]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - mm/memcontrol.c
mm: memcg: remove obsolete memcg_has_children()
[thirdparty/kernel/stable.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
37d5985c
RG
76/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
f7e1cb6e
JW
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
04823c83
VD
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
21afa38e 85/* Whether the swap controller is active */
c255a458 86#ifdef CONFIG_MEMCG_SWAP
eccb52e7 87bool cgroup_memory_noswap __read_mostly;
c077719b 88#else
eccb52e7 89#define cgroup_memory_noswap 1
2d1c4980 90#endif
c077719b 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
eccb52e7 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
510fc4e1 208 _KMEM,
d55f90bf 209 _TCP,
86ae53e1
GC
210};
211
a0db00fc
KS
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 214#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
8c7c6e34 217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
7775face
TH
233static inline bool should_force_charge(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
253extern spinlock_t css_set_lock;
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
55007d84 345/*
9855609b 346 * This will be used as a shrinker list's index.
b8627835
LZ
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
55007d84 352 *
dbcf73e2
VD
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
55007d84 355 */
dbcf73e2
VD
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
749c5415 358
05257a1a
VD
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
55007d84
GC
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
b8627835 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
b8627835 385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 386
d7f25f8a
GC
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
272911a4 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
ef12947c 393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 394EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 395#endif
17cc4dfe 396
0a4465d3
KT
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
86daf94e 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
86daf94e 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 497 goto unlock;
75866af6 498 }
0a4465d3
KT
499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
fae91d6d
KT
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
fae91d6d
KT
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
ad7fa852
TH
521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
ad7fa852
TH
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
ad7fa852
TH
536 memcg = page->mem_cgroup;
537
9e10a130 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
539 memcg = root_mem_cgroup;
540
ad7fa852
TH
541 return &memcg->css;
542}
543
2fc04524
VD
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
9855609b 563 memcg = page->mem_cgroup;
286e04b8 564
9855609b
RG
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
286e04b8 573
2fc04524
VD
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580}
581
ef8f2327
MG
582static struct mem_cgroup_per_node *
583mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 584{
97a6c37b 585 int nid = page_to_nid(page);
f64c3f54 586
ef8f2327 587 return memcg->nodeinfo[nid];
f64c3f54
BS
588}
589
ef8f2327
MG
590static struct mem_cgroup_tree_per_node *
591soft_limit_tree_node(int nid)
bb4cc1a8 592{
ef8f2327 593 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
594}
595
ef8f2327 596static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
597soft_limit_tree_from_page(struct page *page)
598{
599 int nid = page_to_nid(page);
bb4cc1a8 600
ef8f2327 601 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
602}
603
ef8f2327
MG
604static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 606 unsigned long new_usage_in_excess)
bb4cc1a8
AM
607{
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
ef8f2327 610 struct mem_cgroup_per_node *mz_node;
fa90b2fd 611 bool rightmost = true;
bb4cc1a8
AM
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
ef8f2327 621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 622 tree_node);
fa90b2fd 623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 624 p = &(*p)->rb_left;
fa90b2fd 625 rightmost = false;
378876b0 626 } else {
bb4cc1a8 627 p = &(*p)->rb_right;
378876b0 628 }
bb4cc1a8 629 }
fa90b2fd
DB
630
631 if (rightmost)
632 mctz->rb_rightmost = &mz->tree_node;
633
bb4cc1a8
AM
634 rb_link_node(&mz->tree_node, parent, p);
635 rb_insert_color(&mz->tree_node, &mctz->rb_root);
636 mz->on_tree = true;
637}
638
ef8f2327
MG
639static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
640 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
641{
642 if (!mz->on_tree)
643 return;
fa90b2fd
DB
644
645 if (&mz->tree_node == mctz->rb_rightmost)
646 mctz->rb_rightmost = rb_prev(&mz->tree_node);
647
bb4cc1a8
AM
648 rb_erase(&mz->tree_node, &mctz->rb_root);
649 mz->on_tree = false;
650}
651
ef8f2327
MG
652static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
653 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 654{
0a31bc97
JW
655 unsigned long flags;
656
657 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 658 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 659 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
660}
661
3e32cb2e
JW
662static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
663{
664 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 665 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
666 unsigned long excess = 0;
667
668 if (nr_pages > soft_limit)
669 excess = nr_pages - soft_limit;
670
671 return excess;
672}
bb4cc1a8
AM
673
674static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
675{
3e32cb2e 676 unsigned long excess;
ef8f2327
MG
677 struct mem_cgroup_per_node *mz;
678 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 679
e231875b 680 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
681 if (!mctz)
682 return;
bb4cc1a8
AM
683 /*
684 * Necessary to update all ancestors when hierarchy is used.
685 * because their event counter is not touched.
686 */
687 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 688 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 689 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
690 /*
691 * We have to update the tree if mz is on RB-tree or
692 * mem is over its softlimit.
693 */
694 if (excess || mz->on_tree) {
0a31bc97
JW
695 unsigned long flags;
696
697 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
698 /* if on-tree, remove it */
699 if (mz->on_tree)
cf2c8127 700 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
701 /*
702 * Insert again. mz->usage_in_excess will be updated.
703 * If excess is 0, no tree ops.
704 */
cf2c8127 705 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 706 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
707 }
708 }
709}
710
711static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
712{
ef8f2327
MG
713 struct mem_cgroup_tree_per_node *mctz;
714 struct mem_cgroup_per_node *mz;
715 int nid;
bb4cc1a8 716
e231875b 717 for_each_node(nid) {
ef8f2327
MG
718 mz = mem_cgroup_nodeinfo(memcg, nid);
719 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
720 if (mctz)
721 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
722 }
723}
724
ef8f2327
MG
725static struct mem_cgroup_per_node *
726__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 727{
ef8f2327 728 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
729
730retry:
731 mz = NULL;
fa90b2fd 732 if (!mctz->rb_rightmost)
bb4cc1a8
AM
733 goto done; /* Nothing to reclaim from */
734
fa90b2fd
DB
735 mz = rb_entry(mctz->rb_rightmost,
736 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
737 /*
738 * Remove the node now but someone else can add it back,
739 * we will to add it back at the end of reclaim to its correct
740 * position in the tree.
741 */
cf2c8127 742 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 743 if (!soft_limit_excess(mz->memcg) ||
8965aa28 744 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
745 goto retry;
746done:
747 return mz;
748}
749
ef8f2327
MG
750static struct mem_cgroup_per_node *
751mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 752{
ef8f2327 753 struct mem_cgroup_per_node *mz;
bb4cc1a8 754
0a31bc97 755 spin_lock_irq(&mctz->lock);
bb4cc1a8 756 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 757 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
758 return mz;
759}
760
db9adbcb
JW
761/**
762 * __mod_memcg_state - update cgroup memory statistics
763 * @memcg: the memory cgroup
764 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
765 * @val: delta to add to the counter, can be negative
766 */
767void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
768{
ea426c2a 769 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
770
771 if (mem_cgroup_disabled())
772 return;
773
772616b0 774 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
775 threshold <<= PAGE_SHIFT;
776
db9adbcb 777 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 778 if (unlikely(abs(x) > threshold)) {
42a30035
JW
779 struct mem_cgroup *mi;
780
766a4c19
YS
781 /*
782 * Batch local counters to keep them in sync with
783 * the hierarchical ones.
784 */
785 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
788 x = 0;
789 }
790 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
791}
792
42a30035
JW
793static struct mem_cgroup_per_node *
794parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
795{
796 struct mem_cgroup *parent;
797
798 parent = parent_mem_cgroup(pn->memcg);
799 if (!parent)
800 return NULL;
801 return mem_cgroup_nodeinfo(parent, nid);
802}
803
eedc4e5a
RG
804void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805 int val)
db9adbcb
JW
806{
807 struct mem_cgroup_per_node *pn;
42a30035 808 struct mem_cgroup *memcg;
ea426c2a 809 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 810
db9adbcb 811 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 812 memcg = pn->memcg;
db9adbcb
JW
813
814 /* Update memcg */
42a30035 815 __mod_memcg_state(memcg, idx, val);
db9adbcb 816
b4c46484
RG
817 /* Update lruvec */
818 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
819
ea426c2a
RG
820 if (vmstat_item_in_bytes(idx))
821 threshold <<= PAGE_SHIFT;
822
db9adbcb 823 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 824 if (unlikely(abs(x) > threshold)) {
eedc4e5a 825 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
826 struct mem_cgroup_per_node *pi;
827
42a30035
JW
828 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
829 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
830 x = 0;
831 }
832 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
833}
834
eedc4e5a
RG
835/**
836 * __mod_lruvec_state - update lruvec memory statistics
837 * @lruvec: the lruvec
838 * @idx: the stat item
839 * @val: delta to add to the counter, can be negative
840 *
841 * The lruvec is the intersection of the NUMA node and a cgroup. This
842 * function updates the all three counters that are affected by a
843 * change of state at this level: per-node, per-cgroup, per-lruvec.
844 */
845void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
846 int val)
847{
848 /* Update node */
849 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
850
851 /* Update memcg and lruvec */
852 if (!mem_cgroup_disabled())
853 __mod_memcg_lruvec_state(lruvec, idx, val);
854}
855
ec9f0238
RG
856void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
857{
4f103c63 858 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
859 struct mem_cgroup *memcg;
860 struct lruvec *lruvec;
861
862 rcu_read_lock();
4f103c63 863 memcg = mem_cgroup_from_obj(p);
ec9f0238 864
8faeb1ff
MS
865 /*
866 * Untracked pages have no memcg, no lruvec. Update only the
867 * node. If we reparent the slab objects to the root memcg,
868 * when we free the slab object, we need to update the per-memcg
869 * vmstats to keep it correct for the root memcg.
870 */
871 if (!memcg) {
ec9f0238
RG
872 __mod_node_page_state(pgdat, idx, val);
873 } else {
867e5e1d 874 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
875 __mod_lruvec_state(lruvec, idx, val);
876 }
877 rcu_read_unlock();
878}
879
db9adbcb
JW
880/**
881 * __count_memcg_events - account VM events in a cgroup
882 * @memcg: the memory cgroup
883 * @idx: the event item
884 * @count: the number of events that occured
885 */
886void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
887 unsigned long count)
888{
889 unsigned long x;
890
891 if (mem_cgroup_disabled())
892 return;
893
894 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
895 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
896 struct mem_cgroup *mi;
897
766a4c19
YS
898 /*
899 * Batch local counters to keep them in sync with
900 * the hierarchical ones.
901 */
902 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
903 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
904 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
905 x = 0;
906 }
907 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
908}
909
42a30035 910static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 911{
871789d4 912 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
913}
914
42a30035
JW
915static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
916{
815744d7
JW
917 long x = 0;
918 int cpu;
919
920 for_each_possible_cpu(cpu)
921 x += per_cpu(memcg->vmstats_local->events[event], cpu);
922 return x;
42a30035
JW
923}
924
c0ff4b85 925static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 926 struct page *page,
3fba69a5 927 int nr_pages)
d52aa412 928{
e401f176
KH
929 /* pagein of a big page is an event. So, ignore page size */
930 if (nr_pages > 0)
c9019e9b 931 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 932 else {
c9019e9b 933 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
934 nr_pages = -nr_pages; /* for event */
935 }
e401f176 936
871789d4 937 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
938}
939
f53d7ce3
JW
940static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
7a159cc9
JW
942{
943 unsigned long val, next;
944
871789d4
CD
945 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
946 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 947 /* from time_after() in jiffies.h */
6a1a8b80 948 if ((long)(next - val) < 0) {
f53d7ce3
JW
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
bb4cc1a8
AM
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
f53d7ce3
JW
956 default:
957 break;
958 }
871789d4 959 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 960 return true;
7a159cc9 961 }
f53d7ce3 962 return false;
d2265e6f
KH
963}
964
965/*
966 * Check events in order.
967 *
968 */
c0ff4b85 969static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
970{
971 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
972 if (unlikely(mem_cgroup_event_ratelimit(memcg,
973 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 974 bool do_softlimit;
f53d7ce3 975
bb4cc1a8
AM
976 do_softlimit = mem_cgroup_event_ratelimit(memcg,
977 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 978 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
979 if (unlikely(do_softlimit))
980 mem_cgroup_update_tree(memcg, page);
0a31bc97 981 }
d2265e6f
KH
982}
983
cf475ad2 984struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 985{
31a78f23
BS
986 /*
987 * mm_update_next_owner() may clear mm->owner to NULL
988 * if it races with swapoff, page migration, etc.
989 * So this can be called with p == NULL.
990 */
991 if (unlikely(!p))
992 return NULL;
993
073219e9 994 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 995}
33398cf2 996EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 997
d46eb14b
SB
998/**
999 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1000 * @mm: mm from which memcg should be extracted. It can be NULL.
1001 *
1002 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1003 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1004 * returned.
1005 */
1006struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1007{
d46eb14b
SB
1008 struct mem_cgroup *memcg;
1009
1010 if (mem_cgroup_disabled())
1011 return NULL;
0b7f569e 1012
54595fe2
KH
1013 rcu_read_lock();
1014 do {
6f6acb00
MH
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
df381975 1021 memcg = root_mem_cgroup;
6f6acb00
MH
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
00d484f3 1027 } while (!css_tryget(&memcg->css));
54595fe2 1028 rcu_read_unlock();
c0ff4b85 1029 return memcg;
54595fe2 1030}
d46eb14b
SB
1031EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1032
f745c6f5
SB
1033/**
1034 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1035 * @page: page from which memcg should be extracted.
1036 *
1037 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1038 * root_mem_cgroup is returned.
1039 */
1040struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1041{
1042 struct mem_cgroup *memcg = page->mem_cgroup;
1043
1044 if (mem_cgroup_disabled())
1045 return NULL;
1046
1047 rcu_read_lock();
8965aa28
SB
1048 /* Page should not get uncharged and freed memcg under us. */
1049 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1050 memcg = root_mem_cgroup;
1051 rcu_read_unlock();
1052 return memcg;
1053}
1054EXPORT_SYMBOL(get_mem_cgroup_from_page);
1055
37d5985c 1056static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1057{
37d5985c
RG
1058 if (in_interrupt())
1059 return this_cpu_read(int_active_memcg);
1060 else
1061 return current->active_memcg;
1062}
279c3393 1063
37d5985c
RG
1064static __always_inline struct mem_cgroup *get_active_memcg(void)
1065{
1066 struct mem_cgroup *memcg;
d46eb14b 1067
37d5985c
RG
1068 rcu_read_lock();
1069 memcg = active_memcg();
1070 if (memcg) {
8965aa28 1071 /* current->active_memcg must hold a ref. */
37d5985c 1072 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1073 memcg = root_mem_cgroup;
1074 else
d46eb14b 1075 memcg = current->active_memcg;
d46eb14b 1076 }
37d5985c
RG
1077 rcu_read_unlock();
1078
1079 return memcg;
1080}
1081
4127c650
RG
1082static __always_inline bool memcg_kmem_bypass(void)
1083{
1084 /* Allow remote memcg charging from any context. */
1085 if (unlikely(active_memcg()))
1086 return false;
1087
1088 /* Memcg to charge can't be determined. */
1089 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1090 return true;
1091
1092 return false;
1093}
1094
37d5985c
RG
1095/**
1096 * If active memcg is set, do not fallback to current->mm->memcg.
1097 */
1098static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1099{
1100 if (memcg_kmem_bypass())
1101 return NULL;
1102
1103 if (unlikely(active_memcg()))
1104 return get_active_memcg();
1105
d46eb14b
SB
1106 return get_mem_cgroup_from_mm(current->mm);
1107}
54595fe2 1108
5660048c
JW
1109/**
1110 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1111 * @root: hierarchy root
1112 * @prev: previously returned memcg, NULL on first invocation
1113 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1114 *
1115 * Returns references to children of the hierarchy below @root, or
1116 * @root itself, or %NULL after a full round-trip.
1117 *
1118 * Caller must pass the return value in @prev on subsequent
1119 * invocations for reference counting, or use mem_cgroup_iter_break()
1120 * to cancel a hierarchy walk before the round-trip is complete.
1121 *
05bdc520
ML
1122 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1123 * in the hierarchy among all concurrent reclaimers operating on the
1124 * same node.
5660048c 1125 */
694fbc0f 1126struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1127 struct mem_cgroup *prev,
694fbc0f 1128 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1129{
3f649ab7 1130 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1131 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1132 struct mem_cgroup *memcg = NULL;
5ac8fb31 1133 struct mem_cgroup *pos = NULL;
711d3d2c 1134
694fbc0f
AM
1135 if (mem_cgroup_disabled())
1136 return NULL;
5660048c 1137
9f3a0d09
JW
1138 if (!root)
1139 root = root_mem_cgroup;
7d74b06f 1140
9f3a0d09 1141 if (prev && !reclaim)
5ac8fb31 1142 pos = prev;
14067bb3 1143
542f85f9 1144 rcu_read_lock();
5f578161 1145
5ac8fb31 1146 if (reclaim) {
ef8f2327 1147 struct mem_cgroup_per_node *mz;
5ac8fb31 1148
ef8f2327 1149 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1150 iter = &mz->iter;
5ac8fb31
JW
1151
1152 if (prev && reclaim->generation != iter->generation)
1153 goto out_unlock;
1154
6df38689 1155 while (1) {
4db0c3c2 1156 pos = READ_ONCE(iter->position);
6df38689
VD
1157 if (!pos || css_tryget(&pos->css))
1158 break;
5ac8fb31 1159 /*
6df38689
VD
1160 * css reference reached zero, so iter->position will
1161 * be cleared by ->css_released. However, we should not
1162 * rely on this happening soon, because ->css_released
1163 * is called from a work queue, and by busy-waiting we
1164 * might block it. So we clear iter->position right
1165 * away.
5ac8fb31 1166 */
6df38689
VD
1167 (void)cmpxchg(&iter->position, pos, NULL);
1168 }
5ac8fb31
JW
1169 }
1170
1171 if (pos)
1172 css = &pos->css;
1173
1174 for (;;) {
1175 css = css_next_descendant_pre(css, &root->css);
1176 if (!css) {
1177 /*
1178 * Reclaimers share the hierarchy walk, and a
1179 * new one might jump in right at the end of
1180 * the hierarchy - make sure they see at least
1181 * one group and restart from the beginning.
1182 */
1183 if (!prev)
1184 continue;
1185 break;
527a5ec9 1186 }
7d74b06f 1187
5ac8fb31
JW
1188 /*
1189 * Verify the css and acquire a reference. The root
1190 * is provided by the caller, so we know it's alive
1191 * and kicking, and don't take an extra reference.
1192 */
1193 memcg = mem_cgroup_from_css(css);
14067bb3 1194
5ac8fb31
JW
1195 if (css == &root->css)
1196 break;
14067bb3 1197
0b8f73e1
JW
1198 if (css_tryget(css))
1199 break;
9f3a0d09 1200
5ac8fb31 1201 memcg = NULL;
9f3a0d09 1202 }
5ac8fb31
JW
1203
1204 if (reclaim) {
5ac8fb31 1205 /*
6df38689
VD
1206 * The position could have already been updated by a competing
1207 * thread, so check that the value hasn't changed since we read
1208 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1209 */
6df38689
VD
1210 (void)cmpxchg(&iter->position, pos, memcg);
1211
5ac8fb31
JW
1212 if (pos)
1213 css_put(&pos->css);
1214
1215 if (!memcg)
1216 iter->generation++;
1217 else if (!prev)
1218 reclaim->generation = iter->generation;
9f3a0d09 1219 }
5ac8fb31 1220
542f85f9
MH
1221out_unlock:
1222 rcu_read_unlock();
c40046f3
MH
1223 if (prev && prev != root)
1224 css_put(&prev->css);
1225
9f3a0d09 1226 return memcg;
14067bb3 1227}
7d74b06f 1228
5660048c
JW
1229/**
1230 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1231 * @root: hierarchy root
1232 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1233 */
1234void mem_cgroup_iter_break(struct mem_cgroup *root,
1235 struct mem_cgroup *prev)
9f3a0d09
JW
1236{
1237 if (!root)
1238 root = root_mem_cgroup;
1239 if (prev && prev != root)
1240 css_put(&prev->css);
1241}
7d74b06f 1242
54a83d6b
MC
1243static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1244 struct mem_cgroup *dead_memcg)
6df38689 1245{
6df38689 1246 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1247 struct mem_cgroup_per_node *mz;
1248 int nid;
6df38689 1249
54a83d6b
MC
1250 for_each_node(nid) {
1251 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1252 iter = &mz->iter;
1253 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1254 }
1255}
1256
54a83d6b
MC
1257static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1258{
1259 struct mem_cgroup *memcg = dead_memcg;
1260 struct mem_cgroup *last;
1261
1262 do {
1263 __invalidate_reclaim_iterators(memcg, dead_memcg);
1264 last = memcg;
1265 } while ((memcg = parent_mem_cgroup(memcg)));
1266
1267 /*
1268 * When cgruop1 non-hierarchy mode is used,
1269 * parent_mem_cgroup() does not walk all the way up to the
1270 * cgroup root (root_mem_cgroup). So we have to handle
1271 * dead_memcg from cgroup root separately.
1272 */
1273 if (last != root_mem_cgroup)
1274 __invalidate_reclaim_iterators(root_mem_cgroup,
1275 dead_memcg);
1276}
1277
7c5f64f8
VD
1278/**
1279 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1280 * @memcg: hierarchy root
1281 * @fn: function to call for each task
1282 * @arg: argument passed to @fn
1283 *
1284 * This function iterates over tasks attached to @memcg or to any of its
1285 * descendants and calls @fn for each task. If @fn returns a non-zero
1286 * value, the function breaks the iteration loop and returns the value.
1287 * Otherwise, it will iterate over all tasks and return 0.
1288 *
1289 * This function must not be called for the root memory cgroup.
1290 */
1291int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1292 int (*fn)(struct task_struct *, void *), void *arg)
1293{
1294 struct mem_cgroup *iter;
1295 int ret = 0;
1296
1297 BUG_ON(memcg == root_mem_cgroup);
1298
1299 for_each_mem_cgroup_tree(iter, memcg) {
1300 struct css_task_iter it;
1301 struct task_struct *task;
1302
f168a9a5 1303 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1304 while (!ret && (task = css_task_iter_next(&it)))
1305 ret = fn(task, arg);
1306 css_task_iter_end(&it);
1307 if (ret) {
1308 mem_cgroup_iter_break(memcg, iter);
1309 break;
1310 }
1311 }
1312 return ret;
1313}
1314
925b7673 1315/**
dfe0e773 1316 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1317 * @page: the page
f144c390 1318 * @pgdat: pgdat of the page
dfe0e773 1319 *
a5eb011a 1320 * This function relies on page's memcg being stable - see the
a0b5b414 1321 * access rules in commit_charge().
925b7673 1322 */
599d0c95 1323struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1324{
ef8f2327 1325 struct mem_cgroup_per_node *mz;
925b7673 1326 struct mem_cgroup *memcg;
bea8c150 1327 struct lruvec *lruvec;
6d12e2d8 1328
bea8c150 1329 if (mem_cgroup_disabled()) {
867e5e1d 1330 lruvec = &pgdat->__lruvec;
bea8c150
HD
1331 goto out;
1332 }
925b7673 1333
1306a85a 1334 memcg = page->mem_cgroup;
7512102c 1335 /*
dfe0e773 1336 * Swapcache readahead pages are added to the LRU - and
29833315 1337 * possibly migrated - before they are charged.
7512102c 1338 */
29833315
JW
1339 if (!memcg)
1340 memcg = root_mem_cgroup;
7512102c 1341
ef8f2327 1342 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1343 lruvec = &mz->lruvec;
1344out:
1345 /*
1346 * Since a node can be onlined after the mem_cgroup was created,
1347 * we have to be prepared to initialize lruvec->zone here;
1348 * and if offlined then reonlined, we need to reinitialize it.
1349 */
599d0c95
MG
1350 if (unlikely(lruvec->pgdat != pgdat))
1351 lruvec->pgdat = pgdat;
bea8c150 1352 return lruvec;
08e552c6 1353}
b69408e8 1354
925b7673 1355/**
fa9add64
HD
1356 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1357 * @lruvec: mem_cgroup per zone lru vector
1358 * @lru: index of lru list the page is sitting on
b4536f0c 1359 * @zid: zone id of the accounted pages
fa9add64 1360 * @nr_pages: positive when adding or negative when removing
925b7673 1361 *
ca707239
HD
1362 * This function must be called under lru_lock, just before a page is added
1363 * to or just after a page is removed from an lru list (that ordering being
1364 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1365 */
fa9add64 1366void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1367 int zid, int nr_pages)
3f58a829 1368{
ef8f2327 1369 struct mem_cgroup_per_node *mz;
fa9add64 1370 unsigned long *lru_size;
ca707239 1371 long size;
3f58a829
MK
1372
1373 if (mem_cgroup_disabled())
1374 return;
1375
ef8f2327 1376 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1377 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1378
1379 if (nr_pages < 0)
1380 *lru_size += nr_pages;
1381
1382 size = *lru_size;
b4536f0c
MH
1383 if (WARN_ONCE(size < 0,
1384 "%s(%p, %d, %d): lru_size %ld\n",
1385 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1386 VM_BUG_ON(1);
1387 *lru_size = 0;
1388 }
1389
1390 if (nr_pages > 0)
1391 *lru_size += nr_pages;
08e552c6 1392}
544122e5 1393
19942822 1394/**
9d11ea9f 1395 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1396 * @memcg: the memory cgroup
19942822 1397 *
9d11ea9f 1398 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1399 * pages.
19942822 1400 */
c0ff4b85 1401static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1402{
3e32cb2e
JW
1403 unsigned long margin = 0;
1404 unsigned long count;
1405 unsigned long limit;
9d11ea9f 1406
3e32cb2e 1407 count = page_counter_read(&memcg->memory);
bbec2e15 1408 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1409 if (count < limit)
1410 margin = limit - count;
1411
7941d214 1412 if (do_memsw_account()) {
3e32cb2e 1413 count = page_counter_read(&memcg->memsw);
bbec2e15 1414 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1415 if (count < limit)
3e32cb2e 1416 margin = min(margin, limit - count);
cbedbac3
LR
1417 else
1418 margin = 0;
3e32cb2e
JW
1419 }
1420
1421 return margin;
19942822
JW
1422}
1423
32047e2a 1424/*
bdcbb659 1425 * A routine for checking "mem" is under move_account() or not.
32047e2a 1426 *
bdcbb659
QH
1427 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1428 * moving cgroups. This is for waiting at high-memory pressure
1429 * caused by "move".
32047e2a 1430 */
c0ff4b85 1431static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1432{
2bd9bb20
KH
1433 struct mem_cgroup *from;
1434 struct mem_cgroup *to;
4b534334 1435 bool ret = false;
2bd9bb20
KH
1436 /*
1437 * Unlike task_move routines, we access mc.to, mc.from not under
1438 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1439 */
1440 spin_lock(&mc.lock);
1441 from = mc.from;
1442 to = mc.to;
1443 if (!from)
1444 goto unlock;
3e92041d 1445
2314b42d
JW
1446 ret = mem_cgroup_is_descendant(from, memcg) ||
1447 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1448unlock:
1449 spin_unlock(&mc.lock);
4b534334
KH
1450 return ret;
1451}
1452
c0ff4b85 1453static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1454{
1455 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1456 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1457 DEFINE_WAIT(wait);
1458 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1459 /* moving charge context might have finished. */
1460 if (mc.moving_task)
1461 schedule();
1462 finish_wait(&mc.waitq, &wait);
1463 return true;
1464 }
1465 }
1466 return false;
1467}
1468
5f9a4f4a
MS
1469struct memory_stat {
1470 const char *name;
1471 unsigned int ratio;
1472 unsigned int idx;
1473};
1474
1475static struct memory_stat memory_stats[] = {
1476 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1477 { "file", PAGE_SIZE, NR_FILE_PAGES },
1478 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1479 { "percpu", 1, MEMCG_PERCPU_B },
1480 { "sock", PAGE_SIZE, MEMCG_SOCK },
1481 { "shmem", PAGE_SIZE, NR_SHMEM },
1482 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1483 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1484 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1485#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1486 /*
1487 * The ratio will be initialized in memory_stats_init(). Because
1488 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1489 * constant(e.g. powerpc).
1490 */
1491 { "anon_thp", 0, NR_ANON_THPS },
b8eddff8
JW
1492 { "file_thp", 0, NR_FILE_THPS },
1493 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1494#endif
1495 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1496 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1497 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1498 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1499 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1500
1501 /*
1502 * Note: The slab_reclaimable and slab_unreclaimable must be
1503 * together and slab_reclaimable must be in front.
1504 */
1505 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1506 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1507
1508 /* The memory events */
1509 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1510 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1511 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1512 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1513 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1514 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1515 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1516};
1517
1518static int __init memory_stats_init(void)
1519{
1520 int i;
1521
1522 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
b8eddff8
JW
1524 if (memory_stats[i].idx == NR_ANON_THPS ||
1525 memory_stats[i].idx == NR_FILE_THPS ||
1526 memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1527 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1528#endif
1529 VM_BUG_ON(!memory_stats[i].ratio);
1530 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1531 }
1532
1533 return 0;
1534}
1535pure_initcall(memory_stats_init);
1536
c8713d0b
JW
1537static char *memory_stat_format(struct mem_cgroup *memcg)
1538{
1539 struct seq_buf s;
1540 int i;
71cd3113 1541
c8713d0b
JW
1542 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1543 if (!s.buffer)
1544 return NULL;
1545
1546 /*
1547 * Provide statistics on the state of the memory subsystem as
1548 * well as cumulative event counters that show past behavior.
1549 *
1550 * This list is ordered following a combination of these gradients:
1551 * 1) generic big picture -> specifics and details
1552 * 2) reflecting userspace activity -> reflecting kernel heuristics
1553 *
1554 * Current memory state:
1555 */
1556
5f9a4f4a
MS
1557 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1558 u64 size;
c8713d0b 1559
5f9a4f4a
MS
1560 size = memcg_page_state(memcg, memory_stats[i].idx);
1561 size *= memory_stats[i].ratio;
1562 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1563
5f9a4f4a
MS
1564 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1565 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1566 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1567 seq_buf_printf(&s, "slab %llu\n", size);
1568 }
1569 }
c8713d0b
JW
1570
1571 /* Accumulated memory events */
1572
ebc5d83d
KK
1573 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1574 memcg_events(memcg, PGFAULT));
1575 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1576 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1577 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1578 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1579 seq_buf_printf(&s, "pgscan %lu\n",
1580 memcg_events(memcg, PGSCAN_KSWAPD) +
1581 memcg_events(memcg, PGSCAN_DIRECT));
1582 seq_buf_printf(&s, "pgsteal %lu\n",
1583 memcg_events(memcg, PGSTEAL_KSWAPD) +
1584 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1585 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1586 memcg_events(memcg, PGACTIVATE));
1587 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1588 memcg_events(memcg, PGDEACTIVATE));
1589 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1590 memcg_events(memcg, PGLAZYFREE));
1591 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1592 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1593
1594#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1595 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1596 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1597 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1598 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1599#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1600
1601 /* The above should easily fit into one page */
1602 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1603
1604 return s.buffer;
1605}
71cd3113 1606
58cf188e 1607#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1608/**
f0c867d9 1609 * mem_cgroup_print_oom_context: Print OOM information relevant to
1610 * memory controller.
e222432b
BS
1611 * @memcg: The memory cgroup that went over limit
1612 * @p: Task that is going to be killed
1613 *
1614 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1615 * enabled
1616 */
f0c867d9 1617void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1618{
e222432b
BS
1619 rcu_read_lock();
1620
f0c867d9 1621 if (memcg) {
1622 pr_cont(",oom_memcg=");
1623 pr_cont_cgroup_path(memcg->css.cgroup);
1624 } else
1625 pr_cont(",global_oom");
2415b9f5 1626 if (p) {
f0c867d9 1627 pr_cont(",task_memcg=");
2415b9f5 1628 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1629 }
e222432b 1630 rcu_read_unlock();
f0c867d9 1631}
1632
1633/**
1634 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1635 * memory controller.
1636 * @memcg: The memory cgroup that went over limit
1637 */
1638void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1639{
c8713d0b 1640 char *buf;
e222432b 1641
3e32cb2e
JW
1642 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1643 K((u64)page_counter_read(&memcg->memory)),
15b42562 1644 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1645 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1646 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1647 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1648 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1649 else {
1650 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1651 K((u64)page_counter_read(&memcg->memsw)),
1652 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1653 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1654 K((u64)page_counter_read(&memcg->kmem)),
1655 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1656 }
c8713d0b
JW
1657
1658 pr_info("Memory cgroup stats for ");
1659 pr_cont_cgroup_path(memcg->css.cgroup);
1660 pr_cont(":");
1661 buf = memory_stat_format(memcg);
1662 if (!buf)
1663 return;
1664 pr_info("%s", buf);
1665 kfree(buf);
e222432b
BS
1666}
1667
a63d83f4
DR
1668/*
1669 * Return the memory (and swap, if configured) limit for a memcg.
1670 */
bbec2e15 1671unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1672{
8d387a5f
WL
1673 unsigned long max = READ_ONCE(memcg->memory.max);
1674
1675 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1676 if (mem_cgroup_swappiness(memcg))
1677 max += min(READ_ONCE(memcg->swap.max),
1678 (unsigned long)total_swap_pages);
1679 } else { /* v1 */
1680 if (mem_cgroup_swappiness(memcg)) {
1681 /* Calculate swap excess capacity from memsw limit */
1682 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1683
1684 max += min(swap, (unsigned long)total_swap_pages);
1685 }
9a5a8f19 1686 }
bbec2e15 1687 return max;
a63d83f4
DR
1688}
1689
9783aa99
CD
1690unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1691{
1692 return page_counter_read(&memcg->memory);
1693}
1694
b6e6edcf 1695static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1696 int order)
9cbb78bb 1697{
6e0fc46d
DR
1698 struct oom_control oc = {
1699 .zonelist = NULL,
1700 .nodemask = NULL,
2a966b77 1701 .memcg = memcg,
6e0fc46d
DR
1702 .gfp_mask = gfp_mask,
1703 .order = order,
6e0fc46d 1704 };
1378b37d 1705 bool ret = true;
9cbb78bb 1706
7775face
TH
1707 if (mutex_lock_killable(&oom_lock))
1708 return true;
1378b37d
YS
1709
1710 if (mem_cgroup_margin(memcg) >= (1 << order))
1711 goto unlock;
1712
7775face
TH
1713 /*
1714 * A few threads which were not waiting at mutex_lock_killable() can
1715 * fail to bail out. Therefore, check again after holding oom_lock.
1716 */
1717 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1718
1719unlock:
dc56401f 1720 mutex_unlock(&oom_lock);
7c5f64f8 1721 return ret;
9cbb78bb
DR
1722}
1723
0608f43d 1724static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1725 pg_data_t *pgdat,
0608f43d
AM
1726 gfp_t gfp_mask,
1727 unsigned long *total_scanned)
1728{
1729 struct mem_cgroup *victim = NULL;
1730 int total = 0;
1731 int loop = 0;
1732 unsigned long excess;
1733 unsigned long nr_scanned;
1734 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1735 .pgdat = pgdat,
0608f43d
AM
1736 };
1737
3e32cb2e 1738 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1739
1740 while (1) {
1741 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1742 if (!victim) {
1743 loop++;
1744 if (loop >= 2) {
1745 /*
1746 * If we have not been able to reclaim
1747 * anything, it might because there are
1748 * no reclaimable pages under this hierarchy
1749 */
1750 if (!total)
1751 break;
1752 /*
1753 * We want to do more targeted reclaim.
1754 * excess >> 2 is not to excessive so as to
1755 * reclaim too much, nor too less that we keep
1756 * coming back to reclaim from this cgroup
1757 */
1758 if (total >= (excess >> 2) ||
1759 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1760 break;
1761 }
1762 continue;
1763 }
a9dd0a83 1764 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1765 pgdat, &nr_scanned);
0608f43d 1766 *total_scanned += nr_scanned;
3e32cb2e 1767 if (!soft_limit_excess(root_memcg))
0608f43d 1768 break;
6d61ef40 1769 }
0608f43d
AM
1770 mem_cgroup_iter_break(root_memcg, victim);
1771 return total;
6d61ef40
BS
1772}
1773
0056f4e6
JW
1774#ifdef CONFIG_LOCKDEP
1775static struct lockdep_map memcg_oom_lock_dep_map = {
1776 .name = "memcg_oom_lock",
1777};
1778#endif
1779
fb2a6fc5
JW
1780static DEFINE_SPINLOCK(memcg_oom_lock);
1781
867578cb
KH
1782/*
1783 * Check OOM-Killer is already running under our hierarchy.
1784 * If someone is running, return false.
1785 */
fb2a6fc5 1786static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1787{
79dfdacc 1788 struct mem_cgroup *iter, *failed = NULL;
a636b327 1789
fb2a6fc5
JW
1790 spin_lock(&memcg_oom_lock);
1791
9f3a0d09 1792 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1793 if (iter->oom_lock) {
79dfdacc
MH
1794 /*
1795 * this subtree of our hierarchy is already locked
1796 * so we cannot give a lock.
1797 */
79dfdacc 1798 failed = iter;
9f3a0d09
JW
1799 mem_cgroup_iter_break(memcg, iter);
1800 break;
23751be0
JW
1801 } else
1802 iter->oom_lock = true;
7d74b06f 1803 }
867578cb 1804
fb2a6fc5
JW
1805 if (failed) {
1806 /*
1807 * OK, we failed to lock the whole subtree so we have
1808 * to clean up what we set up to the failing subtree
1809 */
1810 for_each_mem_cgroup_tree(iter, memcg) {
1811 if (iter == failed) {
1812 mem_cgroup_iter_break(memcg, iter);
1813 break;
1814 }
1815 iter->oom_lock = false;
79dfdacc 1816 }
0056f4e6
JW
1817 } else
1818 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1819
1820 spin_unlock(&memcg_oom_lock);
1821
1822 return !failed;
a636b327 1823}
0b7f569e 1824
fb2a6fc5 1825static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1826{
7d74b06f
KH
1827 struct mem_cgroup *iter;
1828
fb2a6fc5 1829 spin_lock(&memcg_oom_lock);
5facae4f 1830 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1831 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1832 iter->oom_lock = false;
fb2a6fc5 1833 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1834}
1835
c0ff4b85 1836static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1837{
1838 struct mem_cgroup *iter;
1839
c2b42d3c 1840 spin_lock(&memcg_oom_lock);
c0ff4b85 1841 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1842 iter->under_oom++;
1843 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1844}
1845
c0ff4b85 1846static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1847{
1848 struct mem_cgroup *iter;
1849
867578cb 1850 /*
7a52d4d8
ML
1851 * Be careful about under_oom underflows becase a child memcg
1852 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1853 */
c2b42d3c 1854 spin_lock(&memcg_oom_lock);
c0ff4b85 1855 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1856 if (iter->under_oom > 0)
1857 iter->under_oom--;
1858 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1859}
1860
867578cb
KH
1861static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
dc98df5a 1863struct oom_wait_info {
d79154bb 1864 struct mem_cgroup *memcg;
ac6424b9 1865 wait_queue_entry_t wait;
dc98df5a
KH
1866};
1867
ac6424b9 1868static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1869 unsigned mode, int sync, void *arg)
1870{
d79154bb
HD
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1876 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1877
2314b42d
JW
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1880 return 0;
dc98df5a
KH
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882}
1883
c0ff4b85 1884static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1885{
c2b42d3c
TH
1886 /*
1887 * For the following lockless ->under_oom test, the only required
1888 * guarantee is that it must see the state asserted by an OOM when
1889 * this function is called as a result of userland actions
1890 * triggered by the notification of the OOM. This is trivially
1891 * achieved by invoking mem_cgroup_mark_under_oom() before
1892 * triggering notification.
1893 */
1894 if (memcg && memcg->under_oom)
f4b90b70 1895 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1896}
1897
29ef680a
MH
1898enum oom_status {
1899 OOM_SUCCESS,
1900 OOM_FAILED,
1901 OOM_ASYNC,
1902 OOM_SKIPPED
1903};
1904
1905static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1906{
7056d3a3
MH
1907 enum oom_status ret;
1908 bool locked;
1909
29ef680a
MH
1910 if (order > PAGE_ALLOC_COSTLY_ORDER)
1911 return OOM_SKIPPED;
1912
7a1adfdd
RG
1913 memcg_memory_event(memcg, MEMCG_OOM);
1914
867578cb 1915 /*
49426420
JW
1916 * We are in the middle of the charge context here, so we
1917 * don't want to block when potentially sitting on a callstack
1918 * that holds all kinds of filesystem and mm locks.
1919 *
29ef680a
MH
1920 * cgroup1 allows disabling the OOM killer and waiting for outside
1921 * handling until the charge can succeed; remember the context and put
1922 * the task to sleep at the end of the page fault when all locks are
1923 * released.
49426420 1924 *
29ef680a
MH
1925 * On the other hand, in-kernel OOM killer allows for an async victim
1926 * memory reclaim (oom_reaper) and that means that we are not solely
1927 * relying on the oom victim to make a forward progress and we can
1928 * invoke the oom killer here.
1929 *
1930 * Please note that mem_cgroup_out_of_memory might fail to find a
1931 * victim and then we have to bail out from the charge path.
867578cb 1932 */
29ef680a
MH
1933 if (memcg->oom_kill_disable) {
1934 if (!current->in_user_fault)
1935 return OOM_SKIPPED;
1936 css_get(&memcg->css);
1937 current->memcg_in_oom = memcg;
1938 current->memcg_oom_gfp_mask = mask;
1939 current->memcg_oom_order = order;
1940
1941 return OOM_ASYNC;
1942 }
1943
7056d3a3
MH
1944 mem_cgroup_mark_under_oom(memcg);
1945
1946 locked = mem_cgroup_oom_trylock(memcg);
1947
1948 if (locked)
1949 mem_cgroup_oom_notify(memcg);
1950
1951 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1952 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1953 ret = OOM_SUCCESS;
1954 else
1955 ret = OOM_FAILED;
1956
1957 if (locked)
1958 mem_cgroup_oom_unlock(memcg);
29ef680a 1959
7056d3a3 1960 return ret;
3812c8c8
JW
1961}
1962
1963/**
1964 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1965 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1966 *
49426420
JW
1967 * This has to be called at the end of a page fault if the memcg OOM
1968 * handler was enabled.
3812c8c8 1969 *
49426420 1970 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1971 * sleep on a waitqueue until the userspace task resolves the
1972 * situation. Sleeping directly in the charge context with all kinds
1973 * of locks held is not a good idea, instead we remember an OOM state
1974 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1975 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1976 *
1977 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1978 * completed, %false otherwise.
3812c8c8 1979 */
49426420 1980bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1981{
626ebc41 1982 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1983 struct oom_wait_info owait;
49426420 1984 bool locked;
3812c8c8
JW
1985
1986 /* OOM is global, do not handle */
3812c8c8 1987 if (!memcg)
49426420 1988 return false;
3812c8c8 1989
7c5f64f8 1990 if (!handle)
49426420 1991 goto cleanup;
3812c8c8
JW
1992
1993 owait.memcg = memcg;
1994 owait.wait.flags = 0;
1995 owait.wait.func = memcg_oom_wake_function;
1996 owait.wait.private = current;
2055da97 1997 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1998
3812c8c8 1999 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2000 mem_cgroup_mark_under_oom(memcg);
2001
2002 locked = mem_cgroup_oom_trylock(memcg);
2003
2004 if (locked)
2005 mem_cgroup_oom_notify(memcg);
2006
2007 if (locked && !memcg->oom_kill_disable) {
2008 mem_cgroup_unmark_under_oom(memcg);
2009 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2010 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2011 current->memcg_oom_order);
49426420 2012 } else {
3812c8c8 2013 schedule();
49426420
JW
2014 mem_cgroup_unmark_under_oom(memcg);
2015 finish_wait(&memcg_oom_waitq, &owait.wait);
2016 }
2017
2018 if (locked) {
fb2a6fc5
JW
2019 mem_cgroup_oom_unlock(memcg);
2020 /*
2021 * There is no guarantee that an OOM-lock contender
2022 * sees the wakeups triggered by the OOM kill
2023 * uncharges. Wake any sleepers explicitely.
2024 */
2025 memcg_oom_recover(memcg);
2026 }
49426420 2027cleanup:
626ebc41 2028 current->memcg_in_oom = NULL;
3812c8c8 2029 css_put(&memcg->css);
867578cb 2030 return true;
0b7f569e
KH
2031}
2032
3d8b38eb
RG
2033/**
2034 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2035 * @victim: task to be killed by the OOM killer
2036 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2037 *
2038 * Returns a pointer to a memory cgroup, which has to be cleaned up
2039 * by killing all belonging OOM-killable tasks.
2040 *
2041 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2042 */
2043struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2044 struct mem_cgroup *oom_domain)
2045{
2046 struct mem_cgroup *oom_group = NULL;
2047 struct mem_cgroup *memcg;
2048
2049 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2050 return NULL;
2051
2052 if (!oom_domain)
2053 oom_domain = root_mem_cgroup;
2054
2055 rcu_read_lock();
2056
2057 memcg = mem_cgroup_from_task(victim);
2058 if (memcg == root_mem_cgroup)
2059 goto out;
2060
48fe267c
RG
2061 /*
2062 * If the victim task has been asynchronously moved to a different
2063 * memory cgroup, we might end up killing tasks outside oom_domain.
2064 * In this case it's better to ignore memory.group.oom.
2065 */
2066 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2067 goto out;
2068
3d8b38eb
RG
2069 /*
2070 * Traverse the memory cgroup hierarchy from the victim task's
2071 * cgroup up to the OOMing cgroup (or root) to find the
2072 * highest-level memory cgroup with oom.group set.
2073 */
2074 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2075 if (memcg->oom_group)
2076 oom_group = memcg;
2077
2078 if (memcg == oom_domain)
2079 break;
2080 }
2081
2082 if (oom_group)
2083 css_get(&oom_group->css);
2084out:
2085 rcu_read_unlock();
2086
2087 return oom_group;
2088}
2089
2090void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2091{
2092 pr_info("Tasks in ");
2093 pr_cont_cgroup_path(memcg->css.cgroup);
2094 pr_cont(" are going to be killed due to memory.oom.group set\n");
2095}
2096
d7365e78 2097/**
81f8c3a4
JW
2098 * lock_page_memcg - lock a page->mem_cgroup binding
2099 * @page: the page
32047e2a 2100 *
81f8c3a4 2101 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2102 * another cgroup.
2103 *
2104 * It ensures lifetime of the returned memcg. Caller is responsible
2105 * for the lifetime of the page; __unlock_page_memcg() is available
2106 * when @page might get freed inside the locked section.
d69b042f 2107 */
739f79fc 2108struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2109{
9da7b521 2110 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2111 struct mem_cgroup *memcg;
6de22619 2112 unsigned long flags;
89c06bd5 2113
6de22619
JW
2114 /*
2115 * The RCU lock is held throughout the transaction. The fast
2116 * path can get away without acquiring the memcg->move_lock
2117 * because page moving starts with an RCU grace period.
739f79fc
JW
2118 *
2119 * The RCU lock also protects the memcg from being freed when
2120 * the page state that is going to change is the only thing
2121 * preventing the page itself from being freed. E.g. writeback
2122 * doesn't hold a page reference and relies on PG_writeback to
2123 * keep off truncation, migration and so forth.
2124 */
d7365e78
JW
2125 rcu_read_lock();
2126
2127 if (mem_cgroup_disabled())
739f79fc 2128 return NULL;
89c06bd5 2129again:
9da7b521 2130 memcg = head->mem_cgroup;
29833315 2131 if (unlikely(!memcg))
739f79fc 2132 return NULL;
d7365e78 2133
bdcbb659 2134 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2135 return memcg;
89c06bd5 2136
6de22619 2137 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2138 if (memcg != head->mem_cgroup) {
6de22619 2139 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2140 goto again;
2141 }
6de22619
JW
2142
2143 /*
2144 * When charge migration first begins, we can have locked and
2145 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2146 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2147 */
2148 memcg->move_lock_task = current;
2149 memcg->move_lock_flags = flags;
d7365e78 2150
739f79fc 2151 return memcg;
89c06bd5 2152}
81f8c3a4 2153EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2154
d7365e78 2155/**
739f79fc
JW
2156 * __unlock_page_memcg - unlock and unpin a memcg
2157 * @memcg: the memcg
2158 *
2159 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2160 */
739f79fc 2161void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2162{
6de22619
JW
2163 if (memcg && memcg->move_lock_task == current) {
2164 unsigned long flags = memcg->move_lock_flags;
2165
2166 memcg->move_lock_task = NULL;
2167 memcg->move_lock_flags = 0;
2168
2169 spin_unlock_irqrestore(&memcg->move_lock, flags);
2170 }
89c06bd5 2171
d7365e78 2172 rcu_read_unlock();
89c06bd5 2173}
739f79fc
JW
2174
2175/**
2176 * unlock_page_memcg - unlock a page->mem_cgroup binding
2177 * @page: the page
2178 */
2179void unlock_page_memcg(struct page *page)
2180{
9da7b521
JW
2181 struct page *head = compound_head(page);
2182
2183 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2184}
81f8c3a4 2185EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2186
cdec2e42
KH
2187struct memcg_stock_pcp {
2188 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2189 unsigned int nr_pages;
bf4f0599
RG
2190
2191#ifdef CONFIG_MEMCG_KMEM
2192 struct obj_cgroup *cached_objcg;
2193 unsigned int nr_bytes;
2194#endif
2195
cdec2e42 2196 struct work_struct work;
26fe6168 2197 unsigned long flags;
a0db00fc 2198#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2199};
2200static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2201static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2202
bf4f0599
RG
2203#ifdef CONFIG_MEMCG_KMEM
2204static void drain_obj_stock(struct memcg_stock_pcp *stock);
2205static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2206 struct mem_cgroup *root_memcg);
2207
2208#else
2209static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2210{
2211}
2212static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2213 struct mem_cgroup *root_memcg)
2214{
2215 return false;
2216}
2217#endif
2218
a0956d54
SS
2219/**
2220 * consume_stock: Try to consume stocked charge on this cpu.
2221 * @memcg: memcg to consume from.
2222 * @nr_pages: how many pages to charge.
2223 *
2224 * The charges will only happen if @memcg matches the current cpu's memcg
2225 * stock, and at least @nr_pages are available in that stock. Failure to
2226 * service an allocation will refill the stock.
2227 *
2228 * returns true if successful, false otherwise.
cdec2e42 2229 */
a0956d54 2230static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2231{
2232 struct memcg_stock_pcp *stock;
db2ba40c 2233 unsigned long flags;
3e32cb2e 2234 bool ret = false;
cdec2e42 2235
a983b5eb 2236 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2237 return ret;
a0956d54 2238
db2ba40c
JW
2239 local_irq_save(flags);
2240
2241 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2242 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2243 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2244 ret = true;
2245 }
db2ba40c
JW
2246
2247 local_irq_restore(flags);
2248
cdec2e42
KH
2249 return ret;
2250}
2251
2252/*
3e32cb2e 2253 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2254 */
2255static void drain_stock(struct memcg_stock_pcp *stock)
2256{
2257 struct mem_cgroup *old = stock->cached;
2258
1a3e1f40
JW
2259 if (!old)
2260 return;
2261
11c9ea4e 2262 if (stock->nr_pages) {
3e32cb2e 2263 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2264 if (do_memsw_account())
3e32cb2e 2265 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2266 stock->nr_pages = 0;
cdec2e42 2267 }
1a3e1f40
JW
2268
2269 css_put(&old->css);
cdec2e42 2270 stock->cached = NULL;
cdec2e42
KH
2271}
2272
cdec2e42
KH
2273static void drain_local_stock(struct work_struct *dummy)
2274{
db2ba40c
JW
2275 struct memcg_stock_pcp *stock;
2276 unsigned long flags;
2277
72f0184c
MH
2278 /*
2279 * The only protection from memory hotplug vs. drain_stock races is
2280 * that we always operate on local CPU stock here with IRQ disabled
2281 */
db2ba40c
JW
2282 local_irq_save(flags);
2283
2284 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2285 drain_obj_stock(stock);
cdec2e42 2286 drain_stock(stock);
26fe6168 2287 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2288
2289 local_irq_restore(flags);
cdec2e42
KH
2290}
2291
2292/*
3e32cb2e 2293 * Cache charges(val) to local per_cpu area.
320cc51d 2294 * This will be consumed by consume_stock() function, later.
cdec2e42 2295 */
c0ff4b85 2296static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2297{
db2ba40c
JW
2298 struct memcg_stock_pcp *stock;
2299 unsigned long flags;
2300
2301 local_irq_save(flags);
cdec2e42 2302
db2ba40c 2303 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2304 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2305 drain_stock(stock);
1a3e1f40 2306 css_get(&memcg->css);
c0ff4b85 2307 stock->cached = memcg;
cdec2e42 2308 }
11c9ea4e 2309 stock->nr_pages += nr_pages;
db2ba40c 2310
a983b5eb 2311 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2312 drain_stock(stock);
2313
db2ba40c 2314 local_irq_restore(flags);
cdec2e42
KH
2315}
2316
2317/*
c0ff4b85 2318 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2319 * of the hierarchy under it.
cdec2e42 2320 */
6d3d6aa2 2321static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2322{
26fe6168 2323 int cpu, curcpu;
d38144b7 2324
6d3d6aa2
JW
2325 /* If someone's already draining, avoid adding running more workers. */
2326 if (!mutex_trylock(&percpu_charge_mutex))
2327 return;
72f0184c
MH
2328 /*
2329 * Notify other cpus that system-wide "drain" is running
2330 * We do not care about races with the cpu hotplug because cpu down
2331 * as well as workers from this path always operate on the local
2332 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2333 */
5af12d0e 2334 curcpu = get_cpu();
cdec2e42
KH
2335 for_each_online_cpu(cpu) {
2336 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2337 struct mem_cgroup *memcg;
e1a366be 2338 bool flush = false;
26fe6168 2339
e1a366be 2340 rcu_read_lock();
c0ff4b85 2341 memcg = stock->cached;
e1a366be
RG
2342 if (memcg && stock->nr_pages &&
2343 mem_cgroup_is_descendant(memcg, root_memcg))
2344 flush = true;
bf4f0599
RG
2345 if (obj_stock_flush_required(stock, root_memcg))
2346 flush = true;
e1a366be
RG
2347 rcu_read_unlock();
2348
2349 if (flush &&
2350 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2351 if (cpu == curcpu)
2352 drain_local_stock(&stock->work);
2353 else
2354 schedule_work_on(cpu, &stock->work);
2355 }
cdec2e42 2356 }
5af12d0e 2357 put_cpu();
9f50fad6 2358 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2359}
2360
308167fc 2361static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2362{
cdec2e42 2363 struct memcg_stock_pcp *stock;
42a30035 2364 struct mem_cgroup *memcg, *mi;
cdec2e42 2365
cdec2e42
KH
2366 stock = &per_cpu(memcg_stock, cpu);
2367 drain_stock(stock);
a983b5eb
JW
2368
2369 for_each_mem_cgroup(memcg) {
2370 int i;
2371
2372 for (i = 0; i < MEMCG_NR_STAT; i++) {
2373 int nid;
2374 long x;
2375
871789d4 2376 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2377 if (x)
42a30035
JW
2378 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2379 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2380
2381 if (i >= NR_VM_NODE_STAT_ITEMS)
2382 continue;
2383
2384 for_each_node(nid) {
2385 struct mem_cgroup_per_node *pn;
2386
2387 pn = mem_cgroup_nodeinfo(memcg, nid);
2388 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2389 if (x)
42a30035
JW
2390 do {
2391 atomic_long_add(x, &pn->lruvec_stat[i]);
2392 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2393 }
2394 }
2395
e27be240 2396 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2397 long x;
2398
871789d4 2399 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2400 if (x)
42a30035
JW
2401 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2402 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2403 }
2404 }
2405
308167fc 2406 return 0;
cdec2e42
KH
2407}
2408
b3ff9291
CD
2409static unsigned long reclaim_high(struct mem_cgroup *memcg,
2410 unsigned int nr_pages,
2411 gfp_t gfp_mask)
f7e1cb6e 2412{
b3ff9291
CD
2413 unsigned long nr_reclaimed = 0;
2414
f7e1cb6e 2415 do {
e22c6ed9
JW
2416 unsigned long pflags;
2417
d1663a90
JK
2418 if (page_counter_read(&memcg->memory) <=
2419 READ_ONCE(memcg->memory.high))
f7e1cb6e 2420 continue;
e22c6ed9 2421
e27be240 2422 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2423
2424 psi_memstall_enter(&pflags);
b3ff9291
CD
2425 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2426 gfp_mask, true);
e22c6ed9 2427 psi_memstall_leave(&pflags);
4bf17307
CD
2428 } while ((memcg = parent_mem_cgroup(memcg)) &&
2429 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2430
2431 return nr_reclaimed;
f7e1cb6e
JW
2432}
2433
2434static void high_work_func(struct work_struct *work)
2435{
2436 struct mem_cgroup *memcg;
2437
2438 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2439 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2440}
2441
0e4b01df
CD
2442/*
2443 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2444 * enough to still cause a significant slowdown in most cases, while still
2445 * allowing diagnostics and tracing to proceed without becoming stuck.
2446 */
2447#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2448
2449/*
2450 * When calculating the delay, we use these either side of the exponentiation to
2451 * maintain precision and scale to a reasonable number of jiffies (see the table
2452 * below.
2453 *
2454 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2455 * overage ratio to a delay.
ac5ddd0f 2456 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2457 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2458 * to produce a reasonable delay curve.
2459 *
2460 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2461 * reasonable delay curve compared to precision-adjusted overage, not
2462 * penalising heavily at first, but still making sure that growth beyond the
2463 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2464 * example, with a high of 100 megabytes:
2465 *
2466 * +-------+------------------------+
2467 * | usage | time to allocate in ms |
2468 * +-------+------------------------+
2469 * | 100M | 0 |
2470 * | 101M | 6 |
2471 * | 102M | 25 |
2472 * | 103M | 57 |
2473 * | 104M | 102 |
2474 * | 105M | 159 |
2475 * | 106M | 230 |
2476 * | 107M | 313 |
2477 * | 108M | 409 |
2478 * | 109M | 518 |
2479 * | 110M | 639 |
2480 * | 111M | 774 |
2481 * | 112M | 921 |
2482 * | 113M | 1081 |
2483 * | 114M | 1254 |
2484 * | 115M | 1439 |
2485 * | 116M | 1638 |
2486 * | 117M | 1849 |
2487 * | 118M | 2000 |
2488 * | 119M | 2000 |
2489 * | 120M | 2000 |
2490 * +-------+------------------------+
2491 */
2492 #define MEMCG_DELAY_PRECISION_SHIFT 20
2493 #define MEMCG_DELAY_SCALING_SHIFT 14
2494
8a5dbc65 2495static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2496{
8a5dbc65 2497 u64 overage;
b23afb93 2498
8a5dbc65
JK
2499 if (usage <= high)
2500 return 0;
e26733e0 2501
8a5dbc65
JK
2502 /*
2503 * Prevent division by 0 in overage calculation by acting as if
2504 * it was a threshold of 1 page
2505 */
2506 high = max(high, 1UL);
9b8b1754 2507
8a5dbc65
JK
2508 overage = usage - high;
2509 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2510 return div64_u64(overage, high);
2511}
e26733e0 2512
8a5dbc65
JK
2513static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2514{
2515 u64 overage, max_overage = 0;
e26733e0 2516
8a5dbc65
JK
2517 do {
2518 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2519 READ_ONCE(memcg->memory.high));
8a5dbc65 2520 max_overage = max(overage, max_overage);
e26733e0
CD
2521 } while ((memcg = parent_mem_cgroup(memcg)) &&
2522 !mem_cgroup_is_root(memcg));
2523
8a5dbc65
JK
2524 return max_overage;
2525}
2526
4b82ab4f
JK
2527static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2528{
2529 u64 overage, max_overage = 0;
2530
2531 do {
2532 overage = calculate_overage(page_counter_read(&memcg->swap),
2533 READ_ONCE(memcg->swap.high));
2534 if (overage)
2535 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2536 max_overage = max(overage, max_overage);
2537 } while ((memcg = parent_mem_cgroup(memcg)) &&
2538 !mem_cgroup_is_root(memcg));
2539
2540 return max_overage;
2541}
2542
8a5dbc65
JK
2543/*
2544 * Get the number of jiffies that we should penalise a mischievous cgroup which
2545 * is exceeding its memory.high by checking both it and its ancestors.
2546 */
2547static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2548 unsigned int nr_pages,
2549 u64 max_overage)
2550{
2551 unsigned long penalty_jiffies;
2552
e26733e0
CD
2553 if (!max_overage)
2554 return 0;
0e4b01df
CD
2555
2556 /*
0e4b01df
CD
2557 * We use overage compared to memory.high to calculate the number of
2558 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2559 * fairly lenient on small overages, and increasingly harsh when the
2560 * memcg in question makes it clear that it has no intention of stopping
2561 * its crazy behaviour, so we exponentially increase the delay based on
2562 * overage amount.
2563 */
e26733e0
CD
2564 penalty_jiffies = max_overage * max_overage * HZ;
2565 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2566 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2567
2568 /*
2569 * Factor in the task's own contribution to the overage, such that four
2570 * N-sized allocations are throttled approximately the same as one
2571 * 4N-sized allocation.
2572 *
2573 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2574 * larger the current charge patch is than that.
2575 */
ff144e69 2576 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2577}
2578
2579/*
2580 * Scheduled by try_charge() to be executed from the userland return path
2581 * and reclaims memory over the high limit.
2582 */
2583void mem_cgroup_handle_over_high(void)
2584{
2585 unsigned long penalty_jiffies;
2586 unsigned long pflags;
b3ff9291 2587 unsigned long nr_reclaimed;
e26733e0 2588 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2589 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2590 struct mem_cgroup *memcg;
b3ff9291 2591 bool in_retry = false;
e26733e0
CD
2592
2593 if (likely(!nr_pages))
2594 return;
2595
2596 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2597 current->memcg_nr_pages_over_high = 0;
2598
b3ff9291
CD
2599retry_reclaim:
2600 /*
2601 * The allocating task should reclaim at least the batch size, but for
2602 * subsequent retries we only want to do what's necessary to prevent oom
2603 * or breaching resource isolation.
2604 *
2605 * This is distinct from memory.max or page allocator behaviour because
2606 * memory.high is currently batched, whereas memory.max and the page
2607 * allocator run every time an allocation is made.
2608 */
2609 nr_reclaimed = reclaim_high(memcg,
2610 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2611 GFP_KERNEL);
2612
e26733e0
CD
2613 /*
2614 * memory.high is breached and reclaim is unable to keep up. Throttle
2615 * allocators proactively to slow down excessive growth.
2616 */
8a5dbc65
JK
2617 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2618 mem_find_max_overage(memcg));
0e4b01df 2619
4b82ab4f
JK
2620 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2621 swap_find_max_overage(memcg));
2622
ff144e69
JK
2623 /*
2624 * Clamp the max delay per usermode return so as to still keep the
2625 * application moving forwards and also permit diagnostics, albeit
2626 * extremely slowly.
2627 */
2628 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2629
0e4b01df
CD
2630 /*
2631 * Don't sleep if the amount of jiffies this memcg owes us is so low
2632 * that it's not even worth doing, in an attempt to be nice to those who
2633 * go only a small amount over their memory.high value and maybe haven't
2634 * been aggressively reclaimed enough yet.
2635 */
2636 if (penalty_jiffies <= HZ / 100)
2637 goto out;
2638
b3ff9291
CD
2639 /*
2640 * If reclaim is making forward progress but we're still over
2641 * memory.high, we want to encourage that rather than doing allocator
2642 * throttling.
2643 */
2644 if (nr_reclaimed || nr_retries--) {
2645 in_retry = true;
2646 goto retry_reclaim;
2647 }
2648
0e4b01df
CD
2649 /*
2650 * If we exit early, we're guaranteed to die (since
2651 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2652 * need to account for any ill-begotten jiffies to pay them off later.
2653 */
2654 psi_memstall_enter(&pflags);
2655 schedule_timeout_killable(penalty_jiffies);
2656 psi_memstall_leave(&pflags);
2657
2658out:
2659 css_put(&memcg->css);
b23afb93
TH
2660}
2661
00501b53
JW
2662static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2663 unsigned int nr_pages)
8a9f3ccd 2664{
a983b5eb 2665 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2666 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2667 struct mem_cgroup *mem_over_limit;
3e32cb2e 2668 struct page_counter *counter;
e22c6ed9 2669 enum oom_status oom_status;
6539cc05 2670 unsigned long nr_reclaimed;
b70a2a21
JW
2671 bool may_swap = true;
2672 bool drained = false;
e22c6ed9 2673 unsigned long pflags;
a636b327 2674
ce00a967 2675 if (mem_cgroup_is_root(memcg))
10d53c74 2676 return 0;
6539cc05 2677retry:
b6b6cc72 2678 if (consume_stock(memcg, nr_pages))
10d53c74 2679 return 0;
8a9f3ccd 2680
7941d214 2681 if (!do_memsw_account() ||
6071ca52
JW
2682 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2683 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2684 goto done_restock;
7941d214 2685 if (do_memsw_account())
3e32cb2e
JW
2686 page_counter_uncharge(&memcg->memsw, batch);
2687 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2688 } else {
3e32cb2e 2689 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2690 may_swap = false;
3fbe7244 2691 }
7a81b88c 2692
6539cc05
JW
2693 if (batch > nr_pages) {
2694 batch = nr_pages;
2695 goto retry;
2696 }
6d61ef40 2697
869712fd
JW
2698 /*
2699 * Memcg doesn't have a dedicated reserve for atomic
2700 * allocations. But like the global atomic pool, we need to
2701 * put the burden of reclaim on regular allocation requests
2702 * and let these go through as privileged allocations.
2703 */
2704 if (gfp_mask & __GFP_ATOMIC)
2705 goto force;
2706
06b078fc
JW
2707 /*
2708 * Unlike in global OOM situations, memcg is not in a physical
2709 * memory shortage. Allow dying and OOM-killed tasks to
2710 * bypass the last charges so that they can exit quickly and
2711 * free their memory.
2712 */
7775face 2713 if (unlikely(should_force_charge()))
10d53c74 2714 goto force;
06b078fc 2715
89a28483
JW
2716 /*
2717 * Prevent unbounded recursion when reclaim operations need to
2718 * allocate memory. This might exceed the limits temporarily,
2719 * but we prefer facilitating memory reclaim and getting back
2720 * under the limit over triggering OOM kills in these cases.
2721 */
2722 if (unlikely(current->flags & PF_MEMALLOC))
2723 goto force;
2724
06b078fc
JW
2725 if (unlikely(task_in_memcg_oom(current)))
2726 goto nomem;
2727
d0164adc 2728 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2729 goto nomem;
4b534334 2730
e27be240 2731 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2732
e22c6ed9 2733 psi_memstall_enter(&pflags);
b70a2a21
JW
2734 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2735 gfp_mask, may_swap);
e22c6ed9 2736 psi_memstall_leave(&pflags);
6539cc05 2737
61e02c74 2738 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2739 goto retry;
28c34c29 2740
b70a2a21 2741 if (!drained) {
6d3d6aa2 2742 drain_all_stock(mem_over_limit);
b70a2a21
JW
2743 drained = true;
2744 goto retry;
2745 }
2746
28c34c29
JW
2747 if (gfp_mask & __GFP_NORETRY)
2748 goto nomem;
6539cc05
JW
2749 /*
2750 * Even though the limit is exceeded at this point, reclaim
2751 * may have been able to free some pages. Retry the charge
2752 * before killing the task.
2753 *
2754 * Only for regular pages, though: huge pages are rather
2755 * unlikely to succeed so close to the limit, and we fall back
2756 * to regular pages anyway in case of failure.
2757 */
61e02c74 2758 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2759 goto retry;
2760 /*
2761 * At task move, charge accounts can be doubly counted. So, it's
2762 * better to wait until the end of task_move if something is going on.
2763 */
2764 if (mem_cgroup_wait_acct_move(mem_over_limit))
2765 goto retry;
2766
9b130619
JW
2767 if (nr_retries--)
2768 goto retry;
2769
38d38493 2770 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2771 goto nomem;
2772
06b078fc 2773 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2774 goto force;
06b078fc 2775
6539cc05 2776 if (fatal_signal_pending(current))
10d53c74 2777 goto force;
6539cc05 2778
29ef680a
MH
2779 /*
2780 * keep retrying as long as the memcg oom killer is able to make
2781 * a forward progress or bypass the charge if the oom killer
2782 * couldn't make any progress.
2783 */
2784 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2785 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2786 switch (oom_status) {
2787 case OOM_SUCCESS:
d977aa93 2788 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2789 goto retry;
2790 case OOM_FAILED:
2791 goto force;
2792 default:
2793 goto nomem;
2794 }
7a81b88c 2795nomem:
6d1fdc48 2796 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2797 return -ENOMEM;
10d53c74
TH
2798force:
2799 /*
2800 * The allocation either can't fail or will lead to more memory
2801 * being freed very soon. Allow memory usage go over the limit
2802 * temporarily by force charging it.
2803 */
2804 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2805 if (do_memsw_account())
10d53c74 2806 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2807
2808 return 0;
6539cc05
JW
2809
2810done_restock:
2811 if (batch > nr_pages)
2812 refill_stock(memcg, batch - nr_pages);
b23afb93 2813
241994ed 2814 /*
b23afb93
TH
2815 * If the hierarchy is above the normal consumption range, schedule
2816 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2817 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2818 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2819 * not recorded as it most likely matches current's and won't
2820 * change in the meantime. As high limit is checked again before
2821 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2822 */
2823 do {
4b82ab4f
JK
2824 bool mem_high, swap_high;
2825
2826 mem_high = page_counter_read(&memcg->memory) >
2827 READ_ONCE(memcg->memory.high);
2828 swap_high = page_counter_read(&memcg->swap) >
2829 READ_ONCE(memcg->swap.high);
2830
2831 /* Don't bother a random interrupted task */
2832 if (in_interrupt()) {
2833 if (mem_high) {
f7e1cb6e
JW
2834 schedule_work(&memcg->high_work);
2835 break;
2836 }
4b82ab4f
JK
2837 continue;
2838 }
2839
2840 if (mem_high || swap_high) {
2841 /*
2842 * The allocating tasks in this cgroup will need to do
2843 * reclaim or be throttled to prevent further growth
2844 * of the memory or swap footprints.
2845 *
2846 * Target some best-effort fairness between the tasks,
2847 * and distribute reclaim work and delay penalties
2848 * based on how much each task is actually allocating.
2849 */
9516a18a 2850 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2851 set_notify_resume(current);
2852 break;
2853 }
241994ed 2854 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2855
2856 return 0;
7a81b88c 2857}
8a9f3ccd 2858
f0e45fb4 2859#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2860static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2861{
ce00a967
JW
2862 if (mem_cgroup_is_root(memcg))
2863 return;
2864
3e32cb2e 2865 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2866 if (do_memsw_account())
3e32cb2e 2867 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2868}
f0e45fb4 2869#endif
d01dd17f 2870
d9eb1ea2 2871static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2872{
1306a85a 2873 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2874 /*
a5eb011a 2875 * Any of the following ensures page's memcg stability:
0a31bc97 2876 *
a0b5b414
JW
2877 * - the page lock
2878 * - LRU isolation
2879 * - lock_page_memcg()
2880 * - exclusive reference
0a31bc97 2881 */
1306a85a 2882 page->mem_cgroup = memcg;
7a81b88c 2883}
66e1707b 2884
84c07d11 2885#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2886int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2887 gfp_t gfp)
2888{
2889 unsigned int objects = objs_per_slab_page(s, page);
2890 void *vec;
2891
2892 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2893 page_to_nid(page));
2894 if (!vec)
2895 return -ENOMEM;
2896
2897 if (cmpxchg(&page->obj_cgroups, NULL,
2898 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2899 kfree(vec);
2900 else
2901 kmemleak_not_leak(vec);
2902
2903 return 0;
2904}
2905
8380ce47
RG
2906/*
2907 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2908 *
2909 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2910 * cgroup_mutex, etc.
2911 */
2912struct mem_cgroup *mem_cgroup_from_obj(void *p)
2913{
2914 struct page *page;
2915
2916 if (mem_cgroup_disabled())
2917 return NULL;
2918
2919 page = virt_to_head_page(p);
2920
19b629c9
RG
2921 /*
2922 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2923 * or a pointer to obj_cgroup vector. In the latter case the lowest
2924 * bit of the pointer is set.
2925 * The page->mem_cgroup pointer can be asynchronously changed
2926 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2927 * from a valid memcg pointer to objcg vector or back.
2928 */
2929 if (!page->mem_cgroup)
2930 return NULL;
2931
8380ce47 2932 /*
9855609b
RG
2933 * Slab objects are accounted individually, not per-page.
2934 * Memcg membership data for each individual object is saved in
2935 * the page->obj_cgroups.
8380ce47 2936 */
9855609b
RG
2937 if (page_has_obj_cgroups(page)) {
2938 struct obj_cgroup *objcg;
2939 unsigned int off;
2940
2941 off = obj_to_index(page->slab_cache, page, p);
2942 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2943 if (objcg)
2944 return obj_cgroup_memcg(objcg);
2945
2946 return NULL;
9855609b 2947 }
8380ce47
RG
2948
2949 /* All other pages use page->mem_cgroup */
2950 return page->mem_cgroup;
2951}
2952
bf4f0599
RG
2953__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2954{
2955 struct obj_cgroup *objcg = NULL;
2956 struct mem_cgroup *memcg;
2957
279c3393
RG
2958 if (memcg_kmem_bypass())
2959 return NULL;
2960
bf4f0599 2961 rcu_read_lock();
37d5985c
RG
2962 if (unlikely(active_memcg()))
2963 memcg = active_memcg();
bf4f0599
RG
2964 else
2965 memcg = mem_cgroup_from_task(current);
2966
2967 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2968 objcg = rcu_dereference(memcg->objcg);
2969 if (objcg && obj_cgroup_tryget(objcg))
2970 break;
2f7659a3 2971 objcg = NULL;
bf4f0599
RG
2972 }
2973 rcu_read_unlock();
2974
2975 return objcg;
2976}
2977
f3bb3043 2978static int memcg_alloc_cache_id(void)
55007d84 2979{
f3bb3043
VD
2980 int id, size;
2981 int err;
2982
dbcf73e2 2983 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2984 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2985 if (id < 0)
2986 return id;
55007d84 2987
dbcf73e2 2988 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2989 return id;
2990
2991 /*
2992 * There's no space for the new id in memcg_caches arrays,
2993 * so we have to grow them.
2994 */
05257a1a 2995 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2996
2997 size = 2 * (id + 1);
55007d84
GC
2998 if (size < MEMCG_CACHES_MIN_SIZE)
2999 size = MEMCG_CACHES_MIN_SIZE;
3000 else if (size > MEMCG_CACHES_MAX_SIZE)
3001 size = MEMCG_CACHES_MAX_SIZE;
3002
9855609b 3003 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3004 if (!err)
3005 memcg_nr_cache_ids = size;
3006
3007 up_write(&memcg_cache_ids_sem);
3008
f3bb3043 3009 if (err) {
dbcf73e2 3010 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3011 return err;
3012 }
3013 return id;
3014}
3015
3016static void memcg_free_cache_id(int id)
3017{
dbcf73e2 3018 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3019}
3020
45264778 3021/**
4b13f64d 3022 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3023 * @memcg: memory cgroup to charge
45264778 3024 * @gfp: reclaim mode
92d0510c 3025 * @nr_pages: number of pages to charge
45264778
VD
3026 *
3027 * Returns 0 on success, an error code on failure.
3028 */
4b13f64d
RG
3029int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3030 unsigned int nr_pages)
7ae1e1d0 3031{
f3ccb2c4 3032 struct page_counter *counter;
7ae1e1d0
GC
3033 int ret;
3034
f3ccb2c4 3035 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3036 if (ret)
f3ccb2c4 3037 return ret;
52c29b04
JW
3038
3039 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3040 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3041
3042 /*
3043 * Enforce __GFP_NOFAIL allocation because callers are not
3044 * prepared to see failures and likely do not have any failure
3045 * handling code.
3046 */
3047 if (gfp & __GFP_NOFAIL) {
3048 page_counter_charge(&memcg->kmem, nr_pages);
3049 return 0;
3050 }
52c29b04
JW
3051 cancel_charge(memcg, nr_pages);
3052 return -ENOMEM;
7ae1e1d0 3053 }
f3ccb2c4 3054 return 0;
7ae1e1d0
GC
3055}
3056
4b13f64d
RG
3057/**
3058 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3059 * @memcg: memcg to uncharge
3060 * @nr_pages: number of pages to uncharge
3061 */
3062void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3063{
3064 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3065 page_counter_uncharge(&memcg->kmem, nr_pages);
3066
3067 page_counter_uncharge(&memcg->memory, nr_pages);
3068 if (do_memsw_account())
3069 page_counter_uncharge(&memcg->memsw, nr_pages);
3070}
3071
45264778 3072/**
f4b00eab 3073 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3074 * @page: page to charge
3075 * @gfp: reclaim mode
3076 * @order: allocation order
3077 *
3078 * Returns 0 on success, an error code on failure.
3079 */
f4b00eab 3080int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3081{
f3ccb2c4 3082 struct mem_cgroup *memcg;
fcff7d7e 3083 int ret = 0;
7ae1e1d0 3084
d46eb14b 3085 memcg = get_mem_cgroup_from_current();
279c3393 3086 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3087 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3088 if (!ret) {
3089 page->mem_cgroup = memcg;
c4159a75 3090 __SetPageKmemcg(page);
1a3e1f40 3091 return 0;
4d96ba35 3092 }
279c3393 3093 css_put(&memcg->css);
c4159a75 3094 }
d05e83a6 3095 return ret;
7ae1e1d0 3096}
49a18eae 3097
45264778 3098/**
f4b00eab 3099 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3100 * @page: page to uncharge
3101 * @order: allocation order
3102 */
f4b00eab 3103void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3104{
1306a85a 3105 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3106 unsigned int nr_pages = 1 << order;
7ae1e1d0 3107
7ae1e1d0
GC
3108 if (!memcg)
3109 return;
3110
309381fe 3111 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3112 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3113 page->mem_cgroup = NULL;
1a3e1f40 3114 css_put(&memcg->css);
c4159a75
VD
3115
3116 /* slab pages do not have PageKmemcg flag set */
3117 if (PageKmemcg(page))
3118 __ClearPageKmemcg(page);
60d3fd32 3119}
bf4f0599
RG
3120
3121static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3122{
3123 struct memcg_stock_pcp *stock;
3124 unsigned long flags;
3125 bool ret = false;
3126
3127 local_irq_save(flags);
3128
3129 stock = this_cpu_ptr(&memcg_stock);
3130 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3131 stock->nr_bytes -= nr_bytes;
3132 ret = true;
3133 }
3134
3135 local_irq_restore(flags);
3136
3137 return ret;
3138}
3139
3140static void drain_obj_stock(struct memcg_stock_pcp *stock)
3141{
3142 struct obj_cgroup *old = stock->cached_objcg;
3143
3144 if (!old)
3145 return;
3146
3147 if (stock->nr_bytes) {
3148 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3149 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3150
3151 if (nr_pages) {
3152 rcu_read_lock();
3153 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3154 rcu_read_unlock();
3155 }
3156
3157 /*
3158 * The leftover is flushed to the centralized per-memcg value.
3159 * On the next attempt to refill obj stock it will be moved
3160 * to a per-cpu stock (probably, on an other CPU), see
3161 * refill_obj_stock().
3162 *
3163 * How often it's flushed is a trade-off between the memory
3164 * limit enforcement accuracy and potential CPU contention,
3165 * so it might be changed in the future.
3166 */
3167 atomic_add(nr_bytes, &old->nr_charged_bytes);
3168 stock->nr_bytes = 0;
3169 }
3170
3171 obj_cgroup_put(old);
3172 stock->cached_objcg = NULL;
3173}
3174
3175static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3176 struct mem_cgroup *root_memcg)
3177{
3178 struct mem_cgroup *memcg;
3179
3180 if (stock->cached_objcg) {
3181 memcg = obj_cgroup_memcg(stock->cached_objcg);
3182 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3183 return true;
3184 }
3185
3186 return false;
3187}
3188
3189static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3190{
3191 struct memcg_stock_pcp *stock;
3192 unsigned long flags;
3193
3194 local_irq_save(flags);
3195
3196 stock = this_cpu_ptr(&memcg_stock);
3197 if (stock->cached_objcg != objcg) { /* reset if necessary */
3198 drain_obj_stock(stock);
3199 obj_cgroup_get(objcg);
3200 stock->cached_objcg = objcg;
3201 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3202 }
3203 stock->nr_bytes += nr_bytes;
3204
3205 if (stock->nr_bytes > PAGE_SIZE)
3206 drain_obj_stock(stock);
3207
3208 local_irq_restore(flags);
3209}
3210
3211int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3212{
3213 struct mem_cgroup *memcg;
3214 unsigned int nr_pages, nr_bytes;
3215 int ret;
3216
3217 if (consume_obj_stock(objcg, size))
3218 return 0;
3219
3220 /*
3221 * In theory, memcg->nr_charged_bytes can have enough
3222 * pre-charged bytes to satisfy the allocation. However,
3223 * flushing memcg->nr_charged_bytes requires two atomic
3224 * operations, and memcg->nr_charged_bytes can't be big,
3225 * so it's better to ignore it and try grab some new pages.
3226 * memcg->nr_charged_bytes will be flushed in
3227 * refill_obj_stock(), called from this function or
3228 * independently later.
3229 */
3230 rcu_read_lock();
eefbfa7f 3231retry:
bf4f0599 3232 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3233 if (unlikely(!css_tryget(&memcg->css)))
3234 goto retry;
bf4f0599
RG
3235 rcu_read_unlock();
3236
3237 nr_pages = size >> PAGE_SHIFT;
3238 nr_bytes = size & (PAGE_SIZE - 1);
3239
3240 if (nr_bytes)
3241 nr_pages += 1;
3242
3243 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3244 if (!ret && nr_bytes)
3245 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3246
3247 css_put(&memcg->css);
3248 return ret;
3249}
3250
3251void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3252{
3253 refill_obj_stock(objcg, size);
3254}
3255
84c07d11 3256#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3257
ca3e0214
KH
3258#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3259
ca3e0214
KH
3260/*
3261 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3262 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3263 */
e94c8a9c 3264void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3265{
1a3e1f40 3266 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3267 int i;
ca3e0214 3268
3d37c4a9
KH
3269 if (mem_cgroup_disabled())
3270 return;
b070e65c 3271
1a3e1f40
JW
3272 for (i = 1; i < HPAGE_PMD_NR; i++) {
3273 css_get(&memcg->css);
3274 head[i].mem_cgroup = memcg;
3275 }
ca3e0214 3276}
12d27107 3277#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3278
c255a458 3279#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3280/**
3281 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3282 * @entry: swap entry to be moved
3283 * @from: mem_cgroup which the entry is moved from
3284 * @to: mem_cgroup which the entry is moved to
3285 *
3286 * It succeeds only when the swap_cgroup's record for this entry is the same
3287 * as the mem_cgroup's id of @from.
3288 *
3289 * Returns 0 on success, -EINVAL on failure.
3290 *
3e32cb2e 3291 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3292 * both res and memsw, and called css_get().
3293 */
3294static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3295 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3296{
3297 unsigned short old_id, new_id;
3298
34c00c31
LZ
3299 old_id = mem_cgroup_id(from);
3300 new_id = mem_cgroup_id(to);
02491447
DN
3301
3302 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3303 mod_memcg_state(from, MEMCG_SWAP, -1);
3304 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3305 return 0;
3306 }
3307 return -EINVAL;
3308}
3309#else
3310static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3311 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3312{
3313 return -EINVAL;
3314}
8c7c6e34 3315#endif
d13d1443 3316
bbec2e15 3317static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3318
bbec2e15
RG
3319static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3320 unsigned long max, bool memsw)
628f4235 3321{
3e32cb2e 3322 bool enlarge = false;
bb4a7ea2 3323 bool drained = false;
3e32cb2e 3324 int ret;
c054a78c
YZ
3325 bool limits_invariant;
3326 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3327
3e32cb2e 3328 do {
628f4235
KH
3329 if (signal_pending(current)) {
3330 ret = -EINTR;
3331 break;
3332 }
3e32cb2e 3333
bbec2e15 3334 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3335 /*
3336 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3337 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3338 */
15b42562 3339 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3340 max <= memcg->memsw.max;
c054a78c 3341 if (!limits_invariant) {
bbec2e15 3342 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3343 ret = -EINVAL;
8c7c6e34
KH
3344 break;
3345 }
bbec2e15 3346 if (max > counter->max)
3e32cb2e 3347 enlarge = true;
bbec2e15
RG
3348 ret = page_counter_set_max(counter, max);
3349 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3350
3351 if (!ret)
3352 break;
3353
bb4a7ea2
SB
3354 if (!drained) {
3355 drain_all_stock(memcg);
3356 drained = true;
3357 continue;
3358 }
3359
1ab5c056
AR
3360 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3361 GFP_KERNEL, !memsw)) {
3362 ret = -EBUSY;
3363 break;
3364 }
3365 } while (true);
3e32cb2e 3366
3c11ecf4
KH
3367 if (!ret && enlarge)
3368 memcg_oom_recover(memcg);
3e32cb2e 3369
628f4235
KH
3370 return ret;
3371}
3372
ef8f2327 3373unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3374 gfp_t gfp_mask,
3375 unsigned long *total_scanned)
3376{
3377 unsigned long nr_reclaimed = 0;
ef8f2327 3378 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3379 unsigned long reclaimed;
3380 int loop = 0;
ef8f2327 3381 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3382 unsigned long excess;
0608f43d
AM
3383 unsigned long nr_scanned;
3384
3385 if (order > 0)
3386 return 0;
3387
ef8f2327 3388 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3389
3390 /*
3391 * Do not even bother to check the largest node if the root
3392 * is empty. Do it lockless to prevent lock bouncing. Races
3393 * are acceptable as soft limit is best effort anyway.
3394 */
bfc7228b 3395 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3396 return 0;
3397
0608f43d
AM
3398 /*
3399 * This loop can run a while, specially if mem_cgroup's continuously
3400 * keep exceeding their soft limit and putting the system under
3401 * pressure
3402 */
3403 do {
3404 if (next_mz)
3405 mz = next_mz;
3406 else
3407 mz = mem_cgroup_largest_soft_limit_node(mctz);
3408 if (!mz)
3409 break;
3410
3411 nr_scanned = 0;
ef8f2327 3412 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3413 gfp_mask, &nr_scanned);
3414 nr_reclaimed += reclaimed;
3415 *total_scanned += nr_scanned;
0a31bc97 3416 spin_lock_irq(&mctz->lock);
bc2f2e7f 3417 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3418
3419 /*
3420 * If we failed to reclaim anything from this memory cgroup
3421 * it is time to move on to the next cgroup
3422 */
3423 next_mz = NULL;
bc2f2e7f
VD
3424 if (!reclaimed)
3425 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3426
3e32cb2e 3427 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3428 /*
3429 * One school of thought says that we should not add
3430 * back the node to the tree if reclaim returns 0.
3431 * But our reclaim could return 0, simply because due
3432 * to priority we are exposing a smaller subset of
3433 * memory to reclaim from. Consider this as a longer
3434 * term TODO.
3435 */
3436 /* If excess == 0, no tree ops */
cf2c8127 3437 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3438 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3439 css_put(&mz->memcg->css);
3440 loop++;
3441 /*
3442 * Could not reclaim anything and there are no more
3443 * mem cgroups to try or we seem to be looping without
3444 * reclaiming anything.
3445 */
3446 if (!nr_reclaimed &&
3447 (next_mz == NULL ||
3448 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3449 break;
3450 } while (!nr_reclaimed);
3451 if (next_mz)
3452 css_put(&next_mz->memcg->css);
3453 return nr_reclaimed;
3454}
3455
c26251f9 3456/*
51038171 3457 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3458 *
3459 * Caller is responsible for holding css reference for memcg.
3460 */
3461static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3462{
d977aa93 3463 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3464
c1e862c1
KH
3465 /* we call try-to-free pages for make this cgroup empty */
3466 lru_add_drain_all();
d12c60f6
JS
3467
3468 drain_all_stock(memcg);
3469
f817ed48 3470 /* try to free all pages in this cgroup */
3e32cb2e 3471 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3472 int progress;
c1e862c1 3473
c26251f9
MH
3474 if (signal_pending(current))
3475 return -EINTR;
3476
b70a2a21
JW
3477 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3478 GFP_KERNEL, true);
c1e862c1 3479 if (!progress) {
f817ed48 3480 nr_retries--;
c1e862c1 3481 /* maybe some writeback is necessary */
8aa7e847 3482 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3483 }
f817ed48
KH
3484
3485 }
ab5196c2
MH
3486
3487 return 0;
cc847582
KH
3488}
3489
6770c64e
TH
3490static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3491 char *buf, size_t nbytes,
3492 loff_t off)
c1e862c1 3493{
6770c64e 3494 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3495
d8423011
MH
3496 if (mem_cgroup_is_root(memcg))
3497 return -EINVAL;
6770c64e 3498 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3499}
3500
182446d0
TH
3501static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3502 struct cftype *cft)
18f59ea7 3503{
bef8620c 3504 return 1;
18f59ea7
BS
3505}
3506
182446d0
TH
3507static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3508 struct cftype *cft, u64 val)
18f59ea7 3509{
bef8620c 3510 if (val == 1)
0b8f73e1 3511 return 0;
567fb435 3512
bef8620c
RG
3513 pr_warn_once("Non-hierarchical mode is deprecated. "
3514 "Please report your usecase to linux-mm@kvack.org if you "
3515 "depend on this functionality.\n");
567fb435 3516
bef8620c 3517 return -EINVAL;
18f59ea7
BS
3518}
3519
6f646156 3520static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3521{
42a30035 3522 unsigned long val;
ce00a967 3523
3e32cb2e 3524 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3525 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3526 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3527 if (swap)
3528 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3529 } else {
ce00a967 3530 if (!swap)
3e32cb2e 3531 val = page_counter_read(&memcg->memory);
ce00a967 3532 else
3e32cb2e 3533 val = page_counter_read(&memcg->memsw);
ce00a967 3534 }
c12176d3 3535 return val;
ce00a967
JW
3536}
3537
3e32cb2e
JW
3538enum {
3539 RES_USAGE,
3540 RES_LIMIT,
3541 RES_MAX_USAGE,
3542 RES_FAILCNT,
3543 RES_SOFT_LIMIT,
3544};
ce00a967 3545
791badbd 3546static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3547 struct cftype *cft)
8cdea7c0 3548{
182446d0 3549 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3550 struct page_counter *counter;
af36f906 3551
3e32cb2e 3552 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3553 case _MEM:
3e32cb2e
JW
3554 counter = &memcg->memory;
3555 break;
8c7c6e34 3556 case _MEMSWAP:
3e32cb2e
JW
3557 counter = &memcg->memsw;
3558 break;
510fc4e1 3559 case _KMEM:
3e32cb2e 3560 counter = &memcg->kmem;
510fc4e1 3561 break;
d55f90bf 3562 case _TCP:
0db15298 3563 counter = &memcg->tcpmem;
d55f90bf 3564 break;
8c7c6e34
KH
3565 default:
3566 BUG();
8c7c6e34 3567 }
3e32cb2e
JW
3568
3569 switch (MEMFILE_ATTR(cft->private)) {
3570 case RES_USAGE:
3571 if (counter == &memcg->memory)
c12176d3 3572 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3573 if (counter == &memcg->memsw)
c12176d3 3574 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3575 return (u64)page_counter_read(counter) * PAGE_SIZE;
3576 case RES_LIMIT:
bbec2e15 3577 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3578 case RES_MAX_USAGE:
3579 return (u64)counter->watermark * PAGE_SIZE;
3580 case RES_FAILCNT:
3581 return counter->failcnt;
3582 case RES_SOFT_LIMIT:
3583 return (u64)memcg->soft_limit * PAGE_SIZE;
3584 default:
3585 BUG();
3586 }
8cdea7c0 3587}
510fc4e1 3588
4a87e2a2 3589static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3590{
4a87e2a2 3591 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3592 struct mem_cgroup *mi;
3593 int node, cpu, i;
c350a99e
RG
3594
3595 for_each_online_cpu(cpu)
4a87e2a2 3596 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3597 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3598
3599 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3600 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3601 atomic_long_add(stat[i], &mi->vmstats[i]);
3602
3603 for_each_node(node) {
3604 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3605 struct mem_cgroup_per_node *pi;
3606
4a87e2a2 3607 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3608 stat[i] = 0;
3609
3610 for_each_online_cpu(cpu)
4a87e2a2 3611 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3612 stat[i] += per_cpu(
3613 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3614
3615 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3616 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3617 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3618 }
3619}
3620
bb65f89b
RG
3621static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3622{
3623 unsigned long events[NR_VM_EVENT_ITEMS];
3624 struct mem_cgroup *mi;
3625 int cpu, i;
3626
3627 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3628 events[i] = 0;
3629
3630 for_each_online_cpu(cpu)
3631 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3632 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3633 cpu);
bb65f89b
RG
3634
3635 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3636 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3637 atomic_long_add(events[i], &mi->vmevents[i]);
3638}
3639
84c07d11 3640#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3641static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3642{
bf4f0599 3643 struct obj_cgroup *objcg;
d6441637
VD
3644 int memcg_id;
3645
b313aeee
VD
3646 if (cgroup_memory_nokmem)
3647 return 0;
3648
2a4db7eb 3649 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3650 BUG_ON(memcg->kmem_state);
d6441637 3651
f3bb3043 3652 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3653 if (memcg_id < 0)
3654 return memcg_id;
d6441637 3655
bf4f0599
RG
3656 objcg = obj_cgroup_alloc();
3657 if (!objcg) {
3658 memcg_free_cache_id(memcg_id);
3659 return -ENOMEM;
3660 }
3661 objcg->memcg = memcg;
3662 rcu_assign_pointer(memcg->objcg, objcg);
3663
d648bcc7
RG
3664 static_branch_enable(&memcg_kmem_enabled_key);
3665
900a38f0 3666 memcg->kmemcg_id = memcg_id;
567e9ab2 3667 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3668
3669 return 0;
d6441637
VD
3670}
3671
8e0a8912
JW
3672static void memcg_offline_kmem(struct mem_cgroup *memcg)
3673{
3674 struct cgroup_subsys_state *css;
3675 struct mem_cgroup *parent, *child;
3676 int kmemcg_id;
3677
3678 if (memcg->kmem_state != KMEM_ONLINE)
3679 return;
9855609b 3680
8e0a8912
JW
3681 memcg->kmem_state = KMEM_ALLOCATED;
3682
8e0a8912
JW
3683 parent = parent_mem_cgroup(memcg);
3684 if (!parent)
3685 parent = root_mem_cgroup;
3686
bf4f0599 3687 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3688
3689 kmemcg_id = memcg->kmemcg_id;
3690 BUG_ON(kmemcg_id < 0);
3691
8e0a8912
JW
3692 /*
3693 * Change kmemcg_id of this cgroup and all its descendants to the
3694 * parent's id, and then move all entries from this cgroup's list_lrus
3695 * to ones of the parent. After we have finished, all list_lrus
3696 * corresponding to this cgroup are guaranteed to remain empty. The
3697 * ordering is imposed by list_lru_node->lock taken by
3698 * memcg_drain_all_list_lrus().
3699 */
3a06bb78 3700 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3701 css_for_each_descendant_pre(css, &memcg->css) {
3702 child = mem_cgroup_from_css(css);
3703 BUG_ON(child->kmemcg_id != kmemcg_id);
3704 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3705 }
3a06bb78
TH
3706 rcu_read_unlock();
3707
9bec5c35 3708 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3709
3710 memcg_free_cache_id(kmemcg_id);
3711}
3712
3713static void memcg_free_kmem(struct mem_cgroup *memcg)
3714{
0b8f73e1
JW
3715 /* css_alloc() failed, offlining didn't happen */
3716 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3717 memcg_offline_kmem(memcg);
8e0a8912 3718}
d6441637 3719#else
0b8f73e1 3720static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3721{
3722 return 0;
3723}
3724static void memcg_offline_kmem(struct mem_cgroup *memcg)
3725{
3726}
3727static void memcg_free_kmem(struct mem_cgroup *memcg)
3728{
3729}
84c07d11 3730#endif /* CONFIG_MEMCG_KMEM */
127424c8 3731
bbec2e15
RG
3732static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3733 unsigned long max)
d6441637 3734{
b313aeee 3735 int ret;
127424c8 3736
bbec2e15
RG
3737 mutex_lock(&memcg_max_mutex);
3738 ret = page_counter_set_max(&memcg->kmem, max);
3739 mutex_unlock(&memcg_max_mutex);
127424c8 3740 return ret;
d6441637 3741}
510fc4e1 3742
bbec2e15 3743static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3744{
3745 int ret;
3746
bbec2e15 3747 mutex_lock(&memcg_max_mutex);
d55f90bf 3748
bbec2e15 3749 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3750 if (ret)
3751 goto out;
3752
0db15298 3753 if (!memcg->tcpmem_active) {
d55f90bf
VD
3754 /*
3755 * The active flag needs to be written after the static_key
3756 * update. This is what guarantees that the socket activation
2d758073
JW
3757 * function is the last one to run. See mem_cgroup_sk_alloc()
3758 * for details, and note that we don't mark any socket as
3759 * belonging to this memcg until that flag is up.
d55f90bf
VD
3760 *
3761 * We need to do this, because static_keys will span multiple
3762 * sites, but we can't control their order. If we mark a socket
3763 * as accounted, but the accounting functions are not patched in
3764 * yet, we'll lose accounting.
3765 *
2d758073 3766 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3767 * because when this value change, the code to process it is not
3768 * patched in yet.
3769 */
3770 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3771 memcg->tcpmem_active = true;
d55f90bf
VD
3772 }
3773out:
bbec2e15 3774 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3775 return ret;
3776}
d55f90bf 3777
628f4235
KH
3778/*
3779 * The user of this function is...
3780 * RES_LIMIT.
3781 */
451af504
TH
3782static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3783 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3784{
451af504 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3786 unsigned long nr_pages;
628f4235
KH
3787 int ret;
3788
451af504 3789 buf = strstrip(buf);
650c5e56 3790 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3791 if (ret)
3792 return ret;
af36f906 3793
3e32cb2e 3794 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3795 case RES_LIMIT:
4b3bde4c
BS
3796 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3797 ret = -EINVAL;
3798 break;
3799 }
3e32cb2e
JW
3800 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3801 case _MEM:
bbec2e15 3802 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3803 break;
3e32cb2e 3804 case _MEMSWAP:
bbec2e15 3805 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3806 break;
3e32cb2e 3807 case _KMEM:
0158115f
MH
3808 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3809 "Please report your usecase to linux-mm@kvack.org if you "
3810 "depend on this functionality.\n");
bbec2e15 3811 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3812 break;
d55f90bf 3813 case _TCP:
bbec2e15 3814 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3815 break;
3e32cb2e 3816 }
296c81d8 3817 break;
3e32cb2e
JW
3818 case RES_SOFT_LIMIT:
3819 memcg->soft_limit = nr_pages;
3820 ret = 0;
628f4235
KH
3821 break;
3822 }
451af504 3823 return ret ?: nbytes;
8cdea7c0
BS
3824}
3825
6770c64e
TH
3826static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3827 size_t nbytes, loff_t off)
c84872e1 3828{
6770c64e 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3830 struct page_counter *counter;
c84872e1 3831
3e32cb2e
JW
3832 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3833 case _MEM:
3834 counter = &memcg->memory;
3835 break;
3836 case _MEMSWAP:
3837 counter = &memcg->memsw;
3838 break;
3839 case _KMEM:
3840 counter = &memcg->kmem;
3841 break;
d55f90bf 3842 case _TCP:
0db15298 3843 counter = &memcg->tcpmem;
d55f90bf 3844 break;
3e32cb2e
JW
3845 default:
3846 BUG();
3847 }
af36f906 3848
3e32cb2e 3849 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3850 case RES_MAX_USAGE:
3e32cb2e 3851 page_counter_reset_watermark(counter);
29f2a4da
PE
3852 break;
3853 case RES_FAILCNT:
3e32cb2e 3854 counter->failcnt = 0;
29f2a4da 3855 break;
3e32cb2e
JW
3856 default:
3857 BUG();
29f2a4da 3858 }
f64c3f54 3859
6770c64e 3860 return nbytes;
c84872e1
PE
3861}
3862
182446d0 3863static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3864 struct cftype *cft)
3865{
182446d0 3866 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3867}
3868
02491447 3869#ifdef CONFIG_MMU
182446d0 3870static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3871 struct cftype *cft, u64 val)
3872{
182446d0 3873 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3874
1dfab5ab 3875 if (val & ~MOVE_MASK)
7dc74be0 3876 return -EINVAL;
ee5e8472 3877
7dc74be0 3878 /*
ee5e8472
GC
3879 * No kind of locking is needed in here, because ->can_attach() will
3880 * check this value once in the beginning of the process, and then carry
3881 * on with stale data. This means that changes to this value will only
3882 * affect task migrations starting after the change.
7dc74be0 3883 */
c0ff4b85 3884 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3885 return 0;
3886}
02491447 3887#else
182446d0 3888static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3889 struct cftype *cft, u64 val)
3890{
3891 return -ENOSYS;
3892}
3893#endif
7dc74be0 3894
406eb0c9 3895#ifdef CONFIG_NUMA
113b7dfd
JW
3896
3897#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3898#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3899#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3900
3901static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3902 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3903{
867e5e1d 3904 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3905 unsigned long nr = 0;
3906 enum lru_list lru;
3907
3908 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3909
3910 for_each_lru(lru) {
3911 if (!(BIT(lru) & lru_mask))
3912 continue;
dd8657b6
SB
3913 if (tree)
3914 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3915 else
3916 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3917 }
3918 return nr;
3919}
3920
3921static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3922 unsigned int lru_mask,
3923 bool tree)
113b7dfd
JW
3924{
3925 unsigned long nr = 0;
3926 enum lru_list lru;
3927
3928 for_each_lru(lru) {
3929 if (!(BIT(lru) & lru_mask))
3930 continue;
dd8657b6
SB
3931 if (tree)
3932 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3933 else
3934 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3935 }
3936 return nr;
3937}
3938
2da8ca82 3939static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3940{
25485de6
GT
3941 struct numa_stat {
3942 const char *name;
3943 unsigned int lru_mask;
3944 };
3945
3946 static const struct numa_stat stats[] = {
3947 { "total", LRU_ALL },
3948 { "file", LRU_ALL_FILE },
3949 { "anon", LRU_ALL_ANON },
3950 { "unevictable", BIT(LRU_UNEVICTABLE) },
3951 };
3952 const struct numa_stat *stat;
406eb0c9 3953 int nid;
aa9694bb 3954 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3955
25485de6 3956 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3957 seq_printf(m, "%s=%lu", stat->name,
3958 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3959 false));
3960 for_each_node_state(nid, N_MEMORY)
3961 seq_printf(m, " N%d=%lu", nid,
3962 mem_cgroup_node_nr_lru_pages(memcg, nid,
3963 stat->lru_mask, false));
25485de6 3964 seq_putc(m, '\n');
406eb0c9 3965 }
406eb0c9 3966
071aee13 3967 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3968
3969 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3970 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3971 true));
3972 for_each_node_state(nid, N_MEMORY)
3973 seq_printf(m, " N%d=%lu", nid,
3974 mem_cgroup_node_nr_lru_pages(memcg, nid,
3975 stat->lru_mask, true));
071aee13 3976 seq_putc(m, '\n');
406eb0c9 3977 }
406eb0c9 3978
406eb0c9
YH
3979 return 0;
3980}
3981#endif /* CONFIG_NUMA */
3982
c8713d0b 3983static const unsigned int memcg1_stats[] = {
0d1c2072 3984 NR_FILE_PAGES,
be5d0a74 3985 NR_ANON_MAPPED,
468c3982
JW
3986#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3987 NR_ANON_THPS,
3988#endif
c8713d0b
JW
3989 NR_SHMEM,
3990 NR_FILE_MAPPED,
3991 NR_FILE_DIRTY,
3992 NR_WRITEBACK,
3993 MEMCG_SWAP,
3994};
3995
3996static const char *const memcg1_stat_names[] = {
3997 "cache",
3998 "rss",
468c3982 3999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4000 "rss_huge",
468c3982 4001#endif
c8713d0b
JW
4002 "shmem",
4003 "mapped_file",
4004 "dirty",
4005 "writeback",
4006 "swap",
4007};
4008
df0e53d0 4009/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4010static const unsigned int memcg1_events[] = {
df0e53d0
JW
4011 PGPGIN,
4012 PGPGOUT,
4013 PGFAULT,
4014 PGMAJFAULT,
4015};
4016
2da8ca82 4017static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4018{
aa9694bb 4019 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4020 unsigned long memory, memsw;
af7c4b0e
JW
4021 struct mem_cgroup *mi;
4022 unsigned int i;
406eb0c9 4023
71cd3113 4024 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4025
71cd3113 4026 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4027 unsigned long nr;
4028
71cd3113 4029 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4030 continue;
468c3982
JW
4031 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4032#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4033 if (memcg1_stats[i] == NR_ANON_THPS)
4034 nr *= HPAGE_PMD_NR;
4035#endif
4036 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4037 }
7b854121 4038
df0e53d0 4039 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4040 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4041 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4042
4043 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4044 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4045 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4046 PAGE_SIZE);
af7c4b0e 4047
14067bb3 4048 /* Hierarchical information */
3e32cb2e
JW
4049 memory = memsw = PAGE_COUNTER_MAX;
4050 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4051 memory = min(memory, READ_ONCE(mi->memory.max));
4052 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4053 }
3e32cb2e
JW
4054 seq_printf(m, "hierarchical_memory_limit %llu\n",
4055 (u64)memory * PAGE_SIZE);
7941d214 4056 if (do_memsw_account())
3e32cb2e
JW
4057 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4058 (u64)memsw * PAGE_SIZE);
7f016ee8 4059
8de7ecc6 4060 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4061 unsigned long nr;
4062
71cd3113 4063 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4064 continue;
7de2e9f1 4065 nr = memcg_page_state(memcg, memcg1_stats[i]);
4066#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4067 if (memcg1_stats[i] == NR_ANON_THPS)
4068 nr *= HPAGE_PMD_NR;
4069#endif
8de7ecc6 4070 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4071 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4072 }
4073
8de7ecc6 4074 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4075 seq_printf(m, "total_%s %llu\n",
4076 vm_event_name(memcg1_events[i]),
dd923990 4077 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4078
8de7ecc6 4079 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4080 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4081 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4082 PAGE_SIZE);
14067bb3 4083
7f016ee8 4084#ifdef CONFIG_DEBUG_VM
7f016ee8 4085 {
ef8f2327
MG
4086 pg_data_t *pgdat;
4087 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4088 unsigned long anon_cost = 0;
4089 unsigned long file_cost = 0;
7f016ee8 4090
ef8f2327
MG
4091 for_each_online_pgdat(pgdat) {
4092 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4093
1431d4d1
JW
4094 anon_cost += mz->lruvec.anon_cost;
4095 file_cost += mz->lruvec.file_cost;
ef8f2327 4096 }
1431d4d1
JW
4097 seq_printf(m, "anon_cost %lu\n", anon_cost);
4098 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4099 }
4100#endif
4101
d2ceb9b7
KH
4102 return 0;
4103}
4104
182446d0
TH
4105static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4106 struct cftype *cft)
a7885eb8 4107{
182446d0 4108 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4109
1f4c025b 4110 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4111}
4112
182446d0
TH
4113static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4114 struct cftype *cft, u64 val)
a7885eb8 4115{
182446d0 4116 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4117
3dae7fec 4118 if (val > 100)
a7885eb8
KM
4119 return -EINVAL;
4120
14208b0e 4121 if (css->parent)
3dae7fec
JW
4122 memcg->swappiness = val;
4123 else
4124 vm_swappiness = val;
068b38c1 4125
a7885eb8
KM
4126 return 0;
4127}
4128
2e72b634
KS
4129static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4130{
4131 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4132 unsigned long usage;
2e72b634
KS
4133 int i;
4134
4135 rcu_read_lock();
4136 if (!swap)
2c488db2 4137 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4138 else
2c488db2 4139 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4140
4141 if (!t)
4142 goto unlock;
4143
ce00a967 4144 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4145
4146 /*
748dad36 4147 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4148 * If it's not true, a threshold was crossed after last
4149 * call of __mem_cgroup_threshold().
4150 */
5407a562 4151 i = t->current_threshold;
2e72b634
KS
4152
4153 /*
4154 * Iterate backward over array of thresholds starting from
4155 * current_threshold and check if a threshold is crossed.
4156 * If none of thresholds below usage is crossed, we read
4157 * only one element of the array here.
4158 */
4159 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4160 eventfd_signal(t->entries[i].eventfd, 1);
4161
4162 /* i = current_threshold + 1 */
4163 i++;
4164
4165 /*
4166 * Iterate forward over array of thresholds starting from
4167 * current_threshold+1 and check if a threshold is crossed.
4168 * If none of thresholds above usage is crossed, we read
4169 * only one element of the array here.
4170 */
4171 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4172 eventfd_signal(t->entries[i].eventfd, 1);
4173
4174 /* Update current_threshold */
5407a562 4175 t->current_threshold = i - 1;
2e72b634
KS
4176unlock:
4177 rcu_read_unlock();
4178}
4179
4180static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4181{
ad4ca5f4
KS
4182 while (memcg) {
4183 __mem_cgroup_threshold(memcg, false);
7941d214 4184 if (do_memsw_account())
ad4ca5f4
KS
4185 __mem_cgroup_threshold(memcg, true);
4186
4187 memcg = parent_mem_cgroup(memcg);
4188 }
2e72b634
KS
4189}
4190
4191static int compare_thresholds(const void *a, const void *b)
4192{
4193 const struct mem_cgroup_threshold *_a = a;
4194 const struct mem_cgroup_threshold *_b = b;
4195
2bff24a3
GT
4196 if (_a->threshold > _b->threshold)
4197 return 1;
4198
4199 if (_a->threshold < _b->threshold)
4200 return -1;
4201
4202 return 0;
2e72b634
KS
4203}
4204
c0ff4b85 4205static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4206{
4207 struct mem_cgroup_eventfd_list *ev;
4208
2bcf2e92
MH
4209 spin_lock(&memcg_oom_lock);
4210
c0ff4b85 4211 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4212 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4213
4214 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4215 return 0;
4216}
4217
c0ff4b85 4218static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4219{
7d74b06f
KH
4220 struct mem_cgroup *iter;
4221
c0ff4b85 4222 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4223 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4224}
4225
59b6f873 4226static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4227 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4228{
2c488db2
KS
4229 struct mem_cgroup_thresholds *thresholds;
4230 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4231 unsigned long threshold;
4232 unsigned long usage;
2c488db2 4233 int i, size, ret;
2e72b634 4234
650c5e56 4235 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4236 if (ret)
4237 return ret;
4238
4239 mutex_lock(&memcg->thresholds_lock);
2c488db2 4240
05b84301 4241 if (type == _MEM) {
2c488db2 4242 thresholds = &memcg->thresholds;
ce00a967 4243 usage = mem_cgroup_usage(memcg, false);
05b84301 4244 } else if (type == _MEMSWAP) {
2c488db2 4245 thresholds = &memcg->memsw_thresholds;
ce00a967 4246 usage = mem_cgroup_usage(memcg, true);
05b84301 4247 } else
2e72b634
KS
4248 BUG();
4249
2e72b634 4250 /* Check if a threshold crossed before adding a new one */
2c488db2 4251 if (thresholds->primary)
2e72b634
KS
4252 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4253
2c488db2 4254 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4255
4256 /* Allocate memory for new array of thresholds */
67b8046f 4257 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4258 if (!new) {
2e72b634
KS
4259 ret = -ENOMEM;
4260 goto unlock;
4261 }
2c488db2 4262 new->size = size;
2e72b634
KS
4263
4264 /* Copy thresholds (if any) to new array */
e90342e6
GS
4265 if (thresholds->primary)
4266 memcpy(new->entries, thresholds->primary->entries,
4267 flex_array_size(new, entries, size - 1));
2c488db2 4268
2e72b634 4269 /* Add new threshold */
2c488db2
KS
4270 new->entries[size - 1].eventfd = eventfd;
4271 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4272
4273 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4274 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4275 compare_thresholds, NULL);
4276
4277 /* Find current threshold */
2c488db2 4278 new->current_threshold = -1;
2e72b634 4279 for (i = 0; i < size; i++) {
748dad36 4280 if (new->entries[i].threshold <= usage) {
2e72b634 4281 /*
2c488db2
KS
4282 * new->current_threshold will not be used until
4283 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4284 * it here.
4285 */
2c488db2 4286 ++new->current_threshold;
748dad36
SZ
4287 } else
4288 break;
2e72b634
KS
4289 }
4290
2c488db2
KS
4291 /* Free old spare buffer and save old primary buffer as spare */
4292 kfree(thresholds->spare);
4293 thresholds->spare = thresholds->primary;
4294
4295 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4296
907860ed 4297 /* To be sure that nobody uses thresholds */
2e72b634
KS
4298 synchronize_rcu();
4299
2e72b634
KS
4300unlock:
4301 mutex_unlock(&memcg->thresholds_lock);
4302
4303 return ret;
4304}
4305
59b6f873 4306static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4307 struct eventfd_ctx *eventfd, const char *args)
4308{
59b6f873 4309 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4310}
4311
59b6f873 4312static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4313 struct eventfd_ctx *eventfd, const char *args)
4314{
59b6f873 4315 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4316}
4317
59b6f873 4318static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4319 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4320{
2c488db2
KS
4321 struct mem_cgroup_thresholds *thresholds;
4322 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4323 unsigned long usage;
7d36665a 4324 int i, j, size, entries;
2e72b634
KS
4325
4326 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4327
4328 if (type == _MEM) {
2c488db2 4329 thresholds = &memcg->thresholds;
ce00a967 4330 usage = mem_cgroup_usage(memcg, false);
05b84301 4331 } else if (type == _MEMSWAP) {
2c488db2 4332 thresholds = &memcg->memsw_thresholds;
ce00a967 4333 usage = mem_cgroup_usage(memcg, true);
05b84301 4334 } else
2e72b634
KS
4335 BUG();
4336
371528ca
AV
4337 if (!thresholds->primary)
4338 goto unlock;
4339
2e72b634
KS
4340 /* Check if a threshold crossed before removing */
4341 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4342
4343 /* Calculate new number of threshold */
7d36665a 4344 size = entries = 0;
2c488db2
KS
4345 for (i = 0; i < thresholds->primary->size; i++) {
4346 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4347 size++;
7d36665a
CX
4348 else
4349 entries++;
2e72b634
KS
4350 }
4351
2c488db2 4352 new = thresholds->spare;
907860ed 4353
7d36665a
CX
4354 /* If no items related to eventfd have been cleared, nothing to do */
4355 if (!entries)
4356 goto unlock;
4357
2e72b634
KS
4358 /* Set thresholds array to NULL if we don't have thresholds */
4359 if (!size) {
2c488db2
KS
4360 kfree(new);
4361 new = NULL;
907860ed 4362 goto swap_buffers;
2e72b634
KS
4363 }
4364
2c488db2 4365 new->size = size;
2e72b634
KS
4366
4367 /* Copy thresholds and find current threshold */
2c488db2
KS
4368 new->current_threshold = -1;
4369 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4370 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4371 continue;
4372
2c488db2 4373 new->entries[j] = thresholds->primary->entries[i];
748dad36 4374 if (new->entries[j].threshold <= usage) {
2e72b634 4375 /*
2c488db2 4376 * new->current_threshold will not be used
2e72b634
KS
4377 * until rcu_assign_pointer(), so it's safe to increment
4378 * it here.
4379 */
2c488db2 4380 ++new->current_threshold;
2e72b634
KS
4381 }
4382 j++;
4383 }
4384
907860ed 4385swap_buffers:
2c488db2
KS
4386 /* Swap primary and spare array */
4387 thresholds->spare = thresholds->primary;
8c757763 4388
2c488db2 4389 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4390
907860ed 4391 /* To be sure that nobody uses thresholds */
2e72b634 4392 synchronize_rcu();
6611d8d7
MC
4393
4394 /* If all events are unregistered, free the spare array */
4395 if (!new) {
4396 kfree(thresholds->spare);
4397 thresholds->spare = NULL;
4398 }
371528ca 4399unlock:
2e72b634 4400 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4401}
c1e862c1 4402
59b6f873 4403static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4404 struct eventfd_ctx *eventfd)
4405{
59b6f873 4406 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4407}
4408
59b6f873 4409static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4410 struct eventfd_ctx *eventfd)
4411{
59b6f873 4412 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4413}
4414
59b6f873 4415static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4416 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4417{
9490ff27 4418 struct mem_cgroup_eventfd_list *event;
9490ff27 4419
9490ff27
KH
4420 event = kmalloc(sizeof(*event), GFP_KERNEL);
4421 if (!event)
4422 return -ENOMEM;
4423
1af8efe9 4424 spin_lock(&memcg_oom_lock);
9490ff27
KH
4425
4426 event->eventfd = eventfd;
4427 list_add(&event->list, &memcg->oom_notify);
4428
4429 /* already in OOM ? */
c2b42d3c 4430 if (memcg->under_oom)
9490ff27 4431 eventfd_signal(eventfd, 1);
1af8efe9 4432 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4433
4434 return 0;
4435}
4436
59b6f873 4437static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4438 struct eventfd_ctx *eventfd)
9490ff27 4439{
9490ff27 4440 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4441
1af8efe9 4442 spin_lock(&memcg_oom_lock);
9490ff27 4443
c0ff4b85 4444 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4445 if (ev->eventfd == eventfd) {
4446 list_del(&ev->list);
4447 kfree(ev);
4448 }
4449 }
4450
1af8efe9 4451 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4452}
4453
2da8ca82 4454static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4455{
aa9694bb 4456 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4457
791badbd 4458 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4459 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4460 seq_printf(sf, "oom_kill %lu\n",
4461 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4462 return 0;
4463}
4464
182446d0 4465static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4466 struct cftype *cft, u64 val)
4467{
182446d0 4468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4469
4470 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4471 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4472 return -EINVAL;
4473
c0ff4b85 4474 memcg->oom_kill_disable = val;
4d845ebf 4475 if (!val)
c0ff4b85 4476 memcg_oom_recover(memcg);
3dae7fec 4477
3c11ecf4
KH
4478 return 0;
4479}
4480
52ebea74
TH
4481#ifdef CONFIG_CGROUP_WRITEBACK
4482
3a8e9ac8
TH
4483#include <trace/events/writeback.h>
4484
841710aa
TH
4485static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4486{
4487 return wb_domain_init(&memcg->cgwb_domain, gfp);
4488}
4489
4490static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4491{
4492 wb_domain_exit(&memcg->cgwb_domain);
4493}
4494
2529bb3a
TH
4495static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4496{
4497 wb_domain_size_changed(&memcg->cgwb_domain);
4498}
4499
841710aa
TH
4500struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4501{
4502 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4503
4504 if (!memcg->css.parent)
4505 return NULL;
4506
4507 return &memcg->cgwb_domain;
4508}
4509
0b3d6e6f
GT
4510/*
4511 * idx can be of type enum memcg_stat_item or node_stat_item.
4512 * Keep in sync with memcg_exact_page().
4513 */
4514static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4515{
871789d4 4516 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4517 int cpu;
4518
4519 for_each_online_cpu(cpu)
871789d4 4520 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4521 if (x < 0)
4522 x = 0;
4523 return x;
4524}
4525
c2aa723a
TH
4526/**
4527 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4528 * @wb: bdi_writeback in question
c5edf9cd
TH
4529 * @pfilepages: out parameter for number of file pages
4530 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4531 * @pdirty: out parameter for number of dirty pages
4532 * @pwriteback: out parameter for number of pages under writeback
4533 *
c5edf9cd
TH
4534 * Determine the numbers of file, headroom, dirty, and writeback pages in
4535 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4536 * is a bit more involved.
c2aa723a 4537 *
c5edf9cd
TH
4538 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4539 * headroom is calculated as the lowest headroom of itself and the
4540 * ancestors. Note that this doesn't consider the actual amount of
4541 * available memory in the system. The caller should further cap
4542 * *@pheadroom accordingly.
c2aa723a 4543 */
c5edf9cd
TH
4544void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4545 unsigned long *pheadroom, unsigned long *pdirty,
4546 unsigned long *pwriteback)
c2aa723a
TH
4547{
4548 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4549 struct mem_cgroup *parent;
c2aa723a 4550
0b3d6e6f 4551 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4552
0b3d6e6f 4553 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4554 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4555 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4556 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4557
c2aa723a 4558 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4559 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4560 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4561 unsigned long used = page_counter_read(&memcg->memory);
4562
c5edf9cd 4563 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4564 memcg = parent;
4565 }
c2aa723a
TH
4566}
4567
97b27821
TH
4568/*
4569 * Foreign dirty flushing
4570 *
4571 * There's an inherent mismatch between memcg and writeback. The former
4572 * trackes ownership per-page while the latter per-inode. This was a
4573 * deliberate design decision because honoring per-page ownership in the
4574 * writeback path is complicated, may lead to higher CPU and IO overheads
4575 * and deemed unnecessary given that write-sharing an inode across
4576 * different cgroups isn't a common use-case.
4577 *
4578 * Combined with inode majority-writer ownership switching, this works well
4579 * enough in most cases but there are some pathological cases. For
4580 * example, let's say there are two cgroups A and B which keep writing to
4581 * different but confined parts of the same inode. B owns the inode and
4582 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4583 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4584 * triggering background writeback. A will be slowed down without a way to
4585 * make writeback of the dirty pages happen.
4586 *
4587 * Conditions like the above can lead to a cgroup getting repatedly and
4588 * severely throttled after making some progress after each
4589 * dirty_expire_interval while the underyling IO device is almost
4590 * completely idle.
4591 *
4592 * Solving this problem completely requires matching the ownership tracking
4593 * granularities between memcg and writeback in either direction. However,
4594 * the more egregious behaviors can be avoided by simply remembering the
4595 * most recent foreign dirtying events and initiating remote flushes on
4596 * them when local writeback isn't enough to keep the memory clean enough.
4597 *
4598 * The following two functions implement such mechanism. When a foreign
4599 * page - a page whose memcg and writeback ownerships don't match - is
4600 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4601 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4602 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4603 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4604 * foreign bdi_writebacks which haven't expired. Both the numbers of
4605 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4606 * limited to MEMCG_CGWB_FRN_CNT.
4607 *
4608 * The mechanism only remembers IDs and doesn't hold any object references.
4609 * As being wrong occasionally doesn't matter, updates and accesses to the
4610 * records are lockless and racy.
4611 */
4612void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4613 struct bdi_writeback *wb)
4614{
4615 struct mem_cgroup *memcg = page->mem_cgroup;
4616 struct memcg_cgwb_frn *frn;
4617 u64 now = get_jiffies_64();
4618 u64 oldest_at = now;
4619 int oldest = -1;
4620 int i;
4621
3a8e9ac8
TH
4622 trace_track_foreign_dirty(page, wb);
4623
97b27821
TH
4624 /*
4625 * Pick the slot to use. If there is already a slot for @wb, keep
4626 * using it. If not replace the oldest one which isn't being
4627 * written out.
4628 */
4629 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4630 frn = &memcg->cgwb_frn[i];
4631 if (frn->bdi_id == wb->bdi->id &&
4632 frn->memcg_id == wb->memcg_css->id)
4633 break;
4634 if (time_before64(frn->at, oldest_at) &&
4635 atomic_read(&frn->done.cnt) == 1) {
4636 oldest = i;
4637 oldest_at = frn->at;
4638 }
4639 }
4640
4641 if (i < MEMCG_CGWB_FRN_CNT) {
4642 /*
4643 * Re-using an existing one. Update timestamp lazily to
4644 * avoid making the cacheline hot. We want them to be
4645 * reasonably up-to-date and significantly shorter than
4646 * dirty_expire_interval as that's what expires the record.
4647 * Use the shorter of 1s and dirty_expire_interval / 8.
4648 */
4649 unsigned long update_intv =
4650 min_t(unsigned long, HZ,
4651 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4652
4653 if (time_before64(frn->at, now - update_intv))
4654 frn->at = now;
4655 } else if (oldest >= 0) {
4656 /* replace the oldest free one */
4657 frn = &memcg->cgwb_frn[oldest];
4658 frn->bdi_id = wb->bdi->id;
4659 frn->memcg_id = wb->memcg_css->id;
4660 frn->at = now;
4661 }
4662}
4663
4664/* issue foreign writeback flushes for recorded foreign dirtying events */
4665void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4666{
4667 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4668 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4669 u64 now = jiffies_64;
4670 int i;
4671
4672 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4673 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4674
4675 /*
4676 * If the record is older than dirty_expire_interval,
4677 * writeback on it has already started. No need to kick it
4678 * off again. Also, don't start a new one if there's
4679 * already one in flight.
4680 */
4681 if (time_after64(frn->at, now - intv) &&
4682 atomic_read(&frn->done.cnt) == 1) {
4683 frn->at = 0;
3a8e9ac8 4684 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4685 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4686 WB_REASON_FOREIGN_FLUSH,
4687 &frn->done);
4688 }
4689 }
4690}
4691
841710aa
TH
4692#else /* CONFIG_CGROUP_WRITEBACK */
4693
4694static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4695{
4696 return 0;
4697}
4698
4699static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4700{
4701}
4702
2529bb3a
TH
4703static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4704{
4705}
4706
52ebea74
TH
4707#endif /* CONFIG_CGROUP_WRITEBACK */
4708
3bc942f3
TH
4709/*
4710 * DO NOT USE IN NEW FILES.
4711 *
4712 * "cgroup.event_control" implementation.
4713 *
4714 * This is way over-engineered. It tries to support fully configurable
4715 * events for each user. Such level of flexibility is completely
4716 * unnecessary especially in the light of the planned unified hierarchy.
4717 *
4718 * Please deprecate this and replace with something simpler if at all
4719 * possible.
4720 */
4721
79bd9814
TH
4722/*
4723 * Unregister event and free resources.
4724 *
4725 * Gets called from workqueue.
4726 */
3bc942f3 4727static void memcg_event_remove(struct work_struct *work)
79bd9814 4728{
3bc942f3
TH
4729 struct mem_cgroup_event *event =
4730 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4731 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4732
4733 remove_wait_queue(event->wqh, &event->wait);
4734
59b6f873 4735 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4736
4737 /* Notify userspace the event is going away. */
4738 eventfd_signal(event->eventfd, 1);
4739
4740 eventfd_ctx_put(event->eventfd);
4741 kfree(event);
59b6f873 4742 css_put(&memcg->css);
79bd9814
TH
4743}
4744
4745/*
a9a08845 4746 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4747 *
4748 * Called with wqh->lock held and interrupts disabled.
4749 */
ac6424b9 4750static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4751 int sync, void *key)
79bd9814 4752{
3bc942f3
TH
4753 struct mem_cgroup_event *event =
4754 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4755 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4756 __poll_t flags = key_to_poll(key);
79bd9814 4757
a9a08845 4758 if (flags & EPOLLHUP) {
79bd9814
TH
4759 /*
4760 * If the event has been detached at cgroup removal, we
4761 * can simply return knowing the other side will cleanup
4762 * for us.
4763 *
4764 * We can't race against event freeing since the other
4765 * side will require wqh->lock via remove_wait_queue(),
4766 * which we hold.
4767 */
fba94807 4768 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4769 if (!list_empty(&event->list)) {
4770 list_del_init(&event->list);
4771 /*
4772 * We are in atomic context, but cgroup_event_remove()
4773 * may sleep, so we have to call it in workqueue.
4774 */
4775 schedule_work(&event->remove);
4776 }
fba94807 4777 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4778 }
4779
4780 return 0;
4781}
4782
3bc942f3 4783static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4784 wait_queue_head_t *wqh, poll_table *pt)
4785{
3bc942f3
TH
4786 struct mem_cgroup_event *event =
4787 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4788
4789 event->wqh = wqh;
4790 add_wait_queue(wqh, &event->wait);
4791}
4792
4793/*
3bc942f3
TH
4794 * DO NOT USE IN NEW FILES.
4795 *
79bd9814
TH
4796 * Parse input and register new cgroup event handler.
4797 *
4798 * Input must be in format '<event_fd> <control_fd> <args>'.
4799 * Interpretation of args is defined by control file implementation.
4800 */
451af504
TH
4801static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4802 char *buf, size_t nbytes, loff_t off)
79bd9814 4803{
451af504 4804 struct cgroup_subsys_state *css = of_css(of);
fba94807 4805 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4806 struct mem_cgroup_event *event;
79bd9814
TH
4807 struct cgroup_subsys_state *cfile_css;
4808 unsigned int efd, cfd;
4809 struct fd efile;
4810 struct fd cfile;
fba94807 4811 const char *name;
79bd9814
TH
4812 char *endp;
4813 int ret;
4814
451af504
TH
4815 buf = strstrip(buf);
4816
4817 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4818 if (*endp != ' ')
4819 return -EINVAL;
451af504 4820 buf = endp + 1;
79bd9814 4821
451af504 4822 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4823 if ((*endp != ' ') && (*endp != '\0'))
4824 return -EINVAL;
451af504 4825 buf = endp + 1;
79bd9814
TH
4826
4827 event = kzalloc(sizeof(*event), GFP_KERNEL);
4828 if (!event)
4829 return -ENOMEM;
4830
59b6f873 4831 event->memcg = memcg;
79bd9814 4832 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4833 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4834 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4835 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4836
4837 efile = fdget(efd);
4838 if (!efile.file) {
4839 ret = -EBADF;
4840 goto out_kfree;
4841 }
4842
4843 event->eventfd = eventfd_ctx_fileget(efile.file);
4844 if (IS_ERR(event->eventfd)) {
4845 ret = PTR_ERR(event->eventfd);
4846 goto out_put_efile;
4847 }
4848
4849 cfile = fdget(cfd);
4850 if (!cfile.file) {
4851 ret = -EBADF;
4852 goto out_put_eventfd;
4853 }
4854
4855 /* the process need read permission on control file */
4856 /* AV: shouldn't we check that it's been opened for read instead? */
4857 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4858 if (ret < 0)
4859 goto out_put_cfile;
4860
fba94807
TH
4861 /*
4862 * Determine the event callbacks and set them in @event. This used
4863 * to be done via struct cftype but cgroup core no longer knows
4864 * about these events. The following is crude but the whole thing
4865 * is for compatibility anyway.
3bc942f3
TH
4866 *
4867 * DO NOT ADD NEW FILES.
fba94807 4868 */
b583043e 4869 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4870
4871 if (!strcmp(name, "memory.usage_in_bytes")) {
4872 event->register_event = mem_cgroup_usage_register_event;
4873 event->unregister_event = mem_cgroup_usage_unregister_event;
4874 } else if (!strcmp(name, "memory.oom_control")) {
4875 event->register_event = mem_cgroup_oom_register_event;
4876 event->unregister_event = mem_cgroup_oom_unregister_event;
4877 } else if (!strcmp(name, "memory.pressure_level")) {
4878 event->register_event = vmpressure_register_event;
4879 event->unregister_event = vmpressure_unregister_event;
4880 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4881 event->register_event = memsw_cgroup_usage_register_event;
4882 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4883 } else {
4884 ret = -EINVAL;
4885 goto out_put_cfile;
4886 }
4887
79bd9814 4888 /*
b5557c4c
TH
4889 * Verify @cfile should belong to @css. Also, remaining events are
4890 * automatically removed on cgroup destruction but the removal is
4891 * asynchronous, so take an extra ref on @css.
79bd9814 4892 */
b583043e 4893 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4894 &memory_cgrp_subsys);
79bd9814 4895 ret = -EINVAL;
5a17f543 4896 if (IS_ERR(cfile_css))
79bd9814 4897 goto out_put_cfile;
5a17f543
TH
4898 if (cfile_css != css) {
4899 css_put(cfile_css);
79bd9814 4900 goto out_put_cfile;
5a17f543 4901 }
79bd9814 4902
451af504 4903 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4904 if (ret)
4905 goto out_put_css;
4906
9965ed17 4907 vfs_poll(efile.file, &event->pt);
79bd9814 4908
fba94807
TH
4909 spin_lock(&memcg->event_list_lock);
4910 list_add(&event->list, &memcg->event_list);
4911 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4912
4913 fdput(cfile);
4914 fdput(efile);
4915
451af504 4916 return nbytes;
79bd9814
TH
4917
4918out_put_css:
b5557c4c 4919 css_put(css);
79bd9814
TH
4920out_put_cfile:
4921 fdput(cfile);
4922out_put_eventfd:
4923 eventfd_ctx_put(event->eventfd);
4924out_put_efile:
4925 fdput(efile);
4926out_kfree:
4927 kfree(event);
4928
4929 return ret;
4930}
4931
241994ed 4932static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4933 {
0eea1030 4934 .name = "usage_in_bytes",
8c7c6e34 4935 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4936 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4937 },
c84872e1
PE
4938 {
4939 .name = "max_usage_in_bytes",
8c7c6e34 4940 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4941 .write = mem_cgroup_reset,
791badbd 4942 .read_u64 = mem_cgroup_read_u64,
c84872e1 4943 },
8cdea7c0 4944 {
0eea1030 4945 .name = "limit_in_bytes",
8c7c6e34 4946 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4947 .write = mem_cgroup_write,
791badbd 4948 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4949 },
296c81d8
BS
4950 {
4951 .name = "soft_limit_in_bytes",
4952 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4953 .write = mem_cgroup_write,
791badbd 4954 .read_u64 = mem_cgroup_read_u64,
296c81d8 4955 },
8cdea7c0
BS
4956 {
4957 .name = "failcnt",
8c7c6e34 4958 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4959 .write = mem_cgroup_reset,
791badbd 4960 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4961 },
d2ceb9b7
KH
4962 {
4963 .name = "stat",
2da8ca82 4964 .seq_show = memcg_stat_show,
d2ceb9b7 4965 },
c1e862c1
KH
4966 {
4967 .name = "force_empty",
6770c64e 4968 .write = mem_cgroup_force_empty_write,
c1e862c1 4969 },
18f59ea7
BS
4970 {
4971 .name = "use_hierarchy",
4972 .write_u64 = mem_cgroup_hierarchy_write,
4973 .read_u64 = mem_cgroup_hierarchy_read,
4974 },
79bd9814 4975 {
3bc942f3 4976 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4977 .write = memcg_write_event_control,
7dbdb199 4978 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4979 },
a7885eb8
KM
4980 {
4981 .name = "swappiness",
4982 .read_u64 = mem_cgroup_swappiness_read,
4983 .write_u64 = mem_cgroup_swappiness_write,
4984 },
7dc74be0
DN
4985 {
4986 .name = "move_charge_at_immigrate",
4987 .read_u64 = mem_cgroup_move_charge_read,
4988 .write_u64 = mem_cgroup_move_charge_write,
4989 },
9490ff27
KH
4990 {
4991 .name = "oom_control",
2da8ca82 4992 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4993 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4994 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4995 },
70ddf637
AV
4996 {
4997 .name = "pressure_level",
70ddf637 4998 },
406eb0c9
YH
4999#ifdef CONFIG_NUMA
5000 {
5001 .name = "numa_stat",
2da8ca82 5002 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5003 },
5004#endif
510fc4e1
GC
5005 {
5006 .name = "kmem.limit_in_bytes",
5007 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5008 .write = mem_cgroup_write,
791badbd 5009 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5010 },
5011 {
5012 .name = "kmem.usage_in_bytes",
5013 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5014 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5015 },
5016 {
5017 .name = "kmem.failcnt",
5018 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5019 .write = mem_cgroup_reset,
791badbd 5020 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5021 },
5022 {
5023 .name = "kmem.max_usage_in_bytes",
5024 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5025 .write = mem_cgroup_reset,
791badbd 5026 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5027 },
a87425a3
YS
5028#if defined(CONFIG_MEMCG_KMEM) && \
5029 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5030 {
5031 .name = "kmem.slabinfo",
b047501c 5032 .seq_show = memcg_slab_show,
749c5415
GC
5033 },
5034#endif
d55f90bf
VD
5035 {
5036 .name = "kmem.tcp.limit_in_bytes",
5037 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5038 .write = mem_cgroup_write,
5039 .read_u64 = mem_cgroup_read_u64,
5040 },
5041 {
5042 .name = "kmem.tcp.usage_in_bytes",
5043 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5044 .read_u64 = mem_cgroup_read_u64,
5045 },
5046 {
5047 .name = "kmem.tcp.failcnt",
5048 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5049 .write = mem_cgroup_reset,
5050 .read_u64 = mem_cgroup_read_u64,
5051 },
5052 {
5053 .name = "kmem.tcp.max_usage_in_bytes",
5054 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5055 .write = mem_cgroup_reset,
5056 .read_u64 = mem_cgroup_read_u64,
5057 },
6bc10349 5058 { }, /* terminate */
af36f906 5059};
8c7c6e34 5060
73f576c0
JW
5061/*
5062 * Private memory cgroup IDR
5063 *
5064 * Swap-out records and page cache shadow entries need to store memcg
5065 * references in constrained space, so we maintain an ID space that is
5066 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5067 * memory-controlled cgroups to 64k.
5068 *
b8f2935f 5069 * However, there usually are many references to the offline CSS after
73f576c0
JW
5070 * the cgroup has been destroyed, such as page cache or reclaimable
5071 * slab objects, that don't need to hang on to the ID. We want to keep
5072 * those dead CSS from occupying IDs, or we might quickly exhaust the
5073 * relatively small ID space and prevent the creation of new cgroups
5074 * even when there are much fewer than 64k cgroups - possibly none.
5075 *
5076 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5077 * be freed and recycled when it's no longer needed, which is usually
5078 * when the CSS is offlined.
5079 *
5080 * The only exception to that are records of swapped out tmpfs/shmem
5081 * pages that need to be attributed to live ancestors on swapin. But
5082 * those references are manageable from userspace.
5083 */
5084
5085static DEFINE_IDR(mem_cgroup_idr);
5086
7e97de0b
KT
5087static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5088{
5089 if (memcg->id.id > 0) {
5090 idr_remove(&mem_cgroup_idr, memcg->id.id);
5091 memcg->id.id = 0;
5092 }
5093}
5094
c1514c0a
VF
5095static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5096 unsigned int n)
73f576c0 5097{
1c2d479a 5098 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5099}
5100
615d66c3 5101static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5102{
1c2d479a 5103 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5104 mem_cgroup_id_remove(memcg);
73f576c0
JW
5105
5106 /* Memcg ID pins CSS */
5107 css_put(&memcg->css);
5108 }
5109}
5110
615d66c3
VD
5111static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5112{
5113 mem_cgroup_id_put_many(memcg, 1);
5114}
5115
73f576c0
JW
5116/**
5117 * mem_cgroup_from_id - look up a memcg from a memcg id
5118 * @id: the memcg id to look up
5119 *
5120 * Caller must hold rcu_read_lock().
5121 */
5122struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5123{
5124 WARN_ON_ONCE(!rcu_read_lock_held());
5125 return idr_find(&mem_cgroup_idr, id);
5126}
5127
ef8f2327 5128static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5129{
5130 struct mem_cgroup_per_node *pn;
ef8f2327 5131 int tmp = node;
1ecaab2b
KH
5132 /*
5133 * This routine is called against possible nodes.
5134 * But it's BUG to call kmalloc() against offline node.
5135 *
5136 * TODO: this routine can waste much memory for nodes which will
5137 * never be onlined. It's better to use memory hotplug callback
5138 * function.
5139 */
41e3355d
KH
5140 if (!node_state(node, N_NORMAL_MEMORY))
5141 tmp = -1;
17295c88 5142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5143 if (!pn)
5144 return 1;
1ecaab2b 5145
3e38e0aa
RG
5146 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5147 GFP_KERNEL_ACCOUNT);
815744d7
JW
5148 if (!pn->lruvec_stat_local) {
5149 kfree(pn);
5150 return 1;
5151 }
5152
3e38e0aa
RG
5153 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5154 GFP_KERNEL_ACCOUNT);
a983b5eb 5155 if (!pn->lruvec_stat_cpu) {
815744d7 5156 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5157 kfree(pn);
5158 return 1;
5159 }
5160
ef8f2327
MG
5161 lruvec_init(&pn->lruvec);
5162 pn->usage_in_excess = 0;
5163 pn->on_tree = false;
5164 pn->memcg = memcg;
5165
54f72fe0 5166 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5167 return 0;
5168}
5169
ef8f2327 5170static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5171{
00f3ca2c
JW
5172 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5173
4eaf431f
MH
5174 if (!pn)
5175 return;
5176
a983b5eb 5177 free_percpu(pn->lruvec_stat_cpu);
815744d7 5178 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5179 kfree(pn);
1ecaab2b
KH
5180}
5181
40e952f9 5182static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5183{
c8b2a36f 5184 int node;
59927fb9 5185
c8b2a36f 5186 for_each_node(node)
ef8f2327 5187 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5188 free_percpu(memcg->vmstats_percpu);
815744d7 5189 free_percpu(memcg->vmstats_local);
8ff69e2c 5190 kfree(memcg);
59927fb9 5191}
3afe36b1 5192
40e952f9
TE
5193static void mem_cgroup_free(struct mem_cgroup *memcg)
5194{
5195 memcg_wb_domain_exit(memcg);
7961eee3
SB
5196 /*
5197 * Flush percpu vmstats and vmevents to guarantee the value correctness
5198 * on parent's and all ancestor levels.
5199 */
4a87e2a2 5200 memcg_flush_percpu_vmstats(memcg);
7961eee3 5201 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5202 __mem_cgroup_free(memcg);
5203}
5204
0b8f73e1 5205static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5206{
d142e3e6 5207 struct mem_cgroup *memcg;
b9726c26 5208 unsigned int size;
6d12e2d8 5209 int node;
97b27821 5210 int __maybe_unused i;
11d67612 5211 long error = -ENOMEM;
8cdea7c0 5212
0b8f73e1
JW
5213 size = sizeof(struct mem_cgroup);
5214 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5215
5216 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5217 if (!memcg)
11d67612 5218 return ERR_PTR(error);
0b8f73e1 5219
73f576c0
JW
5220 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5221 1, MEM_CGROUP_ID_MAX,
5222 GFP_KERNEL);
11d67612
YS
5223 if (memcg->id.id < 0) {
5224 error = memcg->id.id;
73f576c0 5225 goto fail;
11d67612 5226 }
73f576c0 5227
3e38e0aa
RG
5228 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5229 GFP_KERNEL_ACCOUNT);
815744d7
JW
5230 if (!memcg->vmstats_local)
5231 goto fail;
5232
3e38e0aa
RG
5233 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5234 GFP_KERNEL_ACCOUNT);
871789d4 5235 if (!memcg->vmstats_percpu)
0b8f73e1 5236 goto fail;
78fb7466 5237
3ed28fa1 5238 for_each_node(node)
ef8f2327 5239 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5240 goto fail;
f64c3f54 5241
0b8f73e1
JW
5242 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5243 goto fail;
28dbc4b6 5244
f7e1cb6e 5245 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5246 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5247 mutex_init(&memcg->thresholds_lock);
5248 spin_lock_init(&memcg->move_lock);
70ddf637 5249 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5250 INIT_LIST_HEAD(&memcg->event_list);
5251 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5252 memcg->socket_pressure = jiffies;
84c07d11 5253#ifdef CONFIG_MEMCG_KMEM
900a38f0 5254 memcg->kmemcg_id = -1;
bf4f0599 5255 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5256#endif
52ebea74
TH
5257#ifdef CONFIG_CGROUP_WRITEBACK
5258 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5259 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5260 memcg->cgwb_frn[i].done =
5261 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5262#endif
5263#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5264 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5265 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5266 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5267#endif
73f576c0 5268 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5269 return memcg;
5270fail:
7e97de0b 5271 mem_cgroup_id_remove(memcg);
40e952f9 5272 __mem_cgroup_free(memcg);
11d67612 5273 return ERR_PTR(error);
d142e3e6
GC
5274}
5275
0b8f73e1
JW
5276static struct cgroup_subsys_state * __ref
5277mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5278{
0b8f73e1 5279 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5280 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5281 long error = -ENOMEM;
d142e3e6 5282
b87d8cef 5283 old_memcg = set_active_memcg(parent);
0b8f73e1 5284 memcg = mem_cgroup_alloc();
b87d8cef 5285 set_active_memcg(old_memcg);
11d67612
YS
5286 if (IS_ERR(memcg))
5287 return ERR_CAST(memcg);
d142e3e6 5288
d1663a90 5289 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5290 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5291 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5292 if (parent) {
5293 memcg->swappiness = mem_cgroup_swappiness(parent);
5294 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5295
3e32cb2e 5296 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5297 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5298 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5299 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5300 } else {
bef8620c
RG
5301 page_counter_init(&memcg->memory, NULL);
5302 page_counter_init(&memcg->swap, NULL);
5303 page_counter_init(&memcg->kmem, NULL);
5304 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5305
0b8f73e1
JW
5306 root_mem_cgroup = memcg;
5307 return &memcg->css;
5308 }
5309
bef8620c 5310 /* The following stuff does not apply to the root */
b313aeee 5311 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5312 if (error)
5313 goto fail;
127424c8 5314
f7e1cb6e 5315 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5316 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5317
0b8f73e1
JW
5318 return &memcg->css;
5319fail:
7e97de0b 5320 mem_cgroup_id_remove(memcg);
0b8f73e1 5321 mem_cgroup_free(memcg);
11d67612 5322 return ERR_PTR(error);
0b8f73e1
JW
5323}
5324
73f576c0 5325static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5326{
58fa2a55
VD
5327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5328
0a4465d3
KT
5329 /*
5330 * A memcg must be visible for memcg_expand_shrinker_maps()
5331 * by the time the maps are allocated. So, we allocate maps
5332 * here, when for_each_mem_cgroup() can't skip it.
5333 */
5334 if (memcg_alloc_shrinker_maps(memcg)) {
5335 mem_cgroup_id_remove(memcg);
5336 return -ENOMEM;
5337 }
5338
73f576c0 5339 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5340 refcount_set(&memcg->id.ref, 1);
73f576c0 5341 css_get(css);
2f7dd7a4 5342 return 0;
8cdea7c0
BS
5343}
5344
eb95419b 5345static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5346{
eb95419b 5347 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5348 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5349
5350 /*
5351 * Unregister events and notify userspace.
5352 * Notify userspace about cgroup removing only after rmdir of cgroup
5353 * directory to avoid race between userspace and kernelspace.
5354 */
fba94807
TH
5355 spin_lock(&memcg->event_list_lock);
5356 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5357 list_del_init(&event->list);
5358 schedule_work(&event->remove);
5359 }
fba94807 5360 spin_unlock(&memcg->event_list_lock);
ec64f515 5361
bf8d5d52 5362 page_counter_set_min(&memcg->memory, 0);
23067153 5363 page_counter_set_low(&memcg->memory, 0);
63677c74 5364
567e9ab2 5365 memcg_offline_kmem(memcg);
52ebea74 5366 wb_memcg_offline(memcg);
73f576c0 5367
591edfb1
RG
5368 drain_all_stock(memcg);
5369
73f576c0 5370 mem_cgroup_id_put(memcg);
df878fb0
KH
5371}
5372
6df38689
VD
5373static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5374{
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5376
5377 invalidate_reclaim_iterators(memcg);
5378}
5379
eb95419b 5380static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5381{
eb95419b 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5383 int __maybe_unused i;
c268e994 5384
97b27821
TH
5385#ifdef CONFIG_CGROUP_WRITEBACK
5386 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5387 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5388#endif
f7e1cb6e 5389 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5390 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5391
0db15298 5392 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5393 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5394
0b8f73e1
JW
5395 vmpressure_cleanup(&memcg->vmpressure);
5396 cancel_work_sync(&memcg->high_work);
5397 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5398 memcg_free_shrinker_maps(memcg);
d886f4e4 5399 memcg_free_kmem(memcg);
0b8f73e1 5400 mem_cgroup_free(memcg);
8cdea7c0
BS
5401}
5402
1ced953b
TH
5403/**
5404 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5405 * @css: the target css
5406 *
5407 * Reset the states of the mem_cgroup associated with @css. This is
5408 * invoked when the userland requests disabling on the default hierarchy
5409 * but the memcg is pinned through dependency. The memcg should stop
5410 * applying policies and should revert to the vanilla state as it may be
5411 * made visible again.
5412 *
5413 * The current implementation only resets the essential configurations.
5414 * This needs to be expanded to cover all the visible parts.
5415 */
5416static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5417{
5418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5419
bbec2e15
RG
5420 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5421 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5422 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5423 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5424 page_counter_set_min(&memcg->memory, 0);
23067153 5425 page_counter_set_low(&memcg->memory, 0);
d1663a90 5426 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5427 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5428 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5429 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5430}
5431
02491447 5432#ifdef CONFIG_MMU
7dc74be0 5433/* Handlers for move charge at task migration. */
854ffa8d 5434static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5435{
05b84301 5436 int ret;
9476db97 5437
d0164adc
MG
5438 /* Try a single bulk charge without reclaim first, kswapd may wake */
5439 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5440 if (!ret) {
854ffa8d 5441 mc.precharge += count;
854ffa8d
DN
5442 return ret;
5443 }
9476db97 5444
3674534b 5445 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5446 while (count--) {
3674534b 5447 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5448 if (ret)
38c5d72f 5449 return ret;
854ffa8d 5450 mc.precharge++;
9476db97 5451 cond_resched();
854ffa8d 5452 }
9476db97 5453 return 0;
4ffef5fe
DN
5454}
5455
4ffef5fe
DN
5456union mc_target {
5457 struct page *page;
02491447 5458 swp_entry_t ent;
4ffef5fe
DN
5459};
5460
4ffef5fe 5461enum mc_target_type {
8d32ff84 5462 MC_TARGET_NONE = 0,
4ffef5fe 5463 MC_TARGET_PAGE,
02491447 5464 MC_TARGET_SWAP,
c733a828 5465 MC_TARGET_DEVICE,
4ffef5fe
DN
5466};
5467
90254a65
DN
5468static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5469 unsigned long addr, pte_t ptent)
4ffef5fe 5470{
25b2995a 5471 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5472
90254a65
DN
5473 if (!page || !page_mapped(page))
5474 return NULL;
5475 if (PageAnon(page)) {
1dfab5ab 5476 if (!(mc.flags & MOVE_ANON))
90254a65 5477 return NULL;
1dfab5ab
JW
5478 } else {
5479 if (!(mc.flags & MOVE_FILE))
5480 return NULL;
5481 }
90254a65
DN
5482 if (!get_page_unless_zero(page))
5483 return NULL;
5484
5485 return page;
5486}
5487
c733a828 5488#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5489static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5490 pte_t ptent, swp_entry_t *entry)
90254a65 5491{
90254a65
DN
5492 struct page *page = NULL;
5493 swp_entry_t ent = pte_to_swp_entry(ptent);
5494
9a137153 5495 if (!(mc.flags & MOVE_ANON))
90254a65 5496 return NULL;
c733a828
JG
5497
5498 /*
5499 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5500 * a device and because they are not accessible by CPU they are store
5501 * as special swap entry in the CPU page table.
5502 */
5503 if (is_device_private_entry(ent)) {
5504 page = device_private_entry_to_page(ent);
5505 /*
5506 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5507 * a refcount of 1 when free (unlike normal page)
5508 */
5509 if (!page_ref_add_unless(page, 1, 1))
5510 return NULL;
5511 return page;
5512 }
5513
9a137153
RC
5514 if (non_swap_entry(ent))
5515 return NULL;
5516
4b91355e
KH
5517 /*
5518 * Because lookup_swap_cache() updates some statistics counter,
5519 * we call find_get_page() with swapper_space directly.
5520 */
f6ab1f7f 5521 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5522 entry->val = ent.val;
90254a65
DN
5523
5524 return page;
5525}
4b91355e
KH
5526#else
5527static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5528 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5529{
5530 return NULL;
5531}
5532#endif
90254a65 5533
87946a72
DN
5534static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5535 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5536{
87946a72
DN
5537 if (!vma->vm_file) /* anonymous vma */
5538 return NULL;
1dfab5ab 5539 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5540 return NULL;
5541
87946a72 5542 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5543 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5544 return find_get_incore_page(vma->vm_file->f_mapping,
5545 linear_page_index(vma, addr));
87946a72
DN
5546}
5547
b1b0deab
CG
5548/**
5549 * mem_cgroup_move_account - move account of the page
5550 * @page: the page
25843c2b 5551 * @compound: charge the page as compound or small page
b1b0deab
CG
5552 * @from: mem_cgroup which the page is moved from.
5553 * @to: mem_cgroup which the page is moved to. @from != @to.
5554 *
3ac808fd 5555 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5556 *
5557 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5558 * from old cgroup.
5559 */
5560static int mem_cgroup_move_account(struct page *page,
f627c2f5 5561 bool compound,
b1b0deab
CG
5562 struct mem_cgroup *from,
5563 struct mem_cgroup *to)
5564{
ae8af438
KK
5565 struct lruvec *from_vec, *to_vec;
5566 struct pglist_data *pgdat;
6c357848 5567 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5568 int ret;
5569
5570 VM_BUG_ON(from == to);
5571 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5572 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5573
5574 /*
6a93ca8f 5575 * Prevent mem_cgroup_migrate() from looking at
45637bab 5576 * page->mem_cgroup of its source page while we change it.
b1b0deab 5577 */
f627c2f5 5578 ret = -EBUSY;
b1b0deab
CG
5579 if (!trylock_page(page))
5580 goto out;
5581
5582 ret = -EINVAL;
5583 if (page->mem_cgroup != from)
5584 goto out_unlock;
5585
ae8af438 5586 pgdat = page_pgdat(page);
867e5e1d
JW
5587 from_vec = mem_cgroup_lruvec(from, pgdat);
5588 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5589
abb242f5 5590 lock_page_memcg(page);
b1b0deab 5591
be5d0a74
JW
5592 if (PageAnon(page)) {
5593 if (page_mapped(page)) {
5594 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5595 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5596 if (PageTransHuge(page)) {
5597 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5598 -nr_pages);
5599 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5600 nr_pages);
5601 }
5602
be5d0a74
JW
5603 }
5604 } else {
0d1c2072
JW
5605 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5606 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5607
5608 if (PageSwapBacked(page)) {
5609 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5610 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5611 }
5612
49e50d27
JW
5613 if (page_mapped(page)) {
5614 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5615 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5616 }
b1b0deab 5617
49e50d27
JW
5618 if (PageDirty(page)) {
5619 struct address_space *mapping = page_mapping(page);
c4843a75 5620
f56753ac 5621 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5622 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5623 -nr_pages);
5624 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5625 nr_pages);
5626 }
c4843a75
GT
5627 }
5628 }
5629
b1b0deab 5630 if (PageWriteback(page)) {
ae8af438
KK
5631 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5632 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5633 }
5634
5635 /*
abb242f5
JW
5636 * All state has been migrated, let's switch to the new memcg.
5637 *
b1b0deab 5638 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5639 * is referenced, charged, isolated, and locked: we can't race
5640 * with (un)charging, migration, LRU putback, or anything else
5641 * that would rely on a stable page->mem_cgroup.
5642 *
5643 * Note that lock_page_memcg is a memcg lock, not a page lock,
5644 * to save space. As soon as we switch page->mem_cgroup to a
5645 * new memcg that isn't locked, the above state can change
5646 * concurrently again. Make sure we're truly done with it.
b1b0deab 5647 */
abb242f5 5648 smp_mb();
b1b0deab 5649
1a3e1f40
JW
5650 css_get(&to->css);
5651 css_put(&from->css);
5652
5653 page->mem_cgroup = to;
87eaceb3 5654
abb242f5 5655 __unlock_page_memcg(from);
b1b0deab
CG
5656
5657 ret = 0;
5658
5659 local_irq_disable();
3fba69a5 5660 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5661 memcg_check_events(to, page);
3fba69a5 5662 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5663 memcg_check_events(from, page);
5664 local_irq_enable();
5665out_unlock:
5666 unlock_page(page);
5667out:
5668 return ret;
5669}
5670
7cf7806c
LR
5671/**
5672 * get_mctgt_type - get target type of moving charge
5673 * @vma: the vma the pte to be checked belongs
5674 * @addr: the address corresponding to the pte to be checked
5675 * @ptent: the pte to be checked
5676 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5677 *
5678 * Returns
5679 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5680 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5681 * move charge. if @target is not NULL, the page is stored in target->page
5682 * with extra refcnt got(Callers should handle it).
5683 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5684 * target for charge migration. if @target is not NULL, the entry is stored
5685 * in target->ent.
25b2995a
CH
5686 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5687 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5688 * For now we such page is charge like a regular page would be as for all
5689 * intent and purposes it is just special memory taking the place of a
5690 * regular page.
c733a828
JG
5691 *
5692 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5693 *
5694 * Called with pte lock held.
5695 */
5696
8d32ff84 5697static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5698 unsigned long addr, pte_t ptent, union mc_target *target)
5699{
5700 struct page *page = NULL;
8d32ff84 5701 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5702 swp_entry_t ent = { .val = 0 };
5703
5704 if (pte_present(ptent))
5705 page = mc_handle_present_pte(vma, addr, ptent);
5706 else if (is_swap_pte(ptent))
48406ef8 5707 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5708 else if (pte_none(ptent))
87946a72 5709 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5710
5711 if (!page && !ent.val)
8d32ff84 5712 return ret;
02491447 5713 if (page) {
02491447 5714 /*
0a31bc97 5715 * Do only loose check w/o serialization.
1306a85a 5716 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5717 * not under LRU exclusion.
02491447 5718 */
1306a85a 5719 if (page->mem_cgroup == mc.from) {
02491447 5720 ret = MC_TARGET_PAGE;
25b2995a 5721 if (is_device_private_page(page))
c733a828 5722 ret = MC_TARGET_DEVICE;
02491447
DN
5723 if (target)
5724 target->page = page;
5725 }
5726 if (!ret || !target)
5727 put_page(page);
5728 }
3e14a57b
HY
5729 /*
5730 * There is a swap entry and a page doesn't exist or isn't charged.
5731 * But we cannot move a tail-page in a THP.
5732 */
5733 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5734 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5735 ret = MC_TARGET_SWAP;
5736 if (target)
5737 target->ent = ent;
4ffef5fe 5738 }
4ffef5fe
DN
5739 return ret;
5740}
5741
12724850
NH
5742#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5743/*
d6810d73
HY
5744 * We don't consider PMD mapped swapping or file mapped pages because THP does
5745 * not support them for now.
12724850
NH
5746 * Caller should make sure that pmd_trans_huge(pmd) is true.
5747 */
5748static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5749 unsigned long addr, pmd_t pmd, union mc_target *target)
5750{
5751 struct page *page = NULL;
12724850
NH
5752 enum mc_target_type ret = MC_TARGET_NONE;
5753
84c3fc4e
ZY
5754 if (unlikely(is_swap_pmd(pmd))) {
5755 VM_BUG_ON(thp_migration_supported() &&
5756 !is_pmd_migration_entry(pmd));
5757 return ret;
5758 }
12724850 5759 page = pmd_page(pmd);
309381fe 5760 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5761 if (!(mc.flags & MOVE_ANON))
12724850 5762 return ret;
1306a85a 5763 if (page->mem_cgroup == mc.from) {
12724850
NH
5764 ret = MC_TARGET_PAGE;
5765 if (target) {
5766 get_page(page);
5767 target->page = page;
5768 }
5769 }
5770 return ret;
5771}
5772#else
5773static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5774 unsigned long addr, pmd_t pmd, union mc_target *target)
5775{
5776 return MC_TARGET_NONE;
5777}
5778#endif
5779
4ffef5fe
DN
5780static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5781 unsigned long addr, unsigned long end,
5782 struct mm_walk *walk)
5783{
26bcd64a 5784 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5785 pte_t *pte;
5786 spinlock_t *ptl;
5787
b6ec57f4
KS
5788 ptl = pmd_trans_huge_lock(pmd, vma);
5789 if (ptl) {
c733a828
JG
5790 /*
5791 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5792 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5793 * this might change.
c733a828 5794 */
12724850
NH
5795 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5796 mc.precharge += HPAGE_PMD_NR;
bf929152 5797 spin_unlock(ptl);
1a5a9906 5798 return 0;
12724850 5799 }
03319327 5800
45f83cef
AA
5801 if (pmd_trans_unstable(pmd))
5802 return 0;
4ffef5fe
DN
5803 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5804 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5805 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5806 mc.precharge++; /* increment precharge temporarily */
5807 pte_unmap_unlock(pte - 1, ptl);
5808 cond_resched();
5809
7dc74be0
DN
5810 return 0;
5811}
5812
7b86ac33
CH
5813static const struct mm_walk_ops precharge_walk_ops = {
5814 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5815};
5816
4ffef5fe
DN
5817static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5818{
5819 unsigned long precharge;
4ffef5fe 5820
d8ed45c5 5821 mmap_read_lock(mm);
7b86ac33 5822 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5823 mmap_read_unlock(mm);
4ffef5fe
DN
5824
5825 precharge = mc.precharge;
5826 mc.precharge = 0;
5827
5828 return precharge;
5829}
5830
4ffef5fe
DN
5831static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5832{
dfe076b0
DN
5833 unsigned long precharge = mem_cgroup_count_precharge(mm);
5834
5835 VM_BUG_ON(mc.moving_task);
5836 mc.moving_task = current;
5837 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5838}
5839
dfe076b0
DN
5840/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5841static void __mem_cgroup_clear_mc(void)
4ffef5fe 5842{
2bd9bb20
KH
5843 struct mem_cgroup *from = mc.from;
5844 struct mem_cgroup *to = mc.to;
5845
4ffef5fe 5846 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5847 if (mc.precharge) {
00501b53 5848 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5849 mc.precharge = 0;
5850 }
5851 /*
5852 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5853 * we must uncharge here.
5854 */
5855 if (mc.moved_charge) {
00501b53 5856 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5857 mc.moved_charge = 0;
4ffef5fe 5858 }
483c30b5
DN
5859 /* we must fixup refcnts and charges */
5860 if (mc.moved_swap) {
483c30b5 5861 /* uncharge swap account from the old cgroup */
ce00a967 5862 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5863 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5864
615d66c3
VD
5865 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5866
05b84301 5867 /*
3e32cb2e
JW
5868 * we charged both to->memory and to->memsw, so we
5869 * should uncharge to->memory.
05b84301 5870 */
ce00a967 5871 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5872 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5873
483c30b5
DN
5874 mc.moved_swap = 0;
5875 }
dfe076b0
DN
5876 memcg_oom_recover(from);
5877 memcg_oom_recover(to);
5878 wake_up_all(&mc.waitq);
5879}
5880
5881static void mem_cgroup_clear_mc(void)
5882{
264a0ae1
TH
5883 struct mm_struct *mm = mc.mm;
5884
dfe076b0
DN
5885 /*
5886 * we must clear moving_task before waking up waiters at the end of
5887 * task migration.
5888 */
5889 mc.moving_task = NULL;
5890 __mem_cgroup_clear_mc();
2bd9bb20 5891 spin_lock(&mc.lock);
4ffef5fe
DN
5892 mc.from = NULL;
5893 mc.to = NULL;
264a0ae1 5894 mc.mm = NULL;
2bd9bb20 5895 spin_unlock(&mc.lock);
264a0ae1
TH
5896
5897 mmput(mm);
4ffef5fe
DN
5898}
5899
1f7dd3e5 5900static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5901{
1f7dd3e5 5902 struct cgroup_subsys_state *css;
eed67d75 5903 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5904 struct mem_cgroup *from;
4530eddb 5905 struct task_struct *leader, *p;
9f2115f9 5906 struct mm_struct *mm;
1dfab5ab 5907 unsigned long move_flags;
9f2115f9 5908 int ret = 0;
7dc74be0 5909
1f7dd3e5
TH
5910 /* charge immigration isn't supported on the default hierarchy */
5911 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5912 return 0;
5913
4530eddb
TH
5914 /*
5915 * Multi-process migrations only happen on the default hierarchy
5916 * where charge immigration is not used. Perform charge
5917 * immigration if @tset contains a leader and whine if there are
5918 * multiple.
5919 */
5920 p = NULL;
1f7dd3e5 5921 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5922 WARN_ON_ONCE(p);
5923 p = leader;
1f7dd3e5 5924 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5925 }
5926 if (!p)
5927 return 0;
5928
1f7dd3e5
TH
5929 /*
5930 * We are now commited to this value whatever it is. Changes in this
5931 * tunable will only affect upcoming migrations, not the current one.
5932 * So we need to save it, and keep it going.
5933 */
5934 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5935 if (!move_flags)
5936 return 0;
5937
9f2115f9
TH
5938 from = mem_cgroup_from_task(p);
5939
5940 VM_BUG_ON(from == memcg);
5941
5942 mm = get_task_mm(p);
5943 if (!mm)
5944 return 0;
5945 /* We move charges only when we move a owner of the mm */
5946 if (mm->owner == p) {
5947 VM_BUG_ON(mc.from);
5948 VM_BUG_ON(mc.to);
5949 VM_BUG_ON(mc.precharge);
5950 VM_BUG_ON(mc.moved_charge);
5951 VM_BUG_ON(mc.moved_swap);
5952
5953 spin_lock(&mc.lock);
264a0ae1 5954 mc.mm = mm;
9f2115f9
TH
5955 mc.from = from;
5956 mc.to = memcg;
5957 mc.flags = move_flags;
5958 spin_unlock(&mc.lock);
5959 /* We set mc.moving_task later */
5960
5961 ret = mem_cgroup_precharge_mc(mm);
5962 if (ret)
5963 mem_cgroup_clear_mc();
264a0ae1
TH
5964 } else {
5965 mmput(mm);
7dc74be0
DN
5966 }
5967 return ret;
5968}
5969
1f7dd3e5 5970static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5971{
4e2f245d
JW
5972 if (mc.to)
5973 mem_cgroup_clear_mc();
7dc74be0
DN
5974}
5975
4ffef5fe
DN
5976static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5977 unsigned long addr, unsigned long end,
5978 struct mm_walk *walk)
7dc74be0 5979{
4ffef5fe 5980 int ret = 0;
26bcd64a 5981 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5982 pte_t *pte;
5983 spinlock_t *ptl;
12724850
NH
5984 enum mc_target_type target_type;
5985 union mc_target target;
5986 struct page *page;
4ffef5fe 5987
b6ec57f4
KS
5988 ptl = pmd_trans_huge_lock(pmd, vma);
5989 if (ptl) {
62ade86a 5990 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5991 spin_unlock(ptl);
12724850
NH
5992 return 0;
5993 }
5994 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5995 if (target_type == MC_TARGET_PAGE) {
5996 page = target.page;
5997 if (!isolate_lru_page(page)) {
f627c2f5 5998 if (!mem_cgroup_move_account(page, true,
1306a85a 5999 mc.from, mc.to)) {
12724850
NH
6000 mc.precharge -= HPAGE_PMD_NR;
6001 mc.moved_charge += HPAGE_PMD_NR;
6002 }
6003 putback_lru_page(page);
6004 }
6005 put_page(page);
c733a828
JG
6006 } else if (target_type == MC_TARGET_DEVICE) {
6007 page = target.page;
6008 if (!mem_cgroup_move_account(page, true,
6009 mc.from, mc.to)) {
6010 mc.precharge -= HPAGE_PMD_NR;
6011 mc.moved_charge += HPAGE_PMD_NR;
6012 }
6013 put_page(page);
12724850 6014 }
bf929152 6015 spin_unlock(ptl);
1a5a9906 6016 return 0;
12724850
NH
6017 }
6018
45f83cef
AA
6019 if (pmd_trans_unstable(pmd))
6020 return 0;
4ffef5fe
DN
6021retry:
6022 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6023 for (; addr != end; addr += PAGE_SIZE) {
6024 pte_t ptent = *(pte++);
c733a828 6025 bool device = false;
02491447 6026 swp_entry_t ent;
4ffef5fe
DN
6027
6028 if (!mc.precharge)
6029 break;
6030
8d32ff84 6031 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6032 case MC_TARGET_DEVICE:
6033 device = true;
e4a9bc58 6034 fallthrough;
4ffef5fe
DN
6035 case MC_TARGET_PAGE:
6036 page = target.page;
53f9263b
KS
6037 /*
6038 * We can have a part of the split pmd here. Moving it
6039 * can be done but it would be too convoluted so simply
6040 * ignore such a partial THP and keep it in original
6041 * memcg. There should be somebody mapping the head.
6042 */
6043 if (PageTransCompound(page))
6044 goto put;
c733a828 6045 if (!device && isolate_lru_page(page))
4ffef5fe 6046 goto put;
f627c2f5
KS
6047 if (!mem_cgroup_move_account(page, false,
6048 mc.from, mc.to)) {
4ffef5fe 6049 mc.precharge--;
854ffa8d
DN
6050 /* we uncharge from mc.from later. */
6051 mc.moved_charge++;
4ffef5fe 6052 }
c733a828
JG
6053 if (!device)
6054 putback_lru_page(page);
8d32ff84 6055put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6056 put_page(page);
6057 break;
02491447
DN
6058 case MC_TARGET_SWAP:
6059 ent = target.ent;
e91cbb42 6060 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6061 mc.precharge--;
8d22a935
HD
6062 mem_cgroup_id_get_many(mc.to, 1);
6063 /* we fixup other refcnts and charges later. */
483c30b5
DN
6064 mc.moved_swap++;
6065 }
02491447 6066 break;
4ffef5fe
DN
6067 default:
6068 break;
6069 }
6070 }
6071 pte_unmap_unlock(pte - 1, ptl);
6072 cond_resched();
6073
6074 if (addr != end) {
6075 /*
6076 * We have consumed all precharges we got in can_attach().
6077 * We try charge one by one, but don't do any additional
6078 * charges to mc.to if we have failed in charge once in attach()
6079 * phase.
6080 */
854ffa8d 6081 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6082 if (!ret)
6083 goto retry;
6084 }
6085
6086 return ret;
6087}
6088
7b86ac33
CH
6089static const struct mm_walk_ops charge_walk_ops = {
6090 .pmd_entry = mem_cgroup_move_charge_pte_range,
6091};
6092
264a0ae1 6093static void mem_cgroup_move_charge(void)
4ffef5fe 6094{
4ffef5fe 6095 lru_add_drain_all();
312722cb 6096 /*
81f8c3a4
JW
6097 * Signal lock_page_memcg() to take the memcg's move_lock
6098 * while we're moving its pages to another memcg. Then wait
6099 * for already started RCU-only updates to finish.
312722cb
JW
6100 */
6101 atomic_inc(&mc.from->moving_account);
6102 synchronize_rcu();
dfe076b0 6103retry:
d8ed45c5 6104 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6105 /*
c1e8d7c6 6106 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6107 * waitq. So we cancel all extra charges, wake up all waiters,
6108 * and retry. Because we cancel precharges, we might not be able
6109 * to move enough charges, but moving charge is a best-effort
6110 * feature anyway, so it wouldn't be a big problem.
6111 */
6112 __mem_cgroup_clear_mc();
6113 cond_resched();
6114 goto retry;
6115 }
26bcd64a
NH
6116 /*
6117 * When we have consumed all precharges and failed in doing
6118 * additional charge, the page walk just aborts.
6119 */
7b86ac33
CH
6120 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6121 NULL);
0247f3f4 6122
d8ed45c5 6123 mmap_read_unlock(mc.mm);
312722cb 6124 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6125}
6126
264a0ae1 6127static void mem_cgroup_move_task(void)
67e465a7 6128{
264a0ae1
TH
6129 if (mc.to) {
6130 mem_cgroup_move_charge();
a433658c 6131 mem_cgroup_clear_mc();
264a0ae1 6132 }
67e465a7 6133}
5cfb80a7 6134#else /* !CONFIG_MMU */
1f7dd3e5 6135static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6136{
6137 return 0;
6138}
1f7dd3e5 6139static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6140{
6141}
264a0ae1 6142static void mem_cgroup_move_task(void)
5cfb80a7
DN
6143{
6144}
6145#endif
67e465a7 6146
677dc973
CD
6147static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6148{
6149 if (value == PAGE_COUNTER_MAX)
6150 seq_puts(m, "max\n");
6151 else
6152 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6153
6154 return 0;
6155}
6156
241994ed
JW
6157static u64 memory_current_read(struct cgroup_subsys_state *css,
6158 struct cftype *cft)
6159{
f5fc3c5d
JW
6160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6161
6162 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6163}
6164
bf8d5d52
RG
6165static int memory_min_show(struct seq_file *m, void *v)
6166{
677dc973
CD
6167 return seq_puts_memcg_tunable(m,
6168 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6169}
6170
6171static ssize_t memory_min_write(struct kernfs_open_file *of,
6172 char *buf, size_t nbytes, loff_t off)
6173{
6174 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6175 unsigned long min;
6176 int err;
6177
6178 buf = strstrip(buf);
6179 err = page_counter_memparse(buf, "max", &min);
6180 if (err)
6181 return err;
6182
6183 page_counter_set_min(&memcg->memory, min);
6184
6185 return nbytes;
6186}
6187
241994ed
JW
6188static int memory_low_show(struct seq_file *m, void *v)
6189{
677dc973
CD
6190 return seq_puts_memcg_tunable(m,
6191 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6192}
6193
6194static ssize_t memory_low_write(struct kernfs_open_file *of,
6195 char *buf, size_t nbytes, loff_t off)
6196{
6197 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6198 unsigned long low;
6199 int err;
6200
6201 buf = strstrip(buf);
d2973697 6202 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6203 if (err)
6204 return err;
6205
23067153 6206 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6207
6208 return nbytes;
6209}
6210
6211static int memory_high_show(struct seq_file *m, void *v)
6212{
d1663a90
JK
6213 return seq_puts_memcg_tunable(m,
6214 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6215}
6216
6217static ssize_t memory_high_write(struct kernfs_open_file *of,
6218 char *buf, size_t nbytes, loff_t off)
6219{
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6221 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6222 bool drained = false;
241994ed
JW
6223 unsigned long high;
6224 int err;
6225
6226 buf = strstrip(buf);
d2973697 6227 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6228 if (err)
6229 return err;
6230
8c8c383c
JW
6231 for (;;) {
6232 unsigned long nr_pages = page_counter_read(&memcg->memory);
6233 unsigned long reclaimed;
6234
6235 if (nr_pages <= high)
6236 break;
6237
6238 if (signal_pending(current))
6239 break;
6240
6241 if (!drained) {
6242 drain_all_stock(memcg);
6243 drained = true;
6244 continue;
6245 }
6246
6247 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6248 GFP_KERNEL, true);
6249
6250 if (!reclaimed && !nr_retries--)
6251 break;
6252 }
588083bb 6253
536d3bf2
RG
6254 page_counter_set_high(&memcg->memory, high);
6255
19ce33ac
JW
6256 memcg_wb_domain_size_changed(memcg);
6257
241994ed
JW
6258 return nbytes;
6259}
6260
6261static int memory_max_show(struct seq_file *m, void *v)
6262{
677dc973
CD
6263 return seq_puts_memcg_tunable(m,
6264 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6265}
6266
6267static ssize_t memory_max_write(struct kernfs_open_file *of,
6268 char *buf, size_t nbytes, loff_t off)
6269{
6270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6271 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6272 bool drained = false;
241994ed
JW
6273 unsigned long max;
6274 int err;
6275
6276 buf = strstrip(buf);
d2973697 6277 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6278 if (err)
6279 return err;
6280
bbec2e15 6281 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6282
6283 for (;;) {
6284 unsigned long nr_pages = page_counter_read(&memcg->memory);
6285
6286 if (nr_pages <= max)
6287 break;
6288
7249c9f0 6289 if (signal_pending(current))
b6e6edcf 6290 break;
b6e6edcf
JW
6291
6292 if (!drained) {
6293 drain_all_stock(memcg);
6294 drained = true;
6295 continue;
6296 }
6297
6298 if (nr_reclaims) {
6299 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6300 GFP_KERNEL, true))
6301 nr_reclaims--;
6302 continue;
6303 }
6304
e27be240 6305 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6306 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6307 break;
6308 }
241994ed 6309
2529bb3a 6310 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6311 return nbytes;
6312}
6313
1e577f97
SB
6314static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6315{
6316 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6317 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6318 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6319 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6320 seq_printf(m, "oom_kill %lu\n",
6321 atomic_long_read(&events[MEMCG_OOM_KILL]));
6322}
6323
241994ed
JW
6324static int memory_events_show(struct seq_file *m, void *v)
6325{
aa9694bb 6326 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6327
1e577f97
SB
6328 __memory_events_show(m, memcg->memory_events);
6329 return 0;
6330}
6331
6332static int memory_events_local_show(struct seq_file *m, void *v)
6333{
6334 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6335
1e577f97 6336 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6337 return 0;
6338}
6339
587d9f72
JW
6340static int memory_stat_show(struct seq_file *m, void *v)
6341{
aa9694bb 6342 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6343 char *buf;
1ff9e6e1 6344
c8713d0b
JW
6345 buf = memory_stat_format(memcg);
6346 if (!buf)
6347 return -ENOMEM;
6348 seq_puts(m, buf);
6349 kfree(buf);
587d9f72
JW
6350 return 0;
6351}
6352
5f9a4f4a
MS
6353#ifdef CONFIG_NUMA
6354static int memory_numa_stat_show(struct seq_file *m, void *v)
6355{
6356 int i;
6357 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6358
6359 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6360 int nid;
6361
6362 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6363 continue;
6364
6365 seq_printf(m, "%s", memory_stats[i].name);
6366 for_each_node_state(nid, N_MEMORY) {
6367 u64 size;
6368 struct lruvec *lruvec;
6369
6370 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6371 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6372 size *= memory_stats[i].ratio;
6373 seq_printf(m, " N%d=%llu", nid, size);
6374 }
6375 seq_putc(m, '\n');
6376 }
6377
6378 return 0;
6379}
6380#endif
6381
3d8b38eb
RG
6382static int memory_oom_group_show(struct seq_file *m, void *v)
6383{
aa9694bb 6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6385
6386 seq_printf(m, "%d\n", memcg->oom_group);
6387
6388 return 0;
6389}
6390
6391static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6392 char *buf, size_t nbytes, loff_t off)
6393{
6394 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6395 int ret, oom_group;
6396
6397 buf = strstrip(buf);
6398 if (!buf)
6399 return -EINVAL;
6400
6401 ret = kstrtoint(buf, 0, &oom_group);
6402 if (ret)
6403 return ret;
6404
6405 if (oom_group != 0 && oom_group != 1)
6406 return -EINVAL;
6407
6408 memcg->oom_group = oom_group;
6409
6410 return nbytes;
6411}
6412
241994ed
JW
6413static struct cftype memory_files[] = {
6414 {
6415 .name = "current",
f5fc3c5d 6416 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6417 .read_u64 = memory_current_read,
6418 },
bf8d5d52
RG
6419 {
6420 .name = "min",
6421 .flags = CFTYPE_NOT_ON_ROOT,
6422 .seq_show = memory_min_show,
6423 .write = memory_min_write,
6424 },
241994ed
JW
6425 {
6426 .name = "low",
6427 .flags = CFTYPE_NOT_ON_ROOT,
6428 .seq_show = memory_low_show,
6429 .write = memory_low_write,
6430 },
6431 {
6432 .name = "high",
6433 .flags = CFTYPE_NOT_ON_ROOT,
6434 .seq_show = memory_high_show,
6435 .write = memory_high_write,
6436 },
6437 {
6438 .name = "max",
6439 .flags = CFTYPE_NOT_ON_ROOT,
6440 .seq_show = memory_max_show,
6441 .write = memory_max_write,
6442 },
6443 {
6444 .name = "events",
6445 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6446 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6447 .seq_show = memory_events_show,
6448 },
1e577f97
SB
6449 {
6450 .name = "events.local",
6451 .flags = CFTYPE_NOT_ON_ROOT,
6452 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6453 .seq_show = memory_events_local_show,
6454 },
587d9f72
JW
6455 {
6456 .name = "stat",
587d9f72
JW
6457 .seq_show = memory_stat_show,
6458 },
5f9a4f4a
MS
6459#ifdef CONFIG_NUMA
6460 {
6461 .name = "numa_stat",
6462 .seq_show = memory_numa_stat_show,
6463 },
6464#endif
3d8b38eb
RG
6465 {
6466 .name = "oom.group",
6467 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6468 .seq_show = memory_oom_group_show,
6469 .write = memory_oom_group_write,
6470 },
241994ed
JW
6471 { } /* terminate */
6472};
6473
073219e9 6474struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6475 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6476 .css_online = mem_cgroup_css_online,
92fb9748 6477 .css_offline = mem_cgroup_css_offline,
6df38689 6478 .css_released = mem_cgroup_css_released,
92fb9748 6479 .css_free = mem_cgroup_css_free,
1ced953b 6480 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6481 .can_attach = mem_cgroup_can_attach,
6482 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6483 .post_attach = mem_cgroup_move_task,
241994ed
JW
6484 .dfl_cftypes = memory_files,
6485 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6486 .early_init = 0,
8cdea7c0 6487};
c077719b 6488
bc50bcc6
JW
6489/*
6490 * This function calculates an individual cgroup's effective
6491 * protection which is derived from its own memory.min/low, its
6492 * parent's and siblings' settings, as well as the actual memory
6493 * distribution in the tree.
6494 *
6495 * The following rules apply to the effective protection values:
6496 *
6497 * 1. At the first level of reclaim, effective protection is equal to
6498 * the declared protection in memory.min and memory.low.
6499 *
6500 * 2. To enable safe delegation of the protection configuration, at
6501 * subsequent levels the effective protection is capped to the
6502 * parent's effective protection.
6503 *
6504 * 3. To make complex and dynamic subtrees easier to configure, the
6505 * user is allowed to overcommit the declared protection at a given
6506 * level. If that is the case, the parent's effective protection is
6507 * distributed to the children in proportion to how much protection
6508 * they have declared and how much of it they are utilizing.
6509 *
6510 * This makes distribution proportional, but also work-conserving:
6511 * if one cgroup claims much more protection than it uses memory,
6512 * the unused remainder is available to its siblings.
6513 *
6514 * 4. Conversely, when the declared protection is undercommitted at a
6515 * given level, the distribution of the larger parental protection
6516 * budget is NOT proportional. A cgroup's protection from a sibling
6517 * is capped to its own memory.min/low setting.
6518 *
8a931f80
JW
6519 * 5. However, to allow protecting recursive subtrees from each other
6520 * without having to declare each individual cgroup's fixed share
6521 * of the ancestor's claim to protection, any unutilized -
6522 * "floating" - protection from up the tree is distributed in
6523 * proportion to each cgroup's *usage*. This makes the protection
6524 * neutral wrt sibling cgroups and lets them compete freely over
6525 * the shared parental protection budget, but it protects the
6526 * subtree as a whole from neighboring subtrees.
6527 *
6528 * Note that 4. and 5. are not in conflict: 4. is about protecting
6529 * against immediate siblings whereas 5. is about protecting against
6530 * neighboring subtrees.
bc50bcc6
JW
6531 */
6532static unsigned long effective_protection(unsigned long usage,
8a931f80 6533 unsigned long parent_usage,
bc50bcc6
JW
6534 unsigned long setting,
6535 unsigned long parent_effective,
6536 unsigned long siblings_protected)
6537{
6538 unsigned long protected;
8a931f80 6539 unsigned long ep;
bc50bcc6
JW
6540
6541 protected = min(usage, setting);
6542 /*
6543 * If all cgroups at this level combined claim and use more
6544 * protection then what the parent affords them, distribute
6545 * shares in proportion to utilization.
6546 *
6547 * We are using actual utilization rather than the statically
6548 * claimed protection in order to be work-conserving: claimed
6549 * but unused protection is available to siblings that would
6550 * otherwise get a smaller chunk than what they claimed.
6551 */
6552 if (siblings_protected > parent_effective)
6553 return protected * parent_effective / siblings_protected;
6554
6555 /*
6556 * Ok, utilized protection of all children is within what the
6557 * parent affords them, so we know whatever this child claims
6558 * and utilizes is effectively protected.
6559 *
6560 * If there is unprotected usage beyond this value, reclaim
6561 * will apply pressure in proportion to that amount.
6562 *
6563 * If there is unutilized protection, the cgroup will be fully
6564 * shielded from reclaim, but we do return a smaller value for
6565 * protection than what the group could enjoy in theory. This
6566 * is okay. With the overcommit distribution above, effective
6567 * protection is always dependent on how memory is actually
6568 * consumed among the siblings anyway.
6569 */
8a931f80
JW
6570 ep = protected;
6571
6572 /*
6573 * If the children aren't claiming (all of) the protection
6574 * afforded to them by the parent, distribute the remainder in
6575 * proportion to the (unprotected) memory of each cgroup. That
6576 * way, cgroups that aren't explicitly prioritized wrt each
6577 * other compete freely over the allowance, but they are
6578 * collectively protected from neighboring trees.
6579 *
6580 * We're using unprotected memory for the weight so that if
6581 * some cgroups DO claim explicit protection, we don't protect
6582 * the same bytes twice.
cd324edc
JW
6583 *
6584 * Check both usage and parent_usage against the respective
6585 * protected values. One should imply the other, but they
6586 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6587 */
6588 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6589 return ep;
cd324edc
JW
6590 if (parent_effective > siblings_protected &&
6591 parent_usage > siblings_protected &&
6592 usage > protected) {
8a931f80
JW
6593 unsigned long unclaimed;
6594
6595 unclaimed = parent_effective - siblings_protected;
6596 unclaimed *= usage - protected;
6597 unclaimed /= parent_usage - siblings_protected;
6598
6599 ep += unclaimed;
6600 }
6601
6602 return ep;
bc50bcc6
JW
6603}
6604
241994ed 6605/**
bf8d5d52 6606 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6607 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6608 * @memcg: the memory cgroup to check
6609 *
23067153
RG
6610 * WARNING: This function is not stateless! It can only be used as part
6611 * of a top-down tree iteration, not for isolated queries.
241994ed 6612 */
45c7f7e1
CD
6613void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6614 struct mem_cgroup *memcg)
241994ed 6615{
8a931f80 6616 unsigned long usage, parent_usage;
23067153
RG
6617 struct mem_cgroup *parent;
6618
241994ed 6619 if (mem_cgroup_disabled())
45c7f7e1 6620 return;
241994ed 6621
34c81057
SC
6622 if (!root)
6623 root = root_mem_cgroup;
22f7496f
YS
6624
6625 /*
6626 * Effective values of the reclaim targets are ignored so they
6627 * can be stale. Have a look at mem_cgroup_protection for more
6628 * details.
6629 * TODO: calculation should be more robust so that we do not need
6630 * that special casing.
6631 */
34c81057 6632 if (memcg == root)
45c7f7e1 6633 return;
241994ed 6634
23067153 6635 usage = page_counter_read(&memcg->memory);
bf8d5d52 6636 if (!usage)
45c7f7e1 6637 return;
bf8d5d52 6638
bf8d5d52 6639 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6640 /* No parent means a non-hierarchical mode on v1 memcg */
6641 if (!parent)
45c7f7e1 6642 return;
df2a4196 6643
bc50bcc6 6644 if (parent == root) {
c3d53200 6645 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6646 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6647 return;
bf8d5d52
RG
6648 }
6649
8a931f80
JW
6650 parent_usage = page_counter_read(&parent->memory);
6651
b3a7822e 6652 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6653 READ_ONCE(memcg->memory.min),
6654 READ_ONCE(parent->memory.emin),
b3a7822e 6655 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6656
b3a7822e 6657 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6658 READ_ONCE(memcg->memory.low),
6659 READ_ONCE(parent->memory.elow),
b3a7822e 6660 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6661}
6662
00501b53 6663/**
f0e45fb4 6664 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6665 * @page: page to charge
6666 * @mm: mm context of the victim
6667 * @gfp_mask: reclaim mode
00501b53
JW
6668 *
6669 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6670 * pages according to @gfp_mask if necessary.
6671 *
f0e45fb4 6672 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6673 */
d9eb1ea2 6674int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6675{
6c357848 6676 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6677 struct mem_cgroup *memcg = NULL;
00501b53
JW
6678 int ret = 0;
6679
6680 if (mem_cgroup_disabled())
6681 goto out;
6682
6683 if (PageSwapCache(page)) {
2d1c4980
JW
6684 swp_entry_t ent = { .val = page_private(page), };
6685 unsigned short id;
6686
00501b53
JW
6687 /*
6688 * Every swap fault against a single page tries to charge the
6689 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6690 * already charged pages, too. page->mem_cgroup is protected
6691 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6692 * in turn serializes uncharging.
6693 */
e993d905 6694 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6695 if (compound_head(page)->mem_cgroup)
00501b53 6696 goto out;
e993d905 6697
2d1c4980
JW
6698 id = lookup_swap_cgroup_id(ent);
6699 rcu_read_lock();
6700 memcg = mem_cgroup_from_id(id);
6701 if (memcg && !css_tryget_online(&memcg->css))
6702 memcg = NULL;
6703 rcu_read_unlock();
00501b53
JW
6704 }
6705
00501b53
JW
6706 if (!memcg)
6707 memcg = get_mem_cgroup_from_mm(mm);
6708
6709 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6710 if (ret)
6711 goto out_put;
00501b53 6712
1a3e1f40 6713 css_get(&memcg->css);
d9eb1ea2 6714 commit_charge(page, memcg);
6abb5a86 6715
6abb5a86 6716 local_irq_disable();
3fba69a5 6717 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6718 memcg_check_events(memcg, page);
6719 local_irq_enable();
00501b53 6720
2d1c4980 6721 if (PageSwapCache(page)) {
00501b53
JW
6722 swp_entry_t entry = { .val = page_private(page) };
6723 /*
6724 * The swap entry might not get freed for a long time,
6725 * let's not wait for it. The page already received a
6726 * memory+swap charge, drop the swap entry duplicate.
6727 */
38d8b4e6 6728 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6729 }
00501b53 6730
f0e45fb4
JW
6731out_put:
6732 css_put(&memcg->css);
6733out:
6734 return ret;
3fea5a49
JW
6735}
6736
a9d5adee
JG
6737struct uncharge_gather {
6738 struct mem_cgroup *memcg;
9f762dbe 6739 unsigned long nr_pages;
a9d5adee 6740 unsigned long pgpgout;
a9d5adee 6741 unsigned long nr_kmem;
a9d5adee
JG
6742 struct page *dummy_page;
6743};
6744
6745static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6746{
a9d5adee
JG
6747 memset(ug, 0, sizeof(*ug));
6748}
6749
6750static void uncharge_batch(const struct uncharge_gather *ug)
6751{
747db954
JW
6752 unsigned long flags;
6753
a9d5adee 6754 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6755 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6756 if (do_memsw_account())
9f762dbe 6757 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6759 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6760 memcg_oom_recover(ug->memcg);
ce00a967 6761 }
747db954
JW
6762
6763 local_irq_save(flags);
c9019e9b 6764 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6765 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6766 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6767 local_irq_restore(flags);
f1796544
MH
6768
6769 /* drop reference from uncharge_page */
6770 css_put(&ug->memcg->css);
a9d5adee
JG
6771}
6772
6773static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6774{
9f762dbe
JW
6775 unsigned long nr_pages;
6776
a9d5adee 6777 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6778
6779 if (!page->mem_cgroup)
6780 return;
6781
6782 /*
6783 * Nobody should be changing or seriously looking at
6784 * page->mem_cgroup at this point, we have fully
6785 * exclusive access to the page.
6786 */
6787
6788 if (ug->memcg != page->mem_cgroup) {
6789 if (ug->memcg) {
6790 uncharge_batch(ug);
6791 uncharge_gather_clear(ug);
6792 }
6793 ug->memcg = page->mem_cgroup;
f1796544
MH
6794
6795 /* pairs with css_put in uncharge_batch */
6796 css_get(&ug->memcg->css);
a9d5adee
JG
6797 }
6798
9f762dbe
JW
6799 nr_pages = compound_nr(page);
6800 ug->nr_pages += nr_pages;
a9d5adee 6801
9f762dbe 6802 if (!PageKmemcg(page)) {
a9d5adee
JG
6803 ug->pgpgout++;
6804 } else {
9f762dbe 6805 ug->nr_kmem += nr_pages;
a9d5adee
JG
6806 __ClearPageKmemcg(page);
6807 }
6808
6809 ug->dummy_page = page;
6810 page->mem_cgroup = NULL;
1a3e1f40 6811 css_put(&ug->memcg->css);
747db954
JW
6812}
6813
6814static void uncharge_list(struct list_head *page_list)
6815{
a9d5adee 6816 struct uncharge_gather ug;
747db954 6817 struct list_head *next;
a9d5adee
JG
6818
6819 uncharge_gather_clear(&ug);
747db954 6820
8b592656
JW
6821 /*
6822 * Note that the list can be a single page->lru; hence the
6823 * do-while loop instead of a simple list_for_each_entry().
6824 */
747db954
JW
6825 next = page_list->next;
6826 do {
a9d5adee
JG
6827 struct page *page;
6828
747db954
JW
6829 page = list_entry(next, struct page, lru);
6830 next = page->lru.next;
6831
a9d5adee 6832 uncharge_page(page, &ug);
747db954
JW
6833 } while (next != page_list);
6834
a9d5adee
JG
6835 if (ug.memcg)
6836 uncharge_batch(&ug);
747db954
JW
6837}
6838
0a31bc97
JW
6839/**
6840 * mem_cgroup_uncharge - uncharge a page
6841 * @page: page to uncharge
6842 *
f0e45fb4 6843 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6844 */
6845void mem_cgroup_uncharge(struct page *page)
6846{
a9d5adee
JG
6847 struct uncharge_gather ug;
6848
0a31bc97
JW
6849 if (mem_cgroup_disabled())
6850 return;
6851
747db954 6852 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6853 if (!page->mem_cgroup)
0a31bc97
JW
6854 return;
6855
a9d5adee
JG
6856 uncharge_gather_clear(&ug);
6857 uncharge_page(page, &ug);
6858 uncharge_batch(&ug);
747db954 6859}
0a31bc97 6860
747db954
JW
6861/**
6862 * mem_cgroup_uncharge_list - uncharge a list of page
6863 * @page_list: list of pages to uncharge
6864 *
6865 * Uncharge a list of pages previously charged with
f0e45fb4 6866 * mem_cgroup_charge().
747db954
JW
6867 */
6868void mem_cgroup_uncharge_list(struct list_head *page_list)
6869{
6870 if (mem_cgroup_disabled())
6871 return;
0a31bc97 6872
747db954
JW
6873 if (!list_empty(page_list))
6874 uncharge_list(page_list);
0a31bc97
JW
6875}
6876
6877/**
6a93ca8f
JW
6878 * mem_cgroup_migrate - charge a page's replacement
6879 * @oldpage: currently circulating page
6880 * @newpage: replacement page
0a31bc97 6881 *
6a93ca8f
JW
6882 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6883 * be uncharged upon free.
0a31bc97
JW
6884 *
6885 * Both pages must be locked, @newpage->mapping must be set up.
6886 */
6a93ca8f 6887void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6888{
29833315 6889 struct mem_cgroup *memcg;
44b7a8d3 6890 unsigned int nr_pages;
d93c4130 6891 unsigned long flags;
0a31bc97
JW
6892
6893 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6894 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6895 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6896 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6897 newpage);
0a31bc97
JW
6898
6899 if (mem_cgroup_disabled())
6900 return;
6901
6902 /* Page cache replacement: new page already charged? */
1306a85a 6903 if (newpage->mem_cgroup)
0a31bc97
JW
6904 return;
6905
45637bab 6906 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6907 memcg = oldpage->mem_cgroup;
29833315 6908 if (!memcg)
0a31bc97
JW
6909 return;
6910
44b7a8d3 6911 /* Force-charge the new page. The old one will be freed soon */
6c357848 6912 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6913
6914 page_counter_charge(&memcg->memory, nr_pages);
6915 if (do_memsw_account())
6916 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6917
1a3e1f40 6918 css_get(&memcg->css);
d9eb1ea2 6919 commit_charge(newpage, memcg);
44b7a8d3 6920
d93c4130 6921 local_irq_save(flags);
3fba69a5 6922 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6923 memcg_check_events(memcg, newpage);
d93c4130 6924 local_irq_restore(flags);
0a31bc97
JW
6925}
6926
ef12947c 6927DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6928EXPORT_SYMBOL(memcg_sockets_enabled_key);
6929
2d758073 6930void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6931{
6932 struct mem_cgroup *memcg;
6933
2d758073
JW
6934 if (!mem_cgroup_sockets_enabled)
6935 return;
6936
e876ecc6
SB
6937 /* Do not associate the sock with unrelated interrupted task's memcg. */
6938 if (in_interrupt())
6939 return;
6940
11092087
JW
6941 rcu_read_lock();
6942 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6943 if (memcg == root_mem_cgroup)
6944 goto out;
0db15298 6945 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6946 goto out;
8965aa28 6947 if (css_tryget(&memcg->css))
11092087 6948 sk->sk_memcg = memcg;
f7e1cb6e 6949out:
11092087
JW
6950 rcu_read_unlock();
6951}
11092087 6952
2d758073 6953void mem_cgroup_sk_free(struct sock *sk)
11092087 6954{
2d758073
JW
6955 if (sk->sk_memcg)
6956 css_put(&sk->sk_memcg->css);
11092087
JW
6957}
6958
6959/**
6960 * mem_cgroup_charge_skmem - charge socket memory
6961 * @memcg: memcg to charge
6962 * @nr_pages: number of pages to charge
6963 *
6964 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6965 * @memcg's configured limit, %false if the charge had to be forced.
6966 */
6967bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6968{
f7e1cb6e 6969 gfp_t gfp_mask = GFP_KERNEL;
11092087 6970
f7e1cb6e 6971 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6972 struct page_counter *fail;
f7e1cb6e 6973
0db15298
JW
6974 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6975 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6976 return true;
6977 }
0db15298
JW
6978 page_counter_charge(&memcg->tcpmem, nr_pages);
6979 memcg->tcpmem_pressure = 1;
f7e1cb6e 6980 return false;
11092087 6981 }
d886f4e4 6982
f7e1cb6e
JW
6983 /* Don't block in the packet receive path */
6984 if (in_softirq())
6985 gfp_mask = GFP_NOWAIT;
6986
c9019e9b 6987 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6988
f7e1cb6e
JW
6989 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6990 return true;
6991
6992 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6993 return false;
6994}
6995
6996/**
6997 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6998 * @memcg: memcg to uncharge
6999 * @nr_pages: number of pages to uncharge
11092087
JW
7000 */
7001void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7002{
f7e1cb6e 7003 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7004 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7005 return;
7006 }
d886f4e4 7007
c9019e9b 7008 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7009
475d0487 7010 refill_stock(memcg, nr_pages);
11092087
JW
7011}
7012
f7e1cb6e
JW
7013static int __init cgroup_memory(char *s)
7014{
7015 char *token;
7016
7017 while ((token = strsep(&s, ",")) != NULL) {
7018 if (!*token)
7019 continue;
7020 if (!strcmp(token, "nosocket"))
7021 cgroup_memory_nosocket = true;
04823c83
VD
7022 if (!strcmp(token, "nokmem"))
7023 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7024 }
7025 return 0;
7026}
7027__setup("cgroup.memory=", cgroup_memory);
11092087 7028
2d11085e 7029/*
1081312f
MH
7030 * subsys_initcall() for memory controller.
7031 *
308167fc
SAS
7032 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7033 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7034 * basically everything that doesn't depend on a specific mem_cgroup structure
7035 * should be initialized from here.
2d11085e
MH
7036 */
7037static int __init mem_cgroup_init(void)
7038{
95a045f6
JW
7039 int cpu, node;
7040
308167fc
SAS
7041 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7042 memcg_hotplug_cpu_dead);
95a045f6
JW
7043
7044 for_each_possible_cpu(cpu)
7045 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7046 drain_local_stock);
7047
7048 for_each_node(node) {
7049 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7050
7051 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7052 node_online(node) ? node : NUMA_NO_NODE);
7053
ef8f2327 7054 rtpn->rb_root = RB_ROOT;
fa90b2fd 7055 rtpn->rb_rightmost = NULL;
ef8f2327 7056 spin_lock_init(&rtpn->lock);
95a045f6
JW
7057 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7058 }
7059
2d11085e
MH
7060 return 0;
7061}
7062subsys_initcall(mem_cgroup_init);
21afa38e
JW
7063
7064#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7065static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7066{
1c2d479a 7067 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7068 /*
7069 * The root cgroup cannot be destroyed, so it's refcount must
7070 * always be >= 1.
7071 */
7072 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7073 VM_BUG_ON(1);
7074 break;
7075 }
7076 memcg = parent_mem_cgroup(memcg);
7077 if (!memcg)
7078 memcg = root_mem_cgroup;
7079 }
7080 return memcg;
7081}
7082
21afa38e
JW
7083/**
7084 * mem_cgroup_swapout - transfer a memsw charge to swap
7085 * @page: page whose memsw charge to transfer
7086 * @entry: swap entry to move the charge to
7087 *
7088 * Transfer the memsw charge of @page to @entry.
7089 */
7090void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7091{
1f47b61f 7092 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7093 unsigned int nr_entries;
21afa38e
JW
7094 unsigned short oldid;
7095
7096 VM_BUG_ON_PAGE(PageLRU(page), page);
7097 VM_BUG_ON_PAGE(page_count(page), page);
7098
2d1c4980 7099 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7100 return;
7101
7102 memcg = page->mem_cgroup;
7103
7104 /* Readahead page, never charged */
7105 if (!memcg)
7106 return;
7107
1f47b61f
VD
7108 /*
7109 * In case the memcg owning these pages has been offlined and doesn't
7110 * have an ID allocated to it anymore, charge the closest online
7111 * ancestor for the swap instead and transfer the memory+swap charge.
7112 */
7113 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7114 nr_entries = thp_nr_pages(page);
d6810d73
HY
7115 /* Get references for the tail pages, too */
7116 if (nr_entries > 1)
7117 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7118 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7119 nr_entries);
21afa38e 7120 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7121 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7122
7123 page->mem_cgroup = NULL;
7124
7125 if (!mem_cgroup_is_root(memcg))
d6810d73 7126 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7127
2d1c4980 7128 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7129 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7130 page_counter_charge(&swap_memcg->memsw, nr_entries);
7131 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7132 }
7133
ce9ce665
SAS
7134 /*
7135 * Interrupts should be disabled here because the caller holds the
b93b0163 7136 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7137 * important here to have the interrupts disabled because it is the
b93b0163 7138 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7139 */
7140 VM_BUG_ON(!irqs_disabled());
3fba69a5 7141 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7142 memcg_check_events(memcg, page);
73f576c0 7143
1a3e1f40 7144 css_put(&memcg->css);
21afa38e
JW
7145}
7146
38d8b4e6
HY
7147/**
7148 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7149 * @page: page being added to swap
7150 * @entry: swap entry to charge
7151 *
38d8b4e6 7152 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7153 *
7154 * Returns 0 on success, -ENOMEM on failure.
7155 */
7156int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7157{
6c357848 7158 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7159 struct page_counter *counter;
38d8b4e6 7160 struct mem_cgroup *memcg;
37e84351
VD
7161 unsigned short oldid;
7162
2d1c4980 7163 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7164 return 0;
7165
7166 memcg = page->mem_cgroup;
7167
7168 /* Readahead page, never charged */
7169 if (!memcg)
7170 return 0;
7171
f3a53a3a
TH
7172 if (!entry.val) {
7173 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7174 return 0;
f3a53a3a 7175 }
bb98f2c5 7176
1f47b61f
VD
7177 memcg = mem_cgroup_id_get_online(memcg);
7178
2d1c4980 7179 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7180 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7181 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7182 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7183 mem_cgroup_id_put(memcg);
37e84351 7184 return -ENOMEM;
1f47b61f 7185 }
37e84351 7186
38d8b4e6
HY
7187 /* Get references for the tail pages, too */
7188 if (nr_pages > 1)
7189 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7190 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7191 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7192 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7193
37e84351
VD
7194 return 0;
7195}
7196
21afa38e 7197/**
38d8b4e6 7198 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7199 * @entry: swap entry to uncharge
38d8b4e6 7200 * @nr_pages: the amount of swap space to uncharge
21afa38e 7201 */
38d8b4e6 7202void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7203{
7204 struct mem_cgroup *memcg;
7205 unsigned short id;
7206
38d8b4e6 7207 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7208 rcu_read_lock();
adbe427b 7209 memcg = mem_cgroup_from_id(id);
21afa38e 7210 if (memcg) {
2d1c4980 7211 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7212 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7213 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7214 else
38d8b4e6 7215 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7216 }
c9019e9b 7217 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7218 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7219 }
7220 rcu_read_unlock();
7221}
7222
d8b38438
VD
7223long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7224{
7225 long nr_swap_pages = get_nr_swap_pages();
7226
eccb52e7 7227 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7228 return nr_swap_pages;
7229 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7230 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7231 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7232 page_counter_read(&memcg->swap));
7233 return nr_swap_pages;
7234}
7235
5ccc5aba
VD
7236bool mem_cgroup_swap_full(struct page *page)
7237{
7238 struct mem_cgroup *memcg;
7239
7240 VM_BUG_ON_PAGE(!PageLocked(page), page);
7241
7242 if (vm_swap_full())
7243 return true;
eccb52e7 7244 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7245 return false;
7246
7247 memcg = page->mem_cgroup;
7248 if (!memcg)
7249 return false;
7250
4b82ab4f
JK
7251 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7252 unsigned long usage = page_counter_read(&memcg->swap);
7253
7254 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7255 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7256 return true;
4b82ab4f 7257 }
5ccc5aba
VD
7258
7259 return false;
7260}
7261
eccb52e7 7262static int __init setup_swap_account(char *s)
21afa38e
JW
7263{
7264 if (!strcmp(s, "1"))
eccb52e7 7265 cgroup_memory_noswap = 0;
21afa38e 7266 else if (!strcmp(s, "0"))
eccb52e7 7267 cgroup_memory_noswap = 1;
21afa38e
JW
7268 return 1;
7269}
eccb52e7 7270__setup("swapaccount=", setup_swap_account);
21afa38e 7271
37e84351
VD
7272static u64 swap_current_read(struct cgroup_subsys_state *css,
7273 struct cftype *cft)
7274{
7275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7276
7277 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7278}
7279
4b82ab4f
JK
7280static int swap_high_show(struct seq_file *m, void *v)
7281{
7282 return seq_puts_memcg_tunable(m,
7283 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7284}
7285
7286static ssize_t swap_high_write(struct kernfs_open_file *of,
7287 char *buf, size_t nbytes, loff_t off)
7288{
7289 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7290 unsigned long high;
7291 int err;
7292
7293 buf = strstrip(buf);
7294 err = page_counter_memparse(buf, "max", &high);
7295 if (err)
7296 return err;
7297
7298 page_counter_set_high(&memcg->swap, high);
7299
7300 return nbytes;
7301}
7302
37e84351
VD
7303static int swap_max_show(struct seq_file *m, void *v)
7304{
677dc973
CD
7305 return seq_puts_memcg_tunable(m,
7306 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7307}
7308
7309static ssize_t swap_max_write(struct kernfs_open_file *of,
7310 char *buf, size_t nbytes, loff_t off)
7311{
7312 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7313 unsigned long max;
7314 int err;
7315
7316 buf = strstrip(buf);
7317 err = page_counter_memparse(buf, "max", &max);
7318 if (err)
7319 return err;
7320
be09102b 7321 xchg(&memcg->swap.max, max);
37e84351
VD
7322
7323 return nbytes;
7324}
7325
f3a53a3a
TH
7326static int swap_events_show(struct seq_file *m, void *v)
7327{
aa9694bb 7328 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7329
4b82ab4f
JK
7330 seq_printf(m, "high %lu\n",
7331 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7332 seq_printf(m, "max %lu\n",
7333 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7334 seq_printf(m, "fail %lu\n",
7335 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7336
7337 return 0;
7338}
7339
37e84351
VD
7340static struct cftype swap_files[] = {
7341 {
7342 .name = "swap.current",
7343 .flags = CFTYPE_NOT_ON_ROOT,
7344 .read_u64 = swap_current_read,
7345 },
4b82ab4f
JK
7346 {
7347 .name = "swap.high",
7348 .flags = CFTYPE_NOT_ON_ROOT,
7349 .seq_show = swap_high_show,
7350 .write = swap_high_write,
7351 },
37e84351
VD
7352 {
7353 .name = "swap.max",
7354 .flags = CFTYPE_NOT_ON_ROOT,
7355 .seq_show = swap_max_show,
7356 .write = swap_max_write,
7357 },
f3a53a3a
TH
7358 {
7359 .name = "swap.events",
7360 .flags = CFTYPE_NOT_ON_ROOT,
7361 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7362 .seq_show = swap_events_show,
7363 },
37e84351
VD
7364 { } /* terminate */
7365};
7366
eccb52e7 7367static struct cftype memsw_files[] = {
21afa38e
JW
7368 {
7369 .name = "memsw.usage_in_bytes",
7370 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7371 .read_u64 = mem_cgroup_read_u64,
7372 },
7373 {
7374 .name = "memsw.max_usage_in_bytes",
7375 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7376 .write = mem_cgroup_reset,
7377 .read_u64 = mem_cgroup_read_u64,
7378 },
7379 {
7380 .name = "memsw.limit_in_bytes",
7381 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7382 .write = mem_cgroup_write,
7383 .read_u64 = mem_cgroup_read_u64,
7384 },
7385 {
7386 .name = "memsw.failcnt",
7387 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7388 .write = mem_cgroup_reset,
7389 .read_u64 = mem_cgroup_read_u64,
7390 },
7391 { }, /* terminate */
7392};
7393
82ff165c
BS
7394/*
7395 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7396 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7397 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7398 * boot parameter. This may result in premature OOPS inside
7399 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7400 */
21afa38e
JW
7401static int __init mem_cgroup_swap_init(void)
7402{
2d1c4980
JW
7403 /* No memory control -> no swap control */
7404 if (mem_cgroup_disabled())
7405 cgroup_memory_noswap = true;
7406
7407 if (cgroup_memory_noswap)
eccb52e7
JW
7408 return 0;
7409
7410 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7411 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7412
21afa38e
JW
7413 return 0;
7414}
82ff165c 7415core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7416
7417#endif /* CONFIG_MEMCG_SWAP */