]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
btrfs: make the logic from btrfs_block_can_be_shared() easier to read
[thirdparty/linux.git] / mm / memory.c
CommitLineData
d61ea1cb 1
457c8996 2// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
3/*
4 * linux/mm/memory.c
5 *
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 */
8
9/*
10 * demand-loading started 01.12.91 - seems it is high on the list of
11 * things wanted, and it should be easy to implement. - Linus
12 */
13
14/*
15 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
16 * pages started 02.12.91, seems to work. - Linus.
17 *
18 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
19 * would have taken more than the 6M I have free, but it worked well as
20 * far as I could see.
21 *
22 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
23 */
24
25/*
26 * Real VM (paging to/from disk) started 18.12.91. Much more work and
27 * thought has to go into this. Oh, well..
28 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
29 * Found it. Everything seems to work now.
30 * 20.12.91 - Ok, making the swap-device changeable like the root.
31 */
32
33/*
34 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 35 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
36 *
37 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
38 * (Gerhard.Wichert@pdb.siemens.de)
39 *
40 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 */
42
43#include <linux/kernel_stat.h>
44#include <linux/mm.h>
36090def 45#include <linux/mm_inline.h>
6e84f315 46#include <linux/sched/mm.h>
f7ccbae4 47#include <linux/sched/coredump.h>
6a3827d7 48#include <linux/sched/numa_balancing.h>
29930025 49#include <linux/sched/task.h>
1da177e4
LT
50#include <linux/hugetlb.h>
51#include <linux/mman.h>
52#include <linux/swap.h>
53#include <linux/highmem.h>
54#include <linux/pagemap.h>
5042db43 55#include <linux/memremap.h>
b073d7f8 56#include <linux/kmsan.h>
9a840895 57#include <linux/ksm.h>
1da177e4 58#include <linux/rmap.h>
b95f1b31 59#include <linux/export.h>
0ff92245 60#include <linux/delayacct.h>
1da177e4 61#include <linux/init.h>
01c8f1c4 62#include <linux/pfn_t.h>
edc79b2a 63#include <linux/writeback.h>
8a9f3ccd 64#include <linux/memcontrol.h>
cddb8a5c 65#include <linux/mmu_notifier.h>
3dc14741
HD
66#include <linux/swapops.h>
67#include <linux/elf.h>
5a0e3ad6 68#include <linux/gfp.h>
4daae3b4 69#include <linux/migrate.h>
2fbc57c5 70#include <linux/string.h>
467b171a 71#include <linux/memory-tiers.h>
1592eef0 72#include <linux/debugfs.h>
6b251fc9 73#include <linux/userfaultfd_k.h>
bc2466e4 74#include <linux/dax.h>
6b31d595 75#include <linux/oom.h>
98fa15f3 76#include <linux/numa.h>
bce617ed
PX
77#include <linux/perf_event.h>
78#include <linux/ptrace.h>
e80d3909 79#include <linux/vmalloc.h>
33024536 80#include <linux/sched/sysctl.h>
1da177e4 81
b3d1411b
JFG
82#include <trace/events/kmem.h>
83
6952b61d 84#include <asm/io.h>
33a709b2 85#include <asm/mmu_context.h>
1da177e4 86#include <asm/pgalloc.h>
7c0f6ba6 87#include <linux/uaccess.h>
1da177e4
LT
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
1da177e4 90
e80d3909 91#include "pgalloc-track.h"
42b77728 92#include "internal.h"
014bb1de 93#include "swap.h"
42b77728 94
af27d940 95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
97#endif
98
a9ee6cf5 99#ifndef CONFIG_NUMA
1da177e4 100unsigned long max_mapnr;
1da177e4 101EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
102
103struct page *mem_map;
1da177e4
LT
104EXPORT_SYMBOL(mem_map);
105#endif
106
5c041f5d 107static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
5c041f5d 122
1da177e4
LT
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128 * and ZONE_HIGHMEM.
129 */
166f61b9 130void *high_memory;
1da177e4 131EXPORT_SYMBOL(high_memory);
1da177e4 132
32a93233
IM
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
a62eaf15 145
46bdb427
WD
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
a62eaf15
AK
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
9b41046c 161 return 1;
a62eaf15
AK
162}
163__setup("norandmaps", disable_randmaps);
164
62eede62 165unsigned long zero_pfn __read_mostly;
0b70068e
AB
166EXPORT_SYMBOL(zero_pfn);
167
166f61b9
TH
168unsigned long highest_memmap_pfn __read_mostly;
169
a13ea5b7
HD
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
e720e7d0 178early_initcall(init_zero_pfn);
a62eaf15 179
f1a79412 180void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 181{
f1a79412 182 trace_rss_stat(mm, member);
b3d1411b 183}
d559db08 184
1da177e4
LT
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
9e1b32ca
BH
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
1da177e4 191{
2f569afd 192 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 193 pmd_clear(pmd);
9e1b32ca 194 pte_free_tlb(tlb, token, addr);
c4812909 195 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
196}
197
e0da382c
HD
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
1da177e4
LT
201{
202 pmd_t *pmd;
203 unsigned long next;
e0da382c 204 unsigned long start;
1da177e4 205
e0da382c 206 start = addr;
1da177e4 207 pmd = pmd_offset(pud, addr);
1da177e4
LT
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
9e1b32ca 212 free_pte_range(tlb, pmd, addr);
1da177e4
LT
213 } while (pmd++, addr = next, addr != end);
214
e0da382c
HD
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
1da177e4 222 }
e0da382c
HD
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
9e1b32ca 228 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 229 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
230}
231
c2febafc 232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pud_t *pud;
237 unsigned long next;
e0da382c 238 unsigned long start;
1da177e4 239
e0da382c 240 start = addr;
c2febafc 241 pud = pud_offset(p4d, addr);
1da177e4
LT
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
e0da382c 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
247 } while (pud++, addr = next, addr != end);
248
c2febafc
KS
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
b4e98d9a 263 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
c2febafc 294 p4d = p4d_offset(pgd, start);
e0da382c 295 pgd_clear(pgd);
c2febafc 296 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
297}
298
299/*
e0da382c 300 * This function frees user-level page tables of a process.
1da177e4 301 */
42b77728 302void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
1da177e4
LT
305{
306 pgd_t *pgd;
307 unsigned long next;
e0da382c
HD
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
1da177e4 334
e0da382c
HD
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
07e32661
AK
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
ed6a7935 354 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 355 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
c2febafc 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 361 } while (pgd++, addr = next, addr != end);
e0da382c
HD
362}
363
fd892593 364void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 365 struct vm_area_struct *vma, unsigned long floor,
98e51a22 366 unsigned long ceiling, bool mm_wr_locked)
e0da382c 367{
763ecb03 368 do {
e0da382c 369 unsigned long addr = vma->vm_start;
763ecb03
LH
370 struct vm_area_struct *next;
371
372 /*
373 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
374 * be 0. This will underflow and is okay.
375 */
fd892593 376 next = mas_find(mas, ceiling - 1);
e0da382c 377
8f4f8c16 378 /*
25d9e2d1
NP
379 * Hide vma from rmap and truncate_pagecache before freeing
380 * pgtables
8f4f8c16 381 */
98e51a22
SB
382 if (mm_wr_locked)
383 vma_start_write(vma);
5beb4930 384 unlink_anon_vmas(vma);
8f4f8c16
HD
385 unlink_file_vma(vma);
386
9da61aef 387 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 388 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 389 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
390 } else {
391 /*
392 * Optimization: gather nearby vmas into one call down
393 */
394 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 395 && !is_vm_hugetlb_page(next)) {
3bf5ee95 396 vma = next;
fd892593 397 next = mas_find(mas, ceiling - 1);
98e51a22
SB
398 if (mm_wr_locked)
399 vma_start_write(vma);
5beb4930 400 unlink_anon_vmas(vma);
8f4f8c16 401 unlink_file_vma(vma);
3bf5ee95
HD
402 }
403 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 404 floor, next ? next->vm_start : ceiling);
3bf5ee95 405 }
e0da382c 406 vma = next;
763ecb03 407 } while (vma);
1da177e4
LT
408}
409
03c4f204 410void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 411{
03c4f204 412 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 413
8ac1f832 414 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 415 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
416 /*
417 * Ensure all pte setup (eg. pte page lock and page clearing) are
418 * visible before the pte is made visible to other CPUs by being
419 * put into page tables.
420 *
421 * The other side of the story is the pointer chasing in the page
422 * table walking code (when walking the page table without locking;
423 * ie. most of the time). Fortunately, these data accesses consist
424 * of a chain of data-dependent loads, meaning most CPUs (alpha
425 * being the notable exception) will already guarantee loads are
426 * seen in-order. See the alpha page table accessors for the
427 * smp_rmb() barriers in page table walking code.
428 */
429 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
430 pmd_populate(mm, pmd, *pte);
431 *pte = NULL;
4b471e88 432 }
c4088ebd 433 spin_unlock(ptl);
03c4f204
QZ
434}
435
4cf58924 436int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 437{
4cf58924 438 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
439 if (!new)
440 return -ENOMEM;
441
03c4f204 442 pmd_install(mm, pmd, &new);
2f569afd
MS
443 if (new)
444 pte_free(mm, new);
1bb3630e 445 return 0;
1da177e4
LT
446}
447
4cf58924 448int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 449{
4cf58924 450 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
451 if (!new)
452 return -ENOMEM;
453
454 spin_lock(&init_mm.page_table_lock);
8ac1f832 455 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 456 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 457 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 458 new = NULL;
4b471e88 459 }
1bb3630e 460 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
461 if (new)
462 pte_free_kernel(&init_mm, new);
1bb3630e 463 return 0;
1da177e4
LT
464}
465
d559db08
KH
466static inline void init_rss_vec(int *rss)
467{
468 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
469}
470
471static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 472{
d559db08
KH
473 int i;
474
475 for (i = 0; i < NR_MM_COUNTERS; i++)
476 if (rss[i])
477 add_mm_counter(mm, i, rss[i]);
ae859762
HD
478}
479
b5810039 480/*
6aab341e
LT
481 * This function is called to print an error when a bad pte
482 * is found. For example, we might have a PFN-mapped pte in
483 * a region that doesn't allow it.
b5810039
NP
484 *
485 * The calling function must still handle the error.
486 */
3dc14741
HD
487static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
488 pte_t pte, struct page *page)
b5810039 489{
3dc14741 490 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
491 p4d_t *p4d = p4d_offset(pgd, addr);
492 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
493 pmd_t *pmd = pmd_offset(pud, addr);
494 struct address_space *mapping;
495 pgoff_t index;
d936cf9b
HD
496 static unsigned long resume;
497 static unsigned long nr_shown;
498 static unsigned long nr_unshown;
499
500 /*
501 * Allow a burst of 60 reports, then keep quiet for that minute;
502 * or allow a steady drip of one report per second.
503 */
504 if (nr_shown == 60) {
505 if (time_before(jiffies, resume)) {
506 nr_unshown++;
507 return;
508 }
509 if (nr_unshown) {
1170532b
JP
510 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
511 nr_unshown);
d936cf9b
HD
512 nr_unshown = 0;
513 }
514 nr_shown = 0;
515 }
516 if (nr_shown++ == 0)
517 resume = jiffies + 60 * HZ;
3dc14741
HD
518
519 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
520 index = linear_page_index(vma, addr);
521
1170532b
JP
522 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
523 current->comm,
524 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 525 if (page)
f0b791a3 526 dump_page(page, "bad pte");
6aa9b8b2 527 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 528 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 529 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
530 vma->vm_file,
531 vma->vm_ops ? vma->vm_ops->fault : NULL,
532 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 533 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 534 dump_stack();
373d4d09 535 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
536}
537
ee498ed7 538/*
7e675137 539 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 540 *
7e675137
NP
541 * "Special" mappings do not wish to be associated with a "struct page" (either
542 * it doesn't exist, or it exists but they don't want to touch it). In this
543 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 544 *
7e675137
NP
545 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
546 * pte bit, in which case this function is trivial. Secondly, an architecture
547 * may not have a spare pte bit, which requires a more complicated scheme,
548 * described below.
549 *
550 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
551 * special mapping (even if there are underlying and valid "struct pages").
552 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 553 *
b379d790
JH
554 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
555 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
556 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
557 * mapping will always honor the rule
6aab341e
LT
558 *
559 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
560 *
7e675137
NP
561 * And for normal mappings this is false.
562 *
563 * This restricts such mappings to be a linear translation from virtual address
564 * to pfn. To get around this restriction, we allow arbitrary mappings so long
565 * as the vma is not a COW mapping; in that case, we know that all ptes are
566 * special (because none can have been COWed).
b379d790 567 *
b379d790 568 *
7e675137 569 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
570 *
571 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
572 * page" backing, however the difference is that _all_ pages with a struct
573 * page (that is, those where pfn_valid is true) are refcounted and considered
574 * normal pages by the VM. The disadvantage is that pages are refcounted
575 * (which can be slower and simply not an option for some PFNMAP users). The
576 * advantage is that we don't have to follow the strict linearity rule of
577 * PFNMAP mappings in order to support COWable mappings.
578 *
ee498ed7 579 */
25b2995a
CH
580struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
581 pte_t pte)
ee498ed7 582{
22b31eec 583 unsigned long pfn = pte_pfn(pte);
7e675137 584
00b3a331 585 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 586 if (likely(!pte_special(pte)))
22b31eec 587 goto check_pfn;
667a0a06
DV
588 if (vma->vm_ops && vma->vm_ops->find_special_page)
589 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
590 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
591 return NULL;
df6ad698
JG
592 if (is_zero_pfn(pfn))
593 return NULL;
e1fb4a08 594 if (pte_devmap(pte))
3218f871
AS
595 /*
596 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
597 * and will have refcounts incremented on their struct pages
598 * when they are inserted into PTEs, thus they are safe to
599 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
600 * do not have refcounts. Example of legacy ZONE_DEVICE is
601 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
602 */
e1fb4a08
DJ
603 return NULL;
604
df6ad698 605 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
606 return NULL;
607 }
608
00b3a331 609 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 610
b379d790
JH
611 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
612 if (vma->vm_flags & VM_MIXEDMAP) {
613 if (!pfn_valid(pfn))
614 return NULL;
615 goto out;
616 } else {
7e675137
NP
617 unsigned long off;
618 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
619 if (pfn == vma->vm_pgoff + off)
620 return NULL;
621 if (!is_cow_mapping(vma->vm_flags))
622 return NULL;
623 }
6aab341e
LT
624 }
625
b38af472
HD
626 if (is_zero_pfn(pfn))
627 return NULL;
00b3a331 628
22b31eec
HD
629check_pfn:
630 if (unlikely(pfn > highest_memmap_pfn)) {
631 print_bad_pte(vma, addr, pte, NULL);
632 return NULL;
633 }
6aab341e
LT
634
635 /*
7e675137 636 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 637 * eg. VDSO mappings can cause them to exist.
6aab341e 638 */
b379d790 639out:
6aab341e 640 return pfn_to_page(pfn);
ee498ed7
HD
641}
642
318e9342
VMO
643struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
644 pte_t pte)
645{
646 struct page *page = vm_normal_page(vma, addr, pte);
647
648 if (page)
649 return page_folio(page);
650 return NULL;
651}
652
28093f9f
GS
653#ifdef CONFIG_TRANSPARENT_HUGEPAGE
654struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
655 pmd_t pmd)
656{
657 unsigned long pfn = pmd_pfn(pmd);
658
659 /*
660 * There is no pmd_special() but there may be special pmds, e.g.
661 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 662 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
663 */
664 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
665 if (vma->vm_flags & VM_MIXEDMAP) {
666 if (!pfn_valid(pfn))
667 return NULL;
668 goto out;
669 } else {
670 unsigned long off;
671 off = (addr - vma->vm_start) >> PAGE_SHIFT;
672 if (pfn == vma->vm_pgoff + off)
673 return NULL;
674 if (!is_cow_mapping(vma->vm_flags))
675 return NULL;
676 }
677 }
678
e1fb4a08
DJ
679 if (pmd_devmap(pmd))
680 return NULL;
3cde287b 681 if (is_huge_zero_pmd(pmd))
28093f9f
GS
682 return NULL;
683 if (unlikely(pfn > highest_memmap_pfn))
684 return NULL;
685
686 /*
687 * NOTE! We still have PageReserved() pages in the page tables.
688 * eg. VDSO mappings can cause them to exist.
689 */
690out:
691 return pfn_to_page(pfn);
692}
65610453
KW
693
694struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
695 unsigned long addr, pmd_t pmd)
696{
697 struct page *page = vm_normal_page_pmd(vma, addr, pmd);
698
699 if (page)
700 return page_folio(page);
701 return NULL;
702}
28093f9f
GS
703#endif
704
b756a3b5
AP
705static void restore_exclusive_pte(struct vm_area_struct *vma,
706 struct page *page, unsigned long address,
707 pte_t *ptep)
708{
c33c7948 709 pte_t orig_pte;
b756a3b5
AP
710 pte_t pte;
711 swp_entry_t entry;
712
c33c7948 713 orig_pte = ptep_get(ptep);
b756a3b5 714 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 715 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
716 pte = pte_mksoft_dirty(pte);
717
c33c7948
RR
718 entry = pte_to_swp_entry(orig_pte);
719 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
720 pte = pte_mkuffd_wp(pte);
721 else if (is_writable_device_exclusive_entry(entry))
722 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723
6c287605
DH
724 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725
b756a3b5
AP
726 /*
727 * No need to take a page reference as one was already
728 * created when the swap entry was made.
729 */
730 if (PageAnon(page))
f1e2db12 731 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
732 else
733 /*
734 * Currently device exclusive access only supports anonymous
735 * memory so the entry shouldn't point to a filebacked page.
736 */
4d8ff640 737 WARN_ON_ONCE(1);
b756a3b5 738
1eba86c0
PT
739 set_pte_at(vma->vm_mm, address, ptep, pte);
740
b756a3b5
AP
741 /*
742 * No need to invalidate - it was non-present before. However
743 * secondary CPUs may have mappings that need invalidating.
744 */
745 update_mmu_cache(vma, address, ptep);
746}
747
748/*
749 * Tries to restore an exclusive pte if the page lock can be acquired without
750 * sleeping.
751 */
752static int
753try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 unsigned long addr)
755{
c33c7948 756 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
757 struct page *page = pfn_swap_entry_to_page(entry);
758
759 if (trylock_page(page)) {
760 restore_exclusive_pte(vma, page, addr, src_pte);
761 unlock_page(page);
762 return 0;
763 }
764
765 return -EBUSY;
766}
767
1da177e4
LT
768/*
769 * copy one vm_area from one task to the other. Assumes the page tables
770 * already present in the new task to be cleared in the whole range
771 * covered by this vma.
1da177e4
LT
772 */
773
df3a57d1
LT
774static unsigned long
775copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
776 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 778{
8f34f1ea 779 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
780 pte_t orig_pte = ptep_get(src_pte);
781 pte_t pte = orig_pte;
1da177e4 782 struct page *page;
c33c7948 783 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
784
785 if (likely(!non_swap_entry(entry))) {
786 if (swap_duplicate(entry) < 0)
9a5cc85c 787 return -EIO;
df3a57d1
LT
788
789 /* make sure dst_mm is on swapoff's mmlist. */
790 if (unlikely(list_empty(&dst_mm->mmlist))) {
791 spin_lock(&mmlist_lock);
792 if (list_empty(&dst_mm->mmlist))
793 list_add(&dst_mm->mmlist,
794 &src_mm->mmlist);
795 spin_unlock(&mmlist_lock);
796 }
1493a191 797 /* Mark the swap entry as shared. */
c33c7948
RR
798 if (pte_swp_exclusive(orig_pte)) {
799 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
800 set_pte_at(src_mm, addr, src_pte, pte);
801 }
df3a57d1
LT
802 rss[MM_SWAPENTS]++;
803 } else if (is_migration_entry(entry)) {
af5cdaf8 804 page = pfn_swap_entry_to_page(entry);
1da177e4 805
df3a57d1 806 rss[mm_counter(page)]++;
5042db43 807
6c287605 808 if (!is_readable_migration_entry(entry) &&
df3a57d1 809 is_cow_mapping(vm_flags)) {
5042db43 810 /*
6c287605
DH
811 * COW mappings require pages in both parent and child
812 * to be set to read. A previously exclusive entry is
813 * now shared.
5042db43 814 */
4dd845b5
AP
815 entry = make_readable_migration_entry(
816 swp_offset(entry));
df3a57d1 817 pte = swp_entry_to_pte(entry);
c33c7948 818 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 819 pte = pte_swp_mksoft_dirty(pte);
c33c7948 820 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
821 pte = pte_swp_mkuffd_wp(pte);
822 set_pte_at(src_mm, addr, src_pte, pte);
823 }
824 } else if (is_device_private_entry(entry)) {
af5cdaf8 825 page = pfn_swap_entry_to_page(entry);
5042db43 826
df3a57d1
LT
827 /*
828 * Update rss count even for unaddressable pages, as
829 * they should treated just like normal pages in this
830 * respect.
831 *
832 * We will likely want to have some new rss counters
833 * for unaddressable pages, at some point. But for now
834 * keep things as they are.
835 */
836 get_page(page);
837 rss[mm_counter(page)]++;
fb3d824d
DH
838 /* Cannot fail as these pages cannot get pinned. */
839 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
840
841 /*
842 * We do not preserve soft-dirty information, because so
843 * far, checkpoint/restore is the only feature that
844 * requires that. And checkpoint/restore does not work
845 * when a device driver is involved (you cannot easily
846 * save and restore device driver state).
847 */
4dd845b5 848 if (is_writable_device_private_entry(entry) &&
df3a57d1 849 is_cow_mapping(vm_flags)) {
4dd845b5
AP
850 entry = make_readable_device_private_entry(
851 swp_offset(entry));
df3a57d1 852 pte = swp_entry_to_pte(entry);
c33c7948 853 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
854 pte = pte_swp_mkuffd_wp(pte);
855 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 856 }
b756a3b5
AP
857 } else if (is_device_exclusive_entry(entry)) {
858 /*
859 * Make device exclusive entries present by restoring the
860 * original entry then copying as for a present pte. Device
861 * exclusive entries currently only support private writable
862 * (ie. COW) mappings.
863 */
864 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
865 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
866 return -EBUSY;
867 return -ENOENT;
c56d1b62 868 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
869 pte_marker marker = copy_pte_marker(entry, dst_vma);
870
871 if (marker)
872 set_pte_at(dst_mm, addr, dst_pte,
873 make_pte_marker(marker));
c56d1b62 874 return 0;
1da177e4 875 }
8f34f1ea
PX
876 if (!userfaultfd_wp(dst_vma))
877 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
878 set_pte_at(dst_mm, addr, dst_pte, pte);
879 return 0;
880}
881
70e806e4 882/*
b51ad4f8 883 * Copy a present and normal page.
70e806e4 884 *
b51ad4f8
DH
885 * NOTE! The usual case is that this isn't required;
886 * instead, the caller can just increase the page refcount
887 * and re-use the pte the traditional way.
70e806e4
PX
888 *
889 * And if we need a pre-allocated page but don't yet have
890 * one, return a negative error to let the preallocation
891 * code know so that it can do so outside the page table
892 * lock.
893 */
894static inline int
c78f4636
PX
895copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 897 struct folio **prealloc, struct page *page)
70e806e4 898{
edf50470 899 struct folio *new_folio;
b51ad4f8 900 pte_t pte;
70e806e4 901
edf50470
MWO
902 new_folio = *prealloc;
903 if (!new_folio)
70e806e4
PX
904 return -EAGAIN;
905
906 /*
907 * We have a prealloc page, all good! Take it
908 * over and copy the page & arm it.
909 */
910 *prealloc = NULL;
edf50470
MWO
911 copy_user_highpage(&new_folio->page, page, addr, src_vma);
912 __folio_mark_uptodate(new_folio);
913 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
914 folio_add_lru_vma(new_folio, dst_vma);
915 rss[MM_ANONPAGES]++;
70e806e4
PX
916
917 /* All done, just insert the new page copy in the child */
edf50470 918 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 919 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 920 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 921 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 922 pte = pte_mkuffd_wp(pte);
c78f4636 923 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
924 return 0;
925}
926
927/*
928 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
929 * is required to copy this pte.
930 */
931static inline int
c78f4636
PX
932copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 934 struct folio **prealloc)
df3a57d1 935{
c78f4636
PX
936 struct mm_struct *src_mm = src_vma->vm_mm;
937 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 938 pte_t pte = ptep_get(src_pte);
df3a57d1 939 struct page *page;
14ddee41 940 struct folio *folio;
df3a57d1 941
c78f4636 942 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
943 if (page)
944 folio = page_folio(page);
945 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
946 /*
947 * If this page may have been pinned by the parent process,
948 * copy the page immediately for the child so that we'll always
949 * guarantee the pinned page won't be randomly replaced in the
950 * future.
951 */
14ddee41 952 folio_get(folio);
fb3d824d 953 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
954 /* Page may be pinned, we have to copy. */
955 folio_put(folio);
fb3d824d
DH
956 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
957 addr, rss, prealloc, page);
958 }
edf50470 959 rss[MM_ANONPAGES]++;
b51ad4f8 960 } else if (page) {
14ddee41 961 folio_get(folio);
fb3d824d 962 page_dup_file_rmap(page, false);
edf50470 963 rss[mm_counter_file(page)]++;
70e806e4
PX
964 }
965
1da177e4
LT
966 /*
967 * If it's a COW mapping, write protect it both
968 * in the parent and the child
969 */
1b2de5d0 970 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 971 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 972 pte = pte_wrprotect(pte);
1da177e4 973 }
14ddee41 974 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
975
976 /*
977 * If it's a shared mapping, mark it clean in
978 * the child
979 */
980 if (vm_flags & VM_SHARED)
981 pte = pte_mkclean(pte);
982 pte = pte_mkold(pte);
6aab341e 983
8f34f1ea 984 if (!userfaultfd_wp(dst_vma))
b569a176
PX
985 pte = pte_clear_uffd_wp(pte);
986
c78f4636 987 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
988 return 0;
989}
990
edf50470
MWO
991static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
992 struct vm_area_struct *vma, unsigned long addr)
70e806e4 993{
edf50470 994 struct folio *new_folio;
70e806e4 995
edf50470
MWO
996 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
997 if (!new_folio)
70e806e4
PX
998 return NULL;
999
edf50470
MWO
1000 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
1001 folio_put(new_folio);
70e806e4 1002 return NULL;
6aab341e 1003 }
e601ded4 1004 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 1005
edf50470 1006 return new_folio;
1da177e4
LT
1007}
1008
c78f4636
PX
1009static int
1010copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1011 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1012 unsigned long end)
1da177e4 1013{
c78f4636
PX
1014 struct mm_struct *dst_mm = dst_vma->vm_mm;
1015 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1016 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1017 pte_t *src_pte, *dst_pte;
c33c7948 1018 pte_t ptent;
c74df32c 1019 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1020 int progress, ret = 0;
d559db08 1021 int rss[NR_MM_COUNTERS];
570a335b 1022 swp_entry_t entry = (swp_entry_t){0};
edf50470 1023 struct folio *prealloc = NULL;
1da177e4
LT
1024
1025again:
70e806e4 1026 progress = 0;
d559db08
KH
1027 init_rss_vec(rss);
1028
3db82b93
HD
1029 /*
1030 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1031 * error handling here, assume that exclusive mmap_lock on dst and src
1032 * protects anon from unexpected THP transitions; with shmem and file
1033 * protected by mmap_lock-less collapse skipping areas with anon_vma
1034 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1035 * can remove such assumptions later, but this is good enough for now.
1036 */
c74df32c 1037 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1038 if (!dst_pte) {
1039 ret = -ENOMEM;
1040 goto out;
1041 }
3db82b93
HD
1042 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1043 if (!src_pte) {
1044 pte_unmap_unlock(dst_pte, dst_ptl);
1045 /* ret == 0 */
1046 goto out;
1047 }
f20dc5f7 1048 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1049 orig_src_pte = src_pte;
1050 orig_dst_pte = dst_pte;
6606c3e0 1051 arch_enter_lazy_mmu_mode();
1da177e4 1052
1da177e4
LT
1053 do {
1054 /*
1055 * We are holding two locks at this point - either of them
1056 * could generate latencies in another task on another CPU.
1057 */
e040f218
HD
1058 if (progress >= 32) {
1059 progress = 0;
1060 if (need_resched() ||
95c354fe 1061 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1062 break;
1063 }
c33c7948
RR
1064 ptent = ptep_get(src_pte);
1065 if (pte_none(ptent)) {
1da177e4
LT
1066 progress++;
1067 continue;
1068 }
c33c7948 1069 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1070 ret = copy_nonpresent_pte(dst_mm, src_mm,
1071 dst_pte, src_pte,
1072 dst_vma, src_vma,
1073 addr, rss);
1074 if (ret == -EIO) {
c33c7948 1075 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1076 break;
b756a3b5
AP
1077 } else if (ret == -EBUSY) {
1078 break;
1079 } else if (!ret) {
1080 progress += 8;
1081 continue;
9a5cc85c 1082 }
b756a3b5
AP
1083
1084 /*
1085 * Device exclusive entry restored, continue by copying
1086 * the now present pte.
1087 */
1088 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1089 }
70e806e4 1090 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1091 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1092 addr, rss, &prealloc);
70e806e4
PX
1093 /*
1094 * If we need a pre-allocated page for this pte, drop the
1095 * locks, allocate, and try again.
1096 */
1097 if (unlikely(ret == -EAGAIN))
1098 break;
1099 if (unlikely(prealloc)) {
1100 /*
1101 * pre-alloc page cannot be reused by next time so as
1102 * to strictly follow mempolicy (e.g., alloc_page_vma()
1103 * will allocate page according to address). This
1104 * could only happen if one pinned pte changed.
1105 */
edf50470 1106 folio_put(prealloc);
70e806e4
PX
1107 prealloc = NULL;
1108 }
1da177e4
LT
1109 progress += 8;
1110 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1111
6606c3e0 1112 arch_leave_lazy_mmu_mode();
3db82b93 1113 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1114 add_mm_rss_vec(dst_mm, rss);
c36987e2 1115 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1116 cond_resched();
570a335b 1117
9a5cc85c
AP
1118 if (ret == -EIO) {
1119 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1120 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1121 ret = -ENOMEM;
1122 goto out;
1123 }
1124 entry.val = 0;
b756a3b5
AP
1125 } else if (ret == -EBUSY) {
1126 goto out;
9a5cc85c 1127 } else if (ret == -EAGAIN) {
c78f4636 1128 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1129 if (!prealloc)
570a335b 1130 return -ENOMEM;
9a5cc85c
AP
1131 } else if (ret) {
1132 VM_WARN_ON_ONCE(1);
570a335b 1133 }
9a5cc85c
AP
1134
1135 /* We've captured and resolved the error. Reset, try again. */
1136 ret = 0;
1137
1da177e4
LT
1138 if (addr != end)
1139 goto again;
70e806e4
PX
1140out:
1141 if (unlikely(prealloc))
edf50470 1142 folio_put(prealloc);
70e806e4 1143 return ret;
1da177e4
LT
1144}
1145
c78f4636
PX
1146static inline int
1147copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1148 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1149 unsigned long end)
1da177e4 1150{
c78f4636
PX
1151 struct mm_struct *dst_mm = dst_vma->vm_mm;
1152 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1153 pmd_t *src_pmd, *dst_pmd;
1154 unsigned long next;
1155
1156 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1157 if (!dst_pmd)
1158 return -ENOMEM;
1159 src_pmd = pmd_offset(src_pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1162 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1163 || pmd_devmap(*src_pmd)) {
71e3aac0 1164 int err;
c78f4636 1165 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1166 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1167 addr, dst_vma, src_vma);
71e3aac0
AA
1168 if (err == -ENOMEM)
1169 return -ENOMEM;
1170 if (!err)
1171 continue;
1172 /* fall through */
1173 }
1da177e4
LT
1174 if (pmd_none_or_clear_bad(src_pmd))
1175 continue;
c78f4636
PX
1176 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1177 addr, next))
1da177e4
LT
1178 return -ENOMEM;
1179 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1180 return 0;
1181}
1182
c78f4636
PX
1183static inline int
1184copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1185 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1186 unsigned long end)
1da177e4 1187{
c78f4636
PX
1188 struct mm_struct *dst_mm = dst_vma->vm_mm;
1189 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1190 pud_t *src_pud, *dst_pud;
1191 unsigned long next;
1192
c2febafc 1193 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1194 if (!dst_pud)
1195 return -ENOMEM;
c2febafc 1196 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1197 do {
1198 next = pud_addr_end(addr, end);
a00cc7d9
MW
1199 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1200 int err;
1201
c78f4636 1202 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1203 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1204 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1205 if (err == -ENOMEM)
1206 return -ENOMEM;
1207 if (!err)
1208 continue;
1209 /* fall through */
1210 }
1da177e4
LT
1211 if (pud_none_or_clear_bad(src_pud))
1212 continue;
c78f4636
PX
1213 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1214 addr, next))
1da177e4
LT
1215 return -ENOMEM;
1216 } while (dst_pud++, src_pud++, addr = next, addr != end);
1217 return 0;
1218}
1219
c78f4636
PX
1220static inline int
1221copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1222 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1223 unsigned long end)
c2febafc 1224{
c78f4636 1225 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1226 p4d_t *src_p4d, *dst_p4d;
1227 unsigned long next;
1228
1229 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1230 if (!dst_p4d)
1231 return -ENOMEM;
1232 src_p4d = p4d_offset(src_pgd, addr);
1233 do {
1234 next = p4d_addr_end(addr, end);
1235 if (p4d_none_or_clear_bad(src_p4d))
1236 continue;
c78f4636
PX
1237 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1238 addr, next))
c2febafc
KS
1239 return -ENOMEM;
1240 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1241 return 0;
1242}
1243
c56d1b62
PX
1244/*
1245 * Return true if the vma needs to copy the pgtable during this fork(). Return
1246 * false when we can speed up fork() by allowing lazy page faults later until
1247 * when the child accesses the memory range.
1248 */
bc70fbf2 1249static bool
c56d1b62
PX
1250vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1251{
1252 /*
1253 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1254 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1255 * contains uffd-wp protection information, that's something we can't
1256 * retrieve from page cache, and skip copying will lose those info.
1257 */
1258 if (userfaultfd_wp(dst_vma))
1259 return true;
1260
bcd51a3c 1261 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1262 return true;
1263
1264 if (src_vma->anon_vma)
1265 return true;
1266
1267 /*
1268 * Don't copy ptes where a page fault will fill them correctly. Fork
1269 * becomes much lighter when there are big shared or private readonly
1270 * mappings. The tradeoff is that copy_page_range is more efficient
1271 * than faulting.
1272 */
1273 return false;
1274}
1275
c78f4636
PX
1276int
1277copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1278{
1279 pgd_t *src_pgd, *dst_pgd;
1280 unsigned long next;
c78f4636
PX
1281 unsigned long addr = src_vma->vm_start;
1282 unsigned long end = src_vma->vm_end;
1283 struct mm_struct *dst_mm = dst_vma->vm_mm;
1284 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1285 struct mmu_notifier_range range;
2ec74c3e 1286 bool is_cow;
cddb8a5c 1287 int ret;
1da177e4 1288
c56d1b62 1289 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1290 return 0;
d992895b 1291
c78f4636 1292 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1293 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1294
c78f4636 1295 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1296 /*
1297 * We do not free on error cases below as remove_vma
1298 * gets called on error from higher level routine
1299 */
c78f4636 1300 ret = track_pfn_copy(src_vma);
2ab64037 1301 if (ret)
1302 return ret;
1303 }
1304
cddb8a5c
AA
1305 /*
1306 * We need to invalidate the secondary MMU mappings only when
1307 * there could be a permission downgrade on the ptes of the
1308 * parent mm. And a permission downgrade will only happen if
1309 * is_cow_mapping() returns true.
1310 */
c78f4636 1311 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1312
1313 if (is_cow) {
7269f999 1314 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1315 0, src_mm, addr, end);
ac46d4f3 1316 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1317 /*
1318 * Disabling preemption is not needed for the write side, as
1319 * the read side doesn't spin, but goes to the mmap_lock.
1320 *
1321 * Use the raw variant of the seqcount_t write API to avoid
1322 * lockdep complaining about preemptibility.
1323 */
e727bfd5 1324 vma_assert_write_locked(src_vma);
57efa1fe 1325 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1326 }
cddb8a5c
AA
1327
1328 ret = 0;
1da177e4
LT
1329 dst_pgd = pgd_offset(dst_mm, addr);
1330 src_pgd = pgd_offset(src_mm, addr);
1331 do {
1332 next = pgd_addr_end(addr, end);
1333 if (pgd_none_or_clear_bad(src_pgd))
1334 continue;
c78f4636
PX
1335 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1336 addr, next))) {
d155df53 1337 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1338 ret = -ENOMEM;
1339 break;
1340 }
1da177e4 1341 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1342
57efa1fe
JG
1343 if (is_cow) {
1344 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1345 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1346 }
cddb8a5c 1347 return ret;
1da177e4
LT
1348}
1349
5abfd71d
PX
1350/* Whether we should zap all COWed (private) pages too */
1351static inline bool should_zap_cows(struct zap_details *details)
1352{
1353 /* By default, zap all pages */
1354 if (!details)
1355 return true;
1356
1357 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1358 return details->even_cows;
5abfd71d
PX
1359}
1360
2e148f1e 1361/* Decides whether we should zap this page with the page pointer specified */
254ab940 1362static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1363{
5abfd71d
PX
1364 /* If we can make a decision without *page.. */
1365 if (should_zap_cows(details))
254ab940 1366 return true;
5abfd71d
PX
1367
1368 /* E.g. the caller passes NULL for the case of a zero page */
1369 if (!page)
254ab940 1370 return true;
3506659e 1371
2e148f1e
PX
1372 /* Otherwise we should only zap non-anon pages */
1373 return !PageAnon(page);
3506659e
MWO
1374}
1375
999dad82
PX
1376static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1377{
1378 if (!details)
1379 return false;
1380
1381 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1382}
1383
1384/*
1385 * This function makes sure that we'll replace the none pte with an uffd-wp
1386 * swap special pte marker when necessary. Must be with the pgtable lock held.
1387 */
1388static inline void
1389zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1390 unsigned long addr, pte_t *pte,
1391 struct zap_details *details, pte_t pteval)
1392{
2bad466c
PX
1393 /* Zap on anonymous always means dropping everything */
1394 if (vma_is_anonymous(vma))
1395 return;
1396
999dad82
PX
1397 if (zap_drop_file_uffd_wp(details))
1398 return;
1399
1400 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1401}
1402
51c6f666 1403static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1404 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1405 unsigned long addr, unsigned long end,
97a89413 1406 struct zap_details *details)
1da177e4 1407{
b5810039 1408 struct mm_struct *mm = tlb->mm;
d16dfc55 1409 int force_flush = 0;
d559db08 1410 int rss[NR_MM_COUNTERS];
97a89413 1411 spinlock_t *ptl;
5f1a1907 1412 pte_t *start_pte;
97a89413 1413 pte_t *pte;
8a5f14a2 1414 swp_entry_t entry;
d559db08 1415
ed6a7935 1416 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1417 init_rss_vec(rss);
3db82b93
HD
1418 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1419 if (!pte)
1420 return addr;
1421
3ea27719 1422 flush_tlb_batched_pending(mm);
6606c3e0 1423 arch_enter_lazy_mmu_mode();
1da177e4 1424 do {
c33c7948 1425 pte_t ptent = ptep_get(pte);
8018db85
PX
1426 struct page *page;
1427
166f61b9 1428 if (pte_none(ptent))
1da177e4 1429 continue;
6f5e6b9e 1430
7b167b68
MK
1431 if (need_resched())
1432 break;
1433
1da177e4 1434 if (pte_present(ptent)) {
5df397de
LT
1435 unsigned int delay_rmap;
1436
25b2995a 1437 page = vm_normal_page(vma, addr, ptent);
254ab940 1438 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1439 continue;
b5810039 1440 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1441 tlb->fullmm);
e5136e87 1442 arch_check_zapped_pte(vma, ptent);
1da177e4 1443 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1444 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1445 ptent);
e2942062 1446 if (unlikely(!page)) {
6080d19f 1447 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1448 continue;
e2942062 1449 }
eca56ff9 1450
5df397de 1451 delay_rmap = 0;
eca56ff9 1452 if (!PageAnon(page)) {
1cf35d47 1453 if (pte_dirty(ptent)) {
6237bcd9 1454 set_page_dirty(page);
5df397de
LT
1455 if (tlb_delay_rmap(tlb)) {
1456 delay_rmap = 1;
1457 force_flush = 1;
1458 }
1cf35d47 1459 }
8788f678 1460 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1461 mark_page_accessed(page);
6237bcd9 1462 }
eca56ff9 1463 rss[mm_counter(page)]--;
5df397de
LT
1464 if (!delay_rmap) {
1465 page_remove_rmap(page, vma, false);
1466 if (unlikely(page_mapcount(page) < 0))
1467 print_bad_pte(vma, addr, ptent, page);
1468 }
1469 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1470 force_flush = 1;
ce9ec37b 1471 addr += PAGE_SIZE;
d16dfc55 1472 break;
1cf35d47 1473 }
1da177e4
LT
1474 continue;
1475 }
5042db43
JG
1476
1477 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1478 if (is_device_private_entry(entry) ||
1479 is_device_exclusive_entry(entry)) {
8018db85 1480 page = pfn_swap_entry_to_page(entry);
254ab940 1481 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1482 continue;
999dad82
PX
1483 /*
1484 * Both device private/exclusive mappings should only
1485 * work with anonymous page so far, so we don't need to
1486 * consider uffd-wp bit when zap. For more information,
1487 * see zap_install_uffd_wp_if_needed().
1488 */
1489 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1490 rss[mm_counter(page)]--;
b756a3b5 1491 if (is_device_private_entry(entry))
cea86fe2 1492 page_remove_rmap(page, vma, false);
5042db43 1493 put_page(page);
8018db85 1494 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1495 /* Genuine swap entry, hence a private anon page */
1496 if (!should_zap_cows(details))
1497 continue;
8a5f14a2 1498 rss[MM_SWAPENTS]--;
8018db85
PX
1499 if (unlikely(!free_swap_and_cache(entry)))
1500 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1501 } else if (is_migration_entry(entry)) {
af5cdaf8 1502 page = pfn_swap_entry_to_page(entry);
254ab940 1503 if (!should_zap_page(details, page))
5abfd71d 1504 continue;
eca56ff9 1505 rss[mm_counter(page)]--;
999dad82 1506 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1507 /*
1508 * For anon: always drop the marker; for file: only
1509 * drop the marker if explicitly requested.
1510 */
1511 if (!vma_is_anonymous(vma) &&
1512 !zap_drop_file_uffd_wp(details))
999dad82 1513 continue;
9f186f9e 1514 } else if (is_hwpoison_entry(entry) ||
af19487f 1515 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1516 if (!should_zap_cows(details))
1517 continue;
1518 } else {
1519 /* We should have covered all the swap entry types */
727d16f1 1520 pr_alert("unrecognized swap entry 0x%lx\n", entry.val);
5abfd71d 1521 WARN_ON_ONCE(1);
b084d435 1522 }
9888a1ca 1523 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1524 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1525 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1526
d559db08 1527 add_mm_rss_vec(mm, rss);
6606c3e0 1528 arch_leave_lazy_mmu_mode();
51c6f666 1529
1cf35d47 1530 /* Do the actual TLB flush before dropping ptl */
5df397de 1531 if (force_flush) {
1cf35d47 1532 tlb_flush_mmu_tlbonly(tlb);
f036c818 1533 tlb_flush_rmaps(tlb, vma);
5df397de 1534 }
1cf35d47
LT
1535 pte_unmap_unlock(start_pte, ptl);
1536
1537 /*
1538 * If we forced a TLB flush (either due to running out of
1539 * batch buffers or because we needed to flush dirty TLB
1540 * entries before releasing the ptl), free the batched
3db82b93 1541 * memory too. Come back again if we didn't do everything.
1cf35d47 1542 */
3db82b93 1543 if (force_flush)
fa0aafb8 1544 tlb_flush_mmu(tlb);
d16dfc55 1545
51c6f666 1546 return addr;
1da177e4
LT
1547}
1548
51c6f666 1549static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1550 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1551 unsigned long addr, unsigned long end,
97a89413 1552 struct zap_details *details)
1da177e4
LT
1553{
1554 pmd_t *pmd;
1555 unsigned long next;
1556
1557 pmd = pmd_offset(pud, addr);
1558 do {
1559 next = pmd_addr_end(addr, end);
84c3fc4e 1560 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1561 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1562 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1563 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1564 addr = next;
1565 continue;
1566 }
71e3aac0 1567 /* fall through */
3506659e
MWO
1568 } else if (details && details->single_folio &&
1569 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1570 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1571 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1572 /*
1573 * Take and drop THP pmd lock so that we cannot return
1574 * prematurely, while zap_huge_pmd() has cleared *pmd,
1575 * but not yet decremented compound_mapcount().
1576 */
1577 spin_unlock(ptl);
71e3aac0 1578 }
3db82b93
HD
1579 if (pmd_none(*pmd)) {
1580 addr = next;
1581 continue;
1582 }
1583 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1584 if (addr != next)
1585 pmd--;
1586 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1587
1588 return addr;
1da177e4
LT
1589}
1590
51c6f666 1591static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1592 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1593 unsigned long addr, unsigned long end,
97a89413 1594 struct zap_details *details)
1da177e4
LT
1595{
1596 pud_t *pud;
1597 unsigned long next;
1598
c2febafc 1599 pud = pud_offset(p4d, addr);
1da177e4
LT
1600 do {
1601 next = pud_addr_end(addr, end);
a00cc7d9
MW
1602 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1603 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1604 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1605 split_huge_pud(vma, pud, addr);
1606 } else if (zap_huge_pud(tlb, vma, pud, addr))
1607 goto next;
1608 /* fall through */
1609 }
97a89413 1610 if (pud_none_or_clear_bad(pud))
1da177e4 1611 continue;
97a89413 1612 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1613next:
1614 cond_resched();
97a89413 1615 } while (pud++, addr = next, addr != end);
51c6f666
RH
1616
1617 return addr;
1da177e4
LT
1618}
1619
c2febafc
KS
1620static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1621 struct vm_area_struct *vma, pgd_t *pgd,
1622 unsigned long addr, unsigned long end,
1623 struct zap_details *details)
1624{
1625 p4d_t *p4d;
1626 unsigned long next;
1627
1628 p4d = p4d_offset(pgd, addr);
1629 do {
1630 next = p4d_addr_end(addr, end);
1631 if (p4d_none_or_clear_bad(p4d))
1632 continue;
1633 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1634 } while (p4d++, addr = next, addr != end);
1635
1636 return addr;
1637}
1638
aac45363 1639void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1640 struct vm_area_struct *vma,
1641 unsigned long addr, unsigned long end,
1642 struct zap_details *details)
1da177e4
LT
1643{
1644 pgd_t *pgd;
1645 unsigned long next;
1646
1da177e4
LT
1647 BUG_ON(addr >= end);
1648 tlb_start_vma(tlb, vma);
1649 pgd = pgd_offset(vma->vm_mm, addr);
1650 do {
1651 next = pgd_addr_end(addr, end);
97a89413 1652 if (pgd_none_or_clear_bad(pgd))
1da177e4 1653 continue;
c2febafc 1654 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1655 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1656 tlb_end_vma(tlb, vma);
1657}
51c6f666 1658
f5cc4eef
AV
1659
1660static void unmap_single_vma(struct mmu_gather *tlb,
1661 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1662 unsigned long end_addr,
68f48381 1663 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1664{
1665 unsigned long start = max(vma->vm_start, start_addr);
1666 unsigned long end;
1667
1668 if (start >= vma->vm_end)
1669 return;
1670 end = min(vma->vm_end, end_addr);
1671 if (end <= vma->vm_start)
1672 return;
1673
cbc91f71
SD
1674 if (vma->vm_file)
1675 uprobe_munmap(vma, start, end);
1676
b3b9c293 1677 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1678 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1679
1680 if (start != end) {
1681 if (unlikely(is_vm_hugetlb_page(vma))) {
1682 /*
1683 * It is undesirable to test vma->vm_file as it
1684 * should be non-null for valid hugetlb area.
1685 * However, vm_file will be NULL in the error
7aa6b4ad 1686 * cleanup path of mmap_region. When
f5cc4eef 1687 * hugetlbfs ->mmap method fails,
7aa6b4ad 1688 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1689 * before calling this function to clean up.
1690 * Since no pte has actually been setup, it is
1691 * safe to do nothing in this case.
1692 */
24669e58 1693 if (vma->vm_file) {
05e90bd0
PX
1694 zap_flags_t zap_flags = details ?
1695 details->zap_flags : 0;
2820b0f0 1696 __unmap_hugepage_range(tlb, vma, start, end,
05e90bd0 1697 NULL, zap_flags);
24669e58 1698 }
f5cc4eef
AV
1699 } else
1700 unmap_page_range(tlb, vma, start, end, details);
1701 }
1da177e4
LT
1702}
1703
1da177e4
LT
1704/**
1705 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1706 * @tlb: address of the caller's struct mmu_gather
6e412203 1707 * @mas: the maple state
1da177e4
LT
1708 * @vma: the starting vma
1709 * @start_addr: virtual address at which to start unmapping
1710 * @end_addr: virtual address at which to end unmapping
6e412203 1711 * @tree_end: The maximum index to check
809ef83c 1712 * @mm_wr_locked: lock flag
1da177e4 1713 *
508034a3 1714 * Unmap all pages in the vma list.
1da177e4 1715 *
1da177e4
LT
1716 * Only addresses between `start' and `end' will be unmapped.
1717 *
1718 * The VMA list must be sorted in ascending virtual address order.
1719 *
1720 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1721 * range after unmap_vmas() returns. So the only responsibility here is to
1722 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1723 * drops the lock and schedules.
1724 */
fd892593 1725void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1726 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1727 unsigned long end_addr, unsigned long tree_end,
1728 bool mm_wr_locked)
1da177e4 1729{
ac46d4f3 1730 struct mmu_notifier_range range;
999dad82 1731 struct zap_details details = {
04ada095 1732 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1733 /* Careful - we need to zap private pages too! */
1734 .even_cows = true,
1735 };
1da177e4 1736
7d4a8be0 1737 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1738 start_addr, end_addr);
ac46d4f3 1739 mmu_notifier_invalidate_range_start(&range);
763ecb03 1740 do {
2820b0f0
RR
1741 unsigned long start = start_addr;
1742 unsigned long end = end_addr;
1743 hugetlb_zap_begin(vma, &start, &end);
1744 unmap_single_vma(tlb, vma, start, end, &details,
68f48381 1745 mm_wr_locked);
2820b0f0 1746 hugetlb_zap_end(vma, &details);
fd892593 1747 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
ac46d4f3 1748 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1749}
1750
f5cc4eef
AV
1751/**
1752 * zap_page_range_single - remove user pages in a given range
1753 * @vma: vm_area_struct holding the applicable pages
1754 * @address: starting address of pages to zap
1755 * @size: number of bytes to zap
8a5f14a2 1756 * @details: details of shared cache invalidation
f5cc4eef
AV
1757 *
1758 * The range must fit into one VMA.
1da177e4 1759 */
21b85b09 1760void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1761 unsigned long size, struct zap_details *details)
1762{
21b85b09 1763 const unsigned long end = address + size;
ac46d4f3 1764 struct mmu_notifier_range range;
d16dfc55 1765 struct mmu_gather tlb;
1da177e4 1766
1da177e4 1767 lru_add_drain();
7d4a8be0 1768 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09 1769 address, end);
2820b0f0 1770 hugetlb_zap_begin(vma, &range.start, &range.end);
a72afd87 1771 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1772 update_hiwater_rss(vma->vm_mm);
1773 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1774 /*
1775 * unmap 'address-end' not 'range.start-range.end' as range
1776 * could have been expanded for hugetlb pmd sharing.
1777 */
68f48381 1778 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1779 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1780 tlb_finish_mmu(&tlb);
2820b0f0 1781 hugetlb_zap_end(vma, details);
1da177e4
LT
1782}
1783
c627f9cc
JS
1784/**
1785 * zap_vma_ptes - remove ptes mapping the vma
1786 * @vma: vm_area_struct holding ptes to be zapped
1787 * @address: starting address of pages to zap
1788 * @size: number of bytes to zap
1789 *
1790 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1791 *
1792 * The entire address range must be fully contained within the vma.
1793 *
c627f9cc 1794 */
27d036e3 1795void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1796 unsigned long size)
1797{
88a35912 1798 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1799 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1800 return;
1801
f5cc4eef 1802 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1803}
1804EXPORT_SYMBOL_GPL(zap_vma_ptes);
1805
8cd3984d 1806static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1807{
c2febafc
KS
1808 pgd_t *pgd;
1809 p4d_t *p4d;
1810 pud_t *pud;
1811 pmd_t *pmd;
1812
1813 pgd = pgd_offset(mm, addr);
1814 p4d = p4d_alloc(mm, pgd, addr);
1815 if (!p4d)
1816 return NULL;
1817 pud = pud_alloc(mm, p4d, addr);
1818 if (!pud)
1819 return NULL;
1820 pmd = pmd_alloc(mm, pud, addr);
1821 if (!pmd)
1822 return NULL;
1823
1824 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1825 return pmd;
1826}
1827
1828pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1829 spinlock_t **ptl)
1830{
1831 pmd_t *pmd = walk_to_pmd(mm, addr);
1832
1833 if (!pmd)
1834 return NULL;
c2febafc 1835 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1836}
1837
8efd6f5b
AR
1838static int validate_page_before_insert(struct page *page)
1839{
1840 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1841 return -EINVAL;
1842 flush_dcache_page(page);
1843 return 0;
1844}
1845
cea86fe2 1846static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1847 unsigned long addr, struct page *page, pgprot_t prot)
1848{
c33c7948 1849 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1850 return -EBUSY;
1851 /* Ok, finally just insert the thing.. */
1852 get_page(page);
f1a79412 1853 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1854 page_add_file_rmap(page, vma, false);
1855 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1856 return 0;
1857}
1858
238f58d8
LT
1859/*
1860 * This is the old fallback for page remapping.
1861 *
1862 * For historical reasons, it only allows reserved pages. Only
1863 * old drivers should use this, and they needed to mark their
1864 * pages reserved for the old functions anyway.
1865 */
423bad60
NP
1866static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1867 struct page *page, pgprot_t prot)
238f58d8
LT
1868{
1869 int retval;
c9cfcddf 1870 pte_t *pte;
8a9f3ccd
BS
1871 spinlock_t *ptl;
1872
8efd6f5b
AR
1873 retval = validate_page_before_insert(page);
1874 if (retval)
5b4e655e 1875 goto out;
238f58d8 1876 retval = -ENOMEM;
cea86fe2 1877 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1878 if (!pte)
5b4e655e 1879 goto out;
cea86fe2 1880 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1881 pte_unmap_unlock(pte, ptl);
1882out:
1883 return retval;
1884}
1885
cea86fe2 1886static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1887 unsigned long addr, struct page *page, pgprot_t prot)
1888{
1889 int err;
1890
1891 if (!page_count(page))
1892 return -EINVAL;
1893 err = validate_page_before_insert(page);
7f70c2a6
AR
1894 if (err)
1895 return err;
cea86fe2 1896 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1897}
1898
1899/* insert_pages() amortizes the cost of spinlock operations
bb7dbaaf 1900 * when inserting pages in a loop.
8cd3984d
AR
1901 */
1902static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1903 struct page **pages, unsigned long *num, pgprot_t prot)
1904{
1905 pmd_t *pmd = NULL;
7f70c2a6
AR
1906 pte_t *start_pte, *pte;
1907 spinlock_t *pte_lock;
8cd3984d
AR
1908 struct mm_struct *const mm = vma->vm_mm;
1909 unsigned long curr_page_idx = 0;
1910 unsigned long remaining_pages_total = *num;
1911 unsigned long pages_to_write_in_pmd;
1912 int ret;
1913more:
1914 ret = -EFAULT;
1915 pmd = walk_to_pmd(mm, addr);
1916 if (!pmd)
1917 goto out;
1918
1919 pages_to_write_in_pmd = min_t(unsigned long,
1920 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1921
1922 /* Allocate the PTE if necessary; takes PMD lock once only. */
1923 ret = -ENOMEM;
1924 if (pte_alloc(mm, pmd))
1925 goto out;
8cd3984d
AR
1926
1927 while (pages_to_write_in_pmd) {
1928 int pte_idx = 0;
1929 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1930
7f70c2a6 1931 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1932 if (!start_pte) {
1933 ret = -EFAULT;
1934 goto out;
1935 }
7f70c2a6 1936 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1937 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1938 addr, pages[curr_page_idx], prot);
1939 if (unlikely(err)) {
7f70c2a6 1940 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1941 ret = err;
1942 remaining_pages_total -= pte_idx;
1943 goto out;
1944 }
1945 addr += PAGE_SIZE;
1946 ++curr_page_idx;
1947 }
7f70c2a6 1948 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1949 pages_to_write_in_pmd -= batch_size;
1950 remaining_pages_total -= batch_size;
1951 }
1952 if (remaining_pages_total)
1953 goto more;
1954 ret = 0;
1955out:
1956 *num = remaining_pages_total;
1957 return ret;
1958}
8cd3984d
AR
1959
1960/**
1961 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1962 * @vma: user vma to map to
1963 * @addr: target start user address of these pages
1964 * @pages: source kernel pages
1965 * @num: in: number of pages to map. out: number of pages that were *not*
1966 * mapped. (0 means all pages were successfully mapped).
1967 *
1968 * Preferred over vm_insert_page() when inserting multiple pages.
1969 *
1970 * In case of error, we may have mapped a subset of the provided
1971 * pages. It is the caller's responsibility to account for this case.
1972 *
1973 * The same restrictions apply as in vm_insert_page().
1974 */
1975int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1976 struct page **pages, unsigned long *num)
1977{
8cd3984d
AR
1978 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1979
1980 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1981 return -EFAULT;
1982 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1983 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1984 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1985 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1986 }
1987 /* Defer page refcount checking till we're about to map that page. */
1988 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
8cd3984d
AR
1989}
1990EXPORT_SYMBOL(vm_insert_pages);
1991
bfa5bf6d
REB
1992/**
1993 * vm_insert_page - insert single page into user vma
1994 * @vma: user vma to map to
1995 * @addr: target user address of this page
1996 * @page: source kernel page
1997 *
a145dd41
LT
1998 * This allows drivers to insert individual pages they've allocated
1999 * into a user vma.
2000 *
2001 * The page has to be a nice clean _individual_ kernel allocation.
2002 * If you allocate a compound page, you need to have marked it as
2003 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2004 * (see split_page()).
a145dd41
LT
2005 *
2006 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2007 * took an arbitrary page protection parameter. This doesn't allow
2008 * that. Your vma protection will have to be set up correctly, which
2009 * means that if you want a shared writable mapping, you'd better
2010 * ask for a shared writable mapping!
2011 *
2012 * The page does not need to be reserved.
4b6e1e37
KK
2013 *
2014 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2015 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2016 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2017 * function from other places, for example from page-fault handler.
a862f68a
MR
2018 *
2019 * Return: %0 on success, negative error code otherwise.
a145dd41 2020 */
423bad60
NP
2021int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2022 struct page *page)
a145dd41
LT
2023{
2024 if (addr < vma->vm_start || addr >= vma->vm_end)
2025 return -EFAULT;
2026 if (!page_count(page))
2027 return -EINVAL;
4b6e1e37 2028 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2029 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2030 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2031 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2032 }
423bad60 2033 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2034}
e3c3374f 2035EXPORT_SYMBOL(vm_insert_page);
a145dd41 2036
a667d745
SJ
2037/*
2038 * __vm_map_pages - maps range of kernel pages into user vma
2039 * @vma: user vma to map to
2040 * @pages: pointer to array of source kernel pages
2041 * @num: number of pages in page array
2042 * @offset: user's requested vm_pgoff
2043 *
2044 * This allows drivers to map range of kernel pages into a user vma.
2045 *
2046 * Return: 0 on success and error code otherwise.
2047 */
2048static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2049 unsigned long num, unsigned long offset)
2050{
2051 unsigned long count = vma_pages(vma);
2052 unsigned long uaddr = vma->vm_start;
2053 int ret, i;
2054
2055 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2056 if (offset >= num)
a667d745
SJ
2057 return -ENXIO;
2058
2059 /* Fail if the user requested size exceeds available object size */
2060 if (count > num - offset)
2061 return -ENXIO;
2062
2063 for (i = 0; i < count; i++) {
2064 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2065 if (ret < 0)
2066 return ret;
2067 uaddr += PAGE_SIZE;
2068 }
2069
2070 return 0;
2071}
2072
2073/**
2074 * vm_map_pages - maps range of kernel pages starts with non zero offset
2075 * @vma: user vma to map to
2076 * @pages: pointer to array of source kernel pages
2077 * @num: number of pages in page array
2078 *
2079 * Maps an object consisting of @num pages, catering for the user's
2080 * requested vm_pgoff
2081 *
2082 * If we fail to insert any page into the vma, the function will return
2083 * immediately leaving any previously inserted pages present. Callers
2084 * from the mmap handler may immediately return the error as their caller
2085 * will destroy the vma, removing any successfully inserted pages. Other
2086 * callers should make their own arrangements for calling unmap_region().
2087 *
2088 * Context: Process context. Called by mmap handlers.
2089 * Return: 0 on success and error code otherwise.
2090 */
2091int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2092 unsigned long num)
2093{
2094 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2095}
2096EXPORT_SYMBOL(vm_map_pages);
2097
2098/**
2099 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2100 * @vma: user vma to map to
2101 * @pages: pointer to array of source kernel pages
2102 * @num: number of pages in page array
2103 *
2104 * Similar to vm_map_pages(), except that it explicitly sets the offset
2105 * to 0. This function is intended for the drivers that did not consider
2106 * vm_pgoff.
2107 *
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2110 */
2111int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2112 unsigned long num)
2113{
2114 return __vm_map_pages(vma, pages, num, 0);
2115}
2116EXPORT_SYMBOL(vm_map_pages_zero);
2117
9b5a8e00 2118static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2119 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2120{
2121 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2122 pte_t *pte, entry;
2123 spinlock_t *ptl;
2124
423bad60
NP
2125 pte = get_locked_pte(mm, addr, &ptl);
2126 if (!pte)
9b5a8e00 2127 return VM_FAULT_OOM;
c33c7948
RR
2128 entry = ptep_get(pte);
2129 if (!pte_none(entry)) {
b2770da6
RZ
2130 if (mkwrite) {
2131 /*
2132 * For read faults on private mappings the PFN passed
2133 * in may not match the PFN we have mapped if the
2134 * mapped PFN is a writeable COW page. In the mkwrite
2135 * case we are creating a writable PTE for a shared
f2c57d91
JK
2136 * mapping and we expect the PFNs to match. If they
2137 * don't match, we are likely racing with block
2138 * allocation and mapping invalidation so just skip the
2139 * update.
b2770da6 2140 */
c33c7948
RR
2141 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2142 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2143 goto out_unlock;
f2c57d91 2144 }
c33c7948 2145 entry = pte_mkyoung(entry);
cae85cb8
JK
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2148 update_mmu_cache(vma, addr, pte);
2149 }
2150 goto out_unlock;
b2770da6 2151 }
423bad60
NP
2152
2153 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2154 if (pfn_t_devmap(pfn))
2155 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2156 else
2157 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2158
b2770da6
RZ
2159 if (mkwrite) {
2160 entry = pte_mkyoung(entry);
2161 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162 }
2163
423bad60 2164 set_pte_at(mm, addr, pte, entry);
4b3073e1 2165 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2166
423bad60
NP
2167out_unlock:
2168 pte_unmap_unlock(pte, ptl);
9b5a8e00 2169 return VM_FAULT_NOPAGE;
423bad60
NP
2170}
2171
f5e6d1d5
MW
2172/**
2173 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2174 * @vma: user vma to map to
2175 * @addr: target user address of this page
2176 * @pfn: source kernel pfn
2177 * @pgprot: pgprot flags for the inserted page
2178 *
a1a0aea5 2179 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2180 * to override pgprot on a per-page basis.
2181 *
2182 * This only makes sense for IO mappings, and it makes no sense for
2183 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2184 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2185 * impractical.
2186 *
28d8b812
LS
2187 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2188 * caching- and encryption bits different than those of @vma->vm_page_prot,
2189 * because the caching- or encryption mode may not be known at mmap() time.
2190 *
2191 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2192 * to set caching and encryption bits for those vmas (except for COW pages).
2193 * This is ensured by core vm only modifying these page table entries using
2194 * functions that don't touch caching- or encryption bits, using pte_modify()
2195 * if needed. (See for example mprotect()).
2196 *
2197 * Also when new page-table entries are created, this is only done using the
2198 * fault() callback, and never using the value of vma->vm_page_prot,
2199 * except for page-table entries that point to anonymous pages as the result
2200 * of COW.
574c5b3d 2201 *
ae2b01f3 2202 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2203 * Return: vm_fault_t value.
2204 */
2205vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2206 unsigned long pfn, pgprot_t pgprot)
2207{
6d958546
MW
2208 /*
2209 * Technically, architectures with pte_special can avoid all these
2210 * restrictions (same for remap_pfn_range). However we would like
2211 * consistency in testing and feature parity among all, so we should
2212 * try to keep these invariants in place for everybody.
2213 */
2214 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2215 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2216 (VM_PFNMAP|VM_MIXEDMAP));
2217 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2218 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2219
2220 if (addr < vma->vm_start || addr >= vma->vm_end)
2221 return VM_FAULT_SIGBUS;
2222
2223 if (!pfn_modify_allowed(pfn, pgprot))
2224 return VM_FAULT_SIGBUS;
2225
2226 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2227
9b5a8e00 2228 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2229 false);
f5e6d1d5
MW
2230}
2231EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2232
ae2b01f3
MW
2233/**
2234 * vmf_insert_pfn - insert single pfn into user vma
2235 * @vma: user vma to map to
2236 * @addr: target user address of this page
2237 * @pfn: source kernel pfn
2238 *
2239 * Similar to vm_insert_page, this allows drivers to insert individual pages
2240 * they've allocated into a user vma. Same comments apply.
2241 *
2242 * This function should only be called from a vm_ops->fault handler, and
2243 * in that case the handler should return the result of this function.
2244 *
2245 * vma cannot be a COW mapping.
2246 *
2247 * As this is called only for pages that do not currently exist, we
2248 * do not need to flush old virtual caches or the TLB.
2249 *
2250 * Context: Process context. May allocate using %GFP_KERNEL.
2251 * Return: vm_fault_t value.
2252 */
2253vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2254 unsigned long pfn)
2255{
2256 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2257}
2258EXPORT_SYMBOL(vmf_insert_pfn);
2259
785a3fab
DW
2260static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2261{
2262 /* these checks mirror the abort conditions in vm_normal_page */
2263 if (vma->vm_flags & VM_MIXEDMAP)
2264 return true;
2265 if (pfn_t_devmap(pfn))
2266 return true;
2267 if (pfn_t_special(pfn))
2268 return true;
2269 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2270 return true;
2271 return false;
2272}
2273
79f3aa5b 2274static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2275 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2276{
28d8b812 2277 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2278 int err;
87744ab3 2279
785a3fab 2280 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2281
423bad60 2282 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2283 return VM_FAULT_SIGBUS;
308a047c
BP
2284
2285 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2286
42e4089c 2287 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2288 return VM_FAULT_SIGBUS;
42e4089c 2289
423bad60
NP
2290 /*
2291 * If we don't have pte special, then we have to use the pfn_valid()
2292 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2293 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2294 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2295 * without pte special, it would there be refcounted as a normal page.
423bad60 2296 */
00b3a331
LD
2297 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2298 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2299 struct page *page;
2300
03fc2da6
DW
2301 /*
2302 * At this point we are committed to insert_page()
2303 * regardless of whether the caller specified flags that
2304 * result in pfn_t_has_page() == false.
2305 */
2306 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2307 err = insert_page(vma, addr, page, pgprot);
2308 } else {
9b5a8e00 2309 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2310 }
b2770da6 2311
5d747637
MW
2312 if (err == -ENOMEM)
2313 return VM_FAULT_OOM;
2314 if (err < 0 && err != -EBUSY)
2315 return VM_FAULT_SIGBUS;
2316
2317 return VM_FAULT_NOPAGE;
e0dc0d8f 2318}
79f3aa5b
MW
2319
2320vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2321 pfn_t pfn)
2322{
28d8b812 2323 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2324}
5d747637 2325EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2326
ab77dab4
SJ
2327/*
2328 * If the insertion of PTE failed because someone else already added a
2329 * different entry in the mean time, we treat that as success as we assume
2330 * the same entry was actually inserted.
2331 */
ab77dab4
SJ
2332vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2333 unsigned long addr, pfn_t pfn)
b2770da6 2334{
28d8b812 2335 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2336}
ab77dab4 2337EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2338
1da177e4
LT
2339/*
2340 * maps a range of physical memory into the requested pages. the old
2341 * mappings are removed. any references to nonexistent pages results
2342 * in null mappings (currently treated as "copy-on-access")
2343 */
2344static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 unsigned long addr, unsigned long end,
2346 unsigned long pfn, pgprot_t prot)
2347{
90a3e375 2348 pte_t *pte, *mapped_pte;
c74df32c 2349 spinlock_t *ptl;
42e4089c 2350 int err = 0;
1da177e4 2351
90a3e375 2352 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2353 if (!pte)
2354 return -ENOMEM;
6606c3e0 2355 arch_enter_lazy_mmu_mode();
1da177e4 2356 do {
c33c7948 2357 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2358 if (!pfn_modify_allowed(pfn, prot)) {
2359 err = -EACCES;
2360 break;
2361 }
7e675137 2362 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2363 pfn++;
2364 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2365 arch_leave_lazy_mmu_mode();
90a3e375 2366 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2367 return err;
1da177e4
LT
2368}
2369
2370static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2373{
2374 pmd_t *pmd;
2375 unsigned long next;
42e4089c 2376 int err;
1da177e4
LT
2377
2378 pfn -= addr >> PAGE_SHIFT;
2379 pmd = pmd_alloc(mm, pud, addr);
2380 if (!pmd)
2381 return -ENOMEM;
f66055ab 2382 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2383 do {
2384 next = pmd_addr_end(addr, end);
42e4089c
AK
2385 err = remap_pte_range(mm, pmd, addr, next,
2386 pfn + (addr >> PAGE_SHIFT), prot);
2387 if (err)
2388 return err;
1da177e4
LT
2389 } while (pmd++, addr = next, addr != end);
2390 return 0;
2391}
2392
c2febafc 2393static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2394 unsigned long addr, unsigned long end,
2395 unsigned long pfn, pgprot_t prot)
2396{
2397 pud_t *pud;
2398 unsigned long next;
42e4089c 2399 int err;
1da177e4
LT
2400
2401 pfn -= addr >> PAGE_SHIFT;
c2febafc 2402 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2403 if (!pud)
2404 return -ENOMEM;
2405 do {
2406 next = pud_addr_end(addr, end);
42e4089c
AK
2407 err = remap_pmd_range(mm, pud, addr, next,
2408 pfn + (addr >> PAGE_SHIFT), prot);
2409 if (err)
2410 return err;
1da177e4
LT
2411 } while (pud++, addr = next, addr != end);
2412 return 0;
2413}
2414
c2febafc
KS
2415static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2416 unsigned long addr, unsigned long end,
2417 unsigned long pfn, pgprot_t prot)
2418{
2419 p4d_t *p4d;
2420 unsigned long next;
42e4089c 2421 int err;
c2febafc
KS
2422
2423 pfn -= addr >> PAGE_SHIFT;
2424 p4d = p4d_alloc(mm, pgd, addr);
2425 if (!p4d)
2426 return -ENOMEM;
2427 do {
2428 next = p4d_addr_end(addr, end);
42e4089c
AK
2429 err = remap_pud_range(mm, p4d, addr, next,
2430 pfn + (addr >> PAGE_SHIFT), prot);
2431 if (err)
2432 return err;
c2febafc
KS
2433 } while (p4d++, addr = next, addr != end);
2434 return 0;
2435}
2436
74ffa5a3
CH
2437/*
2438 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2439 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2440 */
74ffa5a3
CH
2441int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2442 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2443{
2444 pgd_t *pgd;
2445 unsigned long next;
2d15cab8 2446 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2447 struct mm_struct *mm = vma->vm_mm;
2448 int err;
2449
0c4123e3
AZ
2450 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2451 return -EINVAL;
2452
1da177e4
LT
2453 /*
2454 * Physically remapped pages are special. Tell the
2455 * rest of the world about it:
2456 * VM_IO tells people not to look at these pages
2457 * (accesses can have side effects).
6aab341e
LT
2458 * VM_PFNMAP tells the core MM that the base pages are just
2459 * raw PFN mappings, and do not have a "struct page" associated
2460 * with them.
314e51b9
KK
2461 * VM_DONTEXPAND
2462 * Disable vma merging and expanding with mremap().
2463 * VM_DONTDUMP
2464 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2465 *
2466 * There's a horrible special case to handle copy-on-write
2467 * behaviour that some programs depend on. We mark the "original"
2468 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2469 * See vm_normal_page() for details.
1da177e4 2470 */
b3b9c293
KK
2471 if (is_cow_mapping(vma->vm_flags)) {
2472 if (addr != vma->vm_start || end != vma->vm_end)
2473 return -EINVAL;
fb155c16 2474 vma->vm_pgoff = pfn;
b3b9c293
KK
2475 }
2476
1c71222e 2477 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2478
2479 BUG_ON(addr >= end);
2480 pfn -= addr >> PAGE_SHIFT;
2481 pgd = pgd_offset(mm, addr);
2482 flush_cache_range(vma, addr, end);
1da177e4
LT
2483 do {
2484 next = pgd_addr_end(addr, end);
c2febafc 2485 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2486 pfn + (addr >> PAGE_SHIFT), prot);
2487 if (err)
74ffa5a3 2488 return err;
1da177e4 2489 } while (pgd++, addr = next, addr != end);
2ab64037 2490
74ffa5a3
CH
2491 return 0;
2492}
2493
2494/**
2495 * remap_pfn_range - remap kernel memory to userspace
2496 * @vma: user vma to map to
2497 * @addr: target page aligned user address to start at
2498 * @pfn: page frame number of kernel physical memory address
2499 * @size: size of mapping area
2500 * @prot: page protection flags for this mapping
2501 *
2502 * Note: this is only safe if the mm semaphore is held when called.
2503 *
2504 * Return: %0 on success, negative error code otherwise.
2505 */
2506int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2507 unsigned long pfn, unsigned long size, pgprot_t prot)
2508{
2509 int err;
2510
2511 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2512 if (err)
74ffa5a3 2513 return -EINVAL;
2ab64037 2514
74ffa5a3
CH
2515 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2516 if (err)
68f48381 2517 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2518 return err;
2519}
2520EXPORT_SYMBOL(remap_pfn_range);
2521
b4cbb197
LT
2522/**
2523 * vm_iomap_memory - remap memory to userspace
2524 * @vma: user vma to map to
abd69b9e 2525 * @start: start of the physical memory to be mapped
b4cbb197
LT
2526 * @len: size of area
2527 *
2528 * This is a simplified io_remap_pfn_range() for common driver use. The
2529 * driver just needs to give us the physical memory range to be mapped,
2530 * we'll figure out the rest from the vma information.
2531 *
2532 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2533 * whatever write-combining details or similar.
a862f68a
MR
2534 *
2535 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2536 */
2537int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2538{
2539 unsigned long vm_len, pfn, pages;
2540
2541 /* Check that the physical memory area passed in looks valid */
2542 if (start + len < start)
2543 return -EINVAL;
2544 /*
2545 * You *really* shouldn't map things that aren't page-aligned,
2546 * but we've historically allowed it because IO memory might
2547 * just have smaller alignment.
2548 */
2549 len += start & ~PAGE_MASK;
2550 pfn = start >> PAGE_SHIFT;
2551 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2552 if (pfn + pages < pfn)
2553 return -EINVAL;
2554
2555 /* We start the mapping 'vm_pgoff' pages into the area */
2556 if (vma->vm_pgoff > pages)
2557 return -EINVAL;
2558 pfn += vma->vm_pgoff;
2559 pages -= vma->vm_pgoff;
2560
2561 /* Can we fit all of the mapping? */
2562 vm_len = vma->vm_end - vma->vm_start;
2563 if (vm_len >> PAGE_SHIFT > pages)
2564 return -EINVAL;
2565
2566 /* Ok, let it rip */
2567 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2568}
2569EXPORT_SYMBOL(vm_iomap_memory);
2570
aee16b3c
JF
2571static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2572 unsigned long addr, unsigned long end,
e80d3909
JR
2573 pte_fn_t fn, void *data, bool create,
2574 pgtbl_mod_mask *mask)
aee16b3c 2575{
8abb50c7 2576 pte_t *pte, *mapped_pte;
be1db475 2577 int err = 0;
3f649ab7 2578 spinlock_t *ptl;
aee16b3c 2579
be1db475 2580 if (create) {
8abb50c7 2581 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2582 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2583 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2584 if (!pte)
2585 return -ENOMEM;
2586 } else {
8abb50c7 2587 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2588 pte_offset_kernel(pmd, addr) :
2589 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2590 if (!pte)
2591 return -EINVAL;
be1db475 2592 }
aee16b3c 2593
38e0edb1
JF
2594 arch_enter_lazy_mmu_mode();
2595
eeb4a05f
CH
2596 if (fn) {
2597 do {
c33c7948 2598 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2599 err = fn(pte++, addr, data);
2600 if (err)
2601 break;
2602 }
2603 } while (addr += PAGE_SIZE, addr != end);
2604 }
e80d3909 2605 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2606
38e0edb1
JF
2607 arch_leave_lazy_mmu_mode();
2608
aee16b3c 2609 if (mm != &init_mm)
8abb50c7 2610 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2611 return err;
2612}
2613
2614static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2615 unsigned long addr, unsigned long end,
e80d3909
JR
2616 pte_fn_t fn, void *data, bool create,
2617 pgtbl_mod_mask *mask)
aee16b3c
JF
2618{
2619 pmd_t *pmd;
2620 unsigned long next;
be1db475 2621 int err = 0;
aee16b3c 2622
ceb86879
AK
2623 BUG_ON(pud_huge(*pud));
2624
be1db475 2625 if (create) {
e80d3909 2626 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2627 if (!pmd)
2628 return -ENOMEM;
2629 } else {
2630 pmd = pmd_offset(pud, addr);
2631 }
aee16b3c
JF
2632 do {
2633 next = pmd_addr_end(addr, end);
0c95cba4
NP
2634 if (pmd_none(*pmd) && !create)
2635 continue;
2636 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2637 return -EINVAL;
2638 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2639 if (!create)
2640 continue;
2641 pmd_clear_bad(pmd);
be1db475 2642 }
0c95cba4
NP
2643 err = apply_to_pte_range(mm, pmd, addr, next,
2644 fn, data, create, mask);
2645 if (err)
2646 break;
aee16b3c 2647 } while (pmd++, addr = next, addr != end);
0c95cba4 2648
aee16b3c
JF
2649 return err;
2650}
2651
c2febafc 2652static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2653 unsigned long addr, unsigned long end,
e80d3909
JR
2654 pte_fn_t fn, void *data, bool create,
2655 pgtbl_mod_mask *mask)
aee16b3c
JF
2656{
2657 pud_t *pud;
2658 unsigned long next;
be1db475 2659 int err = 0;
aee16b3c 2660
be1db475 2661 if (create) {
e80d3909 2662 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2663 if (!pud)
2664 return -ENOMEM;
2665 } else {
2666 pud = pud_offset(p4d, addr);
2667 }
aee16b3c
JF
2668 do {
2669 next = pud_addr_end(addr, end);
0c95cba4
NP
2670 if (pud_none(*pud) && !create)
2671 continue;
2672 if (WARN_ON_ONCE(pud_leaf(*pud)))
2673 return -EINVAL;
2674 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2675 if (!create)
2676 continue;
2677 pud_clear_bad(pud);
be1db475 2678 }
0c95cba4
NP
2679 err = apply_to_pmd_range(mm, pud, addr, next,
2680 fn, data, create, mask);
2681 if (err)
2682 break;
aee16b3c 2683 } while (pud++, addr = next, addr != end);
0c95cba4 2684
aee16b3c
JF
2685 return err;
2686}
2687
c2febafc
KS
2688static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2689 unsigned long addr, unsigned long end,
e80d3909
JR
2690 pte_fn_t fn, void *data, bool create,
2691 pgtbl_mod_mask *mask)
c2febafc
KS
2692{
2693 p4d_t *p4d;
2694 unsigned long next;
be1db475 2695 int err = 0;
c2febafc 2696
be1db475 2697 if (create) {
e80d3909 2698 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2699 if (!p4d)
2700 return -ENOMEM;
2701 } else {
2702 p4d = p4d_offset(pgd, addr);
2703 }
c2febafc
KS
2704 do {
2705 next = p4d_addr_end(addr, end);
0c95cba4
NP
2706 if (p4d_none(*p4d) && !create)
2707 continue;
2708 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2709 return -EINVAL;
2710 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2711 if (!create)
2712 continue;
2713 p4d_clear_bad(p4d);
be1db475 2714 }
0c95cba4
NP
2715 err = apply_to_pud_range(mm, p4d, addr, next,
2716 fn, data, create, mask);
2717 if (err)
2718 break;
c2febafc 2719 } while (p4d++, addr = next, addr != end);
0c95cba4 2720
c2febafc
KS
2721 return err;
2722}
2723
be1db475
DA
2724static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2725 unsigned long size, pte_fn_t fn,
2726 void *data, bool create)
aee16b3c
JF
2727{
2728 pgd_t *pgd;
e80d3909 2729 unsigned long start = addr, next;
57250a5b 2730 unsigned long end = addr + size;
e80d3909 2731 pgtbl_mod_mask mask = 0;
be1db475 2732 int err = 0;
aee16b3c 2733
9cb65bc3
MP
2734 if (WARN_ON(addr >= end))
2735 return -EINVAL;
2736
aee16b3c
JF
2737 pgd = pgd_offset(mm, addr);
2738 do {
2739 next = pgd_addr_end(addr, end);
0c95cba4 2740 if (pgd_none(*pgd) && !create)
be1db475 2741 continue;
0c95cba4
NP
2742 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2743 return -EINVAL;
2744 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2745 if (!create)
2746 continue;
2747 pgd_clear_bad(pgd);
2748 }
2749 err = apply_to_p4d_range(mm, pgd, addr, next,
2750 fn, data, create, &mask);
aee16b3c
JF
2751 if (err)
2752 break;
2753 } while (pgd++, addr = next, addr != end);
57250a5b 2754
e80d3909
JR
2755 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2756 arch_sync_kernel_mappings(start, start + size);
2757
aee16b3c
JF
2758 return err;
2759}
be1db475
DA
2760
2761/*
2762 * Scan a region of virtual memory, filling in page tables as necessary
2763 * and calling a provided function on each leaf page table.
2764 */
2765int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 unsigned long size, pte_fn_t fn, void *data)
2767{
2768 return __apply_to_page_range(mm, addr, size, fn, data, true);
2769}
aee16b3c
JF
2770EXPORT_SYMBOL_GPL(apply_to_page_range);
2771
be1db475
DA
2772/*
2773 * Scan a region of virtual memory, calling a provided function on
2774 * each leaf page table where it exists.
2775 *
2776 * Unlike apply_to_page_range, this does _not_ fill in page tables
2777 * where they are absent.
2778 */
2779int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2780 unsigned long size, pte_fn_t fn, void *data)
2781{
2782 return __apply_to_page_range(mm, addr, size, fn, data, false);
2783}
2784EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2785
8f4e2101 2786/*
9b4bdd2f
KS
2787 * handle_pte_fault chooses page fault handler according to an entry which was
2788 * read non-atomically. Before making any commitment, on those architectures
2789 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2790 * parts, do_swap_page must check under lock before unmapping the pte and
2791 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2792 * and do_anonymous_page can safely check later on).
8f4e2101 2793 */
2ca99358 2794static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2795{
2796 int same = 1;
923717cb 2797#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2798 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2799 spin_lock(vmf->ptl);
c33c7948 2800 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2801 spin_unlock(vmf->ptl);
8f4e2101
HD
2802 }
2803#endif
2ca99358
PX
2804 pte_unmap(vmf->pte);
2805 vmf->pte = NULL;
8f4e2101
HD
2806 return same;
2807}
2808
a873dfe1
TL
2809/*
2810 * Return:
2811 * 0: copied succeeded
2812 * -EHWPOISON: copy failed due to hwpoison in source page
2813 * -EAGAIN: copied failed (some other reason)
2814 */
2815static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2816 struct vm_fault *vmf)
6aab341e 2817{
a873dfe1 2818 int ret;
83d116c5
JH
2819 void *kaddr;
2820 void __user *uaddr;
83d116c5
JH
2821 struct vm_area_struct *vma = vmf->vma;
2822 struct mm_struct *mm = vma->vm_mm;
2823 unsigned long addr = vmf->address;
2824
83d116c5 2825 if (likely(src)) {
d302c239
TL
2826 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2827 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2828 return -EHWPOISON;
d302c239 2829 }
a873dfe1 2830 return 0;
83d116c5
JH
2831 }
2832
6aab341e
LT
2833 /*
2834 * If the source page was a PFN mapping, we don't have
2835 * a "struct page" for it. We do a best-effort copy by
2836 * just copying from the original user address. If that
2837 * fails, we just zero-fill it. Live with it.
2838 */
83d116c5
JH
2839 kaddr = kmap_atomic(dst);
2840 uaddr = (void __user *)(addr & PAGE_MASK);
2841
2842 /*
2843 * On architectures with software "accessed" bits, we would
2844 * take a double page fault, so mark it accessed here.
2845 */
3db82b93 2846 vmf->pte = NULL;
e1fd09e3 2847 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2848 pte_t entry;
5d2a2dbb 2849
83d116c5 2850 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2851 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2852 /*
2853 * Other thread has already handled the fault
7df67697 2854 * and update local tlb only
83d116c5 2855 */
a92cbb82
HD
2856 if (vmf->pte)
2857 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2858 ret = -EAGAIN;
83d116c5
JH
2859 goto pte_unlock;
2860 }
2861
2862 entry = pte_mkyoung(vmf->orig_pte);
2863 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
5003a2bd 2864 update_mmu_cache_range(vmf, vma, addr, vmf->pte, 1);
83d116c5
JH
2865 }
2866
2867 /*
2868 * This really shouldn't fail, because the page is there
2869 * in the page tables. But it might just be unreadable,
2870 * in which case we just give up and fill the result with
2871 * zeroes.
2872 */
2873 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2874 if (vmf->pte)
c3e5ea6e
KS
2875 goto warn;
2876
2877 /* Re-validate under PTL if the page is still mapped */
2878 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2879 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2880 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2881 if (vmf->pte)
2882 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2883 ret = -EAGAIN;
c3e5ea6e
KS
2884 goto pte_unlock;
2885 }
2886
5d2a2dbb 2887 /*
985ba004 2888 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2889 * Try to copy again under PTL.
5d2a2dbb 2890 */
c3e5ea6e
KS
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892 /*
2893 * Give a warn in case there can be some obscure
2894 * use-case
2895 */
2896warn:
2897 WARN_ON_ONCE(1);
2898 clear_page(kaddr);
2899 }
83d116c5
JH
2900 }
2901
a873dfe1 2902 ret = 0;
83d116c5
JH
2903
2904pte_unlock:
3db82b93 2905 if (vmf->pte)
83d116c5
JH
2906 pte_unmap_unlock(vmf->pte, vmf->ptl);
2907 kunmap_atomic(kaddr);
2908 flush_dcache_page(dst);
2909
2910 return ret;
6aab341e
LT
2911}
2912
c20cd45e
MH
2913static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2914{
2915 struct file *vm_file = vma->vm_file;
2916
2917 if (vm_file)
2918 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2919
2920 /*
2921 * Special mappings (e.g. VDSO) do not have any file so fake
2922 * a default GFP_KERNEL for them.
2923 */
2924 return GFP_KERNEL;
2925}
2926
fb09a464
KS
2927/*
2928 * Notify the address space that the page is about to become writable so that
2929 * it can prohibit this or wait for the page to get into an appropriate state.
2930 *
2931 * We do this without the lock held, so that it can sleep if it needs to.
2932 */
86aa6998 2933static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2934{
2b740303 2935 vm_fault_t ret;
38b8cb7f 2936 unsigned int old_flags = vmf->flags;
fb09a464 2937
38b8cb7f 2938 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2939
dc617f29
DW
2940 if (vmf->vma->vm_file &&
2941 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2942 return VM_FAULT_SIGBUS;
2943
11bac800 2944 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2945 /* Restore original flags so that caller is not surprised */
2946 vmf->flags = old_flags;
fb09a464
KS
2947 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2948 return ret;
2949 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2950 folio_lock(folio);
2951 if (!folio->mapping) {
2952 folio_unlock(folio);
fb09a464
KS
2953 return 0; /* retry */
2954 }
2955 ret |= VM_FAULT_LOCKED;
2956 } else
3d243659 2957 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2958 return ret;
2959}
2960
97ba0c2b
JK
2961/*
2962 * Handle dirtying of a page in shared file mapping on a write fault.
2963 *
2964 * The function expects the page to be locked and unlocks it.
2965 */
89b15332 2966static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2967{
89b15332 2968 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2969 struct address_space *mapping;
15b4919a 2970 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2971 bool dirtied;
2972 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2973
15b4919a
Z
2974 dirtied = folio_mark_dirty(folio);
2975 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2976 /*
15b4919a
Z
2977 * Take a local copy of the address_space - folio.mapping may be zeroed
2978 * by truncate after folio_unlock(). The address_space itself remains
2979 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2980 * release semantics to prevent the compiler from undoing this copying.
2981 */
15b4919a
Z
2982 mapping = folio_raw_mapping(folio);
2983 folio_unlock(folio);
97ba0c2b 2984
89b15332
JW
2985 if (!page_mkwrite)
2986 file_update_time(vma->vm_file);
2987
2988 /*
2989 * Throttle page dirtying rate down to writeback speed.
2990 *
2991 * mapping may be NULL here because some device drivers do not
2992 * set page.mapping but still dirty their pages
2993 *
c1e8d7c6 2994 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2995 * is pinning the mapping, as per above.
2996 */
97ba0c2b 2997 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2998 struct file *fpin;
2999
3000 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3001 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3002 if (fpin) {
3003 fput(fpin);
d9272525 3004 return VM_FAULT_COMPLETED;
89b15332 3005 }
97ba0c2b
JK
3006 }
3007
89b15332 3008 return 0;
97ba0c2b
JK
3009}
3010
4e047f89
SR
3011/*
3012 * Handle write page faults for pages that can be reused in the current vma
3013 *
3014 * This can happen either due to the mapping being with the VM_SHARED flag,
3015 * or due to us being the last reference standing to the page. In either
3016 * case, all we need to do here is to mark the page as writable and update
3017 * any related book-keeping.
3018 */
a86bc96b 3019static inline void wp_page_reuse(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3020 __releases(vmf->ptl)
4e047f89 3021{
82b0f8c3 3022 struct vm_area_struct *vma = vmf->vma;
4e047f89 3023 pte_t entry;
6c287605 3024
c89357e2 3025 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605 3026
c2c3b514
KW
3027 if (folio) {
3028 VM_BUG_ON(folio_test_anon(folio) &&
3029 !PageAnonExclusive(vmf->page));
3030 /*
3031 * Clear the folio's cpupid information as the existing
3032 * information potentially belongs to a now completely
3033 * unrelated process.
3034 */
3035 folio_xchg_last_cpupid(folio, (1 << LAST_CPUPID_SHIFT) - 1);
3036 }
4e047f89 3037
2994302b
JK
3038 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3040 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3 3041 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
5003a2bd 3042 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
82b0f8c3 3043 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3044 count_vm_event(PGREUSE);
4e047f89
SR
3045}
3046
4ed43798
MWO
3047/*
3048 * We could add a bitflag somewhere, but for now, we know that all
3049 * vm_ops that have a ->map_pages have been audited and don't need
3050 * the mmap_lock to be held.
3051 */
3052static inline vm_fault_t vmf_can_call_fault(const struct vm_fault *vmf)
3053{
3054 struct vm_area_struct *vma = vmf->vma;
3055
3056 if (vma->vm_ops->map_pages || !(vmf->flags & FAULT_FLAG_VMA_LOCK))
3057 return 0;
3058 vma_end_read(vma);
3059 return VM_FAULT_RETRY;
3060}
3061
164b06f2
MWO
3062static vm_fault_t vmf_anon_prepare(struct vm_fault *vmf)
3063{
3064 struct vm_area_struct *vma = vmf->vma;
3065
3066 if (likely(vma->anon_vma))
3067 return 0;
3068 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3069 vma_end_read(vma);
3070 return VM_FAULT_RETRY;
3071 }
3072 if (__anon_vma_prepare(vma))
3073 return VM_FAULT_OOM;
3074 return 0;
3075}
3076
2f38ab2c 3077/*
c89357e2
DH
3078 * Handle the case of a page which we actually need to copy to a new page,
3079 * either due to COW or unsharing.
2f38ab2c 3080 *
c1e8d7c6 3081 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3082 * without the ptl held.
3083 *
3084 * High level logic flow:
3085 *
3086 * - Allocate a page, copy the content of the old page to the new one.
3087 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3088 * - Take the PTL. If the pte changed, bail out and release the allocated page
3089 * - If the pte is still the way we remember it, update the page table and all
3090 * relevant references. This includes dropping the reference the page-table
3091 * held to the old page, as well as updating the rmap.
3092 * - In any case, unlock the PTL and drop the reference we took to the old page.
3093 */
2b740303 3094static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3095{
c89357e2 3096 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3097 struct vm_area_struct *vma = vmf->vma;
bae473a4 3098 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3099 struct folio *old_folio = NULL;
3100 struct folio *new_folio = NULL;
2f38ab2c
SR
3101 pte_t entry;
3102 int page_copied = 0;
ac46d4f3 3103 struct mmu_notifier_range range;
164b06f2 3104 vm_fault_t ret;
2f38ab2c 3105
662ce1dc
YY
3106 delayacct_wpcopy_start();
3107
28d41a48
MWO
3108 if (vmf->page)
3109 old_folio = page_folio(vmf->page);
164b06f2
MWO
3110 ret = vmf_anon_prepare(vmf);
3111 if (unlikely(ret))
3112 goto out;
2f38ab2c 3113
2994302b 3114 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3115 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3116 if (!new_folio)
2f38ab2c
SR
3117 goto oom;
3118 } else {
164b06f2 3119 int err;
28d41a48
MWO
3120 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3121 vmf->address, false);
3122 if (!new_folio)
2f38ab2c 3123 goto oom;
83d116c5 3124
164b06f2
MWO
3125 err = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3126 if (err) {
83d116c5
JH
3127 /*
3128 * COW failed, if the fault was solved by other,
3129 * it's fine. If not, userspace would re-fault on
3130 * the same address and we will handle the fault
3131 * from the second attempt.
a873dfe1 3132 * The -EHWPOISON case will not be retried.
83d116c5 3133 */
28d41a48
MWO
3134 folio_put(new_folio);
3135 if (old_folio)
3136 folio_put(old_folio);
662ce1dc
YY
3137
3138 delayacct_wpcopy_end();
164b06f2 3139 return err == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3140 }
28d41a48 3141 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3142 }
2f38ab2c 3143
28d41a48 3144 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3145 goto oom_free_new;
4d4f75bf 3146 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3147
28d41a48 3148 __folio_mark_uptodate(new_folio);
eb3c24f3 3149
7d4a8be0 3150 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3151 vmf->address & PAGE_MASK,
ac46d4f3
JG
3152 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3153 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3154
3155 /*
3156 * Re-check the pte - we dropped the lock
3157 */
82b0f8c3 3158 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3159 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3160 if (old_folio) {
3161 if (!folio_test_anon(old_folio)) {
3162 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3163 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3164 }
3165 } else {
6080d19f 3166 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3167 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3168 }
2994302b 3169 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3170 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3171 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3172 if (unlikely(unshare)) {
3173 if (pte_soft_dirty(vmf->orig_pte))
3174 entry = pte_mksoft_dirty(entry);
3175 if (pte_uffd_wp(vmf->orig_pte))
3176 entry = pte_mkuffd_wp(entry);
3177 } else {
3178 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3179 }
111fe718 3180
2f38ab2c
SR
3181 /*
3182 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3183 * pte with the new entry, to keep TLBs on different CPUs in
3184 * sync. This code used to set the new PTE then flush TLBs, but
3185 * that left a window where the new PTE could be loaded into
3186 * some TLBs while the old PTE remains in others.
2f38ab2c 3187 */
ec8832d0 3188 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3189 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3190 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3191 /*
3192 * We call the notify macro here because, when using secondary
3193 * mmu page tables (such as kvm shadow page tables), we want the
3194 * new page to be mapped directly into the secondary page table.
3195 */
c89357e2 3196 BUG_ON(unshare && pte_write(entry));
82b0f8c3 3197 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
5003a2bd 3198 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
28d41a48 3199 if (old_folio) {
2f38ab2c
SR
3200 /*
3201 * Only after switching the pte to the new page may
3202 * we remove the mapcount here. Otherwise another
3203 * process may come and find the rmap count decremented
3204 * before the pte is switched to the new page, and
3205 * "reuse" the old page writing into it while our pte
3206 * here still points into it and can be read by other
3207 * threads.
3208 *
3209 * The critical issue is to order this
3210 * page_remove_rmap with the ptp_clear_flush above.
3211 * Those stores are ordered by (if nothing else,)
3212 * the barrier present in the atomic_add_negative
3213 * in page_remove_rmap.
3214 *
3215 * Then the TLB flush in ptep_clear_flush ensures that
3216 * no process can access the old page before the
3217 * decremented mapcount is visible. And the old page
3218 * cannot be reused until after the decremented
3219 * mapcount is visible. So transitively, TLBs to
3220 * old page will be flushed before it can be reused.
3221 */
28d41a48 3222 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3223 }
3224
3225 /* Free the old page.. */
28d41a48 3226 new_folio = old_folio;
2f38ab2c 3227 page_copied = 1;
3db82b93
HD
3228 pte_unmap_unlock(vmf->pte, vmf->ptl);
3229 } else if (vmf->pte) {
7df67697 3230 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3231 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3232 }
3233
ec8832d0 3234 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3235
3236 if (new_folio)
3237 folio_put(new_folio);
28d41a48 3238 if (old_folio) {
f4c4a3f4 3239 if (page_copied)
28d41a48
MWO
3240 free_swap_cache(&old_folio->page);
3241 folio_put(old_folio);
2f38ab2c 3242 }
662ce1dc
YY
3243
3244 delayacct_wpcopy_end();
cb8d8633 3245 return 0;
2f38ab2c 3246oom_free_new:
28d41a48 3247 folio_put(new_folio);
2f38ab2c 3248oom:
164b06f2
MWO
3249 ret = VM_FAULT_OOM;
3250out:
28d41a48
MWO
3251 if (old_folio)
3252 folio_put(old_folio);
662ce1dc
YY
3253
3254 delayacct_wpcopy_end();
164b06f2 3255 return ret;
2f38ab2c
SR
3256}
3257
66a6197c
JK
3258/**
3259 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3260 * writeable once the page is prepared
3261 *
3262 * @vmf: structure describing the fault
a86bc96b 3263 * @folio: the folio of vmf->page
66a6197c
JK
3264 *
3265 * This function handles all that is needed to finish a write page fault in a
3266 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3267 * It handles locking of PTE and modifying it.
66a6197c
JK
3268 *
3269 * The function expects the page to be locked or other protection against
3270 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3271 *
2797e79f 3272 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3273 * we acquired PTE lock.
66a6197c 3274 */
a86bc96b 3275static vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf, struct folio *folio)
66a6197c
JK
3276{
3277 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3278 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3279 &vmf->ptl);
3db82b93
HD
3280 if (!vmf->pte)
3281 return VM_FAULT_NOPAGE;
66a6197c
JK
3282 /*
3283 * We might have raced with another page fault while we released the
3284 * pte_offset_map_lock.
3285 */
c33c7948 3286 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3287 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3288 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3289 return VM_FAULT_NOPAGE;
66a6197c 3290 }
a86bc96b 3291 wp_page_reuse(vmf, folio);
a19e2553 3292 return 0;
66a6197c
JK
3293}
3294
dd906184
BH
3295/*
3296 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3297 * mapping
3298 */
2b740303 3299static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3300{
82b0f8c3 3301 struct vm_area_struct *vma = vmf->vma;
bae473a4 3302
dd906184 3303 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3304 vm_fault_t ret;
dd906184 3305
82b0f8c3 3306 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3307 ret = vmf_can_call_fault(vmf);
3308 if (ret)
3309 return ret;
063e60d8 3310
fe82221f 3311 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3312 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3313 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3314 return ret;
a86bc96b 3315 return finish_mkwrite_fault(vmf, NULL);
dd906184 3316 }
a86bc96b 3317 wp_page_reuse(vmf, NULL);
cb8d8633 3318 return 0;
dd906184
BH
3319}
3320
5a97858b 3321static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3322 __releases(vmf->ptl)
93e478d4 3323{
82b0f8c3 3324 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3325 vm_fault_t ret = 0;
93e478d4 3326
5a97858b 3327 folio_get(folio);
93e478d4 3328
93e478d4 3329 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3330 vm_fault_t tmp;
93e478d4 3331
82b0f8c3 3332 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a68fef1
MWO
3333 tmp = vmf_can_call_fault(vmf);
3334 if (tmp) {
063e60d8 3335 folio_put(folio);
4a68fef1 3336 return tmp;
063e60d8
MWO
3337 }
3338
86aa6998 3339 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3340 if (unlikely(!tmp || (tmp &
3341 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3342 folio_put(folio);
93e478d4
SR
3343 return tmp;
3344 }
a86bc96b 3345 tmp = finish_mkwrite_fault(vmf, folio);
a19e2553 3346 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3347 folio_unlock(folio);
3348 folio_put(folio);
66a6197c 3349 return tmp;
93e478d4 3350 }
66a6197c 3351 } else {
a86bc96b 3352 wp_page_reuse(vmf, folio);
5a97858b 3353 folio_lock(folio);
93e478d4 3354 }
89b15332 3355 ret |= fault_dirty_shared_page(vmf);
5a97858b 3356 folio_put(folio);
93e478d4 3357
89b15332 3358 return ret;
93e478d4
SR
3359}
3360
dec078cc
DH
3361static bool wp_can_reuse_anon_folio(struct folio *folio,
3362 struct vm_area_struct *vma)
3363{
3364 /*
3365 * We have to verify under folio lock: these early checks are
3366 * just an optimization to avoid locking the folio and freeing
3367 * the swapcache if there is little hope that we can reuse.
3368 *
3369 * KSM doesn't necessarily raise the folio refcount.
3370 */
3371 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3372 return false;
3373 if (!folio_test_lru(folio))
3374 /*
3375 * We cannot easily detect+handle references from
3376 * remote LRU caches or references to LRU folios.
3377 */
3378 lru_add_drain();
3379 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3380 return false;
3381 if (!folio_trylock(folio))
3382 return false;
3383 if (folio_test_swapcache(folio))
3384 folio_free_swap(folio);
3385 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3386 folio_unlock(folio);
3387 return false;
3388 }
3389 /*
3390 * Ok, we've got the only folio reference from our mapping
3391 * and the folio is locked, it's dark out, and we're wearing
3392 * sunglasses. Hit it.
3393 */
3394 folio_move_anon_rmap(folio, vma);
3395 folio_unlock(folio);
3396 return true;
3397}
3398
1da177e4 3399/*
c89357e2
DH
3400 * This routine handles present pages, when
3401 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3402 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3403 * (FAULT_FLAG_UNSHARE)
3404 *
3405 * It is done by copying the page to a new address and decrementing the
3406 * shared-page counter for the old page.
1da177e4 3407 *
1da177e4
LT
3408 * Note that this routine assumes that the protection checks have been
3409 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3410 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3411 * done any necessary COW.
1da177e4 3412 *
c89357e2
DH
3413 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3414 * though the page will change only once the write actually happens. This
3415 * avoids a few races, and potentially makes it more efficient.
1da177e4 3416 *
c1e8d7c6 3417 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3418 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3419 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3420 */
2b740303 3421static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3422 __releases(vmf->ptl)
1da177e4 3423{
c89357e2 3424 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3425 struct vm_area_struct *vma = vmf->vma;
b9086fde 3426 struct folio *folio = NULL;
d61ea1cb 3427 pte_t pte;
1da177e4 3428
c89357e2 3429 if (likely(!unshare)) {
c33c7948 3430 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
d61ea1cb
PX
3431 if (!userfaultfd_wp_async(vma)) {
3432 pte_unmap_unlock(vmf->pte, vmf->ptl);
3433 return handle_userfault(vmf, VM_UFFD_WP);
3434 }
3435
3436 /*
3437 * Nothing needed (cache flush, TLB invalidations,
3438 * etc.) because we're only removing the uffd-wp bit,
3439 * which is completely invisible to the user.
3440 */
3441 pte = pte_clear_uffd_wp(ptep_get(vmf->pte));
3442
3443 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3444 /*
3445 * Update this to be prepared for following up CoW
3446 * handling
3447 */
3448 vmf->orig_pte = pte;
c89357e2
DH
3449 }
3450
3451 /*
3452 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3453 * is flushed in this case before copying.
3454 */
3455 if (unlikely(userfaultfd_wp(vmf->vma) &&
3456 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3457 flush_tlb_page(vmf->vma, vmf->address);
3458 }
6ce64428 3459
a41b70d6 3460 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3461
5a97858b
SK
3462 if (vmf->page)
3463 folio = page_folio(vmf->page);
3464
b9086fde
DH
3465 /*
3466 * Shared mapping: we are guaranteed to have VM_WRITE and
3467 * FAULT_FLAG_WRITE set at this point.
3468 */
3469 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3470 /*
64e45507
PF
3471 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3472 * VM_PFNMAP VMA.
251b97f5
PZ
3473 *
3474 * We should not cow pages in a shared writeable mapping.
dd906184 3475 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3476 */
b9086fde 3477 if (!vmf->page)
2994302b 3478 return wp_pfn_shared(vmf);
5a97858b 3479 return wp_page_shared(vmf, folio);
251b97f5 3480 }
1da177e4 3481
d08b3851 3482 /*
b9086fde
DH
3483 * Private mapping: create an exclusive anonymous page copy if reuse
3484 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
dec078cc
DH
3485 *
3486 * If we encounter a page that is marked exclusive, we must reuse
3487 * the page without further checks.
d08b3851 3488 */
dec078cc
DH
3489 if (folio && folio_test_anon(folio) &&
3490 (PageAnonExclusive(vmf->page) || wp_can_reuse_anon_folio(folio, vma))) {
3491 if (!PageAnonExclusive(vmf->page))
3492 SetPageAnonExclusive(vmf->page);
c89357e2
DH
3493 if (unlikely(unshare)) {
3494 pte_unmap_unlock(vmf->pte, vmf->ptl);
3495 return 0;
3496 }
a86bc96b 3497 wp_page_reuse(vmf, folio);
cb8d8633 3498 return 0;
1da177e4 3499 }
1da177e4
LT
3500 /*
3501 * Ok, we need to copy. Oh, well..
3502 */
b9086fde
DH
3503 if (folio)
3504 folio_get(folio);
28766805 3505
82b0f8c3 3506 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3507#ifdef CONFIG_KSM
b9086fde 3508 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3509 count_vm_event(COW_KSM);
3510#endif
a41b70d6 3511 return wp_page_copy(vmf);
1da177e4
LT
3512}
3513
97a89413 3514static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3515 unsigned long start_addr, unsigned long end_addr,
3516 struct zap_details *details)
3517{
f5cc4eef 3518 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3519}
3520
f808c13f 3521static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3522 pgoff_t first_index,
3523 pgoff_t last_index,
1da177e4
LT
3524 struct zap_details *details)
3525{
3526 struct vm_area_struct *vma;
1da177e4
LT
3527 pgoff_t vba, vea, zba, zea;
3528
232a6a1c 3529 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3530 vba = vma->vm_pgoff;
d6e93217 3531 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3532 zba = max(first_index, vba);
3533 zea = min(last_index, vea);
1da177e4 3534
97a89413 3535 unmap_mapping_range_vma(vma,
1da177e4
LT
3536 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3537 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3538 details);
1da177e4
LT
3539 }
3540}
3541
22061a1f 3542/**
3506659e
MWO
3543 * unmap_mapping_folio() - Unmap single folio from processes.
3544 * @folio: The locked folio to be unmapped.
22061a1f 3545 *
3506659e 3546 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3547 * Typically, for efficiency, the range of nearby pages has already been
3548 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3549 * truncation or invalidation holds the lock on a folio, it may find that
3550 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3551 * to unmap it finally.
3552 */
3506659e 3553void unmap_mapping_folio(struct folio *folio)
22061a1f 3554{
3506659e 3555 struct address_space *mapping = folio->mapping;
22061a1f 3556 struct zap_details details = { };
232a6a1c
PX
3557 pgoff_t first_index;
3558 pgoff_t last_index;
22061a1f 3559
3506659e 3560 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3561
3506659e 3562 first_index = folio->index;
87b11f86 3563 last_index = folio_next_index(folio) - 1;
232a6a1c 3564
2e148f1e 3565 details.even_cows = false;
3506659e 3566 details.single_folio = folio;
999dad82 3567 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3568
2c865995 3569 i_mmap_lock_read(mapping);
22061a1f 3570 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3571 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3572 last_index, &details);
2c865995 3573 i_mmap_unlock_read(mapping);
22061a1f
HD
3574}
3575
977fbdcd
MW
3576/**
3577 * unmap_mapping_pages() - Unmap pages from processes.
3578 * @mapping: The address space containing pages to be unmapped.
3579 * @start: Index of first page to be unmapped.
3580 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3581 * @even_cows: Whether to unmap even private COWed pages.
3582 *
3583 * Unmap the pages in this address space from any userspace process which
3584 * has them mmaped. Generally, you want to remove COWed pages as well when
3585 * a file is being truncated, but not when invalidating pages from the page
3586 * cache.
3587 */
3588void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3589 pgoff_t nr, bool even_cows)
3590{
3591 struct zap_details details = { };
232a6a1c
PX
3592 pgoff_t first_index = start;
3593 pgoff_t last_index = start + nr - 1;
977fbdcd 3594
2e148f1e 3595 details.even_cows = even_cows;
232a6a1c
PX
3596 if (last_index < first_index)
3597 last_index = ULONG_MAX;
977fbdcd 3598
2c865995 3599 i_mmap_lock_read(mapping);
977fbdcd 3600 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3601 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3602 last_index, &details);
2c865995 3603 i_mmap_unlock_read(mapping);
977fbdcd 3604}
6e0e99d5 3605EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3606
1da177e4 3607/**
8a5f14a2 3608 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3609 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3610 * file.
3611 *
3d41088f 3612 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3613 * @holebegin: byte in first page to unmap, relative to the start of
3614 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3615 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3616 * must keep the partial page. In contrast, we must get rid of
3617 * partial pages.
3618 * @holelen: size of prospective hole in bytes. This will be rounded
3619 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3620 * end of the file.
3621 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3622 * but 0 when invalidating pagecache, don't throw away private data.
3623 */
3624void unmap_mapping_range(struct address_space *mapping,
3625 loff_t const holebegin, loff_t const holelen, int even_cows)
3626{
1da177e4
LT
3627 pgoff_t hba = holebegin >> PAGE_SHIFT;
3628 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3629
3630 /* Check for overflow. */
3631 if (sizeof(holelen) > sizeof(hlen)) {
3632 long long holeend =
3633 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3634 if (holeend & ~(long long)ULONG_MAX)
3635 hlen = ULONG_MAX - hba + 1;
3636 }
3637
977fbdcd 3638 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3639}
3640EXPORT_SYMBOL(unmap_mapping_range);
3641
b756a3b5
AP
3642/*
3643 * Restore a potential device exclusive pte to a working pte entry
3644 */
3645static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3646{
19672a9e 3647 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3648 struct vm_area_struct *vma = vmf->vma;
3649 struct mmu_notifier_range range;
fdc724d6 3650 vm_fault_t ret;
b756a3b5 3651
7c7b9629
AP
3652 /*
3653 * We need a reference to lock the folio because we don't hold
3654 * the PTL so a racing thread can remove the device-exclusive
3655 * entry and unmap it. If the folio is free the entry must
3656 * have been removed already. If it happens to have already
3657 * been re-allocated after being freed all we do is lock and
3658 * unlock it.
3659 */
3660 if (!folio_try_get(folio))
3661 return 0;
3662
fdc724d6
SB
3663 ret = folio_lock_or_retry(folio, vmf);
3664 if (ret) {
7c7b9629 3665 folio_put(folio);
fdc724d6 3666 return ret;
7c7b9629 3667 }
7d4a8be0 3668 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3669 vma->vm_mm, vmf->address & PAGE_MASK,
3670 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3671 mmu_notifier_invalidate_range_start(&range);
3672
3673 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3674 &vmf->ptl);
c33c7948 3675 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3676 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3677
3db82b93
HD
3678 if (vmf->pte)
3679 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3680 folio_unlock(folio);
7c7b9629 3681 folio_put(folio);
b756a3b5
AP
3682
3683 mmu_notifier_invalidate_range_end(&range);
3684 return 0;
3685}
3686
a160e537 3687static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3688 struct vm_area_struct *vma,
3689 unsigned int fault_flags)
3690{
a160e537 3691 if (!folio_test_swapcache(folio))
c145e0b4 3692 return false;
9202d527 3693 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3694 folio_test_mlocked(folio))
c145e0b4
DH
3695 return true;
3696 /*
3697 * If we want to map a page that's in the swapcache writable, we
3698 * have to detect via the refcount if we're really the exclusive
3699 * user. Try freeing the swapcache to get rid of the swapcache
3700 * reference only in case it's likely that we'll be the exlusive user.
3701 */
a160e537
MWO
3702 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3703 folio_ref_count(folio) == 2;
c145e0b4
DH
3704}
3705
9c28a205
PX
3706static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3707{
3708 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3709 vmf->address, &vmf->ptl);
3db82b93
HD
3710 if (!vmf->pte)
3711 return 0;
9c28a205
PX
3712 /*
3713 * Be careful so that we will only recover a special uffd-wp pte into a
3714 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3715 *
3716 * This should also cover the case where e.g. the pte changed
af19487f 3717 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3718 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3719 */
c33c7948 3720 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3721 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3722 pte_unmap_unlock(vmf->pte, vmf->ptl);
3723 return 0;
3724}
3725
2bad466c
PX
3726static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3727{
3728 if (vma_is_anonymous(vmf->vma))
3729 return do_anonymous_page(vmf);
3730 else
3731 return do_fault(vmf);
3732}
3733
9c28a205
PX
3734/*
3735 * This is actually a page-missing access, but with uffd-wp special pte
3736 * installed. It means this pte was wr-protected before being unmapped.
3737 */
3738static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3739{
3740 /*
3741 * Just in case there're leftover special ptes even after the region
7a079ba2 3742 * got unregistered - we can simply clear them.
9c28a205 3743 */
2bad466c 3744 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3745 return pte_marker_clear(vmf);
3746
2bad466c 3747 return do_pte_missing(vmf);
9c28a205
PX
3748}
3749
5c041f5d
PX
3750static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3751{
3752 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3753 unsigned long marker = pte_marker_get(entry);
3754
3755 /*
ca92ea3d
PX
3756 * PTE markers should never be empty. If anything weird happened,
3757 * the best thing to do is to kill the process along with its mm.
5c041f5d 3758 */
ca92ea3d 3759 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3760 return VM_FAULT_SIGBUS;
3761
15520a3f 3762 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3763 if (marker & PTE_MARKER_POISONED)
3764 return VM_FAULT_HWPOISON;
15520a3f 3765
9c28a205
PX
3766 if (pte_marker_entry_uffd_wp(entry))
3767 return pte_marker_handle_uffd_wp(vmf);
3768
3769 /* This is an unknown pte marker */
3770 return VM_FAULT_SIGBUS;
5c041f5d
PX
3771}
3772
1da177e4 3773/*
c1e8d7c6 3774 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3775 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3776 * We return with pte unmapped and unlocked.
3777 *
c1e8d7c6 3778 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3779 * as does filemap_fault().
1da177e4 3780 */
2b740303 3781vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3782{
82b0f8c3 3783 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3784 struct folio *swapcache, *folio = NULL;
3785 struct page *page;
2799e775 3786 struct swap_info_struct *si = NULL;
14f9135d 3787 rmap_t rmap_flags = RMAP_NONE;
1493a191 3788 bool exclusive = false;
65500d23 3789 swp_entry_t entry;
1da177e4 3790 pte_t pte;
2b740303 3791 vm_fault_t ret = 0;
aae466b0 3792 void *shadow = NULL;
1da177e4 3793
2ca99358 3794 if (!pte_unmap_same(vmf))
8f4e2101 3795 goto out;
65500d23 3796
2994302b 3797 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3798 if (unlikely(non_swap_entry(entry))) {
3799 if (is_migration_entry(entry)) {
82b0f8c3
JK
3800 migration_entry_wait(vma->vm_mm, vmf->pmd,
3801 vmf->address);
b756a3b5
AP
3802 } else if (is_device_exclusive_entry(entry)) {
3803 vmf->page = pfn_swap_entry_to_page(entry);
3804 ret = remove_device_exclusive_entry(vmf);
5042db43 3805 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3806 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3807 /*
3808 * migrate_to_ram is not yet ready to operate
3809 * under VMA lock.
3810 */
3811 vma_end_read(vma);
3812 ret = VM_FAULT_RETRY;
3813 goto out;
3814 }
3815
af5cdaf8 3816 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3817 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3818 vmf->address, &vmf->ptl);
3db82b93 3819 if (unlikely(!vmf->pte ||
c33c7948
RR
3820 !pte_same(ptep_get(vmf->pte),
3821 vmf->orig_pte)))
3b65f437 3822 goto unlock;
16ce101d
AP
3823
3824 /*
3825 * Get a page reference while we know the page can't be
3826 * freed.
3827 */
3828 get_page(vmf->page);
3829 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3830 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3831 put_page(vmf->page);
d1737fdb
AK
3832 } else if (is_hwpoison_entry(entry)) {
3833 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3834 } else if (is_pte_marker_entry(entry)) {
3835 ret = handle_pte_marker(vmf);
d1737fdb 3836 } else {
2994302b 3837 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3838 ret = VM_FAULT_SIGBUS;
d1737fdb 3839 }
0697212a
CL
3840 goto out;
3841 }
0bcac06f 3842
2799e775
ML
3843 /* Prevent swapoff from happening to us. */
3844 si = get_swap_device(entry);
3845 if (unlikely(!si))
3846 goto out;
0bcac06f 3847
5a423081
MWO
3848 folio = swap_cache_get_folio(entry, vma, vmf->address);
3849 if (folio)
3850 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3851 swapcache = folio;
f8020772 3852
d4f9565a 3853 if (!folio) {
a449bf58
QC
3854 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3855 __swap_count(entry) == 1) {
0bcac06f 3856 /* skip swapcache */
63ad4add
MWO
3857 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3858 vma, vmf->address, false);
3859 page = &folio->page;
3860 if (folio) {
3861 __folio_set_locked(folio);
3862 __folio_set_swapbacked(folio);
4c6355b2 3863
65995918 3864 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3865 vma->vm_mm, GFP_KERNEL,
3866 entry)) {
545b1b07 3867 ret = VM_FAULT_OOM;
4c6355b2 3868 goto out_page;
545b1b07 3869 }
0add0c77 3870 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3871
aae466b0
JK
3872 shadow = get_shadow_from_swap_cache(entry);
3873 if (shadow)
63ad4add 3874 workingset_refault(folio, shadow);
0076f029 3875
63ad4add 3876 folio_add_lru(folio);
0add0c77
SB
3877
3878 /* To provide entry to swap_readpage() */
3d2c9087 3879 folio->swap = entry;
5169b844 3880 swap_readpage(page, true, NULL);
63ad4add 3881 folio->private = NULL;
0bcac06f 3882 }
aa8d22a1 3883 } else {
e9e9b7ec
MK
3884 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3885 vmf);
63ad4add
MWO
3886 if (page)
3887 folio = page_folio(page);
d4f9565a 3888 swapcache = folio;
0bcac06f
MK
3889 }
3890
d4f9565a 3891 if (!folio) {
1da177e4 3892 /*
8f4e2101
HD
3893 * Back out if somebody else faulted in this pte
3894 * while we released the pte lock.
1da177e4 3895 */
82b0f8c3
JK
3896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3897 vmf->address, &vmf->ptl);
c33c7948
RR
3898 if (likely(vmf->pte &&
3899 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3900 ret = VM_FAULT_OOM;
65500d23 3901 goto unlock;
1da177e4
LT
3902 }
3903
3904 /* Had to read the page from swap area: Major fault */
3905 ret = VM_FAULT_MAJOR;
f8891e5e 3906 count_vm_event(PGMAJFAULT);
2262185c 3907 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3908 } else if (PageHWPoison(page)) {
71f72525
WF
3909 /*
3910 * hwpoisoned dirty swapcache pages are kept for killing
3911 * owner processes (which may be unknown at hwpoison time)
3912 */
d1737fdb 3913 ret = VM_FAULT_HWPOISON;
4779cb31 3914 goto out_release;
1da177e4
LT
3915 }
3916
fdc724d6
SB
3917 ret |= folio_lock_or_retry(folio, vmf);
3918 if (ret & VM_FAULT_RETRY)
d065bd81 3919 goto out_release;
073e587e 3920
84d60fdd
DH
3921 if (swapcache) {
3922 /*
3b344157 3923 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3924 * swapcache from under us. The page pin, and pte_same test
3925 * below, are not enough to exclude that. Even if it is still
3926 * swapcache, we need to check that the page's swap has not
3927 * changed.
3928 */
63ad4add 3929 if (unlikely(!folio_test_swapcache(folio) ||
cfeed8ff 3930 page_swap_entry(page).val != entry.val))
84d60fdd
DH
3931 goto out_page;
3932
3933 /*
3934 * KSM sometimes has to copy on read faults, for example, if
3935 * page->index of !PageKSM() pages would be nonlinear inside the
3936 * anon VMA -- PageKSM() is lost on actual swapout.
3937 */
3938 page = ksm_might_need_to_copy(page, vma, vmf->address);
3939 if (unlikely(!page)) {
3940 ret = VM_FAULT_OOM;
84d60fdd 3941 goto out_page;
6b970599
KW
3942 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3943 ret = VM_FAULT_HWPOISON;
3944 goto out_page;
84d60fdd 3945 }
63ad4add 3946 folio = page_folio(page);
c145e0b4
DH
3947
3948 /*
3949 * If we want to map a page that's in the swapcache writable, we
3950 * have to detect via the refcount if we're really the exclusive
3951 * owner. Try removing the extra reference from the local LRU
1fec6890 3952 * caches if required.
c145e0b4 3953 */
d4f9565a 3954 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3955 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3956 lru_add_drain();
5ad64688
HD
3957 }
3958
4231f842 3959 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3960
1da177e4 3961 /*
8f4e2101 3962 * Back out if somebody else already faulted in this pte.
1da177e4 3963 */
82b0f8c3
JK
3964 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3965 &vmf->ptl);
c33c7948 3966 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3967 goto out_nomap;
b8107480 3968
63ad4add 3969 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3970 ret = VM_FAULT_SIGBUS;
3971 goto out_nomap;
1da177e4
LT
3972 }
3973
78fbe906
DH
3974 /*
3975 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3976 * must never point at an anonymous page in the swapcache that is
3977 * PG_anon_exclusive. Sanity check that this holds and especially, that
3978 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3979 * check after taking the PT lock and making sure that nobody
3980 * concurrently faulted in this page and set PG_anon_exclusive.
3981 */
63ad4add
MWO
3982 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3983 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3984
1493a191
DH
3985 /*
3986 * Check under PT lock (to protect against concurrent fork() sharing
3987 * the swap entry concurrently) for certainly exclusive pages.
3988 */
63ad4add 3989 if (!folio_test_ksm(folio)) {
1493a191 3990 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3991 if (folio != swapcache) {
1493a191
DH
3992 /*
3993 * We have a fresh page that is not exposed to the
3994 * swapcache -> certainly exclusive.
3995 */
3996 exclusive = true;
63ad4add 3997 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3998 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3999 /*
4000 * This is tricky: not all swap backends support
4001 * concurrent page modifications while under writeback.
4002 *
4003 * So if we stumble over such a page in the swapcache
4004 * we must not set the page exclusive, otherwise we can
4005 * map it writable without further checks and modify it
4006 * while still under writeback.
4007 *
4008 * For these problematic swap backends, simply drop the
4009 * exclusive marker: this is perfectly fine as we start
4010 * writeback only if we fully unmapped the page and
4011 * there are no unexpected references on the page after
4012 * unmapping succeeded. After fully unmapped, no
4013 * further GUP references (FOLL_GET and FOLL_PIN) can
4014 * appear, so dropping the exclusive marker and mapping
4015 * it only R/O is fine.
4016 */
4017 exclusive = false;
4018 }
4019 }
4020
6dca4ac6
PC
4021 /*
4022 * Some architectures may have to restore extra metadata to the page
4023 * when reading from swap. This metadata may be indexed by swap entry
4024 * so this must be called before swap_free().
4025 */
4026 arch_swap_restore(entry, folio);
4027
8c7c6e34 4028 /*
c145e0b4
DH
4029 * Remove the swap entry and conditionally try to free up the swapcache.
4030 * We're already holding a reference on the page but haven't mapped it
4031 * yet.
8c7c6e34 4032 */
c145e0b4 4033 swap_free(entry);
a160e537
MWO
4034 if (should_try_to_free_swap(folio, vma, vmf->flags))
4035 folio_free_swap(folio);
1da177e4 4036
f1a79412
SB
4037 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4038 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 4039 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
4040
4041 /*
1493a191
DH
4042 * Same logic as in do_wp_page(); however, optimize for pages that are
4043 * certainly not shared either because we just allocated them without
4044 * exposing them to the swapcache or because the swap entry indicates
4045 * exclusivity.
c145e0b4 4046 */
63ad4add
MWO
4047 if (!folio_test_ksm(folio) &&
4048 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
4049 if (vmf->flags & FAULT_FLAG_WRITE) {
4050 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4051 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4052 }
14f9135d 4053 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4054 }
1da177e4 4055 flush_icache_page(vma, page);
2994302b 4056 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4057 pte = pte_mksoft_dirty(pte);
f1eb1bac 4058 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4059 pte = pte_mkuffd_wp(pte);
2994302b 4060 vmf->orig_pte = pte;
0bcac06f
MK
4061
4062 /* ksm created a completely new copy */
d4f9565a 4063 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4064 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4065 folio_add_lru_vma(folio, vma);
0bcac06f 4066 } else {
f1e2db12 4067 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4068 }
1da177e4 4069
63ad4add
MWO
4070 VM_BUG_ON(!folio_test_anon(folio) ||
4071 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4072 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4073 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4074
63ad4add 4075 folio_unlock(folio);
d4f9565a 4076 if (folio != swapcache && swapcache) {
4969c119
AA
4077 /*
4078 * Hold the lock to avoid the swap entry to be reused
4079 * until we take the PT lock for the pte_same() check
4080 * (to avoid false positives from pte_same). For
4081 * further safety release the lock after the swap_free
4082 * so that the swap count won't change under a
4083 * parallel locked swapcache.
4084 */
d4f9565a
MWO
4085 folio_unlock(swapcache);
4086 folio_put(swapcache);
4969c119 4087 }
c475a8ab 4088
82b0f8c3 4089 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4090 ret |= do_wp_page(vmf);
61469f1d
HD
4091 if (ret & VM_FAULT_ERROR)
4092 ret &= VM_FAULT_ERROR;
1da177e4
LT
4093 goto out;
4094 }
4095
4096 /* No need to invalidate - it was non-present before */
5003a2bd 4097 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4098unlock:
3db82b93
HD
4099 if (vmf->pte)
4100 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4101out:
2799e775
ML
4102 if (si)
4103 put_swap_device(si);
1da177e4 4104 return ret;
b8107480 4105out_nomap:
3db82b93
HD
4106 if (vmf->pte)
4107 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4108out_page:
63ad4add 4109 folio_unlock(folio);
4779cb31 4110out_release:
63ad4add 4111 folio_put(folio);
d4f9565a
MWO
4112 if (folio != swapcache && swapcache) {
4113 folio_unlock(swapcache);
4114 folio_put(swapcache);
4969c119 4115 }
2799e775
ML
4116 if (si)
4117 put_swap_device(si);
65500d23 4118 return ret;
1da177e4
LT
4119}
4120
4121/*
c1e8d7c6 4122 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4123 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4124 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4125 */
2b740303 4126static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4127{
2bad466c 4128 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4129 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4130 struct folio *folio;
2b740303 4131 vm_fault_t ret = 0;
1da177e4 4132 pte_t entry;
1da177e4 4133
6b7339f4
KS
4134 /* File mapping without ->vm_ops ? */
4135 if (vma->vm_flags & VM_SHARED)
4136 return VM_FAULT_SIGBUS;
4137
7267ec00 4138 /*
3db82b93
HD
4139 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4140 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4141 */
4cf58924 4142 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4143 return VM_FAULT_OOM;
4144
11ac5524 4145 /* Use the zero-page for reads */
82b0f8c3 4146 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4147 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4148 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4149 vma->vm_page_prot));
82b0f8c3
JK
4150 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4151 vmf->address, &vmf->ptl);
3db82b93
HD
4152 if (!vmf->pte)
4153 goto unlock;
2bad466c 4154 if (vmf_pte_changed(vmf)) {
7df67697 4155 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4156 goto unlock;
7df67697 4157 }
6b31d595
MH
4158 ret = check_stable_address_space(vma->vm_mm);
4159 if (ret)
4160 goto unlock;
6b251fc9
AA
4161 /* Deliver the page fault to userland, check inside PT lock */
4162 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4163 pte_unmap_unlock(vmf->pte, vmf->ptl);
4164 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4165 }
a13ea5b7
HD
4166 goto setpte;
4167 }
4168
557ed1fa 4169 /* Allocate our own private page. */
557ed1fa
NP
4170 if (unlikely(anon_vma_prepare(vma)))
4171 goto oom;
6bc56a4d
MWO
4172 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4173 if (!folio)
557ed1fa 4174 goto oom;
eb3c24f3 4175
6bc56a4d 4176 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4177 goto oom_free_page;
e2bf3e2c 4178 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4179
52f37629 4180 /*
cb3184de 4181 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4182 * preceding stores to the page contents become visible before
52f37629
MK
4183 * the set_pte_at() write.
4184 */
cb3184de 4185 __folio_mark_uptodate(folio);
8f4e2101 4186
cb3184de 4187 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4188 entry = pte_sw_mkyoung(entry);
1ac0cb5d 4189 if (vma->vm_flags & VM_WRITE)
161e393c 4190 entry = pte_mkwrite(pte_mkdirty(entry), vma);
1da177e4 4191
82b0f8c3
JK
4192 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4193 &vmf->ptl);
3db82b93
HD
4194 if (!vmf->pte)
4195 goto release;
2bad466c 4196 if (vmf_pte_changed(vmf)) {
bce8cb3c 4197 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4198 goto release;
7df67697 4199 }
9ba69294 4200
6b31d595
MH
4201 ret = check_stable_address_space(vma->vm_mm);
4202 if (ret)
4203 goto release;
4204
6b251fc9
AA
4205 /* Deliver the page fault to userland, check inside PT lock */
4206 if (userfaultfd_missing(vma)) {
82b0f8c3 4207 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4208 folio_put(folio);
82b0f8c3 4209 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4210 }
4211
f1a79412 4212 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4213 folio_add_new_anon_rmap(folio, vma, vmf->address);
4214 folio_add_lru_vma(folio, vma);
a13ea5b7 4215setpte:
2bad466c
PX
4216 if (uffd_wp)
4217 entry = pte_mkuffd_wp(entry);
82b0f8c3 4218 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4219
4220 /* No need to invalidate - it was non-present before */
5003a2bd 4221 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
65500d23 4222unlock:
3db82b93
HD
4223 if (vmf->pte)
4224 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4225 return ret;
8f4e2101 4226release:
cb3184de 4227 folio_put(folio);
8f4e2101 4228 goto unlock;
8a9f3ccd 4229oom_free_page:
cb3184de 4230 folio_put(folio);
65500d23 4231oom:
1da177e4
LT
4232 return VM_FAULT_OOM;
4233}
4234
9a95f3cf 4235/*
c1e8d7c6 4236 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4237 * released depending on flags and vma->vm_ops->fault() return value.
4238 * See filemap_fault() and __lock_page_retry().
4239 */
2b740303 4240static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4241{
82b0f8c3 4242 struct vm_area_struct *vma = vmf->vma;
2b740303 4243 vm_fault_t ret;
7eae74af 4244
63f3655f
MH
4245 /*
4246 * Preallocate pte before we take page_lock because this might lead to
4247 * deadlocks for memcg reclaim which waits for pages under writeback:
4248 * lock_page(A)
4249 * SetPageWriteback(A)
4250 * unlock_page(A)
4251 * lock_page(B)
4252 * lock_page(B)
d383807a 4253 * pte_alloc_one
63f3655f
MH
4254 * shrink_page_list
4255 * wait_on_page_writeback(A)
4256 * SetPageWriteback(B)
4257 * unlock_page(B)
4258 * # flush A, B to clear the writeback
4259 */
4260 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4261 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4262 if (!vmf->prealloc_pte)
4263 return VM_FAULT_OOM;
63f3655f
MH
4264 }
4265
11bac800 4266 ret = vma->vm_ops->fault(vmf);
3917048d 4267 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4268 VM_FAULT_DONE_COW)))
bc2466e4 4269 return ret;
7eae74af 4270
667240e0 4271 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4272 struct page *page = vmf->page;
e53ac737
RR
4273 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4274 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4275 if (page_mapped(page))
4276 unmap_mapping_pages(page_mapping(page),
4277 page->index, 1, false);
e53ac737 4278 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4279 if (invalidate_inode_page(page))
4280 poisonret = VM_FAULT_NOPAGE;
4281 unlock_page(page);
e53ac737 4282 }
3149c79f 4283 put_page(page);
936ca80d 4284 vmf->page = NULL;
e53ac737 4285 return poisonret;
7eae74af
KS
4286 }
4287
4288 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4289 lock_page(vmf->page);
7eae74af 4290 else
667240e0 4291 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4292
7eae74af
KS
4293 return ret;
4294}
4295
396bcc52 4296#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4297static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4298{
82b0f8c3 4299 struct vm_area_struct *vma = vmf->vma;
953c66c2 4300
82b0f8c3 4301 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4302 /*
4303 * We are going to consume the prealloc table,
4304 * count that as nr_ptes.
4305 */
c4812909 4306 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4307 vmf->prealloc_pte = NULL;
953c66c2
AK
4308}
4309
f9ce0be7 4310vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4311{
82b0f8c3
JK
4312 struct vm_area_struct *vma = vmf->vma;
4313 bool write = vmf->flags & FAULT_FLAG_WRITE;
4314 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4315 pmd_t entry;
d01ac3c3 4316 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4317
4318 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4319 return ret;
10102459 4320
10102459 4321 page = compound_head(page);
d01ac3c3
MWO
4322 if (compound_order(page) != HPAGE_PMD_ORDER)
4323 return ret;
10102459 4324
eac96c3e
YS
4325 /*
4326 * Just backoff if any subpage of a THP is corrupted otherwise
4327 * the corrupted page may mapped by PMD silently to escape the
4328 * check. This kind of THP just can be PTE mapped. Access to
4329 * the corrupted subpage should trigger SIGBUS as expected.
4330 */
4331 if (unlikely(PageHasHWPoisoned(page)))
4332 return ret;
4333
953c66c2 4334 /*
f0953a1b 4335 * Archs like ppc64 need additional space to store information
953c66c2
AK
4336 * related to pte entry. Use the preallocated table for that.
4337 */
82b0f8c3 4338 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4339 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4340 if (!vmf->prealloc_pte)
953c66c2 4341 return VM_FAULT_OOM;
953c66c2
AK
4342 }
4343
82b0f8c3
JK
4344 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4345 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4346 goto out;
4347
9f1f5b60 4348 flush_icache_pages(vma, page, HPAGE_PMD_NR);
10102459
KS
4349
4350 entry = mk_huge_pmd(page, vma->vm_page_prot);
4351 if (write)
f55e1014 4352 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4353
fadae295 4354 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4355 page_add_file_rmap(page, vma, true);
4356
953c66c2
AK
4357 /*
4358 * deposit and withdraw with pmd lock held
4359 */
4360 if (arch_needs_pgtable_deposit())
82b0f8c3 4361 deposit_prealloc_pte(vmf);
10102459 4362
82b0f8c3 4363 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4364
82b0f8c3 4365 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4366
4367 /* fault is handled */
4368 ret = 0;
95ecedcd 4369 count_vm_event(THP_FILE_MAPPED);
10102459 4370out:
82b0f8c3 4371 spin_unlock(vmf->ptl);
10102459
KS
4372 return ret;
4373}
4374#else
f9ce0be7 4375vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4376{
f9ce0be7 4377 return VM_FAULT_FALLBACK;
10102459
KS
4378}
4379#endif
4380
3bd786f7
YF
4381/**
4382 * set_pte_range - Set a range of PTEs to point to pages in a folio.
4383 * @vmf: Fault decription.
4384 * @folio: The folio that contains @page.
4385 * @page: The first page to create a PTE for.
4386 * @nr: The number of PTEs to create.
4387 * @addr: The first address to create a PTE for.
4388 */
4389void set_pte_range(struct vm_fault *vmf, struct folio *folio,
4390 struct page *page, unsigned int nr, unsigned long addr)
3bb97794 4391{
82b0f8c3 4392 struct vm_area_struct *vma = vmf->vma;
2bad466c 4393 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4394 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bd786f7 4395 bool prefault = in_range(vmf->address, addr, nr * PAGE_SIZE);
3bb97794 4396 pte_t entry;
7267ec00 4397
3bd786f7 4398 flush_icache_pages(vma, page, nr);
3bb97794 4399 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4400
4401 if (prefault && arch_wants_old_prefaulted_pte())
4402 entry = pte_mkold(entry);
50c25ee9
TB
4403 else
4404 entry = pte_sw_mkyoung(entry);
46bdb427 4405
3bb97794
KS
4406 if (write)
4407 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4408 if (unlikely(uffd_wp))
f1eb1bac 4409 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4410 /* copy-on-write page */
4411 if (write && !(vma->vm_flags & VM_SHARED)) {
3bd786f7
YF
4412 add_mm_counter(vma->vm_mm, MM_ANONPAGES, nr);
4413 VM_BUG_ON_FOLIO(nr != 1, folio);
4414 folio_add_new_anon_rmap(folio, vma, addr);
4415 folio_add_lru_vma(folio, vma);
3bb97794 4416 } else {
3bd786f7
YF
4417 add_mm_counter(vma->vm_mm, mm_counter_file(page), nr);
4418 folio_add_file_rmap_range(folio, page, nr, vma, false);
3bb97794 4419 }
3bd786f7
YF
4420 set_ptes(vma->vm_mm, addr, vmf->pte, entry, nr);
4421
4422 /* no need to invalidate: a not-present page won't be cached */
4423 update_mmu_cache_range(vmf, vma, addr, vmf->pte, nr);
3bb97794
KS
4424}
4425
f46f2ade
PX
4426static bool vmf_pte_changed(struct vm_fault *vmf)
4427{
4428 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4429 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4430
c33c7948 4431 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4432}
4433
9118c0cb
JK
4434/**
4435 * finish_fault - finish page fault once we have prepared the page to fault
4436 *
4437 * @vmf: structure describing the fault
4438 *
4439 * This function handles all that is needed to finish a page fault once the
4440 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4441 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4442 * addition.
9118c0cb
JK
4443 *
4444 * The function expects the page to be locked and on success it consumes a
4445 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4446 *
4447 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4448 */
2b740303 4449vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4450{
f9ce0be7 4451 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4452 struct page *page;
f9ce0be7 4453 vm_fault_t ret;
9118c0cb
JK
4454
4455 /* Did we COW the page? */
f9ce0be7 4456 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4457 page = vmf->cow_page;
4458 else
4459 page = vmf->page;
6b31d595
MH
4460
4461 /*
4462 * check even for read faults because we might have lost our CoWed
4463 * page
4464 */
f9ce0be7
KS
4465 if (!(vma->vm_flags & VM_SHARED)) {
4466 ret = check_stable_address_space(vma->vm_mm);
4467 if (ret)
4468 return ret;
4469 }
4470
4471 if (pmd_none(*vmf->pmd)) {
4472 if (PageTransCompound(page)) {
4473 ret = do_set_pmd(vmf, page);
4474 if (ret != VM_FAULT_FALLBACK)
4475 return ret;
4476 }
4477
03c4f204
QZ
4478 if (vmf->prealloc_pte)
4479 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4480 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4481 return VM_FAULT_OOM;
4482 }
4483
f9ce0be7
KS
4484 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4485 vmf->address, &vmf->ptl);
3db82b93
HD
4486 if (!vmf->pte)
4487 return VM_FAULT_NOPAGE;
70427f6e 4488
f9ce0be7 4489 /* Re-check under ptl */
70427f6e 4490 if (likely(!vmf_pte_changed(vmf))) {
3bd786f7 4491 struct folio *folio = page_folio(page);
70427f6e 4492
3bd786f7 4493 set_pte_range(vmf, folio, page, 1, vmf->address);
70427f6e
SA
4494 ret = 0;
4495 } else {
4496 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4497 ret = VM_FAULT_NOPAGE;
70427f6e 4498 }
f9ce0be7 4499
f9ce0be7 4500 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4501 return ret;
4502}
4503
53d36a56
LS
4504static unsigned long fault_around_pages __read_mostly =
4505 65536 >> PAGE_SHIFT;
a9b0f861 4506
a9b0f861
KS
4507#ifdef CONFIG_DEBUG_FS
4508static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4509{
53d36a56 4510 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4511 return 0;
4512}
4513
b4903d6e 4514/*
da391d64
WK
4515 * fault_around_bytes must be rounded down to the nearest page order as it's
4516 * what do_fault_around() expects to see.
b4903d6e 4517 */
a9b0f861 4518static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4519{
a9b0f861 4520 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4521 return -EINVAL;
53d36a56
LS
4522
4523 /*
4524 * The minimum value is 1 page, however this results in no fault-around
4525 * at all. See should_fault_around().
4526 */
4527 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4528
1592eef0
KS
4529 return 0;
4530}
0a1345f8 4531DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4532 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4533
4534static int __init fault_around_debugfs(void)
4535{
d9f7979c
GKH
4536 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4537 &fault_around_bytes_fops);
1592eef0
KS
4538 return 0;
4539}
4540late_initcall(fault_around_debugfs);
1592eef0 4541#endif
8c6e50b0 4542
1fdb412b
KS
4543/*
4544 * do_fault_around() tries to map few pages around the fault address. The hope
4545 * is that the pages will be needed soon and this will lower the number of
4546 * faults to handle.
4547 *
4548 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4549 * not ready to be mapped: not up-to-date, locked, etc.
4550 *
9042599e
LS
4551 * This function doesn't cross VMA or page table boundaries, in order to call
4552 * map_pages() and acquire a PTE lock only once.
1fdb412b 4553 *
53d36a56 4554 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4555 * do_fault_around() expects it to be set to a power of two less than or equal
4556 * to PTRS_PER_PTE.
1fdb412b 4557 *
da391d64 4558 * The virtual address of the area that we map is naturally aligned to
53d36a56 4559 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4560 * (and therefore to page order). This way it's easier to guarantee
4561 * that we don't cross page table boundaries.
1fdb412b 4562 */
2b740303 4563static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4564{
53d36a56 4565 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4566 pgoff_t pte_off = pte_index(vmf->address);
4567 /* The page offset of vmf->address within the VMA. */
4568 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4569 pgoff_t from_pte, to_pte;
58ef47ef 4570 vm_fault_t ret;
8c6e50b0 4571
9042599e
LS
4572 /* The PTE offset of the start address, clamped to the VMA. */
4573 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4574 pte_off - min(pte_off, vma_off));
aecd6f44 4575
9042599e
LS
4576 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4577 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4578 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4579
82b0f8c3 4580 if (pmd_none(*vmf->pmd)) {
4cf58924 4581 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4582 if (!vmf->prealloc_pte)
f9ce0be7 4583 return VM_FAULT_OOM;
8c6e50b0
KS
4584 }
4585
58ef47ef
MWO
4586 rcu_read_lock();
4587 ret = vmf->vma->vm_ops->map_pages(vmf,
4588 vmf->pgoff + from_pte - pte_off,
4589 vmf->pgoff + to_pte - pte_off);
4590 rcu_read_unlock();
4591
4592 return ret;
8c6e50b0
KS
4593}
4594
9c28a205
PX
4595/* Return true if we should do read fault-around, false otherwise */
4596static inline bool should_fault_around(struct vm_fault *vmf)
4597{
4598 /* No ->map_pages? No way to fault around... */
4599 if (!vmf->vma->vm_ops->map_pages)
4600 return false;
4601
4602 if (uffd_disable_fault_around(vmf->vma))
4603 return false;
4604
53d36a56
LS
4605 /* A single page implies no faulting 'around' at all. */
4606 return fault_around_pages > 1;
9c28a205
PX
4607}
4608
2b740303 4609static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4610{
2b740303 4611 vm_fault_t ret = 0;
22d1e68f 4612 struct folio *folio;
8c6e50b0
KS
4613
4614 /*
4615 * Let's call ->map_pages() first and use ->fault() as fallback
4616 * if page by the offset is not ready to be mapped (cold cache or
4617 * something).
4618 */
9c28a205
PX
4619 if (should_fault_around(vmf)) {
4620 ret = do_fault_around(vmf);
4621 if (ret)
4622 return ret;
8c6e50b0 4623 }
e655fb29 4624
12214eba
MWO
4625 ret = vmf_can_call_fault(vmf);
4626 if (ret)
4627 return ret;
f5617ffe 4628
936ca80d 4629 ret = __do_fault(vmf);
e655fb29
KS
4630 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4631 return ret;
4632
9118c0cb 4633 ret |= finish_fault(vmf);
22d1e68f
SK
4634 folio = page_folio(vmf->page);
4635 folio_unlock(folio);
7267ec00 4636 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4637 folio_put(folio);
e655fb29
KS
4638 return ret;
4639}
4640
2b740303 4641static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4642{
82b0f8c3 4643 struct vm_area_struct *vma = vmf->vma;
2b740303 4644 vm_fault_t ret;
ec47c3b9 4645
4de8c93a
MWO
4646 ret = vmf_can_call_fault(vmf);
4647 if (!ret)
4648 ret = vmf_anon_prepare(vmf);
4649 if (ret)
4650 return ret;
ec47c3b9 4651
936ca80d
JK
4652 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4653 if (!vmf->cow_page)
ec47c3b9
KS
4654 return VM_FAULT_OOM;
4655
8f425e4e
MWO
4656 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4657 GFP_KERNEL)) {
936ca80d 4658 put_page(vmf->cow_page);
ec47c3b9
KS
4659 return VM_FAULT_OOM;
4660 }
68fa572b 4661 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4662
936ca80d 4663 ret = __do_fault(vmf);
ec47c3b9
KS
4664 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4665 goto uncharge_out;
3917048d
JK
4666 if (ret & VM_FAULT_DONE_COW)
4667 return ret;
ec47c3b9 4668
b1aa812b 4669 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4670 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4671
9118c0cb 4672 ret |= finish_fault(vmf);
b1aa812b
JK
4673 unlock_page(vmf->page);
4674 put_page(vmf->page);
7267ec00
KS
4675 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4676 goto uncharge_out;
ec47c3b9
KS
4677 return ret;
4678uncharge_out:
936ca80d 4679 put_page(vmf->cow_page);
ec47c3b9
KS
4680 return ret;
4681}
4682
2b740303 4683static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4684{
82b0f8c3 4685 struct vm_area_struct *vma = vmf->vma;
2b740303 4686 vm_fault_t ret, tmp;
6f609b7e 4687 struct folio *folio;
1d65f86d 4688
4ed43798
MWO
4689 ret = vmf_can_call_fault(vmf);
4690 if (ret)
4691 return ret;
1d65f86d 4692
936ca80d 4693 ret = __do_fault(vmf);
7eae74af 4694 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4695 return ret;
1da177e4 4696
6f609b7e
SK
4697 folio = page_folio(vmf->page);
4698
1da177e4 4699 /*
f0c6d4d2
KS
4700 * Check if the backing address space wants to know that the page is
4701 * about to become writable
1da177e4 4702 */
fb09a464 4703 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4704 folio_unlock(folio);
86aa6998 4705 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4706 if (unlikely(!tmp ||
4707 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4708 folio_put(folio);
fb09a464 4709 return tmp;
4294621f 4710 }
fb09a464
KS
4711 }
4712
9118c0cb 4713 ret |= finish_fault(vmf);
7267ec00
KS
4714 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4715 VM_FAULT_RETRY))) {
6f609b7e
SK
4716 folio_unlock(folio);
4717 folio_put(folio);
f0c6d4d2 4718 return ret;
1da177e4 4719 }
b827e496 4720
89b15332 4721 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4722 return ret;
54cb8821 4723}
d00806b1 4724
9a95f3cf 4725/*
c1e8d7c6 4726 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4727 * but allow concurrent faults).
c1e8d7c6 4728 * The mmap_lock may have been released depending on flags and our
9138e47e 4729 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4730 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4731 * by other thread calling munmap()).
9a95f3cf 4732 */
2b740303 4733static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4734{
82b0f8c3 4735 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4736 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4737 vm_fault_t ret;
54cb8821 4738
ff09d7ec
AK
4739 /*
4740 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4741 */
4742 if (!vma->vm_ops->fault) {
3db82b93
HD
4743 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4744 vmf->address, &vmf->ptl);
4745 if (unlikely(!vmf->pte))
ff09d7ec
AK
4746 ret = VM_FAULT_SIGBUS;
4747 else {
ff09d7ec
AK
4748 /*
4749 * Make sure this is not a temporary clearing of pte
4750 * by holding ptl and checking again. A R/M/W update
4751 * of pte involves: take ptl, clearing the pte so that
4752 * we don't have concurrent modification by hardware
4753 * followed by an update.
4754 */
c33c7948 4755 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4756 ret = VM_FAULT_SIGBUS;
4757 else
4758 ret = VM_FAULT_NOPAGE;
4759
4760 pte_unmap_unlock(vmf->pte, vmf->ptl);
4761 }
4762 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4763 ret = do_read_fault(vmf);
4764 else if (!(vma->vm_flags & VM_SHARED))
4765 ret = do_cow_fault(vmf);
4766 else
4767 ret = do_shared_fault(vmf);
4768
4769 /* preallocated pagetable is unused: free it */
4770 if (vmf->prealloc_pte) {
fc8efd2d 4771 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4772 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4773 }
4774 return ret;
54cb8821
NP
4775}
4776
cda6d936 4777int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma,
f4c0d836 4778 unsigned long addr, int page_nid, int *flags)
9532fec1 4779{
cda6d936 4780 folio_get(folio);
9532fec1 4781
fc137c0d
R
4782 /* Record the current PID acceesing VMA */
4783 vma_set_access_pid_bit(vma);
4784
9532fec1 4785 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4786 if (page_nid == numa_node_id()) {
9532fec1 4787 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4788 *flags |= TNF_FAULT_LOCAL;
4789 }
9532fec1 4790
75c70128 4791 return mpol_misplaced(folio, vma, addr);
9532fec1
MG
4792}
4793
2b740303 4794static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4795{
82b0f8c3 4796 struct vm_area_struct *vma = vmf->vma;
6695cf68
KW
4797 struct folio *folio = NULL;
4798 int nid = NUMA_NO_NODE;
6a56ccbc 4799 bool writable = false;
90572890 4800 int last_cpupid;
cbee9f88 4801 int target_nid;
04a86453 4802 pte_t pte, old_pte;
6688cc05 4803 int flags = 0;
d10e63f2
MG
4804
4805 /*
166f61b9
TH
4806 * The "pte" at this point cannot be used safely without
4807 * validation through pte_unmap_same(). It's of NUMA type but
4808 * the pfn may be screwed if the read is non atomic.
166f61b9 4809 */
82b0f8c3 4810 spin_lock(vmf->ptl);
c33c7948 4811 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4812 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4813 goto out;
4814 }
4815
b99a342d
HY
4816 /* Get the normal PTE */
4817 old_pte = ptep_get(vmf->pte);
04a86453 4818 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4819
6a56ccbc
DH
4820 /*
4821 * Detect now whether the PTE could be writable; this information
4822 * is only valid while holding the PT lock.
4823 */
4824 writable = pte_write(pte);
4825 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4826 can_change_pte_writable(vma, vmf->address, pte))
4827 writable = true;
4828
6695cf68
KW
4829 folio = vm_normal_folio(vma, vmf->address, pte);
4830 if (!folio || folio_is_zone_device(folio))
b99a342d 4831 goto out_map;
d10e63f2 4832
e81c4802 4833 /* TODO: handle PTE-mapped THP */
6695cf68 4834 if (folio_test_large(folio))
b99a342d 4835 goto out_map;
e81c4802 4836
6688cc05 4837 /*
bea66fbd
MG
4838 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4839 * much anyway since they can be in shared cache state. This misses
4840 * the case where a mapping is writable but the process never writes
4841 * to it but pte_write gets cleared during protection updates and
4842 * pte_dirty has unpredictable behaviour between PTE scan updates,
4843 * background writeback, dirty balancing and application behaviour.
6688cc05 4844 */
6a56ccbc 4845 if (!writable)
6688cc05
PZ
4846 flags |= TNF_NO_GROUP;
4847
dabe1d99 4848 /*
6695cf68 4849 * Flag if the folio is shared between multiple address spaces. This
dabe1d99
RR
4850 * is later used when determining whether to group tasks together
4851 */
6695cf68 4852 if (folio_estimated_sharers(folio) > 1 && (vma->vm_flags & VM_SHARED))
dabe1d99
RR
4853 flags |= TNF_SHARED;
4854
6695cf68 4855 nid = folio_nid(folio);
33024536
HY
4856 /*
4857 * For memory tiering mode, cpupid of slow memory page is used
4858 * to record page access time. So use default value.
4859 */
4860 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
6695cf68 4861 !node_is_toptier(nid))
33024536
HY
4862 last_cpupid = (-1 & LAST_CPUPID_MASK);
4863 else
67b33e3f 4864 last_cpupid = folio_last_cpupid(folio);
cda6d936 4865 target_nid = numa_migrate_prep(folio, vma, vmf->address, nid, &flags);
98fa15f3 4866 if (target_nid == NUMA_NO_NODE) {
6695cf68 4867 folio_put(folio);
b99a342d 4868 goto out_map;
4daae3b4 4869 }
b99a342d 4870 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4871 writable = false;
4daae3b4
MG
4872
4873 /* Migrate to the requested node */
6695cf68
KW
4874 if (migrate_misplaced_folio(folio, vma, target_nid)) {
4875 nid = target_nid;
6688cc05 4876 flags |= TNF_MIGRATED;
b99a342d 4877 } else {
074c2381 4878 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4879 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4880 vmf->address, &vmf->ptl);
4881 if (unlikely(!vmf->pte))
4882 goto out;
c33c7948 4883 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4884 pte_unmap_unlock(vmf->pte, vmf->ptl);
4885 goto out;
4886 }
4887 goto out_map;
4888 }
4daae3b4
MG
4889
4890out:
6695cf68
KW
4891 if (nid != NUMA_NO_NODE)
4892 task_numa_fault(last_cpupid, nid, 1, flags);
d10e63f2 4893 return 0;
b99a342d
HY
4894out_map:
4895 /*
4896 * Make it present again, depending on how arch implements
4897 * non-accessible ptes, some can allow access by kernel mode.
4898 */
4899 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4900 pte = pte_modify(old_pte, vma->vm_page_prot);
4901 pte = pte_mkyoung(pte);
6a56ccbc 4902 if (writable)
161e393c 4903 pte = pte_mkwrite(pte, vma);
b99a342d 4904 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
5003a2bd 4905 update_mmu_cache_range(vmf, vma, vmf->address, vmf->pte, 1);
b99a342d
HY
4906 pte_unmap_unlock(vmf->pte, vmf->ptl);
4907 goto out;
d10e63f2
MG
4908}
4909
2b740303 4910static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4911{
8f5fd0e1
MWO
4912 struct vm_area_struct *vma = vmf->vma;
4913 if (vma_is_anonymous(vma))
82b0f8c3 4914 return do_huge_pmd_anonymous_page(vmf);
40d49a3c 4915 if (vma->vm_ops->huge_fault)
1d024e7a 4916 return vma->vm_ops->huge_fault(vmf, PMD_ORDER);
b96375f7
MW
4917 return VM_FAULT_FALLBACK;
4918}
4919
183f24aa 4920/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4921static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4922{
8f5fd0e1 4923 struct vm_area_struct *vma = vmf->vma;
c89357e2 4924 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4925 vm_fault_t ret;
c89357e2 4926
8f5fd0e1 4927 if (vma_is_anonymous(vma)) {
c89357e2 4928 if (likely(!unshare) &&
d61ea1cb
PX
4929 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) {
4930 if (userfaultfd_wp_async(vmf->vma))
4931 goto split;
529b930b 4932 return handle_userfault(vmf, VM_UFFD_WP);
d61ea1cb 4933 }
5db4f15c 4934 return do_huge_pmd_wp_page(vmf);
529b930b 4935 }
327e9fd4 4936
8f5fd0e1
MWO
4937 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4938 if (vma->vm_ops->huge_fault) {
1d024e7a 4939 ret = vma->vm_ops->huge_fault(vmf, PMD_ORDER);
aea06577
DH
4940 if (!(ret & VM_FAULT_FALLBACK))
4941 return ret;
4942 }
327e9fd4 4943 }
af9e4d5f 4944
d61ea1cb 4945split:
327e9fd4 4946 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 4947 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4948
b96375f7
MW
4949 return VM_FAULT_FALLBACK;
4950}
4951
2b740303 4952static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4953{
14c99d65
GJ
4954#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4955 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4956 struct vm_area_struct *vma = vmf->vma;
14c99d65 4957 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4958 if (vma_is_anonymous(vma))
14c99d65 4959 return VM_FAULT_FALLBACK;
40d49a3c 4960 if (vma->vm_ops->huge_fault)
1d024e7a 4961 return vma->vm_ops->huge_fault(vmf, PUD_ORDER);
14c99d65
GJ
4962#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4963 return VM_FAULT_FALLBACK;
4964}
4965
4966static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4967{
327e9fd4
THV
4968#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4969 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4970 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
4971 vm_fault_t ret;
4972
a00cc7d9 4973 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4974 if (vma_is_anonymous(vma))
327e9fd4 4975 goto split;
c4fd825e
MWO
4976 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4977 if (vma->vm_ops->huge_fault) {
1d024e7a 4978 ret = vma->vm_ops->huge_fault(vmf, PUD_ORDER);
aea06577
DH
4979 if (!(ret & VM_FAULT_FALLBACK))
4980 return ret;
4981 }
327e9fd4
THV
4982 }
4983split:
4984 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 4985 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 4986#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4987 return VM_FAULT_FALLBACK;
4988}
4989
1da177e4
LT
4990/*
4991 * These routines also need to handle stuff like marking pages dirty
4992 * and/or accessed for architectures that don't do it in hardware (most
4993 * RISC architectures). The early dirtying is also good on the i386.
4994 *
4995 * There is also a hook called "update_mmu_cache()" that architectures
4996 * with external mmu caches can use to update those (ie the Sparc or
4997 * PowerPC hashed page tables that act as extended TLBs).
4998 *
c1e8d7c6 4999 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 5000 * concurrent faults).
9a95f3cf 5001 *
c1e8d7c6 5002 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 5003 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 5004 */
2b740303 5005static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
5006{
5007 pte_t entry;
5008
82b0f8c3 5009 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
5010 /*
5011 * Leave __pte_alloc() until later: because vm_ops->fault may
5012 * want to allocate huge page, and if we expose page table
5013 * for an instant, it will be difficult to retract from
5014 * concurrent faults and from rmap lookups.
5015 */
82b0f8c3 5016 vmf->pte = NULL;
f46f2ade 5017 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5018 } else {
7267ec00
KS
5019 /*
5020 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
5021 * pmd by anon khugepaged, since that takes mmap_lock in write
5022 * mode; but shmem or file collapse to THP could still morph
5023 * it into a huge pmd: just retry later if so.
7267ec00 5024 */
c7ad0880
HD
5025 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
5026 vmf->address, &vmf->ptl);
5027 if (unlikely(!vmf->pte))
5028 return 0;
26e1a0c3 5029 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 5030 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 5031
2994302b 5032 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
5033 pte_unmap(vmf->pte);
5034 vmf->pte = NULL;
65500d23 5035 }
1da177e4
LT
5036 }
5037
2bad466c
PX
5038 if (!vmf->pte)
5039 return do_pte_missing(vmf);
7267ec00 5040
2994302b
JK
5041 if (!pte_present(vmf->orig_pte))
5042 return do_swap_page(vmf);
7267ec00 5043
2994302b
JK
5044 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5045 return do_numa_page(vmf);
d10e63f2 5046
82b0f8c3 5047 spin_lock(vmf->ptl);
2994302b 5048 entry = vmf->orig_pte;
c33c7948 5049 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5050 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5051 goto unlock;
7df67697 5052 }
c89357e2 5053 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5054 if (!pte_write(entry))
2994302b 5055 return do_wp_page(vmf);
c89357e2
DH
5056 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5057 entry = pte_mkdirty(entry);
1da177e4
LT
5058 }
5059 entry = pte_mkyoung(entry);
82b0f8c3
JK
5060 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5061 vmf->flags & FAULT_FLAG_WRITE)) {
5003a2bd
MWO
5062 update_mmu_cache_range(vmf, vmf->vma, vmf->address,
5063 vmf->pte, 1);
1a44e149 5064 } else {
b7333b58
YS
5065 /* Skip spurious TLB flush for retried page fault */
5066 if (vmf->flags & FAULT_FLAG_TRIED)
5067 goto unlock;
1a44e149
AA
5068 /*
5069 * This is needed only for protection faults but the arch code
5070 * is not yet telling us if this is a protection fault or not.
5071 * This still avoids useless tlb flushes for .text page faults
5072 * with threads.
5073 */
82b0f8c3 5074 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5075 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5076 vmf->pte);
1a44e149 5077 }
8f4e2101 5078unlock:
82b0f8c3 5079 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5080 return 0;
1da177e4
LT
5081}
5082
5083/*
4ec31152
MWO
5084 * On entry, we hold either the VMA lock or the mmap_lock
5085 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5086 * the result, the mmap_lock is not held on exit. See filemap_fault()
5087 * and __folio_lock_or_retry().
1da177e4 5088 */
2b740303
SJ
5089static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5090 unsigned long address, unsigned int flags)
1da177e4 5091{
82b0f8c3 5092 struct vm_fault vmf = {
bae473a4 5093 .vma = vma,
1a29d85e 5094 .address = address & PAGE_MASK,
824ddc60 5095 .real_address = address,
bae473a4 5096 .flags = flags,
0721ec8b 5097 .pgoff = linear_page_index(vma, address),
667240e0 5098 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5099 };
dcddffd4 5100 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5101 unsigned long vm_flags = vma->vm_flags;
1da177e4 5102 pgd_t *pgd;
c2febafc 5103 p4d_t *p4d;
2b740303 5104 vm_fault_t ret;
1da177e4 5105
1da177e4 5106 pgd = pgd_offset(mm, address);
c2febafc
KS
5107 p4d = p4d_alloc(mm, pgd, address);
5108 if (!p4d)
5109 return VM_FAULT_OOM;
a00cc7d9 5110
c2febafc 5111 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5112 if (!vmf.pud)
c74df32c 5113 return VM_FAULT_OOM;
625110b5 5114retry_pud:
7da4e2cb 5115 if (pud_none(*vmf.pud) &&
a7f4e6e4 5116 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5117 ret = create_huge_pud(&vmf);
5118 if (!(ret & VM_FAULT_FALLBACK))
5119 return ret;
5120 } else {
5121 pud_t orig_pud = *vmf.pud;
5122
5123 barrier();
5124 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5125
c89357e2
DH
5126 /*
5127 * TODO once we support anonymous PUDs: NUMA case and
5128 * FAULT_FLAG_UNSHARE handling.
5129 */
5130 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5131 ret = wp_huge_pud(&vmf, orig_pud);
5132 if (!(ret & VM_FAULT_FALLBACK))
5133 return ret;
5134 } else {
5135 huge_pud_set_accessed(&vmf, orig_pud);
5136 return 0;
5137 }
5138 }
5139 }
5140
5141 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5142 if (!vmf.pmd)
c74df32c 5143 return VM_FAULT_OOM;
625110b5
TH
5144
5145 /* Huge pud page fault raced with pmd_alloc? */
5146 if (pud_trans_unstable(vmf.pud))
5147 goto retry_pud;
5148
7da4e2cb 5149 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5150 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5151 ret = create_huge_pmd(&vmf);
c0292554
KS
5152 if (!(ret & VM_FAULT_FALLBACK))
5153 return ret;
71e3aac0 5154 } else {
26e1a0c3 5155 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5156
5db4f15c 5157 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5158 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5159 !is_pmd_migration_entry(vmf.orig_pmd));
5160 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5161 pmd_migration_entry_wait(mm, vmf.pmd);
5162 return 0;
5163 }
5db4f15c
YS
5164 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5165 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5166 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5167
c89357e2
DH
5168 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5169 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5170 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5171 if (!(ret & VM_FAULT_FALLBACK))
5172 return ret;
a1dd450b 5173 } else {
5db4f15c 5174 huge_pmd_set_accessed(&vmf);
9845cbbd 5175 return 0;
1f1d06c3 5176 }
71e3aac0
AA
5177 }
5178 }
5179
82b0f8c3 5180 return handle_pte_fault(&vmf);
1da177e4
LT
5181}
5182
bce617ed 5183/**
f0953a1b 5184 * mm_account_fault - Do page fault accounting
809ef83c 5185 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5186 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5187 * of perf event counters, but we'll still do the per-task accounting to
5188 * the task who triggered this page fault.
5189 * @address: the faulted address.
5190 * @flags: the fault flags.
5191 * @ret: the fault retcode.
5192 *
f0953a1b 5193 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5194 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5195 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5196 * still be in per-arch page fault handlers at the entry of page fault.
5197 */
53156443 5198static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5199 unsigned long address, unsigned int flags,
5200 vm_fault_t ret)
5201{
5202 bool major;
5203
53156443
SB
5204 /* Incomplete faults will be accounted upon completion. */
5205 if (ret & VM_FAULT_RETRY)
5206 return;
5207
bce617ed 5208 /*
53156443
SB
5209 * To preserve the behavior of older kernels, PGFAULT counters record
5210 * both successful and failed faults, as opposed to perf counters,
5211 * which ignore failed cases.
bce617ed 5212 */
53156443
SB
5213 count_vm_event(PGFAULT);
5214 count_memcg_event_mm(mm, PGFAULT);
5215
5216 /*
5217 * Do not account for unsuccessful faults (e.g. when the address wasn't
5218 * valid). That includes arch_vma_access_permitted() failing before
5219 * reaching here. So this is not a "this many hardware page faults"
5220 * counter. We should use the hw profiling for that.
5221 */
5222 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5223 return;
5224
5225 /*
5226 * We define the fault as a major fault when the final successful fault
5227 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5228 * handle it immediately previously).
5229 */
5230 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5231
a2beb5f1
PX
5232 if (major)
5233 current->maj_flt++;
5234 else
5235 current->min_flt++;
5236
bce617ed 5237 /*
a2beb5f1
PX
5238 * If the fault is done for GUP, regs will be NULL. We only do the
5239 * accounting for the per thread fault counters who triggered the
5240 * fault, and we skip the perf event updates.
bce617ed
PX
5241 */
5242 if (!regs)
5243 return;
5244
a2beb5f1 5245 if (major)
bce617ed 5246 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5247 else
bce617ed 5248 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5249}
5250
ec1c86b2
YZ
5251#ifdef CONFIG_LRU_GEN
5252static void lru_gen_enter_fault(struct vm_area_struct *vma)
5253{
8788f678
YZ
5254 /* the LRU algorithm only applies to accesses with recency */
5255 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5256}
5257
5258static void lru_gen_exit_fault(void)
5259{
5260 current->in_lru_fault = false;
5261}
5262#else
5263static void lru_gen_enter_fault(struct vm_area_struct *vma)
5264{
5265}
5266
5267static void lru_gen_exit_fault(void)
5268{
5269}
5270#endif /* CONFIG_LRU_GEN */
5271
cdc5021c
DH
5272static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5273 unsigned int *flags)
5274{
5275 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5276 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5277 return VM_FAULT_SIGSEGV;
5278 /*
5279 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5280 * just treat it like an ordinary read-fault otherwise.
5281 */
5282 if (!is_cow_mapping(vma->vm_flags))
5283 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5284 } else if (*flags & FAULT_FLAG_WRITE) {
5285 /* Write faults on read-only mappings are impossible ... */
5286 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5287 return VM_FAULT_SIGSEGV;
5288 /* ... and FOLL_FORCE only applies to COW mappings. */
5289 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5290 !is_cow_mapping(vma->vm_flags)))
5291 return VM_FAULT_SIGSEGV;
cdc5021c 5292 }
4089eef0
SB
5293#ifdef CONFIG_PER_VMA_LOCK
5294 /*
5295 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5296 * the assumption that lock is dropped on VM_FAULT_RETRY.
5297 */
5298 if (WARN_ON_ONCE((*flags &
5299 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5300 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5301 return VM_FAULT_SIGSEGV;
5302#endif
5303
cdc5021c
DH
5304 return 0;
5305}
5306
9a95f3cf
PC
5307/*
5308 * By the time we get here, we already hold the mm semaphore
5309 *
c1e8d7c6 5310 * The mmap_lock may have been released depending on flags and our
9138e47e 5311 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5312 */
2b740303 5313vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5314 unsigned int flags, struct pt_regs *regs)
519e5247 5315{
53156443
SB
5316 /* If the fault handler drops the mmap_lock, vma may be freed */
5317 struct mm_struct *mm = vma->vm_mm;
2b740303 5318 vm_fault_t ret;
519e5247
JW
5319
5320 __set_current_state(TASK_RUNNING);
5321
cdc5021c
DH
5322 ret = sanitize_fault_flags(vma, &flags);
5323 if (ret)
53156443 5324 goto out;
cdc5021c 5325
de0c799b
LD
5326 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5327 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5328 flags & FAULT_FLAG_REMOTE)) {
5329 ret = VM_FAULT_SIGSEGV;
5330 goto out;
5331 }
de0c799b 5332
519e5247
JW
5333 /*
5334 * Enable the memcg OOM handling for faults triggered in user
5335 * space. Kernel faults are handled more gracefully.
5336 */
5337 if (flags & FAULT_FLAG_USER)
29ef680a 5338 mem_cgroup_enter_user_fault();
519e5247 5339
ec1c86b2
YZ
5340 lru_gen_enter_fault(vma);
5341
bae473a4
KS
5342 if (unlikely(is_vm_hugetlb_page(vma)))
5343 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5344 else
5345 ret = __handle_mm_fault(vma, address, flags);
519e5247 5346
ec1c86b2
YZ
5347 lru_gen_exit_fault();
5348
49426420 5349 if (flags & FAULT_FLAG_USER) {
29ef680a 5350 mem_cgroup_exit_user_fault();
166f61b9
TH
5351 /*
5352 * The task may have entered a memcg OOM situation but
5353 * if the allocation error was handled gracefully (no
5354 * VM_FAULT_OOM), there is no need to kill anything.
5355 * Just clean up the OOM state peacefully.
5356 */
5357 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5358 mem_cgroup_oom_synchronize(false);
49426420 5359 }
53156443
SB
5360out:
5361 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5362
519e5247
JW
5363 return ret;
5364}
e1d6d01a 5365EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5366
c2508ec5
LT
5367#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5368#include <linux/extable.h>
5369
5370static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5371{
4542057e 5372 if (likely(mmap_read_trylock(mm)))
c2508ec5 5373 return true;
c2508ec5
LT
5374
5375 if (regs && !user_mode(regs)) {
5376 unsigned long ip = instruction_pointer(regs);
5377 if (!search_exception_tables(ip))
5378 return false;
5379 }
5380
eda00472 5381 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5382}
5383
5384static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5385{
5386 /*
5387 * We don't have this operation yet.
5388 *
5389 * It should be easy enough to do: it's basically a
5390 * atomic_long_try_cmpxchg_acquire()
5391 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5392 * it also needs the proper lockdep magic etc.
5393 */
5394 return false;
5395}
5396
5397static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5398{
5399 mmap_read_unlock(mm);
5400 if (regs && !user_mode(regs)) {
5401 unsigned long ip = instruction_pointer(regs);
5402 if (!search_exception_tables(ip))
5403 return false;
5404 }
eda00472 5405 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5406}
5407
5408/*
5409 * Helper for page fault handling.
5410 *
5411 * This is kind of equivalend to "mmap_read_lock()" followed
5412 * by "find_extend_vma()", except it's a lot more careful about
5413 * the locking (and will drop the lock on failure).
5414 *
5415 * For example, if we have a kernel bug that causes a page
5416 * fault, we don't want to just use mmap_read_lock() to get
5417 * the mm lock, because that would deadlock if the bug were
5418 * to happen while we're holding the mm lock for writing.
5419 *
5420 * So this checks the exception tables on kernel faults in
5421 * order to only do this all for instructions that are actually
5422 * expected to fault.
5423 *
5424 * We can also actually take the mm lock for writing if we
5425 * need to extend the vma, which helps the VM layer a lot.
5426 */
5427struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5428 unsigned long addr, struct pt_regs *regs)
5429{
5430 struct vm_area_struct *vma;
5431
5432 if (!get_mmap_lock_carefully(mm, regs))
5433 return NULL;
5434
5435 vma = find_vma(mm, addr);
5436 if (likely(vma && (vma->vm_start <= addr)))
5437 return vma;
5438
5439 /*
5440 * Well, dang. We might still be successful, but only
5441 * if we can extend a vma to do so.
5442 */
5443 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5444 mmap_read_unlock(mm);
5445 return NULL;
5446 }
5447
5448 /*
5449 * We can try to upgrade the mmap lock atomically,
5450 * in which case we can continue to use the vma
5451 * we already looked up.
5452 *
5453 * Otherwise we'll have to drop the mmap lock and
5454 * re-take it, and also look up the vma again,
5455 * re-checking it.
5456 */
5457 if (!mmap_upgrade_trylock(mm)) {
5458 if (!upgrade_mmap_lock_carefully(mm, regs))
5459 return NULL;
5460
5461 vma = find_vma(mm, addr);
5462 if (!vma)
5463 goto fail;
5464 if (vma->vm_start <= addr)
5465 goto success;
5466 if (!(vma->vm_flags & VM_GROWSDOWN))
5467 goto fail;
5468 }
5469
8d7071af 5470 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5471 goto fail;
5472
5473success:
5474 mmap_write_downgrade(mm);
5475 return vma;
5476
5477fail:
5478 mmap_write_unlock(mm);
5479 return NULL;
5480}
5481#endif
5482
50ee3253
SB
5483#ifdef CONFIG_PER_VMA_LOCK
5484/*
5485 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5486 * stable and not isolated. If the VMA is not found or is being modified the
5487 * function returns NULL.
5488 */
5489struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5490 unsigned long address)
5491{
5492 MA_STATE(mas, &mm->mm_mt, address, address);
5493 struct vm_area_struct *vma;
5494
5495 rcu_read_lock();
5496retry:
5497 vma = mas_walk(&mas);
5498 if (!vma)
5499 goto inval;
5500
50ee3253
SB
5501 if (!vma_start_read(vma))
5502 goto inval;
5503
657b5146
JH
5504 /*
5505 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5506 * This check must happen after vma_start_read(); otherwise, a
5507 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5508 * from its anon_vma.
5509 */
29a22b9e 5510 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma))
657b5146 5511 goto inval_end_read;
444eeb17 5512
50ee3253 5513 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5514 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5515 goto inval_end_read;
50ee3253
SB
5516
5517 /* Check if the VMA got isolated after we found it */
5518 if (vma->detached) {
5519 vma_end_read(vma);
52f23865 5520 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5521 /* The area was replaced with another one */
5522 goto retry;
5523 }
5524
5525 rcu_read_unlock();
5526 return vma;
657b5146
JH
5527
5528inval_end_read:
5529 vma_end_read(vma);
50ee3253
SB
5530inval:
5531 rcu_read_unlock();
52f23865 5532 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5533 return NULL;
5534}
5535#endif /* CONFIG_PER_VMA_LOCK */
5536
90eceff1
KS
5537#ifndef __PAGETABLE_P4D_FOLDED
5538/*
5539 * Allocate p4d page table.
5540 * We've already handled the fast-path in-line.
5541 */
5542int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5543{
5544 p4d_t *new = p4d_alloc_one(mm, address);
5545 if (!new)
5546 return -ENOMEM;
5547
90eceff1 5548 spin_lock(&mm->page_table_lock);
ed33b5a6 5549 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5550 p4d_free(mm, new);
ed33b5a6
QZ
5551 } else {
5552 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5553 pgd_populate(mm, pgd, new);
ed33b5a6 5554 }
90eceff1
KS
5555 spin_unlock(&mm->page_table_lock);
5556 return 0;
5557}
5558#endif /* __PAGETABLE_P4D_FOLDED */
5559
1da177e4
LT
5560#ifndef __PAGETABLE_PUD_FOLDED
5561/*
5562 * Allocate page upper directory.
872fec16 5563 * We've already handled the fast-path in-line.
1da177e4 5564 */
c2febafc 5565int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5566{
c74df32c
HD
5567 pud_t *new = pud_alloc_one(mm, address);
5568 if (!new)
1bb3630e 5569 return -ENOMEM;
1da177e4 5570
872fec16 5571 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5572 if (!p4d_present(*p4d)) {
5573 mm_inc_nr_puds(mm);
ed33b5a6 5574 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5575 p4d_populate(mm, p4d, new);
b4e98d9a 5576 } else /* Another has populated it */
5e541973 5577 pud_free(mm, new);
c74df32c 5578 spin_unlock(&mm->page_table_lock);
1bb3630e 5579 return 0;
1da177e4
LT
5580}
5581#endif /* __PAGETABLE_PUD_FOLDED */
5582
5583#ifndef __PAGETABLE_PMD_FOLDED
5584/*
5585 * Allocate page middle directory.
872fec16 5586 * We've already handled the fast-path in-line.
1da177e4 5587 */
1bb3630e 5588int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5589{
a00cc7d9 5590 spinlock_t *ptl;
c74df32c
HD
5591 pmd_t *new = pmd_alloc_one(mm, address);
5592 if (!new)
1bb3630e 5593 return -ENOMEM;
1da177e4 5594
a00cc7d9 5595 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5596 if (!pud_present(*pud)) {
5597 mm_inc_nr_pmds(mm);
ed33b5a6 5598 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5599 pud_populate(mm, pud, new);
ed33b5a6 5600 } else { /* Another has populated it */
5e541973 5601 pmd_free(mm, new);
ed33b5a6 5602 }
a00cc7d9 5603 spin_unlock(ptl);
1bb3630e 5604 return 0;
e0f39591 5605}
1da177e4
LT
5606#endif /* __PAGETABLE_PMD_FOLDED */
5607
0e5e64c0
MS
5608/**
5609 * follow_pte - look up PTE at a user virtual address
5610 * @mm: the mm_struct of the target address space
5611 * @address: user virtual address
5612 * @ptepp: location to store found PTE
5613 * @ptlp: location to store the lock for the PTE
5614 *
5615 * On a successful return, the pointer to the PTE is stored in @ptepp;
5616 * the corresponding lock is taken and its location is stored in @ptlp.
5617 * The contents of the PTE are only stable until @ptlp is released;
5618 * any further use, if any, must be protected against invalidation
5619 * with MMU notifiers.
5620 *
5621 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5622 * should be taken for read.
5623 *
5624 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5625 * it is not a good general-purpose API.
5626 *
5627 * Return: zero on success, -ve otherwise.
5628 */
5629int follow_pte(struct mm_struct *mm, unsigned long address,
5630 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5631{
5632 pgd_t *pgd;
c2febafc 5633 p4d_t *p4d;
f8ad0f49
JW
5634 pud_t *pud;
5635 pmd_t *pmd;
5636 pte_t *ptep;
5637
5638 pgd = pgd_offset(mm, address);
5639 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5640 goto out;
5641
c2febafc
KS
5642 p4d = p4d_offset(pgd, address);
5643 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5644 goto out;
5645
5646 pud = pud_offset(p4d, address);
f8ad0f49
JW
5647 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5648 goto out;
5649
5650 pmd = pmd_offset(pud, address);
f66055ab 5651 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5652
f8ad0f49 5653 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5654 if (!ptep)
5655 goto out;
c33c7948 5656 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5657 goto unlock;
5658 *ptepp = ptep;
5659 return 0;
5660unlock:
5661 pte_unmap_unlock(ptep, *ptlp);
5662out:
5663 return -EINVAL;
5664}
9fd6dad1
PB
5665EXPORT_SYMBOL_GPL(follow_pte);
5666
3b6748e2
JW
5667/**
5668 * follow_pfn - look up PFN at a user virtual address
5669 * @vma: memory mapping
5670 * @address: user virtual address
5671 * @pfn: location to store found PFN
5672 *
5673 * Only IO mappings and raw PFN mappings are allowed.
5674 *
9fd6dad1
PB
5675 * This function does not allow the caller to read the permissions
5676 * of the PTE. Do not use it.
5677 *
a862f68a 5678 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5679 */
5680int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5681 unsigned long *pfn)
5682{
5683 int ret = -EINVAL;
5684 spinlock_t *ptl;
5685 pte_t *ptep;
5686
5687 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5688 return ret;
5689
9fd6dad1 5690 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5691 if (ret)
5692 return ret;
c33c7948 5693 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5694 pte_unmap_unlock(ptep, ptl);
5695 return 0;
5696}
5697EXPORT_SYMBOL(follow_pfn);
5698
28b2ee20 5699#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5700int follow_phys(struct vm_area_struct *vma,
5701 unsigned long address, unsigned int flags,
5702 unsigned long *prot, resource_size_t *phys)
28b2ee20 5703{
03668a4d 5704 int ret = -EINVAL;
28b2ee20
RR
5705 pte_t *ptep, pte;
5706 spinlock_t *ptl;
28b2ee20 5707
d87fe660 5708 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5709 goto out;
28b2ee20 5710
9fd6dad1 5711 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5712 goto out;
c33c7948 5713 pte = ptep_get(ptep);
03668a4d 5714
f6f37321 5715 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5716 goto unlock;
28b2ee20
RR
5717
5718 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5719 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5720
03668a4d 5721 ret = 0;
28b2ee20
RR
5722unlock:
5723 pte_unmap_unlock(ptep, ptl);
5724out:
d87fe660 5725 return ret;
28b2ee20
RR
5726}
5727
96667f8a
DV
5728/**
5729 * generic_access_phys - generic implementation for iomem mmap access
5730 * @vma: the vma to access
f0953a1b 5731 * @addr: userspace address, not relative offset within @vma
96667f8a
DV
5732 * @buf: buffer to read/write
5733 * @len: length of transfer
5734 * @write: set to FOLL_WRITE when writing, otherwise reading
5735 *
5736 * This is a generic implementation for &vm_operations_struct.access for an
5737 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5738 * not page based.
5739 */
28b2ee20
RR
5740int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5741 void *buf, int len, int write)
5742{
5743 resource_size_t phys_addr;
5744 unsigned long prot = 0;
2bc7273b 5745 void __iomem *maddr;
96667f8a
DV
5746 pte_t *ptep, pte;
5747 spinlock_t *ptl;
5748 int offset = offset_in_page(addr);
5749 int ret = -EINVAL;
5750
5751 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5752 return -EINVAL;
5753
5754retry:
e913a8cd 5755 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5756 return -EINVAL;
c33c7948 5757 pte = ptep_get(ptep);
96667f8a 5758 pte_unmap_unlock(ptep, ptl);
28b2ee20 5759
96667f8a
DV
5760 prot = pgprot_val(pte_pgprot(pte));
5761 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5762
5763 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5764 return -EINVAL;
5765
9cb12d7b 5766 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5767 if (!maddr)
5768 return -ENOMEM;
5769
e913a8cd 5770 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
DV
5771 goto out_unmap;
5772
c33c7948 5773 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
DV
5774 pte_unmap_unlock(ptep, ptl);
5775 iounmap(maddr);
5776
5777 goto retry;
5778 }
5779
28b2ee20
RR
5780 if (write)
5781 memcpy_toio(maddr + offset, buf, len);
5782 else
5783 memcpy_fromio(buf, maddr + offset, len);
96667f8a
DV
5784 ret = len;
5785 pte_unmap_unlock(ptep, ptl);
5786out_unmap:
28b2ee20
RR
5787 iounmap(maddr);
5788
96667f8a 5789 return ret;
28b2ee20 5790}
5a73633e 5791EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5792#endif
5793
0ec76a11 5794/*
d3f5ffca 5795 * Access another process' address space as given in mm.
0ec76a11 5796 */
c43cfa42
LS
5797static int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
5798 void *buf, int len, unsigned int gup_flags)
0ec76a11 5799{
0ec76a11 5800 void *old_buf = buf;
442486ec 5801 int write = gup_flags & FOLL_WRITE;
0ec76a11 5802
d8ed45c5 5803 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5804 return 0;
5805
22883973
KS
5806 /* Untag the address before looking up the VMA */
5807 addr = untagged_addr_remote(mm, addr);
5808
eee9c708
LT
5809 /* Avoid triggering the temporary warning in __get_user_pages */
5810 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5811 return 0;
5812
183ff22b 5813 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5814 while (len) {
ca5e8632 5815 int bytes, offset;
0ec76a11 5816 void *maddr;
ca5e8632
LS
5817 struct vm_area_struct *vma = NULL;
5818 struct page *page = get_user_page_vma_remote(mm, addr,
5819 gup_flags, &vma);
0ec76a11 5820
6a1960b8 5821 if (IS_ERR(page)) {
9471f1f2
LT
5822 /* We might need to expand the stack to access it */
5823 vma = vma_lookup(mm, addr);
5824 if (!vma) {
5825 vma = expand_stack(mm, addr);
5826
5827 /* mmap_lock was dropped on failure */
5828 if (!vma)
5829 return buf - old_buf;
5830
5831 /* Try again if stack expansion worked */
5832 continue;
5833 }
5834
28b2ee20
RR
5835 /*
5836 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5837 * we can access using slightly different code.
5838 */
9471f1f2
LT
5839 bytes = 0;
5840#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5841 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5842 bytes = vma->vm_ops->access(vma, addr, buf,
5843 len, write);
dbffcd03 5844#endif
9471f1f2
LT
5845 if (bytes <= 0)
5846 break;
0ec76a11 5847 } else {
28b2ee20
RR
5848 bytes = len;
5849 offset = addr & (PAGE_SIZE-1);
5850 if (bytes > PAGE_SIZE-offset)
5851 bytes = PAGE_SIZE-offset;
5852
5853 maddr = kmap(page);
5854 if (write) {
5855 copy_to_user_page(vma, page, addr,
5856 maddr + offset, buf, bytes);
5857 set_page_dirty_lock(page);
5858 } else {
5859 copy_from_user_page(vma, page, addr,
5860 buf, maddr + offset, bytes);
5861 }
5862 kunmap(page);
09cbfeaf 5863 put_page(page);
0ec76a11 5864 }
0ec76a11
DH
5865 len -= bytes;
5866 buf += bytes;
5867 addr += bytes;
5868 }
d8ed45c5 5869 mmap_read_unlock(mm);
0ec76a11
DH
5870
5871 return buf - old_buf;
5872}
03252919 5873
5ddd36b9 5874/**
ae91dbfc 5875 * access_remote_vm - access another process' address space
5ddd36b9
SW
5876 * @mm: the mm_struct of the target address space
5877 * @addr: start address to access
5878 * @buf: source or destination buffer
5879 * @len: number of bytes to transfer
6347e8d5 5880 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5881 *
5882 * The caller must hold a reference on @mm.
a862f68a
MR
5883 *
5884 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5885 */
5886int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5887 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5888{
d3f5ffca 5889 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5890}
5891
206cb636
SW
5892/*
5893 * Access another process' address space.
5894 * Source/target buffer must be kernel space,
5895 * Do not walk the page table directly, use get_user_pages
5896 */
5897int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5898 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5899{
5900 struct mm_struct *mm;
5901 int ret;
5902
5903 mm = get_task_mm(tsk);
5904 if (!mm)
5905 return 0;
5906
d3f5ffca 5907 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5908
206cb636
SW
5909 mmput(mm);
5910
5911 return ret;
5912}
fcd35857 5913EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5914
03252919
AK
5915/*
5916 * Print the name of a VMA.
5917 */
5918void print_vma_addr(char *prefix, unsigned long ip)
5919{
5920 struct mm_struct *mm = current->mm;
5921 struct vm_area_struct *vma;
5922
e8bff74a 5923 /*
0a7f682d 5924 * we might be running from an atomic context so we cannot sleep
e8bff74a 5925 */
d8ed45c5 5926 if (!mmap_read_trylock(mm))
e8bff74a
IM
5927 return;
5928
03252919
AK
5929 vma = find_vma(mm, ip);
5930 if (vma && vma->vm_file) {
5931 struct file *f = vma->vm_file;
0a7f682d 5932 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5933 if (buf) {
2fbc57c5 5934 char *p;
03252919 5935
9bf39ab2 5936 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5937 if (IS_ERR(p))
5938 p = "?";
2fbc57c5 5939 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5940 vma->vm_start,
5941 vma->vm_end - vma->vm_start);
5942 free_page((unsigned long)buf);
5943 }
5944 }
d8ed45c5 5945 mmap_read_unlock(mm);
03252919 5946}
3ee1afa3 5947
662bbcb2 5948#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5949void __might_fault(const char *file, int line)
3ee1afa3 5950{
9ec23531 5951 if (pagefault_disabled())
662bbcb2 5952 return;
42a38756 5953 __might_sleep(file, line);
9ec23531 5954#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5955 if (current->mm)
da1c55f1 5956 might_lock_read(&current->mm->mmap_lock);
9ec23531 5957#endif
3ee1afa3 5958}
9ec23531 5959EXPORT_SYMBOL(__might_fault);
3ee1afa3 5960#endif
47ad8475
AA
5961
5962#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5963/*
5964 * Process all subpages of the specified huge page with the specified
5965 * operation. The target subpage will be processed last to keep its
5966 * cache lines hot.
5967 */
1cb9dc4b 5968static inline int process_huge_page(
c6ddfb6c 5969 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5970 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5971 void *arg)
47ad8475 5972{
1cb9dc4b 5973 int i, n, base, l, ret;
c79b57e4
HY
5974 unsigned long addr = addr_hint &
5975 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5976
c6ddfb6c 5977 /* Process target subpage last to keep its cache lines hot */
47ad8475 5978 might_sleep();
c79b57e4
HY
5979 n = (addr_hint - addr) / PAGE_SIZE;
5980 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5981 /* If target subpage in first half of huge page */
c79b57e4
HY
5982 base = 0;
5983 l = n;
c6ddfb6c 5984 /* Process subpages at the end of huge page */
c79b57e4
HY
5985 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5986 cond_resched();
1cb9dc4b
LS
5987 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5988 if (ret)
5989 return ret;
c79b57e4
HY
5990 }
5991 } else {
c6ddfb6c 5992 /* If target subpage in second half of huge page */
c79b57e4
HY
5993 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5994 l = pages_per_huge_page - n;
c6ddfb6c 5995 /* Process subpages at the begin of huge page */
c79b57e4
HY
5996 for (i = 0; i < base; i++) {
5997 cond_resched();
1cb9dc4b
LS
5998 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5999 if (ret)
6000 return ret;
c79b57e4
HY
6001 }
6002 }
6003 /*
c6ddfb6c
HY
6004 * Process remaining subpages in left-right-left-right pattern
6005 * towards the target subpage
c79b57e4
HY
6006 */
6007 for (i = 0; i < l; i++) {
6008 int left_idx = base + i;
6009 int right_idx = base + 2 * l - 1 - i;
6010
6011 cond_resched();
1cb9dc4b
LS
6012 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
6013 if (ret)
6014 return ret;
47ad8475 6015 cond_resched();
1cb9dc4b
LS
6016 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
6017 if (ret)
6018 return ret;
47ad8475 6019 }
1cb9dc4b 6020 return 0;
47ad8475
AA
6021}
6022
c6ddfb6c
HY
6023static void clear_gigantic_page(struct page *page,
6024 unsigned long addr,
6025 unsigned int pages_per_huge_page)
6026{
6027 int i;
14455eab 6028 struct page *p;
c6ddfb6c
HY
6029
6030 might_sleep();
14455eab
CL
6031 for (i = 0; i < pages_per_huge_page; i++) {
6032 p = nth_page(page, i);
c6ddfb6c
HY
6033 cond_resched();
6034 clear_user_highpage(p, addr + i * PAGE_SIZE);
6035 }
6036}
6037
1cb9dc4b 6038static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
6039{
6040 struct page *page = arg;
6041
6042 clear_user_highpage(page + idx, addr);
1cb9dc4b 6043 return 0;
c6ddfb6c
HY
6044}
6045
6046void clear_huge_page(struct page *page,
6047 unsigned long addr_hint, unsigned int pages_per_huge_page)
6048{
6049 unsigned long addr = addr_hint &
6050 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6051
6052 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6053 clear_gigantic_page(page, addr, pages_per_huge_page);
6054 return;
6055 }
6056
6057 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6058}
6059
1cb9dc4b 6060static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6061 unsigned long addr,
6062 struct vm_area_struct *vma,
6063 unsigned int pages_per_huge_page)
47ad8475
AA
6064{
6065 int i;
c0e8150e
Z
6066 struct page *dst_page;
6067 struct page *src_page;
47ad8475 6068
14455eab 6069 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6070 dst_page = folio_page(dst, i);
6071 src_page = folio_page(src, i);
14455eab 6072
47ad8475 6073 cond_resched();
1cb9dc4b
LS
6074 if (copy_mc_user_highpage(dst_page, src_page,
6075 addr + i*PAGE_SIZE, vma)) {
6076 memory_failure_queue(page_to_pfn(src_page), 0);
6077 return -EHWPOISON;
6078 }
47ad8475 6079 }
1cb9dc4b 6080 return 0;
47ad8475
AA
6081}
6082
c9f4cd71
HY
6083struct copy_subpage_arg {
6084 struct page *dst;
6085 struct page *src;
6086 struct vm_area_struct *vma;
6087};
6088
1cb9dc4b 6089static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6090{
6091 struct copy_subpage_arg *copy_arg = arg;
6092
1cb9dc4b
LS
6093 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6094 addr, copy_arg->vma)) {
6095 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6096 return -EHWPOISON;
6097 }
6098 return 0;
c9f4cd71
HY
6099}
6100
1cb9dc4b
LS
6101int copy_user_large_folio(struct folio *dst, struct folio *src,
6102 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6103{
c0e8150e 6104 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6105 unsigned long addr = addr_hint &
6106 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6107 struct copy_subpage_arg arg = {
c0e8150e
Z
6108 .dst = &dst->page,
6109 .src = &src->page,
c9f4cd71
HY
6110 .vma = vma,
6111 };
47ad8475 6112
1cb9dc4b
LS
6113 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6114 return copy_user_gigantic_page(dst, src, addr, vma,
6115 pages_per_huge_page);
47ad8475 6116
1cb9dc4b 6117 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6118}
fa4d75c1 6119
e87340ca
Z
6120long copy_folio_from_user(struct folio *dst_folio,
6121 const void __user *usr_src,
6122 bool allow_pagefault)
fa4d75c1 6123{
e87340ca 6124 void *kaddr;
fa4d75c1 6125 unsigned long i, rc = 0;
e87340ca
Z
6126 unsigned int nr_pages = folio_nr_pages(dst_folio);
6127 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6128 struct page *subpage;
fa4d75c1 6129
e87340ca
Z
6130 for (i = 0; i < nr_pages; i++) {
6131 subpage = folio_page(dst_folio, i);
6132 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6133 if (!allow_pagefault)
6134 pagefault_disable();
e87340ca 6135 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6136 if (!allow_pagefault)
6137 pagefault_enable();
e87340ca 6138 kunmap_local(kaddr);
fa4d75c1
MK
6139
6140 ret_val -= (PAGE_SIZE - rc);
6141 if (rc)
6142 break;
6143
e763243c
MS
6144 flush_dcache_page(subpage);
6145
fa4d75c1
MK
6146 cond_resched();
6147 }
6148 return ret_val;
6149}
47ad8475 6150#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6151
40b64acd 6152#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6153
6154static struct kmem_cache *page_ptl_cachep;
6155
6156void __init ptlock_cache_init(void)
6157{
6158 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6159 SLAB_PANIC, NULL);
6160}
6161
f5ecca06 6162bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6163{
6164 spinlock_t *ptl;
6165
b35f1819 6166 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6167 if (!ptl)
6168 return false;
f5ecca06 6169 ptdesc->ptl = ptl;
49076ec2
KS
6170 return true;
6171}
6172
6ed1b8a0 6173void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6174{
6ed1b8a0 6175 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6176}
6177#endif