->current_threshold = -1;
2e72b634 4292 for (i = 0; i < size; i++) {
748dad36 4293 if (new->entries[i].threshold <= usage) {
2e72b634 4294 /*
2c488db2
KS
4295 * new->current_threshold will not be used until
4296 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4297 * it here.
4298 */
2c488db2 4299 ++new->current_threshold;
748dad36
SZ
4300 } else
4301 break;
2e72b634
KS
4302 }
4303
2c488db2
KS
4304 /* Free old spare buffer and save old primary buffer as spare */
4305 kfree(thresholds->spare);
4306 thresholds->spare = thresholds->primary;
4307
4308 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4309
907860ed 4310 /* To be sure that nobody uses thresholds */
2e72b634
KS
4311 synchronize_rcu();
4312
2e72b634
KS
4313unlock:
4314 mutex_unlock(&memcg->thresholds_lock);
4315
4316 return ret;
4317}
4318
59b6f873 4319static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4320 struct eventfd_ctx *eventfd, const char *args)
4321{
59b6f873 4322 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4323}
4324
59b6f873 4325static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4326 struct eventfd_ctx *eventfd, const char *args)
4327{
59b6f873 4328 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4329}
4330
59b6f873 4331static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4332 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4333{
2c488db2
KS
4334 struct mem_cgroup_thresholds *thresholds;
4335 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4336 unsigned long usage;
7d36665a 4337 int i, j, size, entries;
2e72b634
KS
4338
4339 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4340
4341 if (type == _MEM) {
2c488db2 4342 thresholds = &memcg->thresholds;
ce00a967 4343 usage = mem_cgroup_usage(memcg, false);
05b84301 4344 } else if (type == _MEMSWAP) {
2c488db2 4345 thresholds = &memcg->memsw_thresholds;
ce00a967 4346 usage = mem_cgroup_usage(memcg, true);
05b84301 4347 } else
2e72b634
KS
4348 BUG();
4349
371528ca
AV
4350 if (!thresholds->primary)
4351 goto unlock;
4352
2e72b634
KS
4353 /* Check if a threshold crossed before removing */
4354 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4355
4356 /* Calculate new number of threshold */
7d36665a 4357 size = entries = 0;
2c488db2
KS
4358 for (i = 0; i < thresholds->primary->size; i++) {
4359 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4360 size++;
7d36665a
CX
4361 else
4362 entries++;
2e72b634
KS
4363 }
4364
2c488db2 4365 new = thresholds->spare;
907860ed 4366
7d36665a
CX
4367 /* If no items related to eventfd have been cleared, nothing to do */
4368 if (!entries)
4369 goto unlock;
4370
2e72b634
KS
4371 /* Set thresholds array to NULL if we don't have thresholds */
4372 if (!size) {
2c488db2
KS
4373 kfree(new);
4374 new = NULL;
907860ed 4375 goto swap_buffers;
2e72b634
KS
4376 }
4377
2c488db2 4378 new->size = size;
2e72b634
KS
4379
4380 /* Copy thresholds and find current threshold */
2c488db2
KS
4381 new->current_threshold = -1;
4382 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4383 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4384 continue;
4385
2c488db2 4386 new->entries[j] = thresholds->primary->entries[i];
748dad36 4387 if (new->entries[j].threshold <= usage) {
2e72b634 4388 /*
2c488db2 4389 * new->current_threshold will not be used
2e72b634
KS
4390 * until rcu_assign_pointer(), so it's safe to increment
4391 * it here.
4392 */
2c488db2 4393 ++new->current_threshold;
2e72b634
KS
4394 }
4395 j++;
4396 }
4397
907860ed 4398swap_buffers:
2c488db2
KS
4399 /* Swap primary and spare array */
4400 thresholds->spare = thresholds->primary;
8c757763 4401
2c488db2 4402 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4403
907860ed 4404 /* To be sure that nobody uses thresholds */
2e72b634 4405 synchronize_rcu();
6611d8d7
MC
4406
4407 /* If all events are unregistered, free the spare array */
4408 if (!new) {
4409 kfree(thresholds->spare);
4410 thresholds->spare = NULL;
4411 }
371528ca 4412unlock:
2e72b634 4413 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4414}
c1e862c1 4415
59b6f873 4416static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4417 struct eventfd_ctx *eventfd)
4418{
59b6f873 4419 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4420}
4421
59b6f873 4422static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4423 struct eventfd_ctx *eventfd)
4424{
59b6f873 4425 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4426}
4427
59b6f873 4428static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4429 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4430{
9490ff27 4431 struct mem_cgroup_eventfd_list *event;
9490ff27 4432
9490ff27
KH
4433 event = kmalloc(sizeof(*event), GFP_KERNEL);
4434 if (!event)
4435 return -ENOMEM;
4436
1af8efe9 4437 spin_lock(&memcg_oom_lock);
9490ff27
KH
4438
4439 event->eventfd = eventfd;
4440 list_add(&event->list, &memcg->oom_notify);
4441
4442 /* already in OOM ? */
c2b42d3c 4443 if (memcg->under_oom)
9490ff27 4444 eventfd_signal(eventfd, 1);
1af8efe9 4445 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4446
4447 return 0;
4448}
4449
59b6f873 4450static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4451 struct eventfd_ctx *eventfd)
9490ff27 4452{
9490ff27 4453 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4454
1af8efe9 4455 spin_lock(&memcg_oom_lock);
9490ff27 4456
c0ff4b85 4457 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4458 if (ev->eventfd == eventfd) {
4459 list_del(&ev->list);
4460 kfree(ev);
4461 }
4462 }
4463
1af8efe9 4464 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4465}
4466
2da8ca82 4467static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4468{
aa9694bb 4469 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4470
791badbd 4471 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4472 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4473 seq_printf(sf, "oom_kill %lu\n",
4474 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4475 return 0;
4476}
4477
182446d0 4478static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4479 struct cftype *cft, u64 val)
4480{
182446d0 4481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4482
4483 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4484 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4485 return -EINVAL;
4486
c0ff4b85 4487 memcg->oom_kill_disable = val;
4d845ebf 4488 if (!val)
c0ff4b85 4489 memcg_oom_recover(memcg);
3dae7fec 4490
3c11ecf4
KH
4491 return 0;
4492}
4493
52ebea74
TH
4494#ifdef CONFIG_CGROUP_WRITEBACK
4495
3a8e9ac8
TH
4496#include <trace/events/writeback.h>
4497
841710aa
TH
4498static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4499{
4500 return wb_domain_init(&memcg->cgwb_domain, gfp);
4501}
4502
4503static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4504{
4505 wb_domain_exit(&memcg->cgwb_domain);
4506}
4507
2529bb3a
TH
4508static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4509{
4510 wb_domain_size_changed(&memcg->cgwb_domain);
4511}
4512
841710aa
TH
4513struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4514{
4515 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4516
4517 if (!memcg->css.parent)
4518 return NULL;
4519
4520 return &memcg->cgwb_domain;
4521}
4522
0b3d6e6f
GT
4523/*
4524 * idx can be of type enum memcg_stat_item or node_stat_item.
4525 * Keep in sync with memcg_exact_page().
4526 */
4527static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4528{
871789d4 4529 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4530 int cpu;
4531
4532 for_each_online_cpu(cpu)
871789d4 4533 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4534 if (x < 0)
4535 x = 0;
4536 return x;
4537}
4538
c2aa723a
TH
4539/**
4540 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4541 * @wb: bdi_writeback in question
c5edf9cd
TH
4542 * @pfilepages: out parameter for number of file pages
4543 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4544 * @pdirty: out parameter for number of dirty pages
4545 * @pwriteback: out parameter for number of pages under writeback
4546 *
c5edf9cd
TH
4547 * Determine the numbers of file, headroom, dirty, and writeback pages in
4548 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4549 * is a bit more involved.
c2aa723a 4550 *
c5edf9cd
TH
4551 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4552 * headroom is calculated as the lowest headroom of itself and the
4553 * ancestors. Note that this doesn't consider the actual amount of
4554 * available memory in the system. The caller should further cap
4555 * *@pheadroom accordingly.
c2aa723a 4556 */
c5edf9cd
TH
4557void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4558 unsigned long *pheadroom, unsigned long *pdirty,
4559 unsigned long *pwriteback)
c2aa723a
TH
4560{
4561 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4562 struct mem_cgroup *parent;
c2aa723a 4563
0b3d6e6f 4564 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4565
0b3d6e6f 4566 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4567 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4568 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4569 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4570
c2aa723a 4571 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4572 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4573 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4574 unsigned long used = page_counter_read(&memcg->memory);
4575
c5edf9cd 4576 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4577 memcg = parent;
4578 }
c2aa723a
TH
4579}
4580
97b27821
TH
4581/*
4582 * Foreign dirty flushing
4583 *
4584 * There's an inherent mismatch between memcg and writeback. The former
4585 * trackes ownership per-page while the latter per-inode. This was a
4586 * deliberate design decision because honoring per-page ownership in the
4587 * writeback path is complicated, may lead to higher CPU and IO overheads
4588 * and deemed unnecessary given that write-sharing an inode across
4589 * different cgroups isn't a common use-case.
4590 *
4591 * Combined with inode majority-writer ownership switching, this works well
4592 * enough in most cases but there are some pathological cases. For
4593 * example, let's say there are two cgroups A and B which keep writing to
4594 * different but confined parts of the same inode. B owns the inode and
4595 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4596 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4597 * triggering background writeback. A will be slowed down without a way to
4598 * make writeback of the dirty pages happen.
4599 *
4600 * Conditions like the above can lead to a cgroup getting repatedly and
4601 * severely throttled after making some progress after each
4602 * dirty_expire_interval while the underyling IO device is almost
4603 * completely idle.
4604 *
4605 * Solving this problem completely requires matching the ownership tracking
4606 * granularities between memcg and writeback in either direction. However,
4607 * the more egregious behaviors can be avoided by simply remembering the
4608 * most recent foreign dirtying events and initiating remote flushes on
4609 * them when local writeback isn't enough to keep the memory clean enough.
4610 *
4611 * The following two functions implement such mechanism. When a foreign
4612 * page - a page whose memcg and writeback ownerships don't match - is
4613 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4614 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4615 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4616 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4617 * foreign bdi_writebacks which haven't expired. Both the numbers of
4618 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4619 * limited to MEMCG_CGWB_FRN_CNT.
4620 *
4621 * The mechanism only remembers IDs and doesn't hold any object references.
4622 * As being wrong occasionally doesn't matter, updates and accesses to the
4623 * records are lockless and racy.
4624 */
4625void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4626 struct bdi_writeback *wb)
4627{
4628 struct mem_cgroup *memcg = page->mem_cgroup;
4629 struct memcg_cgwb_frn *frn;
4630 u64 now = get_jiffies_64();
4631 u64 oldest_at = now;
4632 int oldest = -1;
4633 int i;
4634
3a8e9ac8
TH
4635 trace_track_foreign_dirty(page, wb);
4636
97b27821
TH
4637 /*
4638 * Pick the slot to use. If there is already a slot for @wb, keep
4639 * using it. If not replace the oldest one which isn't being
4640 * written out.
4641 */
4642 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4643 frn = &memcg->cgwb_frn[i];
4644 if (frn->bdi_id == wb->bdi->id &&
4645 frn->memcg_id == wb->memcg_css->id)
4646 break;
4647 if (time_before64(frn->at, oldest_at) &&
4648 atomic_read(&frn->done.cnt) == 1) {
4649 oldest = i;
4650 oldest_at = frn->at;
4651 }
4652 }
4653
4654 if (i < MEMCG_CGWB_FRN_CNT) {
4655 /*
4656 * Re-using an existing one. Update timestamp lazily to
4657 * avoid making the cacheline hot. We want them to be
4658 * reasonably up-to-date and significantly shorter than
4659 * dirty_expire_interval as that's what expires the record.
4660 * Use the shorter of 1s and dirty_expire_interval / 8.
4661 */
4662 unsigned long update_intv =
4663 min_t(unsigned long, HZ,
4664 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4665
4666 if (time_before64(frn->at, now - update_intv))
4667 frn->at = now;
4668 } else if (oldest >= 0) {
4669 /* replace the oldest free one */
4670 frn = &memcg->cgwb_frn[oldest];
4671 frn->bdi_id = wb->bdi->id;
4672 frn->memcg_id = wb->memcg_css->id;
4673 frn->at = now;
4674 }
4675}
4676
4677/* issue foreign writeback flushes for recorded foreign dirtying events */
4678void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4679{
4680 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4681 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4682 u64 now = jiffies_64;
4683 int i;
4684
4685 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4687
4688 /*
4689 * If the record is older than dirty_expire_interval,
4690 * writeback on it has already started. No need to kick it
4691 * off again. Also, don't start a new one if there's
4692 * already one in flight.
4693 */
4694 if (time_after64(frn->at, now - intv) &&
4695 atomic_read(&frn->done.cnt) == 1) {
4696 frn->at = 0;
3a8e9ac8 4697 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4698 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4699 WB_REASON_FOREIGN_FLUSH,
4700 &frn->done);
4701 }
4702 }
4703}
4704
841710aa
TH
4705#else /* CONFIG_CGROUP_WRITEBACK */
4706
4707static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4708{
4709 return 0;
4710}
4711
4712static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4713{
4714}
4715
2529bb3a
TH
4716static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4717{
4718}
4719
52ebea74
TH
4720#endif /* CONFIG_CGROUP_WRITEBACK */
4721
3bc942f3
TH
4722/*
4723 * DO NOT USE IN NEW FILES.
4724 *
4725 * "cgroup.event_control" implementation.
4726 *
4727 * This is way over-engineered. It tries to support fully configurable
4728 * events for each user. Such level of flexibility is completely
4729 * unnecessary especially in the light of the planned unified hierarchy.
4730 *
4731 * Please deprecate this and replace with something simpler if at all
4732 * possible.
4733 */
4734
79bd9814
TH
4735/*
4736 * Unregister event and free resources.
4737 *
4738 * Gets called from workqueue.
4739 */
3bc942f3 4740static void memcg_event_remove(struct work_struct *work)
79bd9814 4741{
3bc942f3
TH
4742 struct mem_cgroup_event *event =
4743 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4744 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4745
4746 remove_wait_queue(event->wqh, &event->wait);
4747
59b6f873 4748 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4749
4750 /* Notify userspace the event is going away. */
4751 eventfd_signal(event->eventfd, 1);
4752
4753 eventfd_ctx_put(event->eventfd);
4754 kfree(event);
59b6f873 4755 css_put(&memcg->css);
79bd9814
TH
4756}
4757
4758/*
a9a08845 4759 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4760 *
4761 * Called with wqh->lock held and interrupts disabled.
4762 */
ac6424b9 4763static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4764 int sync, void *key)
79bd9814 4765{
3bc942f3
TH
4766 struct mem_cgroup_event *event =
4767 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4768 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4769 __poll_t flags = key_to_poll(key);
79bd9814 4770
a9a08845 4771 if (flags & EPOLLHUP) {
79bd9814
TH
4772 /*
4773 * If the event has been detached at cgroup removal, we
4774 * can simply return knowing the other side will cleanup
4775 * for us.
4776 *
4777 * We can't race against event freeing since the other
4778 * side will require wqh->lock via remove_wait_queue(),
4779 * which we hold.
4780 */
fba94807 4781 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4782 if (!list_empty(&event->list)) {
4783 list_del_init(&event->list);
4784 /*
4785 * We are in atomic context, but cgroup_event_remove()
4786 * may sleep, so we have to call it in workqueue.
4787 */
4788 schedule_work(&event->remove);
4789 }
fba94807 4790 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4791 }
4792
4793 return 0;
4794}
4795
3bc942f3 4796static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4797 wait_queue_head_t *wqh, poll_table *pt)
4798{
3bc942f3
TH
4799 struct mem_cgroup_event *event =
4800 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4801
4802 event->wqh = wqh;
4803 add_wait_queue(wqh, &event->wait);
4804}
4805
4806/*
3bc942f3
TH
4807 * DO NOT USE IN NEW FILES.
4808 *
79bd9814
TH
4809 * Parse input and register new cgroup event handler.
4810 *
4811 * Input must be in format '<event_fd> <control_fd> <args>'.
4812 * Interpretation of args is defined by control file implementation.
4813 */
451af504
TH
4814static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4815 char *buf, size_t nbytes, loff_t off)
79bd9814 4816{
451af504 4817 struct cgroup_subsys_state *css = of_css(of);
fba94807 4818 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4819 struct mem_cgroup_event *event;
79bd9814
TH
4820 struct cgroup_subsys_state *cfile_css;
4821 unsigned int efd, cfd;
4822 struct fd efile;
4823 struct fd cfile;
fba94807 4824 const char *name;
79bd9814
TH
4825 char *endp;
4826 int ret;
4827
451af504
TH
4828 buf = strstrip(buf);
4829
4830 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4831 if (*endp != ' ')
4832 return -EINVAL;
451af504 4833 buf = endp + 1;
79bd9814 4834
451af504 4835 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4836 if ((*endp != ' ') && (*endp != '\0'))
4837 return -EINVAL;
451af504 4838 buf = endp + 1;
79bd9814
TH
4839
4840 event = kzalloc(sizeof(*event), GFP_KERNEL);
4841 if (!event)
4842 return -ENOMEM;
4843
59b6f873 4844 event->memcg = memcg;
79bd9814 4845 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4846 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4847 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4848 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4849
4850 efile = fdget(efd);
4851 if (!efile.file) {
4852 ret = -EBADF;
4853 goto out_kfree;
4854 }
4855
4856 event->eventfd = eventfd_ctx_fileget(efile.file);
4857 if (IS_ERR(event->eventfd)) {
4858 ret = PTR_ERR(event->eventfd);
4859 goto out_put_efile;
4860 }
4861
4862 cfile = fdget(cfd);
4863 if (!cfile.file) {
4864 ret = -EBADF;
4865 goto out_put_eventfd;
4866 }
4867
4868 /* the process need read permission on control file */
4869 /* AV: shouldn't we check that it's been opened for read instead? */
4870 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4871 if (ret < 0)
4872 goto out_put_cfile;
4873
fba94807
TH
4874 /*
4875 * Determine the event callbacks and set them in @event. This used
4876 * to be done via struct cftype but cgroup core no longer knows
4877 * about these events. The following is crude but the whole thing
4878 * is for compatibility anyway.
3bc942f3
TH
4879 *
4880 * DO NOT ADD NEW FILES.
fba94807 4881 */
b583043e 4882 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4883
4884 if (!strcmp(name, "memory.usage_in_bytes")) {
4885 event->register_event = mem_cgroup_usage_register_event;
4886 event->unregister_event = mem_cgroup_usage_unregister_event;
4887 } else if (!strcmp(name, "memory.oom_control")) {
4888 event->register_event = mem_cgroup_oom_register_event;
4889 event->unregister_event = mem_cgroup_oom_unregister_event;
4890 } else if (!strcmp(name, "memory.pressure_level")) {
4891 event->register_event = vmpressure_register_event;
4892 event->unregister_event = vmpressure_unregister_event;
4893 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4894 event->register_event = memsw_cgroup_usage_register_event;
4895 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4896 } else {
4897 ret = -EINVAL;
4898 goto out_put_cfile;
4899 }
4900
79bd9814 4901 /*
b5557c4c
TH
4902 * Verify @cfile should belong to @css. Also, remaining events are
4903 * automatically removed on cgroup destruction but the removal is
4904 * asynchronous, so take an extra ref on @css.
79bd9814 4905 */
b583043e 4906 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4907 &memory_cgrp_subsys);
79bd9814 4908 ret = -EINVAL;
5a17f543 4909 if (IS_ERR(cfile_css))
79bd9814 4910 goto out_put_cfile;
5a17f543
TH
4911 if (cfile_css != css) {
4912 css_put(cfile_css);
79bd9814 4913 goto out_put_cfile;
5a17f543 4914 }
79bd9814 4915
451af504 4916 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4917 if (ret)
4918 goto out_put_css;
4919
9965ed17 4920 vfs_poll(efile.file, &event->pt);
79bd9814 4921
fba94807
TH
4922 spin_lock(&memcg->event_list_lock);
4923 list_add(&event->list, &memcg->event_list);
4924 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4925
4926 fdput(cfile);
4927 fdput(efile);
4928
451af504 4929 return nbytes;
79bd9814
TH
4930
4931out_put_css:
b5557c4c 4932 css_put(css);
79bd9814
TH
4933out_put_cfile:
4934 fdput(cfile);
4935out_put_eventfd:
4936 eventfd_ctx_put(event->eventfd);
4937out_put_efile:
4938 fdput(efile);
4939out_kfree:
4940 kfree(event);
4941
4942 return ret;
4943}
4944
241994ed 4945static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4946 {
0eea1030 4947 .name = "usage_in_bytes",
8c7c6e34 4948 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4949 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4950 },
c84872e1
PE
4951 {
4952 .name = "max_usage_in_bytes",
8c7c6e34 4953 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4954 .write = mem_cgroup_reset,
791badbd 4955 .read_u64 = mem_cgroup_read_u64,
c84872e1 4956 },
8cdea7c0 4957 {
0eea1030 4958 .name = "limit_in_bytes",
8c7c6e34 4959 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4960 .write = mem_cgroup_write,
791badbd 4961 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4962 },
296c81d8
BS
4963 {
4964 .name = "soft_limit_in_bytes",
4965 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4966 .write = mem_cgroup_write,
791badbd 4967 .read_u64 = mem_cgroup_read_u64,
296c81d8 4968 },
8cdea7c0
BS
4969 {
4970 .name = "failcnt",
8c7c6e34 4971 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4972 .write = mem_cgroup_reset,
791badbd 4973 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4974 },
d2ceb9b7
KH
4975 {
4976 .name = "stat",
2da8ca82 4977 .seq_show = memcg_stat_show,
d2ceb9b7 4978 },
c1e862c1
KH
4979 {
4980 .name = "force_empty",
6770c64e 4981 .write = mem_cgroup_force_empty_write,
c1e862c1 4982 },
18f59ea7
BS
4983 {
4984 .name = "use_hierarchy",
4985 .write_u64 = mem_cgroup_hierarchy_write,
4986 .read_u64 = mem_cgroup_hierarchy_read,
4987 },
79bd9814 4988 {
3bc942f3 4989 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4990 .write = memcg_write_event_control,
7dbdb199 4991 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4992 },
a7885eb8
KM
4993 {
4994 .name = "swappiness",
4995 .read_u64 = mem_cgroup_swappiness_read,
4996 .write_u64 = mem_cgroup_swappiness_write,
4997 },
7dc74be0
DN
4998 {
4999 .name = "move_charge_at_immigrate",
5000 .read_u64 = mem_cgroup_move_charge_read,
5001 .write_u64 = mem_cgroup_move_charge_write,
5002 },
9490ff27
KH
5003 {
5004 .name = "oom_control",
2da8ca82 5005 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5006 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5007 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5008 },
70ddf637
AV
5009 {
5010 .name = "pressure_level",
70ddf637 5011 },
406eb0c9
YH
5012#ifdef CONFIG_NUMA
5013 {
5014 .name = "numa_stat",
2da8ca82 5015 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5016 },
5017#endif
510fc4e1
GC
5018 {
5019 .name = "kmem.limit_in_bytes",
5020 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5021 .write = mem_cgroup_write,
791badbd 5022 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5023 },
5024 {
5025 .name = "kmem.usage_in_bytes",
5026 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5027 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5028 },
5029 {
5030 .name = "kmem.failcnt",
5031 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5032 .write = mem_cgroup_reset,
791badbd 5033 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5034 },
5035 {
5036 .name = "kmem.max_usage_in_bytes",
5037 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5038 .write = mem_cgroup_reset,
791badbd 5039 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5040 },
a87425a3
YS
5041#if defined(CONFIG_MEMCG_KMEM) && \
5042 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5043 {
5044 .name = "kmem.slabinfo",
b047501c 5045 .seq_show = memcg_slab_show,
749c5415
GC
5046 },
5047#endif
d55f90bf
VD
5048 {
5049 .name = "kmem.tcp.limit_in_bytes",
5050 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5051 .write = mem_cgroup_write,
5052 .read_u64 = mem_cgroup_read_u64,
5053 },
5054 {
5055 .name = "kmem.tcp.usage_in_bytes",
5056 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5057 .read_u64 = mem_cgroup_read_u64,
5058 },
5059 {
5060 .name = "kmem.tcp.failcnt",
5061 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5062 .write = mem_cgroup_reset,
5063 .read_u64 = mem_cgroup_read_u64,
5064 },
5065 {
5066 .name = "kmem.tcp.max_usage_in_bytes",
5067 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5068 .write = mem_cgroup_reset,
5069 .read_u64 = mem_cgroup_read_u64,
5070 },
6bc10349 5071 { }, /* terminate */
af36f906 5072};
8c7c6e34 5073
73f576c0
JW
5074/*
5075 * Private memory cgroup IDR
5076 *
5077 * Swap-out records and page cache shadow entries need to store memcg
5078 * references in constrained space, so we maintain an ID space that is
5079 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5080 * memory-controlled cgroups to 64k.
5081 *
b8f2935f 5082 * However, there usually are many references to the offline CSS after
73f576c0
JW
5083 * the cgroup has been destroyed, such as page cache or reclaimable
5084 * slab objects, that don't need to hang on to the ID. We want to keep
5085 * those dead CSS from occupying IDs, or we might quickly exhaust the
5086 * relatively small ID space and prevent the creation of new cgroups
5087 * even when there are much fewer than 64k cgroups - possibly none.
5088 *
5089 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5090 * be freed and recycled when it's no longer needed, which is usually
5091 * when the CSS is offlined.
5092 *
5093 * The only exception to that are records of swapped out tmpfs/shmem
5094 * pages that need to be attributed to live ancestors on swapin. But
5095 * those references are manageable from userspace.
5096 */
5097
5098static DEFINE_IDR(mem_cgroup_idr);
5099
7e97de0b
KT
5100static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5101{
5102 if (memcg->id.id > 0) {
5103 idr_remove(&mem_cgroup_idr, memcg->id.id);
5104 memcg->id.id = 0;
5105 }
5106}
5107
c1514c0a
VF
5108static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5109 unsigned int n)
73f576c0 5110{
1c2d479a 5111 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5112}
5113
615d66c3 5114static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5115{
1c2d479a 5116 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5117 mem_cgroup_id_remove(memcg);
73f576c0
JW
5118
5119 /* Memcg ID pins CSS */
5120 css_put(&memcg->css);
5121 }
5122}
5123
615d66c3
VD
5124static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5125{
5126 mem_cgroup_id_put_many(memcg, 1);
5127}
5128
73f576c0
JW
5129/**
5130 * mem_cgroup_from_id - look up a memcg from a memcg id
5131 * @id: the memcg id to look up
5132 *
5133 * Caller must hold rcu_read_lock().
5134 */
5135struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5136{
5137 WARN_ON_ONCE(!rcu_read_lock_held());
5138 return idr_find(&mem_cgroup_idr, id);
5139}
5140
ef8f2327 5141static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5142{
5143 struct mem_cgroup_per_node *pn;
ef8f2327 5144 int tmp = node;
1ecaab2b
KH
5145 /*
5146 * This routine is called against possible nodes.
5147 * But it's BUG to call kmalloc() against offline node.
5148 *
5149 * TODO: this routine can waste much memory for nodes which will
5150 * never be onlined. It's better to use memory hotplug callback
5151 * function.
5152 */
41e3355d
KH
5153 if (!node_state(node, N_NORMAL_MEMORY))
5154 tmp = -1;
17295c88 5155 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5156 if (!pn)
5157 return 1;
1ecaab2b 5158
3e38e0aa
RG
5159 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5160 GFP_KERNEL_ACCOUNT);
815744d7
JW
5161 if (!pn->lruvec_stat_local) {
5162 kfree(pn);
5163 return 1;
5164 }
5165
3e38e0aa
RG
5166 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5167 GFP_KERNEL_ACCOUNT);
a983b5eb 5168 if (!pn->lruvec_stat_cpu) {
815744d7 5169 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5170 kfree(pn);
5171 return 1;
5172 }
5173
ef8f2327
MG
5174 lruvec_init(&pn->lruvec);
5175 pn->usage_in_excess = 0;
5176 pn->on_tree = false;
5177 pn->memcg = memcg;
5178
54f72fe0 5179 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5180 return 0;
5181}
5182
ef8f2327 5183static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5184{
00f3ca2c
JW
5185 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5186
4eaf431f
MH
5187 if (!pn)
5188 return;
5189
a983b5eb 5190 free_percpu(pn->lruvec_stat_cpu);
815744d7 5191 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5192 kfree(pn);
1ecaab2b
KH
5193}
5194
40e952f9 5195static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5196{
c8b2a36f 5197 int node;
59927fb9 5198
c8b2a36f 5199 for_each_node(node)
ef8f2327 5200 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5201 free_percpu(memcg->vmstats_percpu);
815744d7 5202 free_percpu(memcg->vmstats_local);
8ff69e2c 5203 kfree(memcg);
59927fb9 5204}
3afe36b1 5205
40e952f9
TE
5206static void mem_cgroup_free(struct mem_cgroup *memcg)
5207{
5208 memcg_wb_domain_exit(memcg);
7961eee3
SB
5209 /*
5210 * Flush percpu vmstats and vmevents to guarantee the value correctness
5211 * on parent's and all ancestor levels.
5212 */
4a87e2a2 5213 memcg_flush_percpu_vmstats(memcg);
7961eee3 5214 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5215 __mem_cgroup_free(memcg);
5216}
5217
0b8f73e1 5218static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5219{
d142e3e6 5220 struct mem_cgroup *memcg;
b9726c26 5221 unsigned int size;
6d12e2d8 5222 int node;
97b27821 5223 int __maybe_unused i;
11d67612 5224 long error = -ENOMEM;
8cdea7c0 5225
0b8f73e1
JW
5226 size = sizeof(struct mem_cgroup);
5227 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5228
5229 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5230 if (!memcg)
11d67612 5231 return ERR_PTR(error);
0b8f73e1 5232
73f576c0
JW
5233 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5234 1, MEM_CGROUP_ID_MAX,
5235 GFP_KERNEL);
11d67612
YS
5236 if (memcg->id.id < 0) {
5237 error = memcg->id.id;
73f576c0 5238 goto fail;
11d67612 5239 }
73f576c0 5240
3e38e0aa
RG
5241 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5242 GFP_KERNEL_ACCOUNT);
815744d7
JW
5243 if (!memcg->vmstats_local)
5244 goto fail;
5245
3e38e0aa
RG
5246 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5247 GFP_KERNEL_ACCOUNT);
871789d4 5248 if (!memcg->vmstats_percpu)
0b8f73e1 5249 goto fail;
78fb7466 5250
3ed28fa1 5251 for_each_node(node)
ef8f2327 5252 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5253 goto fail;
f64c3f54 5254
0b8f73e1
JW
5255 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5256 goto fail;
28dbc4b6 5257
f7e1cb6e 5258 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5259 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5260 mutex_init(&memcg->thresholds_lock);
5261 spin_lock_init(&memcg->move_lock);
70ddf637 5262 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5263 INIT_LIST_HEAD(&memcg->event_list);
5264 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5265 memcg->socket_pressure = jiffies;
84c07d11 5266#ifdef CONFIG_MEMCG_KMEM
900a38f0 5267 memcg->kmemcg_id = -1;
bf4f0599 5268 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5269#endif
52ebea74
TH
5270#ifdef CONFIG_CGROUP_WRITEBACK
5271 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5272 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5273 memcg->cgwb_frn[i].done =
5274 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5275#endif
5276#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5277 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5278 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5279 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5280#endif
73f576c0 5281 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5282 return memcg;
5283fail:
7e97de0b 5284 mem_cgroup_id_remove(memcg);
40e952f9 5285 __mem_cgroup_free(memcg);
11d67612 5286 return ERR_PTR(error);
d142e3e6
GC
5287}
5288
0b8f73e1
JW
5289static struct cgroup_subsys_state * __ref
5290mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5291{
0b8f73e1
JW
5292 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5293 struct mem_cgroup *memcg;
5294 long error = -ENOMEM;
d142e3e6 5295
3e38e0aa 5296 memalloc_use_memcg(parent);
0b8f73e1 5297 memcg = mem_cgroup_alloc();
3e38e0aa 5298 memalloc_unuse_memcg();
11d67612
YS
5299 if (IS_ERR(memcg))
5300 return ERR_CAST(memcg);
d142e3e6 5301
d1663a90 5302 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5303 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5304 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5305 if (parent) {
5306 memcg->swappiness = mem_cgroup_swappiness(parent);
5307 memcg->oom_kill_disable = parent->oom_kill_disable;
5308 }
5309 if (parent && parent->use_hierarchy) {
5310 memcg->use_hierarchy = true;
3e32cb2e 5311 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5312 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5313 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5314 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5315 } else {
3e32cb2e 5316 page_counter_init(&memcg->memory, NULL);
37e84351 5317 page_counter_init(&memcg->swap, NULL);
3e32cb2e 5318 page_counter_init(&memcg->kmem, NULL);
0db15298 5319 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5320 /*
5321 * Deeper hierachy with use_hierarchy == false doesn't make
5322 * much sense so let cgroup subsystem know about this
5323 * unfortunate state in our controller.
5324 */
d142e3e6 5325 if (parent != root_mem_cgroup)
073219e9 5326 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5327 }
d6441637 5328
0b8f73e1
JW
5329 /* The following stuff does not apply to the root */
5330 if (!parent) {
5331 root_mem_cgroup = memcg;
5332 return &memcg->css;
5333 }
5334
b313aeee 5335 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5336 if (error)
5337 goto fail;
127424c8 5338
f7e1cb6e 5339 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5340 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5341
0b8f73e1
JW
5342 return &memcg->css;
5343fail:
7e97de0b 5344 mem_cgroup_id_remove(memcg);
0b8f73e1 5345 mem_cgroup_free(memcg);
11d67612 5346 return ERR_PTR(error);
0b8f73e1
JW
5347}
5348
73f576c0 5349static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5350{
58fa2a55
VD
5351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5352
0a4465d3
KT
5353 /*
5354 * A memcg must be visible for memcg_expand_shrinker_maps()
5355 * by the time the maps are allocated. So, we allocate maps
5356 * here, when for_each_mem_cgroup() can't skip it.
5357 */
5358 if (memcg_alloc_shrinker_maps(memcg)) {
5359 mem_cgroup_id_remove(memcg);
5360 return -ENOMEM;
5361 }
5362
73f576c0 5363 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5364 refcount_set(&memcg->id.ref, 1);
73f576c0 5365 css_get(css);
2f7dd7a4 5366 return 0;
8cdea7c0
BS
5367}
5368
eb95419b 5369static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5370{
eb95419b 5371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5372 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5373
5374 /*
5375 * Unregister events and notify userspace.
5376 * Notify userspace about cgroup removing only after rmdir of cgroup
5377 * directory to avoid race between userspace and kernelspace.
5378 */
fba94807
TH
5379 spin_lock(&memcg->event_list_lock);
5380 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5381 list_del_init(&event->list);
5382 schedule_work(&event->remove);
5383 }
fba94807 5384 spin_unlock(&memcg->event_list_lock);
ec64f515 5385
bf8d5d52 5386 page_counter_set_min(&memcg->memory, 0);
23067153 5387 page_counter_set_low(&memcg->memory, 0);
63677c74 5388
567e9ab2 5389 memcg_offline_kmem(memcg);
52ebea74 5390 wb_memcg_offline(memcg);
73f576c0 5391
591edfb1
RG
5392 drain_all_stock(memcg);
5393
73f576c0 5394 mem_cgroup_id_put(memcg);
df878fb0
KH
5395}
5396
6df38689
VD
5397static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5398{
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400
5401 invalidate_reclaim_iterators(memcg);
5402}
5403
eb95419b 5404static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5405{
eb95419b 5406 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5407 int __maybe_unused i;
c268e994 5408
97b27821
TH
5409#ifdef CONFIG_CGROUP_WRITEBACK
5410 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5411 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5412#endif
f7e1cb6e 5413 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5414 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5415
0db15298 5416 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5417 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5418
0b8f73e1
JW
5419 vmpressure_cleanup(&memcg->vmpressure);
5420 cancel_work_sync(&memcg->high_work);
5421 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5422 memcg_free_shrinker_maps(memcg);
d886f4e4 5423 memcg_free_kmem(memcg);
0b8f73e1 5424 mem_cgroup_free(memcg);
8cdea7c0
BS
5425}
5426
1ced953b
TH
5427/**
5428 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5429 * @css: the target css
5430 *
5431 * Reset the states of the mem_cgroup associated with @css. This is
5432 * invoked when the userland requests disabling on the default hierarchy
5433 * but the memcg is pinned through dependency. The memcg should stop
5434 * applying policies and should revert to the vanilla state as it may be
5435 * made visible again.
5436 *
5437 * The current implementation only resets the essential configurations.
5438 * This needs to be expanded to cover all the visible parts.
5439 */
5440static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5441{
5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5443
bbec2e15
RG
5444 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5445 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5446 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5447 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5448 page_counter_set_min(&memcg->memory, 0);
23067153 5449 page_counter_set_low(&memcg->memory, 0);
d1663a90 5450 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5451 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5452 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5453 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5454}
5455
02491447 5456#ifdef CONFIG_MMU
7dc74be0 5457/* Handlers for move charge at task migration. */
854ffa8d 5458static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5459{
05b84301 5460 int ret;
9476db97 5461
d0164adc
MG
5462 /* Try a single bulk charge without reclaim first, kswapd may wake */
5463 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5464 if (!ret) {
854ffa8d 5465 mc.precharge += count;
854ffa8d
DN
5466 return ret;
5467 }
9476db97 5468
3674534b 5469 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5470 while (count--) {
3674534b 5471 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5472 if (ret)
38c5d72f 5473 return ret;
854ffa8d 5474 mc.precharge++;
9476db97 5475 cond_resched();
854ffa8d 5476 }
9476db97 5477 return 0;
4ffef5fe
DN
5478}
5479
4ffef5fe
DN
5480union mc_target {
5481 struct page *page;
02491447 5482 swp_entry_t ent;
4ffef5fe
DN
5483};
5484
4ffef5fe 5485enum mc_target_type {
8d32ff84 5486 MC_TARGET_NONE = 0,
4ffef5fe 5487 MC_TARGET_PAGE,
02491447 5488 MC_TARGET_SWAP,
c733a828 5489 MC_TARGET_DEVICE,
4ffef5fe
DN
5490};
5491
90254a65
DN
5492static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5493 unsigned long addr, pte_t ptent)
4ffef5fe 5494{
25b2995a 5495 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5496
90254a65
DN
5497 if (!page || !page_mapped(page))
5498 return NULL;
5499 if (PageAnon(page)) {
1dfab5ab 5500 if (!(mc.flags & MOVE_ANON))
90254a65 5501 return NULL;
1dfab5ab
JW
5502 } else {
5503 if (!(mc.flags & MOVE_FILE))
5504 return NULL;
5505 }
90254a65
DN
5506 if (!get_page_unless_zero(page))
5507 return NULL;
5508
5509 return page;
5510}
5511
c733a828 5512#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5513static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5514 pte_t ptent, swp_entry_t *entry)
90254a65 5515{
90254a65
DN
5516 struct page *page = NULL;
5517 swp_entry_t ent = pte_to_swp_entry(ptent);
5518
1dfab5ab 5519 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5520 return NULL;
c733a828
JG
5521
5522 /*
5523 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5524 * a device and because they are not accessible by CPU they are store
5525 * as special swap entry in the CPU page table.
5526 */
5527 if (is_device_private_entry(ent)) {
5528 page = device_private_entry_to_page(ent);
5529 /*
5530 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5531 * a refcount of 1 when free (unlike normal page)
5532 */
5533 if (!page_ref_add_unless(page, 1, 1))
5534 return NULL;
5535 return page;
5536 }
5537
4b91355e
KH
5538 /*
5539 * Because lookup_swap_cache() updates some statistics counter,
5540 * we call find_get_page() with swapper_space directly.
5541 */
f6ab1f7f 5542 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5543 entry->val = ent.val;
90254a65
DN
5544
5545 return page;
5546}
4b91355e
KH
5547#else
5548static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5549 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5550{
5551 return NULL;
5552}
5553#endif
90254a65 5554
87946a72
DN
5555static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5556 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5557{
87946a72
DN
5558 if (!vma->vm_file) /* anonymous vma */
5559 return NULL;
1dfab5ab 5560 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5561 return NULL;
5562
87946a72 5563 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5564 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5565 return find_get_incore_page(vma->vm_file->f_mapping,
5566 linear_page_index(vma, addr));
87946a72
DN
5567}
5568
b1b0deab
CG
5569/**
5570 * mem_cgroup_move_account - move account of the page
5571 * @page: the page
25843c2b 5572 * @compound: charge the page as compound or small page
b1b0deab
CG
5573 * @from: mem_cgroup which the page is moved from.
5574 * @to: mem_cgroup which the page is moved to. @from != @to.
5575 *
3ac808fd 5576 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5577 *
5578 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5579 * from old cgroup.
5580 */
5581static int mem_cgroup_move_account(struct page *page,
f627c2f5 5582 bool compound,
b1b0deab
CG
5583 struct mem_cgroup *from,
5584 struct mem_cgroup *to)
5585{
ae8af438
KK
5586 struct lruvec *from_vec, *to_vec;
5587 struct pglist_data *pgdat;
6c357848 5588 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5589 int ret;
5590
5591 VM_BUG_ON(from == to);
5592 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5593 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5594
5595 /*
6a93ca8f 5596 * Prevent mem_cgroup_migrate() from looking at
45637bab 5597 * page->mem_cgroup of its source page while we change it.
b1b0deab 5598 */
f627c2f5 5599 ret = -EBUSY;
b1b0deab
CG
5600 if (!trylock_page(page))
5601 goto out;
5602
5603 ret = -EINVAL;
5604 if (page->mem_cgroup != from)
5605 goto out_unlock;
5606
ae8af438 5607 pgdat = page_pgdat(page);
867e5e1d
JW
5608 from_vec = mem_cgroup_lruvec(from, pgdat);
5609 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5610
abb242f5 5611 lock_page_memcg(page);
b1b0deab 5612
be5d0a74
JW
5613 if (PageAnon(page)) {
5614 if (page_mapped(page)) {
5615 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5616 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5617 if (PageTransHuge(page)) {
5618 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5619 -nr_pages);
5620 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5621 nr_pages);
5622 }
5623
be5d0a74
JW
5624 }
5625 } else {
0d1c2072
JW
5626 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5627 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5628
5629 if (PageSwapBacked(page)) {
5630 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5631 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5632 }
5633
49e50d27
JW
5634 if (page_mapped(page)) {
5635 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5636 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5637 }
b1b0deab 5638
49e50d27
JW
5639 if (PageDirty(page)) {
5640 struct address_space *mapping = page_mapping(page);
c4843a75 5641
f56753ac 5642 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5643 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5644 -nr_pages);
5645 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5646 nr_pages);
5647 }
c4843a75
GT
5648 }
5649 }
5650
b1b0deab 5651 if (PageWriteback(page)) {
ae8af438
KK
5652 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5653 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5654 }
5655
5656 /*
abb242f5
JW
5657 * All state has been migrated, let's switch to the new memcg.
5658 *
b1b0deab 5659 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5660 * is referenced, charged, isolated, and locked: we can't race
5661 * with (un)charging, migration, LRU putback, or anything else
5662 * that would rely on a stable page->mem_cgroup.
5663 *
5664 * Note that lock_page_memcg is a memcg lock, not a page lock,
5665 * to save space. As soon as we switch page->mem_cgroup to a
5666 * new memcg that isn't locked, the above state can change
5667 * concurrently again. Make sure we're truly done with it.
b1b0deab 5668 */
abb242f5 5669 smp_mb();
b1b0deab 5670
1a3e1f40
JW
5671 css_get(&to->css);
5672 css_put(&from->css);
5673
5674 page->mem_cgroup = to;
87eaceb3 5675
abb242f5 5676 __unlock_page_memcg(from);
b1b0deab
CG
5677
5678 ret = 0;
5679
5680 local_irq_disable();
3fba69a5 5681 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5682 memcg_check_events(to, page);
3fba69a5 5683 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5684 memcg_check_events(from, page);
5685 local_irq_enable();
5686out_unlock:
5687 unlock_page(page);
5688out:
5689 return ret;
5690}
5691
7cf7806c
LR
5692/**
5693 * get_mctgt_type - get target type of moving charge
5694 * @vma: the vma the pte to be checked belongs
5695 * @addr: the address corresponding to the pte to be checked
5696 * @ptent: the pte to be checked
5697 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5698 *
5699 * Returns
5700 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5701 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5702 * move charge. if @target is not NULL, the page is stored in target->page
5703 * with extra refcnt got(Callers should handle it).
5704 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5705 * target for charge migration. if @target is not NULL, the entry is stored
5706 * in target->ent.
25b2995a
CH
5707 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5708 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5709 * For now we such page is charge like a regular page would be as for all
5710 * intent and purposes it is just special memory taking the place of a
5711 * regular page.
c733a828
JG
5712 *
5713 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5714 *
5715 * Called with pte lock held.
5716 */
5717
8d32ff84 5718static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5719 unsigned long addr, pte_t ptent, union mc_target *target)
5720{
5721 struct page *page = NULL;
8d32ff84 5722 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5723 swp_entry_t ent = { .val = 0 };
5724
5725 if (pte_present(ptent))
5726 page = mc_handle_present_pte(vma, addr, ptent);
5727 else if (is_swap_pte(ptent))
48406ef8 5728 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5729 else if (pte_none(ptent))
87946a72 5730 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5731
5732 if (!page && !ent.val)
8d32ff84 5733 return ret;
02491447 5734 if (page) {
02491447 5735 /*
0a31bc97 5736 * Do only loose check w/o serialization.
1306a85a 5737 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5738 * not under LRU exclusion.
02491447 5739 */
1306a85a 5740 if (page->mem_cgroup == mc.from) {
02491447 5741 ret = MC_TARGET_PAGE;
25b2995a 5742 if (is_device_private_page(page))
c733a828 5743 ret = MC_TARGET_DEVICE;
02491447
DN
5744 if (target)
5745 target->page = page;
5746 }
5747 if (!ret || !target)
5748 put_page(page);
5749 }
3e14a57b
HY
5750 /*
5751 * There is a swap entry and a page doesn't exist or isn't charged.
5752 * But we cannot move a tail-page in a THP.
5753 */
5754 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5755 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5756 ret = MC_TARGET_SWAP;
5757 if (target)
5758 target->ent = ent;
4ffef5fe 5759 }
4ffef5fe
DN
5760 return ret;
5761}
5762
12724850
NH
5763#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5764/*
d6810d73
HY
5765 * We don't consider PMD mapped swapping or file mapped pages because THP does
5766 * not support them for now.
12724850
NH
5767 * Caller should make sure that pmd_trans_huge(pmd) is true.
5768 */
5769static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5770 unsigned long addr, pmd_t pmd, union mc_target *target)
5771{
5772 struct page *page = NULL;
12724850
NH
5773 enum mc_target_type ret = MC_TARGET_NONE;
5774
84c3fc4e
ZY
5775 if (unlikely(is_swap_pmd(pmd))) {
5776 VM_BUG_ON(thp_migration_supported() &&
5777 !is_pmd_migration_entry(pmd));
5778 return ret;
5779 }
12724850 5780 page = pmd_page(pmd);
309381fe 5781 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5782 if (!(mc.flags & MOVE_ANON))
12724850 5783 return ret;
1306a85a 5784 if (page->mem_cgroup == mc.from) {
12724850
NH
5785 ret = MC_TARGET_PAGE;
5786 if (target) {
5787 get_page(page);
5788 target->page = page;
5789 }
5790 }
5791 return ret;
5792}
5793#else
5794static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5795 unsigned long addr, pmd_t pmd, union mc_target *target)
5796{
5797 return MC_TARGET_NONE;
5798}
5799#endif
5800
4ffef5fe
DN
5801static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5802 unsigned long addr, unsigned long end,
5803 struct mm_walk *walk)
5804{
26bcd64a 5805 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5806 pte_t *pte;
5807 spinlock_t *ptl;
5808
b6ec57f4
KS
5809 ptl = pmd_trans_huge_lock(pmd, vma);
5810 if (ptl) {
c733a828
JG
5811 /*
5812 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5813 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5814 * this might change.
c733a828 5815 */
12724850
NH
5816 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5817 mc.precharge += HPAGE_PMD_NR;
bf929152 5818 spin_unlock(ptl);
1a5a9906 5819 return 0;
12724850 5820 }
03319327 5821
45f83cef
AA
5822 if (pmd_trans_unstable(pmd))
5823 return 0;
4ffef5fe
DN
5824 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5825 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5826 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5827 mc.precharge++; /* increment precharge temporarily */
5828 pte_unmap_unlock(pte - 1, ptl);
5829 cond_resched();
5830
7dc74be0
DN
5831 return 0;
5832}
5833
7b86ac33
CH
5834static const struct mm_walk_ops precharge_walk_ops = {
5835 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5836};
5837
4ffef5fe
DN
5838static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5839{
5840 unsigned long precharge;
4ffef5fe 5841
d8ed45c5 5842 mmap_read_lock(mm);
7b86ac33 5843 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5844 mmap_read_unlock(mm);
4ffef5fe
DN
5845
5846 precharge = mc.precharge;
5847 mc.precharge = 0;
5848
5849 return precharge;
5850}
5851
4ffef5fe
DN
5852static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5853{
dfe076b0
DN
5854 unsigned long precharge = mem_cgroup_count_precharge(mm);
5855
5856 VM_BUG_ON(mc.moving_task);
5857 mc.moving_task = current;
5858 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5859}
5860
dfe076b0
DN
5861/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5862static void __mem_cgroup_clear_mc(void)
4ffef5fe 5863{
2bd9bb20
KH
5864 struct mem_cgroup *from = mc.from;
5865 struct mem_cgroup *to = mc.to;
5866
4ffef5fe 5867 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5868 if (mc.precharge) {
00501b53 5869 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5870 mc.precharge = 0;
5871 }
5872 /*
5873 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5874 * we must uncharge here.
5875 */
5876 if (mc.moved_charge) {
00501b53 5877 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5878 mc.moved_charge = 0;
4ffef5fe 5879 }
483c30b5
DN
5880 /* we must fixup refcnts and charges */
5881 if (mc.moved_swap) {
483c30b5 5882 /* uncharge swap account from the old cgroup */
ce00a967 5883 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5884 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5885
615d66c3
VD
5886 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5887
05b84301 5888 /*
3e32cb2e
JW
5889 * we charged both to->memory and to->memsw, so we
5890 * should uncharge to->memory.
05b84301 5891 */
ce00a967 5892 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5893 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5894
483c30b5
DN
5895 mc.moved_swap = 0;
5896 }
dfe076b0
DN
5897 memcg_oom_recover(from);
5898 memcg_oom_recover(to);
5899 wake_up_all(&mc.waitq);
5900}
5901
5902static void mem_cgroup_clear_mc(void)
5903{
264a0ae1
TH
5904 struct mm_struct *mm = mc.mm;
5905
dfe076b0
DN
5906 /*
5907 * we must clear moving_task before waking up waiters at the end of
5908 * task migration.
5909 */
5910 mc.moving_task = NULL;
5911 __mem_cgroup_clear_mc();
2bd9bb20 5912 spin_lock(&mc.lock);
4ffef5fe
DN
5913 mc.from = NULL;
5914 mc.to = NULL;
264a0ae1 5915 mc.mm = NULL;
2bd9bb20 5916 spin_unlock(&mc.lock);
264a0ae1
TH
5917
5918 mmput(mm);
4ffef5fe
DN
5919}
5920
1f7dd3e5 5921static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5922{
1f7dd3e5 5923 struct cgroup_subsys_state *css;
eed67d75 5924 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5925 struct mem_cgroup *from;
4530eddb 5926 struct task_struct *leader, *p;
9f2115f9 5927 struct mm_struct *mm;
1dfab5ab 5928 unsigned long move_flags;
9f2115f9 5929 int ret = 0;
7dc74be0 5930
1f7dd3e5
TH
5931 /* charge immigration isn't supported on the default hierarchy */
5932 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5933 return 0;
5934
4530eddb
TH
5935 /*
5936 * Multi-process migrations only happen on the default hierarchy
5937 * where charge immigration is not used. Perform charge
5938 * immigration if @tset contains a leader and whine if there are
5939 * multiple.
5940 */
5941 p = NULL;
1f7dd3e5 5942 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5943 WARN_ON_ONCE(p);
5944 p = leader;
1f7dd3e5 5945 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5946 }
5947 if (!p)
5948 return 0;
5949
1f7dd3e5
TH
5950 /*
5951 * We are now commited to this value whatever it is. Changes in this
5952 * tunable will only affect upcoming migrations, not the current one.
5953 * So we need to save it, and keep it going.
5954 */
5955 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5956 if (!move_flags)
5957 return 0;
5958
9f2115f9
TH
5959 from = mem_cgroup_from_task(p);
5960
5961 VM_BUG_ON(from == memcg);
5962
5963 mm = get_task_mm(p);
5964 if (!mm)
5965 return 0;
5966 /* We move charges only when we move a owner of the mm */
5967 if (mm->owner == p) {
5968 VM_BUG_ON(mc.from);
5969 VM_BUG_ON(mc.to);
5970 VM_BUG_ON(mc.precharge);
5971 VM_BUG_ON(mc.moved_charge);
5972 VM_BUG_ON(mc.moved_swap);
5973
5974 spin_lock(&mc.lock);
264a0ae1 5975 mc.mm = mm;
9f2115f9
TH
5976 mc.from = from;
5977 mc.to = memcg;
5978 mc.flags = move_flags;
5979 spin_unlock(&mc.lock);
5980 /* We set mc.moving_task later */
5981
5982 ret = mem_cgroup_precharge_mc(mm);
5983 if (ret)
5984 mem_cgroup_clear_mc();
264a0ae1
TH
5985 } else {
5986 mmput(mm);
7dc74be0
DN
5987 }
5988 return ret;
5989}
5990
1f7dd3e5 5991static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5992{
4e2f245d
JW
5993 if (mc.to)
5994 mem_cgroup_clear_mc();
7dc74be0
DN
5995}
5996
4ffef5fe
DN
5997static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5998 unsigned long addr, unsigned long end,
5999 struct mm_walk *walk)
7dc74be0 6000{
4ffef5fe 6001 int ret = 0;
26bcd64a 6002 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6003 pte_t *pte;
6004 spinlock_t *ptl;
12724850
NH
6005 enum mc_target_type target_type;
6006 union mc_target target;
6007 struct page *page;
4ffef5fe 6008
b6ec57f4
KS
6009 ptl = pmd_trans_huge_lock(pmd, vma);
6010 if (ptl) {
62ade86a 6011 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6012 spin_unlock(ptl);
12724850
NH
6013 return 0;
6014 }
6015 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6016 if (target_type == MC_TARGET_PAGE) {
6017 page = target.page;
6018 if (!isolate_lru_page(page)) {
f627c2f5 6019 if (!mem_cgroup_move_account(page, true,
1306a85a 6020 mc.from, mc.to)) {
12724850
NH
6021 mc.precharge -= HPAGE_PMD_NR;
6022 mc.moved_charge += HPAGE_PMD_NR;
6023 }
6024 putback_lru_page(page);
6025 }
6026 put_page(page);
c733a828
JG
6027 } else if (target_type == MC_TARGET_DEVICE) {
6028 page = target.page;
6029 if (!mem_cgroup_move_account(page, true,
6030 mc.from, mc.to)) {
6031 mc.precharge -= HPAGE_PMD_NR;
6032 mc.moved_charge += HPAGE_PMD_NR;
6033 }
6034 put_page(page);
12724850 6035 }
bf929152 6036 spin_unlock(ptl);
1a5a9906 6037 return 0;
12724850
NH
6038 }
6039
45f83cef
AA
6040 if (pmd_trans_unstable(pmd))
6041 return 0;
4ffef5fe
DN
6042retry:
6043 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6044 for (; addr != end; addr += PAGE_SIZE) {
6045 pte_t ptent = *(pte++);
c733a828 6046 bool device = false;
02491447 6047 swp_entry_t ent;
4ffef5fe
DN
6048
6049 if (!mc.precharge)
6050 break;
6051
8d32ff84 6052 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6053 case MC_TARGET_DEVICE:
6054 device = true;
e4a9bc58 6055 fallthrough;
4ffef5fe
DN
6056 case MC_TARGET_PAGE:
6057 page = target.page;
53f9263b
KS
6058 /*
6059 * We can have a part of the split pmd here. Moving it
6060 * can be done but it would be too convoluted so simply
6061 * ignore such a partial THP and keep it in original
6062 * memcg. There should be somebody mapping the head.
6063 */
6064 if (PageTransCompound(page))
6065 goto put;
c733a828 6066 if (!device && isolate_lru_page(page))
4ffef5fe 6067 goto put;
f627c2f5
KS
6068 if (!mem_cgroup_move_account(page, false,
6069 mc.from, mc.to)) {
4ffef5fe 6070 mc.precharge--;
854ffa8d
DN
6071 /* we uncharge from mc.from later. */
6072 mc.moved_charge++;
4ffef5fe 6073 }
c733a828
JG
6074 if (!device)
6075 putback_lru_page(page);
8d32ff84 6076put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6077 put_page(page);
6078 break;
02491447
DN
6079 case MC_TARGET_SWAP:
6080 ent = target.ent;
e91cbb42 6081 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6082 mc.precharge--;
8d22a935
HD
6083 mem_cgroup_id_get_many(mc.to, 1);
6084 /* we fixup other refcnts and charges later. */
483c30b5
DN
6085 mc.moved_swap++;
6086 }
02491447 6087 break;
4ffef5fe
DN
6088 default:
6089 break;
6090 }
6091 }
6092 pte_unmap_unlock(pte - 1, ptl);
6093 cond_resched();
6094
6095 if (addr != end) {
6096 /*
6097 * We have consumed all precharges we got in can_attach().
6098 * We try charge one by one, but don't do any additional
6099 * charges to mc.to if we have failed in charge once in attach()
6100 * phase.
6101 */
854ffa8d 6102 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6103 if (!ret)
6104 goto retry;
6105 }
6106
6107 return ret;
6108}
6109
7b86ac33
CH
6110static const struct mm_walk_ops charge_walk_ops = {
6111 .pmd_entry = mem_cgroup_move_charge_pte_range,
6112};
6113
264a0ae1 6114static void mem_cgroup_move_charge(void)
4ffef5fe 6115{
4ffef5fe 6116 lru_add_drain_all();
312722cb 6117 /*
81f8c3a4
JW
6118 * Signal lock_page_memcg() to take the memcg's move_lock
6119 * while we're moving its pages to another memcg. Then wait
6120 * for already started RCU-only updates to finish.
312722cb
JW
6121 */
6122 atomic_inc(&mc.from->moving_account);
6123 synchronize_rcu();
dfe076b0 6124retry:
d8ed45c5 6125 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6126 /*
c1e8d7c6 6127 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6128 * waitq. So we cancel all extra charges, wake up all waiters,
6129 * and retry. Because we cancel precharges, we might not be able
6130 * to move enough charges, but moving charge is a best-effort
6131 * feature anyway, so it wouldn't be a big problem.
6132 */
6133 __mem_cgroup_clear_mc();
6134 cond_resched();
6135 goto retry;
6136 }
26bcd64a
NH
6137 /*
6138 * When we have consumed all precharges and failed in doing
6139 * additional charge, the page walk just aborts.
6140 */
7b86ac33
CH
6141 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6142 NULL);
0247f3f4 6143
d8ed45c5 6144 mmap_read_unlock(mc.mm);
312722cb 6145 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6146}
6147
264a0ae1 6148static void mem_cgroup_move_task(void)
67e465a7 6149{
264a0ae1
TH
6150 if (mc.to) {
6151 mem_cgroup_move_charge();
a433658c 6152 mem_cgroup_clear_mc();
264a0ae1 6153 }
67e465a7 6154}
5cfb80a7 6155#else /* !CONFIG_MMU */
1f7dd3e5 6156static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6157{
6158 return 0;
6159}
1f7dd3e5 6160static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6161{
6162}
264a0ae1 6163static void mem_cgroup_move_task(void)
5cfb80a7
DN
6164{
6165}
6166#endif
67e465a7 6167
f00baae7
TH
6168/*
6169 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6170 * to verify whether we're attached to the default hierarchy on each mount
6171 * attempt.
f00baae7 6172 */
eb95419b 6173static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6174{
6175 /*
aa6ec29b 6176 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6177 * guarantees that @root doesn't have any children, so turning it
6178 * on for the root memcg is enough.
6179 */
9e10a130 6180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6181 root_mem_cgroup->use_hierarchy = true;
6182 else
6183 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6184}
6185
677dc973
CD
6186static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6187{
6188 if (value == PAGE_COUNTER_MAX)
6189 seq_puts(m, "max\n");
6190 else
6191 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6192
6193 return 0;
6194}
6195
241994ed
JW
6196static u64 memory_current_read(struct cgroup_subsys_state *css,
6197 struct cftype *cft)
6198{
f5fc3c5d
JW
6199 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6200
6201 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6202}
6203
bf8d5d52
RG
6204static int memory_min_show(struct seq_file *m, void *v)
6205{
677dc973
CD
6206 return seq_puts_memcg_tunable(m,
6207 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6208}
6209
6210static ssize_t memory_min_write(struct kernfs_open_file *of,
6211 char *buf, size_t nbytes, loff_t off)
6212{
6213 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6214 unsigned long min;
6215 int err;
6216
6217 buf = strstrip(buf);
6218 err = page_counter_memparse(buf, "max", &min);
6219 if (err)
6220 return err;
6221
6222 page_counter_set_min(&memcg->memory, min);
6223
6224 return nbytes;
6225}
6226
241994ed
JW
6227static int memory_low_show(struct seq_file *m, void *v)
6228{
677dc973
CD
6229 return seq_puts_memcg_tunable(m,
6230 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6231}
6232
6233static ssize_t memory_low_write(struct kernfs_open_file *of,
6234 char *buf, size_t nbytes, loff_t off)
6235{
6236 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6237 unsigned long low;
6238 int err;
6239
6240 buf = strstrip(buf);
d2973697 6241 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6242 if (err)
6243 return err;
6244
23067153 6245 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6246
6247 return nbytes;
6248}
6249
6250static int memory_high_show(struct seq_file *m, void *v)
6251{
d1663a90
JK
6252 return seq_puts_memcg_tunable(m,
6253 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6254}
6255
6256static ssize_t memory_high_write(struct kernfs_open_file *of,
6257 char *buf, size_t nbytes, loff_t off)
6258{
6259 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6260 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6261 bool drained = false;
241994ed
JW
6262 unsigned long high;
6263 int err;
6264
6265 buf = strstrip(buf);
d2973697 6266 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6267 if (err)
6268 return err;
6269
8c8c383c
JW
6270 for (;;) {
6271 unsigned long nr_pages = page_counter_read(&memcg->memory);
6272 unsigned long reclaimed;
6273
6274 if (nr_pages <= high)
6275 break;
6276
6277 if (signal_pending(current))
6278 break;
6279
6280 if (!drained) {
6281 drain_all_stock(memcg);
6282 drained = true;
6283 continue;
6284 }
6285
6286 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6287 GFP_KERNEL, true);
6288
6289 if (!reclaimed && !nr_retries--)
6290 break;
6291 }
588083bb 6292
536d3bf2
RG
6293 page_counter_set_high(&memcg->memory, high);
6294
19ce33ac
JW
6295 memcg_wb_domain_size_changed(memcg);
6296
241994ed
JW
6297 return nbytes;
6298}
6299
6300static int memory_max_show(struct seq_file *m, void *v)
6301{
677dc973
CD
6302 return seq_puts_memcg_tunable(m,
6303 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6304}
6305
6306static ssize_t memory_max_write(struct kernfs_open_file *of,
6307 char *buf, size_t nbytes, loff_t off)
6308{
6309 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6310 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6311 bool drained = false;
241994ed
JW
6312 unsigned long max;
6313 int err;
6314
6315 buf = strstrip(buf);
d2973697 6316 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6317 if (err)
6318 return err;
6319
bbec2e15 6320 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6321
6322 for (;;) {
6323 unsigned long nr_pages = page_counter_read(&memcg->memory);
6324
6325 if (nr_pages <= max)
6326 break;
6327
7249c9f0 6328 if (signal_pending(current))
b6e6edcf 6329 break;
b6e6edcf
JW
6330
6331 if (!drained) {
6332 drain_all_stock(memcg);
6333 drained = true;
6334 continue;
6335 }
6336
6337 if (nr_reclaims) {
6338 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6339 GFP_KERNEL, true))
6340 nr_reclaims--;
6341 continue;
6342 }
6343
e27be240 6344 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6345 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6346 break;
6347 }
241994ed 6348
2529bb3a 6349 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6350 return nbytes;
6351}
6352
1e577f97
SB
6353static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6354{
6355 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6356 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6357 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6358 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6359 seq_printf(m, "oom_kill %lu\n",
6360 atomic_long_read(&events[MEMCG_OOM_KILL]));
6361}
6362
241994ed
JW
6363static int memory_events_show(struct seq_file *m, void *v)
6364{
aa9694bb 6365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6366
1e577f97
SB
6367 __memory_events_show(m, memcg->memory_events);
6368 return 0;
6369}
6370
6371static int memory_events_local_show(struct seq_file *m, void *v)
6372{
6373 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6374
1e577f97 6375 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6376 return 0;
6377}
6378
587d9f72
JW
6379static int memory_stat_show(struct seq_file *m, void *v)
6380{
aa9694bb 6381 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6382 char *buf;
1ff9e6e1 6383
c8713d0b
JW
6384 buf = memory_stat_format(memcg);
6385 if (!buf)
6386 return -ENOMEM;
6387 seq_puts(m, buf);
6388 kfree(buf);
587d9f72
JW
6389 return 0;
6390}
6391
5f9a4f4a
MS
6392#ifdef CONFIG_NUMA
6393static int memory_numa_stat_show(struct seq_file *m, void *v)
6394{
6395 int i;
6396 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6397
6398 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6399 int nid;
6400
6401 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6402 continue;
6403
6404 seq_printf(m, "%s", memory_stats[i].name);
6405 for_each_node_state(nid, N_MEMORY) {
6406 u64 size;
6407 struct lruvec *lruvec;
6408
6409 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6410 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6411 size *= memory_stats[i].ratio;
6412 seq_printf(m, " N%d=%llu", nid, size);
6413 }
6414 seq_putc(m, '\n');
6415 }
6416
6417 return 0;
6418}
6419#endif
6420
3d8b38eb
RG
6421static int memory_oom_group_show(struct seq_file *m, void *v)
6422{
aa9694bb 6423 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6424
6425 seq_printf(m, "%d\n", memcg->oom_group);
6426
6427 return 0;
6428}
6429
6430static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6431 char *buf, size_t nbytes, loff_t off)
6432{
6433 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6434 int ret, oom_group;
6435
6436 buf = strstrip(buf);
6437 if (!buf)
6438 return -EINVAL;
6439
6440 ret = kstrtoint(buf, 0, &oom_group);
6441 if (ret)
6442 return ret;
6443
6444 if (oom_group != 0 && oom_group != 1)
6445 return -EINVAL;
6446
6447 memcg->oom_group = oom_group;
6448
6449 return nbytes;
6450}
6451
241994ed
JW
6452static struct cftype memory_files[] = {
6453 {
6454 .name = "current",
f5fc3c5d 6455 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6456 .read_u64 = memory_current_read,
6457 },
bf8d5d52
RG
6458 {
6459 .name = "min",
6460 .flags = CFTYPE_NOT_ON_ROOT,
6461 .seq_show = memory_min_show,
6462 .write = memory_min_write,
6463 },
241994ed
JW
6464 {
6465 .name = "low",
6466 .flags = CFTYPE_NOT_ON_ROOT,
6467 .seq_show = memory_low_show,
6468 .write = memory_low_write,
6469 },
6470 {
6471 .name = "high",
6472 .flags = CFTYPE_NOT_ON_ROOT,
6473 .seq_show = memory_high_show,
6474 .write = memory_high_write,
6475 },
6476 {
6477 .name = "max",
6478 .flags = CFTYPE_NOT_ON_ROOT,
6479 .seq_show = memory_max_show,
6480 .write = memory_max_write,
6481 },
6482 {
6483 .name = "events",
6484 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6485 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6486 .seq_show = memory_events_show,
6487 },
1e577f97
SB
6488 {
6489 .name = "events.local",
6490 .flags = CFTYPE_NOT_ON_ROOT,
6491 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6492 .seq_show = memory_events_local_show,
6493 },
587d9f72
JW
6494 {
6495 .name = "stat",
587d9f72
JW
6496 .seq_show = memory_stat_show,
6497 },
5f9a4f4a
MS
6498#ifdef CONFIG_NUMA
6499 {
6500 .name = "numa_stat",
6501 .seq_show = memory_numa_stat_show,
6502 },
6503#endif
3d8b38eb
RG
6504 {
6505 .name = "oom.group",
6506 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6507 .seq_show = memory_oom_group_show,
6508 .write = memory_oom_group_write,
6509 },
241994ed
JW
6510 { } /* terminate */
6511};
6512
073219e9 6513struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6514 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6515 .css_online = mem_cgroup_css_online,
92fb9748 6516 .css_offline = mem_cgroup_css_offline,
6df38689 6517 .css_released = mem_cgroup_css_released,
92fb9748 6518 .css_free = mem_cgroup_css_free,
1ced953b 6519 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6520 .can_attach = mem_cgroup_can_attach,
6521 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6522 .post_attach = mem_cgroup_move_task,
f00baae7 6523 .bind = mem_cgroup_bind,
241994ed
JW
6524 .dfl_cftypes = memory_files,
6525 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6526 .early_init = 0,
8cdea7c0 6527};
c077719b 6528
bc50bcc6
JW
6529/*
6530 * This function calculates an individual cgroup's effective
6531 * protection which is derived from its own memory.min/low, its
6532 * parent's and siblings' settings, as well as the actual memory
6533 * distribution in the tree.
6534 *
6535 * The following rules apply to the effective protection values:
6536 *
6537 * 1. At the first level of reclaim, effective protection is equal to
6538 * the declared protection in memory.min and memory.low.
6539 *
6540 * 2. To enable safe delegation of the protection configuration, at
6541 * subsequent levels the effective protection is capped to the
6542 * parent's effective protection.
6543 *
6544 * 3. To make complex and dynamic subtrees easier to configure, the
6545 * user is allowed to overcommit the declared protection at a given
6546 * level. If that is the case, the parent's effective protection is
6547 * distributed to the children in proportion to how much protection
6548 * they have declared and how much of it they are utilizing.
6549 *
6550 * This makes distribution proportional, but also work-conserving:
6551 * if one cgroup claims much more protection than it uses memory,
6552 * the unused remainder is available to its siblings.
6553 *
6554 * 4. Conversely, when the declared protection is undercommitted at a
6555 * given level, the distribution of the larger parental protection
6556 * budget is NOT proportional. A cgroup's protection from a sibling
6557 * is capped to its own memory.min/low setting.
6558 *
8a931f80
JW
6559 * 5. However, to allow protecting recursive subtrees from each other
6560 * without having to declare each individual cgroup's fixed share
6561 * of the ancestor's claim to protection, any unutilized -
6562 * "floating" - protection from up the tree is distributed in
6563 * proportion to each cgroup's *usage*. This makes the protection
6564 * neutral wrt sibling cgroups and lets them compete freely over
6565 * the shared parental protection budget, but it protects the
6566 * subtree as a whole from neighboring subtrees.
6567 *
6568 * Note that 4. and 5. are not in conflict: 4. is about protecting
6569 * against immediate siblings whereas 5. is about protecting against
6570 * neighboring subtrees.
bc50bcc6
JW
6571 */
6572static unsigned long effective_protection(unsigned long usage,
8a931f80 6573 unsigned long parent_usage,
bc50bcc6
JW
6574 unsigned long setting,
6575 unsigned long parent_effective,
6576 unsigned long siblings_protected)
6577{
6578 unsigned long protected;
8a931f80 6579 unsigned long ep;
bc50bcc6
JW
6580
6581 protected = min(usage, setting);
6582 /*
6583 * If all cgroups at this level combined claim and use more
6584 * protection then what the parent affords them, distribute
6585 * shares in proportion to utilization.
6586 *
6587 * We are using actual utilization rather than the statically
6588 * claimed protection in order to be work-conserving: claimed
6589 * but unused protection is available to siblings that would
6590 * otherwise get a smaller chunk than what they claimed.
6591 */
6592 if (siblings_protected > parent_effective)
6593 return protected * parent_effective / siblings_protected;
6594
6595 /*
6596 * Ok, utilized protection of all children is within what the
6597 * parent affords them, so we know whatever this child claims
6598 * and utilizes is effectively protected.
6599 *
6600 * If there is unprotected usage beyond this value, reclaim
6601 * will apply pressure in proportion to that amount.
6602 *
6603 * If there is unutilized protection, the cgroup will be fully
6604 * shielded from reclaim, but we do return a smaller value for
6605 * protection than what the group could enjoy in theory. This
6606 * is okay. With the overcommit distribution above, effective
6607 * protection is always dependent on how memory is actually
6608 * consumed among the siblings anyway.
6609 */
8a931f80
JW
6610 ep = protected;
6611
6612 /*
6613 * If the children aren't claiming (all of) the protection
6614 * afforded to them by the parent, distribute the remainder in
6615 * proportion to the (unprotected) memory of each cgroup. That
6616 * way, cgroups that aren't explicitly prioritized wrt each
6617 * other compete freely over the allowance, but they are
6618 * collectively protected from neighboring trees.
6619 *
6620 * We're using unprotected memory for the weight so that if
6621 * some cgroups DO claim explicit protection, we don't protect
6622 * the same bytes twice.
cd324edc
JW
6623 *
6624 * Check both usage and parent_usage against the respective
6625 * protected values. One should imply the other, but they
6626 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6627 */
6628 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6629 return ep;
cd324edc
JW
6630 if (parent_effective > siblings_protected &&
6631 parent_usage > siblings_protected &&
6632 usage > protected) {
8a931f80
JW
6633 unsigned long unclaimed;
6634
6635 unclaimed = parent_effective - siblings_protected;
6636 unclaimed *= usage - protected;
6637 unclaimed /= parent_usage - siblings_protected;
6638
6639 ep += unclaimed;
6640 }
6641
6642 return ep;
bc50bcc6
JW
6643}
6644
241994ed 6645/**
bf8d5d52 6646 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6647 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6648 * @memcg: the memory cgroup to check
6649 *
23067153
RG
6650 * WARNING: This function is not stateless! It can only be used as part
6651 * of a top-down tree iteration, not for isolated queries.
241994ed 6652 */
45c7f7e1
CD
6653void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6654 struct mem_cgroup *memcg)
241994ed 6655{
8a931f80 6656 unsigned long usage, parent_usage;
23067153
RG
6657 struct mem_cgroup *parent;
6658
241994ed 6659 if (mem_cgroup_disabled())
45c7f7e1 6660 return;
241994ed 6661
34c81057
SC
6662 if (!root)
6663 root = root_mem_cgroup;
22f7496f
YS
6664
6665 /*
6666 * Effective values of the reclaim targets are ignored so they
6667 * can be stale. Have a look at mem_cgroup_protection for more
6668 * details.
6669 * TODO: calculation should be more robust so that we do not need
6670 * that special casing.
6671 */
34c81057 6672 if (memcg == root)
45c7f7e1 6673 return;
241994ed 6674
23067153 6675 usage = page_counter_read(&memcg->memory);
bf8d5d52 6676 if (!usage)
45c7f7e1 6677 return;
bf8d5d52 6678
bf8d5d52 6679 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6680 /* No parent means a non-hierarchical mode on v1 memcg */
6681 if (!parent)
45c7f7e1 6682 return;
df2a4196 6683
bc50bcc6 6684 if (parent == root) {
c3d53200 6685 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6686 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6687 return;
bf8d5d52
RG
6688 }
6689
8a931f80
JW
6690 parent_usage = page_counter_read(&parent->memory);
6691
b3a7822e 6692 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6693 READ_ONCE(memcg->memory.min),
6694 READ_ONCE(parent->memory.emin),
b3a7822e 6695 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6696
b3a7822e 6697 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6698 READ_ONCE(memcg->memory.low),
6699 READ_ONCE(parent->memory.elow),
b3a7822e 6700 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6701}
6702
00501b53 6703/**
f0e45fb4 6704 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6705 * @page: page to charge
6706 * @mm: mm context of the victim
6707 * @gfp_mask: reclaim mode
00501b53
JW
6708 *
6709 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6710 * pages according to @gfp_mask if necessary.
6711 *
f0e45fb4 6712 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6713 */
d9eb1ea2 6714int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6715{
6c357848 6716 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6717 struct mem_cgroup *memcg = NULL;
00501b53
JW
6718 int ret = 0;
6719
6720 if (mem_cgroup_disabled())
6721 goto out;
6722
6723 if (PageSwapCache(page)) {
2d1c4980
JW
6724 swp_entry_t ent = { .val = page_private(page), };
6725 unsigned short id;
6726
00501b53
JW
6727 /*
6728 * Every swap fault against a single page tries to charge the
6729 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6730 * already charged pages, too. page->mem_cgroup is protected
6731 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6732 * in turn serializes uncharging.
6733 */
e993d905 6734 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6735 if (compound_head(page)->mem_cgroup)
00501b53 6736 goto out;
e993d905 6737
2d1c4980
JW
6738 id = lookup_swap_cgroup_id(ent);
6739 rcu_read_lock();
6740 memcg = mem_cgroup_from_id(id);
6741 if (memcg && !css_tryget_online(&memcg->css))
6742 memcg = NULL;
6743 rcu_read_unlock();
00501b53
JW
6744 }
6745
00501b53
JW
6746 if (!memcg)
6747 memcg = get_mem_cgroup_from_mm(mm);
6748
6749 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6750 if (ret)
6751 goto out_put;
00501b53 6752
1a3e1f40 6753 css_get(&memcg->css);
d9eb1ea2 6754 commit_charge(page, memcg);
6abb5a86 6755
6abb5a86 6756 local_irq_disable();
3fba69a5 6757 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6758 memcg_check_events(memcg, page);
6759 local_irq_enable();
00501b53 6760
2d1c4980 6761 if (PageSwapCache(page)) {
00501b53
JW
6762 swp_entry_t entry = { .val = page_private(page) };
6763 /*
6764 * The swap entry might not get freed for a long time,
6765 * let's not wait for it. The page already received a
6766 * memory+swap charge, drop the swap entry duplicate.
6767 */
38d8b4e6 6768 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6769 }
00501b53 6770
f0e45fb4
JW
6771out_put:
6772 css_put(&memcg->css);
6773out:
6774 return ret;
3fea5a49
JW
6775}
6776
a9d5adee
JG
6777struct uncharge_gather {
6778 struct mem_cgroup *memcg;
9f762dbe 6779 unsigned long nr_pages;
a9d5adee 6780 unsigned long pgpgout;
a9d5adee 6781 unsigned long nr_kmem;
a9d5adee
JG
6782 struct page *dummy_page;
6783};
6784
6785static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6786{
a9d5adee
JG
6787 memset(ug, 0, sizeof(*ug));
6788}
6789
6790static void uncharge_batch(const struct uncharge_gather *ug)
6791{
747db954
JW
6792 unsigned long flags;
6793
a9d5adee 6794 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6795 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6796 if (do_memsw_account())
9f762dbe 6797 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6798 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6799 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6800 memcg_oom_recover(ug->memcg);
ce00a967 6801 }
747db954
JW
6802
6803 local_irq_save(flags);
c9019e9b 6804 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6805 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6806 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6807 local_irq_restore(flags);
f1796544
MH
6808
6809 /* drop reference from uncharge_page */
6810 css_put(&ug->memcg->css);
a9d5adee
JG
6811}
6812
6813static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6814{
9f762dbe
JW
6815 unsigned long nr_pages;
6816
a9d5adee 6817 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6818
6819 if (!page->mem_cgroup)
6820 return;
6821
6822 /*
6823 * Nobody should be changing or seriously looking at
6824 * page->mem_cgroup at this point, we have fully
6825 * exclusive access to the page.
6826 */
6827
6828 if (ug->memcg != page->mem_cgroup) {
6829 if (ug->memcg) {
6830 uncharge_batch(ug);
6831 uncharge_gather_clear(ug);
6832 }
6833 ug->memcg = page->mem_cgroup;
f1796544
MH
6834
6835 /* pairs with css_put in uncharge_batch */
6836 css_get(&ug->memcg->css);
a9d5adee
JG
6837 }
6838
9f762dbe
JW
6839 nr_pages = compound_nr(page);
6840 ug->nr_pages += nr_pages;
a9d5adee 6841
9f762dbe 6842 if (!PageKmemcg(page)) {
a9d5adee
JG
6843 ug->pgpgout++;
6844 } else {
9f762dbe 6845 ug->nr_kmem += nr_pages;
a9d5adee
JG
6846 __ClearPageKmemcg(page);
6847 }
6848
6849 ug->dummy_page = page;
6850 page->mem_cgroup = NULL;
1a3e1f40 6851 css_put(&ug->memcg->css);
747db954
JW
6852}
6853
6854static void uncharge_list(struct list_head *page_list)
6855{
a9d5adee 6856 struct uncharge_gather ug;
747db954 6857 struct list_head *next;
a9d5adee
JG
6858
6859 uncharge_gather_clear(&ug);
747db954 6860
8b592656
JW
6861 /*
6862 * Note that the list can be a single page->lru; hence the
6863 * do-while loop instead of a simple list_for_each_entry().
6864 */
747db954
JW
6865 next = page_list->next;
6866 do {
a9d5adee
JG
6867 struct page *page;
6868
747db954
JW
6869 page = list_entry(next, struct page, lru);
6870 next = page->lru.next;
6871
a9d5adee 6872 uncharge_page(page, &ug);
747db954
JW
6873 } while (next != page_list);
6874
a9d5adee
JG
6875 if (ug.memcg)
6876 uncharge_batch(&ug);
747db954
JW
6877}
6878
0a31bc97
JW
6879/**
6880 * mem_cgroup_uncharge - uncharge a page
6881 * @page: page to uncharge
6882 *
f0e45fb4 6883 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6884 */
6885void mem_cgroup_uncharge(struct page *page)
6886{
a9d5adee
JG
6887 struct uncharge_gather ug;
6888
0a31bc97
JW
6889 if (mem_cgroup_disabled())
6890 return;
6891
747db954 6892 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6893 if (!page->mem_cgroup)
0a31bc97
JW
6894 return;
6895
a9d5adee
JG
6896 uncharge_gather_clear(&ug);
6897 uncharge_page(page, &ug);
6898 uncharge_batch(&ug);
747db954 6899}
0a31bc97 6900
747db954
JW
6901/**
6902 * mem_cgroup_uncharge_list - uncharge a list of page
6903 * @page_list: list of pages to uncharge
6904 *
6905 * Uncharge a list of pages previously charged with
f0e45fb4 6906 * mem_cgroup_charge().
747db954
JW
6907 */
6908void mem_cgroup_uncharge_list(struct list_head *page_list)
6909{
6910 if (mem_cgroup_disabled())
6911 return;
0a31bc97 6912
747db954
JW
6913 if (!list_empty(page_list))
6914 uncharge_list(page_list);
0a31bc97
JW
6915}
6916
6917/**
6a93ca8f
JW
6918 * mem_cgroup_migrate - charge a page's replacement
6919 * @oldpage: currently circulating page
6920 * @newpage: replacement page
0a31bc97 6921 *
6a93ca8f
JW
6922 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6923 * be uncharged upon free.
0a31bc97
JW
6924 *
6925 * Both pages must be locked, @newpage->mapping must be set up.
6926 */
6a93ca8f 6927void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6928{
29833315 6929 struct mem_cgroup *memcg;
44b7a8d3 6930 unsigned int nr_pages;
d93c4130 6931 unsigned long flags;
0a31bc97
JW
6932
6933 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6934 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6935 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6936 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6937 newpage);
0a31bc97
JW
6938
6939 if (mem_cgroup_disabled())
6940 return;
6941
6942 /* Page cache replacement: new page already charged? */
1306a85a 6943 if (newpage->mem_cgroup)
0a31bc97
JW
6944 return;
6945
45637bab 6946 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6947 memcg = oldpage->mem_cgroup;
29833315 6948 if (!memcg)
0a31bc97
JW
6949 return;
6950
44b7a8d3 6951 /* Force-charge the new page. The old one will be freed soon */
6c357848 6952 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6953
6954 page_counter_charge(&memcg->memory, nr_pages);
6955 if (do_memsw_account())
6956 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6957
1a3e1f40 6958 css_get(&memcg->css);
d9eb1ea2 6959 commit_charge(newpage, memcg);
44b7a8d3 6960
d93c4130 6961 local_irq_save(flags);
3fba69a5 6962 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6963 memcg_check_events(memcg, newpage);
d93c4130 6964 local_irq_restore(flags);
0a31bc97
JW
6965}
6966
ef12947c 6967DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6968EXPORT_SYMBOL(memcg_sockets_enabled_key);
6969
2d758073 6970void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6971{
6972 struct mem_cgroup *memcg;
6973
2d758073
JW
6974 if (!mem_cgroup_sockets_enabled)
6975 return;
6976
e876ecc6
SB
6977 /* Do not associate the sock with unrelated interrupted task's memcg. */
6978 if (in_interrupt())
6979 return;
6980
11092087
JW
6981 rcu_read_lock();
6982 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6983 if (memcg == root_mem_cgroup)
6984 goto out;
0db15298 6985 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6986 goto out;
8965aa28 6987 if (css_tryget(&memcg->css))
11092087 6988 sk->sk_memcg = memcg;
f7e1cb6e 6989out:
11092087
JW
6990 rcu_read_unlock();
6991}
11092087 6992
2d758073 6993void mem_cgroup_sk_free(struct sock *sk)
11092087 6994{
2d758073
JW
6995 if (sk->sk_memcg)
6996 css_put(&sk->sk_memcg->css);
11092087
JW
6997}
6998
6999/**
7000 * mem_cgroup_charge_skmem - charge socket memory
7001 * @memcg: memcg to charge
7002 * @nr_pages: number of pages to charge
7003 *
7004 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7005 * @memcg's configured limit, %false if the charge had to be forced.
7006 */
7007bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7008{
f7e1cb6e 7009 gfp_t gfp_mask = GFP_KERNEL;
11092087 7010
f7e1cb6e 7011 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7012 struct page_counter *fail;
f7e1cb6e 7013
0db15298
JW
7014 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7015 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7016 return true;
7017 }
0db15298
JW
7018 page_counter_charge(&memcg->tcpmem, nr_pages);
7019 memcg->tcpmem_pressure = 1;
f7e1cb6e 7020 return false;
11092087 7021 }
d886f4e4 7022
f7e1cb6e
JW
7023 /* Don't block in the packet receive path */
7024 if (in_softirq())
7025 gfp_mask = GFP_NOWAIT;
7026
c9019e9b 7027 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7028
f7e1cb6e
JW
7029 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7030 return true;
7031
7032 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7033 return false;
7034}
7035
7036/**
7037 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7038 * @memcg: memcg to uncharge
7039 * @nr_pages: number of pages to uncharge
11092087
JW
7040 */
7041void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7042{
f7e1cb6e 7043 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7044 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7045 return;
7046 }
d886f4e4 7047
c9019e9b 7048 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7049
475d0487 7050 refill_stock(memcg, nr_pages);
11092087
JW
7051}
7052
f7e1cb6e
JW
7053static int __init cgroup_memory(char *s)
7054{
7055 char *token;
7056
7057 while ((token = strsep(&s, ",")) != NULL) {
7058 if (!*token)
7059 continue;
7060 if (!strcmp(token, "nosocket"))
7061 cgroup_memory_nosocket = true;
04823c83
VD
7062 if (!strcmp(token, "nokmem"))
7063 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7064 }
7065 return 0;
7066}
7067__setup("cgroup.memory=", cgroup_memory);
11092087 7068
2d11085e 7069/*
1081312f
MH
7070 * subsys_initcall() for memory controller.
7071 *
308167fc
SAS
7072 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7073 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7074 * basically everything that doesn't depend on a specific mem_cgroup structure
7075 * should be initialized from here.
2d11085e
MH
7076 */
7077static int __init mem_cgroup_init(void)
7078{
95a045f6
JW
7079 int cpu, node;
7080
308167fc
SAS
7081 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7082 memcg_hotplug_cpu_dead);
95a045f6
JW
7083
7084 for_each_possible_cpu(cpu)
7085 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7086 drain_local_stock);
7087
7088 for_each_node(node) {
7089 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7090
7091 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7092 node_online(node) ? node : NUMA_NO_NODE);
7093
ef8f2327 7094 rtpn->rb_root = RB_ROOT;
fa90b2fd 7095 rtpn->rb_rightmost = NULL;
ef8f2327 7096 spin_lock_init(&rtpn->lock);
95a045f6
JW
7097 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7098 }
7099
2d11085e
MH
7100 return 0;
7101}
7102subsys_initcall(mem_cgroup_init);
21afa38e
JW
7103
7104#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7105static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7106{
1c2d479a 7107 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7108 /*
7109 * The root cgroup cannot be destroyed, so it's refcount must
7110 * always be >= 1.
7111 */
7112 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7113 VM_BUG_ON(1);
7114 break;
7115 }
7116 memcg = parent_mem_cgroup(memcg);
7117 if (!memcg)
7118 memcg = root_mem_cgroup;
7119 }
7120 return memcg;
7121}
7122
21afa38e
JW
7123/**
7124 * mem_cgroup_swapout - transfer a memsw charge to swap
7125 * @page: page whose memsw charge to transfer
7126 * @entry: swap entry to move the charge to
7127 *
7128 * Transfer the memsw charge of @page to @entry.
7129 */
7130void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7131{
1f47b61f 7132 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7133 unsigned int nr_entries;
21afa38e
JW
7134 unsigned short oldid;
7135
7136 VM_BUG_ON_PAGE(PageLRU(page), page);
7137 VM_BUG_ON_PAGE(page_count(page), page);
7138
2d1c4980 7139 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7140 return;
7141
7142 memcg = page->mem_cgroup;
7143
7144 /* Readahead page, never charged */
7145 if (!memcg)
7146 return;
7147
1f47b61f
VD
7148 /*
7149 * In case the memcg owning these pages has been offlined and doesn't
7150 * have an ID allocated to it anymore, charge the closest online
7151 * ancestor for the swap instead and transfer the memory+swap charge.
7152 */
7153 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7154 nr_entries = thp_nr_pages(page);
d6810d73
HY
7155 /* Get references for the tail pages, too */
7156 if (nr_entries > 1)
7157 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7158 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7159 nr_entries);
21afa38e 7160 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7161 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7162
7163 page->mem_cgroup = NULL;
7164
7165 if (!mem_cgroup_is_root(memcg))
d6810d73 7166 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7167
2d1c4980 7168 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7169 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7170 page_counter_charge(&swap_memcg->memsw, nr_entries);
7171 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7172 }
7173
ce9ce665
SAS
7174 /*
7175 * Interrupts should be disabled here because the caller holds the
b93b0163 7176 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7177 * important here to have the interrupts disabled because it is the
b93b0163 7178 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7179 */
7180 VM_BUG_ON(!irqs_disabled());
3fba69a5 7181 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7182 memcg_check_events(memcg, page);
73f576c0 7183
1a3e1f40 7184 css_put(&memcg->css);
21afa38e
JW
7185}
7186
38d8b4e6
HY
7187/**
7188 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7189 * @page: page being added to swap
7190 * @entry: swap entry to charge
7191 *
38d8b4e6 7192 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7193 *
7194 * Returns 0 on success, -ENOMEM on failure.
7195 */
7196int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7197{
6c357848 7198 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7199 struct page_counter *counter;
38d8b4e6 7200 struct mem_cgroup *memcg;
37e84351
VD
7201 unsigned short oldid;
7202
2d1c4980 7203 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7204 return 0;
7205
7206 memcg = page->mem_cgroup;
7207
7208 /* Readahead page, never charged */
7209 if (!memcg)
7210 return 0;
7211
f3a53a3a
TH
7212 if (!entry.val) {
7213 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7214 return 0;
f3a53a3a 7215 }
bb98f2c5 7216
1f47b61f
VD
7217 memcg = mem_cgroup_id_get_online(memcg);
7218
2d1c4980 7219 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7220 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7221 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7222 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7223 mem_cgroup_id_put(memcg);
37e84351 7224 return -ENOMEM;
1f47b61f 7225 }
37e84351 7226
38d8b4e6
HY
7227 /* Get references for the tail pages, too */
7228 if (nr_pages > 1)
7229 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7230 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7231 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7232 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7233
37e84351
VD
7234 return 0;
7235}
7236
21afa38e 7237/**
38d8b4e6 7238 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7239 * @entry: swap entry to uncharge
38d8b4e6 7240 * @nr_pages: the amount of swap space to uncharge
21afa38e 7241 */
38d8b4e6 7242void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7243{
7244 struct mem_cgroup *memcg;
7245 unsigned short id;
7246
38d8b4e6 7247 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7248 rcu_read_lock();
adbe427b 7249 memcg = mem_cgroup_from_id(id);
21afa38e 7250 if (memcg) {
2d1c4980 7251 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7252 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7253 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7254 else
38d8b4e6 7255 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7256 }
c9019e9b 7257 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7258 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7259 }
7260 rcu_read_unlock();
7261}
7262
d8b38438
VD
7263long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7264{
7265 long nr_swap_pages = get_nr_swap_pages();
7266
eccb52e7 7267 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7268 return nr_swap_pages;
7269 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7270 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7271 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7272 page_counter_read(&memcg->swap));
7273 return nr_swap_pages;
7274}
7275
5ccc5aba
VD
7276bool mem_cgroup_swap_full(struct page *page)
7277{
7278 struct mem_cgroup *memcg;
7279
7280 VM_BUG_ON_PAGE(!PageLocked(page), page);
7281
7282 if (vm_swap_full())
7283 return true;
eccb52e7 7284 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7285 return false;
7286
7287 memcg = page->mem_cgroup;
7288 if (!memcg)
7289 return false;
7290
4b82ab4f
JK
7291 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7292 unsigned long usage = page_counter_read(&memcg->swap);
7293
7294 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7295 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7296 return true;
4b82ab4f 7297 }
5ccc5aba
VD
7298
7299 return false;
7300}
7301
eccb52e7 7302static int __init setup_swap_account(char *s)
21afa38e
JW
7303{
7304 if (!strcmp(s, "1"))
eccb52e7 7305 cgroup_memory_noswap = 0;
21afa38e 7306 else if (!strcmp(s, "0"))
eccb52e7 7307 cgroup_memory_noswap = 1;
21afa38e
JW
7308 return 1;
7309}
eccb52e7 7310__setup("swapaccount=", setup_swap_account);
21afa38e 7311
37e84351
VD
7312static u64 swap_current_read(struct cgroup_subsys_state *css,
7313 struct cftype *cft)
7314{
7315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7316
7317 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7318}
7319
4b82ab4f
JK
7320static int swap_high_show(struct seq_file *m, void *v)
7321{
7322 return seq_puts_memcg_tunable(m,
7323 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7324}
7325
7326static ssize_t swap_high_write(struct kernfs_open_file *of,
7327 char *buf, size_t nbytes, loff_t off)
7328{
7329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7330 unsigned long high;
7331 int err;
7332
7333 buf = strstrip(buf);
7334 err = page_counter_memparse(buf, "max", &high);
7335 if (err)
7336 return err;
7337
7338 page_counter_set_high(&memcg->swap, high);
7339
7340 return nbytes;
7341}
7342
37e84351
VD
7343static int swap_max_show(struct seq_file *m, void *v)
7344{
677dc973
CD
7345 return seq_puts_memcg_tunable(m,
7346 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7347}
7348
7349static ssize_t swap_max_write(struct kernfs_open_file *of,
7350 char *buf, size_t nbytes, loff_t off)
7351{
7352 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7353 unsigned long max;
7354 int err;
7355
7356 buf = strstrip(buf);
7357 err = page_counter_memparse(buf, "max", &max);
7358 if (err)
7359 return err;
7360
be09102b 7361 xchg(&memcg->swap.max, max);
37e84351
VD
7362
7363 return nbytes;
7364}
7365
f3a53a3a
TH
7366static int swap_events_show(struct seq_file *m, void *v)
7367{
aa9694bb 7368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7369
4b82ab4f
JK
7370 seq_printf(m, "high %lu\n",
7371 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7372 seq_printf(m, "max %lu\n",
7373 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7374 seq_printf(m, "fail %lu\n",
7375 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7376
7377 return 0;
7378}
7379
37e84351
VD
7380static struct cftype swap_files[] = {
7381 {
7382 .name = "swap.current",
7383 .flags = CFTYPE_NOT_ON_ROOT,
7384 .read_u64 = swap_current_read,
7385 },
4b82ab4f
JK
7386 {
7387 .name = "swap.high",
7388 .flags = CFTYPE_NOT_ON_ROOT,
7389 .seq_show = swap_high_show,
7390 .write = swap_high_write,
7391 },
37e84351
VD
7392 {
7393 .name = "swap.max",
7394 .flags = CFTYPE_NOT_ON_ROOT,
7395 .seq_show = swap_max_show,
7396 .write = swap_max_write,
7397 },
f3a53a3a
TH
7398 {
7399 .name = "swap.events",
7400 .flags = CFTYPE_NOT_ON_ROOT,
7401 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7402 .seq_show = swap_events_show,
7403 },
37e84351
VD
7404 { } /* terminate */
7405};
7406
eccb52e7 7407static struct cftype memsw_files[] = {
21afa38e
JW
7408 {
7409 .name = "memsw.usage_in_bytes",
7410 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7411 .read_u64 = mem_cgroup_read_u64,
7412 },
7413 {
7414 .name = "memsw.max_usage_in_bytes",
7415 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7416 .write = mem_cgroup_reset,
7417 .read_u64 = mem_cgroup_read_u64,
7418 },
7419 {
7420 .name = "memsw.limit_in_bytes",
7421 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7422 .write = mem_cgroup_write,
7423 .read_u64 = mem_cgroup_read_u64,
7424 },
7425 {
7426 .name = "memsw.failcnt",
7427 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7428 .write = mem_cgroup_reset,
7429 .read_u64 = mem_cgroup_read_u64,
7430 },
7431 { }, /* terminate */
7432};
7433
82ff165c
BS
7434/*
7435 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7436 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7437 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7438 * boot parameter. This may result in premature OOPS inside
7439 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7440 */
21afa38e
JW
7441static int __init mem_cgroup_swap_init(void)
7442{
2d1c4980
JW
7443 /* No memory control -> no swap control */
7444 if (mem_cgroup_disabled())
7445 cgroup_memory_noswap = true;
7446
7447 if (cgroup_memory_noswap)
eccb52e7
JW
7448 return 0;
7449
7450 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7451 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7452
21afa38e
JW
7453 return 0;
7454}
82ff165c 7455core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7456
7457#endif /* CONFIG_MEMCG_SWAP */