]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: move stat/event counting functions out-of-line
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
1ff9e6e1 42#include <linux/vm_event_item.h>
d52aa412 43#include <linux/smp.h>
8a9f3ccd 44#include <linux/page-flags.h>
66e1707b 45#include <linux/backing-dev.h>
8a9f3ccd
BS
46#include <linux/bit_spinlock.h>
47#include <linux/rcupdate.h>
e222432b 48#include <linux/limits.h>
b9e15baf 49#include <linux/export.h>
8c7c6e34 50#include <linux/mutex.h>
bb4cc1a8 51#include <linux/rbtree.h>
b6ac57d5 52#include <linux/slab.h>
66e1707b 53#include <linux/swap.h>
02491447 54#include <linux/swapops.h>
66e1707b 55#include <linux/spinlock.h>
2e72b634 56#include <linux/eventfd.h>
79bd9814 57#include <linux/poll.h>
2e72b634 58#include <linux/sort.h>
66e1707b 59#include <linux/fs.h>
d2ceb9b7 60#include <linux/seq_file.h>
70ddf637 61#include <linux/vmpressure.h>
b69408e8 62#include <linux/mm_inline.h>
5d1ea48b 63#include <linux/swap_cgroup.h>
cdec2e42 64#include <linux/cpu.h>
158e0a2d 65#include <linux/oom.h>
0056f4e6 66#include <linux/lockdep.h>
79bd9814 67#include <linux/file.h>
b23afb93 68#include <linux/tracehook.h>
08e552c6 69#include "internal.h"
d1a4c0b3 70#include <net/sock.h>
4bd2c1ee 71#include <net/ip.h>
f35c3a8e 72#include "slab.h"
8cdea7c0 73
7c0f6ba6 74#include <linux/uaccess.h>
8697d331 75
cc8e970c
KM
76#include <trace/events/vmscan.h>
77
073219e9
TH
78struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 80
7d828602
JW
81struct mem_cgroup *root_mem_cgroup __read_mostly;
82
a181b0e8 83#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 84
f7e1cb6e
JW
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket;
87
04823c83
VD
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem;
90
21afa38e 91/* Whether the swap controller is active */
c255a458 92#ifdef CONFIG_MEMCG_SWAP
c077719b 93int do_swap_account __read_mostly;
c077719b 94#else
a0db00fc 95#define do_swap_account 0
c077719b
KH
96#endif
97
7941d214
JW
98/* Whether legacy memory+swap accounting is active */
99static bool do_memsw_account(void)
100{
101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
102}
103
71cd3113 104static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110};
111
a0db00fc
KS
112#define THRESHOLDS_EVENTS_TARGET 128
113#define SOFTLIMIT_EVENTS_TARGET 1024
114#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 115
bb4cc1a8
AM
116/*
117 * Cgroups above their limits are maintained in a RB-Tree, independent of
118 * their hierarchy representation
119 */
120
ef8f2327 121struct mem_cgroup_tree_per_node {
bb4cc1a8 122 struct rb_root rb_root;
fa90b2fd 123 struct rb_node *rb_rightmost;
bb4cc1a8
AM
124 spinlock_t lock;
125};
126
bb4cc1a8
AM
127struct mem_cgroup_tree {
128 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
129};
130
131static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132
9490ff27
KH
133/* for OOM */
134struct mem_cgroup_eventfd_list {
135 struct list_head list;
136 struct eventfd_ctx *eventfd;
137};
2e72b634 138
79bd9814
TH
139/*
140 * cgroup_event represents events which userspace want to receive.
141 */
3bc942f3 142struct mem_cgroup_event {
79bd9814 143 /*
59b6f873 144 * memcg which the event belongs to.
79bd9814 145 */
59b6f873 146 struct mem_cgroup *memcg;
79bd9814
TH
147 /*
148 * eventfd to signal userspace about the event.
149 */
150 struct eventfd_ctx *eventfd;
151 /*
152 * Each of these stored in a list by the cgroup.
153 */
154 struct list_head list;
fba94807
TH
155 /*
156 * register_event() callback will be used to add new userspace
157 * waiter for changes related to this event. Use eventfd_signal()
158 * on eventfd to send notification to userspace.
159 */
59b6f873 160 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 161 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
162 /*
163 * unregister_event() callback will be called when userspace closes
164 * the eventfd or on cgroup removing. This callback must be set,
165 * if you want provide notification functionality.
166 */
59b6f873 167 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 168 struct eventfd_ctx *eventfd);
79bd9814
TH
169 /*
170 * All fields below needed to unregister event when
171 * userspace closes eventfd.
172 */
173 poll_table pt;
174 wait_queue_head_t *wqh;
ac6424b9 175 wait_queue_entry_t wait;
79bd9814
TH
176 struct work_struct remove;
177};
178
c0ff4b85
R
179static void mem_cgroup_threshold(struct mem_cgroup *memcg);
180static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 181
7dc74be0
DN
182/* Stuffs for move charges at task migration. */
183/*
1dfab5ab 184 * Types of charges to be moved.
7dc74be0 185 */
1dfab5ab
JW
186#define MOVE_ANON 0x1U
187#define MOVE_FILE 0x2U
188#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 189
4ffef5fe
DN
190/* "mc" and its members are protected by cgroup_mutex */
191static struct move_charge_struct {
b1dd693e 192 spinlock_t lock; /* for from, to */
264a0ae1 193 struct mm_struct *mm;
4ffef5fe
DN
194 struct mem_cgroup *from;
195 struct mem_cgroup *to;
1dfab5ab 196 unsigned long flags;
4ffef5fe 197 unsigned long precharge;
854ffa8d 198 unsigned long moved_charge;
483c30b5 199 unsigned long moved_swap;
8033b97c
DN
200 struct task_struct *moving_task; /* a task moving charges */
201 wait_queue_head_t waitq; /* a waitq for other context */
202} mc = {
2bd9bb20 203 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
204 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
205};
4ffef5fe 206
4e416953
BS
207/*
208 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
209 * limit reclaim to prevent infinite loops, if they ever occur.
210 */
a0db00fc 211#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 212#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 213
217bc319
KH
214enum charge_type {
215 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 216 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 217 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 218 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
219 NR_CHARGE_TYPE,
220};
221
8c7c6e34 222/* for encoding cft->private value on file */
86ae53e1
GC
223enum res_type {
224 _MEM,
225 _MEMSWAP,
226 _OOM_TYPE,
510fc4e1 227 _KMEM,
d55f90bf 228 _TCP,
86ae53e1
GC
229};
230
a0db00fc
KS
231#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
232#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 233#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
234/* Used for OOM nofiier */
235#define OOM_CONTROL (0)
8c7c6e34 236
b05706f1
KT
237/*
238 * Iteration constructs for visiting all cgroups (under a tree). If
239 * loops are exited prematurely (break), mem_cgroup_iter_break() must
240 * be used for reference counting.
241 */
242#define for_each_mem_cgroup_tree(iter, root) \
243 for (iter = mem_cgroup_iter(root, NULL, NULL); \
244 iter != NULL; \
245 iter = mem_cgroup_iter(root, iter, NULL))
246
247#define for_each_mem_cgroup(iter) \
248 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
249 iter != NULL; \
250 iter = mem_cgroup_iter(NULL, iter, NULL))
251
7775face
TH
252static inline bool should_force_charge(void)
253{
254 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
255 (current->flags & PF_EXITING);
256}
257
70ddf637
AV
258/* Some nice accessors for the vmpressure. */
259struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
260{
261 if (!memcg)
262 memcg = root_mem_cgroup;
263 return &memcg->vmpressure;
264}
265
266struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
267{
268 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
269}
270
84c07d11 271#ifdef CONFIG_MEMCG_KMEM
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
17cc4dfe
TH
323struct workqueue_struct *memcg_kmem_cache_wq;
324
0a4465d3
KT
325static int memcg_shrinker_map_size;
326static DEFINE_MUTEX(memcg_shrinker_map_mutex);
327
328static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
329{
330 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
331}
332
333static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
334 int size, int old_size)
335{
336 struct memcg_shrinker_map *new, *old;
337 int nid;
338
339 lockdep_assert_held(&memcg_shrinker_map_mutex);
340
341 for_each_node(nid) {
342 old = rcu_dereference_protected(
343 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
344 /* Not yet online memcg */
345 if (!old)
346 return 0;
347
348 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
349 if (!new)
350 return -ENOMEM;
351
352 /* Set all old bits, clear all new bits */
353 memset(new->map, (int)0xff, old_size);
354 memset((void *)new->map + old_size, 0, size - old_size);
355
356 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
357 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
358 }
359
360 return 0;
361}
362
363static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
364{
365 struct mem_cgroup_per_node *pn;
366 struct memcg_shrinker_map *map;
367 int nid;
368
369 if (mem_cgroup_is_root(memcg))
370 return;
371
372 for_each_node(nid) {
373 pn = mem_cgroup_nodeinfo(memcg, nid);
374 map = rcu_dereference_protected(pn->shrinker_map, true);
375 if (map)
376 kvfree(map);
377 rcu_assign_pointer(pn->shrinker_map, NULL);
378 }
379}
380
381static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
382{
383 struct memcg_shrinker_map *map;
384 int nid, size, ret = 0;
385
386 if (mem_cgroup_is_root(memcg))
387 return 0;
388
389 mutex_lock(&memcg_shrinker_map_mutex);
390 size = memcg_shrinker_map_size;
391 for_each_node(nid) {
392 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
393 if (!map) {
394 memcg_free_shrinker_maps(memcg);
395 ret = -ENOMEM;
396 break;
397 }
398 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
399 }
400 mutex_unlock(&memcg_shrinker_map_mutex);
401
402 return ret;
403}
404
405int memcg_expand_shrinker_maps(int new_id)
406{
407 int size, old_size, ret = 0;
408 struct mem_cgroup *memcg;
409
410 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
411 old_size = memcg_shrinker_map_size;
412 if (size <= old_size)
413 return 0;
414
415 mutex_lock(&memcg_shrinker_map_mutex);
416 if (!root_mem_cgroup)
417 goto unlock;
418
419 for_each_mem_cgroup(memcg) {
420 if (mem_cgroup_is_root(memcg))
421 continue;
422 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
423 if (ret)
424 goto unlock;
425 }
426unlock:
427 if (!ret)
428 memcg_shrinker_map_size = size;
429 mutex_unlock(&memcg_shrinker_map_mutex);
430 return ret;
431}
fae91d6d
KT
432
433void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434{
435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 struct memcg_shrinker_map *map;
437
438 rcu_read_lock();
439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
440 /* Pairs with smp mb in shrink_slab() */
441 smp_mb__before_atomic();
fae91d6d
KT
442 set_bit(shrinker_id, map->map);
443 rcu_read_unlock();
444 }
445}
446
0a4465d3
KT
447#else /* CONFIG_MEMCG_KMEM */
448static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
449{
450 return 0;
451}
452static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 453#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 454
ad7fa852
TH
455/**
456 * mem_cgroup_css_from_page - css of the memcg associated with a page
457 * @page: page of interest
458 *
459 * If memcg is bound to the default hierarchy, css of the memcg associated
460 * with @page is returned. The returned css remains associated with @page
461 * until it is released.
462 *
463 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
464 * is returned.
ad7fa852
TH
465 */
466struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
467{
468 struct mem_cgroup *memcg;
469
ad7fa852
TH
470 memcg = page->mem_cgroup;
471
9e10a130 472 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
473 memcg = root_mem_cgroup;
474
ad7fa852
TH
475 return &memcg->css;
476}
477
2fc04524
VD
478/**
479 * page_cgroup_ino - return inode number of the memcg a page is charged to
480 * @page: the page
481 *
482 * Look up the closest online ancestor of the memory cgroup @page is charged to
483 * and return its inode number or 0 if @page is not charged to any cgroup. It
484 * is safe to call this function without holding a reference to @page.
485 *
486 * Note, this function is inherently racy, because there is nothing to prevent
487 * the cgroup inode from getting torn down and potentially reallocated a moment
488 * after page_cgroup_ino() returns, so it only should be used by callers that
489 * do not care (such as procfs interfaces).
490 */
491ino_t page_cgroup_ino(struct page *page)
492{
493 struct mem_cgroup *memcg;
494 unsigned long ino = 0;
495
496 rcu_read_lock();
497 memcg = READ_ONCE(page->mem_cgroup);
498 while (memcg && !(memcg->css.flags & CSS_ONLINE))
499 memcg = parent_mem_cgroup(memcg);
500 if (memcg)
501 ino = cgroup_ino(memcg->css.cgroup);
502 rcu_read_unlock();
503 return ino;
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 508{
97a6c37b 509 int nid = page_to_nid(page);
f64c3f54 510
ef8f2327 511 return memcg->nodeinfo[nid];
f64c3f54
BS
512}
513
ef8f2327
MG
514static struct mem_cgroup_tree_per_node *
515soft_limit_tree_node(int nid)
bb4cc1a8 516{
ef8f2327 517 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
518}
519
ef8f2327 520static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
521soft_limit_tree_from_page(struct page *page)
522{
523 int nid = page_to_nid(page);
bb4cc1a8 524
ef8f2327 525 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
526}
527
ef8f2327
MG
528static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
529 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 530 unsigned long new_usage_in_excess)
bb4cc1a8
AM
531{
532 struct rb_node **p = &mctz->rb_root.rb_node;
533 struct rb_node *parent = NULL;
ef8f2327 534 struct mem_cgroup_per_node *mz_node;
fa90b2fd 535 bool rightmost = true;
bb4cc1a8
AM
536
537 if (mz->on_tree)
538 return;
539
540 mz->usage_in_excess = new_usage_in_excess;
541 if (!mz->usage_in_excess)
542 return;
543 while (*p) {
544 parent = *p;
ef8f2327 545 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 546 tree_node);
fa90b2fd 547 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 548 p = &(*p)->rb_left;
fa90b2fd
DB
549 rightmost = false;
550 }
551
bb4cc1a8
AM
552 /*
553 * We can't avoid mem cgroups that are over their soft
554 * limit by the same amount
555 */
556 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
557 p = &(*p)->rb_right;
558 }
fa90b2fd
DB
559
560 if (rightmost)
561 mctz->rb_rightmost = &mz->tree_node;
562
bb4cc1a8
AM
563 rb_link_node(&mz->tree_node, parent, p);
564 rb_insert_color(&mz->tree_node, &mctz->rb_root);
565 mz->on_tree = true;
566}
567
ef8f2327
MG
568static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
569 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
570{
571 if (!mz->on_tree)
572 return;
fa90b2fd
DB
573
574 if (&mz->tree_node == mctz->rb_rightmost)
575 mctz->rb_rightmost = rb_prev(&mz->tree_node);
576
bb4cc1a8
AM
577 rb_erase(&mz->tree_node, &mctz->rb_root);
578 mz->on_tree = false;
579}
580
ef8f2327
MG
581static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
582 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 583{
0a31bc97
JW
584 unsigned long flags;
585
586 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 587 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 588 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
589}
590
3e32cb2e
JW
591static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
592{
593 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 594 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
595 unsigned long excess = 0;
596
597 if (nr_pages > soft_limit)
598 excess = nr_pages - soft_limit;
599
600 return excess;
601}
bb4cc1a8
AM
602
603static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
604{
3e32cb2e 605 unsigned long excess;
ef8f2327
MG
606 struct mem_cgroup_per_node *mz;
607 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 608
e231875b 609 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
610 if (!mctz)
611 return;
bb4cc1a8
AM
612 /*
613 * Necessary to update all ancestors when hierarchy is used.
614 * because their event counter is not touched.
615 */
616 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 617 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 618 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
619 /*
620 * We have to update the tree if mz is on RB-tree or
621 * mem is over its softlimit.
622 */
623 if (excess || mz->on_tree) {
0a31bc97
JW
624 unsigned long flags;
625
626 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
627 /* if on-tree, remove it */
628 if (mz->on_tree)
cf2c8127 629 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
630 /*
631 * Insert again. mz->usage_in_excess will be updated.
632 * If excess is 0, no tree ops.
633 */
cf2c8127 634 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 635 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
636 }
637 }
638}
639
640static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
641{
ef8f2327
MG
642 struct mem_cgroup_tree_per_node *mctz;
643 struct mem_cgroup_per_node *mz;
644 int nid;
bb4cc1a8 645
e231875b 646 for_each_node(nid) {
ef8f2327
MG
647 mz = mem_cgroup_nodeinfo(memcg, nid);
648 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
649 if (mctz)
650 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
651 }
652}
653
ef8f2327
MG
654static struct mem_cgroup_per_node *
655__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 656{
ef8f2327 657 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
658
659retry:
660 mz = NULL;
fa90b2fd 661 if (!mctz->rb_rightmost)
bb4cc1a8
AM
662 goto done; /* Nothing to reclaim from */
663
fa90b2fd
DB
664 mz = rb_entry(mctz->rb_rightmost,
665 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
666 /*
667 * Remove the node now but someone else can add it back,
668 * we will to add it back at the end of reclaim to its correct
669 * position in the tree.
670 */
cf2c8127 671 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 672 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 673 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
674 goto retry;
675done:
676 return mz;
677}
678
ef8f2327
MG
679static struct mem_cgroup_per_node *
680mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 681{
ef8f2327 682 struct mem_cgroup_per_node *mz;
bb4cc1a8 683
0a31bc97 684 spin_lock_irq(&mctz->lock);
bb4cc1a8 685 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 686 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
687 return mz;
688}
689
db9adbcb
JW
690/**
691 * __mod_memcg_state - update cgroup memory statistics
692 * @memcg: the memory cgroup
693 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
694 * @val: delta to add to the counter, can be negative
695 */
696void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
697{
698 long x;
699
700 if (mem_cgroup_disabled())
701 return;
702
703 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
704 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
705 atomic_long_add(x, &memcg->vmstats[idx]);
706 x = 0;
707 }
708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
709}
710
711/**
712 * __mod_lruvec_state - update lruvec memory statistics
713 * @lruvec: the lruvec
714 * @idx: the stat item
715 * @val: delta to add to the counter, can be negative
716 *
717 * The lruvec is the intersection of the NUMA node and a cgroup. This
718 * function updates the all three counters that are affected by a
719 * change of state at this level: per-node, per-cgroup, per-lruvec.
720 */
721void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
722 int val)
723{
724 struct mem_cgroup_per_node *pn;
725 long x;
726
727 /* Update node */
728 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
729
730 if (mem_cgroup_disabled())
731 return;
732
733 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
734
735 /* Update memcg */
736 __mod_memcg_state(pn->memcg, idx, val);
737
738 /* Update lruvec */
739 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
740 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
741 atomic_long_add(x, &pn->lruvec_stat[idx]);
742 x = 0;
743 }
744 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
745}
746
747/**
748 * __count_memcg_events - account VM events in a cgroup
749 * @memcg: the memory cgroup
750 * @idx: the event item
751 * @count: the number of events that occured
752 */
753void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
754 unsigned long count)
755{
756 unsigned long x;
757
758 if (mem_cgroup_disabled())
759 return;
760
761 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
762 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
763 atomic_long_add(x, &memcg->vmevents[idx]);
764 x = 0;
765 }
766 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
767}
768
205b20cc
JW
769static unsigned long memcg_events_local(struct mem_cgroup *memcg,
770 int event)
e9f8974f 771{
871789d4 772 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
773}
774
c0ff4b85 775static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 776 struct page *page,
f627c2f5 777 bool compound, int nr_pages)
d52aa412 778{
b2402857
KH
779 /*
780 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
781 * counted as CACHE even if it's on ANON LRU.
782 */
0a31bc97 783 if (PageAnon(page))
c9019e9b 784 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 785 else {
c9019e9b 786 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 787 if (PageSwapBacked(page))
c9019e9b 788 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 789 }
55e462b0 790
f627c2f5
KS
791 if (compound) {
792 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 793 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 794 }
b070e65c 795
e401f176
KH
796 /* pagein of a big page is an event. So, ignore page size */
797 if (nr_pages > 0)
c9019e9b 798 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 799 else {
c9019e9b 800 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
801 nr_pages = -nr_pages; /* for event */
802 }
e401f176 803
871789d4 804 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
805}
806
f53d7ce3
JW
807static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
808 enum mem_cgroup_events_target target)
7a159cc9
JW
809{
810 unsigned long val, next;
811
871789d4
CD
812 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
813 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 814 /* from time_after() in jiffies.h */
6a1a8b80 815 if ((long)(next - val) < 0) {
f53d7ce3
JW
816 switch (target) {
817 case MEM_CGROUP_TARGET_THRESH:
818 next = val + THRESHOLDS_EVENTS_TARGET;
819 break;
bb4cc1a8
AM
820 case MEM_CGROUP_TARGET_SOFTLIMIT:
821 next = val + SOFTLIMIT_EVENTS_TARGET;
822 break;
f53d7ce3
JW
823 case MEM_CGROUP_TARGET_NUMAINFO:
824 next = val + NUMAINFO_EVENTS_TARGET;
825 break;
826 default:
827 break;
828 }
871789d4 829 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 830 return true;
7a159cc9 831 }
f53d7ce3 832 return false;
d2265e6f
KH
833}
834
835/*
836 * Check events in order.
837 *
838 */
c0ff4b85 839static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
840{
841 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
842 if (unlikely(mem_cgroup_event_ratelimit(memcg,
843 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 844 bool do_softlimit;
82b3f2a7 845 bool do_numainfo __maybe_unused;
f53d7ce3 846
bb4cc1a8
AM
847 do_softlimit = mem_cgroup_event_ratelimit(memcg,
848 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
849#if MAX_NUMNODES > 1
850 do_numainfo = mem_cgroup_event_ratelimit(memcg,
851 MEM_CGROUP_TARGET_NUMAINFO);
852#endif
c0ff4b85 853 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
854 if (unlikely(do_softlimit))
855 mem_cgroup_update_tree(memcg, page);
453a9bf3 856#if MAX_NUMNODES > 1
f53d7ce3 857 if (unlikely(do_numainfo))
c0ff4b85 858 atomic_inc(&memcg->numainfo_events);
453a9bf3 859#endif
0a31bc97 860 }
d2265e6f
KH
861}
862
cf475ad2 863struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 864{
31a78f23
BS
865 /*
866 * mm_update_next_owner() may clear mm->owner to NULL
867 * if it races with swapoff, page migration, etc.
868 * So this can be called with p == NULL.
869 */
870 if (unlikely(!p))
871 return NULL;
872
073219e9 873 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 874}
33398cf2 875EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 876
d46eb14b
SB
877/**
878 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
879 * @mm: mm from which memcg should be extracted. It can be NULL.
880 *
881 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
882 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
883 * returned.
884 */
885struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 886{
d46eb14b
SB
887 struct mem_cgroup *memcg;
888
889 if (mem_cgroup_disabled())
890 return NULL;
0b7f569e 891
54595fe2
KH
892 rcu_read_lock();
893 do {
6f6acb00
MH
894 /*
895 * Page cache insertions can happen withou an
896 * actual mm context, e.g. during disk probing
897 * on boot, loopback IO, acct() writes etc.
898 */
899 if (unlikely(!mm))
df381975 900 memcg = root_mem_cgroup;
6f6acb00
MH
901 else {
902 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
903 if (unlikely(!memcg))
904 memcg = root_mem_cgroup;
905 }
ec903c0c 906 } while (!css_tryget_online(&memcg->css));
54595fe2 907 rcu_read_unlock();
c0ff4b85 908 return memcg;
54595fe2 909}
d46eb14b
SB
910EXPORT_SYMBOL(get_mem_cgroup_from_mm);
911
f745c6f5
SB
912/**
913 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
914 * @page: page from which memcg should be extracted.
915 *
916 * Obtain a reference on page->memcg and returns it if successful. Otherwise
917 * root_mem_cgroup is returned.
918 */
919struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
920{
921 struct mem_cgroup *memcg = page->mem_cgroup;
922
923 if (mem_cgroup_disabled())
924 return NULL;
925
926 rcu_read_lock();
927 if (!memcg || !css_tryget_online(&memcg->css))
928 memcg = root_mem_cgroup;
929 rcu_read_unlock();
930 return memcg;
931}
932EXPORT_SYMBOL(get_mem_cgroup_from_page);
933
d46eb14b
SB
934/**
935 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
936 */
937static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
938{
939 if (unlikely(current->active_memcg)) {
940 struct mem_cgroup *memcg = root_mem_cgroup;
941
942 rcu_read_lock();
943 if (css_tryget_online(&current->active_memcg->css))
944 memcg = current->active_memcg;
945 rcu_read_unlock();
946 return memcg;
947 }
948 return get_mem_cgroup_from_mm(current->mm);
949}
54595fe2 950
5660048c
JW
951/**
952 * mem_cgroup_iter - iterate over memory cgroup hierarchy
953 * @root: hierarchy root
954 * @prev: previously returned memcg, NULL on first invocation
955 * @reclaim: cookie for shared reclaim walks, NULL for full walks
956 *
957 * Returns references to children of the hierarchy below @root, or
958 * @root itself, or %NULL after a full round-trip.
959 *
960 * Caller must pass the return value in @prev on subsequent
961 * invocations for reference counting, or use mem_cgroup_iter_break()
962 * to cancel a hierarchy walk before the round-trip is complete.
963 *
b213b54f 964 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 965 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 966 * reclaimers operating on the same node and priority.
5660048c 967 */
694fbc0f 968struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 969 struct mem_cgroup *prev,
694fbc0f 970 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 971{
33398cf2 972 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 973 struct cgroup_subsys_state *css = NULL;
9f3a0d09 974 struct mem_cgroup *memcg = NULL;
5ac8fb31 975 struct mem_cgroup *pos = NULL;
711d3d2c 976
694fbc0f
AM
977 if (mem_cgroup_disabled())
978 return NULL;
5660048c 979
9f3a0d09
JW
980 if (!root)
981 root = root_mem_cgroup;
7d74b06f 982
9f3a0d09 983 if (prev && !reclaim)
5ac8fb31 984 pos = prev;
14067bb3 985
9f3a0d09
JW
986 if (!root->use_hierarchy && root != root_mem_cgroup) {
987 if (prev)
5ac8fb31 988 goto out;
694fbc0f 989 return root;
9f3a0d09 990 }
14067bb3 991
542f85f9 992 rcu_read_lock();
5f578161 993
5ac8fb31 994 if (reclaim) {
ef8f2327 995 struct mem_cgroup_per_node *mz;
5ac8fb31 996
ef8f2327 997 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
998 iter = &mz->iter[reclaim->priority];
999
1000 if (prev && reclaim->generation != iter->generation)
1001 goto out_unlock;
1002
6df38689 1003 while (1) {
4db0c3c2 1004 pos = READ_ONCE(iter->position);
6df38689
VD
1005 if (!pos || css_tryget(&pos->css))
1006 break;
5ac8fb31 1007 /*
6df38689
VD
1008 * css reference reached zero, so iter->position will
1009 * be cleared by ->css_released. However, we should not
1010 * rely on this happening soon, because ->css_released
1011 * is called from a work queue, and by busy-waiting we
1012 * might block it. So we clear iter->position right
1013 * away.
5ac8fb31 1014 */
6df38689
VD
1015 (void)cmpxchg(&iter->position, pos, NULL);
1016 }
5ac8fb31
JW
1017 }
1018
1019 if (pos)
1020 css = &pos->css;
1021
1022 for (;;) {
1023 css = css_next_descendant_pre(css, &root->css);
1024 if (!css) {
1025 /*
1026 * Reclaimers share the hierarchy walk, and a
1027 * new one might jump in right at the end of
1028 * the hierarchy - make sure they see at least
1029 * one group and restart from the beginning.
1030 */
1031 if (!prev)
1032 continue;
1033 break;
527a5ec9 1034 }
7d74b06f 1035
5ac8fb31
JW
1036 /*
1037 * Verify the css and acquire a reference. The root
1038 * is provided by the caller, so we know it's alive
1039 * and kicking, and don't take an extra reference.
1040 */
1041 memcg = mem_cgroup_from_css(css);
14067bb3 1042
5ac8fb31
JW
1043 if (css == &root->css)
1044 break;
14067bb3 1045
0b8f73e1
JW
1046 if (css_tryget(css))
1047 break;
9f3a0d09 1048
5ac8fb31 1049 memcg = NULL;
9f3a0d09 1050 }
5ac8fb31
JW
1051
1052 if (reclaim) {
5ac8fb31 1053 /*
6df38689
VD
1054 * The position could have already been updated by a competing
1055 * thread, so check that the value hasn't changed since we read
1056 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1057 */
6df38689
VD
1058 (void)cmpxchg(&iter->position, pos, memcg);
1059
5ac8fb31
JW
1060 if (pos)
1061 css_put(&pos->css);
1062
1063 if (!memcg)
1064 iter->generation++;
1065 else if (!prev)
1066 reclaim->generation = iter->generation;
9f3a0d09 1067 }
5ac8fb31 1068
542f85f9
MH
1069out_unlock:
1070 rcu_read_unlock();
5ac8fb31 1071out:
c40046f3
MH
1072 if (prev && prev != root)
1073 css_put(&prev->css);
1074
9f3a0d09 1075 return memcg;
14067bb3 1076}
7d74b06f 1077
5660048c
JW
1078/**
1079 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1080 * @root: hierarchy root
1081 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1082 */
1083void mem_cgroup_iter_break(struct mem_cgroup *root,
1084 struct mem_cgroup *prev)
9f3a0d09
JW
1085{
1086 if (!root)
1087 root = root_mem_cgroup;
1088 if (prev && prev != root)
1089 css_put(&prev->css);
1090}
7d74b06f 1091
6df38689
VD
1092static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1093{
1094 struct mem_cgroup *memcg = dead_memcg;
1095 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1096 struct mem_cgroup_per_node *mz;
1097 int nid;
6df38689
VD
1098 int i;
1099
9f15bde6 1100 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1101 for_each_node(nid) {
ef8f2327
MG
1102 mz = mem_cgroup_nodeinfo(memcg, nid);
1103 for (i = 0; i <= DEF_PRIORITY; i++) {
1104 iter = &mz->iter[i];
1105 cmpxchg(&iter->position,
1106 dead_memcg, NULL);
6df38689
VD
1107 }
1108 }
1109 }
1110}
1111
7c5f64f8
VD
1112/**
1113 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1114 * @memcg: hierarchy root
1115 * @fn: function to call for each task
1116 * @arg: argument passed to @fn
1117 *
1118 * This function iterates over tasks attached to @memcg or to any of its
1119 * descendants and calls @fn for each task. If @fn returns a non-zero
1120 * value, the function breaks the iteration loop and returns the value.
1121 * Otherwise, it will iterate over all tasks and return 0.
1122 *
1123 * This function must not be called for the root memory cgroup.
1124 */
1125int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1126 int (*fn)(struct task_struct *, void *), void *arg)
1127{
1128 struct mem_cgroup *iter;
1129 int ret = 0;
1130
1131 BUG_ON(memcg == root_mem_cgroup);
1132
1133 for_each_mem_cgroup_tree(iter, memcg) {
1134 struct css_task_iter it;
1135 struct task_struct *task;
1136
bc2fb7ed 1137 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1138 while (!ret && (task = css_task_iter_next(&it)))
1139 ret = fn(task, arg);
1140 css_task_iter_end(&it);
1141 if (ret) {
1142 mem_cgroup_iter_break(memcg, iter);
1143 break;
1144 }
1145 }
1146 return ret;
1147}
1148
925b7673 1149/**
dfe0e773 1150 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1151 * @page: the page
f144c390 1152 * @pgdat: pgdat of the page
dfe0e773
JW
1153 *
1154 * This function is only safe when following the LRU page isolation
1155 * and putback protocol: the LRU lock must be held, and the page must
1156 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1157 */
599d0c95 1158struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1159{
ef8f2327 1160 struct mem_cgroup_per_node *mz;
925b7673 1161 struct mem_cgroup *memcg;
bea8c150 1162 struct lruvec *lruvec;
6d12e2d8 1163
bea8c150 1164 if (mem_cgroup_disabled()) {
599d0c95 1165 lruvec = &pgdat->lruvec;
bea8c150
HD
1166 goto out;
1167 }
925b7673 1168
1306a85a 1169 memcg = page->mem_cgroup;
7512102c 1170 /*
dfe0e773 1171 * Swapcache readahead pages are added to the LRU - and
29833315 1172 * possibly migrated - before they are charged.
7512102c 1173 */
29833315
JW
1174 if (!memcg)
1175 memcg = root_mem_cgroup;
7512102c 1176
ef8f2327 1177 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1178 lruvec = &mz->lruvec;
1179out:
1180 /*
1181 * Since a node can be onlined after the mem_cgroup was created,
1182 * we have to be prepared to initialize lruvec->zone here;
1183 * and if offlined then reonlined, we need to reinitialize it.
1184 */
599d0c95
MG
1185 if (unlikely(lruvec->pgdat != pgdat))
1186 lruvec->pgdat = pgdat;
bea8c150 1187 return lruvec;
08e552c6 1188}
b69408e8 1189
925b7673 1190/**
fa9add64
HD
1191 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1192 * @lruvec: mem_cgroup per zone lru vector
1193 * @lru: index of lru list the page is sitting on
b4536f0c 1194 * @zid: zone id of the accounted pages
fa9add64 1195 * @nr_pages: positive when adding or negative when removing
925b7673 1196 *
ca707239
HD
1197 * This function must be called under lru_lock, just before a page is added
1198 * to or just after a page is removed from an lru list (that ordering being
1199 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1200 */
fa9add64 1201void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1202 int zid, int nr_pages)
3f58a829 1203{
ef8f2327 1204 struct mem_cgroup_per_node *mz;
fa9add64 1205 unsigned long *lru_size;
ca707239 1206 long size;
3f58a829
MK
1207
1208 if (mem_cgroup_disabled())
1209 return;
1210
ef8f2327 1211 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1212 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1213
1214 if (nr_pages < 0)
1215 *lru_size += nr_pages;
1216
1217 size = *lru_size;
b4536f0c
MH
1218 if (WARN_ONCE(size < 0,
1219 "%s(%p, %d, %d): lru_size %ld\n",
1220 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1221 VM_BUG_ON(1);
1222 *lru_size = 0;
1223 }
1224
1225 if (nr_pages > 0)
1226 *lru_size += nr_pages;
08e552c6 1227}
544122e5 1228
2314b42d 1229bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1230{
2314b42d 1231 struct mem_cgroup *task_memcg;
158e0a2d 1232 struct task_struct *p;
ffbdccf5 1233 bool ret;
4c4a2214 1234
158e0a2d 1235 p = find_lock_task_mm(task);
de077d22 1236 if (p) {
2314b42d 1237 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1238 task_unlock(p);
1239 } else {
1240 /*
1241 * All threads may have already detached their mm's, but the oom
1242 * killer still needs to detect if they have already been oom
1243 * killed to prevent needlessly killing additional tasks.
1244 */
ffbdccf5 1245 rcu_read_lock();
2314b42d
JW
1246 task_memcg = mem_cgroup_from_task(task);
1247 css_get(&task_memcg->css);
ffbdccf5 1248 rcu_read_unlock();
de077d22 1249 }
2314b42d
JW
1250 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1251 css_put(&task_memcg->css);
4c4a2214
DR
1252 return ret;
1253}
1254
19942822 1255/**
9d11ea9f 1256 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1257 * @memcg: the memory cgroup
19942822 1258 *
9d11ea9f 1259 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1260 * pages.
19942822 1261 */
c0ff4b85 1262static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1263{
3e32cb2e
JW
1264 unsigned long margin = 0;
1265 unsigned long count;
1266 unsigned long limit;
9d11ea9f 1267
3e32cb2e 1268 count = page_counter_read(&memcg->memory);
bbec2e15 1269 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1270 if (count < limit)
1271 margin = limit - count;
1272
7941d214 1273 if (do_memsw_account()) {
3e32cb2e 1274 count = page_counter_read(&memcg->memsw);
bbec2e15 1275 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1276 if (count <= limit)
1277 margin = min(margin, limit - count);
cbedbac3
LR
1278 else
1279 margin = 0;
3e32cb2e
JW
1280 }
1281
1282 return margin;
19942822
JW
1283}
1284
32047e2a 1285/*
bdcbb659 1286 * A routine for checking "mem" is under move_account() or not.
32047e2a 1287 *
bdcbb659
QH
1288 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1289 * moving cgroups. This is for waiting at high-memory pressure
1290 * caused by "move".
32047e2a 1291 */
c0ff4b85 1292static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1293{
2bd9bb20
KH
1294 struct mem_cgroup *from;
1295 struct mem_cgroup *to;
4b534334 1296 bool ret = false;
2bd9bb20
KH
1297 /*
1298 * Unlike task_move routines, we access mc.to, mc.from not under
1299 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1300 */
1301 spin_lock(&mc.lock);
1302 from = mc.from;
1303 to = mc.to;
1304 if (!from)
1305 goto unlock;
3e92041d 1306
2314b42d
JW
1307 ret = mem_cgroup_is_descendant(from, memcg) ||
1308 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1309unlock:
1310 spin_unlock(&mc.lock);
4b534334
KH
1311 return ret;
1312}
1313
c0ff4b85 1314static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1315{
1316 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1317 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1318 DEFINE_WAIT(wait);
1319 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1320 /* moving charge context might have finished. */
1321 if (mc.moving_task)
1322 schedule();
1323 finish_wait(&mc.waitq, &wait);
1324 return true;
1325 }
1326 }
1327 return false;
1328}
1329
8ad6e404 1330static const unsigned int memcg1_stats[] = {
71cd3113
JW
1331 MEMCG_CACHE,
1332 MEMCG_RSS,
1333 MEMCG_RSS_HUGE,
1334 NR_SHMEM,
1335 NR_FILE_MAPPED,
1336 NR_FILE_DIRTY,
1337 NR_WRITEBACK,
1338 MEMCG_SWAP,
1339};
1340
1341static const char *const memcg1_stat_names[] = {
1342 "cache",
1343 "rss",
1344 "rss_huge",
1345 "shmem",
1346 "mapped_file",
1347 "dirty",
1348 "writeback",
1349 "swap",
1350};
1351
58cf188e 1352#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1353/**
f0c867d9 1354 * mem_cgroup_print_oom_context: Print OOM information relevant to
1355 * memory controller.
e222432b
BS
1356 * @memcg: The memory cgroup that went over limit
1357 * @p: Task that is going to be killed
1358 *
1359 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1360 * enabled
1361 */
f0c867d9 1362void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1363{
e222432b
BS
1364 rcu_read_lock();
1365
f0c867d9 1366 if (memcg) {
1367 pr_cont(",oom_memcg=");
1368 pr_cont_cgroup_path(memcg->css.cgroup);
1369 } else
1370 pr_cont(",global_oom");
2415b9f5 1371 if (p) {
f0c867d9 1372 pr_cont(",task_memcg=");
2415b9f5 1373 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1374 }
e222432b 1375 rcu_read_unlock();
f0c867d9 1376}
1377
1378/**
1379 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1380 * memory controller.
1381 * @memcg: The memory cgroup that went over limit
1382 */
1383void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1384{
1385 struct mem_cgroup *iter;
1386 unsigned int i;
e222432b 1387
3e32cb2e
JW
1388 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1389 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1390 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1391 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1392 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1393 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1394 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1395 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1396 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1397
1398 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1399 pr_info("Memory cgroup stats for ");
1400 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1401 pr_cont(":");
1402
71cd3113
JW
1403 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1404 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1405 continue;
71cd3113 1406 pr_cont(" %s:%luKB", memcg1_stat_names[i],
205b20cc
JW
1407 K(memcg_page_state_local(iter,
1408 memcg1_stats[i])));
58cf188e
SZ
1409 }
1410
1411 for (i = 0; i < NR_LRU_LISTS; i++)
1412 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
205b20cc
JW
1413 K(memcg_page_state_local(iter,
1414 NR_LRU_BASE + i)));
58cf188e
SZ
1415
1416 pr_cont("\n");
1417 }
e222432b
BS
1418}
1419
a63d83f4
DR
1420/*
1421 * Return the memory (and swap, if configured) limit for a memcg.
1422 */
bbec2e15 1423unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1424{
bbec2e15 1425 unsigned long max;
f3e8eb70 1426
bbec2e15 1427 max = memcg->memory.max;
9a5a8f19 1428 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1429 unsigned long memsw_max;
1430 unsigned long swap_max;
9a5a8f19 1431
bbec2e15
RG
1432 memsw_max = memcg->memsw.max;
1433 swap_max = memcg->swap.max;
1434 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1435 max = min(max + swap_max, memsw_max);
9a5a8f19 1436 }
bbec2e15 1437 return max;
a63d83f4
DR
1438}
1439
b6e6edcf 1440static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1441 int order)
9cbb78bb 1442{
6e0fc46d
DR
1443 struct oom_control oc = {
1444 .zonelist = NULL,
1445 .nodemask = NULL,
2a966b77 1446 .memcg = memcg,
6e0fc46d
DR
1447 .gfp_mask = gfp_mask,
1448 .order = order,
6e0fc46d 1449 };
7c5f64f8 1450 bool ret;
9cbb78bb 1451
7775face
TH
1452 if (mutex_lock_killable(&oom_lock))
1453 return true;
1454 /*
1455 * A few threads which were not waiting at mutex_lock_killable() can
1456 * fail to bail out. Therefore, check again after holding oom_lock.
1457 */
1458 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1459 mutex_unlock(&oom_lock);
7c5f64f8 1460 return ret;
9cbb78bb
DR
1461}
1462
ae6e71d3
MC
1463#if MAX_NUMNODES > 1
1464
4d0c066d
KH
1465/**
1466 * test_mem_cgroup_node_reclaimable
dad7557e 1467 * @memcg: the target memcg
4d0c066d
KH
1468 * @nid: the node ID to be checked.
1469 * @noswap : specify true here if the user wants flle only information.
1470 *
1471 * This function returns whether the specified memcg contains any
1472 * reclaimable pages on a node. Returns true if there are any reclaimable
1473 * pages in the node.
1474 */
c0ff4b85 1475static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1476 int nid, bool noswap)
1477{
2b487e59
JW
1478 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1479
205b20cc
JW
1480 if (lruvec_page_state_local(lruvec, NR_INACTIVE_FILE) ||
1481 lruvec_page_state_local(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1482 return true;
1483 if (noswap || !total_swap_pages)
1484 return false;
205b20cc
JW
1485 if (lruvec_page_state_local(lruvec, NR_INACTIVE_ANON) ||
1486 lruvec_page_state_local(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1487 return true;
1488 return false;
1489
1490}
889976db
YH
1491
1492/*
1493 * Always updating the nodemask is not very good - even if we have an empty
1494 * list or the wrong list here, we can start from some node and traverse all
1495 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1496 *
1497 */
c0ff4b85 1498static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1499{
1500 int nid;
453a9bf3
KH
1501 /*
1502 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1503 * pagein/pageout changes since the last update.
1504 */
c0ff4b85 1505 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1506 return;
c0ff4b85 1507 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1508 return;
1509
889976db 1510 /* make a nodemask where this memcg uses memory from */
31aaea4a 1511 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1512
31aaea4a 1513 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1514
c0ff4b85
R
1515 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1516 node_clear(nid, memcg->scan_nodes);
889976db 1517 }
453a9bf3 1518
c0ff4b85
R
1519 atomic_set(&memcg->numainfo_events, 0);
1520 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1521}
1522
1523/*
1524 * Selecting a node where we start reclaim from. Because what we need is just
1525 * reducing usage counter, start from anywhere is O,K. Considering
1526 * memory reclaim from current node, there are pros. and cons.
1527 *
1528 * Freeing memory from current node means freeing memory from a node which
1529 * we'll use or we've used. So, it may make LRU bad. And if several threads
1530 * hit limits, it will see a contention on a node. But freeing from remote
1531 * node means more costs for memory reclaim because of memory latency.
1532 *
1533 * Now, we use round-robin. Better algorithm is welcomed.
1534 */
c0ff4b85 1535int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1536{
1537 int node;
1538
c0ff4b85
R
1539 mem_cgroup_may_update_nodemask(memcg);
1540 node = memcg->last_scanned_node;
889976db 1541
0edaf86c 1542 node = next_node_in(node, memcg->scan_nodes);
889976db 1543 /*
fda3d69b
MH
1544 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1545 * last time it really checked all the LRUs due to rate limiting.
1546 * Fallback to the current node in that case for simplicity.
889976db
YH
1547 */
1548 if (unlikely(node == MAX_NUMNODES))
1549 node = numa_node_id();
1550
c0ff4b85 1551 memcg->last_scanned_node = node;
889976db
YH
1552 return node;
1553}
889976db 1554#else
c0ff4b85 1555int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1556{
1557 return 0;
1558}
1559#endif
1560
0608f43d 1561static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1562 pg_data_t *pgdat,
0608f43d
AM
1563 gfp_t gfp_mask,
1564 unsigned long *total_scanned)
1565{
1566 struct mem_cgroup *victim = NULL;
1567 int total = 0;
1568 int loop = 0;
1569 unsigned long excess;
1570 unsigned long nr_scanned;
1571 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1572 .pgdat = pgdat,
0608f43d
AM
1573 .priority = 0,
1574 };
1575
3e32cb2e 1576 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1577
1578 while (1) {
1579 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1580 if (!victim) {
1581 loop++;
1582 if (loop >= 2) {
1583 /*
1584 * If we have not been able to reclaim
1585 * anything, it might because there are
1586 * no reclaimable pages under this hierarchy
1587 */
1588 if (!total)
1589 break;
1590 /*
1591 * We want to do more targeted reclaim.
1592 * excess >> 2 is not to excessive so as to
1593 * reclaim too much, nor too less that we keep
1594 * coming back to reclaim from this cgroup
1595 */
1596 if (total >= (excess >> 2) ||
1597 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1598 break;
1599 }
1600 continue;
1601 }
a9dd0a83 1602 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1603 pgdat, &nr_scanned);
0608f43d 1604 *total_scanned += nr_scanned;
3e32cb2e 1605 if (!soft_limit_excess(root_memcg))
0608f43d 1606 break;
6d61ef40 1607 }
0608f43d
AM
1608 mem_cgroup_iter_break(root_memcg, victim);
1609 return total;
6d61ef40
BS
1610}
1611
0056f4e6
JW
1612#ifdef CONFIG_LOCKDEP
1613static struct lockdep_map memcg_oom_lock_dep_map = {
1614 .name = "memcg_oom_lock",
1615};
1616#endif
1617
fb2a6fc5
JW
1618static DEFINE_SPINLOCK(memcg_oom_lock);
1619
867578cb
KH
1620/*
1621 * Check OOM-Killer is already running under our hierarchy.
1622 * If someone is running, return false.
1623 */
fb2a6fc5 1624static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1625{
79dfdacc 1626 struct mem_cgroup *iter, *failed = NULL;
a636b327 1627
fb2a6fc5
JW
1628 spin_lock(&memcg_oom_lock);
1629
9f3a0d09 1630 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1631 if (iter->oom_lock) {
79dfdacc
MH
1632 /*
1633 * this subtree of our hierarchy is already locked
1634 * so we cannot give a lock.
1635 */
79dfdacc 1636 failed = iter;
9f3a0d09
JW
1637 mem_cgroup_iter_break(memcg, iter);
1638 break;
23751be0
JW
1639 } else
1640 iter->oom_lock = true;
7d74b06f 1641 }
867578cb 1642
fb2a6fc5
JW
1643 if (failed) {
1644 /*
1645 * OK, we failed to lock the whole subtree so we have
1646 * to clean up what we set up to the failing subtree
1647 */
1648 for_each_mem_cgroup_tree(iter, memcg) {
1649 if (iter == failed) {
1650 mem_cgroup_iter_break(memcg, iter);
1651 break;
1652 }
1653 iter->oom_lock = false;
79dfdacc 1654 }
0056f4e6
JW
1655 } else
1656 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1657
1658 spin_unlock(&memcg_oom_lock);
1659
1660 return !failed;
a636b327 1661}
0b7f569e 1662
fb2a6fc5 1663static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1664{
7d74b06f
KH
1665 struct mem_cgroup *iter;
1666
fb2a6fc5 1667 spin_lock(&memcg_oom_lock);
0056f4e6 1668 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1669 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1670 iter->oom_lock = false;
fb2a6fc5 1671 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1672}
1673
c0ff4b85 1674static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1675{
1676 struct mem_cgroup *iter;
1677
c2b42d3c 1678 spin_lock(&memcg_oom_lock);
c0ff4b85 1679 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1680 iter->under_oom++;
1681 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1682}
1683
c0ff4b85 1684static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1685{
1686 struct mem_cgroup *iter;
1687
867578cb
KH
1688 /*
1689 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1690 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1691 */
c2b42d3c 1692 spin_lock(&memcg_oom_lock);
c0ff4b85 1693 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1694 if (iter->under_oom > 0)
1695 iter->under_oom--;
1696 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1697}
1698
867578cb
KH
1699static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1700
dc98df5a 1701struct oom_wait_info {
d79154bb 1702 struct mem_cgroup *memcg;
ac6424b9 1703 wait_queue_entry_t wait;
dc98df5a
KH
1704};
1705
ac6424b9 1706static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1707 unsigned mode, int sync, void *arg)
1708{
d79154bb
HD
1709 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1710 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1711 struct oom_wait_info *oom_wait_info;
1712
1713 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1714 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1715
2314b42d
JW
1716 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1717 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1718 return 0;
dc98df5a
KH
1719 return autoremove_wake_function(wait, mode, sync, arg);
1720}
1721
c0ff4b85 1722static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1723{
c2b42d3c
TH
1724 /*
1725 * For the following lockless ->under_oom test, the only required
1726 * guarantee is that it must see the state asserted by an OOM when
1727 * this function is called as a result of userland actions
1728 * triggered by the notification of the OOM. This is trivially
1729 * achieved by invoking mem_cgroup_mark_under_oom() before
1730 * triggering notification.
1731 */
1732 if (memcg && memcg->under_oom)
f4b90b70 1733 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1734}
1735
29ef680a
MH
1736enum oom_status {
1737 OOM_SUCCESS,
1738 OOM_FAILED,
1739 OOM_ASYNC,
1740 OOM_SKIPPED
1741};
1742
1743static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1744{
7056d3a3
MH
1745 enum oom_status ret;
1746 bool locked;
1747
29ef680a
MH
1748 if (order > PAGE_ALLOC_COSTLY_ORDER)
1749 return OOM_SKIPPED;
1750
7a1adfdd
RG
1751 memcg_memory_event(memcg, MEMCG_OOM);
1752
867578cb 1753 /*
49426420
JW
1754 * We are in the middle of the charge context here, so we
1755 * don't want to block when potentially sitting on a callstack
1756 * that holds all kinds of filesystem and mm locks.
1757 *
29ef680a
MH
1758 * cgroup1 allows disabling the OOM killer and waiting for outside
1759 * handling until the charge can succeed; remember the context and put
1760 * the task to sleep at the end of the page fault when all locks are
1761 * released.
49426420 1762 *
29ef680a
MH
1763 * On the other hand, in-kernel OOM killer allows for an async victim
1764 * memory reclaim (oom_reaper) and that means that we are not solely
1765 * relying on the oom victim to make a forward progress and we can
1766 * invoke the oom killer here.
1767 *
1768 * Please note that mem_cgroup_out_of_memory might fail to find a
1769 * victim and then we have to bail out from the charge path.
867578cb 1770 */
29ef680a
MH
1771 if (memcg->oom_kill_disable) {
1772 if (!current->in_user_fault)
1773 return OOM_SKIPPED;
1774 css_get(&memcg->css);
1775 current->memcg_in_oom = memcg;
1776 current->memcg_oom_gfp_mask = mask;
1777 current->memcg_oom_order = order;
1778
1779 return OOM_ASYNC;
1780 }
1781
7056d3a3
MH
1782 mem_cgroup_mark_under_oom(memcg);
1783
1784 locked = mem_cgroup_oom_trylock(memcg);
1785
1786 if (locked)
1787 mem_cgroup_oom_notify(memcg);
1788
1789 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1790 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1791 ret = OOM_SUCCESS;
1792 else
1793 ret = OOM_FAILED;
1794
1795 if (locked)
1796 mem_cgroup_oom_unlock(memcg);
29ef680a 1797
7056d3a3 1798 return ret;
3812c8c8
JW
1799}
1800
1801/**
1802 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1803 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1804 *
49426420
JW
1805 * This has to be called at the end of a page fault if the memcg OOM
1806 * handler was enabled.
3812c8c8 1807 *
49426420 1808 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1809 * sleep on a waitqueue until the userspace task resolves the
1810 * situation. Sleeping directly in the charge context with all kinds
1811 * of locks held is not a good idea, instead we remember an OOM state
1812 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1813 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1814 *
1815 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1816 * completed, %false otherwise.
3812c8c8 1817 */
49426420 1818bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1819{
626ebc41 1820 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1821 struct oom_wait_info owait;
49426420 1822 bool locked;
3812c8c8
JW
1823
1824 /* OOM is global, do not handle */
3812c8c8 1825 if (!memcg)
49426420 1826 return false;
3812c8c8 1827
7c5f64f8 1828 if (!handle)
49426420 1829 goto cleanup;
3812c8c8
JW
1830
1831 owait.memcg = memcg;
1832 owait.wait.flags = 0;
1833 owait.wait.func = memcg_oom_wake_function;
1834 owait.wait.private = current;
2055da97 1835 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1836
3812c8c8 1837 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1838 mem_cgroup_mark_under_oom(memcg);
1839
1840 locked = mem_cgroup_oom_trylock(memcg);
1841
1842 if (locked)
1843 mem_cgroup_oom_notify(memcg);
1844
1845 if (locked && !memcg->oom_kill_disable) {
1846 mem_cgroup_unmark_under_oom(memcg);
1847 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1848 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1849 current->memcg_oom_order);
49426420 1850 } else {
3812c8c8 1851 schedule();
49426420
JW
1852 mem_cgroup_unmark_under_oom(memcg);
1853 finish_wait(&memcg_oom_waitq, &owait.wait);
1854 }
1855
1856 if (locked) {
fb2a6fc5
JW
1857 mem_cgroup_oom_unlock(memcg);
1858 /*
1859 * There is no guarantee that an OOM-lock contender
1860 * sees the wakeups triggered by the OOM kill
1861 * uncharges. Wake any sleepers explicitely.
1862 */
1863 memcg_oom_recover(memcg);
1864 }
49426420 1865cleanup:
626ebc41 1866 current->memcg_in_oom = NULL;
3812c8c8 1867 css_put(&memcg->css);
867578cb 1868 return true;
0b7f569e
KH
1869}
1870
3d8b38eb
RG
1871/**
1872 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1873 * @victim: task to be killed by the OOM killer
1874 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1875 *
1876 * Returns a pointer to a memory cgroup, which has to be cleaned up
1877 * by killing all belonging OOM-killable tasks.
1878 *
1879 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1880 */
1881struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1882 struct mem_cgroup *oom_domain)
1883{
1884 struct mem_cgroup *oom_group = NULL;
1885 struct mem_cgroup *memcg;
1886
1887 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1888 return NULL;
1889
1890 if (!oom_domain)
1891 oom_domain = root_mem_cgroup;
1892
1893 rcu_read_lock();
1894
1895 memcg = mem_cgroup_from_task(victim);
1896 if (memcg == root_mem_cgroup)
1897 goto out;
1898
1899 /*
1900 * Traverse the memory cgroup hierarchy from the victim task's
1901 * cgroup up to the OOMing cgroup (or root) to find the
1902 * highest-level memory cgroup with oom.group set.
1903 */
1904 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1905 if (memcg->oom_group)
1906 oom_group = memcg;
1907
1908 if (memcg == oom_domain)
1909 break;
1910 }
1911
1912 if (oom_group)
1913 css_get(&oom_group->css);
1914out:
1915 rcu_read_unlock();
1916
1917 return oom_group;
1918}
1919
1920void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1921{
1922 pr_info("Tasks in ");
1923 pr_cont_cgroup_path(memcg->css.cgroup);
1924 pr_cont(" are going to be killed due to memory.oom.group set\n");
1925}
1926
d7365e78 1927/**
81f8c3a4
JW
1928 * lock_page_memcg - lock a page->mem_cgroup binding
1929 * @page: the page
32047e2a 1930 *
81f8c3a4 1931 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1932 * another cgroup.
1933 *
1934 * It ensures lifetime of the returned memcg. Caller is responsible
1935 * for the lifetime of the page; __unlock_page_memcg() is available
1936 * when @page might get freed inside the locked section.
d69b042f 1937 */
739f79fc 1938struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1939{
1940 struct mem_cgroup *memcg;
6de22619 1941 unsigned long flags;
89c06bd5 1942
6de22619
JW
1943 /*
1944 * The RCU lock is held throughout the transaction. The fast
1945 * path can get away without acquiring the memcg->move_lock
1946 * because page moving starts with an RCU grace period.
739f79fc
JW
1947 *
1948 * The RCU lock also protects the memcg from being freed when
1949 * the page state that is going to change is the only thing
1950 * preventing the page itself from being freed. E.g. writeback
1951 * doesn't hold a page reference and relies on PG_writeback to
1952 * keep off truncation, migration and so forth.
1953 */
d7365e78
JW
1954 rcu_read_lock();
1955
1956 if (mem_cgroup_disabled())
739f79fc 1957 return NULL;
89c06bd5 1958again:
1306a85a 1959 memcg = page->mem_cgroup;
29833315 1960 if (unlikely(!memcg))
739f79fc 1961 return NULL;
d7365e78 1962
bdcbb659 1963 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1964 return memcg;
89c06bd5 1965
6de22619 1966 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1967 if (memcg != page->mem_cgroup) {
6de22619 1968 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1969 goto again;
1970 }
6de22619
JW
1971
1972 /*
1973 * When charge migration first begins, we can have locked and
1974 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1975 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1976 */
1977 memcg->move_lock_task = current;
1978 memcg->move_lock_flags = flags;
d7365e78 1979
739f79fc 1980 return memcg;
89c06bd5 1981}
81f8c3a4 1982EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1983
d7365e78 1984/**
739f79fc
JW
1985 * __unlock_page_memcg - unlock and unpin a memcg
1986 * @memcg: the memcg
1987 *
1988 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1989 */
739f79fc 1990void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1991{
6de22619
JW
1992 if (memcg && memcg->move_lock_task == current) {
1993 unsigned long flags = memcg->move_lock_flags;
1994
1995 memcg->move_lock_task = NULL;
1996 memcg->move_lock_flags = 0;
1997
1998 spin_unlock_irqrestore(&memcg->move_lock, flags);
1999 }
89c06bd5 2000
d7365e78 2001 rcu_read_unlock();
89c06bd5 2002}
739f79fc
JW
2003
2004/**
2005 * unlock_page_memcg - unlock a page->mem_cgroup binding
2006 * @page: the page
2007 */
2008void unlock_page_memcg(struct page *page)
2009{
2010 __unlock_page_memcg(page->mem_cgroup);
2011}
81f8c3a4 2012EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2013
cdec2e42
KH
2014struct memcg_stock_pcp {
2015 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2016 unsigned int nr_pages;
cdec2e42 2017 struct work_struct work;
26fe6168 2018 unsigned long flags;
a0db00fc 2019#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2020};
2021static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2022static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2023
a0956d54
SS
2024/**
2025 * consume_stock: Try to consume stocked charge on this cpu.
2026 * @memcg: memcg to consume from.
2027 * @nr_pages: how many pages to charge.
2028 *
2029 * The charges will only happen if @memcg matches the current cpu's memcg
2030 * stock, and at least @nr_pages are available in that stock. Failure to
2031 * service an allocation will refill the stock.
2032 *
2033 * returns true if successful, false otherwise.
cdec2e42 2034 */
a0956d54 2035static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2036{
2037 struct memcg_stock_pcp *stock;
db2ba40c 2038 unsigned long flags;
3e32cb2e 2039 bool ret = false;
cdec2e42 2040
a983b5eb 2041 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2042 return ret;
a0956d54 2043
db2ba40c
JW
2044 local_irq_save(flags);
2045
2046 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2047 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2048 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2049 ret = true;
2050 }
db2ba40c
JW
2051
2052 local_irq_restore(flags);
2053
cdec2e42
KH
2054 return ret;
2055}
2056
2057/*
3e32cb2e 2058 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2059 */
2060static void drain_stock(struct memcg_stock_pcp *stock)
2061{
2062 struct mem_cgroup *old = stock->cached;
2063
11c9ea4e 2064 if (stock->nr_pages) {
3e32cb2e 2065 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2066 if (do_memsw_account())
3e32cb2e 2067 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2068 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2069 stock->nr_pages = 0;
cdec2e42
KH
2070 }
2071 stock->cached = NULL;
cdec2e42
KH
2072}
2073
cdec2e42
KH
2074static void drain_local_stock(struct work_struct *dummy)
2075{
db2ba40c
JW
2076 struct memcg_stock_pcp *stock;
2077 unsigned long flags;
2078
72f0184c
MH
2079 /*
2080 * The only protection from memory hotplug vs. drain_stock races is
2081 * that we always operate on local CPU stock here with IRQ disabled
2082 */
db2ba40c
JW
2083 local_irq_save(flags);
2084
2085 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2086 drain_stock(stock);
26fe6168 2087 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2088
2089 local_irq_restore(flags);
cdec2e42
KH
2090}
2091
2092/*
3e32cb2e 2093 * Cache charges(val) to local per_cpu area.
320cc51d 2094 * This will be consumed by consume_stock() function, later.
cdec2e42 2095 */
c0ff4b85 2096static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2097{
db2ba40c
JW
2098 struct memcg_stock_pcp *stock;
2099 unsigned long flags;
2100
2101 local_irq_save(flags);
cdec2e42 2102
db2ba40c 2103 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2104 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2105 drain_stock(stock);
c0ff4b85 2106 stock->cached = memcg;
cdec2e42 2107 }
11c9ea4e 2108 stock->nr_pages += nr_pages;
db2ba40c 2109
a983b5eb 2110 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2111 drain_stock(stock);
2112
db2ba40c 2113 local_irq_restore(flags);
cdec2e42
KH
2114}
2115
2116/*
c0ff4b85 2117 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2118 * of the hierarchy under it.
cdec2e42 2119 */
6d3d6aa2 2120static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2121{
26fe6168 2122 int cpu, curcpu;
d38144b7 2123
6d3d6aa2
JW
2124 /* If someone's already draining, avoid adding running more workers. */
2125 if (!mutex_trylock(&percpu_charge_mutex))
2126 return;
72f0184c
MH
2127 /*
2128 * Notify other cpus that system-wide "drain" is running
2129 * We do not care about races with the cpu hotplug because cpu down
2130 * as well as workers from this path always operate on the local
2131 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2132 */
5af12d0e 2133 curcpu = get_cpu();
cdec2e42
KH
2134 for_each_online_cpu(cpu) {
2135 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2136 struct mem_cgroup *memcg;
26fe6168 2137
c0ff4b85 2138 memcg = stock->cached;
72f0184c 2139 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2140 continue;
72f0184c
MH
2141 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2142 css_put(&memcg->css);
3e92041d 2143 continue;
72f0184c 2144 }
d1a05b69
MH
2145 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2146 if (cpu == curcpu)
2147 drain_local_stock(&stock->work);
2148 else
2149 schedule_work_on(cpu, &stock->work);
2150 }
72f0184c 2151 css_put(&memcg->css);
cdec2e42 2152 }
5af12d0e 2153 put_cpu();
9f50fad6 2154 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2155}
2156
308167fc 2157static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2158{
cdec2e42 2159 struct memcg_stock_pcp *stock;
a983b5eb 2160 struct mem_cgroup *memcg;
cdec2e42 2161
cdec2e42
KH
2162 stock = &per_cpu(memcg_stock, cpu);
2163 drain_stock(stock);
a983b5eb
JW
2164
2165 for_each_mem_cgroup(memcg) {
2166 int i;
2167
2168 for (i = 0; i < MEMCG_NR_STAT; i++) {
2169 int nid;
2170 long x;
2171
871789d4 2172 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
a983b5eb 2173 if (x)
871789d4 2174 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2175
2176 if (i >= NR_VM_NODE_STAT_ITEMS)
2177 continue;
2178
2179 for_each_node(nid) {
2180 struct mem_cgroup_per_node *pn;
2181
2182 pn = mem_cgroup_nodeinfo(memcg, nid);
2183 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2184 if (x)
2185 atomic_long_add(x, &pn->lruvec_stat[i]);
2186 }
2187 }
2188
e27be240 2189 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2190 long x;
2191
871789d4 2192 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
a983b5eb 2193 if (x)
871789d4 2194 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2195 }
2196 }
2197
308167fc 2198 return 0;
cdec2e42
KH
2199}
2200
f7e1cb6e
JW
2201static void reclaim_high(struct mem_cgroup *memcg,
2202 unsigned int nr_pages,
2203 gfp_t gfp_mask)
2204{
2205 do {
2206 if (page_counter_read(&memcg->memory) <= memcg->high)
2207 continue;
e27be240 2208 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2209 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2210 } while ((memcg = parent_mem_cgroup(memcg)));
2211}
2212
2213static void high_work_func(struct work_struct *work)
2214{
2215 struct mem_cgroup *memcg;
2216
2217 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2218 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2219}
2220
b23afb93
TH
2221/*
2222 * Scheduled by try_charge() to be executed from the userland return path
2223 * and reclaims memory over the high limit.
2224 */
2225void mem_cgroup_handle_over_high(void)
2226{
2227 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2228 struct mem_cgroup *memcg;
b23afb93
TH
2229
2230 if (likely(!nr_pages))
2231 return;
2232
f7e1cb6e
JW
2233 memcg = get_mem_cgroup_from_mm(current->mm);
2234 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2235 css_put(&memcg->css);
2236 current->memcg_nr_pages_over_high = 0;
2237}
2238
00501b53
JW
2239static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2240 unsigned int nr_pages)
8a9f3ccd 2241{
a983b5eb 2242 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2243 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2244 struct mem_cgroup *mem_over_limit;
3e32cb2e 2245 struct page_counter *counter;
6539cc05 2246 unsigned long nr_reclaimed;
b70a2a21
JW
2247 bool may_swap = true;
2248 bool drained = false;
29ef680a
MH
2249 bool oomed = false;
2250 enum oom_status oom_status;
a636b327 2251
ce00a967 2252 if (mem_cgroup_is_root(memcg))
10d53c74 2253 return 0;
6539cc05 2254retry:
b6b6cc72 2255 if (consume_stock(memcg, nr_pages))
10d53c74 2256 return 0;
8a9f3ccd 2257
7941d214 2258 if (!do_memsw_account() ||
6071ca52
JW
2259 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2260 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2261 goto done_restock;
7941d214 2262 if (do_memsw_account())
3e32cb2e
JW
2263 page_counter_uncharge(&memcg->memsw, batch);
2264 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2265 } else {
3e32cb2e 2266 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2267 may_swap = false;
3fbe7244 2268 }
7a81b88c 2269
6539cc05
JW
2270 if (batch > nr_pages) {
2271 batch = nr_pages;
2272 goto retry;
2273 }
6d61ef40 2274
06b078fc
JW
2275 /*
2276 * Unlike in global OOM situations, memcg is not in a physical
2277 * memory shortage. Allow dying and OOM-killed tasks to
2278 * bypass the last charges so that they can exit quickly and
2279 * free their memory.
2280 */
7775face 2281 if (unlikely(should_force_charge()))
10d53c74 2282 goto force;
06b078fc 2283
89a28483
JW
2284 /*
2285 * Prevent unbounded recursion when reclaim operations need to
2286 * allocate memory. This might exceed the limits temporarily,
2287 * but we prefer facilitating memory reclaim and getting back
2288 * under the limit over triggering OOM kills in these cases.
2289 */
2290 if (unlikely(current->flags & PF_MEMALLOC))
2291 goto force;
2292
06b078fc
JW
2293 if (unlikely(task_in_memcg_oom(current)))
2294 goto nomem;
2295
d0164adc 2296 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2297 goto nomem;
4b534334 2298
e27be240 2299 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2300
b70a2a21
JW
2301 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2302 gfp_mask, may_swap);
6539cc05 2303
61e02c74 2304 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2305 goto retry;
28c34c29 2306
b70a2a21 2307 if (!drained) {
6d3d6aa2 2308 drain_all_stock(mem_over_limit);
b70a2a21
JW
2309 drained = true;
2310 goto retry;
2311 }
2312
28c34c29
JW
2313 if (gfp_mask & __GFP_NORETRY)
2314 goto nomem;
6539cc05
JW
2315 /*
2316 * Even though the limit is exceeded at this point, reclaim
2317 * may have been able to free some pages. Retry the charge
2318 * before killing the task.
2319 *
2320 * Only for regular pages, though: huge pages are rather
2321 * unlikely to succeed so close to the limit, and we fall back
2322 * to regular pages anyway in case of failure.
2323 */
61e02c74 2324 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2325 goto retry;
2326 /*
2327 * At task move, charge accounts can be doubly counted. So, it's
2328 * better to wait until the end of task_move if something is going on.
2329 */
2330 if (mem_cgroup_wait_acct_move(mem_over_limit))
2331 goto retry;
2332
9b130619
JW
2333 if (nr_retries--)
2334 goto retry;
2335
29ef680a
MH
2336 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2337 goto nomem;
2338
06b078fc 2339 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2340 goto force;
06b078fc 2341
6539cc05 2342 if (fatal_signal_pending(current))
10d53c74 2343 goto force;
6539cc05 2344
29ef680a
MH
2345 /*
2346 * keep retrying as long as the memcg oom killer is able to make
2347 * a forward progress or bypass the charge if the oom killer
2348 * couldn't make any progress.
2349 */
2350 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2351 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2352 switch (oom_status) {
2353 case OOM_SUCCESS:
2354 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2355 oomed = true;
2356 goto retry;
2357 case OOM_FAILED:
2358 goto force;
2359 default:
2360 goto nomem;
2361 }
7a81b88c 2362nomem:
6d1fdc48 2363 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2364 return -ENOMEM;
10d53c74
TH
2365force:
2366 /*
2367 * The allocation either can't fail or will lead to more memory
2368 * being freed very soon. Allow memory usage go over the limit
2369 * temporarily by force charging it.
2370 */
2371 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2372 if (do_memsw_account())
10d53c74
TH
2373 page_counter_charge(&memcg->memsw, nr_pages);
2374 css_get_many(&memcg->css, nr_pages);
2375
2376 return 0;
6539cc05
JW
2377
2378done_restock:
e8ea14cc 2379 css_get_many(&memcg->css, batch);
6539cc05
JW
2380 if (batch > nr_pages)
2381 refill_stock(memcg, batch - nr_pages);
b23afb93 2382
241994ed 2383 /*
b23afb93
TH
2384 * If the hierarchy is above the normal consumption range, schedule
2385 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2386 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2387 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2388 * not recorded as it most likely matches current's and won't
2389 * change in the meantime. As high limit is checked again before
2390 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2391 */
2392 do {
b23afb93 2393 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2394 /* Don't bother a random interrupted task */
2395 if (in_interrupt()) {
2396 schedule_work(&memcg->high_work);
2397 break;
2398 }
9516a18a 2399 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2400 set_notify_resume(current);
2401 break;
2402 }
241994ed 2403 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2404
2405 return 0;
7a81b88c 2406}
8a9f3ccd 2407
00501b53 2408static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2409{
ce00a967
JW
2410 if (mem_cgroup_is_root(memcg))
2411 return;
2412
3e32cb2e 2413 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2414 if (do_memsw_account())
3e32cb2e 2415 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2416
e8ea14cc 2417 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2418}
2419
0a31bc97
JW
2420static void lock_page_lru(struct page *page, int *isolated)
2421{
f4b7e272 2422 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2423
f4b7e272 2424 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2425 if (PageLRU(page)) {
2426 struct lruvec *lruvec;
2427
f4b7e272 2428 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2429 ClearPageLRU(page);
2430 del_page_from_lru_list(page, lruvec, page_lru(page));
2431 *isolated = 1;
2432 } else
2433 *isolated = 0;
2434}
2435
2436static void unlock_page_lru(struct page *page, int isolated)
2437{
f4b7e272 2438 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2439
2440 if (isolated) {
2441 struct lruvec *lruvec;
2442
f4b7e272 2443 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2444 VM_BUG_ON_PAGE(PageLRU(page), page);
2445 SetPageLRU(page);
2446 add_page_to_lru_list(page, lruvec, page_lru(page));
2447 }
f4b7e272 2448 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2449}
2450
00501b53 2451static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2452 bool lrucare)
7a81b88c 2453{
0a31bc97 2454 int isolated;
9ce70c02 2455
1306a85a 2456 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2457
2458 /*
2459 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2460 * may already be on some other mem_cgroup's LRU. Take care of it.
2461 */
0a31bc97
JW
2462 if (lrucare)
2463 lock_page_lru(page, &isolated);
9ce70c02 2464
0a31bc97
JW
2465 /*
2466 * Nobody should be changing or seriously looking at
1306a85a 2467 * page->mem_cgroup at this point:
0a31bc97
JW
2468 *
2469 * - the page is uncharged
2470 *
2471 * - the page is off-LRU
2472 *
2473 * - an anonymous fault has exclusive page access, except for
2474 * a locked page table
2475 *
2476 * - a page cache insertion, a swapin fault, or a migration
2477 * have the page locked
2478 */
1306a85a 2479 page->mem_cgroup = memcg;
9ce70c02 2480
0a31bc97
JW
2481 if (lrucare)
2482 unlock_page_lru(page, isolated);
7a81b88c 2483}
66e1707b 2484
84c07d11 2485#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2486static int memcg_alloc_cache_id(void)
55007d84 2487{
f3bb3043
VD
2488 int id, size;
2489 int err;
2490
dbcf73e2 2491 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2492 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2493 if (id < 0)
2494 return id;
55007d84 2495
dbcf73e2 2496 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2497 return id;
2498
2499 /*
2500 * There's no space for the new id in memcg_caches arrays,
2501 * so we have to grow them.
2502 */
05257a1a 2503 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2504
2505 size = 2 * (id + 1);
55007d84
GC
2506 if (size < MEMCG_CACHES_MIN_SIZE)
2507 size = MEMCG_CACHES_MIN_SIZE;
2508 else if (size > MEMCG_CACHES_MAX_SIZE)
2509 size = MEMCG_CACHES_MAX_SIZE;
2510
f3bb3043 2511 err = memcg_update_all_caches(size);
60d3fd32
VD
2512 if (!err)
2513 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2514 if (!err)
2515 memcg_nr_cache_ids = size;
2516
2517 up_write(&memcg_cache_ids_sem);
2518
f3bb3043 2519 if (err) {
dbcf73e2 2520 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2521 return err;
2522 }
2523 return id;
2524}
2525
2526static void memcg_free_cache_id(int id)
2527{
dbcf73e2 2528 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2529}
2530
d5b3cf71 2531struct memcg_kmem_cache_create_work {
5722d094
VD
2532 struct mem_cgroup *memcg;
2533 struct kmem_cache *cachep;
2534 struct work_struct work;
2535};
2536
d5b3cf71 2537static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2538{
d5b3cf71
VD
2539 struct memcg_kmem_cache_create_work *cw =
2540 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2541 struct mem_cgroup *memcg = cw->memcg;
2542 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2543
d5b3cf71 2544 memcg_create_kmem_cache(memcg, cachep);
bd673145 2545
5722d094 2546 css_put(&memcg->css);
d7f25f8a
GC
2547 kfree(cw);
2548}
2549
2550/*
2551 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2552 */
85cfb245 2553static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2554 struct kmem_cache *cachep)
d7f25f8a 2555{
d5b3cf71 2556 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2557
c892fd82 2558 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2559 if (!cw)
d7f25f8a 2560 return;
8135be5a
VD
2561
2562 css_get(&memcg->css);
d7f25f8a
GC
2563
2564 cw->memcg = memcg;
2565 cw->cachep = cachep;
d5b3cf71 2566 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2567
17cc4dfe 2568 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2569}
2570
45264778
VD
2571static inline bool memcg_kmem_bypass(void)
2572{
2573 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2574 return true;
2575 return false;
2576}
2577
2578/**
2579 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2580 * @cachep: the original global kmem cache
2581 *
d7f25f8a
GC
2582 * Return the kmem_cache we're supposed to use for a slab allocation.
2583 * We try to use the current memcg's version of the cache.
2584 *
45264778
VD
2585 * If the cache does not exist yet, if we are the first user of it, we
2586 * create it asynchronously in a workqueue and let the current allocation
2587 * go through with the original cache.
d7f25f8a 2588 *
45264778
VD
2589 * This function takes a reference to the cache it returns to assure it
2590 * won't get destroyed while we are working with it. Once the caller is
2591 * done with it, memcg_kmem_put_cache() must be called to release the
2592 * reference.
d7f25f8a 2593 */
45264778 2594struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2595{
2596 struct mem_cgroup *memcg;
959c8963 2597 struct kmem_cache *memcg_cachep;
2a4db7eb 2598 int kmemcg_id;
d7f25f8a 2599
f7ce3190 2600 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2601
45264778 2602 if (memcg_kmem_bypass())
230e9fc2
VD
2603 return cachep;
2604
d46eb14b 2605 memcg = get_mem_cgroup_from_current();
4db0c3c2 2606 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2607 if (kmemcg_id < 0)
ca0dde97 2608 goto out;
d7f25f8a 2609
2a4db7eb 2610 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2611 if (likely(memcg_cachep))
2612 return memcg_cachep;
ca0dde97
LZ
2613
2614 /*
2615 * If we are in a safe context (can wait, and not in interrupt
2616 * context), we could be be predictable and return right away.
2617 * This would guarantee that the allocation being performed
2618 * already belongs in the new cache.
2619 *
2620 * However, there are some clashes that can arrive from locking.
2621 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2622 * memcg_create_kmem_cache, this means no further allocation
2623 * could happen with the slab_mutex held. So it's better to
2624 * defer everything.
ca0dde97 2625 */
d5b3cf71 2626 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2627out:
8135be5a 2628 css_put(&memcg->css);
ca0dde97 2629 return cachep;
d7f25f8a 2630}
d7f25f8a 2631
45264778
VD
2632/**
2633 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2634 * @cachep: the cache returned by memcg_kmem_get_cache
2635 */
2636void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2637{
2638 if (!is_root_cache(cachep))
f7ce3190 2639 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2640}
2641
45264778 2642/**
60cd4bcd 2643 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2644 * @page: page to charge
2645 * @gfp: reclaim mode
2646 * @order: allocation order
2647 * @memcg: memory cgroup to charge
2648 *
2649 * Returns 0 on success, an error code on failure.
2650 */
60cd4bcd 2651int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2652 struct mem_cgroup *memcg)
7ae1e1d0 2653{
f3ccb2c4
VD
2654 unsigned int nr_pages = 1 << order;
2655 struct page_counter *counter;
7ae1e1d0
GC
2656 int ret;
2657
f3ccb2c4 2658 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2659 if (ret)
f3ccb2c4 2660 return ret;
52c29b04
JW
2661
2662 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2663 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2664 cancel_charge(memcg, nr_pages);
2665 return -ENOMEM;
7ae1e1d0
GC
2666 }
2667
f3ccb2c4 2668 page->mem_cgroup = memcg;
7ae1e1d0 2669
f3ccb2c4 2670 return 0;
7ae1e1d0
GC
2671}
2672
45264778 2673/**
60cd4bcd 2674 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2675 * @page: page to charge
2676 * @gfp: reclaim mode
2677 * @order: allocation order
2678 *
2679 * Returns 0 on success, an error code on failure.
2680 */
60cd4bcd 2681int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2682{
f3ccb2c4 2683 struct mem_cgroup *memcg;
fcff7d7e 2684 int ret = 0;
7ae1e1d0 2685
60cd4bcd 2686 if (memcg_kmem_bypass())
45264778
VD
2687 return 0;
2688
d46eb14b 2689 memcg = get_mem_cgroup_from_current();
c4159a75 2690 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2691 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2692 if (!ret)
2693 __SetPageKmemcg(page);
2694 }
7ae1e1d0 2695 css_put(&memcg->css);
d05e83a6 2696 return ret;
7ae1e1d0 2697}
45264778 2698/**
60cd4bcd 2699 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2700 * @page: page to uncharge
2701 * @order: allocation order
2702 */
60cd4bcd 2703void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2704{
1306a85a 2705 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2706 unsigned int nr_pages = 1 << order;
7ae1e1d0 2707
7ae1e1d0
GC
2708 if (!memcg)
2709 return;
2710
309381fe 2711 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2712
52c29b04
JW
2713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2714 page_counter_uncharge(&memcg->kmem, nr_pages);
2715
f3ccb2c4 2716 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2717 if (do_memsw_account())
f3ccb2c4 2718 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2719
1306a85a 2720 page->mem_cgroup = NULL;
c4159a75
VD
2721
2722 /* slab pages do not have PageKmemcg flag set */
2723 if (PageKmemcg(page))
2724 __ClearPageKmemcg(page);
2725
f3ccb2c4 2726 css_put_many(&memcg->css, nr_pages);
60d3fd32 2727}
84c07d11 2728#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2729
ca3e0214
KH
2730#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2731
ca3e0214
KH
2732/*
2733 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2734 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2735 */
e94c8a9c 2736void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2737{
e94c8a9c 2738 int i;
ca3e0214 2739
3d37c4a9
KH
2740 if (mem_cgroup_disabled())
2741 return;
b070e65c 2742
29833315 2743 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2744 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2745
c9019e9b 2746 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2747}
12d27107 2748#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2749
c255a458 2750#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2751/**
2752 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2753 * @entry: swap entry to be moved
2754 * @from: mem_cgroup which the entry is moved from
2755 * @to: mem_cgroup which the entry is moved to
2756 *
2757 * It succeeds only when the swap_cgroup's record for this entry is the same
2758 * as the mem_cgroup's id of @from.
2759 *
2760 * Returns 0 on success, -EINVAL on failure.
2761 *
3e32cb2e 2762 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2763 * both res and memsw, and called css_get().
2764 */
2765static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2766 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2767{
2768 unsigned short old_id, new_id;
2769
34c00c31
LZ
2770 old_id = mem_cgroup_id(from);
2771 new_id = mem_cgroup_id(to);
02491447
DN
2772
2773 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2774 mod_memcg_state(from, MEMCG_SWAP, -1);
2775 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2776 return 0;
2777 }
2778 return -EINVAL;
2779}
2780#else
2781static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2782 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2783{
2784 return -EINVAL;
2785}
8c7c6e34 2786#endif
d13d1443 2787
bbec2e15 2788static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2789
bbec2e15
RG
2790static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2791 unsigned long max, bool memsw)
628f4235 2792{
3e32cb2e 2793 bool enlarge = false;
bb4a7ea2 2794 bool drained = false;
3e32cb2e 2795 int ret;
c054a78c
YZ
2796 bool limits_invariant;
2797 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2798
3e32cb2e 2799 do {
628f4235
KH
2800 if (signal_pending(current)) {
2801 ret = -EINTR;
2802 break;
2803 }
3e32cb2e 2804
bbec2e15 2805 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2806 /*
2807 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2808 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2809 */
bbec2e15
RG
2810 limits_invariant = memsw ? max >= memcg->memory.max :
2811 max <= memcg->memsw.max;
c054a78c 2812 if (!limits_invariant) {
bbec2e15 2813 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2814 ret = -EINVAL;
8c7c6e34
KH
2815 break;
2816 }
bbec2e15 2817 if (max > counter->max)
3e32cb2e 2818 enlarge = true;
bbec2e15
RG
2819 ret = page_counter_set_max(counter, max);
2820 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2821
2822 if (!ret)
2823 break;
2824
bb4a7ea2
SB
2825 if (!drained) {
2826 drain_all_stock(memcg);
2827 drained = true;
2828 continue;
2829 }
2830
1ab5c056
AR
2831 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2832 GFP_KERNEL, !memsw)) {
2833 ret = -EBUSY;
2834 break;
2835 }
2836 } while (true);
3e32cb2e 2837
3c11ecf4
KH
2838 if (!ret && enlarge)
2839 memcg_oom_recover(memcg);
3e32cb2e 2840
628f4235
KH
2841 return ret;
2842}
2843
ef8f2327 2844unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2845 gfp_t gfp_mask,
2846 unsigned long *total_scanned)
2847{
2848 unsigned long nr_reclaimed = 0;
ef8f2327 2849 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2850 unsigned long reclaimed;
2851 int loop = 0;
ef8f2327 2852 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2853 unsigned long excess;
0608f43d
AM
2854 unsigned long nr_scanned;
2855
2856 if (order > 0)
2857 return 0;
2858
ef8f2327 2859 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2860
2861 /*
2862 * Do not even bother to check the largest node if the root
2863 * is empty. Do it lockless to prevent lock bouncing. Races
2864 * are acceptable as soft limit is best effort anyway.
2865 */
bfc7228b 2866 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2867 return 0;
2868
0608f43d
AM
2869 /*
2870 * This loop can run a while, specially if mem_cgroup's continuously
2871 * keep exceeding their soft limit and putting the system under
2872 * pressure
2873 */
2874 do {
2875 if (next_mz)
2876 mz = next_mz;
2877 else
2878 mz = mem_cgroup_largest_soft_limit_node(mctz);
2879 if (!mz)
2880 break;
2881
2882 nr_scanned = 0;
ef8f2327 2883 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2884 gfp_mask, &nr_scanned);
2885 nr_reclaimed += reclaimed;
2886 *total_scanned += nr_scanned;
0a31bc97 2887 spin_lock_irq(&mctz->lock);
bc2f2e7f 2888 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2889
2890 /*
2891 * If we failed to reclaim anything from this memory cgroup
2892 * it is time to move on to the next cgroup
2893 */
2894 next_mz = NULL;
bc2f2e7f
VD
2895 if (!reclaimed)
2896 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2897
3e32cb2e 2898 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2899 /*
2900 * One school of thought says that we should not add
2901 * back the node to the tree if reclaim returns 0.
2902 * But our reclaim could return 0, simply because due
2903 * to priority we are exposing a smaller subset of
2904 * memory to reclaim from. Consider this as a longer
2905 * term TODO.
2906 */
2907 /* If excess == 0, no tree ops */
cf2c8127 2908 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2909 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2910 css_put(&mz->memcg->css);
2911 loop++;
2912 /*
2913 * Could not reclaim anything and there are no more
2914 * mem cgroups to try or we seem to be looping without
2915 * reclaiming anything.
2916 */
2917 if (!nr_reclaimed &&
2918 (next_mz == NULL ||
2919 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2920 break;
2921 } while (!nr_reclaimed);
2922 if (next_mz)
2923 css_put(&next_mz->memcg->css);
2924 return nr_reclaimed;
2925}
2926
ea280e7b
TH
2927/*
2928 * Test whether @memcg has children, dead or alive. Note that this
2929 * function doesn't care whether @memcg has use_hierarchy enabled and
2930 * returns %true if there are child csses according to the cgroup
2931 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2932 */
b5f99b53
GC
2933static inline bool memcg_has_children(struct mem_cgroup *memcg)
2934{
ea280e7b
TH
2935 bool ret;
2936
ea280e7b
TH
2937 rcu_read_lock();
2938 ret = css_next_child(NULL, &memcg->css);
2939 rcu_read_unlock();
2940 return ret;
b5f99b53
GC
2941}
2942
c26251f9 2943/*
51038171 2944 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2945 *
2946 * Caller is responsible for holding css reference for memcg.
2947 */
2948static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2949{
2950 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2951
c1e862c1
KH
2952 /* we call try-to-free pages for make this cgroup empty */
2953 lru_add_drain_all();
d12c60f6
JS
2954
2955 drain_all_stock(memcg);
2956
f817ed48 2957 /* try to free all pages in this cgroup */
3e32cb2e 2958 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2959 int progress;
c1e862c1 2960
c26251f9
MH
2961 if (signal_pending(current))
2962 return -EINTR;
2963
b70a2a21
JW
2964 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2965 GFP_KERNEL, true);
c1e862c1 2966 if (!progress) {
f817ed48 2967 nr_retries--;
c1e862c1 2968 /* maybe some writeback is necessary */
8aa7e847 2969 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2970 }
f817ed48
KH
2971
2972 }
ab5196c2
MH
2973
2974 return 0;
cc847582
KH
2975}
2976
6770c64e
TH
2977static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2978 char *buf, size_t nbytes,
2979 loff_t off)
c1e862c1 2980{
6770c64e 2981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2982
d8423011
MH
2983 if (mem_cgroup_is_root(memcg))
2984 return -EINVAL;
6770c64e 2985 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2986}
2987
182446d0
TH
2988static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2989 struct cftype *cft)
18f59ea7 2990{
182446d0 2991 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2992}
2993
182446d0
TH
2994static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2995 struct cftype *cft, u64 val)
18f59ea7
BS
2996{
2997 int retval = 0;
182446d0 2998 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2999 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3000
567fb435 3001 if (memcg->use_hierarchy == val)
0b8f73e1 3002 return 0;
567fb435 3003
18f59ea7 3004 /*
af901ca1 3005 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3006 * in the child subtrees. If it is unset, then the change can
3007 * occur, provided the current cgroup has no children.
3008 *
3009 * For the root cgroup, parent_mem is NULL, we allow value to be
3010 * set if there are no children.
3011 */
c0ff4b85 3012 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3013 (val == 1 || val == 0)) {
ea280e7b 3014 if (!memcg_has_children(memcg))
c0ff4b85 3015 memcg->use_hierarchy = val;
18f59ea7
BS
3016 else
3017 retval = -EBUSY;
3018 } else
3019 retval = -EINVAL;
567fb435 3020
18f59ea7
BS
3021 return retval;
3022}
3023
871789d4
CD
3024struct accumulated_vmstats {
3025 unsigned long vmstats[MEMCG_NR_STAT];
3026 unsigned long vmevents[NR_VM_EVENT_ITEMS];
8de7ecc6 3027 unsigned long lru_pages[NR_LRU_LISTS];
871789d4
CD
3028
3029 /* overrides for v1 */
3030 const unsigned int *vmstats_array;
3031 const unsigned int *vmevents_array;
3032
3033 int vmstats_size;
3034 int vmevents_size;
8de7ecc6 3035};
ce00a967 3036
871789d4
CD
3037static void accumulate_vmstats(struct mem_cgroup *memcg,
3038 struct accumulated_vmstats *acc)
587d9f72 3039{
8de7ecc6 3040 struct mem_cgroup *mi;
72b54e73 3041 int i;
587d9f72 3042
8de7ecc6 3043 for_each_mem_cgroup_tree(mi, memcg) {
871789d4 3044 for (i = 0; i < acc->vmstats_size; i++)
205b20cc 3045 acc->vmstats[i] += memcg_page_state_local(mi,
871789d4 3046 acc->vmstats_array ? acc->vmstats_array[i] : i);
587d9f72 3047
871789d4 3048 for (i = 0; i < acc->vmevents_size; i++)
205b20cc 3049 acc->vmevents[i] += memcg_events_local(mi,
871789d4
CD
3050 acc->vmevents_array
3051 ? acc->vmevents_array[i] : i);
8de7ecc6
SB
3052
3053 for (i = 0; i < NR_LRU_LISTS; i++)
205b20cc 3054 acc->lru_pages[i] += memcg_page_state_local(mi,
21d89d15 3055 NR_LRU_BASE + i);
72b54e73 3056 }
587d9f72
JW
3057}
3058
6f646156 3059static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3060{
72b54e73 3061 unsigned long val = 0;
ce00a967 3062
3e32cb2e 3063 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
3064 struct mem_cgroup *iter;
3065
3066 for_each_mem_cgroup_tree(iter, memcg) {
205b20cc
JW
3067 val += memcg_page_state_local(iter, MEMCG_CACHE);
3068 val += memcg_page_state_local(iter, MEMCG_RSS);
72b54e73 3069 if (swap)
205b20cc 3070 val += memcg_page_state_local(iter, MEMCG_SWAP);
72b54e73 3071 }
3e32cb2e 3072 } else {
ce00a967 3073 if (!swap)
3e32cb2e 3074 val = page_counter_read(&memcg->memory);
ce00a967 3075 else
3e32cb2e 3076 val = page_counter_read(&memcg->memsw);
ce00a967 3077 }
c12176d3 3078 return val;
ce00a967
JW
3079}
3080
3e32cb2e
JW
3081enum {
3082 RES_USAGE,
3083 RES_LIMIT,
3084 RES_MAX_USAGE,
3085 RES_FAILCNT,
3086 RES_SOFT_LIMIT,
3087};
ce00a967 3088
791badbd 3089static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3090 struct cftype *cft)
8cdea7c0 3091{
182446d0 3092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3093 struct page_counter *counter;
af36f906 3094
3e32cb2e 3095 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3096 case _MEM:
3e32cb2e
JW
3097 counter = &memcg->memory;
3098 break;
8c7c6e34 3099 case _MEMSWAP:
3e32cb2e
JW
3100 counter = &memcg->memsw;
3101 break;
510fc4e1 3102 case _KMEM:
3e32cb2e 3103 counter = &memcg->kmem;
510fc4e1 3104 break;
d55f90bf 3105 case _TCP:
0db15298 3106 counter = &memcg->tcpmem;
d55f90bf 3107 break;
8c7c6e34
KH
3108 default:
3109 BUG();
8c7c6e34 3110 }
3e32cb2e
JW
3111
3112 switch (MEMFILE_ATTR(cft->private)) {
3113 case RES_USAGE:
3114 if (counter == &memcg->memory)
c12176d3 3115 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3116 if (counter == &memcg->memsw)
c12176d3 3117 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3118 return (u64)page_counter_read(counter) * PAGE_SIZE;
3119 case RES_LIMIT:
bbec2e15 3120 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3121 case RES_MAX_USAGE:
3122 return (u64)counter->watermark * PAGE_SIZE;
3123 case RES_FAILCNT:
3124 return counter->failcnt;
3125 case RES_SOFT_LIMIT:
3126 return (u64)memcg->soft_limit * PAGE_SIZE;
3127 default:
3128 BUG();
3129 }
8cdea7c0 3130}
510fc4e1 3131
84c07d11 3132#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3133static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3134{
d6441637
VD
3135 int memcg_id;
3136
b313aeee
VD
3137 if (cgroup_memory_nokmem)
3138 return 0;
3139
2a4db7eb 3140 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3141 BUG_ON(memcg->kmem_state);
d6441637 3142
f3bb3043 3143 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3144 if (memcg_id < 0)
3145 return memcg_id;
d6441637 3146
ef12947c 3147 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3148 /*
567e9ab2 3149 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3150 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3151 * guarantee no one starts accounting before all call sites are
3152 * patched.
3153 */
900a38f0 3154 memcg->kmemcg_id = memcg_id;
567e9ab2 3155 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3156 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3157
3158 return 0;
d6441637
VD
3159}
3160
8e0a8912
JW
3161static void memcg_offline_kmem(struct mem_cgroup *memcg)
3162{
3163 struct cgroup_subsys_state *css;
3164 struct mem_cgroup *parent, *child;
3165 int kmemcg_id;
3166
3167 if (memcg->kmem_state != KMEM_ONLINE)
3168 return;
3169 /*
3170 * Clear the online state before clearing memcg_caches array
3171 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3172 * guarantees that no cache will be created for this cgroup
3173 * after we are done (see memcg_create_kmem_cache()).
3174 */
3175 memcg->kmem_state = KMEM_ALLOCATED;
3176
3177 memcg_deactivate_kmem_caches(memcg);
3178
3179 kmemcg_id = memcg->kmemcg_id;
3180 BUG_ON(kmemcg_id < 0);
3181
3182 parent = parent_mem_cgroup(memcg);
3183 if (!parent)
3184 parent = root_mem_cgroup;
3185
3186 /*
3187 * Change kmemcg_id of this cgroup and all its descendants to the
3188 * parent's id, and then move all entries from this cgroup's list_lrus
3189 * to ones of the parent. After we have finished, all list_lrus
3190 * corresponding to this cgroup are guaranteed to remain empty. The
3191 * ordering is imposed by list_lru_node->lock taken by
3192 * memcg_drain_all_list_lrus().
3193 */
3a06bb78 3194 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3195 css_for_each_descendant_pre(css, &memcg->css) {
3196 child = mem_cgroup_from_css(css);
3197 BUG_ON(child->kmemcg_id != kmemcg_id);
3198 child->kmemcg_id = parent->kmemcg_id;
3199 if (!memcg->use_hierarchy)
3200 break;
3201 }
3a06bb78
TH
3202 rcu_read_unlock();
3203
9bec5c35 3204 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3205
3206 memcg_free_cache_id(kmemcg_id);
3207}
3208
3209static void memcg_free_kmem(struct mem_cgroup *memcg)
3210{
0b8f73e1
JW
3211 /* css_alloc() failed, offlining didn't happen */
3212 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3213 memcg_offline_kmem(memcg);
3214
8e0a8912
JW
3215 if (memcg->kmem_state == KMEM_ALLOCATED) {
3216 memcg_destroy_kmem_caches(memcg);
3217 static_branch_dec(&memcg_kmem_enabled_key);
3218 WARN_ON(page_counter_read(&memcg->kmem));
3219 }
8e0a8912 3220}
d6441637 3221#else
0b8f73e1 3222static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3223{
3224 return 0;
3225}
3226static void memcg_offline_kmem(struct mem_cgroup *memcg)
3227{
3228}
3229static void memcg_free_kmem(struct mem_cgroup *memcg)
3230{
3231}
84c07d11 3232#endif /* CONFIG_MEMCG_KMEM */
127424c8 3233
bbec2e15
RG
3234static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3235 unsigned long max)
d6441637 3236{
b313aeee 3237 int ret;
127424c8 3238
bbec2e15
RG
3239 mutex_lock(&memcg_max_mutex);
3240 ret = page_counter_set_max(&memcg->kmem, max);
3241 mutex_unlock(&memcg_max_mutex);
127424c8 3242 return ret;
d6441637 3243}
510fc4e1 3244
bbec2e15 3245static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3246{
3247 int ret;
3248
bbec2e15 3249 mutex_lock(&memcg_max_mutex);
d55f90bf 3250
bbec2e15 3251 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3252 if (ret)
3253 goto out;
3254
0db15298 3255 if (!memcg->tcpmem_active) {
d55f90bf
VD
3256 /*
3257 * The active flag needs to be written after the static_key
3258 * update. This is what guarantees that the socket activation
2d758073
JW
3259 * function is the last one to run. See mem_cgroup_sk_alloc()
3260 * for details, and note that we don't mark any socket as
3261 * belonging to this memcg until that flag is up.
d55f90bf
VD
3262 *
3263 * We need to do this, because static_keys will span multiple
3264 * sites, but we can't control their order. If we mark a socket
3265 * as accounted, but the accounting functions are not patched in
3266 * yet, we'll lose accounting.
3267 *
2d758073 3268 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3269 * because when this value change, the code to process it is not
3270 * patched in yet.
3271 */
3272 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3273 memcg->tcpmem_active = true;
d55f90bf
VD
3274 }
3275out:
bbec2e15 3276 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3277 return ret;
3278}
d55f90bf 3279
628f4235
KH
3280/*
3281 * The user of this function is...
3282 * RES_LIMIT.
3283 */
451af504
TH
3284static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3285 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3286{
451af504 3287 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3288 unsigned long nr_pages;
628f4235
KH
3289 int ret;
3290
451af504 3291 buf = strstrip(buf);
650c5e56 3292 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3293 if (ret)
3294 return ret;
af36f906 3295
3e32cb2e 3296 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3297 case RES_LIMIT:
4b3bde4c
BS
3298 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3299 ret = -EINVAL;
3300 break;
3301 }
3e32cb2e
JW
3302 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3303 case _MEM:
bbec2e15 3304 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3305 break;
3e32cb2e 3306 case _MEMSWAP:
bbec2e15 3307 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3308 break;
3e32cb2e 3309 case _KMEM:
bbec2e15 3310 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3311 break;
d55f90bf 3312 case _TCP:
bbec2e15 3313 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3314 break;
3e32cb2e 3315 }
296c81d8 3316 break;
3e32cb2e
JW
3317 case RES_SOFT_LIMIT:
3318 memcg->soft_limit = nr_pages;
3319 ret = 0;
628f4235
KH
3320 break;
3321 }
451af504 3322 return ret ?: nbytes;
8cdea7c0
BS
3323}
3324
6770c64e
TH
3325static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3326 size_t nbytes, loff_t off)
c84872e1 3327{
6770c64e 3328 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3329 struct page_counter *counter;
c84872e1 3330
3e32cb2e
JW
3331 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3332 case _MEM:
3333 counter = &memcg->memory;
3334 break;
3335 case _MEMSWAP:
3336 counter = &memcg->memsw;
3337 break;
3338 case _KMEM:
3339 counter = &memcg->kmem;
3340 break;
d55f90bf 3341 case _TCP:
0db15298 3342 counter = &memcg->tcpmem;
d55f90bf 3343 break;
3e32cb2e
JW
3344 default:
3345 BUG();
3346 }
af36f906 3347
3e32cb2e 3348 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3349 case RES_MAX_USAGE:
3e32cb2e 3350 page_counter_reset_watermark(counter);
29f2a4da
PE
3351 break;
3352 case RES_FAILCNT:
3e32cb2e 3353 counter->failcnt = 0;
29f2a4da 3354 break;
3e32cb2e
JW
3355 default:
3356 BUG();
29f2a4da 3357 }
f64c3f54 3358
6770c64e 3359 return nbytes;
c84872e1
PE
3360}
3361
182446d0 3362static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3363 struct cftype *cft)
3364{
182446d0 3365 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3366}
3367
02491447 3368#ifdef CONFIG_MMU
182446d0 3369static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3370 struct cftype *cft, u64 val)
3371{
182446d0 3372 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3373
1dfab5ab 3374 if (val & ~MOVE_MASK)
7dc74be0 3375 return -EINVAL;
ee5e8472 3376
7dc74be0 3377 /*
ee5e8472
GC
3378 * No kind of locking is needed in here, because ->can_attach() will
3379 * check this value once in the beginning of the process, and then carry
3380 * on with stale data. This means that changes to this value will only
3381 * affect task migrations starting after the change.
7dc74be0 3382 */
c0ff4b85 3383 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3384 return 0;
3385}
02491447 3386#else
182446d0 3387static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3388 struct cftype *cft, u64 val)
3389{
3390 return -ENOSYS;
3391}
3392#endif
7dc74be0 3393
406eb0c9 3394#ifdef CONFIG_NUMA
113b7dfd
JW
3395
3396#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3397#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3398#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3399
3400static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3401 int nid, unsigned int lru_mask)
3402{
3403 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3404 unsigned long nr = 0;
3405 enum lru_list lru;
3406
3407 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3408
3409 for_each_lru(lru) {
3410 if (!(BIT(lru) & lru_mask))
3411 continue;
205b20cc 3412 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3413 }
3414 return nr;
3415}
3416
3417static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3418 unsigned int lru_mask)
3419{
3420 unsigned long nr = 0;
3421 enum lru_list lru;
3422
3423 for_each_lru(lru) {
3424 if (!(BIT(lru) & lru_mask))
3425 continue;
205b20cc 3426 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3427 }
3428 return nr;
3429}
3430
2da8ca82 3431static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3432{
25485de6
GT
3433 struct numa_stat {
3434 const char *name;
3435 unsigned int lru_mask;
3436 };
3437
3438 static const struct numa_stat stats[] = {
3439 { "total", LRU_ALL },
3440 { "file", LRU_ALL_FILE },
3441 { "anon", LRU_ALL_ANON },
3442 { "unevictable", BIT(LRU_UNEVICTABLE) },
3443 };
3444 const struct numa_stat *stat;
406eb0c9 3445 int nid;
25485de6 3446 unsigned long nr;
aa9694bb 3447 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3448
25485de6
GT
3449 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3450 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3451 seq_printf(m, "%s=%lu", stat->name, nr);
3452 for_each_node_state(nid, N_MEMORY) {
3453 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3454 stat->lru_mask);
3455 seq_printf(m, " N%d=%lu", nid, nr);
3456 }
3457 seq_putc(m, '\n');
406eb0c9 3458 }
406eb0c9 3459
071aee13
YH
3460 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3461 struct mem_cgroup *iter;
3462
3463 nr = 0;
3464 for_each_mem_cgroup_tree(iter, memcg)
3465 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3466 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3467 for_each_node_state(nid, N_MEMORY) {
3468 nr = 0;
3469 for_each_mem_cgroup_tree(iter, memcg)
3470 nr += mem_cgroup_node_nr_lru_pages(
3471 iter, nid, stat->lru_mask);
3472 seq_printf(m, " N%d=%lu", nid, nr);
3473 }
3474 seq_putc(m, '\n');
406eb0c9 3475 }
406eb0c9 3476
406eb0c9
YH
3477 return 0;
3478}
3479#endif /* CONFIG_NUMA */
3480
df0e53d0 3481/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3482static const unsigned int memcg1_events[] = {
df0e53d0
JW
3483 PGPGIN,
3484 PGPGOUT,
3485 PGFAULT,
3486 PGMAJFAULT,
3487};
3488
3489static const char *const memcg1_event_names[] = {
3490 "pgpgin",
3491 "pgpgout",
3492 "pgfault",
3493 "pgmajfault",
3494};
3495
2da8ca82 3496static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3497{
aa9694bb 3498 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3499 unsigned long memory, memsw;
af7c4b0e
JW
3500 struct mem_cgroup *mi;
3501 unsigned int i;
871789d4 3502 struct accumulated_vmstats acc;
406eb0c9 3503
71cd3113 3504 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3505 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3506
71cd3113
JW
3507 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3508 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3509 continue;
71cd3113 3510 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3511 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3512 PAGE_SIZE);
1dd3a273 3513 }
7b854121 3514
df0e53d0
JW
3515 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3516 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3517 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3518
3519 for (i = 0; i < NR_LRU_LISTS; i++)
3520 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3521 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3522 PAGE_SIZE);
af7c4b0e 3523
14067bb3 3524 /* Hierarchical information */
3e32cb2e
JW
3525 memory = memsw = PAGE_COUNTER_MAX;
3526 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3527 memory = min(memory, mi->memory.max);
3528 memsw = min(memsw, mi->memsw.max);
fee7b548 3529 }
3e32cb2e
JW
3530 seq_printf(m, "hierarchical_memory_limit %llu\n",
3531 (u64)memory * PAGE_SIZE);
7941d214 3532 if (do_memsw_account())
3e32cb2e
JW
3533 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3534 (u64)memsw * PAGE_SIZE);
7f016ee8 3535
8de7ecc6 3536 memset(&acc, 0, sizeof(acc));
871789d4
CD
3537 acc.vmstats_size = ARRAY_SIZE(memcg1_stats);
3538 acc.vmstats_array = memcg1_stats;
3539 acc.vmevents_size = ARRAY_SIZE(memcg1_events);
3540 acc.vmevents_array = memcg1_events;
3541 accumulate_vmstats(memcg, &acc);
af7c4b0e 3542
8de7ecc6 3543 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3544 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3545 continue;
8de7ecc6 3546 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
871789d4 3547 (u64)acc.vmstats[i] * PAGE_SIZE);
af7c4b0e
JW
3548 }
3549
8de7ecc6
SB
3550 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3551 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
871789d4 3552 (u64)acc.vmevents[i]);
af7c4b0e 3553
8de7ecc6
SB
3554 for (i = 0; i < NR_LRU_LISTS; i++)
3555 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3556 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3557
7f016ee8 3558#ifdef CONFIG_DEBUG_VM
7f016ee8 3559 {
ef8f2327
MG
3560 pg_data_t *pgdat;
3561 struct mem_cgroup_per_node *mz;
89abfab1 3562 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3563 unsigned long recent_rotated[2] = {0, 0};
3564 unsigned long recent_scanned[2] = {0, 0};
3565
ef8f2327
MG
3566 for_each_online_pgdat(pgdat) {
3567 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3568 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3569
ef8f2327
MG
3570 recent_rotated[0] += rstat->recent_rotated[0];
3571 recent_rotated[1] += rstat->recent_rotated[1];
3572 recent_scanned[0] += rstat->recent_scanned[0];
3573 recent_scanned[1] += rstat->recent_scanned[1];
3574 }
78ccf5b5
JW
3575 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3576 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3577 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3578 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3579 }
3580#endif
3581
d2ceb9b7
KH
3582 return 0;
3583}
3584
182446d0
TH
3585static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3586 struct cftype *cft)
a7885eb8 3587{
182446d0 3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3589
1f4c025b 3590 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3591}
3592
182446d0
TH
3593static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3594 struct cftype *cft, u64 val)
a7885eb8 3595{
182446d0 3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3597
3dae7fec 3598 if (val > 100)
a7885eb8
KM
3599 return -EINVAL;
3600
14208b0e 3601 if (css->parent)
3dae7fec
JW
3602 memcg->swappiness = val;
3603 else
3604 vm_swappiness = val;
068b38c1 3605
a7885eb8
KM
3606 return 0;
3607}
3608
2e72b634
KS
3609static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3610{
3611 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3612 unsigned long usage;
2e72b634
KS
3613 int i;
3614
3615 rcu_read_lock();
3616 if (!swap)
2c488db2 3617 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3618 else
2c488db2 3619 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3620
3621 if (!t)
3622 goto unlock;
3623
ce00a967 3624 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3625
3626 /*
748dad36 3627 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3628 * If it's not true, a threshold was crossed after last
3629 * call of __mem_cgroup_threshold().
3630 */
5407a562 3631 i = t->current_threshold;
2e72b634
KS
3632
3633 /*
3634 * Iterate backward over array of thresholds starting from
3635 * current_threshold and check if a threshold is crossed.
3636 * If none of thresholds below usage is crossed, we read
3637 * only one element of the array here.
3638 */
3639 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3640 eventfd_signal(t->entries[i].eventfd, 1);
3641
3642 /* i = current_threshold + 1 */
3643 i++;
3644
3645 /*
3646 * Iterate forward over array of thresholds starting from
3647 * current_threshold+1 and check if a threshold is crossed.
3648 * If none of thresholds above usage is crossed, we read
3649 * only one element of the array here.
3650 */
3651 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3652 eventfd_signal(t->entries[i].eventfd, 1);
3653
3654 /* Update current_threshold */
5407a562 3655 t->current_threshold = i - 1;
2e72b634
KS
3656unlock:
3657 rcu_read_unlock();
3658}
3659
3660static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3661{
ad4ca5f4
KS
3662 while (memcg) {
3663 __mem_cgroup_threshold(memcg, false);
7941d214 3664 if (do_memsw_account())
ad4ca5f4
KS
3665 __mem_cgroup_threshold(memcg, true);
3666
3667 memcg = parent_mem_cgroup(memcg);
3668 }
2e72b634
KS
3669}
3670
3671static int compare_thresholds(const void *a, const void *b)
3672{
3673 const struct mem_cgroup_threshold *_a = a;
3674 const struct mem_cgroup_threshold *_b = b;
3675
2bff24a3
GT
3676 if (_a->threshold > _b->threshold)
3677 return 1;
3678
3679 if (_a->threshold < _b->threshold)
3680 return -1;
3681
3682 return 0;
2e72b634
KS
3683}
3684
c0ff4b85 3685static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3686{
3687 struct mem_cgroup_eventfd_list *ev;
3688
2bcf2e92
MH
3689 spin_lock(&memcg_oom_lock);
3690
c0ff4b85 3691 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3692 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3693
3694 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3695 return 0;
3696}
3697
c0ff4b85 3698static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3699{
7d74b06f
KH
3700 struct mem_cgroup *iter;
3701
c0ff4b85 3702 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3703 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3704}
3705
59b6f873 3706static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3707 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3708{
2c488db2
KS
3709 struct mem_cgroup_thresholds *thresholds;
3710 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3711 unsigned long threshold;
3712 unsigned long usage;
2c488db2 3713 int i, size, ret;
2e72b634 3714
650c5e56 3715 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3716 if (ret)
3717 return ret;
3718
3719 mutex_lock(&memcg->thresholds_lock);
2c488db2 3720
05b84301 3721 if (type == _MEM) {
2c488db2 3722 thresholds = &memcg->thresholds;
ce00a967 3723 usage = mem_cgroup_usage(memcg, false);
05b84301 3724 } else if (type == _MEMSWAP) {
2c488db2 3725 thresholds = &memcg->memsw_thresholds;
ce00a967 3726 usage = mem_cgroup_usage(memcg, true);
05b84301 3727 } else
2e72b634
KS
3728 BUG();
3729
2e72b634 3730 /* Check if a threshold crossed before adding a new one */
2c488db2 3731 if (thresholds->primary)
2e72b634
KS
3732 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3733
2c488db2 3734 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3735
3736 /* Allocate memory for new array of thresholds */
67b8046f 3737 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3738 if (!new) {
2e72b634
KS
3739 ret = -ENOMEM;
3740 goto unlock;
3741 }
2c488db2 3742 new->size = size;
2e72b634
KS
3743
3744 /* Copy thresholds (if any) to new array */
2c488db2
KS
3745 if (thresholds->primary) {
3746 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3747 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3748 }
3749
2e72b634 3750 /* Add new threshold */
2c488db2
KS
3751 new->entries[size - 1].eventfd = eventfd;
3752 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3753
3754 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3755 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3756 compare_thresholds, NULL);
3757
3758 /* Find current threshold */
2c488db2 3759 new->current_threshold = -1;
2e72b634 3760 for (i = 0; i < size; i++) {
748dad36 3761 if (new->entries[i].threshold <= usage) {
2e72b634 3762 /*
2c488db2
KS
3763 * new->current_threshold will not be used until
3764 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3765 * it here.
3766 */
2c488db2 3767 ++new->current_threshold;
748dad36
SZ
3768 } else
3769 break;
2e72b634
KS
3770 }
3771
2c488db2
KS
3772 /* Free old spare buffer and save old primary buffer as spare */
3773 kfree(thresholds->spare);
3774 thresholds->spare = thresholds->primary;
3775
3776 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3777
907860ed 3778 /* To be sure that nobody uses thresholds */
2e72b634
KS
3779 synchronize_rcu();
3780
2e72b634
KS
3781unlock:
3782 mutex_unlock(&memcg->thresholds_lock);
3783
3784 return ret;
3785}
3786
59b6f873 3787static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3788 struct eventfd_ctx *eventfd, const char *args)
3789{
59b6f873 3790 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3791}
3792
59b6f873 3793static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3794 struct eventfd_ctx *eventfd, const char *args)
3795{
59b6f873 3796 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3797}
3798
59b6f873 3799static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3800 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3801{
2c488db2
KS
3802 struct mem_cgroup_thresholds *thresholds;
3803 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3804 unsigned long usage;
2c488db2 3805 int i, j, size;
2e72b634
KS
3806
3807 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3808
3809 if (type == _MEM) {
2c488db2 3810 thresholds = &memcg->thresholds;
ce00a967 3811 usage = mem_cgroup_usage(memcg, false);
05b84301 3812 } else if (type == _MEMSWAP) {
2c488db2 3813 thresholds = &memcg->memsw_thresholds;
ce00a967 3814 usage = mem_cgroup_usage(memcg, true);
05b84301 3815 } else
2e72b634
KS
3816 BUG();
3817
371528ca
AV
3818 if (!thresholds->primary)
3819 goto unlock;
3820
2e72b634
KS
3821 /* Check if a threshold crossed before removing */
3822 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3823
3824 /* Calculate new number of threshold */
2c488db2
KS
3825 size = 0;
3826 for (i = 0; i < thresholds->primary->size; i++) {
3827 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3828 size++;
3829 }
3830
2c488db2 3831 new = thresholds->spare;
907860ed 3832
2e72b634
KS
3833 /* Set thresholds array to NULL if we don't have thresholds */
3834 if (!size) {
2c488db2
KS
3835 kfree(new);
3836 new = NULL;
907860ed 3837 goto swap_buffers;
2e72b634
KS
3838 }
3839
2c488db2 3840 new->size = size;
2e72b634
KS
3841
3842 /* Copy thresholds and find current threshold */
2c488db2
KS
3843 new->current_threshold = -1;
3844 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3845 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3846 continue;
3847
2c488db2 3848 new->entries[j] = thresholds->primary->entries[i];
748dad36 3849 if (new->entries[j].threshold <= usage) {
2e72b634 3850 /*
2c488db2 3851 * new->current_threshold will not be used
2e72b634
KS
3852 * until rcu_assign_pointer(), so it's safe to increment
3853 * it here.
3854 */
2c488db2 3855 ++new->current_threshold;
2e72b634
KS
3856 }
3857 j++;
3858 }
3859
907860ed 3860swap_buffers:
2c488db2
KS
3861 /* Swap primary and spare array */
3862 thresholds->spare = thresholds->primary;
8c757763 3863
2c488db2 3864 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3865
907860ed 3866 /* To be sure that nobody uses thresholds */
2e72b634 3867 synchronize_rcu();
6611d8d7
MC
3868
3869 /* If all events are unregistered, free the spare array */
3870 if (!new) {
3871 kfree(thresholds->spare);
3872 thresholds->spare = NULL;
3873 }
371528ca 3874unlock:
2e72b634 3875 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3876}
c1e862c1 3877
59b6f873 3878static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3879 struct eventfd_ctx *eventfd)
3880{
59b6f873 3881 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3882}
3883
59b6f873 3884static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3885 struct eventfd_ctx *eventfd)
3886{
59b6f873 3887 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3888}
3889
59b6f873 3890static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3891 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3892{
9490ff27 3893 struct mem_cgroup_eventfd_list *event;
9490ff27 3894
9490ff27
KH
3895 event = kmalloc(sizeof(*event), GFP_KERNEL);
3896 if (!event)
3897 return -ENOMEM;
3898
1af8efe9 3899 spin_lock(&memcg_oom_lock);
9490ff27
KH
3900
3901 event->eventfd = eventfd;
3902 list_add(&event->list, &memcg->oom_notify);
3903
3904 /* already in OOM ? */
c2b42d3c 3905 if (memcg->under_oom)
9490ff27 3906 eventfd_signal(eventfd, 1);
1af8efe9 3907 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3908
3909 return 0;
3910}
3911
59b6f873 3912static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3913 struct eventfd_ctx *eventfd)
9490ff27 3914{
9490ff27 3915 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3916
1af8efe9 3917 spin_lock(&memcg_oom_lock);
9490ff27 3918
c0ff4b85 3919 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3920 if (ev->eventfd == eventfd) {
3921 list_del(&ev->list);
3922 kfree(ev);
3923 }
3924 }
3925
1af8efe9 3926 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3927}
3928
2da8ca82 3929static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3930{
aa9694bb 3931 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 3932
791badbd 3933 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3934 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3935 seq_printf(sf, "oom_kill %lu\n",
3936 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3937 return 0;
3938}
3939
182446d0 3940static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3941 struct cftype *cft, u64 val)
3942{
182446d0 3943 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3944
3945 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3946 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3947 return -EINVAL;
3948
c0ff4b85 3949 memcg->oom_kill_disable = val;
4d845ebf 3950 if (!val)
c0ff4b85 3951 memcg_oom_recover(memcg);
3dae7fec 3952
3c11ecf4
KH
3953 return 0;
3954}
3955
52ebea74
TH
3956#ifdef CONFIG_CGROUP_WRITEBACK
3957
841710aa
TH
3958static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3959{
3960 return wb_domain_init(&memcg->cgwb_domain, gfp);
3961}
3962
3963static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3964{
3965 wb_domain_exit(&memcg->cgwb_domain);
3966}
3967
2529bb3a
TH
3968static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3969{
3970 wb_domain_size_changed(&memcg->cgwb_domain);
3971}
3972
841710aa
TH
3973struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3974{
3975 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3976
3977 if (!memcg->css.parent)
3978 return NULL;
3979
3980 return &memcg->cgwb_domain;
3981}
3982
0b3d6e6f
GT
3983/*
3984 * idx can be of type enum memcg_stat_item or node_stat_item.
3985 * Keep in sync with memcg_exact_page().
3986 */
3987static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3988{
871789d4 3989 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
3990 int cpu;
3991
3992 for_each_online_cpu(cpu)
871789d4 3993 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
3994 if (x < 0)
3995 x = 0;
3996 return x;
3997}
3998
c2aa723a
TH
3999/**
4000 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4001 * @wb: bdi_writeback in question
c5edf9cd
TH
4002 * @pfilepages: out parameter for number of file pages
4003 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4004 * @pdirty: out parameter for number of dirty pages
4005 * @pwriteback: out parameter for number of pages under writeback
4006 *
c5edf9cd
TH
4007 * Determine the numbers of file, headroom, dirty, and writeback pages in
4008 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4009 * is a bit more involved.
c2aa723a 4010 *
c5edf9cd
TH
4011 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4012 * headroom is calculated as the lowest headroom of itself and the
4013 * ancestors. Note that this doesn't consider the actual amount of
4014 * available memory in the system. The caller should further cap
4015 * *@pheadroom accordingly.
c2aa723a 4016 */
c5edf9cd
TH
4017void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4018 unsigned long *pheadroom, unsigned long *pdirty,
4019 unsigned long *pwriteback)
c2aa723a
TH
4020{
4021 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4022 struct mem_cgroup *parent;
c2aa723a 4023
0b3d6e6f 4024 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4025
4026 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4027 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4028 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4029 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4030 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4031
c2aa723a 4032 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4033 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4034 unsigned long used = page_counter_read(&memcg->memory);
4035
c5edf9cd 4036 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4037 memcg = parent;
4038 }
c2aa723a
TH
4039}
4040
841710aa
TH
4041#else /* CONFIG_CGROUP_WRITEBACK */
4042
4043static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4044{
4045 return 0;
4046}
4047
4048static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4049{
4050}
4051
2529bb3a
TH
4052static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4053{
4054}
4055
52ebea74
TH
4056#endif /* CONFIG_CGROUP_WRITEBACK */
4057
3bc942f3
TH
4058/*
4059 * DO NOT USE IN NEW FILES.
4060 *
4061 * "cgroup.event_control" implementation.
4062 *
4063 * This is way over-engineered. It tries to support fully configurable
4064 * events for each user. Such level of flexibility is completely
4065 * unnecessary especially in the light of the planned unified hierarchy.
4066 *
4067 * Please deprecate this and replace with something simpler if at all
4068 * possible.
4069 */
4070
79bd9814
TH
4071/*
4072 * Unregister event and free resources.
4073 *
4074 * Gets called from workqueue.
4075 */
3bc942f3 4076static void memcg_event_remove(struct work_struct *work)
79bd9814 4077{
3bc942f3
TH
4078 struct mem_cgroup_event *event =
4079 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4080 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4081
4082 remove_wait_queue(event->wqh, &event->wait);
4083
59b6f873 4084 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4085
4086 /* Notify userspace the event is going away. */
4087 eventfd_signal(event->eventfd, 1);
4088
4089 eventfd_ctx_put(event->eventfd);
4090 kfree(event);
59b6f873 4091 css_put(&memcg->css);
79bd9814
TH
4092}
4093
4094/*
a9a08845 4095 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4096 *
4097 * Called with wqh->lock held and interrupts disabled.
4098 */
ac6424b9 4099static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4100 int sync, void *key)
79bd9814 4101{
3bc942f3
TH
4102 struct mem_cgroup_event *event =
4103 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4104 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4105 __poll_t flags = key_to_poll(key);
79bd9814 4106
a9a08845 4107 if (flags & EPOLLHUP) {
79bd9814
TH
4108 /*
4109 * If the event has been detached at cgroup removal, we
4110 * can simply return knowing the other side will cleanup
4111 * for us.
4112 *
4113 * We can't race against event freeing since the other
4114 * side will require wqh->lock via remove_wait_queue(),
4115 * which we hold.
4116 */
fba94807 4117 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4118 if (!list_empty(&event->list)) {
4119 list_del_init(&event->list);
4120 /*
4121 * We are in atomic context, but cgroup_event_remove()
4122 * may sleep, so we have to call it in workqueue.
4123 */
4124 schedule_work(&event->remove);
4125 }
fba94807 4126 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4127 }
4128
4129 return 0;
4130}
4131
3bc942f3 4132static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4133 wait_queue_head_t *wqh, poll_table *pt)
4134{
3bc942f3
TH
4135 struct mem_cgroup_event *event =
4136 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4137
4138 event->wqh = wqh;
4139 add_wait_queue(wqh, &event->wait);
4140}
4141
4142/*
3bc942f3
TH
4143 * DO NOT USE IN NEW FILES.
4144 *
79bd9814
TH
4145 * Parse input and register new cgroup event handler.
4146 *
4147 * Input must be in format '<event_fd> <control_fd> <args>'.
4148 * Interpretation of args is defined by control file implementation.
4149 */
451af504
TH
4150static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4151 char *buf, size_t nbytes, loff_t off)
79bd9814 4152{
451af504 4153 struct cgroup_subsys_state *css = of_css(of);
fba94807 4154 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4155 struct mem_cgroup_event *event;
79bd9814
TH
4156 struct cgroup_subsys_state *cfile_css;
4157 unsigned int efd, cfd;
4158 struct fd efile;
4159 struct fd cfile;
fba94807 4160 const char *name;
79bd9814
TH
4161 char *endp;
4162 int ret;
4163
451af504
TH
4164 buf = strstrip(buf);
4165
4166 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4167 if (*endp != ' ')
4168 return -EINVAL;
451af504 4169 buf = endp + 1;
79bd9814 4170
451af504 4171 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4172 if ((*endp != ' ') && (*endp != '\0'))
4173 return -EINVAL;
451af504 4174 buf = endp + 1;
79bd9814
TH
4175
4176 event = kzalloc(sizeof(*event), GFP_KERNEL);
4177 if (!event)
4178 return -ENOMEM;
4179
59b6f873 4180 event->memcg = memcg;
79bd9814 4181 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4182 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4183 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4184 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4185
4186 efile = fdget(efd);
4187 if (!efile.file) {
4188 ret = -EBADF;
4189 goto out_kfree;
4190 }
4191
4192 event->eventfd = eventfd_ctx_fileget(efile.file);
4193 if (IS_ERR(event->eventfd)) {
4194 ret = PTR_ERR(event->eventfd);
4195 goto out_put_efile;
4196 }
4197
4198 cfile = fdget(cfd);
4199 if (!cfile.file) {
4200 ret = -EBADF;
4201 goto out_put_eventfd;
4202 }
4203
4204 /* the process need read permission on control file */
4205 /* AV: shouldn't we check that it's been opened for read instead? */
4206 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4207 if (ret < 0)
4208 goto out_put_cfile;
4209
fba94807
TH
4210 /*
4211 * Determine the event callbacks and set them in @event. This used
4212 * to be done via struct cftype but cgroup core no longer knows
4213 * about these events. The following is crude but the whole thing
4214 * is for compatibility anyway.
3bc942f3
TH
4215 *
4216 * DO NOT ADD NEW FILES.
fba94807 4217 */
b583043e 4218 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4219
4220 if (!strcmp(name, "memory.usage_in_bytes")) {
4221 event->register_event = mem_cgroup_usage_register_event;
4222 event->unregister_event = mem_cgroup_usage_unregister_event;
4223 } else if (!strcmp(name, "memory.oom_control")) {
4224 event->register_event = mem_cgroup_oom_register_event;
4225 event->unregister_event = mem_cgroup_oom_unregister_event;
4226 } else if (!strcmp(name, "memory.pressure_level")) {
4227 event->register_event = vmpressure_register_event;
4228 event->unregister_event = vmpressure_unregister_event;
4229 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4230 event->register_event = memsw_cgroup_usage_register_event;
4231 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4232 } else {
4233 ret = -EINVAL;
4234 goto out_put_cfile;
4235 }
4236
79bd9814 4237 /*
b5557c4c
TH
4238 * Verify @cfile should belong to @css. Also, remaining events are
4239 * automatically removed on cgroup destruction but the removal is
4240 * asynchronous, so take an extra ref on @css.
79bd9814 4241 */
b583043e 4242 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4243 &memory_cgrp_subsys);
79bd9814 4244 ret = -EINVAL;
5a17f543 4245 if (IS_ERR(cfile_css))
79bd9814 4246 goto out_put_cfile;
5a17f543
TH
4247 if (cfile_css != css) {
4248 css_put(cfile_css);
79bd9814 4249 goto out_put_cfile;
5a17f543 4250 }
79bd9814 4251
451af504 4252 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4253 if (ret)
4254 goto out_put_css;
4255
9965ed17 4256 vfs_poll(efile.file, &event->pt);
79bd9814 4257
fba94807
TH
4258 spin_lock(&memcg->event_list_lock);
4259 list_add(&event->list, &memcg->event_list);
4260 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4261
4262 fdput(cfile);
4263 fdput(efile);
4264
451af504 4265 return nbytes;
79bd9814
TH
4266
4267out_put_css:
b5557c4c 4268 css_put(css);
79bd9814
TH
4269out_put_cfile:
4270 fdput(cfile);
4271out_put_eventfd:
4272 eventfd_ctx_put(event->eventfd);
4273out_put_efile:
4274 fdput(efile);
4275out_kfree:
4276 kfree(event);
4277
4278 return ret;
4279}
4280
241994ed 4281static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4282 {
0eea1030 4283 .name = "usage_in_bytes",
8c7c6e34 4284 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4285 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4286 },
c84872e1
PE
4287 {
4288 .name = "max_usage_in_bytes",
8c7c6e34 4289 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4290 .write = mem_cgroup_reset,
791badbd 4291 .read_u64 = mem_cgroup_read_u64,
c84872e1 4292 },
8cdea7c0 4293 {
0eea1030 4294 .name = "limit_in_bytes",
8c7c6e34 4295 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4296 .write = mem_cgroup_write,
791badbd 4297 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4298 },
296c81d8
BS
4299 {
4300 .name = "soft_limit_in_bytes",
4301 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4302 .write = mem_cgroup_write,
791badbd 4303 .read_u64 = mem_cgroup_read_u64,
296c81d8 4304 },
8cdea7c0
BS
4305 {
4306 .name = "failcnt",
8c7c6e34 4307 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4308 .write = mem_cgroup_reset,
791badbd 4309 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4310 },
d2ceb9b7
KH
4311 {
4312 .name = "stat",
2da8ca82 4313 .seq_show = memcg_stat_show,
d2ceb9b7 4314 },
c1e862c1
KH
4315 {
4316 .name = "force_empty",
6770c64e 4317 .write = mem_cgroup_force_empty_write,
c1e862c1 4318 },
18f59ea7
BS
4319 {
4320 .name = "use_hierarchy",
4321 .write_u64 = mem_cgroup_hierarchy_write,
4322 .read_u64 = mem_cgroup_hierarchy_read,
4323 },
79bd9814 4324 {
3bc942f3 4325 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4326 .write = memcg_write_event_control,
7dbdb199 4327 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4328 },
a7885eb8
KM
4329 {
4330 .name = "swappiness",
4331 .read_u64 = mem_cgroup_swappiness_read,
4332 .write_u64 = mem_cgroup_swappiness_write,
4333 },
7dc74be0
DN
4334 {
4335 .name = "move_charge_at_immigrate",
4336 .read_u64 = mem_cgroup_move_charge_read,
4337 .write_u64 = mem_cgroup_move_charge_write,
4338 },
9490ff27
KH
4339 {
4340 .name = "oom_control",
2da8ca82 4341 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4342 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4343 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4344 },
70ddf637
AV
4345 {
4346 .name = "pressure_level",
70ddf637 4347 },
406eb0c9
YH
4348#ifdef CONFIG_NUMA
4349 {
4350 .name = "numa_stat",
2da8ca82 4351 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4352 },
4353#endif
510fc4e1
GC
4354 {
4355 .name = "kmem.limit_in_bytes",
4356 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4357 .write = mem_cgroup_write,
791badbd 4358 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4359 },
4360 {
4361 .name = "kmem.usage_in_bytes",
4362 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4363 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4364 },
4365 {
4366 .name = "kmem.failcnt",
4367 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4368 .write = mem_cgroup_reset,
791badbd 4369 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4370 },
4371 {
4372 .name = "kmem.max_usage_in_bytes",
4373 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4374 .write = mem_cgroup_reset,
791badbd 4375 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4376 },
5b365771 4377#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4378 {
4379 .name = "kmem.slabinfo",
bc2791f8
TH
4380 .seq_start = memcg_slab_start,
4381 .seq_next = memcg_slab_next,
4382 .seq_stop = memcg_slab_stop,
b047501c 4383 .seq_show = memcg_slab_show,
749c5415
GC
4384 },
4385#endif
d55f90bf
VD
4386 {
4387 .name = "kmem.tcp.limit_in_bytes",
4388 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4389 .write = mem_cgroup_write,
4390 .read_u64 = mem_cgroup_read_u64,
4391 },
4392 {
4393 .name = "kmem.tcp.usage_in_bytes",
4394 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4395 .read_u64 = mem_cgroup_read_u64,
4396 },
4397 {
4398 .name = "kmem.tcp.failcnt",
4399 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4400 .write = mem_cgroup_reset,
4401 .read_u64 = mem_cgroup_read_u64,
4402 },
4403 {
4404 .name = "kmem.tcp.max_usage_in_bytes",
4405 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4406 .write = mem_cgroup_reset,
4407 .read_u64 = mem_cgroup_read_u64,
4408 },
6bc10349 4409 { }, /* terminate */
af36f906 4410};
8c7c6e34 4411
73f576c0
JW
4412/*
4413 * Private memory cgroup IDR
4414 *
4415 * Swap-out records and page cache shadow entries need to store memcg
4416 * references in constrained space, so we maintain an ID space that is
4417 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4418 * memory-controlled cgroups to 64k.
4419 *
4420 * However, there usually are many references to the oflline CSS after
4421 * the cgroup has been destroyed, such as page cache or reclaimable
4422 * slab objects, that don't need to hang on to the ID. We want to keep
4423 * those dead CSS from occupying IDs, or we might quickly exhaust the
4424 * relatively small ID space and prevent the creation of new cgroups
4425 * even when there are much fewer than 64k cgroups - possibly none.
4426 *
4427 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4428 * be freed and recycled when it's no longer needed, which is usually
4429 * when the CSS is offlined.
4430 *
4431 * The only exception to that are records of swapped out tmpfs/shmem
4432 * pages that need to be attributed to live ancestors on swapin. But
4433 * those references are manageable from userspace.
4434 */
4435
4436static DEFINE_IDR(mem_cgroup_idr);
4437
7e97de0b
KT
4438static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4439{
4440 if (memcg->id.id > 0) {
4441 idr_remove(&mem_cgroup_idr, memcg->id.id);
4442 memcg->id.id = 0;
4443 }
4444}
4445
615d66c3 4446static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4447{
1c2d479a 4448 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4449}
4450
615d66c3 4451static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4452{
1c2d479a 4453 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4454 mem_cgroup_id_remove(memcg);
73f576c0
JW
4455
4456 /* Memcg ID pins CSS */
4457 css_put(&memcg->css);
4458 }
4459}
4460
615d66c3
VD
4461static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4462{
4463 mem_cgroup_id_get_many(memcg, 1);
4464}
4465
4466static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4467{
4468 mem_cgroup_id_put_many(memcg, 1);
4469}
4470
73f576c0
JW
4471/**
4472 * mem_cgroup_from_id - look up a memcg from a memcg id
4473 * @id: the memcg id to look up
4474 *
4475 * Caller must hold rcu_read_lock().
4476 */
4477struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4478{
4479 WARN_ON_ONCE(!rcu_read_lock_held());
4480 return idr_find(&mem_cgroup_idr, id);
4481}
4482
ef8f2327 4483static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4484{
4485 struct mem_cgroup_per_node *pn;
ef8f2327 4486 int tmp = node;
1ecaab2b
KH
4487 /*
4488 * This routine is called against possible nodes.
4489 * But it's BUG to call kmalloc() against offline node.
4490 *
4491 * TODO: this routine can waste much memory for nodes which will
4492 * never be onlined. It's better to use memory hotplug callback
4493 * function.
4494 */
41e3355d
KH
4495 if (!node_state(node, N_NORMAL_MEMORY))
4496 tmp = -1;
17295c88 4497 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4498 if (!pn)
4499 return 1;
1ecaab2b 4500
a983b5eb
JW
4501 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4502 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4503 kfree(pn);
4504 return 1;
4505 }
4506
ef8f2327
MG
4507 lruvec_init(&pn->lruvec);
4508 pn->usage_in_excess = 0;
4509 pn->on_tree = false;
4510 pn->memcg = memcg;
4511
54f72fe0 4512 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4513 return 0;
4514}
4515
ef8f2327 4516static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4517{
00f3ca2c
JW
4518 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4519
4eaf431f
MH
4520 if (!pn)
4521 return;
4522
a983b5eb 4523 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4524 kfree(pn);
1ecaab2b
KH
4525}
4526
40e952f9 4527static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4528{
c8b2a36f 4529 int node;
59927fb9 4530
c8b2a36f 4531 for_each_node(node)
ef8f2327 4532 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4533 free_percpu(memcg->vmstats_percpu);
8ff69e2c 4534 kfree(memcg);
59927fb9 4535}
3afe36b1 4536
40e952f9
TE
4537static void mem_cgroup_free(struct mem_cgroup *memcg)
4538{
4539 memcg_wb_domain_exit(memcg);
4540 __mem_cgroup_free(memcg);
4541}
4542
0b8f73e1 4543static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4544{
d142e3e6 4545 struct mem_cgroup *memcg;
b9726c26 4546 unsigned int size;
6d12e2d8 4547 int node;
8cdea7c0 4548
0b8f73e1
JW
4549 size = sizeof(struct mem_cgroup);
4550 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4551
4552 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4553 if (!memcg)
0b8f73e1
JW
4554 return NULL;
4555
73f576c0
JW
4556 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4557 1, MEM_CGROUP_ID_MAX,
4558 GFP_KERNEL);
4559 if (memcg->id.id < 0)
4560 goto fail;
4561
871789d4
CD
4562 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4563 if (!memcg->vmstats_percpu)
0b8f73e1 4564 goto fail;
78fb7466 4565
3ed28fa1 4566 for_each_node(node)
ef8f2327 4567 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4568 goto fail;
f64c3f54 4569
0b8f73e1
JW
4570 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4571 goto fail;
28dbc4b6 4572
f7e1cb6e 4573 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4574 memcg->last_scanned_node = MAX_NUMNODES;
4575 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4576 mutex_init(&memcg->thresholds_lock);
4577 spin_lock_init(&memcg->move_lock);
70ddf637 4578 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4579 INIT_LIST_HEAD(&memcg->event_list);
4580 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4581 memcg->socket_pressure = jiffies;
84c07d11 4582#ifdef CONFIG_MEMCG_KMEM
900a38f0 4583 memcg->kmemcg_id = -1;
900a38f0 4584#endif
52ebea74
TH
4585#ifdef CONFIG_CGROUP_WRITEBACK
4586 INIT_LIST_HEAD(&memcg->cgwb_list);
4587#endif
73f576c0 4588 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4589 return memcg;
4590fail:
7e97de0b 4591 mem_cgroup_id_remove(memcg);
40e952f9 4592 __mem_cgroup_free(memcg);
0b8f73e1 4593 return NULL;
d142e3e6
GC
4594}
4595
0b8f73e1
JW
4596static struct cgroup_subsys_state * __ref
4597mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4598{
0b8f73e1
JW
4599 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4600 struct mem_cgroup *memcg;
4601 long error = -ENOMEM;
d142e3e6 4602
0b8f73e1
JW
4603 memcg = mem_cgroup_alloc();
4604 if (!memcg)
4605 return ERR_PTR(error);
d142e3e6 4606
0b8f73e1
JW
4607 memcg->high = PAGE_COUNTER_MAX;
4608 memcg->soft_limit = PAGE_COUNTER_MAX;
4609 if (parent) {
4610 memcg->swappiness = mem_cgroup_swappiness(parent);
4611 memcg->oom_kill_disable = parent->oom_kill_disable;
4612 }
4613 if (parent && parent->use_hierarchy) {
4614 memcg->use_hierarchy = true;
3e32cb2e 4615 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4616 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4617 page_counter_init(&memcg->memsw, &parent->memsw);
4618 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4619 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4620 } else {
3e32cb2e 4621 page_counter_init(&memcg->memory, NULL);
37e84351 4622 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4623 page_counter_init(&memcg->memsw, NULL);
4624 page_counter_init(&memcg->kmem, NULL);
0db15298 4625 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4626 /*
4627 * Deeper hierachy with use_hierarchy == false doesn't make
4628 * much sense so let cgroup subsystem know about this
4629 * unfortunate state in our controller.
4630 */
d142e3e6 4631 if (parent != root_mem_cgroup)
073219e9 4632 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4633 }
d6441637 4634
0b8f73e1
JW
4635 /* The following stuff does not apply to the root */
4636 if (!parent) {
4637 root_mem_cgroup = memcg;
4638 return &memcg->css;
4639 }
4640
b313aeee 4641 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4642 if (error)
4643 goto fail;
127424c8 4644
f7e1cb6e 4645 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4646 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4647
0b8f73e1
JW
4648 return &memcg->css;
4649fail:
7e97de0b 4650 mem_cgroup_id_remove(memcg);
0b8f73e1 4651 mem_cgroup_free(memcg);
ea3a9645 4652 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4653}
4654
73f576c0 4655static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4656{
58fa2a55
VD
4657 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4658
0a4465d3
KT
4659 /*
4660 * A memcg must be visible for memcg_expand_shrinker_maps()
4661 * by the time the maps are allocated. So, we allocate maps
4662 * here, when for_each_mem_cgroup() can't skip it.
4663 */
4664 if (memcg_alloc_shrinker_maps(memcg)) {
4665 mem_cgroup_id_remove(memcg);
4666 return -ENOMEM;
4667 }
4668
73f576c0 4669 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4670 refcount_set(&memcg->id.ref, 1);
73f576c0 4671 css_get(css);
2f7dd7a4 4672 return 0;
8cdea7c0
BS
4673}
4674
eb95419b 4675static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4676{
eb95419b 4677 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4678 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4679
4680 /*
4681 * Unregister events and notify userspace.
4682 * Notify userspace about cgroup removing only after rmdir of cgroup
4683 * directory to avoid race between userspace and kernelspace.
4684 */
fba94807
TH
4685 spin_lock(&memcg->event_list_lock);
4686 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4687 list_del_init(&event->list);
4688 schedule_work(&event->remove);
4689 }
fba94807 4690 spin_unlock(&memcg->event_list_lock);
ec64f515 4691
bf8d5d52 4692 page_counter_set_min(&memcg->memory, 0);
23067153 4693 page_counter_set_low(&memcg->memory, 0);
63677c74 4694
567e9ab2 4695 memcg_offline_kmem(memcg);
52ebea74 4696 wb_memcg_offline(memcg);
73f576c0 4697
591edfb1
RG
4698 drain_all_stock(memcg);
4699
73f576c0 4700 mem_cgroup_id_put(memcg);
df878fb0
KH
4701}
4702
6df38689
VD
4703static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4704{
4705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4706
4707 invalidate_reclaim_iterators(memcg);
4708}
4709
eb95419b 4710static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4711{
eb95419b 4712 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4713
f7e1cb6e 4714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4715 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4716
0db15298 4717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4718 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4719
0b8f73e1
JW
4720 vmpressure_cleanup(&memcg->vmpressure);
4721 cancel_work_sync(&memcg->high_work);
4722 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4723 memcg_free_shrinker_maps(memcg);
d886f4e4 4724 memcg_free_kmem(memcg);
0b8f73e1 4725 mem_cgroup_free(memcg);
8cdea7c0
BS
4726}
4727
1ced953b
TH
4728/**
4729 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4730 * @css: the target css
4731 *
4732 * Reset the states of the mem_cgroup associated with @css. This is
4733 * invoked when the userland requests disabling on the default hierarchy
4734 * but the memcg is pinned through dependency. The memcg should stop
4735 * applying policies and should revert to the vanilla state as it may be
4736 * made visible again.
4737 *
4738 * The current implementation only resets the essential configurations.
4739 * This needs to be expanded to cover all the visible parts.
4740 */
4741static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4742{
4743 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4744
bbec2e15
RG
4745 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4746 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4747 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4748 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4749 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4750 page_counter_set_min(&memcg->memory, 0);
23067153 4751 page_counter_set_low(&memcg->memory, 0);
241994ed 4752 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4753 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4754 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4755}
4756
02491447 4757#ifdef CONFIG_MMU
7dc74be0 4758/* Handlers for move charge at task migration. */
854ffa8d 4759static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4760{
05b84301 4761 int ret;
9476db97 4762
d0164adc
MG
4763 /* Try a single bulk charge without reclaim first, kswapd may wake */
4764 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4765 if (!ret) {
854ffa8d 4766 mc.precharge += count;
854ffa8d
DN
4767 return ret;
4768 }
9476db97 4769
3674534b 4770 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4771 while (count--) {
3674534b 4772 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4773 if (ret)
38c5d72f 4774 return ret;
854ffa8d 4775 mc.precharge++;
9476db97 4776 cond_resched();
854ffa8d 4777 }
9476db97 4778 return 0;
4ffef5fe
DN
4779}
4780
4ffef5fe
DN
4781union mc_target {
4782 struct page *page;
02491447 4783 swp_entry_t ent;
4ffef5fe
DN
4784};
4785
4ffef5fe 4786enum mc_target_type {
8d32ff84 4787 MC_TARGET_NONE = 0,
4ffef5fe 4788 MC_TARGET_PAGE,
02491447 4789 MC_TARGET_SWAP,
c733a828 4790 MC_TARGET_DEVICE,
4ffef5fe
DN
4791};
4792
90254a65
DN
4793static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4794 unsigned long addr, pte_t ptent)
4ffef5fe 4795{
c733a828 4796 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4797
90254a65
DN
4798 if (!page || !page_mapped(page))
4799 return NULL;
4800 if (PageAnon(page)) {
1dfab5ab 4801 if (!(mc.flags & MOVE_ANON))
90254a65 4802 return NULL;
1dfab5ab
JW
4803 } else {
4804 if (!(mc.flags & MOVE_FILE))
4805 return NULL;
4806 }
90254a65
DN
4807 if (!get_page_unless_zero(page))
4808 return NULL;
4809
4810 return page;
4811}
4812
c733a828 4813#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4814static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4815 pte_t ptent, swp_entry_t *entry)
90254a65 4816{
90254a65
DN
4817 struct page *page = NULL;
4818 swp_entry_t ent = pte_to_swp_entry(ptent);
4819
1dfab5ab 4820 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4821 return NULL;
c733a828
JG
4822
4823 /*
4824 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4825 * a device and because they are not accessible by CPU they are store
4826 * as special swap entry in the CPU page table.
4827 */
4828 if (is_device_private_entry(ent)) {
4829 page = device_private_entry_to_page(ent);
4830 /*
4831 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4832 * a refcount of 1 when free (unlike normal page)
4833 */
4834 if (!page_ref_add_unless(page, 1, 1))
4835 return NULL;
4836 return page;
4837 }
4838
4b91355e
KH
4839 /*
4840 * Because lookup_swap_cache() updates some statistics counter,
4841 * we call find_get_page() with swapper_space directly.
4842 */
f6ab1f7f 4843 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4844 if (do_memsw_account())
90254a65
DN
4845 entry->val = ent.val;
4846
4847 return page;
4848}
4b91355e
KH
4849#else
4850static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4851 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4852{
4853 return NULL;
4854}
4855#endif
90254a65 4856
87946a72
DN
4857static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4858 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4859{
4860 struct page *page = NULL;
87946a72
DN
4861 struct address_space *mapping;
4862 pgoff_t pgoff;
4863
4864 if (!vma->vm_file) /* anonymous vma */
4865 return NULL;
1dfab5ab 4866 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4867 return NULL;
4868
87946a72 4869 mapping = vma->vm_file->f_mapping;
0661a336 4870 pgoff = linear_page_index(vma, addr);
87946a72
DN
4871
4872 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4873#ifdef CONFIG_SWAP
4874 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4875 if (shmem_mapping(mapping)) {
4876 page = find_get_entry(mapping, pgoff);
3159f943 4877 if (xa_is_value(page)) {
139b6a6f 4878 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4879 if (do_memsw_account())
139b6a6f 4880 *entry = swp;
f6ab1f7f
HY
4881 page = find_get_page(swap_address_space(swp),
4882 swp_offset(swp));
139b6a6f
JW
4883 }
4884 } else
4885 page = find_get_page(mapping, pgoff);
4886#else
4887 page = find_get_page(mapping, pgoff);
aa3b1895 4888#endif
87946a72
DN
4889 return page;
4890}
4891
b1b0deab
CG
4892/**
4893 * mem_cgroup_move_account - move account of the page
4894 * @page: the page
25843c2b 4895 * @compound: charge the page as compound or small page
b1b0deab
CG
4896 * @from: mem_cgroup which the page is moved from.
4897 * @to: mem_cgroup which the page is moved to. @from != @to.
4898 *
3ac808fd 4899 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4900 *
4901 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4902 * from old cgroup.
4903 */
4904static int mem_cgroup_move_account(struct page *page,
f627c2f5 4905 bool compound,
b1b0deab
CG
4906 struct mem_cgroup *from,
4907 struct mem_cgroup *to)
4908{
4909 unsigned long flags;
f627c2f5 4910 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4911 int ret;
c4843a75 4912 bool anon;
b1b0deab
CG
4913
4914 VM_BUG_ON(from == to);
4915 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4916 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4917
4918 /*
6a93ca8f 4919 * Prevent mem_cgroup_migrate() from looking at
45637bab 4920 * page->mem_cgroup of its source page while we change it.
b1b0deab 4921 */
f627c2f5 4922 ret = -EBUSY;
b1b0deab
CG
4923 if (!trylock_page(page))
4924 goto out;
4925
4926 ret = -EINVAL;
4927 if (page->mem_cgroup != from)
4928 goto out_unlock;
4929
c4843a75
GT
4930 anon = PageAnon(page);
4931
b1b0deab
CG
4932 spin_lock_irqsave(&from->move_lock, flags);
4933
c4843a75 4934 if (!anon && page_mapped(page)) {
c9019e9b
JW
4935 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4936 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4937 }
4938
c4843a75
GT
4939 /*
4940 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4941 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4942 * So mapping should be stable for dirty pages.
4943 */
4944 if (!anon && PageDirty(page)) {
4945 struct address_space *mapping = page_mapping(page);
4946
4947 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4948 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4949 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4950 }
4951 }
4952
b1b0deab 4953 if (PageWriteback(page)) {
c9019e9b
JW
4954 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4955 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4956 }
4957
4958 /*
4959 * It is safe to change page->mem_cgroup here because the page
4960 * is referenced, charged, and isolated - we can't race with
4961 * uncharging, charging, migration, or LRU putback.
4962 */
4963
4964 /* caller should have done css_get */
4965 page->mem_cgroup = to;
4966 spin_unlock_irqrestore(&from->move_lock, flags);
4967
4968 ret = 0;
4969
4970 local_irq_disable();
f627c2f5 4971 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4972 memcg_check_events(to, page);
f627c2f5 4973 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4974 memcg_check_events(from, page);
4975 local_irq_enable();
4976out_unlock:
4977 unlock_page(page);
4978out:
4979 return ret;
4980}
4981
7cf7806c
LR
4982/**
4983 * get_mctgt_type - get target type of moving charge
4984 * @vma: the vma the pte to be checked belongs
4985 * @addr: the address corresponding to the pte to be checked
4986 * @ptent: the pte to be checked
4987 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4988 *
4989 * Returns
4990 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4991 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4992 * move charge. if @target is not NULL, the page is stored in target->page
4993 * with extra refcnt got(Callers should handle it).
4994 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4995 * target for charge migration. if @target is not NULL, the entry is stored
4996 * in target->ent.
df6ad698
JG
4997 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4998 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4999 * For now we such page is charge like a regular page would be as for all
5000 * intent and purposes it is just special memory taking the place of a
5001 * regular page.
c733a828
JG
5002 *
5003 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5004 *
5005 * Called with pte lock held.
5006 */
5007
8d32ff84 5008static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5009 unsigned long addr, pte_t ptent, union mc_target *target)
5010{
5011 struct page *page = NULL;
8d32ff84 5012 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5013 swp_entry_t ent = { .val = 0 };
5014
5015 if (pte_present(ptent))
5016 page = mc_handle_present_pte(vma, addr, ptent);
5017 else if (is_swap_pte(ptent))
48406ef8 5018 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5019 else if (pte_none(ptent))
87946a72 5020 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5021
5022 if (!page && !ent.val)
8d32ff84 5023 return ret;
02491447 5024 if (page) {
02491447 5025 /*
0a31bc97 5026 * Do only loose check w/o serialization.
1306a85a 5027 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5028 * not under LRU exclusion.
02491447 5029 */
1306a85a 5030 if (page->mem_cgroup == mc.from) {
02491447 5031 ret = MC_TARGET_PAGE;
df6ad698
JG
5032 if (is_device_private_page(page) ||
5033 is_device_public_page(page))
c733a828 5034 ret = MC_TARGET_DEVICE;
02491447
DN
5035 if (target)
5036 target->page = page;
5037 }
5038 if (!ret || !target)
5039 put_page(page);
5040 }
3e14a57b
HY
5041 /*
5042 * There is a swap entry and a page doesn't exist or isn't charged.
5043 * But we cannot move a tail-page in a THP.
5044 */
5045 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5046 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5047 ret = MC_TARGET_SWAP;
5048 if (target)
5049 target->ent = ent;
4ffef5fe 5050 }
4ffef5fe
DN
5051 return ret;
5052}
5053
12724850
NH
5054#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5055/*
d6810d73
HY
5056 * We don't consider PMD mapped swapping or file mapped pages because THP does
5057 * not support them for now.
12724850
NH
5058 * Caller should make sure that pmd_trans_huge(pmd) is true.
5059 */
5060static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5061 unsigned long addr, pmd_t pmd, union mc_target *target)
5062{
5063 struct page *page = NULL;
12724850
NH
5064 enum mc_target_type ret = MC_TARGET_NONE;
5065
84c3fc4e
ZY
5066 if (unlikely(is_swap_pmd(pmd))) {
5067 VM_BUG_ON(thp_migration_supported() &&
5068 !is_pmd_migration_entry(pmd));
5069 return ret;
5070 }
12724850 5071 page = pmd_page(pmd);
309381fe 5072 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5073 if (!(mc.flags & MOVE_ANON))
12724850 5074 return ret;
1306a85a 5075 if (page->mem_cgroup == mc.from) {
12724850
NH
5076 ret = MC_TARGET_PAGE;
5077 if (target) {
5078 get_page(page);
5079 target->page = page;
5080 }
5081 }
5082 return ret;
5083}
5084#else
5085static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5086 unsigned long addr, pmd_t pmd, union mc_target *target)
5087{
5088 return MC_TARGET_NONE;
5089}
5090#endif
5091
4ffef5fe
DN
5092static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5093 unsigned long addr, unsigned long end,
5094 struct mm_walk *walk)
5095{
26bcd64a 5096 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5097 pte_t *pte;
5098 spinlock_t *ptl;
5099
b6ec57f4
KS
5100 ptl = pmd_trans_huge_lock(pmd, vma);
5101 if (ptl) {
c733a828
JG
5102 /*
5103 * Note their can not be MC_TARGET_DEVICE for now as we do not
5104 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5105 * MEMORY_DEVICE_PRIVATE but this might change.
5106 */
12724850
NH
5107 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5108 mc.precharge += HPAGE_PMD_NR;
bf929152 5109 spin_unlock(ptl);
1a5a9906 5110 return 0;
12724850 5111 }
03319327 5112
45f83cef
AA
5113 if (pmd_trans_unstable(pmd))
5114 return 0;
4ffef5fe
DN
5115 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5116 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5117 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5118 mc.precharge++; /* increment precharge temporarily */
5119 pte_unmap_unlock(pte - 1, ptl);
5120 cond_resched();
5121
7dc74be0
DN
5122 return 0;
5123}
5124
4ffef5fe
DN
5125static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5126{
5127 unsigned long precharge;
4ffef5fe 5128
26bcd64a
NH
5129 struct mm_walk mem_cgroup_count_precharge_walk = {
5130 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5131 .mm = mm,
5132 };
dfe076b0 5133 down_read(&mm->mmap_sem);
0247f3f4
JM
5134 walk_page_range(0, mm->highest_vm_end,
5135 &mem_cgroup_count_precharge_walk);
dfe076b0 5136 up_read(&mm->mmap_sem);
4ffef5fe
DN
5137
5138 precharge = mc.precharge;
5139 mc.precharge = 0;
5140
5141 return precharge;
5142}
5143
4ffef5fe
DN
5144static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5145{
dfe076b0
DN
5146 unsigned long precharge = mem_cgroup_count_precharge(mm);
5147
5148 VM_BUG_ON(mc.moving_task);
5149 mc.moving_task = current;
5150 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5151}
5152
dfe076b0
DN
5153/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5154static void __mem_cgroup_clear_mc(void)
4ffef5fe 5155{
2bd9bb20
KH
5156 struct mem_cgroup *from = mc.from;
5157 struct mem_cgroup *to = mc.to;
5158
4ffef5fe 5159 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5160 if (mc.precharge) {
00501b53 5161 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5162 mc.precharge = 0;
5163 }
5164 /*
5165 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5166 * we must uncharge here.
5167 */
5168 if (mc.moved_charge) {
00501b53 5169 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5170 mc.moved_charge = 0;
4ffef5fe 5171 }
483c30b5
DN
5172 /* we must fixup refcnts and charges */
5173 if (mc.moved_swap) {
483c30b5 5174 /* uncharge swap account from the old cgroup */
ce00a967 5175 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5176 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5177
615d66c3
VD
5178 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5179
05b84301 5180 /*
3e32cb2e
JW
5181 * we charged both to->memory and to->memsw, so we
5182 * should uncharge to->memory.
05b84301 5183 */
ce00a967 5184 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5185 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5186
615d66c3
VD
5187 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5188 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5189
483c30b5
DN
5190 mc.moved_swap = 0;
5191 }
dfe076b0
DN
5192 memcg_oom_recover(from);
5193 memcg_oom_recover(to);
5194 wake_up_all(&mc.waitq);
5195}
5196
5197static void mem_cgroup_clear_mc(void)
5198{
264a0ae1
TH
5199 struct mm_struct *mm = mc.mm;
5200
dfe076b0
DN
5201 /*
5202 * we must clear moving_task before waking up waiters at the end of
5203 * task migration.
5204 */
5205 mc.moving_task = NULL;
5206 __mem_cgroup_clear_mc();
2bd9bb20 5207 spin_lock(&mc.lock);
4ffef5fe
DN
5208 mc.from = NULL;
5209 mc.to = NULL;
264a0ae1 5210 mc.mm = NULL;
2bd9bb20 5211 spin_unlock(&mc.lock);
264a0ae1
TH
5212
5213 mmput(mm);
4ffef5fe
DN
5214}
5215
1f7dd3e5 5216static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5217{
1f7dd3e5 5218 struct cgroup_subsys_state *css;
eed67d75 5219 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5220 struct mem_cgroup *from;
4530eddb 5221 struct task_struct *leader, *p;
9f2115f9 5222 struct mm_struct *mm;
1dfab5ab 5223 unsigned long move_flags;
9f2115f9 5224 int ret = 0;
7dc74be0 5225
1f7dd3e5
TH
5226 /* charge immigration isn't supported on the default hierarchy */
5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5228 return 0;
5229
4530eddb
TH
5230 /*
5231 * Multi-process migrations only happen on the default hierarchy
5232 * where charge immigration is not used. Perform charge
5233 * immigration if @tset contains a leader and whine if there are
5234 * multiple.
5235 */
5236 p = NULL;
1f7dd3e5 5237 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5238 WARN_ON_ONCE(p);
5239 p = leader;
1f7dd3e5 5240 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5241 }
5242 if (!p)
5243 return 0;
5244
1f7dd3e5
TH
5245 /*
5246 * We are now commited to this value whatever it is. Changes in this
5247 * tunable will only affect upcoming migrations, not the current one.
5248 * So we need to save it, and keep it going.
5249 */
5250 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5251 if (!move_flags)
5252 return 0;
5253
9f2115f9
TH
5254 from = mem_cgroup_from_task(p);
5255
5256 VM_BUG_ON(from == memcg);
5257
5258 mm = get_task_mm(p);
5259 if (!mm)
5260 return 0;
5261 /* We move charges only when we move a owner of the mm */
5262 if (mm->owner == p) {
5263 VM_BUG_ON(mc.from);
5264 VM_BUG_ON(mc.to);
5265 VM_BUG_ON(mc.precharge);
5266 VM_BUG_ON(mc.moved_charge);
5267 VM_BUG_ON(mc.moved_swap);
5268
5269 spin_lock(&mc.lock);
264a0ae1 5270 mc.mm = mm;
9f2115f9
TH
5271 mc.from = from;
5272 mc.to = memcg;
5273 mc.flags = move_flags;
5274 spin_unlock(&mc.lock);
5275 /* We set mc.moving_task later */
5276
5277 ret = mem_cgroup_precharge_mc(mm);
5278 if (ret)
5279 mem_cgroup_clear_mc();
264a0ae1
TH
5280 } else {
5281 mmput(mm);
7dc74be0
DN
5282 }
5283 return ret;
5284}
5285
1f7dd3e5 5286static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5287{
4e2f245d
JW
5288 if (mc.to)
5289 mem_cgroup_clear_mc();
7dc74be0
DN
5290}
5291
4ffef5fe
DN
5292static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5293 unsigned long addr, unsigned long end,
5294 struct mm_walk *walk)
7dc74be0 5295{
4ffef5fe 5296 int ret = 0;
26bcd64a 5297 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5298 pte_t *pte;
5299 spinlock_t *ptl;
12724850
NH
5300 enum mc_target_type target_type;
5301 union mc_target target;
5302 struct page *page;
4ffef5fe 5303
b6ec57f4
KS
5304 ptl = pmd_trans_huge_lock(pmd, vma);
5305 if (ptl) {
62ade86a 5306 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5307 spin_unlock(ptl);
12724850
NH
5308 return 0;
5309 }
5310 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5311 if (target_type == MC_TARGET_PAGE) {
5312 page = target.page;
5313 if (!isolate_lru_page(page)) {
f627c2f5 5314 if (!mem_cgroup_move_account(page, true,
1306a85a 5315 mc.from, mc.to)) {
12724850
NH
5316 mc.precharge -= HPAGE_PMD_NR;
5317 mc.moved_charge += HPAGE_PMD_NR;
5318 }
5319 putback_lru_page(page);
5320 }
5321 put_page(page);
c733a828
JG
5322 } else if (target_type == MC_TARGET_DEVICE) {
5323 page = target.page;
5324 if (!mem_cgroup_move_account(page, true,
5325 mc.from, mc.to)) {
5326 mc.precharge -= HPAGE_PMD_NR;
5327 mc.moved_charge += HPAGE_PMD_NR;
5328 }
5329 put_page(page);
12724850 5330 }
bf929152 5331 spin_unlock(ptl);
1a5a9906 5332 return 0;
12724850
NH
5333 }
5334
45f83cef
AA
5335 if (pmd_trans_unstable(pmd))
5336 return 0;
4ffef5fe
DN
5337retry:
5338 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5339 for (; addr != end; addr += PAGE_SIZE) {
5340 pte_t ptent = *(pte++);
c733a828 5341 bool device = false;
02491447 5342 swp_entry_t ent;
4ffef5fe
DN
5343
5344 if (!mc.precharge)
5345 break;
5346
8d32ff84 5347 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5348 case MC_TARGET_DEVICE:
5349 device = true;
5350 /* fall through */
4ffef5fe
DN
5351 case MC_TARGET_PAGE:
5352 page = target.page;
53f9263b
KS
5353 /*
5354 * We can have a part of the split pmd here. Moving it
5355 * can be done but it would be too convoluted so simply
5356 * ignore such a partial THP and keep it in original
5357 * memcg. There should be somebody mapping the head.
5358 */
5359 if (PageTransCompound(page))
5360 goto put;
c733a828 5361 if (!device && isolate_lru_page(page))
4ffef5fe 5362 goto put;
f627c2f5
KS
5363 if (!mem_cgroup_move_account(page, false,
5364 mc.from, mc.to)) {
4ffef5fe 5365 mc.precharge--;
854ffa8d
DN
5366 /* we uncharge from mc.from later. */
5367 mc.moved_charge++;
4ffef5fe 5368 }
c733a828
JG
5369 if (!device)
5370 putback_lru_page(page);
8d32ff84 5371put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5372 put_page(page);
5373 break;
02491447
DN
5374 case MC_TARGET_SWAP:
5375 ent = target.ent;
e91cbb42 5376 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5377 mc.precharge--;
483c30b5
DN
5378 /* we fixup refcnts and charges later. */
5379 mc.moved_swap++;
5380 }
02491447 5381 break;
4ffef5fe
DN
5382 default:
5383 break;
5384 }
5385 }
5386 pte_unmap_unlock(pte - 1, ptl);
5387 cond_resched();
5388
5389 if (addr != end) {
5390 /*
5391 * We have consumed all precharges we got in can_attach().
5392 * We try charge one by one, but don't do any additional
5393 * charges to mc.to if we have failed in charge once in attach()
5394 * phase.
5395 */
854ffa8d 5396 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5397 if (!ret)
5398 goto retry;
5399 }
5400
5401 return ret;
5402}
5403
264a0ae1 5404static void mem_cgroup_move_charge(void)
4ffef5fe 5405{
26bcd64a
NH
5406 struct mm_walk mem_cgroup_move_charge_walk = {
5407 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5408 .mm = mc.mm,
26bcd64a 5409 };
4ffef5fe
DN
5410
5411 lru_add_drain_all();
312722cb 5412 /*
81f8c3a4
JW
5413 * Signal lock_page_memcg() to take the memcg's move_lock
5414 * while we're moving its pages to another memcg. Then wait
5415 * for already started RCU-only updates to finish.
312722cb
JW
5416 */
5417 atomic_inc(&mc.from->moving_account);
5418 synchronize_rcu();
dfe076b0 5419retry:
264a0ae1 5420 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5421 /*
5422 * Someone who are holding the mmap_sem might be waiting in
5423 * waitq. So we cancel all extra charges, wake up all waiters,
5424 * and retry. Because we cancel precharges, we might not be able
5425 * to move enough charges, but moving charge is a best-effort
5426 * feature anyway, so it wouldn't be a big problem.
5427 */
5428 __mem_cgroup_clear_mc();
5429 cond_resched();
5430 goto retry;
5431 }
26bcd64a
NH
5432 /*
5433 * When we have consumed all precharges and failed in doing
5434 * additional charge, the page walk just aborts.
5435 */
0247f3f4
JM
5436 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5437
264a0ae1 5438 up_read(&mc.mm->mmap_sem);
312722cb 5439 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5440}
5441
264a0ae1 5442static void mem_cgroup_move_task(void)
67e465a7 5443{
264a0ae1
TH
5444 if (mc.to) {
5445 mem_cgroup_move_charge();
a433658c 5446 mem_cgroup_clear_mc();
264a0ae1 5447 }
67e465a7 5448}
5cfb80a7 5449#else /* !CONFIG_MMU */
1f7dd3e5 5450static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5451{
5452 return 0;
5453}
1f7dd3e5 5454static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5455{
5456}
264a0ae1 5457static void mem_cgroup_move_task(void)
5cfb80a7
DN
5458{
5459}
5460#endif
67e465a7 5461
f00baae7
TH
5462/*
5463 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5464 * to verify whether we're attached to the default hierarchy on each mount
5465 * attempt.
f00baae7 5466 */
eb95419b 5467static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5468{
5469 /*
aa6ec29b 5470 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5471 * guarantees that @root doesn't have any children, so turning it
5472 * on for the root memcg is enough.
5473 */
9e10a130 5474 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5475 root_mem_cgroup->use_hierarchy = true;
5476 else
5477 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5478}
5479
677dc973
CD
5480static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5481{
5482 if (value == PAGE_COUNTER_MAX)
5483 seq_puts(m, "max\n");
5484 else
5485 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5486
5487 return 0;
5488}
5489
241994ed
JW
5490static u64 memory_current_read(struct cgroup_subsys_state *css,
5491 struct cftype *cft)
5492{
f5fc3c5d
JW
5493 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5494
5495 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5496}
5497
bf8d5d52
RG
5498static int memory_min_show(struct seq_file *m, void *v)
5499{
677dc973
CD
5500 return seq_puts_memcg_tunable(m,
5501 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5502}
5503
5504static ssize_t memory_min_write(struct kernfs_open_file *of,
5505 char *buf, size_t nbytes, loff_t off)
5506{
5507 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5508 unsigned long min;
5509 int err;
5510
5511 buf = strstrip(buf);
5512 err = page_counter_memparse(buf, "max", &min);
5513 if (err)
5514 return err;
5515
5516 page_counter_set_min(&memcg->memory, min);
5517
5518 return nbytes;
5519}
5520
241994ed
JW
5521static int memory_low_show(struct seq_file *m, void *v)
5522{
677dc973
CD
5523 return seq_puts_memcg_tunable(m,
5524 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5525}
5526
5527static ssize_t memory_low_write(struct kernfs_open_file *of,
5528 char *buf, size_t nbytes, loff_t off)
5529{
5530 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5531 unsigned long low;
5532 int err;
5533
5534 buf = strstrip(buf);
d2973697 5535 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5536 if (err)
5537 return err;
5538
23067153 5539 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5540
5541 return nbytes;
5542}
5543
5544static int memory_high_show(struct seq_file *m, void *v)
5545{
677dc973 5546 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5547}
5548
5549static ssize_t memory_high_write(struct kernfs_open_file *of,
5550 char *buf, size_t nbytes, loff_t off)
5551{
5552 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5553 unsigned long nr_pages;
241994ed
JW
5554 unsigned long high;
5555 int err;
5556
5557 buf = strstrip(buf);
d2973697 5558 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5559 if (err)
5560 return err;
5561
5562 memcg->high = high;
5563
588083bb
JW
5564 nr_pages = page_counter_read(&memcg->memory);
5565 if (nr_pages > high)
5566 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5567 GFP_KERNEL, true);
5568
2529bb3a 5569 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5570 return nbytes;
5571}
5572
5573static int memory_max_show(struct seq_file *m, void *v)
5574{
677dc973
CD
5575 return seq_puts_memcg_tunable(m,
5576 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5577}
5578
5579static ssize_t memory_max_write(struct kernfs_open_file *of,
5580 char *buf, size_t nbytes, loff_t off)
5581{
5582 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5583 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5584 bool drained = false;
241994ed
JW
5585 unsigned long max;
5586 int err;
5587
5588 buf = strstrip(buf);
d2973697 5589 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5590 if (err)
5591 return err;
5592
bbec2e15 5593 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5594
5595 for (;;) {
5596 unsigned long nr_pages = page_counter_read(&memcg->memory);
5597
5598 if (nr_pages <= max)
5599 break;
5600
5601 if (signal_pending(current)) {
5602 err = -EINTR;
5603 break;
5604 }
5605
5606 if (!drained) {
5607 drain_all_stock(memcg);
5608 drained = true;
5609 continue;
5610 }
5611
5612 if (nr_reclaims) {
5613 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5614 GFP_KERNEL, true))
5615 nr_reclaims--;
5616 continue;
5617 }
5618
e27be240 5619 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5620 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5621 break;
5622 }
241994ed 5623
2529bb3a 5624 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5625 return nbytes;
5626}
5627
5628static int memory_events_show(struct seq_file *m, void *v)
5629{
aa9694bb 5630 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5631
e27be240
JW
5632 seq_printf(m, "low %lu\n",
5633 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5634 seq_printf(m, "high %lu\n",
5635 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5636 seq_printf(m, "max %lu\n",
5637 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5638 seq_printf(m, "oom %lu\n",
5639 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5640 seq_printf(m, "oom_kill %lu\n",
5641 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5642
5643 return 0;
5644}
5645
587d9f72
JW
5646static int memory_stat_show(struct seq_file *m, void *v)
5647{
aa9694bb 5648 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
871789d4 5649 struct accumulated_vmstats acc;
587d9f72
JW
5650 int i;
5651
5652 /*
5653 * Provide statistics on the state of the memory subsystem as
5654 * well as cumulative event counters that show past behavior.
5655 *
5656 * This list is ordered following a combination of these gradients:
5657 * 1) generic big picture -> specifics and details
5658 * 2) reflecting userspace activity -> reflecting kernel heuristics
5659 *
5660 * Current memory state:
5661 */
5662
8de7ecc6 5663 memset(&acc, 0, sizeof(acc));
871789d4
CD
5664 acc.vmstats_size = MEMCG_NR_STAT;
5665 acc.vmevents_size = NR_VM_EVENT_ITEMS;
5666 accumulate_vmstats(memcg, &acc);
72b54e73 5667
587d9f72 5668 seq_printf(m, "anon %llu\n",
871789d4 5669 (u64)acc.vmstats[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5670 seq_printf(m, "file %llu\n",
871789d4 5671 (u64)acc.vmstats[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5672 seq_printf(m, "kernel_stack %llu\n",
871789d4 5673 (u64)acc.vmstats[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5674 seq_printf(m, "slab %llu\n",
871789d4
CD
5675 (u64)(acc.vmstats[NR_SLAB_RECLAIMABLE] +
5676 acc.vmstats[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5677 seq_printf(m, "sock %llu\n",
871789d4 5678 (u64)acc.vmstats[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5679
9a4caf1e 5680 seq_printf(m, "shmem %llu\n",
871789d4 5681 (u64)acc.vmstats[NR_SHMEM] * PAGE_SIZE);
587d9f72 5682 seq_printf(m, "file_mapped %llu\n",
871789d4 5683 (u64)acc.vmstats[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5684 seq_printf(m, "file_dirty %llu\n",
871789d4 5685 (u64)acc.vmstats[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5686 seq_printf(m, "file_writeback %llu\n",
871789d4 5687 (u64)acc.vmstats[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5688
1ff9e6e1
CD
5689 /*
5690 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5691 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5692 * arse because it requires migrating the work out of rmap to a place
5693 * where the page->mem_cgroup is set up and stable.
5694 */
5695 seq_printf(m, "anon_thp %llu\n",
871789d4 5696 (u64)acc.vmstats[MEMCG_RSS_HUGE] * PAGE_SIZE);
1ff9e6e1 5697
8de7ecc6
SB
5698 for (i = 0; i < NR_LRU_LISTS; i++)
5699 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5700 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5701
27ee57c9 5702 seq_printf(m, "slab_reclaimable %llu\n",
871789d4 5703 (u64)acc.vmstats[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5704 seq_printf(m, "slab_unreclaimable %llu\n",
871789d4 5705 (u64)acc.vmstats[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5706
587d9f72
JW
5707 /* Accumulated memory events */
5708
871789d4
CD
5709 seq_printf(m, "pgfault %lu\n", acc.vmevents[PGFAULT]);
5710 seq_printf(m, "pgmajfault %lu\n", acc.vmevents[PGMAJFAULT]);
587d9f72 5711
e9b257ed 5712 seq_printf(m, "workingset_refault %lu\n",
871789d4 5713 acc.vmstats[WORKINGSET_REFAULT]);
e9b257ed 5714 seq_printf(m, "workingset_activate %lu\n",
871789d4 5715 acc.vmstats[WORKINGSET_ACTIVATE]);
e9b257ed 5716 seq_printf(m, "workingset_nodereclaim %lu\n",
871789d4
CD
5717 acc.vmstats[WORKINGSET_NODERECLAIM]);
5718
5719 seq_printf(m, "pgrefill %lu\n", acc.vmevents[PGREFILL]);
5720 seq_printf(m, "pgscan %lu\n", acc.vmevents[PGSCAN_KSWAPD] +
5721 acc.vmevents[PGSCAN_DIRECT]);
5722 seq_printf(m, "pgsteal %lu\n", acc.vmevents[PGSTEAL_KSWAPD] +
5723 acc.vmevents[PGSTEAL_DIRECT]);
5724 seq_printf(m, "pgactivate %lu\n", acc.vmevents[PGACTIVATE]);
5725 seq_printf(m, "pgdeactivate %lu\n", acc.vmevents[PGDEACTIVATE]);
5726 seq_printf(m, "pglazyfree %lu\n", acc.vmevents[PGLAZYFREE]);
5727 seq_printf(m, "pglazyfreed %lu\n", acc.vmevents[PGLAZYFREED]);
2262185c 5728
1ff9e6e1 5729#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871789d4 5730 seq_printf(m, "thp_fault_alloc %lu\n", acc.vmevents[THP_FAULT_ALLOC]);
1ff9e6e1 5731 seq_printf(m, "thp_collapse_alloc %lu\n",
871789d4 5732 acc.vmevents[THP_COLLAPSE_ALLOC]);
1ff9e6e1
CD
5733#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5734
587d9f72
JW
5735 return 0;
5736}
5737
3d8b38eb
RG
5738static int memory_oom_group_show(struct seq_file *m, void *v)
5739{
aa9694bb 5740 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5741
5742 seq_printf(m, "%d\n", memcg->oom_group);
5743
5744 return 0;
5745}
5746
5747static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5748 char *buf, size_t nbytes, loff_t off)
5749{
5750 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5751 int ret, oom_group;
5752
5753 buf = strstrip(buf);
5754 if (!buf)
5755 return -EINVAL;
5756
5757 ret = kstrtoint(buf, 0, &oom_group);
5758 if (ret)
5759 return ret;
5760
5761 if (oom_group != 0 && oom_group != 1)
5762 return -EINVAL;
5763
5764 memcg->oom_group = oom_group;
5765
5766 return nbytes;
5767}
5768
241994ed
JW
5769static struct cftype memory_files[] = {
5770 {
5771 .name = "current",
f5fc3c5d 5772 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5773 .read_u64 = memory_current_read,
5774 },
bf8d5d52
RG
5775 {
5776 .name = "min",
5777 .flags = CFTYPE_NOT_ON_ROOT,
5778 .seq_show = memory_min_show,
5779 .write = memory_min_write,
5780 },
241994ed
JW
5781 {
5782 .name = "low",
5783 .flags = CFTYPE_NOT_ON_ROOT,
5784 .seq_show = memory_low_show,
5785 .write = memory_low_write,
5786 },
5787 {
5788 .name = "high",
5789 .flags = CFTYPE_NOT_ON_ROOT,
5790 .seq_show = memory_high_show,
5791 .write = memory_high_write,
5792 },
5793 {
5794 .name = "max",
5795 .flags = CFTYPE_NOT_ON_ROOT,
5796 .seq_show = memory_max_show,
5797 .write = memory_max_write,
5798 },
5799 {
5800 .name = "events",
5801 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5802 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5803 .seq_show = memory_events_show,
5804 },
587d9f72
JW
5805 {
5806 .name = "stat",
5807 .flags = CFTYPE_NOT_ON_ROOT,
5808 .seq_show = memory_stat_show,
5809 },
3d8b38eb
RG
5810 {
5811 .name = "oom.group",
5812 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5813 .seq_show = memory_oom_group_show,
5814 .write = memory_oom_group_write,
5815 },
241994ed
JW
5816 { } /* terminate */
5817};
5818
073219e9 5819struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5820 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5821 .css_online = mem_cgroup_css_online,
92fb9748 5822 .css_offline = mem_cgroup_css_offline,
6df38689 5823 .css_released = mem_cgroup_css_released,
92fb9748 5824 .css_free = mem_cgroup_css_free,
1ced953b 5825 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5826 .can_attach = mem_cgroup_can_attach,
5827 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5828 .post_attach = mem_cgroup_move_task,
f00baae7 5829 .bind = mem_cgroup_bind,
241994ed
JW
5830 .dfl_cftypes = memory_files,
5831 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5832 .early_init = 0,
8cdea7c0 5833};
c077719b 5834
241994ed 5835/**
bf8d5d52 5836 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5837 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5838 * @memcg: the memory cgroup to check
5839 *
23067153
RG
5840 * WARNING: This function is not stateless! It can only be used as part
5841 * of a top-down tree iteration, not for isolated queries.
34c81057 5842 *
bf8d5d52
RG
5843 * Returns one of the following:
5844 * MEMCG_PROT_NONE: cgroup memory is not protected
5845 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5846 * an unprotected supply of reclaimable memory from other cgroups.
5847 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5848 *
bf8d5d52 5849 * @root is exclusive; it is never protected when looked at directly
34c81057 5850 *
bf8d5d52
RG
5851 * To provide a proper hierarchical behavior, effective memory.min/low values
5852 * are used. Below is the description of how effective memory.low is calculated.
5853 * Effective memory.min values is calculated in the same way.
34c81057 5854 *
23067153
RG
5855 * Effective memory.low is always equal or less than the original memory.low.
5856 * If there is no memory.low overcommittment (which is always true for
5857 * top-level memory cgroups), these two values are equal.
5858 * Otherwise, it's a part of parent's effective memory.low,
5859 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5860 * memory.low usages, where memory.low usage is the size of actually
5861 * protected memory.
34c81057 5862 *
23067153
RG
5863 * low_usage
5864 * elow = min( memory.low, parent->elow * ------------------ ),
5865 * siblings_low_usage
34c81057 5866 *
23067153
RG
5867 * | memory.current, if memory.current < memory.low
5868 * low_usage = |
82ede7ee 5869 * | 0, otherwise.
34c81057 5870 *
23067153
RG
5871 *
5872 * Such definition of the effective memory.low provides the expected
5873 * hierarchical behavior: parent's memory.low value is limiting
5874 * children, unprotected memory is reclaimed first and cgroups,
5875 * which are not using their guarantee do not affect actual memory
5876 * distribution.
5877 *
5878 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5879 *
5880 * A A/memory.low = 2G, A/memory.current = 6G
5881 * //\\
5882 * BC DE B/memory.low = 3G B/memory.current = 2G
5883 * C/memory.low = 1G C/memory.current = 2G
5884 * D/memory.low = 0 D/memory.current = 2G
5885 * E/memory.low = 10G E/memory.current = 0
5886 *
5887 * and the memory pressure is applied, the following memory distribution
5888 * is expected (approximately):
5889 *
5890 * A/memory.current = 2G
5891 *
5892 * B/memory.current = 1.3G
5893 * C/memory.current = 0.6G
5894 * D/memory.current = 0
5895 * E/memory.current = 0
5896 *
5897 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5898 * (see propagate_protected_usage()), as well as recursive calculation of
5899 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5900 * path for each memory cgroup top-down from the reclaim,
5901 * it's possible to optimize this part, and save calculated elow
5902 * for next usage. This part is intentionally racy, but it's ok,
5903 * as memory.low is a best-effort mechanism.
241994ed 5904 */
bf8d5d52
RG
5905enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5906 struct mem_cgroup *memcg)
241994ed 5907{
23067153 5908 struct mem_cgroup *parent;
bf8d5d52
RG
5909 unsigned long emin, parent_emin;
5910 unsigned long elow, parent_elow;
5911 unsigned long usage;
23067153 5912
241994ed 5913 if (mem_cgroup_disabled())
bf8d5d52 5914 return MEMCG_PROT_NONE;
241994ed 5915
34c81057
SC
5916 if (!root)
5917 root = root_mem_cgroup;
5918 if (memcg == root)
bf8d5d52 5919 return MEMCG_PROT_NONE;
241994ed 5920
23067153 5921 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5922 if (!usage)
5923 return MEMCG_PROT_NONE;
5924
5925 emin = memcg->memory.min;
5926 elow = memcg->memory.low;
34c81057 5927
bf8d5d52 5928 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5929 /* No parent means a non-hierarchical mode on v1 memcg */
5930 if (!parent)
5931 return MEMCG_PROT_NONE;
5932
23067153
RG
5933 if (parent == root)
5934 goto exit;
5935
bf8d5d52
RG
5936 parent_emin = READ_ONCE(parent->memory.emin);
5937 emin = min(emin, parent_emin);
5938 if (emin && parent_emin) {
5939 unsigned long min_usage, siblings_min_usage;
5940
5941 min_usage = min(usage, memcg->memory.min);
5942 siblings_min_usage = atomic_long_read(
5943 &parent->memory.children_min_usage);
5944
5945 if (min_usage && siblings_min_usage)
5946 emin = min(emin, parent_emin * min_usage /
5947 siblings_min_usage);
5948 }
5949
23067153
RG
5950 parent_elow = READ_ONCE(parent->memory.elow);
5951 elow = min(elow, parent_elow);
bf8d5d52
RG
5952 if (elow && parent_elow) {
5953 unsigned long low_usage, siblings_low_usage;
23067153 5954
bf8d5d52
RG
5955 low_usage = min(usage, memcg->memory.low);
5956 siblings_low_usage = atomic_long_read(
5957 &parent->memory.children_low_usage);
23067153 5958
bf8d5d52
RG
5959 if (low_usage && siblings_low_usage)
5960 elow = min(elow, parent_elow * low_usage /
5961 siblings_low_usage);
5962 }
23067153 5963
23067153 5964exit:
bf8d5d52 5965 memcg->memory.emin = emin;
23067153 5966 memcg->memory.elow = elow;
bf8d5d52
RG
5967
5968 if (usage <= emin)
5969 return MEMCG_PROT_MIN;
5970 else if (usage <= elow)
5971 return MEMCG_PROT_LOW;
5972 else
5973 return MEMCG_PROT_NONE;
241994ed
JW
5974}
5975
00501b53
JW
5976/**
5977 * mem_cgroup_try_charge - try charging a page
5978 * @page: page to charge
5979 * @mm: mm context of the victim
5980 * @gfp_mask: reclaim mode
5981 * @memcgp: charged memcg return
25843c2b 5982 * @compound: charge the page as compound or small page
00501b53
JW
5983 *
5984 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5985 * pages according to @gfp_mask if necessary.
5986 *
5987 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5988 * Otherwise, an error code is returned.
5989 *
5990 * After page->mapping has been set up, the caller must finalize the
5991 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5992 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5993 */
5994int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5995 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5996 bool compound)
00501b53
JW
5997{
5998 struct mem_cgroup *memcg = NULL;
f627c2f5 5999 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6000 int ret = 0;
6001
6002 if (mem_cgroup_disabled())
6003 goto out;
6004
6005 if (PageSwapCache(page)) {
00501b53
JW
6006 /*
6007 * Every swap fault against a single page tries to charge the
6008 * page, bail as early as possible. shmem_unuse() encounters
6009 * already charged pages, too. The USED bit is protected by
6010 * the page lock, which serializes swap cache removal, which
6011 * in turn serializes uncharging.
6012 */
e993d905 6013 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6014 if (compound_head(page)->mem_cgroup)
00501b53 6015 goto out;
e993d905 6016
37e84351 6017 if (do_swap_account) {
e993d905
VD
6018 swp_entry_t ent = { .val = page_private(page), };
6019 unsigned short id = lookup_swap_cgroup_id(ent);
6020
6021 rcu_read_lock();
6022 memcg = mem_cgroup_from_id(id);
6023 if (memcg && !css_tryget_online(&memcg->css))
6024 memcg = NULL;
6025 rcu_read_unlock();
6026 }
00501b53
JW
6027 }
6028
00501b53
JW
6029 if (!memcg)
6030 memcg = get_mem_cgroup_from_mm(mm);
6031
6032 ret = try_charge(memcg, gfp_mask, nr_pages);
6033
6034 css_put(&memcg->css);
00501b53
JW
6035out:
6036 *memcgp = memcg;
6037 return ret;
6038}
6039
2cf85583
TH
6040int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6041 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6042 bool compound)
6043{
6044 struct mem_cgroup *memcg;
6045 int ret;
6046
6047 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6048 memcg = *memcgp;
6049 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6050 return ret;
6051}
6052
00501b53
JW
6053/**
6054 * mem_cgroup_commit_charge - commit a page charge
6055 * @page: page to charge
6056 * @memcg: memcg to charge the page to
6057 * @lrucare: page might be on LRU already
25843c2b 6058 * @compound: charge the page as compound or small page
00501b53
JW
6059 *
6060 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6061 * after page->mapping has been set up. This must happen atomically
6062 * as part of the page instantiation, i.e. under the page table lock
6063 * for anonymous pages, under the page lock for page and swap cache.
6064 *
6065 * In addition, the page must not be on the LRU during the commit, to
6066 * prevent racing with task migration. If it might be, use @lrucare.
6067 *
6068 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6069 */
6070void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6071 bool lrucare, bool compound)
00501b53 6072{
f627c2f5 6073 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6074
6075 VM_BUG_ON_PAGE(!page->mapping, page);
6076 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6077
6078 if (mem_cgroup_disabled())
6079 return;
6080 /*
6081 * Swap faults will attempt to charge the same page multiple
6082 * times. But reuse_swap_page() might have removed the page
6083 * from swapcache already, so we can't check PageSwapCache().
6084 */
6085 if (!memcg)
6086 return;
6087
6abb5a86
JW
6088 commit_charge(page, memcg, lrucare);
6089
6abb5a86 6090 local_irq_disable();
f627c2f5 6091 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6092 memcg_check_events(memcg, page);
6093 local_irq_enable();
00501b53 6094
7941d214 6095 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6096 swp_entry_t entry = { .val = page_private(page) };
6097 /*
6098 * The swap entry might not get freed for a long time,
6099 * let's not wait for it. The page already received a
6100 * memory+swap charge, drop the swap entry duplicate.
6101 */
38d8b4e6 6102 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6103 }
6104}
6105
6106/**
6107 * mem_cgroup_cancel_charge - cancel a page charge
6108 * @page: page to charge
6109 * @memcg: memcg to charge the page to
25843c2b 6110 * @compound: charge the page as compound or small page
00501b53
JW
6111 *
6112 * Cancel a charge transaction started by mem_cgroup_try_charge().
6113 */
f627c2f5
KS
6114void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6115 bool compound)
00501b53 6116{
f627c2f5 6117 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6118
6119 if (mem_cgroup_disabled())
6120 return;
6121 /*
6122 * Swap faults will attempt to charge the same page multiple
6123 * times. But reuse_swap_page() might have removed the page
6124 * from swapcache already, so we can't check PageSwapCache().
6125 */
6126 if (!memcg)
6127 return;
6128
00501b53
JW
6129 cancel_charge(memcg, nr_pages);
6130}
6131
a9d5adee
JG
6132struct uncharge_gather {
6133 struct mem_cgroup *memcg;
6134 unsigned long pgpgout;
6135 unsigned long nr_anon;
6136 unsigned long nr_file;
6137 unsigned long nr_kmem;
6138 unsigned long nr_huge;
6139 unsigned long nr_shmem;
6140 struct page *dummy_page;
6141};
6142
6143static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6144{
a9d5adee
JG
6145 memset(ug, 0, sizeof(*ug));
6146}
6147
6148static void uncharge_batch(const struct uncharge_gather *ug)
6149{
6150 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6151 unsigned long flags;
6152
a9d5adee
JG
6153 if (!mem_cgroup_is_root(ug->memcg)) {
6154 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6155 if (do_memsw_account())
a9d5adee
JG
6156 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6157 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6158 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6159 memcg_oom_recover(ug->memcg);
ce00a967 6160 }
747db954
JW
6161
6162 local_irq_save(flags);
c9019e9b
JW
6163 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6164 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6165 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6166 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6167 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6168 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6169 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6170 local_irq_restore(flags);
e8ea14cc 6171
a9d5adee
JG
6172 if (!mem_cgroup_is_root(ug->memcg))
6173 css_put_many(&ug->memcg->css, nr_pages);
6174}
6175
6176static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6177{
6178 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6179 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6180 !PageHWPoison(page) , page);
a9d5adee
JG
6181
6182 if (!page->mem_cgroup)
6183 return;
6184
6185 /*
6186 * Nobody should be changing or seriously looking at
6187 * page->mem_cgroup at this point, we have fully
6188 * exclusive access to the page.
6189 */
6190
6191 if (ug->memcg != page->mem_cgroup) {
6192 if (ug->memcg) {
6193 uncharge_batch(ug);
6194 uncharge_gather_clear(ug);
6195 }
6196 ug->memcg = page->mem_cgroup;
6197 }
6198
6199 if (!PageKmemcg(page)) {
6200 unsigned int nr_pages = 1;
6201
6202 if (PageTransHuge(page)) {
6203 nr_pages <<= compound_order(page);
6204 ug->nr_huge += nr_pages;
6205 }
6206 if (PageAnon(page))
6207 ug->nr_anon += nr_pages;
6208 else {
6209 ug->nr_file += nr_pages;
6210 if (PageSwapBacked(page))
6211 ug->nr_shmem += nr_pages;
6212 }
6213 ug->pgpgout++;
6214 } else {
6215 ug->nr_kmem += 1 << compound_order(page);
6216 __ClearPageKmemcg(page);
6217 }
6218
6219 ug->dummy_page = page;
6220 page->mem_cgroup = NULL;
747db954
JW
6221}
6222
6223static void uncharge_list(struct list_head *page_list)
6224{
a9d5adee 6225 struct uncharge_gather ug;
747db954 6226 struct list_head *next;
a9d5adee
JG
6227
6228 uncharge_gather_clear(&ug);
747db954 6229
8b592656
JW
6230 /*
6231 * Note that the list can be a single page->lru; hence the
6232 * do-while loop instead of a simple list_for_each_entry().
6233 */
747db954
JW
6234 next = page_list->next;
6235 do {
a9d5adee
JG
6236 struct page *page;
6237
747db954
JW
6238 page = list_entry(next, struct page, lru);
6239 next = page->lru.next;
6240
a9d5adee 6241 uncharge_page(page, &ug);
747db954
JW
6242 } while (next != page_list);
6243
a9d5adee
JG
6244 if (ug.memcg)
6245 uncharge_batch(&ug);
747db954
JW
6246}
6247
0a31bc97
JW
6248/**
6249 * mem_cgroup_uncharge - uncharge a page
6250 * @page: page to uncharge
6251 *
6252 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6253 * mem_cgroup_commit_charge().
6254 */
6255void mem_cgroup_uncharge(struct page *page)
6256{
a9d5adee
JG
6257 struct uncharge_gather ug;
6258
0a31bc97
JW
6259 if (mem_cgroup_disabled())
6260 return;
6261
747db954 6262 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6263 if (!page->mem_cgroup)
0a31bc97
JW
6264 return;
6265
a9d5adee
JG
6266 uncharge_gather_clear(&ug);
6267 uncharge_page(page, &ug);
6268 uncharge_batch(&ug);
747db954 6269}
0a31bc97 6270
747db954
JW
6271/**
6272 * mem_cgroup_uncharge_list - uncharge a list of page
6273 * @page_list: list of pages to uncharge
6274 *
6275 * Uncharge a list of pages previously charged with
6276 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6277 */
6278void mem_cgroup_uncharge_list(struct list_head *page_list)
6279{
6280 if (mem_cgroup_disabled())
6281 return;
0a31bc97 6282
747db954
JW
6283 if (!list_empty(page_list))
6284 uncharge_list(page_list);
0a31bc97
JW
6285}
6286
6287/**
6a93ca8f
JW
6288 * mem_cgroup_migrate - charge a page's replacement
6289 * @oldpage: currently circulating page
6290 * @newpage: replacement page
0a31bc97 6291 *
6a93ca8f
JW
6292 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6293 * be uncharged upon free.
0a31bc97
JW
6294 *
6295 * Both pages must be locked, @newpage->mapping must be set up.
6296 */
6a93ca8f 6297void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6298{
29833315 6299 struct mem_cgroup *memcg;
44b7a8d3
JW
6300 unsigned int nr_pages;
6301 bool compound;
d93c4130 6302 unsigned long flags;
0a31bc97
JW
6303
6304 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6305 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6306 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6307 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6308 newpage);
0a31bc97
JW
6309
6310 if (mem_cgroup_disabled())
6311 return;
6312
6313 /* Page cache replacement: new page already charged? */
1306a85a 6314 if (newpage->mem_cgroup)
0a31bc97
JW
6315 return;
6316
45637bab 6317 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6318 memcg = oldpage->mem_cgroup;
29833315 6319 if (!memcg)
0a31bc97
JW
6320 return;
6321
44b7a8d3
JW
6322 /* Force-charge the new page. The old one will be freed soon */
6323 compound = PageTransHuge(newpage);
6324 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6325
6326 page_counter_charge(&memcg->memory, nr_pages);
6327 if (do_memsw_account())
6328 page_counter_charge(&memcg->memsw, nr_pages);
6329 css_get_many(&memcg->css, nr_pages);
0a31bc97 6330
9cf7666a 6331 commit_charge(newpage, memcg, false);
44b7a8d3 6332
d93c4130 6333 local_irq_save(flags);
44b7a8d3
JW
6334 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6335 memcg_check_events(memcg, newpage);
d93c4130 6336 local_irq_restore(flags);
0a31bc97
JW
6337}
6338
ef12947c 6339DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6340EXPORT_SYMBOL(memcg_sockets_enabled_key);
6341
2d758073 6342void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6343{
6344 struct mem_cgroup *memcg;
6345
2d758073
JW
6346 if (!mem_cgroup_sockets_enabled)
6347 return;
6348
edbe69ef
RG
6349 /*
6350 * Socket cloning can throw us here with sk_memcg already
6351 * filled. It won't however, necessarily happen from
6352 * process context. So the test for root memcg given
6353 * the current task's memcg won't help us in this case.
6354 *
6355 * Respecting the original socket's memcg is a better
6356 * decision in this case.
6357 */
6358 if (sk->sk_memcg) {
6359 css_get(&sk->sk_memcg->css);
6360 return;
6361 }
6362
11092087
JW
6363 rcu_read_lock();
6364 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6365 if (memcg == root_mem_cgroup)
6366 goto out;
0db15298 6367 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6368 goto out;
f7e1cb6e 6369 if (css_tryget_online(&memcg->css))
11092087 6370 sk->sk_memcg = memcg;
f7e1cb6e 6371out:
11092087
JW
6372 rcu_read_unlock();
6373}
11092087 6374
2d758073 6375void mem_cgroup_sk_free(struct sock *sk)
11092087 6376{
2d758073
JW
6377 if (sk->sk_memcg)
6378 css_put(&sk->sk_memcg->css);
11092087
JW
6379}
6380
6381/**
6382 * mem_cgroup_charge_skmem - charge socket memory
6383 * @memcg: memcg to charge
6384 * @nr_pages: number of pages to charge
6385 *
6386 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6387 * @memcg's configured limit, %false if the charge had to be forced.
6388 */
6389bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6390{
f7e1cb6e 6391 gfp_t gfp_mask = GFP_KERNEL;
11092087 6392
f7e1cb6e 6393 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6394 struct page_counter *fail;
f7e1cb6e 6395
0db15298
JW
6396 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6397 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6398 return true;
6399 }
0db15298
JW
6400 page_counter_charge(&memcg->tcpmem, nr_pages);
6401 memcg->tcpmem_pressure = 1;
f7e1cb6e 6402 return false;
11092087 6403 }
d886f4e4 6404
f7e1cb6e
JW
6405 /* Don't block in the packet receive path */
6406 if (in_softirq())
6407 gfp_mask = GFP_NOWAIT;
6408
c9019e9b 6409 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6410
f7e1cb6e
JW
6411 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6412 return true;
6413
6414 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6415 return false;
6416}
6417
6418/**
6419 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6420 * @memcg: memcg to uncharge
6421 * @nr_pages: number of pages to uncharge
11092087
JW
6422 */
6423void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6424{
f7e1cb6e 6425 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6426 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6427 return;
6428 }
d886f4e4 6429
c9019e9b 6430 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6431
475d0487 6432 refill_stock(memcg, nr_pages);
11092087
JW
6433}
6434
f7e1cb6e
JW
6435static int __init cgroup_memory(char *s)
6436{
6437 char *token;
6438
6439 while ((token = strsep(&s, ",")) != NULL) {
6440 if (!*token)
6441 continue;
6442 if (!strcmp(token, "nosocket"))
6443 cgroup_memory_nosocket = true;
04823c83
VD
6444 if (!strcmp(token, "nokmem"))
6445 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6446 }
6447 return 0;
6448}
6449__setup("cgroup.memory=", cgroup_memory);
11092087 6450
2d11085e 6451/*
1081312f
MH
6452 * subsys_initcall() for memory controller.
6453 *
308167fc
SAS
6454 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6455 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6456 * basically everything that doesn't depend on a specific mem_cgroup structure
6457 * should be initialized from here.
2d11085e
MH
6458 */
6459static int __init mem_cgroup_init(void)
6460{
95a045f6
JW
6461 int cpu, node;
6462
84c07d11 6463#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6464 /*
6465 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6466 * so use a workqueue with limited concurrency to avoid stalling
6467 * all worker threads in case lots of cgroups are created and
6468 * destroyed simultaneously.
13583c3d 6469 */
17cc4dfe
TH
6470 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6471 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6472#endif
6473
308167fc
SAS
6474 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6475 memcg_hotplug_cpu_dead);
95a045f6
JW
6476
6477 for_each_possible_cpu(cpu)
6478 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6479 drain_local_stock);
6480
6481 for_each_node(node) {
6482 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6483
6484 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6485 node_online(node) ? node : NUMA_NO_NODE);
6486
ef8f2327 6487 rtpn->rb_root = RB_ROOT;
fa90b2fd 6488 rtpn->rb_rightmost = NULL;
ef8f2327 6489 spin_lock_init(&rtpn->lock);
95a045f6
JW
6490 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6491 }
6492
2d11085e
MH
6493 return 0;
6494}
6495subsys_initcall(mem_cgroup_init);
21afa38e
JW
6496
6497#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6498static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6499{
1c2d479a 6500 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6501 /*
6502 * The root cgroup cannot be destroyed, so it's refcount must
6503 * always be >= 1.
6504 */
6505 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6506 VM_BUG_ON(1);
6507 break;
6508 }
6509 memcg = parent_mem_cgroup(memcg);
6510 if (!memcg)
6511 memcg = root_mem_cgroup;
6512 }
6513 return memcg;
6514}
6515
21afa38e
JW
6516/**
6517 * mem_cgroup_swapout - transfer a memsw charge to swap
6518 * @page: page whose memsw charge to transfer
6519 * @entry: swap entry to move the charge to
6520 *
6521 * Transfer the memsw charge of @page to @entry.
6522 */
6523void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6524{
1f47b61f 6525 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6526 unsigned int nr_entries;
21afa38e
JW
6527 unsigned short oldid;
6528
6529 VM_BUG_ON_PAGE(PageLRU(page), page);
6530 VM_BUG_ON_PAGE(page_count(page), page);
6531
7941d214 6532 if (!do_memsw_account())
21afa38e
JW
6533 return;
6534
6535 memcg = page->mem_cgroup;
6536
6537 /* Readahead page, never charged */
6538 if (!memcg)
6539 return;
6540
1f47b61f
VD
6541 /*
6542 * In case the memcg owning these pages has been offlined and doesn't
6543 * have an ID allocated to it anymore, charge the closest online
6544 * ancestor for the swap instead and transfer the memory+swap charge.
6545 */
6546 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6547 nr_entries = hpage_nr_pages(page);
6548 /* Get references for the tail pages, too */
6549 if (nr_entries > 1)
6550 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6551 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6552 nr_entries);
21afa38e 6553 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6554 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6555
6556 page->mem_cgroup = NULL;
6557
6558 if (!mem_cgroup_is_root(memcg))
d6810d73 6559 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6560
1f47b61f
VD
6561 if (memcg != swap_memcg) {
6562 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6563 page_counter_charge(&swap_memcg->memsw, nr_entries);
6564 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6565 }
6566
ce9ce665
SAS
6567 /*
6568 * Interrupts should be disabled here because the caller holds the
b93b0163 6569 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6570 * important here to have the interrupts disabled because it is the
b93b0163 6571 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6572 */
6573 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6574 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6575 -nr_entries);
21afa38e 6576 memcg_check_events(memcg, page);
73f576c0
JW
6577
6578 if (!mem_cgroup_is_root(memcg))
d08afa14 6579 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6580}
6581
38d8b4e6
HY
6582/**
6583 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6584 * @page: page being added to swap
6585 * @entry: swap entry to charge
6586 *
38d8b4e6 6587 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6588 *
6589 * Returns 0 on success, -ENOMEM on failure.
6590 */
6591int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6592{
38d8b4e6 6593 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6594 struct page_counter *counter;
38d8b4e6 6595 struct mem_cgroup *memcg;
37e84351
VD
6596 unsigned short oldid;
6597
6598 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6599 return 0;
6600
6601 memcg = page->mem_cgroup;
6602
6603 /* Readahead page, never charged */
6604 if (!memcg)
6605 return 0;
6606
f3a53a3a
TH
6607 if (!entry.val) {
6608 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6609 return 0;
f3a53a3a 6610 }
bb98f2c5 6611
1f47b61f
VD
6612 memcg = mem_cgroup_id_get_online(memcg);
6613
37e84351 6614 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6615 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6616 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6617 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6618 mem_cgroup_id_put(memcg);
37e84351 6619 return -ENOMEM;
1f47b61f 6620 }
37e84351 6621
38d8b4e6
HY
6622 /* Get references for the tail pages, too */
6623 if (nr_pages > 1)
6624 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6625 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6626 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6627 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6628
37e84351
VD
6629 return 0;
6630}
6631
21afa38e 6632/**
38d8b4e6 6633 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6634 * @entry: swap entry to uncharge
38d8b4e6 6635 * @nr_pages: the amount of swap space to uncharge
21afa38e 6636 */
38d8b4e6 6637void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6638{
6639 struct mem_cgroup *memcg;
6640 unsigned short id;
6641
37e84351 6642 if (!do_swap_account)
21afa38e
JW
6643 return;
6644
38d8b4e6 6645 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6646 rcu_read_lock();
adbe427b 6647 memcg = mem_cgroup_from_id(id);
21afa38e 6648 if (memcg) {
37e84351
VD
6649 if (!mem_cgroup_is_root(memcg)) {
6650 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6651 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6652 else
38d8b4e6 6653 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6654 }
c9019e9b 6655 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6656 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6657 }
6658 rcu_read_unlock();
6659}
6660
d8b38438
VD
6661long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6662{
6663 long nr_swap_pages = get_nr_swap_pages();
6664
6665 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6666 return nr_swap_pages;
6667 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6668 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6669 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6670 page_counter_read(&memcg->swap));
6671 return nr_swap_pages;
6672}
6673
5ccc5aba
VD
6674bool mem_cgroup_swap_full(struct page *page)
6675{
6676 struct mem_cgroup *memcg;
6677
6678 VM_BUG_ON_PAGE(!PageLocked(page), page);
6679
6680 if (vm_swap_full())
6681 return true;
6682 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6683 return false;
6684
6685 memcg = page->mem_cgroup;
6686 if (!memcg)
6687 return false;
6688
6689 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6690 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6691 return true;
6692
6693 return false;
6694}
6695
21afa38e
JW
6696/* for remember boot option*/
6697#ifdef CONFIG_MEMCG_SWAP_ENABLED
6698static int really_do_swap_account __initdata = 1;
6699#else
6700static int really_do_swap_account __initdata;
6701#endif
6702
6703static int __init enable_swap_account(char *s)
6704{
6705 if (!strcmp(s, "1"))
6706 really_do_swap_account = 1;
6707 else if (!strcmp(s, "0"))
6708 really_do_swap_account = 0;
6709 return 1;
6710}
6711__setup("swapaccount=", enable_swap_account);
6712
37e84351
VD
6713static u64 swap_current_read(struct cgroup_subsys_state *css,
6714 struct cftype *cft)
6715{
6716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6717
6718 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6719}
6720
6721static int swap_max_show(struct seq_file *m, void *v)
6722{
677dc973
CD
6723 return seq_puts_memcg_tunable(m,
6724 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6725}
6726
6727static ssize_t swap_max_write(struct kernfs_open_file *of,
6728 char *buf, size_t nbytes, loff_t off)
6729{
6730 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6731 unsigned long max;
6732 int err;
6733
6734 buf = strstrip(buf);
6735 err = page_counter_memparse(buf, "max", &max);
6736 if (err)
6737 return err;
6738
be09102b 6739 xchg(&memcg->swap.max, max);
37e84351
VD
6740
6741 return nbytes;
6742}
6743
f3a53a3a
TH
6744static int swap_events_show(struct seq_file *m, void *v)
6745{
aa9694bb 6746 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6747
6748 seq_printf(m, "max %lu\n",
6749 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6750 seq_printf(m, "fail %lu\n",
6751 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6752
6753 return 0;
6754}
6755
37e84351
VD
6756static struct cftype swap_files[] = {
6757 {
6758 .name = "swap.current",
6759 .flags = CFTYPE_NOT_ON_ROOT,
6760 .read_u64 = swap_current_read,
6761 },
6762 {
6763 .name = "swap.max",
6764 .flags = CFTYPE_NOT_ON_ROOT,
6765 .seq_show = swap_max_show,
6766 .write = swap_max_write,
6767 },
f3a53a3a
TH
6768 {
6769 .name = "swap.events",
6770 .flags = CFTYPE_NOT_ON_ROOT,
6771 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6772 .seq_show = swap_events_show,
6773 },
37e84351
VD
6774 { } /* terminate */
6775};
6776
21afa38e
JW
6777static struct cftype memsw_cgroup_files[] = {
6778 {
6779 .name = "memsw.usage_in_bytes",
6780 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6781 .read_u64 = mem_cgroup_read_u64,
6782 },
6783 {
6784 .name = "memsw.max_usage_in_bytes",
6785 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6786 .write = mem_cgroup_reset,
6787 .read_u64 = mem_cgroup_read_u64,
6788 },
6789 {
6790 .name = "memsw.limit_in_bytes",
6791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6792 .write = mem_cgroup_write,
6793 .read_u64 = mem_cgroup_read_u64,
6794 },
6795 {
6796 .name = "memsw.failcnt",
6797 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6798 .write = mem_cgroup_reset,
6799 .read_u64 = mem_cgroup_read_u64,
6800 },
6801 { }, /* terminate */
6802};
6803
6804static int __init mem_cgroup_swap_init(void)
6805{
6806 if (!mem_cgroup_disabled() && really_do_swap_account) {
6807 do_swap_account = 1;
37e84351
VD
6808 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6809 swap_files));
21afa38e
JW
6810 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6811 memsw_cgroup_files));
6812 }
6813 return 0;
6814}
6815subsys_initcall(mem_cgroup_swap_init);
6816
6817#endif /* CONFIG_MEMCG_SWAP */