]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcontrol: drop unused try/commit/cancel charge API
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
3fba69a5 837 int nr_pages)
d52aa412 838{
e401f176
KH
839 /* pagein of a big page is an event. So, ignore page size */
840 if (nr_pages > 0)
c9019e9b 841 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 842 else {
c9019e9b 843 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
844 nr_pages = -nr_pages; /* for event */
845 }
e401f176 846
871789d4 847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
848}
849
f53d7ce3
JW
850static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_target target)
7a159cc9
JW
852{
853 unsigned long val, next;
854
871789d4
CD
855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 857 /* from time_after() in jiffies.h */
6a1a8b80 858 if ((long)(next - val) < 0) {
f53d7ce3
JW
859 switch (target) {
860 case MEM_CGROUP_TARGET_THRESH:
861 next = val + THRESHOLDS_EVENTS_TARGET;
862 break;
bb4cc1a8
AM
863 case MEM_CGROUP_TARGET_SOFTLIMIT:
864 next = val + SOFTLIMIT_EVENTS_TARGET;
865 break;
f53d7ce3
JW
866 default:
867 break;
868 }
871789d4 869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 870 return true;
7a159cc9 871 }
f53d7ce3 872 return false;
d2265e6f
KH
873}
874
875/*
876 * Check events in order.
877 *
878 */
c0ff4b85 879static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
880{
881 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
882 if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 884 bool do_softlimit;
f53d7ce3 885
bb4cc1a8
AM
886 do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 888 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
889 if (unlikely(do_softlimit))
890 mem_cgroup_update_tree(memcg, page);
0a31bc97 891 }
d2265e6f
KH
892}
893
cf475ad2 894struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 895{
31a78f23
BS
896 /*
897 * mm_update_next_owner() may clear mm->owner to NULL
898 * if it races with swapoff, page migration, etc.
899 * So this can be called with p == NULL.
900 */
901 if (unlikely(!p))
902 return NULL;
903
073219e9 904 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 905}
33398cf2 906EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 907
d46eb14b
SB
908/**
909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910 * @mm: mm from which memcg should be extracted. It can be NULL.
911 *
912 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914 * returned.
915 */
916struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 917{
d46eb14b
SB
918 struct mem_cgroup *memcg;
919
920 if (mem_cgroup_disabled())
921 return NULL;
0b7f569e 922
54595fe2
KH
923 rcu_read_lock();
924 do {
6f6acb00
MH
925 /*
926 * Page cache insertions can happen withou an
927 * actual mm context, e.g. during disk probing
928 * on boot, loopback IO, acct() writes etc.
929 */
930 if (unlikely(!mm))
df381975 931 memcg = root_mem_cgroup;
6f6acb00
MH
932 else {
933 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 if (unlikely(!memcg))
935 memcg = root_mem_cgroup;
936 }
00d484f3 937 } while (!css_tryget(&memcg->css));
54595fe2 938 rcu_read_unlock();
c0ff4b85 939 return memcg;
54595fe2 940}
d46eb14b
SB
941EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942
f745c6f5
SB
943/**
944 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945 * @page: page from which memcg should be extracted.
946 *
947 * Obtain a reference on page->memcg and returns it if successful. Otherwise
948 * root_mem_cgroup is returned.
949 */
950struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951{
952 struct mem_cgroup *memcg = page->mem_cgroup;
953
954 if (mem_cgroup_disabled())
955 return NULL;
956
957 rcu_read_lock();
8965aa28
SB
958 /* Page should not get uncharged and freed memcg under us. */
959 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
960 memcg = root_mem_cgroup;
961 rcu_read_unlock();
962 return memcg;
963}
964EXPORT_SYMBOL(get_mem_cgroup_from_page);
965
d46eb14b
SB
966/**
967 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968 */
969static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970{
971 if (unlikely(current->active_memcg)) {
8965aa28 972 struct mem_cgroup *memcg;
d46eb14b
SB
973
974 rcu_read_lock();
8965aa28
SB
975 /* current->active_memcg must hold a ref. */
976 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 memcg = root_mem_cgroup;
978 else
d46eb14b
SB
979 memcg = current->active_memcg;
980 rcu_read_unlock();
981 return memcg;
982 }
983 return get_mem_cgroup_from_mm(current->mm);
984}
54595fe2 985
5660048c
JW
986/**
987 * mem_cgroup_iter - iterate over memory cgroup hierarchy
988 * @root: hierarchy root
989 * @prev: previously returned memcg, NULL on first invocation
990 * @reclaim: cookie for shared reclaim walks, NULL for full walks
991 *
992 * Returns references to children of the hierarchy below @root, or
993 * @root itself, or %NULL after a full round-trip.
994 *
995 * Caller must pass the return value in @prev on subsequent
996 * invocations for reference counting, or use mem_cgroup_iter_break()
997 * to cancel a hierarchy walk before the round-trip is complete.
998 *
b213b54f 999 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1000 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1001 * reclaimers operating on the same node and priority.
5660048c 1002 */
694fbc0f 1003struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1004 struct mem_cgroup *prev,
694fbc0f 1005 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1006{
33398cf2 1007 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1008 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1009 struct mem_cgroup *memcg = NULL;
5ac8fb31 1010 struct mem_cgroup *pos = NULL;
711d3d2c 1011
694fbc0f
AM
1012 if (mem_cgroup_disabled())
1013 return NULL;
5660048c 1014
9f3a0d09
JW
1015 if (!root)
1016 root = root_mem_cgroup;
7d74b06f 1017
9f3a0d09 1018 if (prev && !reclaim)
5ac8fb31 1019 pos = prev;
14067bb3 1020
9f3a0d09
JW
1021 if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 if (prev)
5ac8fb31 1023 goto out;
694fbc0f 1024 return root;
9f3a0d09 1025 }
14067bb3 1026
542f85f9 1027 rcu_read_lock();
5f578161 1028
5ac8fb31 1029 if (reclaim) {
ef8f2327 1030 struct mem_cgroup_per_node *mz;
5ac8fb31 1031
ef8f2327 1032 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1033 iter = &mz->iter;
5ac8fb31
JW
1034
1035 if (prev && reclaim->generation != iter->generation)
1036 goto out_unlock;
1037
6df38689 1038 while (1) {
4db0c3c2 1039 pos = READ_ONCE(iter->position);
6df38689
VD
1040 if (!pos || css_tryget(&pos->css))
1041 break;
5ac8fb31 1042 /*
6df38689
VD
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
5ac8fb31 1049 */
6df38689
VD
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
5ac8fb31
JW
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
527a5ec9 1069 }
7d74b06f 1070
5ac8fb31
JW
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
14067bb3 1077
5ac8fb31
JW
1078 if (css == &root->css)
1079 break;
14067bb3 1080
0b8f73e1
JW
1081 if (css_tryget(css))
1082 break;
9f3a0d09 1083
5ac8fb31 1084 memcg = NULL;
9f3a0d09 1085 }
5ac8fb31
JW
1086
1087 if (reclaim) {
5ac8fb31 1088 /*
6df38689
VD
1089 * The position could have already been updated by a competing
1090 * thread, so check that the value hasn't changed since we read
1091 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1092 */
6df38689
VD
1093 (void)cmpxchg(&iter->position, pos, memcg);
1094
5ac8fb31
JW
1095 if (pos)
1096 css_put(&pos->css);
1097
1098 if (!memcg)
1099 iter->generation++;
1100 else if (!prev)
1101 reclaim->generation = iter->generation;
9f3a0d09 1102 }
5ac8fb31 1103
542f85f9
MH
1104out_unlock:
1105 rcu_read_unlock();
5ac8fb31 1106out:
c40046f3
MH
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109
9f3a0d09 1110 return memcg;
14067bb3 1111}
7d74b06f 1112
5660048c
JW
1113/**
1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115 * @root: hierarchy root
1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117 */
1118void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 struct mem_cgroup *prev)
9f3a0d09
JW
1120{
1121 if (!root)
1122 root = root_mem_cgroup;
1123 if (prev && prev != root)
1124 css_put(&prev->css);
1125}
7d74b06f 1126
54a83d6b
MC
1127static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 struct mem_cgroup *dead_memcg)
6df38689 1129{
6df38689 1130 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1131 struct mem_cgroup_per_node *mz;
1132 int nid;
6df38689 1133
54a83d6b
MC
1134 for_each_node(nid) {
1135 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1136 iter = &mz->iter;
1137 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1138 }
1139}
1140
54a83d6b
MC
1141static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142{
1143 struct mem_cgroup *memcg = dead_memcg;
1144 struct mem_cgroup *last;
1145
1146 do {
1147 __invalidate_reclaim_iterators(memcg, dead_memcg);
1148 last = memcg;
1149 } while ((memcg = parent_mem_cgroup(memcg)));
1150
1151 /*
1152 * When cgruop1 non-hierarchy mode is used,
1153 * parent_mem_cgroup() does not walk all the way up to the
1154 * cgroup root (root_mem_cgroup). So we have to handle
1155 * dead_memcg from cgroup root separately.
1156 */
1157 if (last != root_mem_cgroup)
1158 __invalidate_reclaim_iterators(root_mem_cgroup,
1159 dead_memcg);
1160}
1161
7c5f64f8
VD
1162/**
1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164 * @memcg: hierarchy root
1165 * @fn: function to call for each task
1166 * @arg: argument passed to @fn
1167 *
1168 * This function iterates over tasks attached to @memcg or to any of its
1169 * descendants and calls @fn for each task. If @fn returns a non-zero
1170 * value, the function breaks the iteration loop and returns the value.
1171 * Otherwise, it will iterate over all tasks and return 0.
1172 *
1173 * This function must not be called for the root memory cgroup.
1174 */
1175int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 int (*fn)(struct task_struct *, void *), void *arg)
1177{
1178 struct mem_cgroup *iter;
1179 int ret = 0;
1180
1181 BUG_ON(memcg == root_mem_cgroup);
1182
1183 for_each_mem_cgroup_tree(iter, memcg) {
1184 struct css_task_iter it;
1185 struct task_struct *task;
1186
f168a9a5 1187 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1188 while (!ret && (task = css_task_iter_next(&it)))
1189 ret = fn(task, arg);
1190 css_task_iter_end(&it);
1191 if (ret) {
1192 mem_cgroup_iter_break(memcg, iter);
1193 break;
1194 }
1195 }
1196 return ret;
1197}
1198
925b7673 1199/**
dfe0e773 1200 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1201 * @page: the page
f144c390 1202 * @pgdat: pgdat of the page
dfe0e773
JW
1203 *
1204 * This function is only safe when following the LRU page isolation
1205 * and putback protocol: the LRU lock must be held, and the page must
1206 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1207 */
599d0c95 1208struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1209{
ef8f2327 1210 struct mem_cgroup_per_node *mz;
925b7673 1211 struct mem_cgroup *memcg;
bea8c150 1212 struct lruvec *lruvec;
6d12e2d8 1213
bea8c150 1214 if (mem_cgroup_disabled()) {
867e5e1d 1215 lruvec = &pgdat->__lruvec;
bea8c150
HD
1216 goto out;
1217 }
925b7673 1218
1306a85a 1219 memcg = page->mem_cgroup;
7512102c 1220 /*
dfe0e773 1221 * Swapcache readahead pages are added to the LRU - and
29833315 1222 * possibly migrated - before they are charged.
7512102c 1223 */
29833315
JW
1224 if (!memcg)
1225 memcg = root_mem_cgroup;
7512102c 1226
ef8f2327 1227 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1228 lruvec = &mz->lruvec;
1229out:
1230 /*
1231 * Since a node can be onlined after the mem_cgroup was created,
1232 * we have to be prepared to initialize lruvec->zone here;
1233 * and if offlined then reonlined, we need to reinitialize it.
1234 */
599d0c95
MG
1235 if (unlikely(lruvec->pgdat != pgdat))
1236 lruvec->pgdat = pgdat;
bea8c150 1237 return lruvec;
08e552c6 1238}
b69408e8 1239
925b7673 1240/**
fa9add64
HD
1241 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1242 * @lruvec: mem_cgroup per zone lru vector
1243 * @lru: index of lru list the page is sitting on
b4536f0c 1244 * @zid: zone id of the accounted pages
fa9add64 1245 * @nr_pages: positive when adding or negative when removing
925b7673 1246 *
ca707239
HD
1247 * This function must be called under lru_lock, just before a page is added
1248 * to or just after a page is removed from an lru list (that ordering being
1249 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1250 */
fa9add64 1251void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1252 int zid, int nr_pages)
3f58a829 1253{
ef8f2327 1254 struct mem_cgroup_per_node *mz;
fa9add64 1255 unsigned long *lru_size;
ca707239 1256 long size;
3f58a829
MK
1257
1258 if (mem_cgroup_disabled())
1259 return;
1260
ef8f2327 1261 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1262 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1263
1264 if (nr_pages < 0)
1265 *lru_size += nr_pages;
1266
1267 size = *lru_size;
b4536f0c
MH
1268 if (WARN_ONCE(size < 0,
1269 "%s(%p, %d, %d): lru_size %ld\n",
1270 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1271 VM_BUG_ON(1);
1272 *lru_size = 0;
1273 }
1274
1275 if (nr_pages > 0)
1276 *lru_size += nr_pages;
08e552c6 1277}
544122e5 1278
19942822 1279/**
9d11ea9f 1280 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1281 * @memcg: the memory cgroup
19942822 1282 *
9d11ea9f 1283 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1284 * pages.
19942822 1285 */
c0ff4b85 1286static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1287{
3e32cb2e
JW
1288 unsigned long margin = 0;
1289 unsigned long count;
1290 unsigned long limit;
9d11ea9f 1291
3e32cb2e 1292 count = page_counter_read(&memcg->memory);
bbec2e15 1293 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1294 if (count < limit)
1295 margin = limit - count;
1296
7941d214 1297 if (do_memsw_account()) {
3e32cb2e 1298 count = page_counter_read(&memcg->memsw);
bbec2e15 1299 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1300 if (count < limit)
3e32cb2e 1301 margin = min(margin, limit - count);
cbedbac3
LR
1302 else
1303 margin = 0;
3e32cb2e
JW
1304 }
1305
1306 return margin;
19942822
JW
1307}
1308
32047e2a 1309/*
bdcbb659 1310 * A routine for checking "mem" is under move_account() or not.
32047e2a 1311 *
bdcbb659
QH
1312 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1313 * moving cgroups. This is for waiting at high-memory pressure
1314 * caused by "move".
32047e2a 1315 */
c0ff4b85 1316static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1317{
2bd9bb20
KH
1318 struct mem_cgroup *from;
1319 struct mem_cgroup *to;
4b534334 1320 bool ret = false;
2bd9bb20
KH
1321 /*
1322 * Unlike task_move routines, we access mc.to, mc.from not under
1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 */
1325 spin_lock(&mc.lock);
1326 from = mc.from;
1327 to = mc.to;
1328 if (!from)
1329 goto unlock;
3e92041d 1330
2314b42d
JW
1331 ret = mem_cgroup_is_descendant(from, memcg) ||
1332 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1333unlock:
1334 spin_unlock(&mc.lock);
4b534334
KH
1335 return ret;
1336}
1337
c0ff4b85 1338static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1339{
1340 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1341 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1342 DEFINE_WAIT(wait);
1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1344 /* moving charge context might have finished. */
1345 if (mc.moving_task)
1346 schedule();
1347 finish_wait(&mc.waitq, &wait);
1348 return true;
1349 }
1350 }
1351 return false;
1352}
1353
c8713d0b
JW
1354static char *memory_stat_format(struct mem_cgroup *memcg)
1355{
1356 struct seq_buf s;
1357 int i;
71cd3113 1358
c8713d0b
JW
1359 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1360 if (!s.buffer)
1361 return NULL;
1362
1363 /*
1364 * Provide statistics on the state of the memory subsystem as
1365 * well as cumulative event counters that show past behavior.
1366 *
1367 * This list is ordered following a combination of these gradients:
1368 * 1) generic big picture -> specifics and details
1369 * 2) reflecting userspace activity -> reflecting kernel heuristics
1370 *
1371 * Current memory state:
1372 */
1373
1374 seq_buf_printf(&s, "anon %llu\n",
be5d0a74 1375 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
c8713d0b
JW
1376 PAGE_SIZE);
1377 seq_buf_printf(&s, "file %llu\n",
0d1c2072 1378 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
c8713d0b
JW
1379 PAGE_SIZE);
1380 seq_buf_printf(&s, "kernel_stack %llu\n",
1381 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1382 1024);
1383 seq_buf_printf(&s, "slab %llu\n",
1384 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1385 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1386 PAGE_SIZE);
1387 seq_buf_printf(&s, "sock %llu\n",
1388 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1389 PAGE_SIZE);
1390
1391 seq_buf_printf(&s, "shmem %llu\n",
1392 (u64)memcg_page_state(memcg, NR_SHMEM) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file_mapped %llu\n",
1395 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "file_dirty %llu\n",
1398 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1399 PAGE_SIZE);
1400 seq_buf_printf(&s, "file_writeback %llu\n",
1401 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1402 PAGE_SIZE);
1403
468c3982 1404#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 1405 seq_buf_printf(&s, "anon_thp %llu\n",
468c3982
JW
1406 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1407 HPAGE_PMD_SIZE);
1408#endif
c8713d0b
JW
1409
1410 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1411 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1412 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1413 PAGE_SIZE);
1414
1415 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1416 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1417 PAGE_SIZE);
1418 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1419 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1420 PAGE_SIZE);
1421
1422 /* Accumulated memory events */
1423
ebc5d83d
KK
1424 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1425 memcg_events(memcg, PGFAULT));
1426 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1427 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1428
1429 seq_buf_printf(&s, "workingset_refault %lu\n",
1430 memcg_page_state(memcg, WORKINGSET_REFAULT));
1431 seq_buf_printf(&s, "workingset_activate %lu\n",
1432 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
a6f5576b
YS
1433 seq_buf_printf(&s, "workingset_restore %lu\n",
1434 memcg_page_state(memcg, WORKINGSET_RESTORE));
c8713d0b
JW
1435 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1436 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1437
ebc5d83d
KK
1438 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1439 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1440 seq_buf_printf(&s, "pgscan %lu\n",
1441 memcg_events(memcg, PGSCAN_KSWAPD) +
1442 memcg_events(memcg, PGSCAN_DIRECT));
1443 seq_buf_printf(&s, "pgsteal %lu\n",
1444 memcg_events(memcg, PGSTEAL_KSWAPD) +
1445 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1446 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1447 memcg_events(memcg, PGACTIVATE));
1448 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1449 memcg_events(memcg, PGDEACTIVATE));
1450 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1451 memcg_events(memcg, PGLAZYFREE));
1452 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1453 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1454
1455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1456 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1457 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1458 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1459 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1460#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1461
1462 /* The above should easily fit into one page */
1463 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1464
1465 return s.buffer;
1466}
71cd3113 1467
58cf188e 1468#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1469/**
f0c867d9 1470 * mem_cgroup_print_oom_context: Print OOM information relevant to
1471 * memory controller.
e222432b
BS
1472 * @memcg: The memory cgroup that went over limit
1473 * @p: Task that is going to be killed
1474 *
1475 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1476 * enabled
1477 */
f0c867d9 1478void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1479{
e222432b
BS
1480 rcu_read_lock();
1481
f0c867d9 1482 if (memcg) {
1483 pr_cont(",oom_memcg=");
1484 pr_cont_cgroup_path(memcg->css.cgroup);
1485 } else
1486 pr_cont(",global_oom");
2415b9f5 1487 if (p) {
f0c867d9 1488 pr_cont(",task_memcg=");
2415b9f5 1489 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1490 }
e222432b 1491 rcu_read_unlock();
f0c867d9 1492}
1493
1494/**
1495 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1496 * memory controller.
1497 * @memcg: The memory cgroup that went over limit
1498 */
1499void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1500{
c8713d0b 1501 char *buf;
e222432b 1502
3e32cb2e
JW
1503 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1504 K((u64)page_counter_read(&memcg->memory)),
15b42562 1505 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1506 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1507 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1508 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1509 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1510 else {
1511 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1512 K((u64)page_counter_read(&memcg->memsw)),
1513 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1514 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->kmem)),
1516 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1517 }
c8713d0b
JW
1518
1519 pr_info("Memory cgroup stats for ");
1520 pr_cont_cgroup_path(memcg->css.cgroup);
1521 pr_cont(":");
1522 buf = memory_stat_format(memcg);
1523 if (!buf)
1524 return;
1525 pr_info("%s", buf);
1526 kfree(buf);
e222432b
BS
1527}
1528
a63d83f4
DR
1529/*
1530 * Return the memory (and swap, if configured) limit for a memcg.
1531 */
bbec2e15 1532unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1533{
bbec2e15 1534 unsigned long max;
f3e8eb70 1535
15b42562 1536 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1537 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1538 unsigned long memsw_max;
1539 unsigned long swap_max;
9a5a8f19 1540
bbec2e15 1541 memsw_max = memcg->memsw.max;
32d087cd 1542 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1543 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1544 max = min(max + swap_max, memsw_max);
9a5a8f19 1545 }
bbec2e15 1546 return max;
a63d83f4
DR
1547}
1548
9783aa99
CD
1549unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1550{
1551 return page_counter_read(&memcg->memory);
1552}
1553
b6e6edcf 1554static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1555 int order)
9cbb78bb 1556{
6e0fc46d
DR
1557 struct oom_control oc = {
1558 .zonelist = NULL,
1559 .nodemask = NULL,
2a966b77 1560 .memcg = memcg,
6e0fc46d
DR
1561 .gfp_mask = gfp_mask,
1562 .order = order,
6e0fc46d 1563 };
7c5f64f8 1564 bool ret;
9cbb78bb 1565
7775face
TH
1566 if (mutex_lock_killable(&oom_lock))
1567 return true;
1568 /*
1569 * A few threads which were not waiting at mutex_lock_killable() can
1570 * fail to bail out. Therefore, check again after holding oom_lock.
1571 */
1572 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1573 mutex_unlock(&oom_lock);
7c5f64f8 1574 return ret;
9cbb78bb
DR
1575}
1576
0608f43d 1577static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1578 pg_data_t *pgdat,
0608f43d
AM
1579 gfp_t gfp_mask,
1580 unsigned long *total_scanned)
1581{
1582 struct mem_cgroup *victim = NULL;
1583 int total = 0;
1584 int loop = 0;
1585 unsigned long excess;
1586 unsigned long nr_scanned;
1587 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1588 .pgdat = pgdat,
0608f43d
AM
1589 };
1590
3e32cb2e 1591 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1592
1593 while (1) {
1594 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1595 if (!victim) {
1596 loop++;
1597 if (loop >= 2) {
1598 /*
1599 * If we have not been able to reclaim
1600 * anything, it might because there are
1601 * no reclaimable pages under this hierarchy
1602 */
1603 if (!total)
1604 break;
1605 /*
1606 * We want to do more targeted reclaim.
1607 * excess >> 2 is not to excessive so as to
1608 * reclaim too much, nor too less that we keep
1609 * coming back to reclaim from this cgroup
1610 */
1611 if (total >= (excess >> 2) ||
1612 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1613 break;
1614 }
1615 continue;
1616 }
a9dd0a83 1617 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1618 pgdat, &nr_scanned);
0608f43d 1619 *total_scanned += nr_scanned;
3e32cb2e 1620 if (!soft_limit_excess(root_memcg))
0608f43d 1621 break;
6d61ef40 1622 }
0608f43d
AM
1623 mem_cgroup_iter_break(root_memcg, victim);
1624 return total;
6d61ef40
BS
1625}
1626
0056f4e6
JW
1627#ifdef CONFIG_LOCKDEP
1628static struct lockdep_map memcg_oom_lock_dep_map = {
1629 .name = "memcg_oom_lock",
1630};
1631#endif
1632
fb2a6fc5
JW
1633static DEFINE_SPINLOCK(memcg_oom_lock);
1634
867578cb
KH
1635/*
1636 * Check OOM-Killer is already running under our hierarchy.
1637 * If someone is running, return false.
1638 */
fb2a6fc5 1639static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1640{
79dfdacc 1641 struct mem_cgroup *iter, *failed = NULL;
a636b327 1642
fb2a6fc5
JW
1643 spin_lock(&memcg_oom_lock);
1644
9f3a0d09 1645 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1646 if (iter->oom_lock) {
79dfdacc
MH
1647 /*
1648 * this subtree of our hierarchy is already locked
1649 * so we cannot give a lock.
1650 */
79dfdacc 1651 failed = iter;
9f3a0d09
JW
1652 mem_cgroup_iter_break(memcg, iter);
1653 break;
23751be0
JW
1654 } else
1655 iter->oom_lock = true;
7d74b06f 1656 }
867578cb 1657
fb2a6fc5
JW
1658 if (failed) {
1659 /*
1660 * OK, we failed to lock the whole subtree so we have
1661 * to clean up what we set up to the failing subtree
1662 */
1663 for_each_mem_cgroup_tree(iter, memcg) {
1664 if (iter == failed) {
1665 mem_cgroup_iter_break(memcg, iter);
1666 break;
1667 }
1668 iter->oom_lock = false;
79dfdacc 1669 }
0056f4e6
JW
1670 } else
1671 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1672
1673 spin_unlock(&memcg_oom_lock);
1674
1675 return !failed;
a636b327 1676}
0b7f569e 1677
fb2a6fc5 1678static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1679{
7d74b06f
KH
1680 struct mem_cgroup *iter;
1681
fb2a6fc5 1682 spin_lock(&memcg_oom_lock);
5facae4f 1683 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1684 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1685 iter->oom_lock = false;
fb2a6fc5 1686 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1687}
1688
c0ff4b85 1689static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1690{
1691 struct mem_cgroup *iter;
1692
c2b42d3c 1693 spin_lock(&memcg_oom_lock);
c0ff4b85 1694 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1695 iter->under_oom++;
1696 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1697}
1698
c0ff4b85 1699static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1700{
1701 struct mem_cgroup *iter;
1702
867578cb
KH
1703 /*
1704 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1705 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1706 */
c2b42d3c 1707 spin_lock(&memcg_oom_lock);
c0ff4b85 1708 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1709 if (iter->under_oom > 0)
1710 iter->under_oom--;
1711 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1712}
1713
867578cb
KH
1714static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1715
dc98df5a 1716struct oom_wait_info {
d79154bb 1717 struct mem_cgroup *memcg;
ac6424b9 1718 wait_queue_entry_t wait;
dc98df5a
KH
1719};
1720
ac6424b9 1721static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1722 unsigned mode, int sync, void *arg)
1723{
d79154bb
HD
1724 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1725 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1726 struct oom_wait_info *oom_wait_info;
1727
1728 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1729 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1730
2314b42d
JW
1731 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1732 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1733 return 0;
dc98df5a
KH
1734 return autoremove_wake_function(wait, mode, sync, arg);
1735}
1736
c0ff4b85 1737static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1738{
c2b42d3c
TH
1739 /*
1740 * For the following lockless ->under_oom test, the only required
1741 * guarantee is that it must see the state asserted by an OOM when
1742 * this function is called as a result of userland actions
1743 * triggered by the notification of the OOM. This is trivially
1744 * achieved by invoking mem_cgroup_mark_under_oom() before
1745 * triggering notification.
1746 */
1747 if (memcg && memcg->under_oom)
f4b90b70 1748 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1749}
1750
29ef680a
MH
1751enum oom_status {
1752 OOM_SUCCESS,
1753 OOM_FAILED,
1754 OOM_ASYNC,
1755 OOM_SKIPPED
1756};
1757
1758static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1759{
7056d3a3
MH
1760 enum oom_status ret;
1761 bool locked;
1762
29ef680a
MH
1763 if (order > PAGE_ALLOC_COSTLY_ORDER)
1764 return OOM_SKIPPED;
1765
7a1adfdd
RG
1766 memcg_memory_event(memcg, MEMCG_OOM);
1767
867578cb 1768 /*
49426420
JW
1769 * We are in the middle of the charge context here, so we
1770 * don't want to block when potentially sitting on a callstack
1771 * that holds all kinds of filesystem and mm locks.
1772 *
29ef680a
MH
1773 * cgroup1 allows disabling the OOM killer and waiting for outside
1774 * handling until the charge can succeed; remember the context and put
1775 * the task to sleep at the end of the page fault when all locks are
1776 * released.
49426420 1777 *
29ef680a
MH
1778 * On the other hand, in-kernel OOM killer allows for an async victim
1779 * memory reclaim (oom_reaper) and that means that we are not solely
1780 * relying on the oom victim to make a forward progress and we can
1781 * invoke the oom killer here.
1782 *
1783 * Please note that mem_cgroup_out_of_memory might fail to find a
1784 * victim and then we have to bail out from the charge path.
867578cb 1785 */
29ef680a
MH
1786 if (memcg->oom_kill_disable) {
1787 if (!current->in_user_fault)
1788 return OOM_SKIPPED;
1789 css_get(&memcg->css);
1790 current->memcg_in_oom = memcg;
1791 current->memcg_oom_gfp_mask = mask;
1792 current->memcg_oom_order = order;
1793
1794 return OOM_ASYNC;
1795 }
1796
7056d3a3
MH
1797 mem_cgroup_mark_under_oom(memcg);
1798
1799 locked = mem_cgroup_oom_trylock(memcg);
1800
1801 if (locked)
1802 mem_cgroup_oom_notify(memcg);
1803
1804 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1805 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1806 ret = OOM_SUCCESS;
1807 else
1808 ret = OOM_FAILED;
1809
1810 if (locked)
1811 mem_cgroup_oom_unlock(memcg);
29ef680a 1812
7056d3a3 1813 return ret;
3812c8c8
JW
1814}
1815
1816/**
1817 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1818 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1819 *
49426420
JW
1820 * This has to be called at the end of a page fault if the memcg OOM
1821 * handler was enabled.
3812c8c8 1822 *
49426420 1823 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1824 * sleep on a waitqueue until the userspace task resolves the
1825 * situation. Sleeping directly in the charge context with all kinds
1826 * of locks held is not a good idea, instead we remember an OOM state
1827 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1828 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1829 *
1830 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1831 * completed, %false otherwise.
3812c8c8 1832 */
49426420 1833bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1834{
626ebc41 1835 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1836 struct oom_wait_info owait;
49426420 1837 bool locked;
3812c8c8
JW
1838
1839 /* OOM is global, do not handle */
3812c8c8 1840 if (!memcg)
49426420 1841 return false;
3812c8c8 1842
7c5f64f8 1843 if (!handle)
49426420 1844 goto cleanup;
3812c8c8
JW
1845
1846 owait.memcg = memcg;
1847 owait.wait.flags = 0;
1848 owait.wait.func = memcg_oom_wake_function;
1849 owait.wait.private = current;
2055da97 1850 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1851
3812c8c8 1852 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1853 mem_cgroup_mark_under_oom(memcg);
1854
1855 locked = mem_cgroup_oom_trylock(memcg);
1856
1857 if (locked)
1858 mem_cgroup_oom_notify(memcg);
1859
1860 if (locked && !memcg->oom_kill_disable) {
1861 mem_cgroup_unmark_under_oom(memcg);
1862 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1863 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1864 current->memcg_oom_order);
49426420 1865 } else {
3812c8c8 1866 schedule();
49426420
JW
1867 mem_cgroup_unmark_under_oom(memcg);
1868 finish_wait(&memcg_oom_waitq, &owait.wait);
1869 }
1870
1871 if (locked) {
fb2a6fc5
JW
1872 mem_cgroup_oom_unlock(memcg);
1873 /*
1874 * There is no guarantee that an OOM-lock contender
1875 * sees the wakeups triggered by the OOM kill
1876 * uncharges. Wake any sleepers explicitely.
1877 */
1878 memcg_oom_recover(memcg);
1879 }
49426420 1880cleanup:
626ebc41 1881 current->memcg_in_oom = NULL;
3812c8c8 1882 css_put(&memcg->css);
867578cb 1883 return true;
0b7f569e
KH
1884}
1885
3d8b38eb
RG
1886/**
1887 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1888 * @victim: task to be killed by the OOM killer
1889 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1890 *
1891 * Returns a pointer to a memory cgroup, which has to be cleaned up
1892 * by killing all belonging OOM-killable tasks.
1893 *
1894 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1895 */
1896struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1897 struct mem_cgroup *oom_domain)
1898{
1899 struct mem_cgroup *oom_group = NULL;
1900 struct mem_cgroup *memcg;
1901
1902 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1903 return NULL;
1904
1905 if (!oom_domain)
1906 oom_domain = root_mem_cgroup;
1907
1908 rcu_read_lock();
1909
1910 memcg = mem_cgroup_from_task(victim);
1911 if (memcg == root_mem_cgroup)
1912 goto out;
1913
48fe267c
RG
1914 /*
1915 * If the victim task has been asynchronously moved to a different
1916 * memory cgroup, we might end up killing tasks outside oom_domain.
1917 * In this case it's better to ignore memory.group.oom.
1918 */
1919 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1920 goto out;
1921
3d8b38eb
RG
1922 /*
1923 * Traverse the memory cgroup hierarchy from the victim task's
1924 * cgroup up to the OOMing cgroup (or root) to find the
1925 * highest-level memory cgroup with oom.group set.
1926 */
1927 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1928 if (memcg->oom_group)
1929 oom_group = memcg;
1930
1931 if (memcg == oom_domain)
1932 break;
1933 }
1934
1935 if (oom_group)
1936 css_get(&oom_group->css);
1937out:
1938 rcu_read_unlock();
1939
1940 return oom_group;
1941}
1942
1943void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1944{
1945 pr_info("Tasks in ");
1946 pr_cont_cgroup_path(memcg->css.cgroup);
1947 pr_cont(" are going to be killed due to memory.oom.group set\n");
1948}
1949
d7365e78 1950/**
81f8c3a4
JW
1951 * lock_page_memcg - lock a page->mem_cgroup binding
1952 * @page: the page
32047e2a 1953 *
81f8c3a4 1954 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1955 * another cgroup.
1956 *
1957 * It ensures lifetime of the returned memcg. Caller is responsible
1958 * for the lifetime of the page; __unlock_page_memcg() is available
1959 * when @page might get freed inside the locked section.
d69b042f 1960 */
739f79fc 1961struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 1962{
9da7b521 1963 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1964 struct mem_cgroup *memcg;
6de22619 1965 unsigned long flags;
89c06bd5 1966
6de22619
JW
1967 /*
1968 * The RCU lock is held throughout the transaction. The fast
1969 * path can get away without acquiring the memcg->move_lock
1970 * because page moving starts with an RCU grace period.
739f79fc
JW
1971 *
1972 * The RCU lock also protects the memcg from being freed when
1973 * the page state that is going to change is the only thing
1974 * preventing the page itself from being freed. E.g. writeback
1975 * doesn't hold a page reference and relies on PG_writeback to
1976 * keep off truncation, migration and so forth.
1977 */
d7365e78
JW
1978 rcu_read_lock();
1979
1980 if (mem_cgroup_disabled())
739f79fc 1981 return NULL;
89c06bd5 1982again:
9da7b521 1983 memcg = head->mem_cgroup;
29833315 1984 if (unlikely(!memcg))
739f79fc 1985 return NULL;
d7365e78 1986
bdcbb659 1987 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1988 return memcg;
89c06bd5 1989
6de22619 1990 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 1991 if (memcg != head->mem_cgroup) {
6de22619 1992 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1993 goto again;
1994 }
6de22619
JW
1995
1996 /*
1997 * When charge migration first begins, we can have locked and
1998 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1999 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2000 */
2001 memcg->move_lock_task = current;
2002 memcg->move_lock_flags = flags;
d7365e78 2003
739f79fc 2004 return memcg;
89c06bd5 2005}
81f8c3a4 2006EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2007
d7365e78 2008/**
739f79fc
JW
2009 * __unlock_page_memcg - unlock and unpin a memcg
2010 * @memcg: the memcg
2011 *
2012 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2013 */
739f79fc 2014void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2015{
6de22619
JW
2016 if (memcg && memcg->move_lock_task == current) {
2017 unsigned long flags = memcg->move_lock_flags;
2018
2019 memcg->move_lock_task = NULL;
2020 memcg->move_lock_flags = 0;
2021
2022 spin_unlock_irqrestore(&memcg->move_lock, flags);
2023 }
89c06bd5 2024
d7365e78 2025 rcu_read_unlock();
89c06bd5 2026}
739f79fc
JW
2027
2028/**
2029 * unlock_page_memcg - unlock a page->mem_cgroup binding
2030 * @page: the page
2031 */
2032void unlock_page_memcg(struct page *page)
2033{
9da7b521
JW
2034 struct page *head = compound_head(page);
2035
2036 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2037}
81f8c3a4 2038EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2039
cdec2e42
KH
2040struct memcg_stock_pcp {
2041 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2042 unsigned int nr_pages;
cdec2e42 2043 struct work_struct work;
26fe6168 2044 unsigned long flags;
a0db00fc 2045#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2046};
2047static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2048static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2049
a0956d54
SS
2050/**
2051 * consume_stock: Try to consume stocked charge on this cpu.
2052 * @memcg: memcg to consume from.
2053 * @nr_pages: how many pages to charge.
2054 *
2055 * The charges will only happen if @memcg matches the current cpu's memcg
2056 * stock, and at least @nr_pages are available in that stock. Failure to
2057 * service an allocation will refill the stock.
2058 *
2059 * returns true if successful, false otherwise.
cdec2e42 2060 */
a0956d54 2061static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2062{
2063 struct memcg_stock_pcp *stock;
db2ba40c 2064 unsigned long flags;
3e32cb2e 2065 bool ret = false;
cdec2e42 2066
a983b5eb 2067 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2068 return ret;
a0956d54 2069
db2ba40c
JW
2070 local_irq_save(flags);
2071
2072 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2073 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2074 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2075 ret = true;
2076 }
db2ba40c
JW
2077
2078 local_irq_restore(flags);
2079
cdec2e42
KH
2080 return ret;
2081}
2082
2083/*
3e32cb2e 2084 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2085 */
2086static void drain_stock(struct memcg_stock_pcp *stock)
2087{
2088 struct mem_cgroup *old = stock->cached;
2089
11c9ea4e 2090 if (stock->nr_pages) {
3e32cb2e 2091 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2092 if (do_memsw_account())
3e32cb2e 2093 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2094 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2095 stock->nr_pages = 0;
cdec2e42
KH
2096 }
2097 stock->cached = NULL;
cdec2e42
KH
2098}
2099
cdec2e42
KH
2100static void drain_local_stock(struct work_struct *dummy)
2101{
db2ba40c
JW
2102 struct memcg_stock_pcp *stock;
2103 unsigned long flags;
2104
72f0184c
MH
2105 /*
2106 * The only protection from memory hotplug vs. drain_stock races is
2107 * that we always operate on local CPU stock here with IRQ disabled
2108 */
db2ba40c
JW
2109 local_irq_save(flags);
2110
2111 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2112 drain_stock(stock);
26fe6168 2113 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2114
2115 local_irq_restore(flags);
cdec2e42
KH
2116}
2117
2118/*
3e32cb2e 2119 * Cache charges(val) to local per_cpu area.
320cc51d 2120 * This will be consumed by consume_stock() function, later.
cdec2e42 2121 */
c0ff4b85 2122static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2123{
db2ba40c
JW
2124 struct memcg_stock_pcp *stock;
2125 unsigned long flags;
2126
2127 local_irq_save(flags);
cdec2e42 2128
db2ba40c 2129 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2130 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2131 drain_stock(stock);
c0ff4b85 2132 stock->cached = memcg;
cdec2e42 2133 }
11c9ea4e 2134 stock->nr_pages += nr_pages;
db2ba40c 2135
a983b5eb 2136 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2137 drain_stock(stock);
2138
db2ba40c 2139 local_irq_restore(flags);
cdec2e42
KH
2140}
2141
2142/*
c0ff4b85 2143 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2144 * of the hierarchy under it.
cdec2e42 2145 */
6d3d6aa2 2146static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2147{
26fe6168 2148 int cpu, curcpu;
d38144b7 2149
6d3d6aa2
JW
2150 /* If someone's already draining, avoid adding running more workers. */
2151 if (!mutex_trylock(&percpu_charge_mutex))
2152 return;
72f0184c
MH
2153 /*
2154 * Notify other cpus that system-wide "drain" is running
2155 * We do not care about races with the cpu hotplug because cpu down
2156 * as well as workers from this path always operate on the local
2157 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2158 */
5af12d0e 2159 curcpu = get_cpu();
cdec2e42
KH
2160 for_each_online_cpu(cpu) {
2161 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2162 struct mem_cgroup *memcg;
e1a366be 2163 bool flush = false;
26fe6168 2164
e1a366be 2165 rcu_read_lock();
c0ff4b85 2166 memcg = stock->cached;
e1a366be
RG
2167 if (memcg && stock->nr_pages &&
2168 mem_cgroup_is_descendant(memcg, root_memcg))
2169 flush = true;
2170 rcu_read_unlock();
2171
2172 if (flush &&
2173 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2174 if (cpu == curcpu)
2175 drain_local_stock(&stock->work);
2176 else
2177 schedule_work_on(cpu, &stock->work);
2178 }
cdec2e42 2179 }
5af12d0e 2180 put_cpu();
9f50fad6 2181 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2182}
2183
308167fc 2184static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2185{
cdec2e42 2186 struct memcg_stock_pcp *stock;
42a30035 2187 struct mem_cgroup *memcg, *mi;
cdec2e42 2188
cdec2e42
KH
2189 stock = &per_cpu(memcg_stock, cpu);
2190 drain_stock(stock);
a983b5eb
JW
2191
2192 for_each_mem_cgroup(memcg) {
2193 int i;
2194
2195 for (i = 0; i < MEMCG_NR_STAT; i++) {
2196 int nid;
2197 long x;
2198
871789d4 2199 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2200 if (x)
42a30035
JW
2201 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2202 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2203
2204 if (i >= NR_VM_NODE_STAT_ITEMS)
2205 continue;
2206
2207 for_each_node(nid) {
2208 struct mem_cgroup_per_node *pn;
2209
2210 pn = mem_cgroup_nodeinfo(memcg, nid);
2211 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2212 if (x)
42a30035
JW
2213 do {
2214 atomic_long_add(x, &pn->lruvec_stat[i]);
2215 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2216 }
2217 }
2218
e27be240 2219 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2220 long x;
2221
871789d4 2222 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2223 if (x)
42a30035
JW
2224 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2225 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2226 }
2227 }
2228
308167fc 2229 return 0;
cdec2e42
KH
2230}
2231
f7e1cb6e
JW
2232static void reclaim_high(struct mem_cgroup *memcg,
2233 unsigned int nr_pages,
2234 gfp_t gfp_mask)
2235{
2236 do {
d1663a90
JK
2237 if (page_counter_read(&memcg->memory) <=
2238 READ_ONCE(memcg->memory.high))
f7e1cb6e 2239 continue;
e27be240 2240 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e 2241 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
4bf17307
CD
2242 } while ((memcg = parent_mem_cgroup(memcg)) &&
2243 !mem_cgroup_is_root(memcg));
f7e1cb6e
JW
2244}
2245
2246static void high_work_func(struct work_struct *work)
2247{
2248 struct mem_cgroup *memcg;
2249
2250 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2251 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2252}
2253
0e4b01df
CD
2254/*
2255 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2256 * enough to still cause a significant slowdown in most cases, while still
2257 * allowing diagnostics and tracing to proceed without becoming stuck.
2258 */
2259#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2260
2261/*
2262 * When calculating the delay, we use these either side of the exponentiation to
2263 * maintain precision and scale to a reasonable number of jiffies (see the table
2264 * below.
2265 *
2266 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2267 * overage ratio to a delay.
2268 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2269 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2270 * to produce a reasonable delay curve.
2271 *
2272 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2273 * reasonable delay curve compared to precision-adjusted overage, not
2274 * penalising heavily at first, but still making sure that growth beyond the
2275 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2276 * example, with a high of 100 megabytes:
2277 *
2278 * +-------+------------------------+
2279 * | usage | time to allocate in ms |
2280 * +-------+------------------------+
2281 * | 100M | 0 |
2282 * | 101M | 6 |
2283 * | 102M | 25 |
2284 * | 103M | 57 |
2285 * | 104M | 102 |
2286 * | 105M | 159 |
2287 * | 106M | 230 |
2288 * | 107M | 313 |
2289 * | 108M | 409 |
2290 * | 109M | 518 |
2291 * | 110M | 639 |
2292 * | 111M | 774 |
2293 * | 112M | 921 |
2294 * | 113M | 1081 |
2295 * | 114M | 1254 |
2296 * | 115M | 1439 |
2297 * | 116M | 1638 |
2298 * | 117M | 1849 |
2299 * | 118M | 2000 |
2300 * | 119M | 2000 |
2301 * | 120M | 2000 |
2302 * +-------+------------------------+
2303 */
2304 #define MEMCG_DELAY_PRECISION_SHIFT 20
2305 #define MEMCG_DELAY_SCALING_SHIFT 14
2306
8a5dbc65 2307static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2308{
8a5dbc65 2309 u64 overage;
b23afb93 2310
8a5dbc65
JK
2311 if (usage <= high)
2312 return 0;
e26733e0 2313
8a5dbc65
JK
2314 /*
2315 * Prevent division by 0 in overage calculation by acting as if
2316 * it was a threshold of 1 page
2317 */
2318 high = max(high, 1UL);
9b8b1754 2319
8a5dbc65
JK
2320 overage = usage - high;
2321 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2322 return div64_u64(overage, high);
2323}
e26733e0 2324
8a5dbc65
JK
2325static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2326{
2327 u64 overage, max_overage = 0;
e26733e0 2328
8a5dbc65
JK
2329 do {
2330 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2331 READ_ONCE(memcg->memory.high));
8a5dbc65 2332 max_overage = max(overage, max_overage);
e26733e0
CD
2333 } while ((memcg = parent_mem_cgroup(memcg)) &&
2334 !mem_cgroup_is_root(memcg));
2335
8a5dbc65
JK
2336 return max_overage;
2337}
2338
4b82ab4f
JK
2339static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2340{
2341 u64 overage, max_overage = 0;
2342
2343 do {
2344 overage = calculate_overage(page_counter_read(&memcg->swap),
2345 READ_ONCE(memcg->swap.high));
2346 if (overage)
2347 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2348 max_overage = max(overage, max_overage);
2349 } while ((memcg = parent_mem_cgroup(memcg)) &&
2350 !mem_cgroup_is_root(memcg));
2351
2352 return max_overage;
2353}
2354
8a5dbc65
JK
2355/*
2356 * Get the number of jiffies that we should penalise a mischievous cgroup which
2357 * is exceeding its memory.high by checking both it and its ancestors.
2358 */
2359static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2360 unsigned int nr_pages,
2361 u64 max_overage)
2362{
2363 unsigned long penalty_jiffies;
2364
e26733e0
CD
2365 if (!max_overage)
2366 return 0;
0e4b01df
CD
2367
2368 /*
0e4b01df
CD
2369 * We use overage compared to memory.high to calculate the number of
2370 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2371 * fairly lenient on small overages, and increasingly harsh when the
2372 * memcg in question makes it clear that it has no intention of stopping
2373 * its crazy behaviour, so we exponentially increase the delay based on
2374 * overage amount.
2375 */
e26733e0
CD
2376 penalty_jiffies = max_overage * max_overage * HZ;
2377 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2378 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2379
2380 /*
2381 * Factor in the task's own contribution to the overage, such that four
2382 * N-sized allocations are throttled approximately the same as one
2383 * 4N-sized allocation.
2384 *
2385 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2386 * larger the current charge patch is than that.
2387 */
ff144e69 2388 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2389}
2390
2391/*
2392 * Scheduled by try_charge() to be executed from the userland return path
2393 * and reclaims memory over the high limit.
2394 */
2395void mem_cgroup_handle_over_high(void)
2396{
2397 unsigned long penalty_jiffies;
2398 unsigned long pflags;
2399 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2400 struct mem_cgroup *memcg;
2401
2402 if (likely(!nr_pages))
2403 return;
2404
2405 memcg = get_mem_cgroup_from_mm(current->mm);
2406 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2407 current->memcg_nr_pages_over_high = 0;
2408
2409 /*
2410 * memory.high is breached and reclaim is unable to keep up. Throttle
2411 * allocators proactively to slow down excessive growth.
2412 */
8a5dbc65
JK
2413 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2414 mem_find_max_overage(memcg));
0e4b01df 2415
4b82ab4f
JK
2416 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2417 swap_find_max_overage(memcg));
2418
ff144e69
JK
2419 /*
2420 * Clamp the max delay per usermode return so as to still keep the
2421 * application moving forwards and also permit diagnostics, albeit
2422 * extremely slowly.
2423 */
2424 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2425
0e4b01df
CD
2426 /*
2427 * Don't sleep if the amount of jiffies this memcg owes us is so low
2428 * that it's not even worth doing, in an attempt to be nice to those who
2429 * go only a small amount over their memory.high value and maybe haven't
2430 * been aggressively reclaimed enough yet.
2431 */
2432 if (penalty_jiffies <= HZ / 100)
2433 goto out;
2434
2435 /*
2436 * If we exit early, we're guaranteed to die (since
2437 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2438 * need to account for any ill-begotten jiffies to pay them off later.
2439 */
2440 psi_memstall_enter(&pflags);
2441 schedule_timeout_killable(penalty_jiffies);
2442 psi_memstall_leave(&pflags);
2443
2444out:
2445 css_put(&memcg->css);
b23afb93
TH
2446}
2447
00501b53
JW
2448static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2449 unsigned int nr_pages)
8a9f3ccd 2450{
a983b5eb 2451 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2452 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2453 struct mem_cgroup *mem_over_limit;
3e32cb2e 2454 struct page_counter *counter;
6539cc05 2455 unsigned long nr_reclaimed;
b70a2a21
JW
2456 bool may_swap = true;
2457 bool drained = false;
29ef680a 2458 enum oom_status oom_status;
a636b327 2459
ce00a967 2460 if (mem_cgroup_is_root(memcg))
10d53c74 2461 return 0;
6539cc05 2462retry:
b6b6cc72 2463 if (consume_stock(memcg, nr_pages))
10d53c74 2464 return 0;
8a9f3ccd 2465
7941d214 2466 if (!do_memsw_account() ||
6071ca52
JW
2467 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2468 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2469 goto done_restock;
7941d214 2470 if (do_memsw_account())
3e32cb2e
JW
2471 page_counter_uncharge(&memcg->memsw, batch);
2472 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2473 } else {
3e32cb2e 2474 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2475 may_swap = false;
3fbe7244 2476 }
7a81b88c 2477
6539cc05
JW
2478 if (batch > nr_pages) {
2479 batch = nr_pages;
2480 goto retry;
2481 }
6d61ef40 2482
869712fd
JW
2483 /*
2484 * Memcg doesn't have a dedicated reserve for atomic
2485 * allocations. But like the global atomic pool, we need to
2486 * put the burden of reclaim on regular allocation requests
2487 * and let these go through as privileged allocations.
2488 */
2489 if (gfp_mask & __GFP_ATOMIC)
2490 goto force;
2491
06b078fc
JW
2492 /*
2493 * Unlike in global OOM situations, memcg is not in a physical
2494 * memory shortage. Allow dying and OOM-killed tasks to
2495 * bypass the last charges so that they can exit quickly and
2496 * free their memory.
2497 */
7775face 2498 if (unlikely(should_force_charge()))
10d53c74 2499 goto force;
06b078fc 2500
89a28483
JW
2501 /*
2502 * Prevent unbounded recursion when reclaim operations need to
2503 * allocate memory. This might exceed the limits temporarily,
2504 * but we prefer facilitating memory reclaim and getting back
2505 * under the limit over triggering OOM kills in these cases.
2506 */
2507 if (unlikely(current->flags & PF_MEMALLOC))
2508 goto force;
2509
06b078fc
JW
2510 if (unlikely(task_in_memcg_oom(current)))
2511 goto nomem;
2512
d0164adc 2513 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2514 goto nomem;
4b534334 2515
e27be240 2516 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2517
b70a2a21
JW
2518 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2519 gfp_mask, may_swap);
6539cc05 2520
61e02c74 2521 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2522 goto retry;
28c34c29 2523
b70a2a21 2524 if (!drained) {
6d3d6aa2 2525 drain_all_stock(mem_over_limit);
b70a2a21
JW
2526 drained = true;
2527 goto retry;
2528 }
2529
28c34c29
JW
2530 if (gfp_mask & __GFP_NORETRY)
2531 goto nomem;
6539cc05
JW
2532 /*
2533 * Even though the limit is exceeded at this point, reclaim
2534 * may have been able to free some pages. Retry the charge
2535 * before killing the task.
2536 *
2537 * Only for regular pages, though: huge pages are rather
2538 * unlikely to succeed so close to the limit, and we fall back
2539 * to regular pages anyway in case of failure.
2540 */
61e02c74 2541 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2542 goto retry;
2543 /*
2544 * At task move, charge accounts can be doubly counted. So, it's
2545 * better to wait until the end of task_move if something is going on.
2546 */
2547 if (mem_cgroup_wait_acct_move(mem_over_limit))
2548 goto retry;
2549
9b130619
JW
2550 if (nr_retries--)
2551 goto retry;
2552
38d38493 2553 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2554 goto nomem;
2555
06b078fc 2556 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2557 goto force;
06b078fc 2558
6539cc05 2559 if (fatal_signal_pending(current))
10d53c74 2560 goto force;
6539cc05 2561
29ef680a
MH
2562 /*
2563 * keep retrying as long as the memcg oom killer is able to make
2564 * a forward progress or bypass the charge if the oom killer
2565 * couldn't make any progress.
2566 */
2567 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2568 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2569 switch (oom_status) {
2570 case OOM_SUCCESS:
2571 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2572 goto retry;
2573 case OOM_FAILED:
2574 goto force;
2575 default:
2576 goto nomem;
2577 }
7a81b88c 2578nomem:
6d1fdc48 2579 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2580 return -ENOMEM;
10d53c74
TH
2581force:
2582 /*
2583 * The allocation either can't fail or will lead to more memory
2584 * being freed very soon. Allow memory usage go over the limit
2585 * temporarily by force charging it.
2586 */
2587 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2588 if (do_memsw_account())
10d53c74
TH
2589 page_counter_charge(&memcg->memsw, nr_pages);
2590 css_get_many(&memcg->css, nr_pages);
2591
2592 return 0;
6539cc05
JW
2593
2594done_restock:
e8ea14cc 2595 css_get_many(&memcg->css, batch);
6539cc05
JW
2596 if (batch > nr_pages)
2597 refill_stock(memcg, batch - nr_pages);
b23afb93 2598
241994ed 2599 /*
b23afb93
TH
2600 * If the hierarchy is above the normal consumption range, schedule
2601 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2602 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2603 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2604 * not recorded as it most likely matches current's and won't
2605 * change in the meantime. As high limit is checked again before
2606 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2607 */
2608 do {
4b82ab4f
JK
2609 bool mem_high, swap_high;
2610
2611 mem_high = page_counter_read(&memcg->memory) >
2612 READ_ONCE(memcg->memory.high);
2613 swap_high = page_counter_read(&memcg->swap) >
2614 READ_ONCE(memcg->swap.high);
2615
2616 /* Don't bother a random interrupted task */
2617 if (in_interrupt()) {
2618 if (mem_high) {
f7e1cb6e
JW
2619 schedule_work(&memcg->high_work);
2620 break;
2621 }
4b82ab4f
JK
2622 continue;
2623 }
2624
2625 if (mem_high || swap_high) {
2626 /*
2627 * The allocating tasks in this cgroup will need to do
2628 * reclaim or be throttled to prevent further growth
2629 * of the memory or swap footprints.
2630 *
2631 * Target some best-effort fairness between the tasks,
2632 * and distribute reclaim work and delay penalties
2633 * based on how much each task is actually allocating.
2634 */
9516a18a 2635 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2636 set_notify_resume(current);
2637 break;
2638 }
241994ed 2639 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2640
2641 return 0;
7a81b88c 2642}
8a9f3ccd 2643
f0e45fb4 2644#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2645static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2646{
ce00a967
JW
2647 if (mem_cgroup_is_root(memcg))
2648 return;
2649
3e32cb2e 2650 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2651 if (do_memsw_account())
3e32cb2e 2652 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2653
e8ea14cc 2654 css_put_many(&memcg->css, nr_pages);
d01dd17f 2655}
f0e45fb4 2656#endif
d01dd17f 2657
0a31bc97
JW
2658static void lock_page_lru(struct page *page, int *isolated)
2659{
f4b7e272 2660 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2661
f4b7e272 2662 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2663 if (PageLRU(page)) {
2664 struct lruvec *lruvec;
2665
f4b7e272 2666 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2667 ClearPageLRU(page);
2668 del_page_from_lru_list(page, lruvec, page_lru(page));
2669 *isolated = 1;
2670 } else
2671 *isolated = 0;
2672}
2673
2674static void unlock_page_lru(struct page *page, int isolated)
2675{
f4b7e272 2676 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2677
2678 if (isolated) {
2679 struct lruvec *lruvec;
2680
f4b7e272 2681 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2682 VM_BUG_ON_PAGE(PageLRU(page), page);
2683 SetPageLRU(page);
2684 add_page_to_lru_list(page, lruvec, page_lru(page));
2685 }
f4b7e272 2686 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2687}
2688
00501b53 2689static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2690 bool lrucare)
7a81b88c 2691{
0a31bc97 2692 int isolated;
9ce70c02 2693
1306a85a 2694 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2695
2696 /*
2697 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2698 * may already be on some other mem_cgroup's LRU. Take care of it.
2699 */
0a31bc97
JW
2700 if (lrucare)
2701 lock_page_lru(page, &isolated);
9ce70c02 2702
0a31bc97
JW
2703 /*
2704 * Nobody should be changing or seriously looking at
1306a85a 2705 * page->mem_cgroup at this point:
0a31bc97
JW
2706 *
2707 * - the page is uncharged
2708 *
2709 * - the page is off-LRU
2710 *
2711 * - an anonymous fault has exclusive page access, except for
2712 * a locked page table
2713 *
2714 * - a page cache insertion, a swapin fault, or a migration
2715 * have the page locked
2716 */
1306a85a 2717 page->mem_cgroup = memcg;
9ce70c02 2718
0a31bc97
JW
2719 if (lrucare)
2720 unlock_page_lru(page, isolated);
7a81b88c 2721}
66e1707b 2722
84c07d11 2723#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2724/*
2725 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2726 *
2727 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2728 * cgroup_mutex, etc.
2729 */
2730struct mem_cgroup *mem_cgroup_from_obj(void *p)
2731{
2732 struct page *page;
2733
2734 if (mem_cgroup_disabled())
2735 return NULL;
2736
2737 page = virt_to_head_page(p);
2738
2739 /*
2740 * Slab pages don't have page->mem_cgroup set because corresponding
2741 * kmem caches can be reparented during the lifetime. That's why
2742 * memcg_from_slab_page() should be used instead.
2743 */
2744 if (PageSlab(page))
2745 return memcg_from_slab_page(page);
2746
2747 /* All other pages use page->mem_cgroup */
2748 return page->mem_cgroup;
2749}
2750
f3bb3043 2751static int memcg_alloc_cache_id(void)
55007d84 2752{
f3bb3043
VD
2753 int id, size;
2754 int err;
2755
dbcf73e2 2756 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2757 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2758 if (id < 0)
2759 return id;
55007d84 2760
dbcf73e2 2761 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2762 return id;
2763
2764 /*
2765 * There's no space for the new id in memcg_caches arrays,
2766 * so we have to grow them.
2767 */
05257a1a 2768 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2769
2770 size = 2 * (id + 1);
55007d84
GC
2771 if (size < MEMCG_CACHES_MIN_SIZE)
2772 size = MEMCG_CACHES_MIN_SIZE;
2773 else if (size > MEMCG_CACHES_MAX_SIZE)
2774 size = MEMCG_CACHES_MAX_SIZE;
2775
f3bb3043 2776 err = memcg_update_all_caches(size);
60d3fd32
VD
2777 if (!err)
2778 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2779 if (!err)
2780 memcg_nr_cache_ids = size;
2781
2782 up_write(&memcg_cache_ids_sem);
2783
f3bb3043 2784 if (err) {
dbcf73e2 2785 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2786 return err;
2787 }
2788 return id;
2789}
2790
2791static void memcg_free_cache_id(int id)
2792{
dbcf73e2 2793 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2794}
2795
d5b3cf71 2796struct memcg_kmem_cache_create_work {
5722d094
VD
2797 struct mem_cgroup *memcg;
2798 struct kmem_cache *cachep;
2799 struct work_struct work;
2800};
2801
d5b3cf71 2802static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2803{
d5b3cf71
VD
2804 struct memcg_kmem_cache_create_work *cw =
2805 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2806 struct mem_cgroup *memcg = cw->memcg;
2807 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2808
d5b3cf71 2809 memcg_create_kmem_cache(memcg, cachep);
bd673145 2810
5722d094 2811 css_put(&memcg->css);
d7f25f8a
GC
2812 kfree(cw);
2813}
2814
2815/*
2816 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2817 */
85cfb245 2818static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2819 struct kmem_cache *cachep)
d7f25f8a 2820{
d5b3cf71 2821 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2822
f0a3a24b
RG
2823 if (!css_tryget_online(&memcg->css))
2824 return;
2825
c892fd82 2826 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2827 if (!cw)
d7f25f8a 2828 return;
8135be5a 2829
d7f25f8a
GC
2830 cw->memcg = memcg;
2831 cw->cachep = cachep;
d5b3cf71 2832 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2833
17cc4dfe 2834 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2835}
2836
45264778
VD
2837static inline bool memcg_kmem_bypass(void)
2838{
50d53d7c
ZL
2839 if (in_interrupt())
2840 return true;
2841
2842 /* Allow remote memcg charging in kthread contexts. */
2843 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2844 !current->active_memcg)
45264778
VD
2845 return true;
2846 return false;
2847}
2848
2849/**
2850 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2851 * @cachep: the original global kmem cache
2852 *
d7f25f8a
GC
2853 * Return the kmem_cache we're supposed to use for a slab allocation.
2854 * We try to use the current memcg's version of the cache.
2855 *
45264778
VD
2856 * If the cache does not exist yet, if we are the first user of it, we
2857 * create it asynchronously in a workqueue and let the current allocation
2858 * go through with the original cache.
d7f25f8a 2859 *
45264778
VD
2860 * This function takes a reference to the cache it returns to assure it
2861 * won't get destroyed while we are working with it. Once the caller is
2862 * done with it, memcg_kmem_put_cache() must be called to release the
2863 * reference.
d7f25f8a 2864 */
45264778 2865struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2866{
2867 struct mem_cgroup *memcg;
959c8963 2868 struct kmem_cache *memcg_cachep;
f0a3a24b 2869 struct memcg_cache_array *arr;
2a4db7eb 2870 int kmemcg_id;
d7f25f8a 2871
f7ce3190 2872 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2873
45264778 2874 if (memcg_kmem_bypass())
230e9fc2
VD
2875 return cachep;
2876
f0a3a24b
RG
2877 rcu_read_lock();
2878
2879 if (unlikely(current->active_memcg))
2880 memcg = current->active_memcg;
2881 else
2882 memcg = mem_cgroup_from_task(current);
2883
2884 if (!memcg || memcg == root_mem_cgroup)
2885 goto out_unlock;
2886
4db0c3c2 2887 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2888 if (kmemcg_id < 0)
f0a3a24b 2889 goto out_unlock;
d7f25f8a 2890
f0a3a24b
RG
2891 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2892
2893 /*
2894 * Make sure we will access the up-to-date value. The code updating
2895 * memcg_caches issues a write barrier to match the data dependency
2896 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2897 */
2898 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2899
2900 /*
2901 * If we are in a safe context (can wait, and not in interrupt
2902 * context), we could be be predictable and return right away.
2903 * This would guarantee that the allocation being performed
2904 * already belongs in the new cache.
2905 *
2906 * However, there are some clashes that can arrive from locking.
2907 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2908 * memcg_create_kmem_cache, this means no further allocation
2909 * could happen with the slab_mutex held. So it's better to
2910 * defer everything.
f0a3a24b
RG
2911 *
2912 * If the memcg is dying or memcg_cache is about to be released,
2913 * don't bother creating new kmem_caches. Because memcg_cachep
2914 * is ZEROed as the fist step of kmem offlining, we don't need
2915 * percpu_ref_tryget_live() here. css_tryget_online() check in
2916 * memcg_schedule_kmem_cache_create() will prevent us from
2917 * creation of a new kmem_cache.
ca0dde97 2918 */
f0a3a24b
RG
2919 if (unlikely(!memcg_cachep))
2920 memcg_schedule_kmem_cache_create(memcg, cachep);
2921 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2922 cachep = memcg_cachep;
2923out_unlock:
2924 rcu_read_unlock();
ca0dde97 2925 return cachep;
d7f25f8a 2926}
d7f25f8a 2927
45264778
VD
2928/**
2929 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2930 * @cachep: the cache returned by memcg_kmem_get_cache
2931 */
2932void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2933{
2934 if (!is_root_cache(cachep))
f0a3a24b 2935 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2936}
2937
45264778 2938/**
4b13f64d 2939 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2940 * @memcg: memory cgroup to charge
45264778 2941 * @gfp: reclaim mode
92d0510c 2942 * @nr_pages: number of pages to charge
45264778
VD
2943 *
2944 * Returns 0 on success, an error code on failure.
2945 */
4b13f64d
RG
2946int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2947 unsigned int nr_pages)
7ae1e1d0 2948{
f3ccb2c4 2949 struct page_counter *counter;
7ae1e1d0
GC
2950 int ret;
2951
f3ccb2c4 2952 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2953 if (ret)
f3ccb2c4 2954 return ret;
52c29b04
JW
2955
2956 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2957 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2958
2959 /*
2960 * Enforce __GFP_NOFAIL allocation because callers are not
2961 * prepared to see failures and likely do not have any failure
2962 * handling code.
2963 */
2964 if (gfp & __GFP_NOFAIL) {
2965 page_counter_charge(&memcg->kmem, nr_pages);
2966 return 0;
2967 }
52c29b04
JW
2968 cancel_charge(memcg, nr_pages);
2969 return -ENOMEM;
7ae1e1d0 2970 }
f3ccb2c4 2971 return 0;
7ae1e1d0
GC
2972}
2973
4b13f64d
RG
2974/**
2975 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2976 * @memcg: memcg to uncharge
2977 * @nr_pages: number of pages to uncharge
2978 */
2979void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2980{
2981 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2982 page_counter_uncharge(&memcg->kmem, nr_pages);
2983
2984 page_counter_uncharge(&memcg->memory, nr_pages);
2985 if (do_memsw_account())
2986 page_counter_uncharge(&memcg->memsw, nr_pages);
2987}
2988
45264778 2989/**
f4b00eab 2990 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2991 * @page: page to charge
2992 * @gfp: reclaim mode
2993 * @order: allocation order
2994 *
2995 * Returns 0 on success, an error code on failure.
2996 */
f4b00eab 2997int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2998{
f3ccb2c4 2999 struct mem_cgroup *memcg;
fcff7d7e 3000 int ret = 0;
7ae1e1d0 3001
60cd4bcd 3002 if (memcg_kmem_bypass())
45264778
VD
3003 return 0;
3004
d46eb14b 3005 memcg = get_mem_cgroup_from_current();
c4159a75 3006 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 3007 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3008 if (!ret) {
3009 page->mem_cgroup = memcg;
c4159a75 3010 __SetPageKmemcg(page);
4d96ba35 3011 }
c4159a75 3012 }
7ae1e1d0 3013 css_put(&memcg->css);
d05e83a6 3014 return ret;
7ae1e1d0 3015}
49a18eae 3016
45264778 3017/**
f4b00eab 3018 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3019 * @page: page to uncharge
3020 * @order: allocation order
3021 */
f4b00eab 3022void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3023{
1306a85a 3024 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3025 unsigned int nr_pages = 1 << order;
7ae1e1d0 3026
7ae1e1d0
GC
3027 if (!memcg)
3028 return;
3029
309381fe 3030 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3031 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3032 page->mem_cgroup = NULL;
c4159a75
VD
3033
3034 /* slab pages do not have PageKmemcg flag set */
3035 if (PageKmemcg(page))
3036 __ClearPageKmemcg(page);
3037
f3ccb2c4 3038 css_put_many(&memcg->css, nr_pages);
60d3fd32 3039}
84c07d11 3040#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3041
ca3e0214
KH
3042#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3043
ca3e0214
KH
3044/*
3045 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3046 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3047 */
e94c8a9c 3048void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3049{
e94c8a9c 3050 int i;
ca3e0214 3051
3d37c4a9
KH
3052 if (mem_cgroup_disabled())
3053 return;
b070e65c 3054
29833315 3055 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3056 head[i].mem_cgroup = head->mem_cgroup;
ca3e0214 3057}
12d27107 3058#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3059
c255a458 3060#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3061/**
3062 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3063 * @entry: swap entry to be moved
3064 * @from: mem_cgroup which the entry is moved from
3065 * @to: mem_cgroup which the entry is moved to
3066 *
3067 * It succeeds only when the swap_cgroup's record for this entry is the same
3068 * as the mem_cgroup's id of @from.
3069 *
3070 * Returns 0 on success, -EINVAL on failure.
3071 *
3e32cb2e 3072 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3073 * both res and memsw, and called css_get().
3074 */
3075static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3076 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3077{
3078 unsigned short old_id, new_id;
3079
34c00c31
LZ
3080 old_id = mem_cgroup_id(from);
3081 new_id = mem_cgroup_id(to);
02491447
DN
3082
3083 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3084 mod_memcg_state(from, MEMCG_SWAP, -1);
3085 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3086 return 0;
3087 }
3088 return -EINVAL;
3089}
3090#else
3091static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3092 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3093{
3094 return -EINVAL;
3095}
8c7c6e34 3096#endif
d13d1443 3097
bbec2e15 3098static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3099
bbec2e15
RG
3100static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3101 unsigned long max, bool memsw)
628f4235 3102{
3e32cb2e 3103 bool enlarge = false;
bb4a7ea2 3104 bool drained = false;
3e32cb2e 3105 int ret;
c054a78c
YZ
3106 bool limits_invariant;
3107 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3108
3e32cb2e 3109 do {
628f4235
KH
3110 if (signal_pending(current)) {
3111 ret = -EINTR;
3112 break;
3113 }
3e32cb2e 3114
bbec2e15 3115 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3116 /*
3117 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3118 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3119 */
15b42562 3120 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3121 max <= memcg->memsw.max;
c054a78c 3122 if (!limits_invariant) {
bbec2e15 3123 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3124 ret = -EINVAL;
8c7c6e34
KH
3125 break;
3126 }
bbec2e15 3127 if (max > counter->max)
3e32cb2e 3128 enlarge = true;
bbec2e15
RG
3129 ret = page_counter_set_max(counter, max);
3130 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3131
3132 if (!ret)
3133 break;
3134
bb4a7ea2
SB
3135 if (!drained) {
3136 drain_all_stock(memcg);
3137 drained = true;
3138 continue;
3139 }
3140
1ab5c056
AR
3141 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3142 GFP_KERNEL, !memsw)) {
3143 ret = -EBUSY;
3144 break;
3145 }
3146 } while (true);
3e32cb2e 3147
3c11ecf4
KH
3148 if (!ret && enlarge)
3149 memcg_oom_recover(memcg);
3e32cb2e 3150
628f4235
KH
3151 return ret;
3152}
3153
ef8f2327 3154unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3155 gfp_t gfp_mask,
3156 unsigned long *total_scanned)
3157{
3158 unsigned long nr_reclaimed = 0;
ef8f2327 3159 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3160 unsigned long reclaimed;
3161 int loop = 0;
ef8f2327 3162 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3163 unsigned long excess;
0608f43d
AM
3164 unsigned long nr_scanned;
3165
3166 if (order > 0)
3167 return 0;
3168
ef8f2327 3169 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3170
3171 /*
3172 * Do not even bother to check the largest node if the root
3173 * is empty. Do it lockless to prevent lock bouncing. Races
3174 * are acceptable as soft limit is best effort anyway.
3175 */
bfc7228b 3176 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3177 return 0;
3178
0608f43d
AM
3179 /*
3180 * This loop can run a while, specially if mem_cgroup's continuously
3181 * keep exceeding their soft limit and putting the system under
3182 * pressure
3183 */
3184 do {
3185 if (next_mz)
3186 mz = next_mz;
3187 else
3188 mz = mem_cgroup_largest_soft_limit_node(mctz);
3189 if (!mz)
3190 break;
3191
3192 nr_scanned = 0;
ef8f2327 3193 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3194 gfp_mask, &nr_scanned);
3195 nr_reclaimed += reclaimed;
3196 *total_scanned += nr_scanned;
0a31bc97 3197 spin_lock_irq(&mctz->lock);
bc2f2e7f 3198 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3199
3200 /*
3201 * If we failed to reclaim anything from this memory cgroup
3202 * it is time to move on to the next cgroup
3203 */
3204 next_mz = NULL;
bc2f2e7f
VD
3205 if (!reclaimed)
3206 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3207
3e32cb2e 3208 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3209 /*
3210 * One school of thought says that we should not add
3211 * back the node to the tree if reclaim returns 0.
3212 * But our reclaim could return 0, simply because due
3213 * to priority we are exposing a smaller subset of
3214 * memory to reclaim from. Consider this as a longer
3215 * term TODO.
3216 */
3217 /* If excess == 0, no tree ops */
cf2c8127 3218 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3219 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3220 css_put(&mz->memcg->css);
3221 loop++;
3222 /*
3223 * Could not reclaim anything and there are no more
3224 * mem cgroups to try or we seem to be looping without
3225 * reclaiming anything.
3226 */
3227 if (!nr_reclaimed &&
3228 (next_mz == NULL ||
3229 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3230 break;
3231 } while (!nr_reclaimed);
3232 if (next_mz)
3233 css_put(&next_mz->memcg->css);
3234 return nr_reclaimed;
3235}
3236
ea280e7b
TH
3237/*
3238 * Test whether @memcg has children, dead or alive. Note that this
3239 * function doesn't care whether @memcg has use_hierarchy enabled and
3240 * returns %true if there are child csses according to the cgroup
3241 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3242 */
b5f99b53
GC
3243static inline bool memcg_has_children(struct mem_cgroup *memcg)
3244{
ea280e7b
TH
3245 bool ret;
3246
ea280e7b
TH
3247 rcu_read_lock();
3248 ret = css_next_child(NULL, &memcg->css);
3249 rcu_read_unlock();
3250 return ret;
b5f99b53
GC
3251}
3252
c26251f9 3253/*
51038171 3254 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3255 *
3256 * Caller is responsible for holding css reference for memcg.
3257 */
3258static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3259{
3260 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3261
c1e862c1
KH
3262 /* we call try-to-free pages for make this cgroup empty */
3263 lru_add_drain_all();
d12c60f6
JS
3264
3265 drain_all_stock(memcg);
3266
f817ed48 3267 /* try to free all pages in this cgroup */
3e32cb2e 3268 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3269 int progress;
c1e862c1 3270
c26251f9
MH
3271 if (signal_pending(current))
3272 return -EINTR;
3273
b70a2a21
JW
3274 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3275 GFP_KERNEL, true);
c1e862c1 3276 if (!progress) {
f817ed48 3277 nr_retries--;
c1e862c1 3278 /* maybe some writeback is necessary */
8aa7e847 3279 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3280 }
f817ed48
KH
3281
3282 }
ab5196c2
MH
3283
3284 return 0;
cc847582
KH
3285}
3286
6770c64e
TH
3287static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3288 char *buf, size_t nbytes,
3289 loff_t off)
c1e862c1 3290{
6770c64e 3291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3292
d8423011
MH
3293 if (mem_cgroup_is_root(memcg))
3294 return -EINVAL;
6770c64e 3295 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3296}
3297
182446d0
TH
3298static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3299 struct cftype *cft)
18f59ea7 3300{
182446d0 3301 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3302}
3303
182446d0
TH
3304static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3305 struct cftype *cft, u64 val)
18f59ea7
BS
3306{
3307 int retval = 0;
182446d0 3308 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3309 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3310
567fb435 3311 if (memcg->use_hierarchy == val)
0b8f73e1 3312 return 0;
567fb435 3313
18f59ea7 3314 /*
af901ca1 3315 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3316 * in the child subtrees. If it is unset, then the change can
3317 * occur, provided the current cgroup has no children.
3318 *
3319 * For the root cgroup, parent_mem is NULL, we allow value to be
3320 * set if there are no children.
3321 */
c0ff4b85 3322 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3323 (val == 1 || val == 0)) {
ea280e7b 3324 if (!memcg_has_children(memcg))
c0ff4b85 3325 memcg->use_hierarchy = val;
18f59ea7
BS
3326 else
3327 retval = -EBUSY;
3328 } else
3329 retval = -EINVAL;
567fb435 3330
18f59ea7
BS
3331 return retval;
3332}
3333
6f646156 3334static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3335{
42a30035 3336 unsigned long val;
ce00a967 3337
3e32cb2e 3338 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3339 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3340 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3341 if (swap)
3342 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3343 } else {
ce00a967 3344 if (!swap)
3e32cb2e 3345 val = page_counter_read(&memcg->memory);
ce00a967 3346 else
3e32cb2e 3347 val = page_counter_read(&memcg->memsw);
ce00a967 3348 }
c12176d3 3349 return val;
ce00a967
JW
3350}
3351
3e32cb2e
JW
3352enum {
3353 RES_USAGE,
3354 RES_LIMIT,
3355 RES_MAX_USAGE,
3356 RES_FAILCNT,
3357 RES_SOFT_LIMIT,
3358};
ce00a967 3359
791badbd 3360static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3361 struct cftype *cft)
8cdea7c0 3362{
182446d0 3363 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3364 struct page_counter *counter;
af36f906 3365
3e32cb2e 3366 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3367 case _MEM:
3e32cb2e
JW
3368 counter = &memcg->memory;
3369 break;
8c7c6e34 3370 case _MEMSWAP:
3e32cb2e
JW
3371 counter = &memcg->memsw;
3372 break;
510fc4e1 3373 case _KMEM:
3e32cb2e 3374 counter = &memcg->kmem;
510fc4e1 3375 break;
d55f90bf 3376 case _TCP:
0db15298 3377 counter = &memcg->tcpmem;
d55f90bf 3378 break;
8c7c6e34
KH
3379 default:
3380 BUG();
8c7c6e34 3381 }
3e32cb2e
JW
3382
3383 switch (MEMFILE_ATTR(cft->private)) {
3384 case RES_USAGE:
3385 if (counter == &memcg->memory)
c12176d3 3386 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3387 if (counter == &memcg->memsw)
c12176d3 3388 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3389 return (u64)page_counter_read(counter) * PAGE_SIZE;
3390 case RES_LIMIT:
bbec2e15 3391 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3392 case RES_MAX_USAGE:
3393 return (u64)counter->watermark * PAGE_SIZE;
3394 case RES_FAILCNT:
3395 return counter->failcnt;
3396 case RES_SOFT_LIMIT:
3397 return (u64)memcg->soft_limit * PAGE_SIZE;
3398 default:
3399 BUG();
3400 }
8cdea7c0 3401}
510fc4e1 3402
4a87e2a2 3403static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3404{
4a87e2a2 3405 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3406 struct mem_cgroup *mi;
3407 int node, cpu, i;
c350a99e
RG
3408
3409 for_each_online_cpu(cpu)
4a87e2a2 3410 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3411 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3412
3413 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3414 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3415 atomic_long_add(stat[i], &mi->vmstats[i]);
3416
3417 for_each_node(node) {
3418 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3419 struct mem_cgroup_per_node *pi;
3420
4a87e2a2 3421 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3422 stat[i] = 0;
3423
3424 for_each_online_cpu(cpu)
4a87e2a2 3425 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3426 stat[i] += per_cpu(
3427 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3428
3429 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3430 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3431 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3432 }
3433}
3434
bb65f89b
RG
3435static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3436{
3437 unsigned long events[NR_VM_EVENT_ITEMS];
3438 struct mem_cgroup *mi;
3439 int cpu, i;
3440
3441 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3442 events[i] = 0;
3443
3444 for_each_online_cpu(cpu)
3445 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3446 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3447 cpu);
bb65f89b
RG
3448
3449 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3450 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3451 atomic_long_add(events[i], &mi->vmevents[i]);
3452}
3453
84c07d11 3454#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3455static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3456{
d6441637
VD
3457 int memcg_id;
3458
b313aeee
VD
3459 if (cgroup_memory_nokmem)
3460 return 0;
3461
2a4db7eb 3462 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3463 BUG_ON(memcg->kmem_state);
d6441637 3464
f3bb3043 3465 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3466 if (memcg_id < 0)
3467 return memcg_id;
d6441637 3468
ef12947c 3469 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3470 /*
567e9ab2 3471 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3472 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3473 * guarantee no one starts accounting before all call sites are
3474 * patched.
3475 */
900a38f0 3476 memcg->kmemcg_id = memcg_id;
567e9ab2 3477 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3478 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3479
3480 return 0;
d6441637
VD
3481}
3482
8e0a8912
JW
3483static void memcg_offline_kmem(struct mem_cgroup *memcg)
3484{
3485 struct cgroup_subsys_state *css;
3486 struct mem_cgroup *parent, *child;
3487 int kmemcg_id;
3488
3489 if (memcg->kmem_state != KMEM_ONLINE)
3490 return;
3491 /*
3492 * Clear the online state before clearing memcg_caches array
3493 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3494 * guarantees that no cache will be created for this cgroup
3495 * after we are done (see memcg_create_kmem_cache()).
3496 */
3497 memcg->kmem_state = KMEM_ALLOCATED;
3498
8e0a8912
JW
3499 parent = parent_mem_cgroup(memcg);
3500 if (!parent)
3501 parent = root_mem_cgroup;
3502
bee07b33 3503 /*
4a87e2a2 3504 * Deactivate and reparent kmem_caches.
bee07b33 3505 */
fb2f2b0a
RG
3506 memcg_deactivate_kmem_caches(memcg, parent);
3507
3508 kmemcg_id = memcg->kmemcg_id;
3509 BUG_ON(kmemcg_id < 0);
3510
8e0a8912
JW
3511 /*
3512 * Change kmemcg_id of this cgroup and all its descendants to the
3513 * parent's id, and then move all entries from this cgroup's list_lrus
3514 * to ones of the parent. After we have finished, all list_lrus
3515 * corresponding to this cgroup are guaranteed to remain empty. The
3516 * ordering is imposed by list_lru_node->lock taken by
3517 * memcg_drain_all_list_lrus().
3518 */
3a06bb78 3519 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3520 css_for_each_descendant_pre(css, &memcg->css) {
3521 child = mem_cgroup_from_css(css);
3522 BUG_ON(child->kmemcg_id != kmemcg_id);
3523 child->kmemcg_id = parent->kmemcg_id;
3524 if (!memcg->use_hierarchy)
3525 break;
3526 }
3a06bb78
TH
3527 rcu_read_unlock();
3528
9bec5c35 3529 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3530
3531 memcg_free_cache_id(kmemcg_id);
3532}
3533
3534static void memcg_free_kmem(struct mem_cgroup *memcg)
3535{
0b8f73e1
JW
3536 /* css_alloc() failed, offlining didn't happen */
3537 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3538 memcg_offline_kmem(memcg);
3539
8e0a8912 3540 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3541 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3542 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3543 }
8e0a8912 3544}
d6441637 3545#else
0b8f73e1 3546static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3547{
3548 return 0;
3549}
3550static void memcg_offline_kmem(struct mem_cgroup *memcg)
3551{
3552}
3553static void memcg_free_kmem(struct mem_cgroup *memcg)
3554{
3555}
84c07d11 3556#endif /* CONFIG_MEMCG_KMEM */
127424c8 3557
bbec2e15
RG
3558static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3559 unsigned long max)
d6441637 3560{
b313aeee 3561 int ret;
127424c8 3562
bbec2e15
RG
3563 mutex_lock(&memcg_max_mutex);
3564 ret = page_counter_set_max(&memcg->kmem, max);
3565 mutex_unlock(&memcg_max_mutex);
127424c8 3566 return ret;
d6441637 3567}
510fc4e1 3568
bbec2e15 3569static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3570{
3571 int ret;
3572
bbec2e15 3573 mutex_lock(&memcg_max_mutex);
d55f90bf 3574
bbec2e15 3575 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3576 if (ret)
3577 goto out;
3578
0db15298 3579 if (!memcg->tcpmem_active) {
d55f90bf
VD
3580 /*
3581 * The active flag needs to be written after the static_key
3582 * update. This is what guarantees that the socket activation
2d758073
JW
3583 * function is the last one to run. See mem_cgroup_sk_alloc()
3584 * for details, and note that we don't mark any socket as
3585 * belonging to this memcg until that flag is up.
d55f90bf
VD
3586 *
3587 * We need to do this, because static_keys will span multiple
3588 * sites, but we can't control their order. If we mark a socket
3589 * as accounted, but the accounting functions are not patched in
3590 * yet, we'll lose accounting.
3591 *
2d758073 3592 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3593 * because when this value change, the code to process it is not
3594 * patched in yet.
3595 */
3596 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3597 memcg->tcpmem_active = true;
d55f90bf
VD
3598 }
3599out:
bbec2e15 3600 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3601 return ret;
3602}
d55f90bf 3603
628f4235
KH
3604/*
3605 * The user of this function is...
3606 * RES_LIMIT.
3607 */
451af504
TH
3608static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3609 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3610{
451af504 3611 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3612 unsigned long nr_pages;
628f4235
KH
3613 int ret;
3614
451af504 3615 buf = strstrip(buf);
650c5e56 3616 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3617 if (ret)
3618 return ret;
af36f906 3619
3e32cb2e 3620 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3621 case RES_LIMIT:
4b3bde4c
BS
3622 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3623 ret = -EINVAL;
3624 break;
3625 }
3e32cb2e
JW
3626 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3627 case _MEM:
bbec2e15 3628 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3629 break;
3e32cb2e 3630 case _MEMSWAP:
bbec2e15 3631 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3632 break;
3e32cb2e 3633 case _KMEM:
0158115f
MH
3634 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3635 "Please report your usecase to linux-mm@kvack.org if you "
3636 "depend on this functionality.\n");
bbec2e15 3637 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3638 break;
d55f90bf 3639 case _TCP:
bbec2e15 3640 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3641 break;
3e32cb2e 3642 }
296c81d8 3643 break;
3e32cb2e
JW
3644 case RES_SOFT_LIMIT:
3645 memcg->soft_limit = nr_pages;
3646 ret = 0;
628f4235
KH
3647 break;
3648 }
451af504 3649 return ret ?: nbytes;
8cdea7c0
BS
3650}
3651
6770c64e
TH
3652static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3653 size_t nbytes, loff_t off)
c84872e1 3654{
6770c64e 3655 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3656 struct page_counter *counter;
c84872e1 3657
3e32cb2e
JW
3658 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3659 case _MEM:
3660 counter = &memcg->memory;
3661 break;
3662 case _MEMSWAP:
3663 counter = &memcg->memsw;
3664 break;
3665 case _KMEM:
3666 counter = &memcg->kmem;
3667 break;
d55f90bf 3668 case _TCP:
0db15298 3669 counter = &memcg->tcpmem;
d55f90bf 3670 break;
3e32cb2e
JW
3671 default:
3672 BUG();
3673 }
af36f906 3674
3e32cb2e 3675 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3676 case RES_MAX_USAGE:
3e32cb2e 3677 page_counter_reset_watermark(counter);
29f2a4da
PE
3678 break;
3679 case RES_FAILCNT:
3e32cb2e 3680 counter->failcnt = 0;
29f2a4da 3681 break;
3e32cb2e
JW
3682 default:
3683 BUG();
29f2a4da 3684 }
f64c3f54 3685
6770c64e 3686 return nbytes;
c84872e1
PE
3687}
3688
182446d0 3689static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3690 struct cftype *cft)
3691{
182446d0 3692 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3693}
3694
02491447 3695#ifdef CONFIG_MMU
182446d0 3696static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3697 struct cftype *cft, u64 val)
3698{
182446d0 3699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3700
1dfab5ab 3701 if (val & ~MOVE_MASK)
7dc74be0 3702 return -EINVAL;
ee5e8472 3703
7dc74be0 3704 /*
ee5e8472
GC
3705 * No kind of locking is needed in here, because ->can_attach() will
3706 * check this value once in the beginning of the process, and then carry
3707 * on with stale data. This means that changes to this value will only
3708 * affect task migrations starting after the change.
7dc74be0 3709 */
c0ff4b85 3710 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3711 return 0;
3712}
02491447 3713#else
182446d0 3714static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3715 struct cftype *cft, u64 val)
3716{
3717 return -ENOSYS;
3718}
3719#endif
7dc74be0 3720
406eb0c9 3721#ifdef CONFIG_NUMA
113b7dfd
JW
3722
3723#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3724#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3725#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3726
3727static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3728 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3729{
867e5e1d 3730 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3731 unsigned long nr = 0;
3732 enum lru_list lru;
3733
3734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3735
3736 for_each_lru(lru) {
3737 if (!(BIT(lru) & lru_mask))
3738 continue;
dd8657b6
SB
3739 if (tree)
3740 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3741 else
3742 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3743 }
3744 return nr;
3745}
3746
3747static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3748 unsigned int lru_mask,
3749 bool tree)
113b7dfd
JW
3750{
3751 unsigned long nr = 0;
3752 enum lru_list lru;
3753
3754 for_each_lru(lru) {
3755 if (!(BIT(lru) & lru_mask))
3756 continue;
dd8657b6
SB
3757 if (tree)
3758 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3759 else
3760 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3761 }
3762 return nr;
3763}
3764
2da8ca82 3765static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3766{
25485de6
GT
3767 struct numa_stat {
3768 const char *name;
3769 unsigned int lru_mask;
3770 };
3771
3772 static const struct numa_stat stats[] = {
3773 { "total", LRU_ALL },
3774 { "file", LRU_ALL_FILE },
3775 { "anon", LRU_ALL_ANON },
3776 { "unevictable", BIT(LRU_UNEVICTABLE) },
3777 };
3778 const struct numa_stat *stat;
406eb0c9 3779 int nid;
aa9694bb 3780 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3781
25485de6 3782 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3783 seq_printf(m, "%s=%lu", stat->name,
3784 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3785 false));
3786 for_each_node_state(nid, N_MEMORY)
3787 seq_printf(m, " N%d=%lu", nid,
3788 mem_cgroup_node_nr_lru_pages(memcg, nid,
3789 stat->lru_mask, false));
25485de6 3790 seq_putc(m, '\n');
406eb0c9 3791 }
406eb0c9 3792
071aee13 3793 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3794
3795 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3796 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3797 true));
3798 for_each_node_state(nid, N_MEMORY)
3799 seq_printf(m, " N%d=%lu", nid,
3800 mem_cgroup_node_nr_lru_pages(memcg, nid,
3801 stat->lru_mask, true));
071aee13 3802 seq_putc(m, '\n');
406eb0c9 3803 }
406eb0c9 3804
406eb0c9
YH
3805 return 0;
3806}
3807#endif /* CONFIG_NUMA */
3808
c8713d0b 3809static const unsigned int memcg1_stats[] = {
0d1c2072 3810 NR_FILE_PAGES,
be5d0a74 3811 NR_ANON_MAPPED,
468c3982
JW
3812#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3813 NR_ANON_THPS,
3814#endif
c8713d0b
JW
3815 NR_SHMEM,
3816 NR_FILE_MAPPED,
3817 NR_FILE_DIRTY,
3818 NR_WRITEBACK,
3819 MEMCG_SWAP,
3820};
3821
3822static const char *const memcg1_stat_names[] = {
3823 "cache",
3824 "rss",
468c3982 3825#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3826 "rss_huge",
468c3982 3827#endif
c8713d0b
JW
3828 "shmem",
3829 "mapped_file",
3830 "dirty",
3831 "writeback",
3832 "swap",
3833};
3834
df0e53d0 3835/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3836static const unsigned int memcg1_events[] = {
df0e53d0
JW
3837 PGPGIN,
3838 PGPGOUT,
3839 PGFAULT,
3840 PGMAJFAULT,
3841};
3842
2da8ca82 3843static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3844{
aa9694bb 3845 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3846 unsigned long memory, memsw;
af7c4b0e
JW
3847 struct mem_cgroup *mi;
3848 unsigned int i;
406eb0c9 3849
71cd3113 3850 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3851
71cd3113 3852 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3853 unsigned long nr;
3854
71cd3113 3855 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3856 continue;
468c3982
JW
3857 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3859 if (memcg1_stats[i] == NR_ANON_THPS)
3860 nr *= HPAGE_PMD_NR;
3861#endif
3862 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3863 }
7b854121 3864
df0e53d0 3865 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3866 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3867 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3868
3869 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3870 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3871 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3872 PAGE_SIZE);
af7c4b0e 3873
14067bb3 3874 /* Hierarchical information */
3e32cb2e
JW
3875 memory = memsw = PAGE_COUNTER_MAX;
3876 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3877 memory = min(memory, READ_ONCE(mi->memory.max));
3878 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3879 }
3e32cb2e
JW
3880 seq_printf(m, "hierarchical_memory_limit %llu\n",
3881 (u64)memory * PAGE_SIZE);
7941d214 3882 if (do_memsw_account())
3e32cb2e
JW
3883 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3884 (u64)memsw * PAGE_SIZE);
7f016ee8 3885
8de7ecc6 3886 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3887 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3888 continue;
8de7ecc6 3889 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3890 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3891 PAGE_SIZE);
af7c4b0e
JW
3892 }
3893
8de7ecc6 3894 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3895 seq_printf(m, "total_%s %llu\n",
3896 vm_event_name(memcg1_events[i]),
dd923990 3897 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3898
8de7ecc6 3899 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3900 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3901 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3902 PAGE_SIZE);
14067bb3 3903
7f016ee8 3904#ifdef CONFIG_DEBUG_VM
7f016ee8 3905 {
ef8f2327
MG
3906 pg_data_t *pgdat;
3907 struct mem_cgroup_per_node *mz;
89abfab1 3908 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3909 unsigned long recent_rotated[2] = {0, 0};
3910 unsigned long recent_scanned[2] = {0, 0};
3911
ef8f2327
MG
3912 for_each_online_pgdat(pgdat) {
3913 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3914 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3915
ef8f2327
MG
3916 recent_rotated[0] += rstat->recent_rotated[0];
3917 recent_rotated[1] += rstat->recent_rotated[1];
3918 recent_scanned[0] += rstat->recent_scanned[0];
3919 recent_scanned[1] += rstat->recent_scanned[1];
3920 }
78ccf5b5
JW
3921 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3922 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3923 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3924 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3925 }
3926#endif
3927
d2ceb9b7
KH
3928 return 0;
3929}
3930
182446d0
TH
3931static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3932 struct cftype *cft)
a7885eb8 3933{
182446d0 3934 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3935
1f4c025b 3936 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3937}
3938
182446d0
TH
3939static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3940 struct cftype *cft, u64 val)
a7885eb8 3941{
182446d0 3942 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3943
3dae7fec 3944 if (val > 100)
a7885eb8
KM
3945 return -EINVAL;
3946
14208b0e 3947 if (css->parent)
3dae7fec
JW
3948 memcg->swappiness = val;
3949 else
3950 vm_swappiness = val;
068b38c1 3951
a7885eb8
KM
3952 return 0;
3953}
3954
2e72b634
KS
3955static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3956{
3957 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3958 unsigned long usage;
2e72b634
KS
3959 int i;
3960
3961 rcu_read_lock();
3962 if (!swap)
2c488db2 3963 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3964 else
2c488db2 3965 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3966
3967 if (!t)
3968 goto unlock;
3969
ce00a967 3970 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3971
3972 /*
748dad36 3973 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3974 * If it's not true, a threshold was crossed after last
3975 * call of __mem_cgroup_threshold().
3976 */
5407a562 3977 i = t->current_threshold;
2e72b634
KS
3978
3979 /*
3980 * Iterate backward over array of thresholds starting from
3981 * current_threshold and check if a threshold is crossed.
3982 * If none of thresholds below usage is crossed, we read
3983 * only one element of the array here.
3984 */
3985 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3986 eventfd_signal(t->entries[i].eventfd, 1);
3987
3988 /* i = current_threshold + 1 */
3989 i++;
3990
3991 /*
3992 * Iterate forward over array of thresholds starting from
3993 * current_threshold+1 and check if a threshold is crossed.
3994 * If none of thresholds above usage is crossed, we read
3995 * only one element of the array here.
3996 */
3997 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3998 eventfd_signal(t->entries[i].eventfd, 1);
3999
4000 /* Update current_threshold */
5407a562 4001 t->current_threshold = i - 1;
2e72b634
KS
4002unlock:
4003 rcu_read_unlock();
4004}
4005
4006static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4007{
ad4ca5f4
KS
4008 while (memcg) {
4009 __mem_cgroup_threshold(memcg, false);
7941d214 4010 if (do_memsw_account())
ad4ca5f4
KS
4011 __mem_cgroup_threshold(memcg, true);
4012
4013 memcg = parent_mem_cgroup(memcg);
4014 }
2e72b634
KS
4015}
4016
4017static int compare_thresholds(const void *a, const void *b)
4018{
4019 const struct mem_cgroup_threshold *_a = a;
4020 const struct mem_cgroup_threshold *_b = b;
4021
2bff24a3
GT
4022 if (_a->threshold > _b->threshold)
4023 return 1;
4024
4025 if (_a->threshold < _b->threshold)
4026 return -1;
4027
4028 return 0;
2e72b634
KS
4029}
4030
c0ff4b85 4031static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4032{
4033 struct mem_cgroup_eventfd_list *ev;
4034
2bcf2e92
MH
4035 spin_lock(&memcg_oom_lock);
4036
c0ff4b85 4037 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4038 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4039
4040 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4041 return 0;
4042}
4043
c0ff4b85 4044static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4045{
7d74b06f
KH
4046 struct mem_cgroup *iter;
4047
c0ff4b85 4048 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4049 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4050}
4051
59b6f873 4052static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4053 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4054{
2c488db2
KS
4055 struct mem_cgroup_thresholds *thresholds;
4056 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4057 unsigned long threshold;
4058 unsigned long usage;
2c488db2 4059 int i, size, ret;
2e72b634 4060
650c5e56 4061 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4062 if (ret)
4063 return ret;
4064
4065 mutex_lock(&memcg->thresholds_lock);
2c488db2 4066
05b84301 4067 if (type == _MEM) {
2c488db2 4068 thresholds = &memcg->thresholds;
ce00a967 4069 usage = mem_cgroup_usage(memcg, false);
05b84301 4070 } else if (type == _MEMSWAP) {
2c488db2 4071 thresholds = &memcg->memsw_thresholds;
ce00a967 4072 usage = mem_cgroup_usage(memcg, true);
05b84301 4073 } else
2e72b634
KS
4074 BUG();
4075
2e72b634 4076 /* Check if a threshold crossed before adding a new one */
2c488db2 4077 if (thresholds->primary)
2e72b634
KS
4078 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4079
2c488db2 4080 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4081
4082 /* Allocate memory for new array of thresholds */
67b8046f 4083 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4084 if (!new) {
2e72b634
KS
4085 ret = -ENOMEM;
4086 goto unlock;
4087 }
2c488db2 4088 new->size = size;
2e72b634
KS
4089
4090 /* Copy thresholds (if any) to new array */
2c488db2
KS
4091 if (thresholds->primary) {
4092 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4093 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4094 }
4095
2e72b634 4096 /* Add new threshold */
2c488db2
KS
4097 new->entries[size - 1].eventfd = eventfd;
4098 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4099
4100 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4101 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4102 compare_thresholds, NULL);
4103
4104 /* Find current threshold */
2c488db2 4105 new->current_threshold = -1;
2e72b634 4106 for (i = 0; i < size; i++) {
748dad36 4107 if (new->entries[i].threshold <= usage) {
2e72b634 4108 /*
2c488db2
KS
4109 * new->current_threshold will not be used until
4110 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4111 * it here.
4112 */
2c488db2 4113 ++new->current_threshold;
748dad36
SZ
4114 } else
4115 break;
2e72b634
KS
4116 }
4117
2c488db2
KS
4118 /* Free old spare buffer and save old primary buffer as spare */
4119 kfree(thresholds->spare);
4120 thresholds->spare = thresholds->primary;
4121
4122 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4123
907860ed 4124 /* To be sure that nobody uses thresholds */
2e72b634
KS
4125 synchronize_rcu();
4126
2e72b634
KS
4127unlock:
4128 mutex_unlock(&memcg->thresholds_lock);
4129
4130 return ret;
4131}
4132
59b6f873 4133static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4134 struct eventfd_ctx *eventfd, const char *args)
4135{
59b6f873 4136 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4137}
4138
59b6f873 4139static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4140 struct eventfd_ctx *eventfd, const char *args)
4141{
59b6f873 4142 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4143}
4144
59b6f873 4145static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4146 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4147{
2c488db2
KS
4148 struct mem_cgroup_thresholds *thresholds;
4149 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4150 unsigned long usage;
7d36665a 4151 int i, j, size, entries;
2e72b634
KS
4152
4153 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4154
4155 if (type == _MEM) {
2c488db2 4156 thresholds = &memcg->thresholds;
ce00a967 4157 usage = mem_cgroup_usage(memcg, false);
05b84301 4158 } else if (type == _MEMSWAP) {
2c488db2 4159 thresholds = &memcg->memsw_thresholds;
ce00a967 4160 usage = mem_cgroup_usage(memcg, true);
05b84301 4161 } else
2e72b634
KS
4162 BUG();
4163
371528ca
AV
4164 if (!thresholds->primary)
4165 goto unlock;
4166
2e72b634
KS
4167 /* Check if a threshold crossed before removing */
4168 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4169
4170 /* Calculate new number of threshold */
7d36665a 4171 size = entries = 0;
2c488db2
KS
4172 for (i = 0; i < thresholds->primary->size; i++) {
4173 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4174 size++;
7d36665a
CX
4175 else
4176 entries++;
2e72b634
KS
4177 }
4178
2c488db2 4179 new = thresholds->spare;
907860ed 4180
7d36665a
CX
4181 /* If no items related to eventfd have been cleared, nothing to do */
4182 if (!entries)
4183 goto unlock;
4184
2e72b634
KS
4185 /* Set thresholds array to NULL if we don't have thresholds */
4186 if (!size) {
2c488db2
KS
4187 kfree(new);
4188 new = NULL;
907860ed 4189 goto swap_buffers;
2e72b634
KS
4190 }
4191
2c488db2 4192 new->size = size;
2e72b634
KS
4193
4194 /* Copy thresholds and find current threshold */
2c488db2
KS
4195 new->current_threshold = -1;
4196 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4197 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4198 continue;
4199
2c488db2 4200 new->entries[j] = thresholds->primary->entries[i];
748dad36 4201 if (new->entries[j].threshold <= usage) {
2e72b634 4202 /*
2c488db2 4203 * new->current_threshold will not be used
2e72b634
KS
4204 * until rcu_assign_pointer(), so it's safe to increment
4205 * it here.
4206 */
2c488db2 4207 ++new->current_threshold;
2e72b634
KS
4208 }
4209 j++;
4210 }
4211
907860ed 4212swap_buffers:
2c488db2
KS
4213 /* Swap primary and spare array */
4214 thresholds->spare = thresholds->primary;
8c757763 4215
2c488db2 4216 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4217
907860ed 4218 /* To be sure that nobody uses thresholds */
2e72b634 4219 synchronize_rcu();
6611d8d7
MC
4220
4221 /* If all events are unregistered, free the spare array */
4222 if (!new) {
4223 kfree(thresholds->spare);
4224 thresholds->spare = NULL;
4225 }
371528ca 4226unlock:
2e72b634 4227 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4228}
c1e862c1 4229
59b6f873 4230static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4231 struct eventfd_ctx *eventfd)
4232{
59b6f873 4233 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4234}
4235
59b6f873 4236static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4237 struct eventfd_ctx *eventfd)
4238{
59b6f873 4239 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4240}
4241
59b6f873 4242static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4243 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4244{
9490ff27 4245 struct mem_cgroup_eventfd_list *event;
9490ff27 4246
9490ff27
KH
4247 event = kmalloc(sizeof(*event), GFP_KERNEL);
4248 if (!event)
4249 return -ENOMEM;
4250
1af8efe9 4251 spin_lock(&memcg_oom_lock);
9490ff27
KH
4252
4253 event->eventfd = eventfd;
4254 list_add(&event->list, &memcg->oom_notify);
4255
4256 /* already in OOM ? */
c2b42d3c 4257 if (memcg->under_oom)
9490ff27 4258 eventfd_signal(eventfd, 1);
1af8efe9 4259 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4260
4261 return 0;
4262}
4263
59b6f873 4264static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4265 struct eventfd_ctx *eventfd)
9490ff27 4266{
9490ff27 4267 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4268
1af8efe9 4269 spin_lock(&memcg_oom_lock);
9490ff27 4270
c0ff4b85 4271 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4272 if (ev->eventfd == eventfd) {
4273 list_del(&ev->list);
4274 kfree(ev);
4275 }
4276 }
4277
1af8efe9 4278 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4279}
4280
2da8ca82 4281static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4282{
aa9694bb 4283 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4284
791badbd 4285 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4286 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4287 seq_printf(sf, "oom_kill %lu\n",
4288 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4289 return 0;
4290}
4291
182446d0 4292static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4293 struct cftype *cft, u64 val)
4294{
182446d0 4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4296
4297 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4298 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4299 return -EINVAL;
4300
c0ff4b85 4301 memcg->oom_kill_disable = val;
4d845ebf 4302 if (!val)
c0ff4b85 4303 memcg_oom_recover(memcg);
3dae7fec 4304
3c11ecf4
KH
4305 return 0;
4306}
4307
52ebea74
TH
4308#ifdef CONFIG_CGROUP_WRITEBACK
4309
3a8e9ac8
TH
4310#include <trace/events/writeback.h>
4311
841710aa
TH
4312static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4313{
4314 return wb_domain_init(&memcg->cgwb_domain, gfp);
4315}
4316
4317static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4318{
4319 wb_domain_exit(&memcg->cgwb_domain);
4320}
4321
2529bb3a
TH
4322static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4323{
4324 wb_domain_size_changed(&memcg->cgwb_domain);
4325}
4326
841710aa
TH
4327struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4328{
4329 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4330
4331 if (!memcg->css.parent)
4332 return NULL;
4333
4334 return &memcg->cgwb_domain;
4335}
4336
0b3d6e6f
GT
4337/*
4338 * idx can be of type enum memcg_stat_item or node_stat_item.
4339 * Keep in sync with memcg_exact_page().
4340 */
4341static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4342{
871789d4 4343 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4344 int cpu;
4345
4346 for_each_online_cpu(cpu)
871789d4 4347 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4348 if (x < 0)
4349 x = 0;
4350 return x;
4351}
4352
c2aa723a
TH
4353/**
4354 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4355 * @wb: bdi_writeback in question
c5edf9cd
TH
4356 * @pfilepages: out parameter for number of file pages
4357 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4358 * @pdirty: out parameter for number of dirty pages
4359 * @pwriteback: out parameter for number of pages under writeback
4360 *
c5edf9cd
TH
4361 * Determine the numbers of file, headroom, dirty, and writeback pages in
4362 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4363 * is a bit more involved.
c2aa723a 4364 *
c5edf9cd
TH
4365 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4366 * headroom is calculated as the lowest headroom of itself and the
4367 * ancestors. Note that this doesn't consider the actual amount of
4368 * available memory in the system. The caller should further cap
4369 * *@pheadroom accordingly.
c2aa723a 4370 */
c5edf9cd
TH
4371void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4372 unsigned long *pheadroom, unsigned long *pdirty,
4373 unsigned long *pwriteback)
c2aa723a
TH
4374{
4375 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4376 struct mem_cgroup *parent;
c2aa723a 4377
0b3d6e6f 4378 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4379
0b3d6e6f 4380 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4381 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4382 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4383 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4384
c2aa723a 4385 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4386 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4387 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4388 unsigned long used = page_counter_read(&memcg->memory);
4389
c5edf9cd 4390 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4391 memcg = parent;
4392 }
c2aa723a
TH
4393}
4394
97b27821
TH
4395/*
4396 * Foreign dirty flushing
4397 *
4398 * There's an inherent mismatch between memcg and writeback. The former
4399 * trackes ownership per-page while the latter per-inode. This was a
4400 * deliberate design decision because honoring per-page ownership in the
4401 * writeback path is complicated, may lead to higher CPU and IO overheads
4402 * and deemed unnecessary given that write-sharing an inode across
4403 * different cgroups isn't a common use-case.
4404 *
4405 * Combined with inode majority-writer ownership switching, this works well
4406 * enough in most cases but there are some pathological cases. For
4407 * example, let's say there are two cgroups A and B which keep writing to
4408 * different but confined parts of the same inode. B owns the inode and
4409 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4410 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4411 * triggering background writeback. A will be slowed down without a way to
4412 * make writeback of the dirty pages happen.
4413 *
4414 * Conditions like the above can lead to a cgroup getting repatedly and
4415 * severely throttled after making some progress after each
4416 * dirty_expire_interval while the underyling IO device is almost
4417 * completely idle.
4418 *
4419 * Solving this problem completely requires matching the ownership tracking
4420 * granularities between memcg and writeback in either direction. However,
4421 * the more egregious behaviors can be avoided by simply remembering the
4422 * most recent foreign dirtying events and initiating remote flushes on
4423 * them when local writeback isn't enough to keep the memory clean enough.
4424 *
4425 * The following two functions implement such mechanism. When a foreign
4426 * page - a page whose memcg and writeback ownerships don't match - is
4427 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4428 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4429 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4430 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4431 * foreign bdi_writebacks which haven't expired. Both the numbers of
4432 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4433 * limited to MEMCG_CGWB_FRN_CNT.
4434 *
4435 * The mechanism only remembers IDs and doesn't hold any object references.
4436 * As being wrong occasionally doesn't matter, updates and accesses to the
4437 * records are lockless and racy.
4438 */
4439void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4440 struct bdi_writeback *wb)
4441{
4442 struct mem_cgroup *memcg = page->mem_cgroup;
4443 struct memcg_cgwb_frn *frn;
4444 u64 now = get_jiffies_64();
4445 u64 oldest_at = now;
4446 int oldest = -1;
4447 int i;
4448
3a8e9ac8
TH
4449 trace_track_foreign_dirty(page, wb);
4450
97b27821
TH
4451 /*
4452 * Pick the slot to use. If there is already a slot for @wb, keep
4453 * using it. If not replace the oldest one which isn't being
4454 * written out.
4455 */
4456 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4457 frn = &memcg->cgwb_frn[i];
4458 if (frn->bdi_id == wb->bdi->id &&
4459 frn->memcg_id == wb->memcg_css->id)
4460 break;
4461 if (time_before64(frn->at, oldest_at) &&
4462 atomic_read(&frn->done.cnt) == 1) {
4463 oldest = i;
4464 oldest_at = frn->at;
4465 }
4466 }
4467
4468 if (i < MEMCG_CGWB_FRN_CNT) {
4469 /*
4470 * Re-using an existing one. Update timestamp lazily to
4471 * avoid making the cacheline hot. We want them to be
4472 * reasonably up-to-date and significantly shorter than
4473 * dirty_expire_interval as that's what expires the record.
4474 * Use the shorter of 1s and dirty_expire_interval / 8.
4475 */
4476 unsigned long update_intv =
4477 min_t(unsigned long, HZ,
4478 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4479
4480 if (time_before64(frn->at, now - update_intv))
4481 frn->at = now;
4482 } else if (oldest >= 0) {
4483 /* replace the oldest free one */
4484 frn = &memcg->cgwb_frn[oldest];
4485 frn->bdi_id = wb->bdi->id;
4486 frn->memcg_id = wb->memcg_css->id;
4487 frn->at = now;
4488 }
4489}
4490
4491/* issue foreign writeback flushes for recorded foreign dirtying events */
4492void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4493{
4494 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4495 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4496 u64 now = jiffies_64;
4497 int i;
4498
4499 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4500 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4501
4502 /*
4503 * If the record is older than dirty_expire_interval,
4504 * writeback on it has already started. No need to kick it
4505 * off again. Also, don't start a new one if there's
4506 * already one in flight.
4507 */
4508 if (time_after64(frn->at, now - intv) &&
4509 atomic_read(&frn->done.cnt) == 1) {
4510 frn->at = 0;
3a8e9ac8 4511 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4512 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4513 WB_REASON_FOREIGN_FLUSH,
4514 &frn->done);
4515 }
4516 }
4517}
4518
841710aa
TH
4519#else /* CONFIG_CGROUP_WRITEBACK */
4520
4521static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4522{
4523 return 0;
4524}
4525
4526static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4527{
4528}
4529
2529bb3a
TH
4530static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4531{
4532}
4533
52ebea74
TH
4534#endif /* CONFIG_CGROUP_WRITEBACK */
4535
3bc942f3
TH
4536/*
4537 * DO NOT USE IN NEW FILES.
4538 *
4539 * "cgroup.event_control" implementation.
4540 *
4541 * This is way over-engineered. It tries to support fully configurable
4542 * events for each user. Such level of flexibility is completely
4543 * unnecessary especially in the light of the planned unified hierarchy.
4544 *
4545 * Please deprecate this and replace with something simpler if at all
4546 * possible.
4547 */
4548
79bd9814
TH
4549/*
4550 * Unregister event and free resources.
4551 *
4552 * Gets called from workqueue.
4553 */
3bc942f3 4554static void memcg_event_remove(struct work_struct *work)
79bd9814 4555{
3bc942f3
TH
4556 struct mem_cgroup_event *event =
4557 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4558 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4559
4560 remove_wait_queue(event->wqh, &event->wait);
4561
59b6f873 4562 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4563
4564 /* Notify userspace the event is going away. */
4565 eventfd_signal(event->eventfd, 1);
4566
4567 eventfd_ctx_put(event->eventfd);
4568 kfree(event);
59b6f873 4569 css_put(&memcg->css);
79bd9814
TH
4570}
4571
4572/*
a9a08845 4573 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4574 *
4575 * Called with wqh->lock held and interrupts disabled.
4576 */
ac6424b9 4577static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4578 int sync, void *key)
79bd9814 4579{
3bc942f3
TH
4580 struct mem_cgroup_event *event =
4581 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4582 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4583 __poll_t flags = key_to_poll(key);
79bd9814 4584
a9a08845 4585 if (flags & EPOLLHUP) {
79bd9814
TH
4586 /*
4587 * If the event has been detached at cgroup removal, we
4588 * can simply return knowing the other side will cleanup
4589 * for us.
4590 *
4591 * We can't race against event freeing since the other
4592 * side will require wqh->lock via remove_wait_queue(),
4593 * which we hold.
4594 */
fba94807 4595 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4596 if (!list_empty(&event->list)) {
4597 list_del_init(&event->list);
4598 /*
4599 * We are in atomic context, but cgroup_event_remove()
4600 * may sleep, so we have to call it in workqueue.
4601 */
4602 schedule_work(&event->remove);
4603 }
fba94807 4604 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4605 }
4606
4607 return 0;
4608}
4609
3bc942f3 4610static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4611 wait_queue_head_t *wqh, poll_table *pt)
4612{
3bc942f3
TH
4613 struct mem_cgroup_event *event =
4614 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4615
4616 event->wqh = wqh;
4617 add_wait_queue(wqh, &event->wait);
4618}
4619
4620/*
3bc942f3
TH
4621 * DO NOT USE IN NEW FILES.
4622 *
79bd9814
TH
4623 * Parse input and register new cgroup event handler.
4624 *
4625 * Input must be in format '<event_fd> <control_fd> <args>'.
4626 * Interpretation of args is defined by control file implementation.
4627 */
451af504
TH
4628static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4629 char *buf, size_t nbytes, loff_t off)
79bd9814 4630{
451af504 4631 struct cgroup_subsys_state *css = of_css(of);
fba94807 4632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4633 struct mem_cgroup_event *event;
79bd9814
TH
4634 struct cgroup_subsys_state *cfile_css;
4635 unsigned int efd, cfd;
4636 struct fd efile;
4637 struct fd cfile;
fba94807 4638 const char *name;
79bd9814
TH
4639 char *endp;
4640 int ret;
4641
451af504
TH
4642 buf = strstrip(buf);
4643
4644 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4645 if (*endp != ' ')
4646 return -EINVAL;
451af504 4647 buf = endp + 1;
79bd9814 4648
451af504 4649 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4650 if ((*endp != ' ') && (*endp != '\0'))
4651 return -EINVAL;
451af504 4652 buf = endp + 1;
79bd9814
TH
4653
4654 event = kzalloc(sizeof(*event), GFP_KERNEL);
4655 if (!event)
4656 return -ENOMEM;
4657
59b6f873 4658 event->memcg = memcg;
79bd9814 4659 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4660 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4661 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4662 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4663
4664 efile = fdget(efd);
4665 if (!efile.file) {
4666 ret = -EBADF;
4667 goto out_kfree;
4668 }
4669
4670 event->eventfd = eventfd_ctx_fileget(efile.file);
4671 if (IS_ERR(event->eventfd)) {
4672 ret = PTR_ERR(event->eventfd);
4673 goto out_put_efile;
4674 }
4675
4676 cfile = fdget(cfd);
4677 if (!cfile.file) {
4678 ret = -EBADF;
4679 goto out_put_eventfd;
4680 }
4681
4682 /* the process need read permission on control file */
4683 /* AV: shouldn't we check that it's been opened for read instead? */
4684 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4685 if (ret < 0)
4686 goto out_put_cfile;
4687
fba94807
TH
4688 /*
4689 * Determine the event callbacks and set them in @event. This used
4690 * to be done via struct cftype but cgroup core no longer knows
4691 * about these events. The following is crude but the whole thing
4692 * is for compatibility anyway.
3bc942f3
TH
4693 *
4694 * DO NOT ADD NEW FILES.
fba94807 4695 */
b583043e 4696 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4697
4698 if (!strcmp(name, "memory.usage_in_bytes")) {
4699 event->register_event = mem_cgroup_usage_register_event;
4700 event->unregister_event = mem_cgroup_usage_unregister_event;
4701 } else if (!strcmp(name, "memory.oom_control")) {
4702 event->register_event = mem_cgroup_oom_register_event;
4703 event->unregister_event = mem_cgroup_oom_unregister_event;
4704 } else if (!strcmp(name, "memory.pressure_level")) {
4705 event->register_event = vmpressure_register_event;
4706 event->unregister_event = vmpressure_unregister_event;
4707 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4708 event->register_event = memsw_cgroup_usage_register_event;
4709 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4710 } else {
4711 ret = -EINVAL;
4712 goto out_put_cfile;
4713 }
4714
79bd9814 4715 /*
b5557c4c
TH
4716 * Verify @cfile should belong to @css. Also, remaining events are
4717 * automatically removed on cgroup destruction but the removal is
4718 * asynchronous, so take an extra ref on @css.
79bd9814 4719 */
b583043e 4720 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4721 &memory_cgrp_subsys);
79bd9814 4722 ret = -EINVAL;
5a17f543 4723 if (IS_ERR(cfile_css))
79bd9814 4724 goto out_put_cfile;
5a17f543
TH
4725 if (cfile_css != css) {
4726 css_put(cfile_css);
79bd9814 4727 goto out_put_cfile;
5a17f543 4728 }
79bd9814 4729
451af504 4730 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4731 if (ret)
4732 goto out_put_css;
4733
9965ed17 4734 vfs_poll(efile.file, &event->pt);
79bd9814 4735
fba94807
TH
4736 spin_lock(&memcg->event_list_lock);
4737 list_add(&event->list, &memcg->event_list);
4738 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4739
4740 fdput(cfile);
4741 fdput(efile);
4742
451af504 4743 return nbytes;
79bd9814
TH
4744
4745out_put_css:
b5557c4c 4746 css_put(css);
79bd9814
TH
4747out_put_cfile:
4748 fdput(cfile);
4749out_put_eventfd:
4750 eventfd_ctx_put(event->eventfd);
4751out_put_efile:
4752 fdput(efile);
4753out_kfree:
4754 kfree(event);
4755
4756 return ret;
4757}
4758
241994ed 4759static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4760 {
0eea1030 4761 .name = "usage_in_bytes",
8c7c6e34 4762 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4763 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4764 },
c84872e1
PE
4765 {
4766 .name = "max_usage_in_bytes",
8c7c6e34 4767 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4768 .write = mem_cgroup_reset,
791badbd 4769 .read_u64 = mem_cgroup_read_u64,
c84872e1 4770 },
8cdea7c0 4771 {
0eea1030 4772 .name = "limit_in_bytes",
8c7c6e34 4773 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4774 .write = mem_cgroup_write,
791badbd 4775 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4776 },
296c81d8
BS
4777 {
4778 .name = "soft_limit_in_bytes",
4779 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4780 .write = mem_cgroup_write,
791badbd 4781 .read_u64 = mem_cgroup_read_u64,
296c81d8 4782 },
8cdea7c0
BS
4783 {
4784 .name = "failcnt",
8c7c6e34 4785 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4786 .write = mem_cgroup_reset,
791badbd 4787 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4788 },
d2ceb9b7
KH
4789 {
4790 .name = "stat",
2da8ca82 4791 .seq_show = memcg_stat_show,
d2ceb9b7 4792 },
c1e862c1
KH
4793 {
4794 .name = "force_empty",
6770c64e 4795 .write = mem_cgroup_force_empty_write,
c1e862c1 4796 },
18f59ea7
BS
4797 {
4798 .name = "use_hierarchy",
4799 .write_u64 = mem_cgroup_hierarchy_write,
4800 .read_u64 = mem_cgroup_hierarchy_read,
4801 },
79bd9814 4802 {
3bc942f3 4803 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4804 .write = memcg_write_event_control,
7dbdb199 4805 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4806 },
a7885eb8
KM
4807 {
4808 .name = "swappiness",
4809 .read_u64 = mem_cgroup_swappiness_read,
4810 .write_u64 = mem_cgroup_swappiness_write,
4811 },
7dc74be0
DN
4812 {
4813 .name = "move_charge_at_immigrate",
4814 .read_u64 = mem_cgroup_move_charge_read,
4815 .write_u64 = mem_cgroup_move_charge_write,
4816 },
9490ff27
KH
4817 {
4818 .name = "oom_control",
2da8ca82 4819 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4820 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4821 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4822 },
70ddf637
AV
4823 {
4824 .name = "pressure_level",
70ddf637 4825 },
406eb0c9
YH
4826#ifdef CONFIG_NUMA
4827 {
4828 .name = "numa_stat",
2da8ca82 4829 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4830 },
4831#endif
510fc4e1
GC
4832 {
4833 .name = "kmem.limit_in_bytes",
4834 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4835 .write = mem_cgroup_write,
791badbd 4836 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4837 },
4838 {
4839 .name = "kmem.usage_in_bytes",
4840 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4841 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4842 },
4843 {
4844 .name = "kmem.failcnt",
4845 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4846 .write = mem_cgroup_reset,
791badbd 4847 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4848 },
4849 {
4850 .name = "kmem.max_usage_in_bytes",
4851 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4852 .write = mem_cgroup_reset,
791badbd 4853 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4854 },
a87425a3
YS
4855#if defined(CONFIG_MEMCG_KMEM) && \
4856 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4857 {
4858 .name = "kmem.slabinfo",
bc2791f8
TH
4859 .seq_start = memcg_slab_start,
4860 .seq_next = memcg_slab_next,
4861 .seq_stop = memcg_slab_stop,
b047501c 4862 .seq_show = memcg_slab_show,
749c5415
GC
4863 },
4864#endif
d55f90bf
VD
4865 {
4866 .name = "kmem.tcp.limit_in_bytes",
4867 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4868 .write = mem_cgroup_write,
4869 .read_u64 = mem_cgroup_read_u64,
4870 },
4871 {
4872 .name = "kmem.tcp.usage_in_bytes",
4873 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4874 .read_u64 = mem_cgroup_read_u64,
4875 },
4876 {
4877 .name = "kmem.tcp.failcnt",
4878 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4879 .write = mem_cgroup_reset,
4880 .read_u64 = mem_cgroup_read_u64,
4881 },
4882 {
4883 .name = "kmem.tcp.max_usage_in_bytes",
4884 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4885 .write = mem_cgroup_reset,
4886 .read_u64 = mem_cgroup_read_u64,
4887 },
6bc10349 4888 { }, /* terminate */
af36f906 4889};
8c7c6e34 4890
73f576c0
JW
4891/*
4892 * Private memory cgroup IDR
4893 *
4894 * Swap-out records and page cache shadow entries need to store memcg
4895 * references in constrained space, so we maintain an ID space that is
4896 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4897 * memory-controlled cgroups to 64k.
4898 *
4899 * However, there usually are many references to the oflline CSS after
4900 * the cgroup has been destroyed, such as page cache or reclaimable
4901 * slab objects, that don't need to hang on to the ID. We want to keep
4902 * those dead CSS from occupying IDs, or we might quickly exhaust the
4903 * relatively small ID space and prevent the creation of new cgroups
4904 * even when there are much fewer than 64k cgroups - possibly none.
4905 *
4906 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4907 * be freed and recycled when it's no longer needed, which is usually
4908 * when the CSS is offlined.
4909 *
4910 * The only exception to that are records of swapped out tmpfs/shmem
4911 * pages that need to be attributed to live ancestors on swapin. But
4912 * those references are manageable from userspace.
4913 */
4914
4915static DEFINE_IDR(mem_cgroup_idr);
4916
7e97de0b
KT
4917static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4918{
4919 if (memcg->id.id > 0) {
4920 idr_remove(&mem_cgroup_idr, memcg->id.id);
4921 memcg->id.id = 0;
4922 }
4923}
4924
c1514c0a
VF
4925static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4926 unsigned int n)
73f576c0 4927{
1c2d479a 4928 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4929}
4930
615d66c3 4931static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4932{
1c2d479a 4933 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4934 mem_cgroup_id_remove(memcg);
73f576c0
JW
4935
4936 /* Memcg ID pins CSS */
4937 css_put(&memcg->css);
4938 }
4939}
4940
615d66c3
VD
4941static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4942{
4943 mem_cgroup_id_put_many(memcg, 1);
4944}
4945
73f576c0
JW
4946/**
4947 * mem_cgroup_from_id - look up a memcg from a memcg id
4948 * @id: the memcg id to look up
4949 *
4950 * Caller must hold rcu_read_lock().
4951 */
4952struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4953{
4954 WARN_ON_ONCE(!rcu_read_lock_held());
4955 return idr_find(&mem_cgroup_idr, id);
4956}
4957
ef8f2327 4958static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4959{
4960 struct mem_cgroup_per_node *pn;
ef8f2327 4961 int tmp = node;
1ecaab2b
KH
4962 /*
4963 * This routine is called against possible nodes.
4964 * But it's BUG to call kmalloc() against offline node.
4965 *
4966 * TODO: this routine can waste much memory for nodes which will
4967 * never be onlined. It's better to use memory hotplug callback
4968 * function.
4969 */
41e3355d
KH
4970 if (!node_state(node, N_NORMAL_MEMORY))
4971 tmp = -1;
17295c88 4972 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4973 if (!pn)
4974 return 1;
1ecaab2b 4975
815744d7
JW
4976 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4977 if (!pn->lruvec_stat_local) {
4978 kfree(pn);
4979 return 1;
4980 }
4981
a983b5eb
JW
4982 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4983 if (!pn->lruvec_stat_cpu) {
815744d7 4984 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4985 kfree(pn);
4986 return 1;
4987 }
4988
ef8f2327
MG
4989 lruvec_init(&pn->lruvec);
4990 pn->usage_in_excess = 0;
4991 pn->on_tree = false;
4992 pn->memcg = memcg;
4993
54f72fe0 4994 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4995 return 0;
4996}
4997
ef8f2327 4998static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4999{
00f3ca2c
JW
5000 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5001
4eaf431f
MH
5002 if (!pn)
5003 return;
5004
a983b5eb 5005 free_percpu(pn->lruvec_stat_cpu);
815744d7 5006 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5007 kfree(pn);
1ecaab2b
KH
5008}
5009
40e952f9 5010static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5011{
c8b2a36f 5012 int node;
59927fb9 5013
c8b2a36f 5014 for_each_node(node)
ef8f2327 5015 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5016 free_percpu(memcg->vmstats_percpu);
815744d7 5017 free_percpu(memcg->vmstats_local);
8ff69e2c 5018 kfree(memcg);
59927fb9 5019}
3afe36b1 5020
40e952f9
TE
5021static void mem_cgroup_free(struct mem_cgroup *memcg)
5022{
5023 memcg_wb_domain_exit(memcg);
7961eee3
SB
5024 /*
5025 * Flush percpu vmstats and vmevents to guarantee the value correctness
5026 * on parent's and all ancestor levels.
5027 */
4a87e2a2 5028 memcg_flush_percpu_vmstats(memcg);
7961eee3 5029 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5030 __mem_cgroup_free(memcg);
5031}
5032
0b8f73e1 5033static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5034{
d142e3e6 5035 struct mem_cgroup *memcg;
b9726c26 5036 unsigned int size;
6d12e2d8 5037 int node;
97b27821 5038 int __maybe_unused i;
11d67612 5039 long error = -ENOMEM;
8cdea7c0 5040
0b8f73e1
JW
5041 size = sizeof(struct mem_cgroup);
5042 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5043
5044 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5045 if (!memcg)
11d67612 5046 return ERR_PTR(error);
0b8f73e1 5047
73f576c0
JW
5048 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5049 1, MEM_CGROUP_ID_MAX,
5050 GFP_KERNEL);
11d67612
YS
5051 if (memcg->id.id < 0) {
5052 error = memcg->id.id;
73f576c0 5053 goto fail;
11d67612 5054 }
73f576c0 5055
815744d7
JW
5056 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5057 if (!memcg->vmstats_local)
5058 goto fail;
5059
871789d4
CD
5060 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5061 if (!memcg->vmstats_percpu)
0b8f73e1 5062 goto fail;
78fb7466 5063
3ed28fa1 5064 for_each_node(node)
ef8f2327 5065 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5066 goto fail;
f64c3f54 5067
0b8f73e1
JW
5068 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5069 goto fail;
28dbc4b6 5070
f7e1cb6e 5071 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5072 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5073 mutex_init(&memcg->thresholds_lock);
5074 spin_lock_init(&memcg->move_lock);
70ddf637 5075 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5076 INIT_LIST_HEAD(&memcg->event_list);
5077 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5078 memcg->socket_pressure = jiffies;
84c07d11 5079#ifdef CONFIG_MEMCG_KMEM
900a38f0 5080 memcg->kmemcg_id = -1;
900a38f0 5081#endif
52ebea74
TH
5082#ifdef CONFIG_CGROUP_WRITEBACK
5083 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5084 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5085 memcg->cgwb_frn[i].done =
5086 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5087#endif
5088#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5089 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5090 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5091 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5092#endif
73f576c0 5093 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5094 return memcg;
5095fail:
7e97de0b 5096 mem_cgroup_id_remove(memcg);
40e952f9 5097 __mem_cgroup_free(memcg);
11d67612 5098 return ERR_PTR(error);
d142e3e6
GC
5099}
5100
0b8f73e1
JW
5101static struct cgroup_subsys_state * __ref
5102mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5103{
0b8f73e1
JW
5104 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5105 struct mem_cgroup *memcg;
5106 long error = -ENOMEM;
d142e3e6 5107
0b8f73e1 5108 memcg = mem_cgroup_alloc();
11d67612
YS
5109 if (IS_ERR(memcg))
5110 return ERR_CAST(memcg);
d142e3e6 5111
d1663a90 5112 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5113 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5114 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5115 if (parent) {
5116 memcg->swappiness = mem_cgroup_swappiness(parent);
5117 memcg->oom_kill_disable = parent->oom_kill_disable;
5118 }
5119 if (parent && parent->use_hierarchy) {
5120 memcg->use_hierarchy = true;
3e32cb2e 5121 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5122 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5123 page_counter_init(&memcg->memsw, &parent->memsw);
5124 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5125 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5126 } else {
3e32cb2e 5127 page_counter_init(&memcg->memory, NULL);
37e84351 5128 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5129 page_counter_init(&memcg->memsw, NULL);
5130 page_counter_init(&memcg->kmem, NULL);
0db15298 5131 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5132 /*
5133 * Deeper hierachy with use_hierarchy == false doesn't make
5134 * much sense so let cgroup subsystem know about this
5135 * unfortunate state in our controller.
5136 */
d142e3e6 5137 if (parent != root_mem_cgroup)
073219e9 5138 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5139 }
d6441637 5140
0b8f73e1
JW
5141 /* The following stuff does not apply to the root */
5142 if (!parent) {
fb2f2b0a
RG
5143#ifdef CONFIG_MEMCG_KMEM
5144 INIT_LIST_HEAD(&memcg->kmem_caches);
5145#endif
0b8f73e1
JW
5146 root_mem_cgroup = memcg;
5147 return &memcg->css;
5148 }
5149
b313aeee 5150 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5151 if (error)
5152 goto fail;
127424c8 5153
f7e1cb6e 5154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5155 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5156
0b8f73e1
JW
5157 return &memcg->css;
5158fail:
7e97de0b 5159 mem_cgroup_id_remove(memcg);
0b8f73e1 5160 mem_cgroup_free(memcg);
11d67612 5161 return ERR_PTR(error);
0b8f73e1
JW
5162}
5163
73f576c0 5164static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5165{
58fa2a55
VD
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5167
0a4465d3
KT
5168 /*
5169 * A memcg must be visible for memcg_expand_shrinker_maps()
5170 * by the time the maps are allocated. So, we allocate maps
5171 * here, when for_each_mem_cgroup() can't skip it.
5172 */
5173 if (memcg_alloc_shrinker_maps(memcg)) {
5174 mem_cgroup_id_remove(memcg);
5175 return -ENOMEM;
5176 }
5177
73f576c0 5178 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5179 refcount_set(&memcg->id.ref, 1);
73f576c0 5180 css_get(css);
2f7dd7a4 5181 return 0;
8cdea7c0
BS
5182}
5183
eb95419b 5184static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5185{
eb95419b 5186 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5187 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5188
5189 /*
5190 * Unregister events and notify userspace.
5191 * Notify userspace about cgroup removing only after rmdir of cgroup
5192 * directory to avoid race between userspace and kernelspace.
5193 */
fba94807
TH
5194 spin_lock(&memcg->event_list_lock);
5195 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5196 list_del_init(&event->list);
5197 schedule_work(&event->remove);
5198 }
fba94807 5199 spin_unlock(&memcg->event_list_lock);
ec64f515 5200
bf8d5d52 5201 page_counter_set_min(&memcg->memory, 0);
23067153 5202 page_counter_set_low(&memcg->memory, 0);
63677c74 5203
567e9ab2 5204 memcg_offline_kmem(memcg);
52ebea74 5205 wb_memcg_offline(memcg);
73f576c0 5206
591edfb1
RG
5207 drain_all_stock(memcg);
5208
73f576c0 5209 mem_cgroup_id_put(memcg);
df878fb0
KH
5210}
5211
6df38689
VD
5212static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5213{
5214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5215
5216 invalidate_reclaim_iterators(memcg);
5217}
5218
eb95419b 5219static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5220{
eb95419b 5221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5222 int __maybe_unused i;
c268e994 5223
97b27821
TH
5224#ifdef CONFIG_CGROUP_WRITEBACK
5225 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5226 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5227#endif
f7e1cb6e 5228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5229 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5230
0db15298 5231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5232 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5233
0b8f73e1
JW
5234 vmpressure_cleanup(&memcg->vmpressure);
5235 cancel_work_sync(&memcg->high_work);
5236 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5237 memcg_free_shrinker_maps(memcg);
d886f4e4 5238 memcg_free_kmem(memcg);
0b8f73e1 5239 mem_cgroup_free(memcg);
8cdea7c0
BS
5240}
5241
1ced953b
TH
5242/**
5243 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5244 * @css: the target css
5245 *
5246 * Reset the states of the mem_cgroup associated with @css. This is
5247 * invoked when the userland requests disabling on the default hierarchy
5248 * but the memcg is pinned through dependency. The memcg should stop
5249 * applying policies and should revert to the vanilla state as it may be
5250 * made visible again.
5251 *
5252 * The current implementation only resets the essential configurations.
5253 * This needs to be expanded to cover all the visible parts.
5254 */
5255static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5256{
5257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5258
bbec2e15
RG
5259 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5260 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5261 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5262 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5263 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5264 page_counter_set_min(&memcg->memory, 0);
23067153 5265 page_counter_set_low(&memcg->memory, 0);
d1663a90 5266 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5267 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5268 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5269 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5270}
5271
02491447 5272#ifdef CONFIG_MMU
7dc74be0 5273/* Handlers for move charge at task migration. */
854ffa8d 5274static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5275{
05b84301 5276 int ret;
9476db97 5277
d0164adc
MG
5278 /* Try a single bulk charge without reclaim first, kswapd may wake */
5279 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5280 if (!ret) {
854ffa8d 5281 mc.precharge += count;
854ffa8d
DN
5282 return ret;
5283 }
9476db97 5284
3674534b 5285 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5286 while (count--) {
3674534b 5287 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5288 if (ret)
38c5d72f 5289 return ret;
854ffa8d 5290 mc.precharge++;
9476db97 5291 cond_resched();
854ffa8d 5292 }
9476db97 5293 return 0;
4ffef5fe
DN
5294}
5295
4ffef5fe
DN
5296union mc_target {
5297 struct page *page;
02491447 5298 swp_entry_t ent;
4ffef5fe
DN
5299};
5300
4ffef5fe 5301enum mc_target_type {
8d32ff84 5302 MC_TARGET_NONE = 0,
4ffef5fe 5303 MC_TARGET_PAGE,
02491447 5304 MC_TARGET_SWAP,
c733a828 5305 MC_TARGET_DEVICE,
4ffef5fe
DN
5306};
5307
90254a65
DN
5308static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5309 unsigned long addr, pte_t ptent)
4ffef5fe 5310{
25b2995a 5311 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5312
90254a65
DN
5313 if (!page || !page_mapped(page))
5314 return NULL;
5315 if (PageAnon(page)) {
1dfab5ab 5316 if (!(mc.flags & MOVE_ANON))
90254a65 5317 return NULL;
1dfab5ab
JW
5318 } else {
5319 if (!(mc.flags & MOVE_FILE))
5320 return NULL;
5321 }
90254a65
DN
5322 if (!get_page_unless_zero(page))
5323 return NULL;
5324
5325 return page;
5326}
5327
c733a828 5328#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5329static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5330 pte_t ptent, swp_entry_t *entry)
90254a65 5331{
90254a65
DN
5332 struct page *page = NULL;
5333 swp_entry_t ent = pte_to_swp_entry(ptent);
5334
1dfab5ab 5335 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5336 return NULL;
c733a828
JG
5337
5338 /*
5339 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5340 * a device and because they are not accessible by CPU they are store
5341 * as special swap entry in the CPU page table.
5342 */
5343 if (is_device_private_entry(ent)) {
5344 page = device_private_entry_to_page(ent);
5345 /*
5346 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5347 * a refcount of 1 when free (unlike normal page)
5348 */
5349 if (!page_ref_add_unless(page, 1, 1))
5350 return NULL;
5351 return page;
5352 }
5353
4b91355e
KH
5354 /*
5355 * Because lookup_swap_cache() updates some statistics counter,
5356 * we call find_get_page() with swapper_space directly.
5357 */
f6ab1f7f 5358 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5359 if (do_memsw_account())
90254a65
DN
5360 entry->val = ent.val;
5361
5362 return page;
5363}
4b91355e
KH
5364#else
5365static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5366 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5367{
5368 return NULL;
5369}
5370#endif
90254a65 5371
87946a72
DN
5372static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5373 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5374{
5375 struct page *page = NULL;
87946a72
DN
5376 struct address_space *mapping;
5377 pgoff_t pgoff;
5378
5379 if (!vma->vm_file) /* anonymous vma */
5380 return NULL;
1dfab5ab 5381 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5382 return NULL;
5383
87946a72 5384 mapping = vma->vm_file->f_mapping;
0661a336 5385 pgoff = linear_page_index(vma, addr);
87946a72
DN
5386
5387 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5388#ifdef CONFIG_SWAP
5389 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5390 if (shmem_mapping(mapping)) {
5391 page = find_get_entry(mapping, pgoff);
3159f943 5392 if (xa_is_value(page)) {
139b6a6f 5393 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5394 if (do_memsw_account())
139b6a6f 5395 *entry = swp;
f6ab1f7f
HY
5396 page = find_get_page(swap_address_space(swp),
5397 swp_offset(swp));
139b6a6f
JW
5398 }
5399 } else
5400 page = find_get_page(mapping, pgoff);
5401#else
5402 page = find_get_page(mapping, pgoff);
aa3b1895 5403#endif
87946a72
DN
5404 return page;
5405}
5406
b1b0deab
CG
5407/**
5408 * mem_cgroup_move_account - move account of the page
5409 * @page: the page
25843c2b 5410 * @compound: charge the page as compound or small page
b1b0deab
CG
5411 * @from: mem_cgroup which the page is moved from.
5412 * @to: mem_cgroup which the page is moved to. @from != @to.
5413 *
3ac808fd 5414 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5415 *
5416 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5417 * from old cgroup.
5418 */
5419static int mem_cgroup_move_account(struct page *page,
f627c2f5 5420 bool compound,
b1b0deab
CG
5421 struct mem_cgroup *from,
5422 struct mem_cgroup *to)
5423{
ae8af438
KK
5424 struct lruvec *from_vec, *to_vec;
5425 struct pglist_data *pgdat;
f627c2f5 5426 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab
CG
5427 int ret;
5428
5429 VM_BUG_ON(from == to);
5430 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5431 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5432
5433 /*
6a93ca8f 5434 * Prevent mem_cgroup_migrate() from looking at
45637bab 5435 * page->mem_cgroup of its source page while we change it.
b1b0deab 5436 */
f627c2f5 5437 ret = -EBUSY;
b1b0deab
CG
5438 if (!trylock_page(page))
5439 goto out;
5440
5441 ret = -EINVAL;
5442 if (page->mem_cgroup != from)
5443 goto out_unlock;
5444
ae8af438 5445 pgdat = page_pgdat(page);
867e5e1d
JW
5446 from_vec = mem_cgroup_lruvec(from, pgdat);
5447 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5448
abb242f5 5449 lock_page_memcg(page);
b1b0deab 5450
be5d0a74
JW
5451 if (PageAnon(page)) {
5452 if (page_mapped(page)) {
5453 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5454 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5455 if (PageTransHuge(page)) {
5456 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5457 -nr_pages);
5458 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5459 nr_pages);
5460 }
5461
be5d0a74
JW
5462 }
5463 } else {
0d1c2072
JW
5464 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5465 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5466
5467 if (PageSwapBacked(page)) {
5468 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5469 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5470 }
5471
49e50d27
JW
5472 if (page_mapped(page)) {
5473 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5474 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5475 }
b1b0deab 5476
49e50d27
JW
5477 if (PageDirty(page)) {
5478 struct address_space *mapping = page_mapping(page);
c4843a75 5479
49e50d27
JW
5480 if (mapping_cap_account_dirty(mapping)) {
5481 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5482 -nr_pages);
5483 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5484 nr_pages);
5485 }
c4843a75
GT
5486 }
5487 }
5488
b1b0deab 5489 if (PageWriteback(page)) {
ae8af438
KK
5490 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5491 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5492 }
5493
5494 /*
abb242f5
JW
5495 * All state has been migrated, let's switch to the new memcg.
5496 *
b1b0deab 5497 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5498 * is referenced, charged, isolated, and locked: we can't race
5499 * with (un)charging, migration, LRU putback, or anything else
5500 * that would rely on a stable page->mem_cgroup.
5501 *
5502 * Note that lock_page_memcg is a memcg lock, not a page lock,
5503 * to save space. As soon as we switch page->mem_cgroup to a
5504 * new memcg that isn't locked, the above state can change
5505 * concurrently again. Make sure we're truly done with it.
b1b0deab 5506 */
abb242f5 5507 smp_mb();
b1b0deab 5508
abb242f5 5509 page->mem_cgroup = to; /* caller should have done css_get */
87eaceb3 5510
abb242f5 5511 __unlock_page_memcg(from);
b1b0deab
CG
5512
5513 ret = 0;
5514
5515 local_irq_disable();
3fba69a5 5516 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5517 memcg_check_events(to, page);
3fba69a5 5518 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5519 memcg_check_events(from, page);
5520 local_irq_enable();
5521out_unlock:
5522 unlock_page(page);
5523out:
5524 return ret;
5525}
5526
7cf7806c
LR
5527/**
5528 * get_mctgt_type - get target type of moving charge
5529 * @vma: the vma the pte to be checked belongs
5530 * @addr: the address corresponding to the pte to be checked
5531 * @ptent: the pte to be checked
5532 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5533 *
5534 * Returns
5535 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5536 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5537 * move charge. if @target is not NULL, the page is stored in target->page
5538 * with extra refcnt got(Callers should handle it).
5539 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5540 * target for charge migration. if @target is not NULL, the entry is stored
5541 * in target->ent.
25b2995a
CH
5542 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5543 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5544 * For now we such page is charge like a regular page would be as for all
5545 * intent and purposes it is just special memory taking the place of a
5546 * regular page.
c733a828
JG
5547 *
5548 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5549 *
5550 * Called with pte lock held.
5551 */
5552
8d32ff84 5553static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5554 unsigned long addr, pte_t ptent, union mc_target *target)
5555{
5556 struct page *page = NULL;
8d32ff84 5557 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5558 swp_entry_t ent = { .val = 0 };
5559
5560 if (pte_present(ptent))
5561 page = mc_handle_present_pte(vma, addr, ptent);
5562 else if (is_swap_pte(ptent))
48406ef8 5563 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5564 else if (pte_none(ptent))
87946a72 5565 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5566
5567 if (!page && !ent.val)
8d32ff84 5568 return ret;
02491447 5569 if (page) {
02491447 5570 /*
0a31bc97 5571 * Do only loose check w/o serialization.
1306a85a 5572 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5573 * not under LRU exclusion.
02491447 5574 */
1306a85a 5575 if (page->mem_cgroup == mc.from) {
02491447 5576 ret = MC_TARGET_PAGE;
25b2995a 5577 if (is_device_private_page(page))
c733a828 5578 ret = MC_TARGET_DEVICE;
02491447
DN
5579 if (target)
5580 target->page = page;
5581 }
5582 if (!ret || !target)
5583 put_page(page);
5584 }
3e14a57b
HY
5585 /*
5586 * There is a swap entry and a page doesn't exist or isn't charged.
5587 * But we cannot move a tail-page in a THP.
5588 */
5589 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5590 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5591 ret = MC_TARGET_SWAP;
5592 if (target)
5593 target->ent = ent;
4ffef5fe 5594 }
4ffef5fe
DN
5595 return ret;
5596}
5597
12724850
NH
5598#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5599/*
d6810d73
HY
5600 * We don't consider PMD mapped swapping or file mapped pages because THP does
5601 * not support them for now.
12724850
NH
5602 * Caller should make sure that pmd_trans_huge(pmd) is true.
5603 */
5604static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5605 unsigned long addr, pmd_t pmd, union mc_target *target)
5606{
5607 struct page *page = NULL;
12724850
NH
5608 enum mc_target_type ret = MC_TARGET_NONE;
5609
84c3fc4e
ZY
5610 if (unlikely(is_swap_pmd(pmd))) {
5611 VM_BUG_ON(thp_migration_supported() &&
5612 !is_pmd_migration_entry(pmd));
5613 return ret;
5614 }
12724850 5615 page = pmd_page(pmd);
309381fe 5616 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5617 if (!(mc.flags & MOVE_ANON))
12724850 5618 return ret;
1306a85a 5619 if (page->mem_cgroup == mc.from) {
12724850
NH
5620 ret = MC_TARGET_PAGE;
5621 if (target) {
5622 get_page(page);
5623 target->page = page;
5624 }
5625 }
5626 return ret;
5627}
5628#else
5629static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5630 unsigned long addr, pmd_t pmd, union mc_target *target)
5631{
5632 return MC_TARGET_NONE;
5633}
5634#endif
5635
4ffef5fe
DN
5636static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5637 unsigned long addr, unsigned long end,
5638 struct mm_walk *walk)
5639{
26bcd64a 5640 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5641 pte_t *pte;
5642 spinlock_t *ptl;
5643
b6ec57f4
KS
5644 ptl = pmd_trans_huge_lock(pmd, vma);
5645 if (ptl) {
c733a828
JG
5646 /*
5647 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5648 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5649 * this might change.
c733a828 5650 */
12724850
NH
5651 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5652 mc.precharge += HPAGE_PMD_NR;
bf929152 5653 spin_unlock(ptl);
1a5a9906 5654 return 0;
12724850 5655 }
03319327 5656
45f83cef
AA
5657 if (pmd_trans_unstable(pmd))
5658 return 0;
4ffef5fe
DN
5659 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5660 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5661 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5662 mc.precharge++; /* increment precharge temporarily */
5663 pte_unmap_unlock(pte - 1, ptl);
5664 cond_resched();
5665
7dc74be0
DN
5666 return 0;
5667}
5668
7b86ac33
CH
5669static const struct mm_walk_ops precharge_walk_ops = {
5670 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5671};
5672
4ffef5fe
DN
5673static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5674{
5675 unsigned long precharge;
4ffef5fe 5676
dfe076b0 5677 down_read(&mm->mmap_sem);
7b86ac33 5678 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5679 up_read(&mm->mmap_sem);
4ffef5fe
DN
5680
5681 precharge = mc.precharge;
5682 mc.precharge = 0;
5683
5684 return precharge;
5685}
5686
4ffef5fe
DN
5687static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5688{
dfe076b0
DN
5689 unsigned long precharge = mem_cgroup_count_precharge(mm);
5690
5691 VM_BUG_ON(mc.moving_task);
5692 mc.moving_task = current;
5693 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5694}
5695
dfe076b0
DN
5696/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5697static void __mem_cgroup_clear_mc(void)
4ffef5fe 5698{
2bd9bb20
KH
5699 struct mem_cgroup *from = mc.from;
5700 struct mem_cgroup *to = mc.to;
5701
4ffef5fe 5702 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5703 if (mc.precharge) {
00501b53 5704 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5705 mc.precharge = 0;
5706 }
5707 /*
5708 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5709 * we must uncharge here.
5710 */
5711 if (mc.moved_charge) {
00501b53 5712 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5713 mc.moved_charge = 0;
4ffef5fe 5714 }
483c30b5
DN
5715 /* we must fixup refcnts and charges */
5716 if (mc.moved_swap) {
483c30b5 5717 /* uncharge swap account from the old cgroup */
ce00a967 5718 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5719 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5720
615d66c3
VD
5721 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5722
05b84301 5723 /*
3e32cb2e
JW
5724 * we charged both to->memory and to->memsw, so we
5725 * should uncharge to->memory.
05b84301 5726 */
ce00a967 5727 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5728 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5729
615d66c3
VD
5730 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5731 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5732
483c30b5
DN
5733 mc.moved_swap = 0;
5734 }
dfe076b0
DN
5735 memcg_oom_recover(from);
5736 memcg_oom_recover(to);
5737 wake_up_all(&mc.waitq);
5738}
5739
5740static void mem_cgroup_clear_mc(void)
5741{
264a0ae1
TH
5742 struct mm_struct *mm = mc.mm;
5743
dfe076b0
DN
5744 /*
5745 * we must clear moving_task before waking up waiters at the end of
5746 * task migration.
5747 */
5748 mc.moving_task = NULL;
5749 __mem_cgroup_clear_mc();
2bd9bb20 5750 spin_lock(&mc.lock);
4ffef5fe
DN
5751 mc.from = NULL;
5752 mc.to = NULL;
264a0ae1 5753 mc.mm = NULL;
2bd9bb20 5754 spin_unlock(&mc.lock);
264a0ae1
TH
5755
5756 mmput(mm);
4ffef5fe
DN
5757}
5758
1f7dd3e5 5759static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5760{
1f7dd3e5 5761 struct cgroup_subsys_state *css;
eed67d75 5762 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5763 struct mem_cgroup *from;
4530eddb 5764 struct task_struct *leader, *p;
9f2115f9 5765 struct mm_struct *mm;
1dfab5ab 5766 unsigned long move_flags;
9f2115f9 5767 int ret = 0;
7dc74be0 5768
1f7dd3e5
TH
5769 /* charge immigration isn't supported on the default hierarchy */
5770 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5771 return 0;
5772
4530eddb
TH
5773 /*
5774 * Multi-process migrations only happen on the default hierarchy
5775 * where charge immigration is not used. Perform charge
5776 * immigration if @tset contains a leader and whine if there are
5777 * multiple.
5778 */
5779 p = NULL;
1f7dd3e5 5780 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5781 WARN_ON_ONCE(p);
5782 p = leader;
1f7dd3e5 5783 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5784 }
5785 if (!p)
5786 return 0;
5787
1f7dd3e5
TH
5788 /*
5789 * We are now commited to this value whatever it is. Changes in this
5790 * tunable will only affect upcoming migrations, not the current one.
5791 * So we need to save it, and keep it going.
5792 */
5793 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5794 if (!move_flags)
5795 return 0;
5796
9f2115f9
TH
5797 from = mem_cgroup_from_task(p);
5798
5799 VM_BUG_ON(from == memcg);
5800
5801 mm = get_task_mm(p);
5802 if (!mm)
5803 return 0;
5804 /* We move charges only when we move a owner of the mm */
5805 if (mm->owner == p) {
5806 VM_BUG_ON(mc.from);
5807 VM_BUG_ON(mc.to);
5808 VM_BUG_ON(mc.precharge);
5809 VM_BUG_ON(mc.moved_charge);
5810 VM_BUG_ON(mc.moved_swap);
5811
5812 spin_lock(&mc.lock);
264a0ae1 5813 mc.mm = mm;
9f2115f9
TH
5814 mc.from = from;
5815 mc.to = memcg;
5816 mc.flags = move_flags;
5817 spin_unlock(&mc.lock);
5818 /* We set mc.moving_task later */
5819
5820 ret = mem_cgroup_precharge_mc(mm);
5821 if (ret)
5822 mem_cgroup_clear_mc();
264a0ae1
TH
5823 } else {
5824 mmput(mm);
7dc74be0
DN
5825 }
5826 return ret;
5827}
5828
1f7dd3e5 5829static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5830{
4e2f245d
JW
5831 if (mc.to)
5832 mem_cgroup_clear_mc();
7dc74be0
DN
5833}
5834
4ffef5fe
DN
5835static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5836 unsigned long addr, unsigned long end,
5837 struct mm_walk *walk)
7dc74be0 5838{
4ffef5fe 5839 int ret = 0;
26bcd64a 5840 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5841 pte_t *pte;
5842 spinlock_t *ptl;
12724850
NH
5843 enum mc_target_type target_type;
5844 union mc_target target;
5845 struct page *page;
4ffef5fe 5846
b6ec57f4
KS
5847 ptl = pmd_trans_huge_lock(pmd, vma);
5848 if (ptl) {
62ade86a 5849 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5850 spin_unlock(ptl);
12724850
NH
5851 return 0;
5852 }
5853 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5854 if (target_type == MC_TARGET_PAGE) {
5855 page = target.page;
5856 if (!isolate_lru_page(page)) {
f627c2f5 5857 if (!mem_cgroup_move_account(page, true,
1306a85a 5858 mc.from, mc.to)) {
12724850
NH
5859 mc.precharge -= HPAGE_PMD_NR;
5860 mc.moved_charge += HPAGE_PMD_NR;
5861 }
5862 putback_lru_page(page);
5863 }
5864 put_page(page);
c733a828
JG
5865 } else if (target_type == MC_TARGET_DEVICE) {
5866 page = target.page;
5867 if (!mem_cgroup_move_account(page, true,
5868 mc.from, mc.to)) {
5869 mc.precharge -= HPAGE_PMD_NR;
5870 mc.moved_charge += HPAGE_PMD_NR;
5871 }
5872 put_page(page);
12724850 5873 }
bf929152 5874 spin_unlock(ptl);
1a5a9906 5875 return 0;
12724850
NH
5876 }
5877
45f83cef
AA
5878 if (pmd_trans_unstable(pmd))
5879 return 0;
4ffef5fe
DN
5880retry:
5881 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5882 for (; addr != end; addr += PAGE_SIZE) {
5883 pte_t ptent = *(pte++);
c733a828 5884 bool device = false;
02491447 5885 swp_entry_t ent;
4ffef5fe
DN
5886
5887 if (!mc.precharge)
5888 break;
5889
8d32ff84 5890 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5891 case MC_TARGET_DEVICE:
5892 device = true;
e4a9bc58 5893 fallthrough;
4ffef5fe
DN
5894 case MC_TARGET_PAGE:
5895 page = target.page;
53f9263b
KS
5896 /*
5897 * We can have a part of the split pmd here. Moving it
5898 * can be done but it would be too convoluted so simply
5899 * ignore such a partial THP and keep it in original
5900 * memcg. There should be somebody mapping the head.
5901 */
5902 if (PageTransCompound(page))
5903 goto put;
c733a828 5904 if (!device && isolate_lru_page(page))
4ffef5fe 5905 goto put;
f627c2f5
KS
5906 if (!mem_cgroup_move_account(page, false,
5907 mc.from, mc.to)) {
4ffef5fe 5908 mc.precharge--;
854ffa8d
DN
5909 /* we uncharge from mc.from later. */
5910 mc.moved_charge++;
4ffef5fe 5911 }
c733a828
JG
5912 if (!device)
5913 putback_lru_page(page);
8d32ff84 5914put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5915 put_page(page);
5916 break;
02491447
DN
5917 case MC_TARGET_SWAP:
5918 ent = target.ent;
e91cbb42 5919 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5920 mc.precharge--;
483c30b5
DN
5921 /* we fixup refcnts and charges later. */
5922 mc.moved_swap++;
5923 }
02491447 5924 break;
4ffef5fe
DN
5925 default:
5926 break;
5927 }
5928 }
5929 pte_unmap_unlock(pte - 1, ptl);
5930 cond_resched();
5931
5932 if (addr != end) {
5933 /*
5934 * We have consumed all precharges we got in can_attach().
5935 * We try charge one by one, but don't do any additional
5936 * charges to mc.to if we have failed in charge once in attach()
5937 * phase.
5938 */
854ffa8d 5939 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5940 if (!ret)
5941 goto retry;
5942 }
5943
5944 return ret;
5945}
5946
7b86ac33
CH
5947static const struct mm_walk_ops charge_walk_ops = {
5948 .pmd_entry = mem_cgroup_move_charge_pte_range,
5949};
5950
264a0ae1 5951static void mem_cgroup_move_charge(void)
4ffef5fe 5952{
4ffef5fe 5953 lru_add_drain_all();
312722cb 5954 /*
81f8c3a4
JW
5955 * Signal lock_page_memcg() to take the memcg's move_lock
5956 * while we're moving its pages to another memcg. Then wait
5957 * for already started RCU-only updates to finish.
312722cb
JW
5958 */
5959 atomic_inc(&mc.from->moving_account);
5960 synchronize_rcu();
dfe076b0 5961retry:
264a0ae1 5962 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5963 /*
5964 * Someone who are holding the mmap_sem might be waiting in
5965 * waitq. So we cancel all extra charges, wake up all waiters,
5966 * and retry. Because we cancel precharges, we might not be able
5967 * to move enough charges, but moving charge is a best-effort
5968 * feature anyway, so it wouldn't be a big problem.
5969 */
5970 __mem_cgroup_clear_mc();
5971 cond_resched();
5972 goto retry;
5973 }
26bcd64a
NH
5974 /*
5975 * When we have consumed all precharges and failed in doing
5976 * additional charge, the page walk just aborts.
5977 */
7b86ac33
CH
5978 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5979 NULL);
0247f3f4 5980
264a0ae1 5981 up_read(&mc.mm->mmap_sem);
312722cb 5982 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5983}
5984
264a0ae1 5985static void mem_cgroup_move_task(void)
67e465a7 5986{
264a0ae1
TH
5987 if (mc.to) {
5988 mem_cgroup_move_charge();
a433658c 5989 mem_cgroup_clear_mc();
264a0ae1 5990 }
67e465a7 5991}
5cfb80a7 5992#else /* !CONFIG_MMU */
1f7dd3e5 5993static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5994{
5995 return 0;
5996}
1f7dd3e5 5997static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5998{
5999}
264a0ae1 6000static void mem_cgroup_move_task(void)
5cfb80a7
DN
6001{
6002}
6003#endif
67e465a7 6004
f00baae7
TH
6005/*
6006 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6007 * to verify whether we're attached to the default hierarchy on each mount
6008 * attempt.
f00baae7 6009 */
eb95419b 6010static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6011{
6012 /*
aa6ec29b 6013 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6014 * guarantees that @root doesn't have any children, so turning it
6015 * on for the root memcg is enough.
6016 */
9e10a130 6017 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6018 root_mem_cgroup->use_hierarchy = true;
6019 else
6020 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6021}
6022
677dc973
CD
6023static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6024{
6025 if (value == PAGE_COUNTER_MAX)
6026 seq_puts(m, "max\n");
6027 else
6028 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6029
6030 return 0;
6031}
6032
241994ed
JW
6033static u64 memory_current_read(struct cgroup_subsys_state *css,
6034 struct cftype *cft)
6035{
f5fc3c5d
JW
6036 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6037
6038 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6039}
6040
bf8d5d52
RG
6041static int memory_min_show(struct seq_file *m, void *v)
6042{
677dc973
CD
6043 return seq_puts_memcg_tunable(m,
6044 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6045}
6046
6047static ssize_t memory_min_write(struct kernfs_open_file *of,
6048 char *buf, size_t nbytes, loff_t off)
6049{
6050 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6051 unsigned long min;
6052 int err;
6053
6054 buf = strstrip(buf);
6055 err = page_counter_memparse(buf, "max", &min);
6056 if (err)
6057 return err;
6058
6059 page_counter_set_min(&memcg->memory, min);
6060
6061 return nbytes;
6062}
6063
241994ed
JW
6064static int memory_low_show(struct seq_file *m, void *v)
6065{
677dc973
CD
6066 return seq_puts_memcg_tunable(m,
6067 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6068}
6069
6070static ssize_t memory_low_write(struct kernfs_open_file *of,
6071 char *buf, size_t nbytes, loff_t off)
6072{
6073 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6074 unsigned long low;
6075 int err;
6076
6077 buf = strstrip(buf);
d2973697 6078 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6079 if (err)
6080 return err;
6081
23067153 6082 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6083
6084 return nbytes;
6085}
6086
6087static int memory_high_show(struct seq_file *m, void *v)
6088{
d1663a90
JK
6089 return seq_puts_memcg_tunable(m,
6090 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6091}
6092
6093static ssize_t memory_high_write(struct kernfs_open_file *of,
6094 char *buf, size_t nbytes, loff_t off)
6095{
6096 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6097 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6098 bool drained = false;
241994ed
JW
6099 unsigned long high;
6100 int err;
6101
6102 buf = strstrip(buf);
d2973697 6103 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6104 if (err)
6105 return err;
6106
d1663a90 6107 page_counter_set_high(&memcg->memory, high);
241994ed 6108
8c8c383c
JW
6109 for (;;) {
6110 unsigned long nr_pages = page_counter_read(&memcg->memory);
6111 unsigned long reclaimed;
6112
6113 if (nr_pages <= high)
6114 break;
6115
6116 if (signal_pending(current))
6117 break;
6118
6119 if (!drained) {
6120 drain_all_stock(memcg);
6121 drained = true;
6122 continue;
6123 }
6124
6125 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6126 GFP_KERNEL, true);
6127
6128 if (!reclaimed && !nr_retries--)
6129 break;
6130 }
588083bb 6131
241994ed
JW
6132 return nbytes;
6133}
6134
6135static int memory_max_show(struct seq_file *m, void *v)
6136{
677dc973
CD
6137 return seq_puts_memcg_tunable(m,
6138 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6139}
6140
6141static ssize_t memory_max_write(struct kernfs_open_file *of,
6142 char *buf, size_t nbytes, loff_t off)
6143{
6144 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6145 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6146 bool drained = false;
241994ed
JW
6147 unsigned long max;
6148 int err;
6149
6150 buf = strstrip(buf);
d2973697 6151 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6152 if (err)
6153 return err;
6154
bbec2e15 6155 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6156
6157 for (;;) {
6158 unsigned long nr_pages = page_counter_read(&memcg->memory);
6159
6160 if (nr_pages <= max)
6161 break;
6162
7249c9f0 6163 if (signal_pending(current))
b6e6edcf 6164 break;
b6e6edcf
JW
6165
6166 if (!drained) {
6167 drain_all_stock(memcg);
6168 drained = true;
6169 continue;
6170 }
6171
6172 if (nr_reclaims) {
6173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6174 GFP_KERNEL, true))
6175 nr_reclaims--;
6176 continue;
6177 }
6178
e27be240 6179 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6181 break;
6182 }
241994ed 6183
2529bb3a 6184 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6185 return nbytes;
6186}
6187
1e577f97
SB
6188static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6189{
6190 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6191 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6192 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6193 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6194 seq_printf(m, "oom_kill %lu\n",
6195 atomic_long_read(&events[MEMCG_OOM_KILL]));
6196}
6197
241994ed
JW
6198static int memory_events_show(struct seq_file *m, void *v)
6199{
aa9694bb 6200 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6201
1e577f97
SB
6202 __memory_events_show(m, memcg->memory_events);
6203 return 0;
6204}
6205
6206static int memory_events_local_show(struct seq_file *m, void *v)
6207{
6208 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6209
1e577f97 6210 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6211 return 0;
6212}
6213
587d9f72
JW
6214static int memory_stat_show(struct seq_file *m, void *v)
6215{
aa9694bb 6216 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6217 char *buf;
1ff9e6e1 6218
c8713d0b
JW
6219 buf = memory_stat_format(memcg);
6220 if (!buf)
6221 return -ENOMEM;
6222 seq_puts(m, buf);
6223 kfree(buf);
587d9f72
JW
6224 return 0;
6225}
6226
3d8b38eb
RG
6227static int memory_oom_group_show(struct seq_file *m, void *v)
6228{
aa9694bb 6229 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6230
6231 seq_printf(m, "%d\n", memcg->oom_group);
6232
6233 return 0;
6234}
6235
6236static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6237 char *buf, size_t nbytes, loff_t off)
6238{
6239 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6240 int ret, oom_group;
6241
6242 buf = strstrip(buf);
6243 if (!buf)
6244 return -EINVAL;
6245
6246 ret = kstrtoint(buf, 0, &oom_group);
6247 if (ret)
6248 return ret;
6249
6250 if (oom_group != 0 && oom_group != 1)
6251 return -EINVAL;
6252
6253 memcg->oom_group = oom_group;
6254
6255 return nbytes;
6256}
6257
241994ed
JW
6258static struct cftype memory_files[] = {
6259 {
6260 .name = "current",
f5fc3c5d 6261 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6262 .read_u64 = memory_current_read,
6263 },
bf8d5d52
RG
6264 {
6265 .name = "min",
6266 .flags = CFTYPE_NOT_ON_ROOT,
6267 .seq_show = memory_min_show,
6268 .write = memory_min_write,
6269 },
241994ed
JW
6270 {
6271 .name = "low",
6272 .flags = CFTYPE_NOT_ON_ROOT,
6273 .seq_show = memory_low_show,
6274 .write = memory_low_write,
6275 },
6276 {
6277 .name = "high",
6278 .flags = CFTYPE_NOT_ON_ROOT,
6279 .seq_show = memory_high_show,
6280 .write = memory_high_write,
6281 },
6282 {
6283 .name = "max",
6284 .flags = CFTYPE_NOT_ON_ROOT,
6285 .seq_show = memory_max_show,
6286 .write = memory_max_write,
6287 },
6288 {
6289 .name = "events",
6290 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6291 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6292 .seq_show = memory_events_show,
6293 },
1e577f97
SB
6294 {
6295 .name = "events.local",
6296 .flags = CFTYPE_NOT_ON_ROOT,
6297 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6298 .seq_show = memory_events_local_show,
6299 },
587d9f72
JW
6300 {
6301 .name = "stat",
587d9f72
JW
6302 .seq_show = memory_stat_show,
6303 },
3d8b38eb
RG
6304 {
6305 .name = "oom.group",
6306 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6307 .seq_show = memory_oom_group_show,
6308 .write = memory_oom_group_write,
6309 },
241994ed
JW
6310 { } /* terminate */
6311};
6312
073219e9 6313struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6314 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6315 .css_online = mem_cgroup_css_online,
92fb9748 6316 .css_offline = mem_cgroup_css_offline,
6df38689 6317 .css_released = mem_cgroup_css_released,
92fb9748 6318 .css_free = mem_cgroup_css_free,
1ced953b 6319 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6320 .can_attach = mem_cgroup_can_attach,
6321 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6322 .post_attach = mem_cgroup_move_task,
f00baae7 6323 .bind = mem_cgroup_bind,
241994ed
JW
6324 .dfl_cftypes = memory_files,
6325 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6326 .early_init = 0,
8cdea7c0 6327};
c077719b 6328
bc50bcc6
JW
6329/*
6330 * This function calculates an individual cgroup's effective
6331 * protection which is derived from its own memory.min/low, its
6332 * parent's and siblings' settings, as well as the actual memory
6333 * distribution in the tree.
6334 *
6335 * The following rules apply to the effective protection values:
6336 *
6337 * 1. At the first level of reclaim, effective protection is equal to
6338 * the declared protection in memory.min and memory.low.
6339 *
6340 * 2. To enable safe delegation of the protection configuration, at
6341 * subsequent levels the effective protection is capped to the
6342 * parent's effective protection.
6343 *
6344 * 3. To make complex and dynamic subtrees easier to configure, the
6345 * user is allowed to overcommit the declared protection at a given
6346 * level. If that is the case, the parent's effective protection is
6347 * distributed to the children in proportion to how much protection
6348 * they have declared and how much of it they are utilizing.
6349 *
6350 * This makes distribution proportional, but also work-conserving:
6351 * if one cgroup claims much more protection than it uses memory,
6352 * the unused remainder is available to its siblings.
6353 *
6354 * 4. Conversely, when the declared protection is undercommitted at a
6355 * given level, the distribution of the larger parental protection
6356 * budget is NOT proportional. A cgroup's protection from a sibling
6357 * is capped to its own memory.min/low setting.
6358 *
8a931f80
JW
6359 * 5. However, to allow protecting recursive subtrees from each other
6360 * without having to declare each individual cgroup's fixed share
6361 * of the ancestor's claim to protection, any unutilized -
6362 * "floating" - protection from up the tree is distributed in
6363 * proportion to each cgroup's *usage*. This makes the protection
6364 * neutral wrt sibling cgroups and lets them compete freely over
6365 * the shared parental protection budget, but it protects the
6366 * subtree as a whole from neighboring subtrees.
6367 *
6368 * Note that 4. and 5. are not in conflict: 4. is about protecting
6369 * against immediate siblings whereas 5. is about protecting against
6370 * neighboring subtrees.
bc50bcc6
JW
6371 */
6372static unsigned long effective_protection(unsigned long usage,
8a931f80 6373 unsigned long parent_usage,
bc50bcc6
JW
6374 unsigned long setting,
6375 unsigned long parent_effective,
6376 unsigned long siblings_protected)
6377{
6378 unsigned long protected;
8a931f80 6379 unsigned long ep;
bc50bcc6
JW
6380
6381 protected = min(usage, setting);
6382 /*
6383 * If all cgroups at this level combined claim and use more
6384 * protection then what the parent affords them, distribute
6385 * shares in proportion to utilization.
6386 *
6387 * We are using actual utilization rather than the statically
6388 * claimed protection in order to be work-conserving: claimed
6389 * but unused protection is available to siblings that would
6390 * otherwise get a smaller chunk than what they claimed.
6391 */
6392 if (siblings_protected > parent_effective)
6393 return protected * parent_effective / siblings_protected;
6394
6395 /*
6396 * Ok, utilized protection of all children is within what the
6397 * parent affords them, so we know whatever this child claims
6398 * and utilizes is effectively protected.
6399 *
6400 * If there is unprotected usage beyond this value, reclaim
6401 * will apply pressure in proportion to that amount.
6402 *
6403 * If there is unutilized protection, the cgroup will be fully
6404 * shielded from reclaim, but we do return a smaller value for
6405 * protection than what the group could enjoy in theory. This
6406 * is okay. With the overcommit distribution above, effective
6407 * protection is always dependent on how memory is actually
6408 * consumed among the siblings anyway.
6409 */
8a931f80
JW
6410 ep = protected;
6411
6412 /*
6413 * If the children aren't claiming (all of) the protection
6414 * afforded to them by the parent, distribute the remainder in
6415 * proportion to the (unprotected) memory of each cgroup. That
6416 * way, cgroups that aren't explicitly prioritized wrt each
6417 * other compete freely over the allowance, but they are
6418 * collectively protected from neighboring trees.
6419 *
6420 * We're using unprotected memory for the weight so that if
6421 * some cgroups DO claim explicit protection, we don't protect
6422 * the same bytes twice.
6423 */
6424 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6425 return ep;
6426
6427 if (parent_effective > siblings_protected && usage > protected) {
6428 unsigned long unclaimed;
6429
6430 unclaimed = parent_effective - siblings_protected;
6431 unclaimed *= usage - protected;
6432 unclaimed /= parent_usage - siblings_protected;
6433
6434 ep += unclaimed;
6435 }
6436
6437 return ep;
bc50bcc6
JW
6438}
6439
241994ed 6440/**
bf8d5d52 6441 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6442 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6443 * @memcg: the memory cgroup to check
6444 *
23067153
RG
6445 * WARNING: This function is not stateless! It can only be used as part
6446 * of a top-down tree iteration, not for isolated queries.
34c81057 6447 *
bf8d5d52
RG
6448 * Returns one of the following:
6449 * MEMCG_PROT_NONE: cgroup memory is not protected
6450 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6451 * an unprotected supply of reclaimable memory from other cgroups.
6452 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6453 */
bf8d5d52
RG
6454enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6455 struct mem_cgroup *memcg)
241994ed 6456{
8a931f80 6457 unsigned long usage, parent_usage;
23067153
RG
6458 struct mem_cgroup *parent;
6459
241994ed 6460 if (mem_cgroup_disabled())
bf8d5d52 6461 return MEMCG_PROT_NONE;
241994ed 6462
34c81057
SC
6463 if (!root)
6464 root = root_mem_cgroup;
6465 if (memcg == root)
bf8d5d52 6466 return MEMCG_PROT_NONE;
241994ed 6467
23067153 6468 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6469 if (!usage)
6470 return MEMCG_PROT_NONE;
6471
bf8d5d52 6472 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6473 /* No parent means a non-hierarchical mode on v1 memcg */
6474 if (!parent)
6475 return MEMCG_PROT_NONE;
6476
bc50bcc6 6477 if (parent == root) {
c3d53200 6478 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6479 memcg->memory.elow = memcg->memory.low;
6480 goto out;
bf8d5d52
RG
6481 }
6482
8a931f80
JW
6483 parent_usage = page_counter_read(&parent->memory);
6484
b3a7822e 6485 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6486 READ_ONCE(memcg->memory.min),
6487 READ_ONCE(parent->memory.emin),
b3a7822e 6488 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6489
b3a7822e 6490 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
bc50bcc6 6491 memcg->memory.low, READ_ONCE(parent->memory.elow),
b3a7822e 6492 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6493
bc50bcc6
JW
6494out:
6495 if (usage <= memcg->memory.emin)
bf8d5d52 6496 return MEMCG_PROT_MIN;
bc50bcc6 6497 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6498 return MEMCG_PROT_LOW;
6499 else
6500 return MEMCG_PROT_NONE;
241994ed
JW
6501}
6502
00501b53 6503/**
f0e45fb4 6504 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6505 * @page: page to charge
6506 * @mm: mm context of the victim
6507 * @gfp_mask: reclaim mode
f0e45fb4 6508 * @lrucare: page might be on the LRU already
00501b53
JW
6509 *
6510 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6511 * pages according to @gfp_mask if necessary.
6512 *
f0e45fb4 6513 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6514 */
f0e45fb4
JW
6515int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask,
6516 bool lrucare)
00501b53 6517{
3fba69a5 6518 unsigned int nr_pages = hpage_nr_pages(page);
00501b53 6519 struct mem_cgroup *memcg = NULL;
00501b53
JW
6520 int ret = 0;
6521
f0e45fb4
JW
6522 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6523
00501b53
JW
6524 if (mem_cgroup_disabled())
6525 goto out;
6526
6527 if (PageSwapCache(page)) {
00501b53
JW
6528 /*
6529 * Every swap fault against a single page tries to charge the
6530 * page, bail as early as possible. shmem_unuse() encounters
6531 * already charged pages, too. The USED bit is protected by
6532 * the page lock, which serializes swap cache removal, which
6533 * in turn serializes uncharging.
6534 */
e993d905 6535 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6536 if (compound_head(page)->mem_cgroup)
00501b53 6537 goto out;
e993d905 6538
37e84351 6539 if (do_swap_account) {
e993d905
VD
6540 swp_entry_t ent = { .val = page_private(page), };
6541 unsigned short id = lookup_swap_cgroup_id(ent);
6542
6543 rcu_read_lock();
6544 memcg = mem_cgroup_from_id(id);
6545 if (memcg && !css_tryget_online(&memcg->css))
6546 memcg = NULL;
6547 rcu_read_unlock();
6548 }
00501b53
JW
6549 }
6550
00501b53
JW
6551 if (!memcg)
6552 memcg = get_mem_cgroup_from_mm(mm);
6553
6554 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6555 if (ret)
6556 goto out_put;
00501b53 6557
6abb5a86
JW
6558 commit_charge(page, memcg, lrucare);
6559
6abb5a86 6560 local_irq_disable();
3fba69a5 6561 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6562 memcg_check_events(memcg, page);
6563 local_irq_enable();
00501b53 6564
7941d214 6565 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6566 swp_entry_t entry = { .val = page_private(page) };
6567 /*
6568 * The swap entry might not get freed for a long time,
6569 * let's not wait for it. The page already received a
6570 * memory+swap charge, drop the swap entry duplicate.
6571 */
38d8b4e6 6572 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6573 }
00501b53 6574
f0e45fb4
JW
6575out_put:
6576 css_put(&memcg->css);
6577out:
6578 return ret;
3fea5a49
JW
6579}
6580
a9d5adee
JG
6581struct uncharge_gather {
6582 struct mem_cgroup *memcg;
9f762dbe 6583 unsigned long nr_pages;
a9d5adee 6584 unsigned long pgpgout;
a9d5adee 6585 unsigned long nr_kmem;
a9d5adee
JG
6586 struct page *dummy_page;
6587};
6588
6589static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6590{
a9d5adee
JG
6591 memset(ug, 0, sizeof(*ug));
6592}
6593
6594static void uncharge_batch(const struct uncharge_gather *ug)
6595{
747db954
JW
6596 unsigned long flags;
6597
a9d5adee 6598 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6599 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6600 if (do_memsw_account())
9f762dbe 6601 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6602 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6603 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6604 memcg_oom_recover(ug->memcg);
ce00a967 6605 }
747db954
JW
6606
6607 local_irq_save(flags);
c9019e9b 6608 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6609 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6610 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6611 local_irq_restore(flags);
e8ea14cc 6612
a9d5adee 6613 if (!mem_cgroup_is_root(ug->memcg))
9f762dbe 6614 css_put_many(&ug->memcg->css, ug->nr_pages);
a9d5adee
JG
6615}
6616
6617static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6618{
9f762dbe
JW
6619 unsigned long nr_pages;
6620
a9d5adee 6621 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6622
6623 if (!page->mem_cgroup)
6624 return;
6625
6626 /*
6627 * Nobody should be changing or seriously looking at
6628 * page->mem_cgroup at this point, we have fully
6629 * exclusive access to the page.
6630 */
6631
6632 if (ug->memcg != page->mem_cgroup) {
6633 if (ug->memcg) {
6634 uncharge_batch(ug);
6635 uncharge_gather_clear(ug);
6636 }
6637 ug->memcg = page->mem_cgroup;
6638 }
6639
9f762dbe
JW
6640 nr_pages = compound_nr(page);
6641 ug->nr_pages += nr_pages;
a9d5adee 6642
9f762dbe 6643 if (!PageKmemcg(page)) {
a9d5adee
JG
6644 ug->pgpgout++;
6645 } else {
9f762dbe 6646 ug->nr_kmem += nr_pages;
a9d5adee
JG
6647 __ClearPageKmemcg(page);
6648 }
6649
6650 ug->dummy_page = page;
6651 page->mem_cgroup = NULL;
747db954
JW
6652}
6653
6654static void uncharge_list(struct list_head *page_list)
6655{
a9d5adee 6656 struct uncharge_gather ug;
747db954 6657 struct list_head *next;
a9d5adee
JG
6658
6659 uncharge_gather_clear(&ug);
747db954 6660
8b592656
JW
6661 /*
6662 * Note that the list can be a single page->lru; hence the
6663 * do-while loop instead of a simple list_for_each_entry().
6664 */
747db954
JW
6665 next = page_list->next;
6666 do {
a9d5adee
JG
6667 struct page *page;
6668
747db954
JW
6669 page = list_entry(next, struct page, lru);
6670 next = page->lru.next;
6671
a9d5adee 6672 uncharge_page(page, &ug);
747db954
JW
6673 } while (next != page_list);
6674
a9d5adee
JG
6675 if (ug.memcg)
6676 uncharge_batch(&ug);
747db954
JW
6677}
6678
0a31bc97
JW
6679/**
6680 * mem_cgroup_uncharge - uncharge a page
6681 * @page: page to uncharge
6682 *
f0e45fb4 6683 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6684 */
6685void mem_cgroup_uncharge(struct page *page)
6686{
a9d5adee
JG
6687 struct uncharge_gather ug;
6688
0a31bc97
JW
6689 if (mem_cgroup_disabled())
6690 return;
6691
747db954 6692 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6693 if (!page->mem_cgroup)
0a31bc97
JW
6694 return;
6695
a9d5adee
JG
6696 uncharge_gather_clear(&ug);
6697 uncharge_page(page, &ug);
6698 uncharge_batch(&ug);
747db954 6699}
0a31bc97 6700
747db954
JW
6701/**
6702 * mem_cgroup_uncharge_list - uncharge a list of page
6703 * @page_list: list of pages to uncharge
6704 *
6705 * Uncharge a list of pages previously charged with
f0e45fb4 6706 * mem_cgroup_charge().
747db954
JW
6707 */
6708void mem_cgroup_uncharge_list(struct list_head *page_list)
6709{
6710 if (mem_cgroup_disabled())
6711 return;
0a31bc97 6712
747db954
JW
6713 if (!list_empty(page_list))
6714 uncharge_list(page_list);
0a31bc97
JW
6715}
6716
6717/**
6a93ca8f
JW
6718 * mem_cgroup_migrate - charge a page's replacement
6719 * @oldpage: currently circulating page
6720 * @newpage: replacement page
0a31bc97 6721 *
6a93ca8f
JW
6722 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6723 * be uncharged upon free.
0a31bc97
JW
6724 *
6725 * Both pages must be locked, @newpage->mapping must be set up.
6726 */
6a93ca8f 6727void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6728{
29833315 6729 struct mem_cgroup *memcg;
44b7a8d3 6730 unsigned int nr_pages;
d93c4130 6731 unsigned long flags;
0a31bc97
JW
6732
6733 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6734 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6735 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6736 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6737 newpage);
0a31bc97
JW
6738
6739 if (mem_cgroup_disabled())
6740 return;
6741
6742 /* Page cache replacement: new page already charged? */
1306a85a 6743 if (newpage->mem_cgroup)
0a31bc97
JW
6744 return;
6745
45637bab 6746 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6747 memcg = oldpage->mem_cgroup;
29833315 6748 if (!memcg)
0a31bc97
JW
6749 return;
6750
44b7a8d3 6751 /* Force-charge the new page. The old one will be freed soon */
92855270 6752 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6753
6754 page_counter_charge(&memcg->memory, nr_pages);
6755 if (do_memsw_account())
6756 page_counter_charge(&memcg->memsw, nr_pages);
6757 css_get_many(&memcg->css, nr_pages);
0a31bc97 6758
9cf7666a 6759 commit_charge(newpage, memcg, false);
44b7a8d3 6760
d93c4130 6761 local_irq_save(flags);
3fba69a5 6762 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6763 memcg_check_events(memcg, newpage);
d93c4130 6764 local_irq_restore(flags);
0a31bc97
JW
6765}
6766
ef12947c 6767DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6768EXPORT_SYMBOL(memcg_sockets_enabled_key);
6769
2d758073 6770void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6771{
6772 struct mem_cgroup *memcg;
6773
2d758073
JW
6774 if (!mem_cgroup_sockets_enabled)
6775 return;
6776
e876ecc6
SB
6777 /* Do not associate the sock with unrelated interrupted task's memcg. */
6778 if (in_interrupt())
6779 return;
6780
11092087
JW
6781 rcu_read_lock();
6782 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6783 if (memcg == root_mem_cgroup)
6784 goto out;
0db15298 6785 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6786 goto out;
8965aa28 6787 if (css_tryget(&memcg->css))
11092087 6788 sk->sk_memcg = memcg;
f7e1cb6e 6789out:
11092087
JW
6790 rcu_read_unlock();
6791}
11092087 6792
2d758073 6793void mem_cgroup_sk_free(struct sock *sk)
11092087 6794{
2d758073
JW
6795 if (sk->sk_memcg)
6796 css_put(&sk->sk_memcg->css);
11092087
JW
6797}
6798
6799/**
6800 * mem_cgroup_charge_skmem - charge socket memory
6801 * @memcg: memcg to charge
6802 * @nr_pages: number of pages to charge
6803 *
6804 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6805 * @memcg's configured limit, %false if the charge had to be forced.
6806 */
6807bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6808{
f7e1cb6e 6809 gfp_t gfp_mask = GFP_KERNEL;
11092087 6810
f7e1cb6e 6811 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6812 struct page_counter *fail;
f7e1cb6e 6813
0db15298
JW
6814 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6815 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6816 return true;
6817 }
0db15298
JW
6818 page_counter_charge(&memcg->tcpmem, nr_pages);
6819 memcg->tcpmem_pressure = 1;
f7e1cb6e 6820 return false;
11092087 6821 }
d886f4e4 6822
f7e1cb6e
JW
6823 /* Don't block in the packet receive path */
6824 if (in_softirq())
6825 gfp_mask = GFP_NOWAIT;
6826
c9019e9b 6827 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6828
f7e1cb6e
JW
6829 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6830 return true;
6831
6832 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6833 return false;
6834}
6835
6836/**
6837 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6838 * @memcg: memcg to uncharge
6839 * @nr_pages: number of pages to uncharge
11092087
JW
6840 */
6841void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6842{
f7e1cb6e 6843 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6844 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6845 return;
6846 }
d886f4e4 6847
c9019e9b 6848 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6849
475d0487 6850 refill_stock(memcg, nr_pages);
11092087
JW
6851}
6852
f7e1cb6e
JW
6853static int __init cgroup_memory(char *s)
6854{
6855 char *token;
6856
6857 while ((token = strsep(&s, ",")) != NULL) {
6858 if (!*token)
6859 continue;
6860 if (!strcmp(token, "nosocket"))
6861 cgroup_memory_nosocket = true;
04823c83
VD
6862 if (!strcmp(token, "nokmem"))
6863 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6864 }
6865 return 0;
6866}
6867__setup("cgroup.memory=", cgroup_memory);
11092087 6868
2d11085e 6869/*
1081312f
MH
6870 * subsys_initcall() for memory controller.
6871 *
308167fc
SAS
6872 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6873 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6874 * basically everything that doesn't depend on a specific mem_cgroup structure
6875 * should be initialized from here.
2d11085e
MH
6876 */
6877static int __init mem_cgroup_init(void)
6878{
95a045f6
JW
6879 int cpu, node;
6880
84c07d11 6881#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6882 /*
6883 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6884 * so use a workqueue with limited concurrency to avoid stalling
6885 * all worker threads in case lots of cgroups are created and
6886 * destroyed simultaneously.
13583c3d 6887 */
17cc4dfe
TH
6888 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6889 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6890#endif
6891
308167fc
SAS
6892 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6893 memcg_hotplug_cpu_dead);
95a045f6
JW
6894
6895 for_each_possible_cpu(cpu)
6896 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6897 drain_local_stock);
6898
6899 for_each_node(node) {
6900 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6901
6902 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6903 node_online(node) ? node : NUMA_NO_NODE);
6904
ef8f2327 6905 rtpn->rb_root = RB_ROOT;
fa90b2fd 6906 rtpn->rb_rightmost = NULL;
ef8f2327 6907 spin_lock_init(&rtpn->lock);
95a045f6
JW
6908 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6909 }
6910
2d11085e
MH
6911 return 0;
6912}
6913subsys_initcall(mem_cgroup_init);
21afa38e
JW
6914
6915#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6916static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6917{
1c2d479a 6918 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6919 /*
6920 * The root cgroup cannot be destroyed, so it's refcount must
6921 * always be >= 1.
6922 */
6923 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6924 VM_BUG_ON(1);
6925 break;
6926 }
6927 memcg = parent_mem_cgroup(memcg);
6928 if (!memcg)
6929 memcg = root_mem_cgroup;
6930 }
6931 return memcg;
6932}
6933
21afa38e
JW
6934/**
6935 * mem_cgroup_swapout - transfer a memsw charge to swap
6936 * @page: page whose memsw charge to transfer
6937 * @entry: swap entry to move the charge to
6938 *
6939 * Transfer the memsw charge of @page to @entry.
6940 */
6941void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6942{
1f47b61f 6943 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6944 unsigned int nr_entries;
21afa38e
JW
6945 unsigned short oldid;
6946
6947 VM_BUG_ON_PAGE(PageLRU(page), page);
6948 VM_BUG_ON_PAGE(page_count(page), page);
6949
7941d214 6950 if (!do_memsw_account())
21afa38e
JW
6951 return;
6952
6953 memcg = page->mem_cgroup;
6954
6955 /* Readahead page, never charged */
6956 if (!memcg)
6957 return;
6958
1f47b61f
VD
6959 /*
6960 * In case the memcg owning these pages has been offlined and doesn't
6961 * have an ID allocated to it anymore, charge the closest online
6962 * ancestor for the swap instead and transfer the memory+swap charge.
6963 */
6964 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6965 nr_entries = hpage_nr_pages(page);
6966 /* Get references for the tail pages, too */
6967 if (nr_entries > 1)
6968 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6969 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6970 nr_entries);
21afa38e 6971 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6972 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6973
6974 page->mem_cgroup = NULL;
6975
6976 if (!mem_cgroup_is_root(memcg))
d6810d73 6977 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6978
1f47b61f
VD
6979 if (memcg != swap_memcg) {
6980 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6981 page_counter_charge(&swap_memcg->memsw, nr_entries);
6982 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6983 }
6984
ce9ce665
SAS
6985 /*
6986 * Interrupts should be disabled here because the caller holds the
b93b0163 6987 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6988 * important here to have the interrupts disabled because it is the
b93b0163 6989 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6990 */
6991 VM_BUG_ON(!irqs_disabled());
3fba69a5 6992 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 6993 memcg_check_events(memcg, page);
73f576c0
JW
6994
6995 if (!mem_cgroup_is_root(memcg))
d08afa14 6996 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6997}
6998
38d8b4e6
HY
6999/**
7000 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7001 * @page: page being added to swap
7002 * @entry: swap entry to charge
7003 *
38d8b4e6 7004 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7005 *
7006 * Returns 0 on success, -ENOMEM on failure.
7007 */
7008int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7009{
38d8b4e6 7010 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7011 struct page_counter *counter;
38d8b4e6 7012 struct mem_cgroup *memcg;
37e84351
VD
7013 unsigned short oldid;
7014
7015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7016 return 0;
7017
7018 memcg = page->mem_cgroup;
7019
7020 /* Readahead page, never charged */
7021 if (!memcg)
7022 return 0;
7023
f3a53a3a
TH
7024 if (!entry.val) {
7025 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7026 return 0;
f3a53a3a 7027 }
bb98f2c5 7028
1f47b61f
VD
7029 memcg = mem_cgroup_id_get_online(memcg);
7030
37e84351 7031 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7032 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7033 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7034 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7035 mem_cgroup_id_put(memcg);
37e84351 7036 return -ENOMEM;
1f47b61f 7037 }
37e84351 7038
38d8b4e6
HY
7039 /* Get references for the tail pages, too */
7040 if (nr_pages > 1)
7041 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7042 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7043 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7044 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7045
37e84351
VD
7046 return 0;
7047}
7048
21afa38e 7049/**
38d8b4e6 7050 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7051 * @entry: swap entry to uncharge
38d8b4e6 7052 * @nr_pages: the amount of swap space to uncharge
21afa38e 7053 */
38d8b4e6 7054void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7055{
7056 struct mem_cgroup *memcg;
7057 unsigned short id;
7058
37e84351 7059 if (!do_swap_account)
21afa38e
JW
7060 return;
7061
38d8b4e6 7062 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7063 rcu_read_lock();
adbe427b 7064 memcg = mem_cgroup_from_id(id);
21afa38e 7065 if (memcg) {
37e84351
VD
7066 if (!mem_cgroup_is_root(memcg)) {
7067 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7068 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7069 else
38d8b4e6 7070 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7071 }
c9019e9b 7072 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7073 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7074 }
7075 rcu_read_unlock();
7076}
7077
d8b38438
VD
7078long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7079{
7080 long nr_swap_pages = get_nr_swap_pages();
7081
7082 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7083 return nr_swap_pages;
7084 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7085 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7086 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7087 page_counter_read(&memcg->swap));
7088 return nr_swap_pages;
7089}
7090
5ccc5aba
VD
7091bool mem_cgroup_swap_full(struct page *page)
7092{
7093 struct mem_cgroup *memcg;
7094
7095 VM_BUG_ON_PAGE(!PageLocked(page), page);
7096
7097 if (vm_swap_full())
7098 return true;
7099 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7100 return false;
7101
7102 memcg = page->mem_cgroup;
7103 if (!memcg)
7104 return false;
7105
4b82ab4f
JK
7106 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7107 unsigned long usage = page_counter_read(&memcg->swap);
7108
7109 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7110 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7111 return true;
4b82ab4f 7112 }
5ccc5aba
VD
7113
7114 return false;
7115}
7116
21afa38e
JW
7117/* for remember boot option*/
7118#ifdef CONFIG_MEMCG_SWAP_ENABLED
7119static int really_do_swap_account __initdata = 1;
7120#else
7121static int really_do_swap_account __initdata;
7122#endif
7123
7124static int __init enable_swap_account(char *s)
7125{
7126 if (!strcmp(s, "1"))
7127 really_do_swap_account = 1;
7128 else if (!strcmp(s, "0"))
7129 really_do_swap_account = 0;
7130 return 1;
7131}
7132__setup("swapaccount=", enable_swap_account);
7133
37e84351
VD
7134static u64 swap_current_read(struct cgroup_subsys_state *css,
7135 struct cftype *cft)
7136{
7137 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7138
7139 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7140}
7141
4b82ab4f
JK
7142static int swap_high_show(struct seq_file *m, void *v)
7143{
7144 return seq_puts_memcg_tunable(m,
7145 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7146}
7147
7148static ssize_t swap_high_write(struct kernfs_open_file *of,
7149 char *buf, size_t nbytes, loff_t off)
7150{
7151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7152 unsigned long high;
7153 int err;
7154
7155 buf = strstrip(buf);
7156 err = page_counter_memparse(buf, "max", &high);
7157 if (err)
7158 return err;
7159
7160 page_counter_set_high(&memcg->swap, high);
7161
7162 return nbytes;
7163}
7164
37e84351
VD
7165static int swap_max_show(struct seq_file *m, void *v)
7166{
677dc973
CD
7167 return seq_puts_memcg_tunable(m,
7168 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7169}
7170
7171static ssize_t swap_max_write(struct kernfs_open_file *of,
7172 char *buf, size_t nbytes, loff_t off)
7173{
7174 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7175 unsigned long max;
7176 int err;
7177
7178 buf = strstrip(buf);
7179 err = page_counter_memparse(buf, "max", &max);
7180 if (err)
7181 return err;
7182
be09102b 7183 xchg(&memcg->swap.max, max);
37e84351
VD
7184
7185 return nbytes;
7186}
7187
f3a53a3a
TH
7188static int swap_events_show(struct seq_file *m, void *v)
7189{
aa9694bb 7190 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7191
4b82ab4f
JK
7192 seq_printf(m, "high %lu\n",
7193 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7194 seq_printf(m, "max %lu\n",
7195 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7196 seq_printf(m, "fail %lu\n",
7197 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7198
7199 return 0;
7200}
7201
37e84351
VD
7202static struct cftype swap_files[] = {
7203 {
7204 .name = "swap.current",
7205 .flags = CFTYPE_NOT_ON_ROOT,
7206 .read_u64 = swap_current_read,
7207 },
4b82ab4f
JK
7208 {
7209 .name = "swap.high",
7210 .flags = CFTYPE_NOT_ON_ROOT,
7211 .seq_show = swap_high_show,
7212 .write = swap_high_write,
7213 },
37e84351
VD
7214 {
7215 .name = "swap.max",
7216 .flags = CFTYPE_NOT_ON_ROOT,
7217 .seq_show = swap_max_show,
7218 .write = swap_max_write,
7219 },
f3a53a3a
TH
7220 {
7221 .name = "swap.events",
7222 .flags = CFTYPE_NOT_ON_ROOT,
7223 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7224 .seq_show = swap_events_show,
7225 },
37e84351
VD
7226 { } /* terminate */
7227};
7228
21afa38e
JW
7229static struct cftype memsw_cgroup_files[] = {
7230 {
7231 .name = "memsw.usage_in_bytes",
7232 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7233 .read_u64 = mem_cgroup_read_u64,
7234 },
7235 {
7236 .name = "memsw.max_usage_in_bytes",
7237 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7238 .write = mem_cgroup_reset,
7239 .read_u64 = mem_cgroup_read_u64,
7240 },
7241 {
7242 .name = "memsw.limit_in_bytes",
7243 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7244 .write = mem_cgroup_write,
7245 .read_u64 = mem_cgroup_read_u64,
7246 },
7247 {
7248 .name = "memsw.failcnt",
7249 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7250 .write = mem_cgroup_reset,
7251 .read_u64 = mem_cgroup_read_u64,
7252 },
7253 { }, /* terminate */
7254};
7255
7256static int __init mem_cgroup_swap_init(void)
7257{
7258 if (!mem_cgroup_disabled() && really_do_swap_account) {
7259 do_swap_account = 1;
37e84351
VD
7260 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7261 swap_files));
21afa38e
JW
7262 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7263 memsw_cgroup_files));
7264 }
7265 return 0;
7266}
7267subsys_initcall(mem_cgroup_swap_init);
7268
7269#endif /* CONFIG_MEMCG_SWAP */