]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
fs: fsnotify: account fsnotify metadata to kmemcg
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
7ffc0edc
MH
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
127424c8 254#ifndef CONFIG_SLOB
55007d84 255/*
f7ce3190 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
55007d84 262 *
dbcf73e2
VD
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
55007d84 265 */
dbcf73e2
VD
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
749c5415 268
05257a1a
VD
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
55007d84
GC
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
b8627835 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
b8627835 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 296
d7f25f8a
GC
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
ef12947c 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 305
17cc4dfe
TH
306struct workqueue_struct *memcg_kmem_cache_wq;
307
127424c8 308#endif /* !CONFIG_SLOB */
a8964b9b 309
ad7fa852
TH
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
ad7fa852
TH
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
ad7fa852
TH
325 memcg = page->mem_cgroup;
326
9e10a130 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
328 memcg = root_mem_cgroup;
329
ad7fa852
TH
330 return &memcg->css;
331}
332
2fc04524
VD
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
ef8f2327
MG
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 363{
97a6c37b 364 int nid = page_to_nid(page);
f64c3f54 365
ef8f2327 366 return memcg->nodeinfo[nid];
f64c3f54
BS
367}
368
ef8f2327
MG
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
bb4cc1a8 371{
ef8f2327 372 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
373}
374
ef8f2327 375static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
bb4cc1a8 379
ef8f2327 380 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
381}
382
ef8f2327
MG
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 385 unsigned long new_usage_in_excess)
bb4cc1a8
AM
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
ef8f2327 389 struct mem_cgroup_per_node *mz_node;
fa90b2fd 390 bool rightmost = true;
bb4cc1a8
AM
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
ef8f2327 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 401 tree_node);
fa90b2fd 402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 403 p = &(*p)->rb_left;
fa90b2fd
DB
404 rightmost = false;
405 }
406
bb4cc1a8
AM
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
fa90b2fd
DB
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
bb4cc1a8
AM
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
ef8f2327
MG
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
425{
426 if (!mz->on_tree)
427 return;
fa90b2fd
DB
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
bb4cc1a8
AM
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
465 if (!mctz)
466 return;
bb4cc1a8
AM
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 472 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 473 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
0a31bc97
JW
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
482 /* if on-tree, remove it */
483 if (mz->on_tree)
cf2c8127 484 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
cf2c8127 489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 490 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
ef8f2327
MG
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
bb4cc1a8 500
e231875b 501 for_each_node(nid) {
ef8f2327
MG
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 511{
ef8f2327 512 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
513
514retry:
515 mz = NULL;
fa90b2fd 516 if (!mctz->rb_rightmost)
bb4cc1a8
AM
517 goto done; /* Nothing to reclaim from */
518
fa90b2fd
DB
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
cf2c8127 526 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 527 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 528 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
529 goto retry;
530done:
531 return mz;
532}
533
ef8f2327
MG
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 536{
ef8f2327 537 struct mem_cgroup_per_node *mz;
bb4cc1a8 538
0a31bc97 539 spin_lock_irq(&mctz->lock);
bb4cc1a8 540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 541 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
542 return mz;
543}
544
ccda7f43 545static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 546 int event)
e9f8974f 547{
a983b5eb 548 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
549}
550
c0ff4b85 551static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 552 struct page *page,
f627c2f5 553 bool compound, int nr_pages)
d52aa412 554{
b2402857
KH
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
0a31bc97 559 if (PageAnon(page))
c9019e9b 560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 561 else {
c9019e9b 562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 563 if (PageSwapBacked(page))
c9019e9b 564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 565 }
55e462b0 566
f627c2f5
KS
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 570 }
b070e65c 571
e401f176
KH
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
c9019e9b 574 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 575 else {
c9019e9b 576 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
577 nr_pages = -nr_pages; /* for event */
578 }
e401f176 579
a983b5eb 580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
581}
582
0a6b76dd
VD
583unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
bb2a0de9 585{
b4536f0c 586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 587 unsigned long nr = 0;
ef8f2327 588 enum lru_list lru;
889976db 589
e231875b 590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 591
ef8f2327
MG
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
b4536f0c 595 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
596 }
597 return nr;
889976db 598}
bb2a0de9 599
c0ff4b85 600static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 601 unsigned int lru_mask)
6d12e2d8 602{
e231875b 603 unsigned long nr = 0;
889976db 604 int nid;
6d12e2d8 605
31aaea4a 606 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
d52aa412
KH
609}
610
f53d7ce3
JW
611static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
7a159cc9
JW
613{
614 unsigned long val, next;
615
a983b5eb
JW
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 618 /* from time_after() in jiffies.h */
6a1a8b80 619 if ((long)(next - val) < 0) {
f53d7ce3
JW
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
bb4cc1a8
AM
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
f53d7ce3
JW
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
a983b5eb 633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 634 return true;
7a159cc9 635 }
f53d7ce3 636 return false;
d2265e6f
KH
637}
638
639/*
640 * Check events in order.
641 *
642 */
c0ff4b85 643static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
644{
645 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 648 bool do_softlimit;
82b3f2a7 649 bool do_numainfo __maybe_unused;
f53d7ce3 650
bb4cc1a8
AM
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
653#if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656#endif
c0ff4b85 657 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
453a9bf3 660#if MAX_NUMNODES > 1
f53d7ce3 661 if (unlikely(do_numainfo))
c0ff4b85 662 atomic_inc(&memcg->numainfo_events);
453a9bf3 663#endif
0a31bc97 664 }
d2265e6f
KH
665}
666
cf475ad2 667struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 668{
31a78f23
BS
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
073219e9 677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 678}
33398cf2 679EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 680
d46eb14b
SB
681/**
682 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
683 * @mm: mm from which memcg should be extracted. It can be NULL.
684 *
685 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
686 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
687 * returned.
688 */
689struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 690{
d46eb14b
SB
691 struct mem_cgroup *memcg;
692
693 if (mem_cgroup_disabled())
694 return NULL;
0b7f569e 695
54595fe2
KH
696 rcu_read_lock();
697 do {
6f6acb00
MH
698 /*
699 * Page cache insertions can happen withou an
700 * actual mm context, e.g. during disk probing
701 * on boot, loopback IO, acct() writes etc.
702 */
703 if (unlikely(!mm))
df381975 704 memcg = root_mem_cgroup;
6f6acb00
MH
705 else {
706 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
707 if (unlikely(!memcg))
708 memcg = root_mem_cgroup;
709 }
ec903c0c 710 } while (!css_tryget_online(&memcg->css));
54595fe2 711 rcu_read_unlock();
c0ff4b85 712 return memcg;
54595fe2 713}
d46eb14b
SB
714EXPORT_SYMBOL(get_mem_cgroup_from_mm);
715
716/**
717 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
718 */
719static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
720{
721 if (unlikely(current->active_memcg)) {
722 struct mem_cgroup *memcg = root_mem_cgroup;
723
724 rcu_read_lock();
725 if (css_tryget_online(&current->active_memcg->css))
726 memcg = current->active_memcg;
727 rcu_read_unlock();
728 return memcg;
729 }
730 return get_mem_cgroup_from_mm(current->mm);
731}
54595fe2 732
5660048c
JW
733/**
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
738 *
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
741 *
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
745 *
b213b54f 746 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 747 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 748 * reclaimers operating on the same node and priority.
5660048c 749 */
694fbc0f 750struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 751 struct mem_cgroup *prev,
694fbc0f 752 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 753{
33398cf2 754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 755 struct cgroup_subsys_state *css = NULL;
9f3a0d09 756 struct mem_cgroup *memcg = NULL;
5ac8fb31 757 struct mem_cgroup *pos = NULL;
711d3d2c 758
694fbc0f
AM
759 if (mem_cgroup_disabled())
760 return NULL;
5660048c 761
9f3a0d09
JW
762 if (!root)
763 root = root_mem_cgroup;
7d74b06f 764
9f3a0d09 765 if (prev && !reclaim)
5ac8fb31 766 pos = prev;
14067bb3 767
9f3a0d09
JW
768 if (!root->use_hierarchy && root != root_mem_cgroup) {
769 if (prev)
5ac8fb31 770 goto out;
694fbc0f 771 return root;
9f3a0d09 772 }
14067bb3 773
542f85f9 774 rcu_read_lock();
5f578161 775
5ac8fb31 776 if (reclaim) {
ef8f2327 777 struct mem_cgroup_per_node *mz;
5ac8fb31 778
ef8f2327 779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
780 iter = &mz->iter[reclaim->priority];
781
782 if (prev && reclaim->generation != iter->generation)
783 goto out_unlock;
784
6df38689 785 while (1) {
4db0c3c2 786 pos = READ_ONCE(iter->position);
6df38689
VD
787 if (!pos || css_tryget(&pos->css))
788 break;
5ac8fb31 789 /*
6df38689
VD
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
795 * away.
5ac8fb31 796 */
6df38689
VD
797 (void)cmpxchg(&iter->position, pos, NULL);
798 }
5ac8fb31
JW
799 }
800
801 if (pos)
802 css = &pos->css;
803
804 for (;;) {
805 css = css_next_descendant_pre(css, &root->css);
806 if (!css) {
807 /*
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
812 */
813 if (!prev)
814 continue;
815 break;
527a5ec9 816 }
7d74b06f 817
5ac8fb31
JW
818 /*
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
822 */
823 memcg = mem_cgroup_from_css(css);
14067bb3 824
5ac8fb31
JW
825 if (css == &root->css)
826 break;
14067bb3 827
0b8f73e1
JW
828 if (css_tryget(css))
829 break;
9f3a0d09 830
5ac8fb31 831 memcg = NULL;
9f3a0d09 832 }
5ac8fb31
JW
833
834 if (reclaim) {
5ac8fb31 835 /*
6df38689
VD
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 839 */
6df38689
VD
840 (void)cmpxchg(&iter->position, pos, memcg);
841
5ac8fb31
JW
842 if (pos)
843 css_put(&pos->css);
844
845 if (!memcg)
846 iter->generation++;
847 else if (!prev)
848 reclaim->generation = iter->generation;
9f3a0d09 849 }
5ac8fb31 850
542f85f9
MH
851out_unlock:
852 rcu_read_unlock();
5ac8fb31 853out:
c40046f3
MH
854 if (prev && prev != root)
855 css_put(&prev->css);
856
9f3a0d09 857 return memcg;
14067bb3 858}
7d74b06f 859
5660048c
JW
860/**
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
864 */
865void mem_cgroup_iter_break(struct mem_cgroup *root,
866 struct mem_cgroup *prev)
9f3a0d09
JW
867{
868 if (!root)
869 root = root_mem_cgroup;
870 if (prev && prev != root)
871 css_put(&prev->css);
872}
7d74b06f 873
6df38689
VD
874static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
875{
876 struct mem_cgroup *memcg = dead_memcg;
877 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
878 struct mem_cgroup_per_node *mz;
879 int nid;
6df38689
VD
880 int i;
881
9f15bde6 882 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 883 for_each_node(nid) {
ef8f2327
MG
884 mz = mem_cgroup_nodeinfo(memcg, nid);
885 for (i = 0; i <= DEF_PRIORITY; i++) {
886 iter = &mz->iter[i];
887 cmpxchg(&iter->position,
888 dead_memcg, NULL);
6df38689
VD
889 }
890 }
891 }
892}
893
9f3a0d09
JW
894/*
895 * Iteration constructs for visiting all cgroups (under a tree). If
896 * loops are exited prematurely (break), mem_cgroup_iter_break() must
897 * be used for reference counting.
898 */
899#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 900 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 901 iter != NULL; \
527a5ec9 902 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 903
9f3a0d09 904#define for_each_mem_cgroup(iter) \
527a5ec9 905 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 906 iter != NULL; \
527a5ec9 907 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 908
7c5f64f8
VD
909/**
910 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
911 * @memcg: hierarchy root
912 * @fn: function to call for each task
913 * @arg: argument passed to @fn
914 *
915 * This function iterates over tasks attached to @memcg or to any of its
916 * descendants and calls @fn for each task. If @fn returns a non-zero
917 * value, the function breaks the iteration loop and returns the value.
918 * Otherwise, it will iterate over all tasks and return 0.
919 *
920 * This function must not be called for the root memory cgroup.
921 */
922int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 int (*fn)(struct task_struct *, void *), void *arg)
924{
925 struct mem_cgroup *iter;
926 int ret = 0;
927
928 BUG_ON(memcg == root_mem_cgroup);
929
930 for_each_mem_cgroup_tree(iter, memcg) {
931 struct css_task_iter it;
932 struct task_struct *task;
933
bc2fb7ed 934 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
935 while (!ret && (task = css_task_iter_next(&it)))
936 ret = fn(task, arg);
937 css_task_iter_end(&it);
938 if (ret) {
939 mem_cgroup_iter_break(memcg, iter);
940 break;
941 }
942 }
943 return ret;
944}
945
925b7673 946/**
dfe0e773 947 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 948 * @page: the page
f144c390 949 * @pgdat: pgdat of the page
dfe0e773
JW
950 *
951 * This function is only safe when following the LRU page isolation
952 * and putback protocol: the LRU lock must be held, and the page must
953 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 954 */
599d0c95 955struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 956{
ef8f2327 957 struct mem_cgroup_per_node *mz;
925b7673 958 struct mem_cgroup *memcg;
bea8c150 959 struct lruvec *lruvec;
6d12e2d8 960
bea8c150 961 if (mem_cgroup_disabled()) {
599d0c95 962 lruvec = &pgdat->lruvec;
bea8c150
HD
963 goto out;
964 }
925b7673 965
1306a85a 966 memcg = page->mem_cgroup;
7512102c 967 /*
dfe0e773 968 * Swapcache readahead pages are added to the LRU - and
29833315 969 * possibly migrated - before they are charged.
7512102c 970 */
29833315
JW
971 if (!memcg)
972 memcg = root_mem_cgroup;
7512102c 973
ef8f2327 974 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
975 lruvec = &mz->lruvec;
976out:
977 /*
978 * Since a node can be onlined after the mem_cgroup was created,
979 * we have to be prepared to initialize lruvec->zone here;
980 * and if offlined then reonlined, we need to reinitialize it.
981 */
599d0c95
MG
982 if (unlikely(lruvec->pgdat != pgdat))
983 lruvec->pgdat = pgdat;
bea8c150 984 return lruvec;
08e552c6 985}
b69408e8 986
925b7673 987/**
fa9add64
HD
988 * mem_cgroup_update_lru_size - account for adding or removing an lru page
989 * @lruvec: mem_cgroup per zone lru vector
990 * @lru: index of lru list the page is sitting on
b4536f0c 991 * @zid: zone id of the accounted pages
fa9add64 992 * @nr_pages: positive when adding or negative when removing
925b7673 993 *
ca707239
HD
994 * This function must be called under lru_lock, just before a page is added
995 * to or just after a page is removed from an lru list (that ordering being
996 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 997 */
fa9add64 998void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 999 int zid, int nr_pages)
3f58a829 1000{
ef8f2327 1001 struct mem_cgroup_per_node *mz;
fa9add64 1002 unsigned long *lru_size;
ca707239 1003 long size;
3f58a829
MK
1004
1005 if (mem_cgroup_disabled())
1006 return;
1007
ef8f2327 1008 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1009 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1010
1011 if (nr_pages < 0)
1012 *lru_size += nr_pages;
1013
1014 size = *lru_size;
b4536f0c
MH
1015 if (WARN_ONCE(size < 0,
1016 "%s(%p, %d, %d): lru_size %ld\n",
1017 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1018 VM_BUG_ON(1);
1019 *lru_size = 0;
1020 }
1021
1022 if (nr_pages > 0)
1023 *lru_size += nr_pages;
08e552c6 1024}
544122e5 1025
2314b42d 1026bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1027{
2314b42d 1028 struct mem_cgroup *task_memcg;
158e0a2d 1029 struct task_struct *p;
ffbdccf5 1030 bool ret;
4c4a2214 1031
158e0a2d 1032 p = find_lock_task_mm(task);
de077d22 1033 if (p) {
2314b42d 1034 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1035 task_unlock(p);
1036 } else {
1037 /*
1038 * All threads may have already detached their mm's, but the oom
1039 * killer still needs to detect if they have already been oom
1040 * killed to prevent needlessly killing additional tasks.
1041 */
ffbdccf5 1042 rcu_read_lock();
2314b42d
JW
1043 task_memcg = mem_cgroup_from_task(task);
1044 css_get(&task_memcg->css);
ffbdccf5 1045 rcu_read_unlock();
de077d22 1046 }
2314b42d
JW
1047 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1048 css_put(&task_memcg->css);
4c4a2214
DR
1049 return ret;
1050}
1051
19942822 1052/**
9d11ea9f 1053 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1054 * @memcg: the memory cgroup
19942822 1055 *
9d11ea9f 1056 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1057 * pages.
19942822 1058 */
c0ff4b85 1059static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1060{
3e32cb2e
JW
1061 unsigned long margin = 0;
1062 unsigned long count;
1063 unsigned long limit;
9d11ea9f 1064
3e32cb2e 1065 count = page_counter_read(&memcg->memory);
bbec2e15 1066 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1067 if (count < limit)
1068 margin = limit - count;
1069
7941d214 1070 if (do_memsw_account()) {
3e32cb2e 1071 count = page_counter_read(&memcg->memsw);
bbec2e15 1072 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1073 if (count <= limit)
1074 margin = min(margin, limit - count);
cbedbac3
LR
1075 else
1076 margin = 0;
3e32cb2e
JW
1077 }
1078
1079 return margin;
19942822
JW
1080}
1081
32047e2a 1082/*
bdcbb659 1083 * A routine for checking "mem" is under move_account() or not.
32047e2a 1084 *
bdcbb659
QH
1085 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1086 * moving cgroups. This is for waiting at high-memory pressure
1087 * caused by "move".
32047e2a 1088 */
c0ff4b85 1089static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1090{
2bd9bb20
KH
1091 struct mem_cgroup *from;
1092 struct mem_cgroup *to;
4b534334 1093 bool ret = false;
2bd9bb20
KH
1094 /*
1095 * Unlike task_move routines, we access mc.to, mc.from not under
1096 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1097 */
1098 spin_lock(&mc.lock);
1099 from = mc.from;
1100 to = mc.to;
1101 if (!from)
1102 goto unlock;
3e92041d 1103
2314b42d
JW
1104 ret = mem_cgroup_is_descendant(from, memcg) ||
1105 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1106unlock:
1107 spin_unlock(&mc.lock);
4b534334
KH
1108 return ret;
1109}
1110
c0ff4b85 1111static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1112{
1113 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1114 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1115 DEFINE_WAIT(wait);
1116 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1117 /* moving charge context might have finished. */
1118 if (mc.moving_task)
1119 schedule();
1120 finish_wait(&mc.waitq, &wait);
1121 return true;
1122 }
1123 }
1124 return false;
1125}
1126
8ad6e404 1127static const unsigned int memcg1_stats[] = {
71cd3113
JW
1128 MEMCG_CACHE,
1129 MEMCG_RSS,
1130 MEMCG_RSS_HUGE,
1131 NR_SHMEM,
1132 NR_FILE_MAPPED,
1133 NR_FILE_DIRTY,
1134 NR_WRITEBACK,
1135 MEMCG_SWAP,
1136};
1137
1138static const char *const memcg1_stat_names[] = {
1139 "cache",
1140 "rss",
1141 "rss_huge",
1142 "shmem",
1143 "mapped_file",
1144 "dirty",
1145 "writeback",
1146 "swap",
1147};
1148
58cf188e 1149#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1150/**
58cf188e 1151 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1152 * @memcg: The memory cgroup that went over limit
1153 * @p: Task that is going to be killed
1154 *
1155 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1156 * enabled
1157 */
1158void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1159{
58cf188e
SZ
1160 struct mem_cgroup *iter;
1161 unsigned int i;
e222432b 1162
e222432b
BS
1163 rcu_read_lock();
1164
2415b9f5
BV
1165 if (p) {
1166 pr_info("Task in ");
1167 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1168 pr_cont(" killed as a result of limit of ");
1169 } else {
1170 pr_info("Memory limit reached of cgroup ");
1171 }
1172
e61734c5 1173 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1174 pr_cont("\n");
e222432b 1175
e222432b
BS
1176 rcu_read_unlock();
1177
3e32cb2e
JW
1178 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1180 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1181 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1183 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1184 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1186 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1187
1188 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1189 pr_info("Memory cgroup stats for ");
1190 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1191 pr_cont(":");
1192
71cd3113
JW
1193 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1194 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1195 continue;
71cd3113 1196 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1197 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1198 }
1199
1200 for (i = 0; i < NR_LRU_LISTS; i++)
1201 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1202 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1203
1204 pr_cont("\n");
1205 }
e222432b
BS
1206}
1207
a63d83f4
DR
1208/*
1209 * Return the memory (and swap, if configured) limit for a memcg.
1210 */
bbec2e15 1211unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1212{
bbec2e15 1213 unsigned long max;
f3e8eb70 1214
bbec2e15 1215 max = memcg->memory.max;
9a5a8f19 1216 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1217 unsigned long memsw_max;
1218 unsigned long swap_max;
9a5a8f19 1219
bbec2e15
RG
1220 memsw_max = memcg->memsw.max;
1221 swap_max = memcg->swap.max;
1222 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1223 max = min(max + swap_max, memsw_max);
9a5a8f19 1224 }
bbec2e15 1225 return max;
a63d83f4
DR
1226}
1227
b6e6edcf 1228static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1229 int order)
9cbb78bb 1230{
6e0fc46d
DR
1231 struct oom_control oc = {
1232 .zonelist = NULL,
1233 .nodemask = NULL,
2a966b77 1234 .memcg = memcg,
6e0fc46d
DR
1235 .gfp_mask = gfp_mask,
1236 .order = order,
6e0fc46d 1237 };
7c5f64f8 1238 bool ret;
9cbb78bb 1239
dc56401f 1240 mutex_lock(&oom_lock);
7c5f64f8 1241 ret = out_of_memory(&oc);
dc56401f 1242 mutex_unlock(&oom_lock);
7c5f64f8 1243 return ret;
9cbb78bb
DR
1244}
1245
ae6e71d3
MC
1246#if MAX_NUMNODES > 1
1247
4d0c066d
KH
1248/**
1249 * test_mem_cgroup_node_reclaimable
dad7557e 1250 * @memcg: the target memcg
4d0c066d
KH
1251 * @nid: the node ID to be checked.
1252 * @noswap : specify true here if the user wants flle only information.
1253 *
1254 * This function returns whether the specified memcg contains any
1255 * reclaimable pages on a node. Returns true if there are any reclaimable
1256 * pages in the node.
1257 */
c0ff4b85 1258static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1259 int nid, bool noswap)
1260{
c0ff4b85 1261 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1262 return true;
1263 if (noswap || !total_swap_pages)
1264 return false;
c0ff4b85 1265 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1266 return true;
1267 return false;
1268
1269}
889976db
YH
1270
1271/*
1272 * Always updating the nodemask is not very good - even if we have an empty
1273 * list or the wrong list here, we can start from some node and traverse all
1274 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1275 *
1276 */
c0ff4b85 1277static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1278{
1279 int nid;
453a9bf3
KH
1280 /*
1281 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1282 * pagein/pageout changes since the last update.
1283 */
c0ff4b85 1284 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1285 return;
c0ff4b85 1286 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1287 return;
1288
889976db 1289 /* make a nodemask where this memcg uses memory from */
31aaea4a 1290 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1291
31aaea4a 1292 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1293
c0ff4b85
R
1294 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1295 node_clear(nid, memcg->scan_nodes);
889976db 1296 }
453a9bf3 1297
c0ff4b85
R
1298 atomic_set(&memcg->numainfo_events, 0);
1299 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1300}
1301
1302/*
1303 * Selecting a node where we start reclaim from. Because what we need is just
1304 * reducing usage counter, start from anywhere is O,K. Considering
1305 * memory reclaim from current node, there are pros. and cons.
1306 *
1307 * Freeing memory from current node means freeing memory from a node which
1308 * we'll use or we've used. So, it may make LRU bad. And if several threads
1309 * hit limits, it will see a contention on a node. But freeing from remote
1310 * node means more costs for memory reclaim because of memory latency.
1311 *
1312 * Now, we use round-robin. Better algorithm is welcomed.
1313 */
c0ff4b85 1314int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1315{
1316 int node;
1317
c0ff4b85
R
1318 mem_cgroup_may_update_nodemask(memcg);
1319 node = memcg->last_scanned_node;
889976db 1320
0edaf86c 1321 node = next_node_in(node, memcg->scan_nodes);
889976db 1322 /*
fda3d69b
MH
1323 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1324 * last time it really checked all the LRUs due to rate limiting.
1325 * Fallback to the current node in that case for simplicity.
889976db
YH
1326 */
1327 if (unlikely(node == MAX_NUMNODES))
1328 node = numa_node_id();
1329
c0ff4b85 1330 memcg->last_scanned_node = node;
889976db
YH
1331 return node;
1332}
889976db 1333#else
c0ff4b85 1334int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1335{
1336 return 0;
1337}
1338#endif
1339
0608f43d 1340static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1341 pg_data_t *pgdat,
0608f43d
AM
1342 gfp_t gfp_mask,
1343 unsigned long *total_scanned)
1344{
1345 struct mem_cgroup *victim = NULL;
1346 int total = 0;
1347 int loop = 0;
1348 unsigned long excess;
1349 unsigned long nr_scanned;
1350 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1351 .pgdat = pgdat,
0608f43d
AM
1352 .priority = 0,
1353 };
1354
3e32cb2e 1355 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1356
1357 while (1) {
1358 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1359 if (!victim) {
1360 loop++;
1361 if (loop >= 2) {
1362 /*
1363 * If we have not been able to reclaim
1364 * anything, it might because there are
1365 * no reclaimable pages under this hierarchy
1366 */
1367 if (!total)
1368 break;
1369 /*
1370 * We want to do more targeted reclaim.
1371 * excess >> 2 is not to excessive so as to
1372 * reclaim too much, nor too less that we keep
1373 * coming back to reclaim from this cgroup
1374 */
1375 if (total >= (excess >> 2) ||
1376 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1377 break;
1378 }
1379 continue;
1380 }
a9dd0a83 1381 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1382 pgdat, &nr_scanned);
0608f43d 1383 *total_scanned += nr_scanned;
3e32cb2e 1384 if (!soft_limit_excess(root_memcg))
0608f43d 1385 break;
6d61ef40 1386 }
0608f43d
AM
1387 mem_cgroup_iter_break(root_memcg, victim);
1388 return total;
6d61ef40
BS
1389}
1390
0056f4e6
JW
1391#ifdef CONFIG_LOCKDEP
1392static struct lockdep_map memcg_oom_lock_dep_map = {
1393 .name = "memcg_oom_lock",
1394};
1395#endif
1396
fb2a6fc5
JW
1397static DEFINE_SPINLOCK(memcg_oom_lock);
1398
867578cb
KH
1399/*
1400 * Check OOM-Killer is already running under our hierarchy.
1401 * If someone is running, return false.
1402 */
fb2a6fc5 1403static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1404{
79dfdacc 1405 struct mem_cgroup *iter, *failed = NULL;
a636b327 1406
fb2a6fc5
JW
1407 spin_lock(&memcg_oom_lock);
1408
9f3a0d09 1409 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1410 if (iter->oom_lock) {
79dfdacc
MH
1411 /*
1412 * this subtree of our hierarchy is already locked
1413 * so we cannot give a lock.
1414 */
79dfdacc 1415 failed = iter;
9f3a0d09
JW
1416 mem_cgroup_iter_break(memcg, iter);
1417 break;
23751be0
JW
1418 } else
1419 iter->oom_lock = true;
7d74b06f 1420 }
867578cb 1421
fb2a6fc5
JW
1422 if (failed) {
1423 /*
1424 * OK, we failed to lock the whole subtree so we have
1425 * to clean up what we set up to the failing subtree
1426 */
1427 for_each_mem_cgroup_tree(iter, memcg) {
1428 if (iter == failed) {
1429 mem_cgroup_iter_break(memcg, iter);
1430 break;
1431 }
1432 iter->oom_lock = false;
79dfdacc 1433 }
0056f4e6
JW
1434 } else
1435 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1436
1437 spin_unlock(&memcg_oom_lock);
1438
1439 return !failed;
a636b327 1440}
0b7f569e 1441
fb2a6fc5 1442static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1443{
7d74b06f
KH
1444 struct mem_cgroup *iter;
1445
fb2a6fc5 1446 spin_lock(&memcg_oom_lock);
0056f4e6 1447 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1448 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1449 iter->oom_lock = false;
fb2a6fc5 1450 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1451}
1452
c0ff4b85 1453static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1454{
1455 struct mem_cgroup *iter;
1456
c2b42d3c 1457 spin_lock(&memcg_oom_lock);
c0ff4b85 1458 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1459 iter->under_oom++;
1460 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1461}
1462
c0ff4b85 1463static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1464{
1465 struct mem_cgroup *iter;
1466
867578cb
KH
1467 /*
1468 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1469 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1470 */
c2b42d3c 1471 spin_lock(&memcg_oom_lock);
c0ff4b85 1472 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1473 if (iter->under_oom > 0)
1474 iter->under_oom--;
1475 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1476}
1477
867578cb
KH
1478static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
dc98df5a 1480struct oom_wait_info {
d79154bb 1481 struct mem_cgroup *memcg;
ac6424b9 1482 wait_queue_entry_t wait;
dc98df5a
KH
1483};
1484
ac6424b9 1485static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1486 unsigned mode, int sync, void *arg)
1487{
d79154bb
HD
1488 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1489 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1490 struct oom_wait_info *oom_wait_info;
1491
1492 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1493 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1494
2314b42d
JW
1495 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1496 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1497 return 0;
dc98df5a
KH
1498 return autoremove_wake_function(wait, mode, sync, arg);
1499}
1500
c0ff4b85 1501static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1502{
c2b42d3c
TH
1503 /*
1504 * For the following lockless ->under_oom test, the only required
1505 * guarantee is that it must see the state asserted by an OOM when
1506 * this function is called as a result of userland actions
1507 * triggered by the notification of the OOM. This is trivially
1508 * achieved by invoking mem_cgroup_mark_under_oom() before
1509 * triggering notification.
1510 */
1511 if (memcg && memcg->under_oom)
f4b90b70 1512 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1513}
1514
3812c8c8 1515static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1516{
2a70f6a7 1517 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
3812c8c8 1518 return;
867578cb 1519 /*
49426420
JW
1520 * We are in the middle of the charge context here, so we
1521 * don't want to block when potentially sitting on a callstack
1522 * that holds all kinds of filesystem and mm locks.
1523 *
1524 * Also, the caller may handle a failed allocation gracefully
1525 * (like optional page cache readahead) and so an OOM killer
1526 * invocation might not even be necessary.
1527 *
1528 * That's why we don't do anything here except remember the
1529 * OOM context and then deal with it at the end of the page
1530 * fault when the stack is unwound, the locks are released,
1531 * and when we know whether the fault was overall successful.
867578cb 1532 */
49426420 1533 css_get(&memcg->css);
626ebc41
TH
1534 current->memcg_in_oom = memcg;
1535 current->memcg_oom_gfp_mask = mask;
1536 current->memcg_oom_order = order;
3812c8c8
JW
1537}
1538
1539/**
1540 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1541 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1542 *
49426420
JW
1543 * This has to be called at the end of a page fault if the memcg OOM
1544 * handler was enabled.
3812c8c8 1545 *
49426420 1546 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1547 * sleep on a waitqueue until the userspace task resolves the
1548 * situation. Sleeping directly in the charge context with all kinds
1549 * of locks held is not a good idea, instead we remember an OOM state
1550 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1551 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1552 *
1553 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1554 * completed, %false otherwise.
3812c8c8 1555 */
49426420 1556bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1557{
626ebc41 1558 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1559 struct oom_wait_info owait;
49426420 1560 bool locked;
3812c8c8
JW
1561
1562 /* OOM is global, do not handle */
3812c8c8 1563 if (!memcg)
49426420 1564 return false;
3812c8c8 1565
7c5f64f8 1566 if (!handle)
49426420 1567 goto cleanup;
3812c8c8
JW
1568
1569 owait.memcg = memcg;
1570 owait.wait.flags = 0;
1571 owait.wait.func = memcg_oom_wake_function;
1572 owait.wait.private = current;
2055da97 1573 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1574
3812c8c8 1575 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1576 mem_cgroup_mark_under_oom(memcg);
1577
1578 locked = mem_cgroup_oom_trylock(memcg);
1579
1580 if (locked)
1581 mem_cgroup_oom_notify(memcg);
1582
1583 if (locked && !memcg->oom_kill_disable) {
1584 mem_cgroup_unmark_under_oom(memcg);
1585 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1586 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1587 current->memcg_oom_order);
49426420 1588 } else {
3812c8c8 1589 schedule();
49426420
JW
1590 mem_cgroup_unmark_under_oom(memcg);
1591 finish_wait(&memcg_oom_waitq, &owait.wait);
1592 }
1593
1594 if (locked) {
fb2a6fc5
JW
1595 mem_cgroup_oom_unlock(memcg);
1596 /*
1597 * There is no guarantee that an OOM-lock contender
1598 * sees the wakeups triggered by the OOM kill
1599 * uncharges. Wake any sleepers explicitely.
1600 */
1601 memcg_oom_recover(memcg);
1602 }
49426420 1603cleanup:
626ebc41 1604 current->memcg_in_oom = NULL;
3812c8c8 1605 css_put(&memcg->css);
867578cb 1606 return true;
0b7f569e
KH
1607}
1608
d7365e78 1609/**
81f8c3a4
JW
1610 * lock_page_memcg - lock a page->mem_cgroup binding
1611 * @page: the page
32047e2a 1612 *
81f8c3a4 1613 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1614 * another cgroup.
1615 *
1616 * It ensures lifetime of the returned memcg. Caller is responsible
1617 * for the lifetime of the page; __unlock_page_memcg() is available
1618 * when @page might get freed inside the locked section.
d69b042f 1619 */
739f79fc 1620struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1621{
1622 struct mem_cgroup *memcg;
6de22619 1623 unsigned long flags;
89c06bd5 1624
6de22619
JW
1625 /*
1626 * The RCU lock is held throughout the transaction. The fast
1627 * path can get away without acquiring the memcg->move_lock
1628 * because page moving starts with an RCU grace period.
739f79fc
JW
1629 *
1630 * The RCU lock also protects the memcg from being freed when
1631 * the page state that is going to change is the only thing
1632 * preventing the page itself from being freed. E.g. writeback
1633 * doesn't hold a page reference and relies on PG_writeback to
1634 * keep off truncation, migration and so forth.
1635 */
d7365e78
JW
1636 rcu_read_lock();
1637
1638 if (mem_cgroup_disabled())
739f79fc 1639 return NULL;
89c06bd5 1640again:
1306a85a 1641 memcg = page->mem_cgroup;
29833315 1642 if (unlikely(!memcg))
739f79fc 1643 return NULL;
d7365e78 1644
bdcbb659 1645 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1646 return memcg;
89c06bd5 1647
6de22619 1648 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1649 if (memcg != page->mem_cgroup) {
6de22619 1650 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1651 goto again;
1652 }
6de22619
JW
1653
1654 /*
1655 * When charge migration first begins, we can have locked and
1656 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1657 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1658 */
1659 memcg->move_lock_task = current;
1660 memcg->move_lock_flags = flags;
d7365e78 1661
739f79fc 1662 return memcg;
89c06bd5 1663}
81f8c3a4 1664EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1665
d7365e78 1666/**
739f79fc
JW
1667 * __unlock_page_memcg - unlock and unpin a memcg
1668 * @memcg: the memcg
1669 *
1670 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1671 */
739f79fc 1672void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1673{
6de22619
JW
1674 if (memcg && memcg->move_lock_task == current) {
1675 unsigned long flags = memcg->move_lock_flags;
1676
1677 memcg->move_lock_task = NULL;
1678 memcg->move_lock_flags = 0;
1679
1680 spin_unlock_irqrestore(&memcg->move_lock, flags);
1681 }
89c06bd5 1682
d7365e78 1683 rcu_read_unlock();
89c06bd5 1684}
739f79fc
JW
1685
1686/**
1687 * unlock_page_memcg - unlock a page->mem_cgroup binding
1688 * @page: the page
1689 */
1690void unlock_page_memcg(struct page *page)
1691{
1692 __unlock_page_memcg(page->mem_cgroup);
1693}
81f8c3a4 1694EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1695
cdec2e42
KH
1696struct memcg_stock_pcp {
1697 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1698 unsigned int nr_pages;
cdec2e42 1699 struct work_struct work;
26fe6168 1700 unsigned long flags;
a0db00fc 1701#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1702};
1703static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1704static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1705
a0956d54
SS
1706/**
1707 * consume_stock: Try to consume stocked charge on this cpu.
1708 * @memcg: memcg to consume from.
1709 * @nr_pages: how many pages to charge.
1710 *
1711 * The charges will only happen if @memcg matches the current cpu's memcg
1712 * stock, and at least @nr_pages are available in that stock. Failure to
1713 * service an allocation will refill the stock.
1714 *
1715 * returns true if successful, false otherwise.
cdec2e42 1716 */
a0956d54 1717static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1718{
1719 struct memcg_stock_pcp *stock;
db2ba40c 1720 unsigned long flags;
3e32cb2e 1721 bool ret = false;
cdec2e42 1722
a983b5eb 1723 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1724 return ret;
a0956d54 1725
db2ba40c
JW
1726 local_irq_save(flags);
1727
1728 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1729 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1730 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1731 ret = true;
1732 }
db2ba40c
JW
1733
1734 local_irq_restore(flags);
1735
cdec2e42
KH
1736 return ret;
1737}
1738
1739/*
3e32cb2e 1740 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1741 */
1742static void drain_stock(struct memcg_stock_pcp *stock)
1743{
1744 struct mem_cgroup *old = stock->cached;
1745
11c9ea4e 1746 if (stock->nr_pages) {
3e32cb2e 1747 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1748 if (do_memsw_account())
3e32cb2e 1749 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1750 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1751 stock->nr_pages = 0;
cdec2e42
KH
1752 }
1753 stock->cached = NULL;
cdec2e42
KH
1754}
1755
cdec2e42
KH
1756static void drain_local_stock(struct work_struct *dummy)
1757{
db2ba40c
JW
1758 struct memcg_stock_pcp *stock;
1759 unsigned long flags;
1760
72f0184c
MH
1761 /*
1762 * The only protection from memory hotplug vs. drain_stock races is
1763 * that we always operate on local CPU stock here with IRQ disabled
1764 */
db2ba40c
JW
1765 local_irq_save(flags);
1766
1767 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1768 drain_stock(stock);
26fe6168 1769 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1770
1771 local_irq_restore(flags);
cdec2e42
KH
1772}
1773
1774/*
3e32cb2e 1775 * Cache charges(val) to local per_cpu area.
320cc51d 1776 * This will be consumed by consume_stock() function, later.
cdec2e42 1777 */
c0ff4b85 1778static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1779{
db2ba40c
JW
1780 struct memcg_stock_pcp *stock;
1781 unsigned long flags;
1782
1783 local_irq_save(flags);
cdec2e42 1784
db2ba40c 1785 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1786 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1787 drain_stock(stock);
c0ff4b85 1788 stock->cached = memcg;
cdec2e42 1789 }
11c9ea4e 1790 stock->nr_pages += nr_pages;
db2ba40c 1791
a983b5eb 1792 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1793 drain_stock(stock);
1794
db2ba40c 1795 local_irq_restore(flags);
cdec2e42
KH
1796}
1797
1798/*
c0ff4b85 1799 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1800 * of the hierarchy under it.
cdec2e42 1801 */
6d3d6aa2 1802static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1803{
26fe6168 1804 int cpu, curcpu;
d38144b7 1805
6d3d6aa2
JW
1806 /* If someone's already draining, avoid adding running more workers. */
1807 if (!mutex_trylock(&percpu_charge_mutex))
1808 return;
72f0184c
MH
1809 /*
1810 * Notify other cpus that system-wide "drain" is running
1811 * We do not care about races with the cpu hotplug because cpu down
1812 * as well as workers from this path always operate on the local
1813 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1814 */
5af12d0e 1815 curcpu = get_cpu();
cdec2e42
KH
1816 for_each_online_cpu(cpu) {
1817 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1818 struct mem_cgroup *memcg;
26fe6168 1819
c0ff4b85 1820 memcg = stock->cached;
72f0184c 1821 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1822 continue;
72f0184c
MH
1823 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1824 css_put(&memcg->css);
3e92041d 1825 continue;
72f0184c 1826 }
d1a05b69
MH
1827 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1828 if (cpu == curcpu)
1829 drain_local_stock(&stock->work);
1830 else
1831 schedule_work_on(cpu, &stock->work);
1832 }
72f0184c 1833 css_put(&memcg->css);
cdec2e42 1834 }
5af12d0e 1835 put_cpu();
9f50fad6 1836 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1837}
1838
308167fc 1839static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1840{
cdec2e42 1841 struct memcg_stock_pcp *stock;
a983b5eb 1842 struct mem_cgroup *memcg;
cdec2e42 1843
cdec2e42
KH
1844 stock = &per_cpu(memcg_stock, cpu);
1845 drain_stock(stock);
a983b5eb
JW
1846
1847 for_each_mem_cgroup(memcg) {
1848 int i;
1849
1850 for (i = 0; i < MEMCG_NR_STAT; i++) {
1851 int nid;
1852 long x;
1853
1854 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1855 if (x)
1856 atomic_long_add(x, &memcg->stat[i]);
1857
1858 if (i >= NR_VM_NODE_STAT_ITEMS)
1859 continue;
1860
1861 for_each_node(nid) {
1862 struct mem_cgroup_per_node *pn;
1863
1864 pn = mem_cgroup_nodeinfo(memcg, nid);
1865 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1866 if (x)
1867 atomic_long_add(x, &pn->lruvec_stat[i]);
1868 }
1869 }
1870
e27be240 1871 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
1872 long x;
1873
1874 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1875 if (x)
1876 atomic_long_add(x, &memcg->events[i]);
1877 }
1878 }
1879
308167fc 1880 return 0;
cdec2e42
KH
1881}
1882
f7e1cb6e
JW
1883static void reclaim_high(struct mem_cgroup *memcg,
1884 unsigned int nr_pages,
1885 gfp_t gfp_mask)
1886{
1887 do {
1888 if (page_counter_read(&memcg->memory) <= memcg->high)
1889 continue;
e27be240 1890 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1891 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1892 } while ((memcg = parent_mem_cgroup(memcg)));
1893}
1894
1895static void high_work_func(struct work_struct *work)
1896{
1897 struct mem_cgroup *memcg;
1898
1899 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 1900 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
1901}
1902
b23afb93
TH
1903/*
1904 * Scheduled by try_charge() to be executed from the userland return path
1905 * and reclaims memory over the high limit.
1906 */
1907void mem_cgroup_handle_over_high(void)
1908{
1909 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1910 struct mem_cgroup *memcg;
b23afb93
TH
1911
1912 if (likely(!nr_pages))
1913 return;
1914
f7e1cb6e
JW
1915 memcg = get_mem_cgroup_from_mm(current->mm);
1916 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1917 css_put(&memcg->css);
1918 current->memcg_nr_pages_over_high = 0;
1919}
1920
00501b53
JW
1921static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1922 unsigned int nr_pages)
8a9f3ccd 1923{
a983b5eb 1924 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 1925 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1926 struct mem_cgroup *mem_over_limit;
3e32cb2e 1927 struct page_counter *counter;
6539cc05 1928 unsigned long nr_reclaimed;
b70a2a21
JW
1929 bool may_swap = true;
1930 bool drained = false;
a636b327 1931
ce00a967 1932 if (mem_cgroup_is_root(memcg))
10d53c74 1933 return 0;
6539cc05 1934retry:
b6b6cc72 1935 if (consume_stock(memcg, nr_pages))
10d53c74 1936 return 0;
8a9f3ccd 1937
7941d214 1938 if (!do_memsw_account() ||
6071ca52
JW
1939 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1940 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1941 goto done_restock;
7941d214 1942 if (do_memsw_account())
3e32cb2e
JW
1943 page_counter_uncharge(&memcg->memsw, batch);
1944 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1945 } else {
3e32cb2e 1946 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1947 may_swap = false;
3fbe7244 1948 }
7a81b88c 1949
6539cc05
JW
1950 if (batch > nr_pages) {
1951 batch = nr_pages;
1952 goto retry;
1953 }
6d61ef40 1954
06b078fc
JW
1955 /*
1956 * Unlike in global OOM situations, memcg is not in a physical
1957 * memory shortage. Allow dying and OOM-killed tasks to
1958 * bypass the last charges so that they can exit quickly and
1959 * free their memory.
1960 */
da99ecf1 1961 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
1962 fatal_signal_pending(current) ||
1963 current->flags & PF_EXITING))
10d53c74 1964 goto force;
06b078fc 1965
89a28483
JW
1966 /*
1967 * Prevent unbounded recursion when reclaim operations need to
1968 * allocate memory. This might exceed the limits temporarily,
1969 * but we prefer facilitating memory reclaim and getting back
1970 * under the limit over triggering OOM kills in these cases.
1971 */
1972 if (unlikely(current->flags & PF_MEMALLOC))
1973 goto force;
1974
06b078fc
JW
1975 if (unlikely(task_in_memcg_oom(current)))
1976 goto nomem;
1977
d0164adc 1978 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1979 goto nomem;
4b534334 1980
e27be240 1981 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 1982
b70a2a21
JW
1983 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1984 gfp_mask, may_swap);
6539cc05 1985
61e02c74 1986 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1987 goto retry;
28c34c29 1988
b70a2a21 1989 if (!drained) {
6d3d6aa2 1990 drain_all_stock(mem_over_limit);
b70a2a21
JW
1991 drained = true;
1992 goto retry;
1993 }
1994
28c34c29
JW
1995 if (gfp_mask & __GFP_NORETRY)
1996 goto nomem;
6539cc05
JW
1997 /*
1998 * Even though the limit is exceeded at this point, reclaim
1999 * may have been able to free some pages. Retry the charge
2000 * before killing the task.
2001 *
2002 * Only for regular pages, though: huge pages are rather
2003 * unlikely to succeed so close to the limit, and we fall back
2004 * to regular pages anyway in case of failure.
2005 */
61e02c74 2006 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2007 goto retry;
2008 /*
2009 * At task move, charge accounts can be doubly counted. So, it's
2010 * better to wait until the end of task_move if something is going on.
2011 */
2012 if (mem_cgroup_wait_acct_move(mem_over_limit))
2013 goto retry;
2014
9b130619
JW
2015 if (nr_retries--)
2016 goto retry;
2017
06b078fc 2018 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2019 goto force;
06b078fc 2020
6539cc05 2021 if (fatal_signal_pending(current))
10d53c74 2022 goto force;
6539cc05 2023
e27be240 2024 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2025
3608de07
JM
2026 mem_cgroup_oom(mem_over_limit, gfp_mask,
2027 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2028nomem:
6d1fdc48 2029 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2030 return -ENOMEM;
10d53c74
TH
2031force:
2032 /*
2033 * The allocation either can't fail or will lead to more memory
2034 * being freed very soon. Allow memory usage go over the limit
2035 * temporarily by force charging it.
2036 */
2037 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2038 if (do_memsw_account())
10d53c74
TH
2039 page_counter_charge(&memcg->memsw, nr_pages);
2040 css_get_many(&memcg->css, nr_pages);
2041
2042 return 0;
6539cc05
JW
2043
2044done_restock:
e8ea14cc 2045 css_get_many(&memcg->css, batch);
6539cc05
JW
2046 if (batch > nr_pages)
2047 refill_stock(memcg, batch - nr_pages);
b23afb93 2048
241994ed 2049 /*
b23afb93
TH
2050 * If the hierarchy is above the normal consumption range, schedule
2051 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2052 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2053 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2054 * not recorded as it most likely matches current's and won't
2055 * change in the meantime. As high limit is checked again before
2056 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2057 */
2058 do {
b23afb93 2059 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2060 /* Don't bother a random interrupted task */
2061 if (in_interrupt()) {
2062 schedule_work(&memcg->high_work);
2063 break;
2064 }
9516a18a 2065 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2066 set_notify_resume(current);
2067 break;
2068 }
241994ed 2069 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2070
2071 return 0;
7a81b88c 2072}
8a9f3ccd 2073
00501b53 2074static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2075{
ce00a967
JW
2076 if (mem_cgroup_is_root(memcg))
2077 return;
2078
3e32cb2e 2079 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2080 if (do_memsw_account())
3e32cb2e 2081 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2082
e8ea14cc 2083 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2084}
2085
0a31bc97
JW
2086static void lock_page_lru(struct page *page, int *isolated)
2087{
2088 struct zone *zone = page_zone(page);
2089
a52633d8 2090 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2091 if (PageLRU(page)) {
2092 struct lruvec *lruvec;
2093
599d0c95 2094 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2095 ClearPageLRU(page);
2096 del_page_from_lru_list(page, lruvec, page_lru(page));
2097 *isolated = 1;
2098 } else
2099 *isolated = 0;
2100}
2101
2102static void unlock_page_lru(struct page *page, int isolated)
2103{
2104 struct zone *zone = page_zone(page);
2105
2106 if (isolated) {
2107 struct lruvec *lruvec;
2108
599d0c95 2109 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2110 VM_BUG_ON_PAGE(PageLRU(page), page);
2111 SetPageLRU(page);
2112 add_page_to_lru_list(page, lruvec, page_lru(page));
2113 }
a52633d8 2114 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2115}
2116
00501b53 2117static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2118 bool lrucare)
7a81b88c 2119{
0a31bc97 2120 int isolated;
9ce70c02 2121
1306a85a 2122 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2123
2124 /*
2125 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2126 * may already be on some other mem_cgroup's LRU. Take care of it.
2127 */
0a31bc97
JW
2128 if (lrucare)
2129 lock_page_lru(page, &isolated);
9ce70c02 2130
0a31bc97
JW
2131 /*
2132 * Nobody should be changing or seriously looking at
1306a85a 2133 * page->mem_cgroup at this point:
0a31bc97
JW
2134 *
2135 * - the page is uncharged
2136 *
2137 * - the page is off-LRU
2138 *
2139 * - an anonymous fault has exclusive page access, except for
2140 * a locked page table
2141 *
2142 * - a page cache insertion, a swapin fault, or a migration
2143 * have the page locked
2144 */
1306a85a 2145 page->mem_cgroup = memcg;
9ce70c02 2146
0a31bc97
JW
2147 if (lrucare)
2148 unlock_page_lru(page, isolated);
7a81b88c 2149}
66e1707b 2150
127424c8 2151#ifndef CONFIG_SLOB
f3bb3043 2152static int memcg_alloc_cache_id(void)
55007d84 2153{
f3bb3043
VD
2154 int id, size;
2155 int err;
2156
dbcf73e2 2157 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2158 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2159 if (id < 0)
2160 return id;
55007d84 2161
dbcf73e2 2162 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2163 return id;
2164
2165 /*
2166 * There's no space for the new id in memcg_caches arrays,
2167 * so we have to grow them.
2168 */
05257a1a 2169 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2170
2171 size = 2 * (id + 1);
55007d84
GC
2172 if (size < MEMCG_CACHES_MIN_SIZE)
2173 size = MEMCG_CACHES_MIN_SIZE;
2174 else if (size > MEMCG_CACHES_MAX_SIZE)
2175 size = MEMCG_CACHES_MAX_SIZE;
2176
f3bb3043 2177 err = memcg_update_all_caches(size);
60d3fd32
VD
2178 if (!err)
2179 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2180 if (!err)
2181 memcg_nr_cache_ids = size;
2182
2183 up_write(&memcg_cache_ids_sem);
2184
f3bb3043 2185 if (err) {
dbcf73e2 2186 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2187 return err;
2188 }
2189 return id;
2190}
2191
2192static void memcg_free_cache_id(int id)
2193{
dbcf73e2 2194 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2195}
2196
d5b3cf71 2197struct memcg_kmem_cache_create_work {
5722d094
VD
2198 struct mem_cgroup *memcg;
2199 struct kmem_cache *cachep;
2200 struct work_struct work;
2201};
2202
d5b3cf71 2203static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2204{
d5b3cf71
VD
2205 struct memcg_kmem_cache_create_work *cw =
2206 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2207 struct mem_cgroup *memcg = cw->memcg;
2208 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2209
d5b3cf71 2210 memcg_create_kmem_cache(memcg, cachep);
bd673145 2211
5722d094 2212 css_put(&memcg->css);
d7f25f8a
GC
2213 kfree(cw);
2214}
2215
2216/*
2217 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2218 */
d5b3cf71
VD
2219static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2220 struct kmem_cache *cachep)
d7f25f8a 2221{
d5b3cf71 2222 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2223
c892fd82 2224 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2225 if (!cw)
d7f25f8a 2226 return;
8135be5a
VD
2227
2228 css_get(&memcg->css);
d7f25f8a
GC
2229
2230 cw->memcg = memcg;
2231 cw->cachep = cachep;
d5b3cf71 2232 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2233
17cc4dfe 2234 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2235}
2236
d5b3cf71
VD
2237static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2238 struct kmem_cache *cachep)
0e9d92f2
GC
2239{
2240 /*
2241 * We need to stop accounting when we kmalloc, because if the
2242 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2243 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2244 *
2245 * However, it is better to enclose the whole function. Depending on
2246 * the debugging options enabled, INIT_WORK(), for instance, can
2247 * trigger an allocation. This too, will make us recurse. Because at
2248 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2249 * the safest choice is to do it like this, wrapping the whole function.
2250 */
6f185c29 2251 current->memcg_kmem_skip_account = 1;
d5b3cf71 2252 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2253 current->memcg_kmem_skip_account = 0;
0e9d92f2 2254}
c67a8a68 2255
45264778
VD
2256static inline bool memcg_kmem_bypass(void)
2257{
2258 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2259 return true;
2260 return false;
2261}
2262
2263/**
2264 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2265 * @cachep: the original global kmem cache
2266 *
d7f25f8a
GC
2267 * Return the kmem_cache we're supposed to use for a slab allocation.
2268 * We try to use the current memcg's version of the cache.
2269 *
45264778
VD
2270 * If the cache does not exist yet, if we are the first user of it, we
2271 * create it asynchronously in a workqueue and let the current allocation
2272 * go through with the original cache.
d7f25f8a 2273 *
45264778
VD
2274 * This function takes a reference to the cache it returns to assure it
2275 * won't get destroyed while we are working with it. Once the caller is
2276 * done with it, memcg_kmem_put_cache() must be called to release the
2277 * reference.
d7f25f8a 2278 */
45264778 2279struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2280{
2281 struct mem_cgroup *memcg;
959c8963 2282 struct kmem_cache *memcg_cachep;
2a4db7eb 2283 int kmemcg_id;
d7f25f8a 2284
f7ce3190 2285 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2286
45264778 2287 if (memcg_kmem_bypass())
230e9fc2
VD
2288 return cachep;
2289
9d100c5e 2290 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2291 return cachep;
2292
d46eb14b 2293 memcg = get_mem_cgroup_from_current();
4db0c3c2 2294 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2295 if (kmemcg_id < 0)
ca0dde97 2296 goto out;
d7f25f8a 2297
2a4db7eb 2298 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2299 if (likely(memcg_cachep))
2300 return memcg_cachep;
ca0dde97
LZ
2301
2302 /*
2303 * If we are in a safe context (can wait, and not in interrupt
2304 * context), we could be be predictable and return right away.
2305 * This would guarantee that the allocation being performed
2306 * already belongs in the new cache.
2307 *
2308 * However, there are some clashes that can arrive from locking.
2309 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2310 * memcg_create_kmem_cache, this means no further allocation
2311 * could happen with the slab_mutex held. So it's better to
2312 * defer everything.
ca0dde97 2313 */
d5b3cf71 2314 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2315out:
8135be5a 2316 css_put(&memcg->css);
ca0dde97 2317 return cachep;
d7f25f8a 2318}
d7f25f8a 2319
45264778
VD
2320/**
2321 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2322 * @cachep: the cache returned by memcg_kmem_get_cache
2323 */
2324void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2325{
2326 if (!is_root_cache(cachep))
f7ce3190 2327 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2328}
2329
45264778 2330/**
b213b54f 2331 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2332 * @page: page to charge
2333 * @gfp: reclaim mode
2334 * @order: allocation order
2335 * @memcg: memory cgroup to charge
2336 *
2337 * Returns 0 on success, an error code on failure.
2338 */
2339int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2340 struct mem_cgroup *memcg)
7ae1e1d0 2341{
f3ccb2c4
VD
2342 unsigned int nr_pages = 1 << order;
2343 struct page_counter *counter;
7ae1e1d0
GC
2344 int ret;
2345
f3ccb2c4 2346 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2347 if (ret)
f3ccb2c4 2348 return ret;
52c29b04
JW
2349
2350 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2351 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2352 cancel_charge(memcg, nr_pages);
2353 return -ENOMEM;
7ae1e1d0
GC
2354 }
2355
f3ccb2c4 2356 page->mem_cgroup = memcg;
7ae1e1d0 2357
f3ccb2c4 2358 return 0;
7ae1e1d0
GC
2359}
2360
45264778
VD
2361/**
2362 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2363 * @page: page to charge
2364 * @gfp: reclaim mode
2365 * @order: allocation order
2366 *
2367 * Returns 0 on success, an error code on failure.
2368 */
2369int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2370{
f3ccb2c4 2371 struct mem_cgroup *memcg;
fcff7d7e 2372 int ret = 0;
7ae1e1d0 2373
45264778
VD
2374 if (memcg_kmem_bypass())
2375 return 0;
2376
d46eb14b 2377 memcg = get_mem_cgroup_from_current();
c4159a75 2378 if (!mem_cgroup_is_root(memcg)) {
45264778 2379 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2380 if (!ret)
2381 __SetPageKmemcg(page);
2382 }
7ae1e1d0 2383 css_put(&memcg->css);
d05e83a6 2384 return ret;
7ae1e1d0 2385}
45264778
VD
2386/**
2387 * memcg_kmem_uncharge: uncharge a kmem page
2388 * @page: page to uncharge
2389 * @order: allocation order
2390 */
2391void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2392{
1306a85a 2393 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2394 unsigned int nr_pages = 1 << order;
7ae1e1d0 2395
7ae1e1d0
GC
2396 if (!memcg)
2397 return;
2398
309381fe 2399 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2400
52c29b04
JW
2401 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2402 page_counter_uncharge(&memcg->kmem, nr_pages);
2403
f3ccb2c4 2404 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2405 if (do_memsw_account())
f3ccb2c4 2406 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2407
1306a85a 2408 page->mem_cgroup = NULL;
c4159a75
VD
2409
2410 /* slab pages do not have PageKmemcg flag set */
2411 if (PageKmemcg(page))
2412 __ClearPageKmemcg(page);
2413
f3ccb2c4 2414 css_put_many(&memcg->css, nr_pages);
60d3fd32 2415}
127424c8 2416#endif /* !CONFIG_SLOB */
7ae1e1d0 2417
ca3e0214
KH
2418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2419
ca3e0214
KH
2420/*
2421 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2422 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2423 */
e94c8a9c 2424void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2425{
e94c8a9c 2426 int i;
ca3e0214 2427
3d37c4a9
KH
2428 if (mem_cgroup_disabled())
2429 return;
b070e65c 2430
29833315 2431 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2432 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2433
c9019e9b 2434 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2435}
12d27107 2436#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2437
c255a458 2438#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2439/**
2440 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2441 * @entry: swap entry to be moved
2442 * @from: mem_cgroup which the entry is moved from
2443 * @to: mem_cgroup which the entry is moved to
2444 *
2445 * It succeeds only when the swap_cgroup's record for this entry is the same
2446 * as the mem_cgroup's id of @from.
2447 *
2448 * Returns 0 on success, -EINVAL on failure.
2449 *
3e32cb2e 2450 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2451 * both res and memsw, and called css_get().
2452 */
2453static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2454 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2455{
2456 unsigned short old_id, new_id;
2457
34c00c31
LZ
2458 old_id = mem_cgroup_id(from);
2459 new_id = mem_cgroup_id(to);
02491447
DN
2460
2461 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2462 mod_memcg_state(from, MEMCG_SWAP, -1);
2463 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2464 return 0;
2465 }
2466 return -EINVAL;
2467}
2468#else
2469static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2470 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2471{
2472 return -EINVAL;
2473}
8c7c6e34 2474#endif
d13d1443 2475
bbec2e15 2476static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2477
bbec2e15
RG
2478static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2479 unsigned long max, bool memsw)
628f4235 2480{
3e32cb2e 2481 bool enlarge = false;
bb4a7ea2 2482 bool drained = false;
3e32cb2e 2483 int ret;
c054a78c
YZ
2484 bool limits_invariant;
2485 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2486
3e32cb2e 2487 do {
628f4235
KH
2488 if (signal_pending(current)) {
2489 ret = -EINTR;
2490 break;
2491 }
3e32cb2e 2492
bbec2e15 2493 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2494 /*
2495 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2496 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2497 */
bbec2e15
RG
2498 limits_invariant = memsw ? max >= memcg->memory.max :
2499 max <= memcg->memsw.max;
c054a78c 2500 if (!limits_invariant) {
bbec2e15 2501 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2502 ret = -EINVAL;
8c7c6e34
KH
2503 break;
2504 }
bbec2e15 2505 if (max > counter->max)
3e32cb2e 2506 enlarge = true;
bbec2e15
RG
2507 ret = page_counter_set_max(counter, max);
2508 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2509
2510 if (!ret)
2511 break;
2512
bb4a7ea2
SB
2513 if (!drained) {
2514 drain_all_stock(memcg);
2515 drained = true;
2516 continue;
2517 }
2518
1ab5c056
AR
2519 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2520 GFP_KERNEL, !memsw)) {
2521 ret = -EBUSY;
2522 break;
2523 }
2524 } while (true);
3e32cb2e 2525
3c11ecf4
KH
2526 if (!ret && enlarge)
2527 memcg_oom_recover(memcg);
3e32cb2e 2528
628f4235
KH
2529 return ret;
2530}
2531
ef8f2327 2532unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2533 gfp_t gfp_mask,
2534 unsigned long *total_scanned)
2535{
2536 unsigned long nr_reclaimed = 0;
ef8f2327 2537 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2538 unsigned long reclaimed;
2539 int loop = 0;
ef8f2327 2540 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2541 unsigned long excess;
0608f43d
AM
2542 unsigned long nr_scanned;
2543
2544 if (order > 0)
2545 return 0;
2546
ef8f2327 2547 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2548
2549 /*
2550 * Do not even bother to check the largest node if the root
2551 * is empty. Do it lockless to prevent lock bouncing. Races
2552 * are acceptable as soft limit is best effort anyway.
2553 */
bfc7228b 2554 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2555 return 0;
2556
0608f43d
AM
2557 /*
2558 * This loop can run a while, specially if mem_cgroup's continuously
2559 * keep exceeding their soft limit and putting the system under
2560 * pressure
2561 */
2562 do {
2563 if (next_mz)
2564 mz = next_mz;
2565 else
2566 mz = mem_cgroup_largest_soft_limit_node(mctz);
2567 if (!mz)
2568 break;
2569
2570 nr_scanned = 0;
ef8f2327 2571 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2572 gfp_mask, &nr_scanned);
2573 nr_reclaimed += reclaimed;
2574 *total_scanned += nr_scanned;
0a31bc97 2575 spin_lock_irq(&mctz->lock);
bc2f2e7f 2576 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2577
2578 /*
2579 * If we failed to reclaim anything from this memory cgroup
2580 * it is time to move on to the next cgroup
2581 */
2582 next_mz = NULL;
bc2f2e7f
VD
2583 if (!reclaimed)
2584 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2585
3e32cb2e 2586 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2587 /*
2588 * One school of thought says that we should not add
2589 * back the node to the tree if reclaim returns 0.
2590 * But our reclaim could return 0, simply because due
2591 * to priority we are exposing a smaller subset of
2592 * memory to reclaim from. Consider this as a longer
2593 * term TODO.
2594 */
2595 /* If excess == 0, no tree ops */
cf2c8127 2596 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2597 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2598 css_put(&mz->memcg->css);
2599 loop++;
2600 /*
2601 * Could not reclaim anything and there are no more
2602 * mem cgroups to try or we seem to be looping without
2603 * reclaiming anything.
2604 */
2605 if (!nr_reclaimed &&
2606 (next_mz == NULL ||
2607 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2608 break;
2609 } while (!nr_reclaimed);
2610 if (next_mz)
2611 css_put(&next_mz->memcg->css);
2612 return nr_reclaimed;
2613}
2614
ea280e7b
TH
2615/*
2616 * Test whether @memcg has children, dead or alive. Note that this
2617 * function doesn't care whether @memcg has use_hierarchy enabled and
2618 * returns %true if there are child csses according to the cgroup
2619 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2620 */
b5f99b53
GC
2621static inline bool memcg_has_children(struct mem_cgroup *memcg)
2622{
ea280e7b
TH
2623 bool ret;
2624
ea280e7b
TH
2625 rcu_read_lock();
2626 ret = css_next_child(NULL, &memcg->css);
2627 rcu_read_unlock();
2628 return ret;
b5f99b53
GC
2629}
2630
c26251f9 2631/*
51038171 2632 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2633 *
2634 * Caller is responsible for holding css reference for memcg.
2635 */
2636static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2637{
2638 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2639
c1e862c1
KH
2640 /* we call try-to-free pages for make this cgroup empty */
2641 lru_add_drain_all();
d12c60f6
JS
2642
2643 drain_all_stock(memcg);
2644
f817ed48 2645 /* try to free all pages in this cgroup */
3e32cb2e 2646 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2647 int progress;
c1e862c1 2648
c26251f9
MH
2649 if (signal_pending(current))
2650 return -EINTR;
2651
b70a2a21
JW
2652 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2653 GFP_KERNEL, true);
c1e862c1 2654 if (!progress) {
f817ed48 2655 nr_retries--;
c1e862c1 2656 /* maybe some writeback is necessary */
8aa7e847 2657 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2658 }
f817ed48
KH
2659
2660 }
ab5196c2
MH
2661
2662 return 0;
cc847582
KH
2663}
2664
6770c64e
TH
2665static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2666 char *buf, size_t nbytes,
2667 loff_t off)
c1e862c1 2668{
6770c64e 2669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2670
d8423011
MH
2671 if (mem_cgroup_is_root(memcg))
2672 return -EINVAL;
6770c64e 2673 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2674}
2675
182446d0
TH
2676static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2677 struct cftype *cft)
18f59ea7 2678{
182446d0 2679 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2680}
2681
182446d0
TH
2682static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2683 struct cftype *cft, u64 val)
18f59ea7
BS
2684{
2685 int retval = 0;
182446d0 2686 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2687 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2688
567fb435 2689 if (memcg->use_hierarchy == val)
0b8f73e1 2690 return 0;
567fb435 2691
18f59ea7 2692 /*
af901ca1 2693 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2694 * in the child subtrees. If it is unset, then the change can
2695 * occur, provided the current cgroup has no children.
2696 *
2697 * For the root cgroup, parent_mem is NULL, we allow value to be
2698 * set if there are no children.
2699 */
c0ff4b85 2700 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2701 (val == 1 || val == 0)) {
ea280e7b 2702 if (!memcg_has_children(memcg))
c0ff4b85 2703 memcg->use_hierarchy = val;
18f59ea7
BS
2704 else
2705 retval = -EBUSY;
2706 } else
2707 retval = -EINVAL;
567fb435 2708
18f59ea7
BS
2709 return retval;
2710}
2711
72b54e73 2712static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2713{
2714 struct mem_cgroup *iter;
72b54e73 2715 int i;
ce00a967 2716
72b54e73 2717 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2718
72b54e73
VD
2719 for_each_mem_cgroup_tree(iter, memcg) {
2720 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2721 stat[i] += memcg_page_state(iter, i);
72b54e73 2722 }
ce00a967
JW
2723}
2724
72b54e73 2725static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2726{
2727 struct mem_cgroup *iter;
72b54e73 2728 int i;
587d9f72 2729
e27be240 2730 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
587d9f72 2731
72b54e73 2732 for_each_mem_cgroup_tree(iter, memcg) {
e27be240 2733 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ccda7f43 2734 events[i] += memcg_sum_events(iter, i);
72b54e73 2735 }
587d9f72
JW
2736}
2737
6f646156 2738static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2739{
72b54e73 2740 unsigned long val = 0;
ce00a967 2741
3e32cb2e 2742 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2743 struct mem_cgroup *iter;
2744
2745 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2746 val += memcg_page_state(iter, MEMCG_CACHE);
2747 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2748 if (swap)
ccda7f43 2749 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2750 }
3e32cb2e 2751 } else {
ce00a967 2752 if (!swap)
3e32cb2e 2753 val = page_counter_read(&memcg->memory);
ce00a967 2754 else
3e32cb2e 2755 val = page_counter_read(&memcg->memsw);
ce00a967 2756 }
c12176d3 2757 return val;
ce00a967
JW
2758}
2759
3e32cb2e
JW
2760enum {
2761 RES_USAGE,
2762 RES_LIMIT,
2763 RES_MAX_USAGE,
2764 RES_FAILCNT,
2765 RES_SOFT_LIMIT,
2766};
ce00a967 2767
791badbd 2768static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2769 struct cftype *cft)
8cdea7c0 2770{
182446d0 2771 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2772 struct page_counter *counter;
af36f906 2773
3e32cb2e 2774 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2775 case _MEM:
3e32cb2e
JW
2776 counter = &memcg->memory;
2777 break;
8c7c6e34 2778 case _MEMSWAP:
3e32cb2e
JW
2779 counter = &memcg->memsw;
2780 break;
510fc4e1 2781 case _KMEM:
3e32cb2e 2782 counter = &memcg->kmem;
510fc4e1 2783 break;
d55f90bf 2784 case _TCP:
0db15298 2785 counter = &memcg->tcpmem;
d55f90bf 2786 break;
8c7c6e34
KH
2787 default:
2788 BUG();
8c7c6e34 2789 }
3e32cb2e
JW
2790
2791 switch (MEMFILE_ATTR(cft->private)) {
2792 case RES_USAGE:
2793 if (counter == &memcg->memory)
c12176d3 2794 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2795 if (counter == &memcg->memsw)
c12176d3 2796 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2797 return (u64)page_counter_read(counter) * PAGE_SIZE;
2798 case RES_LIMIT:
bbec2e15 2799 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2800 case RES_MAX_USAGE:
2801 return (u64)counter->watermark * PAGE_SIZE;
2802 case RES_FAILCNT:
2803 return counter->failcnt;
2804 case RES_SOFT_LIMIT:
2805 return (u64)memcg->soft_limit * PAGE_SIZE;
2806 default:
2807 BUG();
2808 }
8cdea7c0 2809}
510fc4e1 2810
127424c8 2811#ifndef CONFIG_SLOB
567e9ab2 2812static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2813{
d6441637
VD
2814 int memcg_id;
2815
b313aeee
VD
2816 if (cgroup_memory_nokmem)
2817 return 0;
2818
2a4db7eb 2819 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2820 BUG_ON(memcg->kmem_state);
d6441637 2821
f3bb3043 2822 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2823 if (memcg_id < 0)
2824 return memcg_id;
d6441637 2825
ef12947c 2826 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2827 /*
567e9ab2 2828 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2829 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2830 * guarantee no one starts accounting before all call sites are
2831 * patched.
2832 */
900a38f0 2833 memcg->kmemcg_id = memcg_id;
567e9ab2 2834 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2835 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2836
2837 return 0;
d6441637
VD
2838}
2839
8e0a8912
JW
2840static void memcg_offline_kmem(struct mem_cgroup *memcg)
2841{
2842 struct cgroup_subsys_state *css;
2843 struct mem_cgroup *parent, *child;
2844 int kmemcg_id;
2845
2846 if (memcg->kmem_state != KMEM_ONLINE)
2847 return;
2848 /*
2849 * Clear the online state before clearing memcg_caches array
2850 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2851 * guarantees that no cache will be created for this cgroup
2852 * after we are done (see memcg_create_kmem_cache()).
2853 */
2854 memcg->kmem_state = KMEM_ALLOCATED;
2855
2856 memcg_deactivate_kmem_caches(memcg);
2857
2858 kmemcg_id = memcg->kmemcg_id;
2859 BUG_ON(kmemcg_id < 0);
2860
2861 parent = parent_mem_cgroup(memcg);
2862 if (!parent)
2863 parent = root_mem_cgroup;
2864
2865 /*
2866 * Change kmemcg_id of this cgroup and all its descendants to the
2867 * parent's id, and then move all entries from this cgroup's list_lrus
2868 * to ones of the parent. After we have finished, all list_lrus
2869 * corresponding to this cgroup are guaranteed to remain empty. The
2870 * ordering is imposed by list_lru_node->lock taken by
2871 * memcg_drain_all_list_lrus().
2872 */
3a06bb78 2873 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2874 css_for_each_descendant_pre(css, &memcg->css) {
2875 child = mem_cgroup_from_css(css);
2876 BUG_ON(child->kmemcg_id != kmemcg_id);
2877 child->kmemcg_id = parent->kmemcg_id;
2878 if (!memcg->use_hierarchy)
2879 break;
2880 }
3a06bb78
TH
2881 rcu_read_unlock();
2882
8e0a8912
JW
2883 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2884
2885 memcg_free_cache_id(kmemcg_id);
2886}
2887
2888static void memcg_free_kmem(struct mem_cgroup *memcg)
2889{
0b8f73e1
JW
2890 /* css_alloc() failed, offlining didn't happen */
2891 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2892 memcg_offline_kmem(memcg);
2893
8e0a8912
JW
2894 if (memcg->kmem_state == KMEM_ALLOCATED) {
2895 memcg_destroy_kmem_caches(memcg);
2896 static_branch_dec(&memcg_kmem_enabled_key);
2897 WARN_ON(page_counter_read(&memcg->kmem));
2898 }
8e0a8912 2899}
d6441637 2900#else
0b8f73e1 2901static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2902{
2903 return 0;
2904}
2905static void memcg_offline_kmem(struct mem_cgroup *memcg)
2906{
2907}
2908static void memcg_free_kmem(struct mem_cgroup *memcg)
2909{
2910}
2911#endif /* !CONFIG_SLOB */
2912
bbec2e15
RG
2913static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2914 unsigned long max)
d6441637 2915{
b313aeee 2916 int ret;
127424c8 2917
bbec2e15
RG
2918 mutex_lock(&memcg_max_mutex);
2919 ret = page_counter_set_max(&memcg->kmem, max);
2920 mutex_unlock(&memcg_max_mutex);
127424c8 2921 return ret;
d6441637 2922}
510fc4e1 2923
bbec2e15 2924static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
2925{
2926 int ret;
2927
bbec2e15 2928 mutex_lock(&memcg_max_mutex);
d55f90bf 2929
bbec2e15 2930 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
2931 if (ret)
2932 goto out;
2933
0db15298 2934 if (!memcg->tcpmem_active) {
d55f90bf
VD
2935 /*
2936 * The active flag needs to be written after the static_key
2937 * update. This is what guarantees that the socket activation
2d758073
JW
2938 * function is the last one to run. See mem_cgroup_sk_alloc()
2939 * for details, and note that we don't mark any socket as
2940 * belonging to this memcg until that flag is up.
d55f90bf
VD
2941 *
2942 * We need to do this, because static_keys will span multiple
2943 * sites, but we can't control their order. If we mark a socket
2944 * as accounted, but the accounting functions are not patched in
2945 * yet, we'll lose accounting.
2946 *
2d758073 2947 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2948 * because when this value change, the code to process it is not
2949 * patched in yet.
2950 */
2951 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2952 memcg->tcpmem_active = true;
d55f90bf
VD
2953 }
2954out:
bbec2e15 2955 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
2956 return ret;
2957}
d55f90bf 2958
628f4235
KH
2959/*
2960 * The user of this function is...
2961 * RES_LIMIT.
2962 */
451af504
TH
2963static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2964 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2965{
451af504 2966 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2967 unsigned long nr_pages;
628f4235
KH
2968 int ret;
2969
451af504 2970 buf = strstrip(buf);
650c5e56 2971 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2972 if (ret)
2973 return ret;
af36f906 2974
3e32cb2e 2975 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2976 case RES_LIMIT:
4b3bde4c
BS
2977 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2978 ret = -EINVAL;
2979 break;
2980 }
3e32cb2e
JW
2981 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2982 case _MEM:
bbec2e15 2983 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 2984 break;
3e32cb2e 2985 case _MEMSWAP:
bbec2e15 2986 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 2987 break;
3e32cb2e 2988 case _KMEM:
bbec2e15 2989 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 2990 break;
d55f90bf 2991 case _TCP:
bbec2e15 2992 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 2993 break;
3e32cb2e 2994 }
296c81d8 2995 break;
3e32cb2e
JW
2996 case RES_SOFT_LIMIT:
2997 memcg->soft_limit = nr_pages;
2998 ret = 0;
628f4235
KH
2999 break;
3000 }
451af504 3001 return ret ?: nbytes;
8cdea7c0
BS
3002}
3003
6770c64e
TH
3004static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3005 size_t nbytes, loff_t off)
c84872e1 3006{
6770c64e 3007 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3008 struct page_counter *counter;
c84872e1 3009
3e32cb2e
JW
3010 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3011 case _MEM:
3012 counter = &memcg->memory;
3013 break;
3014 case _MEMSWAP:
3015 counter = &memcg->memsw;
3016 break;
3017 case _KMEM:
3018 counter = &memcg->kmem;
3019 break;
d55f90bf 3020 case _TCP:
0db15298 3021 counter = &memcg->tcpmem;
d55f90bf 3022 break;
3e32cb2e
JW
3023 default:
3024 BUG();
3025 }
af36f906 3026
3e32cb2e 3027 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3028 case RES_MAX_USAGE:
3e32cb2e 3029 page_counter_reset_watermark(counter);
29f2a4da
PE
3030 break;
3031 case RES_FAILCNT:
3e32cb2e 3032 counter->failcnt = 0;
29f2a4da 3033 break;
3e32cb2e
JW
3034 default:
3035 BUG();
29f2a4da 3036 }
f64c3f54 3037
6770c64e 3038 return nbytes;
c84872e1
PE
3039}
3040
182446d0 3041static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3042 struct cftype *cft)
3043{
182446d0 3044 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3045}
3046
02491447 3047#ifdef CONFIG_MMU
182446d0 3048static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3049 struct cftype *cft, u64 val)
3050{
182446d0 3051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3052
1dfab5ab 3053 if (val & ~MOVE_MASK)
7dc74be0 3054 return -EINVAL;
ee5e8472 3055
7dc74be0 3056 /*
ee5e8472
GC
3057 * No kind of locking is needed in here, because ->can_attach() will
3058 * check this value once in the beginning of the process, and then carry
3059 * on with stale data. This means that changes to this value will only
3060 * affect task migrations starting after the change.
7dc74be0 3061 */
c0ff4b85 3062 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3063 return 0;
3064}
02491447 3065#else
182446d0 3066static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3067 struct cftype *cft, u64 val)
3068{
3069 return -ENOSYS;
3070}
3071#endif
7dc74be0 3072
406eb0c9 3073#ifdef CONFIG_NUMA
2da8ca82 3074static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3075{
25485de6
GT
3076 struct numa_stat {
3077 const char *name;
3078 unsigned int lru_mask;
3079 };
3080
3081 static const struct numa_stat stats[] = {
3082 { "total", LRU_ALL },
3083 { "file", LRU_ALL_FILE },
3084 { "anon", LRU_ALL_ANON },
3085 { "unevictable", BIT(LRU_UNEVICTABLE) },
3086 };
3087 const struct numa_stat *stat;
406eb0c9 3088 int nid;
25485de6 3089 unsigned long nr;
2da8ca82 3090 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3091
25485de6
GT
3092 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3093 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3094 seq_printf(m, "%s=%lu", stat->name, nr);
3095 for_each_node_state(nid, N_MEMORY) {
3096 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3097 stat->lru_mask);
3098 seq_printf(m, " N%d=%lu", nid, nr);
3099 }
3100 seq_putc(m, '\n');
406eb0c9 3101 }
406eb0c9 3102
071aee13
YH
3103 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3104 struct mem_cgroup *iter;
3105
3106 nr = 0;
3107 for_each_mem_cgroup_tree(iter, memcg)
3108 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3109 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3110 for_each_node_state(nid, N_MEMORY) {
3111 nr = 0;
3112 for_each_mem_cgroup_tree(iter, memcg)
3113 nr += mem_cgroup_node_nr_lru_pages(
3114 iter, nid, stat->lru_mask);
3115 seq_printf(m, " N%d=%lu", nid, nr);
3116 }
3117 seq_putc(m, '\n');
406eb0c9 3118 }
406eb0c9 3119
406eb0c9
YH
3120 return 0;
3121}
3122#endif /* CONFIG_NUMA */
3123
df0e53d0 3124/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3125static const unsigned int memcg1_events[] = {
df0e53d0
JW
3126 PGPGIN,
3127 PGPGOUT,
3128 PGFAULT,
3129 PGMAJFAULT,
3130};
3131
3132static const char *const memcg1_event_names[] = {
3133 "pgpgin",
3134 "pgpgout",
3135 "pgfault",
3136 "pgmajfault",
3137};
3138
2da8ca82 3139static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3140{
2da8ca82 3141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3142 unsigned long memory, memsw;
af7c4b0e
JW
3143 struct mem_cgroup *mi;
3144 unsigned int i;
406eb0c9 3145
71cd3113 3146 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3147 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3148
71cd3113
JW
3149 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3150 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3151 continue;
71cd3113 3152 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3153 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3154 PAGE_SIZE);
1dd3a273 3155 }
7b854121 3156
df0e53d0
JW
3157 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3158 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3159 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3160
3161 for (i = 0; i < NR_LRU_LISTS; i++)
3162 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3163 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3164
14067bb3 3165 /* Hierarchical information */
3e32cb2e
JW
3166 memory = memsw = PAGE_COUNTER_MAX;
3167 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3168 memory = min(memory, mi->memory.max);
3169 memsw = min(memsw, mi->memsw.max);
fee7b548 3170 }
3e32cb2e
JW
3171 seq_printf(m, "hierarchical_memory_limit %llu\n",
3172 (u64)memory * PAGE_SIZE);
7941d214 3173 if (do_memsw_account())
3e32cb2e
JW
3174 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3175 (u64)memsw * PAGE_SIZE);
7f016ee8 3176
71cd3113 3177 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3178 unsigned long long val = 0;
af7c4b0e 3179
71cd3113 3180 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3181 continue;
af7c4b0e 3182 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3183 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3184 PAGE_SIZE;
3185 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3186 }
3187
df0e53d0 3188 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3189 unsigned long long val = 0;
3190
3191 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3192 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3193 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3194 }
3195
3196 for (i = 0; i < NR_LRU_LISTS; i++) {
3197 unsigned long long val = 0;
3198
3199 for_each_mem_cgroup_tree(mi, memcg)
3200 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3201 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3202 }
14067bb3 3203
7f016ee8 3204#ifdef CONFIG_DEBUG_VM
7f016ee8 3205 {
ef8f2327
MG
3206 pg_data_t *pgdat;
3207 struct mem_cgroup_per_node *mz;
89abfab1 3208 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3209 unsigned long recent_rotated[2] = {0, 0};
3210 unsigned long recent_scanned[2] = {0, 0};
3211
ef8f2327
MG
3212 for_each_online_pgdat(pgdat) {
3213 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3214 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3215
ef8f2327
MG
3216 recent_rotated[0] += rstat->recent_rotated[0];
3217 recent_rotated[1] += rstat->recent_rotated[1];
3218 recent_scanned[0] += rstat->recent_scanned[0];
3219 recent_scanned[1] += rstat->recent_scanned[1];
3220 }
78ccf5b5
JW
3221 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3222 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3223 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3224 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3225 }
3226#endif
3227
d2ceb9b7
KH
3228 return 0;
3229}
3230
182446d0
TH
3231static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3232 struct cftype *cft)
a7885eb8 3233{
182446d0 3234 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3235
1f4c025b 3236 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3237}
3238
182446d0
TH
3239static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3240 struct cftype *cft, u64 val)
a7885eb8 3241{
182446d0 3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3243
3dae7fec 3244 if (val > 100)
a7885eb8
KM
3245 return -EINVAL;
3246
14208b0e 3247 if (css->parent)
3dae7fec
JW
3248 memcg->swappiness = val;
3249 else
3250 vm_swappiness = val;
068b38c1 3251
a7885eb8
KM
3252 return 0;
3253}
3254
2e72b634
KS
3255static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3256{
3257 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3258 unsigned long usage;
2e72b634
KS
3259 int i;
3260
3261 rcu_read_lock();
3262 if (!swap)
2c488db2 3263 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3264 else
2c488db2 3265 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3266
3267 if (!t)
3268 goto unlock;
3269
ce00a967 3270 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3271
3272 /*
748dad36 3273 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3274 * If it's not true, a threshold was crossed after last
3275 * call of __mem_cgroup_threshold().
3276 */
5407a562 3277 i = t->current_threshold;
2e72b634
KS
3278
3279 /*
3280 * Iterate backward over array of thresholds starting from
3281 * current_threshold and check if a threshold is crossed.
3282 * If none of thresholds below usage is crossed, we read
3283 * only one element of the array here.
3284 */
3285 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3286 eventfd_signal(t->entries[i].eventfd, 1);
3287
3288 /* i = current_threshold + 1 */
3289 i++;
3290
3291 /*
3292 * Iterate forward over array of thresholds starting from
3293 * current_threshold+1 and check if a threshold is crossed.
3294 * If none of thresholds above usage is crossed, we read
3295 * only one element of the array here.
3296 */
3297 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3298 eventfd_signal(t->entries[i].eventfd, 1);
3299
3300 /* Update current_threshold */
5407a562 3301 t->current_threshold = i - 1;
2e72b634
KS
3302unlock:
3303 rcu_read_unlock();
3304}
3305
3306static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3307{
ad4ca5f4
KS
3308 while (memcg) {
3309 __mem_cgroup_threshold(memcg, false);
7941d214 3310 if (do_memsw_account())
ad4ca5f4
KS
3311 __mem_cgroup_threshold(memcg, true);
3312
3313 memcg = parent_mem_cgroup(memcg);
3314 }
2e72b634
KS
3315}
3316
3317static int compare_thresholds(const void *a, const void *b)
3318{
3319 const struct mem_cgroup_threshold *_a = a;
3320 const struct mem_cgroup_threshold *_b = b;
3321
2bff24a3
GT
3322 if (_a->threshold > _b->threshold)
3323 return 1;
3324
3325 if (_a->threshold < _b->threshold)
3326 return -1;
3327
3328 return 0;
2e72b634
KS
3329}
3330
c0ff4b85 3331static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3332{
3333 struct mem_cgroup_eventfd_list *ev;
3334
2bcf2e92
MH
3335 spin_lock(&memcg_oom_lock);
3336
c0ff4b85 3337 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3338 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3339
3340 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3341 return 0;
3342}
3343
c0ff4b85 3344static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3345{
7d74b06f
KH
3346 struct mem_cgroup *iter;
3347
c0ff4b85 3348 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3349 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3350}
3351
59b6f873 3352static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3353 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3354{
2c488db2
KS
3355 struct mem_cgroup_thresholds *thresholds;
3356 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3357 unsigned long threshold;
3358 unsigned long usage;
2c488db2 3359 int i, size, ret;
2e72b634 3360
650c5e56 3361 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3362 if (ret)
3363 return ret;
3364
3365 mutex_lock(&memcg->thresholds_lock);
2c488db2 3366
05b84301 3367 if (type == _MEM) {
2c488db2 3368 thresholds = &memcg->thresholds;
ce00a967 3369 usage = mem_cgroup_usage(memcg, false);
05b84301 3370 } else if (type == _MEMSWAP) {
2c488db2 3371 thresholds = &memcg->memsw_thresholds;
ce00a967 3372 usage = mem_cgroup_usage(memcg, true);
05b84301 3373 } else
2e72b634
KS
3374 BUG();
3375
2e72b634 3376 /* Check if a threshold crossed before adding a new one */
2c488db2 3377 if (thresholds->primary)
2e72b634
KS
3378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3379
2c488db2 3380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3381
3382 /* Allocate memory for new array of thresholds */
2c488db2 3383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3384 GFP_KERNEL);
2c488db2 3385 if (!new) {
2e72b634
KS
3386 ret = -ENOMEM;
3387 goto unlock;
3388 }
2c488db2 3389 new->size = size;
2e72b634
KS
3390
3391 /* Copy thresholds (if any) to new array */
2c488db2
KS
3392 if (thresholds->primary) {
3393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3394 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3395 }
3396
2e72b634 3397 /* Add new threshold */
2c488db2
KS
3398 new->entries[size - 1].eventfd = eventfd;
3399 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3400
3401 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3403 compare_thresholds, NULL);
3404
3405 /* Find current threshold */
2c488db2 3406 new->current_threshold = -1;
2e72b634 3407 for (i = 0; i < size; i++) {
748dad36 3408 if (new->entries[i].threshold <= usage) {
2e72b634 3409 /*
2c488db2
KS
3410 * new->current_threshold will not be used until
3411 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3412 * it here.
3413 */
2c488db2 3414 ++new->current_threshold;
748dad36
SZ
3415 } else
3416 break;
2e72b634
KS
3417 }
3418
2c488db2
KS
3419 /* Free old spare buffer and save old primary buffer as spare */
3420 kfree(thresholds->spare);
3421 thresholds->spare = thresholds->primary;
3422
3423 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3424
907860ed 3425 /* To be sure that nobody uses thresholds */
2e72b634
KS
3426 synchronize_rcu();
3427
2e72b634
KS
3428unlock:
3429 mutex_unlock(&memcg->thresholds_lock);
3430
3431 return ret;
3432}
3433
59b6f873 3434static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3438}
3439
59b6f873 3440static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3441 struct eventfd_ctx *eventfd, const char *args)
3442{
59b6f873 3443 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3444}
3445
59b6f873 3446static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3447 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3448{
2c488db2
KS
3449 struct mem_cgroup_thresholds *thresholds;
3450 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3451 unsigned long usage;
2c488db2 3452 int i, j, size;
2e72b634
KS
3453
3454 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3455
3456 if (type == _MEM) {
2c488db2 3457 thresholds = &memcg->thresholds;
ce00a967 3458 usage = mem_cgroup_usage(memcg, false);
05b84301 3459 } else if (type == _MEMSWAP) {
2c488db2 3460 thresholds = &memcg->memsw_thresholds;
ce00a967 3461 usage = mem_cgroup_usage(memcg, true);
05b84301 3462 } else
2e72b634
KS
3463 BUG();
3464
371528ca
AV
3465 if (!thresholds->primary)
3466 goto unlock;
3467
2e72b634
KS
3468 /* Check if a threshold crossed before removing */
3469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3470
3471 /* Calculate new number of threshold */
2c488db2
KS
3472 size = 0;
3473 for (i = 0; i < thresholds->primary->size; i++) {
3474 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3475 size++;
3476 }
3477
2c488db2 3478 new = thresholds->spare;
907860ed 3479
2e72b634
KS
3480 /* Set thresholds array to NULL if we don't have thresholds */
3481 if (!size) {
2c488db2
KS
3482 kfree(new);
3483 new = NULL;
907860ed 3484 goto swap_buffers;
2e72b634
KS
3485 }
3486
2c488db2 3487 new->size = size;
2e72b634
KS
3488
3489 /* Copy thresholds and find current threshold */
2c488db2
KS
3490 new->current_threshold = -1;
3491 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3492 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3493 continue;
3494
2c488db2 3495 new->entries[j] = thresholds->primary->entries[i];
748dad36 3496 if (new->entries[j].threshold <= usage) {
2e72b634 3497 /*
2c488db2 3498 * new->current_threshold will not be used
2e72b634
KS
3499 * until rcu_assign_pointer(), so it's safe to increment
3500 * it here.
3501 */
2c488db2 3502 ++new->current_threshold;
2e72b634
KS
3503 }
3504 j++;
3505 }
3506
907860ed 3507swap_buffers:
2c488db2
KS
3508 /* Swap primary and spare array */
3509 thresholds->spare = thresholds->primary;
8c757763 3510
2c488db2 3511 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3512
907860ed 3513 /* To be sure that nobody uses thresholds */
2e72b634 3514 synchronize_rcu();
6611d8d7
MC
3515
3516 /* If all events are unregistered, free the spare array */
3517 if (!new) {
3518 kfree(thresholds->spare);
3519 thresholds->spare = NULL;
3520 }
371528ca 3521unlock:
2e72b634 3522 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3523}
c1e862c1 3524
59b6f873 3525static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3529}
3530
59b6f873 3531static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3532 struct eventfd_ctx *eventfd)
3533{
59b6f873 3534 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3535}
3536
59b6f873 3537static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3538 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3539{
9490ff27 3540 struct mem_cgroup_eventfd_list *event;
9490ff27 3541
9490ff27
KH
3542 event = kmalloc(sizeof(*event), GFP_KERNEL);
3543 if (!event)
3544 return -ENOMEM;
3545
1af8efe9 3546 spin_lock(&memcg_oom_lock);
9490ff27
KH
3547
3548 event->eventfd = eventfd;
3549 list_add(&event->list, &memcg->oom_notify);
3550
3551 /* already in OOM ? */
c2b42d3c 3552 if (memcg->under_oom)
9490ff27 3553 eventfd_signal(eventfd, 1);
1af8efe9 3554 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3555
3556 return 0;
3557}
3558
59b6f873 3559static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3560 struct eventfd_ctx *eventfd)
9490ff27 3561{
9490ff27 3562 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3563
1af8efe9 3564 spin_lock(&memcg_oom_lock);
9490ff27 3565
c0ff4b85 3566 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3567 if (ev->eventfd == eventfd) {
3568 list_del(&ev->list);
3569 kfree(ev);
3570 }
3571 }
3572
1af8efe9 3573 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3574}
3575
2da8ca82 3576static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3577{
2da8ca82 3578 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3579
791badbd 3580 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3581 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3582 seq_printf(sf, "oom_kill %lu\n",
3583 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3584 return 0;
3585}
3586
182446d0 3587static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3588 struct cftype *cft, u64 val)
3589{
182446d0 3590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3591
3592 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3593 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3594 return -EINVAL;
3595
c0ff4b85 3596 memcg->oom_kill_disable = val;
4d845ebf 3597 if (!val)
c0ff4b85 3598 memcg_oom_recover(memcg);
3dae7fec 3599
3c11ecf4
KH
3600 return 0;
3601}
3602
52ebea74
TH
3603#ifdef CONFIG_CGROUP_WRITEBACK
3604
841710aa
TH
3605static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3606{
3607 return wb_domain_init(&memcg->cgwb_domain, gfp);
3608}
3609
3610static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3611{
3612 wb_domain_exit(&memcg->cgwb_domain);
3613}
3614
2529bb3a
TH
3615static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3616{
3617 wb_domain_size_changed(&memcg->cgwb_domain);
3618}
3619
841710aa
TH
3620struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3621{
3622 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3623
3624 if (!memcg->css.parent)
3625 return NULL;
3626
3627 return &memcg->cgwb_domain;
3628}
3629
c2aa723a
TH
3630/**
3631 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3632 * @wb: bdi_writeback in question
c5edf9cd
TH
3633 * @pfilepages: out parameter for number of file pages
3634 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3635 * @pdirty: out parameter for number of dirty pages
3636 * @pwriteback: out parameter for number of pages under writeback
3637 *
c5edf9cd
TH
3638 * Determine the numbers of file, headroom, dirty, and writeback pages in
3639 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3640 * is a bit more involved.
c2aa723a 3641 *
c5edf9cd
TH
3642 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3643 * headroom is calculated as the lowest headroom of itself and the
3644 * ancestors. Note that this doesn't consider the actual amount of
3645 * available memory in the system. The caller should further cap
3646 * *@pheadroom accordingly.
c2aa723a 3647 */
c5edf9cd
TH
3648void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3649 unsigned long *pheadroom, unsigned long *pdirty,
3650 unsigned long *pwriteback)
c2aa723a
TH
3651{
3652 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3653 struct mem_cgroup *parent;
c2aa723a 3654
ccda7f43 3655 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3656
3657 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3658 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3659 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3660 (1 << LRU_ACTIVE_FILE));
3661 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3662
c2aa723a 3663 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3664 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3665 unsigned long used = page_counter_read(&memcg->memory);
3666
c5edf9cd 3667 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3668 memcg = parent;
3669 }
c2aa723a
TH
3670}
3671
841710aa
TH
3672#else /* CONFIG_CGROUP_WRITEBACK */
3673
3674static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675{
3676 return 0;
3677}
3678
3679static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3680{
3681}
3682
2529bb3a
TH
3683static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3684{
3685}
3686
52ebea74
TH
3687#endif /* CONFIG_CGROUP_WRITEBACK */
3688
3bc942f3
TH
3689/*
3690 * DO NOT USE IN NEW FILES.
3691 *
3692 * "cgroup.event_control" implementation.
3693 *
3694 * This is way over-engineered. It tries to support fully configurable
3695 * events for each user. Such level of flexibility is completely
3696 * unnecessary especially in the light of the planned unified hierarchy.
3697 *
3698 * Please deprecate this and replace with something simpler if at all
3699 * possible.
3700 */
3701
79bd9814
TH
3702/*
3703 * Unregister event and free resources.
3704 *
3705 * Gets called from workqueue.
3706 */
3bc942f3 3707static void memcg_event_remove(struct work_struct *work)
79bd9814 3708{
3bc942f3
TH
3709 struct mem_cgroup_event *event =
3710 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3711 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3712
3713 remove_wait_queue(event->wqh, &event->wait);
3714
59b6f873 3715 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3716
3717 /* Notify userspace the event is going away. */
3718 eventfd_signal(event->eventfd, 1);
3719
3720 eventfd_ctx_put(event->eventfd);
3721 kfree(event);
59b6f873 3722 css_put(&memcg->css);
79bd9814
TH
3723}
3724
3725/*
a9a08845 3726 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3727 *
3728 * Called with wqh->lock held and interrupts disabled.
3729 */
ac6424b9 3730static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3731 int sync, void *key)
79bd9814 3732{
3bc942f3
TH
3733 struct mem_cgroup_event *event =
3734 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3735 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3736 __poll_t flags = key_to_poll(key);
79bd9814 3737
a9a08845 3738 if (flags & EPOLLHUP) {
79bd9814
TH
3739 /*
3740 * If the event has been detached at cgroup removal, we
3741 * can simply return knowing the other side will cleanup
3742 * for us.
3743 *
3744 * We can't race against event freeing since the other
3745 * side will require wqh->lock via remove_wait_queue(),
3746 * which we hold.
3747 */
fba94807 3748 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3749 if (!list_empty(&event->list)) {
3750 list_del_init(&event->list);
3751 /*
3752 * We are in atomic context, but cgroup_event_remove()
3753 * may sleep, so we have to call it in workqueue.
3754 */
3755 schedule_work(&event->remove);
3756 }
fba94807 3757 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3758 }
3759
3760 return 0;
3761}
3762
3bc942f3 3763static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3764 wait_queue_head_t *wqh, poll_table *pt)
3765{
3bc942f3
TH
3766 struct mem_cgroup_event *event =
3767 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3768
3769 event->wqh = wqh;
3770 add_wait_queue(wqh, &event->wait);
3771}
3772
3773/*
3bc942f3
TH
3774 * DO NOT USE IN NEW FILES.
3775 *
79bd9814
TH
3776 * Parse input and register new cgroup event handler.
3777 *
3778 * Input must be in format '<event_fd> <control_fd> <args>'.
3779 * Interpretation of args is defined by control file implementation.
3780 */
451af504
TH
3781static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3782 char *buf, size_t nbytes, loff_t off)
79bd9814 3783{
451af504 3784 struct cgroup_subsys_state *css = of_css(of);
fba94807 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3786 struct mem_cgroup_event *event;
79bd9814
TH
3787 struct cgroup_subsys_state *cfile_css;
3788 unsigned int efd, cfd;
3789 struct fd efile;
3790 struct fd cfile;
fba94807 3791 const char *name;
79bd9814
TH
3792 char *endp;
3793 int ret;
3794
451af504
TH
3795 buf = strstrip(buf);
3796
3797 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3798 if (*endp != ' ')
3799 return -EINVAL;
451af504 3800 buf = endp + 1;
79bd9814 3801
451af504 3802 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3803 if ((*endp != ' ') && (*endp != '\0'))
3804 return -EINVAL;
451af504 3805 buf = endp + 1;
79bd9814
TH
3806
3807 event = kzalloc(sizeof(*event), GFP_KERNEL);
3808 if (!event)
3809 return -ENOMEM;
3810
59b6f873 3811 event->memcg = memcg;
79bd9814 3812 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3813 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3814 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3815 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3816
3817 efile = fdget(efd);
3818 if (!efile.file) {
3819 ret = -EBADF;
3820 goto out_kfree;
3821 }
3822
3823 event->eventfd = eventfd_ctx_fileget(efile.file);
3824 if (IS_ERR(event->eventfd)) {
3825 ret = PTR_ERR(event->eventfd);
3826 goto out_put_efile;
3827 }
3828
3829 cfile = fdget(cfd);
3830 if (!cfile.file) {
3831 ret = -EBADF;
3832 goto out_put_eventfd;
3833 }
3834
3835 /* the process need read permission on control file */
3836 /* AV: shouldn't we check that it's been opened for read instead? */
3837 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3838 if (ret < 0)
3839 goto out_put_cfile;
3840
fba94807
TH
3841 /*
3842 * Determine the event callbacks and set them in @event. This used
3843 * to be done via struct cftype but cgroup core no longer knows
3844 * about these events. The following is crude but the whole thing
3845 * is for compatibility anyway.
3bc942f3
TH
3846 *
3847 * DO NOT ADD NEW FILES.
fba94807 3848 */
b583043e 3849 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3850
3851 if (!strcmp(name, "memory.usage_in_bytes")) {
3852 event->register_event = mem_cgroup_usage_register_event;
3853 event->unregister_event = mem_cgroup_usage_unregister_event;
3854 } else if (!strcmp(name, "memory.oom_control")) {
3855 event->register_event = mem_cgroup_oom_register_event;
3856 event->unregister_event = mem_cgroup_oom_unregister_event;
3857 } else if (!strcmp(name, "memory.pressure_level")) {
3858 event->register_event = vmpressure_register_event;
3859 event->unregister_event = vmpressure_unregister_event;
3860 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3861 event->register_event = memsw_cgroup_usage_register_event;
3862 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3863 } else {
3864 ret = -EINVAL;
3865 goto out_put_cfile;
3866 }
3867
79bd9814 3868 /*
b5557c4c
TH
3869 * Verify @cfile should belong to @css. Also, remaining events are
3870 * automatically removed on cgroup destruction but the removal is
3871 * asynchronous, so take an extra ref on @css.
79bd9814 3872 */
b583043e 3873 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3874 &memory_cgrp_subsys);
79bd9814 3875 ret = -EINVAL;
5a17f543 3876 if (IS_ERR(cfile_css))
79bd9814 3877 goto out_put_cfile;
5a17f543
TH
3878 if (cfile_css != css) {
3879 css_put(cfile_css);
79bd9814 3880 goto out_put_cfile;
5a17f543 3881 }
79bd9814 3882
451af504 3883 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3884 if (ret)
3885 goto out_put_css;
3886
9965ed17 3887 vfs_poll(efile.file, &event->pt);
79bd9814 3888
fba94807
TH
3889 spin_lock(&memcg->event_list_lock);
3890 list_add(&event->list, &memcg->event_list);
3891 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3892
3893 fdput(cfile);
3894 fdput(efile);
3895
451af504 3896 return nbytes;
79bd9814
TH
3897
3898out_put_css:
b5557c4c 3899 css_put(css);
79bd9814
TH
3900out_put_cfile:
3901 fdput(cfile);
3902out_put_eventfd:
3903 eventfd_ctx_put(event->eventfd);
3904out_put_efile:
3905 fdput(efile);
3906out_kfree:
3907 kfree(event);
3908
3909 return ret;
3910}
3911
241994ed 3912static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3913 {
0eea1030 3914 .name = "usage_in_bytes",
8c7c6e34 3915 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3916 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3917 },
c84872e1
PE
3918 {
3919 .name = "max_usage_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3921 .write = mem_cgroup_reset,
791badbd 3922 .read_u64 = mem_cgroup_read_u64,
c84872e1 3923 },
8cdea7c0 3924 {
0eea1030 3925 .name = "limit_in_bytes",
8c7c6e34 3926 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3927 .write = mem_cgroup_write,
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3929 },
296c81d8
BS
3930 {
3931 .name = "soft_limit_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3933 .write = mem_cgroup_write,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
296c81d8 3935 },
8cdea7c0
BS
3936 {
3937 .name = "failcnt",
8c7c6e34 3938 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3939 .write = mem_cgroup_reset,
791badbd 3940 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3941 },
d2ceb9b7
KH
3942 {
3943 .name = "stat",
2da8ca82 3944 .seq_show = memcg_stat_show,
d2ceb9b7 3945 },
c1e862c1
KH
3946 {
3947 .name = "force_empty",
6770c64e 3948 .write = mem_cgroup_force_empty_write,
c1e862c1 3949 },
18f59ea7
BS
3950 {
3951 .name = "use_hierarchy",
3952 .write_u64 = mem_cgroup_hierarchy_write,
3953 .read_u64 = mem_cgroup_hierarchy_read,
3954 },
79bd9814 3955 {
3bc942f3 3956 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3957 .write = memcg_write_event_control,
7dbdb199 3958 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3959 },
a7885eb8
KM
3960 {
3961 .name = "swappiness",
3962 .read_u64 = mem_cgroup_swappiness_read,
3963 .write_u64 = mem_cgroup_swappiness_write,
3964 },
7dc74be0
DN
3965 {
3966 .name = "move_charge_at_immigrate",
3967 .read_u64 = mem_cgroup_move_charge_read,
3968 .write_u64 = mem_cgroup_move_charge_write,
3969 },
9490ff27
KH
3970 {
3971 .name = "oom_control",
2da8ca82 3972 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3973 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3974 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3975 },
70ddf637
AV
3976 {
3977 .name = "pressure_level",
70ddf637 3978 },
406eb0c9
YH
3979#ifdef CONFIG_NUMA
3980 {
3981 .name = "numa_stat",
2da8ca82 3982 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3983 },
3984#endif
510fc4e1
GC
3985 {
3986 .name = "kmem.limit_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3988 .write = mem_cgroup_write,
791badbd 3989 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3990 },
3991 {
3992 .name = "kmem.usage_in_bytes",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.failcnt",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3999 .write = mem_cgroup_reset,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4001 },
4002 {
4003 .name = "kmem.max_usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4005 .write = mem_cgroup_reset,
791badbd 4006 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4007 },
5b365771 4008#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4009 {
4010 .name = "kmem.slabinfo",
bc2791f8
TH
4011 .seq_start = memcg_slab_start,
4012 .seq_next = memcg_slab_next,
4013 .seq_stop = memcg_slab_stop,
b047501c 4014 .seq_show = memcg_slab_show,
749c5415
GC
4015 },
4016#endif
d55f90bf
VD
4017 {
4018 .name = "kmem.tcp.limit_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4020 .write = mem_cgroup_write,
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.failcnt",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.max_usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4037 .write = mem_cgroup_reset,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
6bc10349 4040 { }, /* terminate */
af36f906 4041};
8c7c6e34 4042
73f576c0
JW
4043/*
4044 * Private memory cgroup IDR
4045 *
4046 * Swap-out records and page cache shadow entries need to store memcg
4047 * references in constrained space, so we maintain an ID space that is
4048 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4049 * memory-controlled cgroups to 64k.
4050 *
4051 * However, there usually are many references to the oflline CSS after
4052 * the cgroup has been destroyed, such as page cache or reclaimable
4053 * slab objects, that don't need to hang on to the ID. We want to keep
4054 * those dead CSS from occupying IDs, or we might quickly exhaust the
4055 * relatively small ID space and prevent the creation of new cgroups
4056 * even when there are much fewer than 64k cgroups - possibly none.
4057 *
4058 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4059 * be freed and recycled when it's no longer needed, which is usually
4060 * when the CSS is offlined.
4061 *
4062 * The only exception to that are records of swapped out tmpfs/shmem
4063 * pages that need to be attributed to live ancestors on swapin. But
4064 * those references are manageable from userspace.
4065 */
4066
4067static DEFINE_IDR(mem_cgroup_idr);
4068
7e97de0b
KT
4069static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4070{
4071 if (memcg->id.id > 0) {
4072 idr_remove(&mem_cgroup_idr, memcg->id.id);
4073 memcg->id.id = 0;
4074 }
4075}
4076
615d66c3 4077static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4078{
58fa2a55 4079 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4080 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4081}
4082
615d66c3 4083static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4084{
58fa2a55 4085 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4086 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4087 mem_cgroup_id_remove(memcg);
73f576c0
JW
4088
4089 /* Memcg ID pins CSS */
4090 css_put(&memcg->css);
4091 }
4092}
4093
615d66c3
VD
4094static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4095{
4096 mem_cgroup_id_get_many(memcg, 1);
4097}
4098
4099static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4100{
4101 mem_cgroup_id_put_many(memcg, 1);
4102}
4103
73f576c0
JW
4104/**
4105 * mem_cgroup_from_id - look up a memcg from a memcg id
4106 * @id: the memcg id to look up
4107 *
4108 * Caller must hold rcu_read_lock().
4109 */
4110struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4111{
4112 WARN_ON_ONCE(!rcu_read_lock_held());
4113 return idr_find(&mem_cgroup_idr, id);
4114}
4115
ef8f2327 4116static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4117{
4118 struct mem_cgroup_per_node *pn;
ef8f2327 4119 int tmp = node;
1ecaab2b
KH
4120 /*
4121 * This routine is called against possible nodes.
4122 * But it's BUG to call kmalloc() against offline node.
4123 *
4124 * TODO: this routine can waste much memory for nodes which will
4125 * never be onlined. It's better to use memory hotplug callback
4126 * function.
4127 */
41e3355d
KH
4128 if (!node_state(node, N_NORMAL_MEMORY))
4129 tmp = -1;
17295c88 4130 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4131 if (!pn)
4132 return 1;
1ecaab2b 4133
a983b5eb
JW
4134 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4135 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4136 kfree(pn);
4137 return 1;
4138 }
4139
ef8f2327
MG
4140 lruvec_init(&pn->lruvec);
4141 pn->usage_in_excess = 0;
4142 pn->on_tree = false;
4143 pn->memcg = memcg;
4144
54f72fe0 4145 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4146 return 0;
4147}
4148
ef8f2327 4149static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4150{
00f3ca2c
JW
4151 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4152
4eaf431f
MH
4153 if (!pn)
4154 return;
4155
a983b5eb 4156 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4157 kfree(pn);
1ecaab2b
KH
4158}
4159
40e952f9 4160static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4161{
c8b2a36f 4162 int node;
59927fb9 4163
c8b2a36f 4164 for_each_node(node)
ef8f2327 4165 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4166 free_percpu(memcg->stat_cpu);
8ff69e2c 4167 kfree(memcg);
59927fb9 4168}
3afe36b1 4169
40e952f9
TE
4170static void mem_cgroup_free(struct mem_cgroup *memcg)
4171{
4172 memcg_wb_domain_exit(memcg);
4173 __mem_cgroup_free(memcg);
4174}
4175
0b8f73e1 4176static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4177{
d142e3e6 4178 struct mem_cgroup *memcg;
0b8f73e1 4179 size_t size;
6d12e2d8 4180 int node;
8cdea7c0 4181
0b8f73e1
JW
4182 size = sizeof(struct mem_cgroup);
4183 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4184
4185 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4186 if (!memcg)
0b8f73e1
JW
4187 return NULL;
4188
73f576c0
JW
4189 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4190 1, MEM_CGROUP_ID_MAX,
4191 GFP_KERNEL);
4192 if (memcg->id.id < 0)
4193 goto fail;
4194
a983b5eb
JW
4195 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4196 if (!memcg->stat_cpu)
0b8f73e1 4197 goto fail;
78fb7466 4198
3ed28fa1 4199 for_each_node(node)
ef8f2327 4200 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4201 goto fail;
f64c3f54 4202
0b8f73e1
JW
4203 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4204 goto fail;
28dbc4b6 4205
f7e1cb6e 4206 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4207 memcg->last_scanned_node = MAX_NUMNODES;
4208 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4209 mutex_init(&memcg->thresholds_lock);
4210 spin_lock_init(&memcg->move_lock);
70ddf637 4211 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4212 INIT_LIST_HEAD(&memcg->event_list);
4213 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4214 memcg->socket_pressure = jiffies;
127424c8 4215#ifndef CONFIG_SLOB
900a38f0 4216 memcg->kmemcg_id = -1;
900a38f0 4217#endif
52ebea74
TH
4218#ifdef CONFIG_CGROUP_WRITEBACK
4219 INIT_LIST_HEAD(&memcg->cgwb_list);
4220#endif
73f576c0 4221 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4222 return memcg;
4223fail:
7e97de0b 4224 mem_cgroup_id_remove(memcg);
40e952f9 4225 __mem_cgroup_free(memcg);
0b8f73e1 4226 return NULL;
d142e3e6
GC
4227}
4228
0b8f73e1
JW
4229static struct cgroup_subsys_state * __ref
4230mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4231{
0b8f73e1
JW
4232 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4233 struct mem_cgroup *memcg;
4234 long error = -ENOMEM;
d142e3e6 4235
0b8f73e1
JW
4236 memcg = mem_cgroup_alloc();
4237 if (!memcg)
4238 return ERR_PTR(error);
d142e3e6 4239
0b8f73e1
JW
4240 memcg->high = PAGE_COUNTER_MAX;
4241 memcg->soft_limit = PAGE_COUNTER_MAX;
4242 if (parent) {
4243 memcg->swappiness = mem_cgroup_swappiness(parent);
4244 memcg->oom_kill_disable = parent->oom_kill_disable;
4245 }
4246 if (parent && parent->use_hierarchy) {
4247 memcg->use_hierarchy = true;
3e32cb2e 4248 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4249 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4250 page_counter_init(&memcg->memsw, &parent->memsw);
4251 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4252 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4253 } else {
3e32cb2e 4254 page_counter_init(&memcg->memory, NULL);
37e84351 4255 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4256 page_counter_init(&memcg->memsw, NULL);
4257 page_counter_init(&memcg->kmem, NULL);
0db15298 4258 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4259 /*
4260 * Deeper hierachy with use_hierarchy == false doesn't make
4261 * much sense so let cgroup subsystem know about this
4262 * unfortunate state in our controller.
4263 */
d142e3e6 4264 if (parent != root_mem_cgroup)
073219e9 4265 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4266 }
d6441637 4267
0b8f73e1
JW
4268 /* The following stuff does not apply to the root */
4269 if (!parent) {
4270 root_mem_cgroup = memcg;
4271 return &memcg->css;
4272 }
4273
b313aeee 4274 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4275 if (error)
4276 goto fail;
127424c8 4277
f7e1cb6e 4278 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4279 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4280
0b8f73e1
JW
4281 return &memcg->css;
4282fail:
7e97de0b 4283 mem_cgroup_id_remove(memcg);
0b8f73e1 4284 mem_cgroup_free(memcg);
ea3a9645 4285 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4286}
4287
73f576c0 4288static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4289{
58fa2a55
VD
4290 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4291
73f576c0 4292 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4293 atomic_set(&memcg->id.ref, 1);
73f576c0 4294 css_get(css);
2f7dd7a4 4295 return 0;
8cdea7c0
BS
4296}
4297
eb95419b 4298static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4299{
eb95419b 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4301 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4302
4303 /*
4304 * Unregister events and notify userspace.
4305 * Notify userspace about cgroup removing only after rmdir of cgroup
4306 * directory to avoid race between userspace and kernelspace.
4307 */
fba94807
TH
4308 spin_lock(&memcg->event_list_lock);
4309 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4310 list_del_init(&event->list);
4311 schedule_work(&event->remove);
4312 }
fba94807 4313 spin_unlock(&memcg->event_list_lock);
ec64f515 4314
bf8d5d52 4315 page_counter_set_min(&memcg->memory, 0);
23067153 4316 page_counter_set_low(&memcg->memory, 0);
63677c74 4317
567e9ab2 4318 memcg_offline_kmem(memcg);
52ebea74 4319 wb_memcg_offline(memcg);
73f576c0
JW
4320
4321 mem_cgroup_id_put(memcg);
df878fb0
KH
4322}
4323
6df38689
VD
4324static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4325{
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327
4328 invalidate_reclaim_iterators(memcg);
4329}
4330
eb95419b 4331static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4332{
eb95419b 4333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4334
f7e1cb6e 4335 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4336 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4337
0db15298 4338 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4339 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4340
0b8f73e1
JW
4341 vmpressure_cleanup(&memcg->vmpressure);
4342 cancel_work_sync(&memcg->high_work);
4343 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4344 memcg_free_kmem(memcg);
0b8f73e1 4345 mem_cgroup_free(memcg);
8cdea7c0
BS
4346}
4347
1ced953b
TH
4348/**
4349 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4350 * @css: the target css
4351 *
4352 * Reset the states of the mem_cgroup associated with @css. This is
4353 * invoked when the userland requests disabling on the default hierarchy
4354 * but the memcg is pinned through dependency. The memcg should stop
4355 * applying policies and should revert to the vanilla state as it may be
4356 * made visible again.
4357 *
4358 * The current implementation only resets the essential configurations.
4359 * This needs to be expanded to cover all the visible parts.
4360 */
4361static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4362{
4363 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4364
bbec2e15
RG
4365 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4366 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4367 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4368 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4369 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4370 page_counter_set_min(&memcg->memory, 0);
23067153 4371 page_counter_set_low(&memcg->memory, 0);
241994ed 4372 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4373 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4374 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4375}
4376
02491447 4377#ifdef CONFIG_MMU
7dc74be0 4378/* Handlers for move charge at task migration. */
854ffa8d 4379static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4380{
05b84301 4381 int ret;
9476db97 4382
d0164adc
MG
4383 /* Try a single bulk charge without reclaim first, kswapd may wake */
4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4385 if (!ret) {
854ffa8d 4386 mc.precharge += count;
854ffa8d
DN
4387 return ret;
4388 }
9476db97 4389
3674534b 4390 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4391 while (count--) {
3674534b 4392 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4393 if (ret)
38c5d72f 4394 return ret;
854ffa8d 4395 mc.precharge++;
9476db97 4396 cond_resched();
854ffa8d 4397 }
9476db97 4398 return 0;
4ffef5fe
DN
4399}
4400
4ffef5fe
DN
4401union mc_target {
4402 struct page *page;
02491447 4403 swp_entry_t ent;
4ffef5fe
DN
4404};
4405
4ffef5fe 4406enum mc_target_type {
8d32ff84 4407 MC_TARGET_NONE = 0,
4ffef5fe 4408 MC_TARGET_PAGE,
02491447 4409 MC_TARGET_SWAP,
c733a828 4410 MC_TARGET_DEVICE,
4ffef5fe
DN
4411};
4412
90254a65
DN
4413static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4414 unsigned long addr, pte_t ptent)
4ffef5fe 4415{
c733a828 4416 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4417
90254a65
DN
4418 if (!page || !page_mapped(page))
4419 return NULL;
4420 if (PageAnon(page)) {
1dfab5ab 4421 if (!(mc.flags & MOVE_ANON))
90254a65 4422 return NULL;
1dfab5ab
JW
4423 } else {
4424 if (!(mc.flags & MOVE_FILE))
4425 return NULL;
4426 }
90254a65
DN
4427 if (!get_page_unless_zero(page))
4428 return NULL;
4429
4430 return page;
4431}
4432
c733a828 4433#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4434static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4435 pte_t ptent, swp_entry_t *entry)
90254a65 4436{
90254a65
DN
4437 struct page *page = NULL;
4438 swp_entry_t ent = pte_to_swp_entry(ptent);
4439
1dfab5ab 4440 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4441 return NULL;
c733a828
JG
4442
4443 /*
4444 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4445 * a device and because they are not accessible by CPU they are store
4446 * as special swap entry in the CPU page table.
4447 */
4448 if (is_device_private_entry(ent)) {
4449 page = device_private_entry_to_page(ent);
4450 /*
4451 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4452 * a refcount of 1 when free (unlike normal page)
4453 */
4454 if (!page_ref_add_unless(page, 1, 1))
4455 return NULL;
4456 return page;
4457 }
4458
4b91355e
KH
4459 /*
4460 * Because lookup_swap_cache() updates some statistics counter,
4461 * we call find_get_page() with swapper_space directly.
4462 */
f6ab1f7f 4463 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4464 if (do_memsw_account())
90254a65
DN
4465 entry->val = ent.val;
4466
4467 return page;
4468}
4b91355e
KH
4469#else
4470static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4471 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4472{
4473 return NULL;
4474}
4475#endif
90254a65 4476
87946a72
DN
4477static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4478 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4479{
4480 struct page *page = NULL;
87946a72
DN
4481 struct address_space *mapping;
4482 pgoff_t pgoff;
4483
4484 if (!vma->vm_file) /* anonymous vma */
4485 return NULL;
1dfab5ab 4486 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4487 return NULL;
4488
87946a72 4489 mapping = vma->vm_file->f_mapping;
0661a336 4490 pgoff = linear_page_index(vma, addr);
87946a72
DN
4491
4492 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4493#ifdef CONFIG_SWAP
4494 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4495 if (shmem_mapping(mapping)) {
4496 page = find_get_entry(mapping, pgoff);
4497 if (radix_tree_exceptional_entry(page)) {
4498 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4499 if (do_memsw_account())
139b6a6f 4500 *entry = swp;
f6ab1f7f
HY
4501 page = find_get_page(swap_address_space(swp),
4502 swp_offset(swp));
139b6a6f
JW
4503 }
4504 } else
4505 page = find_get_page(mapping, pgoff);
4506#else
4507 page = find_get_page(mapping, pgoff);
aa3b1895 4508#endif
87946a72
DN
4509 return page;
4510}
4511
b1b0deab
CG
4512/**
4513 * mem_cgroup_move_account - move account of the page
4514 * @page: the page
25843c2b 4515 * @compound: charge the page as compound or small page
b1b0deab
CG
4516 * @from: mem_cgroup which the page is moved from.
4517 * @to: mem_cgroup which the page is moved to. @from != @to.
4518 *
3ac808fd 4519 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4520 *
4521 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4522 * from old cgroup.
4523 */
4524static int mem_cgroup_move_account(struct page *page,
f627c2f5 4525 bool compound,
b1b0deab
CG
4526 struct mem_cgroup *from,
4527 struct mem_cgroup *to)
4528{
4529 unsigned long flags;
f627c2f5 4530 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4531 int ret;
c4843a75 4532 bool anon;
b1b0deab
CG
4533
4534 VM_BUG_ON(from == to);
4535 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4536 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4537
4538 /*
6a93ca8f 4539 * Prevent mem_cgroup_migrate() from looking at
45637bab 4540 * page->mem_cgroup of its source page while we change it.
b1b0deab 4541 */
f627c2f5 4542 ret = -EBUSY;
b1b0deab
CG
4543 if (!trylock_page(page))
4544 goto out;
4545
4546 ret = -EINVAL;
4547 if (page->mem_cgroup != from)
4548 goto out_unlock;
4549
c4843a75
GT
4550 anon = PageAnon(page);
4551
b1b0deab
CG
4552 spin_lock_irqsave(&from->move_lock, flags);
4553
c4843a75 4554 if (!anon && page_mapped(page)) {
c9019e9b
JW
4555 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4556 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4557 }
4558
c4843a75
GT
4559 /*
4560 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4561 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4562 * So mapping should be stable for dirty pages.
4563 */
4564 if (!anon && PageDirty(page)) {
4565 struct address_space *mapping = page_mapping(page);
4566
4567 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4568 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4569 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4570 }
4571 }
4572
b1b0deab 4573 if (PageWriteback(page)) {
c9019e9b
JW
4574 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4575 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4576 }
4577
4578 /*
4579 * It is safe to change page->mem_cgroup here because the page
4580 * is referenced, charged, and isolated - we can't race with
4581 * uncharging, charging, migration, or LRU putback.
4582 */
4583
4584 /* caller should have done css_get */
4585 page->mem_cgroup = to;
4586 spin_unlock_irqrestore(&from->move_lock, flags);
4587
4588 ret = 0;
4589
4590 local_irq_disable();
f627c2f5 4591 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4592 memcg_check_events(to, page);
f627c2f5 4593 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4594 memcg_check_events(from, page);
4595 local_irq_enable();
4596out_unlock:
4597 unlock_page(page);
4598out:
4599 return ret;
4600}
4601
7cf7806c
LR
4602/**
4603 * get_mctgt_type - get target type of moving charge
4604 * @vma: the vma the pte to be checked belongs
4605 * @addr: the address corresponding to the pte to be checked
4606 * @ptent: the pte to be checked
4607 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4608 *
4609 * Returns
4610 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4611 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4612 * move charge. if @target is not NULL, the page is stored in target->page
4613 * with extra refcnt got(Callers should handle it).
4614 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4615 * target for charge migration. if @target is not NULL, the entry is stored
4616 * in target->ent.
df6ad698
JG
4617 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4618 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4619 * For now we such page is charge like a regular page would be as for all
4620 * intent and purposes it is just special memory taking the place of a
4621 * regular page.
c733a828
JG
4622 *
4623 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4624 *
4625 * Called with pte lock held.
4626 */
4627
8d32ff84 4628static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4629 unsigned long addr, pte_t ptent, union mc_target *target)
4630{
4631 struct page *page = NULL;
8d32ff84 4632 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4633 swp_entry_t ent = { .val = 0 };
4634
4635 if (pte_present(ptent))
4636 page = mc_handle_present_pte(vma, addr, ptent);
4637 else if (is_swap_pte(ptent))
48406ef8 4638 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4639 else if (pte_none(ptent))
87946a72 4640 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4641
4642 if (!page && !ent.val)
8d32ff84 4643 return ret;
02491447 4644 if (page) {
02491447 4645 /*
0a31bc97 4646 * Do only loose check w/o serialization.
1306a85a 4647 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4648 * not under LRU exclusion.
02491447 4649 */
1306a85a 4650 if (page->mem_cgroup == mc.from) {
02491447 4651 ret = MC_TARGET_PAGE;
df6ad698
JG
4652 if (is_device_private_page(page) ||
4653 is_device_public_page(page))
c733a828 4654 ret = MC_TARGET_DEVICE;
02491447
DN
4655 if (target)
4656 target->page = page;
4657 }
4658 if (!ret || !target)
4659 put_page(page);
4660 }
3e14a57b
HY
4661 /*
4662 * There is a swap entry and a page doesn't exist or isn't charged.
4663 * But we cannot move a tail-page in a THP.
4664 */
4665 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4666 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4667 ret = MC_TARGET_SWAP;
4668 if (target)
4669 target->ent = ent;
4ffef5fe 4670 }
4ffef5fe
DN
4671 return ret;
4672}
4673
12724850
NH
4674#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4675/*
d6810d73
HY
4676 * We don't consider PMD mapped swapping or file mapped pages because THP does
4677 * not support them for now.
12724850
NH
4678 * Caller should make sure that pmd_trans_huge(pmd) is true.
4679 */
4680static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4681 unsigned long addr, pmd_t pmd, union mc_target *target)
4682{
4683 struct page *page = NULL;
12724850
NH
4684 enum mc_target_type ret = MC_TARGET_NONE;
4685
84c3fc4e
ZY
4686 if (unlikely(is_swap_pmd(pmd))) {
4687 VM_BUG_ON(thp_migration_supported() &&
4688 !is_pmd_migration_entry(pmd));
4689 return ret;
4690 }
12724850 4691 page = pmd_page(pmd);
309381fe 4692 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4693 if (!(mc.flags & MOVE_ANON))
12724850 4694 return ret;
1306a85a 4695 if (page->mem_cgroup == mc.from) {
12724850
NH
4696 ret = MC_TARGET_PAGE;
4697 if (target) {
4698 get_page(page);
4699 target->page = page;
4700 }
4701 }
4702 return ret;
4703}
4704#else
4705static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4706 unsigned long addr, pmd_t pmd, union mc_target *target)
4707{
4708 return MC_TARGET_NONE;
4709}
4710#endif
4711
4ffef5fe
DN
4712static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4713 unsigned long addr, unsigned long end,
4714 struct mm_walk *walk)
4715{
26bcd64a 4716 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4717 pte_t *pte;
4718 spinlock_t *ptl;
4719
b6ec57f4
KS
4720 ptl = pmd_trans_huge_lock(pmd, vma);
4721 if (ptl) {
c733a828
JG
4722 /*
4723 * Note their can not be MC_TARGET_DEVICE for now as we do not
4724 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4725 * MEMORY_DEVICE_PRIVATE but this might change.
4726 */
12724850
NH
4727 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4728 mc.precharge += HPAGE_PMD_NR;
bf929152 4729 spin_unlock(ptl);
1a5a9906 4730 return 0;
12724850 4731 }
03319327 4732
45f83cef
AA
4733 if (pmd_trans_unstable(pmd))
4734 return 0;
4ffef5fe
DN
4735 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4736 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4737 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4738 mc.precharge++; /* increment precharge temporarily */
4739 pte_unmap_unlock(pte - 1, ptl);
4740 cond_resched();
4741
7dc74be0
DN
4742 return 0;
4743}
4744
4ffef5fe
DN
4745static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4746{
4747 unsigned long precharge;
4ffef5fe 4748
26bcd64a
NH
4749 struct mm_walk mem_cgroup_count_precharge_walk = {
4750 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4751 .mm = mm,
4752 };
dfe076b0 4753 down_read(&mm->mmap_sem);
0247f3f4
JM
4754 walk_page_range(0, mm->highest_vm_end,
4755 &mem_cgroup_count_precharge_walk);
dfe076b0 4756 up_read(&mm->mmap_sem);
4ffef5fe
DN
4757
4758 precharge = mc.precharge;
4759 mc.precharge = 0;
4760
4761 return precharge;
4762}
4763
4ffef5fe
DN
4764static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4765{
dfe076b0
DN
4766 unsigned long precharge = mem_cgroup_count_precharge(mm);
4767
4768 VM_BUG_ON(mc.moving_task);
4769 mc.moving_task = current;
4770 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4771}
4772
dfe076b0
DN
4773/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4774static void __mem_cgroup_clear_mc(void)
4ffef5fe 4775{
2bd9bb20
KH
4776 struct mem_cgroup *from = mc.from;
4777 struct mem_cgroup *to = mc.to;
4778
4ffef5fe 4779 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4780 if (mc.precharge) {
00501b53 4781 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4782 mc.precharge = 0;
4783 }
4784 /*
4785 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4786 * we must uncharge here.
4787 */
4788 if (mc.moved_charge) {
00501b53 4789 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4790 mc.moved_charge = 0;
4ffef5fe 4791 }
483c30b5
DN
4792 /* we must fixup refcnts and charges */
4793 if (mc.moved_swap) {
483c30b5 4794 /* uncharge swap account from the old cgroup */
ce00a967 4795 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4796 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4797
615d66c3
VD
4798 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4799
05b84301 4800 /*
3e32cb2e
JW
4801 * we charged both to->memory and to->memsw, so we
4802 * should uncharge to->memory.
05b84301 4803 */
ce00a967 4804 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4805 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4806
615d66c3
VD
4807 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4808 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4809
483c30b5
DN
4810 mc.moved_swap = 0;
4811 }
dfe076b0
DN
4812 memcg_oom_recover(from);
4813 memcg_oom_recover(to);
4814 wake_up_all(&mc.waitq);
4815}
4816
4817static void mem_cgroup_clear_mc(void)
4818{
264a0ae1
TH
4819 struct mm_struct *mm = mc.mm;
4820
dfe076b0
DN
4821 /*
4822 * we must clear moving_task before waking up waiters at the end of
4823 * task migration.
4824 */
4825 mc.moving_task = NULL;
4826 __mem_cgroup_clear_mc();
2bd9bb20 4827 spin_lock(&mc.lock);
4ffef5fe
DN
4828 mc.from = NULL;
4829 mc.to = NULL;
264a0ae1 4830 mc.mm = NULL;
2bd9bb20 4831 spin_unlock(&mc.lock);
264a0ae1
TH
4832
4833 mmput(mm);
4ffef5fe
DN
4834}
4835
1f7dd3e5 4836static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4837{
1f7dd3e5 4838 struct cgroup_subsys_state *css;
eed67d75 4839 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4840 struct mem_cgroup *from;
4530eddb 4841 struct task_struct *leader, *p;
9f2115f9 4842 struct mm_struct *mm;
1dfab5ab 4843 unsigned long move_flags;
9f2115f9 4844 int ret = 0;
7dc74be0 4845
1f7dd3e5
TH
4846 /* charge immigration isn't supported on the default hierarchy */
4847 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4848 return 0;
4849
4530eddb
TH
4850 /*
4851 * Multi-process migrations only happen on the default hierarchy
4852 * where charge immigration is not used. Perform charge
4853 * immigration if @tset contains a leader and whine if there are
4854 * multiple.
4855 */
4856 p = NULL;
1f7dd3e5 4857 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4858 WARN_ON_ONCE(p);
4859 p = leader;
1f7dd3e5 4860 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4861 }
4862 if (!p)
4863 return 0;
4864
1f7dd3e5
TH
4865 /*
4866 * We are now commited to this value whatever it is. Changes in this
4867 * tunable will only affect upcoming migrations, not the current one.
4868 * So we need to save it, and keep it going.
4869 */
4870 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4871 if (!move_flags)
4872 return 0;
4873
9f2115f9
TH
4874 from = mem_cgroup_from_task(p);
4875
4876 VM_BUG_ON(from == memcg);
4877
4878 mm = get_task_mm(p);
4879 if (!mm)
4880 return 0;
4881 /* We move charges only when we move a owner of the mm */
4882 if (mm->owner == p) {
4883 VM_BUG_ON(mc.from);
4884 VM_BUG_ON(mc.to);
4885 VM_BUG_ON(mc.precharge);
4886 VM_BUG_ON(mc.moved_charge);
4887 VM_BUG_ON(mc.moved_swap);
4888
4889 spin_lock(&mc.lock);
264a0ae1 4890 mc.mm = mm;
9f2115f9
TH
4891 mc.from = from;
4892 mc.to = memcg;
4893 mc.flags = move_flags;
4894 spin_unlock(&mc.lock);
4895 /* We set mc.moving_task later */
4896
4897 ret = mem_cgroup_precharge_mc(mm);
4898 if (ret)
4899 mem_cgroup_clear_mc();
264a0ae1
TH
4900 } else {
4901 mmput(mm);
7dc74be0
DN
4902 }
4903 return ret;
4904}
4905
1f7dd3e5 4906static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4907{
4e2f245d
JW
4908 if (mc.to)
4909 mem_cgroup_clear_mc();
7dc74be0
DN
4910}
4911
4ffef5fe
DN
4912static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4913 unsigned long addr, unsigned long end,
4914 struct mm_walk *walk)
7dc74be0 4915{
4ffef5fe 4916 int ret = 0;
26bcd64a 4917 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4918 pte_t *pte;
4919 spinlock_t *ptl;
12724850
NH
4920 enum mc_target_type target_type;
4921 union mc_target target;
4922 struct page *page;
4ffef5fe 4923
b6ec57f4
KS
4924 ptl = pmd_trans_huge_lock(pmd, vma);
4925 if (ptl) {
62ade86a 4926 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4927 spin_unlock(ptl);
12724850
NH
4928 return 0;
4929 }
4930 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4931 if (target_type == MC_TARGET_PAGE) {
4932 page = target.page;
4933 if (!isolate_lru_page(page)) {
f627c2f5 4934 if (!mem_cgroup_move_account(page, true,
1306a85a 4935 mc.from, mc.to)) {
12724850
NH
4936 mc.precharge -= HPAGE_PMD_NR;
4937 mc.moved_charge += HPAGE_PMD_NR;
4938 }
4939 putback_lru_page(page);
4940 }
4941 put_page(page);
c733a828
JG
4942 } else if (target_type == MC_TARGET_DEVICE) {
4943 page = target.page;
4944 if (!mem_cgroup_move_account(page, true,
4945 mc.from, mc.to)) {
4946 mc.precharge -= HPAGE_PMD_NR;
4947 mc.moved_charge += HPAGE_PMD_NR;
4948 }
4949 put_page(page);
12724850 4950 }
bf929152 4951 spin_unlock(ptl);
1a5a9906 4952 return 0;
12724850
NH
4953 }
4954
45f83cef
AA
4955 if (pmd_trans_unstable(pmd))
4956 return 0;
4ffef5fe
DN
4957retry:
4958 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4959 for (; addr != end; addr += PAGE_SIZE) {
4960 pte_t ptent = *(pte++);
c733a828 4961 bool device = false;
02491447 4962 swp_entry_t ent;
4ffef5fe
DN
4963
4964 if (!mc.precharge)
4965 break;
4966
8d32ff84 4967 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
4968 case MC_TARGET_DEVICE:
4969 device = true;
4970 /* fall through */
4ffef5fe
DN
4971 case MC_TARGET_PAGE:
4972 page = target.page;
53f9263b
KS
4973 /*
4974 * We can have a part of the split pmd here. Moving it
4975 * can be done but it would be too convoluted so simply
4976 * ignore such a partial THP and keep it in original
4977 * memcg. There should be somebody mapping the head.
4978 */
4979 if (PageTransCompound(page))
4980 goto put;
c733a828 4981 if (!device && isolate_lru_page(page))
4ffef5fe 4982 goto put;
f627c2f5
KS
4983 if (!mem_cgroup_move_account(page, false,
4984 mc.from, mc.to)) {
4ffef5fe 4985 mc.precharge--;
854ffa8d
DN
4986 /* we uncharge from mc.from later. */
4987 mc.moved_charge++;
4ffef5fe 4988 }
c733a828
JG
4989 if (!device)
4990 putback_lru_page(page);
8d32ff84 4991put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4992 put_page(page);
4993 break;
02491447
DN
4994 case MC_TARGET_SWAP:
4995 ent = target.ent;
e91cbb42 4996 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4997 mc.precharge--;
483c30b5
DN
4998 /* we fixup refcnts and charges later. */
4999 mc.moved_swap++;
5000 }
02491447 5001 break;
4ffef5fe
DN
5002 default:
5003 break;
5004 }
5005 }
5006 pte_unmap_unlock(pte - 1, ptl);
5007 cond_resched();
5008
5009 if (addr != end) {
5010 /*
5011 * We have consumed all precharges we got in can_attach().
5012 * We try charge one by one, but don't do any additional
5013 * charges to mc.to if we have failed in charge once in attach()
5014 * phase.
5015 */
854ffa8d 5016 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5017 if (!ret)
5018 goto retry;
5019 }
5020
5021 return ret;
5022}
5023
264a0ae1 5024static void mem_cgroup_move_charge(void)
4ffef5fe 5025{
26bcd64a
NH
5026 struct mm_walk mem_cgroup_move_charge_walk = {
5027 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5028 .mm = mc.mm,
26bcd64a 5029 };
4ffef5fe
DN
5030
5031 lru_add_drain_all();
312722cb 5032 /*
81f8c3a4
JW
5033 * Signal lock_page_memcg() to take the memcg's move_lock
5034 * while we're moving its pages to another memcg. Then wait
5035 * for already started RCU-only updates to finish.
312722cb
JW
5036 */
5037 atomic_inc(&mc.from->moving_account);
5038 synchronize_rcu();
dfe076b0 5039retry:
264a0ae1 5040 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5041 /*
5042 * Someone who are holding the mmap_sem might be waiting in
5043 * waitq. So we cancel all extra charges, wake up all waiters,
5044 * and retry. Because we cancel precharges, we might not be able
5045 * to move enough charges, but moving charge is a best-effort
5046 * feature anyway, so it wouldn't be a big problem.
5047 */
5048 __mem_cgroup_clear_mc();
5049 cond_resched();
5050 goto retry;
5051 }
26bcd64a
NH
5052 /*
5053 * When we have consumed all precharges and failed in doing
5054 * additional charge, the page walk just aborts.
5055 */
0247f3f4
JM
5056 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5057
264a0ae1 5058 up_read(&mc.mm->mmap_sem);
312722cb 5059 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5060}
5061
264a0ae1 5062static void mem_cgroup_move_task(void)
67e465a7 5063{
264a0ae1
TH
5064 if (mc.to) {
5065 mem_cgroup_move_charge();
a433658c 5066 mem_cgroup_clear_mc();
264a0ae1 5067 }
67e465a7 5068}
5cfb80a7 5069#else /* !CONFIG_MMU */
1f7dd3e5 5070static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5071{
5072 return 0;
5073}
1f7dd3e5 5074static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5075{
5076}
264a0ae1 5077static void mem_cgroup_move_task(void)
5cfb80a7
DN
5078{
5079}
5080#endif
67e465a7 5081
f00baae7
TH
5082/*
5083 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5084 * to verify whether we're attached to the default hierarchy on each mount
5085 * attempt.
f00baae7 5086 */
eb95419b 5087static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5088{
5089 /*
aa6ec29b 5090 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5091 * guarantees that @root doesn't have any children, so turning it
5092 * on for the root memcg is enough.
5093 */
9e10a130 5094 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5095 root_mem_cgroup->use_hierarchy = true;
5096 else
5097 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5098}
5099
241994ed
JW
5100static u64 memory_current_read(struct cgroup_subsys_state *css,
5101 struct cftype *cft)
5102{
f5fc3c5d
JW
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5104
5105 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5106}
5107
bf8d5d52
RG
5108static int memory_min_show(struct seq_file *m, void *v)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5111 unsigned long min = READ_ONCE(memcg->memory.min);
5112
5113 if (min == PAGE_COUNTER_MAX)
5114 seq_puts(m, "max\n");
5115 else
5116 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5117
5118 return 0;
5119}
5120
5121static ssize_t memory_min_write(struct kernfs_open_file *of,
5122 char *buf, size_t nbytes, loff_t off)
5123{
5124 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5125 unsigned long min;
5126 int err;
5127
5128 buf = strstrip(buf);
5129 err = page_counter_memparse(buf, "max", &min);
5130 if (err)
5131 return err;
5132
5133 page_counter_set_min(&memcg->memory, min);
5134
5135 return nbytes;
5136}
5137
241994ed
JW
5138static int memory_low_show(struct seq_file *m, void *v)
5139{
5140 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5141 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5142
5143 if (low == PAGE_COUNTER_MAX)
d2973697 5144 seq_puts(m, "max\n");
241994ed
JW
5145 else
5146 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5147
5148 return 0;
5149}
5150
5151static ssize_t memory_low_write(struct kernfs_open_file *of,
5152 char *buf, size_t nbytes, loff_t off)
5153{
5154 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5155 unsigned long low;
5156 int err;
5157
5158 buf = strstrip(buf);
d2973697 5159 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5160 if (err)
5161 return err;
5162
23067153 5163 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5164
5165 return nbytes;
5166}
5167
5168static int memory_high_show(struct seq_file *m, void *v)
5169{
5170 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5171 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5172
5173 if (high == PAGE_COUNTER_MAX)
d2973697 5174 seq_puts(m, "max\n");
241994ed
JW
5175 else
5176 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5177
5178 return 0;
5179}
5180
5181static ssize_t memory_high_write(struct kernfs_open_file *of,
5182 char *buf, size_t nbytes, loff_t off)
5183{
5184 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5185 unsigned long nr_pages;
241994ed
JW
5186 unsigned long high;
5187 int err;
5188
5189 buf = strstrip(buf);
d2973697 5190 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5191 if (err)
5192 return err;
5193
5194 memcg->high = high;
5195
588083bb
JW
5196 nr_pages = page_counter_read(&memcg->memory);
5197 if (nr_pages > high)
5198 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5199 GFP_KERNEL, true);
5200
2529bb3a 5201 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5202 return nbytes;
5203}
5204
5205static int memory_max_show(struct seq_file *m, void *v)
5206{
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5208 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5209
5210 if (max == PAGE_COUNTER_MAX)
d2973697 5211 seq_puts(m, "max\n");
241994ed
JW
5212 else
5213 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5214
5215 return 0;
5216}
5217
5218static ssize_t memory_max_write(struct kernfs_open_file *of,
5219 char *buf, size_t nbytes, loff_t off)
5220{
5221 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5222 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5223 bool drained = false;
241994ed
JW
5224 unsigned long max;
5225 int err;
5226
5227 buf = strstrip(buf);
d2973697 5228 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5229 if (err)
5230 return err;
5231
bbec2e15 5232 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5233
5234 for (;;) {
5235 unsigned long nr_pages = page_counter_read(&memcg->memory);
5236
5237 if (nr_pages <= max)
5238 break;
5239
5240 if (signal_pending(current)) {
5241 err = -EINTR;
5242 break;
5243 }
5244
5245 if (!drained) {
5246 drain_all_stock(memcg);
5247 drained = true;
5248 continue;
5249 }
5250
5251 if (nr_reclaims) {
5252 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5253 GFP_KERNEL, true))
5254 nr_reclaims--;
5255 continue;
5256 }
5257
e27be240 5258 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5259 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5260 break;
5261 }
241994ed 5262
2529bb3a 5263 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5264 return nbytes;
5265}
5266
5267static int memory_events_show(struct seq_file *m, void *v)
5268{
5269 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5270
e27be240
JW
5271 seq_printf(m, "low %lu\n",
5272 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5273 seq_printf(m, "high %lu\n",
5274 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5275 seq_printf(m, "max %lu\n",
5276 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5277 seq_printf(m, "oom %lu\n",
5278 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5279 seq_printf(m, "oom_kill %lu\n",
5280 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5281
5282 return 0;
5283}
5284
587d9f72
JW
5285static int memory_stat_show(struct seq_file *m, void *v)
5286{
5287 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73 5288 unsigned long stat[MEMCG_NR_STAT];
e27be240 5289 unsigned long events[NR_VM_EVENT_ITEMS];
587d9f72
JW
5290 int i;
5291
5292 /*
5293 * Provide statistics on the state of the memory subsystem as
5294 * well as cumulative event counters that show past behavior.
5295 *
5296 * This list is ordered following a combination of these gradients:
5297 * 1) generic big picture -> specifics and details
5298 * 2) reflecting userspace activity -> reflecting kernel heuristics
5299 *
5300 * Current memory state:
5301 */
5302
72b54e73
VD
5303 tree_stat(memcg, stat);
5304 tree_events(memcg, events);
5305
587d9f72 5306 seq_printf(m, "anon %llu\n",
71cd3113 5307 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5308 seq_printf(m, "file %llu\n",
71cd3113 5309 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5310 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5311 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5312 seq_printf(m, "slab %llu\n",
32049296
JW
5313 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5314 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5315 seq_printf(m, "sock %llu\n",
72b54e73 5316 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5317
9a4caf1e 5318 seq_printf(m, "shmem %llu\n",
71cd3113 5319 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5320 seq_printf(m, "file_mapped %llu\n",
71cd3113 5321 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5322 seq_printf(m, "file_dirty %llu\n",
71cd3113 5323 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5324 seq_printf(m, "file_writeback %llu\n",
71cd3113 5325 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5326
5327 for (i = 0; i < NR_LRU_LISTS; i++) {
5328 struct mem_cgroup *mi;
5329 unsigned long val = 0;
5330
5331 for_each_mem_cgroup_tree(mi, memcg)
5332 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5333 seq_printf(m, "%s %llu\n",
5334 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5335 }
5336
27ee57c9 5337 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5338 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5339 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5340 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5341
587d9f72
JW
5342 /* Accumulated memory events */
5343
df0e53d0
JW
5344 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5345 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5346
2262185c
RG
5347 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5348 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5349 events[PGSCAN_DIRECT]);
5350 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5351 events[PGSTEAL_DIRECT]);
5352 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5353 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5354 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5355 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5356
2a2e4885 5357 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5358 stat[WORKINGSET_REFAULT]);
2a2e4885 5359 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5360 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5361 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5362 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5363
587d9f72
JW
5364 return 0;
5365}
5366
241994ed
JW
5367static struct cftype memory_files[] = {
5368 {
5369 .name = "current",
f5fc3c5d 5370 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5371 .read_u64 = memory_current_read,
5372 },
bf8d5d52
RG
5373 {
5374 .name = "min",
5375 .flags = CFTYPE_NOT_ON_ROOT,
5376 .seq_show = memory_min_show,
5377 .write = memory_min_write,
5378 },
241994ed
JW
5379 {
5380 .name = "low",
5381 .flags = CFTYPE_NOT_ON_ROOT,
5382 .seq_show = memory_low_show,
5383 .write = memory_low_write,
5384 },
5385 {
5386 .name = "high",
5387 .flags = CFTYPE_NOT_ON_ROOT,
5388 .seq_show = memory_high_show,
5389 .write = memory_high_write,
5390 },
5391 {
5392 .name = "max",
5393 .flags = CFTYPE_NOT_ON_ROOT,
5394 .seq_show = memory_max_show,
5395 .write = memory_max_write,
5396 },
5397 {
5398 .name = "events",
5399 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5400 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5401 .seq_show = memory_events_show,
5402 },
587d9f72
JW
5403 {
5404 .name = "stat",
5405 .flags = CFTYPE_NOT_ON_ROOT,
5406 .seq_show = memory_stat_show,
5407 },
241994ed
JW
5408 { } /* terminate */
5409};
5410
073219e9 5411struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5412 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5413 .css_online = mem_cgroup_css_online,
92fb9748 5414 .css_offline = mem_cgroup_css_offline,
6df38689 5415 .css_released = mem_cgroup_css_released,
92fb9748 5416 .css_free = mem_cgroup_css_free,
1ced953b 5417 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5418 .can_attach = mem_cgroup_can_attach,
5419 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5420 .post_attach = mem_cgroup_move_task,
f00baae7 5421 .bind = mem_cgroup_bind,
241994ed
JW
5422 .dfl_cftypes = memory_files,
5423 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5424 .early_init = 0,
8cdea7c0 5425};
c077719b 5426
241994ed 5427/**
bf8d5d52 5428 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5429 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5430 * @memcg: the memory cgroup to check
5431 *
23067153
RG
5432 * WARNING: This function is not stateless! It can only be used as part
5433 * of a top-down tree iteration, not for isolated queries.
34c81057 5434 *
bf8d5d52
RG
5435 * Returns one of the following:
5436 * MEMCG_PROT_NONE: cgroup memory is not protected
5437 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5438 * an unprotected supply of reclaimable memory from other cgroups.
5439 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5440 *
bf8d5d52 5441 * @root is exclusive; it is never protected when looked at directly
34c81057 5442 *
bf8d5d52
RG
5443 * To provide a proper hierarchical behavior, effective memory.min/low values
5444 * are used. Below is the description of how effective memory.low is calculated.
5445 * Effective memory.min values is calculated in the same way.
34c81057 5446 *
23067153
RG
5447 * Effective memory.low is always equal or less than the original memory.low.
5448 * If there is no memory.low overcommittment (which is always true for
5449 * top-level memory cgroups), these two values are equal.
5450 * Otherwise, it's a part of parent's effective memory.low,
5451 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5452 * memory.low usages, where memory.low usage is the size of actually
5453 * protected memory.
34c81057 5454 *
23067153
RG
5455 * low_usage
5456 * elow = min( memory.low, parent->elow * ------------------ ),
5457 * siblings_low_usage
34c81057 5458 *
23067153
RG
5459 * | memory.current, if memory.current < memory.low
5460 * low_usage = |
5461 | 0, otherwise.
34c81057 5462 *
23067153
RG
5463 *
5464 * Such definition of the effective memory.low provides the expected
5465 * hierarchical behavior: parent's memory.low value is limiting
5466 * children, unprotected memory is reclaimed first and cgroups,
5467 * which are not using their guarantee do not affect actual memory
5468 * distribution.
5469 *
5470 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5471 *
5472 * A A/memory.low = 2G, A/memory.current = 6G
5473 * //\\
5474 * BC DE B/memory.low = 3G B/memory.current = 2G
5475 * C/memory.low = 1G C/memory.current = 2G
5476 * D/memory.low = 0 D/memory.current = 2G
5477 * E/memory.low = 10G E/memory.current = 0
5478 *
5479 * and the memory pressure is applied, the following memory distribution
5480 * is expected (approximately):
5481 *
5482 * A/memory.current = 2G
5483 *
5484 * B/memory.current = 1.3G
5485 * C/memory.current = 0.6G
5486 * D/memory.current = 0
5487 * E/memory.current = 0
5488 *
5489 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5490 * (see propagate_protected_usage()), as well as recursive calculation of
5491 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5492 * path for each memory cgroup top-down from the reclaim,
5493 * it's possible to optimize this part, and save calculated elow
5494 * for next usage. This part is intentionally racy, but it's ok,
5495 * as memory.low is a best-effort mechanism.
241994ed 5496 */
bf8d5d52
RG
5497enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5498 struct mem_cgroup *memcg)
241994ed 5499{
23067153 5500 struct mem_cgroup *parent;
bf8d5d52
RG
5501 unsigned long emin, parent_emin;
5502 unsigned long elow, parent_elow;
5503 unsigned long usage;
23067153 5504
241994ed 5505 if (mem_cgroup_disabled())
bf8d5d52 5506 return MEMCG_PROT_NONE;
241994ed 5507
34c81057
SC
5508 if (!root)
5509 root = root_mem_cgroup;
5510 if (memcg == root)
bf8d5d52 5511 return MEMCG_PROT_NONE;
241994ed 5512
23067153 5513 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5514 if (!usage)
5515 return MEMCG_PROT_NONE;
5516
5517 emin = memcg->memory.min;
5518 elow = memcg->memory.low;
34c81057 5519
bf8d5d52 5520 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5521 /* No parent means a non-hierarchical mode on v1 memcg */
5522 if (!parent)
5523 return MEMCG_PROT_NONE;
5524
23067153
RG
5525 if (parent == root)
5526 goto exit;
5527
bf8d5d52
RG
5528 parent_emin = READ_ONCE(parent->memory.emin);
5529 emin = min(emin, parent_emin);
5530 if (emin && parent_emin) {
5531 unsigned long min_usage, siblings_min_usage;
5532
5533 min_usage = min(usage, memcg->memory.min);
5534 siblings_min_usage = atomic_long_read(
5535 &parent->memory.children_min_usage);
5536
5537 if (min_usage && siblings_min_usage)
5538 emin = min(emin, parent_emin * min_usage /
5539 siblings_min_usage);
5540 }
5541
23067153
RG
5542 parent_elow = READ_ONCE(parent->memory.elow);
5543 elow = min(elow, parent_elow);
bf8d5d52
RG
5544 if (elow && parent_elow) {
5545 unsigned long low_usage, siblings_low_usage;
23067153 5546
bf8d5d52
RG
5547 low_usage = min(usage, memcg->memory.low);
5548 siblings_low_usage = atomic_long_read(
5549 &parent->memory.children_low_usage);
23067153 5550
bf8d5d52
RG
5551 if (low_usage && siblings_low_usage)
5552 elow = min(elow, parent_elow * low_usage /
5553 siblings_low_usage);
5554 }
23067153 5555
23067153 5556exit:
bf8d5d52 5557 memcg->memory.emin = emin;
23067153 5558 memcg->memory.elow = elow;
bf8d5d52
RG
5559
5560 if (usage <= emin)
5561 return MEMCG_PROT_MIN;
5562 else if (usage <= elow)
5563 return MEMCG_PROT_LOW;
5564 else
5565 return MEMCG_PROT_NONE;
241994ed
JW
5566}
5567
00501b53
JW
5568/**
5569 * mem_cgroup_try_charge - try charging a page
5570 * @page: page to charge
5571 * @mm: mm context of the victim
5572 * @gfp_mask: reclaim mode
5573 * @memcgp: charged memcg return
25843c2b 5574 * @compound: charge the page as compound or small page
00501b53
JW
5575 *
5576 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5577 * pages according to @gfp_mask if necessary.
5578 *
5579 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5580 * Otherwise, an error code is returned.
5581 *
5582 * After page->mapping has been set up, the caller must finalize the
5583 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5584 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5585 */
5586int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5587 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5588 bool compound)
00501b53
JW
5589{
5590 struct mem_cgroup *memcg = NULL;
f627c2f5 5591 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5592 int ret = 0;
5593
5594 if (mem_cgroup_disabled())
5595 goto out;
5596
5597 if (PageSwapCache(page)) {
00501b53
JW
5598 /*
5599 * Every swap fault against a single page tries to charge the
5600 * page, bail as early as possible. shmem_unuse() encounters
5601 * already charged pages, too. The USED bit is protected by
5602 * the page lock, which serializes swap cache removal, which
5603 * in turn serializes uncharging.
5604 */
e993d905 5605 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5606 if (compound_head(page)->mem_cgroup)
00501b53 5607 goto out;
e993d905 5608
37e84351 5609 if (do_swap_account) {
e993d905
VD
5610 swp_entry_t ent = { .val = page_private(page), };
5611 unsigned short id = lookup_swap_cgroup_id(ent);
5612
5613 rcu_read_lock();
5614 memcg = mem_cgroup_from_id(id);
5615 if (memcg && !css_tryget_online(&memcg->css))
5616 memcg = NULL;
5617 rcu_read_unlock();
5618 }
00501b53
JW
5619 }
5620
00501b53
JW
5621 if (!memcg)
5622 memcg = get_mem_cgroup_from_mm(mm);
5623
5624 ret = try_charge(memcg, gfp_mask, nr_pages);
5625
5626 css_put(&memcg->css);
00501b53
JW
5627out:
5628 *memcgp = memcg;
5629 return ret;
5630}
5631
2cf85583
TH
5632int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5633 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5634 bool compound)
5635{
5636 struct mem_cgroup *memcg;
5637 int ret;
5638
5639 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5640 memcg = *memcgp;
5641 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5642 return ret;
5643}
5644
00501b53
JW
5645/**
5646 * mem_cgroup_commit_charge - commit a page charge
5647 * @page: page to charge
5648 * @memcg: memcg to charge the page to
5649 * @lrucare: page might be on LRU already
25843c2b 5650 * @compound: charge the page as compound or small page
00501b53
JW
5651 *
5652 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5653 * after page->mapping has been set up. This must happen atomically
5654 * as part of the page instantiation, i.e. under the page table lock
5655 * for anonymous pages, under the page lock for page and swap cache.
5656 *
5657 * In addition, the page must not be on the LRU during the commit, to
5658 * prevent racing with task migration. If it might be, use @lrucare.
5659 *
5660 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5661 */
5662void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5663 bool lrucare, bool compound)
00501b53 5664{
f627c2f5 5665 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5666
5667 VM_BUG_ON_PAGE(!page->mapping, page);
5668 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5669
5670 if (mem_cgroup_disabled())
5671 return;
5672 /*
5673 * Swap faults will attempt to charge the same page multiple
5674 * times. But reuse_swap_page() might have removed the page
5675 * from swapcache already, so we can't check PageSwapCache().
5676 */
5677 if (!memcg)
5678 return;
5679
6abb5a86
JW
5680 commit_charge(page, memcg, lrucare);
5681
6abb5a86 5682 local_irq_disable();
f627c2f5 5683 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5684 memcg_check_events(memcg, page);
5685 local_irq_enable();
00501b53 5686
7941d214 5687 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5688 swp_entry_t entry = { .val = page_private(page) };
5689 /*
5690 * The swap entry might not get freed for a long time,
5691 * let's not wait for it. The page already received a
5692 * memory+swap charge, drop the swap entry duplicate.
5693 */
38d8b4e6 5694 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5695 }
5696}
5697
5698/**
5699 * mem_cgroup_cancel_charge - cancel a page charge
5700 * @page: page to charge
5701 * @memcg: memcg to charge the page to
25843c2b 5702 * @compound: charge the page as compound or small page
00501b53
JW
5703 *
5704 * Cancel a charge transaction started by mem_cgroup_try_charge().
5705 */
f627c2f5
KS
5706void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5707 bool compound)
00501b53 5708{
f627c2f5 5709 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5710
5711 if (mem_cgroup_disabled())
5712 return;
5713 /*
5714 * Swap faults will attempt to charge the same page multiple
5715 * times. But reuse_swap_page() might have removed the page
5716 * from swapcache already, so we can't check PageSwapCache().
5717 */
5718 if (!memcg)
5719 return;
5720
00501b53
JW
5721 cancel_charge(memcg, nr_pages);
5722}
5723
a9d5adee
JG
5724struct uncharge_gather {
5725 struct mem_cgroup *memcg;
5726 unsigned long pgpgout;
5727 unsigned long nr_anon;
5728 unsigned long nr_file;
5729 unsigned long nr_kmem;
5730 unsigned long nr_huge;
5731 unsigned long nr_shmem;
5732 struct page *dummy_page;
5733};
5734
5735static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5736{
a9d5adee
JG
5737 memset(ug, 0, sizeof(*ug));
5738}
5739
5740static void uncharge_batch(const struct uncharge_gather *ug)
5741{
5742 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5743 unsigned long flags;
5744
a9d5adee
JG
5745 if (!mem_cgroup_is_root(ug->memcg)) {
5746 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5747 if (do_memsw_account())
a9d5adee
JG
5748 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5749 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5750 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5751 memcg_oom_recover(ug->memcg);
ce00a967 5752 }
747db954
JW
5753
5754 local_irq_save(flags);
c9019e9b
JW
5755 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5756 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5757 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5758 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5759 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5760 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5761 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5762 local_irq_restore(flags);
e8ea14cc 5763
a9d5adee
JG
5764 if (!mem_cgroup_is_root(ug->memcg))
5765 css_put_many(&ug->memcg->css, nr_pages);
5766}
5767
5768static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5769{
5770 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5771 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5772 !PageHWPoison(page) , page);
a9d5adee
JG
5773
5774 if (!page->mem_cgroup)
5775 return;
5776
5777 /*
5778 * Nobody should be changing or seriously looking at
5779 * page->mem_cgroup at this point, we have fully
5780 * exclusive access to the page.
5781 */
5782
5783 if (ug->memcg != page->mem_cgroup) {
5784 if (ug->memcg) {
5785 uncharge_batch(ug);
5786 uncharge_gather_clear(ug);
5787 }
5788 ug->memcg = page->mem_cgroup;
5789 }
5790
5791 if (!PageKmemcg(page)) {
5792 unsigned int nr_pages = 1;
5793
5794 if (PageTransHuge(page)) {
5795 nr_pages <<= compound_order(page);
5796 ug->nr_huge += nr_pages;
5797 }
5798 if (PageAnon(page))
5799 ug->nr_anon += nr_pages;
5800 else {
5801 ug->nr_file += nr_pages;
5802 if (PageSwapBacked(page))
5803 ug->nr_shmem += nr_pages;
5804 }
5805 ug->pgpgout++;
5806 } else {
5807 ug->nr_kmem += 1 << compound_order(page);
5808 __ClearPageKmemcg(page);
5809 }
5810
5811 ug->dummy_page = page;
5812 page->mem_cgroup = NULL;
747db954
JW
5813}
5814
5815static void uncharge_list(struct list_head *page_list)
5816{
a9d5adee 5817 struct uncharge_gather ug;
747db954 5818 struct list_head *next;
a9d5adee
JG
5819
5820 uncharge_gather_clear(&ug);
747db954 5821
8b592656
JW
5822 /*
5823 * Note that the list can be a single page->lru; hence the
5824 * do-while loop instead of a simple list_for_each_entry().
5825 */
747db954
JW
5826 next = page_list->next;
5827 do {
a9d5adee
JG
5828 struct page *page;
5829
747db954
JW
5830 page = list_entry(next, struct page, lru);
5831 next = page->lru.next;
5832
a9d5adee 5833 uncharge_page(page, &ug);
747db954
JW
5834 } while (next != page_list);
5835
a9d5adee
JG
5836 if (ug.memcg)
5837 uncharge_batch(&ug);
747db954
JW
5838}
5839
0a31bc97
JW
5840/**
5841 * mem_cgroup_uncharge - uncharge a page
5842 * @page: page to uncharge
5843 *
5844 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5845 * mem_cgroup_commit_charge().
5846 */
5847void mem_cgroup_uncharge(struct page *page)
5848{
a9d5adee
JG
5849 struct uncharge_gather ug;
5850
0a31bc97
JW
5851 if (mem_cgroup_disabled())
5852 return;
5853
747db954 5854 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5855 if (!page->mem_cgroup)
0a31bc97
JW
5856 return;
5857
a9d5adee
JG
5858 uncharge_gather_clear(&ug);
5859 uncharge_page(page, &ug);
5860 uncharge_batch(&ug);
747db954 5861}
0a31bc97 5862
747db954
JW
5863/**
5864 * mem_cgroup_uncharge_list - uncharge a list of page
5865 * @page_list: list of pages to uncharge
5866 *
5867 * Uncharge a list of pages previously charged with
5868 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5869 */
5870void mem_cgroup_uncharge_list(struct list_head *page_list)
5871{
5872 if (mem_cgroup_disabled())
5873 return;
0a31bc97 5874
747db954
JW
5875 if (!list_empty(page_list))
5876 uncharge_list(page_list);
0a31bc97
JW
5877}
5878
5879/**
6a93ca8f
JW
5880 * mem_cgroup_migrate - charge a page's replacement
5881 * @oldpage: currently circulating page
5882 * @newpage: replacement page
0a31bc97 5883 *
6a93ca8f
JW
5884 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5885 * be uncharged upon free.
0a31bc97
JW
5886 *
5887 * Both pages must be locked, @newpage->mapping must be set up.
5888 */
6a93ca8f 5889void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5890{
29833315 5891 struct mem_cgroup *memcg;
44b7a8d3
JW
5892 unsigned int nr_pages;
5893 bool compound;
d93c4130 5894 unsigned long flags;
0a31bc97
JW
5895
5896 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5897 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5898 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5899 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5900 newpage);
0a31bc97
JW
5901
5902 if (mem_cgroup_disabled())
5903 return;
5904
5905 /* Page cache replacement: new page already charged? */
1306a85a 5906 if (newpage->mem_cgroup)
0a31bc97
JW
5907 return;
5908
45637bab 5909 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5910 memcg = oldpage->mem_cgroup;
29833315 5911 if (!memcg)
0a31bc97
JW
5912 return;
5913
44b7a8d3
JW
5914 /* Force-charge the new page. The old one will be freed soon */
5915 compound = PageTransHuge(newpage);
5916 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5917
5918 page_counter_charge(&memcg->memory, nr_pages);
5919 if (do_memsw_account())
5920 page_counter_charge(&memcg->memsw, nr_pages);
5921 css_get_many(&memcg->css, nr_pages);
0a31bc97 5922
9cf7666a 5923 commit_charge(newpage, memcg, false);
44b7a8d3 5924
d93c4130 5925 local_irq_save(flags);
44b7a8d3
JW
5926 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5927 memcg_check_events(memcg, newpage);
d93c4130 5928 local_irq_restore(flags);
0a31bc97
JW
5929}
5930
ef12947c 5931DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5932EXPORT_SYMBOL(memcg_sockets_enabled_key);
5933
2d758073 5934void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5935{
5936 struct mem_cgroup *memcg;
5937
2d758073
JW
5938 if (!mem_cgroup_sockets_enabled)
5939 return;
5940
edbe69ef
RG
5941 /*
5942 * Socket cloning can throw us here with sk_memcg already
5943 * filled. It won't however, necessarily happen from
5944 * process context. So the test for root memcg given
5945 * the current task's memcg won't help us in this case.
5946 *
5947 * Respecting the original socket's memcg is a better
5948 * decision in this case.
5949 */
5950 if (sk->sk_memcg) {
5951 css_get(&sk->sk_memcg->css);
5952 return;
5953 }
5954
11092087
JW
5955 rcu_read_lock();
5956 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5957 if (memcg == root_mem_cgroup)
5958 goto out;
0db15298 5959 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5960 goto out;
f7e1cb6e 5961 if (css_tryget_online(&memcg->css))
11092087 5962 sk->sk_memcg = memcg;
f7e1cb6e 5963out:
11092087
JW
5964 rcu_read_unlock();
5965}
11092087 5966
2d758073 5967void mem_cgroup_sk_free(struct sock *sk)
11092087 5968{
2d758073
JW
5969 if (sk->sk_memcg)
5970 css_put(&sk->sk_memcg->css);
11092087
JW
5971}
5972
5973/**
5974 * mem_cgroup_charge_skmem - charge socket memory
5975 * @memcg: memcg to charge
5976 * @nr_pages: number of pages to charge
5977 *
5978 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5979 * @memcg's configured limit, %false if the charge had to be forced.
5980 */
5981bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5982{
f7e1cb6e 5983 gfp_t gfp_mask = GFP_KERNEL;
11092087 5984
f7e1cb6e 5985 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5986 struct page_counter *fail;
f7e1cb6e 5987
0db15298
JW
5988 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5989 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5990 return true;
5991 }
0db15298
JW
5992 page_counter_charge(&memcg->tcpmem, nr_pages);
5993 memcg->tcpmem_pressure = 1;
f7e1cb6e 5994 return false;
11092087 5995 }
d886f4e4 5996
f7e1cb6e
JW
5997 /* Don't block in the packet receive path */
5998 if (in_softirq())
5999 gfp_mask = GFP_NOWAIT;
6000
c9019e9b 6001 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6002
f7e1cb6e
JW
6003 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6004 return true;
6005
6006 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6007 return false;
6008}
6009
6010/**
6011 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6012 * @memcg: memcg to uncharge
6013 * @nr_pages: number of pages to uncharge
11092087
JW
6014 */
6015void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6016{
f7e1cb6e 6017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6018 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6019 return;
6020 }
d886f4e4 6021
c9019e9b 6022 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6023
475d0487 6024 refill_stock(memcg, nr_pages);
11092087
JW
6025}
6026
f7e1cb6e
JW
6027static int __init cgroup_memory(char *s)
6028{
6029 char *token;
6030
6031 while ((token = strsep(&s, ",")) != NULL) {
6032 if (!*token)
6033 continue;
6034 if (!strcmp(token, "nosocket"))
6035 cgroup_memory_nosocket = true;
04823c83
VD
6036 if (!strcmp(token, "nokmem"))
6037 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6038 }
6039 return 0;
6040}
6041__setup("cgroup.memory=", cgroup_memory);
11092087 6042
2d11085e 6043/*
1081312f
MH
6044 * subsys_initcall() for memory controller.
6045 *
308167fc
SAS
6046 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6047 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6048 * basically everything that doesn't depend on a specific mem_cgroup structure
6049 * should be initialized from here.
2d11085e
MH
6050 */
6051static int __init mem_cgroup_init(void)
6052{
95a045f6
JW
6053 int cpu, node;
6054
13583c3d
VD
6055#ifndef CONFIG_SLOB
6056 /*
6057 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6058 * so use a workqueue with limited concurrency to avoid stalling
6059 * all worker threads in case lots of cgroups are created and
6060 * destroyed simultaneously.
13583c3d 6061 */
17cc4dfe
TH
6062 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6063 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6064#endif
6065
308167fc
SAS
6066 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6067 memcg_hotplug_cpu_dead);
95a045f6
JW
6068
6069 for_each_possible_cpu(cpu)
6070 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6071 drain_local_stock);
6072
6073 for_each_node(node) {
6074 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6075
6076 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6077 node_online(node) ? node : NUMA_NO_NODE);
6078
ef8f2327 6079 rtpn->rb_root = RB_ROOT;
fa90b2fd 6080 rtpn->rb_rightmost = NULL;
ef8f2327 6081 spin_lock_init(&rtpn->lock);
95a045f6
JW
6082 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6083 }
6084
2d11085e
MH
6085 return 0;
6086}
6087subsys_initcall(mem_cgroup_init);
21afa38e
JW
6088
6089#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6090static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6091{
6092 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6093 /*
6094 * The root cgroup cannot be destroyed, so it's refcount must
6095 * always be >= 1.
6096 */
6097 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6098 VM_BUG_ON(1);
6099 break;
6100 }
6101 memcg = parent_mem_cgroup(memcg);
6102 if (!memcg)
6103 memcg = root_mem_cgroup;
6104 }
6105 return memcg;
6106}
6107
21afa38e
JW
6108/**
6109 * mem_cgroup_swapout - transfer a memsw charge to swap
6110 * @page: page whose memsw charge to transfer
6111 * @entry: swap entry to move the charge to
6112 *
6113 * Transfer the memsw charge of @page to @entry.
6114 */
6115void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6116{
1f47b61f 6117 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6118 unsigned int nr_entries;
21afa38e
JW
6119 unsigned short oldid;
6120
6121 VM_BUG_ON_PAGE(PageLRU(page), page);
6122 VM_BUG_ON_PAGE(page_count(page), page);
6123
7941d214 6124 if (!do_memsw_account())
21afa38e
JW
6125 return;
6126
6127 memcg = page->mem_cgroup;
6128
6129 /* Readahead page, never charged */
6130 if (!memcg)
6131 return;
6132
1f47b61f
VD
6133 /*
6134 * In case the memcg owning these pages has been offlined and doesn't
6135 * have an ID allocated to it anymore, charge the closest online
6136 * ancestor for the swap instead and transfer the memory+swap charge.
6137 */
6138 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6139 nr_entries = hpage_nr_pages(page);
6140 /* Get references for the tail pages, too */
6141 if (nr_entries > 1)
6142 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6143 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6144 nr_entries);
21afa38e 6145 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6146 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6147
6148 page->mem_cgroup = NULL;
6149
6150 if (!mem_cgroup_is_root(memcg))
d6810d73 6151 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6152
1f47b61f
VD
6153 if (memcg != swap_memcg) {
6154 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6155 page_counter_charge(&swap_memcg->memsw, nr_entries);
6156 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6157 }
6158
ce9ce665
SAS
6159 /*
6160 * Interrupts should be disabled here because the caller holds the
b93b0163 6161 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6162 * important here to have the interrupts disabled because it is the
b93b0163 6163 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6164 */
6165 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6166 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6167 -nr_entries);
21afa38e 6168 memcg_check_events(memcg, page);
73f576c0
JW
6169
6170 if (!mem_cgroup_is_root(memcg))
d08afa14 6171 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6172}
6173
38d8b4e6
HY
6174/**
6175 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6176 * @page: page being added to swap
6177 * @entry: swap entry to charge
6178 *
38d8b4e6 6179 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6180 *
6181 * Returns 0 on success, -ENOMEM on failure.
6182 */
6183int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6184{
38d8b4e6 6185 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6186 struct page_counter *counter;
38d8b4e6 6187 struct mem_cgroup *memcg;
37e84351
VD
6188 unsigned short oldid;
6189
6190 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6191 return 0;
6192
6193 memcg = page->mem_cgroup;
6194
6195 /* Readahead page, never charged */
6196 if (!memcg)
6197 return 0;
6198
f3a53a3a
TH
6199 if (!entry.val) {
6200 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6201 return 0;
f3a53a3a 6202 }
bb98f2c5 6203
1f47b61f
VD
6204 memcg = mem_cgroup_id_get_online(memcg);
6205
37e84351 6206 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6207 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6208 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6209 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6210 mem_cgroup_id_put(memcg);
37e84351 6211 return -ENOMEM;
1f47b61f 6212 }
37e84351 6213
38d8b4e6
HY
6214 /* Get references for the tail pages, too */
6215 if (nr_pages > 1)
6216 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6217 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6218 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6219 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6220
37e84351
VD
6221 return 0;
6222}
6223
21afa38e 6224/**
38d8b4e6 6225 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6226 * @entry: swap entry to uncharge
38d8b4e6 6227 * @nr_pages: the amount of swap space to uncharge
21afa38e 6228 */
38d8b4e6 6229void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6230{
6231 struct mem_cgroup *memcg;
6232 unsigned short id;
6233
37e84351 6234 if (!do_swap_account)
21afa38e
JW
6235 return;
6236
38d8b4e6 6237 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6238 rcu_read_lock();
adbe427b 6239 memcg = mem_cgroup_from_id(id);
21afa38e 6240 if (memcg) {
37e84351
VD
6241 if (!mem_cgroup_is_root(memcg)) {
6242 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6243 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6244 else
38d8b4e6 6245 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6246 }
c9019e9b 6247 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6248 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6249 }
6250 rcu_read_unlock();
6251}
6252
d8b38438
VD
6253long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6254{
6255 long nr_swap_pages = get_nr_swap_pages();
6256
6257 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6258 return nr_swap_pages;
6259 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6260 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6261 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6262 page_counter_read(&memcg->swap));
6263 return nr_swap_pages;
6264}
6265
5ccc5aba
VD
6266bool mem_cgroup_swap_full(struct page *page)
6267{
6268 struct mem_cgroup *memcg;
6269
6270 VM_BUG_ON_PAGE(!PageLocked(page), page);
6271
6272 if (vm_swap_full())
6273 return true;
6274 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6275 return false;
6276
6277 memcg = page->mem_cgroup;
6278 if (!memcg)
6279 return false;
6280
6281 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6282 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6283 return true;
6284
6285 return false;
6286}
6287
21afa38e
JW
6288/* for remember boot option*/
6289#ifdef CONFIG_MEMCG_SWAP_ENABLED
6290static int really_do_swap_account __initdata = 1;
6291#else
6292static int really_do_swap_account __initdata;
6293#endif
6294
6295static int __init enable_swap_account(char *s)
6296{
6297 if (!strcmp(s, "1"))
6298 really_do_swap_account = 1;
6299 else if (!strcmp(s, "0"))
6300 really_do_swap_account = 0;
6301 return 1;
6302}
6303__setup("swapaccount=", enable_swap_account);
6304
37e84351
VD
6305static u64 swap_current_read(struct cgroup_subsys_state *css,
6306 struct cftype *cft)
6307{
6308 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6309
6310 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6311}
6312
6313static int swap_max_show(struct seq_file *m, void *v)
6314{
6315 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6316 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6317
6318 if (max == PAGE_COUNTER_MAX)
6319 seq_puts(m, "max\n");
6320 else
6321 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6322
6323 return 0;
6324}
6325
6326static ssize_t swap_max_write(struct kernfs_open_file *of,
6327 char *buf, size_t nbytes, loff_t off)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6330 unsigned long max;
6331 int err;
6332
6333 buf = strstrip(buf);
6334 err = page_counter_memparse(buf, "max", &max);
6335 if (err)
6336 return err;
6337
be09102b 6338 xchg(&memcg->swap.max, max);
37e84351
VD
6339
6340 return nbytes;
6341}
6342
f3a53a3a
TH
6343static int swap_events_show(struct seq_file *m, void *v)
6344{
6345 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6346
6347 seq_printf(m, "max %lu\n",
6348 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6349 seq_printf(m, "fail %lu\n",
6350 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6351
6352 return 0;
6353}
6354
37e84351
VD
6355static struct cftype swap_files[] = {
6356 {
6357 .name = "swap.current",
6358 .flags = CFTYPE_NOT_ON_ROOT,
6359 .read_u64 = swap_current_read,
6360 },
6361 {
6362 .name = "swap.max",
6363 .flags = CFTYPE_NOT_ON_ROOT,
6364 .seq_show = swap_max_show,
6365 .write = swap_max_write,
6366 },
f3a53a3a
TH
6367 {
6368 .name = "swap.events",
6369 .flags = CFTYPE_NOT_ON_ROOT,
6370 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6371 .seq_show = swap_events_show,
6372 },
37e84351
VD
6373 { } /* terminate */
6374};
6375
21afa38e
JW
6376static struct cftype memsw_cgroup_files[] = {
6377 {
6378 .name = "memsw.usage_in_bytes",
6379 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6380 .read_u64 = mem_cgroup_read_u64,
6381 },
6382 {
6383 .name = "memsw.max_usage_in_bytes",
6384 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6385 .write = mem_cgroup_reset,
6386 .read_u64 = mem_cgroup_read_u64,
6387 },
6388 {
6389 .name = "memsw.limit_in_bytes",
6390 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6391 .write = mem_cgroup_write,
6392 .read_u64 = mem_cgroup_read_u64,
6393 },
6394 {
6395 .name = "memsw.failcnt",
6396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6397 .write = mem_cgroup_reset,
6398 .read_u64 = mem_cgroup_read_u64,
6399 },
6400 { }, /* terminate */
6401};
6402
6403static int __init mem_cgroup_swap_init(void)
6404{
6405 if (!mem_cgroup_disabled() && really_do_swap_account) {
6406 do_swap_account = 1;
37e84351
VD
6407 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6408 swap_files));
21afa38e
JW
6409 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6410 memsw_cgroup_files));
6411 }
6412 return 0;
6413}
6414subsys_initcall(mem_cgroup_swap_init);
6415
6416#endif /* CONFIG_MEMCG_SWAP */