]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
ksm: prepare to new THP semantics
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
f7e1cb6e
JW
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket;
85
21afa38e 86/* Whether the swap controller is active */
c255a458 87#ifdef CONFIG_MEMCG_SWAP
c077719b 88int do_swap_account __read_mostly;
c077719b 89#else
a0db00fc 90#define do_swap_account 0
c077719b
KH
91#endif
92
7941d214
JW
93/* Whether legacy memory+swap accounting is active */
94static bool do_memsw_account(void)
95{
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97}
98
af7c4b0e
JW
99static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
b070e65c 102 "rss_huge",
af7c4b0e 103 "mapped_file",
c4843a75 104 "dirty",
3ea67d06 105 "writeback",
af7c4b0e
JW
106 "swap",
107};
108
af7c4b0e
JW
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
58cf188e
SZ
116static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122};
123
a0db00fc
KS
124#define THRESHOLDS_EVENTS_TARGET 128
125#define SOFTLIMIT_EVENTS_TARGET 1024
126#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 127
bb4cc1a8
AM
128/*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136};
137
138struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140};
141
142struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144};
145
146static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
9490ff27
KH
148/* for OOM */
149struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152};
2e72b634 153
79bd9814
TH
154/*
155 * cgroup_event represents events which userspace want to receive.
156 */
3bc942f3 157struct mem_cgroup_event {
79bd9814 158 /*
59b6f873 159 * memcg which the event belongs to.
79bd9814 160 */
59b6f873 161 struct mem_cgroup *memcg;
79bd9814
TH
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
fba94807
TH
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
59b6f873 175 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 176 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
59b6f873 182 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 183 struct eventfd_ctx *eventfd);
79bd9814
TH
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192};
193
c0ff4b85
R
194static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 196
7dc74be0
DN
197/* Stuffs for move charges at task migration. */
198/*
1dfab5ab 199 * Types of charges to be moved.
7dc74be0 200 */
1dfab5ab
JW
201#define MOVE_ANON 0x1U
202#define MOVE_FILE 0x2U
203#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 204
4ffef5fe
DN
205/* "mc" and its members are protected by cgroup_mutex */
206static struct move_charge_struct {
b1dd693e 207 spinlock_t lock; /* for from, to */
4ffef5fe
DN
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
1dfab5ab 210 unsigned long flags;
4ffef5fe 211 unsigned long precharge;
854ffa8d 212 unsigned long moved_charge;
483c30b5 213 unsigned long moved_swap;
8033b97c
DN
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216} mc = {
2bd9bb20 217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219};
4ffef5fe 220
4e416953
BS
221/*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
a0db00fc 225#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 226#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 227
217bc319
KH
228enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 230 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
233 NR_CHARGE_TYPE,
234};
235
8c7c6e34 236/* for encoding cft->private value on file */
86ae53e1
GC
237enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
510fc4e1 241 _KMEM,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
0999821b
GC
250/*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255static DEFINE_MUTEX(memcg_create_mutex);
256
70ddf637
AV
257/* Some nice accessors for the vmpressure. */
258struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259{
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263}
264
265struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266{
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268}
269
7ffc0edc
MH
270static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271{
272 return (memcg == root_mem_cgroup);
273}
274
4219b2da
LZ
275/*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279#define MEM_CGROUP_ID_MAX USHRT_MAX
280
34c00c31
LZ
281static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282{
15a4c835 283 return memcg->css.id;
34c00c31
LZ
284}
285
adbe427b
VD
286/*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
34c00c31
LZ
292static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293{
294 struct cgroup_subsys_state *css;
295
7d699ddb 296 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
297 return mem_cgroup_from_css(css);
298}
299
a8964b9b 300#ifdef CONFIG_MEMCG_KMEM
55007d84 301/*
f7ce3190 302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
55007d84 308 *
dbcf73e2
VD
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
55007d84 311 */
dbcf73e2
VD
312static DEFINE_IDA(memcg_cache_ida);
313int memcg_nr_cache_ids;
749c5415 314
05257a1a
VD
315/* Protects memcg_nr_cache_ids */
316static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318void memcg_get_cache_ids(void)
319{
320 down_read(&memcg_cache_ids_sem);
321}
322
323void memcg_put_cache_ids(void)
324{
325 up_read(&memcg_cache_ids_sem);
326}
327
55007d84
GC
328/*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
b8627835 334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
338 * increase ours as well if it increases.
339 */
340#define MEMCG_CACHES_MIN_SIZE 4
b8627835 341#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 342
d7f25f8a
GC
343/*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
ef12947c 349DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 350EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 351
a8964b9b
GC
352#endif /* CONFIG_MEMCG_KMEM */
353
f64c3f54 354static struct mem_cgroup_per_zone *
e231875b 355mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 356{
e231875b
JZ
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
54f72fe0 360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
361}
362
ad7fa852
TH
363/**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382{
383 struct mem_cgroup *memcg;
384
385 rcu_read_lock();
386
387 memcg = page->mem_cgroup;
388
9e10a130 389 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
390 memcg = root_mem_cgroup;
391
392 rcu_read_unlock();
393 return &memcg->css;
394}
395
2fc04524
VD
396/**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409ino_t page_cgroup_ino(struct page *page)
410{
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422}
423
f64c3f54 424static struct mem_cgroup_per_zone *
e231875b 425mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 426{
97a6c37b
JW
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
f64c3f54 429
e231875b 430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
431}
432
bb4cc1a8
AM
433static struct mem_cgroup_tree_per_zone *
434soft_limit_tree_node_zone(int nid, int zid)
435{
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437}
438
439static struct mem_cgroup_tree_per_zone *
440soft_limit_tree_from_page(struct page *page)
441{
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446}
447
cf2c8127
JW
448static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 450 unsigned long new_usage_in_excess)
bb4cc1a8
AM
451{
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478}
479
cf2c8127
JW
480static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
482{
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487}
488
cf2c8127
JW
489static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 491{
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 495 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 496 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
497}
498
3e32cb2e
JW
499static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500{
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509}
bb4cc1a8
AM
510
511static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512{
3e32cb2e 513 unsigned long excess;
bb4cc1a8
AM
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 516
e231875b 517 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 523 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 524 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
0a31bc97
JW
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
533 /* if on-tree, remove it */
534 if (mz->on_tree)
cf2c8127 535 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
cf2c8127 540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 541 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
542 }
543 }
544}
545
546static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547{
bb4cc1a8 548 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
bb4cc1a8 551
e231875b
JZ
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 556 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
557 }
558 }
559}
560
561static struct mem_cgroup_per_zone *
562__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563{
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
cf2c8127 579 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 580 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 581 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
582 goto retry;
583done:
584 return mz;
585}
586
587static struct mem_cgroup_per_zone *
588mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589{
590 struct mem_cgroup_per_zone *mz;
591
0a31bc97 592 spin_lock_irq(&mctz->lock);
bb4cc1a8 593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 594 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
595 return mz;
596}
597
711d3d2c 598/*
484ebb3b
GT
599 * Return page count for single (non recursive) @memcg.
600 *
711d3d2c
KH
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 606 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 616 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
617 * implemented.
618 */
484ebb3b
GT
619static unsigned long
620mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 621{
7a159cc9 622 long val = 0;
c62b1a3b 623 int cpu;
c62b1a3b 624
484ebb3b 625 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 626 for_each_possible_cpu(cpu)
c0ff4b85 627 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
c62b1a3b
KH
634 return val;
635}
636
c0ff4b85 637static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
638 enum mem_cgroup_events_index idx)
639{
640 unsigned long val = 0;
641 int cpu;
642
733a572e 643 for_each_possible_cpu(cpu)
c0ff4b85 644 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
645 return val;
646}
647
c0ff4b85 648static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 649 struct page *page,
f627c2f5 650 bool compound, int nr_pages)
d52aa412 651{
b2402857
KH
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
0a31bc97 656 if (PageAnon(page))
b2402857 657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 658 nr_pages);
d52aa412 659 else
b2402857 660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 661 nr_pages);
55e462b0 662
f627c2f5
KS
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
f627c2f5 667 }
b070e65c 668
e401f176
KH
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
c0ff4b85 671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 672 else {
c0ff4b85 673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
674 nr_pages = -nr_pages; /* for event */
675 }
e401f176 676
13114716 677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
678}
679
e231875b
JZ
680static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
bb2a0de9 683{
e231875b 684 unsigned long nr = 0;
889976db
YH
685 int zid;
686
e231875b 687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 688
e231875b
JZ
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
889976db 701}
bb2a0de9 702
c0ff4b85 703static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 704 unsigned int lru_mask)
6d12e2d8 705{
e231875b 706 unsigned long nr = 0;
889976db 707 int nid;
6d12e2d8 708
31aaea4a 709 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
d52aa412
KH
712}
713
f53d7ce3
JW
714static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
7a159cc9
JW
716{
717 unsigned long val, next;
718
13114716 719 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 720 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 721 /* from time_after() in jiffies.h */
f53d7ce3
JW
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
bb4cc1a8
AM
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
f53d7ce3
JW
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
7a159cc9 738 }
f53d7ce3 739 return false;
d2265e6f
KH
740}
741
742/*
743 * Check events in order.
744 *
745 */
c0ff4b85 746static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
747{
748 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 751 bool do_softlimit;
82b3f2a7 752 bool do_numainfo __maybe_unused;
f53d7ce3 753
bb4cc1a8
AM
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
756#if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759#endif
c0ff4b85 760 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
453a9bf3 763#if MAX_NUMNODES > 1
f53d7ce3 764 if (unlikely(do_numainfo))
c0ff4b85 765 atomic_inc(&memcg->numainfo_events);
453a9bf3 766#endif
0a31bc97 767 }
d2265e6f
KH
768}
769
cf475ad2 770struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 771{
31a78f23
BS
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
073219e9 780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 781}
33398cf2 782EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 783
df381975 784static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 785{
c0ff4b85 786 struct mem_cgroup *memcg = NULL;
0b7f569e 787
54595fe2
KH
788 rcu_read_lock();
789 do {
6f6acb00
MH
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
df381975 796 memcg = root_mem_cgroup;
6f6acb00
MH
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
ec903c0c 802 } while (!css_tryget_online(&memcg->css));
54595fe2 803 rcu_read_unlock();
c0ff4b85 804 return memcg;
54595fe2
KH
805}
806
5660048c
JW
807/**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
694fbc0f 824struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 825 struct mem_cgroup *prev,
694fbc0f 826 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 827{
33398cf2 828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 829 struct cgroup_subsys_state *css = NULL;
9f3a0d09 830 struct mem_cgroup *memcg = NULL;
5ac8fb31 831 struct mem_cgroup *pos = NULL;
711d3d2c 832
694fbc0f
AM
833 if (mem_cgroup_disabled())
834 return NULL;
5660048c 835
9f3a0d09
JW
836 if (!root)
837 root = root_mem_cgroup;
7d74b06f 838
9f3a0d09 839 if (prev && !reclaim)
5ac8fb31 840 pos = prev;
14067bb3 841
9f3a0d09
JW
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
5ac8fb31 844 goto out;
694fbc0f 845 return root;
9f3a0d09 846 }
14067bb3 847
542f85f9 848 rcu_read_lock();
5f578161 849
5ac8fb31
JW
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
6df38689 859 while (1) {
4db0c3c2 860 pos = READ_ONCE(iter->position);
6df38689
VD
861 if (!pos || css_tryget(&pos->css))
862 break;
5ac8fb31 863 /*
6df38689
VD
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
5ac8fb31 870 */
6df38689
VD
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
5ac8fb31
JW
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
527a5ec9 890 }
7d74b06f 891
5ac8fb31
JW
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
14067bb3 898
5ac8fb31
JW
899 if (css == &root->css)
900 break;
14067bb3 901
b2052564 902 if (css_tryget(css)) {
5ac8fb31
JW
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
542f85f9 910
5ac8fb31 911 css_put(css);
527a5ec9 912 }
9f3a0d09 913
5ac8fb31 914 memcg = NULL;
9f3a0d09 915 }
5ac8fb31
JW
916
917 if (reclaim) {
5ac8fb31 918 /*
6df38689
VD
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 922 */
6df38689
VD
923 (void)cmpxchg(&iter->position, pos, memcg);
924
5ac8fb31
JW
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
9f3a0d09 932 }
5ac8fb31 933
542f85f9
MH
934out_unlock:
935 rcu_read_unlock();
5ac8fb31 936out:
c40046f3
MH
937 if (prev && prev != root)
938 css_put(&prev->css);
939
9f3a0d09 940 return memcg;
14067bb3 941}
7d74b06f 942
5660048c
JW
943/**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
9f3a0d09
JW
950{
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955}
7d74b06f 956
6df38689
VD
957static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958{
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977}
978
9f3a0d09
JW
979/*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 986 iter != NULL; \
527a5ec9 987 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 988
9f3a0d09 989#define for_each_mem_cgroup(iter) \
527a5ec9 990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 991 iter != NULL; \
527a5ec9 992 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 993
925b7673
JW
994/**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
fa9add64 997 * @memcg: memcg of the wanted lruvec
925b7673
JW
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005{
1006 struct mem_cgroup_per_zone *mz;
bea8c150 1007 struct lruvec *lruvec;
925b7673 1008
bea8c150
HD
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
925b7673 1013
e231875b 1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1015 lruvec = &mz->lruvec;
1016out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
925b7673
JW
1025}
1026
925b7673 1027/**
dfe0e773 1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1029 * @page: the page
fa9add64 1030 * @zone: zone of the page
dfe0e773
JW
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1035 */
fa9add64 1036struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1037{
08e552c6 1038 struct mem_cgroup_per_zone *mz;
925b7673 1039 struct mem_cgroup *memcg;
bea8c150 1040 struct lruvec *lruvec;
6d12e2d8 1041
bea8c150
HD
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
925b7673 1046
1306a85a 1047 memcg = page->mem_cgroup;
7512102c 1048 /*
dfe0e773 1049 * Swapcache readahead pages are added to the LRU - and
29833315 1050 * possibly migrated - before they are charged.
7512102c 1051 */
29833315
JW
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
7512102c 1054
e231875b 1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1056 lruvec = &mz->lruvec;
1057out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
08e552c6 1066}
b69408e8 1067
925b7673 1068/**
fa9add64
HD
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
925b7673 1073 *
fa9add64
HD
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
3f58a829 1076 */
fa9add64
HD
1077void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
3f58a829
MK
1079{
1080 struct mem_cgroup_per_zone *mz;
fa9add64 1081 unsigned long *lru_size;
3f58a829
MK
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
fa9add64
HD
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1090}
544122e5 1091
2314b42d 1092bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1093{
2314b42d 1094 struct mem_cgroup *task_memcg;
158e0a2d 1095 struct task_struct *p;
ffbdccf5 1096 bool ret;
4c4a2214 1097
158e0a2d 1098 p = find_lock_task_mm(task);
de077d22 1099 if (p) {
2314b42d 1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
ffbdccf5 1108 rcu_read_lock();
2314b42d
JW
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
ffbdccf5 1111 rcu_read_unlock();
de077d22 1112 }
2314b42d
JW
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
4c4a2214
DR
1115 return ret;
1116}
1117
19942822 1118/**
9d11ea9f 1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1120 * @memcg: the memory cgroup
19942822 1121 *
9d11ea9f 1122 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1123 * pages.
19942822 1124 */
c0ff4b85 1125static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1126{
3e32cb2e
JW
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
9d11ea9f 1130
3e32cb2e 1131 count = page_counter_read(&memcg->memory);
4db0c3c2 1132 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1133 if (count < limit)
1134 margin = limit - count;
1135
7941d214 1136 if (do_memsw_account()) {
3e32cb2e 1137 count = page_counter_read(&memcg->memsw);
4db0c3c2 1138 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
19942822
JW
1144}
1145
32047e2a 1146/*
bdcbb659 1147 * A routine for checking "mem" is under move_account() or not.
32047e2a 1148 *
bdcbb659
QH
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
32047e2a 1152 */
c0ff4b85 1153static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1154{
2bd9bb20
KH
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
4b534334 1157 bool ret = false;
2bd9bb20
KH
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
3e92041d 1167
2314b42d
JW
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1170unlock:
1171 spin_unlock(&mc.lock);
4b534334
KH
1172 return ret;
1173}
1174
c0ff4b85 1175static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1176{
1177 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1178 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189}
1190
58cf188e 1191#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1192/**
58cf188e 1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201{
e61734c5 1202 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1203 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1204 struct mem_cgroup *iter;
1205 unsigned int i;
e222432b 1206
08088cb9 1207 mutex_lock(&oom_info_lock);
e222432b
BS
1208 rcu_read_lock();
1209
2415b9f5
BV
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
e61734c5 1218 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1219 pr_cont("\n");
e222432b 1220
e222432b
BS
1221 rcu_read_unlock();
1222
3e32cb2e
JW
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
58cf188e 1240 continue;
484ebb3b 1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
08088cb9 1251 mutex_unlock(&oom_info_lock);
e222432b
BS
1252}
1253
81d39c20
KH
1254/*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
c0ff4b85 1258static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1259{
1260 int num = 0;
7d74b06f
KH
1261 struct mem_cgroup *iter;
1262
c0ff4b85 1263 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1264 num++;
81d39c20
KH
1265 return num;
1266}
1267
a63d83f4
DR
1268/*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
3e32cb2e 1271static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1272{
3e32cb2e 1273 unsigned long limit;
f3e8eb70 1274
3e32cb2e 1275 limit = memcg->memory.limit;
9a5a8f19 1276 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1277 unsigned long memsw_limit;
9a5a8f19 1278
3e32cb2e
JW
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1281 }
9a5a8f19 1282 return limit;
a63d83f4
DR
1283}
1284
19965460
DR
1285static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
9cbb78bb 1287{
6e0fc46d
DR
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
6e0fc46d 1293 };
9cbb78bb
DR
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
dc56401f
JW
1300 mutex_lock(&oom_lock);
1301
876aafbf 1302 /*
465adcf1
DR
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
876aafbf 1306 */
d003f371 1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1308 mark_oom_victim(current);
dc56401f 1309 goto unlock;
876aafbf
DR
1310 }
1311
6e0fc46d 1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1314 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1315 struct css_task_iter it;
9cbb78bb
DR
1316 struct task_struct *task;
1317
72ec7029
TH
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
72ec7029 1331 css_task_iter_end(&it);
9cbb78bb
DR
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
dc56401f 1335 goto unlock;
9cbb78bb
DR
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
9cbb78bb 1352 }
72ec7029 1353 css_task_iter_end(&it);
9cbb78bb
DR
1354 }
1355
dc56401f
JW
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
dc56401f
JW
1360 }
1361unlock:
1362 mutex_unlock(&oom_lock);
9cbb78bb
DR
1363}
1364
ae6e71d3
MC
1365#if MAX_NUMNODES > 1
1366
4d0c066d
KH
1367/**
1368 * test_mem_cgroup_node_reclaimable
dad7557e 1369 * @memcg: the target memcg
4d0c066d
KH
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
c0ff4b85 1377static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1378 int nid, bool noswap)
1379{
c0ff4b85 1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
c0ff4b85 1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1385 return true;
1386 return false;
1387
1388}
889976db
YH
1389
1390/*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
c0ff4b85 1396static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1397{
1398 int nid;
453a9bf3
KH
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
c0ff4b85 1403 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1404 return;
c0ff4b85 1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1406 return;
1407
889976db 1408 /* make a nodemask where this memcg uses memory from */
31aaea4a 1409 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1410
31aaea4a 1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1412
c0ff4b85
R
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
889976db 1415 }
453a9bf3 1416
c0ff4b85
R
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1419}
1420
1421/*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
c0ff4b85 1433int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1434{
1435 int node;
1436
c0ff4b85
R
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
889976db 1439
c0ff4b85 1440 node = next_node(node, memcg->scan_nodes);
889976db 1441 if (node == MAX_NUMNODES)
c0ff4b85 1442 node = first_node(memcg->scan_nodes);
889976db
YH
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
c0ff4b85 1452 memcg->last_scanned_node = node;
889976db
YH
1453 return node;
1454}
889976db 1455#else
c0ff4b85 1456int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1457{
1458 return 0;
1459}
1460#endif
1461
0608f43d
AM
1462static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466{
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
3e32cb2e 1477 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
0608f43d
AM
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
3e32cb2e 1506 if (!soft_limit_excess(root_memcg))
0608f43d 1507 break;
6d61ef40 1508 }
0608f43d
AM
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
6d61ef40
BS
1511}
1512
0056f4e6
JW
1513#ifdef CONFIG_LOCKDEP
1514static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516};
1517#endif
1518
fb2a6fc5
JW
1519static DEFINE_SPINLOCK(memcg_oom_lock);
1520
867578cb
KH
1521/*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
fb2a6fc5 1525static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1526{
79dfdacc 1527 struct mem_cgroup *iter, *failed = NULL;
a636b327 1528
fb2a6fc5
JW
1529 spin_lock(&memcg_oom_lock);
1530
9f3a0d09 1531 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1532 if (iter->oom_lock) {
79dfdacc
MH
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
79dfdacc 1537 failed = iter;
9f3a0d09
JW
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
23751be0
JW
1540 } else
1541 iter->oom_lock = true;
7d74b06f 1542 }
867578cb 1543
fb2a6fc5
JW
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
79dfdacc 1555 }
0056f4e6
JW
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
a636b327 1562}
0b7f569e 1563
fb2a6fc5 1564static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1565{
7d74b06f
KH
1566 struct mem_cgroup *iter;
1567
fb2a6fc5 1568 spin_lock(&memcg_oom_lock);
0056f4e6 1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1570 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1571 iter->oom_lock = false;
fb2a6fc5 1572 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1573}
1574
c0ff4b85 1575static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1576{
1577 struct mem_cgroup *iter;
1578
c2b42d3c 1579 spin_lock(&memcg_oom_lock);
c0ff4b85 1580 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1583}
1584
c0ff4b85 1585static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1586{
1587 struct mem_cgroup *iter;
1588
867578cb
KH
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1592 */
c2b42d3c 1593 spin_lock(&memcg_oom_lock);
c0ff4b85 1594 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1598}
1599
867578cb
KH
1600static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
dc98df5a 1602struct oom_wait_info {
d79154bb 1603 struct mem_cgroup *memcg;
dc98df5a
KH
1604 wait_queue_t wait;
1605};
1606
1607static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609{
d79154bb
HD
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1615 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1616
2314b42d
JW
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1619 return 0;
dc98df5a
KH
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621}
1622
c0ff4b85 1623static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1624{
c2b42d3c
TH
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
f4b90b70 1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1635}
1636
3812c8c8 1637static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1638{
626ebc41 1639 if (!current->memcg_may_oom)
3812c8c8 1640 return;
867578cb 1641 /*
49426420
JW
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
867578cb 1654 */
49426420 1655 css_get(&memcg->css);
626ebc41
TH
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
3812c8c8
JW
1659}
1660
1661/**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1663 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1664 *
49426420
JW
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
3812c8c8 1667 *
49426420 1668 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1673 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1676 * completed, %false otherwise.
3812c8c8 1677 */
49426420 1678bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1679{
626ebc41 1680 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1681 struct oom_wait_info owait;
49426420 1682 bool locked;
3812c8c8
JW
1683
1684 /* OOM is global, do not handle */
3812c8c8 1685 if (!memcg)
49426420 1686 return false;
3812c8c8 1687
c32b3cbe 1688 if (!handle || oom_killer_disabled)
49426420 1689 goto cleanup;
3812c8c8
JW
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1696
3812c8c8 1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
49426420 1710 } else {
3812c8c8 1711 schedule();
49426420
JW
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
fb2a6fc5
JW
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
49426420 1725cleanup:
626ebc41 1726 current->memcg_in_oom = NULL;
3812c8c8 1727 css_put(&memcg->css);
867578cb 1728 return true;
0b7f569e
KH
1729}
1730
d7365e78
JW
1731/**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
32047e2a 1734 *
d7365e78
JW
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
32047e2a 1738 *
6de22619 1739 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1742 * mem_cgroup_end_page_stat(memcg);
d69b042f 1743 */
6de22619 1744struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1745{
1746 struct mem_cgroup *memcg;
6de22619 1747 unsigned long flags;
89c06bd5 1748
6de22619
JW
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
d7365e78
JW
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
89c06bd5 1765again:
1306a85a 1766 memcg = page->mem_cgroup;
29833315 1767 if (unlikely(!memcg))
d7365e78
JW
1768 return NULL;
1769
bdcbb659 1770 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1771 return memcg;
89c06bd5 1772
6de22619 1773 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1774 if (memcg != page->mem_cgroup) {
6de22619 1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1776 goto again;
1777 }
6de22619
JW
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
d7365e78
JW
1786
1787 return memcg;
89c06bd5 1788}
c4843a75 1789EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1790
d7365e78
JW
1791/**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
d7365e78 1794 */
6de22619 1795void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1796{
6de22619
JW
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
89c06bd5 1805
d7365e78 1806 rcu_read_unlock();
89c06bd5 1807}
c4843a75 1808EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1809
cdec2e42
KH
1810/*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
7ec99d62 1814#define CHARGE_BATCH 32U
cdec2e42
KH
1815struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1817 unsigned int nr_pages;
cdec2e42 1818 struct work_struct work;
26fe6168 1819 unsigned long flags;
a0db00fc 1820#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1821};
1822static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1823static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1824
a0956d54
SS
1825/**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
cdec2e42 1835 */
a0956d54 1836static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1837{
1838 struct memcg_stock_pcp *stock;
3e32cb2e 1839 bool ret = false;
cdec2e42 1840
a0956d54 1841 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1842 return ret;
a0956d54 1843
cdec2e42 1844 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1846 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1847 ret = true;
1848 }
cdec2e42
KH
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851}
1852
1853/*
3e32cb2e 1854 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1855 */
1856static void drain_stock(struct memcg_stock_pcp *stock)
1857{
1858 struct mem_cgroup *old = stock->cached;
1859
11c9ea4e 1860 if (stock->nr_pages) {
3e32cb2e 1861 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1862 if (do_memsw_account())
3e32cb2e 1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1864 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1865 stock->nr_pages = 0;
cdec2e42
KH
1866 }
1867 stock->cached = NULL;
cdec2e42
KH
1868}
1869
1870/*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874static void drain_local_stock(struct work_struct *dummy)
1875{
7c8e0181 1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1877 drain_stock(stock);
26fe6168 1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1879}
1880
1881/*
3e32cb2e 1882 * Cache charges(val) to local per_cpu area.
320cc51d 1883 * This will be consumed by consume_stock() function, later.
cdec2e42 1884 */
c0ff4b85 1885static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1886{
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
c0ff4b85 1889 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1890 drain_stock(stock);
c0ff4b85 1891 stock->cached = memcg;
cdec2e42 1892 }
11c9ea4e 1893 stock->nr_pages += nr_pages;
cdec2e42
KH
1894 put_cpu_var(memcg_stock);
1895}
1896
1897/*
c0ff4b85 1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1899 * of the hierarchy under it.
cdec2e42 1900 */
6d3d6aa2 1901static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1902{
26fe6168 1903 int cpu, curcpu;
d38144b7 1904
6d3d6aa2
JW
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
cdec2e42 1908 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1909 get_online_cpus();
5af12d0e 1910 curcpu = get_cpu();
cdec2e42
KH
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1913 struct mem_cgroup *memcg;
26fe6168 1914
c0ff4b85
R
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
26fe6168 1917 continue;
2314b42d 1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1919 continue;
d1a05b69
MH
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
cdec2e42 1926 }
5af12d0e 1927 put_cpu();
f894ffa8 1928 put_online_cpus();
9f50fad6 1929 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1930}
1931
0db0628d 1932static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1933 unsigned long action,
1934 void *hcpu)
1935{
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
619d094b 1939 if (action == CPU_ONLINE)
1489ebad 1940 return NOTIFY_OK;
1489ebad 1941
d833049b 1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1943 return NOTIFY_OK;
711d3d2c 1944
cdec2e42
KH
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948}
1949
f7e1cb6e
JW
1950static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953{
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960}
1961
1962static void high_work_func(struct work_struct *work)
1963{
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968}
1969
b23afb93
TH
1970/*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974void mem_cgroup_handle_over_high(void)
1975{
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1977 struct mem_cgroup *memcg;
b23afb93
TH
1978
1979 if (likely(!nr_pages))
1980 return;
1981
f7e1cb6e
JW
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986}
1987
00501b53
JW
1988static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
8a9f3ccd 1990{
7ec99d62 1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1993 struct mem_cgroup *mem_over_limit;
3e32cb2e 1994 struct page_counter *counter;
6539cc05 1995 unsigned long nr_reclaimed;
b70a2a21
JW
1996 bool may_swap = true;
1997 bool drained = false;
a636b327 1998
ce00a967 1999 if (mem_cgroup_is_root(memcg))
10d53c74 2000 return 0;
6539cc05 2001retry:
b6b6cc72 2002 if (consume_stock(memcg, nr_pages))
10d53c74 2003 return 0;
8a9f3ccd 2004
7941d214 2005 if (!do_memsw_account() ||
6071ca52
JW
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2008 goto done_restock;
7941d214 2009 if (do_memsw_account())
3e32cb2e
JW
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2012 } else {
3e32cb2e 2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2014 may_swap = false;
3fbe7244 2015 }
7a81b88c 2016
6539cc05
JW
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
6d61ef40 2021
06b078fc
JW
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
10d53c74 2031 goto force;
06b078fc
JW
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
d0164adc 2036 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2037 goto nomem;
4b534334 2038
241994ed
JW
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
b70a2a21
JW
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
6539cc05 2043
61e02c74 2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2045 goto retry;
28c34c29 2046
b70a2a21 2047 if (!drained) {
6d3d6aa2 2048 drain_all_stock(mem_over_limit);
b70a2a21
JW
2049 drained = true;
2050 goto retry;
2051 }
2052
28c34c29
JW
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
6539cc05
JW
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
61e02c74 2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
9b130619
JW
2073 if (nr_retries--)
2074 goto retry;
2075
06b078fc 2076 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2077 goto force;
06b078fc 2078
6539cc05 2079 if (fatal_signal_pending(current))
10d53c74 2080 goto force;
6539cc05 2081
241994ed
JW
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
3608de07
JM
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2086nomem:
6d1fdc48 2087 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2088 return -ENOMEM;
10d53c74
TH
2089force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2096 if (do_memsw_account())
10d53c74
TH
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
6539cc05
JW
2101
2102done_restock:
e8ea14cc 2103 css_get_many(&memcg->css, batch);
6539cc05
JW
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
b23afb93 2106
241994ed 2107 /*
b23afb93
TH
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2115 */
2116 do {
b23afb93 2117 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
9516a18a 2123 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2124 set_notify_resume(current);
2125 break;
2126 }
241994ed 2127 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2128
2129 return 0;
7a81b88c 2130}
8a9f3ccd 2131
00501b53 2132static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2133{
ce00a967
JW
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
3e32cb2e 2137 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2138 if (do_memsw_account())
3e32cb2e 2139 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2140
e8ea14cc 2141 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2142}
2143
0a31bc97
JW
2144static void lock_page_lru(struct page *page, int *isolated)
2145{
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158}
2159
2160static void unlock_page_lru(struct page *page, int isolated)
2161{
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173}
2174
00501b53 2175static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2176 bool lrucare)
7a81b88c 2177{
0a31bc97 2178 int isolated;
9ce70c02 2179
1306a85a 2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
0a31bc97
JW
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
9ce70c02 2188
0a31bc97
JW
2189 /*
2190 * Nobody should be changing or seriously looking at
1306a85a 2191 * page->mem_cgroup at this point:
0a31bc97
JW
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
1306a85a 2203 page->mem_cgroup = memcg;
9ce70c02 2204
0a31bc97
JW
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
7a81b88c 2207}
66e1707b 2208
7ae1e1d0 2209#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2210static int memcg_alloc_cache_id(void)
55007d84 2211{
f3bb3043
VD
2212 int id, size;
2213 int err;
2214
dbcf73e2 2215 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
55007d84 2219
dbcf73e2 2220 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
05257a1a 2227 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2228
2229 size = 2 * (id + 1);
55007d84
GC
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
f3bb3043 2235 err = memcg_update_all_caches(size);
60d3fd32
VD
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
f3bb3043 2243 if (err) {
dbcf73e2 2244 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2245 return err;
2246 }
2247 return id;
2248}
2249
2250static void memcg_free_cache_id(int id)
2251{
dbcf73e2 2252 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2253}
2254
d5b3cf71 2255struct memcg_kmem_cache_create_work {
5722d094
VD
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259};
2260
d5b3cf71 2261static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2262{
d5b3cf71
VD
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2267
d5b3cf71 2268 memcg_create_kmem_cache(memcg, cachep);
bd673145 2269
5722d094 2270 css_put(&memcg->css);
d7f25f8a
GC
2271 kfree(cw);
2272}
2273
2274/*
2275 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2276 */
d5b3cf71
VD
2277static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
d7f25f8a 2279{
d5b3cf71 2280 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2281
776ed0f0 2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2283 if (!cw)
d7f25f8a 2284 return;
8135be5a
VD
2285
2286 css_get(&memcg->css);
d7f25f8a
GC
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
d5b3cf71 2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2291
d7f25f8a
GC
2292 schedule_work(&cw->work);
2293}
2294
d5b3cf71
VD
2295static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
0e9d92f2
GC
2297{
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2301 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
6f185c29 2309 current->memcg_kmem_skip_account = 1;
d5b3cf71 2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2311 current->memcg_kmem_skip_account = 0;
0e9d92f2 2312}
c67a8a68 2313
d7f25f8a
GC
2314/*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
230e9fc2 2327struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2328{
2329 struct mem_cgroup *memcg;
959c8963 2330 struct kmem_cache *memcg_cachep;
2a4db7eb 2331 int kmemcg_id;
d7f25f8a 2332
f7ce3190 2333 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2334
230e9fc2
VD
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
9d100c5e 2341 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2342 return cachep;
2343
8135be5a 2344 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2346 if (kmemcg_id < 0)
ca0dde97 2347 goto out;
d7f25f8a 2348
2a4db7eb 2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
ca0dde97
LZ
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
ca0dde97 2364 */
d5b3cf71 2365 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2366out:
8135be5a 2367 css_put(&memcg->css);
ca0dde97 2368 return cachep;
d7f25f8a 2369}
d7f25f8a 2370
8135be5a
VD
2371void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372{
2373 if (!is_root_cache(cachep))
f7ce3190 2374 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2375}
2376
f3ccb2c4
VD
2377int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
7ae1e1d0 2379{
f3ccb2c4
VD
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
7ae1e1d0
GC
2382 int ret;
2383
f3ccb2c4 2384 if (!memcg_kmem_is_active(memcg))
d05e83a6 2385 return 0;
6d42c232 2386
6071ca52
JW
2387 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2388 return -ENOMEM;
7ae1e1d0 2389
f3ccb2c4
VD
2390 ret = try_charge(memcg, gfp, nr_pages);
2391 if (ret) {
2392 page_counter_uncharge(&memcg->kmem, nr_pages);
2393 return ret;
7ae1e1d0
GC
2394 }
2395
f3ccb2c4 2396 page->mem_cgroup = memcg;
7ae1e1d0 2397
f3ccb2c4 2398 return 0;
7ae1e1d0
GC
2399}
2400
f3ccb2c4 2401int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2402{
f3ccb2c4
VD
2403 struct mem_cgroup *memcg;
2404 int ret;
7ae1e1d0 2405
f3ccb2c4
VD
2406 memcg = get_mem_cgroup_from_mm(current->mm);
2407 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2408 css_put(&memcg->css);
d05e83a6 2409 return ret;
7ae1e1d0
GC
2410}
2411
d05e83a6 2412void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2413{
1306a85a 2414 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2415 unsigned int nr_pages = 1 << order;
7ae1e1d0 2416
7ae1e1d0
GC
2417 if (!memcg)
2418 return;
2419
309381fe 2420 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2421
f3ccb2c4
VD
2422 page_counter_uncharge(&memcg->kmem, nr_pages);
2423 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2424 if (do_memsw_account())
f3ccb2c4 2425 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2426
1306a85a 2427 page->mem_cgroup = NULL;
f3ccb2c4 2428 css_put_many(&memcg->css, nr_pages);
60d3fd32 2429}
7ae1e1d0
GC
2430#endif /* CONFIG_MEMCG_KMEM */
2431
ca3e0214
KH
2432#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2433
ca3e0214
KH
2434/*
2435 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2436 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2437 * charge/uncharge will be never happen and move_account() is done under
2438 * compound_lock(), so we don't have to take care of races.
ca3e0214 2439 */
e94c8a9c 2440void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2441{
e94c8a9c 2442 int i;
ca3e0214 2443
3d37c4a9
KH
2444 if (mem_cgroup_disabled())
2445 return;
b070e65c 2446
29833315 2447 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2448 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2449
1306a85a 2450 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2451 HPAGE_PMD_NR);
ca3e0214 2452}
12d27107 2453#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2454
c255a458 2455#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2456static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2457 bool charge)
d13d1443 2458{
0a31bc97
JW
2459 int val = (charge) ? 1 : -1;
2460 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2461}
02491447
DN
2462
2463/**
2464 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2465 * @entry: swap entry to be moved
2466 * @from: mem_cgroup which the entry is moved from
2467 * @to: mem_cgroup which the entry is moved to
2468 *
2469 * It succeeds only when the swap_cgroup's record for this entry is the same
2470 * as the mem_cgroup's id of @from.
2471 *
2472 * Returns 0 on success, -EINVAL on failure.
2473 *
3e32cb2e 2474 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2475 * both res and memsw, and called css_get().
2476 */
2477static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2478 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2479{
2480 unsigned short old_id, new_id;
2481
34c00c31
LZ
2482 old_id = mem_cgroup_id(from);
2483 new_id = mem_cgroup_id(to);
02491447
DN
2484
2485 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2486 mem_cgroup_swap_statistics(from, false);
483c30b5 2487 mem_cgroup_swap_statistics(to, true);
02491447
DN
2488 return 0;
2489 }
2490 return -EINVAL;
2491}
2492#else
2493static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2494 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2495{
2496 return -EINVAL;
2497}
8c7c6e34 2498#endif
d13d1443 2499
3e32cb2e 2500static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2501
d38d2a75 2502static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2503 unsigned long limit)
628f4235 2504{
3e32cb2e
JW
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
81d39c20 2508 int retry_count;
3e32cb2e 2509 int ret;
81d39c20
KH
2510
2511 /*
2512 * For keeping hierarchical_reclaim simple, how long we should retry
2513 * is depends on callers. We set our retry-count to be function
2514 * of # of children which we should visit in this loop.
2515 */
3e32cb2e
JW
2516 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2517 mem_cgroup_count_children(memcg);
81d39c20 2518
3e32cb2e 2519 oldusage = page_counter_read(&memcg->memory);
628f4235 2520
3e32cb2e 2521 do {
628f4235
KH
2522 if (signal_pending(current)) {
2523 ret = -EINTR;
2524 break;
2525 }
3e32cb2e
JW
2526
2527 mutex_lock(&memcg_limit_mutex);
2528 if (limit > memcg->memsw.limit) {
2529 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2530 ret = -EINVAL;
628f4235
KH
2531 break;
2532 }
3e32cb2e
JW
2533 if (limit > memcg->memory.limit)
2534 enlarge = true;
2535 ret = page_counter_limit(&memcg->memory, limit);
2536 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2537
2538 if (!ret)
2539 break;
2540
b70a2a21
JW
2541 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2542
3e32cb2e 2543 curusage = page_counter_read(&memcg->memory);
81d39c20 2544 /* Usage is reduced ? */
f894ffa8 2545 if (curusage >= oldusage)
81d39c20
KH
2546 retry_count--;
2547 else
2548 oldusage = curusage;
3e32cb2e
JW
2549 } while (retry_count);
2550
3c11ecf4
KH
2551 if (!ret && enlarge)
2552 memcg_oom_recover(memcg);
14797e23 2553
8c7c6e34
KH
2554 return ret;
2555}
2556
338c8431 2557static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2558 unsigned long limit)
8c7c6e34 2559{
3e32cb2e
JW
2560 unsigned long curusage;
2561 unsigned long oldusage;
2562 bool enlarge = false;
81d39c20 2563 int retry_count;
3e32cb2e 2564 int ret;
8c7c6e34 2565
81d39c20 2566 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2567 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2568 mem_cgroup_count_children(memcg);
2569
2570 oldusage = page_counter_read(&memcg->memsw);
2571
2572 do {
8c7c6e34
KH
2573 if (signal_pending(current)) {
2574 ret = -EINTR;
2575 break;
2576 }
3e32cb2e
JW
2577
2578 mutex_lock(&memcg_limit_mutex);
2579 if (limit < memcg->memory.limit) {
2580 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2581 ret = -EINVAL;
8c7c6e34
KH
2582 break;
2583 }
3e32cb2e
JW
2584 if (limit > memcg->memsw.limit)
2585 enlarge = true;
2586 ret = page_counter_limit(&memcg->memsw, limit);
2587 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2588
2589 if (!ret)
2590 break;
2591
b70a2a21
JW
2592 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2593
3e32cb2e 2594 curusage = page_counter_read(&memcg->memsw);
81d39c20 2595 /* Usage is reduced ? */
8c7c6e34 2596 if (curusage >= oldusage)
628f4235 2597 retry_count--;
81d39c20
KH
2598 else
2599 oldusage = curusage;
3e32cb2e
JW
2600 } while (retry_count);
2601
3c11ecf4
KH
2602 if (!ret && enlarge)
2603 memcg_oom_recover(memcg);
3e32cb2e 2604
628f4235
KH
2605 return ret;
2606}
2607
0608f43d
AM
2608unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2609 gfp_t gfp_mask,
2610 unsigned long *total_scanned)
2611{
2612 unsigned long nr_reclaimed = 0;
2613 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2614 unsigned long reclaimed;
2615 int loop = 0;
2616 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2617 unsigned long excess;
0608f43d
AM
2618 unsigned long nr_scanned;
2619
2620 if (order > 0)
2621 return 0;
2622
2623 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2624 /*
2625 * This loop can run a while, specially if mem_cgroup's continuously
2626 * keep exceeding their soft limit and putting the system under
2627 * pressure
2628 */
2629 do {
2630 if (next_mz)
2631 mz = next_mz;
2632 else
2633 mz = mem_cgroup_largest_soft_limit_node(mctz);
2634 if (!mz)
2635 break;
2636
2637 nr_scanned = 0;
2638 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2639 gfp_mask, &nr_scanned);
2640 nr_reclaimed += reclaimed;
2641 *total_scanned += nr_scanned;
0a31bc97 2642 spin_lock_irq(&mctz->lock);
bc2f2e7f 2643 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2644
2645 /*
2646 * If we failed to reclaim anything from this memory cgroup
2647 * it is time to move on to the next cgroup
2648 */
2649 next_mz = NULL;
bc2f2e7f
VD
2650 if (!reclaimed)
2651 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2652
3e32cb2e 2653 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2654 /*
2655 * One school of thought says that we should not add
2656 * back the node to the tree if reclaim returns 0.
2657 * But our reclaim could return 0, simply because due
2658 * to priority we are exposing a smaller subset of
2659 * memory to reclaim from. Consider this as a longer
2660 * term TODO.
2661 */
2662 /* If excess == 0, no tree ops */
cf2c8127 2663 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2664 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2665 css_put(&mz->memcg->css);
2666 loop++;
2667 /*
2668 * Could not reclaim anything and there are no more
2669 * mem cgroups to try or we seem to be looping without
2670 * reclaiming anything.
2671 */
2672 if (!nr_reclaimed &&
2673 (next_mz == NULL ||
2674 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2675 break;
2676 } while (!nr_reclaimed);
2677 if (next_mz)
2678 css_put(&next_mz->memcg->css);
2679 return nr_reclaimed;
2680}
2681
ea280e7b
TH
2682/*
2683 * Test whether @memcg has children, dead or alive. Note that this
2684 * function doesn't care whether @memcg has use_hierarchy enabled and
2685 * returns %true if there are child csses according to the cgroup
2686 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2687 */
b5f99b53
GC
2688static inline bool memcg_has_children(struct mem_cgroup *memcg)
2689{
ea280e7b
TH
2690 bool ret;
2691
696ac172 2692 /*
ea280e7b
TH
2693 * The lock does not prevent addition or deletion of children, but
2694 * it prevents a new child from being initialized based on this
2695 * parent in css_online(), so it's enough to decide whether
2696 * hierarchically inherited attributes can still be changed or not.
696ac172 2697 */
ea280e7b
TH
2698 lockdep_assert_held(&memcg_create_mutex);
2699
2700 rcu_read_lock();
2701 ret = css_next_child(NULL, &memcg->css);
2702 rcu_read_unlock();
2703 return ret;
b5f99b53
GC
2704}
2705
c26251f9
MH
2706/*
2707 * Reclaims as many pages from the given memcg as possible and moves
2708 * the rest to the parent.
2709 *
2710 * Caller is responsible for holding css reference for memcg.
2711 */
2712static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2713{
2714 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2715
c1e862c1
KH
2716 /* we call try-to-free pages for make this cgroup empty */
2717 lru_add_drain_all();
f817ed48 2718 /* try to free all pages in this cgroup */
3e32cb2e 2719 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2720 int progress;
c1e862c1 2721
c26251f9
MH
2722 if (signal_pending(current))
2723 return -EINTR;
2724
b70a2a21
JW
2725 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2726 GFP_KERNEL, true);
c1e862c1 2727 if (!progress) {
f817ed48 2728 nr_retries--;
c1e862c1 2729 /* maybe some writeback is necessary */
8aa7e847 2730 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2731 }
f817ed48
KH
2732
2733 }
ab5196c2
MH
2734
2735 return 0;
cc847582
KH
2736}
2737
6770c64e
TH
2738static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes,
2740 loff_t off)
c1e862c1 2741{
6770c64e 2742 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2743
d8423011
MH
2744 if (mem_cgroup_is_root(memcg))
2745 return -EINVAL;
6770c64e 2746 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2747}
2748
182446d0
TH
2749static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2750 struct cftype *cft)
18f59ea7 2751{
182446d0 2752 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2753}
2754
182446d0
TH
2755static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2756 struct cftype *cft, u64 val)
18f59ea7
BS
2757{
2758 int retval = 0;
182446d0 2759 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2760 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2761
0999821b 2762 mutex_lock(&memcg_create_mutex);
567fb435
GC
2763
2764 if (memcg->use_hierarchy == val)
2765 goto out;
2766
18f59ea7 2767 /*
af901ca1 2768 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2769 * in the child subtrees. If it is unset, then the change can
2770 * occur, provided the current cgroup has no children.
2771 *
2772 * For the root cgroup, parent_mem is NULL, we allow value to be
2773 * set if there are no children.
2774 */
c0ff4b85 2775 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2776 (val == 1 || val == 0)) {
ea280e7b 2777 if (!memcg_has_children(memcg))
c0ff4b85 2778 memcg->use_hierarchy = val;
18f59ea7
BS
2779 else
2780 retval = -EBUSY;
2781 } else
2782 retval = -EINVAL;
567fb435
GC
2783
2784out:
0999821b 2785 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2786
2787 return retval;
2788}
2789
3e32cb2e
JW
2790static unsigned long tree_stat(struct mem_cgroup *memcg,
2791 enum mem_cgroup_stat_index idx)
ce00a967
JW
2792{
2793 struct mem_cgroup *iter;
484ebb3b 2794 unsigned long val = 0;
ce00a967 2795
ce00a967
JW
2796 for_each_mem_cgroup_tree(iter, memcg)
2797 val += mem_cgroup_read_stat(iter, idx);
2798
ce00a967
JW
2799 return val;
2800}
2801
6f646156 2802static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2803{
c12176d3 2804 unsigned long val;
ce00a967 2805
3e32cb2e
JW
2806 if (mem_cgroup_is_root(memcg)) {
2807 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2808 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2809 if (swap)
2810 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2811 } else {
ce00a967 2812 if (!swap)
3e32cb2e 2813 val = page_counter_read(&memcg->memory);
ce00a967 2814 else
3e32cb2e 2815 val = page_counter_read(&memcg->memsw);
ce00a967 2816 }
c12176d3 2817 return val;
ce00a967
JW
2818}
2819
3e32cb2e
JW
2820enum {
2821 RES_USAGE,
2822 RES_LIMIT,
2823 RES_MAX_USAGE,
2824 RES_FAILCNT,
2825 RES_SOFT_LIMIT,
2826};
ce00a967 2827
791badbd 2828static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2829 struct cftype *cft)
8cdea7c0 2830{
182446d0 2831 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2832 struct page_counter *counter;
af36f906 2833
3e32cb2e 2834 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2835 case _MEM:
3e32cb2e
JW
2836 counter = &memcg->memory;
2837 break;
8c7c6e34 2838 case _MEMSWAP:
3e32cb2e
JW
2839 counter = &memcg->memsw;
2840 break;
510fc4e1 2841 case _KMEM:
3e32cb2e 2842 counter = &memcg->kmem;
510fc4e1 2843 break;
8c7c6e34
KH
2844 default:
2845 BUG();
8c7c6e34 2846 }
3e32cb2e
JW
2847
2848 switch (MEMFILE_ATTR(cft->private)) {
2849 case RES_USAGE:
2850 if (counter == &memcg->memory)
c12176d3 2851 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2852 if (counter == &memcg->memsw)
c12176d3 2853 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2854 return (u64)page_counter_read(counter) * PAGE_SIZE;
2855 case RES_LIMIT:
2856 return (u64)counter->limit * PAGE_SIZE;
2857 case RES_MAX_USAGE:
2858 return (u64)counter->watermark * PAGE_SIZE;
2859 case RES_FAILCNT:
2860 return counter->failcnt;
2861 case RES_SOFT_LIMIT:
2862 return (u64)memcg->soft_limit * PAGE_SIZE;
2863 default:
2864 BUG();
2865 }
8cdea7c0 2866}
510fc4e1 2867
510fc4e1 2868#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
2869static int memcg_activate_kmem(struct mem_cgroup *memcg,
2870 unsigned long nr_pages)
d6441637
VD
2871{
2872 int err = 0;
2873 int memcg_id;
2874
2a4db7eb 2875 BUG_ON(memcg->kmemcg_id >= 0);
2788cf0c 2876 BUG_ON(memcg->kmem_acct_activated);
2a4db7eb 2877 BUG_ON(memcg->kmem_acct_active);
d6441637 2878
510fc4e1
GC
2879 /*
2880 * For simplicity, we won't allow this to be disabled. It also can't
2881 * be changed if the cgroup has children already, or if tasks had
2882 * already joined.
2883 *
2884 * If tasks join before we set the limit, a person looking at
2885 * kmem.usage_in_bytes will have no way to determine when it took
2886 * place, which makes the value quite meaningless.
2887 *
2888 * After it first became limited, changes in the value of the limit are
2889 * of course permitted.
510fc4e1 2890 */
0999821b 2891 mutex_lock(&memcg_create_mutex);
27bd4dbb 2892 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2893 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2894 err = -EBUSY;
2895 mutex_unlock(&memcg_create_mutex);
2896 if (err)
2897 goto out;
510fc4e1 2898
f3bb3043 2899 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2900 if (memcg_id < 0) {
2901 err = memcg_id;
2902 goto out;
2903 }
2904
d6441637 2905 /*
900a38f0
VD
2906 * We couldn't have accounted to this cgroup, because it hasn't got
2907 * activated yet, so this should succeed.
d6441637 2908 */
3e32cb2e 2909 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
2910 VM_BUG_ON(err);
2911
ef12947c 2912 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2913 /*
900a38f0
VD
2914 * A memory cgroup is considered kmem-active as soon as it gets
2915 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2916 * guarantee no one starts accounting before all call sites are
2917 * patched.
2918 */
900a38f0 2919 memcg->kmemcg_id = memcg_id;
2788cf0c 2920 memcg->kmem_acct_activated = true;
2a4db7eb 2921 memcg->kmem_acct_active = true;
510fc4e1 2922out:
d6441637 2923 return err;
d6441637
VD
2924}
2925
d6441637 2926static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2927 unsigned long limit)
d6441637
VD
2928{
2929 int ret;
2930
3e32cb2e 2931 mutex_lock(&memcg_limit_mutex);
d6441637 2932 if (!memcg_kmem_is_active(memcg))
3e32cb2e 2933 ret = memcg_activate_kmem(memcg, limit);
d6441637 2934 else
3e32cb2e
JW
2935 ret = page_counter_limit(&memcg->kmem, limit);
2936 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
2937 return ret;
2938}
2939
55007d84 2940static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2941{
55007d84 2942 int ret = 0;
510fc4e1 2943 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2944
d6441637
VD
2945 if (!parent)
2946 return 0;
55007d84 2947
8c0145b6 2948 mutex_lock(&memcg_limit_mutex);
55007d84 2949 /*
d6441637
VD
2950 * If the parent cgroup is not kmem-active now, it cannot be activated
2951 * after this point, because it has at least one child already.
55007d84 2952 */
d6441637 2953 if (memcg_kmem_is_active(parent))
8c0145b6
VD
2954 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2955 mutex_unlock(&memcg_limit_mutex);
55007d84 2956 return ret;
510fc4e1 2957}
d6441637
VD
2958#else
2959static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2960 unsigned long limit)
d6441637
VD
2961{
2962 return -EINVAL;
2963}
6d043990 2964#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 2965
628f4235
KH
2966/*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
451af504
TH
2970static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2972{
451af504 2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2974 unsigned long nr_pages;
628f4235
KH
2975 int ret;
2976
451af504 2977 buf = strstrip(buf);
650c5e56 2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2979 if (ret)
2980 return ret;
af36f906 2981
3e32cb2e 2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2983 case RES_LIMIT:
4b3bde4c
BS
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
3e32cb2e
JW
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2991 break;
3e32cb2e
JW
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2994 break;
3e32cb2e
JW
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
2998 }
296c81d8 2999 break;
3e32cb2e
JW
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
628f4235
KH
3003 break;
3004 }
451af504 3005 return ret ?: nbytes;
8cdea7c0
BS
3006}
3007
6770c64e
TH
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
c84872e1 3010{
6770c64e 3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3012 struct page_counter *counter;
c84872e1 3013
3e32cb2e
JW
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 default:
3025 BUG();
3026 }
af36f906 3027
3e32cb2e 3028 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3029 case RES_MAX_USAGE:
3e32cb2e 3030 page_counter_reset_watermark(counter);
29f2a4da
PE
3031 break;
3032 case RES_FAILCNT:
3e32cb2e 3033 counter->failcnt = 0;
29f2a4da 3034 break;
3e32cb2e
JW
3035 default:
3036 BUG();
29f2a4da 3037 }
f64c3f54 3038
6770c64e 3039 return nbytes;
c84872e1
PE
3040}
3041
182446d0 3042static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3043 struct cftype *cft)
3044{
182446d0 3045 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3046}
3047
02491447 3048#ifdef CONFIG_MMU
182446d0 3049static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3050 struct cftype *cft, u64 val)
3051{
182446d0 3052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3053
1dfab5ab 3054 if (val & ~MOVE_MASK)
7dc74be0 3055 return -EINVAL;
ee5e8472 3056
7dc74be0 3057 /*
ee5e8472
GC
3058 * No kind of locking is needed in here, because ->can_attach() will
3059 * check this value once in the beginning of the process, and then carry
3060 * on with stale data. This means that changes to this value will only
3061 * affect task migrations starting after the change.
7dc74be0 3062 */
c0ff4b85 3063 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3064 return 0;
3065}
02491447 3066#else
182446d0 3067static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3068 struct cftype *cft, u64 val)
3069{
3070 return -ENOSYS;
3071}
3072#endif
7dc74be0 3073
406eb0c9 3074#ifdef CONFIG_NUMA
2da8ca82 3075static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3076{
25485de6
GT
3077 struct numa_stat {
3078 const char *name;
3079 unsigned int lru_mask;
3080 };
3081
3082 static const struct numa_stat stats[] = {
3083 { "total", LRU_ALL },
3084 { "file", LRU_ALL_FILE },
3085 { "anon", LRU_ALL_ANON },
3086 { "unevictable", BIT(LRU_UNEVICTABLE) },
3087 };
3088 const struct numa_stat *stat;
406eb0c9 3089 int nid;
25485de6 3090 unsigned long nr;
2da8ca82 3091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3092
25485de6
GT
3093 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3094 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3095 seq_printf(m, "%s=%lu", stat->name, nr);
3096 for_each_node_state(nid, N_MEMORY) {
3097 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3098 stat->lru_mask);
3099 seq_printf(m, " N%d=%lu", nid, nr);
3100 }
3101 seq_putc(m, '\n');
406eb0c9 3102 }
406eb0c9 3103
071aee13
YH
3104 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3105 struct mem_cgroup *iter;
3106
3107 nr = 0;
3108 for_each_mem_cgroup_tree(iter, memcg)
3109 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3110 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3111 for_each_node_state(nid, N_MEMORY) {
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_node_nr_lru_pages(
3115 iter, nid, stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3117 }
3118 seq_putc(m, '\n');
406eb0c9 3119 }
406eb0c9 3120
406eb0c9
YH
3121 return 0;
3122}
3123#endif /* CONFIG_NUMA */
3124
2da8ca82 3125static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3126{
2da8ca82 3127 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3128 unsigned long memory, memsw;
af7c4b0e
JW
3129 struct mem_cgroup *mi;
3130 unsigned int i;
406eb0c9 3131
0ca44b14
GT
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3133 MEM_CGROUP_STAT_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3135 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3137
af7c4b0e 3138 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3139 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3140 continue;
484ebb3b 3141 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3142 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3143 }
7b854121 3144
af7c4b0e
JW
3145 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3146 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3147 mem_cgroup_read_events(memcg, i));
3148
3149 for (i = 0; i < NR_LRU_LISTS; i++)
3150 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3151 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3152
14067bb3 3153 /* Hierarchical information */
3e32cb2e
JW
3154 memory = memsw = PAGE_COUNTER_MAX;
3155 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3156 memory = min(memory, mi->memory.limit);
3157 memsw = min(memsw, mi->memsw.limit);
fee7b548 3158 }
3e32cb2e
JW
3159 seq_printf(m, "hierarchical_memory_limit %llu\n",
3160 (u64)memory * PAGE_SIZE);
7941d214 3161 if (do_memsw_account())
3e32cb2e
JW
3162 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3163 (u64)memsw * PAGE_SIZE);
7f016ee8 3164
af7c4b0e 3165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3166 unsigned long long val = 0;
af7c4b0e 3167
7941d214 3168 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3169 continue;
af7c4b0e
JW
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3173 }
3174
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3176 unsigned long long val = 0;
3177
3178 for_each_mem_cgroup_tree(mi, memcg)
3179 val += mem_cgroup_read_events(mi, i);
3180 seq_printf(m, "total_%s %llu\n",
3181 mem_cgroup_events_names[i], val);
3182 }
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3189 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3190 }
14067bb3 3191
7f016ee8 3192#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3193 {
3194 int nid, zid;
3195 struct mem_cgroup_per_zone *mz;
89abfab1 3196 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3197 unsigned long recent_rotated[2] = {0, 0};
3198 unsigned long recent_scanned[2] = {0, 0};
3199
3200 for_each_online_node(nid)
3201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3202 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3203 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3204
89abfab1
HD
3205 recent_rotated[0] += rstat->recent_rotated[0];
3206 recent_rotated[1] += rstat->recent_rotated[1];
3207 recent_scanned[0] += rstat->recent_scanned[0];
3208 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3209 }
78ccf5b5
JW
3210 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3211 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3212 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3213 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3214 }
3215#endif
3216
d2ceb9b7
KH
3217 return 0;
3218}
3219
182446d0
TH
3220static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3221 struct cftype *cft)
a7885eb8 3222{
182446d0 3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3224
1f4c025b 3225 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3226}
3227
182446d0
TH
3228static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3229 struct cftype *cft, u64 val)
a7885eb8 3230{
182446d0 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3232
3dae7fec 3233 if (val > 100)
a7885eb8
KM
3234 return -EINVAL;
3235
14208b0e 3236 if (css->parent)
3dae7fec
JW
3237 memcg->swappiness = val;
3238 else
3239 vm_swappiness = val;
068b38c1 3240
a7885eb8
KM
3241 return 0;
3242}
3243
2e72b634
KS
3244static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3245{
3246 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3247 unsigned long usage;
2e72b634
KS
3248 int i;
3249
3250 rcu_read_lock();
3251 if (!swap)
2c488db2 3252 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3253 else
2c488db2 3254 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3255
3256 if (!t)
3257 goto unlock;
3258
ce00a967 3259 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3260
3261 /*
748dad36 3262 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3263 * If it's not true, a threshold was crossed after last
3264 * call of __mem_cgroup_threshold().
3265 */
5407a562 3266 i = t->current_threshold;
2e72b634
KS
3267
3268 /*
3269 * Iterate backward over array of thresholds starting from
3270 * current_threshold and check if a threshold is crossed.
3271 * If none of thresholds below usage is crossed, we read
3272 * only one element of the array here.
3273 */
3274 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3275 eventfd_signal(t->entries[i].eventfd, 1);
3276
3277 /* i = current_threshold + 1 */
3278 i++;
3279
3280 /*
3281 * Iterate forward over array of thresholds starting from
3282 * current_threshold+1 and check if a threshold is crossed.
3283 * If none of thresholds above usage is crossed, we read
3284 * only one element of the array here.
3285 */
3286 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3287 eventfd_signal(t->entries[i].eventfd, 1);
3288
3289 /* Update current_threshold */
5407a562 3290 t->current_threshold = i - 1;
2e72b634
KS
3291unlock:
3292 rcu_read_unlock();
3293}
3294
3295static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3296{
ad4ca5f4
KS
3297 while (memcg) {
3298 __mem_cgroup_threshold(memcg, false);
7941d214 3299 if (do_memsw_account())
ad4ca5f4
KS
3300 __mem_cgroup_threshold(memcg, true);
3301
3302 memcg = parent_mem_cgroup(memcg);
3303 }
2e72b634
KS
3304}
3305
3306static int compare_thresholds(const void *a, const void *b)
3307{
3308 const struct mem_cgroup_threshold *_a = a;
3309 const struct mem_cgroup_threshold *_b = b;
3310
2bff24a3
GT
3311 if (_a->threshold > _b->threshold)
3312 return 1;
3313
3314 if (_a->threshold < _b->threshold)
3315 return -1;
3316
3317 return 0;
2e72b634
KS
3318}
3319
c0ff4b85 3320static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3321{
3322 struct mem_cgroup_eventfd_list *ev;
3323
2bcf2e92
MH
3324 spin_lock(&memcg_oom_lock);
3325
c0ff4b85 3326 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3327 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3328
3329 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3330 return 0;
3331}
3332
c0ff4b85 3333static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3334{
7d74b06f
KH
3335 struct mem_cgroup *iter;
3336
c0ff4b85 3337 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3338 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3339}
3340
59b6f873 3341static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3342 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3343{
2c488db2
KS
3344 struct mem_cgroup_thresholds *thresholds;
3345 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3346 unsigned long threshold;
3347 unsigned long usage;
2c488db2 3348 int i, size, ret;
2e72b634 3349
650c5e56 3350 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3351 if (ret)
3352 return ret;
3353
3354 mutex_lock(&memcg->thresholds_lock);
2c488db2 3355
05b84301 3356 if (type == _MEM) {
2c488db2 3357 thresholds = &memcg->thresholds;
ce00a967 3358 usage = mem_cgroup_usage(memcg, false);
05b84301 3359 } else if (type == _MEMSWAP) {
2c488db2 3360 thresholds = &memcg->memsw_thresholds;
ce00a967 3361 usage = mem_cgroup_usage(memcg, true);
05b84301 3362 } else
2e72b634
KS
3363 BUG();
3364
2e72b634 3365 /* Check if a threshold crossed before adding a new one */
2c488db2 3366 if (thresholds->primary)
2e72b634
KS
3367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3368
2c488db2 3369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3370
3371 /* Allocate memory for new array of thresholds */
2c488db2 3372 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3373 GFP_KERNEL);
2c488db2 3374 if (!new) {
2e72b634
KS
3375 ret = -ENOMEM;
3376 goto unlock;
3377 }
2c488db2 3378 new->size = size;
2e72b634
KS
3379
3380 /* Copy thresholds (if any) to new array */
2c488db2
KS
3381 if (thresholds->primary) {
3382 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3383 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3384 }
3385
2e72b634 3386 /* Add new threshold */
2c488db2
KS
3387 new->entries[size - 1].eventfd = eventfd;
3388 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3389
3390 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3391 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3392 compare_thresholds, NULL);
3393
3394 /* Find current threshold */
2c488db2 3395 new->current_threshold = -1;
2e72b634 3396 for (i = 0; i < size; i++) {
748dad36 3397 if (new->entries[i].threshold <= usage) {
2e72b634 3398 /*
2c488db2
KS
3399 * new->current_threshold will not be used until
3400 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3401 * it here.
3402 */
2c488db2 3403 ++new->current_threshold;
748dad36
SZ
3404 } else
3405 break;
2e72b634
KS
3406 }
3407
2c488db2
KS
3408 /* Free old spare buffer and save old primary buffer as spare */
3409 kfree(thresholds->spare);
3410 thresholds->spare = thresholds->primary;
3411
3412 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3413
907860ed 3414 /* To be sure that nobody uses thresholds */
2e72b634
KS
3415 synchronize_rcu();
3416
2e72b634
KS
3417unlock:
3418 mutex_unlock(&memcg->thresholds_lock);
3419
3420 return ret;
3421}
3422
59b6f873 3423static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3424 struct eventfd_ctx *eventfd, const char *args)
3425{
59b6f873 3426 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3427}
3428
59b6f873 3429static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3430 struct eventfd_ctx *eventfd, const char *args)
3431{
59b6f873 3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3433}
3434
59b6f873 3435static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3436 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3437{
2c488db2
KS
3438 struct mem_cgroup_thresholds *thresholds;
3439 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3440 unsigned long usage;
2c488db2 3441 int i, j, size;
2e72b634
KS
3442
3443 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3444
3445 if (type == _MEM) {
2c488db2 3446 thresholds = &memcg->thresholds;
ce00a967 3447 usage = mem_cgroup_usage(memcg, false);
05b84301 3448 } else if (type == _MEMSWAP) {
2c488db2 3449 thresholds = &memcg->memsw_thresholds;
ce00a967 3450 usage = mem_cgroup_usage(memcg, true);
05b84301 3451 } else
2e72b634
KS
3452 BUG();
3453
371528ca
AV
3454 if (!thresholds->primary)
3455 goto unlock;
3456
2e72b634
KS
3457 /* Check if a threshold crossed before removing */
3458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3459
3460 /* Calculate new number of threshold */
2c488db2
KS
3461 size = 0;
3462 for (i = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3464 size++;
3465 }
3466
2c488db2 3467 new = thresholds->spare;
907860ed 3468
2e72b634
KS
3469 /* Set thresholds array to NULL if we don't have thresholds */
3470 if (!size) {
2c488db2
KS
3471 kfree(new);
3472 new = NULL;
907860ed 3473 goto swap_buffers;
2e72b634
KS
3474 }
3475
2c488db2 3476 new->size = size;
2e72b634
KS
3477
3478 /* Copy thresholds and find current threshold */
2c488db2
KS
3479 new->current_threshold = -1;
3480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3482 continue;
3483
2c488db2 3484 new->entries[j] = thresholds->primary->entries[i];
748dad36 3485 if (new->entries[j].threshold <= usage) {
2e72b634 3486 /*
2c488db2 3487 * new->current_threshold will not be used
2e72b634
KS
3488 * until rcu_assign_pointer(), so it's safe to increment
3489 * it here.
3490 */
2c488db2 3491 ++new->current_threshold;
2e72b634
KS
3492 }
3493 j++;
3494 }
3495
907860ed 3496swap_buffers:
2c488db2
KS
3497 /* Swap primary and spare array */
3498 thresholds->spare = thresholds->primary;
8c757763
SZ
3499 /* If all events are unregistered, free the spare array */
3500 if (!new) {
3501 kfree(thresholds->spare);
3502 thresholds->spare = NULL;
3503 }
3504
2c488db2 3505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3506
907860ed 3507 /* To be sure that nobody uses thresholds */
2e72b634 3508 synchronize_rcu();
371528ca 3509unlock:
2e72b634 3510 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3511}
c1e862c1 3512
59b6f873 3513static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3514 struct eventfd_ctx *eventfd)
3515{
59b6f873 3516 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3517}
3518
59b6f873 3519static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3520 struct eventfd_ctx *eventfd)
3521{
59b6f873 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3523}
3524
59b6f873 3525static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3526 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3527{
9490ff27 3528 struct mem_cgroup_eventfd_list *event;
9490ff27 3529
9490ff27
KH
3530 event = kmalloc(sizeof(*event), GFP_KERNEL);
3531 if (!event)
3532 return -ENOMEM;
3533
1af8efe9 3534 spin_lock(&memcg_oom_lock);
9490ff27
KH
3535
3536 event->eventfd = eventfd;
3537 list_add(&event->list, &memcg->oom_notify);
3538
3539 /* already in OOM ? */
c2b42d3c 3540 if (memcg->under_oom)
9490ff27 3541 eventfd_signal(eventfd, 1);
1af8efe9 3542 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3543
3544 return 0;
3545}
3546
59b6f873 3547static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3548 struct eventfd_ctx *eventfd)
9490ff27 3549{
9490ff27 3550 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3551
1af8efe9 3552 spin_lock(&memcg_oom_lock);
9490ff27 3553
c0ff4b85 3554 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3555 if (ev->eventfd == eventfd) {
3556 list_del(&ev->list);
3557 kfree(ev);
3558 }
3559 }
3560
1af8efe9 3561 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3562}
3563
2da8ca82 3564static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3565{
2da8ca82 3566 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3567
791badbd 3568 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3569 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3570 return 0;
3571}
3572
182446d0 3573static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3574 struct cftype *cft, u64 val)
3575{
182446d0 3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3577
3578 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3579 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3580 return -EINVAL;
3581
c0ff4b85 3582 memcg->oom_kill_disable = val;
4d845ebf 3583 if (!val)
c0ff4b85 3584 memcg_oom_recover(memcg);
3dae7fec 3585
3c11ecf4
KH
3586 return 0;
3587}
3588
c255a458 3589#ifdef CONFIG_MEMCG_KMEM
cbe128e3 3590static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 3591{
55007d84
GC
3592 int ret;
3593
55007d84
GC
3594 ret = memcg_propagate_kmem(memcg);
3595 if (ret)
3596 return ret;
2633d7a0 3597
baac50bb 3598 return tcp_init_cgroup(memcg, ss);
573b400d 3599}
e5671dfa 3600
2a4db7eb
VD
3601static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3602{
2788cf0c
VD
3603 struct cgroup_subsys_state *css;
3604 struct mem_cgroup *parent, *child;
3605 int kmemcg_id;
3606
2a4db7eb
VD
3607 if (!memcg->kmem_acct_active)
3608 return;
3609
3610 /*
3611 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3612 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3613 * guarantees no cache will be created for this cgroup after we are
3614 * done (see memcg_create_kmem_cache()).
3615 */
3616 memcg->kmem_acct_active = false;
3617
3618 memcg_deactivate_kmem_caches(memcg);
2788cf0c
VD
3619
3620 kmemcg_id = memcg->kmemcg_id;
3621 BUG_ON(kmemcg_id < 0);
3622
3623 parent = parent_mem_cgroup(memcg);
3624 if (!parent)
3625 parent = root_mem_cgroup;
3626
3627 /*
3628 * Change kmemcg_id of this cgroup and all its descendants to the
3629 * parent's id, and then move all entries from this cgroup's list_lrus
3630 * to ones of the parent. After we have finished, all list_lrus
3631 * corresponding to this cgroup are guaranteed to remain empty. The
3632 * ordering is imposed by list_lru_node->lock taken by
3633 * memcg_drain_all_list_lrus().
3634 */
3635 css_for_each_descendant_pre(css, &memcg->css) {
3636 child = mem_cgroup_from_css(css);
3637 BUG_ON(child->kmemcg_id != kmemcg_id);
3638 child->kmemcg_id = parent->kmemcg_id;
3639 if (!memcg->use_hierarchy)
3640 break;
3641 }
3642 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3643
3644 memcg_free_cache_id(kmemcg_id);
2a4db7eb
VD
3645}
3646
10d5ebf4 3647static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 3648{
f48b80a5
VD
3649 if (memcg->kmem_acct_activated) {
3650 memcg_destroy_kmem_caches(memcg);
ef12947c 3651 static_branch_dec(&memcg_kmem_enabled_key);
f48b80a5
VD
3652 WARN_ON(page_counter_read(&memcg->kmem));
3653 }
baac50bb 3654 tcp_destroy_cgroup(memcg);
10d5ebf4 3655}
e5671dfa 3656#else
cbe128e3 3657static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
3658{
3659 return 0;
3660}
d1a4c0b3 3661
2a4db7eb
VD
3662static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3663{
3664}
3665
10d5ebf4
LZ
3666static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3667{
3668}
e5671dfa
GC
3669#endif
3670
52ebea74
TH
3671#ifdef CONFIG_CGROUP_WRITEBACK
3672
3673struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3674{
3675 return &memcg->cgwb_list;
3676}
3677
841710aa
TH
3678static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3679{
3680 return wb_domain_init(&memcg->cgwb_domain, gfp);
3681}
3682
3683static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3684{
3685 wb_domain_exit(&memcg->cgwb_domain);
3686}
3687
2529bb3a
TH
3688static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3689{
3690 wb_domain_size_changed(&memcg->cgwb_domain);
3691}
3692
841710aa
TH
3693struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3694{
3695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3696
3697 if (!memcg->css.parent)
3698 return NULL;
3699
3700 return &memcg->cgwb_domain;
3701}
3702
c2aa723a
TH
3703/**
3704 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3705 * @wb: bdi_writeback in question
c5edf9cd
TH
3706 * @pfilepages: out parameter for number of file pages
3707 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3708 * @pdirty: out parameter for number of dirty pages
3709 * @pwriteback: out parameter for number of pages under writeback
3710 *
c5edf9cd
TH
3711 * Determine the numbers of file, headroom, dirty, and writeback pages in
3712 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3713 * is a bit more involved.
c2aa723a 3714 *
c5edf9cd
TH
3715 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3716 * headroom is calculated as the lowest headroom of itself and the
3717 * ancestors. Note that this doesn't consider the actual amount of
3718 * available memory in the system. The caller should further cap
3719 * *@pheadroom accordingly.
c2aa723a 3720 */
c5edf9cd
TH
3721void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3722 unsigned long *pheadroom, unsigned long *pdirty,
3723 unsigned long *pwriteback)
c2aa723a
TH
3724{
3725 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3726 struct mem_cgroup *parent;
c2aa723a
TH
3727
3728 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3729
3730 /* this should eventually include NR_UNSTABLE_NFS */
3731 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3732 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3733 (1 << LRU_ACTIVE_FILE));
3734 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3735
c2aa723a
TH
3736 while ((parent = parent_mem_cgroup(memcg))) {
3737 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3738 unsigned long used = page_counter_read(&memcg->memory);
3739
c5edf9cd 3740 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3741 memcg = parent;
3742 }
c2aa723a
TH
3743}
3744
841710aa
TH
3745#else /* CONFIG_CGROUP_WRITEBACK */
3746
3747static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3748{
3749 return 0;
3750}
3751
3752static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3753{
3754}
3755
2529bb3a
TH
3756static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3757{
3758}
3759
52ebea74
TH
3760#endif /* CONFIG_CGROUP_WRITEBACK */
3761
3bc942f3
TH
3762/*
3763 * DO NOT USE IN NEW FILES.
3764 *
3765 * "cgroup.event_control" implementation.
3766 *
3767 * This is way over-engineered. It tries to support fully configurable
3768 * events for each user. Such level of flexibility is completely
3769 * unnecessary especially in the light of the planned unified hierarchy.
3770 *
3771 * Please deprecate this and replace with something simpler if at all
3772 * possible.
3773 */
3774
79bd9814
TH
3775/*
3776 * Unregister event and free resources.
3777 *
3778 * Gets called from workqueue.
3779 */
3bc942f3 3780static void memcg_event_remove(struct work_struct *work)
79bd9814 3781{
3bc942f3
TH
3782 struct mem_cgroup_event *event =
3783 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3784 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3785
3786 remove_wait_queue(event->wqh, &event->wait);
3787
59b6f873 3788 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3789
3790 /* Notify userspace the event is going away. */
3791 eventfd_signal(event->eventfd, 1);
3792
3793 eventfd_ctx_put(event->eventfd);
3794 kfree(event);
59b6f873 3795 css_put(&memcg->css);
79bd9814
TH
3796}
3797
3798/*
3799 * Gets called on POLLHUP on eventfd when user closes it.
3800 *
3801 * Called with wqh->lock held and interrupts disabled.
3802 */
3bc942f3
TH
3803static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3804 int sync, void *key)
79bd9814 3805{
3bc942f3
TH
3806 struct mem_cgroup_event *event =
3807 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3808 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3809 unsigned long flags = (unsigned long)key;
3810
3811 if (flags & POLLHUP) {
3812 /*
3813 * If the event has been detached at cgroup removal, we
3814 * can simply return knowing the other side will cleanup
3815 * for us.
3816 *
3817 * We can't race against event freeing since the other
3818 * side will require wqh->lock via remove_wait_queue(),
3819 * which we hold.
3820 */
fba94807 3821 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3822 if (!list_empty(&event->list)) {
3823 list_del_init(&event->list);
3824 /*
3825 * We are in atomic context, but cgroup_event_remove()
3826 * may sleep, so we have to call it in workqueue.
3827 */
3828 schedule_work(&event->remove);
3829 }
fba94807 3830 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3831 }
3832
3833 return 0;
3834}
3835
3bc942f3 3836static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3837 wait_queue_head_t *wqh, poll_table *pt)
3838{
3bc942f3
TH
3839 struct mem_cgroup_event *event =
3840 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3841
3842 event->wqh = wqh;
3843 add_wait_queue(wqh, &event->wait);
3844}
3845
3846/*
3bc942f3
TH
3847 * DO NOT USE IN NEW FILES.
3848 *
79bd9814
TH
3849 * Parse input and register new cgroup event handler.
3850 *
3851 * Input must be in format '<event_fd> <control_fd> <args>'.
3852 * Interpretation of args is defined by control file implementation.
3853 */
451af504
TH
3854static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3855 char *buf, size_t nbytes, loff_t off)
79bd9814 3856{
451af504 3857 struct cgroup_subsys_state *css = of_css(of);
fba94807 3858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3859 struct mem_cgroup_event *event;
79bd9814
TH
3860 struct cgroup_subsys_state *cfile_css;
3861 unsigned int efd, cfd;
3862 struct fd efile;
3863 struct fd cfile;
fba94807 3864 const char *name;
79bd9814
TH
3865 char *endp;
3866 int ret;
3867
451af504
TH
3868 buf = strstrip(buf);
3869
3870 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3871 if (*endp != ' ')
3872 return -EINVAL;
451af504 3873 buf = endp + 1;
79bd9814 3874
451af504 3875 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3876 if ((*endp != ' ') && (*endp != '\0'))
3877 return -EINVAL;
451af504 3878 buf = endp + 1;
79bd9814
TH
3879
3880 event = kzalloc(sizeof(*event), GFP_KERNEL);
3881 if (!event)
3882 return -ENOMEM;
3883
59b6f873 3884 event->memcg = memcg;
79bd9814 3885 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3886 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3887 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3888 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3889
3890 efile = fdget(efd);
3891 if (!efile.file) {
3892 ret = -EBADF;
3893 goto out_kfree;
3894 }
3895
3896 event->eventfd = eventfd_ctx_fileget(efile.file);
3897 if (IS_ERR(event->eventfd)) {
3898 ret = PTR_ERR(event->eventfd);
3899 goto out_put_efile;
3900 }
3901
3902 cfile = fdget(cfd);
3903 if (!cfile.file) {
3904 ret = -EBADF;
3905 goto out_put_eventfd;
3906 }
3907
3908 /* the process need read permission on control file */
3909 /* AV: shouldn't we check that it's been opened for read instead? */
3910 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3911 if (ret < 0)
3912 goto out_put_cfile;
3913
fba94807
TH
3914 /*
3915 * Determine the event callbacks and set them in @event. This used
3916 * to be done via struct cftype but cgroup core no longer knows
3917 * about these events. The following is crude but the whole thing
3918 * is for compatibility anyway.
3bc942f3
TH
3919 *
3920 * DO NOT ADD NEW FILES.
fba94807 3921 */
b583043e 3922 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3923
3924 if (!strcmp(name, "memory.usage_in_bytes")) {
3925 event->register_event = mem_cgroup_usage_register_event;
3926 event->unregister_event = mem_cgroup_usage_unregister_event;
3927 } else if (!strcmp(name, "memory.oom_control")) {
3928 event->register_event = mem_cgroup_oom_register_event;
3929 event->unregister_event = mem_cgroup_oom_unregister_event;
3930 } else if (!strcmp(name, "memory.pressure_level")) {
3931 event->register_event = vmpressure_register_event;
3932 event->unregister_event = vmpressure_unregister_event;
3933 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3934 event->register_event = memsw_cgroup_usage_register_event;
3935 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3936 } else {
3937 ret = -EINVAL;
3938 goto out_put_cfile;
3939 }
3940
79bd9814 3941 /*
b5557c4c
TH
3942 * Verify @cfile should belong to @css. Also, remaining events are
3943 * automatically removed on cgroup destruction but the removal is
3944 * asynchronous, so take an extra ref on @css.
79bd9814 3945 */
b583043e 3946 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3947 &memory_cgrp_subsys);
79bd9814 3948 ret = -EINVAL;
5a17f543 3949 if (IS_ERR(cfile_css))
79bd9814 3950 goto out_put_cfile;
5a17f543
TH
3951 if (cfile_css != css) {
3952 css_put(cfile_css);
79bd9814 3953 goto out_put_cfile;
5a17f543 3954 }
79bd9814 3955
451af504 3956 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3957 if (ret)
3958 goto out_put_css;
3959
3960 efile.file->f_op->poll(efile.file, &event->pt);
3961
fba94807
TH
3962 spin_lock(&memcg->event_list_lock);
3963 list_add(&event->list, &memcg->event_list);
3964 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3965
3966 fdput(cfile);
3967 fdput(efile);
3968
451af504 3969 return nbytes;
79bd9814
TH
3970
3971out_put_css:
b5557c4c 3972 css_put(css);
79bd9814
TH
3973out_put_cfile:
3974 fdput(cfile);
3975out_put_eventfd:
3976 eventfd_ctx_put(event->eventfd);
3977out_put_efile:
3978 fdput(efile);
3979out_kfree:
3980 kfree(event);
3981
3982 return ret;
3983}
3984
241994ed 3985static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3986 {
0eea1030 3987 .name = "usage_in_bytes",
8c7c6e34 3988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3989 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3990 },
c84872e1
PE
3991 {
3992 .name = "max_usage_in_bytes",
8c7c6e34 3993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3994 .write = mem_cgroup_reset,
791badbd 3995 .read_u64 = mem_cgroup_read_u64,
c84872e1 3996 },
8cdea7c0 3997 {
0eea1030 3998 .name = "limit_in_bytes",
8c7c6e34 3999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4000 .write = mem_cgroup_write,
791badbd 4001 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4002 },
296c81d8
BS
4003 {
4004 .name = "soft_limit_in_bytes",
4005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4006 .write = mem_cgroup_write,
791badbd 4007 .read_u64 = mem_cgroup_read_u64,
296c81d8 4008 },
8cdea7c0
BS
4009 {
4010 .name = "failcnt",
8c7c6e34 4011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4012 .write = mem_cgroup_reset,
791badbd 4013 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4014 },
d2ceb9b7
KH
4015 {
4016 .name = "stat",
2da8ca82 4017 .seq_show = memcg_stat_show,
d2ceb9b7 4018 },
c1e862c1
KH
4019 {
4020 .name = "force_empty",
6770c64e 4021 .write = mem_cgroup_force_empty_write,
c1e862c1 4022 },
18f59ea7
BS
4023 {
4024 .name = "use_hierarchy",
4025 .write_u64 = mem_cgroup_hierarchy_write,
4026 .read_u64 = mem_cgroup_hierarchy_read,
4027 },
79bd9814 4028 {
3bc942f3 4029 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4030 .write = memcg_write_event_control,
7dbdb199 4031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4032 },
a7885eb8
KM
4033 {
4034 .name = "swappiness",
4035 .read_u64 = mem_cgroup_swappiness_read,
4036 .write_u64 = mem_cgroup_swappiness_write,
4037 },
7dc74be0
DN
4038 {
4039 .name = "move_charge_at_immigrate",
4040 .read_u64 = mem_cgroup_move_charge_read,
4041 .write_u64 = mem_cgroup_move_charge_write,
4042 },
9490ff27
KH
4043 {
4044 .name = "oom_control",
2da8ca82 4045 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4046 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4047 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4048 },
70ddf637
AV
4049 {
4050 .name = "pressure_level",
70ddf637 4051 },
406eb0c9
YH
4052#ifdef CONFIG_NUMA
4053 {
4054 .name = "numa_stat",
2da8ca82 4055 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4056 },
4057#endif
510fc4e1
GC
4058#ifdef CONFIG_MEMCG_KMEM
4059 {
4060 .name = "kmem.limit_in_bytes",
4061 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4062 .write = mem_cgroup_write,
791badbd 4063 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4064 },
4065 {
4066 .name = "kmem.usage_in_bytes",
4067 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4068 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4069 },
4070 {
4071 .name = "kmem.failcnt",
4072 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4073 .write = mem_cgroup_reset,
791badbd 4074 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4075 },
4076 {
4077 .name = "kmem.max_usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4079 .write = mem_cgroup_reset,
791badbd 4080 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4081 },
749c5415
GC
4082#ifdef CONFIG_SLABINFO
4083 {
4084 .name = "kmem.slabinfo",
b047501c
VD
4085 .seq_start = slab_start,
4086 .seq_next = slab_next,
4087 .seq_stop = slab_stop,
4088 .seq_show = memcg_slab_show,
749c5415
GC
4089 },
4090#endif
8c7c6e34 4091#endif
6bc10349 4092 { }, /* terminate */
af36f906 4093};
8c7c6e34 4094
c0ff4b85 4095static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4096{
4097 struct mem_cgroup_per_node *pn;
1ecaab2b 4098 struct mem_cgroup_per_zone *mz;
41e3355d 4099 int zone, tmp = node;
1ecaab2b
KH
4100 /*
4101 * This routine is called against possible nodes.
4102 * But it's BUG to call kmalloc() against offline node.
4103 *
4104 * TODO: this routine can waste much memory for nodes which will
4105 * never be onlined. It's better to use memory hotplug callback
4106 * function.
4107 */
41e3355d
KH
4108 if (!node_state(node, N_NORMAL_MEMORY))
4109 tmp = -1;
17295c88 4110 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4111 if (!pn)
4112 return 1;
1ecaab2b 4113
1ecaab2b
KH
4114 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4115 mz = &pn->zoneinfo[zone];
bea8c150 4116 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4117 mz->usage_in_excess = 0;
4118 mz->on_tree = false;
d79154bb 4119 mz->memcg = memcg;
1ecaab2b 4120 }
54f72fe0 4121 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4122 return 0;
4123}
4124
c0ff4b85 4125static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4126{
54f72fe0 4127 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4128}
4129
33327948
KH
4130static struct mem_cgroup *mem_cgroup_alloc(void)
4131{
d79154bb 4132 struct mem_cgroup *memcg;
8ff69e2c 4133 size_t size;
33327948 4134
8ff69e2c
VD
4135 size = sizeof(struct mem_cgroup);
4136 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4137
8ff69e2c 4138 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4139 if (!memcg)
e7bbcdf3
DC
4140 return NULL;
4141
d79154bb
HD
4142 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4143 if (!memcg->stat)
d2e61b8d 4144 goto out_free;
841710aa
TH
4145
4146 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4147 goto out_free_stat;
4148
d79154bb 4149 return memcg;
d2e61b8d 4150
841710aa
TH
4151out_free_stat:
4152 free_percpu(memcg->stat);
d2e61b8d 4153out_free:
8ff69e2c 4154 kfree(memcg);
d2e61b8d 4155 return NULL;
33327948
KH
4156}
4157
59927fb9 4158/*
c8b2a36f
GC
4159 * At destroying mem_cgroup, references from swap_cgroup can remain.
4160 * (scanning all at force_empty is too costly...)
4161 *
4162 * Instead of clearing all references at force_empty, we remember
4163 * the number of reference from swap_cgroup and free mem_cgroup when
4164 * it goes down to 0.
4165 *
4166 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4167 */
c8b2a36f
GC
4168
4169static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4170{
c8b2a36f 4171 int node;
59927fb9 4172
f7e1cb6e
JW
4173 cancel_work_sync(&memcg->high_work);
4174
bb4cc1a8 4175 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4176
4177 for_each_node(node)
4178 free_mem_cgroup_per_zone_info(memcg, node);
4179
4180 free_percpu(memcg->stat);
841710aa 4181 memcg_wb_domain_exit(memcg);
8ff69e2c 4182 kfree(memcg);
59927fb9 4183}
3afe36b1 4184
0eb253e2 4185static struct cgroup_subsys_state * __ref
eb95419b 4186mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4187{
d142e3e6 4188 struct mem_cgroup *memcg;
04046e1a 4189 long error = -ENOMEM;
6d12e2d8 4190 int node;
8cdea7c0 4191
c0ff4b85
R
4192 memcg = mem_cgroup_alloc();
4193 if (!memcg)
04046e1a 4194 return ERR_PTR(error);
78fb7466 4195
3ed28fa1 4196 for_each_node(node)
c0ff4b85 4197 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4198 goto free_out;
f64c3f54 4199
c077719b 4200 /* root ? */
eb95419b 4201 if (parent_css == NULL) {
a41c58a6 4202 root_mem_cgroup = memcg;
3e32cb2e 4203 page_counter_init(&memcg->memory, NULL);
241994ed 4204 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4205 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4206 page_counter_init(&memcg->memsw, NULL);
4207 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4208 }
28dbc4b6 4209
f7e1cb6e 4210 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4211 memcg->last_scanned_node = MAX_NUMNODES;
4212 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4213 memcg->move_charge_at_immigrate = 0;
4214 mutex_init(&memcg->thresholds_lock);
4215 spin_lock_init(&memcg->move_lock);
70ddf637 4216 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4217 INIT_LIST_HEAD(&memcg->event_list);
4218 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4219#ifdef CONFIG_MEMCG_KMEM
4220 memcg->kmemcg_id = -1;
900a38f0 4221#endif
52ebea74
TH
4222#ifdef CONFIG_CGROUP_WRITEBACK
4223 INIT_LIST_HEAD(&memcg->cgwb_list);
8e8ae645
JW
4224#endif
4225#ifdef CONFIG_INET
4226 memcg->socket_pressure = jiffies;
52ebea74 4227#endif
d142e3e6
GC
4228 return &memcg->css;
4229
4230free_out:
4231 __mem_cgroup_free(memcg);
4232 return ERR_PTR(error);
4233}
4234
4235static int
eb95419b 4236mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4237{
eb95419b 4238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4239 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4240 int ret;
d142e3e6 4241
15a4c835 4242 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4243 return -ENOSPC;
4244
63876986 4245 if (!parent)
d142e3e6
GC
4246 return 0;
4247
0999821b 4248 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4249
4250 memcg->use_hierarchy = parent->use_hierarchy;
4251 memcg->oom_kill_disable = parent->oom_kill_disable;
4252 memcg->swappiness = mem_cgroup_swappiness(parent);
4253
4254 if (parent->use_hierarchy) {
3e32cb2e 4255 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4256 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4257 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4258 page_counter_init(&memcg->memsw, &parent->memsw);
4259 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4260
7bcc1bb1 4261 /*
8d76a979
LZ
4262 * No need to take a reference to the parent because cgroup
4263 * core guarantees its existence.
7bcc1bb1 4264 */
18f59ea7 4265 } else {
3e32cb2e 4266 page_counter_init(&memcg->memory, NULL);
241994ed 4267 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4268 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4269 page_counter_init(&memcg->memsw, NULL);
4270 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4271 /*
4272 * Deeper hierachy with use_hierarchy == false doesn't make
4273 * much sense so let cgroup subsystem know about this
4274 * unfortunate state in our controller.
4275 */
d142e3e6 4276 if (parent != root_mem_cgroup)
073219e9 4277 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4278 }
0999821b 4279 mutex_unlock(&memcg_create_mutex);
d6441637 4280
2f7dd7a4
JW
4281 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4282 if (ret)
4283 return ret;
4284
f7e1cb6e
JW
4285#ifdef CONFIG_INET
4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4287 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e
JW
4288#endif
4289
2f7dd7a4
JW
4290 /*
4291 * Make sure the memcg is initialized: mem_cgroup_iter()
4292 * orders reading memcg->initialized against its callers
4293 * reading the memcg members.
4294 */
4295 smp_store_release(&memcg->initialized, 1);
4296
4297 return 0;
8cdea7c0
BS
4298}
4299
eb95419b 4300static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4301{
eb95419b 4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4303 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4304
4305 /*
4306 * Unregister events and notify userspace.
4307 * Notify userspace about cgroup removing only after rmdir of cgroup
4308 * directory to avoid race between userspace and kernelspace.
4309 */
fba94807
TH
4310 spin_lock(&memcg->event_list_lock);
4311 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4312 list_del_init(&event->list);
4313 schedule_work(&event->remove);
4314 }
fba94807 4315 spin_unlock(&memcg->event_list_lock);
ec64f515 4316
33cb876e 4317 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb
VD
4318
4319 memcg_deactivate_kmem(memcg);
52ebea74
TH
4320
4321 wb_memcg_offline(memcg);
df878fb0
KH
4322}
4323
6df38689
VD
4324static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4325{
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327
4328 invalidate_reclaim_iterators(memcg);
4329}
4330
eb95419b 4331static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4332{
eb95419b 4333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4334
10d5ebf4 4335 memcg_destroy_kmem(memcg);
f7e1cb6e
JW
4336#ifdef CONFIG_INET
4337 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4338 static_branch_dec(&memcg_sockets_enabled_key);
f7e1cb6e 4339#endif
465939a1 4340 __mem_cgroup_free(memcg);
8cdea7c0
BS
4341}
4342
1ced953b
TH
4343/**
4344 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4345 * @css: the target css
4346 *
4347 * Reset the states of the mem_cgroup associated with @css. This is
4348 * invoked when the userland requests disabling on the default hierarchy
4349 * but the memcg is pinned through dependency. The memcg should stop
4350 * applying policies and should revert to the vanilla state as it may be
4351 * made visible again.
4352 *
4353 * The current implementation only resets the essential configurations.
4354 * This needs to be expanded to cover all the visible parts.
4355 */
4356static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4357{
4358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4359
3e32cb2e
JW
4360 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4361 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4362 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4363 memcg->low = 0;
4364 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4365 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4366 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4367}
4368
02491447 4369#ifdef CONFIG_MMU
7dc74be0 4370/* Handlers for move charge at task migration. */
854ffa8d 4371static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4372{
05b84301 4373 int ret;
9476db97 4374
d0164adc
MG
4375 /* Try a single bulk charge without reclaim first, kswapd may wake */
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4377 if (!ret) {
854ffa8d 4378 mc.precharge += count;
854ffa8d
DN
4379 return ret;
4380 }
9476db97
JW
4381
4382 /* Try charges one by one with reclaim */
854ffa8d 4383 while (count--) {
00501b53 4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4385 if (ret)
38c5d72f 4386 return ret;
854ffa8d 4387 mc.precharge++;
9476db97 4388 cond_resched();
854ffa8d 4389 }
9476db97 4390 return 0;
4ffef5fe
DN
4391}
4392
4393/**
8d32ff84 4394 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4395 * @vma: the vma the pte to be checked belongs
4396 * @addr: the address corresponding to the pte to be checked
4397 * @ptent: the pte to be checked
02491447 4398 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4399 *
4400 * Returns
4401 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4402 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4403 * move charge. if @target is not NULL, the page is stored in target->page
4404 * with extra refcnt got(Callers should handle it).
02491447
DN
4405 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4406 * target for charge migration. if @target is not NULL, the entry is stored
4407 * in target->ent.
4ffef5fe
DN
4408 *
4409 * Called with pte lock held.
4410 */
4ffef5fe
DN
4411union mc_target {
4412 struct page *page;
02491447 4413 swp_entry_t ent;
4ffef5fe
DN
4414};
4415
4ffef5fe 4416enum mc_target_type {
8d32ff84 4417 MC_TARGET_NONE = 0,
4ffef5fe 4418 MC_TARGET_PAGE,
02491447 4419 MC_TARGET_SWAP,
4ffef5fe
DN
4420};
4421
90254a65
DN
4422static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4423 unsigned long addr, pte_t ptent)
4ffef5fe 4424{
90254a65 4425 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4426
90254a65
DN
4427 if (!page || !page_mapped(page))
4428 return NULL;
4429 if (PageAnon(page)) {
1dfab5ab 4430 if (!(mc.flags & MOVE_ANON))
90254a65 4431 return NULL;
1dfab5ab
JW
4432 } else {
4433 if (!(mc.flags & MOVE_FILE))
4434 return NULL;
4435 }
90254a65
DN
4436 if (!get_page_unless_zero(page))
4437 return NULL;
4438
4439 return page;
4440}
4441
4b91355e 4442#ifdef CONFIG_SWAP
90254a65
DN
4443static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4444 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4445{
90254a65
DN
4446 struct page *page = NULL;
4447 swp_entry_t ent = pte_to_swp_entry(ptent);
4448
1dfab5ab 4449 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4450 return NULL;
4b91355e
KH
4451 /*
4452 * Because lookup_swap_cache() updates some statistics counter,
4453 * we call find_get_page() with swapper_space directly.
4454 */
33806f06 4455 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4456 if (do_memsw_account())
90254a65
DN
4457 entry->val = ent.val;
4458
4459 return page;
4460}
4b91355e
KH
4461#else
4462static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4464{
4465 return NULL;
4466}
4467#endif
90254a65 4468
87946a72
DN
4469static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4470 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4471{
4472 struct page *page = NULL;
87946a72
DN
4473 struct address_space *mapping;
4474 pgoff_t pgoff;
4475
4476 if (!vma->vm_file) /* anonymous vma */
4477 return NULL;
1dfab5ab 4478 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4479 return NULL;
4480
87946a72 4481 mapping = vma->vm_file->f_mapping;
0661a336 4482 pgoff = linear_page_index(vma, addr);
87946a72
DN
4483
4484 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4485#ifdef CONFIG_SWAP
4486 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4487 if (shmem_mapping(mapping)) {
4488 page = find_get_entry(mapping, pgoff);
4489 if (radix_tree_exceptional_entry(page)) {
4490 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4491 if (do_memsw_account())
139b6a6f
JW
4492 *entry = swp;
4493 page = find_get_page(swap_address_space(swp), swp.val);
4494 }
4495 } else
4496 page = find_get_page(mapping, pgoff);
4497#else
4498 page = find_get_page(mapping, pgoff);
aa3b1895 4499#endif
87946a72
DN
4500 return page;
4501}
4502
b1b0deab
CG
4503/**
4504 * mem_cgroup_move_account - move account of the page
4505 * @page: the page
4506 * @nr_pages: number of regular pages (>1 for huge pages)
4507 * @from: mem_cgroup which the page is moved from.
4508 * @to: mem_cgroup which the page is moved to. @from != @to.
4509 *
4510 * The caller must confirm following.
4511 * - page is not on LRU (isolate_page() is useful.)
4512 * - compound_lock is held when nr_pages > 1
4513 *
4514 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4515 * from old cgroup.
4516 */
4517static int mem_cgroup_move_account(struct page *page,
f627c2f5 4518 bool compound,
b1b0deab
CG
4519 struct mem_cgroup *from,
4520 struct mem_cgroup *to)
4521{
4522 unsigned long flags;
f627c2f5 4523 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4524 int ret;
c4843a75 4525 bool anon;
b1b0deab
CG
4526
4527 VM_BUG_ON(from == to);
4528 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4529 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4530
4531 /*
45637bab
HD
4532 * Prevent mem_cgroup_replace_page() from looking at
4533 * page->mem_cgroup of its source page while we change it.
b1b0deab 4534 */
f627c2f5 4535 ret = -EBUSY;
b1b0deab
CG
4536 if (!trylock_page(page))
4537 goto out;
4538
4539 ret = -EINVAL;
4540 if (page->mem_cgroup != from)
4541 goto out_unlock;
4542
c4843a75
GT
4543 anon = PageAnon(page);
4544
b1b0deab
CG
4545 spin_lock_irqsave(&from->move_lock, flags);
4546
c4843a75 4547 if (!anon && page_mapped(page)) {
b1b0deab
CG
4548 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4549 nr_pages);
4550 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4551 nr_pages);
4552 }
4553
c4843a75
GT
4554 /*
4555 * move_lock grabbed above and caller set from->moving_account, so
4556 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4557 * So mapping should be stable for dirty pages.
4558 */
4559 if (!anon && PageDirty(page)) {
4560 struct address_space *mapping = page_mapping(page);
4561
4562 if (mapping_cap_account_dirty(mapping)) {
4563 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4564 nr_pages);
4565 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4566 nr_pages);
4567 }
4568 }
4569
b1b0deab
CG
4570 if (PageWriteback(page)) {
4571 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4572 nr_pages);
4573 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4574 nr_pages);
4575 }
4576
4577 /*
4578 * It is safe to change page->mem_cgroup here because the page
4579 * is referenced, charged, and isolated - we can't race with
4580 * uncharging, charging, migration, or LRU putback.
4581 */
4582
4583 /* caller should have done css_get */
4584 page->mem_cgroup = to;
4585 spin_unlock_irqrestore(&from->move_lock, flags);
4586
4587 ret = 0;
4588
4589 local_irq_disable();
f627c2f5 4590 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4591 memcg_check_events(to, page);
f627c2f5 4592 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4593 memcg_check_events(from, page);
4594 local_irq_enable();
4595out_unlock:
4596 unlock_page(page);
4597out:
4598 return ret;
4599}
4600
8d32ff84 4601static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4602 unsigned long addr, pte_t ptent, union mc_target *target)
4603{
4604 struct page *page = NULL;
8d32ff84 4605 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4606 swp_entry_t ent = { .val = 0 };
4607
4608 if (pte_present(ptent))
4609 page = mc_handle_present_pte(vma, addr, ptent);
4610 else if (is_swap_pte(ptent))
4611 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4612 else if (pte_none(ptent))
87946a72 4613 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4614
4615 if (!page && !ent.val)
8d32ff84 4616 return ret;
02491447 4617 if (page) {
02491447 4618 /*
0a31bc97 4619 * Do only loose check w/o serialization.
1306a85a 4620 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4621 * not under LRU exclusion.
02491447 4622 */
1306a85a 4623 if (page->mem_cgroup == mc.from) {
02491447
DN
4624 ret = MC_TARGET_PAGE;
4625 if (target)
4626 target->page = page;
4627 }
4628 if (!ret || !target)
4629 put_page(page);
4630 }
90254a65
DN
4631 /* There is a swap entry and a page doesn't exist or isn't charged */
4632 if (ent.val && !ret &&
34c00c31 4633 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4634 ret = MC_TARGET_SWAP;
4635 if (target)
4636 target->ent = ent;
4ffef5fe 4637 }
4ffef5fe
DN
4638 return ret;
4639}
4640
12724850
NH
4641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642/*
4643 * We don't consider swapping or file mapped pages because THP does not
4644 * support them for now.
4645 * Caller should make sure that pmd_trans_huge(pmd) is true.
4646 */
4647static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 unsigned long addr, pmd_t pmd, union mc_target *target)
4649{
4650 struct page *page = NULL;
12724850
NH
4651 enum mc_target_type ret = MC_TARGET_NONE;
4652
4653 page = pmd_page(pmd);
309381fe 4654 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4655 if (!(mc.flags & MOVE_ANON))
12724850 4656 return ret;
1306a85a 4657 if (page->mem_cgroup == mc.from) {
12724850
NH
4658 ret = MC_TARGET_PAGE;
4659 if (target) {
4660 get_page(page);
4661 target->page = page;
4662 }
4663 }
4664 return ret;
4665}
4666#else
4667static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4668 unsigned long addr, pmd_t pmd, union mc_target *target)
4669{
4670 return MC_TARGET_NONE;
4671}
4672#endif
4673
4ffef5fe
DN
4674static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4675 unsigned long addr, unsigned long end,
4676 struct mm_walk *walk)
4677{
26bcd64a 4678 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4679 pte_t *pte;
4680 spinlock_t *ptl;
4681
bf929152 4682 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
bf929152 4685 spin_unlock(ptl);
1a5a9906 4686 return 0;
12724850 4687 }
03319327 4688
45f83cef
AA
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4ffef5fe
DN
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
7dc74be0
DN
4698 return 0;
4699}
4700
4ffef5fe
DN
4701static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702{
4703 unsigned long precharge;
4ffef5fe 4704
26bcd64a
NH
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
dfe076b0 4709 down_read(&mm->mmap_sem);
26bcd64a 4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4711 up_read(&mm->mmap_sem);
4ffef5fe
DN
4712
4713 precharge = mc.precharge;
4714 mc.precharge = 0;
4715
4716 return precharge;
4717}
4718
4ffef5fe
DN
4719static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4720{
dfe076b0
DN
4721 unsigned long precharge = mem_cgroup_count_precharge(mm);
4722
4723 VM_BUG_ON(mc.moving_task);
4724 mc.moving_task = current;
4725 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4726}
4727
dfe076b0
DN
4728/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729static void __mem_cgroup_clear_mc(void)
4ffef5fe 4730{
2bd9bb20
KH
4731 struct mem_cgroup *from = mc.from;
4732 struct mem_cgroup *to = mc.to;
4733
4ffef5fe 4734 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4735 if (mc.precharge) {
00501b53 4736 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4737 mc.precharge = 0;
4738 }
4739 /*
4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 * we must uncharge here.
4742 */
4743 if (mc.moved_charge) {
00501b53 4744 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4745 mc.moved_charge = 0;
4ffef5fe 4746 }
483c30b5
DN
4747 /* we must fixup refcnts and charges */
4748 if (mc.moved_swap) {
483c30b5 4749 /* uncharge swap account from the old cgroup */
ce00a967 4750 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4752
05b84301 4753 /*
3e32cb2e
JW
4754 * we charged both to->memory and to->memsw, so we
4755 * should uncharge to->memory.
05b84301 4756 */
ce00a967 4757 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4758 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4759
e8ea14cc 4760 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4761
4050377b 4762 /* we've already done css_get(mc.to) */
483c30b5
DN
4763 mc.moved_swap = 0;
4764 }
dfe076b0
DN
4765 memcg_oom_recover(from);
4766 memcg_oom_recover(to);
4767 wake_up_all(&mc.waitq);
4768}
4769
4770static void mem_cgroup_clear_mc(void)
4771{
dfe076b0
DN
4772 /*
4773 * we must clear moving_task before waking up waiters at the end of
4774 * task migration.
4775 */
4776 mc.moving_task = NULL;
4777 __mem_cgroup_clear_mc();
2bd9bb20 4778 spin_lock(&mc.lock);
4ffef5fe
DN
4779 mc.from = NULL;
4780 mc.to = NULL;
2bd9bb20 4781 spin_unlock(&mc.lock);
4ffef5fe
DN
4782}
4783
1f7dd3e5 4784static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4785{
1f7dd3e5 4786 struct cgroup_subsys_state *css;
eed67d75 4787 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4788 struct mem_cgroup *from;
4530eddb 4789 struct task_struct *leader, *p;
9f2115f9 4790 struct mm_struct *mm;
1dfab5ab 4791 unsigned long move_flags;
9f2115f9 4792 int ret = 0;
7dc74be0 4793
1f7dd3e5
TH
4794 /* charge immigration isn't supported on the default hierarchy */
4795 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4796 return 0;
4797
4530eddb
TH
4798 /*
4799 * Multi-process migrations only happen on the default hierarchy
4800 * where charge immigration is not used. Perform charge
4801 * immigration if @tset contains a leader and whine if there are
4802 * multiple.
4803 */
4804 p = NULL;
1f7dd3e5 4805 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4806 WARN_ON_ONCE(p);
4807 p = leader;
1f7dd3e5 4808 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4809 }
4810 if (!p)
4811 return 0;
4812
1f7dd3e5
TH
4813 /*
4814 * We are now commited to this value whatever it is. Changes in this
4815 * tunable will only affect upcoming migrations, not the current one.
4816 * So we need to save it, and keep it going.
4817 */
4818 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4819 if (!move_flags)
4820 return 0;
4821
9f2115f9
TH
4822 from = mem_cgroup_from_task(p);
4823
4824 VM_BUG_ON(from == memcg);
4825
4826 mm = get_task_mm(p);
4827 if (!mm)
4828 return 0;
4829 /* We move charges only when we move a owner of the mm */
4830 if (mm->owner == p) {
4831 VM_BUG_ON(mc.from);
4832 VM_BUG_ON(mc.to);
4833 VM_BUG_ON(mc.precharge);
4834 VM_BUG_ON(mc.moved_charge);
4835 VM_BUG_ON(mc.moved_swap);
4836
4837 spin_lock(&mc.lock);
4838 mc.from = from;
4839 mc.to = memcg;
4840 mc.flags = move_flags;
4841 spin_unlock(&mc.lock);
4842 /* We set mc.moving_task later */
4843
4844 ret = mem_cgroup_precharge_mc(mm);
4845 if (ret)
4846 mem_cgroup_clear_mc();
7dc74be0 4847 }
9f2115f9 4848 mmput(mm);
7dc74be0
DN
4849 return ret;
4850}
4851
1f7dd3e5 4852static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4853{
4e2f245d
JW
4854 if (mc.to)
4855 mem_cgroup_clear_mc();
7dc74be0
DN
4856}
4857
4ffef5fe
DN
4858static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4859 unsigned long addr, unsigned long end,
4860 struct mm_walk *walk)
7dc74be0 4861{
4ffef5fe 4862 int ret = 0;
26bcd64a 4863 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4864 pte_t *pte;
4865 spinlock_t *ptl;
12724850
NH
4866 enum mc_target_type target_type;
4867 union mc_target target;
4868 struct page *page;
4ffef5fe 4869
12724850
NH
4870 /*
4871 * We don't take compound_lock() here but no race with splitting thp
4872 * happens because:
4873 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4874 * under splitting, which means there's no concurrent thp split,
4875 * - if another thread runs into split_huge_page() just after we
4876 * entered this if-block, the thread must wait for page table lock
4877 * to be unlocked in __split_huge_page_splitting(), where the main
4878 * part of thp split is not executed yet.
4879 */
bf929152 4880 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 4881 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4882 spin_unlock(ptl);
12724850
NH
4883 return 0;
4884 }
4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 if (target_type == MC_TARGET_PAGE) {
4887 page = target.page;
4888 if (!isolate_lru_page(page)) {
f627c2f5 4889 if (!mem_cgroup_move_account(page, true,
1306a85a 4890 mc.from, mc.to)) {
12724850
NH
4891 mc.precharge -= HPAGE_PMD_NR;
4892 mc.moved_charge += HPAGE_PMD_NR;
4893 }
4894 putback_lru_page(page);
4895 }
4896 put_page(page);
4897 }
bf929152 4898 spin_unlock(ptl);
1a5a9906 4899 return 0;
12724850
NH
4900 }
4901
45f83cef
AA
4902 if (pmd_trans_unstable(pmd))
4903 return 0;
4ffef5fe
DN
4904retry:
4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 for (; addr != end; addr += PAGE_SIZE) {
4907 pte_t ptent = *(pte++);
02491447 4908 swp_entry_t ent;
4ffef5fe
DN
4909
4910 if (!mc.precharge)
4911 break;
4912
8d32ff84 4913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4914 case MC_TARGET_PAGE:
4915 page = target.page;
4916 if (isolate_lru_page(page))
4917 goto put;
f627c2f5
KS
4918 if (!mem_cgroup_move_account(page, false,
4919 mc.from, mc.to)) {
4ffef5fe 4920 mc.precharge--;
854ffa8d
DN
4921 /* we uncharge from mc.from later. */
4922 mc.moved_charge++;
4ffef5fe
DN
4923 }
4924 putback_lru_page(page);
8d32ff84 4925put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4926 put_page(page);
4927 break;
02491447
DN
4928 case MC_TARGET_SWAP:
4929 ent = target.ent;
e91cbb42 4930 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4931 mc.precharge--;
483c30b5
DN
4932 /* we fixup refcnts and charges later. */
4933 mc.moved_swap++;
4934 }
02491447 4935 break;
4ffef5fe
DN
4936 default:
4937 break;
4938 }
4939 }
4940 pte_unmap_unlock(pte - 1, ptl);
4941 cond_resched();
4942
4943 if (addr != end) {
4944 /*
4945 * We have consumed all precharges we got in can_attach().
4946 * We try charge one by one, but don't do any additional
4947 * charges to mc.to if we have failed in charge once in attach()
4948 * phase.
4949 */
854ffa8d 4950 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4951 if (!ret)
4952 goto retry;
4953 }
4954
4955 return ret;
4956}
4957
4958static void mem_cgroup_move_charge(struct mm_struct *mm)
4959{
26bcd64a
NH
4960 struct mm_walk mem_cgroup_move_charge_walk = {
4961 .pmd_entry = mem_cgroup_move_charge_pte_range,
4962 .mm = mm,
4963 };
4ffef5fe
DN
4964
4965 lru_add_drain_all();
312722cb
JW
4966 /*
4967 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4968 * move_lock while we're moving its pages to another memcg.
4969 * Then wait for already started RCU-only updates to finish.
4970 */
4971 atomic_inc(&mc.from->moving_account);
4972 synchronize_rcu();
dfe076b0
DN
4973retry:
4974 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4975 /*
4976 * Someone who are holding the mmap_sem might be waiting in
4977 * waitq. So we cancel all extra charges, wake up all waiters,
4978 * and retry. Because we cancel precharges, we might not be able
4979 * to move enough charges, but moving charge is a best-effort
4980 * feature anyway, so it wouldn't be a big problem.
4981 */
4982 __mem_cgroup_clear_mc();
4983 cond_resched();
4984 goto retry;
4985 }
26bcd64a
NH
4986 /*
4987 * When we have consumed all precharges and failed in doing
4988 * additional charge, the page walk just aborts.
4989 */
4990 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4991 up_read(&mm->mmap_sem);
312722cb 4992 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4993}
4994
1f7dd3e5 4995static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4996{
1f7dd3e5
TH
4997 struct cgroup_subsys_state *css;
4998 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4999 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5000
dfe076b0 5001 if (mm) {
a433658c
KM
5002 if (mc.to)
5003 mem_cgroup_move_charge(mm);
dfe076b0
DN
5004 mmput(mm);
5005 }
a433658c
KM
5006 if (mc.to)
5007 mem_cgroup_clear_mc();
67e465a7 5008}
5cfb80a7 5009#else /* !CONFIG_MMU */
1f7dd3e5 5010static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5011{
5012 return 0;
5013}
1f7dd3e5 5014static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5015{
5016}
1f7dd3e5 5017static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5018{
5019}
5020#endif
67e465a7 5021
f00baae7
TH
5022/*
5023 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5024 * to verify whether we're attached to the default hierarchy on each mount
5025 * attempt.
f00baae7 5026 */
eb95419b 5027static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5028{
5029 /*
aa6ec29b 5030 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5031 * guarantees that @root doesn't have any children, so turning it
5032 * on for the root memcg is enough.
5033 */
9e10a130 5034 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5035 root_mem_cgroup->use_hierarchy = true;
5036 else
5037 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5038}
5039
241994ed
JW
5040static u64 memory_current_read(struct cgroup_subsys_state *css,
5041 struct cftype *cft)
5042{
f5fc3c5d
JW
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5044
5045 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5046}
5047
5048static int memory_low_show(struct seq_file *m, void *v)
5049{
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5051 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5052
5053 if (low == PAGE_COUNTER_MAX)
d2973697 5054 seq_puts(m, "max\n");
241994ed
JW
5055 else
5056 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5057
5058 return 0;
5059}
5060
5061static ssize_t memory_low_write(struct kernfs_open_file *of,
5062 char *buf, size_t nbytes, loff_t off)
5063{
5064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5065 unsigned long low;
5066 int err;
5067
5068 buf = strstrip(buf);
d2973697 5069 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5070 if (err)
5071 return err;
5072
5073 memcg->low = low;
5074
5075 return nbytes;
5076}
5077
5078static int memory_high_show(struct seq_file *m, void *v)
5079{
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5081 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5082
5083 if (high == PAGE_COUNTER_MAX)
d2973697 5084 seq_puts(m, "max\n");
241994ed
JW
5085 else
5086 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5087
5088 return 0;
5089}
5090
5091static ssize_t memory_high_write(struct kernfs_open_file *of,
5092 char *buf, size_t nbytes, loff_t off)
5093{
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5095 unsigned long high;
5096 int err;
5097
5098 buf = strstrip(buf);
d2973697 5099 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5100 if (err)
5101 return err;
5102
5103 memcg->high = high;
5104
2529bb3a 5105 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5106 return nbytes;
5107}
5108
5109static int memory_max_show(struct seq_file *m, void *v)
5110{
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5112 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5113
5114 if (max == PAGE_COUNTER_MAX)
d2973697 5115 seq_puts(m, "max\n");
241994ed
JW
5116 else
5117 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5118
5119 return 0;
5120}
5121
5122static ssize_t memory_max_write(struct kernfs_open_file *of,
5123 char *buf, size_t nbytes, loff_t off)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5126 unsigned long max;
5127 int err;
5128
5129 buf = strstrip(buf);
d2973697 5130 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5131 if (err)
5132 return err;
5133
5134 err = mem_cgroup_resize_limit(memcg, max);
5135 if (err)
5136 return err;
5137
2529bb3a 5138 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5139 return nbytes;
5140}
5141
5142static int memory_events_show(struct seq_file *m, void *v)
5143{
5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145
5146 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5147 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5148 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5149 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5150
5151 return 0;
5152}
5153
5154static struct cftype memory_files[] = {
5155 {
5156 .name = "current",
f5fc3c5d 5157 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5158 .read_u64 = memory_current_read,
5159 },
5160 {
5161 .name = "low",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_low_show,
5164 .write = memory_low_write,
5165 },
5166 {
5167 .name = "high",
5168 .flags = CFTYPE_NOT_ON_ROOT,
5169 .seq_show = memory_high_show,
5170 .write = memory_high_write,
5171 },
5172 {
5173 .name = "max",
5174 .flags = CFTYPE_NOT_ON_ROOT,
5175 .seq_show = memory_max_show,
5176 .write = memory_max_write,
5177 },
5178 {
5179 .name = "events",
5180 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5181 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5182 .seq_show = memory_events_show,
5183 },
5184 { } /* terminate */
5185};
5186
073219e9 5187struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5188 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5189 .css_online = mem_cgroup_css_online,
92fb9748 5190 .css_offline = mem_cgroup_css_offline,
6df38689 5191 .css_released = mem_cgroup_css_released,
92fb9748 5192 .css_free = mem_cgroup_css_free,
1ced953b 5193 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5196 .attach = mem_cgroup_move_task,
f00baae7 5197 .bind = mem_cgroup_bind,
241994ed
JW
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5200 .early_init = 0,
8cdea7c0 5201};
c077719b 5202
241994ed
JW
5203/**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212{
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
4e54dede 5225 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
4e54dede 5234 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5235 return false;
5236 }
5237 return true;
5238}
5239
00501b53
JW
5240/**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
00501b53
JW
5260{
5261 struct mem_cgroup *memcg = NULL;
f627c2f5 5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
00501b53
JW
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
e993d905 5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5277 if (page->mem_cgroup)
00501b53 5278 goto out;
e993d905 5279
7941d214 5280 if (do_memsw_account()) {
e993d905
VD
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
00501b53
JW
5290 }
5291
00501b53
JW
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
00501b53
JW
5298out:
5299 *memcgp = memcg;
5300 return ret;
5301}
5302
5303/**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5320 bool lrucare, bool compound)
00501b53 5321{
f627c2f5 5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
6abb5a86
JW
5337 commit_charge(page, memcg, lrucare);
5338
6abb5a86 5339 local_irq_disable();
f627c2f5 5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
00501b53 5343
7941d214 5344 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353}
5354
5355/**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
f627c2f5
KS
5362void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
00501b53 5364{
f627c2f5 5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
00501b53
JW
5377 cancel_charge(memcg, nr_pages);
5378}
5379
747db954 5380static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383{
18eca2e6 5384 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5385 unsigned long flags;
5386
ce00a967 5387 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5388 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5389 if (do_memsw_account())
18eca2e6 5390 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5391 memcg_oom_recover(memcg);
5392 }
747db954
JW
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
e8ea14cc
JW
5402
5403 if (!mem_cgroup_is_root(memcg))
18eca2e6 5404 css_put_many(&memcg->css, nr_pages);
747db954
JW
5405}
5406
5407static void uncharge_list(struct list_head *page_list)
5408{
5409 struct mem_cgroup *memcg = NULL;
747db954
JW
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
747db954
JW
5414 struct list_head *next;
5415 struct page *page;
5416
5417 next = page_list->next;
5418 do {
5419 unsigned int nr_pages = 1;
747db954
JW
5420
5421 page = list_entry(next, struct page, lru);
5422 next = page->lru.next;
5423
5424 VM_BUG_ON_PAGE(PageLRU(page), page);
5425 VM_BUG_ON_PAGE(page_count(page), page);
5426
1306a85a 5427 if (!page->mem_cgroup)
747db954
JW
5428 continue;
5429
5430 /*
5431 * Nobody should be changing or seriously looking at
1306a85a 5432 * page->mem_cgroup at this point, we have fully
29833315 5433 * exclusive access to the page.
747db954
JW
5434 */
5435
1306a85a 5436 if (memcg != page->mem_cgroup) {
747db954 5437 if (memcg) {
18eca2e6
JW
5438 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439 nr_huge, page);
5440 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5441 }
1306a85a 5442 memcg = page->mem_cgroup;
747db954
JW
5443 }
5444
5445 if (PageTransHuge(page)) {
5446 nr_pages <<= compound_order(page);
5447 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5448 nr_huge += nr_pages;
5449 }
5450
5451 if (PageAnon(page))
5452 nr_anon += nr_pages;
5453 else
5454 nr_file += nr_pages;
5455
1306a85a 5456 page->mem_cgroup = NULL;
747db954
JW
5457
5458 pgpgout++;
5459 } while (next != page_list);
5460
5461 if (memcg)
18eca2e6
JW
5462 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463 nr_huge, page);
747db954
JW
5464}
5465
0a31bc97
JW
5466/**
5467 * mem_cgroup_uncharge - uncharge a page
5468 * @page: page to uncharge
5469 *
5470 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5471 * mem_cgroup_commit_charge().
5472 */
5473void mem_cgroup_uncharge(struct page *page)
5474{
0a31bc97
JW
5475 if (mem_cgroup_disabled())
5476 return;
5477
747db954 5478 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5479 if (!page->mem_cgroup)
0a31bc97
JW
5480 return;
5481
747db954
JW
5482 INIT_LIST_HEAD(&page->lru);
5483 uncharge_list(&page->lru);
5484}
0a31bc97 5485
747db954
JW
5486/**
5487 * mem_cgroup_uncharge_list - uncharge a list of page
5488 * @page_list: list of pages to uncharge
5489 *
5490 * Uncharge a list of pages previously charged with
5491 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5492 */
5493void mem_cgroup_uncharge_list(struct list_head *page_list)
5494{
5495 if (mem_cgroup_disabled())
5496 return;
0a31bc97 5497
747db954
JW
5498 if (!list_empty(page_list))
5499 uncharge_list(page_list);
0a31bc97
JW
5500}
5501
5502/**
45637bab 5503 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5504 * @oldpage: currently charged page
5505 * @newpage: page to transfer the charge to
0a31bc97
JW
5506 *
5507 * Migrate the charge from @oldpage to @newpage.
5508 *
5509 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5510 * Either or both pages might be on the LRU already.
0a31bc97 5511 */
45637bab 5512void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5513{
29833315 5514 struct mem_cgroup *memcg;
0a31bc97
JW
5515 int isolated;
5516
5517 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5518 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5519 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5520 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5521 newpage);
0a31bc97
JW
5522
5523 if (mem_cgroup_disabled())
5524 return;
5525
5526 /* Page cache replacement: new page already charged? */
1306a85a 5527 if (newpage->mem_cgroup)
0a31bc97
JW
5528 return;
5529
45637bab 5530 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5531 memcg = oldpage->mem_cgroup;
29833315 5532 if (!memcg)
0a31bc97
JW
5533 return;
5534
45637bab 5535 lock_page_lru(oldpage, &isolated);
1306a85a 5536 oldpage->mem_cgroup = NULL;
45637bab 5537 unlock_page_lru(oldpage, isolated);
0a31bc97 5538
45637bab 5539 commit_charge(newpage, memcg, true);
0a31bc97
JW
5540}
5541
f7e1cb6e 5542#ifdef CONFIG_INET
11092087 5543
ef12947c 5544DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5545EXPORT_SYMBOL(memcg_sockets_enabled_key);
5546
5547void sock_update_memcg(struct sock *sk)
5548{
5549 struct mem_cgroup *memcg;
5550
5551 /* Socket cloning can throw us here with sk_cgrp already
5552 * filled. It won't however, necessarily happen from
5553 * process context. So the test for root memcg given
5554 * the current task's memcg won't help us in this case.
5555 *
5556 * Respecting the original socket's memcg is a better
5557 * decision in this case.
5558 */
5559 if (sk->sk_memcg) {
5560 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5561 css_get(&sk->sk_memcg->css);
5562 return;
5563 }
5564
5565 rcu_read_lock();
5566 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5567 if (memcg == root_mem_cgroup)
5568 goto out;
5569#ifdef CONFIG_MEMCG_KMEM
5570 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5571 goto out;
5572#endif
5573 if (css_tryget_online(&memcg->css))
11092087 5574 sk->sk_memcg = memcg;
f7e1cb6e 5575out:
11092087
JW
5576 rcu_read_unlock();
5577}
5578EXPORT_SYMBOL(sock_update_memcg);
5579
5580void sock_release_memcg(struct sock *sk)
5581{
5582 WARN_ON(!sk->sk_memcg);
5583 css_put(&sk->sk_memcg->css);
5584}
5585
5586/**
5587 * mem_cgroup_charge_skmem - charge socket memory
5588 * @memcg: memcg to charge
5589 * @nr_pages: number of pages to charge
5590 *
5591 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5592 * @memcg's configured limit, %false if the charge had to be forced.
5593 */
5594bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5595{
f7e1cb6e 5596 gfp_t gfp_mask = GFP_KERNEL;
11092087 5597
f7e1cb6e
JW
5598#ifdef CONFIG_MEMCG_KMEM
5599 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5600 struct page_counter *counter;
5601
5602 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5603 nr_pages, &counter)) {
5604 memcg->tcp_mem.memory_pressure = 0;
5605 return true;
5606 }
5607 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5608 memcg->tcp_mem.memory_pressure = 1;
5609 return false;
11092087 5610 }
f7e1cb6e
JW
5611#endif
5612 /* Don't block in the packet receive path */
5613 if (in_softirq())
5614 gfp_mask = GFP_NOWAIT;
5615
5616 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5617 return true;
5618
5619 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5620 return false;
5621}
5622
5623/**
5624 * mem_cgroup_uncharge_skmem - uncharge socket memory
5625 * @memcg - memcg to uncharge
5626 * @nr_pages - number of pages to uncharge
5627 */
5628void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5629{
f7e1cb6e
JW
5630#ifdef CONFIG_MEMCG_KMEM
5631 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5632 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5633 nr_pages);
5634 return;
5635 }
5636#endif
5637 page_counter_uncharge(&memcg->memory, nr_pages);
5638 css_put_many(&memcg->css, nr_pages);
11092087
JW
5639}
5640
f7e1cb6e
JW
5641#endif /* CONFIG_INET */
5642
5643static int __init cgroup_memory(char *s)
5644{
5645 char *token;
5646
5647 while ((token = strsep(&s, ",")) != NULL) {
5648 if (!*token)
5649 continue;
5650 if (!strcmp(token, "nosocket"))
5651 cgroup_memory_nosocket = true;
5652 }
5653 return 0;
5654}
5655__setup("cgroup.memory=", cgroup_memory);
11092087 5656
2d11085e 5657/*
1081312f
MH
5658 * subsys_initcall() for memory controller.
5659 *
5660 * Some parts like hotcpu_notifier() have to be initialized from this context
5661 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5662 * everything that doesn't depend on a specific mem_cgroup structure should
5663 * be initialized from here.
2d11085e
MH
5664 */
5665static int __init mem_cgroup_init(void)
5666{
95a045f6
JW
5667 int cpu, node;
5668
2d11085e 5669 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5670
5671 for_each_possible_cpu(cpu)
5672 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5673 drain_local_stock);
5674
5675 for_each_node(node) {
5676 struct mem_cgroup_tree_per_node *rtpn;
5677 int zone;
5678
5679 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5680 node_online(node) ? node : NUMA_NO_NODE);
5681
5682 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5683 struct mem_cgroup_tree_per_zone *rtpz;
5684
5685 rtpz = &rtpn->rb_tree_per_zone[zone];
5686 rtpz->rb_root = RB_ROOT;
5687 spin_lock_init(&rtpz->lock);
5688 }
5689 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5690 }
5691
2d11085e
MH
5692 return 0;
5693}
5694subsys_initcall(mem_cgroup_init);
21afa38e
JW
5695
5696#ifdef CONFIG_MEMCG_SWAP
5697/**
5698 * mem_cgroup_swapout - transfer a memsw charge to swap
5699 * @page: page whose memsw charge to transfer
5700 * @entry: swap entry to move the charge to
5701 *
5702 * Transfer the memsw charge of @page to @entry.
5703 */
5704void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5705{
5706 struct mem_cgroup *memcg;
5707 unsigned short oldid;
5708
5709 VM_BUG_ON_PAGE(PageLRU(page), page);
5710 VM_BUG_ON_PAGE(page_count(page), page);
5711
7941d214 5712 if (!do_memsw_account())
21afa38e
JW
5713 return;
5714
5715 memcg = page->mem_cgroup;
5716
5717 /* Readahead page, never charged */
5718 if (!memcg)
5719 return;
5720
5721 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5722 VM_BUG_ON_PAGE(oldid, page);
5723 mem_cgroup_swap_statistics(memcg, true);
5724
5725 page->mem_cgroup = NULL;
5726
5727 if (!mem_cgroup_is_root(memcg))
5728 page_counter_uncharge(&memcg->memory, 1);
5729
ce9ce665
SAS
5730 /*
5731 * Interrupts should be disabled here because the caller holds the
5732 * mapping->tree_lock lock which is taken with interrupts-off. It is
5733 * important here to have the interrupts disabled because it is the
5734 * only synchronisation we have for udpating the per-CPU variables.
5735 */
5736 VM_BUG_ON(!irqs_disabled());
f627c2f5 5737 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5738 memcg_check_events(memcg, page);
5739}
5740
5741/**
5742 * mem_cgroup_uncharge_swap - uncharge a swap entry
5743 * @entry: swap entry to uncharge
5744 *
5745 * Drop the memsw charge associated with @entry.
5746 */
5747void mem_cgroup_uncharge_swap(swp_entry_t entry)
5748{
5749 struct mem_cgroup *memcg;
5750 unsigned short id;
5751
7941d214 5752 if (!do_memsw_account())
21afa38e
JW
5753 return;
5754
5755 id = swap_cgroup_record(entry, 0);
5756 rcu_read_lock();
adbe427b 5757 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5758 if (memcg) {
5759 if (!mem_cgroup_is_root(memcg))
5760 page_counter_uncharge(&memcg->memsw, 1);
5761 mem_cgroup_swap_statistics(memcg, false);
5762 css_put(&memcg->css);
5763 }
5764 rcu_read_unlock();
5765}
5766
5767/* for remember boot option*/
5768#ifdef CONFIG_MEMCG_SWAP_ENABLED
5769static int really_do_swap_account __initdata = 1;
5770#else
5771static int really_do_swap_account __initdata;
5772#endif
5773
5774static int __init enable_swap_account(char *s)
5775{
5776 if (!strcmp(s, "1"))
5777 really_do_swap_account = 1;
5778 else if (!strcmp(s, "0"))
5779 really_do_swap_account = 0;
5780 return 1;
5781}
5782__setup("swapaccount=", enable_swap_account);
5783
5784static struct cftype memsw_cgroup_files[] = {
5785 {
5786 .name = "memsw.usage_in_bytes",
5787 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.max_usage_in_bytes",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5793 .write = mem_cgroup_reset,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 {
5797 .name = "memsw.limit_in_bytes",
5798 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5799 .write = mem_cgroup_write,
5800 .read_u64 = mem_cgroup_read_u64,
5801 },
5802 {
5803 .name = "memsw.failcnt",
5804 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5805 .write = mem_cgroup_reset,
5806 .read_u64 = mem_cgroup_read_u64,
5807 },
5808 { }, /* terminate */
5809};
5810
5811static int __init mem_cgroup_swap_init(void)
5812{
5813 if (!mem_cgroup_disabled() && really_do_swap_account) {
5814 do_swap_account = 1;
5815 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5816 memsw_cgroup_files));
5817 }
5818 return 0;
5819}
5820subsys_initcall(mem_cgroup_swap_init);
5821
5822#endif /* CONFIG_MEMCG_SWAP */