]> git.ipfire.org Git - people/ms/linux.git/blame - mm/memcontrol.c
memblock, numa: binary search node id
[people/ms/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
f64c3f54
BS
190/*
191 * Cgroups above their limits are maintained in a RB-Tree, independent of
192 * their hierarchy representation
193 */
194
195struct mem_cgroup_tree_per_zone {
196 struct rb_root rb_root;
197 spinlock_t lock;
198};
199
200struct mem_cgroup_tree_per_node {
201 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
202};
203
204struct mem_cgroup_tree {
205 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
206};
207
208static struct mem_cgroup_tree soft_limit_tree __read_mostly;
209
2e72b634
KS
210struct mem_cgroup_threshold {
211 struct eventfd_ctx *eventfd;
212 u64 threshold;
213};
214
9490ff27 215/* For threshold */
2e72b634 216struct mem_cgroup_threshold_ary {
748dad36 217 /* An array index points to threshold just below or equal to usage. */
5407a562 218 int current_threshold;
2e72b634
KS
219 /* Size of entries[] */
220 unsigned int size;
221 /* Array of thresholds */
222 struct mem_cgroup_threshold entries[0];
223};
2c488db2
KS
224
225struct mem_cgroup_thresholds {
226 /* Primary thresholds array */
227 struct mem_cgroup_threshold_ary *primary;
228 /*
229 * Spare threshold array.
230 * This is needed to make mem_cgroup_unregister_event() "never fail".
231 * It must be able to store at least primary->size - 1 entries.
232 */
233 struct mem_cgroup_threshold_ary *spare;
234};
235
9490ff27
KH
236/* for OOM */
237struct mem_cgroup_eventfd_list {
238 struct list_head list;
239 struct eventfd_ctx *eventfd;
240};
2e72b634 241
c0ff4b85
R
242static void mem_cgroup_threshold(struct mem_cgroup *memcg);
243static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 244
8cdea7c0
BS
245/*
246 * The memory controller data structure. The memory controller controls both
247 * page cache and RSS per cgroup. We would eventually like to provide
248 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
249 * to help the administrator determine what knobs to tune.
250 *
251 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
252 * we hit the water mark. May be even add a low water mark, such that
253 * no reclaim occurs from a cgroup at it's low water mark, this is
254 * a feature that will be implemented much later in the future.
8cdea7c0
BS
255 */
256struct mem_cgroup {
257 struct cgroup_subsys_state css;
258 /*
259 * the counter to account for memory usage
260 */
261 struct res_counter res;
59927fb9 262
70ddf637
AV
263 /* vmpressure notifications */
264 struct vmpressure vmpressure;
265
465939a1
LZ
266 /*
267 * the counter to account for mem+swap usage.
268 */
269 struct res_counter memsw;
59927fb9 270
510fc4e1
GC
271 /*
272 * the counter to account for kernel memory usage.
273 */
274 struct res_counter kmem;
18f59ea7
BS
275 /*
276 * Should the accounting and control be hierarchical, per subtree?
277 */
278 bool use_hierarchy;
510fc4e1 279 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
280
281 bool oom_lock;
282 atomic_t under_oom;
283
1f4c025b 284 int swappiness;
3c11ecf4
KH
285 /* OOM-Killer disable */
286 int oom_kill_disable;
a7885eb8 287
22a668d7
KH
288 /* set when res.limit == memsw.limit */
289 bool memsw_is_minimum;
290
2e72b634
KS
291 /* protect arrays of thresholds */
292 struct mutex thresholds_lock;
293
294 /* thresholds for memory usage. RCU-protected */
2c488db2 295 struct mem_cgroup_thresholds thresholds;
907860ed 296
2e72b634 297 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 298 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 299
9490ff27
KH
300 /* For oom notifier event fd */
301 struct list_head oom_notify;
185efc0f 302
7dc74be0
DN
303 /*
304 * Should we move charges of a task when a task is moved into this
305 * mem_cgroup ? And what type of charges should we move ?
306 */
307 unsigned long move_charge_at_immigrate;
619d094b
KH
308 /*
309 * set > 0 if pages under this cgroup are moving to other cgroup.
310 */
311 atomic_t moving_account;
312734c0
KH
312 /* taken only while moving_account > 0 */
313 spinlock_t move_lock;
d52aa412 314 /*
c62b1a3b 315 * percpu counter.
d52aa412 316 */
3a7951b4 317 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
318 /*
319 * used when a cpu is offlined or other synchronizations
320 * See mem_cgroup_read_stat().
321 */
322 struct mem_cgroup_stat_cpu nocpu_base;
323 spinlock_t pcp_counter_lock;
d1a4c0b3 324
5f578161 325 atomic_t dead_count;
4bd2c1ee 326#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
327 struct tcp_memcontrol tcp_mem;
328#endif
2633d7a0
GC
329#if defined(CONFIG_MEMCG_KMEM)
330 /* analogous to slab_common's slab_caches list. per-memcg */
331 struct list_head memcg_slab_caches;
332 /* Not a spinlock, we can take a lot of time walking the list */
333 struct mutex slab_caches_mutex;
334 /* Index in the kmem_cache->memcg_params->memcg_caches array */
335 int kmemcg_id;
336#endif
45cf7ebd
GC
337
338 int last_scanned_node;
339#if MAX_NUMNODES > 1
340 nodemask_t scan_nodes;
341 atomic_t numainfo_events;
342 atomic_t numainfo_updating;
343#endif
70ddf637 344
54f72fe0
JW
345 struct mem_cgroup_per_node *nodeinfo[0];
346 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
347};
348
45cf7ebd
GC
349static size_t memcg_size(void)
350{
351 return sizeof(struct mem_cgroup) +
352 nr_node_ids * sizeof(struct mem_cgroup_per_node);
353}
354
510fc4e1
GC
355/* internal only representation about the status of kmem accounting. */
356enum {
357 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 358 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 359 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
360};
361
a8964b9b
GC
362/* We account when limit is on, but only after call sites are patched */
363#define KMEM_ACCOUNTED_MASK \
364 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
365
366#ifdef CONFIG_MEMCG_KMEM
367static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
368{
369 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
370}
7de37682
GC
371
372static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
373{
374 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
375}
376
a8964b9b
GC
377static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
378{
379 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
380}
381
55007d84
GC
382static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
383{
384 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
385}
386
7de37682
GC
387static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
388{
10d5ebf4
LZ
389 /*
390 * Our caller must use css_get() first, because memcg_uncharge_kmem()
391 * will call css_put() if it sees the memcg is dead.
392 */
393 smp_wmb();
7de37682
GC
394 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
395 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
396}
397
398static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
399{
400 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
401 &memcg->kmem_account_flags);
402}
510fc4e1
GC
403#endif
404
7dc74be0
DN
405/* Stuffs for move charges at task migration. */
406/*
ee5e8472
GC
407 * Types of charges to be moved. "move_charge_at_immitgrate" and
408 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
409 */
410enum move_type {
4ffef5fe 411 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 412 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
413 NR_MOVE_TYPE,
414};
415
4ffef5fe
DN
416/* "mc" and its members are protected by cgroup_mutex */
417static struct move_charge_struct {
b1dd693e 418 spinlock_t lock; /* for from, to */
4ffef5fe
DN
419 struct mem_cgroup *from;
420 struct mem_cgroup *to;
ee5e8472 421 unsigned long immigrate_flags;
4ffef5fe 422 unsigned long precharge;
854ffa8d 423 unsigned long moved_charge;
483c30b5 424 unsigned long moved_swap;
8033b97c
DN
425 struct task_struct *moving_task; /* a task moving charges */
426 wait_queue_head_t waitq; /* a waitq for other context */
427} mc = {
2bd9bb20 428 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
429 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
430};
4ffef5fe 431
90254a65
DN
432static bool move_anon(void)
433{
ee5e8472 434 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
435}
436
87946a72
DN
437static bool move_file(void)
438{
ee5e8472 439 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
440}
441
4e416953
BS
442/*
443 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
444 * limit reclaim to prevent infinite loops, if they ever occur.
445 */
a0db00fc
KS
446#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
447#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 448
217bc319
KH
449enum charge_type {
450 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 451 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 452 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 453 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
454 NR_CHARGE_TYPE,
455};
456
8c7c6e34 457/* for encoding cft->private value on file */
86ae53e1
GC
458enum res_type {
459 _MEM,
460 _MEMSWAP,
461 _OOM_TYPE,
510fc4e1 462 _KMEM,
86ae53e1
GC
463};
464
a0db00fc
KS
465#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
466#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 467#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
468/* Used for OOM nofiier */
469#define OOM_CONTROL (0)
8c7c6e34 470
75822b44
BS
471/*
472 * Reclaim flags for mem_cgroup_hierarchical_reclaim
473 */
474#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
475#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
476#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
477#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
478
0999821b
GC
479/*
480 * The memcg_create_mutex will be held whenever a new cgroup is created.
481 * As a consequence, any change that needs to protect against new child cgroups
482 * appearing has to hold it as well.
483 */
484static DEFINE_MUTEX(memcg_create_mutex);
485
b2145145
WL
486struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487{
a7c6d554 488 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
489}
490
70ddf637
AV
491/* Some nice accessors for the vmpressure. */
492struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
493{
494 if (!memcg)
495 memcg = root_mem_cgroup;
496 return &memcg->vmpressure;
497}
498
499struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
500{
501 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
502}
503
504struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
505{
506 return &mem_cgroup_from_css(css)->vmpressure;
507}
508
7ffc0edc
MH
509static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
510{
511 return (memcg == root_mem_cgroup);
512}
513
e1aab161 514/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 515#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 516
e1aab161
GC
517void sock_update_memcg(struct sock *sk)
518{
376be5ff 519 if (mem_cgroup_sockets_enabled) {
e1aab161 520 struct mem_cgroup *memcg;
3f134619 521 struct cg_proto *cg_proto;
e1aab161
GC
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
f3f511e1
GC
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 535 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
536 return;
537 }
538
e1aab161
GC
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
3f134619 541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 544 sk->sk_cgrp = cg_proto;
e1aab161
GC
545 }
546 rcu_read_unlock();
547 }
548}
549EXPORT_SYMBOL(sock_update_memcg);
550
551void sock_release_memcg(struct sock *sk)
552{
376be5ff 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
5347e5ae 557 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
558 }
559}
d1a4c0b3
GC
560
561struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562{
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567}
568EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 569
3f134619
GC
570static void disarm_sock_keys(struct mem_cgroup *memcg)
571{
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575}
576#else
577static void disarm_sock_keys(struct mem_cgroup *memcg)
578{
579}
580#endif
581
a8964b9b 582#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
583/*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
601int memcg_limited_groups_array_size;
602
55007d84
GC
603/*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615#define MEMCG_CACHES_MIN_SIZE 4
616#define MEMCG_CACHES_MAX_SIZE 65535
617
d7f25f8a
GC
618/*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
a8964b9b 624struct static_key memcg_kmem_enabled_key;
d7f25f8a 625EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
626
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
55007d84 629 if (memcg_kmem_is_active(memcg)) {
a8964b9b 630 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
bea207c8
GC
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
638}
639#else
640static void disarm_kmem_keys(struct mem_cgroup *memcg)
641{
642}
643#endif /* CONFIG_MEMCG_KMEM */
644
645static void disarm_static_keys(struct mem_cgroup *memcg)
646{
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649}
650
c0ff4b85 651static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 652
f64c3f54 653static struct mem_cgroup_per_zone *
c0ff4b85 654mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 655{
45cf7ebd 656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
c0ff4b85 660struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 661{
c0ff4b85 662 return &memcg->css;
d324236b
WF
663}
664
f64c3f54 665static struct mem_cgroup_per_zone *
c0ff4b85 666page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 667{
97a6c37b
JW
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
f64c3f54 670
c0ff4b85 671 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
672}
673
674static struct mem_cgroup_tree_per_zone *
675soft_limit_tree_node_zone(int nid, int zid)
676{
677 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
678}
679
680static struct mem_cgroup_tree_per_zone *
681soft_limit_tree_from_page(struct page *page)
682{
683 int nid = page_to_nid(page);
684 int zid = page_zonenum(page);
685
686 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
687}
688
689static void
c0ff4b85 690__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 691 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
692 struct mem_cgroup_tree_per_zone *mctz,
693 unsigned long long new_usage_in_excess)
f64c3f54
BS
694{
695 struct rb_node **p = &mctz->rb_root.rb_node;
696 struct rb_node *parent = NULL;
697 struct mem_cgroup_per_zone *mz_node;
698
699 if (mz->on_tree)
700 return;
701
ef8745c1
KH
702 mz->usage_in_excess = new_usage_in_excess;
703 if (!mz->usage_in_excess)
704 return;
f64c3f54
BS
705 while (*p) {
706 parent = *p;
707 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
708 tree_node);
709 if (mz->usage_in_excess < mz_node->usage_in_excess)
710 p = &(*p)->rb_left;
711 /*
712 * We can't avoid mem cgroups that are over their soft
713 * limit by the same amount
714 */
715 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
716 p = &(*p)->rb_right;
717 }
718 rb_link_node(&mz->tree_node, parent, p);
719 rb_insert_color(&mz->tree_node, &mctz->rb_root);
720 mz->on_tree = true;
4e416953
BS
721}
722
723static void
c0ff4b85 724__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz)
727{
728 if (!mz->on_tree)
729 return;
730 rb_erase(&mz->tree_node, &mctz->rb_root);
731 mz->on_tree = false;
732}
733
f64c3f54 734static void
c0ff4b85 735mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
736 struct mem_cgroup_per_zone *mz,
737 struct mem_cgroup_tree_per_zone *mctz)
738{
739 spin_lock(&mctz->lock);
c0ff4b85 740 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
741 spin_unlock(&mctz->lock);
742}
743
f64c3f54 744
c0ff4b85 745static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 746{
ef8745c1 747 unsigned long long excess;
f64c3f54
BS
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
750 int nid = page_to_nid(page);
751 int zid = page_zonenum(page);
f64c3f54
BS
752 mctz = soft_limit_tree_from_page(page);
753
754 /*
4e649152
KH
755 * Necessary to update all ancestors when hierarchy is used.
756 * because their event counter is not touched.
f64c3f54 757 */
c0ff4b85
R
758 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
759 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
760 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
761 /*
762 * We have to update the tree if mz is on RB-tree or
763 * mem is over its softlimit.
764 */
ef8745c1 765 if (excess || mz->on_tree) {
4e649152
KH
766 spin_lock(&mctz->lock);
767 /* if on-tree, remove it */
768 if (mz->on_tree)
c0ff4b85 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 770 /*
ef8745c1
KH
771 * Insert again. mz->usage_in_excess will be updated.
772 * If excess is 0, no tree ops.
4e649152 773 */
c0ff4b85 774 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
775 spin_unlock(&mctz->lock);
776 }
f64c3f54
BS
777 }
778}
779
c0ff4b85 780static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
781{
782 int node, zone;
783 struct mem_cgroup_per_zone *mz;
784 struct mem_cgroup_tree_per_zone *mctz;
785
3ed28fa1 786 for_each_node(node) {
f64c3f54 787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 788 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 789 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 790 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
791 }
792 }
793}
794
4e416953
BS
795static struct mem_cgroup_per_zone *
796__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
797{
798 struct rb_node *rightmost = NULL;
26251eaf 799 struct mem_cgroup_per_zone *mz;
4e416953
BS
800
801retry:
26251eaf 802 mz = NULL;
4e416953
BS
803 rightmost = rb_last(&mctz->rb_root);
804 if (!rightmost)
805 goto done; /* Nothing to reclaim from */
806
807 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
808 /*
809 * Remove the node now but someone else can add it back,
810 * we will to add it back at the end of reclaim to its correct
811 * position in the tree.
812 */
d79154bb
HD
813 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
814 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
815 !css_tryget(&mz->memcg->css))
4e416953
BS
816 goto retry;
817done:
818 return mz;
819}
820
821static struct mem_cgroup_per_zone *
822mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct mem_cgroup_per_zone *mz;
825
826 spin_lock(&mctz->lock);
827 mz = __mem_cgroup_largest_soft_limit_node(mctz);
828 spin_unlock(&mctz->lock);
829 return mz;
830}
831
711d3d2c
KH
832/*
833 * Implementation Note: reading percpu statistics for memcg.
834 *
835 * Both of vmstat[] and percpu_counter has threshold and do periodic
836 * synchronization to implement "quick" read. There are trade-off between
837 * reading cost and precision of value. Then, we may have a chance to implement
838 * a periodic synchronizion of counter in memcg's counter.
839 *
840 * But this _read() function is used for user interface now. The user accounts
841 * memory usage by memory cgroup and he _always_ requires exact value because
842 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
843 * have to visit all online cpus and make sum. So, for now, unnecessary
844 * synchronization is not implemented. (just implemented for cpu hotplug)
845 *
846 * If there are kernel internal actions which can make use of some not-exact
847 * value, and reading all cpu value can be performance bottleneck in some
848 * common workload, threashold and synchonization as vmstat[] should be
849 * implemented.
850 */
c0ff4b85 851static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 852 enum mem_cgroup_stat_index idx)
c62b1a3b 853{
7a159cc9 854 long val = 0;
c62b1a3b 855 int cpu;
c62b1a3b 856
711d3d2c
KH
857 get_online_cpus();
858 for_each_online_cpu(cpu)
c0ff4b85 859 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 860#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
861 spin_lock(&memcg->pcp_counter_lock);
862 val += memcg->nocpu_base.count[idx];
863 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
864#endif
865 put_online_cpus();
c62b1a3b
KH
866 return val;
867}
868
c0ff4b85 869static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
870 bool charge)
871{
872 int val = (charge) ? 1 : -1;
bff6bb83 873 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
874}
875
c0ff4b85 876static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
877 enum mem_cgroup_events_index idx)
878{
879 unsigned long val = 0;
880 int cpu;
881
882 for_each_online_cpu(cpu)
c0ff4b85 883 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 884#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
885 spin_lock(&memcg->pcp_counter_lock);
886 val += memcg->nocpu_base.events[idx];
887 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
888#endif
889 return val;
890}
891
c0ff4b85 892static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 893 struct page *page,
b2402857 894 bool anon, int nr_pages)
d52aa412 895{
c62b1a3b
KH
896 preempt_disable();
897
b2402857
KH
898 /*
899 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
900 * counted as CACHE even if it's on ANON LRU.
901 */
902 if (anon)
903 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 904 nr_pages);
d52aa412 905 else
b2402857 906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 907 nr_pages);
55e462b0 908
b070e65c
DR
909 if (PageTransHuge(page))
910 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
911 nr_pages);
912
e401f176
KH
913 /* pagein of a big page is an event. So, ignore page size */
914 if (nr_pages > 0)
c0ff4b85 915 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 916 else {
c0ff4b85 917 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
918 nr_pages = -nr_pages; /* for event */
919 }
e401f176 920
13114716 921 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 922
c62b1a3b 923 preempt_enable();
6d12e2d8
KH
924}
925
bb2a0de9 926unsigned long
4d7dcca2 927mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
928{
929 struct mem_cgroup_per_zone *mz;
930
931 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
932 return mz->lru_size[lru];
933}
934
935static unsigned long
c0ff4b85 936mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 937 unsigned int lru_mask)
889976db
YH
938{
939 struct mem_cgroup_per_zone *mz;
f156ab93 940 enum lru_list lru;
bb2a0de9
KH
941 unsigned long ret = 0;
942
c0ff4b85 943 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 944
f156ab93
HD
945 for_each_lru(lru) {
946 if (BIT(lru) & lru_mask)
947 ret += mz->lru_size[lru];
bb2a0de9
KH
948 }
949 return ret;
950}
951
952static unsigned long
c0ff4b85 953mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
954 int nid, unsigned int lru_mask)
955{
889976db
YH
956 u64 total = 0;
957 int zid;
958
bb2a0de9 959 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
960 total += mem_cgroup_zone_nr_lru_pages(memcg,
961 nid, zid, lru_mask);
bb2a0de9 962
889976db
YH
963 return total;
964}
bb2a0de9 965
c0ff4b85 966static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 967 unsigned int lru_mask)
6d12e2d8 968{
889976db 969 int nid;
6d12e2d8
KH
970 u64 total = 0;
971
31aaea4a 972 for_each_node_state(nid, N_MEMORY)
c0ff4b85 973 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 974 return total;
d52aa412
KH
975}
976
f53d7ce3
JW
977static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
978 enum mem_cgroup_events_target target)
7a159cc9
JW
979{
980 unsigned long val, next;
981
13114716 982 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 983 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 984 /* from time_after() in jiffies.h */
f53d7ce3
JW
985 if ((long)next - (long)val < 0) {
986 switch (target) {
987 case MEM_CGROUP_TARGET_THRESH:
988 next = val + THRESHOLDS_EVENTS_TARGET;
989 break;
990 case MEM_CGROUP_TARGET_SOFTLIMIT:
991 next = val + SOFTLIMIT_EVENTS_TARGET;
992 break;
993 case MEM_CGROUP_TARGET_NUMAINFO:
994 next = val + NUMAINFO_EVENTS_TARGET;
995 break;
996 default:
997 break;
998 }
999 __this_cpu_write(memcg->stat->targets[target], next);
1000 return true;
7a159cc9 1001 }
f53d7ce3 1002 return false;
d2265e6f
KH
1003}
1004
1005/*
1006 * Check events in order.
1007 *
1008 */
c0ff4b85 1009static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1010{
4799401f 1011 preempt_disable();
d2265e6f 1012 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1013 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1014 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1015 bool do_softlimit;
1016 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1017
1018 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1019 MEM_CGROUP_TARGET_SOFTLIMIT);
1020#if MAX_NUMNODES > 1
1021 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_NUMAINFO);
1023#endif
1024 preempt_enable();
1025
c0ff4b85 1026 mem_cgroup_threshold(memcg);
f53d7ce3 1027 if (unlikely(do_softlimit))
c0ff4b85 1028 mem_cgroup_update_tree(memcg, page);
453a9bf3 1029#if MAX_NUMNODES > 1
f53d7ce3 1030 if (unlikely(do_numainfo))
c0ff4b85 1031 atomic_inc(&memcg->numainfo_events);
453a9bf3 1032#endif
f53d7ce3
JW
1033 } else
1034 preempt_enable();
d2265e6f
KH
1035}
1036
cf475ad2 1037struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1038{
31a78f23
BS
1039 /*
1040 * mm_update_next_owner() may clear mm->owner to NULL
1041 * if it races with swapoff, page migration, etc.
1042 * So this can be called with p == NULL.
1043 */
1044 if (unlikely(!p))
1045 return NULL;
1046
8af01f56 1047 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1048}
1049
a433658c 1050struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1051{
c0ff4b85 1052 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1053
1054 if (!mm)
1055 return NULL;
54595fe2
KH
1056 /*
1057 * Because we have no locks, mm->owner's may be being moved to other
1058 * cgroup. We use css_tryget() here even if this looks
1059 * pessimistic (rather than adding locks here).
1060 */
1061 rcu_read_lock();
1062 do {
c0ff4b85
R
1063 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1064 if (unlikely(!memcg))
54595fe2 1065 break;
c0ff4b85 1066 } while (!css_tryget(&memcg->css));
54595fe2 1067 rcu_read_unlock();
c0ff4b85 1068 return memcg;
54595fe2
KH
1069}
1070
16248d8f
MH
1071/*
1072 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1073 * ref. count) or NULL if the whole root's subtree has been visited.
1074 *
1075 * helper function to be used by mem_cgroup_iter
1076 */
1077static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1078 struct mem_cgroup *last_visited)
1079{
492eb21b 1080 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1081
bd8815a6 1082 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1083skip_node:
492eb21b 1084 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1085
1086 /*
1087 * Even if we found a group we have to make sure it is
1088 * alive. css && !memcg means that the groups should be
1089 * skipped and we should continue the tree walk.
1090 * last_visited css is safe to use because it is
1091 * protected by css_get and the tree walk is rcu safe.
1092 */
492eb21b
TH
1093 if (next_css) {
1094 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1095
16248d8f
MH
1096 if (css_tryget(&mem->css))
1097 return mem;
1098 else {
492eb21b 1099 prev_css = next_css;
16248d8f
MH
1100 goto skip_node;
1101 }
1102 }
1103
1104 return NULL;
1105}
1106
519ebea3
JW
1107static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1108{
1109 /*
1110 * When a group in the hierarchy below root is destroyed, the
1111 * hierarchy iterator can no longer be trusted since it might
1112 * have pointed to the destroyed group. Invalidate it.
1113 */
1114 atomic_inc(&root->dead_count);
1115}
1116
1117static struct mem_cgroup *
1118mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1119 struct mem_cgroup *root,
1120 int *sequence)
1121{
1122 struct mem_cgroup *position = NULL;
1123 /*
1124 * A cgroup destruction happens in two stages: offlining and
1125 * release. They are separated by a RCU grace period.
1126 *
1127 * If the iterator is valid, we may still race with an
1128 * offlining. The RCU lock ensures the object won't be
1129 * released, tryget will fail if we lost the race.
1130 */
1131 *sequence = atomic_read(&root->dead_count);
1132 if (iter->last_dead_count == *sequence) {
1133 smp_rmb();
1134 position = iter->last_visited;
1135 if (position && !css_tryget(&position->css))
1136 position = NULL;
1137 }
1138 return position;
1139}
1140
1141static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1142 struct mem_cgroup *last_visited,
1143 struct mem_cgroup *new_position,
1144 int sequence)
1145{
1146 if (last_visited)
1147 css_put(&last_visited->css);
1148 /*
1149 * We store the sequence count from the time @last_visited was
1150 * loaded successfully instead of rereading it here so that we
1151 * don't lose destruction events in between. We could have
1152 * raced with the destruction of @new_position after all.
1153 */
1154 iter->last_visited = new_position;
1155 smp_wmb();
1156 iter->last_dead_count = sequence;
1157}
1158
5660048c
JW
1159/**
1160 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1161 * @root: hierarchy root
1162 * @prev: previously returned memcg, NULL on first invocation
1163 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1164 *
1165 * Returns references to children of the hierarchy below @root, or
1166 * @root itself, or %NULL after a full round-trip.
1167 *
1168 * Caller must pass the return value in @prev on subsequent
1169 * invocations for reference counting, or use mem_cgroup_iter_break()
1170 * to cancel a hierarchy walk before the round-trip is complete.
1171 *
1172 * Reclaimers can specify a zone and a priority level in @reclaim to
1173 * divide up the memcgs in the hierarchy among all concurrent
1174 * reclaimers operating on the same zone and priority.
1175 */
1176struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1177 struct mem_cgroup *prev,
1178 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1179{
9f3a0d09 1180 struct mem_cgroup *memcg = NULL;
542f85f9 1181 struct mem_cgroup *last_visited = NULL;
711d3d2c 1182
5660048c
JW
1183 if (mem_cgroup_disabled())
1184 return NULL;
1185
9f3a0d09
JW
1186 if (!root)
1187 root = root_mem_cgroup;
7d74b06f 1188
9f3a0d09 1189 if (prev && !reclaim)
542f85f9 1190 last_visited = prev;
14067bb3 1191
9f3a0d09
JW
1192 if (!root->use_hierarchy && root != root_mem_cgroup) {
1193 if (prev)
c40046f3 1194 goto out_css_put;
9f3a0d09
JW
1195 return root;
1196 }
14067bb3 1197
542f85f9 1198 rcu_read_lock();
9f3a0d09 1199 while (!memcg) {
527a5ec9 1200 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1201 int uninitialized_var(seq);
711d3d2c 1202
527a5ec9
JW
1203 if (reclaim) {
1204 int nid = zone_to_nid(reclaim->zone);
1205 int zid = zone_idx(reclaim->zone);
1206 struct mem_cgroup_per_zone *mz;
1207
1208 mz = mem_cgroup_zoneinfo(root, nid, zid);
1209 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1210 if (prev && reclaim->generation != iter->generation) {
5f578161 1211 iter->last_visited = NULL;
542f85f9
MH
1212 goto out_unlock;
1213 }
5f578161 1214
519ebea3 1215 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1216 }
7d74b06f 1217
16248d8f 1218 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1219
527a5ec9 1220 if (reclaim) {
519ebea3 1221 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1222
19f39402 1223 if (!memcg)
527a5ec9
JW
1224 iter->generation++;
1225 else if (!prev && memcg)
1226 reclaim->generation = iter->generation;
1227 }
9f3a0d09 1228
19f39402 1229 if (prev && !memcg)
542f85f9 1230 goto out_unlock;
9f3a0d09 1231 }
542f85f9
MH
1232out_unlock:
1233 rcu_read_unlock();
c40046f3
MH
1234out_css_put:
1235 if (prev && prev != root)
1236 css_put(&prev->css);
1237
9f3a0d09 1238 return memcg;
14067bb3 1239}
7d74b06f 1240
5660048c
JW
1241/**
1242 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1243 * @root: hierarchy root
1244 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1245 */
1246void mem_cgroup_iter_break(struct mem_cgroup *root,
1247 struct mem_cgroup *prev)
9f3a0d09
JW
1248{
1249 if (!root)
1250 root = root_mem_cgroup;
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253}
7d74b06f 1254
9f3a0d09
JW
1255/*
1256 * Iteration constructs for visiting all cgroups (under a tree). If
1257 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1258 * be used for reference counting.
1259 */
1260#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1261 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1262 iter != NULL; \
527a5ec9 1263 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1264
9f3a0d09 1265#define for_each_mem_cgroup(iter) \
527a5ec9 1266 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1267 iter != NULL; \
527a5ec9 1268 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1269
68ae564b 1270void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1271{
c0ff4b85 1272 struct mem_cgroup *memcg;
456f998e 1273
456f998e 1274 rcu_read_lock();
c0ff4b85
R
1275 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1276 if (unlikely(!memcg))
456f998e
YH
1277 goto out;
1278
1279 switch (idx) {
456f998e 1280 case PGFAULT:
0e574a93
JW
1281 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1282 break;
1283 case PGMAJFAULT:
1284 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1285 break;
1286 default:
1287 BUG();
1288 }
1289out:
1290 rcu_read_unlock();
1291}
68ae564b 1292EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1293
925b7673
JW
1294/**
1295 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1296 * @zone: zone of the wanted lruvec
fa9add64 1297 * @memcg: memcg of the wanted lruvec
925b7673
JW
1298 *
1299 * Returns the lru list vector holding pages for the given @zone and
1300 * @mem. This can be the global zone lruvec, if the memory controller
1301 * is disabled.
1302 */
1303struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1304 struct mem_cgroup *memcg)
1305{
1306 struct mem_cgroup_per_zone *mz;
bea8c150 1307 struct lruvec *lruvec;
925b7673 1308
bea8c150
HD
1309 if (mem_cgroup_disabled()) {
1310 lruvec = &zone->lruvec;
1311 goto out;
1312 }
925b7673
JW
1313
1314 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1315 lruvec = &mz->lruvec;
1316out:
1317 /*
1318 * Since a node can be onlined after the mem_cgroup was created,
1319 * we have to be prepared to initialize lruvec->zone here;
1320 * and if offlined then reonlined, we need to reinitialize it.
1321 */
1322 if (unlikely(lruvec->zone != zone))
1323 lruvec->zone = zone;
1324 return lruvec;
925b7673
JW
1325}
1326
08e552c6
KH
1327/*
1328 * Following LRU functions are allowed to be used without PCG_LOCK.
1329 * Operations are called by routine of global LRU independently from memcg.
1330 * What we have to take care of here is validness of pc->mem_cgroup.
1331 *
1332 * Changes to pc->mem_cgroup happens when
1333 * 1. charge
1334 * 2. moving account
1335 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1336 * It is added to LRU before charge.
1337 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1338 * When moving account, the page is not on LRU. It's isolated.
1339 */
4f98a2fe 1340
925b7673 1341/**
fa9add64 1342 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1343 * @page: the page
fa9add64 1344 * @zone: zone of the page
925b7673 1345 */
fa9add64 1346struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1347{
08e552c6 1348 struct mem_cgroup_per_zone *mz;
925b7673
JW
1349 struct mem_cgroup *memcg;
1350 struct page_cgroup *pc;
bea8c150 1351 struct lruvec *lruvec;
6d12e2d8 1352
bea8c150
HD
1353 if (mem_cgroup_disabled()) {
1354 lruvec = &zone->lruvec;
1355 goto out;
1356 }
925b7673 1357
08e552c6 1358 pc = lookup_page_cgroup(page);
38c5d72f 1359 memcg = pc->mem_cgroup;
7512102c
HD
1360
1361 /*
fa9add64 1362 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1363 * an uncharged page off lru does nothing to secure
1364 * its former mem_cgroup from sudden removal.
1365 *
1366 * Our caller holds lru_lock, and PageCgroupUsed is updated
1367 * under page_cgroup lock: between them, they make all uses
1368 * of pc->mem_cgroup safe.
1369 */
fa9add64 1370 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1371 pc->mem_cgroup = memcg = root_mem_cgroup;
1372
925b7673 1373 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1374 lruvec = &mz->lruvec;
1375out:
1376 /*
1377 * Since a node can be onlined after the mem_cgroup was created,
1378 * we have to be prepared to initialize lruvec->zone here;
1379 * and if offlined then reonlined, we need to reinitialize it.
1380 */
1381 if (unlikely(lruvec->zone != zone))
1382 lruvec->zone = zone;
1383 return lruvec;
08e552c6 1384}
b69408e8 1385
925b7673 1386/**
fa9add64
HD
1387 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1388 * @lruvec: mem_cgroup per zone lru vector
1389 * @lru: index of lru list the page is sitting on
1390 * @nr_pages: positive when adding or negative when removing
925b7673 1391 *
fa9add64
HD
1392 * This function must be called when a page is added to or removed from an
1393 * lru list.
3f58a829 1394 */
fa9add64
HD
1395void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1396 int nr_pages)
3f58a829
MK
1397{
1398 struct mem_cgroup_per_zone *mz;
fa9add64 1399 unsigned long *lru_size;
3f58a829
MK
1400
1401 if (mem_cgroup_disabled())
1402 return;
1403
fa9add64
HD
1404 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1405 lru_size = mz->lru_size + lru;
1406 *lru_size += nr_pages;
1407 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1408}
544122e5 1409
3e92041d 1410/*
c0ff4b85 1411 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1412 * hierarchy subtree
1413 */
c3ac9a8a
JW
1414bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1415 struct mem_cgroup *memcg)
3e92041d 1416{
91c63734
JW
1417 if (root_memcg == memcg)
1418 return true;
3a981f48 1419 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1420 return false;
c3ac9a8a
JW
1421 return css_is_ancestor(&memcg->css, &root_memcg->css);
1422}
1423
1424static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1425 struct mem_cgroup *memcg)
1426{
1427 bool ret;
1428
91c63734 1429 rcu_read_lock();
c3ac9a8a 1430 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1431 rcu_read_unlock();
1432 return ret;
3e92041d
MH
1433}
1434
ffbdccf5
DR
1435bool task_in_mem_cgroup(struct task_struct *task,
1436 const struct mem_cgroup *memcg)
4c4a2214 1437{
0b7f569e 1438 struct mem_cgroup *curr = NULL;
158e0a2d 1439 struct task_struct *p;
ffbdccf5 1440 bool ret;
4c4a2214 1441
158e0a2d 1442 p = find_lock_task_mm(task);
de077d22
DR
1443 if (p) {
1444 curr = try_get_mem_cgroup_from_mm(p->mm);
1445 task_unlock(p);
1446 } else {
1447 /*
1448 * All threads may have already detached their mm's, but the oom
1449 * killer still needs to detect if they have already been oom
1450 * killed to prevent needlessly killing additional tasks.
1451 */
ffbdccf5 1452 rcu_read_lock();
de077d22
DR
1453 curr = mem_cgroup_from_task(task);
1454 if (curr)
1455 css_get(&curr->css);
ffbdccf5 1456 rcu_read_unlock();
de077d22 1457 }
0b7f569e 1458 if (!curr)
ffbdccf5 1459 return false;
d31f56db 1460 /*
c0ff4b85 1461 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1462 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1463 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1464 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1465 */
c0ff4b85 1466 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1467 css_put(&curr->css);
4c4a2214
DR
1468 return ret;
1469}
1470
c56d5c7d 1471int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1472{
9b272977 1473 unsigned long inactive_ratio;
14797e23 1474 unsigned long inactive;
9b272977 1475 unsigned long active;
c772be93 1476 unsigned long gb;
14797e23 1477
4d7dcca2
HD
1478 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1479 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1480
c772be93
KM
1481 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1482 if (gb)
1483 inactive_ratio = int_sqrt(10 * gb);
1484 else
1485 inactive_ratio = 1;
1486
9b272977 1487 return inactive * inactive_ratio < active;
14797e23
KM
1488}
1489
6d61ef40
BS
1490#define mem_cgroup_from_res_counter(counter, member) \
1491 container_of(counter, struct mem_cgroup, member)
1492
19942822 1493/**
9d11ea9f 1494 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1495 * @memcg: the memory cgroup
19942822 1496 *
9d11ea9f 1497 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1498 * pages.
19942822 1499 */
c0ff4b85 1500static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1501{
9d11ea9f
JW
1502 unsigned long long margin;
1503
c0ff4b85 1504 margin = res_counter_margin(&memcg->res);
9d11ea9f 1505 if (do_swap_account)
c0ff4b85 1506 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1507 return margin >> PAGE_SHIFT;
19942822
JW
1508}
1509
1f4c025b 1510int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1511{
a7885eb8 1512 /* root ? */
63876986 1513 if (!css_parent(&memcg->css))
a7885eb8
KM
1514 return vm_swappiness;
1515
bf1ff263 1516 return memcg->swappiness;
a7885eb8
KM
1517}
1518
619d094b
KH
1519/*
1520 * memcg->moving_account is used for checking possibility that some thread is
1521 * calling move_account(). When a thread on CPU-A starts moving pages under
1522 * a memcg, other threads should check memcg->moving_account under
1523 * rcu_read_lock(), like this:
1524 *
1525 * CPU-A CPU-B
1526 * rcu_read_lock()
1527 * memcg->moving_account+1 if (memcg->mocing_account)
1528 * take heavy locks.
1529 * synchronize_rcu() update something.
1530 * rcu_read_unlock()
1531 * start move here.
1532 */
4331f7d3
KH
1533
1534/* for quick checking without looking up memcg */
1535atomic_t memcg_moving __read_mostly;
1536
c0ff4b85 1537static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1538{
4331f7d3 1539 atomic_inc(&memcg_moving);
619d094b 1540 atomic_inc(&memcg->moving_account);
32047e2a
KH
1541 synchronize_rcu();
1542}
1543
c0ff4b85 1544static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1545{
619d094b
KH
1546 /*
1547 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1548 * We check NULL in callee rather than caller.
1549 */
4331f7d3
KH
1550 if (memcg) {
1551 atomic_dec(&memcg_moving);
619d094b 1552 atomic_dec(&memcg->moving_account);
4331f7d3 1553 }
32047e2a 1554}
619d094b 1555
32047e2a
KH
1556/*
1557 * 2 routines for checking "mem" is under move_account() or not.
1558 *
13fd1dd9
AM
1559 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1560 * is used for avoiding races in accounting. If true,
32047e2a
KH
1561 * pc->mem_cgroup may be overwritten.
1562 *
1563 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1564 * under hierarchy of moving cgroups. This is for
1565 * waiting at hith-memory prressure caused by "move".
1566 */
1567
13fd1dd9 1568static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1569{
1570 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1571 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1572}
4b534334 1573
c0ff4b85 1574static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1575{
2bd9bb20
KH
1576 struct mem_cgroup *from;
1577 struct mem_cgroup *to;
4b534334 1578 bool ret = false;
2bd9bb20
KH
1579 /*
1580 * Unlike task_move routines, we access mc.to, mc.from not under
1581 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1582 */
1583 spin_lock(&mc.lock);
1584 from = mc.from;
1585 to = mc.to;
1586 if (!from)
1587 goto unlock;
3e92041d 1588
c0ff4b85
R
1589 ret = mem_cgroup_same_or_subtree(memcg, from)
1590 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1591unlock:
1592 spin_unlock(&mc.lock);
4b534334
KH
1593 return ret;
1594}
1595
c0ff4b85 1596static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1597{
1598 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1599 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1600 DEFINE_WAIT(wait);
1601 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1602 /* moving charge context might have finished. */
1603 if (mc.moving_task)
1604 schedule();
1605 finish_wait(&mc.waitq, &wait);
1606 return true;
1607 }
1608 }
1609 return false;
1610}
1611
312734c0
KH
1612/*
1613 * Take this lock when
1614 * - a code tries to modify page's memcg while it's USED.
1615 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1616 * see mem_cgroup_stolen(), too.
312734c0
KH
1617 */
1618static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1619 unsigned long *flags)
1620{
1621 spin_lock_irqsave(&memcg->move_lock, *flags);
1622}
1623
1624static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1625 unsigned long *flags)
1626{
1627 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1628}
1629
58cf188e 1630#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1631/**
58cf188e 1632 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1633 * @memcg: The memory cgroup that went over limit
1634 * @p: Task that is going to be killed
1635 *
1636 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1637 * enabled
1638 */
1639void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1640{
1641 struct cgroup *task_cgrp;
1642 struct cgroup *mem_cgrp;
1643 /*
1644 * Need a buffer in BSS, can't rely on allocations. The code relies
1645 * on the assumption that OOM is serialized for memory controller.
1646 * If this assumption is broken, revisit this code.
1647 */
1648 static char memcg_name[PATH_MAX];
1649 int ret;
58cf188e
SZ
1650 struct mem_cgroup *iter;
1651 unsigned int i;
e222432b 1652
58cf188e 1653 if (!p)
e222432b
BS
1654 return;
1655
e222432b
BS
1656 rcu_read_lock();
1657
1658 mem_cgrp = memcg->css.cgroup;
1659 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1660
1661 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1662 if (ret < 0) {
1663 /*
1664 * Unfortunately, we are unable to convert to a useful name
1665 * But we'll still print out the usage information
1666 */
1667 rcu_read_unlock();
1668 goto done;
1669 }
1670 rcu_read_unlock();
1671
d045197f 1672 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1673
1674 rcu_read_lock();
1675 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1676 if (ret < 0) {
1677 rcu_read_unlock();
1678 goto done;
1679 }
1680 rcu_read_unlock();
1681
1682 /*
1683 * Continues from above, so we don't need an KERN_ level
1684 */
d045197f 1685 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1686done:
1687
d045197f 1688 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1689 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1690 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1691 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1692 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1693 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1696 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1697 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1700
1701 for_each_mem_cgroup_tree(iter, memcg) {
1702 pr_info("Memory cgroup stats");
1703
1704 rcu_read_lock();
1705 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1706 if (!ret)
1707 pr_cont(" for %s", memcg_name);
1708 rcu_read_unlock();
1709 pr_cont(":");
1710
1711 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1712 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1713 continue;
1714 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1715 K(mem_cgroup_read_stat(iter, i)));
1716 }
1717
1718 for (i = 0; i < NR_LRU_LISTS; i++)
1719 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1720 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1721
1722 pr_cont("\n");
1723 }
e222432b
BS
1724}
1725
81d39c20
KH
1726/*
1727 * This function returns the number of memcg under hierarchy tree. Returns
1728 * 1(self count) if no children.
1729 */
c0ff4b85 1730static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1731{
1732 int num = 0;
7d74b06f
KH
1733 struct mem_cgroup *iter;
1734
c0ff4b85 1735 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1736 num++;
81d39c20
KH
1737 return num;
1738}
1739
a63d83f4
DR
1740/*
1741 * Return the memory (and swap, if configured) limit for a memcg.
1742 */
9cbb78bb 1743static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1744{
1745 u64 limit;
a63d83f4 1746
f3e8eb70 1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1748
a63d83f4 1749 /*
9a5a8f19 1750 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1751 */
9a5a8f19
MH
1752 if (mem_cgroup_swappiness(memcg)) {
1753 u64 memsw;
1754
1755 limit += total_swap_pages << PAGE_SHIFT;
1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1757
1758 /*
1759 * If memsw is finite and limits the amount of swap space
1760 * available to this memcg, return that limit.
1761 */
1762 limit = min(limit, memsw);
1763 }
1764
1765 return limit;
a63d83f4
DR
1766}
1767
19965460
DR
1768static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1769 int order)
9cbb78bb
DR
1770{
1771 struct mem_cgroup *iter;
1772 unsigned long chosen_points = 0;
1773 unsigned long totalpages;
1774 unsigned int points = 0;
1775 struct task_struct *chosen = NULL;
1776
876aafbf 1777 /*
465adcf1
DR
1778 * If current has a pending SIGKILL or is exiting, then automatically
1779 * select it. The goal is to allow it to allocate so that it may
1780 * quickly exit and free its memory.
876aafbf 1781 */
465adcf1 1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1783 set_thread_flag(TIF_MEMDIE);
1784 return;
1785 }
1786
1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1789 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1790 struct css_task_iter it;
9cbb78bb
DR
1791 struct task_struct *task;
1792
72ec7029
TH
1793 css_task_iter_start(&iter->css, &it);
1794 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1795 switch (oom_scan_process_thread(task, totalpages, NULL,
1796 false)) {
1797 case OOM_SCAN_SELECT:
1798 if (chosen)
1799 put_task_struct(chosen);
1800 chosen = task;
1801 chosen_points = ULONG_MAX;
1802 get_task_struct(chosen);
1803 /* fall through */
1804 case OOM_SCAN_CONTINUE:
1805 continue;
1806 case OOM_SCAN_ABORT:
72ec7029 1807 css_task_iter_end(&it);
9cbb78bb
DR
1808 mem_cgroup_iter_break(memcg, iter);
1809 if (chosen)
1810 put_task_struct(chosen);
1811 return;
1812 case OOM_SCAN_OK:
1813 break;
1814 };
1815 points = oom_badness(task, memcg, NULL, totalpages);
1816 if (points > chosen_points) {
1817 if (chosen)
1818 put_task_struct(chosen);
1819 chosen = task;
1820 chosen_points = points;
1821 get_task_struct(chosen);
1822 }
1823 }
72ec7029 1824 css_task_iter_end(&it);
9cbb78bb
DR
1825 }
1826
1827 if (!chosen)
1828 return;
1829 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1830 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1831 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1832}
1833
5660048c
JW
1834static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1835 gfp_t gfp_mask,
1836 unsigned long flags)
1837{
1838 unsigned long total = 0;
1839 bool noswap = false;
1840 int loop;
1841
1842 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1843 noswap = true;
1844 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1845 noswap = true;
1846
1847 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1848 if (loop)
1849 drain_all_stock_async(memcg);
1850 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1851 /*
1852 * Allow limit shrinkers, which are triggered directly
1853 * by userspace, to catch signals and stop reclaim
1854 * after minimal progress, regardless of the margin.
1855 */
1856 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1857 break;
1858 if (mem_cgroup_margin(memcg))
1859 break;
1860 /*
1861 * If nothing was reclaimed after two attempts, there
1862 * may be no reclaimable pages in this hierarchy.
1863 */
1864 if (loop && !total)
1865 break;
1866 }
1867 return total;
1868}
1869
4d0c066d
KH
1870/**
1871 * test_mem_cgroup_node_reclaimable
dad7557e 1872 * @memcg: the target memcg
4d0c066d
KH
1873 * @nid: the node ID to be checked.
1874 * @noswap : specify true here if the user wants flle only information.
1875 *
1876 * This function returns whether the specified memcg contains any
1877 * reclaimable pages on a node. Returns true if there are any reclaimable
1878 * pages in the node.
1879 */
c0ff4b85 1880static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1881 int nid, bool noswap)
1882{
c0ff4b85 1883 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1884 return true;
1885 if (noswap || !total_swap_pages)
1886 return false;
c0ff4b85 1887 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1888 return true;
1889 return false;
1890
1891}
889976db
YH
1892#if MAX_NUMNODES > 1
1893
1894/*
1895 * Always updating the nodemask is not very good - even if we have an empty
1896 * list or the wrong list here, we can start from some node and traverse all
1897 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1898 *
1899 */
c0ff4b85 1900static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1901{
1902 int nid;
453a9bf3
KH
1903 /*
1904 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1905 * pagein/pageout changes since the last update.
1906 */
c0ff4b85 1907 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1908 return;
c0ff4b85 1909 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1910 return;
1911
889976db 1912 /* make a nodemask where this memcg uses memory from */
31aaea4a 1913 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1914
31aaea4a 1915 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1916
c0ff4b85
R
1917 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1918 node_clear(nid, memcg->scan_nodes);
889976db 1919 }
453a9bf3 1920
c0ff4b85
R
1921 atomic_set(&memcg->numainfo_events, 0);
1922 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1923}
1924
1925/*
1926 * Selecting a node where we start reclaim from. Because what we need is just
1927 * reducing usage counter, start from anywhere is O,K. Considering
1928 * memory reclaim from current node, there are pros. and cons.
1929 *
1930 * Freeing memory from current node means freeing memory from a node which
1931 * we'll use or we've used. So, it may make LRU bad. And if several threads
1932 * hit limits, it will see a contention on a node. But freeing from remote
1933 * node means more costs for memory reclaim because of memory latency.
1934 *
1935 * Now, we use round-robin. Better algorithm is welcomed.
1936 */
c0ff4b85 1937int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1938{
1939 int node;
1940
c0ff4b85
R
1941 mem_cgroup_may_update_nodemask(memcg);
1942 node = memcg->last_scanned_node;
889976db 1943
c0ff4b85 1944 node = next_node(node, memcg->scan_nodes);
889976db 1945 if (node == MAX_NUMNODES)
c0ff4b85 1946 node = first_node(memcg->scan_nodes);
889976db
YH
1947 /*
1948 * We call this when we hit limit, not when pages are added to LRU.
1949 * No LRU may hold pages because all pages are UNEVICTABLE or
1950 * memcg is too small and all pages are not on LRU. In that case,
1951 * we use curret node.
1952 */
1953 if (unlikely(node == MAX_NUMNODES))
1954 node = numa_node_id();
1955
c0ff4b85 1956 memcg->last_scanned_node = node;
889976db
YH
1957 return node;
1958}
1959
4d0c066d
KH
1960/*
1961 * Check all nodes whether it contains reclaimable pages or not.
1962 * For quick scan, we make use of scan_nodes. This will allow us to skip
1963 * unused nodes. But scan_nodes is lazily updated and may not cotain
1964 * enough new information. We need to do double check.
1965 */
6bbda35c 1966static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1967{
1968 int nid;
1969
1970 /*
1971 * quick check...making use of scan_node.
1972 * We can skip unused nodes.
1973 */
c0ff4b85
R
1974 if (!nodes_empty(memcg->scan_nodes)) {
1975 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1976 nid < MAX_NUMNODES;
c0ff4b85 1977 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1978
c0ff4b85 1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1980 return true;
1981 }
1982 }
1983 /*
1984 * Check rest of nodes.
1985 */
31aaea4a 1986 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1987 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1988 continue;
c0ff4b85 1989 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1990 return true;
1991 }
1992 return false;
1993}
1994
889976db 1995#else
c0ff4b85 1996int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1997{
1998 return 0;
1999}
4d0c066d 2000
6bbda35c 2001static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2002{
c0ff4b85 2003 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2004}
889976db
YH
2005#endif
2006
5660048c
JW
2007static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2008 struct zone *zone,
2009 gfp_t gfp_mask,
2010 unsigned long *total_scanned)
6d61ef40 2011{
9f3a0d09 2012 struct mem_cgroup *victim = NULL;
5660048c 2013 int total = 0;
04046e1a 2014 int loop = 0;
9d11ea9f 2015 unsigned long excess;
185efc0f 2016 unsigned long nr_scanned;
527a5ec9
JW
2017 struct mem_cgroup_reclaim_cookie reclaim = {
2018 .zone = zone,
2019 .priority = 0,
2020 };
9d11ea9f 2021
c0ff4b85 2022 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2023
4e416953 2024 while (1) {
527a5ec9 2025 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2026 if (!victim) {
04046e1a 2027 loop++;
4e416953
BS
2028 if (loop >= 2) {
2029 /*
2030 * If we have not been able to reclaim
2031 * anything, it might because there are
2032 * no reclaimable pages under this hierarchy
2033 */
5660048c 2034 if (!total)
4e416953 2035 break;
4e416953 2036 /*
25985edc 2037 * We want to do more targeted reclaim.
4e416953
BS
2038 * excess >> 2 is not to excessive so as to
2039 * reclaim too much, nor too less that we keep
2040 * coming back to reclaim from this cgroup
2041 */
2042 if (total >= (excess >> 2) ||
9f3a0d09 2043 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2044 break;
4e416953 2045 }
9f3a0d09 2046 continue;
4e416953 2047 }
5660048c 2048 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2049 continue;
5660048c
JW
2050 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2051 zone, &nr_scanned);
2052 *total_scanned += nr_scanned;
2053 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2054 break;
6d61ef40 2055 }
9f3a0d09 2056 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2057 return total;
6d61ef40
BS
2058}
2059
867578cb
KH
2060/*
2061 * Check OOM-Killer is already running under our hierarchy.
2062 * If someone is running, return false.
1af8efe9 2063 * Has to be called with memcg_oom_lock
867578cb 2064 */
c0ff4b85 2065static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2066{
79dfdacc 2067 struct mem_cgroup *iter, *failed = NULL;
a636b327 2068
9f3a0d09 2069 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2070 if (iter->oom_lock) {
79dfdacc
MH
2071 /*
2072 * this subtree of our hierarchy is already locked
2073 * so we cannot give a lock.
2074 */
79dfdacc 2075 failed = iter;
9f3a0d09
JW
2076 mem_cgroup_iter_break(memcg, iter);
2077 break;
23751be0
JW
2078 } else
2079 iter->oom_lock = true;
7d74b06f 2080 }
867578cb 2081
79dfdacc 2082 if (!failed)
23751be0 2083 return true;
79dfdacc
MH
2084
2085 /*
2086 * OK, we failed to lock the whole subtree so we have to clean up
2087 * what we set up to the failing subtree
2088 */
9f3a0d09 2089 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2090 if (iter == failed) {
9f3a0d09
JW
2091 mem_cgroup_iter_break(memcg, iter);
2092 break;
79dfdacc
MH
2093 }
2094 iter->oom_lock = false;
2095 }
23751be0 2096 return false;
a636b327 2097}
0b7f569e 2098
79dfdacc 2099/*
1af8efe9 2100 * Has to be called with memcg_oom_lock
79dfdacc 2101 */
c0ff4b85 2102static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2103{
7d74b06f
KH
2104 struct mem_cgroup *iter;
2105
c0ff4b85 2106 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2107 iter->oom_lock = false;
2108 return 0;
2109}
2110
c0ff4b85 2111static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2112{
2113 struct mem_cgroup *iter;
2114
c0ff4b85 2115 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2116 atomic_inc(&iter->under_oom);
2117}
2118
c0ff4b85 2119static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2120{
2121 struct mem_cgroup *iter;
2122
867578cb
KH
2123 /*
2124 * When a new child is created while the hierarchy is under oom,
2125 * mem_cgroup_oom_lock() may not be called. We have to use
2126 * atomic_add_unless() here.
2127 */
c0ff4b85 2128 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2129 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2130}
2131
1af8efe9 2132static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2133static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2134
dc98df5a 2135struct oom_wait_info {
d79154bb 2136 struct mem_cgroup *memcg;
dc98df5a
KH
2137 wait_queue_t wait;
2138};
2139
2140static int memcg_oom_wake_function(wait_queue_t *wait,
2141 unsigned mode, int sync, void *arg)
2142{
d79154bb
HD
2143 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2144 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2145 struct oom_wait_info *oom_wait_info;
2146
2147 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2148 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2149
dc98df5a 2150 /*
d79154bb 2151 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2152 * Then we can use css_is_ancestor without taking care of RCU.
2153 */
c0ff4b85
R
2154 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2155 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2156 return 0;
dc98df5a
KH
2157 return autoremove_wake_function(wait, mode, sync, arg);
2158}
2159
c0ff4b85 2160static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2161{
c0ff4b85
R
2162 /* for filtering, pass "memcg" as argument. */
2163 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2164}
2165
c0ff4b85 2166static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2167{
c0ff4b85
R
2168 if (memcg && atomic_read(&memcg->under_oom))
2169 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2170}
2171
867578cb
KH
2172/*
2173 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2174 */
6bbda35c
KS
2175static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2176 int order)
0b7f569e 2177{
dc98df5a 2178 struct oom_wait_info owait;
3c11ecf4 2179 bool locked, need_to_kill;
867578cb 2180
d79154bb 2181 owait.memcg = memcg;
dc98df5a
KH
2182 owait.wait.flags = 0;
2183 owait.wait.func = memcg_oom_wake_function;
2184 owait.wait.private = current;
2185 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2186 need_to_kill = true;
c0ff4b85 2187 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2188
c0ff4b85 2189 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2190 spin_lock(&memcg_oom_lock);
c0ff4b85 2191 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2192 /*
2193 * Even if signal_pending(), we can't quit charge() loop without
2194 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2195 * under OOM is always welcomed, use TASK_KILLABLE here.
2196 */
3c11ecf4 2197 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2198 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2199 need_to_kill = false;
2200 if (locked)
c0ff4b85 2201 mem_cgroup_oom_notify(memcg);
1af8efe9 2202 spin_unlock(&memcg_oom_lock);
867578cb 2203
3c11ecf4
KH
2204 if (need_to_kill) {
2205 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2206 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2207 } else {
867578cb 2208 schedule();
dc98df5a 2209 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2210 }
1af8efe9 2211 spin_lock(&memcg_oom_lock);
79dfdacc 2212 if (locked)
c0ff4b85
R
2213 mem_cgroup_oom_unlock(memcg);
2214 memcg_wakeup_oom(memcg);
1af8efe9 2215 spin_unlock(&memcg_oom_lock);
867578cb 2216
c0ff4b85 2217 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2218
867578cb
KH
2219 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2220 return false;
2221 /* Give chance to dying process */
715a5ee8 2222 schedule_timeout_uninterruptible(1);
867578cb 2223 return true;
0b7f569e
KH
2224}
2225
d69b042f
BS
2226/*
2227 * Currently used to update mapped file statistics, but the routine can be
2228 * generalized to update other statistics as well.
32047e2a
KH
2229 *
2230 * Notes: Race condition
2231 *
2232 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2233 * it tends to be costly. But considering some conditions, we doesn't need
2234 * to do so _always_.
2235 *
2236 * Considering "charge", lock_page_cgroup() is not required because all
2237 * file-stat operations happen after a page is attached to radix-tree. There
2238 * are no race with "charge".
2239 *
2240 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2241 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2242 * if there are race with "uncharge". Statistics itself is properly handled
2243 * by flags.
2244 *
2245 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2246 * small, we check mm->moving_account and detect there are possibility of race
2247 * If there is, we take a lock.
d69b042f 2248 */
26174efd 2249
89c06bd5
KH
2250void __mem_cgroup_begin_update_page_stat(struct page *page,
2251 bool *locked, unsigned long *flags)
2252{
2253 struct mem_cgroup *memcg;
2254 struct page_cgroup *pc;
2255
2256 pc = lookup_page_cgroup(page);
2257again:
2258 memcg = pc->mem_cgroup;
2259 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2260 return;
2261 /*
2262 * If this memory cgroup is not under account moving, we don't
da92c47d 2263 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2264 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2265 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2266 */
13fd1dd9 2267 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2268 return;
2269
2270 move_lock_mem_cgroup(memcg, flags);
2271 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2272 move_unlock_mem_cgroup(memcg, flags);
2273 goto again;
2274 }
2275 *locked = true;
2276}
2277
2278void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2279{
2280 struct page_cgroup *pc = lookup_page_cgroup(page);
2281
2282 /*
2283 * It's guaranteed that pc->mem_cgroup never changes while
2284 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2285 * should take move_lock_mem_cgroup().
89c06bd5
KH
2286 */
2287 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2288}
2289
2a7106f2
GT
2290void mem_cgroup_update_page_stat(struct page *page,
2291 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2292{
c0ff4b85 2293 struct mem_cgroup *memcg;
32047e2a 2294 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2295 unsigned long uninitialized_var(flags);
d69b042f 2296
cfa44946 2297 if (mem_cgroup_disabled())
d69b042f 2298 return;
89c06bd5 2299
c0ff4b85
R
2300 memcg = pc->mem_cgroup;
2301 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2302 return;
26174efd 2303
26174efd 2304 switch (idx) {
2a7106f2 2305 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2306 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2307 break;
2308 default:
2309 BUG();
8725d541 2310 }
d69b042f 2311
c0ff4b85 2312 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2313}
26174efd 2314
cdec2e42
KH
2315/*
2316 * size of first charge trial. "32" comes from vmscan.c's magic value.
2317 * TODO: maybe necessary to use big numbers in big irons.
2318 */
7ec99d62 2319#define CHARGE_BATCH 32U
cdec2e42
KH
2320struct memcg_stock_pcp {
2321 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2322 unsigned int nr_pages;
cdec2e42 2323 struct work_struct work;
26fe6168 2324 unsigned long flags;
a0db00fc 2325#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2326};
2327static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2328static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2329
a0956d54
SS
2330/**
2331 * consume_stock: Try to consume stocked charge on this cpu.
2332 * @memcg: memcg to consume from.
2333 * @nr_pages: how many pages to charge.
2334 *
2335 * The charges will only happen if @memcg matches the current cpu's memcg
2336 * stock, and at least @nr_pages are available in that stock. Failure to
2337 * service an allocation will refill the stock.
2338 *
2339 * returns true if successful, false otherwise.
cdec2e42 2340 */
a0956d54 2341static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2342{
2343 struct memcg_stock_pcp *stock;
2344 bool ret = true;
2345
a0956d54
SS
2346 if (nr_pages > CHARGE_BATCH)
2347 return false;
2348
cdec2e42 2349 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2350 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2351 stock->nr_pages -= nr_pages;
cdec2e42
KH
2352 else /* need to call res_counter_charge */
2353 ret = false;
2354 put_cpu_var(memcg_stock);
2355 return ret;
2356}
2357
2358/*
2359 * Returns stocks cached in percpu to res_counter and reset cached information.
2360 */
2361static void drain_stock(struct memcg_stock_pcp *stock)
2362{
2363 struct mem_cgroup *old = stock->cached;
2364
11c9ea4e
JW
2365 if (stock->nr_pages) {
2366 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2367
2368 res_counter_uncharge(&old->res, bytes);
cdec2e42 2369 if (do_swap_account)
11c9ea4e
JW
2370 res_counter_uncharge(&old->memsw, bytes);
2371 stock->nr_pages = 0;
cdec2e42
KH
2372 }
2373 stock->cached = NULL;
cdec2e42
KH
2374}
2375
2376/*
2377 * This must be called under preempt disabled or must be called by
2378 * a thread which is pinned to local cpu.
2379 */
2380static void drain_local_stock(struct work_struct *dummy)
2381{
2382 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2383 drain_stock(stock);
26fe6168 2384 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2385}
2386
e4777496
MH
2387static void __init memcg_stock_init(void)
2388{
2389 int cpu;
2390
2391 for_each_possible_cpu(cpu) {
2392 struct memcg_stock_pcp *stock =
2393 &per_cpu(memcg_stock, cpu);
2394 INIT_WORK(&stock->work, drain_local_stock);
2395 }
2396}
2397
cdec2e42
KH
2398/*
2399 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2400 * This will be consumed by consume_stock() function, later.
cdec2e42 2401 */
c0ff4b85 2402static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2403{
2404 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2405
c0ff4b85 2406 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2407 drain_stock(stock);
c0ff4b85 2408 stock->cached = memcg;
cdec2e42 2409 }
11c9ea4e 2410 stock->nr_pages += nr_pages;
cdec2e42
KH
2411 put_cpu_var(memcg_stock);
2412}
2413
2414/*
c0ff4b85 2415 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2416 * of the hierarchy under it. sync flag says whether we should block
2417 * until the work is done.
cdec2e42 2418 */
c0ff4b85 2419static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2420{
26fe6168 2421 int cpu, curcpu;
d38144b7 2422
cdec2e42 2423 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2424 get_online_cpus();
5af12d0e 2425 curcpu = get_cpu();
cdec2e42
KH
2426 for_each_online_cpu(cpu) {
2427 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2428 struct mem_cgroup *memcg;
26fe6168 2429
c0ff4b85
R
2430 memcg = stock->cached;
2431 if (!memcg || !stock->nr_pages)
26fe6168 2432 continue;
c0ff4b85 2433 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2434 continue;
d1a05b69
MH
2435 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2436 if (cpu == curcpu)
2437 drain_local_stock(&stock->work);
2438 else
2439 schedule_work_on(cpu, &stock->work);
2440 }
cdec2e42 2441 }
5af12d0e 2442 put_cpu();
d38144b7
MH
2443
2444 if (!sync)
2445 goto out;
2446
2447 for_each_online_cpu(cpu) {
2448 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2449 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2450 flush_work(&stock->work);
2451 }
2452out:
cdec2e42 2453 put_online_cpus();
d38144b7
MH
2454}
2455
2456/*
2457 * Tries to drain stocked charges in other cpus. This function is asynchronous
2458 * and just put a work per cpu for draining localy on each cpu. Caller can
2459 * expects some charges will be back to res_counter later but cannot wait for
2460 * it.
2461 */
c0ff4b85 2462static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2463{
9f50fad6
MH
2464 /*
2465 * If someone calls draining, avoid adding more kworker runs.
2466 */
2467 if (!mutex_trylock(&percpu_charge_mutex))
2468 return;
c0ff4b85 2469 drain_all_stock(root_memcg, false);
9f50fad6 2470 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2471}
2472
2473/* This is a synchronous drain interface. */
c0ff4b85 2474static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2475{
2476 /* called when force_empty is called */
9f50fad6 2477 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2478 drain_all_stock(root_memcg, true);
9f50fad6 2479 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2480}
2481
711d3d2c
KH
2482/*
2483 * This function drains percpu counter value from DEAD cpu and
2484 * move it to local cpu. Note that this function can be preempted.
2485 */
c0ff4b85 2486static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2487{
2488 int i;
2489
c0ff4b85 2490 spin_lock(&memcg->pcp_counter_lock);
6104621d 2491 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2492 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2493
c0ff4b85
R
2494 per_cpu(memcg->stat->count[i], cpu) = 0;
2495 memcg->nocpu_base.count[i] += x;
711d3d2c 2496 }
e9f8974f 2497 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2498 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2499
c0ff4b85
R
2500 per_cpu(memcg->stat->events[i], cpu) = 0;
2501 memcg->nocpu_base.events[i] += x;
e9f8974f 2502 }
c0ff4b85 2503 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2504}
2505
0db0628d 2506static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2507 unsigned long action,
2508 void *hcpu)
2509{
2510 int cpu = (unsigned long)hcpu;
2511 struct memcg_stock_pcp *stock;
711d3d2c 2512 struct mem_cgroup *iter;
cdec2e42 2513
619d094b 2514 if (action == CPU_ONLINE)
1489ebad 2515 return NOTIFY_OK;
1489ebad 2516
d833049b 2517 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2518 return NOTIFY_OK;
711d3d2c 2519
9f3a0d09 2520 for_each_mem_cgroup(iter)
711d3d2c
KH
2521 mem_cgroup_drain_pcp_counter(iter, cpu);
2522
cdec2e42
KH
2523 stock = &per_cpu(memcg_stock, cpu);
2524 drain_stock(stock);
2525 return NOTIFY_OK;
2526}
2527
4b534334
KH
2528
2529/* See __mem_cgroup_try_charge() for details */
2530enum {
2531 CHARGE_OK, /* success */
2532 CHARGE_RETRY, /* need to retry but retry is not bad */
2533 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2534 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2535 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2536};
2537
c0ff4b85 2538static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2539 unsigned int nr_pages, unsigned int min_pages,
2540 bool oom_check)
4b534334 2541{
7ec99d62 2542 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2543 struct mem_cgroup *mem_over_limit;
2544 struct res_counter *fail_res;
2545 unsigned long flags = 0;
2546 int ret;
2547
c0ff4b85 2548 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2549
2550 if (likely(!ret)) {
2551 if (!do_swap_account)
2552 return CHARGE_OK;
c0ff4b85 2553 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2554 if (likely(!ret))
2555 return CHARGE_OK;
2556
c0ff4b85 2557 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2558 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2559 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2560 } else
2561 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2562 /*
9221edb7
JW
2563 * Never reclaim on behalf of optional batching, retry with a
2564 * single page instead.
2565 */
4c9c5359 2566 if (nr_pages > min_pages)
4b534334
KH
2567 return CHARGE_RETRY;
2568
2569 if (!(gfp_mask & __GFP_WAIT))
2570 return CHARGE_WOULDBLOCK;
2571
4c9c5359
SS
2572 if (gfp_mask & __GFP_NORETRY)
2573 return CHARGE_NOMEM;
2574
5660048c 2575 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2576 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2577 return CHARGE_RETRY;
4b534334 2578 /*
19942822
JW
2579 * Even though the limit is exceeded at this point, reclaim
2580 * may have been able to free some pages. Retry the charge
2581 * before killing the task.
2582 *
2583 * Only for regular pages, though: huge pages are rather
2584 * unlikely to succeed so close to the limit, and we fall back
2585 * to regular pages anyway in case of failure.
4b534334 2586 */
4c9c5359 2587 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2588 return CHARGE_RETRY;
2589
2590 /*
2591 * At task move, charge accounts can be doubly counted. So, it's
2592 * better to wait until the end of task_move if something is going on.
2593 */
2594 if (mem_cgroup_wait_acct_move(mem_over_limit))
2595 return CHARGE_RETRY;
2596
2597 /* If we don't need to call oom-killer at el, return immediately */
2598 if (!oom_check)
2599 return CHARGE_NOMEM;
2600 /* check OOM */
e845e199 2601 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2602 return CHARGE_OOM_DIE;
2603
2604 return CHARGE_RETRY;
2605}
2606
f817ed48 2607/*
38c5d72f
KH
2608 * __mem_cgroup_try_charge() does
2609 * 1. detect memcg to be charged against from passed *mm and *ptr,
2610 * 2. update res_counter
2611 * 3. call memory reclaim if necessary.
2612 *
2613 * In some special case, if the task is fatal, fatal_signal_pending() or
2614 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2615 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2616 * as possible without any hazards. 2: all pages should have a valid
2617 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2618 * pointer, that is treated as a charge to root_mem_cgroup.
2619 *
2620 * So __mem_cgroup_try_charge() will return
2621 * 0 ... on success, filling *ptr with a valid memcg pointer.
2622 * -ENOMEM ... charge failure because of resource limits.
2623 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2624 *
2625 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2626 * the oom-killer can be invoked.
8a9f3ccd 2627 */
f817ed48 2628static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2629 gfp_t gfp_mask,
7ec99d62 2630 unsigned int nr_pages,
c0ff4b85 2631 struct mem_cgroup **ptr,
7ec99d62 2632 bool oom)
8a9f3ccd 2633{
7ec99d62 2634 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2635 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2636 struct mem_cgroup *memcg = NULL;
4b534334 2637 int ret;
a636b327 2638
867578cb
KH
2639 /*
2640 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2641 * in system level. So, allow to go ahead dying process in addition to
2642 * MEMDIE process.
2643 */
2644 if (unlikely(test_thread_flag(TIF_MEMDIE)
2645 || fatal_signal_pending(current)))
2646 goto bypass;
a636b327 2647
8a9f3ccd 2648 /*
3be91277
HD
2649 * We always charge the cgroup the mm_struct belongs to.
2650 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2651 * thread group leader migrates. It's possible that mm is not
24467cac 2652 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2653 */
c0ff4b85 2654 if (!*ptr && !mm)
38c5d72f 2655 *ptr = root_mem_cgroup;
f75ca962 2656again:
c0ff4b85
R
2657 if (*ptr) { /* css should be a valid one */
2658 memcg = *ptr;
c0ff4b85 2659 if (mem_cgroup_is_root(memcg))
f75ca962 2660 goto done;
a0956d54 2661 if (consume_stock(memcg, nr_pages))
f75ca962 2662 goto done;
c0ff4b85 2663 css_get(&memcg->css);
4b534334 2664 } else {
f75ca962 2665 struct task_struct *p;
54595fe2 2666
f75ca962
KH
2667 rcu_read_lock();
2668 p = rcu_dereference(mm->owner);
f75ca962 2669 /*
ebb76ce1 2670 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2671 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2672 * race with swapoff. Then, we have small risk of mis-accouning.
2673 * But such kind of mis-account by race always happens because
2674 * we don't have cgroup_mutex(). It's overkill and we allo that
2675 * small race, here.
2676 * (*) swapoff at el will charge against mm-struct not against
2677 * task-struct. So, mm->owner can be NULL.
f75ca962 2678 */
c0ff4b85 2679 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2680 if (!memcg)
2681 memcg = root_mem_cgroup;
2682 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2683 rcu_read_unlock();
2684 goto done;
2685 }
a0956d54 2686 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2687 /*
2688 * It seems dagerous to access memcg without css_get().
2689 * But considering how consume_stok works, it's not
2690 * necessary. If consume_stock success, some charges
2691 * from this memcg are cached on this cpu. So, we
2692 * don't need to call css_get()/css_tryget() before
2693 * calling consume_stock().
2694 */
2695 rcu_read_unlock();
2696 goto done;
2697 }
2698 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2699 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2700 rcu_read_unlock();
2701 goto again;
2702 }
2703 rcu_read_unlock();
2704 }
8a9f3ccd 2705
4b534334
KH
2706 do {
2707 bool oom_check;
7a81b88c 2708
4b534334 2709 /* If killed, bypass charge */
f75ca962 2710 if (fatal_signal_pending(current)) {
c0ff4b85 2711 css_put(&memcg->css);
4b534334 2712 goto bypass;
f75ca962 2713 }
6d61ef40 2714
4b534334
KH
2715 oom_check = false;
2716 if (oom && !nr_oom_retries) {
2717 oom_check = true;
2718 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2719 }
66e1707b 2720
4c9c5359
SS
2721 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2722 oom_check);
4b534334
KH
2723 switch (ret) {
2724 case CHARGE_OK:
2725 break;
2726 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2727 batch = nr_pages;
c0ff4b85
R
2728 css_put(&memcg->css);
2729 memcg = NULL;
f75ca962 2730 goto again;
4b534334 2731 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2732 css_put(&memcg->css);
4b534334
KH
2733 goto nomem;
2734 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2735 if (!oom) {
c0ff4b85 2736 css_put(&memcg->css);
867578cb 2737 goto nomem;
f75ca962 2738 }
4b534334
KH
2739 /* If oom, we never return -ENOMEM */
2740 nr_oom_retries--;
2741 break;
2742 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2743 css_put(&memcg->css);
867578cb 2744 goto bypass;
66e1707b 2745 }
4b534334
KH
2746 } while (ret != CHARGE_OK);
2747
7ec99d62 2748 if (batch > nr_pages)
c0ff4b85
R
2749 refill_stock(memcg, batch - nr_pages);
2750 css_put(&memcg->css);
0c3e73e8 2751done:
c0ff4b85 2752 *ptr = memcg;
7a81b88c
KH
2753 return 0;
2754nomem:
c0ff4b85 2755 *ptr = NULL;
7a81b88c 2756 return -ENOMEM;
867578cb 2757bypass:
38c5d72f
KH
2758 *ptr = root_mem_cgroup;
2759 return -EINTR;
7a81b88c 2760}
8a9f3ccd 2761
a3032a2c
DN
2762/*
2763 * Somemtimes we have to undo a charge we got by try_charge().
2764 * This function is for that and do uncharge, put css's refcnt.
2765 * gotten by try_charge().
2766 */
c0ff4b85 2767static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2768 unsigned int nr_pages)
a3032a2c 2769{
c0ff4b85 2770 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2771 unsigned long bytes = nr_pages * PAGE_SIZE;
2772
c0ff4b85 2773 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2774 if (do_swap_account)
c0ff4b85 2775 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2776 }
854ffa8d
DN
2777}
2778
d01dd17f
KH
2779/*
2780 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2781 * This is useful when moving usage to parent cgroup.
2782 */
2783static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2784 unsigned int nr_pages)
2785{
2786 unsigned long bytes = nr_pages * PAGE_SIZE;
2787
2788 if (mem_cgroup_is_root(memcg))
2789 return;
2790
2791 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2792 if (do_swap_account)
2793 res_counter_uncharge_until(&memcg->memsw,
2794 memcg->memsw.parent, bytes);
2795}
2796
a3b2d692
KH
2797/*
2798 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2799 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2800 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2801 * called against removed memcg.)
a3b2d692
KH
2802 */
2803static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2804{
2805 struct cgroup_subsys_state *css;
2806
2807 /* ID 0 is unused ID */
2808 if (!id)
2809 return NULL;
2810 css = css_lookup(&mem_cgroup_subsys, id);
2811 if (!css)
2812 return NULL;
b2145145 2813 return mem_cgroup_from_css(css);
a3b2d692
KH
2814}
2815
e42d9d5d 2816struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2817{
c0ff4b85 2818 struct mem_cgroup *memcg = NULL;
3c776e64 2819 struct page_cgroup *pc;
a3b2d692 2820 unsigned short id;
b5a84319
KH
2821 swp_entry_t ent;
2822
3c776e64
DN
2823 VM_BUG_ON(!PageLocked(page));
2824
3c776e64 2825 pc = lookup_page_cgroup(page);
c0bd3f63 2826 lock_page_cgroup(pc);
a3b2d692 2827 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2828 memcg = pc->mem_cgroup;
2829 if (memcg && !css_tryget(&memcg->css))
2830 memcg = NULL;
e42d9d5d 2831 } else if (PageSwapCache(page)) {
3c776e64 2832 ent.val = page_private(page);
9fb4b7cc 2833 id = lookup_swap_cgroup_id(ent);
a3b2d692 2834 rcu_read_lock();
c0ff4b85
R
2835 memcg = mem_cgroup_lookup(id);
2836 if (memcg && !css_tryget(&memcg->css))
2837 memcg = NULL;
a3b2d692 2838 rcu_read_unlock();
3c776e64 2839 }
c0bd3f63 2840 unlock_page_cgroup(pc);
c0ff4b85 2841 return memcg;
b5a84319
KH
2842}
2843
c0ff4b85 2844static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2845 struct page *page,
7ec99d62 2846 unsigned int nr_pages,
9ce70c02
HD
2847 enum charge_type ctype,
2848 bool lrucare)
7a81b88c 2849{
ce587e65 2850 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2851 struct zone *uninitialized_var(zone);
fa9add64 2852 struct lruvec *lruvec;
9ce70c02 2853 bool was_on_lru = false;
b2402857 2854 bool anon;
9ce70c02 2855
ca3e0214 2856 lock_page_cgroup(pc);
90deb788 2857 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2858 /*
2859 * we don't need page_cgroup_lock about tail pages, becase they are not
2860 * accessed by any other context at this point.
2861 */
9ce70c02
HD
2862
2863 /*
2864 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2865 * may already be on some other mem_cgroup's LRU. Take care of it.
2866 */
2867 if (lrucare) {
2868 zone = page_zone(page);
2869 spin_lock_irq(&zone->lru_lock);
2870 if (PageLRU(page)) {
fa9add64 2871 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2872 ClearPageLRU(page);
fa9add64 2873 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2874 was_on_lru = true;
2875 }
2876 }
2877
c0ff4b85 2878 pc->mem_cgroup = memcg;
261fb61a
KH
2879 /*
2880 * We access a page_cgroup asynchronously without lock_page_cgroup().
2881 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2882 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2883 * before USED bit, we need memory barrier here.
2884 * See mem_cgroup_add_lru_list(), etc.
2885 */
08e552c6 2886 smp_wmb();
b2402857 2887 SetPageCgroupUsed(pc);
3be91277 2888
9ce70c02
HD
2889 if (lrucare) {
2890 if (was_on_lru) {
fa9add64 2891 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2892 VM_BUG_ON(PageLRU(page));
2893 SetPageLRU(page);
fa9add64 2894 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2895 }
2896 spin_unlock_irq(&zone->lru_lock);
2897 }
2898
41326c17 2899 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2900 anon = true;
2901 else
2902 anon = false;
2903
b070e65c 2904 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2905 unlock_page_cgroup(pc);
9ce70c02 2906
430e4863
KH
2907 /*
2908 * "charge_statistics" updated event counter. Then, check it.
2909 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2910 * if they exceeds softlimit.
2911 */
c0ff4b85 2912 memcg_check_events(memcg, page);
7a81b88c 2913}
66e1707b 2914
7cf27982
GC
2915static DEFINE_MUTEX(set_limit_mutex);
2916
7ae1e1d0
GC
2917#ifdef CONFIG_MEMCG_KMEM
2918static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2919{
2920 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2921 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2922}
2923
1f458cbf
GC
2924/*
2925 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2926 * in the memcg_cache_params struct.
2927 */
2928static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2929{
2930 struct kmem_cache *cachep;
2931
2932 VM_BUG_ON(p->is_root_cache);
2933 cachep = p->root_cache;
2934 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2935}
2936
749c5415 2937#ifdef CONFIG_SLABINFO
182446d0
TH
2938static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2939 struct cftype *cft, struct seq_file *m)
749c5415 2940{
182446d0 2941 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2942 struct memcg_cache_params *params;
2943
2944 if (!memcg_can_account_kmem(memcg))
2945 return -EIO;
2946
2947 print_slabinfo_header(m);
2948
2949 mutex_lock(&memcg->slab_caches_mutex);
2950 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2951 cache_show(memcg_params_to_cache(params), m);
2952 mutex_unlock(&memcg->slab_caches_mutex);
2953
2954 return 0;
2955}
2956#endif
2957
7ae1e1d0
GC
2958static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2959{
2960 struct res_counter *fail_res;
2961 struct mem_cgroup *_memcg;
2962 int ret = 0;
2963 bool may_oom;
2964
2965 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2966 if (ret)
2967 return ret;
2968
2969 /*
2970 * Conditions under which we can wait for the oom_killer. Those are
2971 * the same conditions tested by the core page allocator
2972 */
2973 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2974
2975 _memcg = memcg;
2976 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2977 &_memcg, may_oom);
2978
2979 if (ret == -EINTR) {
2980 /*
2981 * __mem_cgroup_try_charge() chosed to bypass to root due to
2982 * OOM kill or fatal signal. Since our only options are to
2983 * either fail the allocation or charge it to this cgroup, do
2984 * it as a temporary condition. But we can't fail. From a
2985 * kmem/slab perspective, the cache has already been selected,
2986 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2987 * our minds.
2988 *
2989 * This condition will only trigger if the task entered
2990 * memcg_charge_kmem in a sane state, but was OOM-killed during
2991 * __mem_cgroup_try_charge() above. Tasks that were already
2992 * dying when the allocation triggers should have been already
2993 * directed to the root cgroup in memcontrol.h
2994 */
2995 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2996 if (do_swap_account)
2997 res_counter_charge_nofail(&memcg->memsw, size,
2998 &fail_res);
2999 ret = 0;
3000 } else if (ret)
3001 res_counter_uncharge(&memcg->kmem, size);
3002
3003 return ret;
3004}
3005
3006static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3007{
7ae1e1d0
GC
3008 res_counter_uncharge(&memcg->res, size);
3009 if (do_swap_account)
3010 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3011
3012 /* Not down to 0 */
3013 if (res_counter_uncharge(&memcg->kmem, size))
3014 return;
3015
10d5ebf4
LZ
3016 /*
3017 * Releases a reference taken in kmem_cgroup_css_offline in case
3018 * this last uncharge is racing with the offlining code or it is
3019 * outliving the memcg existence.
3020 *
3021 * The memory barrier imposed by test&clear is paired with the
3022 * explicit one in memcg_kmem_mark_dead().
3023 */
7de37682 3024 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3025 css_put(&memcg->css);
7ae1e1d0
GC
3026}
3027
2633d7a0
GC
3028void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3029{
3030 if (!memcg)
3031 return;
3032
3033 mutex_lock(&memcg->slab_caches_mutex);
3034 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3035 mutex_unlock(&memcg->slab_caches_mutex);
3036}
3037
3038/*
3039 * helper for acessing a memcg's index. It will be used as an index in the
3040 * child cache array in kmem_cache, and also to derive its name. This function
3041 * will return -1 when this is not a kmem-limited memcg.
3042 */
3043int memcg_cache_id(struct mem_cgroup *memcg)
3044{
3045 return memcg ? memcg->kmemcg_id : -1;
3046}
3047
55007d84
GC
3048/*
3049 * This ends up being protected by the set_limit mutex, during normal
3050 * operation, because that is its main call site.
3051 *
3052 * But when we create a new cache, we can call this as well if its parent
3053 * is kmem-limited. That will have to hold set_limit_mutex as well.
3054 */
3055int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3056{
3057 int num, ret;
3058
3059 num = ida_simple_get(&kmem_limited_groups,
3060 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3061 if (num < 0)
3062 return num;
3063 /*
3064 * After this point, kmem_accounted (that we test atomically in
3065 * the beginning of this conditional), is no longer 0. This
3066 * guarantees only one process will set the following boolean
3067 * to true. We don't need test_and_set because we're protected
3068 * by the set_limit_mutex anyway.
3069 */
3070 memcg_kmem_set_activated(memcg);
3071
3072 ret = memcg_update_all_caches(num+1);
3073 if (ret) {
3074 ida_simple_remove(&kmem_limited_groups, num);
3075 memcg_kmem_clear_activated(memcg);
3076 return ret;
3077 }
3078
3079 memcg->kmemcg_id = num;
3080 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3081 mutex_init(&memcg->slab_caches_mutex);
3082 return 0;
3083}
3084
3085static size_t memcg_caches_array_size(int num_groups)
3086{
3087 ssize_t size;
3088 if (num_groups <= 0)
3089 return 0;
3090
3091 size = 2 * num_groups;
3092 if (size < MEMCG_CACHES_MIN_SIZE)
3093 size = MEMCG_CACHES_MIN_SIZE;
3094 else if (size > MEMCG_CACHES_MAX_SIZE)
3095 size = MEMCG_CACHES_MAX_SIZE;
3096
3097 return size;
3098}
3099
3100/*
3101 * We should update the current array size iff all caches updates succeed. This
3102 * can only be done from the slab side. The slab mutex needs to be held when
3103 * calling this.
3104 */
3105void memcg_update_array_size(int num)
3106{
3107 if (num > memcg_limited_groups_array_size)
3108 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3109}
3110
15cf17d2
KK
3111static void kmem_cache_destroy_work_func(struct work_struct *w);
3112
55007d84
GC
3113int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3114{
3115 struct memcg_cache_params *cur_params = s->memcg_params;
3116
3117 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3118
3119 if (num_groups > memcg_limited_groups_array_size) {
3120 int i;
3121 ssize_t size = memcg_caches_array_size(num_groups);
3122
3123 size *= sizeof(void *);
3124 size += sizeof(struct memcg_cache_params);
3125
3126 s->memcg_params = kzalloc(size, GFP_KERNEL);
3127 if (!s->memcg_params) {
3128 s->memcg_params = cur_params;
3129 return -ENOMEM;
3130 }
3131
3132 s->memcg_params->is_root_cache = true;
3133
3134 /*
3135 * There is the chance it will be bigger than
3136 * memcg_limited_groups_array_size, if we failed an allocation
3137 * in a cache, in which case all caches updated before it, will
3138 * have a bigger array.
3139 *
3140 * But if that is the case, the data after
3141 * memcg_limited_groups_array_size is certainly unused
3142 */
3143 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3144 if (!cur_params->memcg_caches[i])
3145 continue;
3146 s->memcg_params->memcg_caches[i] =
3147 cur_params->memcg_caches[i];
3148 }
3149
3150 /*
3151 * Ideally, we would wait until all caches succeed, and only
3152 * then free the old one. But this is not worth the extra
3153 * pointer per-cache we'd have to have for this.
3154 *
3155 * It is not a big deal if some caches are left with a size
3156 * bigger than the others. And all updates will reset this
3157 * anyway.
3158 */
3159 kfree(cur_params);
3160 }
3161 return 0;
3162}
3163
943a451a
GC
3164int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3165 struct kmem_cache *root_cache)
2633d7a0
GC
3166{
3167 size_t size = sizeof(struct memcg_cache_params);
3168
3169 if (!memcg_kmem_enabled())
3170 return 0;
3171
55007d84
GC
3172 if (!memcg)
3173 size += memcg_limited_groups_array_size * sizeof(void *);
3174
2633d7a0
GC
3175 s->memcg_params = kzalloc(size, GFP_KERNEL);
3176 if (!s->memcg_params)
3177 return -ENOMEM;
3178
943a451a 3179 if (memcg) {
2633d7a0 3180 s->memcg_params->memcg = memcg;
943a451a 3181 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3182 INIT_WORK(&s->memcg_params->destroy,
3183 kmem_cache_destroy_work_func);
4ba902b5
GC
3184 } else
3185 s->memcg_params->is_root_cache = true;
3186
2633d7a0
GC
3187 return 0;
3188}
3189
3190void memcg_release_cache(struct kmem_cache *s)
3191{
d7f25f8a
GC
3192 struct kmem_cache *root;
3193 struct mem_cgroup *memcg;
3194 int id;
3195
3196 /*
3197 * This happens, for instance, when a root cache goes away before we
3198 * add any memcg.
3199 */
3200 if (!s->memcg_params)
3201 return;
3202
3203 if (s->memcg_params->is_root_cache)
3204 goto out;
3205
3206 memcg = s->memcg_params->memcg;
3207 id = memcg_cache_id(memcg);
3208
3209 root = s->memcg_params->root_cache;
3210 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3211
3212 mutex_lock(&memcg->slab_caches_mutex);
3213 list_del(&s->memcg_params->list);
3214 mutex_unlock(&memcg->slab_caches_mutex);
3215
20f05310 3216 css_put(&memcg->css);
d7f25f8a 3217out:
2633d7a0
GC
3218 kfree(s->memcg_params);
3219}
3220
0e9d92f2
GC
3221/*
3222 * During the creation a new cache, we need to disable our accounting mechanism
3223 * altogether. This is true even if we are not creating, but rather just
3224 * enqueing new caches to be created.
3225 *
3226 * This is because that process will trigger allocations; some visible, like
3227 * explicit kmallocs to auxiliary data structures, name strings and internal
3228 * cache structures; some well concealed, like INIT_WORK() that can allocate
3229 * objects during debug.
3230 *
3231 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3232 * to it. This may not be a bounded recursion: since the first cache creation
3233 * failed to complete (waiting on the allocation), we'll just try to create the
3234 * cache again, failing at the same point.
3235 *
3236 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3237 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3238 * inside the following two functions.
3239 */
3240static inline void memcg_stop_kmem_account(void)
3241{
3242 VM_BUG_ON(!current->mm);
3243 current->memcg_kmem_skip_account++;
3244}
3245
3246static inline void memcg_resume_kmem_account(void)
3247{
3248 VM_BUG_ON(!current->mm);
3249 current->memcg_kmem_skip_account--;
3250}
3251
1f458cbf
GC
3252static void kmem_cache_destroy_work_func(struct work_struct *w)
3253{
3254 struct kmem_cache *cachep;
3255 struct memcg_cache_params *p;
3256
3257 p = container_of(w, struct memcg_cache_params, destroy);
3258
3259 cachep = memcg_params_to_cache(p);
3260
22933152
GC
3261 /*
3262 * If we get down to 0 after shrink, we could delete right away.
3263 * However, memcg_release_pages() already puts us back in the workqueue
3264 * in that case. If we proceed deleting, we'll get a dangling
3265 * reference, and removing the object from the workqueue in that case
3266 * is unnecessary complication. We are not a fast path.
3267 *
3268 * Note that this case is fundamentally different from racing with
3269 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3270 * kmem_cache_shrink, not only we would be reinserting a dead cache
3271 * into the queue, but doing so from inside the worker racing to
3272 * destroy it.
3273 *
3274 * So if we aren't down to zero, we'll just schedule a worker and try
3275 * again
3276 */
3277 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3278 kmem_cache_shrink(cachep);
3279 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3280 return;
3281 } else
1f458cbf
GC
3282 kmem_cache_destroy(cachep);
3283}
3284
3285void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3286{
3287 if (!cachep->memcg_params->dead)
3288 return;
3289
22933152
GC
3290 /*
3291 * There are many ways in which we can get here.
3292 *
3293 * We can get to a memory-pressure situation while the delayed work is
3294 * still pending to run. The vmscan shrinkers can then release all
3295 * cache memory and get us to destruction. If this is the case, we'll
3296 * be executed twice, which is a bug (the second time will execute over
3297 * bogus data). In this case, cancelling the work should be fine.
3298 *
3299 * But we can also get here from the worker itself, if
3300 * kmem_cache_shrink is enough to shake all the remaining objects and
3301 * get the page count to 0. In this case, we'll deadlock if we try to
3302 * cancel the work (the worker runs with an internal lock held, which
3303 * is the same lock we would hold for cancel_work_sync().)
3304 *
3305 * Since we can't possibly know who got us here, just refrain from
3306 * running if there is already work pending
3307 */
3308 if (work_pending(&cachep->memcg_params->destroy))
3309 return;
1f458cbf
GC
3310 /*
3311 * We have to defer the actual destroying to a workqueue, because
3312 * we might currently be in a context that cannot sleep.
3313 */
3314 schedule_work(&cachep->memcg_params->destroy);
3315}
3316
d9c10ddd
MH
3317/*
3318 * This lock protects updaters, not readers. We want readers to be as fast as
3319 * they can, and they will either see NULL or a valid cache value. Our model
3320 * allow them to see NULL, in which case the root memcg will be selected.
3321 *
3322 * We need this lock because multiple allocations to the same cache from a non
3323 * will span more than one worker. Only one of them can create the cache.
3324 */
3325static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3326
d9c10ddd
MH
3327/*
3328 * Called with memcg_cache_mutex held
3329 */
d7f25f8a
GC
3330static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3331 struct kmem_cache *s)
3332{
d7f25f8a 3333 struct kmem_cache *new;
d9c10ddd 3334 static char *tmp_name = NULL;
d7f25f8a 3335
d9c10ddd
MH
3336 lockdep_assert_held(&memcg_cache_mutex);
3337
3338 /*
3339 * kmem_cache_create_memcg duplicates the given name and
3340 * cgroup_name for this name requires RCU context.
3341 * This static temporary buffer is used to prevent from
3342 * pointless shortliving allocation.
3343 */
3344 if (!tmp_name) {
3345 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3346 if (!tmp_name)
3347 return NULL;
3348 }
3349
3350 rcu_read_lock();
3351 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3352 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3353 rcu_read_unlock();
d7f25f8a 3354
d9c10ddd 3355 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3356 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3357
d79923fa
GC
3358 if (new)
3359 new->allocflags |= __GFP_KMEMCG;
3360
d7f25f8a
GC
3361 return new;
3362}
3363
d7f25f8a
GC
3364static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3365 struct kmem_cache *cachep)
3366{
3367 struct kmem_cache *new_cachep;
3368 int idx;
3369
3370 BUG_ON(!memcg_can_account_kmem(memcg));
3371
3372 idx = memcg_cache_id(memcg);
3373
3374 mutex_lock(&memcg_cache_mutex);
3375 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3376 if (new_cachep) {
3377 css_put(&memcg->css);
d7f25f8a 3378 goto out;
20f05310 3379 }
d7f25f8a
GC
3380
3381 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3382 if (new_cachep == NULL) {
3383 new_cachep = cachep;
20f05310 3384 css_put(&memcg->css);
d7f25f8a
GC
3385 goto out;
3386 }
3387
1f458cbf 3388 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3389
3390 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3391 /*
3392 * the readers won't lock, make sure everybody sees the updated value,
3393 * so they won't put stuff in the queue again for no reason
3394 */
3395 wmb();
3396out:
3397 mutex_unlock(&memcg_cache_mutex);
3398 return new_cachep;
3399}
3400
7cf27982
GC
3401void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3402{
3403 struct kmem_cache *c;
3404 int i;
3405
3406 if (!s->memcg_params)
3407 return;
3408 if (!s->memcg_params->is_root_cache)
3409 return;
3410
3411 /*
3412 * If the cache is being destroyed, we trust that there is no one else
3413 * requesting objects from it. Even if there are, the sanity checks in
3414 * kmem_cache_destroy should caught this ill-case.
3415 *
3416 * Still, we don't want anyone else freeing memcg_caches under our
3417 * noses, which can happen if a new memcg comes to life. As usual,
3418 * we'll take the set_limit_mutex to protect ourselves against this.
3419 */
3420 mutex_lock(&set_limit_mutex);
3421 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3422 c = s->memcg_params->memcg_caches[i];
3423 if (!c)
3424 continue;
3425
3426 /*
3427 * We will now manually delete the caches, so to avoid races
3428 * we need to cancel all pending destruction workers and
3429 * proceed with destruction ourselves.
3430 *
3431 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3432 * and that could spawn the workers again: it is likely that
3433 * the cache still have active pages until this very moment.
3434 * This would lead us back to mem_cgroup_destroy_cache.
3435 *
3436 * But that will not execute at all if the "dead" flag is not
3437 * set, so flip it down to guarantee we are in control.
3438 */
3439 c->memcg_params->dead = false;
22933152 3440 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3441 kmem_cache_destroy(c);
3442 }
3443 mutex_unlock(&set_limit_mutex);
3444}
3445
d7f25f8a
GC
3446struct create_work {
3447 struct mem_cgroup *memcg;
3448 struct kmem_cache *cachep;
3449 struct work_struct work;
3450};
3451
1f458cbf
GC
3452static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3453{
3454 struct kmem_cache *cachep;
3455 struct memcg_cache_params *params;
3456
3457 if (!memcg_kmem_is_active(memcg))
3458 return;
3459
3460 mutex_lock(&memcg->slab_caches_mutex);
3461 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3462 cachep = memcg_params_to_cache(params);
3463 cachep->memcg_params->dead = true;
1f458cbf
GC
3464 schedule_work(&cachep->memcg_params->destroy);
3465 }
3466 mutex_unlock(&memcg->slab_caches_mutex);
3467}
3468
d7f25f8a
GC
3469static void memcg_create_cache_work_func(struct work_struct *w)
3470{
3471 struct create_work *cw;
3472
3473 cw = container_of(w, struct create_work, work);
3474 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3475 kfree(cw);
3476}
3477
3478/*
3479 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3480 */
0e9d92f2
GC
3481static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3482 struct kmem_cache *cachep)
d7f25f8a
GC
3483{
3484 struct create_work *cw;
3485
3486 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3487 if (cw == NULL) {
3488 css_put(&memcg->css);
d7f25f8a
GC
3489 return;
3490 }
3491
3492 cw->memcg = memcg;
3493 cw->cachep = cachep;
3494
3495 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3496 schedule_work(&cw->work);
3497}
3498
0e9d92f2
GC
3499static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3500 struct kmem_cache *cachep)
3501{
3502 /*
3503 * We need to stop accounting when we kmalloc, because if the
3504 * corresponding kmalloc cache is not yet created, the first allocation
3505 * in __memcg_create_cache_enqueue will recurse.
3506 *
3507 * However, it is better to enclose the whole function. Depending on
3508 * the debugging options enabled, INIT_WORK(), for instance, can
3509 * trigger an allocation. This too, will make us recurse. Because at
3510 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3511 * the safest choice is to do it like this, wrapping the whole function.
3512 */
3513 memcg_stop_kmem_account();
3514 __memcg_create_cache_enqueue(memcg, cachep);
3515 memcg_resume_kmem_account();
3516}
d7f25f8a
GC
3517/*
3518 * Return the kmem_cache we're supposed to use for a slab allocation.
3519 * We try to use the current memcg's version of the cache.
3520 *
3521 * If the cache does not exist yet, if we are the first user of it,
3522 * we either create it immediately, if possible, or create it asynchronously
3523 * in a workqueue.
3524 * In the latter case, we will let the current allocation go through with
3525 * the original cache.
3526 *
3527 * Can't be called in interrupt context or from kernel threads.
3528 * This function needs to be called with rcu_read_lock() held.
3529 */
3530struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3531 gfp_t gfp)
3532{
3533 struct mem_cgroup *memcg;
3534 int idx;
3535
3536 VM_BUG_ON(!cachep->memcg_params);
3537 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3538
0e9d92f2
GC
3539 if (!current->mm || current->memcg_kmem_skip_account)
3540 return cachep;
3541
d7f25f8a
GC
3542 rcu_read_lock();
3543 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3544
3545 if (!memcg_can_account_kmem(memcg))
ca0dde97 3546 goto out;
d7f25f8a
GC
3547
3548 idx = memcg_cache_id(memcg);
3549
3550 /*
3551 * barrier to mare sure we're always seeing the up to date value. The
3552 * code updating memcg_caches will issue a write barrier to match this.
3553 */
3554 read_barrier_depends();
ca0dde97
LZ
3555 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3556 cachep = cachep->memcg_params->memcg_caches[idx];
3557 goto out;
d7f25f8a
GC
3558 }
3559
ca0dde97
LZ
3560 /* The corresponding put will be done in the workqueue. */
3561 if (!css_tryget(&memcg->css))
3562 goto out;
3563 rcu_read_unlock();
3564
3565 /*
3566 * If we are in a safe context (can wait, and not in interrupt
3567 * context), we could be be predictable and return right away.
3568 * This would guarantee that the allocation being performed
3569 * already belongs in the new cache.
3570 *
3571 * However, there are some clashes that can arrive from locking.
3572 * For instance, because we acquire the slab_mutex while doing
3573 * kmem_cache_dup, this means no further allocation could happen
3574 * with the slab_mutex held.
3575 *
3576 * Also, because cache creation issue get_online_cpus(), this
3577 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3578 * that ends up reversed during cpu hotplug. (cpuset allocates
3579 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3580 * better to defer everything.
3581 */
3582 memcg_create_cache_enqueue(memcg, cachep);
3583 return cachep;
3584out:
3585 rcu_read_unlock();
3586 return cachep;
d7f25f8a
GC
3587}
3588EXPORT_SYMBOL(__memcg_kmem_get_cache);
3589
7ae1e1d0
GC
3590/*
3591 * We need to verify if the allocation against current->mm->owner's memcg is
3592 * possible for the given order. But the page is not allocated yet, so we'll
3593 * need a further commit step to do the final arrangements.
3594 *
3595 * It is possible for the task to switch cgroups in this mean time, so at
3596 * commit time, we can't rely on task conversion any longer. We'll then use
3597 * the handle argument to return to the caller which cgroup we should commit
3598 * against. We could also return the memcg directly and avoid the pointer
3599 * passing, but a boolean return value gives better semantics considering
3600 * the compiled-out case as well.
3601 *
3602 * Returning true means the allocation is possible.
3603 */
3604bool
3605__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3606{
3607 struct mem_cgroup *memcg;
3608 int ret;
3609
3610 *_memcg = NULL;
6d42c232
GC
3611
3612 /*
3613 * Disabling accounting is only relevant for some specific memcg
3614 * internal allocations. Therefore we would initially not have such
3615 * check here, since direct calls to the page allocator that are marked
3616 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3617 * concerned with cache allocations, and by having this test at
3618 * memcg_kmem_get_cache, we are already able to relay the allocation to
3619 * the root cache and bypass the memcg cache altogether.
3620 *
3621 * There is one exception, though: the SLUB allocator does not create
3622 * large order caches, but rather service large kmallocs directly from
3623 * the page allocator. Therefore, the following sequence when backed by
3624 * the SLUB allocator:
3625 *
3626 * memcg_stop_kmem_account();
3627 * kmalloc(<large_number>)
3628 * memcg_resume_kmem_account();
3629 *
3630 * would effectively ignore the fact that we should skip accounting,
3631 * since it will drive us directly to this function without passing
3632 * through the cache selector memcg_kmem_get_cache. Such large
3633 * allocations are extremely rare but can happen, for instance, for the
3634 * cache arrays. We bring this test here.
3635 */
3636 if (!current->mm || current->memcg_kmem_skip_account)
3637 return true;
3638
7ae1e1d0
GC
3639 memcg = try_get_mem_cgroup_from_mm(current->mm);
3640
3641 /*
3642 * very rare case described in mem_cgroup_from_task. Unfortunately there
3643 * isn't much we can do without complicating this too much, and it would
3644 * be gfp-dependent anyway. Just let it go
3645 */
3646 if (unlikely(!memcg))
3647 return true;
3648
3649 if (!memcg_can_account_kmem(memcg)) {
3650 css_put(&memcg->css);
3651 return true;
3652 }
3653
7ae1e1d0
GC
3654 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3655 if (!ret)
3656 *_memcg = memcg;
7ae1e1d0
GC
3657
3658 css_put(&memcg->css);
3659 return (ret == 0);
3660}
3661
3662void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3663 int order)
3664{
3665 struct page_cgroup *pc;
3666
3667 VM_BUG_ON(mem_cgroup_is_root(memcg));
3668
3669 /* The page allocation failed. Revert */
3670 if (!page) {
3671 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3672 return;
3673 }
3674
3675 pc = lookup_page_cgroup(page);
3676 lock_page_cgroup(pc);
3677 pc->mem_cgroup = memcg;
3678 SetPageCgroupUsed(pc);
3679 unlock_page_cgroup(pc);
3680}
3681
3682void __memcg_kmem_uncharge_pages(struct page *page, int order)
3683{
3684 struct mem_cgroup *memcg = NULL;
3685 struct page_cgroup *pc;
3686
3687
3688 pc = lookup_page_cgroup(page);
3689 /*
3690 * Fast unlocked return. Theoretically might have changed, have to
3691 * check again after locking.
3692 */
3693 if (!PageCgroupUsed(pc))
3694 return;
3695
3696 lock_page_cgroup(pc);
3697 if (PageCgroupUsed(pc)) {
3698 memcg = pc->mem_cgroup;
3699 ClearPageCgroupUsed(pc);
3700 }
3701 unlock_page_cgroup(pc);
3702
3703 /*
3704 * We trust that only if there is a memcg associated with the page, it
3705 * is a valid allocation
3706 */
3707 if (!memcg)
3708 return;
3709
3710 VM_BUG_ON(mem_cgroup_is_root(memcg));
3711 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3712}
1f458cbf
GC
3713#else
3714static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3715{
3716}
7ae1e1d0
GC
3717#endif /* CONFIG_MEMCG_KMEM */
3718
ca3e0214
KH
3719#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3720
a0db00fc 3721#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3722/*
3723 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3724 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3725 * charge/uncharge will be never happen and move_account() is done under
3726 * compound_lock(), so we don't have to take care of races.
ca3e0214 3727 */
e94c8a9c 3728void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3729{
3730 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3731 struct page_cgroup *pc;
b070e65c 3732 struct mem_cgroup *memcg;
e94c8a9c 3733 int i;
ca3e0214 3734
3d37c4a9
KH
3735 if (mem_cgroup_disabled())
3736 return;
b070e65c
DR
3737
3738 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3739 for (i = 1; i < HPAGE_PMD_NR; i++) {
3740 pc = head_pc + i;
b070e65c 3741 pc->mem_cgroup = memcg;
e94c8a9c 3742 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3743 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3744 }
b070e65c
DR
3745 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3746 HPAGE_PMD_NR);
ca3e0214 3747}
12d27107 3748#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3749
f817ed48 3750/**
de3638d9 3751 * mem_cgroup_move_account - move account of the page
5564e88b 3752 * @page: the page
7ec99d62 3753 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3754 * @pc: page_cgroup of the page.
3755 * @from: mem_cgroup which the page is moved from.
3756 * @to: mem_cgroup which the page is moved to. @from != @to.
3757 *
3758 * The caller must confirm following.
08e552c6 3759 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3760 * - compound_lock is held when nr_pages > 1
f817ed48 3761 *
2f3479b1
KH
3762 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3763 * from old cgroup.
f817ed48 3764 */
7ec99d62
JW
3765static int mem_cgroup_move_account(struct page *page,
3766 unsigned int nr_pages,
3767 struct page_cgroup *pc,
3768 struct mem_cgroup *from,
2f3479b1 3769 struct mem_cgroup *to)
f817ed48 3770{
de3638d9
JW
3771 unsigned long flags;
3772 int ret;
b2402857 3773 bool anon = PageAnon(page);
987eba66 3774
f817ed48 3775 VM_BUG_ON(from == to);
5564e88b 3776 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3777 /*
3778 * The page is isolated from LRU. So, collapse function
3779 * will not handle this page. But page splitting can happen.
3780 * Do this check under compound_page_lock(). The caller should
3781 * hold it.
3782 */
3783 ret = -EBUSY;
7ec99d62 3784 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3785 goto out;
3786
3787 lock_page_cgroup(pc);
3788
3789 ret = -EINVAL;
3790 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3791 goto unlock;
3792
312734c0 3793 move_lock_mem_cgroup(from, &flags);
f817ed48 3794
2ff76f11 3795 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3796 /* Update mapped_file data for mem_cgroup */
3797 preempt_disable();
3798 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3799 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3800 preempt_enable();
d69b042f 3801 }
b070e65c 3802 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3803
854ffa8d 3804 /* caller should have done css_get */
08e552c6 3805 pc->mem_cgroup = to;
b070e65c 3806 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3807 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3808 ret = 0;
3809unlock:
57f9fd7d 3810 unlock_page_cgroup(pc);
d2265e6f
KH
3811 /*
3812 * check events
3813 */
5564e88b
JW
3814 memcg_check_events(to, page);
3815 memcg_check_events(from, page);
de3638d9 3816out:
f817ed48
KH
3817 return ret;
3818}
3819
2ef37d3f
MH
3820/**
3821 * mem_cgroup_move_parent - moves page to the parent group
3822 * @page: the page to move
3823 * @pc: page_cgroup of the page
3824 * @child: page's cgroup
3825 *
3826 * move charges to its parent or the root cgroup if the group has no
3827 * parent (aka use_hierarchy==0).
3828 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3829 * mem_cgroup_move_account fails) the failure is always temporary and
3830 * it signals a race with a page removal/uncharge or migration. In the
3831 * first case the page is on the way out and it will vanish from the LRU
3832 * on the next attempt and the call should be retried later.
3833 * Isolation from the LRU fails only if page has been isolated from
3834 * the LRU since we looked at it and that usually means either global
3835 * reclaim or migration going on. The page will either get back to the
3836 * LRU or vanish.
3837 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3838 * (!PageCgroupUsed) or moved to a different group. The page will
3839 * disappear in the next attempt.
f817ed48 3840 */
5564e88b
JW
3841static int mem_cgroup_move_parent(struct page *page,
3842 struct page_cgroup *pc,
6068bf01 3843 struct mem_cgroup *child)
f817ed48 3844{
f817ed48 3845 struct mem_cgroup *parent;
7ec99d62 3846 unsigned int nr_pages;
4be4489f 3847 unsigned long uninitialized_var(flags);
f817ed48
KH
3848 int ret;
3849
d8423011 3850 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3851
57f9fd7d
DN
3852 ret = -EBUSY;
3853 if (!get_page_unless_zero(page))
3854 goto out;
3855 if (isolate_lru_page(page))
3856 goto put;
52dbb905 3857
7ec99d62 3858 nr_pages = hpage_nr_pages(page);
08e552c6 3859
cc926f78
KH
3860 parent = parent_mem_cgroup(child);
3861 /*
3862 * If no parent, move charges to root cgroup.
3863 */
3864 if (!parent)
3865 parent = root_mem_cgroup;
f817ed48 3866
2ef37d3f
MH
3867 if (nr_pages > 1) {
3868 VM_BUG_ON(!PageTransHuge(page));
987eba66 3869 flags = compound_lock_irqsave(page);
2ef37d3f 3870 }
987eba66 3871
cc926f78 3872 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3873 pc, child, parent);
cc926f78
KH
3874 if (!ret)
3875 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3876
7ec99d62 3877 if (nr_pages > 1)
987eba66 3878 compound_unlock_irqrestore(page, flags);
08e552c6 3879 putback_lru_page(page);
57f9fd7d 3880put:
40d58138 3881 put_page(page);
57f9fd7d 3882out:
f817ed48
KH
3883 return ret;
3884}
3885
7a81b88c
KH
3886/*
3887 * Charge the memory controller for page usage.
3888 * Return
3889 * 0 if the charge was successful
3890 * < 0 if the cgroup is over its limit
3891 */
3892static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3893 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3894{
c0ff4b85 3895 struct mem_cgroup *memcg = NULL;
7ec99d62 3896 unsigned int nr_pages = 1;
8493ae43 3897 bool oom = true;
7a81b88c 3898 int ret;
ec168510 3899
37c2ac78 3900 if (PageTransHuge(page)) {
7ec99d62 3901 nr_pages <<= compound_order(page);
37c2ac78 3902 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3903 /*
3904 * Never OOM-kill a process for a huge page. The
3905 * fault handler will fall back to regular pages.
3906 */
3907 oom = false;
37c2ac78 3908 }
7a81b88c 3909
c0ff4b85 3910 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3911 if (ret == -ENOMEM)
7a81b88c 3912 return ret;
ce587e65 3913 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3914 return 0;
8a9f3ccd
BS
3915}
3916
7a81b88c
KH
3917int mem_cgroup_newpage_charge(struct page *page,
3918 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3919{
f8d66542 3920 if (mem_cgroup_disabled())
cede86ac 3921 return 0;
7a0524cf
JW
3922 VM_BUG_ON(page_mapped(page));
3923 VM_BUG_ON(page->mapping && !PageAnon(page));
3924 VM_BUG_ON(!mm);
217bc319 3925 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3926 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3927}
3928
54595fe2
KH
3929/*
3930 * While swap-in, try_charge -> commit or cancel, the page is locked.
3931 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3932 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3933 * "commit()" or removed by "cancel()"
3934 */
0435a2fd
JW
3935static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3936 struct page *page,
3937 gfp_t mask,
3938 struct mem_cgroup **memcgp)
8c7c6e34 3939{
c0ff4b85 3940 struct mem_cgroup *memcg;
90deb788 3941 struct page_cgroup *pc;
54595fe2 3942 int ret;
8c7c6e34 3943
90deb788
JW
3944 pc = lookup_page_cgroup(page);
3945 /*
3946 * Every swap fault against a single page tries to charge the
3947 * page, bail as early as possible. shmem_unuse() encounters
3948 * already charged pages, too. The USED bit is protected by
3949 * the page lock, which serializes swap cache removal, which
3950 * in turn serializes uncharging.
3951 */
3952 if (PageCgroupUsed(pc))
3953 return 0;
8c7c6e34
KH
3954 if (!do_swap_account)
3955 goto charge_cur_mm;
c0ff4b85
R
3956 memcg = try_get_mem_cgroup_from_page(page);
3957 if (!memcg)
54595fe2 3958 goto charge_cur_mm;
72835c86
JW
3959 *memcgp = memcg;
3960 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3961 css_put(&memcg->css);
38c5d72f
KH
3962 if (ret == -EINTR)
3963 ret = 0;
54595fe2 3964 return ret;
8c7c6e34 3965charge_cur_mm:
38c5d72f
KH
3966 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3967 if (ret == -EINTR)
3968 ret = 0;
3969 return ret;
8c7c6e34
KH
3970}
3971
0435a2fd
JW
3972int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3973 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3974{
3975 *memcgp = NULL;
3976 if (mem_cgroup_disabled())
3977 return 0;
bdf4f4d2
JW
3978 /*
3979 * A racing thread's fault, or swapoff, may have already
3980 * updated the pte, and even removed page from swap cache: in
3981 * those cases unuse_pte()'s pte_same() test will fail; but
3982 * there's also a KSM case which does need to charge the page.
3983 */
3984 if (!PageSwapCache(page)) {
3985 int ret;
3986
3987 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3988 if (ret == -EINTR)
3989 ret = 0;
3990 return ret;
3991 }
0435a2fd
JW
3992 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3993}
3994
827a03d2
JW
3995void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3996{
3997 if (mem_cgroup_disabled())
3998 return;
3999 if (!memcg)
4000 return;
4001 __mem_cgroup_cancel_charge(memcg, 1);
4002}
4003
83aae4c7 4004static void
72835c86 4005__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4006 enum charge_type ctype)
7a81b88c 4007{
f8d66542 4008 if (mem_cgroup_disabled())
7a81b88c 4009 return;
72835c86 4010 if (!memcg)
7a81b88c 4011 return;
5a6475a4 4012
ce587e65 4013 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4014 /*
4015 * Now swap is on-memory. This means this page may be
4016 * counted both as mem and swap....double count.
03f3c433
KH
4017 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4018 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4019 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4020 */
03f3c433 4021 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4022 swp_entry_t ent = {.val = page_private(page)};
86493009 4023 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4024 }
7a81b88c
KH
4025}
4026
72835c86
JW
4027void mem_cgroup_commit_charge_swapin(struct page *page,
4028 struct mem_cgroup *memcg)
83aae4c7 4029{
72835c86 4030 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4031 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4032}
4033
827a03d2
JW
4034int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4035 gfp_t gfp_mask)
7a81b88c 4036{
827a03d2
JW
4037 struct mem_cgroup *memcg = NULL;
4038 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4039 int ret;
4040
f8d66542 4041 if (mem_cgroup_disabled())
827a03d2
JW
4042 return 0;
4043 if (PageCompound(page))
4044 return 0;
4045
827a03d2
JW
4046 if (!PageSwapCache(page))
4047 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4048 else { /* page is swapcache/shmem */
0435a2fd
JW
4049 ret = __mem_cgroup_try_charge_swapin(mm, page,
4050 gfp_mask, &memcg);
827a03d2
JW
4051 if (!ret)
4052 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4053 }
4054 return ret;
7a81b88c
KH
4055}
4056
c0ff4b85 4057static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4058 unsigned int nr_pages,
4059 const enum charge_type ctype)
569b846d
KH
4060{
4061 struct memcg_batch_info *batch = NULL;
4062 bool uncharge_memsw = true;
7ec99d62 4063
569b846d
KH
4064 /* If swapout, usage of swap doesn't decrease */
4065 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4066 uncharge_memsw = false;
569b846d
KH
4067
4068 batch = &current->memcg_batch;
4069 /*
4070 * In usual, we do css_get() when we remember memcg pointer.
4071 * But in this case, we keep res->usage until end of a series of
4072 * uncharges. Then, it's ok to ignore memcg's refcnt.
4073 */
4074 if (!batch->memcg)
c0ff4b85 4075 batch->memcg = memcg;
3c11ecf4
KH
4076 /*
4077 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4078 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4079 * the same cgroup and we have chance to coalesce uncharges.
4080 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4081 * because we want to do uncharge as soon as possible.
4082 */
4083
4084 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4085 goto direct_uncharge;
4086
7ec99d62 4087 if (nr_pages > 1)
ec168510
AA
4088 goto direct_uncharge;
4089
569b846d
KH
4090 /*
4091 * In typical case, batch->memcg == mem. This means we can
4092 * merge a series of uncharges to an uncharge of res_counter.
4093 * If not, we uncharge res_counter ony by one.
4094 */
c0ff4b85 4095 if (batch->memcg != memcg)
569b846d
KH
4096 goto direct_uncharge;
4097 /* remember freed charge and uncharge it later */
7ffd4ca7 4098 batch->nr_pages++;
569b846d 4099 if (uncharge_memsw)
7ffd4ca7 4100 batch->memsw_nr_pages++;
569b846d
KH
4101 return;
4102direct_uncharge:
c0ff4b85 4103 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4104 if (uncharge_memsw)
c0ff4b85
R
4105 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4106 if (unlikely(batch->memcg != memcg))
4107 memcg_oom_recover(memcg);
569b846d 4108}
7a81b88c 4109
8a9f3ccd 4110/*
69029cd5 4111 * uncharge if !page_mapped(page)
8a9f3ccd 4112 */
8c7c6e34 4113static struct mem_cgroup *
0030f535
JW
4114__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4115 bool end_migration)
8a9f3ccd 4116{
c0ff4b85 4117 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4118 unsigned int nr_pages = 1;
4119 struct page_cgroup *pc;
b2402857 4120 bool anon;
8a9f3ccd 4121
f8d66542 4122 if (mem_cgroup_disabled())
8c7c6e34 4123 return NULL;
4077960e 4124
37c2ac78 4125 if (PageTransHuge(page)) {
7ec99d62 4126 nr_pages <<= compound_order(page);
37c2ac78
AA
4127 VM_BUG_ON(!PageTransHuge(page));
4128 }
8697d331 4129 /*
3c541e14 4130 * Check if our page_cgroup is valid
8697d331 4131 */
52d4b9ac 4132 pc = lookup_page_cgroup(page);
cfa44946 4133 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4134 return NULL;
b9c565d5 4135
52d4b9ac 4136 lock_page_cgroup(pc);
d13d1443 4137
c0ff4b85 4138 memcg = pc->mem_cgroup;
8c7c6e34 4139
d13d1443
KH
4140 if (!PageCgroupUsed(pc))
4141 goto unlock_out;
4142
b2402857
KH
4143 anon = PageAnon(page);
4144
d13d1443 4145 switch (ctype) {
41326c17 4146 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4147 /*
4148 * Generally PageAnon tells if it's the anon statistics to be
4149 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4150 * used before page reached the stage of being marked PageAnon.
4151 */
b2402857
KH
4152 anon = true;
4153 /* fallthrough */
8a9478ca 4154 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4155 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4156 if (page_mapped(page))
4157 goto unlock_out;
4158 /*
4159 * Pages under migration may not be uncharged. But
4160 * end_migration() /must/ be the one uncharging the
4161 * unused post-migration page and so it has to call
4162 * here with the migration bit still set. See the
4163 * res_counter handling below.
4164 */
4165 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4166 goto unlock_out;
4167 break;
4168 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4169 if (!PageAnon(page)) { /* Shared memory */
4170 if (page->mapping && !page_is_file_cache(page))
4171 goto unlock_out;
4172 } else if (page_mapped(page)) /* Anon */
4173 goto unlock_out;
4174 break;
4175 default:
4176 break;
52d4b9ac 4177 }
d13d1443 4178
b070e65c 4179 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4180
52d4b9ac 4181 ClearPageCgroupUsed(pc);
544122e5
KH
4182 /*
4183 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4184 * freed from LRU. This is safe because uncharged page is expected not
4185 * to be reused (freed soon). Exception is SwapCache, it's handled by
4186 * special functions.
4187 */
b9c565d5 4188
52d4b9ac 4189 unlock_page_cgroup(pc);
f75ca962 4190 /*
c0ff4b85 4191 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4192 * will never be freed, so it's safe to call css_get().
f75ca962 4193 */
c0ff4b85 4194 memcg_check_events(memcg, page);
f75ca962 4195 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4196 mem_cgroup_swap_statistics(memcg, true);
4050377b 4197 css_get(&memcg->css);
f75ca962 4198 }
0030f535
JW
4199 /*
4200 * Migration does not charge the res_counter for the
4201 * replacement page, so leave it alone when phasing out the
4202 * page that is unused after the migration.
4203 */
4204 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4205 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4206
c0ff4b85 4207 return memcg;
d13d1443
KH
4208
4209unlock_out:
4210 unlock_page_cgroup(pc);
8c7c6e34 4211 return NULL;
3c541e14
BS
4212}
4213
69029cd5
KH
4214void mem_cgroup_uncharge_page(struct page *page)
4215{
52d4b9ac
KH
4216 /* early check. */
4217 if (page_mapped(page))
4218 return;
40f23a21 4219 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4220 /*
4221 * If the page is in swap cache, uncharge should be deferred
4222 * to the swap path, which also properly accounts swap usage
4223 * and handles memcg lifetime.
4224 *
4225 * Note that this check is not stable and reclaim may add the
4226 * page to swap cache at any time after this. However, if the
4227 * page is not in swap cache by the time page->mapcount hits
4228 * 0, there won't be any page table references to the swap
4229 * slot, and reclaim will free it and not actually write the
4230 * page to disk.
4231 */
0c59b89c
JW
4232 if (PageSwapCache(page))
4233 return;
0030f535 4234 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4235}
4236
4237void mem_cgroup_uncharge_cache_page(struct page *page)
4238{
4239 VM_BUG_ON(page_mapped(page));
b7abea96 4240 VM_BUG_ON(page->mapping);
0030f535 4241 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4242}
4243
569b846d
KH
4244/*
4245 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4246 * In that cases, pages are freed continuously and we can expect pages
4247 * are in the same memcg. All these calls itself limits the number of
4248 * pages freed at once, then uncharge_start/end() is called properly.
4249 * This may be called prural(2) times in a context,
4250 */
4251
4252void mem_cgroup_uncharge_start(void)
4253{
4254 current->memcg_batch.do_batch++;
4255 /* We can do nest. */
4256 if (current->memcg_batch.do_batch == 1) {
4257 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4258 current->memcg_batch.nr_pages = 0;
4259 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4260 }
4261}
4262
4263void mem_cgroup_uncharge_end(void)
4264{
4265 struct memcg_batch_info *batch = &current->memcg_batch;
4266
4267 if (!batch->do_batch)
4268 return;
4269
4270 batch->do_batch--;
4271 if (batch->do_batch) /* If stacked, do nothing. */
4272 return;
4273
4274 if (!batch->memcg)
4275 return;
4276 /*
4277 * This "batch->memcg" is valid without any css_get/put etc...
4278 * bacause we hide charges behind us.
4279 */
7ffd4ca7
JW
4280 if (batch->nr_pages)
4281 res_counter_uncharge(&batch->memcg->res,
4282 batch->nr_pages * PAGE_SIZE);
4283 if (batch->memsw_nr_pages)
4284 res_counter_uncharge(&batch->memcg->memsw,
4285 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4286 memcg_oom_recover(batch->memcg);
569b846d
KH
4287 /* forget this pointer (for sanity check) */
4288 batch->memcg = NULL;
4289}
4290
e767e056 4291#ifdef CONFIG_SWAP
8c7c6e34 4292/*
e767e056 4293 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4294 * memcg information is recorded to swap_cgroup of "ent"
4295 */
8a9478ca
KH
4296void
4297mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4298{
4299 struct mem_cgroup *memcg;
8a9478ca
KH
4300 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4301
4302 if (!swapout) /* this was a swap cache but the swap is unused ! */
4303 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4304
0030f535 4305 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4306
f75ca962
KH
4307 /*
4308 * record memcg information, if swapout && memcg != NULL,
4050377b 4309 * css_get() was called in uncharge().
f75ca962
KH
4310 */
4311 if (do_swap_account && swapout && memcg)
a3b2d692 4312 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4313}
e767e056 4314#endif
8c7c6e34 4315
c255a458 4316#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4317/*
4318 * called from swap_entry_free(). remove record in swap_cgroup and
4319 * uncharge "memsw" account.
4320 */
4321void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4322{
8c7c6e34 4323 struct mem_cgroup *memcg;
a3b2d692 4324 unsigned short id;
8c7c6e34
KH
4325
4326 if (!do_swap_account)
4327 return;
4328
a3b2d692
KH
4329 id = swap_cgroup_record(ent, 0);
4330 rcu_read_lock();
4331 memcg = mem_cgroup_lookup(id);
8c7c6e34 4332 if (memcg) {
a3b2d692
KH
4333 /*
4334 * We uncharge this because swap is freed.
4335 * This memcg can be obsolete one. We avoid calling css_tryget
4336 */
0c3e73e8 4337 if (!mem_cgroup_is_root(memcg))
4e649152 4338 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4339 mem_cgroup_swap_statistics(memcg, false);
4050377b 4340 css_put(&memcg->css);
8c7c6e34 4341 }
a3b2d692 4342 rcu_read_unlock();
d13d1443 4343}
02491447
DN
4344
4345/**
4346 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4347 * @entry: swap entry to be moved
4348 * @from: mem_cgroup which the entry is moved from
4349 * @to: mem_cgroup which the entry is moved to
4350 *
4351 * It succeeds only when the swap_cgroup's record for this entry is the same
4352 * as the mem_cgroup's id of @from.
4353 *
4354 * Returns 0 on success, -EINVAL on failure.
4355 *
4356 * The caller must have charged to @to, IOW, called res_counter_charge() about
4357 * both res and memsw, and called css_get().
4358 */
4359static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4360 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4361{
4362 unsigned short old_id, new_id;
4363
4364 old_id = css_id(&from->css);
4365 new_id = css_id(&to->css);
4366
4367 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4368 mem_cgroup_swap_statistics(from, false);
483c30b5 4369 mem_cgroup_swap_statistics(to, true);
02491447 4370 /*
483c30b5
DN
4371 * This function is only called from task migration context now.
4372 * It postpones res_counter and refcount handling till the end
4373 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4374 * improvement. But we cannot postpone css_get(to) because if
4375 * the process that has been moved to @to does swap-in, the
4376 * refcount of @to might be decreased to 0.
4377 *
4378 * We are in attach() phase, so the cgroup is guaranteed to be
4379 * alive, so we can just call css_get().
02491447 4380 */
4050377b 4381 css_get(&to->css);
02491447
DN
4382 return 0;
4383 }
4384 return -EINVAL;
4385}
4386#else
4387static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4388 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4389{
4390 return -EINVAL;
4391}
8c7c6e34 4392#endif
d13d1443 4393
ae41be37 4394/*
01b1ae63
KH
4395 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4396 * page belongs to.
ae41be37 4397 */
0030f535
JW
4398void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4399 struct mem_cgroup **memcgp)
ae41be37 4400{
c0ff4b85 4401 struct mem_cgroup *memcg = NULL;
b32967ff 4402 unsigned int nr_pages = 1;
7ec99d62 4403 struct page_cgroup *pc;
ac39cf8c 4404 enum charge_type ctype;
8869b8f6 4405
72835c86 4406 *memcgp = NULL;
56039efa 4407
f8d66542 4408 if (mem_cgroup_disabled())
0030f535 4409 return;
4077960e 4410
b32967ff
MG
4411 if (PageTransHuge(page))
4412 nr_pages <<= compound_order(page);
4413
52d4b9ac
KH
4414 pc = lookup_page_cgroup(page);
4415 lock_page_cgroup(pc);
4416 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4417 memcg = pc->mem_cgroup;
4418 css_get(&memcg->css);
ac39cf8c
AM
4419 /*
4420 * At migrating an anonymous page, its mapcount goes down
4421 * to 0 and uncharge() will be called. But, even if it's fully
4422 * unmapped, migration may fail and this page has to be
4423 * charged again. We set MIGRATION flag here and delay uncharge
4424 * until end_migration() is called
4425 *
4426 * Corner Case Thinking
4427 * A)
4428 * When the old page was mapped as Anon and it's unmap-and-freed
4429 * while migration was ongoing.
4430 * If unmap finds the old page, uncharge() of it will be delayed
4431 * until end_migration(). If unmap finds a new page, it's
4432 * uncharged when it make mapcount to be 1->0. If unmap code
4433 * finds swap_migration_entry, the new page will not be mapped
4434 * and end_migration() will find it(mapcount==0).
4435 *
4436 * B)
4437 * When the old page was mapped but migraion fails, the kernel
4438 * remaps it. A charge for it is kept by MIGRATION flag even
4439 * if mapcount goes down to 0. We can do remap successfully
4440 * without charging it again.
4441 *
4442 * C)
4443 * The "old" page is under lock_page() until the end of
4444 * migration, so, the old page itself will not be swapped-out.
4445 * If the new page is swapped out before end_migraton, our
4446 * hook to usual swap-out path will catch the event.
4447 */
4448 if (PageAnon(page))
4449 SetPageCgroupMigration(pc);
e8589cc1 4450 }
52d4b9ac 4451 unlock_page_cgroup(pc);
ac39cf8c
AM
4452 /*
4453 * If the page is not charged at this point,
4454 * we return here.
4455 */
c0ff4b85 4456 if (!memcg)
0030f535 4457 return;
01b1ae63 4458
72835c86 4459 *memcgp = memcg;
ac39cf8c
AM
4460 /*
4461 * We charge new page before it's used/mapped. So, even if unlock_page()
4462 * is called before end_migration, we can catch all events on this new
4463 * page. In the case new page is migrated but not remapped, new page's
4464 * mapcount will be finally 0 and we call uncharge in end_migration().
4465 */
ac39cf8c 4466 if (PageAnon(page))
41326c17 4467 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4468 else
62ba7442 4469 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4470 /*
4471 * The page is committed to the memcg, but it's not actually
4472 * charged to the res_counter since we plan on replacing the
4473 * old one and only one page is going to be left afterwards.
4474 */
b32967ff 4475 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4476}
8869b8f6 4477
69029cd5 4478/* remove redundant charge if migration failed*/
c0ff4b85 4479void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4480 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4481{
ac39cf8c 4482 struct page *used, *unused;
01b1ae63 4483 struct page_cgroup *pc;
b2402857 4484 bool anon;
01b1ae63 4485
c0ff4b85 4486 if (!memcg)
01b1ae63 4487 return;
b25ed609 4488
50de1dd9 4489 if (!migration_ok) {
ac39cf8c
AM
4490 used = oldpage;
4491 unused = newpage;
01b1ae63 4492 } else {
ac39cf8c 4493 used = newpage;
01b1ae63
KH
4494 unused = oldpage;
4495 }
0030f535 4496 anon = PageAnon(used);
7d188958
JW
4497 __mem_cgroup_uncharge_common(unused,
4498 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4499 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4500 true);
0030f535 4501 css_put(&memcg->css);
69029cd5 4502 /*
ac39cf8c
AM
4503 * We disallowed uncharge of pages under migration because mapcount
4504 * of the page goes down to zero, temporarly.
4505 * Clear the flag and check the page should be charged.
01b1ae63 4506 */
ac39cf8c
AM
4507 pc = lookup_page_cgroup(oldpage);
4508 lock_page_cgroup(pc);
4509 ClearPageCgroupMigration(pc);
4510 unlock_page_cgroup(pc);
ac39cf8c 4511
01b1ae63 4512 /*
ac39cf8c
AM
4513 * If a page is a file cache, radix-tree replacement is very atomic
4514 * and we can skip this check. When it was an Anon page, its mapcount
4515 * goes down to 0. But because we added MIGRATION flage, it's not
4516 * uncharged yet. There are several case but page->mapcount check
4517 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4518 * check. (see prepare_charge() also)
69029cd5 4519 */
b2402857 4520 if (anon)
ac39cf8c 4521 mem_cgroup_uncharge_page(used);
ae41be37 4522}
78fb7466 4523
ab936cbc
KH
4524/*
4525 * At replace page cache, newpage is not under any memcg but it's on
4526 * LRU. So, this function doesn't touch res_counter but handles LRU
4527 * in correct way. Both pages are locked so we cannot race with uncharge.
4528 */
4529void mem_cgroup_replace_page_cache(struct page *oldpage,
4530 struct page *newpage)
4531{
bde05d1c 4532 struct mem_cgroup *memcg = NULL;
ab936cbc 4533 struct page_cgroup *pc;
ab936cbc 4534 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4535
4536 if (mem_cgroup_disabled())
4537 return;
4538
4539 pc = lookup_page_cgroup(oldpage);
4540 /* fix accounting on old pages */
4541 lock_page_cgroup(pc);
bde05d1c
HD
4542 if (PageCgroupUsed(pc)) {
4543 memcg = pc->mem_cgroup;
b070e65c 4544 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4545 ClearPageCgroupUsed(pc);
4546 }
ab936cbc
KH
4547 unlock_page_cgroup(pc);
4548
bde05d1c
HD
4549 /*
4550 * When called from shmem_replace_page(), in some cases the
4551 * oldpage has already been charged, and in some cases not.
4552 */
4553 if (!memcg)
4554 return;
ab936cbc
KH
4555 /*
4556 * Even if newpage->mapping was NULL before starting replacement,
4557 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4558 * LRU while we overwrite pc->mem_cgroup.
4559 */
ce587e65 4560 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4561}
4562
f212ad7c
DN
4563#ifdef CONFIG_DEBUG_VM
4564static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4565{
4566 struct page_cgroup *pc;
4567
4568 pc = lookup_page_cgroup(page);
cfa44946
JW
4569 /*
4570 * Can be NULL while feeding pages into the page allocator for
4571 * the first time, i.e. during boot or memory hotplug;
4572 * or when mem_cgroup_disabled().
4573 */
f212ad7c
DN
4574 if (likely(pc) && PageCgroupUsed(pc))
4575 return pc;
4576 return NULL;
4577}
4578
4579bool mem_cgroup_bad_page_check(struct page *page)
4580{
4581 if (mem_cgroup_disabled())
4582 return false;
4583
4584 return lookup_page_cgroup_used(page) != NULL;
4585}
4586
4587void mem_cgroup_print_bad_page(struct page *page)
4588{
4589 struct page_cgroup *pc;
4590
4591 pc = lookup_page_cgroup_used(page);
4592 if (pc) {
d045197f
AM
4593 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4594 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4595 }
4596}
4597#endif
4598
d38d2a75 4599static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4600 unsigned long long val)
628f4235 4601{
81d39c20 4602 int retry_count;
3c11ecf4 4603 u64 memswlimit, memlimit;
628f4235 4604 int ret = 0;
81d39c20
KH
4605 int children = mem_cgroup_count_children(memcg);
4606 u64 curusage, oldusage;
3c11ecf4 4607 int enlarge;
81d39c20
KH
4608
4609 /*
4610 * For keeping hierarchical_reclaim simple, how long we should retry
4611 * is depends on callers. We set our retry-count to be function
4612 * of # of children which we should visit in this loop.
4613 */
4614 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4615
4616 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4617
3c11ecf4 4618 enlarge = 0;
8c7c6e34 4619 while (retry_count) {
628f4235
KH
4620 if (signal_pending(current)) {
4621 ret = -EINTR;
4622 break;
4623 }
8c7c6e34
KH
4624 /*
4625 * Rather than hide all in some function, I do this in
4626 * open coded manner. You see what this really does.
aaad153e 4627 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4628 */
4629 mutex_lock(&set_limit_mutex);
4630 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4631 if (memswlimit < val) {
4632 ret = -EINVAL;
4633 mutex_unlock(&set_limit_mutex);
628f4235
KH
4634 break;
4635 }
3c11ecf4
KH
4636
4637 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4638 if (memlimit < val)
4639 enlarge = 1;
4640
8c7c6e34 4641 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4642 if (!ret) {
4643 if (memswlimit == val)
4644 memcg->memsw_is_minimum = true;
4645 else
4646 memcg->memsw_is_minimum = false;
4647 }
8c7c6e34
KH
4648 mutex_unlock(&set_limit_mutex);
4649
4650 if (!ret)
4651 break;
4652
5660048c
JW
4653 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4654 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4655 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4656 /* Usage is reduced ? */
4657 if (curusage >= oldusage)
4658 retry_count--;
4659 else
4660 oldusage = curusage;
8c7c6e34 4661 }
3c11ecf4
KH
4662 if (!ret && enlarge)
4663 memcg_oom_recover(memcg);
14797e23 4664
8c7c6e34
KH
4665 return ret;
4666}
4667
338c8431
LZ
4668static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4669 unsigned long long val)
8c7c6e34 4670{
81d39c20 4671 int retry_count;
3c11ecf4 4672 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4673 int children = mem_cgroup_count_children(memcg);
4674 int ret = -EBUSY;
3c11ecf4 4675 int enlarge = 0;
8c7c6e34 4676
81d39c20
KH
4677 /* see mem_cgroup_resize_res_limit */
4678 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4679 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4680 while (retry_count) {
4681 if (signal_pending(current)) {
4682 ret = -EINTR;
4683 break;
4684 }
4685 /*
4686 * Rather than hide all in some function, I do this in
4687 * open coded manner. You see what this really does.
aaad153e 4688 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4689 */
4690 mutex_lock(&set_limit_mutex);
4691 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4692 if (memlimit > val) {
4693 ret = -EINVAL;
4694 mutex_unlock(&set_limit_mutex);
4695 break;
4696 }
3c11ecf4
KH
4697 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4698 if (memswlimit < val)
4699 enlarge = 1;
8c7c6e34 4700 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4701 if (!ret) {
4702 if (memlimit == val)
4703 memcg->memsw_is_minimum = true;
4704 else
4705 memcg->memsw_is_minimum = false;
4706 }
8c7c6e34
KH
4707 mutex_unlock(&set_limit_mutex);
4708
4709 if (!ret)
4710 break;
4711
5660048c
JW
4712 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4713 MEM_CGROUP_RECLAIM_NOSWAP |
4714 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4715 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4716 /* Usage is reduced ? */
8c7c6e34 4717 if (curusage >= oldusage)
628f4235 4718 retry_count--;
81d39c20
KH
4719 else
4720 oldusage = curusage;
628f4235 4721 }
3c11ecf4
KH
4722 if (!ret && enlarge)
4723 memcg_oom_recover(memcg);
628f4235
KH
4724 return ret;
4725}
4726
4e416953 4727unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4728 gfp_t gfp_mask,
4729 unsigned long *total_scanned)
4e416953
BS
4730{
4731 unsigned long nr_reclaimed = 0;
4732 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4733 unsigned long reclaimed;
4734 int loop = 0;
4735 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4736 unsigned long long excess;
0ae5e89c 4737 unsigned long nr_scanned;
4e416953
BS
4738
4739 if (order > 0)
4740 return 0;
4741
00918b6a 4742 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4743 /*
4744 * This loop can run a while, specially if mem_cgroup's continuously
4745 * keep exceeding their soft limit and putting the system under
4746 * pressure
4747 */
4748 do {
4749 if (next_mz)
4750 mz = next_mz;
4751 else
4752 mz = mem_cgroup_largest_soft_limit_node(mctz);
4753 if (!mz)
4754 break;
4755
0ae5e89c 4756 nr_scanned = 0;
d79154bb 4757 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4758 gfp_mask, &nr_scanned);
4e416953 4759 nr_reclaimed += reclaimed;
0ae5e89c 4760 *total_scanned += nr_scanned;
4e416953
BS
4761 spin_lock(&mctz->lock);
4762
4763 /*
4764 * If we failed to reclaim anything from this memory cgroup
4765 * it is time to move on to the next cgroup
4766 */
4767 next_mz = NULL;
4768 if (!reclaimed) {
4769 do {
4770 /*
4771 * Loop until we find yet another one.
4772 *
4773 * By the time we get the soft_limit lock
4774 * again, someone might have aded the
4775 * group back on the RB tree. Iterate to
4776 * make sure we get a different mem.
4777 * mem_cgroup_largest_soft_limit_node returns
4778 * NULL if no other cgroup is present on
4779 * the tree
4780 */
4781 next_mz =
4782 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4783 if (next_mz == mz)
d79154bb 4784 css_put(&next_mz->memcg->css);
39cc98f1 4785 else /* next_mz == NULL or other memcg */
4e416953
BS
4786 break;
4787 } while (1);
4788 }
d79154bb
HD
4789 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4790 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4791 /*
4792 * One school of thought says that we should not add
4793 * back the node to the tree if reclaim returns 0.
4794 * But our reclaim could return 0, simply because due
4795 * to priority we are exposing a smaller subset of
4796 * memory to reclaim from. Consider this as a longer
4797 * term TODO.
4798 */
ef8745c1 4799 /* If excess == 0, no tree ops */
d79154bb 4800 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4801 spin_unlock(&mctz->lock);
d79154bb 4802 css_put(&mz->memcg->css);
4e416953
BS
4803 loop++;
4804 /*
4805 * Could not reclaim anything and there are no more
4806 * mem cgroups to try or we seem to be looping without
4807 * reclaiming anything.
4808 */
4809 if (!nr_reclaimed &&
4810 (next_mz == NULL ||
4811 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4812 break;
4813 } while (!nr_reclaimed);
4814 if (next_mz)
d79154bb 4815 css_put(&next_mz->memcg->css);
4e416953
BS
4816 return nr_reclaimed;
4817}
4818
2ef37d3f
MH
4819/**
4820 * mem_cgroup_force_empty_list - clears LRU of a group
4821 * @memcg: group to clear
4822 * @node: NUMA node
4823 * @zid: zone id
4824 * @lru: lru to to clear
4825 *
3c935d18 4826 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4827 * reclaim the pages page themselves - pages are moved to the parent (or root)
4828 * group.
cc847582 4829 */
2ef37d3f 4830static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4831 int node, int zid, enum lru_list lru)
cc847582 4832{
bea8c150 4833 struct lruvec *lruvec;
2ef37d3f 4834 unsigned long flags;
072c56c1 4835 struct list_head *list;
925b7673
JW
4836 struct page *busy;
4837 struct zone *zone;
072c56c1 4838
08e552c6 4839 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4840 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4841 list = &lruvec->lists[lru];
cc847582 4842
f817ed48 4843 busy = NULL;
2ef37d3f 4844 do {
925b7673 4845 struct page_cgroup *pc;
5564e88b
JW
4846 struct page *page;
4847
08e552c6 4848 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4849 if (list_empty(list)) {
08e552c6 4850 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4851 break;
f817ed48 4852 }
925b7673
JW
4853 page = list_entry(list->prev, struct page, lru);
4854 if (busy == page) {
4855 list_move(&page->lru, list);
648bcc77 4856 busy = NULL;
08e552c6 4857 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4858 continue;
4859 }
08e552c6 4860 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4861
925b7673 4862 pc = lookup_page_cgroup(page);
5564e88b 4863
3c935d18 4864 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4865 /* found lock contention or "pc" is obsolete. */
925b7673 4866 busy = page;
f817ed48
KH
4867 cond_resched();
4868 } else
4869 busy = NULL;
2ef37d3f 4870 } while (!list_empty(list));
cc847582
KH
4871}
4872
4873/*
c26251f9
MH
4874 * make mem_cgroup's charge to be 0 if there is no task by moving
4875 * all the charges and pages to the parent.
cc847582 4876 * This enables deleting this mem_cgroup.
c26251f9
MH
4877 *
4878 * Caller is responsible for holding css reference on the memcg.
cc847582 4879 */
ab5196c2 4880static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4881{
c26251f9 4882 int node, zid;
bea207c8 4883 u64 usage;
f817ed48 4884
fce66477 4885 do {
52d4b9ac
KH
4886 /* This is for making all *used* pages to be on LRU. */
4887 lru_add_drain_all();
c0ff4b85 4888 drain_all_stock_sync(memcg);
c0ff4b85 4889 mem_cgroup_start_move(memcg);
31aaea4a 4890 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4891 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4892 enum lru_list lru;
4893 for_each_lru(lru) {
2ef37d3f 4894 mem_cgroup_force_empty_list(memcg,
f156ab93 4895 node, zid, lru);
f817ed48 4896 }
1ecaab2b 4897 }
f817ed48 4898 }
c0ff4b85
R
4899 mem_cgroup_end_move(memcg);
4900 memcg_oom_recover(memcg);
52d4b9ac 4901 cond_resched();
f817ed48 4902
2ef37d3f 4903 /*
bea207c8
GC
4904 * Kernel memory may not necessarily be trackable to a specific
4905 * process. So they are not migrated, and therefore we can't
4906 * expect their value to drop to 0 here.
4907 * Having res filled up with kmem only is enough.
4908 *
2ef37d3f
MH
4909 * This is a safety check because mem_cgroup_force_empty_list
4910 * could have raced with mem_cgroup_replace_page_cache callers
4911 * so the lru seemed empty but the page could have been added
4912 * right after the check. RES_USAGE should be safe as we always
4913 * charge before adding to the LRU.
4914 */
bea207c8
GC
4915 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4916 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4917 } while (usage > 0);
c26251f9
MH
4918}
4919
b5f99b53
GC
4920/*
4921 * This mainly exists for tests during the setting of set of use_hierarchy.
4922 * Since this is the very setting we are changing, the current hierarchy value
4923 * is meaningless
4924 */
4925static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4926{
492eb21b 4927 struct cgroup_subsys_state *pos;
b5f99b53
GC
4928
4929 /* bounce at first found */
492eb21b 4930 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4931 return true;
4932 return false;
4933}
4934
4935/*
0999821b
GC
4936 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4937 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4938 * from mem_cgroup_count_children(), in the sense that we don't really care how
4939 * many children we have; we only need to know if we have any. It also counts
4940 * any memcg without hierarchy as infertile.
4941 */
4942static inline bool memcg_has_children(struct mem_cgroup *memcg)
4943{
4944 return memcg->use_hierarchy && __memcg_has_children(memcg);
4945}
4946
c26251f9
MH
4947/*
4948 * Reclaims as many pages from the given memcg as possible and moves
4949 * the rest to the parent.
4950 *
4951 * Caller is responsible for holding css reference for memcg.
4952 */
4953static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4954{
4955 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4956 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4957
c1e862c1 4958 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4959 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4960 return -EBUSY;
4961
c1e862c1
KH
4962 /* we call try-to-free pages for make this cgroup empty */
4963 lru_add_drain_all();
f817ed48 4964 /* try to free all pages in this cgroup */
569530fb 4965 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4966 int progress;
c1e862c1 4967
c26251f9
MH
4968 if (signal_pending(current))
4969 return -EINTR;
4970
c0ff4b85 4971 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4972 false);
c1e862c1 4973 if (!progress) {
f817ed48 4974 nr_retries--;
c1e862c1 4975 /* maybe some writeback is necessary */
8aa7e847 4976 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4977 }
f817ed48
KH
4978
4979 }
08e552c6 4980 lru_add_drain();
ab5196c2
MH
4981 mem_cgroup_reparent_charges(memcg);
4982
4983 return 0;
cc847582
KH
4984}
4985
182446d0
TH
4986static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4987 unsigned int event)
c1e862c1 4988{
182446d0 4989 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9
MH
4990 int ret;
4991
d8423011
MH
4992 if (mem_cgroup_is_root(memcg))
4993 return -EINVAL;
c26251f9
MH
4994 css_get(&memcg->css);
4995 ret = mem_cgroup_force_empty(memcg);
4996 css_put(&memcg->css);
4997
4998 return ret;
c1e862c1
KH
4999}
5000
5001
182446d0
TH
5002static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5003 struct cftype *cft)
18f59ea7 5004{
182446d0 5005 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5006}
5007
182446d0
TH
5008static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5009 struct cftype *cft, u64 val)
18f59ea7
BS
5010{
5011 int retval = 0;
182446d0 5012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5013 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5014
0999821b 5015 mutex_lock(&memcg_create_mutex);
567fb435
GC
5016
5017 if (memcg->use_hierarchy == val)
5018 goto out;
5019
18f59ea7 5020 /*
af901ca1 5021 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5022 * in the child subtrees. If it is unset, then the change can
5023 * occur, provided the current cgroup has no children.
5024 *
5025 * For the root cgroup, parent_mem is NULL, we allow value to be
5026 * set if there are no children.
5027 */
c0ff4b85 5028 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5029 (val == 1 || val == 0)) {
b5f99b53 5030 if (!__memcg_has_children(memcg))
c0ff4b85 5031 memcg->use_hierarchy = val;
18f59ea7
BS
5032 else
5033 retval = -EBUSY;
5034 } else
5035 retval = -EINVAL;
567fb435
GC
5036
5037out:
0999821b 5038 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5039
5040 return retval;
5041}
5042
0c3e73e8 5043
c0ff4b85 5044static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5045 enum mem_cgroup_stat_index idx)
0c3e73e8 5046{
7d74b06f 5047 struct mem_cgroup *iter;
7a159cc9 5048 long val = 0;
0c3e73e8 5049
7a159cc9 5050 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5051 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5052 val += mem_cgroup_read_stat(iter, idx);
5053
5054 if (val < 0) /* race ? */
5055 val = 0;
5056 return val;
0c3e73e8
BS
5057}
5058
c0ff4b85 5059static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5060{
7d74b06f 5061 u64 val;
104f3928 5062
c0ff4b85 5063 if (!mem_cgroup_is_root(memcg)) {
104f3928 5064 if (!swap)
65c64ce8 5065 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5066 else
65c64ce8 5067 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5068 }
5069
b070e65c
DR
5070 /*
5071 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5072 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5073 */
c0ff4b85
R
5074 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5075 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5076
7d74b06f 5077 if (swap)
bff6bb83 5078 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5079
5080 return val << PAGE_SHIFT;
5081}
5082
182446d0
TH
5083static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5084 struct cftype *cft, struct file *file,
5085 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5086{
182446d0 5087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5088 char str[64];
104f3928 5089 u64 val;
86ae53e1
GC
5090 int name, len;
5091 enum res_type type;
8c7c6e34
KH
5092
5093 type = MEMFILE_TYPE(cft->private);
5094 name = MEMFILE_ATTR(cft->private);
af36f906 5095
8c7c6e34
KH
5096 switch (type) {
5097 case _MEM:
104f3928 5098 if (name == RES_USAGE)
c0ff4b85 5099 val = mem_cgroup_usage(memcg, false);
104f3928 5100 else
c0ff4b85 5101 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5102 break;
5103 case _MEMSWAP:
104f3928 5104 if (name == RES_USAGE)
c0ff4b85 5105 val = mem_cgroup_usage(memcg, true);
104f3928 5106 else
c0ff4b85 5107 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5108 break;
510fc4e1
GC
5109 case _KMEM:
5110 val = res_counter_read_u64(&memcg->kmem, name);
5111 break;
8c7c6e34
KH
5112 default:
5113 BUG();
8c7c6e34 5114 }
af36f906
TH
5115
5116 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5117 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5118}
510fc4e1 5119
182446d0 5120static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5121{
5122 int ret = -EINVAL;
5123#ifdef CONFIG_MEMCG_KMEM
182446d0 5124 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5125 /*
5126 * For simplicity, we won't allow this to be disabled. It also can't
5127 * be changed if the cgroup has children already, or if tasks had
5128 * already joined.
5129 *
5130 * If tasks join before we set the limit, a person looking at
5131 * kmem.usage_in_bytes will have no way to determine when it took
5132 * place, which makes the value quite meaningless.
5133 *
5134 * After it first became limited, changes in the value of the limit are
5135 * of course permitted.
510fc4e1 5136 */
0999821b 5137 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5138 mutex_lock(&set_limit_mutex);
5139 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
182446d0 5140 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5141 ret = -EBUSY;
5142 goto out;
5143 }
5144 ret = res_counter_set_limit(&memcg->kmem, val);
5145 VM_BUG_ON(ret);
5146
55007d84
GC
5147 ret = memcg_update_cache_sizes(memcg);
5148 if (ret) {
5149 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5150 goto out;
5151 }
692e89ab
GC
5152 static_key_slow_inc(&memcg_kmem_enabled_key);
5153 /*
5154 * setting the active bit after the inc will guarantee no one
5155 * starts accounting before all call sites are patched
5156 */
5157 memcg_kmem_set_active(memcg);
510fc4e1
GC
5158 } else
5159 ret = res_counter_set_limit(&memcg->kmem, val);
5160out:
5161 mutex_unlock(&set_limit_mutex);
0999821b 5162 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5163#endif
5164 return ret;
5165}
5166
6d043990 5167#ifdef CONFIG_MEMCG_KMEM
55007d84 5168static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5169{
55007d84 5170 int ret = 0;
510fc4e1
GC
5171 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5172 if (!parent)
55007d84
GC
5173 goto out;
5174
510fc4e1 5175 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5176 /*
5177 * When that happen, we need to disable the static branch only on those
5178 * memcgs that enabled it. To achieve this, we would be forced to
5179 * complicate the code by keeping track of which memcgs were the ones
5180 * that actually enabled limits, and which ones got it from its
5181 * parents.
5182 *
5183 * It is a lot simpler just to do static_key_slow_inc() on every child
5184 * that is accounted.
5185 */
55007d84
GC
5186 if (!memcg_kmem_is_active(memcg))
5187 goto out;
5188
5189 /*
10d5ebf4
LZ
5190 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5191 * memcg is active already. If the later initialization fails then the
5192 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5193 */
55007d84
GC
5194 static_key_slow_inc(&memcg_kmem_enabled_key);
5195
5196 mutex_lock(&set_limit_mutex);
425c598d 5197 memcg_stop_kmem_account();
55007d84 5198 ret = memcg_update_cache_sizes(memcg);
425c598d 5199 memcg_resume_kmem_account();
55007d84 5200 mutex_unlock(&set_limit_mutex);
55007d84
GC
5201out:
5202 return ret;
510fc4e1 5203}
6d043990 5204#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5205
628f4235
KH
5206/*
5207 * The user of this function is...
5208 * RES_LIMIT.
5209 */
182446d0 5210static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5211 const char *buffer)
8cdea7c0 5212{
182446d0 5213 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5214 enum res_type type;
5215 int name;
628f4235
KH
5216 unsigned long long val;
5217 int ret;
5218
8c7c6e34
KH
5219 type = MEMFILE_TYPE(cft->private);
5220 name = MEMFILE_ATTR(cft->private);
af36f906 5221
8c7c6e34 5222 switch (name) {
628f4235 5223 case RES_LIMIT:
4b3bde4c
BS
5224 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5225 ret = -EINVAL;
5226 break;
5227 }
628f4235
KH
5228 /* This function does all necessary parse...reuse it */
5229 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5230 if (ret)
5231 break;
5232 if (type == _MEM)
628f4235 5233 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5234 else if (type == _MEMSWAP)
8c7c6e34 5235 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5236 else if (type == _KMEM)
182446d0 5237 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5238 else
5239 return -EINVAL;
628f4235 5240 break;
296c81d8
BS
5241 case RES_SOFT_LIMIT:
5242 ret = res_counter_memparse_write_strategy(buffer, &val);
5243 if (ret)
5244 break;
5245 /*
5246 * For memsw, soft limits are hard to implement in terms
5247 * of semantics, for now, we support soft limits for
5248 * control without swap
5249 */
5250 if (type == _MEM)
5251 ret = res_counter_set_soft_limit(&memcg->res, val);
5252 else
5253 ret = -EINVAL;
5254 break;
628f4235
KH
5255 default:
5256 ret = -EINVAL; /* should be BUG() ? */
5257 break;
5258 }
5259 return ret;
8cdea7c0
BS
5260}
5261
fee7b548
KH
5262static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5263 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5264{
fee7b548
KH
5265 unsigned long long min_limit, min_memsw_limit, tmp;
5266
5267 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5268 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5269 if (!memcg->use_hierarchy)
5270 goto out;
5271
63876986
TH
5272 while (css_parent(&memcg->css)) {
5273 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5274 if (!memcg->use_hierarchy)
5275 break;
5276 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5277 min_limit = min(min_limit, tmp);
5278 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5279 min_memsw_limit = min(min_memsw_limit, tmp);
5280 }
5281out:
5282 *mem_limit = min_limit;
5283 *memsw_limit = min_memsw_limit;
fee7b548
KH
5284}
5285
182446d0 5286static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5287{
182446d0 5288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5289 int name;
5290 enum res_type type;
c84872e1 5291
8c7c6e34
KH
5292 type = MEMFILE_TYPE(event);
5293 name = MEMFILE_ATTR(event);
af36f906 5294
8c7c6e34 5295 switch (name) {
29f2a4da 5296 case RES_MAX_USAGE:
8c7c6e34 5297 if (type == _MEM)
c0ff4b85 5298 res_counter_reset_max(&memcg->res);
510fc4e1 5299 else if (type == _MEMSWAP)
c0ff4b85 5300 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5301 else if (type == _KMEM)
5302 res_counter_reset_max(&memcg->kmem);
5303 else
5304 return -EINVAL;
29f2a4da
PE
5305 break;
5306 case RES_FAILCNT:
8c7c6e34 5307 if (type == _MEM)
c0ff4b85 5308 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5309 else if (type == _MEMSWAP)
c0ff4b85 5310 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5311 else if (type == _KMEM)
5312 res_counter_reset_failcnt(&memcg->kmem);
5313 else
5314 return -EINVAL;
29f2a4da
PE
5315 break;
5316 }
f64c3f54 5317
85cc59db 5318 return 0;
c84872e1
PE
5319}
5320
182446d0 5321static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5322 struct cftype *cft)
5323{
182446d0 5324 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5325}
5326
02491447 5327#ifdef CONFIG_MMU
182446d0 5328static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5329 struct cftype *cft, u64 val)
5330{
182446d0 5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5332
5333 if (val >= (1 << NR_MOVE_TYPE))
5334 return -EINVAL;
ee5e8472 5335
7dc74be0 5336 /*
ee5e8472
GC
5337 * No kind of locking is needed in here, because ->can_attach() will
5338 * check this value once in the beginning of the process, and then carry
5339 * on with stale data. This means that changes to this value will only
5340 * affect task migrations starting after the change.
7dc74be0 5341 */
c0ff4b85 5342 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5343 return 0;
5344}
02491447 5345#else
182446d0 5346static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5347 struct cftype *cft, u64 val)
5348{
5349 return -ENOSYS;
5350}
5351#endif
7dc74be0 5352
406eb0c9 5353#ifdef CONFIG_NUMA
182446d0
TH
5354static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5355 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5356{
5357 int nid;
5358 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5359 unsigned long node_nr;
182446d0 5360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5361
d79154bb 5362 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5363 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5364 for_each_node_state(nid, N_MEMORY) {
d79154bb 5365 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5366 seq_printf(m, " N%d=%lu", nid, node_nr);
5367 }
5368 seq_putc(m, '\n');
5369
d79154bb 5370 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5371 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5372 for_each_node_state(nid, N_MEMORY) {
d79154bb 5373 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5374 LRU_ALL_FILE);
406eb0c9
YH
5375 seq_printf(m, " N%d=%lu", nid, node_nr);
5376 }
5377 seq_putc(m, '\n');
5378
d79154bb 5379 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5380 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5381 for_each_node_state(nid, N_MEMORY) {
d79154bb 5382 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5383 LRU_ALL_ANON);
406eb0c9
YH
5384 seq_printf(m, " N%d=%lu", nid, node_nr);
5385 }
5386 seq_putc(m, '\n');
5387
d79154bb 5388 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5389 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5390 for_each_node_state(nid, N_MEMORY) {
d79154bb 5391 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5392 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5393 seq_printf(m, " N%d=%lu", nid, node_nr);
5394 }
5395 seq_putc(m, '\n');
5396 return 0;
5397}
5398#endif /* CONFIG_NUMA */
5399
af7c4b0e
JW
5400static inline void mem_cgroup_lru_names_not_uptodate(void)
5401{
5402 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5403}
5404
182446d0 5405static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5406 struct seq_file *m)
d2ceb9b7 5407{
182446d0 5408 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5409 struct mem_cgroup *mi;
5410 unsigned int i;
406eb0c9 5411
af7c4b0e 5412 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5413 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5414 continue;
af7c4b0e
JW
5415 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5416 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5417 }
7b854121 5418
af7c4b0e
JW
5419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5420 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5421 mem_cgroup_read_events(memcg, i));
5422
5423 for (i = 0; i < NR_LRU_LISTS; i++)
5424 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5425 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5426
14067bb3 5427 /* Hierarchical information */
fee7b548
KH
5428 {
5429 unsigned long long limit, memsw_limit;
d79154bb 5430 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5431 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5432 if (do_swap_account)
78ccf5b5
JW
5433 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5434 memsw_limit);
fee7b548 5435 }
7f016ee8 5436
af7c4b0e
JW
5437 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5438 long long val = 0;
5439
bff6bb83 5440 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5441 continue;
af7c4b0e
JW
5442 for_each_mem_cgroup_tree(mi, memcg)
5443 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5444 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5445 }
5446
5447 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5448 unsigned long long val = 0;
5449
5450 for_each_mem_cgroup_tree(mi, memcg)
5451 val += mem_cgroup_read_events(mi, i);
5452 seq_printf(m, "total_%s %llu\n",
5453 mem_cgroup_events_names[i], val);
5454 }
5455
5456 for (i = 0; i < NR_LRU_LISTS; i++) {
5457 unsigned long long val = 0;
5458
5459 for_each_mem_cgroup_tree(mi, memcg)
5460 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5461 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5462 }
14067bb3 5463
7f016ee8 5464#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5465 {
5466 int nid, zid;
5467 struct mem_cgroup_per_zone *mz;
89abfab1 5468 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5469 unsigned long recent_rotated[2] = {0, 0};
5470 unsigned long recent_scanned[2] = {0, 0};
5471
5472 for_each_online_node(nid)
5473 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5474 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5475 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5476
89abfab1
HD
5477 recent_rotated[0] += rstat->recent_rotated[0];
5478 recent_rotated[1] += rstat->recent_rotated[1];
5479 recent_scanned[0] += rstat->recent_scanned[0];
5480 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5481 }
78ccf5b5
JW
5482 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5483 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5484 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5485 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5486 }
5487#endif
5488
d2ceb9b7
KH
5489 return 0;
5490}
5491
182446d0
TH
5492static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5493 struct cftype *cft)
a7885eb8 5494{
182446d0 5495 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5496
1f4c025b 5497 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5498}
5499
182446d0
TH
5500static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5501 struct cftype *cft, u64 val)
a7885eb8 5502{
182446d0 5503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5504 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5505
63876986 5506 if (val > 100 || !parent)
a7885eb8
KM
5507 return -EINVAL;
5508
0999821b 5509 mutex_lock(&memcg_create_mutex);
068b38c1 5510
a7885eb8 5511 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5512 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5513 mutex_unlock(&memcg_create_mutex);
a7885eb8 5514 return -EINVAL;
068b38c1 5515 }
a7885eb8 5516
a7885eb8 5517 memcg->swappiness = val;
a7885eb8 5518
0999821b 5519 mutex_unlock(&memcg_create_mutex);
068b38c1 5520
a7885eb8
KM
5521 return 0;
5522}
5523
2e72b634
KS
5524static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5525{
5526 struct mem_cgroup_threshold_ary *t;
5527 u64 usage;
5528 int i;
5529
5530 rcu_read_lock();
5531 if (!swap)
2c488db2 5532 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5533 else
2c488db2 5534 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5535
5536 if (!t)
5537 goto unlock;
5538
5539 usage = mem_cgroup_usage(memcg, swap);
5540
5541 /*
748dad36 5542 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5543 * If it's not true, a threshold was crossed after last
5544 * call of __mem_cgroup_threshold().
5545 */
5407a562 5546 i = t->current_threshold;
2e72b634
KS
5547
5548 /*
5549 * Iterate backward over array of thresholds starting from
5550 * current_threshold and check if a threshold is crossed.
5551 * If none of thresholds below usage is crossed, we read
5552 * only one element of the array here.
5553 */
5554 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5555 eventfd_signal(t->entries[i].eventfd, 1);
5556
5557 /* i = current_threshold + 1 */
5558 i++;
5559
5560 /*
5561 * Iterate forward over array of thresholds starting from
5562 * current_threshold+1 and check if a threshold is crossed.
5563 * If none of thresholds above usage is crossed, we read
5564 * only one element of the array here.
5565 */
5566 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5567 eventfd_signal(t->entries[i].eventfd, 1);
5568
5569 /* Update current_threshold */
5407a562 5570 t->current_threshold = i - 1;
2e72b634
KS
5571unlock:
5572 rcu_read_unlock();
5573}
5574
5575static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5576{
ad4ca5f4
KS
5577 while (memcg) {
5578 __mem_cgroup_threshold(memcg, false);
5579 if (do_swap_account)
5580 __mem_cgroup_threshold(memcg, true);
5581
5582 memcg = parent_mem_cgroup(memcg);
5583 }
2e72b634
KS
5584}
5585
5586static int compare_thresholds(const void *a, const void *b)
5587{
5588 const struct mem_cgroup_threshold *_a = a;
5589 const struct mem_cgroup_threshold *_b = b;
5590
5591 return _a->threshold - _b->threshold;
5592}
5593
c0ff4b85 5594static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5595{
5596 struct mem_cgroup_eventfd_list *ev;
5597
c0ff4b85 5598 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5599 eventfd_signal(ev->eventfd, 1);
5600 return 0;
5601}
5602
c0ff4b85 5603static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5604{
7d74b06f
KH
5605 struct mem_cgroup *iter;
5606
c0ff4b85 5607 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5608 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5609}
5610
81eeaf04 5611static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5612 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5613{
81eeaf04 5614 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5615 struct mem_cgroup_thresholds *thresholds;
5616 struct mem_cgroup_threshold_ary *new;
86ae53e1 5617 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5618 u64 threshold, usage;
2c488db2 5619 int i, size, ret;
2e72b634
KS
5620
5621 ret = res_counter_memparse_write_strategy(args, &threshold);
5622 if (ret)
5623 return ret;
5624
5625 mutex_lock(&memcg->thresholds_lock);
2c488db2 5626
2e72b634 5627 if (type == _MEM)
2c488db2 5628 thresholds = &memcg->thresholds;
2e72b634 5629 else if (type == _MEMSWAP)
2c488db2 5630 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5631 else
5632 BUG();
5633
5634 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5635
5636 /* Check if a threshold crossed before adding a new one */
2c488db2 5637 if (thresholds->primary)
2e72b634
KS
5638 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5639
2c488db2 5640 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5641
5642 /* Allocate memory for new array of thresholds */
2c488db2 5643 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5644 GFP_KERNEL);
2c488db2 5645 if (!new) {
2e72b634
KS
5646 ret = -ENOMEM;
5647 goto unlock;
5648 }
2c488db2 5649 new->size = size;
2e72b634
KS
5650
5651 /* Copy thresholds (if any) to new array */
2c488db2
KS
5652 if (thresholds->primary) {
5653 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5654 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5655 }
5656
2e72b634 5657 /* Add new threshold */
2c488db2
KS
5658 new->entries[size - 1].eventfd = eventfd;
5659 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5660
5661 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5662 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5663 compare_thresholds, NULL);
5664
5665 /* Find current threshold */
2c488db2 5666 new->current_threshold = -1;
2e72b634 5667 for (i = 0; i < size; i++) {
748dad36 5668 if (new->entries[i].threshold <= usage) {
2e72b634 5669 /*
2c488db2
KS
5670 * new->current_threshold will not be used until
5671 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5672 * it here.
5673 */
2c488db2 5674 ++new->current_threshold;
748dad36
SZ
5675 } else
5676 break;
2e72b634
KS
5677 }
5678
2c488db2
KS
5679 /* Free old spare buffer and save old primary buffer as spare */
5680 kfree(thresholds->spare);
5681 thresholds->spare = thresholds->primary;
5682
5683 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5684
907860ed 5685 /* To be sure that nobody uses thresholds */
2e72b634
KS
5686 synchronize_rcu();
5687
2e72b634
KS
5688unlock:
5689 mutex_unlock(&memcg->thresholds_lock);
5690
5691 return ret;
5692}
5693
81eeaf04 5694static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5695 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5696{
81eeaf04 5697 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5698 struct mem_cgroup_thresholds *thresholds;
5699 struct mem_cgroup_threshold_ary *new;
86ae53e1 5700 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5701 u64 usage;
2c488db2 5702 int i, j, size;
2e72b634
KS
5703
5704 mutex_lock(&memcg->thresholds_lock);
5705 if (type == _MEM)
2c488db2 5706 thresholds = &memcg->thresholds;
2e72b634 5707 else if (type == _MEMSWAP)
2c488db2 5708 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5709 else
5710 BUG();
5711
371528ca
AV
5712 if (!thresholds->primary)
5713 goto unlock;
5714
2e72b634
KS
5715 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5716
5717 /* Check if a threshold crossed before removing */
5718 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5719
5720 /* Calculate new number of threshold */
2c488db2
KS
5721 size = 0;
5722 for (i = 0; i < thresholds->primary->size; i++) {
5723 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5724 size++;
5725 }
5726
2c488db2 5727 new = thresholds->spare;
907860ed 5728
2e72b634
KS
5729 /* Set thresholds array to NULL if we don't have thresholds */
5730 if (!size) {
2c488db2
KS
5731 kfree(new);
5732 new = NULL;
907860ed 5733 goto swap_buffers;
2e72b634
KS
5734 }
5735
2c488db2 5736 new->size = size;
2e72b634
KS
5737
5738 /* Copy thresholds and find current threshold */
2c488db2
KS
5739 new->current_threshold = -1;
5740 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5741 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5742 continue;
5743
2c488db2 5744 new->entries[j] = thresholds->primary->entries[i];
748dad36 5745 if (new->entries[j].threshold <= usage) {
2e72b634 5746 /*
2c488db2 5747 * new->current_threshold will not be used
2e72b634
KS
5748 * until rcu_assign_pointer(), so it's safe to increment
5749 * it here.
5750 */
2c488db2 5751 ++new->current_threshold;
2e72b634
KS
5752 }
5753 j++;
5754 }
5755
907860ed 5756swap_buffers:
2c488db2
KS
5757 /* Swap primary and spare array */
5758 thresholds->spare = thresholds->primary;
8c757763
SZ
5759 /* If all events are unregistered, free the spare array */
5760 if (!new) {
5761 kfree(thresholds->spare);
5762 thresholds->spare = NULL;
5763 }
5764
2c488db2 5765 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5766
907860ed 5767 /* To be sure that nobody uses thresholds */
2e72b634 5768 synchronize_rcu();
371528ca 5769unlock:
2e72b634 5770 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5771}
c1e862c1 5772
81eeaf04 5773static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5774 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5775{
81eeaf04 5776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5777 struct mem_cgroup_eventfd_list *event;
86ae53e1 5778 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5779
5780 BUG_ON(type != _OOM_TYPE);
5781 event = kmalloc(sizeof(*event), GFP_KERNEL);
5782 if (!event)
5783 return -ENOMEM;
5784
1af8efe9 5785 spin_lock(&memcg_oom_lock);
9490ff27
KH
5786
5787 event->eventfd = eventfd;
5788 list_add(&event->list, &memcg->oom_notify);
5789
5790 /* already in OOM ? */
79dfdacc 5791 if (atomic_read(&memcg->under_oom))
9490ff27 5792 eventfd_signal(eventfd, 1);
1af8efe9 5793 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5794
5795 return 0;
5796}
5797
81eeaf04 5798static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5799 struct cftype *cft, struct eventfd_ctx *eventfd)
5800{
81eeaf04 5801 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5802 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5803 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5804
5805 BUG_ON(type != _OOM_TYPE);
5806
1af8efe9 5807 spin_lock(&memcg_oom_lock);
9490ff27 5808
c0ff4b85 5809 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5810 if (ev->eventfd == eventfd) {
5811 list_del(&ev->list);
5812 kfree(ev);
5813 }
5814 }
5815
1af8efe9 5816 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5817}
5818
182446d0 5819static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5820 struct cftype *cft, struct cgroup_map_cb *cb)
5821{
182446d0 5822 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5823
c0ff4b85 5824 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5825
c0ff4b85 5826 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5827 cb->fill(cb, "under_oom", 1);
5828 else
5829 cb->fill(cb, "under_oom", 0);
5830 return 0;
5831}
5832
182446d0 5833static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5834 struct cftype *cft, u64 val)
5835{
182446d0 5836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5837 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5838
5839 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5840 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5841 return -EINVAL;
5842
0999821b 5843 mutex_lock(&memcg_create_mutex);
3c11ecf4 5844 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5845 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5846 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5847 return -EINVAL;
5848 }
c0ff4b85 5849 memcg->oom_kill_disable = val;
4d845ebf 5850 if (!val)
c0ff4b85 5851 memcg_oom_recover(memcg);
0999821b 5852 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5853 return 0;
5854}
5855
c255a458 5856#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5857static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5858{
55007d84
GC
5859 int ret;
5860
2633d7a0 5861 memcg->kmemcg_id = -1;
55007d84
GC
5862 ret = memcg_propagate_kmem(memcg);
5863 if (ret)
5864 return ret;
2633d7a0 5865
1d62e436 5866 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5867}
e5671dfa 5868
10d5ebf4 5869static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5870{
1d62e436 5871 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5872}
5873
5874static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5875{
5876 if (!memcg_kmem_is_active(memcg))
5877 return;
5878
5879 /*
5880 * kmem charges can outlive the cgroup. In the case of slab
5881 * pages, for instance, a page contain objects from various
5882 * processes. As we prevent from taking a reference for every
5883 * such allocation we have to be careful when doing uncharge
5884 * (see memcg_uncharge_kmem) and here during offlining.
5885 *
5886 * The idea is that that only the _last_ uncharge which sees
5887 * the dead memcg will drop the last reference. An additional
5888 * reference is taken here before the group is marked dead
5889 * which is then paired with css_put during uncharge resp. here.
5890 *
5891 * Although this might sound strange as this path is called from
5892 * css_offline() when the referencemight have dropped down to 0
5893 * and shouldn't be incremented anymore (css_tryget would fail)
5894 * we do not have other options because of the kmem allocations
5895 * lifetime.
5896 */
5897 css_get(&memcg->css);
7de37682
GC
5898
5899 memcg_kmem_mark_dead(memcg);
5900
5901 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5902 return;
5903
7de37682 5904 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5905 css_put(&memcg->css);
d1a4c0b3 5906}
e5671dfa 5907#else
cbe128e3 5908static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5909{
5910 return 0;
5911}
d1a4c0b3 5912
10d5ebf4
LZ
5913static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5914{
5915}
5916
5917static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5918{
5919}
e5671dfa
GC
5920#endif
5921
8cdea7c0
BS
5922static struct cftype mem_cgroup_files[] = {
5923 {
0eea1030 5924 .name = "usage_in_bytes",
8c7c6e34 5925 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5926 .read = mem_cgroup_read,
9490ff27
KH
5927 .register_event = mem_cgroup_usage_register_event,
5928 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5929 },
c84872e1
PE
5930 {
5931 .name = "max_usage_in_bytes",
8c7c6e34 5932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5933 .trigger = mem_cgroup_reset,
af36f906 5934 .read = mem_cgroup_read,
c84872e1 5935 },
8cdea7c0 5936 {
0eea1030 5937 .name = "limit_in_bytes",
8c7c6e34 5938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5939 .write_string = mem_cgroup_write,
af36f906 5940 .read = mem_cgroup_read,
8cdea7c0 5941 },
296c81d8
BS
5942 {
5943 .name = "soft_limit_in_bytes",
5944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5945 .write_string = mem_cgroup_write,
af36f906 5946 .read = mem_cgroup_read,
296c81d8 5947 },
8cdea7c0
BS
5948 {
5949 .name = "failcnt",
8c7c6e34 5950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5951 .trigger = mem_cgroup_reset,
af36f906 5952 .read = mem_cgroup_read,
8cdea7c0 5953 },
d2ceb9b7
KH
5954 {
5955 .name = "stat",
ab215884 5956 .read_seq_string = memcg_stat_show,
d2ceb9b7 5957 },
c1e862c1
KH
5958 {
5959 .name = "force_empty",
5960 .trigger = mem_cgroup_force_empty_write,
5961 },
18f59ea7
BS
5962 {
5963 .name = "use_hierarchy",
f00baae7 5964 .flags = CFTYPE_INSANE,
18f59ea7
BS
5965 .write_u64 = mem_cgroup_hierarchy_write,
5966 .read_u64 = mem_cgroup_hierarchy_read,
5967 },
a7885eb8
KM
5968 {
5969 .name = "swappiness",
5970 .read_u64 = mem_cgroup_swappiness_read,
5971 .write_u64 = mem_cgroup_swappiness_write,
5972 },
7dc74be0
DN
5973 {
5974 .name = "move_charge_at_immigrate",
5975 .read_u64 = mem_cgroup_move_charge_read,
5976 .write_u64 = mem_cgroup_move_charge_write,
5977 },
9490ff27
KH
5978 {
5979 .name = "oom_control",
3c11ecf4
KH
5980 .read_map = mem_cgroup_oom_control_read,
5981 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5982 .register_event = mem_cgroup_oom_register_event,
5983 .unregister_event = mem_cgroup_oom_unregister_event,
5984 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5985 },
70ddf637
AV
5986 {
5987 .name = "pressure_level",
5988 .register_event = vmpressure_register_event,
5989 .unregister_event = vmpressure_unregister_event,
5990 },
406eb0c9
YH
5991#ifdef CONFIG_NUMA
5992 {
5993 .name = "numa_stat",
ab215884 5994 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5995 },
5996#endif
510fc4e1
GC
5997#ifdef CONFIG_MEMCG_KMEM
5998 {
5999 .name = "kmem.limit_in_bytes",
6000 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6001 .write_string = mem_cgroup_write,
6002 .read = mem_cgroup_read,
6003 },
6004 {
6005 .name = "kmem.usage_in_bytes",
6006 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6007 .read = mem_cgroup_read,
6008 },
6009 {
6010 .name = "kmem.failcnt",
6011 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6012 .trigger = mem_cgroup_reset,
6013 .read = mem_cgroup_read,
6014 },
6015 {
6016 .name = "kmem.max_usage_in_bytes",
6017 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6018 .trigger = mem_cgroup_reset,
6019 .read = mem_cgroup_read,
6020 },
749c5415
GC
6021#ifdef CONFIG_SLABINFO
6022 {
6023 .name = "kmem.slabinfo",
6024 .read_seq_string = mem_cgroup_slabinfo_read,
6025 },
6026#endif
8c7c6e34 6027#endif
6bc10349 6028 { }, /* terminate */
af36f906 6029};
8c7c6e34 6030
2d11085e
MH
6031#ifdef CONFIG_MEMCG_SWAP
6032static struct cftype memsw_cgroup_files[] = {
6033 {
6034 .name = "memsw.usage_in_bytes",
6035 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6036 .read = mem_cgroup_read,
6037 .register_event = mem_cgroup_usage_register_event,
6038 .unregister_event = mem_cgroup_usage_unregister_event,
6039 },
6040 {
6041 .name = "memsw.max_usage_in_bytes",
6042 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6043 .trigger = mem_cgroup_reset,
6044 .read = mem_cgroup_read,
6045 },
6046 {
6047 .name = "memsw.limit_in_bytes",
6048 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6049 .write_string = mem_cgroup_write,
6050 .read = mem_cgroup_read,
6051 },
6052 {
6053 .name = "memsw.failcnt",
6054 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6055 .trigger = mem_cgroup_reset,
6056 .read = mem_cgroup_read,
6057 },
6058 { }, /* terminate */
6059};
6060#endif
c0ff4b85 6061static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6062{
6063 struct mem_cgroup_per_node *pn;
1ecaab2b 6064 struct mem_cgroup_per_zone *mz;
41e3355d 6065 int zone, tmp = node;
1ecaab2b
KH
6066 /*
6067 * This routine is called against possible nodes.
6068 * But it's BUG to call kmalloc() against offline node.
6069 *
6070 * TODO: this routine can waste much memory for nodes which will
6071 * never be onlined. It's better to use memory hotplug callback
6072 * function.
6073 */
41e3355d
KH
6074 if (!node_state(node, N_NORMAL_MEMORY))
6075 tmp = -1;
17295c88 6076 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6077 if (!pn)
6078 return 1;
1ecaab2b 6079
1ecaab2b
KH
6080 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6081 mz = &pn->zoneinfo[zone];
bea8c150 6082 lruvec_init(&mz->lruvec);
f64c3f54 6083 mz->usage_in_excess = 0;
4e416953 6084 mz->on_tree = false;
d79154bb 6085 mz->memcg = memcg;
1ecaab2b 6086 }
54f72fe0 6087 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6088 return 0;
6089}
6090
c0ff4b85 6091static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6092{
54f72fe0 6093 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6094}
6095
33327948
KH
6096static struct mem_cgroup *mem_cgroup_alloc(void)
6097{
d79154bb 6098 struct mem_cgroup *memcg;
45cf7ebd 6099 size_t size = memcg_size();
33327948 6100
45cf7ebd 6101 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6102 if (size < PAGE_SIZE)
d79154bb 6103 memcg = kzalloc(size, GFP_KERNEL);
33327948 6104 else
d79154bb 6105 memcg = vzalloc(size);
33327948 6106
d79154bb 6107 if (!memcg)
e7bbcdf3
DC
6108 return NULL;
6109
d79154bb
HD
6110 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6111 if (!memcg->stat)
d2e61b8d 6112 goto out_free;
d79154bb
HD
6113 spin_lock_init(&memcg->pcp_counter_lock);
6114 return memcg;
d2e61b8d
DC
6115
6116out_free:
6117 if (size < PAGE_SIZE)
d79154bb 6118 kfree(memcg);
d2e61b8d 6119 else
d79154bb 6120 vfree(memcg);
d2e61b8d 6121 return NULL;
33327948
KH
6122}
6123
59927fb9 6124/*
c8b2a36f
GC
6125 * At destroying mem_cgroup, references from swap_cgroup can remain.
6126 * (scanning all at force_empty is too costly...)
6127 *
6128 * Instead of clearing all references at force_empty, we remember
6129 * the number of reference from swap_cgroup and free mem_cgroup when
6130 * it goes down to 0.
6131 *
6132 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6133 */
c8b2a36f
GC
6134
6135static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6136{
c8b2a36f 6137 int node;
45cf7ebd 6138 size_t size = memcg_size();
59927fb9 6139
c8b2a36f
GC
6140 mem_cgroup_remove_from_trees(memcg);
6141 free_css_id(&mem_cgroup_subsys, &memcg->css);
6142
6143 for_each_node(node)
6144 free_mem_cgroup_per_zone_info(memcg, node);
6145
6146 free_percpu(memcg->stat);
6147
3f134619
GC
6148 /*
6149 * We need to make sure that (at least for now), the jump label
6150 * destruction code runs outside of the cgroup lock. This is because
6151 * get_online_cpus(), which is called from the static_branch update,
6152 * can't be called inside the cgroup_lock. cpusets are the ones
6153 * enforcing this dependency, so if they ever change, we might as well.
6154 *
6155 * schedule_work() will guarantee this happens. Be careful if you need
6156 * to move this code around, and make sure it is outside
6157 * the cgroup_lock.
6158 */
a8964b9b 6159 disarm_static_keys(memcg);
3afe36b1
GC
6160 if (size < PAGE_SIZE)
6161 kfree(memcg);
6162 else
6163 vfree(memcg);
59927fb9 6164}
3afe36b1 6165
7bcc1bb1
DN
6166/*
6167 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6168 */
e1aab161 6169struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6170{
c0ff4b85 6171 if (!memcg->res.parent)
7bcc1bb1 6172 return NULL;
c0ff4b85 6173 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6174}
e1aab161 6175EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6176
8787a1df 6177static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6178{
6179 struct mem_cgroup_tree_per_node *rtpn;
6180 struct mem_cgroup_tree_per_zone *rtpz;
6181 int tmp, node, zone;
6182
3ed28fa1 6183 for_each_node(node) {
f64c3f54
BS
6184 tmp = node;
6185 if (!node_state(node, N_NORMAL_MEMORY))
6186 tmp = -1;
6187 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6188 BUG_ON(!rtpn);
f64c3f54
BS
6189
6190 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6191
6192 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6193 rtpz = &rtpn->rb_tree_per_zone[zone];
6194 rtpz->rb_root = RB_ROOT;
6195 spin_lock_init(&rtpz->lock);
6196 }
6197 }
f64c3f54
BS
6198}
6199
0eb253e2 6200static struct cgroup_subsys_state * __ref
eb95419b 6201mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6202{
d142e3e6 6203 struct mem_cgroup *memcg;
04046e1a 6204 long error = -ENOMEM;
6d12e2d8 6205 int node;
8cdea7c0 6206
c0ff4b85
R
6207 memcg = mem_cgroup_alloc();
6208 if (!memcg)
04046e1a 6209 return ERR_PTR(error);
78fb7466 6210
3ed28fa1 6211 for_each_node(node)
c0ff4b85 6212 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6213 goto free_out;
f64c3f54 6214
c077719b 6215 /* root ? */
eb95419b 6216 if (parent_css == NULL) {
a41c58a6 6217 root_mem_cgroup = memcg;
d142e3e6
GC
6218 res_counter_init(&memcg->res, NULL);
6219 res_counter_init(&memcg->memsw, NULL);
6220 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6221 }
28dbc4b6 6222
d142e3e6
GC
6223 memcg->last_scanned_node = MAX_NUMNODES;
6224 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6225 memcg->move_charge_at_immigrate = 0;
6226 mutex_init(&memcg->thresholds_lock);
6227 spin_lock_init(&memcg->move_lock);
70ddf637 6228 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6229
6230 return &memcg->css;
6231
6232free_out:
6233 __mem_cgroup_free(memcg);
6234 return ERR_PTR(error);
6235}
6236
6237static int
eb95419b 6238mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6239{
eb95419b
TH
6240 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6241 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6242 int error = 0;
6243
63876986 6244 if (!parent)
d142e3e6
GC
6245 return 0;
6246
0999821b 6247 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6248
6249 memcg->use_hierarchy = parent->use_hierarchy;
6250 memcg->oom_kill_disable = parent->oom_kill_disable;
6251 memcg->swappiness = mem_cgroup_swappiness(parent);
6252
6253 if (parent->use_hierarchy) {
c0ff4b85
R
6254 res_counter_init(&memcg->res, &parent->res);
6255 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6256 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6257
7bcc1bb1 6258 /*
8d76a979
LZ
6259 * No need to take a reference to the parent because cgroup
6260 * core guarantees its existence.
7bcc1bb1 6261 */
18f59ea7 6262 } else {
c0ff4b85
R
6263 res_counter_init(&memcg->res, NULL);
6264 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6265 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6266 /*
6267 * Deeper hierachy with use_hierarchy == false doesn't make
6268 * much sense so let cgroup subsystem know about this
6269 * unfortunate state in our controller.
6270 */
d142e3e6 6271 if (parent != root_mem_cgroup)
8c7f6edb 6272 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6273 }
cbe128e3
GC
6274
6275 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6276 mutex_unlock(&memcg_create_mutex);
d142e3e6 6277 return error;
8cdea7c0
BS
6278}
6279
5f578161
MH
6280/*
6281 * Announce all parents that a group from their hierarchy is gone.
6282 */
6283static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6284{
6285 struct mem_cgroup *parent = memcg;
6286
6287 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6288 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6289
6290 /*
6291 * if the root memcg is not hierarchical we have to check it
6292 * explicitely.
6293 */
6294 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6295 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6296}
6297
eb95419b 6298static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6299{
eb95419b 6300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6301
10d5ebf4
LZ
6302 kmem_cgroup_css_offline(memcg);
6303
5f578161 6304 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6305 mem_cgroup_reparent_charges(memcg);
1f458cbf 6306 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6307 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6308}
6309
eb95419b 6310static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6311{
eb95419b 6312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6313
10d5ebf4 6314 memcg_destroy_kmem(memcg);
465939a1 6315 __mem_cgroup_free(memcg);
8cdea7c0
BS
6316}
6317
02491447 6318#ifdef CONFIG_MMU
7dc74be0 6319/* Handlers for move charge at task migration. */
854ffa8d
DN
6320#define PRECHARGE_COUNT_AT_ONCE 256
6321static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6322{
854ffa8d
DN
6323 int ret = 0;
6324 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6325 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6326
c0ff4b85 6327 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6328 mc.precharge += count;
6329 /* we don't need css_get for root */
6330 return ret;
6331 }
6332 /* try to charge at once */
6333 if (count > 1) {
6334 struct res_counter *dummy;
6335 /*
c0ff4b85 6336 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6337 * by cgroup_lock_live_cgroup() that it is not removed and we
6338 * are still under the same cgroup_mutex. So we can postpone
6339 * css_get().
6340 */
c0ff4b85 6341 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6342 goto one_by_one;
c0ff4b85 6343 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6344 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6345 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6346 goto one_by_one;
6347 }
6348 mc.precharge += count;
854ffa8d
DN
6349 return ret;
6350 }
6351one_by_one:
6352 /* fall back to one by one charge */
6353 while (count--) {
6354 if (signal_pending(current)) {
6355 ret = -EINTR;
6356 break;
6357 }
6358 if (!batch_count--) {
6359 batch_count = PRECHARGE_COUNT_AT_ONCE;
6360 cond_resched();
6361 }
c0ff4b85
R
6362 ret = __mem_cgroup_try_charge(NULL,
6363 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6364 if (ret)
854ffa8d 6365 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6366 return ret;
854ffa8d
DN
6367 mc.precharge++;
6368 }
4ffef5fe
DN
6369 return ret;
6370}
6371
6372/**
8d32ff84 6373 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6374 * @vma: the vma the pte to be checked belongs
6375 * @addr: the address corresponding to the pte to be checked
6376 * @ptent: the pte to be checked
02491447 6377 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6378 *
6379 * Returns
6380 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6381 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6382 * move charge. if @target is not NULL, the page is stored in target->page
6383 * with extra refcnt got(Callers should handle it).
02491447
DN
6384 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6385 * target for charge migration. if @target is not NULL, the entry is stored
6386 * in target->ent.
4ffef5fe
DN
6387 *
6388 * Called with pte lock held.
6389 */
4ffef5fe
DN
6390union mc_target {
6391 struct page *page;
02491447 6392 swp_entry_t ent;
4ffef5fe
DN
6393};
6394
4ffef5fe 6395enum mc_target_type {
8d32ff84 6396 MC_TARGET_NONE = 0,
4ffef5fe 6397 MC_TARGET_PAGE,
02491447 6398 MC_TARGET_SWAP,
4ffef5fe
DN
6399};
6400
90254a65
DN
6401static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6402 unsigned long addr, pte_t ptent)
4ffef5fe 6403{
90254a65 6404 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6405
90254a65
DN
6406 if (!page || !page_mapped(page))
6407 return NULL;
6408 if (PageAnon(page)) {
6409 /* we don't move shared anon */
4b91355e 6410 if (!move_anon())
90254a65 6411 return NULL;
87946a72
DN
6412 } else if (!move_file())
6413 /* we ignore mapcount for file pages */
90254a65
DN
6414 return NULL;
6415 if (!get_page_unless_zero(page))
6416 return NULL;
6417
6418 return page;
6419}
6420
4b91355e 6421#ifdef CONFIG_SWAP
90254a65
DN
6422static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6423 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6424{
90254a65
DN
6425 struct page *page = NULL;
6426 swp_entry_t ent = pte_to_swp_entry(ptent);
6427
6428 if (!move_anon() || non_swap_entry(ent))
6429 return NULL;
4b91355e
KH
6430 /*
6431 * Because lookup_swap_cache() updates some statistics counter,
6432 * we call find_get_page() with swapper_space directly.
6433 */
33806f06 6434 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6435 if (do_swap_account)
6436 entry->val = ent.val;
6437
6438 return page;
6439}
4b91355e
KH
6440#else
6441static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6442 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6443{
6444 return NULL;
6445}
6446#endif
90254a65 6447
87946a72
DN
6448static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6449 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6450{
6451 struct page *page = NULL;
87946a72
DN
6452 struct address_space *mapping;
6453 pgoff_t pgoff;
6454
6455 if (!vma->vm_file) /* anonymous vma */
6456 return NULL;
6457 if (!move_file())
6458 return NULL;
6459
87946a72
DN
6460 mapping = vma->vm_file->f_mapping;
6461 if (pte_none(ptent))
6462 pgoff = linear_page_index(vma, addr);
6463 else /* pte_file(ptent) is true */
6464 pgoff = pte_to_pgoff(ptent);
6465
6466 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6467 page = find_get_page(mapping, pgoff);
6468
6469#ifdef CONFIG_SWAP
6470 /* shmem/tmpfs may report page out on swap: account for that too. */
6471 if (radix_tree_exceptional_entry(page)) {
6472 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6473 if (do_swap_account)
aa3b1895 6474 *entry = swap;
33806f06 6475 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6476 }
aa3b1895 6477#endif
87946a72
DN
6478 return page;
6479}
6480
8d32ff84 6481static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6482 unsigned long addr, pte_t ptent, union mc_target *target)
6483{
6484 struct page *page = NULL;
6485 struct page_cgroup *pc;
8d32ff84 6486 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6487 swp_entry_t ent = { .val = 0 };
6488
6489 if (pte_present(ptent))
6490 page = mc_handle_present_pte(vma, addr, ptent);
6491 else if (is_swap_pte(ptent))
6492 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6493 else if (pte_none(ptent) || pte_file(ptent))
6494 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6495
6496 if (!page && !ent.val)
8d32ff84 6497 return ret;
02491447
DN
6498 if (page) {
6499 pc = lookup_page_cgroup(page);
6500 /*
6501 * Do only loose check w/o page_cgroup lock.
6502 * mem_cgroup_move_account() checks the pc is valid or not under
6503 * the lock.
6504 */
6505 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6506 ret = MC_TARGET_PAGE;
6507 if (target)
6508 target->page = page;
6509 }
6510 if (!ret || !target)
6511 put_page(page);
6512 }
90254a65
DN
6513 /* There is a swap entry and a page doesn't exist or isn't charged */
6514 if (ent.val && !ret &&
9fb4b7cc 6515 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6516 ret = MC_TARGET_SWAP;
6517 if (target)
6518 target->ent = ent;
4ffef5fe 6519 }
4ffef5fe
DN
6520 return ret;
6521}
6522
12724850
NH
6523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6524/*
6525 * We don't consider swapping or file mapped pages because THP does not
6526 * support them for now.
6527 * Caller should make sure that pmd_trans_huge(pmd) is true.
6528 */
6529static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6530 unsigned long addr, pmd_t pmd, union mc_target *target)
6531{
6532 struct page *page = NULL;
6533 struct page_cgroup *pc;
6534 enum mc_target_type ret = MC_TARGET_NONE;
6535
6536 page = pmd_page(pmd);
6537 VM_BUG_ON(!page || !PageHead(page));
6538 if (!move_anon())
6539 return ret;
6540 pc = lookup_page_cgroup(page);
6541 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6542 ret = MC_TARGET_PAGE;
6543 if (target) {
6544 get_page(page);
6545 target->page = page;
6546 }
6547 }
6548 return ret;
6549}
6550#else
6551static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6552 unsigned long addr, pmd_t pmd, union mc_target *target)
6553{
6554 return MC_TARGET_NONE;
6555}
6556#endif
6557
4ffef5fe
DN
6558static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6559 unsigned long addr, unsigned long end,
6560 struct mm_walk *walk)
6561{
6562 struct vm_area_struct *vma = walk->private;
6563 pte_t *pte;
6564 spinlock_t *ptl;
6565
12724850
NH
6566 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6567 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6568 mc.precharge += HPAGE_PMD_NR;
6569 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6570 return 0;
12724850 6571 }
03319327 6572
45f83cef
AA
6573 if (pmd_trans_unstable(pmd))
6574 return 0;
4ffef5fe
DN
6575 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6576 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6577 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6578 mc.precharge++; /* increment precharge temporarily */
6579 pte_unmap_unlock(pte - 1, ptl);
6580 cond_resched();
6581
7dc74be0
DN
6582 return 0;
6583}
6584
4ffef5fe
DN
6585static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6586{
6587 unsigned long precharge;
6588 struct vm_area_struct *vma;
6589
dfe076b0 6590 down_read(&mm->mmap_sem);
4ffef5fe
DN
6591 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6592 struct mm_walk mem_cgroup_count_precharge_walk = {
6593 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6594 .mm = mm,
6595 .private = vma,
6596 };
6597 if (is_vm_hugetlb_page(vma))
6598 continue;
4ffef5fe
DN
6599 walk_page_range(vma->vm_start, vma->vm_end,
6600 &mem_cgroup_count_precharge_walk);
6601 }
dfe076b0 6602 up_read(&mm->mmap_sem);
4ffef5fe
DN
6603
6604 precharge = mc.precharge;
6605 mc.precharge = 0;
6606
6607 return precharge;
6608}
6609
4ffef5fe
DN
6610static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6611{
dfe076b0
DN
6612 unsigned long precharge = mem_cgroup_count_precharge(mm);
6613
6614 VM_BUG_ON(mc.moving_task);
6615 mc.moving_task = current;
6616 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6617}
6618
dfe076b0
DN
6619/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6620static void __mem_cgroup_clear_mc(void)
4ffef5fe 6621{
2bd9bb20
KH
6622 struct mem_cgroup *from = mc.from;
6623 struct mem_cgroup *to = mc.to;
4050377b 6624 int i;
2bd9bb20 6625
4ffef5fe 6626 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6627 if (mc.precharge) {
6628 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6629 mc.precharge = 0;
6630 }
6631 /*
6632 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6633 * we must uncharge here.
6634 */
6635 if (mc.moved_charge) {
6636 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6637 mc.moved_charge = 0;
4ffef5fe 6638 }
483c30b5
DN
6639 /* we must fixup refcnts and charges */
6640 if (mc.moved_swap) {
483c30b5
DN
6641 /* uncharge swap account from the old cgroup */
6642 if (!mem_cgroup_is_root(mc.from))
6643 res_counter_uncharge(&mc.from->memsw,
6644 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6645
6646 for (i = 0; i < mc.moved_swap; i++)
6647 css_put(&mc.from->css);
483c30b5
DN
6648
6649 if (!mem_cgroup_is_root(mc.to)) {
6650 /*
6651 * we charged both to->res and to->memsw, so we should
6652 * uncharge to->res.
6653 */
6654 res_counter_uncharge(&mc.to->res,
6655 PAGE_SIZE * mc.moved_swap);
483c30b5 6656 }
4050377b 6657 /* we've already done css_get(mc.to) */
483c30b5
DN
6658 mc.moved_swap = 0;
6659 }
dfe076b0
DN
6660 memcg_oom_recover(from);
6661 memcg_oom_recover(to);
6662 wake_up_all(&mc.waitq);
6663}
6664
6665static void mem_cgroup_clear_mc(void)
6666{
6667 struct mem_cgroup *from = mc.from;
6668
6669 /*
6670 * we must clear moving_task before waking up waiters at the end of
6671 * task migration.
6672 */
6673 mc.moving_task = NULL;
6674 __mem_cgroup_clear_mc();
2bd9bb20 6675 spin_lock(&mc.lock);
4ffef5fe
DN
6676 mc.from = NULL;
6677 mc.to = NULL;
2bd9bb20 6678 spin_unlock(&mc.lock);
32047e2a 6679 mem_cgroup_end_move(from);
4ffef5fe
DN
6680}
6681
eb95419b 6682static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6683 struct cgroup_taskset *tset)
7dc74be0 6684{
2f7ee569 6685 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6686 int ret = 0;
eb95419b 6687 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6688 unsigned long move_charge_at_immigrate;
7dc74be0 6689
ee5e8472
GC
6690 /*
6691 * We are now commited to this value whatever it is. Changes in this
6692 * tunable will only affect upcoming migrations, not the current one.
6693 * So we need to save it, and keep it going.
6694 */
6695 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6696 if (move_charge_at_immigrate) {
7dc74be0
DN
6697 struct mm_struct *mm;
6698 struct mem_cgroup *from = mem_cgroup_from_task(p);
6699
c0ff4b85 6700 VM_BUG_ON(from == memcg);
7dc74be0
DN
6701
6702 mm = get_task_mm(p);
6703 if (!mm)
6704 return 0;
7dc74be0 6705 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6706 if (mm->owner == p) {
6707 VM_BUG_ON(mc.from);
6708 VM_BUG_ON(mc.to);
6709 VM_BUG_ON(mc.precharge);
854ffa8d 6710 VM_BUG_ON(mc.moved_charge);
483c30b5 6711 VM_BUG_ON(mc.moved_swap);
32047e2a 6712 mem_cgroup_start_move(from);
2bd9bb20 6713 spin_lock(&mc.lock);
4ffef5fe 6714 mc.from = from;
c0ff4b85 6715 mc.to = memcg;
ee5e8472 6716 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6717 spin_unlock(&mc.lock);
dfe076b0 6718 /* We set mc.moving_task later */
4ffef5fe
DN
6719
6720 ret = mem_cgroup_precharge_mc(mm);
6721 if (ret)
6722 mem_cgroup_clear_mc();
dfe076b0
DN
6723 }
6724 mmput(mm);
7dc74be0
DN
6725 }
6726 return ret;
6727}
6728
eb95419b 6729static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6730 struct cgroup_taskset *tset)
7dc74be0 6731{
4ffef5fe 6732 mem_cgroup_clear_mc();
7dc74be0
DN
6733}
6734
4ffef5fe
DN
6735static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6736 unsigned long addr, unsigned long end,
6737 struct mm_walk *walk)
7dc74be0 6738{
4ffef5fe
DN
6739 int ret = 0;
6740 struct vm_area_struct *vma = walk->private;
6741 pte_t *pte;
6742 spinlock_t *ptl;
12724850
NH
6743 enum mc_target_type target_type;
6744 union mc_target target;
6745 struct page *page;
6746 struct page_cgroup *pc;
4ffef5fe 6747
12724850
NH
6748 /*
6749 * We don't take compound_lock() here but no race with splitting thp
6750 * happens because:
6751 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6752 * under splitting, which means there's no concurrent thp split,
6753 * - if another thread runs into split_huge_page() just after we
6754 * entered this if-block, the thread must wait for page table lock
6755 * to be unlocked in __split_huge_page_splitting(), where the main
6756 * part of thp split is not executed yet.
6757 */
6758 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6759 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6760 spin_unlock(&vma->vm_mm->page_table_lock);
6761 return 0;
6762 }
6763 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6764 if (target_type == MC_TARGET_PAGE) {
6765 page = target.page;
6766 if (!isolate_lru_page(page)) {
6767 pc = lookup_page_cgroup(page);
6768 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6769 pc, mc.from, mc.to)) {
12724850
NH
6770 mc.precharge -= HPAGE_PMD_NR;
6771 mc.moved_charge += HPAGE_PMD_NR;
6772 }
6773 putback_lru_page(page);
6774 }
6775 put_page(page);
6776 }
6777 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6778 return 0;
12724850
NH
6779 }
6780
45f83cef
AA
6781 if (pmd_trans_unstable(pmd))
6782 return 0;
4ffef5fe
DN
6783retry:
6784 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6785 for (; addr != end; addr += PAGE_SIZE) {
6786 pte_t ptent = *(pte++);
02491447 6787 swp_entry_t ent;
4ffef5fe
DN
6788
6789 if (!mc.precharge)
6790 break;
6791
8d32ff84 6792 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6793 case MC_TARGET_PAGE:
6794 page = target.page;
6795 if (isolate_lru_page(page))
6796 goto put;
6797 pc = lookup_page_cgroup(page);
7ec99d62 6798 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6799 mc.from, mc.to)) {
4ffef5fe 6800 mc.precharge--;
854ffa8d
DN
6801 /* we uncharge from mc.from later. */
6802 mc.moved_charge++;
4ffef5fe
DN
6803 }
6804 putback_lru_page(page);
8d32ff84 6805put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6806 put_page(page);
6807 break;
02491447
DN
6808 case MC_TARGET_SWAP:
6809 ent = target.ent;
e91cbb42 6810 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6811 mc.precharge--;
483c30b5
DN
6812 /* we fixup refcnts and charges later. */
6813 mc.moved_swap++;
6814 }
02491447 6815 break;
4ffef5fe
DN
6816 default:
6817 break;
6818 }
6819 }
6820 pte_unmap_unlock(pte - 1, ptl);
6821 cond_resched();
6822
6823 if (addr != end) {
6824 /*
6825 * We have consumed all precharges we got in can_attach().
6826 * We try charge one by one, but don't do any additional
6827 * charges to mc.to if we have failed in charge once in attach()
6828 * phase.
6829 */
854ffa8d 6830 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6831 if (!ret)
6832 goto retry;
6833 }
6834
6835 return ret;
6836}
6837
6838static void mem_cgroup_move_charge(struct mm_struct *mm)
6839{
6840 struct vm_area_struct *vma;
6841
6842 lru_add_drain_all();
dfe076b0
DN
6843retry:
6844 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6845 /*
6846 * Someone who are holding the mmap_sem might be waiting in
6847 * waitq. So we cancel all extra charges, wake up all waiters,
6848 * and retry. Because we cancel precharges, we might not be able
6849 * to move enough charges, but moving charge is a best-effort
6850 * feature anyway, so it wouldn't be a big problem.
6851 */
6852 __mem_cgroup_clear_mc();
6853 cond_resched();
6854 goto retry;
6855 }
4ffef5fe
DN
6856 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6857 int ret;
6858 struct mm_walk mem_cgroup_move_charge_walk = {
6859 .pmd_entry = mem_cgroup_move_charge_pte_range,
6860 .mm = mm,
6861 .private = vma,
6862 };
6863 if (is_vm_hugetlb_page(vma))
6864 continue;
4ffef5fe
DN
6865 ret = walk_page_range(vma->vm_start, vma->vm_end,
6866 &mem_cgroup_move_charge_walk);
6867 if (ret)
6868 /*
6869 * means we have consumed all precharges and failed in
6870 * doing additional charge. Just abandon here.
6871 */
6872 break;
6873 }
dfe076b0 6874 up_read(&mm->mmap_sem);
7dc74be0
DN
6875}
6876
eb95419b 6877static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6878 struct cgroup_taskset *tset)
67e465a7 6879{
2f7ee569 6880 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6881 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6882
dfe076b0 6883 if (mm) {
a433658c
KM
6884 if (mc.to)
6885 mem_cgroup_move_charge(mm);
dfe076b0
DN
6886 mmput(mm);
6887 }
a433658c
KM
6888 if (mc.to)
6889 mem_cgroup_clear_mc();
67e465a7 6890}
5cfb80a7 6891#else /* !CONFIG_MMU */
eb95419b 6892static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6893 struct cgroup_taskset *tset)
5cfb80a7
DN
6894{
6895 return 0;
6896}
eb95419b 6897static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6898 struct cgroup_taskset *tset)
5cfb80a7
DN
6899{
6900}
eb95419b 6901static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6902 struct cgroup_taskset *tset)
5cfb80a7
DN
6903{
6904}
6905#endif
67e465a7 6906
f00baae7
TH
6907/*
6908 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6909 * to verify sane_behavior flag on each mount attempt.
6910 */
eb95419b 6911static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6912{
6913 /*
6914 * use_hierarchy is forced with sane_behavior. cgroup core
6915 * guarantees that @root doesn't have any children, so turning it
6916 * on for the root memcg is enough.
6917 */
eb95419b
TH
6918 if (cgroup_sane_behavior(root_css->cgroup))
6919 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6920}
6921
8cdea7c0
BS
6922struct cgroup_subsys mem_cgroup_subsys = {
6923 .name = "memory",
6924 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6925 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6926 .css_online = mem_cgroup_css_online,
92fb9748
TH
6927 .css_offline = mem_cgroup_css_offline,
6928 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6929 .can_attach = mem_cgroup_can_attach,
6930 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6931 .attach = mem_cgroup_move_task,
f00baae7 6932 .bind = mem_cgroup_bind,
6bc10349 6933 .base_cftypes = mem_cgroup_files,
6d12e2d8 6934 .early_init = 0,
04046e1a 6935 .use_id = 1,
8cdea7c0 6936};
c077719b 6937
c255a458 6938#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6939static int __init enable_swap_account(char *s)
6940{
a2c8990a 6941 if (!strcmp(s, "1"))
a42c390c 6942 really_do_swap_account = 1;
a2c8990a 6943 else if (!strcmp(s, "0"))
a42c390c
MH
6944 really_do_swap_account = 0;
6945 return 1;
6946}
a2c8990a 6947__setup("swapaccount=", enable_swap_account);
c077719b 6948
2d11085e
MH
6949static void __init memsw_file_init(void)
6950{
6acc8b02
MH
6951 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6952}
6953
6954static void __init enable_swap_cgroup(void)
6955{
6956 if (!mem_cgroup_disabled() && really_do_swap_account) {
6957 do_swap_account = 1;
6958 memsw_file_init();
6959 }
2d11085e 6960}
6acc8b02 6961
2d11085e 6962#else
6acc8b02 6963static void __init enable_swap_cgroup(void)
2d11085e
MH
6964{
6965}
c077719b 6966#endif
2d11085e
MH
6967
6968/*
1081312f
MH
6969 * subsys_initcall() for memory controller.
6970 *
6971 * Some parts like hotcpu_notifier() have to be initialized from this context
6972 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6973 * everything that doesn't depend on a specific mem_cgroup structure should
6974 * be initialized from here.
2d11085e
MH
6975 */
6976static int __init mem_cgroup_init(void)
6977{
6978 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6979 enable_swap_cgroup();
8787a1df 6980 mem_cgroup_soft_limit_tree_init();
e4777496 6981 memcg_stock_init();
2d11085e
MH
6982 return 0;
6983}
6984subsys_initcall(mem_cgroup_init);