]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
mm: delete various needless include <linux/module.h>
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
97 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
98 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
99 MEM_CGROUP_EVENTS_NSTATS,
100};
7a159cc9
JW
101/*
102 * Per memcg event counter is incremented at every pagein/pageout. With THP,
103 * it will be incremated by the number of pages. This counter is used for
104 * for trigger some periodic events. This is straightforward and better
105 * than using jiffies etc. to handle periodic memcg event.
106 */
107enum mem_cgroup_events_target {
108 MEM_CGROUP_TARGET_THRESH,
109 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 110 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
111 MEM_CGROUP_NTARGETS,
112};
113#define THRESHOLDS_EVENTS_TARGET (128)
114#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 115#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 116
d52aa412 117struct mem_cgroup_stat_cpu {
7a159cc9 118 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 119 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 120 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
121};
122
6d12e2d8
KH
123/*
124 * per-zone information in memory controller.
125 */
6d12e2d8 126struct mem_cgroup_per_zone {
072c56c1
KH
127 /*
128 * spin_lock to protect the per cgroup LRU
129 */
b69408e8
CL
130 struct list_head lists[NR_LRU_LISTS];
131 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
132
133 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
4e416953
BS
138 struct mem_cgroup *mem; /* Back pointer, we cannot */
139 /* use container_of */
6d12e2d8
KH
140};
141/* Macro for accessing counter */
142#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
143
144struct mem_cgroup_per_node {
145 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
146};
147
148struct mem_cgroup_lru_info {
149 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
150};
151
f64c3f54
BS
152/*
153 * Cgroups above their limits are maintained in a RB-Tree, independent of
154 * their hierarchy representation
155 */
156
157struct mem_cgroup_tree_per_zone {
158 struct rb_root rb_root;
159 spinlock_t lock;
160};
161
162struct mem_cgroup_tree_per_node {
163 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
164};
165
166struct mem_cgroup_tree {
167 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
168};
169
170static struct mem_cgroup_tree soft_limit_tree __read_mostly;
171
2e72b634
KS
172struct mem_cgroup_threshold {
173 struct eventfd_ctx *eventfd;
174 u64 threshold;
175};
176
9490ff27 177/* For threshold */
2e72b634
KS
178struct mem_cgroup_threshold_ary {
179 /* An array index points to threshold just below usage. */
5407a562 180 int current_threshold;
2e72b634
KS
181 /* Size of entries[] */
182 unsigned int size;
183 /* Array of thresholds */
184 struct mem_cgroup_threshold entries[0];
185};
2c488db2
KS
186
187struct mem_cgroup_thresholds {
188 /* Primary thresholds array */
189 struct mem_cgroup_threshold_ary *primary;
190 /*
191 * Spare threshold array.
192 * This is needed to make mem_cgroup_unregister_event() "never fail".
193 * It must be able to store at least primary->size - 1 entries.
194 */
195 struct mem_cgroup_threshold_ary *spare;
196};
197
9490ff27
KH
198/* for OOM */
199struct mem_cgroup_eventfd_list {
200 struct list_head list;
201 struct eventfd_ctx *eventfd;
202};
2e72b634 203
2e72b634 204static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 205static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 206
8cdea7c0
BS
207/*
208 * The memory controller data structure. The memory controller controls both
209 * page cache and RSS per cgroup. We would eventually like to provide
210 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
211 * to help the administrator determine what knobs to tune.
212 *
213 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
214 * we hit the water mark. May be even add a low water mark, such that
215 * no reclaim occurs from a cgroup at it's low water mark, this is
216 * a feature that will be implemented much later in the future.
8cdea7c0
BS
217 */
218struct mem_cgroup {
219 struct cgroup_subsys_state css;
220 /*
221 * the counter to account for memory usage
222 */
223 struct res_counter res;
8c7c6e34
KH
224 /*
225 * the counter to account for mem+swap usage.
226 */
227 struct res_counter memsw;
78fb7466
PE
228 /*
229 * Per cgroup active and inactive list, similar to the
230 * per zone LRU lists.
78fb7466 231 */
6d12e2d8 232 struct mem_cgroup_lru_info info;
6d61ef40 233 /*
af901ca1 234 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 235 * reclaimed from.
6d61ef40 236 */
04046e1a 237 int last_scanned_child;
889976db
YH
238 int last_scanned_node;
239#if MAX_NUMNODES > 1
240 nodemask_t scan_nodes;
453a9bf3
KH
241 atomic_t numainfo_events;
242 atomic_t numainfo_updating;
889976db 243#endif
18f59ea7
BS
244 /*
245 * Should the accounting and control be hierarchical, per subtree?
246 */
247 bool use_hierarchy;
79dfdacc
MH
248
249 bool oom_lock;
250 atomic_t under_oom;
251
8c7c6e34 252 atomic_t refcnt;
14797e23 253
1f4c025b 254 int swappiness;
3c11ecf4
KH
255 /* OOM-Killer disable */
256 int oom_kill_disable;
a7885eb8 257
22a668d7
KH
258 /* set when res.limit == memsw.limit */
259 bool memsw_is_minimum;
260
2e72b634
KS
261 /* protect arrays of thresholds */
262 struct mutex thresholds_lock;
263
264 /* thresholds for memory usage. RCU-protected */
2c488db2 265 struct mem_cgroup_thresholds thresholds;
907860ed 266
2e72b634 267 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 268 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 269
9490ff27
KH
270 /* For oom notifier event fd */
271 struct list_head oom_notify;
185efc0f 272
7dc74be0
DN
273 /*
274 * Should we move charges of a task when a task is moved into this
275 * mem_cgroup ? And what type of charges should we move ?
276 */
277 unsigned long move_charge_at_immigrate;
d52aa412 278 /*
c62b1a3b 279 * percpu counter.
d52aa412 280 */
c62b1a3b 281 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
282 /*
283 * used when a cpu is offlined or other synchronizations
284 * See mem_cgroup_read_stat().
285 */
286 struct mem_cgroup_stat_cpu nocpu_base;
287 spinlock_t pcp_counter_lock;
8cdea7c0
BS
288};
289
7dc74be0
DN
290/* Stuffs for move charges at task migration. */
291/*
292 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
293 * left-shifted bitmap of these types.
294 */
295enum move_type {
4ffef5fe 296 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 297 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
298 NR_MOVE_TYPE,
299};
300
4ffef5fe
DN
301/* "mc" and its members are protected by cgroup_mutex */
302static struct move_charge_struct {
b1dd693e 303 spinlock_t lock; /* for from, to */
4ffef5fe
DN
304 struct mem_cgroup *from;
305 struct mem_cgroup *to;
306 unsigned long precharge;
854ffa8d 307 unsigned long moved_charge;
483c30b5 308 unsigned long moved_swap;
8033b97c
DN
309 struct task_struct *moving_task; /* a task moving charges */
310 wait_queue_head_t waitq; /* a waitq for other context */
311} mc = {
2bd9bb20 312 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
313 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
314};
4ffef5fe 315
90254a65
DN
316static bool move_anon(void)
317{
318 return test_bit(MOVE_CHARGE_TYPE_ANON,
319 &mc.to->move_charge_at_immigrate);
320}
321
87946a72
DN
322static bool move_file(void)
323{
324 return test_bit(MOVE_CHARGE_TYPE_FILE,
325 &mc.to->move_charge_at_immigrate);
326}
327
4e416953
BS
328/*
329 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
330 * limit reclaim to prevent infinite loops, if they ever occur.
331 */
332#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
333#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
334
217bc319
KH
335enum charge_type {
336 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
337 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 338 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 339 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 340 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 341 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
342 NR_CHARGE_TYPE,
343};
344
8c7c6e34
KH
345/* for encoding cft->private value on file */
346#define _MEM (0)
347#define _MEMSWAP (1)
9490ff27 348#define _OOM_TYPE (2)
8c7c6e34
KH
349#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
350#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
351#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
352/* Used for OOM nofiier */
353#define OOM_CONTROL (0)
8c7c6e34 354
75822b44
BS
355/*
356 * Reclaim flags for mem_cgroup_hierarchical_reclaim
357 */
358#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
359#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
360#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
361#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
362#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
363#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 364
8c7c6e34
KH
365static void mem_cgroup_get(struct mem_cgroup *mem);
366static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 367static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
26fe6168 368static void drain_all_stock_async(struct mem_cgroup *mem);
8c7c6e34 369
f64c3f54
BS
370static struct mem_cgroup_per_zone *
371mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
372{
373 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
374}
375
d324236b
WF
376struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
377{
378 return &mem->css;
379}
380
f64c3f54 381static struct mem_cgroup_per_zone *
97a6c37b 382page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 383{
97a6c37b
JW
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
f64c3f54 386
f64c3f54
BS
387 return mem_cgroup_zoneinfo(mem, nid, zid);
388}
389
390static struct mem_cgroup_tree_per_zone *
391soft_limit_tree_node_zone(int nid, int zid)
392{
393 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
394}
395
396static struct mem_cgroup_tree_per_zone *
397soft_limit_tree_from_page(struct page *page)
398{
399 int nid = page_to_nid(page);
400 int zid = page_zonenum(page);
401
402 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
403}
404
405static void
4e416953 406__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 407 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
408 struct mem_cgroup_tree_per_zone *mctz,
409 unsigned long long new_usage_in_excess)
f64c3f54
BS
410{
411 struct rb_node **p = &mctz->rb_root.rb_node;
412 struct rb_node *parent = NULL;
413 struct mem_cgroup_per_zone *mz_node;
414
415 if (mz->on_tree)
416 return;
417
ef8745c1
KH
418 mz->usage_in_excess = new_usage_in_excess;
419 if (!mz->usage_in_excess)
420 return;
f64c3f54
BS
421 while (*p) {
422 parent = *p;
423 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
424 tree_node);
425 if (mz->usage_in_excess < mz_node->usage_in_excess)
426 p = &(*p)->rb_left;
427 /*
428 * We can't avoid mem cgroups that are over their soft
429 * limit by the same amount
430 */
431 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
432 p = &(*p)->rb_right;
433 }
434 rb_link_node(&mz->tree_node, parent, p);
435 rb_insert_color(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = true;
4e416953
BS
437}
438
439static void
440__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
441 struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
f64c3f54
BS
450static void
451mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
452 struct mem_cgroup_per_zone *mz,
453 struct mem_cgroup_tree_per_zone *mctz)
454{
455 spin_lock(&mctz->lock);
4e416953 456 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
457 spin_unlock(&mctz->lock);
458}
459
f64c3f54
BS
460
461static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
462{
ef8745c1 463 unsigned long long excess;
f64c3f54
BS
464 struct mem_cgroup_per_zone *mz;
465 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
466 int nid = page_to_nid(page);
467 int zid = page_zonenum(page);
f64c3f54
BS
468 mctz = soft_limit_tree_from_page(page);
469
470 /*
4e649152
KH
471 * Necessary to update all ancestors when hierarchy is used.
472 * because their event counter is not touched.
f64c3f54 473 */
4e649152
KH
474 for (; mem; mem = parent_mem_cgroup(mem)) {
475 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 476 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
477 /*
478 * We have to update the tree if mz is on RB-tree or
479 * mem is over its softlimit.
480 */
ef8745c1 481 if (excess || mz->on_tree) {
4e649152
KH
482 spin_lock(&mctz->lock);
483 /* if on-tree, remove it */
484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mem, mz, mctz);
486 /*
ef8745c1
KH
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
4e649152 489 */
ef8745c1 490 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
491 spin_unlock(&mctz->lock);
492 }
f64c3f54
BS
493 }
494}
495
496static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
497{
498 int node, zone;
499 struct mem_cgroup_per_zone *mz;
500 struct mem_cgroup_tree_per_zone *mctz;
501
502 for_each_node_state(node, N_POSSIBLE) {
503 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
504 mz = mem_cgroup_zoneinfo(mem, node, zone);
505 mctz = soft_limit_tree_node_zone(node, zone);
506 mem_cgroup_remove_exceeded(mem, mz, mctz);
507 }
508 }
509}
510
4e416953
BS
511static struct mem_cgroup_per_zone *
512__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
513{
514 struct rb_node *rightmost = NULL;
26251eaf 515 struct mem_cgroup_per_zone *mz;
4e416953
BS
516
517retry:
26251eaf 518 mz = NULL;
4e416953
BS
519 rightmost = rb_last(&mctz->rb_root);
520 if (!rightmost)
521 goto done; /* Nothing to reclaim from */
522
523 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
524 /*
525 * Remove the node now but someone else can add it back,
526 * we will to add it back at the end of reclaim to its correct
527 * position in the tree.
528 */
529 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
530 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
531 !css_tryget(&mz->mem->css))
532 goto retry;
533done:
534 return mz;
535}
536
537static struct mem_cgroup_per_zone *
538mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
539{
540 struct mem_cgroup_per_zone *mz;
541
542 spin_lock(&mctz->lock);
543 mz = __mem_cgroup_largest_soft_limit_node(mctz);
544 spin_unlock(&mctz->lock);
545 return mz;
546}
547
711d3d2c
KH
548/*
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronizion of counter in memcg's counter.
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threashold and synchonization as vmstat[] should be
565 * implemented.
566 */
7a159cc9
JW
567static long mem_cgroup_read_stat(struct mem_cgroup *mem,
568 enum mem_cgroup_stat_index idx)
c62b1a3b 569{
7a159cc9 570 long val = 0;
c62b1a3b 571 int cpu;
c62b1a3b 572
711d3d2c
KH
573 get_online_cpus();
574 for_each_online_cpu(cpu)
c62b1a3b 575 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
576#ifdef CONFIG_HOTPLUG_CPU
577 spin_lock(&mem->pcp_counter_lock);
578 val += mem->nocpu_base.count[idx];
579 spin_unlock(&mem->pcp_counter_lock);
580#endif
581 put_online_cpus();
c62b1a3b
KH
582 return val;
583}
584
0c3e73e8
BS
585static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
586 bool charge)
587{
588 int val = (charge) ? 1 : -1;
c62b1a3b 589 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
590}
591
456f998e
YH
592void mem_cgroup_pgfault(struct mem_cgroup *mem, int val)
593{
594 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
595}
596
597void mem_cgroup_pgmajfault(struct mem_cgroup *mem, int val)
598{
599 this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
600}
601
e9f8974f
JW
602static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
603 enum mem_cgroup_events_index idx)
604{
605 unsigned long val = 0;
606 int cpu;
607
608 for_each_online_cpu(cpu)
609 val += per_cpu(mem->stat->events[idx], cpu);
610#ifdef CONFIG_HOTPLUG_CPU
611 spin_lock(&mem->pcp_counter_lock);
612 val += mem->nocpu_base.events[idx];
613 spin_unlock(&mem->pcp_counter_lock);
614#endif
615 return val;
616}
617
c05555b5 618static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 619 bool file, int nr_pages)
d52aa412 620{
c62b1a3b
KH
621 preempt_disable();
622
e401f176
KH
623 if (file)
624 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 625 else
e401f176 626 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 627
e401f176
KH
628 /* pagein of a big page is an event. So, ignore page size */
629 if (nr_pages > 0)
e9f8974f 630 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 631 else {
e9f8974f 632 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
633 nr_pages = -nr_pages; /* for event */
634 }
e401f176 635
e9f8974f 636 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 637
c62b1a3b 638 preempt_enable();
6d12e2d8
KH
639}
640
bb2a0de9
KH
641unsigned long
642mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *mem, int nid, int zid,
643 unsigned int lru_mask)
889976db
YH
644{
645 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
646 enum lru_list l;
647 unsigned long ret = 0;
648
649 mz = mem_cgroup_zoneinfo(mem, nid, zid);
650
651 for_each_lru(l) {
652 if (BIT(l) & lru_mask)
653 ret += MEM_CGROUP_ZSTAT(mz, l);
654 }
655 return ret;
656}
657
658static unsigned long
659mem_cgroup_node_nr_lru_pages(struct mem_cgroup *mem,
660 int nid, unsigned int lru_mask)
661{
889976db
YH
662 u64 total = 0;
663 int zid;
664
bb2a0de9
KH
665 for (zid = 0; zid < MAX_NR_ZONES; zid++)
666 total += mem_cgroup_zone_nr_lru_pages(mem, nid, zid, lru_mask);
667
889976db
YH
668 return total;
669}
bb2a0de9
KH
670
671static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *mem,
672 unsigned int lru_mask)
6d12e2d8 673{
889976db 674 int nid;
6d12e2d8
KH
675 u64 total = 0;
676
bb2a0de9
KH
677 for_each_node_state(nid, N_HIGH_MEMORY)
678 total += mem_cgroup_node_nr_lru_pages(mem, nid, lru_mask);
6d12e2d8 679 return total;
d52aa412
KH
680}
681
7a159cc9
JW
682static bool __memcg_event_check(struct mem_cgroup *mem, int target)
683{
684 unsigned long val, next;
685
686 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
687 next = this_cpu_read(mem->stat->targets[target]);
688 /* from time_after() in jiffies.h */
689 return ((long)next - (long)val < 0);
690}
691
692static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 693{
7a159cc9 694 unsigned long val, next;
d2265e6f 695
e9f8974f 696 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 697
7a159cc9
JW
698 switch (target) {
699 case MEM_CGROUP_TARGET_THRESH:
700 next = val + THRESHOLDS_EVENTS_TARGET;
701 break;
702 case MEM_CGROUP_TARGET_SOFTLIMIT:
703 next = val + SOFTLIMIT_EVENTS_TARGET;
704 break;
453a9bf3
KH
705 case MEM_CGROUP_TARGET_NUMAINFO:
706 next = val + NUMAINFO_EVENTS_TARGET;
707 break;
7a159cc9
JW
708 default:
709 return;
710 }
711
712 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
713}
714
715/*
716 * Check events in order.
717 *
718 */
719static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
720{
721 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 722 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 723 mem_cgroup_threshold(mem);
7a159cc9
JW
724 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
725 if (unlikely(__memcg_event_check(mem,
453a9bf3 726 MEM_CGROUP_TARGET_SOFTLIMIT))) {
d2265e6f 727 mem_cgroup_update_tree(mem, page);
7a159cc9 728 __mem_cgroup_target_update(mem,
453a9bf3
KH
729 MEM_CGROUP_TARGET_SOFTLIMIT);
730 }
731#if MAX_NUMNODES > 1
732 if (unlikely(__memcg_event_check(mem,
733 MEM_CGROUP_TARGET_NUMAINFO))) {
734 atomic_inc(&mem->numainfo_events);
735 __mem_cgroup_target_update(mem,
736 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 737 }
453a9bf3 738#endif
d2265e6f
KH
739 }
740}
741
d5b69e38 742static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
743{
744 return container_of(cgroup_subsys_state(cont,
745 mem_cgroup_subsys_id), struct mem_cgroup,
746 css);
747}
748
cf475ad2 749struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 750{
31a78f23
BS
751 /*
752 * mm_update_next_owner() may clear mm->owner to NULL
753 * if it races with swapoff, page migration, etc.
754 * So this can be called with p == NULL.
755 */
756 if (unlikely(!p))
757 return NULL;
758
78fb7466
PE
759 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
760 struct mem_cgroup, css);
761}
762
a433658c 763struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2
KH
764{
765 struct mem_cgroup *mem = NULL;
0b7f569e
KH
766
767 if (!mm)
768 return NULL;
54595fe2
KH
769 /*
770 * Because we have no locks, mm->owner's may be being moved to other
771 * cgroup. We use css_tryget() here even if this looks
772 * pessimistic (rather than adding locks here).
773 */
774 rcu_read_lock();
775 do {
776 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
777 if (unlikely(!mem))
778 break;
779 } while (!css_tryget(&mem->css));
780 rcu_read_unlock();
781 return mem;
782}
783
7d74b06f
KH
784/* The caller has to guarantee "mem" exists before calling this */
785static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 786{
711d3d2c
KH
787 struct cgroup_subsys_state *css;
788 int found;
789
790 if (!mem) /* ROOT cgroup has the smallest ID */
791 return root_mem_cgroup; /*css_put/get against root is ignored*/
792 if (!mem->use_hierarchy) {
793 if (css_tryget(&mem->css))
794 return mem;
795 return NULL;
796 }
797 rcu_read_lock();
798 /*
799 * searching a memory cgroup which has the smallest ID under given
800 * ROOT cgroup. (ID >= 1)
801 */
802 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
803 if (css && css_tryget(css))
804 mem = container_of(css, struct mem_cgroup, css);
805 else
806 mem = NULL;
807 rcu_read_unlock();
808 return mem;
7d74b06f
KH
809}
810
811static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
812 struct mem_cgroup *root,
813 bool cond)
814{
815 int nextid = css_id(&iter->css) + 1;
816 int found;
817 int hierarchy_used;
14067bb3 818 struct cgroup_subsys_state *css;
14067bb3 819
7d74b06f 820 hierarchy_used = iter->use_hierarchy;
14067bb3 821
7d74b06f 822 css_put(&iter->css);
711d3d2c
KH
823 /* If no ROOT, walk all, ignore hierarchy */
824 if (!cond || (root && !hierarchy_used))
7d74b06f 825 return NULL;
14067bb3 826
711d3d2c
KH
827 if (!root)
828 root = root_mem_cgroup;
829
7d74b06f
KH
830 do {
831 iter = NULL;
14067bb3 832 rcu_read_lock();
7d74b06f
KH
833
834 css = css_get_next(&mem_cgroup_subsys, nextid,
835 &root->css, &found);
14067bb3 836 if (css && css_tryget(css))
7d74b06f 837 iter = container_of(css, struct mem_cgroup, css);
14067bb3 838 rcu_read_unlock();
7d74b06f 839 /* If css is NULL, no more cgroups will be found */
14067bb3 840 nextid = found + 1;
7d74b06f 841 } while (css && !iter);
14067bb3 842
7d74b06f 843 return iter;
14067bb3 844}
7d74b06f
KH
845/*
846 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
847 * be careful that "break" loop is not allowed. We have reference count.
848 * Instead of that modify "cond" to be false and "continue" to exit the loop.
849 */
850#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
851 for (iter = mem_cgroup_start_loop(root);\
852 iter != NULL;\
853 iter = mem_cgroup_get_next(iter, root, cond))
854
855#define for_each_mem_cgroup_tree(iter, root) \
856 for_each_mem_cgroup_tree_cond(iter, root, true)
857
711d3d2c
KH
858#define for_each_mem_cgroup_all(iter) \
859 for_each_mem_cgroup_tree_cond(iter, NULL, true)
860
14067bb3 861
4b3bde4c
BS
862static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
863{
864 return (mem == root_mem_cgroup);
865}
866
456f998e
YH
867void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
868{
869 struct mem_cgroup *mem;
870
871 if (!mm)
872 return;
873
874 rcu_read_lock();
875 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
876 if (unlikely(!mem))
877 goto out;
878
879 switch (idx) {
880 case PGMAJFAULT:
881 mem_cgroup_pgmajfault(mem, 1);
882 break;
883 case PGFAULT:
884 mem_cgroup_pgfault(mem, 1);
885 break;
886 default:
887 BUG();
888 }
889out:
890 rcu_read_unlock();
891}
892EXPORT_SYMBOL(mem_cgroup_count_vm_event);
893
08e552c6
KH
894/*
895 * Following LRU functions are allowed to be used without PCG_LOCK.
896 * Operations are called by routine of global LRU independently from memcg.
897 * What we have to take care of here is validness of pc->mem_cgroup.
898 *
899 * Changes to pc->mem_cgroup happens when
900 * 1. charge
901 * 2. moving account
902 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
903 * It is added to LRU before charge.
904 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
905 * When moving account, the page is not on LRU. It's isolated.
906 */
4f98a2fe 907
08e552c6
KH
908void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
909{
910 struct page_cgroup *pc;
08e552c6 911 struct mem_cgroup_per_zone *mz;
6d12e2d8 912
f8d66542 913 if (mem_cgroup_disabled())
08e552c6
KH
914 return;
915 pc = lookup_page_cgroup(page);
916 /* can happen while we handle swapcache. */
4b3bde4c 917 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 918 return;
4b3bde4c 919 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
920 /*
921 * We don't check PCG_USED bit. It's cleared when the "page" is finally
922 * removed from global LRU.
923 */
97a6c37b 924 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
925 /* huge page split is done under lru_lock. so, we have no races. */
926 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
927 if (mem_cgroup_is_root(pc->mem_cgroup))
928 return;
929 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 930 list_del_init(&pc->lru);
6d12e2d8
KH
931}
932
08e552c6 933void mem_cgroup_del_lru(struct page *page)
6d12e2d8 934{
08e552c6
KH
935 mem_cgroup_del_lru_list(page, page_lru(page));
936}
b69408e8 937
3f58a829
MK
938/*
939 * Writeback is about to end against a page which has been marked for immediate
940 * reclaim. If it still appears to be reclaimable, move it to the tail of the
941 * inactive list.
942 */
943void mem_cgroup_rotate_reclaimable_page(struct page *page)
944{
945 struct mem_cgroup_per_zone *mz;
946 struct page_cgroup *pc;
947 enum lru_list lru = page_lru(page);
948
949 if (mem_cgroup_disabled())
950 return;
951
952 pc = lookup_page_cgroup(page);
953 /* unused or root page is not rotated. */
954 if (!PageCgroupUsed(pc))
955 return;
956 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
957 smp_rmb();
958 if (mem_cgroup_is_root(pc->mem_cgroup))
959 return;
97a6c37b 960 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
961 list_move_tail(&pc->lru, &mz->lists[lru]);
962}
963
08e552c6
KH
964void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
965{
966 struct mem_cgroup_per_zone *mz;
967 struct page_cgroup *pc;
b69408e8 968
f8d66542 969 if (mem_cgroup_disabled())
08e552c6 970 return;
6d12e2d8 971
08e552c6 972 pc = lookup_page_cgroup(page);
4b3bde4c 973 /* unused or root page is not rotated. */
713735b4
JW
974 if (!PageCgroupUsed(pc))
975 return;
976 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
977 smp_rmb();
978 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 979 return;
97a6c37b 980 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 981 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
982}
983
08e552c6 984void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 985{
08e552c6
KH
986 struct page_cgroup *pc;
987 struct mem_cgroup_per_zone *mz;
6d12e2d8 988
f8d66542 989 if (mem_cgroup_disabled())
08e552c6
KH
990 return;
991 pc = lookup_page_cgroup(page);
4b3bde4c 992 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 993 if (!PageCgroupUsed(pc))
894bc310 994 return;
713735b4
JW
995 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
996 smp_rmb();
97a6c37b 997 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
998 /* huge page split is done under lru_lock. so, we have no races. */
999 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1000 SetPageCgroupAcctLRU(pc);
1001 if (mem_cgroup_is_root(pc->mem_cgroup))
1002 return;
08e552c6
KH
1003 list_add(&pc->lru, &mz->lists[lru]);
1004}
544122e5 1005
08e552c6 1006/*
5a6475a4
KH
1007 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1008 * while it's linked to lru because the page may be reused after it's fully
1009 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1010 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1011 */
5a6475a4 1012static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1013{
544122e5
KH
1014 unsigned long flags;
1015 struct zone *zone = page_zone(page);
1016 struct page_cgroup *pc = lookup_page_cgroup(page);
1017
5a6475a4
KH
1018 /*
1019 * Doing this check without taking ->lru_lock seems wrong but this
1020 * is safe. Because if page_cgroup's USED bit is unset, the page
1021 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1022 * set, the commit after this will fail, anyway.
1023 * This all charge/uncharge is done under some mutual execustion.
1024 * So, we don't need to taking care of changes in USED bit.
1025 */
1026 if (likely(!PageLRU(page)))
1027 return;
1028
544122e5
KH
1029 spin_lock_irqsave(&zone->lru_lock, flags);
1030 /*
1031 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1032 * is guarded by lock_page() because the page is SwapCache.
1033 */
1034 if (!PageCgroupUsed(pc))
1035 mem_cgroup_del_lru_list(page, page_lru(page));
1036 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1037}
1038
5a6475a4 1039static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1040{
1041 unsigned long flags;
1042 struct zone *zone = page_zone(page);
1043 struct page_cgroup *pc = lookup_page_cgroup(page);
1044
5a6475a4
KH
1045 /* taking care of that the page is added to LRU while we commit it */
1046 if (likely(!PageLRU(page)))
1047 return;
544122e5
KH
1048 spin_lock_irqsave(&zone->lru_lock, flags);
1049 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1050 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1051 mem_cgroup_add_lru_list(page, page_lru(page));
1052 spin_unlock_irqrestore(&zone->lru_lock, flags);
1053}
1054
1055
08e552c6
KH
1056void mem_cgroup_move_lists(struct page *page,
1057 enum lru_list from, enum lru_list to)
1058{
f8d66542 1059 if (mem_cgroup_disabled())
08e552c6
KH
1060 return;
1061 mem_cgroup_del_lru_list(page, from);
1062 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1063}
1064
3e92041d
MH
1065/*
1066 * Checks whether given mem is same or in the root_mem's
1067 * hierarchy subtree
1068 */
1069static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_mem,
1070 struct mem_cgroup *mem)
1071{
1072 if (root_mem != mem) {
1073 return (root_mem->use_hierarchy &&
1074 css_is_ancestor(&mem->css, &root_mem->css));
1075 }
1076
1077 return true;
1078}
1079
4c4a2214
DR
1080int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
1081{
1082 int ret;
0b7f569e 1083 struct mem_cgroup *curr = NULL;
158e0a2d 1084 struct task_struct *p;
4c4a2214 1085
158e0a2d
KH
1086 p = find_lock_task_mm(task);
1087 if (!p)
1088 return 0;
1089 curr = try_get_mem_cgroup_from_mm(p->mm);
1090 task_unlock(p);
0b7f569e
KH
1091 if (!curr)
1092 return 0;
d31f56db
DN
1093 /*
1094 * We should check use_hierarchy of "mem" not "curr". Because checking
1095 * use_hierarchy of "curr" here make this function true if hierarchy is
1096 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
1097 * hierarchy(even if use_hierarchy is disabled in "mem").
1098 */
3e92041d 1099 ret = mem_cgroup_same_or_subtree(mem, curr);
0b7f569e 1100 css_put(&curr->css);
4c4a2214
DR
1101 return ret;
1102}
1103
c772be93 1104static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1105{
1106 unsigned long active;
1107 unsigned long inactive;
c772be93
KM
1108 unsigned long gb;
1109 unsigned long inactive_ratio;
14797e23 1110
bb2a0de9
KH
1111 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
1112 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14797e23 1113
c772be93
KM
1114 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1115 if (gb)
1116 inactive_ratio = int_sqrt(10 * gb);
1117 else
1118 inactive_ratio = 1;
1119
1120 if (present_pages) {
1121 present_pages[0] = inactive;
1122 present_pages[1] = active;
1123 }
1124
1125 return inactive_ratio;
1126}
1127
1128int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1129{
1130 unsigned long active;
1131 unsigned long inactive;
1132 unsigned long present_pages[2];
1133 unsigned long inactive_ratio;
1134
1135 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1136
1137 inactive = present_pages[0];
1138 active = present_pages[1];
1139
1140 if (inactive * inactive_ratio < active)
14797e23
KM
1141 return 1;
1142
1143 return 0;
1144}
1145
56e49d21
RR
1146int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1147{
1148 unsigned long active;
1149 unsigned long inactive;
1150
bb2a0de9
KH
1151 inactive = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
1152 active = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1153
1154 return (active > inactive);
1155}
1156
3e2f41f1
KM
1157struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1158 struct zone *zone)
1159{
13d7e3a2 1160 int nid = zone_to_nid(zone);
3e2f41f1
KM
1161 int zid = zone_idx(zone);
1162 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1163
1164 return &mz->reclaim_stat;
1165}
1166
1167struct zone_reclaim_stat *
1168mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1169{
1170 struct page_cgroup *pc;
1171 struct mem_cgroup_per_zone *mz;
1172
1173 if (mem_cgroup_disabled())
1174 return NULL;
1175
1176 pc = lookup_page_cgroup(page);
bd112db8
DN
1177 if (!PageCgroupUsed(pc))
1178 return NULL;
713735b4
JW
1179 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1180 smp_rmb();
97a6c37b 1181 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1182 return &mz->reclaim_stat;
1183}
1184
66e1707b
BS
1185unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1186 struct list_head *dst,
1187 unsigned long *scanned, int order,
1188 int mode, struct zone *z,
1189 struct mem_cgroup *mem_cont,
4f98a2fe 1190 int active, int file)
66e1707b
BS
1191{
1192 unsigned long nr_taken = 0;
1193 struct page *page;
1194 unsigned long scan;
1195 LIST_HEAD(pc_list);
1196 struct list_head *src;
ff7283fa 1197 struct page_cgroup *pc, *tmp;
13d7e3a2 1198 int nid = zone_to_nid(z);
1ecaab2b
KH
1199 int zid = zone_idx(z);
1200 struct mem_cgroup_per_zone *mz;
b7c46d15 1201 int lru = LRU_FILE * file + active;
2ffebca6 1202 int ret;
66e1707b 1203
cf475ad2 1204 BUG_ON(!mem_cont);
1ecaab2b 1205 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1206 src = &mz->lists[lru];
66e1707b 1207
ff7283fa
KH
1208 scan = 0;
1209 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1210 if (scan >= nr_to_scan)
ff7283fa 1211 break;
08e552c6 1212
52d4b9ac
KH
1213 if (unlikely(!PageCgroupUsed(pc)))
1214 continue;
5564e88b 1215
6b3ae58e 1216 page = lookup_cgroup_page(pc);
5564e88b 1217
436c6541 1218 if (unlikely(!PageLRU(page)))
ff7283fa 1219 continue;
ff7283fa 1220
436c6541 1221 scan++;
2ffebca6
KH
1222 ret = __isolate_lru_page(page, mode, file);
1223 switch (ret) {
1224 case 0:
66e1707b 1225 list_move(&page->lru, dst);
2ffebca6 1226 mem_cgroup_del_lru(page);
2c888cfb 1227 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1228 break;
1229 case -EBUSY:
1230 /* we don't affect global LRU but rotate in our LRU */
1231 mem_cgroup_rotate_lru_list(page, page_lru(page));
1232 break;
1233 default:
1234 break;
66e1707b
BS
1235 }
1236 }
1237
66e1707b 1238 *scanned = scan;
cc8e970c
KM
1239
1240 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1241 0, 0, 0, mode);
1242
66e1707b
BS
1243 return nr_taken;
1244}
1245
6d61ef40
BS
1246#define mem_cgroup_from_res_counter(counter, member) \
1247 container_of(counter, struct mem_cgroup, member)
1248
19942822 1249/**
9d11ea9f
JW
1250 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1251 * @mem: the memory cgroup
19942822 1252 *
9d11ea9f 1253 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1254 * pages.
19942822 1255 */
7ec99d62 1256static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1257{
9d11ea9f
JW
1258 unsigned long long margin;
1259
1260 margin = res_counter_margin(&mem->res);
1261 if (do_swap_account)
1262 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1263 return margin >> PAGE_SHIFT;
19942822
JW
1264}
1265
1f4c025b 1266int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1267{
1268 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1269
1270 /* root ? */
1271 if (cgrp->parent == NULL)
1272 return vm_swappiness;
1273
bf1ff263 1274 return memcg->swappiness;
a7885eb8
KM
1275}
1276
32047e2a
KH
1277static void mem_cgroup_start_move(struct mem_cgroup *mem)
1278{
1279 int cpu;
1489ebad
KH
1280
1281 get_online_cpus();
1282 spin_lock(&mem->pcp_counter_lock);
1283 for_each_online_cpu(cpu)
32047e2a 1284 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1285 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1286 spin_unlock(&mem->pcp_counter_lock);
1287 put_online_cpus();
32047e2a
KH
1288
1289 synchronize_rcu();
1290}
1291
1292static void mem_cgroup_end_move(struct mem_cgroup *mem)
1293{
1294 int cpu;
1295
1296 if (!mem)
1297 return;
1489ebad
KH
1298 get_online_cpus();
1299 spin_lock(&mem->pcp_counter_lock);
1300 for_each_online_cpu(cpu)
32047e2a 1301 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1302 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1303 spin_unlock(&mem->pcp_counter_lock);
1304 put_online_cpus();
32047e2a
KH
1305}
1306/*
1307 * 2 routines for checking "mem" is under move_account() or not.
1308 *
1309 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1310 * for avoiding race in accounting. If true,
1311 * pc->mem_cgroup may be overwritten.
1312 *
1313 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1314 * under hierarchy of moving cgroups. This is for
1315 * waiting at hith-memory prressure caused by "move".
1316 */
1317
1318static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1319{
1320 VM_BUG_ON(!rcu_read_lock_held());
1321 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1322}
4b534334
KH
1323
1324static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1325{
2bd9bb20
KH
1326 struct mem_cgroup *from;
1327 struct mem_cgroup *to;
4b534334 1328 bool ret = false;
2bd9bb20
KH
1329 /*
1330 * Unlike task_move routines, we access mc.to, mc.from not under
1331 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1332 */
1333 spin_lock(&mc.lock);
1334 from = mc.from;
1335 to = mc.to;
1336 if (!from)
1337 goto unlock;
3e92041d
MH
1338
1339 ret = mem_cgroup_same_or_subtree(mem, from)
1340 || mem_cgroup_same_or_subtree(mem, to);
2bd9bb20
KH
1341unlock:
1342 spin_unlock(&mc.lock);
4b534334
KH
1343 return ret;
1344}
1345
1346static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1347{
1348 if (mc.moving_task && current != mc.moving_task) {
1349 if (mem_cgroup_under_move(mem)) {
1350 DEFINE_WAIT(wait);
1351 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1352 /* moving charge context might have finished. */
1353 if (mc.moving_task)
1354 schedule();
1355 finish_wait(&mc.waitq, &wait);
1356 return true;
1357 }
1358 }
1359 return false;
1360}
1361
e222432b 1362/**
6a6135b6 1363 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1364 * @memcg: The memory cgroup that went over limit
1365 * @p: Task that is going to be killed
1366 *
1367 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1368 * enabled
1369 */
1370void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1371{
1372 struct cgroup *task_cgrp;
1373 struct cgroup *mem_cgrp;
1374 /*
1375 * Need a buffer in BSS, can't rely on allocations. The code relies
1376 * on the assumption that OOM is serialized for memory controller.
1377 * If this assumption is broken, revisit this code.
1378 */
1379 static char memcg_name[PATH_MAX];
1380 int ret;
1381
d31f56db 1382 if (!memcg || !p)
e222432b
BS
1383 return;
1384
1385
1386 rcu_read_lock();
1387
1388 mem_cgrp = memcg->css.cgroup;
1389 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1390
1391 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1392 if (ret < 0) {
1393 /*
1394 * Unfortunately, we are unable to convert to a useful name
1395 * But we'll still print out the usage information
1396 */
1397 rcu_read_unlock();
1398 goto done;
1399 }
1400 rcu_read_unlock();
1401
1402 printk(KERN_INFO "Task in %s killed", memcg_name);
1403
1404 rcu_read_lock();
1405 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1406 if (ret < 0) {
1407 rcu_read_unlock();
1408 goto done;
1409 }
1410 rcu_read_unlock();
1411
1412 /*
1413 * Continues from above, so we don't need an KERN_ level
1414 */
1415 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1416done:
1417
1418 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1419 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1420 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1421 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1422 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1423 "failcnt %llu\n",
1424 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1425 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1426 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1427}
1428
81d39c20
KH
1429/*
1430 * This function returns the number of memcg under hierarchy tree. Returns
1431 * 1(self count) if no children.
1432 */
1433static int mem_cgroup_count_children(struct mem_cgroup *mem)
1434{
1435 int num = 0;
7d74b06f
KH
1436 struct mem_cgroup *iter;
1437
1438 for_each_mem_cgroup_tree(iter, mem)
1439 num++;
81d39c20
KH
1440 return num;
1441}
1442
a63d83f4
DR
1443/*
1444 * Return the memory (and swap, if configured) limit for a memcg.
1445 */
1446u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1447{
1448 u64 limit;
1449 u64 memsw;
1450
f3e8eb70
JW
1451 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1452 limit += total_swap_pages << PAGE_SHIFT;
1453
a63d83f4
DR
1454 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1455 /*
1456 * If memsw is finite and limits the amount of swap space available
1457 * to this memcg, return that limit.
1458 */
1459 return min(limit, memsw);
1460}
1461
6d61ef40 1462/*
04046e1a
KH
1463 * Visit the first child (need not be the first child as per the ordering
1464 * of the cgroup list, since we track last_scanned_child) of @mem and use
1465 * that to reclaim free pages from.
1466 */
1467static struct mem_cgroup *
1468mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1469{
1470 struct mem_cgroup *ret = NULL;
1471 struct cgroup_subsys_state *css;
1472 int nextid, found;
1473
1474 if (!root_mem->use_hierarchy) {
1475 css_get(&root_mem->css);
1476 ret = root_mem;
1477 }
1478
1479 while (!ret) {
1480 rcu_read_lock();
1481 nextid = root_mem->last_scanned_child + 1;
1482 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1483 &found);
1484 if (css && css_tryget(css))
1485 ret = container_of(css, struct mem_cgroup, css);
1486
1487 rcu_read_unlock();
1488 /* Updates scanning parameter */
04046e1a
KH
1489 if (!css) {
1490 /* this means start scan from ID:1 */
1491 root_mem->last_scanned_child = 0;
1492 } else
1493 root_mem->last_scanned_child = found;
04046e1a
KH
1494 }
1495
1496 return ret;
1497}
1498
4d0c066d
KH
1499/**
1500 * test_mem_cgroup_node_reclaimable
1501 * @mem: the target memcg
1502 * @nid: the node ID to be checked.
1503 * @noswap : specify true here if the user wants flle only information.
1504 *
1505 * This function returns whether the specified memcg contains any
1506 * reclaimable pages on a node. Returns true if there are any reclaimable
1507 * pages in the node.
1508 */
1509static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *mem,
1510 int nid, bool noswap)
1511{
bb2a0de9 1512 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_FILE))
4d0c066d
KH
1513 return true;
1514 if (noswap || !total_swap_pages)
1515 return false;
bb2a0de9 1516 if (mem_cgroup_node_nr_lru_pages(mem, nid, LRU_ALL_ANON))
4d0c066d
KH
1517 return true;
1518 return false;
1519
1520}
889976db
YH
1521#if MAX_NUMNODES > 1
1522
1523/*
1524 * Always updating the nodemask is not very good - even if we have an empty
1525 * list or the wrong list here, we can start from some node and traverse all
1526 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1527 *
1528 */
1529static void mem_cgroup_may_update_nodemask(struct mem_cgroup *mem)
1530{
1531 int nid;
453a9bf3
KH
1532 /*
1533 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1534 * pagein/pageout changes since the last update.
1535 */
1536 if (!atomic_read(&mem->numainfo_events))
1537 return;
1538 if (atomic_inc_return(&mem->numainfo_updating) > 1)
889976db
YH
1539 return;
1540
889976db
YH
1541 /* make a nodemask where this memcg uses memory from */
1542 mem->scan_nodes = node_states[N_HIGH_MEMORY];
1543
1544 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1545
4d0c066d
KH
1546 if (!test_mem_cgroup_node_reclaimable(mem, nid, false))
1547 node_clear(nid, mem->scan_nodes);
889976db 1548 }
453a9bf3
KH
1549
1550 atomic_set(&mem->numainfo_events, 0);
1551 atomic_set(&mem->numainfo_updating, 0);
889976db
YH
1552}
1553
1554/*
1555 * Selecting a node where we start reclaim from. Because what we need is just
1556 * reducing usage counter, start from anywhere is O,K. Considering
1557 * memory reclaim from current node, there are pros. and cons.
1558 *
1559 * Freeing memory from current node means freeing memory from a node which
1560 * we'll use or we've used. So, it may make LRU bad. And if several threads
1561 * hit limits, it will see a contention on a node. But freeing from remote
1562 * node means more costs for memory reclaim because of memory latency.
1563 *
1564 * Now, we use round-robin. Better algorithm is welcomed.
1565 */
1566int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1567{
1568 int node;
1569
1570 mem_cgroup_may_update_nodemask(mem);
1571 node = mem->last_scanned_node;
1572
1573 node = next_node(node, mem->scan_nodes);
1574 if (node == MAX_NUMNODES)
1575 node = first_node(mem->scan_nodes);
1576 /*
1577 * We call this when we hit limit, not when pages are added to LRU.
1578 * No LRU may hold pages because all pages are UNEVICTABLE or
1579 * memcg is too small and all pages are not on LRU. In that case,
1580 * we use curret node.
1581 */
1582 if (unlikely(node == MAX_NUMNODES))
1583 node = numa_node_id();
1584
1585 mem->last_scanned_node = node;
1586 return node;
1587}
1588
4d0c066d
KH
1589/*
1590 * Check all nodes whether it contains reclaimable pages or not.
1591 * For quick scan, we make use of scan_nodes. This will allow us to skip
1592 * unused nodes. But scan_nodes is lazily updated and may not cotain
1593 * enough new information. We need to do double check.
1594 */
1595bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1596{
1597 int nid;
1598
1599 /*
1600 * quick check...making use of scan_node.
1601 * We can skip unused nodes.
1602 */
1603 if (!nodes_empty(mem->scan_nodes)) {
1604 for (nid = first_node(mem->scan_nodes);
1605 nid < MAX_NUMNODES;
1606 nid = next_node(nid, mem->scan_nodes)) {
1607
1608 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1609 return true;
1610 }
1611 }
1612 /*
1613 * Check rest of nodes.
1614 */
1615 for_each_node_state(nid, N_HIGH_MEMORY) {
1616 if (node_isset(nid, mem->scan_nodes))
1617 continue;
1618 if (test_mem_cgroup_node_reclaimable(mem, nid, noswap))
1619 return true;
1620 }
1621 return false;
1622}
1623
889976db
YH
1624#else
1625int mem_cgroup_select_victim_node(struct mem_cgroup *mem)
1626{
1627 return 0;
1628}
4d0c066d
KH
1629
1630bool mem_cgroup_reclaimable(struct mem_cgroup *mem, bool noswap)
1631{
1632 return test_mem_cgroup_node_reclaimable(mem, 0, noswap);
1633}
889976db
YH
1634#endif
1635
04046e1a
KH
1636/*
1637 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1638 * we reclaimed from, so that we don't end up penalizing one child extensively
1639 * based on its position in the children list.
6d61ef40
BS
1640 *
1641 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1642 *
1643 * We give up and return to the caller when we visit root_mem twice.
1644 * (other groups can be removed while we're walking....)
81d39c20
KH
1645 *
1646 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1647 */
1648static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1649 struct zone *zone,
75822b44 1650 gfp_t gfp_mask,
0ae5e89c
YH
1651 unsigned long reclaim_options,
1652 unsigned long *total_scanned)
6d61ef40 1653{
04046e1a
KH
1654 struct mem_cgroup *victim;
1655 int ret, total = 0;
1656 int loop = 0;
75822b44
BS
1657 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1658 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1659 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1660 unsigned long excess;
185efc0f 1661 unsigned long nr_scanned;
9d11ea9f
JW
1662
1663 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1664
22a668d7 1665 /* If memsw_is_minimum==1, swap-out is of-no-use. */
108b6a78 1666 if (!check_soft && !shrink && root_mem->memsw_is_minimum)
22a668d7
KH
1667 noswap = true;
1668
4e416953 1669 while (1) {
04046e1a 1670 victim = mem_cgroup_select_victim(root_mem);
4e416953 1671 if (victim == root_mem) {
04046e1a 1672 loop++;
fbc29a25
KH
1673 /*
1674 * We are not draining per cpu cached charges during
1675 * soft limit reclaim because global reclaim doesn't
1676 * care about charges. It tries to free some memory and
1677 * charges will not give any.
1678 */
1679 if (!check_soft && loop >= 1)
26fe6168 1680 drain_all_stock_async(root_mem);
4e416953
BS
1681 if (loop >= 2) {
1682 /*
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1686 */
1687 if (!check_soft || !total) {
1688 css_put(&victim->css);
1689 break;
1690 }
1691 /*
25985edc 1692 * We want to do more targeted reclaim.
4e416953
BS
1693 * excess >> 2 is not to excessive so as to
1694 * reclaim too much, nor too less that we keep
1695 * coming back to reclaim from this cgroup
1696 */
1697 if (total >= (excess >> 2) ||
1698 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1699 css_put(&victim->css);
1700 break;
1701 }
1702 }
1703 }
4d0c066d 1704 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1705 /* this cgroup's local usage == 0 */
1706 css_put(&victim->css);
6d61ef40
BS
1707 continue;
1708 }
04046e1a 1709 /* we use swappiness of local cgroup */
0ae5e89c 1710 if (check_soft) {
4e416953 1711 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
185efc0f
JW
1712 noswap, zone, &nr_scanned);
1713 *total_scanned += nr_scanned;
0ae5e89c 1714 } else
4e416953 1715 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
185efc0f 1716 noswap);
04046e1a 1717 css_put(&victim->css);
81d39c20
KH
1718 /*
1719 * At shrinking usage, we can't check we should stop here or
1720 * reclaim more. It's depends on callers. last_scanned_child
1721 * will work enough for keeping fairness under tree.
1722 */
1723 if (shrink)
1724 return ret;
04046e1a 1725 total += ret;
4e416953 1726 if (check_soft) {
9d11ea9f 1727 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1728 return total;
9d11ea9f 1729 } else if (mem_cgroup_margin(root_mem))
4fd14ebf 1730 return total;
6d61ef40 1731 }
04046e1a 1732 return total;
6d61ef40
BS
1733}
1734
867578cb
KH
1735/*
1736 * Check OOM-Killer is already running under our hierarchy.
1737 * If someone is running, return false.
1af8efe9 1738 * Has to be called with memcg_oom_lock
867578cb
KH
1739 */
1740static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1741{
79dfdacc
MH
1742 struct mem_cgroup *iter, *failed = NULL;
1743 bool cond = true;
a636b327 1744
79dfdacc 1745 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
23751be0 1746 if (iter->oom_lock) {
79dfdacc
MH
1747 /*
1748 * this subtree of our hierarchy is already locked
1749 * so we cannot give a lock.
1750 */
79dfdacc
MH
1751 failed = iter;
1752 cond = false;
23751be0
JW
1753 } else
1754 iter->oom_lock = true;
7d74b06f 1755 }
867578cb 1756
79dfdacc 1757 if (!failed)
23751be0 1758 return true;
79dfdacc
MH
1759
1760 /*
1761 * OK, we failed to lock the whole subtree so we have to clean up
1762 * what we set up to the failing subtree
1763 */
1764 cond = true;
1765 for_each_mem_cgroup_tree_cond(iter, mem, cond) {
1766 if (iter == failed) {
1767 cond = false;
1768 continue;
1769 }
1770 iter->oom_lock = false;
1771 }
23751be0 1772 return false;
a636b327 1773}
0b7f569e 1774
79dfdacc 1775/*
1af8efe9 1776 * Has to be called with memcg_oom_lock
79dfdacc 1777 */
7d74b06f 1778static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1779{
7d74b06f
KH
1780 struct mem_cgroup *iter;
1781
79dfdacc
MH
1782 for_each_mem_cgroup_tree(iter, mem)
1783 iter->oom_lock = false;
1784 return 0;
1785}
1786
1787static void mem_cgroup_mark_under_oom(struct mem_cgroup *mem)
1788{
1789 struct mem_cgroup *iter;
1790
1791 for_each_mem_cgroup_tree(iter, mem)
1792 atomic_inc(&iter->under_oom);
1793}
1794
1795static void mem_cgroup_unmark_under_oom(struct mem_cgroup *mem)
1796{
1797 struct mem_cgroup *iter;
1798
867578cb
KH
1799 /*
1800 * When a new child is created while the hierarchy is under oom,
1801 * mem_cgroup_oom_lock() may not be called. We have to use
1802 * atomic_add_unless() here.
1803 */
7d74b06f 1804 for_each_mem_cgroup_tree(iter, mem)
79dfdacc 1805 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1806}
1807
1af8efe9 1808static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1809static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1810
dc98df5a
KH
1811struct oom_wait_info {
1812 struct mem_cgroup *mem;
1813 wait_queue_t wait;
1814};
1815
1816static int memcg_oom_wake_function(wait_queue_t *wait,
1817 unsigned mode, int sync, void *arg)
1818{
3e92041d
MH
1819 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg,
1820 *oom_wait_mem;
dc98df5a
KH
1821 struct oom_wait_info *oom_wait_info;
1822
1823 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
3e92041d 1824 oom_wait_mem = oom_wait_info->mem;
dc98df5a 1825
dc98df5a
KH
1826 /*
1827 * Both of oom_wait_info->mem and wake_mem are stable under us.
1828 * Then we can use css_is_ancestor without taking care of RCU.
1829 */
3e92041d
MH
1830 if (!mem_cgroup_same_or_subtree(oom_wait_mem, wake_mem)
1831 && !mem_cgroup_same_or_subtree(wake_mem, oom_wait_mem))
dc98df5a 1832 return 0;
dc98df5a
KH
1833 return autoremove_wake_function(wait, mode, sync, arg);
1834}
1835
1836static void memcg_wakeup_oom(struct mem_cgroup *mem)
1837{
1838 /* for filtering, pass "mem" as argument. */
1839 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1840}
1841
3c11ecf4
KH
1842static void memcg_oom_recover(struct mem_cgroup *mem)
1843{
79dfdacc 1844 if (mem && atomic_read(&mem->under_oom))
3c11ecf4
KH
1845 memcg_wakeup_oom(mem);
1846}
1847
867578cb
KH
1848/*
1849 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1850 */
1851bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1852{
dc98df5a 1853 struct oom_wait_info owait;
3c11ecf4 1854 bool locked, need_to_kill;
867578cb 1855
dc98df5a
KH
1856 owait.mem = mem;
1857 owait.wait.flags = 0;
1858 owait.wait.func = memcg_oom_wake_function;
1859 owait.wait.private = current;
1860 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1861 need_to_kill = true;
79dfdacc
MH
1862 mem_cgroup_mark_under_oom(mem);
1863
867578cb 1864 /* At first, try to OOM lock hierarchy under mem.*/
1af8efe9 1865 spin_lock(&memcg_oom_lock);
867578cb
KH
1866 locked = mem_cgroup_oom_lock(mem);
1867 /*
1868 * Even if signal_pending(), we can't quit charge() loop without
1869 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1870 * under OOM is always welcomed, use TASK_KILLABLE here.
1871 */
3c11ecf4
KH
1872 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1873 if (!locked || mem->oom_kill_disable)
1874 need_to_kill = false;
1875 if (locked)
9490ff27 1876 mem_cgroup_oom_notify(mem);
1af8efe9 1877 spin_unlock(&memcg_oom_lock);
867578cb 1878
3c11ecf4
KH
1879 if (need_to_kill) {
1880 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1881 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1882 } else {
867578cb 1883 schedule();
dc98df5a 1884 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1885 }
1af8efe9 1886 spin_lock(&memcg_oom_lock);
79dfdacc
MH
1887 if (locked)
1888 mem_cgroup_oom_unlock(mem);
dc98df5a 1889 memcg_wakeup_oom(mem);
1af8efe9 1890 spin_unlock(&memcg_oom_lock);
867578cb 1891
79dfdacc
MH
1892 mem_cgroup_unmark_under_oom(mem);
1893
867578cb
KH
1894 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1895 return false;
1896 /* Give chance to dying process */
1897 schedule_timeout(1);
1898 return true;
0b7f569e
KH
1899}
1900
d69b042f
BS
1901/*
1902 * Currently used to update mapped file statistics, but the routine can be
1903 * generalized to update other statistics as well.
32047e2a
KH
1904 *
1905 * Notes: Race condition
1906 *
1907 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1908 * it tends to be costly. But considering some conditions, we doesn't need
1909 * to do so _always_.
1910 *
1911 * Considering "charge", lock_page_cgroup() is not required because all
1912 * file-stat operations happen after a page is attached to radix-tree. There
1913 * are no race with "charge".
1914 *
1915 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1916 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1917 * if there are race with "uncharge". Statistics itself is properly handled
1918 * by flags.
1919 *
1920 * Considering "move", this is an only case we see a race. To make the race
1921 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1922 * possibility of race condition. If there is, we take a lock.
d69b042f 1923 */
26174efd 1924
2a7106f2
GT
1925void mem_cgroup_update_page_stat(struct page *page,
1926 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1927{
1928 struct mem_cgroup *mem;
32047e2a
KH
1929 struct page_cgroup *pc = lookup_page_cgroup(page);
1930 bool need_unlock = false;
dbd4ea78 1931 unsigned long uninitialized_var(flags);
d69b042f 1932
d69b042f
BS
1933 if (unlikely(!pc))
1934 return;
1935
32047e2a 1936 rcu_read_lock();
d69b042f 1937 mem = pc->mem_cgroup;
32047e2a
KH
1938 if (unlikely(!mem || !PageCgroupUsed(pc)))
1939 goto out;
1940 /* pc->mem_cgroup is unstable ? */
ca3e0214 1941 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1942 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1943 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1944 need_unlock = true;
1945 mem = pc->mem_cgroup;
1946 if (!mem || !PageCgroupUsed(pc))
1947 goto out;
1948 }
26174efd 1949
26174efd 1950 switch (idx) {
2a7106f2 1951 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1952 if (val > 0)
1953 SetPageCgroupFileMapped(pc);
1954 else if (!page_mapped(page))
0c270f8f 1955 ClearPageCgroupFileMapped(pc);
2a7106f2 1956 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1957 break;
1958 default:
1959 BUG();
8725d541 1960 }
d69b042f 1961
2a7106f2
GT
1962 this_cpu_add(mem->stat->count[idx], val);
1963
32047e2a
KH
1964out:
1965 if (unlikely(need_unlock))
dbd4ea78 1966 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1967 rcu_read_unlock();
1968 return;
d69b042f 1969}
2a7106f2 1970EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1971
cdec2e42
KH
1972/*
1973 * size of first charge trial. "32" comes from vmscan.c's magic value.
1974 * TODO: maybe necessary to use big numbers in big irons.
1975 */
7ec99d62 1976#define CHARGE_BATCH 32U
cdec2e42
KH
1977struct memcg_stock_pcp {
1978 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1979 unsigned int nr_pages;
cdec2e42 1980 struct work_struct work;
26fe6168
KH
1981 unsigned long flags;
1982#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1983};
1984static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1985static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1986
1987/*
11c9ea4e 1988 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1989 * from local stock and true is returned. If the stock is 0 or charges from a
1990 * cgroup which is not current target, returns false. This stock will be
1991 * refilled.
1992 */
1993static bool consume_stock(struct mem_cgroup *mem)
1994{
1995 struct memcg_stock_pcp *stock;
1996 bool ret = true;
1997
1998 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
1999 if (mem == stock->cached && stock->nr_pages)
2000 stock->nr_pages--;
cdec2e42
KH
2001 else /* need to call res_counter_charge */
2002 ret = false;
2003 put_cpu_var(memcg_stock);
2004 return ret;
2005}
2006
2007/*
2008 * Returns stocks cached in percpu to res_counter and reset cached information.
2009 */
2010static void drain_stock(struct memcg_stock_pcp *stock)
2011{
2012 struct mem_cgroup *old = stock->cached;
2013
11c9ea4e
JW
2014 if (stock->nr_pages) {
2015 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2016
2017 res_counter_uncharge(&old->res, bytes);
cdec2e42 2018 if (do_swap_account)
11c9ea4e
JW
2019 res_counter_uncharge(&old->memsw, bytes);
2020 stock->nr_pages = 0;
cdec2e42
KH
2021 }
2022 stock->cached = NULL;
cdec2e42
KH
2023}
2024
2025/*
2026 * This must be called under preempt disabled or must be called by
2027 * a thread which is pinned to local cpu.
2028 */
2029static void drain_local_stock(struct work_struct *dummy)
2030{
2031 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2032 drain_stock(stock);
26fe6168 2033 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2034}
2035
2036/*
2037 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2038 * This will be consumed by consume_stock() function, later.
cdec2e42 2039 */
11c9ea4e 2040static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
2041{
2042 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2043
2044 if (stock->cached != mem) { /* reset if necessary */
2045 drain_stock(stock);
2046 stock->cached = mem;
2047 }
11c9ea4e 2048 stock->nr_pages += nr_pages;
cdec2e42
KH
2049 put_cpu_var(memcg_stock);
2050}
2051
2052/*
d38144b7
MH
2053 * Drains all per-CPU charge caches for given root_mem resp. subtree
2054 * of the hierarchy under it. sync flag says whether we should block
2055 * until the work is done.
cdec2e42 2056 */
d38144b7 2057static void drain_all_stock(struct mem_cgroup *root_mem, bool sync)
cdec2e42 2058{
26fe6168 2059 int cpu, curcpu;
d38144b7 2060
cdec2e42 2061 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2062 get_online_cpus();
5af12d0e 2063 curcpu = get_cpu();
cdec2e42
KH
2064 for_each_online_cpu(cpu) {
2065 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
26fe6168
KH
2066 struct mem_cgroup *mem;
2067
26fe6168 2068 mem = stock->cached;
d1a05b69 2069 if (!mem || !stock->nr_pages)
26fe6168 2070 continue;
3e92041d
MH
2071 if (!mem_cgroup_same_or_subtree(root_mem, mem))
2072 continue;
d1a05b69
MH
2073 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2074 if (cpu == curcpu)
2075 drain_local_stock(&stock->work);
2076 else
2077 schedule_work_on(cpu, &stock->work);
2078 }
cdec2e42 2079 }
5af12d0e 2080 put_cpu();
d38144b7
MH
2081
2082 if (!sync)
2083 goto out;
2084
2085 for_each_online_cpu(cpu) {
2086 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2087 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2088 flush_work(&stock->work);
2089 }
2090out:
cdec2e42 2091 put_online_cpus();
d38144b7
MH
2092}
2093
2094/*
2095 * Tries to drain stocked charges in other cpus. This function is asynchronous
2096 * and just put a work per cpu for draining localy on each cpu. Caller can
2097 * expects some charges will be back to res_counter later but cannot wait for
2098 * it.
2099 */
2100static void drain_all_stock_async(struct mem_cgroup *root_mem)
2101{
9f50fad6
MH
2102 /*
2103 * If someone calls draining, avoid adding more kworker runs.
2104 */
2105 if (!mutex_trylock(&percpu_charge_mutex))
2106 return;
d38144b7 2107 drain_all_stock(root_mem, false);
9f50fad6 2108 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2109}
2110
2111/* This is a synchronous drain interface. */
d38144b7 2112static void drain_all_stock_sync(struct mem_cgroup *root_mem)
cdec2e42
KH
2113{
2114 /* called when force_empty is called */
9f50fad6 2115 mutex_lock(&percpu_charge_mutex);
d38144b7 2116 drain_all_stock(root_mem, true);
9f50fad6 2117 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2118}
2119
711d3d2c
KH
2120/*
2121 * This function drains percpu counter value from DEAD cpu and
2122 * move it to local cpu. Note that this function can be preempted.
2123 */
2124static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
2125{
2126 int i;
2127
2128 spin_lock(&mem->pcp_counter_lock);
2129 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 2130 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
2131
2132 per_cpu(mem->stat->count[i], cpu) = 0;
2133 mem->nocpu_base.count[i] += x;
2134 }
e9f8974f
JW
2135 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2136 unsigned long x = per_cpu(mem->stat->events[i], cpu);
2137
2138 per_cpu(mem->stat->events[i], cpu) = 0;
2139 mem->nocpu_base.events[i] += x;
2140 }
1489ebad
KH
2141 /* need to clear ON_MOVE value, works as a kind of lock. */
2142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2143 spin_unlock(&mem->pcp_counter_lock);
2144}
2145
2146static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
2147{
2148 int idx = MEM_CGROUP_ON_MOVE;
2149
2150 spin_lock(&mem->pcp_counter_lock);
2151 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
2152 spin_unlock(&mem->pcp_counter_lock);
2153}
2154
2155static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2156 unsigned long action,
2157 void *hcpu)
2158{
2159 int cpu = (unsigned long)hcpu;
2160 struct memcg_stock_pcp *stock;
711d3d2c 2161 struct mem_cgroup *iter;
cdec2e42 2162
1489ebad
KH
2163 if ((action == CPU_ONLINE)) {
2164 for_each_mem_cgroup_all(iter)
2165 synchronize_mem_cgroup_on_move(iter, cpu);
2166 return NOTIFY_OK;
2167 }
2168
711d3d2c 2169 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2170 return NOTIFY_OK;
711d3d2c
KH
2171
2172 for_each_mem_cgroup_all(iter)
2173 mem_cgroup_drain_pcp_counter(iter, cpu);
2174
cdec2e42
KH
2175 stock = &per_cpu(memcg_stock, cpu);
2176 drain_stock(stock);
2177 return NOTIFY_OK;
2178}
2179
4b534334
KH
2180
2181/* See __mem_cgroup_try_charge() for details */
2182enum {
2183 CHARGE_OK, /* success */
2184 CHARGE_RETRY, /* need to retry but retry is not bad */
2185 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2186 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2187 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2188};
2189
7ec99d62
JW
2190static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
2191 unsigned int nr_pages, bool oom_check)
4b534334 2192{
7ec99d62 2193 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2194 struct mem_cgroup *mem_over_limit;
2195 struct res_counter *fail_res;
2196 unsigned long flags = 0;
2197 int ret;
2198
2199 ret = res_counter_charge(&mem->res, csize, &fail_res);
2200
2201 if (likely(!ret)) {
2202 if (!do_swap_account)
2203 return CHARGE_OK;
2204 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
2205 if (likely(!ret))
2206 return CHARGE_OK;
2207
01c88e2d 2208 res_counter_uncharge(&mem->res, csize);
4b534334
KH
2209 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2210 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2211 } else
2212 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2213 /*
7ec99d62
JW
2214 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2215 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2216 *
2217 * Never reclaim on behalf of optional batching, retry with a
2218 * single page instead.
2219 */
7ec99d62 2220 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2221 return CHARGE_RETRY;
2222
2223 if (!(gfp_mask & __GFP_WAIT))
2224 return CHARGE_WOULDBLOCK;
2225
2226 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2227 gfp_mask, flags, NULL);
7ec99d62 2228 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2229 return CHARGE_RETRY;
4b534334 2230 /*
19942822
JW
2231 * Even though the limit is exceeded at this point, reclaim
2232 * may have been able to free some pages. Retry the charge
2233 * before killing the task.
2234 *
2235 * Only for regular pages, though: huge pages are rather
2236 * unlikely to succeed so close to the limit, and we fall back
2237 * to regular pages anyway in case of failure.
4b534334 2238 */
7ec99d62 2239 if (nr_pages == 1 && ret)
4b534334
KH
2240 return CHARGE_RETRY;
2241
2242 /*
2243 * At task move, charge accounts can be doubly counted. So, it's
2244 * better to wait until the end of task_move if something is going on.
2245 */
2246 if (mem_cgroup_wait_acct_move(mem_over_limit))
2247 return CHARGE_RETRY;
2248
2249 /* If we don't need to call oom-killer at el, return immediately */
2250 if (!oom_check)
2251 return CHARGE_NOMEM;
2252 /* check OOM */
2253 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2254 return CHARGE_OOM_DIE;
2255
2256 return CHARGE_RETRY;
2257}
2258
f817ed48
KH
2259/*
2260 * Unlike exported interface, "oom" parameter is added. if oom==true,
2261 * oom-killer can be invoked.
8a9f3ccd 2262 */
f817ed48 2263static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2264 gfp_t gfp_mask,
7ec99d62
JW
2265 unsigned int nr_pages,
2266 struct mem_cgroup **memcg,
2267 bool oom)
8a9f3ccd 2268{
7ec99d62 2269 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
2270 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2271 struct mem_cgroup *mem = NULL;
2272 int ret;
a636b327 2273
867578cb
KH
2274 /*
2275 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2276 * in system level. So, allow to go ahead dying process in addition to
2277 * MEMDIE process.
2278 */
2279 if (unlikely(test_thread_flag(TIF_MEMDIE)
2280 || fatal_signal_pending(current)))
2281 goto bypass;
a636b327 2282
8a9f3ccd 2283 /*
3be91277
HD
2284 * We always charge the cgroup the mm_struct belongs to.
2285 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2286 * thread group leader migrates. It's possible that mm is not
2287 * set, if so charge the init_mm (happens for pagecache usage).
2288 */
f75ca962
KH
2289 if (!*memcg && !mm)
2290 goto bypass;
2291again:
2292 if (*memcg) { /* css should be a valid one */
4b534334 2293 mem = *memcg;
f75ca962
KH
2294 VM_BUG_ON(css_is_removed(&mem->css));
2295 if (mem_cgroup_is_root(mem))
2296 goto done;
7ec99d62 2297 if (nr_pages == 1 && consume_stock(mem))
f75ca962 2298 goto done;
4b534334
KH
2299 css_get(&mem->css);
2300 } else {
f75ca962 2301 struct task_struct *p;
54595fe2 2302
f75ca962
KH
2303 rcu_read_lock();
2304 p = rcu_dereference(mm->owner);
f75ca962 2305 /*
ebb76ce1
KH
2306 * Because we don't have task_lock(), "p" can exit.
2307 * In that case, "mem" can point to root or p can be NULL with
2308 * race with swapoff. Then, we have small risk of mis-accouning.
2309 * But such kind of mis-account by race always happens because
2310 * we don't have cgroup_mutex(). It's overkill and we allo that
2311 * small race, here.
2312 * (*) swapoff at el will charge against mm-struct not against
2313 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2314 */
2315 mem = mem_cgroup_from_task(p);
ebb76ce1 2316 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2317 rcu_read_unlock();
2318 goto done;
2319 }
7ec99d62 2320 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2321 /*
2322 * It seems dagerous to access memcg without css_get().
2323 * But considering how consume_stok works, it's not
2324 * necessary. If consume_stock success, some charges
2325 * from this memcg are cached on this cpu. So, we
2326 * don't need to call css_get()/css_tryget() before
2327 * calling consume_stock().
2328 */
2329 rcu_read_unlock();
2330 goto done;
2331 }
2332 /* after here, we may be blocked. we need to get refcnt */
2333 if (!css_tryget(&mem->css)) {
2334 rcu_read_unlock();
2335 goto again;
2336 }
2337 rcu_read_unlock();
2338 }
8a9f3ccd 2339
4b534334
KH
2340 do {
2341 bool oom_check;
7a81b88c 2342
4b534334 2343 /* If killed, bypass charge */
f75ca962
KH
2344 if (fatal_signal_pending(current)) {
2345 css_put(&mem->css);
4b534334 2346 goto bypass;
f75ca962 2347 }
6d61ef40 2348
4b534334
KH
2349 oom_check = false;
2350 if (oom && !nr_oom_retries) {
2351 oom_check = true;
2352 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2353 }
66e1707b 2354
7ec99d62 2355 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2356 switch (ret) {
2357 case CHARGE_OK:
2358 break;
2359 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2360 batch = nr_pages;
f75ca962
KH
2361 css_put(&mem->css);
2362 mem = NULL;
2363 goto again;
4b534334 2364 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2365 css_put(&mem->css);
4b534334
KH
2366 goto nomem;
2367 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2368 if (!oom) {
2369 css_put(&mem->css);
867578cb 2370 goto nomem;
f75ca962 2371 }
4b534334
KH
2372 /* If oom, we never return -ENOMEM */
2373 nr_oom_retries--;
2374 break;
2375 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2376 css_put(&mem->css);
867578cb 2377 goto bypass;
66e1707b 2378 }
4b534334
KH
2379 } while (ret != CHARGE_OK);
2380
7ec99d62
JW
2381 if (batch > nr_pages)
2382 refill_stock(mem, batch - nr_pages);
f75ca962 2383 css_put(&mem->css);
0c3e73e8 2384done:
f75ca962 2385 *memcg = mem;
7a81b88c
KH
2386 return 0;
2387nomem:
f75ca962 2388 *memcg = NULL;
7a81b88c 2389 return -ENOMEM;
867578cb
KH
2390bypass:
2391 *memcg = NULL;
2392 return 0;
7a81b88c 2393}
8a9f3ccd 2394
a3032a2c
DN
2395/*
2396 * Somemtimes we have to undo a charge we got by try_charge().
2397 * This function is for that and do uncharge, put css's refcnt.
2398 * gotten by try_charge().
2399 */
854ffa8d 2400static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2401 unsigned int nr_pages)
a3032a2c
DN
2402{
2403 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2404 unsigned long bytes = nr_pages * PAGE_SIZE;
2405
2406 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2407 if (do_swap_account)
e7018b8d 2408 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2409 }
854ffa8d
DN
2410}
2411
a3b2d692
KH
2412/*
2413 * A helper function to get mem_cgroup from ID. must be called under
2414 * rcu_read_lock(). The caller must check css_is_removed() or some if
2415 * it's concern. (dropping refcnt from swap can be called against removed
2416 * memcg.)
2417 */
2418static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2419{
2420 struct cgroup_subsys_state *css;
2421
2422 /* ID 0 is unused ID */
2423 if (!id)
2424 return NULL;
2425 css = css_lookup(&mem_cgroup_subsys, id);
2426 if (!css)
2427 return NULL;
2428 return container_of(css, struct mem_cgroup, css);
2429}
2430
e42d9d5d 2431struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2432{
e42d9d5d 2433 struct mem_cgroup *mem = NULL;
3c776e64 2434 struct page_cgroup *pc;
a3b2d692 2435 unsigned short id;
b5a84319
KH
2436 swp_entry_t ent;
2437
3c776e64
DN
2438 VM_BUG_ON(!PageLocked(page));
2439
3c776e64 2440 pc = lookup_page_cgroup(page);
c0bd3f63 2441 lock_page_cgroup(pc);
a3b2d692 2442 if (PageCgroupUsed(pc)) {
3c776e64 2443 mem = pc->mem_cgroup;
a3b2d692
KH
2444 if (mem && !css_tryget(&mem->css))
2445 mem = NULL;
e42d9d5d 2446 } else if (PageSwapCache(page)) {
3c776e64 2447 ent.val = page_private(page);
a3b2d692
KH
2448 id = lookup_swap_cgroup(ent);
2449 rcu_read_lock();
2450 mem = mem_cgroup_lookup(id);
2451 if (mem && !css_tryget(&mem->css))
2452 mem = NULL;
2453 rcu_read_unlock();
3c776e64 2454 }
c0bd3f63 2455 unlock_page_cgroup(pc);
b5a84319
KH
2456 return mem;
2457}
2458
ca3e0214 2459static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2460 struct page *page,
7ec99d62 2461 unsigned int nr_pages,
ca3e0214 2462 struct page_cgroup *pc,
7ec99d62 2463 enum charge_type ctype)
7a81b88c 2464{
ca3e0214
KH
2465 lock_page_cgroup(pc);
2466 if (unlikely(PageCgroupUsed(pc))) {
2467 unlock_page_cgroup(pc);
e7018b8d 2468 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2469 return;
2470 }
2471 /*
2472 * we don't need page_cgroup_lock about tail pages, becase they are not
2473 * accessed by any other context at this point.
2474 */
8a9f3ccd 2475 pc->mem_cgroup = mem;
261fb61a
KH
2476 /*
2477 * We access a page_cgroup asynchronously without lock_page_cgroup().
2478 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2479 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2480 * before USED bit, we need memory barrier here.
2481 * See mem_cgroup_add_lru_list(), etc.
2482 */
08e552c6 2483 smp_wmb();
4b3bde4c
BS
2484 switch (ctype) {
2485 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2486 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2487 SetPageCgroupCache(pc);
2488 SetPageCgroupUsed(pc);
2489 break;
2490 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2491 ClearPageCgroupCache(pc);
2492 SetPageCgroupUsed(pc);
2493 break;
2494 default:
2495 break;
2496 }
3be91277 2497
ca3e0214 2498 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2499 unlock_page_cgroup(pc);
430e4863
KH
2500 /*
2501 * "charge_statistics" updated event counter. Then, check it.
2502 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2503 * if they exceeds softlimit.
2504 */
5564e88b 2505 memcg_check_events(mem, page);
7a81b88c 2506}
66e1707b 2507
ca3e0214
KH
2508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2509
2510#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2511 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2512/*
2513 * Because tail pages are not marked as "used", set it. We're under
2514 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2515 */
2516void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2517{
2518 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2519 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2520 unsigned long flags;
2521
3d37c4a9
KH
2522 if (mem_cgroup_disabled())
2523 return;
ca3e0214 2524 /*
ece35ca8 2525 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2526 * page state accounting.
2527 */
2528 move_lock_page_cgroup(head_pc, &flags);
2529
2530 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2531 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2532 if (PageCgroupAcctLRU(head_pc)) {
2533 enum lru_list lru;
2534 struct mem_cgroup_per_zone *mz;
2535
2536 /*
2537 * LRU flags cannot be copied because we need to add tail
2538 *.page to LRU by generic call and our hook will be called.
2539 * We hold lru_lock, then, reduce counter directly.
2540 */
2541 lru = page_lru(head);
97a6c37b 2542 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2543 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2544 }
ca3e0214
KH
2545 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2546 move_unlock_page_cgroup(head_pc, &flags);
2547}
2548#endif
2549
f817ed48 2550/**
de3638d9 2551 * mem_cgroup_move_account - move account of the page
5564e88b 2552 * @page: the page
7ec99d62 2553 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2554 * @pc: page_cgroup of the page.
2555 * @from: mem_cgroup which the page is moved from.
2556 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2557 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2558 *
2559 * The caller must confirm following.
08e552c6 2560 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2561 * - compound_lock is held when nr_pages > 1
f817ed48 2562 *
854ffa8d 2563 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2564 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2565 * true, this function does "uncharge" from old cgroup, but it doesn't if
2566 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2567 */
7ec99d62
JW
2568static int mem_cgroup_move_account(struct page *page,
2569 unsigned int nr_pages,
2570 struct page_cgroup *pc,
2571 struct mem_cgroup *from,
2572 struct mem_cgroup *to,
2573 bool uncharge)
f817ed48 2574{
de3638d9
JW
2575 unsigned long flags;
2576 int ret;
987eba66 2577
f817ed48 2578 VM_BUG_ON(from == to);
5564e88b 2579 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2580 /*
2581 * The page is isolated from LRU. So, collapse function
2582 * will not handle this page. But page splitting can happen.
2583 * Do this check under compound_page_lock(). The caller should
2584 * hold it.
2585 */
2586 ret = -EBUSY;
7ec99d62 2587 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2588 goto out;
2589
2590 lock_page_cgroup(pc);
2591
2592 ret = -EINVAL;
2593 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2594 goto unlock;
2595
2596 move_lock_page_cgroup(pc, &flags);
f817ed48 2597
8725d541 2598 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2599 /* Update mapped_file data for mem_cgroup */
2600 preempt_disable();
2601 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2602 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2603 preempt_enable();
d69b042f 2604 }
987eba66 2605 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2606 if (uncharge)
2607 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2608 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2609
854ffa8d 2610 /* caller should have done css_get */
08e552c6 2611 pc->mem_cgroup = to;
987eba66 2612 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2613 /*
2614 * We charges against "to" which may not have any tasks. Then, "to"
2615 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2616 * this function is just force_empty() and move charge, so it's
25985edc 2617 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2618 * status here.
88703267 2619 */
de3638d9
JW
2620 move_unlock_page_cgroup(pc, &flags);
2621 ret = 0;
2622unlock:
57f9fd7d 2623 unlock_page_cgroup(pc);
d2265e6f
KH
2624 /*
2625 * check events
2626 */
5564e88b
JW
2627 memcg_check_events(to, page);
2628 memcg_check_events(from, page);
de3638d9 2629out:
f817ed48
KH
2630 return ret;
2631}
2632
2633/*
2634 * move charges to its parent.
2635 */
2636
5564e88b
JW
2637static int mem_cgroup_move_parent(struct page *page,
2638 struct page_cgroup *pc,
f817ed48
KH
2639 struct mem_cgroup *child,
2640 gfp_t gfp_mask)
2641{
2642 struct cgroup *cg = child->css.cgroup;
2643 struct cgroup *pcg = cg->parent;
2644 struct mem_cgroup *parent;
7ec99d62 2645 unsigned int nr_pages;
4be4489f 2646 unsigned long uninitialized_var(flags);
f817ed48
KH
2647 int ret;
2648
2649 /* Is ROOT ? */
2650 if (!pcg)
2651 return -EINVAL;
2652
57f9fd7d
DN
2653 ret = -EBUSY;
2654 if (!get_page_unless_zero(page))
2655 goto out;
2656 if (isolate_lru_page(page))
2657 goto put;
52dbb905 2658
7ec99d62 2659 nr_pages = hpage_nr_pages(page);
08e552c6 2660
f817ed48 2661 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2662 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2663 if (ret || !parent)
57f9fd7d 2664 goto put_back;
f817ed48 2665
7ec99d62 2666 if (nr_pages > 1)
987eba66
KH
2667 flags = compound_lock_irqsave(page);
2668
7ec99d62 2669 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2670 if (ret)
7ec99d62 2671 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2672
7ec99d62 2673 if (nr_pages > 1)
987eba66 2674 compound_unlock_irqrestore(page, flags);
8dba474f 2675put_back:
08e552c6 2676 putback_lru_page(page);
57f9fd7d 2677put:
40d58138 2678 put_page(page);
57f9fd7d 2679out:
f817ed48
KH
2680 return ret;
2681}
2682
7a81b88c
KH
2683/*
2684 * Charge the memory controller for page usage.
2685 * Return
2686 * 0 if the charge was successful
2687 * < 0 if the cgroup is over its limit
2688 */
2689static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2690 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2691{
73045c47 2692 struct mem_cgroup *mem = NULL;
7ec99d62 2693 unsigned int nr_pages = 1;
7a81b88c 2694 struct page_cgroup *pc;
8493ae43 2695 bool oom = true;
7a81b88c 2696 int ret;
ec168510 2697
37c2ac78 2698 if (PageTransHuge(page)) {
7ec99d62 2699 nr_pages <<= compound_order(page);
37c2ac78 2700 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2701 /*
2702 * Never OOM-kill a process for a huge page. The
2703 * fault handler will fall back to regular pages.
2704 */
2705 oom = false;
37c2ac78 2706 }
7a81b88c
KH
2707
2708 pc = lookup_page_cgroup(page);
af4a6621 2709 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2710
7ec99d62 2711 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2712 if (ret || !mem)
7a81b88c
KH
2713 return ret;
2714
7ec99d62 2715 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2716 return 0;
8a9f3ccd
BS
2717}
2718
7a81b88c
KH
2719int mem_cgroup_newpage_charge(struct page *page,
2720 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2721{
f8d66542 2722 if (mem_cgroup_disabled())
cede86ac 2723 return 0;
69029cd5
KH
2724 /*
2725 * If already mapped, we don't have to account.
2726 * If page cache, page->mapping has address_space.
2727 * But page->mapping may have out-of-use anon_vma pointer,
2728 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2729 * is NULL.
2730 */
2731 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2732 return 0;
2733 if (unlikely(!mm))
2734 mm = &init_mm;
217bc319 2735 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2736 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2737}
2738
83aae4c7
DN
2739static void
2740__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2741 enum charge_type ctype);
2742
5a6475a4
KH
2743static void
2744__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *mem,
2745 enum charge_type ctype)
2746{
2747 struct page_cgroup *pc = lookup_page_cgroup(page);
2748 /*
2749 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2750 * is already on LRU. It means the page may on some other page_cgroup's
2751 * LRU. Take care of it.
2752 */
2753 mem_cgroup_lru_del_before_commit(page);
2754 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
2755 mem_cgroup_lru_add_after_commit(page);
2756 return;
2757}
2758
e1a1cd59
BS
2759int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2760 gfp_t gfp_mask)
8697d331 2761{
5a6475a4 2762 struct mem_cgroup *mem = NULL;
b5a84319
KH
2763 int ret;
2764
f8d66542 2765 if (mem_cgroup_disabled())
cede86ac 2766 return 0;
52d4b9ac
KH
2767 if (PageCompound(page))
2768 return 0;
accf163e 2769
73045c47 2770 if (unlikely(!mm))
8697d331 2771 mm = &init_mm;
accf163e 2772
5a6475a4
KH
2773 if (page_is_file_cache(page)) {
2774 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &mem, true);
2775 if (ret || !mem)
2776 return ret;
b5a84319 2777
5a6475a4
KH
2778 /*
2779 * FUSE reuses pages without going through the final
2780 * put that would remove them from the LRU list, make
2781 * sure that they get relinked properly.
2782 */
2783 __mem_cgroup_commit_charge_lrucare(page, mem,
2784 MEM_CGROUP_CHARGE_TYPE_CACHE);
2785 return ret;
2786 }
83aae4c7
DN
2787 /* shmem */
2788 if (PageSwapCache(page)) {
2789 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2790 if (!ret)
2791 __mem_cgroup_commit_charge_swapin(page, mem,
2792 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2793 } else
2794 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2795 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2796
b5a84319 2797 return ret;
e8589cc1
KH
2798}
2799
54595fe2
KH
2800/*
2801 * While swap-in, try_charge -> commit or cancel, the page is locked.
2802 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2803 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2804 * "commit()" or removed by "cancel()"
2805 */
8c7c6e34
KH
2806int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2807 struct page *page,
2808 gfp_t mask, struct mem_cgroup **ptr)
2809{
2810 struct mem_cgroup *mem;
54595fe2 2811 int ret;
8c7c6e34 2812
56039efa
KH
2813 *ptr = NULL;
2814
f8d66542 2815 if (mem_cgroup_disabled())
8c7c6e34
KH
2816 return 0;
2817
2818 if (!do_swap_account)
2819 goto charge_cur_mm;
8c7c6e34
KH
2820 /*
2821 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2822 * the pte, and even removed page from swap cache: in those cases
2823 * do_swap_page()'s pte_same() test will fail; but there's also a
2824 * KSM case which does need to charge the page.
8c7c6e34
KH
2825 */
2826 if (!PageSwapCache(page))
407f9c8b 2827 goto charge_cur_mm;
e42d9d5d 2828 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2829 if (!mem)
2830 goto charge_cur_mm;
8c7c6e34 2831 *ptr = mem;
7ec99d62 2832 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2833 css_put(&mem->css);
2834 return ret;
8c7c6e34
KH
2835charge_cur_mm:
2836 if (unlikely(!mm))
2837 mm = &init_mm;
7ec99d62 2838 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2839}
2840
83aae4c7
DN
2841static void
2842__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2843 enum charge_type ctype)
7a81b88c 2844{
f8d66542 2845 if (mem_cgroup_disabled())
7a81b88c
KH
2846 return;
2847 if (!ptr)
2848 return;
88703267 2849 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2850
2851 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2852 /*
2853 * Now swap is on-memory. This means this page may be
2854 * counted both as mem and swap....double count.
03f3c433
KH
2855 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2856 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2857 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2858 */
03f3c433 2859 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2860 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2861 unsigned short id;
8c7c6e34 2862 struct mem_cgroup *memcg;
a3b2d692
KH
2863
2864 id = swap_cgroup_record(ent, 0);
2865 rcu_read_lock();
2866 memcg = mem_cgroup_lookup(id);
8c7c6e34 2867 if (memcg) {
a3b2d692
KH
2868 /*
2869 * This recorded memcg can be obsolete one. So, avoid
2870 * calling css_tryget
2871 */
0c3e73e8 2872 if (!mem_cgroup_is_root(memcg))
4e649152 2873 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2874 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2875 mem_cgroup_put(memcg);
2876 }
a3b2d692 2877 rcu_read_unlock();
8c7c6e34 2878 }
88703267
KH
2879 /*
2880 * At swapin, we may charge account against cgroup which has no tasks.
2881 * So, rmdir()->pre_destroy() can be called while we do this charge.
2882 * In that case, we need to call pre_destroy() again. check it here.
2883 */
2884 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2885}
2886
83aae4c7
DN
2887void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2888{
2889 __mem_cgroup_commit_charge_swapin(page, ptr,
2890 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2891}
2892
7a81b88c
KH
2893void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2894{
f8d66542 2895 if (mem_cgroup_disabled())
7a81b88c
KH
2896 return;
2897 if (!mem)
2898 return;
e7018b8d 2899 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
2900}
2901
7ec99d62
JW
2902static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2903 unsigned int nr_pages,
2904 const enum charge_type ctype)
569b846d
KH
2905{
2906 struct memcg_batch_info *batch = NULL;
2907 bool uncharge_memsw = true;
7ec99d62 2908
569b846d
KH
2909 /* If swapout, usage of swap doesn't decrease */
2910 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2911 uncharge_memsw = false;
569b846d
KH
2912
2913 batch = &current->memcg_batch;
2914 /*
2915 * In usual, we do css_get() when we remember memcg pointer.
2916 * But in this case, we keep res->usage until end of a series of
2917 * uncharges. Then, it's ok to ignore memcg's refcnt.
2918 */
2919 if (!batch->memcg)
2920 batch->memcg = mem;
3c11ecf4
KH
2921 /*
2922 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2923 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2924 * the same cgroup and we have chance to coalesce uncharges.
2925 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2926 * because we want to do uncharge as soon as possible.
2927 */
2928
2929 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2930 goto direct_uncharge;
2931
7ec99d62 2932 if (nr_pages > 1)
ec168510
AA
2933 goto direct_uncharge;
2934
569b846d
KH
2935 /*
2936 * In typical case, batch->memcg == mem. This means we can
2937 * merge a series of uncharges to an uncharge of res_counter.
2938 * If not, we uncharge res_counter ony by one.
2939 */
2940 if (batch->memcg != mem)
2941 goto direct_uncharge;
2942 /* remember freed charge and uncharge it later */
7ffd4ca7 2943 batch->nr_pages++;
569b846d 2944 if (uncharge_memsw)
7ffd4ca7 2945 batch->memsw_nr_pages++;
569b846d
KH
2946 return;
2947direct_uncharge:
7ec99d62 2948 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 2949 if (uncharge_memsw)
7ec99d62 2950 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
2951 if (unlikely(batch->memcg != mem))
2952 memcg_oom_recover(mem);
569b846d
KH
2953 return;
2954}
7a81b88c 2955
8a9f3ccd 2956/*
69029cd5 2957 * uncharge if !page_mapped(page)
8a9f3ccd 2958 */
8c7c6e34 2959static struct mem_cgroup *
69029cd5 2960__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2961{
8c7c6e34 2962 struct mem_cgroup *mem = NULL;
7ec99d62
JW
2963 unsigned int nr_pages = 1;
2964 struct page_cgroup *pc;
8a9f3ccd 2965
f8d66542 2966 if (mem_cgroup_disabled())
8c7c6e34 2967 return NULL;
4077960e 2968
d13d1443 2969 if (PageSwapCache(page))
8c7c6e34 2970 return NULL;
d13d1443 2971
37c2ac78 2972 if (PageTransHuge(page)) {
7ec99d62 2973 nr_pages <<= compound_order(page);
37c2ac78
AA
2974 VM_BUG_ON(!PageTransHuge(page));
2975 }
8697d331 2976 /*
3c541e14 2977 * Check if our page_cgroup is valid
8697d331 2978 */
52d4b9ac
KH
2979 pc = lookup_page_cgroup(page);
2980 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2981 return NULL;
b9c565d5 2982
52d4b9ac 2983 lock_page_cgroup(pc);
d13d1443 2984
8c7c6e34
KH
2985 mem = pc->mem_cgroup;
2986
d13d1443
KH
2987 if (!PageCgroupUsed(pc))
2988 goto unlock_out;
2989
2990 switch (ctype) {
2991 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2992 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2993 /* See mem_cgroup_prepare_migration() */
2994 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2995 goto unlock_out;
2996 break;
2997 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2998 if (!PageAnon(page)) { /* Shared memory */
2999 if (page->mapping && !page_is_file_cache(page))
3000 goto unlock_out;
3001 } else if (page_mapped(page)) /* Anon */
3002 goto unlock_out;
3003 break;
3004 default:
3005 break;
52d4b9ac 3006 }
d13d1443 3007
7ec99d62 3008 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 3009
52d4b9ac 3010 ClearPageCgroupUsed(pc);
544122e5
KH
3011 /*
3012 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3013 * freed from LRU. This is safe because uncharged page is expected not
3014 * to be reused (freed soon). Exception is SwapCache, it's handled by
3015 * special functions.
3016 */
b9c565d5 3017
52d4b9ac 3018 unlock_page_cgroup(pc);
f75ca962
KH
3019 /*
3020 * even after unlock, we have mem->res.usage here and this memcg
3021 * will never be freed.
3022 */
d2265e6f 3023 memcg_check_events(mem, page);
f75ca962
KH
3024 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3025 mem_cgroup_swap_statistics(mem, true);
3026 mem_cgroup_get(mem);
3027 }
3028 if (!mem_cgroup_is_root(mem))
7ec99d62 3029 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 3030
8c7c6e34 3031 return mem;
d13d1443
KH
3032
3033unlock_out:
3034 unlock_page_cgroup(pc);
8c7c6e34 3035 return NULL;
3c541e14
BS
3036}
3037
69029cd5
KH
3038void mem_cgroup_uncharge_page(struct page *page)
3039{
52d4b9ac
KH
3040 /* early check. */
3041 if (page_mapped(page))
3042 return;
3043 if (page->mapping && !PageAnon(page))
3044 return;
69029cd5
KH
3045 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3046}
3047
3048void mem_cgroup_uncharge_cache_page(struct page *page)
3049{
3050 VM_BUG_ON(page_mapped(page));
b7abea96 3051 VM_BUG_ON(page->mapping);
69029cd5
KH
3052 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3053}
3054
569b846d
KH
3055/*
3056 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3057 * In that cases, pages are freed continuously and we can expect pages
3058 * are in the same memcg. All these calls itself limits the number of
3059 * pages freed at once, then uncharge_start/end() is called properly.
3060 * This may be called prural(2) times in a context,
3061 */
3062
3063void mem_cgroup_uncharge_start(void)
3064{
3065 current->memcg_batch.do_batch++;
3066 /* We can do nest. */
3067 if (current->memcg_batch.do_batch == 1) {
3068 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3069 current->memcg_batch.nr_pages = 0;
3070 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3071 }
3072}
3073
3074void mem_cgroup_uncharge_end(void)
3075{
3076 struct memcg_batch_info *batch = &current->memcg_batch;
3077
3078 if (!batch->do_batch)
3079 return;
3080
3081 batch->do_batch--;
3082 if (batch->do_batch) /* If stacked, do nothing. */
3083 return;
3084
3085 if (!batch->memcg)
3086 return;
3087 /*
3088 * This "batch->memcg" is valid without any css_get/put etc...
3089 * bacause we hide charges behind us.
3090 */
7ffd4ca7
JW
3091 if (batch->nr_pages)
3092 res_counter_uncharge(&batch->memcg->res,
3093 batch->nr_pages * PAGE_SIZE);
3094 if (batch->memsw_nr_pages)
3095 res_counter_uncharge(&batch->memcg->memsw,
3096 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3097 memcg_oom_recover(batch->memcg);
569b846d
KH
3098 /* forget this pointer (for sanity check) */
3099 batch->memcg = NULL;
3100}
3101
e767e056 3102#ifdef CONFIG_SWAP
8c7c6e34 3103/*
e767e056 3104 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3105 * memcg information is recorded to swap_cgroup of "ent"
3106 */
8a9478ca
KH
3107void
3108mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3109{
3110 struct mem_cgroup *memcg;
8a9478ca
KH
3111 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3112
3113 if (!swapout) /* this was a swap cache but the swap is unused ! */
3114 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3115
3116 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3117
f75ca962
KH
3118 /*
3119 * record memcg information, if swapout && memcg != NULL,
3120 * mem_cgroup_get() was called in uncharge().
3121 */
3122 if (do_swap_account && swapout && memcg)
a3b2d692 3123 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3124}
e767e056 3125#endif
8c7c6e34
KH
3126
3127#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3128/*
3129 * called from swap_entry_free(). remove record in swap_cgroup and
3130 * uncharge "memsw" account.
3131 */
3132void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3133{
8c7c6e34 3134 struct mem_cgroup *memcg;
a3b2d692 3135 unsigned short id;
8c7c6e34
KH
3136
3137 if (!do_swap_account)
3138 return;
3139
a3b2d692
KH
3140 id = swap_cgroup_record(ent, 0);
3141 rcu_read_lock();
3142 memcg = mem_cgroup_lookup(id);
8c7c6e34 3143 if (memcg) {
a3b2d692
KH
3144 /*
3145 * We uncharge this because swap is freed.
3146 * This memcg can be obsolete one. We avoid calling css_tryget
3147 */
0c3e73e8 3148 if (!mem_cgroup_is_root(memcg))
4e649152 3149 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3150 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3151 mem_cgroup_put(memcg);
3152 }
a3b2d692 3153 rcu_read_unlock();
d13d1443 3154}
02491447
DN
3155
3156/**
3157 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3158 * @entry: swap entry to be moved
3159 * @from: mem_cgroup which the entry is moved from
3160 * @to: mem_cgroup which the entry is moved to
483c30b5 3161 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3172 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3173{
3174 unsigned short old_id, new_id;
3175
3176 old_id = css_id(&from->css);
3177 new_id = css_id(&to->css);
3178
3179 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3180 mem_cgroup_swap_statistics(from, false);
483c30b5 3181 mem_cgroup_swap_statistics(to, true);
02491447 3182 /*
483c30b5
DN
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
02491447 3189 */
02491447 3190 mem_cgroup_get(to);
483c30b5
DN
3191 if (need_fixup) {
3192 if (!mem_cgroup_is_root(from))
3193 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3194 mem_cgroup_put(from);
3195 /*
3196 * we charged both to->res and to->memsw, so we should
3197 * uncharge to->res.
3198 */
3199 if (!mem_cgroup_is_root(to))
3200 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3201 }
02491447
DN
3202 return 0;
3203 }
3204 return -EINVAL;
3205}
3206#else
3207static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3208 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3209{
3210 return -EINVAL;
3211}
8c7c6e34 3212#endif
d13d1443 3213
ae41be37 3214/*
01b1ae63
KH
3215 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3216 * page belongs to.
ae41be37 3217 */
ac39cf8c 3218int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3219 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3220{
e8589cc1 3221 struct mem_cgroup *mem = NULL;
7ec99d62 3222 struct page_cgroup *pc;
ac39cf8c 3223 enum charge_type ctype;
e8589cc1 3224 int ret = 0;
8869b8f6 3225
56039efa
KH
3226 *ptr = NULL;
3227
ec168510 3228 VM_BUG_ON(PageTransHuge(page));
f8d66542 3229 if (mem_cgroup_disabled())
4077960e
BS
3230 return 0;
3231
52d4b9ac
KH
3232 pc = lookup_page_cgroup(page);
3233 lock_page_cgroup(pc);
3234 if (PageCgroupUsed(pc)) {
e8589cc1
KH
3235 mem = pc->mem_cgroup;
3236 css_get(&mem->css);
ac39cf8c
AM
3237 /*
3238 * At migrating an anonymous page, its mapcount goes down
3239 * to 0 and uncharge() will be called. But, even if it's fully
3240 * unmapped, migration may fail and this page has to be
3241 * charged again. We set MIGRATION flag here and delay uncharge
3242 * until end_migration() is called
3243 *
3244 * Corner Case Thinking
3245 * A)
3246 * When the old page was mapped as Anon and it's unmap-and-freed
3247 * while migration was ongoing.
3248 * If unmap finds the old page, uncharge() of it will be delayed
3249 * until end_migration(). If unmap finds a new page, it's
3250 * uncharged when it make mapcount to be 1->0. If unmap code
3251 * finds swap_migration_entry, the new page will not be mapped
3252 * and end_migration() will find it(mapcount==0).
3253 *
3254 * B)
3255 * When the old page was mapped but migraion fails, the kernel
3256 * remaps it. A charge for it is kept by MIGRATION flag even
3257 * if mapcount goes down to 0. We can do remap successfully
3258 * without charging it again.
3259 *
3260 * C)
3261 * The "old" page is under lock_page() until the end of
3262 * migration, so, the old page itself will not be swapped-out.
3263 * If the new page is swapped out before end_migraton, our
3264 * hook to usual swap-out path will catch the event.
3265 */
3266 if (PageAnon(page))
3267 SetPageCgroupMigration(pc);
e8589cc1 3268 }
52d4b9ac 3269 unlock_page_cgroup(pc);
ac39cf8c
AM
3270 /*
3271 * If the page is not charged at this point,
3272 * we return here.
3273 */
3274 if (!mem)
3275 return 0;
01b1ae63 3276
93d5c9be 3277 *ptr = mem;
7ec99d62 3278 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
3279 css_put(&mem->css);/* drop extra refcnt */
3280 if (ret || *ptr == NULL) {
3281 if (PageAnon(page)) {
3282 lock_page_cgroup(pc);
3283 ClearPageCgroupMigration(pc);
3284 unlock_page_cgroup(pc);
3285 /*
3286 * The old page may be fully unmapped while we kept it.
3287 */
3288 mem_cgroup_uncharge_page(page);
3289 }
3290 return -ENOMEM;
e8589cc1 3291 }
ac39cf8c
AM
3292 /*
3293 * We charge new page before it's used/mapped. So, even if unlock_page()
3294 * is called before end_migration, we can catch all events on this new
3295 * page. In the case new page is migrated but not remapped, new page's
3296 * mapcount will be finally 0 and we call uncharge in end_migration().
3297 */
3298 pc = lookup_page_cgroup(newpage);
3299 if (PageAnon(page))
3300 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3301 else if (page_is_file_cache(page))
3302 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3303 else
3304 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 3305 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3306 return ret;
ae41be37 3307}
8869b8f6 3308
69029cd5 3309/* remove redundant charge if migration failed*/
01b1ae63 3310void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3311 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3312{
ac39cf8c 3313 struct page *used, *unused;
01b1ae63 3314 struct page_cgroup *pc;
01b1ae63
KH
3315
3316 if (!mem)
3317 return;
ac39cf8c 3318 /* blocks rmdir() */
88703267 3319 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3320 if (!migration_ok) {
ac39cf8c
AM
3321 used = oldpage;
3322 unused = newpage;
01b1ae63 3323 } else {
ac39cf8c 3324 used = newpage;
01b1ae63
KH
3325 unused = oldpage;
3326 }
69029cd5 3327 /*
ac39cf8c
AM
3328 * We disallowed uncharge of pages under migration because mapcount
3329 * of the page goes down to zero, temporarly.
3330 * Clear the flag and check the page should be charged.
01b1ae63 3331 */
ac39cf8c
AM
3332 pc = lookup_page_cgroup(oldpage);
3333 lock_page_cgroup(pc);
3334 ClearPageCgroupMigration(pc);
3335 unlock_page_cgroup(pc);
01b1ae63 3336
ac39cf8c
AM
3337 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3338
01b1ae63 3339 /*
ac39cf8c
AM
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
69029cd5 3346 */
ac39cf8c
AM
3347 if (PageAnon(used))
3348 mem_cgroup_uncharge_page(used);
88703267 3349 /*
ac39cf8c
AM
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
88703267
KH
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3354 */
3355 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3356}
78fb7466 3357
f212ad7c
DN
3358#ifdef CONFIG_DEBUG_VM
3359static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3360{
3361 struct page_cgroup *pc;
3362
3363 pc = lookup_page_cgroup(page);
3364 if (likely(pc) && PageCgroupUsed(pc))
3365 return pc;
3366 return NULL;
3367}
3368
3369bool mem_cgroup_bad_page_check(struct page *page)
3370{
3371 if (mem_cgroup_disabled())
3372 return false;
3373
3374 return lookup_page_cgroup_used(page) != NULL;
3375}
3376
3377void mem_cgroup_print_bad_page(struct page *page)
3378{
3379 struct page_cgroup *pc;
3380
3381 pc = lookup_page_cgroup_used(page);
3382 if (pc) {
3383 int ret = -1;
3384 char *path;
3385
3386 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3387 pc, pc->flags, pc->mem_cgroup);
3388
3389 path = kmalloc(PATH_MAX, GFP_KERNEL);
3390 if (path) {
3391 rcu_read_lock();
3392 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3393 path, PATH_MAX);
3394 rcu_read_unlock();
3395 }
3396
3397 printk(KERN_CONT "(%s)\n",
3398 (ret < 0) ? "cannot get the path" : path);
3399 kfree(path);
3400 }
3401}
3402#endif
3403
8c7c6e34
KH
3404static DEFINE_MUTEX(set_limit_mutex);
3405
d38d2a75 3406static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3407 unsigned long long val)
628f4235 3408{
81d39c20 3409 int retry_count;
3c11ecf4 3410 u64 memswlimit, memlimit;
628f4235 3411 int ret = 0;
81d39c20
KH
3412 int children = mem_cgroup_count_children(memcg);
3413 u64 curusage, oldusage;
3c11ecf4 3414 int enlarge;
81d39c20
KH
3415
3416 /*
3417 * For keeping hierarchical_reclaim simple, how long we should retry
3418 * is depends on callers. We set our retry-count to be function
3419 * of # of children which we should visit in this loop.
3420 */
3421 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3422
3423 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3424
3c11ecf4 3425 enlarge = 0;
8c7c6e34 3426 while (retry_count) {
628f4235
KH
3427 if (signal_pending(current)) {
3428 ret = -EINTR;
3429 break;
3430 }
8c7c6e34
KH
3431 /*
3432 * Rather than hide all in some function, I do this in
3433 * open coded manner. You see what this really does.
3434 * We have to guarantee mem->res.limit < mem->memsw.limit.
3435 */
3436 mutex_lock(&set_limit_mutex);
3437 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3438 if (memswlimit < val) {
3439 ret = -EINVAL;
3440 mutex_unlock(&set_limit_mutex);
628f4235
KH
3441 break;
3442 }
3c11ecf4
KH
3443
3444 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3445 if (memlimit < val)
3446 enlarge = 1;
3447
8c7c6e34 3448 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3449 if (!ret) {
3450 if (memswlimit == val)
3451 memcg->memsw_is_minimum = true;
3452 else
3453 memcg->memsw_is_minimum = false;
3454 }
8c7c6e34
KH
3455 mutex_unlock(&set_limit_mutex);
3456
3457 if (!ret)
3458 break;
3459
aa20d489 3460 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3461 MEM_CGROUP_RECLAIM_SHRINK,
3462 NULL);
81d39c20
KH
3463 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3464 /* Usage is reduced ? */
3465 if (curusage >= oldusage)
3466 retry_count--;
3467 else
3468 oldusage = curusage;
8c7c6e34 3469 }
3c11ecf4
KH
3470 if (!ret && enlarge)
3471 memcg_oom_recover(memcg);
14797e23 3472
8c7c6e34
KH
3473 return ret;
3474}
3475
338c8431
LZ
3476static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3477 unsigned long long val)
8c7c6e34 3478{
81d39c20 3479 int retry_count;
3c11ecf4 3480 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3481 int children = mem_cgroup_count_children(memcg);
3482 int ret = -EBUSY;
3c11ecf4 3483 int enlarge = 0;
8c7c6e34 3484
81d39c20
KH
3485 /* see mem_cgroup_resize_res_limit */
3486 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3487 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3488 while (retry_count) {
3489 if (signal_pending(current)) {
3490 ret = -EINTR;
3491 break;
3492 }
3493 /*
3494 * Rather than hide all in some function, I do this in
3495 * open coded manner. You see what this really does.
3496 * We have to guarantee mem->res.limit < mem->memsw.limit.
3497 */
3498 mutex_lock(&set_limit_mutex);
3499 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3500 if (memlimit > val) {
3501 ret = -EINVAL;
3502 mutex_unlock(&set_limit_mutex);
3503 break;
3504 }
3c11ecf4
KH
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val)
3507 enlarge = 1;
8c7c6e34 3508 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3509 if (!ret) {
3510 if (memlimit == val)
3511 memcg->memsw_is_minimum = true;
3512 else
3513 memcg->memsw_is_minimum = false;
3514 }
8c7c6e34
KH
3515 mutex_unlock(&set_limit_mutex);
3516
3517 if (!ret)
3518 break;
3519
4e416953 3520 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3521 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3522 MEM_CGROUP_RECLAIM_SHRINK,
3523 NULL);
8c7c6e34 3524 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3525 /* Usage is reduced ? */
8c7c6e34 3526 if (curusage >= oldusage)
628f4235 3527 retry_count--;
81d39c20
KH
3528 else
3529 oldusage = curusage;
628f4235 3530 }
3c11ecf4
KH
3531 if (!ret && enlarge)
3532 memcg_oom_recover(memcg);
628f4235
KH
3533 return ret;
3534}
3535
4e416953 3536unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3537 gfp_t gfp_mask,
3538 unsigned long *total_scanned)
4e416953
BS
3539{
3540 unsigned long nr_reclaimed = 0;
3541 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3542 unsigned long reclaimed;
3543 int loop = 0;
3544 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3545 unsigned long long excess;
0ae5e89c 3546 unsigned long nr_scanned;
4e416953
BS
3547
3548 if (order > 0)
3549 return 0;
3550
00918b6a 3551 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3552 /*
3553 * This loop can run a while, specially if mem_cgroup's continuously
3554 * keep exceeding their soft limit and putting the system under
3555 * pressure
3556 */
3557 do {
3558 if (next_mz)
3559 mz = next_mz;
3560 else
3561 mz = mem_cgroup_largest_soft_limit_node(mctz);
3562 if (!mz)
3563 break;
3564
0ae5e89c 3565 nr_scanned = 0;
4e416953
BS
3566 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3567 gfp_mask,
0ae5e89c
YH
3568 MEM_CGROUP_RECLAIM_SOFT,
3569 &nr_scanned);
4e416953 3570 nr_reclaimed += reclaimed;
0ae5e89c 3571 *total_scanned += nr_scanned;
4e416953
BS
3572 spin_lock(&mctz->lock);
3573
3574 /*
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3577 */
3578 next_mz = NULL;
3579 if (!reclaimed) {
3580 do {
3581 /*
3582 * Loop until we find yet another one.
3583 *
3584 * By the time we get the soft_limit lock
3585 * again, someone might have aded the
3586 * group back on the RB tree. Iterate to
3587 * make sure we get a different mem.
3588 * mem_cgroup_largest_soft_limit_node returns
3589 * NULL if no other cgroup is present on
3590 * the tree
3591 */
3592 next_mz =
3593 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3594 if (next_mz == mz)
4e416953 3595 css_put(&next_mz->mem->css);
39cc98f1 3596 else /* next_mz == NULL or other memcg */
4e416953
BS
3597 break;
3598 } while (1);
3599 }
4e416953 3600 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3601 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3602 /*
3603 * One school of thought says that we should not add
3604 * back the node to the tree if reclaim returns 0.
3605 * But our reclaim could return 0, simply because due
3606 * to priority we are exposing a smaller subset of
3607 * memory to reclaim from. Consider this as a longer
3608 * term TODO.
3609 */
ef8745c1
KH
3610 /* If excess == 0, no tree ops */
3611 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3612 spin_unlock(&mctz->lock);
3613 css_put(&mz->mem->css);
3614 loop++;
3615 /*
3616 * Could not reclaim anything and there are no more
3617 * mem cgroups to try or we seem to be looping without
3618 * reclaiming anything.
3619 */
3620 if (!nr_reclaimed &&
3621 (next_mz == NULL ||
3622 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3623 break;
3624 } while (!nr_reclaimed);
3625 if (next_mz)
3626 css_put(&next_mz->mem->css);
3627 return nr_reclaimed;
3628}
3629
cc847582
KH
3630/*
3631 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3632 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3633 */
f817ed48 3634static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3635 int node, int zid, enum lru_list lru)
cc847582 3636{
08e552c6
KH
3637 struct zone *zone;
3638 struct mem_cgroup_per_zone *mz;
f817ed48 3639 struct page_cgroup *pc, *busy;
08e552c6 3640 unsigned long flags, loop;
072c56c1 3641 struct list_head *list;
f817ed48 3642 int ret = 0;
072c56c1 3643
08e552c6
KH
3644 zone = &NODE_DATA(node)->node_zones[zid];
3645 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3646 list = &mz->lists[lru];
cc847582 3647
f817ed48
KH
3648 loop = MEM_CGROUP_ZSTAT(mz, lru);
3649 /* give some margin against EBUSY etc...*/
3650 loop += 256;
3651 busy = NULL;
3652 while (loop--) {
5564e88b
JW
3653 struct page *page;
3654
f817ed48 3655 ret = 0;
08e552c6 3656 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3657 if (list_empty(list)) {
08e552c6 3658 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3659 break;
f817ed48
KH
3660 }
3661 pc = list_entry(list->prev, struct page_cgroup, lru);
3662 if (busy == pc) {
3663 list_move(&pc->lru, list);
648bcc77 3664 busy = NULL;
08e552c6 3665 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3666 continue;
3667 }
08e552c6 3668 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3669
6b3ae58e 3670 page = lookup_cgroup_page(pc);
5564e88b
JW
3671
3672 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3673 if (ret == -ENOMEM)
52d4b9ac 3674 break;
f817ed48
KH
3675
3676 if (ret == -EBUSY || ret == -EINVAL) {
3677 /* found lock contention or "pc" is obsolete. */
3678 busy = pc;
3679 cond_resched();
3680 } else
3681 busy = NULL;
cc847582 3682 }
08e552c6 3683
f817ed48
KH
3684 if (!ret && !list_empty(list))
3685 return -EBUSY;
3686 return ret;
cc847582
KH
3687}
3688
3689/*
3690 * make mem_cgroup's charge to be 0 if there is no task.
3691 * This enables deleting this mem_cgroup.
3692 */
c1e862c1 3693static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3694{
f817ed48
KH
3695 int ret;
3696 int node, zid, shrink;
3697 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3698 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3699
cc847582 3700 css_get(&mem->css);
f817ed48
KH
3701
3702 shrink = 0;
c1e862c1
KH
3703 /* should free all ? */
3704 if (free_all)
3705 goto try_to_free;
f817ed48 3706move_account:
fce66477 3707 do {
f817ed48 3708 ret = -EBUSY;
c1e862c1
KH
3709 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3710 goto out;
3711 ret = -EINTR;
3712 if (signal_pending(current))
cc847582 3713 goto out;
52d4b9ac
KH
3714 /* This is for making all *used* pages to be on LRU. */
3715 lru_add_drain_all();
d38144b7 3716 drain_all_stock_sync(mem);
f817ed48 3717 ret = 0;
32047e2a 3718 mem_cgroup_start_move(mem);
299b4eaa 3719 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3720 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3721 enum lru_list l;
f817ed48
KH
3722 for_each_lru(l) {
3723 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3724 node, zid, l);
f817ed48
KH
3725 if (ret)
3726 break;
3727 }
1ecaab2b 3728 }
f817ed48
KH
3729 if (ret)
3730 break;
3731 }
32047e2a 3732 mem_cgroup_end_move(mem);
3c11ecf4 3733 memcg_oom_recover(mem);
f817ed48
KH
3734 /* it seems parent cgroup doesn't have enough mem */
3735 if (ret == -ENOMEM)
3736 goto try_to_free;
52d4b9ac 3737 cond_resched();
fce66477
DN
3738 /* "ret" should also be checked to ensure all lists are empty. */
3739 } while (mem->res.usage > 0 || ret);
cc847582
KH
3740out:
3741 css_put(&mem->css);
3742 return ret;
f817ed48
KH
3743
3744try_to_free:
c1e862c1
KH
3745 /* returns EBUSY if there is a task or if we come here twice. */
3746 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3747 ret = -EBUSY;
3748 goto out;
3749 }
c1e862c1
KH
3750 /* we call try-to-free pages for make this cgroup empty */
3751 lru_add_drain_all();
f817ed48
KH
3752 /* try to free all pages in this cgroup */
3753 shrink = 1;
3754 while (nr_retries && mem->res.usage > 0) {
3755 int progress;
c1e862c1
KH
3756
3757 if (signal_pending(current)) {
3758 ret = -EINTR;
3759 goto out;
3760 }
a7885eb8 3761 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
185efc0f 3762 false);
c1e862c1 3763 if (!progress) {
f817ed48 3764 nr_retries--;
c1e862c1 3765 /* maybe some writeback is necessary */
8aa7e847 3766 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3767 }
f817ed48
KH
3768
3769 }
08e552c6 3770 lru_add_drain();
f817ed48 3771 /* try move_account...there may be some *locked* pages. */
fce66477 3772 goto move_account;
cc847582
KH
3773}
3774
c1e862c1
KH
3775int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3776{
3777 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3778}
3779
3780
18f59ea7
BS
3781static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3782{
3783 return mem_cgroup_from_cont(cont)->use_hierarchy;
3784}
3785
3786static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3787 u64 val)
3788{
3789 int retval = 0;
3790 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3791 struct cgroup *parent = cont->parent;
3792 struct mem_cgroup *parent_mem = NULL;
3793
3794 if (parent)
3795 parent_mem = mem_cgroup_from_cont(parent);
3796
3797 cgroup_lock();
3798 /*
af901ca1 3799 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3800 * in the child subtrees. If it is unset, then the change can
3801 * occur, provided the current cgroup has no children.
3802 *
3803 * For the root cgroup, parent_mem is NULL, we allow value to be
3804 * set if there are no children.
3805 */
3806 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3807 (val == 1 || val == 0)) {
3808 if (list_empty(&cont->children))
3809 mem->use_hierarchy = val;
3810 else
3811 retval = -EBUSY;
3812 } else
3813 retval = -EINVAL;
3814 cgroup_unlock();
3815
3816 return retval;
3817}
3818
0c3e73e8 3819
7a159cc9
JW
3820static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3821 enum mem_cgroup_stat_index idx)
0c3e73e8 3822{
7d74b06f 3823 struct mem_cgroup *iter;
7a159cc9 3824 long val = 0;
0c3e73e8 3825
7a159cc9 3826 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3827 for_each_mem_cgroup_tree(iter, mem)
3828 val += mem_cgroup_read_stat(iter, idx);
3829
3830 if (val < 0) /* race ? */
3831 val = 0;
3832 return val;
0c3e73e8
BS
3833}
3834
104f3928
KS
3835static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3836{
7d74b06f 3837 u64 val;
104f3928
KS
3838
3839 if (!mem_cgroup_is_root(mem)) {
3840 if (!swap)
3841 return res_counter_read_u64(&mem->res, RES_USAGE);
3842 else
3843 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3844 }
3845
7a159cc9
JW
3846 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3847 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3848
7d74b06f 3849 if (swap)
7a159cc9 3850 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3851
3852 return val << PAGE_SHIFT;
3853}
3854
2c3daa72 3855static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3856{
8c7c6e34 3857 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3858 u64 val;
8c7c6e34
KH
3859 int type, name;
3860
3861 type = MEMFILE_TYPE(cft->private);
3862 name = MEMFILE_ATTR(cft->private);
3863 switch (type) {
3864 case _MEM:
104f3928
KS
3865 if (name == RES_USAGE)
3866 val = mem_cgroup_usage(mem, false);
3867 else
0c3e73e8 3868 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3869 break;
3870 case _MEMSWAP:
104f3928
KS
3871 if (name == RES_USAGE)
3872 val = mem_cgroup_usage(mem, true);
3873 else
0c3e73e8 3874 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3875 break;
3876 default:
3877 BUG();
3878 break;
3879 }
3880 return val;
8cdea7c0 3881}
628f4235
KH
3882/*
3883 * The user of this function is...
3884 * RES_LIMIT.
3885 */
856c13aa
PM
3886static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3887 const char *buffer)
8cdea7c0 3888{
628f4235 3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3890 int type, name;
628f4235
KH
3891 unsigned long long val;
3892 int ret;
3893
8c7c6e34
KH
3894 type = MEMFILE_TYPE(cft->private);
3895 name = MEMFILE_ATTR(cft->private);
3896 switch (name) {
628f4235 3897 case RES_LIMIT:
4b3bde4c
BS
3898 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3899 ret = -EINVAL;
3900 break;
3901 }
628f4235
KH
3902 /* This function does all necessary parse...reuse it */
3903 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3904 if (ret)
3905 break;
3906 if (type == _MEM)
628f4235 3907 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3908 else
3909 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3910 break;
296c81d8
BS
3911 case RES_SOFT_LIMIT:
3912 ret = res_counter_memparse_write_strategy(buffer, &val);
3913 if (ret)
3914 break;
3915 /*
3916 * For memsw, soft limits are hard to implement in terms
3917 * of semantics, for now, we support soft limits for
3918 * control without swap
3919 */
3920 if (type == _MEM)
3921 ret = res_counter_set_soft_limit(&memcg->res, val);
3922 else
3923 ret = -EINVAL;
3924 break;
628f4235
KH
3925 default:
3926 ret = -EINVAL; /* should be BUG() ? */
3927 break;
3928 }
3929 return ret;
8cdea7c0
BS
3930}
3931
fee7b548
KH
3932static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3933 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3934{
3935 struct cgroup *cgroup;
3936 unsigned long long min_limit, min_memsw_limit, tmp;
3937
3938 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3939 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3940 cgroup = memcg->css.cgroup;
3941 if (!memcg->use_hierarchy)
3942 goto out;
3943
3944 while (cgroup->parent) {
3945 cgroup = cgroup->parent;
3946 memcg = mem_cgroup_from_cont(cgroup);
3947 if (!memcg->use_hierarchy)
3948 break;
3949 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3950 min_limit = min(min_limit, tmp);
3951 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3952 min_memsw_limit = min(min_memsw_limit, tmp);
3953 }
3954out:
3955 *mem_limit = min_limit;
3956 *memsw_limit = min_memsw_limit;
3957 return;
3958}
3959
29f2a4da 3960static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3961{
3962 struct mem_cgroup *mem;
8c7c6e34 3963 int type, name;
c84872e1
PE
3964
3965 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3966 type = MEMFILE_TYPE(event);
3967 name = MEMFILE_ATTR(event);
3968 switch (name) {
29f2a4da 3969 case RES_MAX_USAGE:
8c7c6e34
KH
3970 if (type == _MEM)
3971 res_counter_reset_max(&mem->res);
3972 else
3973 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3974 break;
3975 case RES_FAILCNT:
8c7c6e34
KH
3976 if (type == _MEM)
3977 res_counter_reset_failcnt(&mem->res);
3978 else
3979 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3980 break;
3981 }
f64c3f54 3982
85cc59db 3983 return 0;
c84872e1
PE
3984}
3985
7dc74be0
DN
3986static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3987 struct cftype *cft)
3988{
3989 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3990}
3991
02491447 3992#ifdef CONFIG_MMU
7dc74be0
DN
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 struct cftype *cft, u64 val)
3995{
3996 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3997
3998 if (val >= (1 << NR_MOVE_TYPE))
3999 return -EINVAL;
4000 /*
4001 * We check this value several times in both in can_attach() and
4002 * attach(), so we need cgroup lock to prevent this value from being
4003 * inconsistent.
4004 */
4005 cgroup_lock();
4006 mem->move_charge_at_immigrate = val;
4007 cgroup_unlock();
4008
4009 return 0;
4010}
02491447
DN
4011#else
4012static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4013 struct cftype *cft, u64 val)
4014{
4015 return -ENOSYS;
4016}
4017#endif
7dc74be0 4018
14067bb3
KH
4019
4020/* For read statistics */
4021enum {
4022 MCS_CACHE,
4023 MCS_RSS,
d8046582 4024 MCS_FILE_MAPPED,
14067bb3
KH
4025 MCS_PGPGIN,
4026 MCS_PGPGOUT,
1dd3a273 4027 MCS_SWAP,
456f998e
YH
4028 MCS_PGFAULT,
4029 MCS_PGMAJFAULT,
14067bb3
KH
4030 MCS_INACTIVE_ANON,
4031 MCS_ACTIVE_ANON,
4032 MCS_INACTIVE_FILE,
4033 MCS_ACTIVE_FILE,
4034 MCS_UNEVICTABLE,
4035 NR_MCS_STAT,
4036};
4037
4038struct mcs_total_stat {
4039 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4040};
4041
14067bb3
KH
4042struct {
4043 char *local_name;
4044 char *total_name;
4045} memcg_stat_strings[NR_MCS_STAT] = {
4046 {"cache", "total_cache"},
4047 {"rss", "total_rss"},
d69b042f 4048 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4049 {"pgpgin", "total_pgpgin"},
4050 {"pgpgout", "total_pgpgout"},
1dd3a273 4051 {"swap", "total_swap"},
456f998e
YH
4052 {"pgfault", "total_pgfault"},
4053 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4054 {"inactive_anon", "total_inactive_anon"},
4055 {"active_anon", "total_active_anon"},
4056 {"inactive_file", "total_inactive_file"},
4057 {"active_file", "total_active_file"},
4058 {"unevictable", "total_unevictable"}
4059};
4060
4061
7d74b06f
KH
4062static void
4063mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 4064{
14067bb3
KH
4065 s64 val;
4066
4067 /* per cpu stat */
c62b1a3b 4068 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 4069 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 4070 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 4071 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 4072 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4073 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 4074 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4075 s->stat[MCS_PGPGIN] += val;
e9f8974f 4076 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4077 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4078 if (do_swap_account) {
c62b1a3b 4079 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4080 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4081 }
456f998e
YH
4082 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGFAULT);
4083 s->stat[MCS_PGFAULT] += val;
4084 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGMAJFAULT);
4085 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4086
4087 /* per zone stat */
bb2a0de9 4088 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_ANON));
14067bb3 4089 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4090 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_ANON));
14067bb3 4091 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
bb2a0de9 4092 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_INACTIVE_FILE));
14067bb3 4093 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4094 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_ACTIVE_FILE));
14067bb3 4095 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
bb2a0de9 4096 val = mem_cgroup_nr_lru_pages(mem, BIT(LRU_UNEVICTABLE));
14067bb3 4097 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4098}
4099
4100static void
4101mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
4102{
7d74b06f
KH
4103 struct mem_cgroup *iter;
4104
4105 for_each_mem_cgroup_tree(iter, mem)
4106 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4107}
4108
406eb0c9
YH
4109#ifdef CONFIG_NUMA
4110static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4111{
4112 int nid;
4113 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4114 unsigned long node_nr;
4115 struct cgroup *cont = m->private;
4116 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4117
bb2a0de9 4118 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4119 seq_printf(m, "total=%lu", total_nr);
4120 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4121 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4122 seq_printf(m, " N%d=%lu", nid, node_nr);
4123 }
4124 seq_putc(m, '\n');
4125
bb2a0de9 4126 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4127 seq_printf(m, "file=%lu", file_nr);
4128 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4129 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4130 LRU_ALL_FILE);
406eb0c9
YH
4131 seq_printf(m, " N%d=%lu", nid, node_nr);
4132 }
4133 seq_putc(m, '\n');
4134
bb2a0de9 4135 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4136 seq_printf(m, "anon=%lu", anon_nr);
4137 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4138 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4139 LRU_ALL_ANON);
406eb0c9
YH
4140 seq_printf(m, " N%d=%lu", nid, node_nr);
4141 }
4142 seq_putc(m, '\n');
4143
bb2a0de9 4144 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4145 seq_printf(m, "unevictable=%lu", unevictable_nr);
4146 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4147 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4148 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4149 seq_printf(m, " N%d=%lu", nid, node_nr);
4150 }
4151 seq_putc(m, '\n');
4152 return 0;
4153}
4154#endif /* CONFIG_NUMA */
4155
c64745cf
PM
4156static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4157 struct cgroup_map_cb *cb)
d2ceb9b7 4158{
d2ceb9b7 4159 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4160 struct mcs_total_stat mystat;
d2ceb9b7
KH
4161 int i;
4162
14067bb3
KH
4163 memset(&mystat, 0, sizeof(mystat));
4164 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4165
406eb0c9 4166
1dd3a273
DN
4167 for (i = 0; i < NR_MCS_STAT; i++) {
4168 if (i == MCS_SWAP && !do_swap_account)
4169 continue;
14067bb3 4170 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4171 }
7b854121 4172
14067bb3 4173 /* Hierarchical information */
fee7b548
KH
4174 {
4175 unsigned long long limit, memsw_limit;
4176 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4177 cb->fill(cb, "hierarchical_memory_limit", limit);
4178 if (do_swap_account)
4179 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4180 }
7f016ee8 4181
14067bb3
KH
4182 memset(&mystat, 0, sizeof(mystat));
4183 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4184 for (i = 0; i < NR_MCS_STAT; i++) {
4185 if (i == MCS_SWAP && !do_swap_account)
4186 continue;
14067bb3 4187 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4188 }
14067bb3 4189
7f016ee8 4190#ifdef CONFIG_DEBUG_VM
c772be93 4191 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
4192
4193 {
4194 int nid, zid;
4195 struct mem_cgroup_per_zone *mz;
4196 unsigned long recent_rotated[2] = {0, 0};
4197 unsigned long recent_scanned[2] = {0, 0};
4198
4199 for_each_online_node(nid)
4200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4201 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4202
4203 recent_rotated[0] +=
4204 mz->reclaim_stat.recent_rotated[0];
4205 recent_rotated[1] +=
4206 mz->reclaim_stat.recent_rotated[1];
4207 recent_scanned[0] +=
4208 mz->reclaim_stat.recent_scanned[0];
4209 recent_scanned[1] +=
4210 mz->reclaim_stat.recent_scanned[1];
4211 }
4212 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4213 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4214 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4215 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4216 }
4217#endif
4218
d2ceb9b7
KH
4219 return 0;
4220}
4221
a7885eb8
KM
4222static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4225
1f4c025b 4226 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4230 u64 val)
4231{
4232 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4233 struct mem_cgroup *parent;
068b38c1 4234
a7885eb8
KM
4235 if (val > 100)
4236 return -EINVAL;
4237
4238 if (cgrp->parent == NULL)
4239 return -EINVAL;
4240
4241 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4242
4243 cgroup_lock();
4244
a7885eb8
KM
4245 /* If under hierarchy, only empty-root can set this value */
4246 if ((parent->use_hierarchy) ||
068b38c1
LZ
4247 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4248 cgroup_unlock();
a7885eb8 4249 return -EINVAL;
068b38c1 4250 }
a7885eb8 4251
a7885eb8 4252 memcg->swappiness = val;
a7885eb8 4253
068b38c1
LZ
4254 cgroup_unlock();
4255
a7885eb8
KM
4256 return 0;
4257}
4258
2e72b634
KS
4259static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4260{
4261 struct mem_cgroup_threshold_ary *t;
4262 u64 usage;
4263 int i;
4264
4265 rcu_read_lock();
4266 if (!swap)
2c488db2 4267 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4268 else
2c488db2 4269 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4270
4271 if (!t)
4272 goto unlock;
4273
4274 usage = mem_cgroup_usage(memcg, swap);
4275
4276 /*
4277 * current_threshold points to threshold just below usage.
4278 * If it's not true, a threshold was crossed after last
4279 * call of __mem_cgroup_threshold().
4280 */
5407a562 4281 i = t->current_threshold;
2e72b634
KS
4282
4283 /*
4284 * Iterate backward over array of thresholds starting from
4285 * current_threshold and check if a threshold is crossed.
4286 * If none of thresholds below usage is crossed, we read
4287 * only one element of the array here.
4288 */
4289 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4290 eventfd_signal(t->entries[i].eventfd, 1);
4291
4292 /* i = current_threshold + 1 */
4293 i++;
4294
4295 /*
4296 * Iterate forward over array of thresholds starting from
4297 * current_threshold+1 and check if a threshold is crossed.
4298 * If none of thresholds above usage is crossed, we read
4299 * only one element of the array here.
4300 */
4301 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4302 eventfd_signal(t->entries[i].eventfd, 1);
4303
4304 /* Update current_threshold */
5407a562 4305 t->current_threshold = i - 1;
2e72b634
KS
4306unlock:
4307 rcu_read_unlock();
4308}
4309
4310static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4311{
ad4ca5f4
KS
4312 while (memcg) {
4313 __mem_cgroup_threshold(memcg, false);
4314 if (do_swap_account)
4315 __mem_cgroup_threshold(memcg, true);
4316
4317 memcg = parent_mem_cgroup(memcg);
4318 }
2e72b634
KS
4319}
4320
4321static int compare_thresholds(const void *a, const void *b)
4322{
4323 const struct mem_cgroup_threshold *_a = a;
4324 const struct mem_cgroup_threshold *_b = b;
4325
4326 return _a->threshold - _b->threshold;
4327}
4328
7d74b06f 4329static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
4330{
4331 struct mem_cgroup_eventfd_list *ev;
4332
4333 list_for_each_entry(ev, &mem->oom_notify, list)
4334 eventfd_signal(ev->eventfd, 1);
4335 return 0;
4336}
4337
4338static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
4339{
7d74b06f
KH
4340 struct mem_cgroup *iter;
4341
4342 for_each_mem_cgroup_tree(iter, mem)
4343 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4344}
4345
4346static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4347 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4348{
4349 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4350 struct mem_cgroup_thresholds *thresholds;
4351 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4352 int type = MEMFILE_TYPE(cft->private);
4353 u64 threshold, usage;
2c488db2 4354 int i, size, ret;
2e72b634
KS
4355
4356 ret = res_counter_memparse_write_strategy(args, &threshold);
4357 if (ret)
4358 return ret;
4359
4360 mutex_lock(&memcg->thresholds_lock);
2c488db2 4361
2e72b634 4362 if (type == _MEM)
2c488db2 4363 thresholds = &memcg->thresholds;
2e72b634 4364 else if (type == _MEMSWAP)
2c488db2 4365 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4366 else
4367 BUG();
4368
4369 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4370
4371 /* Check if a threshold crossed before adding a new one */
2c488db2 4372 if (thresholds->primary)
2e72b634
KS
4373 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4374
2c488db2 4375 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4376
4377 /* Allocate memory for new array of thresholds */
2c488db2 4378 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4379 GFP_KERNEL);
2c488db2 4380 if (!new) {
2e72b634
KS
4381 ret = -ENOMEM;
4382 goto unlock;
4383 }
2c488db2 4384 new->size = size;
2e72b634
KS
4385
4386 /* Copy thresholds (if any) to new array */
2c488db2
KS
4387 if (thresholds->primary) {
4388 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4389 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4390 }
4391
2e72b634 4392 /* Add new threshold */
2c488db2
KS
4393 new->entries[size - 1].eventfd = eventfd;
4394 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4395
4396 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4397 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4398 compare_thresholds, NULL);
4399
4400 /* Find current threshold */
2c488db2 4401 new->current_threshold = -1;
2e72b634 4402 for (i = 0; i < size; i++) {
2c488db2 4403 if (new->entries[i].threshold < usage) {
2e72b634 4404 /*
2c488db2
KS
4405 * new->current_threshold will not be used until
4406 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4407 * it here.
4408 */
2c488db2 4409 ++new->current_threshold;
2e72b634
KS
4410 }
4411 }
4412
2c488db2
KS
4413 /* Free old spare buffer and save old primary buffer as spare */
4414 kfree(thresholds->spare);
4415 thresholds->spare = thresholds->primary;
4416
4417 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4418
907860ed 4419 /* To be sure that nobody uses thresholds */
2e72b634
KS
4420 synchronize_rcu();
4421
2e72b634
KS
4422unlock:
4423 mutex_unlock(&memcg->thresholds_lock);
4424
4425 return ret;
4426}
4427
907860ed 4428static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4429 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4430{
4431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4432 struct mem_cgroup_thresholds *thresholds;
4433 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4434 int type = MEMFILE_TYPE(cft->private);
4435 u64 usage;
2c488db2 4436 int i, j, size;
2e72b634
KS
4437
4438 mutex_lock(&memcg->thresholds_lock);
4439 if (type == _MEM)
2c488db2 4440 thresholds = &memcg->thresholds;
2e72b634 4441 else if (type == _MEMSWAP)
2c488db2 4442 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4443 else
4444 BUG();
4445
4446 /*
4447 * Something went wrong if we trying to unregister a threshold
4448 * if we don't have thresholds
4449 */
4450 BUG_ON(!thresholds);
4451
4452 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4453
4454 /* Check if a threshold crossed before removing */
4455 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4456
4457 /* Calculate new number of threshold */
2c488db2
KS
4458 size = 0;
4459 for (i = 0; i < thresholds->primary->size; i++) {
4460 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4461 size++;
4462 }
4463
2c488db2 4464 new = thresholds->spare;
907860ed 4465
2e72b634
KS
4466 /* Set thresholds array to NULL if we don't have thresholds */
4467 if (!size) {
2c488db2
KS
4468 kfree(new);
4469 new = NULL;
907860ed 4470 goto swap_buffers;
2e72b634
KS
4471 }
4472
2c488db2 4473 new->size = size;
2e72b634
KS
4474
4475 /* Copy thresholds and find current threshold */
2c488db2
KS
4476 new->current_threshold = -1;
4477 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4478 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4479 continue;
4480
2c488db2
KS
4481 new->entries[j] = thresholds->primary->entries[i];
4482 if (new->entries[j].threshold < usage) {
2e72b634 4483 /*
2c488db2 4484 * new->current_threshold will not be used
2e72b634
KS
4485 * until rcu_assign_pointer(), so it's safe to increment
4486 * it here.
4487 */
2c488db2 4488 ++new->current_threshold;
2e72b634
KS
4489 }
4490 j++;
4491 }
4492
907860ed 4493swap_buffers:
2c488db2
KS
4494 /* Swap primary and spare array */
4495 thresholds->spare = thresholds->primary;
4496 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4497
907860ed 4498 /* To be sure that nobody uses thresholds */
2e72b634
KS
4499 synchronize_rcu();
4500
2e72b634 4501 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4502}
c1e862c1 4503
9490ff27
KH
4504static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4505 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4506{
4507 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4508 struct mem_cgroup_eventfd_list *event;
4509 int type = MEMFILE_TYPE(cft->private);
4510
4511 BUG_ON(type != _OOM_TYPE);
4512 event = kmalloc(sizeof(*event), GFP_KERNEL);
4513 if (!event)
4514 return -ENOMEM;
4515
1af8efe9 4516 spin_lock(&memcg_oom_lock);
9490ff27
KH
4517
4518 event->eventfd = eventfd;
4519 list_add(&event->list, &memcg->oom_notify);
4520
4521 /* already in OOM ? */
79dfdacc 4522 if (atomic_read(&memcg->under_oom))
9490ff27 4523 eventfd_signal(eventfd, 1);
1af8efe9 4524 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4525
4526 return 0;
4527}
4528
907860ed 4529static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4530 struct cftype *cft, struct eventfd_ctx *eventfd)
4531{
4532 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4533 struct mem_cgroup_eventfd_list *ev, *tmp;
4534 int type = MEMFILE_TYPE(cft->private);
4535
4536 BUG_ON(type != _OOM_TYPE);
4537
1af8efe9 4538 spin_lock(&memcg_oom_lock);
9490ff27
KH
4539
4540 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4541 if (ev->eventfd == eventfd) {
4542 list_del(&ev->list);
4543 kfree(ev);
4544 }
4545 }
4546
1af8efe9 4547 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4548}
4549
3c11ecf4
KH
4550static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4551 struct cftype *cft, struct cgroup_map_cb *cb)
4552{
4553 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4554
4555 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4556
79dfdacc 4557 if (atomic_read(&mem->under_oom))
3c11ecf4
KH
4558 cb->fill(cb, "under_oom", 1);
4559 else
4560 cb->fill(cb, "under_oom", 0);
4561 return 0;
4562}
4563
3c11ecf4
KH
4564static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4565 struct cftype *cft, u64 val)
4566{
4567 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4568 struct mem_cgroup *parent;
4569
4570 /* cannot set to root cgroup and only 0 and 1 are allowed */
4571 if (!cgrp->parent || !((val == 0) || (val == 1)))
4572 return -EINVAL;
4573
4574 parent = mem_cgroup_from_cont(cgrp->parent);
4575
4576 cgroup_lock();
4577 /* oom-kill-disable is a flag for subhierarchy. */
4578 if ((parent->use_hierarchy) ||
4579 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4580 cgroup_unlock();
4581 return -EINVAL;
4582 }
4583 mem->oom_kill_disable = val;
4d845ebf
KH
4584 if (!val)
4585 memcg_oom_recover(mem);
3c11ecf4
KH
4586 cgroup_unlock();
4587 return 0;
4588}
4589
406eb0c9
YH
4590#ifdef CONFIG_NUMA
4591static const struct file_operations mem_control_numa_stat_file_operations = {
4592 .read = seq_read,
4593 .llseek = seq_lseek,
4594 .release = single_release,
4595};
4596
4597static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4598{
4599 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4600
4601 file->f_op = &mem_control_numa_stat_file_operations;
4602 return single_open(file, mem_control_numa_stat_show, cont);
4603}
4604#endif /* CONFIG_NUMA */
4605
8cdea7c0
BS
4606static struct cftype mem_cgroup_files[] = {
4607 {
0eea1030 4608 .name = "usage_in_bytes",
8c7c6e34 4609 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4610 .read_u64 = mem_cgroup_read,
9490ff27
KH
4611 .register_event = mem_cgroup_usage_register_event,
4612 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4613 },
c84872e1
PE
4614 {
4615 .name = "max_usage_in_bytes",
8c7c6e34 4616 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4617 .trigger = mem_cgroup_reset,
c84872e1
PE
4618 .read_u64 = mem_cgroup_read,
4619 },
8cdea7c0 4620 {
0eea1030 4621 .name = "limit_in_bytes",
8c7c6e34 4622 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4623 .write_string = mem_cgroup_write,
2c3daa72 4624 .read_u64 = mem_cgroup_read,
8cdea7c0 4625 },
296c81d8
BS
4626 {
4627 .name = "soft_limit_in_bytes",
4628 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4629 .write_string = mem_cgroup_write,
4630 .read_u64 = mem_cgroup_read,
4631 },
8cdea7c0
BS
4632 {
4633 .name = "failcnt",
8c7c6e34 4634 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4635 .trigger = mem_cgroup_reset,
2c3daa72 4636 .read_u64 = mem_cgroup_read,
8cdea7c0 4637 },
d2ceb9b7
KH
4638 {
4639 .name = "stat",
c64745cf 4640 .read_map = mem_control_stat_show,
d2ceb9b7 4641 },
c1e862c1
KH
4642 {
4643 .name = "force_empty",
4644 .trigger = mem_cgroup_force_empty_write,
4645 },
18f59ea7
BS
4646 {
4647 .name = "use_hierarchy",
4648 .write_u64 = mem_cgroup_hierarchy_write,
4649 .read_u64 = mem_cgroup_hierarchy_read,
4650 },
a7885eb8
KM
4651 {
4652 .name = "swappiness",
4653 .read_u64 = mem_cgroup_swappiness_read,
4654 .write_u64 = mem_cgroup_swappiness_write,
4655 },
7dc74be0
DN
4656 {
4657 .name = "move_charge_at_immigrate",
4658 .read_u64 = mem_cgroup_move_charge_read,
4659 .write_u64 = mem_cgroup_move_charge_write,
4660 },
9490ff27
KH
4661 {
4662 .name = "oom_control",
3c11ecf4
KH
4663 .read_map = mem_cgroup_oom_control_read,
4664 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4665 .register_event = mem_cgroup_oom_register_event,
4666 .unregister_event = mem_cgroup_oom_unregister_event,
4667 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4668 },
406eb0c9
YH
4669#ifdef CONFIG_NUMA
4670 {
4671 .name = "numa_stat",
4672 .open = mem_control_numa_stat_open,
89577127 4673 .mode = S_IRUGO,
406eb0c9
YH
4674 },
4675#endif
8cdea7c0
BS
4676};
4677
8c7c6e34
KH
4678#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4679static struct cftype memsw_cgroup_files[] = {
4680 {
4681 .name = "memsw.usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4683 .read_u64 = mem_cgroup_read,
9490ff27
KH
4684 .register_event = mem_cgroup_usage_register_event,
4685 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4686 },
4687 {
4688 .name = "memsw.max_usage_in_bytes",
4689 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4690 .trigger = mem_cgroup_reset,
4691 .read_u64 = mem_cgroup_read,
4692 },
4693 {
4694 .name = "memsw.limit_in_bytes",
4695 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4696 .write_string = mem_cgroup_write,
4697 .read_u64 = mem_cgroup_read,
4698 },
4699 {
4700 .name = "memsw.failcnt",
4701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4702 .trigger = mem_cgroup_reset,
4703 .read_u64 = mem_cgroup_read,
4704 },
4705};
4706
4707static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708{
4709 if (!do_swap_account)
4710 return 0;
4711 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4712 ARRAY_SIZE(memsw_cgroup_files));
4713};
4714#else
4715static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4716{
4717 return 0;
4718}
4719#endif
4720
6d12e2d8
KH
4721static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4722{
4723 struct mem_cgroup_per_node *pn;
1ecaab2b 4724 struct mem_cgroup_per_zone *mz;
b69408e8 4725 enum lru_list l;
41e3355d 4726 int zone, tmp = node;
1ecaab2b
KH
4727 /*
4728 * This routine is called against possible nodes.
4729 * But it's BUG to call kmalloc() against offline node.
4730 *
4731 * TODO: this routine can waste much memory for nodes which will
4732 * never be onlined. It's better to use memory hotplug callback
4733 * function.
4734 */
41e3355d
KH
4735 if (!node_state(node, N_NORMAL_MEMORY))
4736 tmp = -1;
17295c88 4737 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4738 if (!pn)
4739 return 1;
1ecaab2b 4740
6d12e2d8 4741 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4742 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4743 mz = &pn->zoneinfo[zone];
b69408e8
CL
4744 for_each_lru(l)
4745 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4746 mz->usage_in_excess = 0;
4e416953
BS
4747 mz->on_tree = false;
4748 mz->mem = mem;
1ecaab2b 4749 }
6d12e2d8
KH
4750 return 0;
4751}
4752
1ecaab2b
KH
4753static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4754{
4755 kfree(mem->info.nodeinfo[node]);
4756}
4757
33327948
KH
4758static struct mem_cgroup *mem_cgroup_alloc(void)
4759{
4760 struct mem_cgroup *mem;
c62b1a3b 4761 int size = sizeof(struct mem_cgroup);
33327948 4762
c62b1a3b 4763 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4764 if (size < PAGE_SIZE)
17295c88 4765 mem = kzalloc(size, GFP_KERNEL);
33327948 4766 else
17295c88 4767 mem = vzalloc(size);
33327948 4768
e7bbcdf3
DC
4769 if (!mem)
4770 return NULL;
4771
c62b1a3b 4772 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4773 if (!mem->stat)
4774 goto out_free;
711d3d2c 4775 spin_lock_init(&mem->pcp_counter_lock);
33327948 4776 return mem;
d2e61b8d
DC
4777
4778out_free:
4779 if (size < PAGE_SIZE)
4780 kfree(mem);
4781 else
4782 vfree(mem);
4783 return NULL;
33327948
KH
4784}
4785
8c7c6e34
KH
4786/*
4787 * At destroying mem_cgroup, references from swap_cgroup can remain.
4788 * (scanning all at force_empty is too costly...)
4789 *
4790 * Instead of clearing all references at force_empty, we remember
4791 * the number of reference from swap_cgroup and free mem_cgroup when
4792 * it goes down to 0.
4793 *
8c7c6e34
KH
4794 * Removal of cgroup itself succeeds regardless of refs from swap.
4795 */
4796
a7ba0eef 4797static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4798{
08e552c6
KH
4799 int node;
4800
f64c3f54 4801 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4802 free_css_id(&mem_cgroup_subsys, &mem->css);
4803
08e552c6
KH
4804 for_each_node_state(node, N_POSSIBLE)
4805 free_mem_cgroup_per_zone_info(mem, node);
4806
c62b1a3b
KH
4807 free_percpu(mem->stat);
4808 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4809 kfree(mem);
4810 else
4811 vfree(mem);
4812}
4813
8c7c6e34
KH
4814static void mem_cgroup_get(struct mem_cgroup *mem)
4815{
4816 atomic_inc(&mem->refcnt);
4817}
4818
483c30b5 4819static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4820{
483c30b5 4821 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4822 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4823 __mem_cgroup_free(mem);
7bcc1bb1
DN
4824 if (parent)
4825 mem_cgroup_put(parent);
4826 }
8c7c6e34
KH
4827}
4828
483c30b5
DN
4829static void mem_cgroup_put(struct mem_cgroup *mem)
4830{
4831 __mem_cgroup_put(mem, 1);
4832}
4833
7bcc1bb1
DN
4834/*
4835 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4836 */
4837static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4838{
4839 if (!mem->res.parent)
4840 return NULL;
4841 return mem_cgroup_from_res_counter(mem->res.parent, res);
4842}
33327948 4843
c077719b
KH
4844#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4845static void __init enable_swap_cgroup(void)
4846{
f8d66542 4847 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4848 do_swap_account = 1;
4849}
4850#else
4851static void __init enable_swap_cgroup(void)
4852{
4853}
4854#endif
4855
f64c3f54
BS
4856static int mem_cgroup_soft_limit_tree_init(void)
4857{
4858 struct mem_cgroup_tree_per_node *rtpn;
4859 struct mem_cgroup_tree_per_zone *rtpz;
4860 int tmp, node, zone;
4861
4862 for_each_node_state(node, N_POSSIBLE) {
4863 tmp = node;
4864 if (!node_state(node, N_NORMAL_MEMORY))
4865 tmp = -1;
4866 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4867 if (!rtpn)
4868 return 1;
4869
4870 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4871
4872 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4873 rtpz = &rtpn->rb_tree_per_zone[zone];
4874 rtpz->rb_root = RB_ROOT;
4875 spin_lock_init(&rtpz->lock);
4876 }
4877 }
4878 return 0;
4879}
4880
0eb253e2 4881static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4882mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4883{
28dbc4b6 4884 struct mem_cgroup *mem, *parent;
04046e1a 4885 long error = -ENOMEM;
6d12e2d8 4886 int node;
8cdea7c0 4887
c8dad2bb
JB
4888 mem = mem_cgroup_alloc();
4889 if (!mem)
04046e1a 4890 return ERR_PTR(error);
78fb7466 4891
6d12e2d8
KH
4892 for_each_node_state(node, N_POSSIBLE)
4893 if (alloc_mem_cgroup_per_zone_info(mem, node))
4894 goto free_out;
f64c3f54 4895
c077719b 4896 /* root ? */
28dbc4b6 4897 if (cont->parent == NULL) {
cdec2e42 4898 int cpu;
c077719b 4899 enable_swap_cgroup();
28dbc4b6 4900 parent = NULL;
4b3bde4c 4901 root_mem_cgroup = mem;
f64c3f54
BS
4902 if (mem_cgroup_soft_limit_tree_init())
4903 goto free_out;
cdec2e42
KH
4904 for_each_possible_cpu(cpu) {
4905 struct memcg_stock_pcp *stock =
4906 &per_cpu(memcg_stock, cpu);
4907 INIT_WORK(&stock->work, drain_local_stock);
4908 }
711d3d2c 4909 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4910 } else {
28dbc4b6 4911 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4912 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4913 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4914 }
28dbc4b6 4915
18f59ea7
BS
4916 if (parent && parent->use_hierarchy) {
4917 res_counter_init(&mem->res, &parent->res);
4918 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4919 /*
4920 * We increment refcnt of the parent to ensure that we can
4921 * safely access it on res_counter_charge/uncharge.
4922 * This refcnt will be decremented when freeing this
4923 * mem_cgroup(see mem_cgroup_put).
4924 */
4925 mem_cgroup_get(parent);
18f59ea7
BS
4926 } else {
4927 res_counter_init(&mem->res, NULL);
4928 res_counter_init(&mem->memsw, NULL);
4929 }
04046e1a 4930 mem->last_scanned_child = 0;
889976db 4931 mem->last_scanned_node = MAX_NUMNODES;
9490ff27 4932 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4933
a7885eb8 4934 if (parent)
1f4c025b 4935 mem->swappiness = mem_cgroup_swappiness(parent);
a7ba0eef 4936 atomic_set(&mem->refcnt, 1);
7dc74be0 4937 mem->move_charge_at_immigrate = 0;
2e72b634 4938 mutex_init(&mem->thresholds_lock);
8cdea7c0 4939 return &mem->css;
6d12e2d8 4940free_out:
a7ba0eef 4941 __mem_cgroup_free(mem);
4b3bde4c 4942 root_mem_cgroup = NULL;
04046e1a 4943 return ERR_PTR(error);
8cdea7c0
BS
4944}
4945
ec64f515 4946static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4947 struct cgroup *cont)
4948{
4949 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4950
4951 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4952}
4953
8cdea7c0
BS
4954static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4955 struct cgroup *cont)
4956{
c268e994 4957 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4958
c268e994 4959 mem_cgroup_put(mem);
8cdea7c0
BS
4960}
4961
4962static int mem_cgroup_populate(struct cgroup_subsys *ss,
4963 struct cgroup *cont)
4964{
8c7c6e34
KH
4965 int ret;
4966
4967 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4968 ARRAY_SIZE(mem_cgroup_files));
4969
4970 if (!ret)
4971 ret = register_memsw_files(cont, ss);
4972 return ret;
8cdea7c0
BS
4973}
4974
02491447 4975#ifdef CONFIG_MMU
7dc74be0 4976/* Handlers for move charge at task migration. */
854ffa8d
DN
4977#define PRECHARGE_COUNT_AT_ONCE 256
4978static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4979{
854ffa8d
DN
4980 int ret = 0;
4981 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4982 struct mem_cgroup *mem = mc.to;
4983
854ffa8d
DN
4984 if (mem_cgroup_is_root(mem)) {
4985 mc.precharge += count;
4986 /* we don't need css_get for root */
4987 return ret;
4988 }
4989 /* try to charge at once */
4990 if (count > 1) {
4991 struct res_counter *dummy;
4992 /*
4993 * "mem" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4996 * css_get().
4997 */
4998 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4999 goto one_by_one;
5000 if (do_swap_account && res_counter_charge(&mem->memsw,
5001 PAGE_SIZE * count, &dummy)) {
5002 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
5003 goto one_by_one;
5004 }
5005 mc.precharge += count;
854ffa8d
DN
5006 return ret;
5007 }
5008one_by_one:
5009 /* fall back to one by one charge */
5010 while (count--) {
5011 if (signal_pending(current)) {
5012 ret = -EINTR;
5013 break;
5014 }
5015 if (!batch_count--) {
5016 batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 cond_resched();
5018 }
7ec99d62 5019 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
5020 if (ret || !mem)
5021 /* mem_cgroup_clear_mc() will do uncharge later */
5022 return -ENOMEM;
5023 mc.precharge++;
5024 }
4ffef5fe
DN
5025 return ret;
5026}
5027
5028/**
5029 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5030 * @vma: the vma the pte to be checked belongs
5031 * @addr: the address corresponding to the pte to be checked
5032 * @ptent: the pte to be checked
02491447 5033 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5034 *
5035 * Returns
5036 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5037 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5038 * move charge. if @target is not NULL, the page is stored in target->page
5039 * with extra refcnt got(Callers should handle it).
02491447
DN
5040 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5041 * target for charge migration. if @target is not NULL, the entry is stored
5042 * in target->ent.
4ffef5fe
DN
5043 *
5044 * Called with pte lock held.
5045 */
4ffef5fe
DN
5046union mc_target {
5047 struct page *page;
02491447 5048 swp_entry_t ent;
4ffef5fe
DN
5049};
5050
4ffef5fe
DN
5051enum mc_target_type {
5052 MC_TARGET_NONE, /* not used */
5053 MC_TARGET_PAGE,
02491447 5054 MC_TARGET_SWAP,
4ffef5fe
DN
5055};
5056
90254a65
DN
5057static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5058 unsigned long addr, pte_t ptent)
4ffef5fe 5059{
90254a65 5060 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5061
90254a65
DN
5062 if (!page || !page_mapped(page))
5063 return NULL;
5064 if (PageAnon(page)) {
5065 /* we don't move shared anon */
5066 if (!move_anon() || page_mapcount(page) > 2)
5067 return NULL;
87946a72
DN
5068 } else if (!move_file())
5069 /* we ignore mapcount for file pages */
90254a65
DN
5070 return NULL;
5071 if (!get_page_unless_zero(page))
5072 return NULL;
5073
5074 return page;
5075}
5076
5077static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5078 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5079{
5080 int usage_count;
5081 struct page *page = NULL;
5082 swp_entry_t ent = pte_to_swp_entry(ptent);
5083
5084 if (!move_anon() || non_swap_entry(ent))
5085 return NULL;
5086 usage_count = mem_cgroup_count_swap_user(ent, &page);
5087 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5088 if (page)
5089 put_page(page);
90254a65 5090 return NULL;
02491447 5091 }
90254a65
DN
5092 if (do_swap_account)
5093 entry->val = ent.val;
5094
5095 return page;
5096}
5097
87946a72
DN
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101 struct page *page = NULL;
5102 struct inode *inode;
5103 struct address_space *mapping;
5104 pgoff_t pgoff;
5105
5106 if (!vma->vm_file) /* anonymous vma */
5107 return NULL;
5108 if (!move_file())
5109 return NULL;
5110
5111 inode = vma->vm_file->f_path.dentry->d_inode;
5112 mapping = vma->vm_file->f_mapping;
5113 if (pte_none(ptent))
5114 pgoff = linear_page_index(vma, addr);
5115 else /* pte_file(ptent) is true */
5116 pgoff = pte_to_pgoff(ptent);
5117
5118 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5119 page = find_get_page(mapping, pgoff);
5120
5121#ifdef CONFIG_SWAP
5122 /* shmem/tmpfs may report page out on swap: account for that too. */
5123 if (radix_tree_exceptional_entry(page)) {
5124 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5125 if (do_swap_account)
aa3b1895
HD
5126 *entry = swap;
5127 page = find_get_page(&swapper_space, swap.val);
87946a72 5128 }
aa3b1895 5129#endif
87946a72
DN
5130 return page;
5131}
5132
90254a65
DN
5133static int is_target_pte_for_mc(struct vm_area_struct *vma,
5134 unsigned long addr, pte_t ptent, union mc_target *target)
5135{
5136 struct page *page = NULL;
5137 struct page_cgroup *pc;
5138 int ret = 0;
5139 swp_entry_t ent = { .val = 0 };
5140
5141 if (pte_present(ptent))
5142 page = mc_handle_present_pte(vma, addr, ptent);
5143 else if (is_swap_pte(ptent))
5144 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5145 else if (pte_none(ptent) || pte_file(ptent))
5146 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5147
5148 if (!page && !ent.val)
5149 return 0;
02491447
DN
5150 if (page) {
5151 pc = lookup_page_cgroup(page);
5152 /*
5153 * Do only loose check w/o page_cgroup lock.
5154 * mem_cgroup_move_account() checks the pc is valid or not under
5155 * the lock.
5156 */
5157 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5158 ret = MC_TARGET_PAGE;
5159 if (target)
5160 target->page = page;
5161 }
5162 if (!ret || !target)
5163 put_page(page);
5164 }
90254a65
DN
5165 /* There is a swap entry and a page doesn't exist or isn't charged */
5166 if (ent.val && !ret &&
7f0f1546
KH
5167 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5168 ret = MC_TARGET_SWAP;
5169 if (target)
5170 target->ent = ent;
4ffef5fe 5171 }
4ffef5fe
DN
5172 return ret;
5173}
5174
5175static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5176 unsigned long addr, unsigned long end,
5177 struct mm_walk *walk)
5178{
5179 struct vm_area_struct *vma = walk->private;
5180 pte_t *pte;
5181 spinlock_t *ptl;
5182
03319327
DH
5183 split_huge_page_pmd(walk->mm, pmd);
5184
4ffef5fe
DN
5185 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5186 for (; addr != end; pte++, addr += PAGE_SIZE)
5187 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5188 mc.precharge++; /* increment precharge temporarily */
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5191
7dc74be0
DN
5192 return 0;
5193}
5194
4ffef5fe
DN
5195static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5196{
5197 unsigned long precharge;
5198 struct vm_area_struct *vma;
5199
dfe076b0 5200 down_read(&mm->mmap_sem);
4ffef5fe
DN
5201 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5202 struct mm_walk mem_cgroup_count_precharge_walk = {
5203 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5204 .mm = mm,
5205 .private = vma,
5206 };
5207 if (is_vm_hugetlb_page(vma))
5208 continue;
4ffef5fe
DN
5209 walk_page_range(vma->vm_start, vma->vm_end,
5210 &mem_cgroup_count_precharge_walk);
5211 }
dfe076b0 5212 up_read(&mm->mmap_sem);
4ffef5fe
DN
5213
5214 precharge = mc.precharge;
5215 mc.precharge = 0;
5216
5217 return precharge;
5218}
5219
4ffef5fe
DN
5220static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5221{
dfe076b0
DN
5222 unsigned long precharge = mem_cgroup_count_precharge(mm);
5223
5224 VM_BUG_ON(mc.moving_task);
5225 mc.moving_task = current;
5226 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5227}
5228
dfe076b0
DN
5229/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5230static void __mem_cgroup_clear_mc(void)
4ffef5fe 5231{
2bd9bb20
KH
5232 struct mem_cgroup *from = mc.from;
5233 struct mem_cgroup *to = mc.to;
5234
4ffef5fe 5235 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5236 if (mc.precharge) {
5237 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5238 mc.precharge = 0;
5239 }
5240 /*
5241 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5242 * we must uncharge here.
5243 */
5244 if (mc.moved_charge) {
5245 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5246 mc.moved_charge = 0;
4ffef5fe 5247 }
483c30b5
DN
5248 /* we must fixup refcnts and charges */
5249 if (mc.moved_swap) {
483c30b5
DN
5250 /* uncharge swap account from the old cgroup */
5251 if (!mem_cgroup_is_root(mc.from))
5252 res_counter_uncharge(&mc.from->memsw,
5253 PAGE_SIZE * mc.moved_swap);
5254 __mem_cgroup_put(mc.from, mc.moved_swap);
5255
5256 if (!mem_cgroup_is_root(mc.to)) {
5257 /*
5258 * we charged both to->res and to->memsw, so we should
5259 * uncharge to->res.
5260 */
5261 res_counter_uncharge(&mc.to->res,
5262 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5263 }
5264 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5265 mc.moved_swap = 0;
5266 }
dfe076b0
DN
5267 memcg_oom_recover(from);
5268 memcg_oom_recover(to);
5269 wake_up_all(&mc.waitq);
5270}
5271
5272static void mem_cgroup_clear_mc(void)
5273{
5274 struct mem_cgroup *from = mc.from;
5275
5276 /*
5277 * we must clear moving_task before waking up waiters at the end of
5278 * task migration.
5279 */
5280 mc.moving_task = NULL;
5281 __mem_cgroup_clear_mc();
2bd9bb20 5282 spin_lock(&mc.lock);
4ffef5fe
DN
5283 mc.from = NULL;
5284 mc.to = NULL;
2bd9bb20 5285 spin_unlock(&mc.lock);
32047e2a 5286 mem_cgroup_end_move(from);
4ffef5fe
DN
5287}
5288
7dc74be0
DN
5289static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5290 struct cgroup *cgroup,
f780bdb7 5291 struct task_struct *p)
7dc74be0
DN
5292{
5293 int ret = 0;
5294 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
5295
5296 if (mem->move_charge_at_immigrate) {
5297 struct mm_struct *mm;
5298 struct mem_cgroup *from = mem_cgroup_from_task(p);
5299
5300 VM_BUG_ON(from == mem);
5301
5302 mm = get_task_mm(p);
5303 if (!mm)
5304 return 0;
7dc74be0 5305 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5306 if (mm->owner == p) {
5307 VM_BUG_ON(mc.from);
5308 VM_BUG_ON(mc.to);
5309 VM_BUG_ON(mc.precharge);
854ffa8d 5310 VM_BUG_ON(mc.moved_charge);
483c30b5 5311 VM_BUG_ON(mc.moved_swap);
32047e2a 5312 mem_cgroup_start_move(from);
2bd9bb20 5313 spin_lock(&mc.lock);
4ffef5fe
DN
5314 mc.from = from;
5315 mc.to = mem;
2bd9bb20 5316 spin_unlock(&mc.lock);
dfe076b0 5317 /* We set mc.moving_task later */
4ffef5fe
DN
5318
5319 ret = mem_cgroup_precharge_mc(mm);
5320 if (ret)
5321 mem_cgroup_clear_mc();
dfe076b0
DN
5322 }
5323 mmput(mm);
7dc74be0
DN
5324 }
5325 return ret;
5326}
5327
5328static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5329 struct cgroup *cgroup,
f780bdb7 5330 struct task_struct *p)
7dc74be0 5331{
4ffef5fe 5332 mem_cgroup_clear_mc();
7dc74be0
DN
5333}
5334
4ffef5fe
DN
5335static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5336 unsigned long addr, unsigned long end,
5337 struct mm_walk *walk)
7dc74be0 5338{
4ffef5fe
DN
5339 int ret = 0;
5340 struct vm_area_struct *vma = walk->private;
5341 pte_t *pte;
5342 spinlock_t *ptl;
5343
03319327 5344 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5345retry:
5346 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5347 for (; addr != end; addr += PAGE_SIZE) {
5348 pte_t ptent = *(pte++);
5349 union mc_target target;
5350 int type;
5351 struct page *page;
5352 struct page_cgroup *pc;
02491447 5353 swp_entry_t ent;
4ffef5fe
DN
5354
5355 if (!mc.precharge)
5356 break;
5357
5358 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5359 switch (type) {
5360 case MC_TARGET_PAGE:
5361 page = target.page;
5362 if (isolate_lru_page(page))
5363 goto put;
5364 pc = lookup_page_cgroup(page);
7ec99d62
JW
5365 if (!mem_cgroup_move_account(page, 1, pc,
5366 mc.from, mc.to, false)) {
4ffef5fe 5367 mc.precharge--;
854ffa8d
DN
5368 /* we uncharge from mc.from later. */
5369 mc.moved_charge++;
4ffef5fe
DN
5370 }
5371 putback_lru_page(page);
5372put: /* is_target_pte_for_mc() gets the page */
5373 put_page(page);
5374 break;
02491447
DN
5375 case MC_TARGET_SWAP:
5376 ent = target.ent;
483c30b5
DN
5377 if (!mem_cgroup_move_swap_account(ent,
5378 mc.from, mc.to, false)) {
02491447 5379 mc.precharge--;
483c30b5
DN
5380 /* we fixup refcnts and charges later. */
5381 mc.moved_swap++;
5382 }
02491447 5383 break;
4ffef5fe
DN
5384 default:
5385 break;
5386 }
5387 }
5388 pte_unmap_unlock(pte - 1, ptl);
5389 cond_resched();
5390
5391 if (addr != end) {
5392 /*
5393 * We have consumed all precharges we got in can_attach().
5394 * We try charge one by one, but don't do any additional
5395 * charges to mc.to if we have failed in charge once in attach()
5396 * phase.
5397 */
854ffa8d 5398 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5399 if (!ret)
5400 goto retry;
5401 }
5402
5403 return ret;
5404}
5405
5406static void mem_cgroup_move_charge(struct mm_struct *mm)
5407{
5408 struct vm_area_struct *vma;
5409
5410 lru_add_drain_all();
dfe076b0
DN
5411retry:
5412 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5413 /*
5414 * Someone who are holding the mmap_sem might be waiting in
5415 * waitq. So we cancel all extra charges, wake up all waiters,
5416 * and retry. Because we cancel precharges, we might not be able
5417 * to move enough charges, but moving charge is a best-effort
5418 * feature anyway, so it wouldn't be a big problem.
5419 */
5420 __mem_cgroup_clear_mc();
5421 cond_resched();
5422 goto retry;
5423 }
4ffef5fe
DN
5424 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5425 int ret;
5426 struct mm_walk mem_cgroup_move_charge_walk = {
5427 .pmd_entry = mem_cgroup_move_charge_pte_range,
5428 .mm = mm,
5429 .private = vma,
5430 };
5431 if (is_vm_hugetlb_page(vma))
5432 continue;
4ffef5fe
DN
5433 ret = walk_page_range(vma->vm_start, vma->vm_end,
5434 &mem_cgroup_move_charge_walk);
5435 if (ret)
5436 /*
5437 * means we have consumed all precharges and failed in
5438 * doing additional charge. Just abandon here.
5439 */
5440 break;
5441 }
dfe076b0 5442 up_read(&mm->mmap_sem);
7dc74be0
DN
5443}
5444
67e465a7
BS
5445static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5446 struct cgroup *cont,
5447 struct cgroup *old_cont,
f780bdb7 5448 struct task_struct *p)
67e465a7 5449{
a433658c 5450 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5451
dfe076b0 5452 if (mm) {
a433658c
KM
5453 if (mc.to)
5454 mem_cgroup_move_charge(mm);
5455 put_swap_token(mm);
dfe076b0
DN
5456 mmput(mm);
5457 }
a433658c
KM
5458 if (mc.to)
5459 mem_cgroup_clear_mc();
67e465a7 5460}
5cfb80a7
DN
5461#else /* !CONFIG_MMU */
5462static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5463 struct cgroup *cgroup,
f780bdb7 5464 struct task_struct *p)
5cfb80a7
DN
5465{
5466 return 0;
5467}
5468static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5469 struct cgroup *cgroup,
f780bdb7 5470 struct task_struct *p)
5cfb80a7
DN
5471{
5472}
5473static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5474 struct cgroup *cont,
5475 struct cgroup *old_cont,
f780bdb7 5476 struct task_struct *p)
5cfb80a7
DN
5477{
5478}
5479#endif
67e465a7 5480
8cdea7c0
BS
5481struct cgroup_subsys mem_cgroup_subsys = {
5482 .name = "memory",
5483 .subsys_id = mem_cgroup_subsys_id,
5484 .create = mem_cgroup_create,
df878fb0 5485 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5486 .destroy = mem_cgroup_destroy,
5487 .populate = mem_cgroup_populate,
7dc74be0
DN
5488 .can_attach = mem_cgroup_can_attach,
5489 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5490 .attach = mem_cgroup_move_task,
6d12e2d8 5491 .early_init = 0,
04046e1a 5492 .use_id = 1,
8cdea7c0 5493};
c077719b
KH
5494
5495#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5496static int __init enable_swap_account(char *s)
5497{
5498 /* consider enabled if no parameter or 1 is given */
a2c8990a 5499 if (!strcmp(s, "1"))
a42c390c 5500 really_do_swap_account = 1;
a2c8990a 5501 else if (!strcmp(s, "0"))
a42c390c
MH
5502 really_do_swap_account = 0;
5503 return 1;
5504}
a2c8990a 5505__setup("swapaccount=", enable_swap_account);
c077719b 5506
c077719b 5507#endif