]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory-failure.c
HWPOISON: Improve comments in memory-failure.c
[thirdparty/linux.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
23 *
24 * There are several operations here with exponential complexity because
25 * of unsuitable VM data structures. For example the operation to map back
26 * from RMAP chains to processes has to walk the complete process list and
27 * has non linear complexity with the number. But since memory corruptions
28 * are rare we hope to get away with this. This avoids impacting the core
29 * VM.
6a46079c
AK
30 */
31
32/*
33 * Notebook:
34 * - hugetlb needs more code
35 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
36 * - pass bad pages to kdump next kernel
37 */
38#define DEBUG 1 /* remove me in 2.6.34 */
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c
AK
45#include <linux/rmap.h>
46#include <linux/pagemap.h>
47#include <linux/swap.h>
48#include <linux/backing-dev.h>
facb6011
AK
49#include <linux/migrate.h>
50#include <linux/page-isolation.h>
51#include <linux/suspend.h>
5a0e3ad6 52#include <linux/slab.h>
bf998156 53#include <linux/swapops.h>
7af446a8 54#include <linux/hugetlb.h>
6a46079c
AK
55#include "internal.h"
56
57int sysctl_memory_failure_early_kill __read_mostly = 0;
58
59int sysctl_memory_failure_recovery __read_mostly = 1;
60
61atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
62
27df5068
AK
63#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
64
1bfe5feb 65u32 hwpoison_filter_enable = 0;
7c116f2b
WF
66u32 hwpoison_filter_dev_major = ~0U;
67u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
68u64 hwpoison_filter_flags_mask;
69u64 hwpoison_filter_flags_value;
1bfe5feb 70EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
71EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
72EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
73EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
74EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
75
76static int hwpoison_filter_dev(struct page *p)
77{
78 struct address_space *mapping;
79 dev_t dev;
80
81 if (hwpoison_filter_dev_major == ~0U &&
82 hwpoison_filter_dev_minor == ~0U)
83 return 0;
84
85 /*
1c80b990 86 * page_mapping() does not accept slab pages.
7c116f2b
WF
87 */
88 if (PageSlab(p))
89 return -EINVAL;
90
91 mapping = page_mapping(p);
92 if (mapping == NULL || mapping->host == NULL)
93 return -EINVAL;
94
95 dev = mapping->host->i_sb->s_dev;
96 if (hwpoison_filter_dev_major != ~0U &&
97 hwpoison_filter_dev_major != MAJOR(dev))
98 return -EINVAL;
99 if (hwpoison_filter_dev_minor != ~0U &&
100 hwpoison_filter_dev_minor != MINOR(dev))
101 return -EINVAL;
102
103 return 0;
104}
105
478c5ffc
WF
106static int hwpoison_filter_flags(struct page *p)
107{
108 if (!hwpoison_filter_flags_mask)
109 return 0;
110
111 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
112 hwpoison_filter_flags_value)
113 return 0;
114 else
115 return -EINVAL;
116}
117
4fd466eb
AK
118/*
119 * This allows stress tests to limit test scope to a collection of tasks
120 * by putting them under some memcg. This prevents killing unrelated/important
121 * processes such as /sbin/init. Note that the target task may share clean
122 * pages with init (eg. libc text), which is harmless. If the target task
123 * share _dirty_ pages with another task B, the test scheme must make sure B
124 * is also included in the memcg. At last, due to race conditions this filter
125 * can only guarantee that the page either belongs to the memcg tasks, or is
126 * a freed page.
127 */
128#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
129u64 hwpoison_filter_memcg;
130EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
131static int hwpoison_filter_task(struct page *p)
132{
133 struct mem_cgroup *mem;
134 struct cgroup_subsys_state *css;
135 unsigned long ino;
136
137 if (!hwpoison_filter_memcg)
138 return 0;
139
140 mem = try_get_mem_cgroup_from_page(p);
141 if (!mem)
142 return -EINVAL;
143
144 css = mem_cgroup_css(mem);
145 /* root_mem_cgroup has NULL dentries */
146 if (!css->cgroup->dentry)
147 return -EINVAL;
148
149 ino = css->cgroup->dentry->d_inode->i_ino;
150 css_put(css);
151
152 if (ino != hwpoison_filter_memcg)
153 return -EINVAL;
154
155 return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
7c116f2b
WF
161int hwpoison_filter(struct page *p)
162{
1bfe5feb
HL
163 if (!hwpoison_filter_enable)
164 return 0;
165
7c116f2b
WF
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
478c5ffc
WF
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
4fd466eb
AK
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
7c116f2b
WF
175 return 0;
176}
27df5068
AK
177#else
178int hwpoison_filter(struct page *p)
179{
180 return 0;
181}
182#endif
183
7c116f2b
WF
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
6a46079c
AK
186/*
187 * Send all the processes who have the page mapped an ``action optional''
188 * signal.
189 */
190static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
0d9ee6a2 191 unsigned long pfn, struct page *page)
6a46079c
AK
192{
193 struct siginfo si;
194 int ret;
195
196 printk(KERN_ERR
197 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
198 pfn, t->comm, t->pid);
199 si.si_signo = SIGBUS;
200 si.si_errno = 0;
201 si.si_code = BUS_MCEERR_AO;
202 si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205#endif
0d9ee6a2 206 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
6a46079c
AK
207 /*
208 * Don't use force here, it's convenient if the signal
209 * can be temporarily blocked.
210 * This could cause a loop when the user sets SIGBUS
211 * to SIG_IGN, but hopefully noone will do that?
212 */
213 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
214 if (ret < 0)
215 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
216 t->comm, t->pid, ret);
217 return ret;
218}
219
588f9ce6
AK
220/*
221 * When a unknown page type is encountered drain as many buffers as possible
222 * in the hope to turn the page into a LRU or free page, which we can handle.
223 */
facb6011 224void shake_page(struct page *p, int access)
588f9ce6
AK
225{
226 if (!PageSlab(p)) {
227 lru_add_drain_all();
228 if (PageLRU(p))
229 return;
230 drain_all_pages();
231 if (PageLRU(p) || is_free_buddy_page(p))
232 return;
233 }
facb6011 234
588f9ce6 235 /*
facb6011
AK
236 * Only all shrink_slab here (which would also
237 * shrink other caches) if access is not potentially fatal.
588f9ce6 238 */
facb6011
AK
239 if (access) {
240 int nr;
241 do {
242 nr = shrink_slab(1000, GFP_KERNEL, 1000);
47f43e7e 243 if (page_count(p) == 1)
facb6011
AK
244 break;
245 } while (nr > 10);
246 }
588f9ce6
AK
247}
248EXPORT_SYMBOL_GPL(shake_page);
249
6a46079c
AK
250/*
251 * Kill all processes that have a poisoned page mapped and then isolate
252 * the page.
253 *
254 * General strategy:
255 * Find all processes having the page mapped and kill them.
256 * But we keep a page reference around so that the page is not
257 * actually freed yet.
258 * Then stash the page away
259 *
260 * There's no convenient way to get back to mapped processes
261 * from the VMAs. So do a brute-force search over all
262 * running processes.
263 *
264 * Remember that machine checks are not common (or rather
265 * if they are common you have other problems), so this shouldn't
266 * be a performance issue.
267 *
268 * Also there are some races possible while we get from the
269 * error detection to actually handle it.
270 */
271
272struct to_kill {
273 struct list_head nd;
274 struct task_struct *tsk;
275 unsigned long addr;
276 unsigned addr_valid:1;
277};
278
279/*
280 * Failure handling: if we can't find or can't kill a process there's
281 * not much we can do. We just print a message and ignore otherwise.
282 */
283
284/*
285 * Schedule a process for later kill.
286 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
287 * TBD would GFP_NOIO be enough?
288 */
289static void add_to_kill(struct task_struct *tsk, struct page *p,
290 struct vm_area_struct *vma,
291 struct list_head *to_kill,
292 struct to_kill **tkc)
293{
294 struct to_kill *tk;
295
296 if (*tkc) {
297 tk = *tkc;
298 *tkc = NULL;
299 } else {
300 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
301 if (!tk) {
302 printk(KERN_ERR
303 "MCE: Out of memory while machine check handling\n");
304 return;
305 }
306 }
307 tk->addr = page_address_in_vma(p, vma);
308 tk->addr_valid = 1;
309
310 /*
311 * In theory we don't have to kill when the page was
312 * munmaped. But it could be also a mremap. Since that's
313 * likely very rare kill anyways just out of paranoia, but use
314 * a SIGKILL because the error is not contained anymore.
315 */
316 if (tk->addr == -EFAULT) {
317 pr_debug("MCE: Unable to find user space address %lx in %s\n",
318 page_to_pfn(p), tsk->comm);
319 tk->addr_valid = 0;
320 }
321 get_task_struct(tsk);
322 tk->tsk = tsk;
323 list_add_tail(&tk->nd, to_kill);
324}
325
326/*
327 * Kill the processes that have been collected earlier.
328 *
329 * Only do anything when DOIT is set, otherwise just free the list
330 * (this is used for clean pages which do not need killing)
331 * Also when FAIL is set do a force kill because something went
332 * wrong earlier.
333 */
334static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
0d9ee6a2 335 int fail, struct page *page, unsigned long pfn)
6a46079c
AK
336{
337 struct to_kill *tk, *next;
338
339 list_for_each_entry_safe (tk, next, to_kill, nd) {
340 if (doit) {
341 /*
af901ca1 342 * In case something went wrong with munmapping
6a46079c
AK
343 * make sure the process doesn't catch the
344 * signal and then access the memory. Just kill it.
6a46079c
AK
345 */
346 if (fail || tk->addr_valid == 0) {
347 printk(KERN_ERR
348 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
349 pfn, tk->tsk->comm, tk->tsk->pid);
350 force_sig(SIGKILL, tk->tsk);
351 }
352
353 /*
354 * In theory the process could have mapped
355 * something else on the address in-between. We could
356 * check for that, but we need to tell the
357 * process anyways.
358 */
359 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
0d9ee6a2 360 pfn, page) < 0)
6a46079c
AK
361 printk(KERN_ERR
362 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
363 pfn, tk->tsk->comm, tk->tsk->pid);
364 }
365 put_task_struct(tk->tsk);
366 kfree(tk);
367 }
368}
369
370static int task_early_kill(struct task_struct *tsk)
371{
372 if (!tsk->mm)
373 return 0;
374 if (tsk->flags & PF_MCE_PROCESS)
375 return !!(tsk->flags & PF_MCE_EARLY);
376 return sysctl_memory_failure_early_kill;
377}
378
379/*
380 * Collect processes when the error hit an anonymous page.
381 */
382static void collect_procs_anon(struct page *page, struct list_head *to_kill,
383 struct to_kill **tkc)
384{
385 struct vm_area_struct *vma;
386 struct task_struct *tsk;
387 struct anon_vma *av;
388
389 read_lock(&tasklist_lock);
390 av = page_lock_anon_vma(page);
391 if (av == NULL) /* Not actually mapped anymore */
392 goto out;
393 for_each_process (tsk) {
5beb4930
RR
394 struct anon_vma_chain *vmac;
395
6a46079c
AK
396 if (!task_early_kill(tsk))
397 continue;
5beb4930
RR
398 list_for_each_entry(vmac, &av->head, same_anon_vma) {
399 vma = vmac->vma;
6a46079c
AK
400 if (!page_mapped_in_vma(page, vma))
401 continue;
402 if (vma->vm_mm == tsk->mm)
403 add_to_kill(tsk, page, vma, to_kill, tkc);
404 }
405 }
406 page_unlock_anon_vma(av);
407out:
408 read_unlock(&tasklist_lock);
409}
410
411/*
412 * Collect processes when the error hit a file mapped page.
413 */
414static void collect_procs_file(struct page *page, struct list_head *to_kill,
415 struct to_kill **tkc)
416{
417 struct vm_area_struct *vma;
418 struct task_struct *tsk;
419 struct prio_tree_iter iter;
420 struct address_space *mapping = page->mapping;
421
422 /*
423 * A note on the locking order between the two locks.
424 * We don't rely on this particular order.
425 * If you have some other code that needs a different order
426 * feel free to switch them around. Or add a reverse link
427 * from mm_struct to task_struct, then this could be all
428 * done without taking tasklist_lock and looping over all tasks.
429 */
430
431 read_lock(&tasklist_lock);
432 spin_lock(&mapping->i_mmap_lock);
433 for_each_process(tsk) {
434 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
435
436 if (!task_early_kill(tsk))
437 continue;
438
439 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
440 pgoff) {
441 /*
442 * Send early kill signal to tasks where a vma covers
443 * the page but the corrupted page is not necessarily
444 * mapped it in its pte.
445 * Assume applications who requested early kill want
446 * to be informed of all such data corruptions.
447 */
448 if (vma->vm_mm == tsk->mm)
449 add_to_kill(tsk, page, vma, to_kill, tkc);
450 }
451 }
452 spin_unlock(&mapping->i_mmap_lock);
453 read_unlock(&tasklist_lock);
454}
455
456/*
457 * Collect the processes who have the corrupted page mapped to kill.
458 * This is done in two steps for locking reasons.
459 * First preallocate one tokill structure outside the spin locks,
460 * so that we can kill at least one process reasonably reliable.
461 */
462static void collect_procs(struct page *page, struct list_head *tokill)
463{
464 struct to_kill *tk;
465
466 if (!page->mapping)
467 return;
468
469 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
470 if (!tk)
471 return;
472 if (PageAnon(page))
473 collect_procs_anon(page, tokill, &tk);
474 else
475 collect_procs_file(page, tokill, &tk);
476 kfree(tk);
477}
478
479/*
480 * Error handlers for various types of pages.
481 */
482
483enum outcome {
d95ea51e
WF
484 IGNORED, /* Error: cannot be handled */
485 FAILED, /* Error: handling failed */
6a46079c 486 DELAYED, /* Will be handled later */
6a46079c
AK
487 RECOVERED, /* Successfully recovered */
488};
489
490static const char *action_name[] = {
d95ea51e 491 [IGNORED] = "Ignored",
6a46079c
AK
492 [FAILED] = "Failed",
493 [DELAYED] = "Delayed",
6a46079c
AK
494 [RECOVERED] = "Recovered",
495};
496
dc2a1cbf
WF
497/*
498 * XXX: It is possible that a page is isolated from LRU cache,
499 * and then kept in swap cache or failed to remove from page cache.
500 * The page count will stop it from being freed by unpoison.
501 * Stress tests should be aware of this memory leak problem.
502 */
503static int delete_from_lru_cache(struct page *p)
504{
505 if (!isolate_lru_page(p)) {
506 /*
507 * Clear sensible page flags, so that the buddy system won't
508 * complain when the page is unpoison-and-freed.
509 */
510 ClearPageActive(p);
511 ClearPageUnevictable(p);
512 /*
513 * drop the page count elevated by isolate_lru_page()
514 */
515 page_cache_release(p);
516 return 0;
517 }
518 return -EIO;
519}
520
6a46079c
AK
521/*
522 * Error hit kernel page.
523 * Do nothing, try to be lucky and not touch this instead. For a few cases we
524 * could be more sophisticated.
525 */
526static int me_kernel(struct page *p, unsigned long pfn)
6a46079c
AK
527{
528 return IGNORED;
529}
530
531/*
532 * Page in unknown state. Do nothing.
533 */
534static int me_unknown(struct page *p, unsigned long pfn)
535{
536 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
537 return FAILED;
538}
539
6a46079c
AK
540/*
541 * Clean (or cleaned) page cache page.
542 */
543static int me_pagecache_clean(struct page *p, unsigned long pfn)
544{
545 int err;
546 int ret = FAILED;
547 struct address_space *mapping;
548
dc2a1cbf
WF
549 delete_from_lru_cache(p);
550
6a46079c
AK
551 /*
552 * For anonymous pages we're done the only reference left
553 * should be the one m_f() holds.
554 */
555 if (PageAnon(p))
556 return RECOVERED;
557
558 /*
559 * Now truncate the page in the page cache. This is really
560 * more like a "temporary hole punch"
561 * Don't do this for block devices when someone else
562 * has a reference, because it could be file system metadata
563 * and that's not safe to truncate.
564 */
565 mapping = page_mapping(p);
566 if (!mapping) {
567 /*
568 * Page has been teared down in the meanwhile
569 */
570 return FAILED;
571 }
572
573 /*
574 * Truncation is a bit tricky. Enable it per file system for now.
575 *
576 * Open: to take i_mutex or not for this? Right now we don't.
577 */
578 if (mapping->a_ops->error_remove_page) {
579 err = mapping->a_ops->error_remove_page(mapping, p);
580 if (err != 0) {
581 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
582 pfn, err);
583 } else if (page_has_private(p) &&
584 !try_to_release_page(p, GFP_NOIO)) {
585 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
586 } else {
587 ret = RECOVERED;
588 }
589 } else {
590 /*
591 * If the file system doesn't support it just invalidate
592 * This fails on dirty or anything with private pages
593 */
594 if (invalidate_inode_page(p))
595 ret = RECOVERED;
596 else
597 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
598 pfn);
599 }
600 return ret;
601}
602
603/*
604 * Dirty cache page page
605 * Issues: when the error hit a hole page the error is not properly
606 * propagated.
607 */
608static int me_pagecache_dirty(struct page *p, unsigned long pfn)
609{
610 struct address_space *mapping = page_mapping(p);
611
612 SetPageError(p);
613 /* TBD: print more information about the file. */
614 if (mapping) {
615 /*
616 * IO error will be reported by write(), fsync(), etc.
617 * who check the mapping.
618 * This way the application knows that something went
619 * wrong with its dirty file data.
620 *
621 * There's one open issue:
622 *
623 * The EIO will be only reported on the next IO
624 * operation and then cleared through the IO map.
625 * Normally Linux has two mechanisms to pass IO error
626 * first through the AS_EIO flag in the address space
627 * and then through the PageError flag in the page.
628 * Since we drop pages on memory failure handling the
629 * only mechanism open to use is through AS_AIO.
630 *
631 * This has the disadvantage that it gets cleared on
632 * the first operation that returns an error, while
633 * the PageError bit is more sticky and only cleared
634 * when the page is reread or dropped. If an
635 * application assumes it will always get error on
636 * fsync, but does other operations on the fd before
637 * and the page is dropped inbetween then the error
638 * will not be properly reported.
639 *
640 * This can already happen even without hwpoisoned
641 * pages: first on metadata IO errors (which only
642 * report through AS_EIO) or when the page is dropped
643 * at the wrong time.
644 *
645 * So right now we assume that the application DTRT on
646 * the first EIO, but we're not worse than other parts
647 * of the kernel.
648 */
649 mapping_set_error(mapping, EIO);
650 }
651
652 return me_pagecache_clean(p, pfn);
653}
654
655/*
656 * Clean and dirty swap cache.
657 *
658 * Dirty swap cache page is tricky to handle. The page could live both in page
659 * cache and swap cache(ie. page is freshly swapped in). So it could be
660 * referenced concurrently by 2 types of PTEs:
661 * normal PTEs and swap PTEs. We try to handle them consistently by calling
662 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
663 * and then
664 * - clear dirty bit to prevent IO
665 * - remove from LRU
666 * - but keep in the swap cache, so that when we return to it on
667 * a later page fault, we know the application is accessing
668 * corrupted data and shall be killed (we installed simple
669 * interception code in do_swap_page to catch it).
670 *
671 * Clean swap cache pages can be directly isolated. A later page fault will
672 * bring in the known good data from disk.
673 */
674static int me_swapcache_dirty(struct page *p, unsigned long pfn)
675{
6a46079c
AK
676 ClearPageDirty(p);
677 /* Trigger EIO in shmem: */
678 ClearPageUptodate(p);
679
dc2a1cbf
WF
680 if (!delete_from_lru_cache(p))
681 return DELAYED;
682 else
683 return FAILED;
6a46079c
AK
684}
685
686static int me_swapcache_clean(struct page *p, unsigned long pfn)
687{
6a46079c 688 delete_from_swap_cache(p);
e43c3afb 689
dc2a1cbf
WF
690 if (!delete_from_lru_cache(p))
691 return RECOVERED;
692 else
693 return FAILED;
6a46079c
AK
694}
695
696/*
697 * Huge pages. Needs work.
698 * Issues:
93f70f90
NH
699 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
700 * To narrow down kill region to one page, we need to break up pmd.
701 * - To support soft-offlining for hugepage, we need to support hugepage
702 * migration.
6a46079c
AK
703 */
704static int me_huge_page(struct page *p, unsigned long pfn)
705{
93f70f90
NH
706 struct page *hpage = compound_head(p);
707 /*
708 * We can safely recover from error on free or reserved (i.e.
709 * not in-use) hugepage by dequeuing it from freelist.
710 * To check whether a hugepage is in-use or not, we can't use
711 * page->lru because it can be used in other hugepage operations,
712 * such as __unmap_hugepage_range() and gather_surplus_pages().
713 * So instead we use page_mapping() and PageAnon().
714 * We assume that this function is called with page lock held,
715 * so there is no race between isolation and mapping/unmapping.
716 */
717 if (!(page_mapping(hpage) || PageAnon(hpage))) {
718 __isolate_hwpoisoned_huge_page(hpage);
719 return RECOVERED;
720 }
721 return DELAYED;
6a46079c
AK
722}
723
724/*
725 * Various page states we can handle.
726 *
727 * A page state is defined by its current page->flags bits.
728 * The table matches them in order and calls the right handler.
729 *
730 * This is quite tricky because we can access page at any time
731 * in its live cycle, so all accesses have to be extremly careful.
732 *
733 * This is not complete. More states could be added.
734 * For any missing state don't attempt recovery.
735 */
736
737#define dirty (1UL << PG_dirty)
738#define sc (1UL << PG_swapcache)
739#define unevict (1UL << PG_unevictable)
740#define mlock (1UL << PG_mlocked)
741#define writeback (1UL << PG_writeback)
742#define lru (1UL << PG_lru)
743#define swapbacked (1UL << PG_swapbacked)
744#define head (1UL << PG_head)
745#define tail (1UL << PG_tail)
746#define compound (1UL << PG_compound)
747#define slab (1UL << PG_slab)
6a46079c
AK
748#define reserved (1UL << PG_reserved)
749
750static struct page_state {
751 unsigned long mask;
752 unsigned long res;
753 char *msg;
754 int (*action)(struct page *p, unsigned long pfn);
755} error_states[] = {
d95ea51e 756 { reserved, reserved, "reserved kernel", me_kernel },
95d01fc6
WF
757 /*
758 * free pages are specially detected outside this table:
759 * PG_buddy pages only make a small fraction of all free pages.
760 */
6a46079c
AK
761
762 /*
763 * Could in theory check if slab page is free or if we can drop
764 * currently unused objects without touching them. But just
765 * treat it as standard kernel for now.
766 */
767 { slab, slab, "kernel slab", me_kernel },
768
769#ifdef CONFIG_PAGEFLAGS_EXTENDED
770 { head, head, "huge", me_huge_page },
771 { tail, tail, "huge", me_huge_page },
772#else
773 { compound, compound, "huge", me_huge_page },
774#endif
775
776 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
777 { sc|dirty, sc, "swapcache", me_swapcache_clean },
778
779 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
780 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
781
6a46079c
AK
782 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
783 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
6a46079c
AK
784
785 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
786 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
6a46079c
AK
787
788 /*
789 * Catchall entry: must be at end.
790 */
791 { 0, 0, "unknown page state", me_unknown },
792};
793
2326c467
AK
794#undef dirty
795#undef sc
796#undef unevict
797#undef mlock
798#undef writeback
799#undef lru
800#undef swapbacked
801#undef head
802#undef tail
803#undef compound
804#undef slab
805#undef reserved
806
6a46079c
AK
807static void action_result(unsigned long pfn, char *msg, int result)
808{
a7560fc8 809 struct page *page = pfn_to_page(pfn);
6a46079c
AK
810
811 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
812 pfn,
a7560fc8 813 PageDirty(page) ? "dirty " : "",
6a46079c
AK
814 msg, action_name[result]);
815}
816
817static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 818 unsigned long pfn)
6a46079c
AK
819{
820 int result;
7456b040 821 int count;
6a46079c
AK
822
823 result = ps->action(p, pfn);
824 action_result(pfn, ps->msg, result);
7456b040 825
bd1ce5f9 826 count = page_count(p) - 1;
138ce286
WF
827 if (ps->action == me_swapcache_dirty && result == DELAYED)
828 count--;
829 if (count != 0) {
6a46079c
AK
830 printk(KERN_ERR
831 "MCE %#lx: %s page still referenced by %d users\n",
7456b040 832 pfn, ps->msg, count);
138ce286
WF
833 result = FAILED;
834 }
6a46079c
AK
835
836 /* Could do more checks here if page looks ok */
837 /*
838 * Could adjust zone counters here to correct for the missing page.
839 */
840
138ce286 841 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
6a46079c
AK
842}
843
844#define N_UNMAP_TRIES 5
845
846/*
847 * Do all that is necessary to remove user space mappings. Unmap
848 * the pages and send SIGBUS to the processes if the data was dirty.
849 */
1668bfd5 850static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
6a46079c
AK
851 int trapno)
852{
853 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
854 struct address_space *mapping;
855 LIST_HEAD(tokill);
856 int ret;
857 int i;
858 int kill = 1;
7af446a8 859 struct page *hpage = compound_head(p);
6a46079c 860
1668bfd5
WF
861 if (PageReserved(p) || PageSlab(p))
862 return SWAP_SUCCESS;
6a46079c 863
6a46079c
AK
864 /*
865 * This check implies we don't kill processes if their pages
866 * are in the swap cache early. Those are always late kills.
867 */
7af446a8 868 if (!page_mapped(hpage))
1668bfd5
WF
869 return SWAP_SUCCESS;
870
7af446a8 871 if (PageKsm(p))
1668bfd5 872 return SWAP_FAIL;
6a46079c
AK
873
874 if (PageSwapCache(p)) {
875 printk(KERN_ERR
876 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
877 ttu |= TTU_IGNORE_HWPOISON;
878 }
879
880 /*
881 * Propagate the dirty bit from PTEs to struct page first, because we
882 * need this to decide if we should kill or just drop the page.
db0480b3
WF
883 * XXX: the dirty test could be racy: set_page_dirty() may not always
884 * be called inside page lock (it's recommended but not enforced).
6a46079c 885 */
7af446a8
NH
886 mapping = page_mapping(hpage);
887 if (!PageDirty(hpage) && mapping &&
888 mapping_cap_writeback_dirty(mapping)) {
889 if (page_mkclean(hpage)) {
890 SetPageDirty(hpage);
6a46079c
AK
891 } else {
892 kill = 0;
893 ttu |= TTU_IGNORE_HWPOISON;
894 printk(KERN_INFO
895 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
896 pfn);
897 }
898 }
899
900 /*
901 * First collect all the processes that have the page
902 * mapped in dirty form. This has to be done before try_to_unmap,
903 * because ttu takes the rmap data structures down.
904 *
905 * Error handling: We ignore errors here because
906 * there's nothing that can be done.
907 */
908 if (kill)
7af446a8 909 collect_procs(hpage, &tokill);
6a46079c
AK
910
911 /*
912 * try_to_unmap can fail temporarily due to races.
913 * Try a few times (RED-PEN better strategy?)
914 */
915 for (i = 0; i < N_UNMAP_TRIES; i++) {
7af446a8 916 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
917 if (ret == SWAP_SUCCESS)
918 break;
919 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
920 }
921
922 if (ret != SWAP_SUCCESS)
923 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
7af446a8 924 pfn, page_mapcount(hpage));
6a46079c
AK
925
926 /*
927 * Now that the dirty bit has been propagated to the
928 * struct page and all unmaps done we can decide if
929 * killing is needed or not. Only kill when the page
930 * was dirty, otherwise the tokill list is merely
931 * freed. When there was a problem unmapping earlier
932 * use a more force-full uncatchable kill to prevent
933 * any accesses to the poisoned memory.
934 */
7af446a8 935 kill_procs_ao(&tokill, !!PageDirty(hpage), trapno,
0d9ee6a2 936 ret != SWAP_SUCCESS, p, pfn);
1668bfd5
WF
937
938 return ret;
6a46079c
AK
939}
940
7013febc
NH
941static void set_page_hwpoison_huge_page(struct page *hpage)
942{
943 int i;
944 int nr_pages = 1 << compound_order(hpage);
945 for (i = 0; i < nr_pages; i++)
946 SetPageHWPoison(hpage + i);
947}
948
949static void clear_page_hwpoison_huge_page(struct page *hpage)
950{
951 int i;
952 int nr_pages = 1 << compound_order(hpage);
953 for (i = 0; i < nr_pages; i++)
954 ClearPageHWPoison(hpage + i);
955}
956
82ba011b 957int __memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
958{
959 struct page_state *ps;
960 struct page *p;
7af446a8 961 struct page *hpage;
6a46079c 962 int res;
c9fbdd5f 963 unsigned int nr_pages;
6a46079c
AK
964
965 if (!sysctl_memory_failure_recovery)
966 panic("Memory failure from trap %d on page %lx", trapno, pfn);
967
968 if (!pfn_valid(pfn)) {
a7560fc8
WF
969 printk(KERN_ERR
970 "MCE %#lx: memory outside kernel control\n",
971 pfn);
972 return -ENXIO;
6a46079c
AK
973 }
974
975 p = pfn_to_page(pfn);
7af446a8 976 hpage = compound_head(p);
6a46079c 977 if (TestSetPageHWPoison(p)) {
d95ea51e 978 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
979 return 0;
980 }
981
c9fbdd5f
NH
982 nr_pages = 1 << compound_order(hpage);
983 atomic_long_add(nr_pages, &mce_bad_pages);
6a46079c
AK
984
985 /*
986 * We need/can do nothing about count=0 pages.
987 * 1) it's a free page, and therefore in safe hand:
988 * prep_new_page() will be the gate keeper.
989 * 2) it's part of a non-compound high order page.
990 * Implies some kernel user: cannot stop them from
991 * R/W the page; let's pray that the page has been
992 * used and will be freed some time later.
993 * In fact it's dangerous to directly bump up page count from 0,
994 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
995 */
82ba011b 996 if (!(flags & MF_COUNT_INCREASED) &&
7af446a8 997 !get_page_unless_zero(hpage)) {
8d22ba1b
WF
998 if (is_free_buddy_page(p)) {
999 action_result(pfn, "free buddy", DELAYED);
1000 return 0;
1001 } else {
1002 action_result(pfn, "high order kernel", IGNORED);
1003 return -EBUSY;
1004 }
6a46079c
AK
1005 }
1006
e43c3afb
WF
1007 /*
1008 * We ignore non-LRU pages for good reasons.
1009 * - PG_locked is only well defined for LRU pages and a few others
1010 * - to avoid races with __set_page_locked()
1011 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1012 * The check (unnecessarily) ignores LRU pages being isolated and
1013 * walked by the page reclaim code, however that's not a big loss.
1014 */
7af446a8 1015 if (!PageLRU(p) && !PageHuge(p))
facb6011 1016 shake_page(p, 0);
7af446a8 1017 if (!PageLRU(p) && !PageHuge(p)) {
0474a60e
AK
1018 /*
1019 * shake_page could have turned it free.
1020 */
1021 if (is_free_buddy_page(p)) {
1022 action_result(pfn, "free buddy, 2nd try", DELAYED);
1023 return 0;
1024 }
e43c3afb
WF
1025 action_result(pfn, "non LRU", IGNORED);
1026 put_page(p);
1027 return -EBUSY;
1028 }
e43c3afb 1029
6a46079c
AK
1030 /*
1031 * Lock the page and wait for writeback to finish.
1032 * It's very difficult to mess with pages currently under IO
1033 * and in many cases impossible, so we just avoid it here.
1034 */
7af446a8 1035 lock_page_nosync(hpage);
847ce401
WF
1036
1037 /*
1038 * unpoison always clear PG_hwpoison inside page lock
1039 */
1040 if (!PageHWPoison(p)) {
d95ea51e 1041 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
847ce401
WF
1042 res = 0;
1043 goto out;
1044 }
7c116f2b
WF
1045 if (hwpoison_filter(p)) {
1046 if (TestClearPageHWPoison(p))
c9fbdd5f 1047 atomic_long_sub(nr_pages, &mce_bad_pages);
7af446a8
NH
1048 unlock_page(hpage);
1049 put_page(hpage);
7c116f2b
WF
1050 return 0;
1051 }
847ce401 1052
7013febc
NH
1053 /*
1054 * For error on the tail page, we should set PG_hwpoison
1055 * on the head page to show that the hugepage is hwpoisoned
1056 */
1057 if (PageTail(p) && TestSetPageHWPoison(hpage)) {
1058 action_result(pfn, "hugepage already hardware poisoned",
1059 IGNORED);
1060 unlock_page(hpage);
1061 put_page(hpage);
1062 return 0;
1063 }
1064 /*
1065 * Set PG_hwpoison on all pages in an error hugepage,
1066 * because containment is done in hugepage unit for now.
1067 * Since we have done TestSetPageHWPoison() for the head page with
1068 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1069 */
1070 if (PageHuge(p))
1071 set_page_hwpoison_huge_page(hpage);
1072
6a46079c
AK
1073 wait_on_page_writeback(p);
1074
1075 /*
1076 * Now take care of user space mappings.
1668bfd5 1077 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
6a46079c 1078 */
1668bfd5
WF
1079 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1080 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1081 res = -EBUSY;
1082 goto out;
1083 }
6a46079c
AK
1084
1085 /*
1086 * Torn down by someone else?
1087 */
dc2a1cbf 1088 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
6a46079c 1089 action_result(pfn, "already truncated LRU", IGNORED);
d95ea51e 1090 res = -EBUSY;
6a46079c
AK
1091 goto out;
1092 }
1093
1094 res = -EBUSY;
1095 for (ps = error_states;; ps++) {
dc2a1cbf 1096 if ((p->flags & ps->mask) == ps->res) {
bd1ce5f9 1097 res = page_action(ps, p, pfn);
6a46079c
AK
1098 break;
1099 }
1100 }
1101out:
7af446a8 1102 unlock_page(hpage);
6a46079c
AK
1103 return res;
1104}
1105EXPORT_SYMBOL_GPL(__memory_failure);
1106
1107/**
1108 * memory_failure - Handle memory failure of a page.
1109 * @pfn: Page Number of the corrupted page
1110 * @trapno: Trap number reported in the signal to user space.
1111 *
1112 * This function is called by the low level machine check code
1113 * of an architecture when it detects hardware memory corruption
1114 * of a page. It tries its best to recover, which includes
1115 * dropping pages, killing processes etc.
1116 *
1117 * The function is primarily of use for corruptions that
1118 * happen outside the current execution context (e.g. when
1119 * detected by a background scrubber)
1120 *
1121 * Must run in process context (e.g. a work queue) with interrupts
1122 * enabled and no spinlocks hold.
1123 */
1124void memory_failure(unsigned long pfn, int trapno)
1125{
1126 __memory_failure(pfn, trapno, 0);
1127}
847ce401
WF
1128
1129/**
1130 * unpoison_memory - Unpoison a previously poisoned page
1131 * @pfn: Page number of the to be unpoisoned page
1132 *
1133 * Software-unpoison a page that has been poisoned by
1134 * memory_failure() earlier.
1135 *
1136 * This is only done on the software-level, so it only works
1137 * for linux injected failures, not real hardware failures
1138 *
1139 * Returns 0 for success, otherwise -errno.
1140 */
1141int unpoison_memory(unsigned long pfn)
1142{
1143 struct page *page;
1144 struct page *p;
1145 int freeit = 0;
c9fbdd5f 1146 unsigned int nr_pages;
847ce401
WF
1147
1148 if (!pfn_valid(pfn))
1149 return -ENXIO;
1150
1151 p = pfn_to_page(pfn);
1152 page = compound_head(p);
1153
1154 if (!PageHWPoison(p)) {
1155 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1156 return 0;
1157 }
1158
c9fbdd5f
NH
1159 nr_pages = 1 << compound_order(page);
1160
847ce401
WF
1161 if (!get_page_unless_zero(page)) {
1162 if (TestClearPageHWPoison(p))
c9fbdd5f 1163 atomic_long_sub(nr_pages, &mce_bad_pages);
847ce401
WF
1164 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1165 return 0;
1166 }
1167
1168 lock_page_nosync(page);
1169 /*
1170 * This test is racy because PG_hwpoison is set outside of page lock.
1171 * That's acceptable because that won't trigger kernel panic. Instead,
1172 * the PG_hwpoison page will be caught and isolated on the entrance to
1173 * the free buddy page pool.
1174 */
c9fbdd5f 1175 if (TestClearPageHWPoison(page)) {
847ce401 1176 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
c9fbdd5f 1177 atomic_long_sub(nr_pages, &mce_bad_pages);
847ce401
WF
1178 freeit = 1;
1179 }
7013febc
NH
1180 if (PageHuge(p))
1181 clear_page_hwpoison_huge_page(page);
847ce401
WF
1182 unlock_page(page);
1183
1184 put_page(page);
1185 if (freeit)
1186 put_page(page);
1187
1188 return 0;
1189}
1190EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1191
1192static struct page *new_page(struct page *p, unsigned long private, int **x)
1193{
12686d15
AK
1194 int nid = page_to_nid(p);
1195 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1196}
1197
1198/*
1199 * Safely get reference count of an arbitrary page.
1200 * Returns 0 for a free page, -EIO for a zero refcount page
1201 * that is not free, and 1 for any other page type.
1202 * For 1 the page is returned with increased page count, otherwise not.
1203 */
1204static int get_any_page(struct page *p, unsigned long pfn, int flags)
1205{
1206 int ret;
1207
1208 if (flags & MF_COUNT_INCREASED)
1209 return 1;
1210
1211 /*
1212 * The lock_system_sleep prevents a race with memory hotplug,
1213 * because the isolation assumes there's only a single user.
1214 * This is a big hammer, a better would be nicer.
1215 */
1216 lock_system_sleep();
1217
1218 /*
1219 * Isolate the page, so that it doesn't get reallocated if it
1220 * was free.
1221 */
1222 set_migratetype_isolate(p);
1223 if (!get_page_unless_zero(compound_head(p))) {
1224 if (is_free_buddy_page(p)) {
1225 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1226 /* Set hwpoison bit while page is still isolated */
1227 SetPageHWPoison(p);
1228 ret = 0;
1229 } else {
1230 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1231 pfn, p->flags);
1232 ret = -EIO;
1233 }
1234 } else {
1235 /* Not a free page */
1236 ret = 1;
1237 }
1238 unset_migratetype_isolate(p);
1239 unlock_system_sleep();
1240 return ret;
1241}
1242
1243/**
1244 * soft_offline_page - Soft offline a page.
1245 * @page: page to offline
1246 * @flags: flags. Same as memory_failure().
1247 *
1248 * Returns 0 on success, otherwise negated errno.
1249 *
1250 * Soft offline a page, by migration or invalidation,
1251 * without killing anything. This is for the case when
1252 * a page is not corrupted yet (so it's still valid to access),
1253 * but has had a number of corrected errors and is better taken
1254 * out.
1255 *
1256 * The actual policy on when to do that is maintained by
1257 * user space.
1258 *
1259 * This should never impact any application or cause data loss,
1260 * however it might take some time.
1261 *
1262 * This is not a 100% solution for all memory, but tries to be
1263 * ``good enough'' for the majority of memory.
1264 */
1265int soft_offline_page(struct page *page, int flags)
1266{
1267 int ret;
1268 unsigned long pfn = page_to_pfn(page);
1269
1270 ret = get_any_page(page, pfn, flags);
1271 if (ret < 0)
1272 return ret;
1273 if (ret == 0)
1274 goto done;
1275
1276 /*
1277 * Page cache page we can handle?
1278 */
1279 if (!PageLRU(page)) {
1280 /*
1281 * Try to free it.
1282 */
1283 put_page(page);
1284 shake_page(page, 1);
1285
1286 /*
1287 * Did it turn free?
1288 */
1289 ret = get_any_page(page, pfn, 0);
1290 if (ret < 0)
1291 return ret;
1292 if (ret == 0)
1293 goto done;
1294 }
1295 if (!PageLRU(page)) {
1296 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1297 pfn, page->flags);
1298 return -EIO;
1299 }
1300
1301 lock_page(page);
1302 wait_on_page_writeback(page);
1303
1304 /*
1305 * Synchronized using the page lock with memory_failure()
1306 */
1307 if (PageHWPoison(page)) {
1308 unlock_page(page);
1309 put_page(page);
1310 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1311 return -EBUSY;
1312 }
1313
1314 /*
1315 * Try to invalidate first. This should work for
1316 * non dirty unmapped page cache pages.
1317 */
1318 ret = invalidate_inode_page(page);
1319 unlock_page(page);
1320
1321 /*
1322 * Drop count because page migration doesn't like raised
1323 * counts. The page could get re-allocated, but if it becomes
1324 * LRU the isolation will just fail.
1325 * RED-PEN would be better to keep it isolated here, but we
1326 * would need to fix isolation locking first.
1327 */
1328 put_page(page);
1329 if (ret == 1) {
1330 ret = 0;
1331 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1332 goto done;
1333 }
1334
1335 /*
1336 * Simple invalidation didn't work.
1337 * Try to migrate to a new page instead. migrate.c
1338 * handles a large number of cases for us.
1339 */
1340 ret = isolate_lru_page(page);
1341 if (!ret) {
1342 LIST_HEAD(pagelist);
1343
1344 list_add(&page->lru, &pagelist);
1345 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1346 if (ret) {
1347 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1348 pfn, ret, page->flags);
1349 if (ret > 0)
1350 ret = -EIO;
1351 }
1352 } else {
1353 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1354 pfn, ret, page_count(page), page->flags);
1355 }
1356 if (ret)
1357 return ret;
1358
1359done:
1360 atomic_long_add(1, &mce_bad_pages);
1361 SetPageHWPoison(page);
1362 /* keep elevated page count for bad page */
1363 return ret;
1364}
bf998156 1365
bbeb3406
HY
1366/*
1367 * The caller must hold current->mm->mmap_sem in read mode.
1368 */
bf998156
HY
1369int is_hwpoison_address(unsigned long addr)
1370{
1371 pgd_t *pgdp;
1372 pud_t pud, *pudp;
1373 pmd_t pmd, *pmdp;
1374 pte_t pte, *ptep;
1375 swp_entry_t entry;
1376
1377 pgdp = pgd_offset(current->mm, addr);
1378 if (!pgd_present(*pgdp))
1379 return 0;
1380 pudp = pud_offset(pgdp, addr);
1381 pud = *pudp;
1382 if (!pud_present(pud) || pud_large(pud))
1383 return 0;
1384 pmdp = pmd_offset(pudp, addr);
1385 pmd = *pmdp;
1386 if (!pmd_present(pmd) || pmd_large(pmd))
1387 return 0;
1388 ptep = pte_offset_map(pmdp, addr);
1389 pte = *ptep;
1390 pte_unmap(ptep);
1391 if (!is_swap_pte(pte))
1392 return 0;
1393 entry = pte_to_swp_entry(pte);
1394 return is_hwpoison_entry(entry);
1395}
1396EXPORT_SYMBOL_GPL(is_hwpoison_address);