]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
userfaultfd: convert mfill_atomic_hugetlb() to use a folio
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d 106static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120}
5c041f5d 121
1da177e4
LT
122/*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
166f61b9 129void *high_memory;
1da177e4 130EXPORT_SYMBOL(high_memory);
1da177e4 131
32a93233
IM
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
a62eaf15 144
46bdb427
WD
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
a62eaf15
AK
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
9b41046c 160 return 1;
a62eaf15
AK
161}
162__setup("norandmaps", disable_randmaps);
163
62eede62 164unsigned long zero_pfn __read_mostly;
0b70068e
AB
165EXPORT_SYMBOL(zero_pfn);
166
166f61b9
TH
167unsigned long highest_memmap_pfn __read_mostly;
168
a13ea5b7
HD
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
e720e7d0 177early_initcall(init_zero_pfn);
a62eaf15 178
f1a79412 179void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 180{
f1a79412 181 trace_rss_stat(mm, member);
b3d1411b 182}
d559db08 183
1da177e4
LT
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
9e1b32ca
BH
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
1da177e4 190{
2f569afd 191 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 192 pmd_clear(pmd);
9e1b32ca 193 pte_free_tlb(tlb, token, addr);
c4812909 194 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
195}
196
e0da382c
HD
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
1da177e4
LT
200{
201 pmd_t *pmd;
202 unsigned long next;
e0da382c 203 unsigned long start;
1da177e4 204
e0da382c 205 start = addr;
1da177e4 206 pmd = pmd_offset(pud, addr);
1da177e4
LT
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
9e1b32ca 211 free_pte_range(tlb, pmd, addr);
1da177e4
LT
212 } while (pmd++, addr = next, addr != end);
213
e0da382c
HD
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
1da177e4 221 }
e0da382c
HD
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
9e1b32ca 227 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 228 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
229}
230
c2febafc 231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pud_t *pud;
236 unsigned long next;
e0da382c 237 unsigned long start;
1da177e4 238
e0da382c 239 start = addr;
c2febafc 240 pud = pud_offset(p4d, addr);
1da177e4
LT
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
e0da382c 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
246 } while (pud++, addr = next, addr != end);
247
c2febafc
KS
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
b4e98d9a 262 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
e0da382c
HD
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
1da177e4 289 }
e0da382c
HD
290 if (end - 1 > ceiling - 1)
291 return;
292
c2febafc 293 p4d = p4d_offset(pgd, start);
e0da382c 294 pgd_clear(pgd);
c2febafc 295 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
296}
297
298/*
e0da382c 299 * This function frees user-level page tables of a process.
1da177e4 300 */
42b77728 301void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
1da177e4
LT
304{
305 pgd_t *pgd;
306 unsigned long next;
e0da382c
HD
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
1da177e4 333
e0da382c
HD
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
07e32661
AK
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
ed6a7935 353 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 354 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
c2febafc 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 360 } while (pgd++, addr = next, addr != end);
e0da382c
HD
361}
362
763ecb03
LH
363void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364 struct vm_area_struct *vma, unsigned long floor,
98e51a22 365 unsigned long ceiling, bool mm_wr_locked)
e0da382c 366{
763ecb03
LH
367 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
368
369 do {
e0da382c 370 unsigned long addr = vma->vm_start;
763ecb03
LH
371 struct vm_area_struct *next;
372
373 /*
374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 * be 0. This will underflow and is okay.
376 */
377 next = mas_find(&mas, ceiling - 1);
e0da382c 378
8f4f8c16 379 /*
25d9e2d1
NP
380 * Hide vma from rmap and truncate_pagecache before freeing
381 * pgtables
8f4f8c16 382 */
98e51a22
SB
383 if (mm_wr_locked)
384 vma_start_write(vma);
5beb4930 385 unlink_anon_vmas(vma);
8f4f8c16
HD
386 unlink_file_vma(vma);
387
9da61aef 388 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 390 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
391 } else {
392 /*
393 * Optimization: gather nearby vmas into one call down
394 */
395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 396 && !is_vm_hugetlb_page(next)) {
3bf5ee95 397 vma = next;
763ecb03 398 next = mas_find(&mas, ceiling - 1);
98e51a22
SB
399 if (mm_wr_locked)
400 vma_start_write(vma);
5beb4930 401 unlink_anon_vmas(vma);
8f4f8c16 402 unlink_file_vma(vma);
3bf5ee95
HD
403 }
404 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 405 floor, next ? next->vm_start : ceiling);
3bf5ee95 406 }
e0da382c 407 vma = next;
763ecb03 408 } while (vma);
1da177e4
LT
409}
410
03c4f204 411void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 412{
03c4f204 413 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 414
8ac1f832 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 416 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
417 /*
418 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 * visible before the pte is made visible to other CPUs by being
420 * put into page tables.
421 *
422 * The other side of the story is the pointer chasing in the page
423 * table walking code (when walking the page table without locking;
424 * ie. most of the time). Fortunately, these data accesses consist
425 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 * being the notable exception) will already guarantee loads are
427 * seen in-order. See the alpha page table accessors for the
428 * smp_rmb() barriers in page table walking code.
429 */
430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
431 pmd_populate(mm, pmd, *pte);
432 *pte = NULL;
4b471e88 433 }
c4088ebd 434 spin_unlock(ptl);
03c4f204
QZ
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
4cf58924 439 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
440 if (!new)
441 return -ENOMEM;
442
03c4f204 443 pmd_install(mm, pmd, &new);
2f569afd
MS
444 if (new)
445 pte_free(mm, new);
1bb3630e 446 return 0;
1da177e4
LT
447}
448
4cf58924 449int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 450{
4cf58924 451 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
452 if (!new)
453 return -ENOMEM;
454
455 spin_lock(&init_mm.page_table_lock);
8ac1f832 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 457 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 458 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 459 new = NULL;
4b471e88 460 }
1bb3630e 461 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
462 if (new)
463 pte_free_kernel(&init_mm, new);
1bb3630e 464 return 0;
1da177e4
LT
465}
466
d559db08
KH
467static inline void init_rss_vec(int *rss)
468{
469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470}
471
472static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 473{
d559db08
KH
474 int i;
475
34e55232 476 if (current->mm == mm)
05af2e10 477 sync_mm_rss(mm);
d559db08
KH
478 for (i = 0; i < NR_MM_COUNTERS; i++)
479 if (rss[i])
480 add_mm_counter(mm, i, rss[i]);
ae859762
HD
481}
482
b5810039 483/*
6aab341e
LT
484 * This function is called to print an error when a bad pte
485 * is found. For example, we might have a PFN-mapped pte in
486 * a region that doesn't allow it.
b5810039
NP
487 *
488 * The calling function must still handle the error.
489 */
3dc14741
HD
490static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 pte_t pte, struct page *page)
b5810039 492{
3dc14741 493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
494 p4d_t *p4d = p4d_offset(pgd, addr);
495 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
496 pmd_t *pmd = pmd_offset(pud, addr);
497 struct address_space *mapping;
498 pgoff_t index;
d936cf9b
HD
499 static unsigned long resume;
500 static unsigned long nr_shown;
501 static unsigned long nr_unshown;
502
503 /*
504 * Allow a burst of 60 reports, then keep quiet for that minute;
505 * or allow a steady drip of one report per second.
506 */
507 if (nr_shown == 60) {
508 if (time_before(jiffies, resume)) {
509 nr_unshown++;
510 return;
511 }
512 if (nr_unshown) {
1170532b
JP
513 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 nr_unshown);
d936cf9b
HD
515 nr_unshown = 0;
516 }
517 nr_shown = 0;
518 }
519 if (nr_shown++ == 0)
520 resume = jiffies + 60 * HZ;
3dc14741
HD
521
522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 index = linear_page_index(vma, addr);
524
1170532b
JP
525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
526 current->comm,
527 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 528 if (page)
f0b791a3 529 dump_page(page, "bad pte");
6aa9b8b2 530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
533 vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 536 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 537 dump_stack();
373d4d09 538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
539}
540
ee498ed7 541/*
7e675137 542 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 543 *
7e675137
NP
544 * "Special" mappings do not wish to be associated with a "struct page" (either
545 * it doesn't exist, or it exists but they don't want to touch it). In this
546 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 547 *
7e675137
NP
548 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549 * pte bit, in which case this function is trivial. Secondly, an architecture
550 * may not have a spare pte bit, which requires a more complicated scheme,
551 * described below.
552 *
553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554 * special mapping (even if there are underlying and valid "struct pages").
555 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 556 *
b379d790
JH
557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560 * mapping will always honor the rule
6aab341e
LT
561 *
562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563 *
7e675137
NP
564 * And for normal mappings this is false.
565 *
566 * This restricts such mappings to be a linear translation from virtual address
567 * to pfn. To get around this restriction, we allow arbitrary mappings so long
568 * as the vma is not a COW mapping; in that case, we know that all ptes are
569 * special (because none can have been COWed).
b379d790 570 *
b379d790 571 *
7e675137 572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
573 *
574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575 * page" backing, however the difference is that _all_ pages with a struct
576 * page (that is, those where pfn_valid is true) are refcounted and considered
577 * normal pages by the VM. The disadvantage is that pages are refcounted
578 * (which can be slower and simply not an option for some PFNMAP users). The
579 * advantage is that we don't have to follow the strict linearity rule of
580 * PFNMAP mappings in order to support COWable mappings.
581 *
ee498ed7 582 */
25b2995a
CH
583struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 pte_t pte)
ee498ed7 585{
22b31eec 586 unsigned long pfn = pte_pfn(pte);
7e675137 587
00b3a331 588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 589 if (likely(!pte_special(pte)))
22b31eec 590 goto check_pfn;
667a0a06
DV
591 if (vma->vm_ops && vma->vm_ops->find_special_page)
592 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 return NULL;
df6ad698
JG
595 if (is_zero_pfn(pfn))
596 return NULL;
e1fb4a08 597 if (pte_devmap(pte))
3218f871
AS
598 /*
599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 * and will have refcounts incremented on their struct pages
601 * when they are inserted into PTEs, thus they are safe to
602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 */
e1fb4a08
DJ
606 return NULL;
607
df6ad698 608 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
609 return NULL;
610 }
611
00b3a331 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 613
b379d790
JH
614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 if (vma->vm_flags & VM_MIXEDMAP) {
616 if (!pfn_valid(pfn))
617 return NULL;
618 goto out;
619 } else {
7e675137
NP
620 unsigned long off;
621 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
622 if (pfn == vma->vm_pgoff + off)
623 return NULL;
624 if (!is_cow_mapping(vma->vm_flags))
625 return NULL;
626 }
6aab341e
LT
627 }
628
b38af472
HD
629 if (is_zero_pfn(pfn))
630 return NULL;
00b3a331 631
22b31eec
HD
632check_pfn:
633 if (unlikely(pfn > highest_memmap_pfn)) {
634 print_bad_pte(vma, addr, pte, NULL);
635 return NULL;
636 }
6aab341e
LT
637
638 /*
7e675137 639 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 640 * eg. VDSO mappings can cause them to exist.
6aab341e 641 */
b379d790 642out:
6aab341e 643 return pfn_to_page(pfn);
ee498ed7
HD
644}
645
318e9342
VMO
646struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte)
648{
649 struct page *page = vm_normal_page(vma, addr, pte);
650
651 if (page)
652 return page_folio(page);
653 return NULL;
654}
655
28093f9f
GS
656#ifdef CONFIG_TRANSPARENT_HUGEPAGE
657struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 pmd_t pmd)
659{
660 unsigned long pfn = pmd_pfn(pmd);
661
662 /*
663 * There is no pmd_special() but there may be special pmds, e.g.
664 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
666 */
667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 if (vma->vm_flags & VM_MIXEDMAP) {
669 if (!pfn_valid(pfn))
670 return NULL;
671 goto out;
672 } else {
673 unsigned long off;
674 off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 if (pfn == vma->vm_pgoff + off)
676 return NULL;
677 if (!is_cow_mapping(vma->vm_flags))
678 return NULL;
679 }
680 }
681
e1fb4a08
DJ
682 if (pmd_devmap(pmd))
683 return NULL;
3cde287b 684 if (is_huge_zero_pmd(pmd))
28093f9f
GS
685 return NULL;
686 if (unlikely(pfn > highest_memmap_pfn))
687 return NULL;
688
689 /*
690 * NOTE! We still have PageReserved() pages in the page tables.
691 * eg. VDSO mappings can cause them to exist.
692 */
693out:
694 return pfn_to_page(pfn);
695}
696#endif
697
b756a3b5
AP
698static void restore_exclusive_pte(struct vm_area_struct *vma,
699 struct page *page, unsigned long address,
700 pte_t *ptep)
701{
702 pte_t pte;
703 swp_entry_t entry;
704
705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 if (pte_swp_soft_dirty(*ptep))
707 pte = pte_mksoft_dirty(pte);
708
709 entry = pte_to_swp_entry(*ptep);
710 if (pte_swp_uffd_wp(*ptep))
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
6c287605
DH
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
b756a3b5
AP
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
f1e2db12 722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
4d8ff640 728 WARN_ON_ONCE(1);
b756a3b5 729
1eba86c0
PT
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
b756a3b5
AP
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737}
738
739/*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743static int
744try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746{
747 swp_entry_t entry = pte_to_swp_entry(*src_pte);
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757}
758
1da177e4
LT
759/*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
1da177e4
LT
763 */
764
df3a57d1
LT
765static unsigned long
766copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 769{
8f34f1ea 770 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
771 pte_t pte = *src_pte;
772 struct page *page;
df3a57d1
LT
773 swp_entry_t entry = pte_to_swp_entry(pte);
774
775 if (likely(!non_swap_entry(entry))) {
776 if (swap_duplicate(entry) < 0)
9a5cc85c 777 return -EIO;
df3a57d1
LT
778
779 /* make sure dst_mm is on swapoff's mmlist. */
780 if (unlikely(list_empty(&dst_mm->mmlist))) {
781 spin_lock(&mmlist_lock);
782 if (list_empty(&dst_mm->mmlist))
783 list_add(&dst_mm->mmlist,
784 &src_mm->mmlist);
785 spin_unlock(&mmlist_lock);
786 }
1493a191
DH
787 /* Mark the swap entry as shared. */
788 if (pte_swp_exclusive(*src_pte)) {
789 pte = pte_swp_clear_exclusive(*src_pte);
790 set_pte_at(src_mm, addr, src_pte, pte);
791 }
df3a57d1
LT
792 rss[MM_SWAPENTS]++;
793 } else if (is_migration_entry(entry)) {
af5cdaf8 794 page = pfn_swap_entry_to_page(entry);
1da177e4 795
df3a57d1 796 rss[mm_counter(page)]++;
5042db43 797
6c287605 798 if (!is_readable_migration_entry(entry) &&
df3a57d1 799 is_cow_mapping(vm_flags)) {
5042db43 800 /*
6c287605
DH
801 * COW mappings require pages in both parent and child
802 * to be set to read. A previously exclusive entry is
803 * now shared.
5042db43 804 */
4dd845b5
AP
805 entry = make_readable_migration_entry(
806 swp_offset(entry));
df3a57d1
LT
807 pte = swp_entry_to_pte(entry);
808 if (pte_swp_soft_dirty(*src_pte))
809 pte = pte_swp_mksoft_dirty(pte);
810 if (pte_swp_uffd_wp(*src_pte))
811 pte = pte_swp_mkuffd_wp(pte);
812 set_pte_at(src_mm, addr, src_pte, pte);
813 }
814 } else if (is_device_private_entry(entry)) {
af5cdaf8 815 page = pfn_swap_entry_to_page(entry);
5042db43 816
df3a57d1
LT
817 /*
818 * Update rss count even for unaddressable pages, as
819 * they should treated just like normal pages in this
820 * respect.
821 *
822 * We will likely want to have some new rss counters
823 * for unaddressable pages, at some point. But for now
824 * keep things as they are.
825 */
826 get_page(page);
827 rss[mm_counter(page)]++;
fb3d824d
DH
828 /* Cannot fail as these pages cannot get pinned. */
829 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
830
831 /*
832 * We do not preserve soft-dirty information, because so
833 * far, checkpoint/restore is the only feature that
834 * requires that. And checkpoint/restore does not work
835 * when a device driver is involved (you cannot easily
836 * save and restore device driver state).
837 */
4dd845b5 838 if (is_writable_device_private_entry(entry) &&
df3a57d1 839 is_cow_mapping(vm_flags)) {
4dd845b5
AP
840 entry = make_readable_device_private_entry(
841 swp_offset(entry));
df3a57d1
LT
842 pte = swp_entry_to_pte(entry);
843 if (pte_swp_uffd_wp(*src_pte))
844 pte = pte_swp_mkuffd_wp(pte);
845 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 846 }
b756a3b5
AP
847 } else if (is_device_exclusive_entry(entry)) {
848 /*
849 * Make device exclusive entries present by restoring the
850 * original entry then copying as for a present pte. Device
851 * exclusive entries currently only support private writable
852 * (ie. COW) mappings.
853 */
854 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856 return -EBUSY;
857 return -ENOENT;
c56d1b62 858 } else if (is_pte_marker_entry(entry)) {
7e3ce3f8 859 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
49d6d7fb 860 set_pte_at(dst_mm, addr, dst_pte, pte);
c56d1b62 861 return 0;
1da177e4 862 }
8f34f1ea
PX
863 if (!userfaultfd_wp(dst_vma))
864 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
865 set_pte_at(dst_mm, addr, dst_pte, pte);
866 return 0;
867}
868
70e806e4 869/*
b51ad4f8 870 * Copy a present and normal page.
70e806e4 871 *
b51ad4f8
DH
872 * NOTE! The usual case is that this isn't required;
873 * instead, the caller can just increase the page refcount
874 * and re-use the pte the traditional way.
70e806e4
PX
875 *
876 * And if we need a pre-allocated page but don't yet have
877 * one, return a negative error to let the preallocation
878 * code know so that it can do so outside the page table
879 * lock.
880 */
881static inline int
c78f4636
PX
882copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
883 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 884 struct folio **prealloc, struct page *page)
70e806e4 885{
edf50470 886 struct folio *new_folio;
b51ad4f8 887 pte_t pte;
70e806e4 888
edf50470
MWO
889 new_folio = *prealloc;
890 if (!new_folio)
70e806e4
PX
891 return -EAGAIN;
892
893 /*
894 * We have a prealloc page, all good! Take it
895 * over and copy the page & arm it.
896 */
897 *prealloc = NULL;
edf50470
MWO
898 copy_user_highpage(&new_folio->page, page, addr, src_vma);
899 __folio_mark_uptodate(new_folio);
900 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
901 folio_add_lru_vma(new_folio, dst_vma);
902 rss[MM_ANONPAGES]++;
70e806e4
PX
903
904 /* All done, just insert the new page copy in the child */
edf50470 905 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 906 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
907 if (userfaultfd_pte_wp(dst_vma, *src_pte))
908 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 909 pte = pte_mkuffd_wp(pte);
c78f4636 910 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
911 return 0;
912}
913
914/*
915 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
916 * is required to copy this pte.
917 */
918static inline int
c78f4636
PX
919copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 921 struct folio **prealloc)
df3a57d1 922{
c78f4636
PX
923 struct mm_struct *src_mm = src_vma->vm_mm;
924 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
925 pte_t pte = *src_pte;
926 struct page *page;
14ddee41 927 struct folio *folio;
df3a57d1 928
c78f4636 929 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
930 if (page)
931 folio = page_folio(page);
932 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
933 /*
934 * If this page may have been pinned by the parent process,
935 * copy the page immediately for the child so that we'll always
936 * guarantee the pinned page won't be randomly replaced in the
937 * future.
938 */
14ddee41 939 folio_get(folio);
fb3d824d 940 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
941 /* Page may be pinned, we have to copy. */
942 folio_put(folio);
fb3d824d
DH
943 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
944 addr, rss, prealloc, page);
945 }
edf50470 946 rss[MM_ANONPAGES]++;
b51ad4f8 947 } else if (page) {
14ddee41 948 folio_get(folio);
fb3d824d 949 page_dup_file_rmap(page, false);
edf50470 950 rss[mm_counter_file(page)]++;
70e806e4
PX
951 }
952
1da177e4
LT
953 /*
954 * If it's a COW mapping, write protect it both
955 * in the parent and the child
956 */
1b2de5d0 957 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 958 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 959 pte = pte_wrprotect(pte);
1da177e4 960 }
14ddee41 961 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
962
963 /*
964 * If it's a shared mapping, mark it clean in
965 * the child
966 */
967 if (vm_flags & VM_SHARED)
968 pte = pte_mkclean(pte);
969 pte = pte_mkold(pte);
6aab341e 970
8f34f1ea 971 if (!userfaultfd_wp(dst_vma))
b569a176
PX
972 pte = pte_clear_uffd_wp(pte);
973
c78f4636 974 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
975 return 0;
976}
977
edf50470
MWO
978static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
979 struct vm_area_struct *vma, unsigned long addr)
70e806e4 980{
edf50470 981 struct folio *new_folio;
70e806e4 982
edf50470
MWO
983 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
984 if (!new_folio)
70e806e4
PX
985 return NULL;
986
edf50470
MWO
987 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
988 folio_put(new_folio);
70e806e4 989 return NULL;
6aab341e 990 }
e601ded4 991 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 992
edf50470 993 return new_folio;
1da177e4
LT
994}
995
c78f4636
PX
996static int
997copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 unsigned long end)
1da177e4 1000{
c78f4636
PX
1001 struct mm_struct *dst_mm = dst_vma->vm_mm;
1002 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1003 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1004 pte_t *src_pte, *dst_pte;
c74df32c 1005 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1006 int progress, ret = 0;
d559db08 1007 int rss[NR_MM_COUNTERS];
570a335b 1008 swp_entry_t entry = (swp_entry_t){0};
edf50470 1009 struct folio *prealloc = NULL;
1da177e4
LT
1010
1011again:
70e806e4 1012 progress = 0;
d559db08
KH
1013 init_rss_vec(rss);
1014
c74df32c 1015 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1016 if (!dst_pte) {
1017 ret = -ENOMEM;
1018 goto out;
1019 }
ece0e2b6 1020 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1021 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1023 orig_src_pte = src_pte;
1024 orig_dst_pte = dst_pte;
6606c3e0 1025 arch_enter_lazy_mmu_mode();
1da177e4 1026
1da177e4
LT
1027 do {
1028 /*
1029 * We are holding two locks at this point - either of them
1030 * could generate latencies in another task on another CPU.
1031 */
e040f218
HD
1032 if (progress >= 32) {
1033 progress = 0;
1034 if (need_resched() ||
95c354fe 1035 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1036 break;
1037 }
1da177e4
LT
1038 if (pte_none(*src_pte)) {
1039 progress++;
1040 continue;
1041 }
79a1971c 1042 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1043 ret = copy_nonpresent_pte(dst_mm, src_mm,
1044 dst_pte, src_pte,
1045 dst_vma, src_vma,
1046 addr, rss);
1047 if (ret == -EIO) {
1048 entry = pte_to_swp_entry(*src_pte);
79a1971c 1049 break;
b756a3b5
AP
1050 } else if (ret == -EBUSY) {
1051 break;
1052 } else if (!ret) {
1053 progress += 8;
1054 continue;
9a5cc85c 1055 }
b756a3b5
AP
1056
1057 /*
1058 * Device exclusive entry restored, continue by copying
1059 * the now present pte.
1060 */
1061 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1062 }
70e806e4 1063 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1064 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1065 addr, rss, &prealloc);
70e806e4
PX
1066 /*
1067 * If we need a pre-allocated page for this pte, drop the
1068 * locks, allocate, and try again.
1069 */
1070 if (unlikely(ret == -EAGAIN))
1071 break;
1072 if (unlikely(prealloc)) {
1073 /*
1074 * pre-alloc page cannot be reused by next time so as
1075 * to strictly follow mempolicy (e.g., alloc_page_vma()
1076 * will allocate page according to address). This
1077 * could only happen if one pinned pte changed.
1078 */
edf50470 1079 folio_put(prealloc);
70e806e4
PX
1080 prealloc = NULL;
1081 }
1da177e4
LT
1082 progress += 8;
1083 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1084
6606c3e0 1085 arch_leave_lazy_mmu_mode();
c74df32c 1086 spin_unlock(src_ptl);
ece0e2b6 1087 pte_unmap(orig_src_pte);
d559db08 1088 add_mm_rss_vec(dst_mm, rss);
c36987e2 1089 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1090 cond_resched();
570a335b 1091
9a5cc85c
AP
1092 if (ret == -EIO) {
1093 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1094 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1095 ret = -ENOMEM;
1096 goto out;
1097 }
1098 entry.val = 0;
b756a3b5
AP
1099 } else if (ret == -EBUSY) {
1100 goto out;
9a5cc85c 1101 } else if (ret == -EAGAIN) {
c78f4636 1102 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1103 if (!prealloc)
570a335b 1104 return -ENOMEM;
9a5cc85c
AP
1105 } else if (ret) {
1106 VM_WARN_ON_ONCE(1);
570a335b 1107 }
9a5cc85c
AP
1108
1109 /* We've captured and resolved the error. Reset, try again. */
1110 ret = 0;
1111
1da177e4
LT
1112 if (addr != end)
1113 goto again;
70e806e4
PX
1114out:
1115 if (unlikely(prealloc))
edf50470 1116 folio_put(prealloc);
70e806e4 1117 return ret;
1da177e4
LT
1118}
1119
c78f4636
PX
1120static inline int
1121copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1122 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1123 unsigned long end)
1da177e4 1124{
c78f4636
PX
1125 struct mm_struct *dst_mm = dst_vma->vm_mm;
1126 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1127 pmd_t *src_pmd, *dst_pmd;
1128 unsigned long next;
1129
1130 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1131 if (!dst_pmd)
1132 return -ENOMEM;
1133 src_pmd = pmd_offset(src_pud, addr);
1134 do {
1135 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1136 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1137 || pmd_devmap(*src_pmd)) {
71e3aac0 1138 int err;
c78f4636 1139 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1140 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1141 addr, dst_vma, src_vma);
71e3aac0
AA
1142 if (err == -ENOMEM)
1143 return -ENOMEM;
1144 if (!err)
1145 continue;
1146 /* fall through */
1147 }
1da177e4
LT
1148 if (pmd_none_or_clear_bad(src_pmd))
1149 continue;
c78f4636
PX
1150 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1151 addr, next))
1da177e4
LT
1152 return -ENOMEM;
1153 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1154 return 0;
1155}
1156
c78f4636
PX
1157static inline int
1158copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1160 unsigned long end)
1da177e4 1161{
c78f4636
PX
1162 struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1164 pud_t *src_pud, *dst_pud;
1165 unsigned long next;
1166
c2febafc 1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1168 if (!dst_pud)
1169 return -ENOMEM;
c2febafc 1170 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1171 do {
1172 next = pud_addr_end(addr, end);
a00cc7d9
MW
1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174 int err;
1175
c78f4636 1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1177 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1178 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1179 if (err == -ENOMEM)
1180 return -ENOMEM;
1181 if (!err)
1182 continue;
1183 /* fall through */
1184 }
1da177e4
LT
1185 if (pud_none_or_clear_bad(src_pud))
1186 continue;
c78f4636
PX
1187 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1188 addr, next))
1da177e4
LT
1189 return -ENOMEM;
1190 } while (dst_pud++, src_pud++, addr = next, addr != end);
1191 return 0;
1192}
1193
c78f4636
PX
1194static inline int
1195copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1197 unsigned long end)
c2febafc 1198{
c78f4636 1199 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1200 p4d_t *src_p4d, *dst_p4d;
1201 unsigned long next;
1202
1203 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1204 if (!dst_p4d)
1205 return -ENOMEM;
1206 src_p4d = p4d_offset(src_pgd, addr);
1207 do {
1208 next = p4d_addr_end(addr, end);
1209 if (p4d_none_or_clear_bad(src_p4d))
1210 continue;
c78f4636
PX
1211 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1212 addr, next))
c2febafc
KS
1213 return -ENOMEM;
1214 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1215 return 0;
1216}
1217
c56d1b62
PX
1218/*
1219 * Return true if the vma needs to copy the pgtable during this fork(). Return
1220 * false when we can speed up fork() by allowing lazy page faults later until
1221 * when the child accesses the memory range.
1222 */
bc70fbf2 1223static bool
c56d1b62
PX
1224vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1225{
1226 /*
1227 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1228 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1229 * contains uffd-wp protection information, that's something we can't
1230 * retrieve from page cache, and skip copying will lose those info.
1231 */
1232 if (userfaultfd_wp(dst_vma))
1233 return true;
1234
bcd51a3c 1235 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1236 return true;
1237
1238 if (src_vma->anon_vma)
1239 return true;
1240
1241 /*
1242 * Don't copy ptes where a page fault will fill them correctly. Fork
1243 * becomes much lighter when there are big shared or private readonly
1244 * mappings. The tradeoff is that copy_page_range is more efficient
1245 * than faulting.
1246 */
1247 return false;
1248}
1249
c78f4636
PX
1250int
1251copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1252{
1253 pgd_t *src_pgd, *dst_pgd;
1254 unsigned long next;
c78f4636
PX
1255 unsigned long addr = src_vma->vm_start;
1256 unsigned long end = src_vma->vm_end;
1257 struct mm_struct *dst_mm = dst_vma->vm_mm;
1258 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1259 struct mmu_notifier_range range;
2ec74c3e 1260 bool is_cow;
cddb8a5c 1261 int ret;
1da177e4 1262
c56d1b62 1263 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1264 return 0;
d992895b 1265
c78f4636 1266 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1267 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1268
c78f4636 1269 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1270 /*
1271 * We do not free on error cases below as remove_vma
1272 * gets called on error from higher level routine
1273 */
c78f4636 1274 ret = track_pfn_copy(src_vma);
2ab64037 1275 if (ret)
1276 return ret;
1277 }
1278
cddb8a5c
AA
1279 /*
1280 * We need to invalidate the secondary MMU mappings only when
1281 * there could be a permission downgrade on the ptes of the
1282 * parent mm. And a permission downgrade will only happen if
1283 * is_cow_mapping() returns true.
1284 */
c78f4636 1285 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1286
1287 if (is_cow) {
7269f999 1288 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1289 0, src_mm, addr, end);
ac46d4f3 1290 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1291 /*
1292 * Disabling preemption is not needed for the write side, as
1293 * the read side doesn't spin, but goes to the mmap_lock.
1294 *
1295 * Use the raw variant of the seqcount_t write API to avoid
1296 * lockdep complaining about preemptibility.
1297 */
1298 mmap_assert_write_locked(src_mm);
1299 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1300 }
cddb8a5c
AA
1301
1302 ret = 0;
1da177e4
LT
1303 dst_pgd = pgd_offset(dst_mm, addr);
1304 src_pgd = pgd_offset(src_mm, addr);
1305 do {
1306 next = pgd_addr_end(addr, end);
1307 if (pgd_none_or_clear_bad(src_pgd))
1308 continue;
c78f4636
PX
1309 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1310 addr, next))) {
d155df53 1311 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1312 ret = -ENOMEM;
1313 break;
1314 }
1da177e4 1315 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1316
57efa1fe
JG
1317 if (is_cow) {
1318 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1319 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1320 }
cddb8a5c 1321 return ret;
1da177e4
LT
1322}
1323
5abfd71d
PX
1324/* Whether we should zap all COWed (private) pages too */
1325static inline bool should_zap_cows(struct zap_details *details)
1326{
1327 /* By default, zap all pages */
1328 if (!details)
1329 return true;
1330
1331 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1332 return details->even_cows;
5abfd71d
PX
1333}
1334
2e148f1e 1335/* Decides whether we should zap this page with the page pointer specified */
254ab940 1336static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1337{
5abfd71d
PX
1338 /* If we can make a decision without *page.. */
1339 if (should_zap_cows(details))
254ab940 1340 return true;
5abfd71d
PX
1341
1342 /* E.g. the caller passes NULL for the case of a zero page */
1343 if (!page)
254ab940 1344 return true;
3506659e 1345
2e148f1e
PX
1346 /* Otherwise we should only zap non-anon pages */
1347 return !PageAnon(page);
3506659e
MWO
1348}
1349
999dad82
PX
1350static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1351{
1352 if (!details)
1353 return false;
1354
1355 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1356}
1357
1358/*
1359 * This function makes sure that we'll replace the none pte with an uffd-wp
1360 * swap special pte marker when necessary. Must be with the pgtable lock held.
1361 */
1362static inline void
1363zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1364 unsigned long addr, pte_t *pte,
1365 struct zap_details *details, pte_t pteval)
1366{
2bad466c
PX
1367 /* Zap on anonymous always means dropping everything */
1368 if (vma_is_anonymous(vma))
1369 return;
1370
999dad82
PX
1371 if (zap_drop_file_uffd_wp(details))
1372 return;
1373
1374 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1375}
1376
51c6f666 1377static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1378 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1379 unsigned long addr, unsigned long end,
97a89413 1380 struct zap_details *details)
1da177e4 1381{
b5810039 1382 struct mm_struct *mm = tlb->mm;
d16dfc55 1383 int force_flush = 0;
d559db08 1384 int rss[NR_MM_COUNTERS];
97a89413 1385 spinlock_t *ptl;
5f1a1907 1386 pte_t *start_pte;
97a89413 1387 pte_t *pte;
8a5f14a2 1388 swp_entry_t entry;
d559db08 1389
ed6a7935 1390 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1391again:
e303297e 1392 init_rss_vec(rss);
5f1a1907
SR
1393 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1394 pte = start_pte;
3ea27719 1395 flush_tlb_batched_pending(mm);
6606c3e0 1396 arch_enter_lazy_mmu_mode();
1da177e4
LT
1397 do {
1398 pte_t ptent = *pte;
8018db85
PX
1399 struct page *page;
1400
166f61b9 1401 if (pte_none(ptent))
1da177e4 1402 continue;
6f5e6b9e 1403
7b167b68
MK
1404 if (need_resched())
1405 break;
1406
1da177e4 1407 if (pte_present(ptent)) {
5df397de
LT
1408 unsigned int delay_rmap;
1409
25b2995a 1410 page = vm_normal_page(vma, addr, ptent);
254ab940 1411 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1412 continue;
b5810039 1413 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1414 tlb->fullmm);
1da177e4 1415 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1416 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1417 ptent);
1da177e4
LT
1418 if (unlikely(!page))
1419 continue;
eca56ff9 1420
5df397de 1421 delay_rmap = 0;
eca56ff9 1422 if (!PageAnon(page)) {
1cf35d47 1423 if (pte_dirty(ptent)) {
6237bcd9 1424 set_page_dirty(page);
5df397de
LT
1425 if (tlb_delay_rmap(tlb)) {
1426 delay_rmap = 1;
1427 force_flush = 1;
1428 }
1cf35d47 1429 }
8788f678 1430 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1431 mark_page_accessed(page);
6237bcd9 1432 }
eca56ff9 1433 rss[mm_counter(page)]--;
5df397de
LT
1434 if (!delay_rmap) {
1435 page_remove_rmap(page, vma, false);
1436 if (unlikely(page_mapcount(page) < 0))
1437 print_bad_pte(vma, addr, ptent, page);
1438 }
1439 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1440 force_flush = 1;
ce9ec37b 1441 addr += PAGE_SIZE;
d16dfc55 1442 break;
1cf35d47 1443 }
1da177e4
LT
1444 continue;
1445 }
5042db43
JG
1446
1447 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1448 if (is_device_private_entry(entry) ||
1449 is_device_exclusive_entry(entry)) {
8018db85 1450 page = pfn_swap_entry_to_page(entry);
254ab940 1451 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1452 continue;
999dad82
PX
1453 /*
1454 * Both device private/exclusive mappings should only
1455 * work with anonymous page so far, so we don't need to
1456 * consider uffd-wp bit when zap. For more information,
1457 * see zap_install_uffd_wp_if_needed().
1458 */
1459 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1460 rss[mm_counter(page)]--;
b756a3b5 1461 if (is_device_private_entry(entry))
cea86fe2 1462 page_remove_rmap(page, vma, false);
5042db43 1463 put_page(page);
8018db85 1464 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1465 /* Genuine swap entry, hence a private anon page */
1466 if (!should_zap_cows(details))
1467 continue;
8a5f14a2 1468 rss[MM_SWAPENTS]--;
8018db85
PX
1469 if (unlikely(!free_swap_and_cache(entry)))
1470 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1471 } else if (is_migration_entry(entry)) {
af5cdaf8 1472 page = pfn_swap_entry_to_page(entry);
254ab940 1473 if (!should_zap_page(details, page))
5abfd71d 1474 continue;
eca56ff9 1475 rss[mm_counter(page)]--;
999dad82 1476 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1477 /*
1478 * For anon: always drop the marker; for file: only
1479 * drop the marker if explicitly requested.
1480 */
1481 if (!vma_is_anonymous(vma) &&
1482 !zap_drop_file_uffd_wp(details))
999dad82 1483 continue;
9f186f9e
ML
1484 } else if (is_hwpoison_entry(entry) ||
1485 is_swapin_error_entry(entry)) {
5abfd71d
PX
1486 if (!should_zap_cows(details))
1487 continue;
1488 } else {
1489 /* We should have covered all the swap entry types */
1490 WARN_ON_ONCE(1);
b084d435 1491 }
9888a1ca 1492 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1493 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1494 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1495
d559db08 1496 add_mm_rss_vec(mm, rss);
6606c3e0 1497 arch_leave_lazy_mmu_mode();
51c6f666 1498
1cf35d47 1499 /* Do the actual TLB flush before dropping ptl */
5df397de 1500 if (force_flush) {
1cf35d47 1501 tlb_flush_mmu_tlbonly(tlb);
f036c818 1502 tlb_flush_rmaps(tlb, vma);
5df397de 1503 }
1cf35d47
LT
1504 pte_unmap_unlock(start_pte, ptl);
1505
1506 /*
1507 * If we forced a TLB flush (either due to running out of
1508 * batch buffers or because we needed to flush dirty TLB
1509 * entries before releasing the ptl), free the batched
1510 * memory too. Restart if we didn't do everything.
1511 */
1512 if (force_flush) {
1513 force_flush = 0;
fa0aafb8 1514 tlb_flush_mmu(tlb);
7b167b68
MK
1515 }
1516
1517 if (addr != end) {
1518 cond_resched();
1519 goto again;
d16dfc55
PZ
1520 }
1521
51c6f666 1522 return addr;
1da177e4
LT
1523}
1524
51c6f666 1525static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1526 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1527 unsigned long addr, unsigned long end,
97a89413 1528 struct zap_details *details)
1da177e4
LT
1529{
1530 pmd_t *pmd;
1531 unsigned long next;
1532
1533 pmd = pmd_offset(pud, addr);
1534 do {
1535 next = pmd_addr_end(addr, end);
84c3fc4e 1536 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1537 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1538 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1539 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1540 goto next;
71e3aac0 1541 /* fall through */
3506659e
MWO
1542 } else if (details && details->single_folio &&
1543 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1544 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1545 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1546 /*
1547 * Take and drop THP pmd lock so that we cannot return
1548 * prematurely, while zap_huge_pmd() has cleared *pmd,
1549 * but not yet decremented compound_mapcount().
1550 */
1551 spin_unlock(ptl);
71e3aac0 1552 }
22061a1f 1553
1a5a9906
AA
1554 /*
1555 * Here there can be other concurrent MADV_DONTNEED or
1556 * trans huge page faults running, and if the pmd is
1557 * none or trans huge it can change under us. This is
c1e8d7c6 1558 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1559 * mode.
1560 */
1561 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1562 goto next;
97a89413 1563 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1564next:
97a89413
PZ
1565 cond_resched();
1566 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1567
1568 return addr;
1da177e4
LT
1569}
1570
51c6f666 1571static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1572 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1573 unsigned long addr, unsigned long end,
97a89413 1574 struct zap_details *details)
1da177e4
LT
1575{
1576 pud_t *pud;
1577 unsigned long next;
1578
c2febafc 1579 pud = pud_offset(p4d, addr);
1da177e4
LT
1580 do {
1581 next = pud_addr_end(addr, end);
a00cc7d9
MW
1582 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1583 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1584 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1585 split_huge_pud(vma, pud, addr);
1586 } else if (zap_huge_pud(tlb, vma, pud, addr))
1587 goto next;
1588 /* fall through */
1589 }
97a89413 1590 if (pud_none_or_clear_bad(pud))
1da177e4 1591 continue;
97a89413 1592 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1593next:
1594 cond_resched();
97a89413 1595 } while (pud++, addr = next, addr != end);
51c6f666
RH
1596
1597 return addr;
1da177e4
LT
1598}
1599
c2febafc
KS
1600static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1601 struct vm_area_struct *vma, pgd_t *pgd,
1602 unsigned long addr, unsigned long end,
1603 struct zap_details *details)
1604{
1605 p4d_t *p4d;
1606 unsigned long next;
1607
1608 p4d = p4d_offset(pgd, addr);
1609 do {
1610 next = p4d_addr_end(addr, end);
1611 if (p4d_none_or_clear_bad(p4d))
1612 continue;
1613 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1614 } while (p4d++, addr = next, addr != end);
1615
1616 return addr;
1617}
1618
aac45363 1619void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1620 struct vm_area_struct *vma,
1621 unsigned long addr, unsigned long end,
1622 struct zap_details *details)
1da177e4
LT
1623{
1624 pgd_t *pgd;
1625 unsigned long next;
1626
1da177e4
LT
1627 BUG_ON(addr >= end);
1628 tlb_start_vma(tlb, vma);
1629 pgd = pgd_offset(vma->vm_mm, addr);
1630 do {
1631 next = pgd_addr_end(addr, end);
97a89413 1632 if (pgd_none_or_clear_bad(pgd))
1da177e4 1633 continue;
c2febafc 1634 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1635 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1636 tlb_end_vma(tlb, vma);
1637}
51c6f666 1638
f5cc4eef
AV
1639
1640static void unmap_single_vma(struct mmu_gather *tlb,
1641 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1642 unsigned long end_addr,
68f48381 1643 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1644{
1645 unsigned long start = max(vma->vm_start, start_addr);
1646 unsigned long end;
1647
1648 if (start >= vma->vm_end)
1649 return;
1650 end = min(vma->vm_end, end_addr);
1651 if (end <= vma->vm_start)
1652 return;
1653
cbc91f71
SD
1654 if (vma->vm_file)
1655 uprobe_munmap(vma, start, end);
1656
b3b9c293 1657 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1658 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1659
1660 if (start != end) {
1661 if (unlikely(is_vm_hugetlb_page(vma))) {
1662 /*
1663 * It is undesirable to test vma->vm_file as it
1664 * should be non-null for valid hugetlb area.
1665 * However, vm_file will be NULL in the error
7aa6b4ad 1666 * cleanup path of mmap_region. When
f5cc4eef 1667 * hugetlbfs ->mmap method fails,
7aa6b4ad 1668 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1669 * before calling this function to clean up.
1670 * Since no pte has actually been setup, it is
1671 * safe to do nothing in this case.
1672 */
24669e58 1673 if (vma->vm_file) {
05e90bd0
PX
1674 zap_flags_t zap_flags = details ?
1675 details->zap_flags : 0;
05e90bd0
PX
1676 __unmap_hugepage_range_final(tlb, vma, start, end,
1677 NULL, zap_flags);
24669e58 1678 }
f5cc4eef
AV
1679 } else
1680 unmap_page_range(tlb, vma, start, end, details);
1681 }
1da177e4
LT
1682}
1683
1da177e4
LT
1684/**
1685 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1686 * @tlb: address of the caller's struct mmu_gather
763ecb03 1687 * @mt: the maple tree
1da177e4
LT
1688 * @vma: the starting vma
1689 * @start_addr: virtual address at which to start unmapping
1690 * @end_addr: virtual address at which to end unmapping
1da177e4 1691 *
508034a3 1692 * Unmap all pages in the vma list.
1da177e4 1693 *
1da177e4
LT
1694 * Only addresses between `start' and `end' will be unmapped.
1695 *
1696 * The VMA list must be sorted in ascending virtual address order.
1697 *
1698 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1699 * range after unmap_vmas() returns. So the only responsibility here is to
1700 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1701 * drops the lock and schedules.
1702 */
763ecb03 1703void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1704 struct vm_area_struct *vma, unsigned long start_addr,
68f48381 1705 unsigned long end_addr, bool mm_wr_locked)
1da177e4 1706{
ac46d4f3 1707 struct mmu_notifier_range range;
999dad82 1708 struct zap_details details = {
04ada095 1709 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1710 /* Careful - we need to zap private pages too! */
1711 .even_cows = true,
1712 };
763ecb03 1713 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1714
7d4a8be0 1715 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1716 start_addr, end_addr);
ac46d4f3 1717 mmu_notifier_invalidate_range_start(&range);
763ecb03 1718 do {
68f48381
SB
1719 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1720 mm_wr_locked);
763ecb03 1721 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1722 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1723}
1724
f5cc4eef
AV
1725/**
1726 * zap_page_range_single - remove user pages in a given range
1727 * @vma: vm_area_struct holding the applicable pages
1728 * @address: starting address of pages to zap
1729 * @size: number of bytes to zap
8a5f14a2 1730 * @details: details of shared cache invalidation
f5cc4eef
AV
1731 *
1732 * The range must fit into one VMA.
1da177e4 1733 */
21b85b09 1734void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1735 unsigned long size, struct zap_details *details)
1736{
21b85b09 1737 const unsigned long end = address + size;
ac46d4f3 1738 struct mmu_notifier_range range;
d16dfc55 1739 struct mmu_gather tlb;
1da177e4 1740
1da177e4 1741 lru_add_drain();
7d4a8be0 1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1743 address, end);
1744 if (is_vm_hugetlb_page(vma))
1745 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1746 &range.end);
a72afd87 1747 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1748 update_hiwater_rss(vma->vm_mm);
1749 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1750 /*
1751 * unmap 'address-end' not 'range.start-range.end' as range
1752 * could have been expanded for hugetlb pmd sharing.
1753 */
68f48381 1754 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1755 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1756 tlb_finish_mmu(&tlb);
1da177e4
LT
1757}
1758
c627f9cc
JS
1759/**
1760 * zap_vma_ptes - remove ptes mapping the vma
1761 * @vma: vm_area_struct holding ptes to be zapped
1762 * @address: starting address of pages to zap
1763 * @size: number of bytes to zap
1764 *
1765 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1766 *
1767 * The entire address range must be fully contained within the vma.
1768 *
c627f9cc 1769 */
27d036e3 1770void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1771 unsigned long size)
1772{
88a35912 1773 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1774 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1775 return;
1776
f5cc4eef 1777 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1778}
1779EXPORT_SYMBOL_GPL(zap_vma_ptes);
1780
8cd3984d 1781static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1782{
c2febafc
KS
1783 pgd_t *pgd;
1784 p4d_t *p4d;
1785 pud_t *pud;
1786 pmd_t *pmd;
1787
1788 pgd = pgd_offset(mm, addr);
1789 p4d = p4d_alloc(mm, pgd, addr);
1790 if (!p4d)
1791 return NULL;
1792 pud = pud_alloc(mm, p4d, addr);
1793 if (!pud)
1794 return NULL;
1795 pmd = pmd_alloc(mm, pud, addr);
1796 if (!pmd)
1797 return NULL;
1798
1799 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1800 return pmd;
1801}
1802
1803pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1804 spinlock_t **ptl)
1805{
1806 pmd_t *pmd = walk_to_pmd(mm, addr);
1807
1808 if (!pmd)
1809 return NULL;
c2febafc 1810 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1811}
1812
8efd6f5b
AR
1813static int validate_page_before_insert(struct page *page)
1814{
1815 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1816 return -EINVAL;
1817 flush_dcache_page(page);
1818 return 0;
1819}
1820
cea86fe2 1821static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1822 unsigned long addr, struct page *page, pgprot_t prot)
1823{
1824 if (!pte_none(*pte))
1825 return -EBUSY;
1826 /* Ok, finally just insert the thing.. */
1827 get_page(page);
f1a79412 1828 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1829 page_add_file_rmap(page, vma, false);
1830 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1831 return 0;
1832}
1833
238f58d8
LT
1834/*
1835 * This is the old fallback for page remapping.
1836 *
1837 * For historical reasons, it only allows reserved pages. Only
1838 * old drivers should use this, and they needed to mark their
1839 * pages reserved for the old functions anyway.
1840 */
423bad60
NP
1841static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1842 struct page *page, pgprot_t prot)
238f58d8
LT
1843{
1844 int retval;
c9cfcddf 1845 pte_t *pte;
8a9f3ccd
BS
1846 spinlock_t *ptl;
1847
8efd6f5b
AR
1848 retval = validate_page_before_insert(page);
1849 if (retval)
5b4e655e 1850 goto out;
238f58d8 1851 retval = -ENOMEM;
cea86fe2 1852 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1853 if (!pte)
5b4e655e 1854 goto out;
cea86fe2 1855 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1856 pte_unmap_unlock(pte, ptl);
1857out:
1858 return retval;
1859}
1860
8cd3984d 1861#ifdef pte_index
cea86fe2 1862static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1863 unsigned long addr, struct page *page, pgprot_t prot)
1864{
1865 int err;
1866
1867 if (!page_count(page))
1868 return -EINVAL;
1869 err = validate_page_before_insert(page);
7f70c2a6
AR
1870 if (err)
1871 return err;
cea86fe2 1872 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1873}
1874
1875/* insert_pages() amortizes the cost of spinlock operations
1876 * when inserting pages in a loop. Arch *must* define pte_index.
1877 */
1878static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879 struct page **pages, unsigned long *num, pgprot_t prot)
1880{
1881 pmd_t *pmd = NULL;
7f70c2a6
AR
1882 pte_t *start_pte, *pte;
1883 spinlock_t *pte_lock;
8cd3984d
AR
1884 struct mm_struct *const mm = vma->vm_mm;
1885 unsigned long curr_page_idx = 0;
1886 unsigned long remaining_pages_total = *num;
1887 unsigned long pages_to_write_in_pmd;
1888 int ret;
1889more:
1890 ret = -EFAULT;
1891 pmd = walk_to_pmd(mm, addr);
1892 if (!pmd)
1893 goto out;
1894
1895 pages_to_write_in_pmd = min_t(unsigned long,
1896 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1897
1898 /* Allocate the PTE if necessary; takes PMD lock once only. */
1899 ret = -ENOMEM;
1900 if (pte_alloc(mm, pmd))
1901 goto out;
8cd3984d
AR
1902
1903 while (pages_to_write_in_pmd) {
1904 int pte_idx = 0;
1905 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1906
7f70c2a6
AR
1907 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1908 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1909 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1910 addr, pages[curr_page_idx], prot);
1911 if (unlikely(err)) {
7f70c2a6 1912 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1913 ret = err;
1914 remaining_pages_total -= pte_idx;
1915 goto out;
1916 }
1917 addr += PAGE_SIZE;
1918 ++curr_page_idx;
1919 }
7f70c2a6 1920 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1921 pages_to_write_in_pmd -= batch_size;
1922 remaining_pages_total -= batch_size;
1923 }
1924 if (remaining_pages_total)
1925 goto more;
1926 ret = 0;
1927out:
1928 *num = remaining_pages_total;
1929 return ret;
1930}
1931#endif /* ifdef pte_index */
1932
1933/**
1934 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1935 * @vma: user vma to map to
1936 * @addr: target start user address of these pages
1937 * @pages: source kernel pages
1938 * @num: in: number of pages to map. out: number of pages that were *not*
1939 * mapped. (0 means all pages were successfully mapped).
1940 *
1941 * Preferred over vm_insert_page() when inserting multiple pages.
1942 *
1943 * In case of error, we may have mapped a subset of the provided
1944 * pages. It is the caller's responsibility to account for this case.
1945 *
1946 * The same restrictions apply as in vm_insert_page().
1947 */
1948int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1949 struct page **pages, unsigned long *num)
1950{
1951#ifdef pte_index
1952 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1953
1954 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1955 return -EFAULT;
1956 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1957 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1958 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1959 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1960 }
1961 /* Defer page refcount checking till we're about to map that page. */
1962 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1963#else
1964 unsigned long idx = 0, pgcount = *num;
45779b03 1965 int err = -EINVAL;
8cd3984d
AR
1966
1967 for (; idx < pgcount; ++idx) {
1968 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1969 if (err)
1970 break;
1971 }
1972 *num = pgcount - idx;
1973 return err;
1974#endif /* ifdef pte_index */
1975}
1976EXPORT_SYMBOL(vm_insert_pages);
1977
bfa5bf6d
REB
1978/**
1979 * vm_insert_page - insert single page into user vma
1980 * @vma: user vma to map to
1981 * @addr: target user address of this page
1982 * @page: source kernel page
1983 *
a145dd41
LT
1984 * This allows drivers to insert individual pages they've allocated
1985 * into a user vma.
1986 *
1987 * The page has to be a nice clean _individual_ kernel allocation.
1988 * If you allocate a compound page, you need to have marked it as
1989 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1990 * (see split_page()).
a145dd41
LT
1991 *
1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993 * took an arbitrary page protection parameter. This doesn't allow
1994 * that. Your vma protection will have to be set up correctly, which
1995 * means that if you want a shared writable mapping, you'd better
1996 * ask for a shared writable mapping!
1997 *
1998 * The page does not need to be reserved.
4b6e1e37
KK
1999 *
2000 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003 * function from other places, for example from page-fault handler.
a862f68a
MR
2004 *
2005 * Return: %0 on success, negative error code otherwise.
a145dd41 2006 */
423bad60
NP
2007int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2008 struct page *page)
a145dd41
LT
2009{
2010 if (addr < vma->vm_start || addr >= vma->vm_end)
2011 return -EFAULT;
2012 if (!page_count(page))
2013 return -EINVAL;
4b6e1e37 2014 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2015 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2016 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2017 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2018 }
423bad60 2019 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2020}
e3c3374f 2021EXPORT_SYMBOL(vm_insert_page);
a145dd41 2022
a667d745
SJ
2023/*
2024 * __vm_map_pages - maps range of kernel pages into user vma
2025 * @vma: user vma to map to
2026 * @pages: pointer to array of source kernel pages
2027 * @num: number of pages in page array
2028 * @offset: user's requested vm_pgoff
2029 *
2030 * This allows drivers to map range of kernel pages into a user vma.
2031 *
2032 * Return: 0 on success and error code otherwise.
2033 */
2034static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035 unsigned long num, unsigned long offset)
2036{
2037 unsigned long count = vma_pages(vma);
2038 unsigned long uaddr = vma->vm_start;
2039 int ret, i;
2040
2041 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2042 if (offset >= num)
a667d745
SJ
2043 return -ENXIO;
2044
2045 /* Fail if the user requested size exceeds available object size */
2046 if (count > num - offset)
2047 return -ENXIO;
2048
2049 for (i = 0; i < count; i++) {
2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051 if (ret < 0)
2052 return ret;
2053 uaddr += PAGE_SIZE;
2054 }
2055
2056 return 0;
2057}
2058
2059/**
2060 * vm_map_pages - maps range of kernel pages starts with non zero offset
2061 * @vma: user vma to map to
2062 * @pages: pointer to array of source kernel pages
2063 * @num: number of pages in page array
2064 *
2065 * Maps an object consisting of @num pages, catering for the user's
2066 * requested vm_pgoff
2067 *
2068 * If we fail to insert any page into the vma, the function will return
2069 * immediately leaving any previously inserted pages present. Callers
2070 * from the mmap handler may immediately return the error as their caller
2071 * will destroy the vma, removing any successfully inserted pages. Other
2072 * callers should make their own arrangements for calling unmap_region().
2073 *
2074 * Context: Process context. Called by mmap handlers.
2075 * Return: 0 on success and error code otherwise.
2076 */
2077int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2078 unsigned long num)
2079{
2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2081}
2082EXPORT_SYMBOL(vm_map_pages);
2083
2084/**
2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086 * @vma: user vma to map to
2087 * @pages: pointer to array of source kernel pages
2088 * @num: number of pages in page array
2089 *
2090 * Similar to vm_map_pages(), except that it explicitly sets the offset
2091 * to 0. This function is intended for the drivers that did not consider
2092 * vm_pgoff.
2093 *
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2096 */
2097int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2098 unsigned long num)
2099{
2100 return __vm_map_pages(vma, pages, num, 0);
2101}
2102EXPORT_SYMBOL(vm_map_pages_zero);
2103
9b5a8e00 2104static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2105 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2106{
2107 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2108 pte_t *pte, entry;
2109 spinlock_t *ptl;
2110
423bad60
NP
2111 pte = get_locked_pte(mm, addr, &ptl);
2112 if (!pte)
9b5a8e00 2113 return VM_FAULT_OOM;
b2770da6
RZ
2114 if (!pte_none(*pte)) {
2115 if (mkwrite) {
2116 /*
2117 * For read faults on private mappings the PFN passed
2118 * in may not match the PFN we have mapped if the
2119 * mapped PFN is a writeable COW page. In the mkwrite
2120 * case we are creating a writable PTE for a shared
f2c57d91
JK
2121 * mapping and we expect the PFNs to match. If they
2122 * don't match, we are likely racing with block
2123 * allocation and mapping invalidation so just skip the
2124 * update.
b2770da6 2125 */
f2c57d91
JK
2126 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2127 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2128 goto out_unlock;
f2c57d91 2129 }
cae85cb8
JK
2130 entry = pte_mkyoung(*pte);
2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2133 update_mmu_cache(vma, addr, pte);
2134 }
2135 goto out_unlock;
b2770da6 2136 }
423bad60
NP
2137
2138 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2139 if (pfn_t_devmap(pfn))
2140 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2141 else
2142 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2143
b2770da6
RZ
2144 if (mkwrite) {
2145 entry = pte_mkyoung(entry);
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 }
2148
423bad60 2149 set_pte_at(mm, addr, pte, entry);
4b3073e1 2150 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2151
423bad60
NP
2152out_unlock:
2153 pte_unmap_unlock(pte, ptl);
9b5a8e00 2154 return VM_FAULT_NOPAGE;
423bad60
NP
2155}
2156
f5e6d1d5
MW
2157/**
2158 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2159 * @vma: user vma to map to
2160 * @addr: target user address of this page
2161 * @pfn: source kernel pfn
2162 * @pgprot: pgprot flags for the inserted page
2163 *
a1a0aea5 2164 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2165 * to override pgprot on a per-page basis.
2166 *
2167 * This only makes sense for IO mappings, and it makes no sense for
2168 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2169 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2170 * impractical.
2171 *
28d8b812
LS
2172 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2173 * caching- and encryption bits different than those of @vma->vm_page_prot,
2174 * because the caching- or encryption mode may not be known at mmap() time.
2175 *
2176 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2177 * to set caching and encryption bits for those vmas (except for COW pages).
2178 * This is ensured by core vm only modifying these page table entries using
2179 * functions that don't touch caching- or encryption bits, using pte_modify()
2180 * if needed. (See for example mprotect()).
2181 *
2182 * Also when new page-table entries are created, this is only done using the
2183 * fault() callback, and never using the value of vma->vm_page_prot,
2184 * except for page-table entries that point to anonymous pages as the result
2185 * of COW.
574c5b3d 2186 *
ae2b01f3 2187 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2188 * Return: vm_fault_t value.
2189 */
2190vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2191 unsigned long pfn, pgprot_t pgprot)
2192{
6d958546
MW
2193 /*
2194 * Technically, architectures with pte_special can avoid all these
2195 * restrictions (same for remap_pfn_range). However we would like
2196 * consistency in testing and feature parity among all, so we should
2197 * try to keep these invariants in place for everybody.
2198 */
2199 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2200 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2201 (VM_PFNMAP|VM_MIXEDMAP));
2202 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2203 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2204
2205 if (addr < vma->vm_start || addr >= vma->vm_end)
2206 return VM_FAULT_SIGBUS;
2207
2208 if (!pfn_modify_allowed(pfn, pgprot))
2209 return VM_FAULT_SIGBUS;
2210
2211 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2212
9b5a8e00 2213 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2214 false);
f5e6d1d5
MW
2215}
2216EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2217
ae2b01f3
MW
2218/**
2219 * vmf_insert_pfn - insert single pfn into user vma
2220 * @vma: user vma to map to
2221 * @addr: target user address of this page
2222 * @pfn: source kernel pfn
2223 *
2224 * Similar to vm_insert_page, this allows drivers to insert individual pages
2225 * they've allocated into a user vma. Same comments apply.
2226 *
2227 * This function should only be called from a vm_ops->fault handler, and
2228 * in that case the handler should return the result of this function.
2229 *
2230 * vma cannot be a COW mapping.
2231 *
2232 * As this is called only for pages that do not currently exist, we
2233 * do not need to flush old virtual caches or the TLB.
2234 *
2235 * Context: Process context. May allocate using %GFP_KERNEL.
2236 * Return: vm_fault_t value.
2237 */
2238vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2239 unsigned long pfn)
2240{
2241 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2242}
2243EXPORT_SYMBOL(vmf_insert_pfn);
2244
785a3fab
DW
2245static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2246{
2247 /* these checks mirror the abort conditions in vm_normal_page */
2248 if (vma->vm_flags & VM_MIXEDMAP)
2249 return true;
2250 if (pfn_t_devmap(pfn))
2251 return true;
2252 if (pfn_t_special(pfn))
2253 return true;
2254 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2255 return true;
2256 return false;
2257}
2258
79f3aa5b 2259static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2260 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2261{
28d8b812 2262 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2263 int err;
87744ab3 2264
785a3fab 2265 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2266
423bad60 2267 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2268 return VM_FAULT_SIGBUS;
308a047c
BP
2269
2270 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2271
42e4089c 2272 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2273 return VM_FAULT_SIGBUS;
42e4089c 2274
423bad60
NP
2275 /*
2276 * If we don't have pte special, then we have to use the pfn_valid()
2277 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2278 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2279 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2280 * without pte special, it would there be refcounted as a normal page.
423bad60 2281 */
00b3a331
LD
2282 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2283 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2284 struct page *page;
2285
03fc2da6
DW
2286 /*
2287 * At this point we are committed to insert_page()
2288 * regardless of whether the caller specified flags that
2289 * result in pfn_t_has_page() == false.
2290 */
2291 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2292 err = insert_page(vma, addr, page, pgprot);
2293 } else {
9b5a8e00 2294 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2295 }
b2770da6 2296
5d747637
MW
2297 if (err == -ENOMEM)
2298 return VM_FAULT_OOM;
2299 if (err < 0 && err != -EBUSY)
2300 return VM_FAULT_SIGBUS;
2301
2302 return VM_FAULT_NOPAGE;
e0dc0d8f 2303}
79f3aa5b
MW
2304
2305vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2306 pfn_t pfn)
2307{
28d8b812 2308 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2309}
5d747637 2310EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2311
ab77dab4
SJ
2312/*
2313 * If the insertion of PTE failed because someone else already added a
2314 * different entry in the mean time, we treat that as success as we assume
2315 * the same entry was actually inserted.
2316 */
ab77dab4
SJ
2317vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2318 unsigned long addr, pfn_t pfn)
b2770da6 2319{
28d8b812 2320 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2321}
ab77dab4 2322EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2323
1da177e4
LT
2324/*
2325 * maps a range of physical memory into the requested pages. the old
2326 * mappings are removed. any references to nonexistent pages results
2327 * in null mappings (currently treated as "copy-on-access")
2328 */
2329static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2330 unsigned long addr, unsigned long end,
2331 unsigned long pfn, pgprot_t prot)
2332{
90a3e375 2333 pte_t *pte, *mapped_pte;
c74df32c 2334 spinlock_t *ptl;
42e4089c 2335 int err = 0;
1da177e4 2336
90a3e375 2337 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2338 if (!pte)
2339 return -ENOMEM;
6606c3e0 2340 arch_enter_lazy_mmu_mode();
1da177e4
LT
2341 do {
2342 BUG_ON(!pte_none(*pte));
42e4089c
AK
2343 if (!pfn_modify_allowed(pfn, prot)) {
2344 err = -EACCES;
2345 break;
2346 }
7e675137 2347 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2348 pfn++;
2349 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2350 arch_leave_lazy_mmu_mode();
90a3e375 2351 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2352 return err;
1da177e4
LT
2353}
2354
2355static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2356 unsigned long addr, unsigned long end,
2357 unsigned long pfn, pgprot_t prot)
2358{
2359 pmd_t *pmd;
2360 unsigned long next;
42e4089c 2361 int err;
1da177e4
LT
2362
2363 pfn -= addr >> PAGE_SHIFT;
2364 pmd = pmd_alloc(mm, pud, addr);
2365 if (!pmd)
2366 return -ENOMEM;
f66055ab 2367 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2368 do {
2369 next = pmd_addr_end(addr, end);
42e4089c
AK
2370 err = remap_pte_range(mm, pmd, addr, next,
2371 pfn + (addr >> PAGE_SHIFT), prot);
2372 if (err)
2373 return err;
1da177e4
LT
2374 } while (pmd++, addr = next, addr != end);
2375 return 0;
2376}
2377
c2febafc 2378static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2379 unsigned long addr, unsigned long end,
2380 unsigned long pfn, pgprot_t prot)
2381{
2382 pud_t *pud;
2383 unsigned long next;
42e4089c 2384 int err;
1da177e4
LT
2385
2386 pfn -= addr >> PAGE_SHIFT;
c2febafc 2387 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2388 if (!pud)
2389 return -ENOMEM;
2390 do {
2391 next = pud_addr_end(addr, end);
42e4089c
AK
2392 err = remap_pmd_range(mm, pud, addr, next,
2393 pfn + (addr >> PAGE_SHIFT), prot);
2394 if (err)
2395 return err;
1da177e4
LT
2396 } while (pud++, addr = next, addr != end);
2397 return 0;
2398}
2399
c2febafc
KS
2400static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2401 unsigned long addr, unsigned long end,
2402 unsigned long pfn, pgprot_t prot)
2403{
2404 p4d_t *p4d;
2405 unsigned long next;
42e4089c 2406 int err;
c2febafc
KS
2407
2408 pfn -= addr >> PAGE_SHIFT;
2409 p4d = p4d_alloc(mm, pgd, addr);
2410 if (!p4d)
2411 return -ENOMEM;
2412 do {
2413 next = p4d_addr_end(addr, end);
42e4089c
AK
2414 err = remap_pud_range(mm, p4d, addr, next,
2415 pfn + (addr >> PAGE_SHIFT), prot);
2416 if (err)
2417 return err;
c2febafc
KS
2418 } while (p4d++, addr = next, addr != end);
2419 return 0;
2420}
2421
74ffa5a3
CH
2422/*
2423 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2424 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2425 */
74ffa5a3
CH
2426int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2427 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2428{
2429 pgd_t *pgd;
2430 unsigned long next;
2d15cab8 2431 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2432 struct mm_struct *mm = vma->vm_mm;
2433 int err;
2434
0c4123e3
AZ
2435 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2436 return -EINVAL;
2437
1da177e4
LT
2438 /*
2439 * Physically remapped pages are special. Tell the
2440 * rest of the world about it:
2441 * VM_IO tells people not to look at these pages
2442 * (accesses can have side effects).
6aab341e
LT
2443 * VM_PFNMAP tells the core MM that the base pages are just
2444 * raw PFN mappings, and do not have a "struct page" associated
2445 * with them.
314e51b9
KK
2446 * VM_DONTEXPAND
2447 * Disable vma merging and expanding with mremap().
2448 * VM_DONTDUMP
2449 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2450 *
2451 * There's a horrible special case to handle copy-on-write
2452 * behaviour that some programs depend on. We mark the "original"
2453 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2454 * See vm_normal_page() for details.
1da177e4 2455 */
b3b9c293
KK
2456 if (is_cow_mapping(vma->vm_flags)) {
2457 if (addr != vma->vm_start || end != vma->vm_end)
2458 return -EINVAL;
fb155c16 2459 vma->vm_pgoff = pfn;
b3b9c293
KK
2460 }
2461
1c71222e 2462 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2463
2464 BUG_ON(addr >= end);
2465 pfn -= addr >> PAGE_SHIFT;
2466 pgd = pgd_offset(mm, addr);
2467 flush_cache_range(vma, addr, end);
1da177e4
LT
2468 do {
2469 next = pgd_addr_end(addr, end);
c2febafc 2470 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2471 pfn + (addr >> PAGE_SHIFT), prot);
2472 if (err)
74ffa5a3 2473 return err;
1da177e4 2474 } while (pgd++, addr = next, addr != end);
2ab64037 2475
74ffa5a3
CH
2476 return 0;
2477}
2478
2479/**
2480 * remap_pfn_range - remap kernel memory to userspace
2481 * @vma: user vma to map to
2482 * @addr: target page aligned user address to start at
2483 * @pfn: page frame number of kernel physical memory address
2484 * @size: size of mapping area
2485 * @prot: page protection flags for this mapping
2486 *
2487 * Note: this is only safe if the mm semaphore is held when called.
2488 *
2489 * Return: %0 on success, negative error code otherwise.
2490 */
2491int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2492 unsigned long pfn, unsigned long size, pgprot_t prot)
2493{
2494 int err;
2495
2496 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2497 if (err)
74ffa5a3 2498 return -EINVAL;
2ab64037 2499
74ffa5a3
CH
2500 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2501 if (err)
68f48381 2502 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2503 return err;
2504}
2505EXPORT_SYMBOL(remap_pfn_range);
2506
b4cbb197
LT
2507/**
2508 * vm_iomap_memory - remap memory to userspace
2509 * @vma: user vma to map to
abd69b9e 2510 * @start: start of the physical memory to be mapped
b4cbb197
LT
2511 * @len: size of area
2512 *
2513 * This is a simplified io_remap_pfn_range() for common driver use. The
2514 * driver just needs to give us the physical memory range to be mapped,
2515 * we'll figure out the rest from the vma information.
2516 *
2517 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2518 * whatever write-combining details or similar.
a862f68a
MR
2519 *
2520 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2521 */
2522int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2523{
2524 unsigned long vm_len, pfn, pages;
2525
2526 /* Check that the physical memory area passed in looks valid */
2527 if (start + len < start)
2528 return -EINVAL;
2529 /*
2530 * You *really* shouldn't map things that aren't page-aligned,
2531 * but we've historically allowed it because IO memory might
2532 * just have smaller alignment.
2533 */
2534 len += start & ~PAGE_MASK;
2535 pfn = start >> PAGE_SHIFT;
2536 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2537 if (pfn + pages < pfn)
2538 return -EINVAL;
2539
2540 /* We start the mapping 'vm_pgoff' pages into the area */
2541 if (vma->vm_pgoff > pages)
2542 return -EINVAL;
2543 pfn += vma->vm_pgoff;
2544 pages -= vma->vm_pgoff;
2545
2546 /* Can we fit all of the mapping? */
2547 vm_len = vma->vm_end - vma->vm_start;
2548 if (vm_len >> PAGE_SHIFT > pages)
2549 return -EINVAL;
2550
2551 /* Ok, let it rip */
2552 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2553}
2554EXPORT_SYMBOL(vm_iomap_memory);
2555
aee16b3c
JF
2556static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2557 unsigned long addr, unsigned long end,
e80d3909
JR
2558 pte_fn_t fn, void *data, bool create,
2559 pgtbl_mod_mask *mask)
aee16b3c 2560{
8abb50c7 2561 pte_t *pte, *mapped_pte;
be1db475 2562 int err = 0;
3f649ab7 2563 spinlock_t *ptl;
aee16b3c 2564
be1db475 2565 if (create) {
8abb50c7 2566 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2567 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2568 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2569 if (!pte)
2570 return -ENOMEM;
2571 } else {
8abb50c7 2572 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2573 pte_offset_kernel(pmd, addr) :
2574 pte_offset_map_lock(mm, pmd, addr, &ptl);
2575 }
aee16b3c
JF
2576
2577 BUG_ON(pmd_huge(*pmd));
2578
38e0edb1
JF
2579 arch_enter_lazy_mmu_mode();
2580
eeb4a05f
CH
2581 if (fn) {
2582 do {
2583 if (create || !pte_none(*pte)) {
2584 err = fn(pte++, addr, data);
2585 if (err)
2586 break;
2587 }
2588 } while (addr += PAGE_SIZE, addr != end);
2589 }
e80d3909 2590 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2591
38e0edb1
JF
2592 arch_leave_lazy_mmu_mode();
2593
aee16b3c 2594 if (mm != &init_mm)
8abb50c7 2595 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2596 return err;
2597}
2598
2599static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2600 unsigned long addr, unsigned long end,
e80d3909
JR
2601 pte_fn_t fn, void *data, bool create,
2602 pgtbl_mod_mask *mask)
aee16b3c
JF
2603{
2604 pmd_t *pmd;
2605 unsigned long next;
be1db475 2606 int err = 0;
aee16b3c 2607
ceb86879
AK
2608 BUG_ON(pud_huge(*pud));
2609
be1db475 2610 if (create) {
e80d3909 2611 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2612 if (!pmd)
2613 return -ENOMEM;
2614 } else {
2615 pmd = pmd_offset(pud, addr);
2616 }
aee16b3c
JF
2617 do {
2618 next = pmd_addr_end(addr, end);
0c95cba4
NP
2619 if (pmd_none(*pmd) && !create)
2620 continue;
2621 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2622 return -EINVAL;
2623 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2624 if (!create)
2625 continue;
2626 pmd_clear_bad(pmd);
be1db475 2627 }
0c95cba4
NP
2628 err = apply_to_pte_range(mm, pmd, addr, next,
2629 fn, data, create, mask);
2630 if (err)
2631 break;
aee16b3c 2632 } while (pmd++, addr = next, addr != end);
0c95cba4 2633
aee16b3c
JF
2634 return err;
2635}
2636
c2febafc 2637static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2638 unsigned long addr, unsigned long end,
e80d3909
JR
2639 pte_fn_t fn, void *data, bool create,
2640 pgtbl_mod_mask *mask)
aee16b3c
JF
2641{
2642 pud_t *pud;
2643 unsigned long next;
be1db475 2644 int err = 0;
aee16b3c 2645
be1db475 2646 if (create) {
e80d3909 2647 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2648 if (!pud)
2649 return -ENOMEM;
2650 } else {
2651 pud = pud_offset(p4d, addr);
2652 }
aee16b3c
JF
2653 do {
2654 next = pud_addr_end(addr, end);
0c95cba4
NP
2655 if (pud_none(*pud) && !create)
2656 continue;
2657 if (WARN_ON_ONCE(pud_leaf(*pud)))
2658 return -EINVAL;
2659 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2660 if (!create)
2661 continue;
2662 pud_clear_bad(pud);
be1db475 2663 }
0c95cba4
NP
2664 err = apply_to_pmd_range(mm, pud, addr, next,
2665 fn, data, create, mask);
2666 if (err)
2667 break;
aee16b3c 2668 } while (pud++, addr = next, addr != end);
0c95cba4 2669
aee16b3c
JF
2670 return err;
2671}
2672
c2febafc
KS
2673static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2674 unsigned long addr, unsigned long end,
e80d3909
JR
2675 pte_fn_t fn, void *data, bool create,
2676 pgtbl_mod_mask *mask)
c2febafc
KS
2677{
2678 p4d_t *p4d;
2679 unsigned long next;
be1db475 2680 int err = 0;
c2febafc 2681
be1db475 2682 if (create) {
e80d3909 2683 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2684 if (!p4d)
2685 return -ENOMEM;
2686 } else {
2687 p4d = p4d_offset(pgd, addr);
2688 }
c2febafc
KS
2689 do {
2690 next = p4d_addr_end(addr, end);
0c95cba4
NP
2691 if (p4d_none(*p4d) && !create)
2692 continue;
2693 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2694 return -EINVAL;
2695 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2696 if (!create)
2697 continue;
2698 p4d_clear_bad(p4d);
be1db475 2699 }
0c95cba4
NP
2700 err = apply_to_pud_range(mm, p4d, addr, next,
2701 fn, data, create, mask);
2702 if (err)
2703 break;
c2febafc 2704 } while (p4d++, addr = next, addr != end);
0c95cba4 2705
c2febafc
KS
2706 return err;
2707}
2708
be1db475
DA
2709static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710 unsigned long size, pte_fn_t fn,
2711 void *data, bool create)
aee16b3c
JF
2712{
2713 pgd_t *pgd;
e80d3909 2714 unsigned long start = addr, next;
57250a5b 2715 unsigned long end = addr + size;
e80d3909 2716 pgtbl_mod_mask mask = 0;
be1db475 2717 int err = 0;
aee16b3c 2718
9cb65bc3
MP
2719 if (WARN_ON(addr >= end))
2720 return -EINVAL;
2721
aee16b3c
JF
2722 pgd = pgd_offset(mm, addr);
2723 do {
2724 next = pgd_addr_end(addr, end);
0c95cba4 2725 if (pgd_none(*pgd) && !create)
be1db475 2726 continue;
0c95cba4
NP
2727 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2728 return -EINVAL;
2729 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2730 if (!create)
2731 continue;
2732 pgd_clear_bad(pgd);
2733 }
2734 err = apply_to_p4d_range(mm, pgd, addr, next,
2735 fn, data, create, &mask);
aee16b3c
JF
2736 if (err)
2737 break;
2738 } while (pgd++, addr = next, addr != end);
57250a5b 2739
e80d3909
JR
2740 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2741 arch_sync_kernel_mappings(start, start + size);
2742
aee16b3c
JF
2743 return err;
2744}
be1db475
DA
2745
2746/*
2747 * Scan a region of virtual memory, filling in page tables as necessary
2748 * and calling a provided function on each leaf page table.
2749 */
2750int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn, void *data)
2752{
2753 return __apply_to_page_range(mm, addr, size, fn, data, true);
2754}
aee16b3c
JF
2755EXPORT_SYMBOL_GPL(apply_to_page_range);
2756
be1db475
DA
2757/*
2758 * Scan a region of virtual memory, calling a provided function on
2759 * each leaf page table where it exists.
2760 *
2761 * Unlike apply_to_page_range, this does _not_ fill in page tables
2762 * where they are absent.
2763 */
2764int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2765 unsigned long size, pte_fn_t fn, void *data)
2766{
2767 return __apply_to_page_range(mm, addr, size, fn, data, false);
2768}
2769EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2770
8f4e2101 2771/*
9b4bdd2f
KS
2772 * handle_pte_fault chooses page fault handler according to an entry which was
2773 * read non-atomically. Before making any commitment, on those architectures
2774 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2775 * parts, do_swap_page must check under lock before unmapping the pte and
2776 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2777 * and do_anonymous_page can safely check later on).
8f4e2101 2778 */
2ca99358 2779static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2780{
2781 int same = 1;
923717cb 2782#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2783 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2784 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2785 spin_lock(ptl);
2ca99358 2786 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2787 spin_unlock(ptl);
8f4e2101
HD
2788 }
2789#endif
2ca99358
PX
2790 pte_unmap(vmf->pte);
2791 vmf->pte = NULL;
8f4e2101
HD
2792 return same;
2793}
2794
a873dfe1
TL
2795/*
2796 * Return:
2797 * 0: copied succeeded
2798 * -EHWPOISON: copy failed due to hwpoison in source page
2799 * -EAGAIN: copied failed (some other reason)
2800 */
2801static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802 struct vm_fault *vmf)
6aab341e 2803{
a873dfe1 2804 int ret;
83d116c5
JH
2805 void *kaddr;
2806 void __user *uaddr;
c3e5ea6e 2807 bool locked = false;
83d116c5
JH
2808 struct vm_area_struct *vma = vmf->vma;
2809 struct mm_struct *mm = vma->vm_mm;
2810 unsigned long addr = vmf->address;
2811
83d116c5 2812 if (likely(src)) {
d302c239
TL
2813 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2815 return -EHWPOISON;
d302c239 2816 }
a873dfe1 2817 return 0;
83d116c5
JH
2818 }
2819
6aab341e
LT
2820 /*
2821 * If the source page was a PFN mapping, we don't have
2822 * a "struct page" for it. We do a best-effort copy by
2823 * just copying from the original user address. If that
2824 * fails, we just zero-fill it. Live with it.
2825 */
83d116c5
JH
2826 kaddr = kmap_atomic(dst);
2827 uaddr = (void __user *)(addr & PAGE_MASK);
2828
2829 /*
2830 * On architectures with software "accessed" bits, we would
2831 * take a double page fault, so mark it accessed here.
2832 */
e1fd09e3 2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2834 pte_t entry;
5d2a2dbb 2835
83d116c5 2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2837 locked = true;
83d116c5
JH
2838 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2839 /*
2840 * Other thread has already handled the fault
7df67697 2841 * and update local tlb only
83d116c5 2842 */
7df67697 2843 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2844 ret = -EAGAIN;
83d116c5
JH
2845 goto pte_unlock;
2846 }
2847
2848 entry = pte_mkyoung(vmf->orig_pte);
2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850 update_mmu_cache(vma, addr, vmf->pte);
2851 }
2852
2853 /*
2854 * This really shouldn't fail, because the page is there
2855 * in the page tables. But it might just be unreadable,
2856 * in which case we just give up and fill the result with
2857 * zeroes.
2858 */
2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2860 if (locked)
2861 goto warn;
2862
2863 /* Re-validate under PTL if the page is still mapped */
2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865 locked = true;
2866 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2867 /* The PTE changed under us, update local tlb */
2868 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2869 ret = -EAGAIN;
c3e5ea6e
KS
2870 goto pte_unlock;
2871 }
2872
5d2a2dbb 2873 /*
985ba004 2874 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2875 * Try to copy again under PTL.
5d2a2dbb 2876 */
c3e5ea6e
KS
2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2878 /*
2879 * Give a warn in case there can be some obscure
2880 * use-case
2881 */
2882warn:
2883 WARN_ON_ONCE(1);
2884 clear_page(kaddr);
2885 }
83d116c5
JH
2886 }
2887
a873dfe1 2888 ret = 0;
83d116c5
JH
2889
2890pte_unlock:
c3e5ea6e 2891 if (locked)
83d116c5
JH
2892 pte_unmap_unlock(vmf->pte, vmf->ptl);
2893 kunmap_atomic(kaddr);
2894 flush_dcache_page(dst);
2895
2896 return ret;
6aab341e
LT
2897}
2898
c20cd45e
MH
2899static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2900{
2901 struct file *vm_file = vma->vm_file;
2902
2903 if (vm_file)
2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2905
2906 /*
2907 * Special mappings (e.g. VDSO) do not have any file so fake
2908 * a default GFP_KERNEL for them.
2909 */
2910 return GFP_KERNEL;
2911}
2912
fb09a464
KS
2913/*
2914 * Notify the address space that the page is about to become writable so that
2915 * it can prohibit this or wait for the page to get into an appropriate state.
2916 *
2917 * We do this without the lock held, so that it can sleep if it needs to.
2918 */
2b740303 2919static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2920{
2b740303 2921 vm_fault_t ret;
38b8cb7f
JK
2922 struct page *page = vmf->page;
2923 unsigned int old_flags = vmf->flags;
fb09a464 2924
38b8cb7f 2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2926
dc617f29
DW
2927 if (vmf->vma->vm_file &&
2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 return VM_FAULT_SIGBUS;
2930
11bac800 2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2932 /* Restore original flags so that caller is not surprised */
2933 vmf->flags = old_flags;
fb09a464
KS
2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935 return ret;
2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937 lock_page(page);
2938 if (!page->mapping) {
2939 unlock_page(page);
2940 return 0; /* retry */
2941 }
2942 ret |= VM_FAULT_LOCKED;
2943 } else
2944 VM_BUG_ON_PAGE(!PageLocked(page), page);
2945 return ret;
2946}
2947
97ba0c2b
JK
2948/*
2949 * Handle dirtying of a page in shared file mapping on a write fault.
2950 *
2951 * The function expects the page to be locked and unlocks it.
2952 */
89b15332 2953static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2954{
89b15332 2955 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2956 struct address_space *mapping;
89b15332 2957 struct page *page = vmf->page;
97ba0c2b
JK
2958 bool dirtied;
2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960
2961 dirtied = set_page_dirty(page);
2962 VM_BUG_ON_PAGE(PageAnon(page), page);
2963 /*
2964 * Take a local copy of the address_space - page.mapping may be zeroed
2965 * by truncate after unlock_page(). The address_space itself remains
2966 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2967 * release semantics to prevent the compiler from undoing this copying.
2968 */
2969 mapping = page_rmapping(page);
2970 unlock_page(page);
2971
89b15332
JW
2972 if (!page_mkwrite)
2973 file_update_time(vma->vm_file);
2974
2975 /*
2976 * Throttle page dirtying rate down to writeback speed.
2977 *
2978 * mapping may be NULL here because some device drivers do not
2979 * set page.mapping but still dirty their pages
2980 *
c1e8d7c6 2981 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2982 * is pinning the mapping, as per above.
2983 */
97ba0c2b 2984 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2985 struct file *fpin;
2986
2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2988 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2989 if (fpin) {
2990 fput(fpin);
d9272525 2991 return VM_FAULT_COMPLETED;
89b15332 2992 }
97ba0c2b
JK
2993 }
2994
89b15332 2995 return 0;
97ba0c2b
JK
2996}
2997
4e047f89
SR
2998/*
2999 * Handle write page faults for pages that can be reused in the current vma
3000 *
3001 * This can happen either due to the mapping being with the VM_SHARED flag,
3002 * or due to us being the last reference standing to the page. In either
3003 * case, all we need to do here is to mark the page as writable and update
3004 * any related book-keeping.
3005 */
997dd98d 3006static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3007 __releases(vmf->ptl)
4e047f89 3008{
82b0f8c3 3009 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3010 struct page *page = vmf->page;
4e047f89 3011 pte_t entry;
6c287605 3012
c89357e2 3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3015
4e047f89
SR
3016 /*
3017 * Clear the pages cpupid information as the existing
3018 * information potentially belongs to a now completely
3019 * unrelated process.
3020 */
3021 if (page)
3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023
2994302b
JK
3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028 update_mmu_cache(vma, vmf->address, vmf->pte);
3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3030 count_vm_event(PGREUSE);
4e047f89
SR
3031}
3032
2f38ab2c 3033/*
c89357e2
DH
3034 * Handle the case of a page which we actually need to copy to a new page,
3035 * either due to COW or unsharing.
2f38ab2c 3036 *
c1e8d7c6 3037 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3038 * without the ptl held.
3039 *
3040 * High level logic flow:
3041 *
3042 * - Allocate a page, copy the content of the old page to the new one.
3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044 * - Take the PTL. If the pte changed, bail out and release the allocated page
3045 * - If the pte is still the way we remember it, update the page table and all
3046 * relevant references. This includes dropping the reference the page-table
3047 * held to the old page, as well as updating the rmap.
3048 * - In any case, unlock the PTL and drop the reference we took to the old page.
3049 */
2b740303 3050static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3051{
c89357e2 3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3053 struct vm_area_struct *vma = vmf->vma;
bae473a4 3054 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3055 struct folio *old_folio = NULL;
3056 struct folio *new_folio = NULL;
2f38ab2c
SR
3057 pte_t entry;
3058 int page_copied = 0;
ac46d4f3 3059 struct mmu_notifier_range range;
a873dfe1 3060 int ret;
2f38ab2c 3061
662ce1dc
YY
3062 delayacct_wpcopy_start();
3063
28d41a48
MWO
3064 if (vmf->page)
3065 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3066 if (unlikely(anon_vma_prepare(vma)))
3067 goto oom;
3068
2994302b 3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071 if (!new_folio)
2f38ab2c
SR
3072 goto oom;
3073 } else {
28d41a48
MWO
3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 vmf->address, false);
3076 if (!new_folio)
2f38ab2c 3077 goto oom;
83d116c5 3078
28d41a48 3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3080 if (ret) {
83d116c5
JH
3081 /*
3082 * COW failed, if the fault was solved by other,
3083 * it's fine. If not, userspace would re-fault on
3084 * the same address and we will handle the fault
3085 * from the second attempt.
a873dfe1 3086 * The -EHWPOISON case will not be retried.
83d116c5 3087 */
28d41a48
MWO
3088 folio_put(new_folio);
3089 if (old_folio)
3090 folio_put(old_folio);
662ce1dc
YY
3091
3092 delayacct_wpcopy_end();
a873dfe1 3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3094 }
28d41a48 3095 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3096 }
2f38ab2c 3097
28d41a48 3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3099 goto oom_free_new;
4d4f75bf 3100 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3101
28d41a48 3102 __folio_mark_uptodate(new_folio);
eb3c24f3 3103
7d4a8be0 3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3105 vmf->address & PAGE_MASK,
ac46d4f3
JG
3106 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3108
3109 /*
3110 * Re-check the pte - we dropped the lock
3111 */
82b0f8c3 3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3113 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
28d41a48
MWO
3114 if (old_folio) {
3115 if (!folio_test_anon(old_folio)) {
3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3117 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3118 }
3119 } else {
f1a79412 3120 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3121 }
2994302b 3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3124 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3125 if (unlikely(unshare)) {
3126 if (pte_soft_dirty(vmf->orig_pte))
3127 entry = pte_mksoft_dirty(entry);
3128 if (pte_uffd_wp(vmf->orig_pte))
3129 entry = pte_mkuffd_wp(entry);
3130 } else {
3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3132 }
111fe718 3133
2f38ab2c
SR
3134 /*
3135 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3136 * pte with the new entry, to keep TLBs on different CPUs in
3137 * sync. This code used to set the new PTE then flush TLBs, but
3138 * that left a window where the new PTE could be loaded into
3139 * some TLBs while the old PTE remains in others.
2f38ab2c 3140 */
82b0f8c3 3141 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
28d41a48
MWO
3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3144 /*
3145 * We call the notify macro here because, when using secondary
3146 * mmu page tables (such as kvm shadow page tables), we want the
3147 * new page to be mapped directly into the secondary page table.
3148 */
c89357e2 3149 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3152 if (old_folio) {
2f38ab2c
SR
3153 /*
3154 * Only after switching the pte to the new page may
3155 * we remove the mapcount here. Otherwise another
3156 * process may come and find the rmap count decremented
3157 * before the pte is switched to the new page, and
3158 * "reuse" the old page writing into it while our pte
3159 * here still points into it and can be read by other
3160 * threads.
3161 *
3162 * The critical issue is to order this
3163 * page_remove_rmap with the ptp_clear_flush above.
3164 * Those stores are ordered by (if nothing else,)
3165 * the barrier present in the atomic_add_negative
3166 * in page_remove_rmap.
3167 *
3168 * Then the TLB flush in ptep_clear_flush ensures that
3169 * no process can access the old page before the
3170 * decremented mapcount is visible. And the old page
3171 * cannot be reused until after the decremented
3172 * mapcount is visible. So transitively, TLBs to
3173 * old page will be flushed before it can be reused.
3174 */
28d41a48 3175 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3176 }
3177
3178 /* Free the old page.. */
28d41a48 3179 new_folio = old_folio;
2f38ab2c
SR
3180 page_copied = 1;
3181 } else {
7df67697 3182 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3183 }
3184
28d41a48
MWO
3185 if (new_folio)
3186 folio_put(new_folio);
2f38ab2c 3187
82b0f8c3 3188 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3189 /*
3190 * No need to double call mmu_notifier->invalidate_range() callback as
3191 * the above ptep_clear_flush_notify() did already call it.
3192 */
ac46d4f3 3193 mmu_notifier_invalidate_range_only_end(&range);
28d41a48 3194 if (old_folio) {
f4c4a3f4 3195 if (page_copied)
28d41a48
MWO
3196 free_swap_cache(&old_folio->page);
3197 folio_put(old_folio);
2f38ab2c 3198 }
662ce1dc
YY
3199
3200 delayacct_wpcopy_end();
cb8d8633 3201 return 0;
2f38ab2c 3202oom_free_new:
28d41a48 3203 folio_put(new_folio);
2f38ab2c 3204oom:
28d41a48
MWO
3205 if (old_folio)
3206 folio_put(old_folio);
662ce1dc
YY
3207
3208 delayacct_wpcopy_end();
2f38ab2c
SR
3209 return VM_FAULT_OOM;
3210}
3211
66a6197c
JK
3212/**
3213 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3214 * writeable once the page is prepared
3215 *
3216 * @vmf: structure describing the fault
3217 *
3218 * This function handles all that is needed to finish a write page fault in a
3219 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3220 * It handles locking of PTE and modifying it.
66a6197c
JK
3221 *
3222 * The function expects the page to be locked or other protection against
3223 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3224 *
2797e79f 3225 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3226 * we acquired PTE lock.
66a6197c 3227 */
2b740303 3228vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3229{
3230 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3231 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3232 &vmf->ptl);
3233 /*
3234 * We might have raced with another page fault while we released the
3235 * pte_offset_map_lock.
3236 */
3237 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3239 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3240 return VM_FAULT_NOPAGE;
66a6197c
JK
3241 }
3242 wp_page_reuse(vmf);
a19e2553 3243 return 0;
66a6197c
JK
3244}
3245
dd906184
BH
3246/*
3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248 * mapping
3249 */
2b740303 3250static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3251{
82b0f8c3 3252 struct vm_area_struct *vma = vmf->vma;
bae473a4 3253
dd906184 3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3255 vm_fault_t ret;
dd906184 3256
82b0f8c3 3257 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3258 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3259 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3260 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3261 return ret;
66a6197c 3262 return finish_mkwrite_fault(vmf);
dd906184 3263 }
997dd98d 3264 wp_page_reuse(vmf);
cb8d8633 3265 return 0;
dd906184
BH
3266}
3267
2b740303 3268static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3269 __releases(vmf->ptl)
93e478d4 3270{
82b0f8c3 3271 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3272 vm_fault_t ret = 0;
93e478d4 3273
a41b70d6 3274 get_page(vmf->page);
93e478d4 3275
93e478d4 3276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3277 vm_fault_t tmp;
93e478d4 3278
82b0f8c3 3279 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3280 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3281 if (unlikely(!tmp || (tmp &
3282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3283 put_page(vmf->page);
93e478d4
SR
3284 return tmp;
3285 }
66a6197c 3286 tmp = finish_mkwrite_fault(vmf);
a19e2553 3287 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3288 unlock_page(vmf->page);
a41b70d6 3289 put_page(vmf->page);
66a6197c 3290 return tmp;
93e478d4 3291 }
66a6197c
JK
3292 } else {
3293 wp_page_reuse(vmf);
997dd98d 3294 lock_page(vmf->page);
93e478d4 3295 }
89b15332 3296 ret |= fault_dirty_shared_page(vmf);
997dd98d 3297 put_page(vmf->page);
93e478d4 3298
89b15332 3299 return ret;
93e478d4
SR
3300}
3301
1da177e4 3302/*
c89357e2
DH
3303 * This routine handles present pages, when
3304 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3305 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3306 * (FAULT_FLAG_UNSHARE)
3307 *
3308 * It is done by copying the page to a new address and decrementing the
3309 * shared-page counter for the old page.
1da177e4 3310 *
1da177e4
LT
3311 * Note that this routine assumes that the protection checks have been
3312 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3313 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3314 * done any necessary COW.
1da177e4 3315 *
c89357e2
DH
3316 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3317 * though the page will change only once the write actually happens. This
3318 * avoids a few races, and potentially makes it more efficient.
1da177e4 3319 *
c1e8d7c6 3320 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3321 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3322 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3323 */
2b740303 3324static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3325 __releases(vmf->ptl)
1da177e4 3326{
c89357e2 3327 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3328 struct vm_area_struct *vma = vmf->vma;
b9086fde 3329 struct folio *folio = NULL;
1da177e4 3330
c89357e2
DH
3331 if (likely(!unshare)) {
3332 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3333 pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 return handle_userfault(vmf, VM_UFFD_WP);
3335 }
3336
3337 /*
3338 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3339 * is flushed in this case before copying.
3340 */
3341 if (unlikely(userfaultfd_wp(vmf->vma) &&
3342 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3343 flush_tlb_page(vmf->vma, vmf->address);
3344 }
6ce64428 3345
a41b70d6 3346 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3347
b9086fde
DH
3348 /*
3349 * Shared mapping: we are guaranteed to have VM_WRITE and
3350 * FAULT_FLAG_WRITE set at this point.
3351 */
3352 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3353 /*
64e45507
PF
3354 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3355 * VM_PFNMAP VMA.
251b97f5
PZ
3356 *
3357 * We should not cow pages in a shared writeable mapping.
dd906184 3358 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3359 */
b9086fde 3360 if (!vmf->page)
2994302b 3361 return wp_pfn_shared(vmf);
b9086fde 3362 return wp_page_shared(vmf);
251b97f5 3363 }
1da177e4 3364
b9086fde
DH
3365 if (vmf->page)
3366 folio = page_folio(vmf->page);
3367
d08b3851 3368 /*
b9086fde
DH
3369 * Private mapping: create an exclusive anonymous page copy if reuse
3370 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3371 */
b9086fde 3372 if (folio && folio_test_anon(folio)) {
6c287605
DH
3373 /*
3374 * If the page is exclusive to this process we must reuse the
3375 * page without further checks.
3376 */
e4a2ed94 3377 if (PageAnonExclusive(vmf->page))
6c287605
DH
3378 goto reuse;
3379
53a05ad9 3380 /*
e4a2ed94
MWO
3381 * We have to verify under folio lock: these early checks are
3382 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3383 * the swapcache if there is little hope that we can reuse.
3384 *
e4a2ed94 3385 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3386 */
e4a2ed94 3387 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3388 goto copy;
e4a2ed94 3389 if (!folio_test_lru(folio))
d4c47097
DH
3390 /*
3391 * Note: We cannot easily detect+handle references from
e4a2ed94 3392 * remote LRU pagevecs or references to LRU folios.
d4c47097
DH
3393 */
3394 lru_add_drain();
e4a2ed94 3395 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3396 goto copy;
e4a2ed94 3397 if (!folio_trylock(folio))
09854ba9 3398 goto copy;
e4a2ed94
MWO
3399 if (folio_test_swapcache(folio))
3400 folio_free_swap(folio);
3401 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3402 folio_unlock(folio);
52d1e606 3403 goto copy;
b009c024 3404 }
09854ba9 3405 /*
e4a2ed94
MWO
3406 * Ok, we've got the only folio reference from our mapping
3407 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3408 * sunglasses. Hit it.
09854ba9 3409 */
e4a2ed94
MWO
3410 page_move_anon_rmap(vmf->page, vma);
3411 folio_unlock(folio);
6c287605 3412reuse:
c89357e2
DH
3413 if (unlikely(unshare)) {
3414 pte_unmap_unlock(vmf->pte, vmf->ptl);
3415 return 0;
3416 }
be068f29 3417 wp_page_reuse(vmf);
cb8d8633 3418 return 0;
1da177e4 3419 }
52d1e606 3420copy:
1da177e4
LT
3421 /*
3422 * Ok, we need to copy. Oh, well..
3423 */
b9086fde
DH
3424 if (folio)
3425 folio_get(folio);
28766805 3426
82b0f8c3 3427 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3428#ifdef CONFIG_KSM
b9086fde 3429 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3430 count_vm_event(COW_KSM);
3431#endif
a41b70d6 3432 return wp_page_copy(vmf);
1da177e4
LT
3433}
3434
97a89413 3435static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3436 unsigned long start_addr, unsigned long end_addr,
3437 struct zap_details *details)
3438{
f5cc4eef 3439 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3440}
3441
f808c13f 3442static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3443 pgoff_t first_index,
3444 pgoff_t last_index,
1da177e4
LT
3445 struct zap_details *details)
3446{
3447 struct vm_area_struct *vma;
1da177e4
LT
3448 pgoff_t vba, vea, zba, zea;
3449
232a6a1c 3450 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3451 vba = vma->vm_pgoff;
d6e93217 3452 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3453 zba = max(first_index, vba);
3454 zea = min(last_index, vea);
1da177e4 3455
97a89413 3456 unmap_mapping_range_vma(vma,
1da177e4
LT
3457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3459 details);
1da177e4
LT
3460 }
3461}
3462
22061a1f 3463/**
3506659e
MWO
3464 * unmap_mapping_folio() - Unmap single folio from processes.
3465 * @folio: The locked folio to be unmapped.
22061a1f 3466 *
3506659e 3467 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3468 * Typically, for efficiency, the range of nearby pages has already been
3469 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3470 * truncation or invalidation holds the lock on a folio, it may find that
3471 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3472 * to unmap it finally.
3473 */
3506659e 3474void unmap_mapping_folio(struct folio *folio)
22061a1f 3475{
3506659e 3476 struct address_space *mapping = folio->mapping;
22061a1f 3477 struct zap_details details = { };
232a6a1c
PX
3478 pgoff_t first_index;
3479 pgoff_t last_index;
22061a1f 3480
3506659e 3481 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3482
3506659e
MWO
3483 first_index = folio->index;
3484 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3485
2e148f1e 3486 details.even_cows = false;
3506659e 3487 details.single_folio = folio;
999dad82 3488 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3489
2c865995 3490 i_mmap_lock_read(mapping);
22061a1f 3491 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3492 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3493 last_index, &details);
2c865995 3494 i_mmap_unlock_read(mapping);
22061a1f
HD
3495}
3496
977fbdcd
MW
3497/**
3498 * unmap_mapping_pages() - Unmap pages from processes.
3499 * @mapping: The address space containing pages to be unmapped.
3500 * @start: Index of first page to be unmapped.
3501 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3502 * @even_cows: Whether to unmap even private COWed pages.
3503 *
3504 * Unmap the pages in this address space from any userspace process which
3505 * has them mmaped. Generally, you want to remove COWed pages as well when
3506 * a file is being truncated, but not when invalidating pages from the page
3507 * cache.
3508 */
3509void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3510 pgoff_t nr, bool even_cows)
3511{
3512 struct zap_details details = { };
232a6a1c
PX
3513 pgoff_t first_index = start;
3514 pgoff_t last_index = start + nr - 1;
977fbdcd 3515
2e148f1e 3516 details.even_cows = even_cows;
232a6a1c
PX
3517 if (last_index < first_index)
3518 last_index = ULONG_MAX;
977fbdcd 3519
2c865995 3520 i_mmap_lock_read(mapping);
977fbdcd 3521 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3522 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523 last_index, &details);
2c865995 3524 i_mmap_unlock_read(mapping);
977fbdcd 3525}
6e0e99d5 3526EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3527
1da177e4 3528/**
8a5f14a2 3529 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3530 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3531 * file.
3532 *
3d41088f 3533 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3534 * @holebegin: byte in first page to unmap, relative to the start of
3535 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3536 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3537 * must keep the partial page. In contrast, we must get rid of
3538 * partial pages.
3539 * @holelen: size of prospective hole in bytes. This will be rounded
3540 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3541 * end of the file.
3542 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3543 * but 0 when invalidating pagecache, don't throw away private data.
3544 */
3545void unmap_mapping_range(struct address_space *mapping,
3546 loff_t const holebegin, loff_t const holelen, int even_cows)
3547{
1da177e4
LT
3548 pgoff_t hba = holebegin >> PAGE_SHIFT;
3549 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550
3551 /* Check for overflow. */
3552 if (sizeof(holelen) > sizeof(hlen)) {
3553 long long holeend =
3554 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3555 if (holeend & ~(long long)ULONG_MAX)
3556 hlen = ULONG_MAX - hba + 1;
3557 }
3558
977fbdcd 3559 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3560}
3561EXPORT_SYMBOL(unmap_mapping_range);
3562
b756a3b5
AP
3563/*
3564 * Restore a potential device exclusive pte to a working pte entry
3565 */
3566static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3567{
19672a9e 3568 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3569 struct vm_area_struct *vma = vmf->vma;
3570 struct mmu_notifier_range range;
3571
7c7b9629
AP
3572 /*
3573 * We need a reference to lock the folio because we don't hold
3574 * the PTL so a racing thread can remove the device-exclusive
3575 * entry and unmap it. If the folio is free the entry must
3576 * have been removed already. If it happens to have already
3577 * been re-allocated after being freed all we do is lock and
3578 * unlock it.
3579 */
3580 if (!folio_try_get(folio))
3581 return 0;
3582
3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3584 folio_put(folio);
b756a3b5 3585 return VM_FAULT_RETRY;
7c7b9629 3586 }
7d4a8be0 3587 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3588 vma->vm_mm, vmf->address & PAGE_MASK,
3589 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3590 mmu_notifier_invalidate_range_start(&range);
3591
3592 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3593 &vmf->ptl);
3594 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
19672a9e 3595 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5
AP
3596
3597 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3598 folio_unlock(folio);
7c7b9629 3599 folio_put(folio);
b756a3b5
AP
3600
3601 mmu_notifier_invalidate_range_end(&range);
3602 return 0;
3603}
3604
a160e537 3605static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3606 struct vm_area_struct *vma,
3607 unsigned int fault_flags)
3608{
a160e537 3609 if (!folio_test_swapcache(folio))
c145e0b4 3610 return false;
9202d527 3611 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3612 folio_test_mlocked(folio))
c145e0b4
DH
3613 return true;
3614 /*
3615 * If we want to map a page that's in the swapcache writable, we
3616 * have to detect via the refcount if we're really the exclusive
3617 * user. Try freeing the swapcache to get rid of the swapcache
3618 * reference only in case it's likely that we'll be the exlusive user.
3619 */
a160e537
MWO
3620 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3621 folio_ref_count(folio) == 2;
c145e0b4
DH
3622}
3623
9c28a205
PX
3624static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3625{
3626 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3627 vmf->address, &vmf->ptl);
3628 /*
3629 * Be careful so that we will only recover a special uffd-wp pte into a
3630 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3631 *
3632 * This should also cover the case where e.g. the pte changed
3633 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3634 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3635 */
7e3ce3f8 3636 if (pte_same(vmf->orig_pte, *vmf->pte))
9c28a205
PX
3637 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3638 pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 return 0;
3640}
3641
2bad466c
PX
3642static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3643{
3644 if (vma_is_anonymous(vmf->vma))
3645 return do_anonymous_page(vmf);
3646 else
3647 return do_fault(vmf);
3648}
3649
9c28a205
PX
3650/*
3651 * This is actually a page-missing access, but with uffd-wp special pte
3652 * installed. It means this pte was wr-protected before being unmapped.
3653 */
3654static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3655{
3656 /*
3657 * Just in case there're leftover special ptes even after the region
7a079ba2 3658 * got unregistered - we can simply clear them.
9c28a205 3659 */
2bad466c 3660 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3661 return pte_marker_clear(vmf);
3662
2bad466c 3663 return do_pte_missing(vmf);
9c28a205
PX
3664}
3665
5c041f5d
PX
3666static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3667{
3668 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3669 unsigned long marker = pte_marker_get(entry);
3670
3671 /*
ca92ea3d
PX
3672 * PTE markers should never be empty. If anything weird happened,
3673 * the best thing to do is to kill the process along with its mm.
5c041f5d 3674 */
ca92ea3d 3675 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3676 return VM_FAULT_SIGBUS;
3677
15520a3f
PX
3678 /* Higher priority than uffd-wp when data corrupted */
3679 if (marker & PTE_MARKER_SWAPIN_ERROR)
3680 return VM_FAULT_SIGBUS;
3681
9c28a205
PX
3682 if (pte_marker_entry_uffd_wp(entry))
3683 return pte_marker_handle_uffd_wp(vmf);
3684
3685 /* This is an unknown pte marker */
3686 return VM_FAULT_SIGBUS;
5c041f5d
PX
3687}
3688
1da177e4 3689/*
c1e8d7c6 3690 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3691 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3692 * We return with pte unmapped and unlocked.
3693 *
c1e8d7c6 3694 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3695 * as does filemap_fault().
1da177e4 3696 */
2b740303 3697vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3698{
82b0f8c3 3699 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3700 struct folio *swapcache, *folio = NULL;
3701 struct page *page;
2799e775 3702 struct swap_info_struct *si = NULL;
14f9135d 3703 rmap_t rmap_flags = RMAP_NONE;
1493a191 3704 bool exclusive = false;
65500d23 3705 swp_entry_t entry;
1da177e4 3706 pte_t pte;
d065bd81 3707 int locked;
2b740303 3708 vm_fault_t ret = 0;
aae466b0 3709 void *shadow = NULL;
1da177e4 3710
2ca99358 3711 if (!pte_unmap_same(vmf))
8f4e2101 3712 goto out;
65500d23 3713
17c05f18
SB
3714 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3715 ret = VM_FAULT_RETRY;
3716 goto out;
3717 }
3718
2994302b 3719 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3720 if (unlikely(non_swap_entry(entry))) {
3721 if (is_migration_entry(entry)) {
82b0f8c3
JK
3722 migration_entry_wait(vma->vm_mm, vmf->pmd,
3723 vmf->address);
b756a3b5
AP
3724 } else if (is_device_exclusive_entry(entry)) {
3725 vmf->page = pfn_swap_entry_to_page(entry);
3726 ret = remove_device_exclusive_entry(vmf);
5042db43 3727 } else if (is_device_private_entry(entry)) {
af5cdaf8 3728 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3729 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3730 vmf->address, &vmf->ptl);
3731 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3732 spin_unlock(vmf->ptl);
3733 goto out;
3734 }
3735
3736 /*
3737 * Get a page reference while we know the page can't be
3738 * freed.
3739 */
3740 get_page(vmf->page);
3741 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3742 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3743 put_page(vmf->page);
d1737fdb
AK
3744 } else if (is_hwpoison_entry(entry)) {
3745 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3746 } else if (is_pte_marker_entry(entry)) {
3747 ret = handle_pte_marker(vmf);
d1737fdb 3748 } else {
2994302b 3749 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3750 ret = VM_FAULT_SIGBUS;
d1737fdb 3751 }
0697212a
CL
3752 goto out;
3753 }
0bcac06f 3754
2799e775
ML
3755 /* Prevent swapoff from happening to us. */
3756 si = get_swap_device(entry);
3757 if (unlikely(!si))
3758 goto out;
0bcac06f 3759
5a423081
MWO
3760 folio = swap_cache_get_folio(entry, vma, vmf->address);
3761 if (folio)
3762 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3763 swapcache = folio;
f8020772 3764
d4f9565a 3765 if (!folio) {
a449bf58
QC
3766 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3767 __swap_count(entry) == 1) {
0bcac06f 3768 /* skip swapcache */
63ad4add
MWO
3769 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3770 vma, vmf->address, false);
3771 page = &folio->page;
3772 if (folio) {
3773 __folio_set_locked(folio);
3774 __folio_set_swapbacked(folio);
4c6355b2 3775
65995918 3776 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3777 vma->vm_mm, GFP_KERNEL,
3778 entry)) {
545b1b07 3779 ret = VM_FAULT_OOM;
4c6355b2 3780 goto out_page;
545b1b07 3781 }
0add0c77 3782 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3783
aae466b0
JK
3784 shadow = get_shadow_from_swap_cache(entry);
3785 if (shadow)
63ad4add 3786 workingset_refault(folio, shadow);
0076f029 3787
63ad4add 3788 folio_add_lru(folio);
0add0c77
SB
3789
3790 /* To provide entry to swap_readpage() */
63ad4add 3791 folio_set_swap_entry(folio, entry);
5169b844 3792 swap_readpage(page, true, NULL);
63ad4add 3793 folio->private = NULL;
0bcac06f 3794 }
aa8d22a1 3795 } else {
e9e9b7ec
MK
3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 vmf);
63ad4add
MWO
3798 if (page)
3799 folio = page_folio(page);
d4f9565a 3800 swapcache = folio;
0bcac06f
MK
3801 }
3802
d4f9565a 3803 if (!folio) {
1da177e4 3804 /*
8f4e2101
HD
3805 * Back out if somebody else faulted in this pte
3806 * while we released the pte lock.
1da177e4 3807 */
82b0f8c3
JK
3808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3809 vmf->address, &vmf->ptl);
2994302b 3810 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3811 ret = VM_FAULT_OOM;
65500d23 3812 goto unlock;
1da177e4
LT
3813 }
3814
3815 /* Had to read the page from swap area: Major fault */
3816 ret = VM_FAULT_MAJOR;
f8891e5e 3817 count_vm_event(PGMAJFAULT);
2262185c 3818 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3819 } else if (PageHWPoison(page)) {
71f72525
WF
3820 /*
3821 * hwpoisoned dirty swapcache pages are kept for killing
3822 * owner processes (which may be unknown at hwpoison time)
3823 */
d1737fdb 3824 ret = VM_FAULT_HWPOISON;
4779cb31 3825 goto out_release;
1da177e4
LT
3826 }
3827
19672a9e 3828 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3829
d065bd81
ML
3830 if (!locked) {
3831 ret |= VM_FAULT_RETRY;
3832 goto out_release;
3833 }
073e587e 3834
84d60fdd
DH
3835 if (swapcache) {
3836 /*
3b344157 3837 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3838 * swapcache from under us. The page pin, and pte_same test
3839 * below, are not enough to exclude that. Even if it is still
3840 * swapcache, we need to check that the page's swap has not
3841 * changed.
3842 */
63ad4add 3843 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3844 page_private(page) != entry.val))
3845 goto out_page;
3846
3847 /*
3848 * KSM sometimes has to copy on read faults, for example, if
3849 * page->index of !PageKSM() pages would be nonlinear inside the
3850 * anon VMA -- PageKSM() is lost on actual swapout.
3851 */
3852 page = ksm_might_need_to_copy(page, vma, vmf->address);
3853 if (unlikely(!page)) {
3854 ret = VM_FAULT_OOM;
84d60fdd 3855 goto out_page;
6b970599
KW
3856 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3857 ret = VM_FAULT_HWPOISON;
3858 goto out_page;
84d60fdd 3859 }
63ad4add 3860 folio = page_folio(page);
c145e0b4
DH
3861
3862 /*
3863 * If we want to map a page that's in the swapcache writable, we
3864 * have to detect via the refcount if we're really the exclusive
3865 * owner. Try removing the extra reference from the local LRU
3866 * pagevecs if required.
3867 */
d4f9565a 3868 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3869 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3870 lru_add_drain();
5ad64688
HD
3871 }
3872
4231f842 3873 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3874
1da177e4 3875 /*
8f4e2101 3876 * Back out if somebody else already faulted in this pte.
1da177e4 3877 */
82b0f8c3
JK
3878 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3879 &vmf->ptl);
2994302b 3880 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3881 goto out_nomap;
b8107480 3882
63ad4add 3883 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3884 ret = VM_FAULT_SIGBUS;
3885 goto out_nomap;
1da177e4
LT
3886 }
3887
78fbe906
DH
3888 /*
3889 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3890 * must never point at an anonymous page in the swapcache that is
3891 * PG_anon_exclusive. Sanity check that this holds and especially, that
3892 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3893 * check after taking the PT lock and making sure that nobody
3894 * concurrently faulted in this page and set PG_anon_exclusive.
3895 */
63ad4add
MWO
3896 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3897 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3898
1493a191
DH
3899 /*
3900 * Check under PT lock (to protect against concurrent fork() sharing
3901 * the swap entry concurrently) for certainly exclusive pages.
3902 */
63ad4add 3903 if (!folio_test_ksm(folio)) {
1493a191 3904 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3905 if (folio != swapcache) {
1493a191
DH
3906 /*
3907 * We have a fresh page that is not exposed to the
3908 * swapcache -> certainly exclusive.
3909 */
3910 exclusive = true;
63ad4add 3911 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3912 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3913 /*
3914 * This is tricky: not all swap backends support
3915 * concurrent page modifications while under writeback.
3916 *
3917 * So if we stumble over such a page in the swapcache
3918 * we must not set the page exclusive, otherwise we can
3919 * map it writable without further checks and modify it
3920 * while still under writeback.
3921 *
3922 * For these problematic swap backends, simply drop the
3923 * exclusive marker: this is perfectly fine as we start
3924 * writeback only if we fully unmapped the page and
3925 * there are no unexpected references on the page after
3926 * unmapping succeeded. After fully unmapped, no
3927 * further GUP references (FOLL_GET and FOLL_PIN) can
3928 * appear, so dropping the exclusive marker and mapping
3929 * it only R/O is fine.
3930 */
3931 exclusive = false;
3932 }
3933 }
3934
8c7c6e34 3935 /*
c145e0b4
DH
3936 * Remove the swap entry and conditionally try to free up the swapcache.
3937 * We're already holding a reference on the page but haven't mapped it
3938 * yet.
8c7c6e34 3939 */
c145e0b4 3940 swap_free(entry);
a160e537
MWO
3941 if (should_try_to_free_swap(folio, vma, vmf->flags))
3942 folio_free_swap(folio);
1da177e4 3943
f1a79412
SB
3944 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3945 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3946 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3947
3948 /*
1493a191
DH
3949 * Same logic as in do_wp_page(); however, optimize for pages that are
3950 * certainly not shared either because we just allocated them without
3951 * exposing them to the swapcache or because the swap entry indicates
3952 * exclusivity.
c145e0b4 3953 */
63ad4add
MWO
3954 if (!folio_test_ksm(folio) &&
3955 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3956 if (vmf->flags & FAULT_FLAG_WRITE) {
3957 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3958 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3959 }
14f9135d 3960 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3961 }
1da177e4 3962 flush_icache_page(vma, page);
2994302b 3963 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3964 pte = pte_mksoft_dirty(pte);
f1eb1bac 3965 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3966 pte = pte_mkuffd_wp(pte);
2994302b 3967 vmf->orig_pte = pte;
0bcac06f
MK
3968
3969 /* ksm created a completely new copy */
d4f9565a 3970 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 3971 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 3972 folio_add_lru_vma(folio, vma);
0bcac06f 3973 } else {
f1e2db12 3974 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3975 }
1da177e4 3976
63ad4add
MWO
3977 VM_BUG_ON(!folio_test_anon(folio) ||
3978 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981
63ad4add 3982 folio_unlock(folio);
d4f9565a 3983 if (folio != swapcache && swapcache) {
4969c119
AA
3984 /*
3985 * Hold the lock to avoid the swap entry to be reused
3986 * until we take the PT lock for the pte_same() check
3987 * (to avoid false positives from pte_same). For
3988 * further safety release the lock after the swap_free
3989 * so that the swap count won't change under a
3990 * parallel locked swapcache.
3991 */
d4f9565a
MWO
3992 folio_unlock(swapcache);
3993 folio_put(swapcache);
4969c119 3994 }
c475a8ab 3995
82b0f8c3 3996 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3997 ret |= do_wp_page(vmf);
61469f1d
HD
3998 if (ret & VM_FAULT_ERROR)
3999 ret &= VM_FAULT_ERROR;
1da177e4
LT
4000 goto out;
4001 }
4002
4003 /* No need to invalidate - it was non-present before */
82b0f8c3 4004 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4005unlock:
82b0f8c3 4006 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4007out:
2799e775
ML
4008 if (si)
4009 put_swap_device(si);
1da177e4 4010 return ret;
b8107480 4011out_nomap:
82b0f8c3 4012 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4013out_page:
63ad4add 4014 folio_unlock(folio);
4779cb31 4015out_release:
63ad4add 4016 folio_put(folio);
d4f9565a
MWO
4017 if (folio != swapcache && swapcache) {
4018 folio_unlock(swapcache);
4019 folio_put(swapcache);
4969c119 4020 }
2799e775
ML
4021 if (si)
4022 put_swap_device(si);
65500d23 4023 return ret;
1da177e4
LT
4024}
4025
4026/*
c1e8d7c6 4027 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4028 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4029 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4030 */
2b740303 4031static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4032{
2bad466c 4033 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4034 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4035 struct folio *folio;
2b740303 4036 vm_fault_t ret = 0;
1da177e4 4037 pte_t entry;
1da177e4 4038
6b7339f4
KS
4039 /* File mapping without ->vm_ops ? */
4040 if (vma->vm_flags & VM_SHARED)
4041 return VM_FAULT_SIGBUS;
4042
7267ec00
KS
4043 /*
4044 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4045 * pte_offset_map() on pmds where a huge pmd might be created
4046 * from a different thread.
4047 *
3e4e28c5 4048 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4049 * parallel threads are excluded by other means.
4050 *
3e4e28c5 4051 * Here we only have mmap_read_lock(mm).
7267ec00 4052 */
4cf58924 4053 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4054 return VM_FAULT_OOM;
4055
f9ce0be7 4056 /* See comment in handle_pte_fault() */
82b0f8c3 4057 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4058 return 0;
4059
11ac5524 4060 /* Use the zero-page for reads */
82b0f8c3 4061 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4062 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4064 vma->vm_page_prot));
82b0f8c3
JK
4065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4066 vmf->address, &vmf->ptl);
2bad466c 4067 if (vmf_pte_changed(vmf)) {
7df67697 4068 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4069 goto unlock;
7df67697 4070 }
6b31d595
MH
4071 ret = check_stable_address_space(vma->vm_mm);
4072 if (ret)
4073 goto unlock;
6b251fc9
AA
4074 /* Deliver the page fault to userland, check inside PT lock */
4075 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4076 pte_unmap_unlock(vmf->pte, vmf->ptl);
4077 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4078 }
a13ea5b7
HD
4079 goto setpte;
4080 }
4081
557ed1fa 4082 /* Allocate our own private page. */
557ed1fa
NP
4083 if (unlikely(anon_vma_prepare(vma)))
4084 goto oom;
6bc56a4d
MWO
4085 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4086 if (!folio)
557ed1fa 4087 goto oom;
eb3c24f3 4088
6bc56a4d 4089 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4090 goto oom_free_page;
e2bf3e2c 4091 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4092
52f37629 4093 /*
cb3184de 4094 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4095 * preceding stores to the page contents become visible before
52f37629
MK
4096 * the set_pte_at() write.
4097 */
cb3184de 4098 __folio_mark_uptodate(folio);
8f4e2101 4099
cb3184de 4100 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4101 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4102 if (vma->vm_flags & VM_WRITE)
4103 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4104
82b0f8c3
JK
4105 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4106 &vmf->ptl);
2bad466c 4107 if (vmf_pte_changed(vmf)) {
bce8cb3c 4108 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4109 goto release;
7df67697 4110 }
9ba69294 4111
6b31d595
MH
4112 ret = check_stable_address_space(vma->vm_mm);
4113 if (ret)
4114 goto release;
4115
6b251fc9
AA
4116 /* Deliver the page fault to userland, check inside PT lock */
4117 if (userfaultfd_missing(vma)) {
82b0f8c3 4118 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4119 folio_put(folio);
82b0f8c3 4120 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4121 }
4122
f1a79412 4123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4124 folio_add_new_anon_rmap(folio, vma, vmf->address);
4125 folio_add_lru_vma(folio, vma);
a13ea5b7 4126setpte:
2bad466c
PX
4127 if (uffd_wp)
4128 entry = pte_mkuffd_wp(entry);
82b0f8c3 4129 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4130
4131 /* No need to invalidate - it was non-present before */
82b0f8c3 4132 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4133unlock:
82b0f8c3 4134 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4135 return ret;
8f4e2101 4136release:
cb3184de 4137 folio_put(folio);
8f4e2101 4138 goto unlock;
8a9f3ccd 4139oom_free_page:
cb3184de 4140 folio_put(folio);
65500d23 4141oom:
1da177e4
LT
4142 return VM_FAULT_OOM;
4143}
4144
9a95f3cf 4145/*
c1e8d7c6 4146 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4147 * released depending on flags and vma->vm_ops->fault() return value.
4148 * See filemap_fault() and __lock_page_retry().
4149 */
2b740303 4150static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4151{
82b0f8c3 4152 struct vm_area_struct *vma = vmf->vma;
2b740303 4153 vm_fault_t ret;
7eae74af 4154
63f3655f
MH
4155 /*
4156 * Preallocate pte before we take page_lock because this might lead to
4157 * deadlocks for memcg reclaim which waits for pages under writeback:
4158 * lock_page(A)
4159 * SetPageWriteback(A)
4160 * unlock_page(A)
4161 * lock_page(B)
4162 * lock_page(B)
d383807a 4163 * pte_alloc_one
63f3655f
MH
4164 * shrink_page_list
4165 * wait_on_page_writeback(A)
4166 * SetPageWriteback(B)
4167 * unlock_page(B)
4168 * # flush A, B to clear the writeback
4169 */
4170 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4171 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4172 if (!vmf->prealloc_pte)
4173 return VM_FAULT_OOM;
63f3655f
MH
4174 }
4175
11bac800 4176 ret = vma->vm_ops->fault(vmf);
3917048d 4177 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4178 VM_FAULT_DONE_COW)))
bc2466e4 4179 return ret;
7eae74af 4180
667240e0 4181 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4182 struct page *page = vmf->page;
e53ac737
RR
4183 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4184 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4185 if (page_mapped(page))
4186 unmap_mapping_pages(page_mapping(page),
4187 page->index, 1, false);
e53ac737 4188 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4189 if (invalidate_inode_page(page))
4190 poisonret = VM_FAULT_NOPAGE;
4191 unlock_page(page);
e53ac737 4192 }
3149c79f 4193 put_page(page);
936ca80d 4194 vmf->page = NULL;
e53ac737 4195 return poisonret;
7eae74af
KS
4196 }
4197
4198 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4199 lock_page(vmf->page);
7eae74af 4200 else
667240e0 4201 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4202
7eae74af
KS
4203 return ret;
4204}
4205
396bcc52 4206#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4207static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4208{
82b0f8c3 4209 struct vm_area_struct *vma = vmf->vma;
953c66c2 4210
82b0f8c3 4211 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4212 /*
4213 * We are going to consume the prealloc table,
4214 * count that as nr_ptes.
4215 */
c4812909 4216 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4217 vmf->prealloc_pte = NULL;
953c66c2
AK
4218}
4219
f9ce0be7 4220vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4221{
82b0f8c3
JK
4222 struct vm_area_struct *vma = vmf->vma;
4223 bool write = vmf->flags & FAULT_FLAG_WRITE;
4224 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4225 pmd_t entry;
2b740303 4226 int i;
d01ac3c3 4227 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4228
4229 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4230 return ret;
10102459 4231
10102459 4232 page = compound_head(page);
d01ac3c3
MWO
4233 if (compound_order(page) != HPAGE_PMD_ORDER)
4234 return ret;
10102459 4235
eac96c3e
YS
4236 /*
4237 * Just backoff if any subpage of a THP is corrupted otherwise
4238 * the corrupted page may mapped by PMD silently to escape the
4239 * check. This kind of THP just can be PTE mapped. Access to
4240 * the corrupted subpage should trigger SIGBUS as expected.
4241 */
4242 if (unlikely(PageHasHWPoisoned(page)))
4243 return ret;
4244
953c66c2 4245 /*
f0953a1b 4246 * Archs like ppc64 need additional space to store information
953c66c2
AK
4247 * related to pte entry. Use the preallocated table for that.
4248 */
82b0f8c3 4249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4251 if (!vmf->prealloc_pte)
953c66c2 4252 return VM_FAULT_OOM;
953c66c2
AK
4253 }
4254
82b0f8c3
JK
4255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4256 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4257 goto out;
4258
4259 for (i = 0; i < HPAGE_PMD_NR; i++)
4260 flush_icache_page(vma, page + i);
4261
4262 entry = mk_huge_pmd(page, vma->vm_page_prot);
4263 if (write)
f55e1014 4264 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4265
fadae295 4266 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4267 page_add_file_rmap(page, vma, true);
4268
953c66c2
AK
4269 /*
4270 * deposit and withdraw with pmd lock held
4271 */
4272 if (arch_needs_pgtable_deposit())
82b0f8c3 4273 deposit_prealloc_pte(vmf);
10102459 4274
82b0f8c3 4275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4276
82b0f8c3 4277 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4278
4279 /* fault is handled */
4280 ret = 0;
95ecedcd 4281 count_vm_event(THP_FILE_MAPPED);
10102459 4282out:
82b0f8c3 4283 spin_unlock(vmf->ptl);
10102459
KS
4284 return ret;
4285}
4286#else
f9ce0be7 4287vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4288{
f9ce0be7 4289 return VM_FAULT_FALLBACK;
10102459
KS
4290}
4291#endif
4292
9d3af4b4 4293void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4294{
82b0f8c3 4295 struct vm_area_struct *vma = vmf->vma;
2bad466c 4296 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4297 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4298 bool prefault = vmf->address != addr;
3bb97794 4299 pte_t entry;
7267ec00 4300
3bb97794
KS
4301 flush_icache_page(vma, page);
4302 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4303
4304 if (prefault && arch_wants_old_prefaulted_pte())
4305 entry = pte_mkold(entry);
50c25ee9
TB
4306 else
4307 entry = pte_sw_mkyoung(entry);
46bdb427 4308
3bb97794
KS
4309 if (write)
4310 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4311 if (unlikely(uffd_wp))
f1eb1bac 4312 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4313 /* copy-on-write page */
4314 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4315 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4316 page_add_new_anon_rmap(page, vma, addr);
b518154e 4317 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4318 } else {
f1a79412 4319 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4320 page_add_file_rmap(page, vma, false);
3bb97794 4321 }
9d3af4b4 4322 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4323}
4324
f46f2ade
PX
4325static bool vmf_pte_changed(struct vm_fault *vmf)
4326{
4327 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4328 return !pte_same(*vmf->pte, vmf->orig_pte);
4329
4330 return !pte_none(*vmf->pte);
4331}
4332
9118c0cb
JK
4333/**
4334 * finish_fault - finish page fault once we have prepared the page to fault
4335 *
4336 * @vmf: structure describing the fault
4337 *
4338 * This function handles all that is needed to finish a page fault once the
4339 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4340 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4341 * addition.
9118c0cb
JK
4342 *
4343 * The function expects the page to be locked and on success it consumes a
4344 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4345 *
4346 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4347 */
2b740303 4348vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4349{
f9ce0be7 4350 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4351 struct page *page;
f9ce0be7 4352 vm_fault_t ret;
9118c0cb
JK
4353
4354 /* Did we COW the page? */
f9ce0be7 4355 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4356 page = vmf->cow_page;
4357 else
4358 page = vmf->page;
6b31d595
MH
4359
4360 /*
4361 * check even for read faults because we might have lost our CoWed
4362 * page
4363 */
f9ce0be7
KS
4364 if (!(vma->vm_flags & VM_SHARED)) {
4365 ret = check_stable_address_space(vma->vm_mm);
4366 if (ret)
4367 return ret;
4368 }
4369
4370 if (pmd_none(*vmf->pmd)) {
4371 if (PageTransCompound(page)) {
4372 ret = do_set_pmd(vmf, page);
4373 if (ret != VM_FAULT_FALLBACK)
4374 return ret;
4375 }
4376
03c4f204
QZ
4377 if (vmf->prealloc_pte)
4378 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4379 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4380 return VM_FAULT_OOM;
4381 }
4382
3fe2895c
JB
4383 /*
4384 * See comment in handle_pte_fault() for how this scenario happens, we
4385 * need to return NOPAGE so that we drop this page.
4386 */
f9ce0be7 4387 if (pmd_devmap_trans_unstable(vmf->pmd))
3fe2895c 4388 return VM_FAULT_NOPAGE;
f9ce0be7
KS
4389
4390 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4391 vmf->address, &vmf->ptl);
70427f6e 4392
f9ce0be7 4393 /* Re-check under ptl */
70427f6e 4394 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4395 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4396
4397 /* no need to invalidate: a not-present page won't be cached */
4398 update_mmu_cache(vma, vmf->address, vmf->pte);
4399
4400 ret = 0;
4401 } else {
4402 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4403 ret = VM_FAULT_NOPAGE;
70427f6e 4404 }
f9ce0be7 4405
f9ce0be7 4406 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4407 return ret;
4408}
4409
53d36a56
LS
4410static unsigned long fault_around_pages __read_mostly =
4411 65536 >> PAGE_SHIFT;
a9b0f861 4412
a9b0f861
KS
4413#ifdef CONFIG_DEBUG_FS
4414static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4415{
53d36a56 4416 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4417 return 0;
4418}
4419
b4903d6e 4420/*
da391d64
WK
4421 * fault_around_bytes must be rounded down to the nearest page order as it's
4422 * what do_fault_around() expects to see.
b4903d6e 4423 */
a9b0f861 4424static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4425{
a9b0f861 4426 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4427 return -EINVAL;
53d36a56
LS
4428
4429 /*
4430 * The minimum value is 1 page, however this results in no fault-around
4431 * at all. See should_fault_around().
4432 */
4433 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4434
1592eef0
KS
4435 return 0;
4436}
0a1345f8 4437DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4438 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4439
4440static int __init fault_around_debugfs(void)
4441{
d9f7979c
GKH
4442 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4443 &fault_around_bytes_fops);
1592eef0
KS
4444 return 0;
4445}
4446late_initcall(fault_around_debugfs);
1592eef0 4447#endif
8c6e50b0 4448
1fdb412b
KS
4449/*
4450 * do_fault_around() tries to map few pages around the fault address. The hope
4451 * is that the pages will be needed soon and this will lower the number of
4452 * faults to handle.
4453 *
4454 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4455 * not ready to be mapped: not up-to-date, locked, etc.
4456 *
9042599e
LS
4457 * This function doesn't cross VMA or page table boundaries, in order to call
4458 * map_pages() and acquire a PTE lock only once.
1fdb412b 4459 *
53d36a56 4460 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4461 * do_fault_around() expects it to be set to a power of two less than or equal
4462 * to PTRS_PER_PTE.
1fdb412b 4463 *
da391d64 4464 * The virtual address of the area that we map is naturally aligned to
53d36a56 4465 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4466 * (and therefore to page order). This way it's easier to guarantee
4467 * that we don't cross page table boundaries.
1fdb412b 4468 */
2b740303 4469static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4470{
53d36a56 4471 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4472 pgoff_t pte_off = pte_index(vmf->address);
4473 /* The page offset of vmf->address within the VMA. */
4474 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4475 pgoff_t from_pte, to_pte;
58ef47ef 4476 vm_fault_t ret;
8c6e50b0 4477
9042599e
LS
4478 /* The PTE offset of the start address, clamped to the VMA. */
4479 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4480 pte_off - min(pte_off, vma_off));
aecd6f44 4481
9042599e
LS
4482 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4483 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4484 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4485
82b0f8c3 4486 if (pmd_none(*vmf->pmd)) {
4cf58924 4487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4488 if (!vmf->prealloc_pte)
f9ce0be7 4489 return VM_FAULT_OOM;
8c6e50b0
KS
4490 }
4491
58ef47ef
MWO
4492 rcu_read_lock();
4493 ret = vmf->vma->vm_ops->map_pages(vmf,
4494 vmf->pgoff + from_pte - pte_off,
4495 vmf->pgoff + to_pte - pte_off);
4496 rcu_read_unlock();
4497
4498 return ret;
8c6e50b0
KS
4499}
4500
9c28a205
PX
4501/* Return true if we should do read fault-around, false otherwise */
4502static inline bool should_fault_around(struct vm_fault *vmf)
4503{
4504 /* No ->map_pages? No way to fault around... */
4505 if (!vmf->vma->vm_ops->map_pages)
4506 return false;
4507
4508 if (uffd_disable_fault_around(vmf->vma))
4509 return false;
4510
53d36a56
LS
4511 /* A single page implies no faulting 'around' at all. */
4512 return fault_around_pages > 1;
9c28a205
PX
4513}
4514
2b740303 4515static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4516{
2b740303 4517 vm_fault_t ret = 0;
8c6e50b0
KS
4518
4519 /*
4520 * Let's call ->map_pages() first and use ->fault() as fallback
4521 * if page by the offset is not ready to be mapped (cold cache or
4522 * something).
4523 */
9c28a205
PX
4524 if (should_fault_around(vmf)) {
4525 ret = do_fault_around(vmf);
4526 if (ret)
4527 return ret;
8c6e50b0 4528 }
e655fb29 4529
936ca80d 4530 ret = __do_fault(vmf);
e655fb29
KS
4531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4532 return ret;
4533
9118c0cb 4534 ret |= finish_fault(vmf);
936ca80d 4535 unlock_page(vmf->page);
7267ec00 4536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4537 put_page(vmf->page);
e655fb29
KS
4538 return ret;
4539}
4540
2b740303 4541static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4542{
82b0f8c3 4543 struct vm_area_struct *vma = vmf->vma;
2b740303 4544 vm_fault_t ret;
ec47c3b9
KS
4545
4546 if (unlikely(anon_vma_prepare(vma)))
4547 return VM_FAULT_OOM;
4548
936ca80d
JK
4549 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4550 if (!vmf->cow_page)
ec47c3b9
KS
4551 return VM_FAULT_OOM;
4552
8f425e4e
MWO
4553 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4554 GFP_KERNEL)) {
936ca80d 4555 put_page(vmf->cow_page);
ec47c3b9
KS
4556 return VM_FAULT_OOM;
4557 }
68fa572b 4558 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4559
936ca80d 4560 ret = __do_fault(vmf);
ec47c3b9
KS
4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 goto uncharge_out;
3917048d
JK
4563 if (ret & VM_FAULT_DONE_COW)
4564 return ret;
ec47c3b9 4565
b1aa812b 4566 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4567 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4568
9118c0cb 4569 ret |= finish_fault(vmf);
b1aa812b
JK
4570 unlock_page(vmf->page);
4571 put_page(vmf->page);
7267ec00
KS
4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573 goto uncharge_out;
ec47c3b9
KS
4574 return ret;
4575uncharge_out:
936ca80d 4576 put_page(vmf->cow_page);
ec47c3b9
KS
4577 return ret;
4578}
4579
2b740303 4580static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4581{
82b0f8c3 4582 struct vm_area_struct *vma = vmf->vma;
2b740303 4583 vm_fault_t ret, tmp;
1d65f86d 4584
936ca80d 4585 ret = __do_fault(vmf);
7eae74af 4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4587 return ret;
1da177e4
LT
4588
4589 /*
f0c6d4d2
KS
4590 * Check if the backing address space wants to know that the page is
4591 * about to become writable
1da177e4 4592 */
fb09a464 4593 if (vma->vm_ops->page_mkwrite) {
936ca80d 4594 unlock_page(vmf->page);
38b8cb7f 4595 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4596 if (unlikely(!tmp ||
4597 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4598 put_page(vmf->page);
fb09a464 4599 return tmp;
4294621f 4600 }
fb09a464
KS
4601 }
4602
9118c0cb 4603 ret |= finish_fault(vmf);
7267ec00
KS
4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4605 VM_FAULT_RETRY))) {
936ca80d
JK
4606 unlock_page(vmf->page);
4607 put_page(vmf->page);
f0c6d4d2 4608 return ret;
1da177e4 4609 }
b827e496 4610
89b15332 4611 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4612 return ret;
54cb8821 4613}
d00806b1 4614
9a95f3cf 4615/*
c1e8d7c6 4616 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4617 * but allow concurrent faults).
c1e8d7c6 4618 * The mmap_lock may have been released depending on flags and our
9138e47e 4619 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4620 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4621 * by other thread calling munmap()).
9a95f3cf 4622 */
2b740303 4623static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4624{
82b0f8c3 4625 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4626 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4627 vm_fault_t ret;
54cb8821 4628
ff09d7ec
AK
4629 /*
4630 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4631 */
4632 if (!vma->vm_ops->fault) {
4633 /*
4634 * If we find a migration pmd entry or a none pmd entry, which
4635 * should never happen, return SIGBUS
4636 */
4637 if (unlikely(!pmd_present(*vmf->pmd)))
4638 ret = VM_FAULT_SIGBUS;
4639 else {
4640 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4641 vmf->pmd,
4642 vmf->address,
4643 &vmf->ptl);
4644 /*
4645 * Make sure this is not a temporary clearing of pte
4646 * by holding ptl and checking again. A R/M/W update
4647 * of pte involves: take ptl, clearing the pte so that
4648 * we don't have concurrent modification by hardware
4649 * followed by an update.
4650 */
4651 if (unlikely(pte_none(*vmf->pte)))
4652 ret = VM_FAULT_SIGBUS;
4653 else
4654 ret = VM_FAULT_NOPAGE;
4655
4656 pte_unmap_unlock(vmf->pte, vmf->ptl);
4657 }
4658 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4659 ret = do_read_fault(vmf);
4660 else if (!(vma->vm_flags & VM_SHARED))
4661 ret = do_cow_fault(vmf);
4662 else
4663 ret = do_shared_fault(vmf);
4664
4665 /* preallocated pagetable is unused: free it */
4666 if (vmf->prealloc_pte) {
fc8efd2d 4667 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4668 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4669 }
4670 return ret;
54cb8821
NP
4671}
4672
f4c0d836
YS
4673int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4674 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4675{
4676 get_page(page);
4677
fc137c0d
R
4678 /* Record the current PID acceesing VMA */
4679 vma_set_access_pid_bit(vma);
4680
9532fec1 4681 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4682 if (page_nid == numa_node_id()) {
9532fec1 4683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4684 *flags |= TNF_FAULT_LOCAL;
4685 }
9532fec1
MG
4686
4687 return mpol_misplaced(page, vma, addr);
4688}
4689
2b740303 4690static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4691{
82b0f8c3 4692 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4693 struct page *page = NULL;
98fa15f3 4694 int page_nid = NUMA_NO_NODE;
6a56ccbc 4695 bool writable = false;
90572890 4696 int last_cpupid;
cbee9f88 4697 int target_nid;
04a86453 4698 pte_t pte, old_pte;
6688cc05 4699 int flags = 0;
d10e63f2
MG
4700
4701 /*
166f61b9
TH
4702 * The "pte" at this point cannot be used safely without
4703 * validation through pte_unmap_same(). It's of NUMA type but
4704 * the pfn may be screwed if the read is non atomic.
166f61b9 4705 */
82b0f8c3
JK
4706 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4707 spin_lock(vmf->ptl);
cee216a6 4708 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4709 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4710 goto out;
4711 }
4712
b99a342d
HY
4713 /* Get the normal PTE */
4714 old_pte = ptep_get(vmf->pte);
04a86453 4715 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4716
6a56ccbc
DH
4717 /*
4718 * Detect now whether the PTE could be writable; this information
4719 * is only valid while holding the PT lock.
4720 */
4721 writable = pte_write(pte);
4722 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4723 can_change_pte_writable(vma, vmf->address, pte))
4724 writable = true;
4725
82b0f8c3 4726 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4727 if (!page || is_zone_device_page(page))
b99a342d 4728 goto out_map;
d10e63f2 4729
e81c4802 4730 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4731 if (PageCompound(page))
4732 goto out_map;
e81c4802 4733
6688cc05 4734 /*
bea66fbd
MG
4735 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4736 * much anyway since they can be in shared cache state. This misses
4737 * the case where a mapping is writable but the process never writes
4738 * to it but pte_write gets cleared during protection updates and
4739 * pte_dirty has unpredictable behaviour between PTE scan updates,
4740 * background writeback, dirty balancing and application behaviour.
6688cc05 4741 */
6a56ccbc 4742 if (!writable)
6688cc05
PZ
4743 flags |= TNF_NO_GROUP;
4744
dabe1d99
RR
4745 /*
4746 * Flag if the page is shared between multiple address spaces. This
4747 * is later used when determining whether to group tasks together
4748 */
4749 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4750 flags |= TNF_SHARED;
4751
8191acbd 4752 page_nid = page_to_nid(page);
33024536
HY
4753 /*
4754 * For memory tiering mode, cpupid of slow memory page is used
4755 * to record page access time. So use default value.
4756 */
4757 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4758 !node_is_toptier(page_nid))
4759 last_cpupid = (-1 & LAST_CPUPID_MASK);
4760 else
4761 last_cpupid = page_cpupid_last(page);
82b0f8c3 4762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4763 &flags);
98fa15f3 4764 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4765 put_page(page);
b99a342d 4766 goto out_map;
4daae3b4 4767 }
b99a342d 4768 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4769 writable = false;
4daae3b4
MG
4770
4771 /* Migrate to the requested node */
bf90ac19 4772 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4773 page_nid = target_nid;
6688cc05 4774 flags |= TNF_MIGRATED;
b99a342d 4775 } else {
074c2381 4776 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4777 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4778 spin_lock(vmf->ptl);
4779 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4780 pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 goto out;
4782 }
4783 goto out_map;
4784 }
4daae3b4
MG
4785
4786out:
98fa15f3 4787 if (page_nid != NUMA_NO_NODE)
6688cc05 4788 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4789 return 0;
b99a342d
HY
4790out_map:
4791 /*
4792 * Make it present again, depending on how arch implements
4793 * non-accessible ptes, some can allow access by kernel mode.
4794 */
4795 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4796 pte = pte_modify(old_pte, vma->vm_page_prot);
4797 pte = pte_mkyoung(pte);
6a56ccbc 4798 if (writable)
b99a342d
HY
4799 pte = pte_mkwrite(pte);
4800 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4801 update_mmu_cache(vma, vmf->address, vmf->pte);
4802 pte_unmap_unlock(vmf->pte, vmf->ptl);
4803 goto out;
d10e63f2
MG
4804}
4805
2b740303 4806static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4807{
f4200391 4808 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4809 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4810 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4811 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4812 return VM_FAULT_FALLBACK;
4813}
4814
183f24aa 4815/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4816static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4817{
c89357e2 4818 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4819 vm_fault_t ret;
c89357e2 4820
529b930b 4821 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4822 if (likely(!unshare) &&
4823 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4824 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4825 return do_huge_pmd_wp_page(vmf);
529b930b 4826 }
327e9fd4 4827
aea06577
DH
4828 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4829 if (vmf->vma->vm_ops->huge_fault) {
4830 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4831 if (!(ret & VM_FAULT_FALLBACK))
4832 return ret;
4833 }
327e9fd4 4834 }
af9e4d5f 4835
327e9fd4 4836 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4837 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4838
b96375f7
MW
4839 return VM_FAULT_FALLBACK;
4840}
4841
2b740303 4842static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4843{
14c99d65
GJ
4844#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4845 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4846 /* No support for anonymous transparent PUD pages yet */
4847 if (vma_is_anonymous(vmf->vma))
4848 return VM_FAULT_FALLBACK;
4849 if (vmf->vma->vm_ops->huge_fault)
4850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4852 return VM_FAULT_FALLBACK;
4853}
4854
4855static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4856{
327e9fd4
THV
4857#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4858 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
aea06577
DH
4859 vm_fault_t ret;
4860
a00cc7d9
MW
4861 /* No support for anonymous transparent PUD pages yet */
4862 if (vma_is_anonymous(vmf->vma))
327e9fd4 4863 goto split;
aea06577
DH
4864 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4865 if (vmf->vma->vm_ops->huge_fault) {
4866 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867 if (!(ret & VM_FAULT_FALLBACK))
4868 return ret;
4869 }
327e9fd4
THV
4870 }
4871split:
4872 /* COW or write-notify not handled on PUD level: split pud.*/
4873 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4874#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4875 return VM_FAULT_FALLBACK;
4876}
4877
1da177e4
LT
4878/*
4879 * These routines also need to handle stuff like marking pages dirty
4880 * and/or accessed for architectures that don't do it in hardware (most
4881 * RISC architectures). The early dirtying is also good on the i386.
4882 *
4883 * There is also a hook called "update_mmu_cache()" that architectures
4884 * with external mmu caches can use to update those (ie the Sparc or
4885 * PowerPC hashed page tables that act as extended TLBs).
4886 *
c1e8d7c6 4887 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4888 * concurrent faults).
9a95f3cf 4889 *
c1e8d7c6 4890 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4891 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4892 */
2b740303 4893static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4894{
4895 pte_t entry;
4896
82b0f8c3 4897 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4898 /*
4899 * Leave __pte_alloc() until later: because vm_ops->fault may
4900 * want to allocate huge page, and if we expose page table
4901 * for an instant, it will be difficult to retract from
4902 * concurrent faults and from rmap lookups.
4903 */
82b0f8c3 4904 vmf->pte = NULL;
f46f2ade 4905 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4906 } else {
f9ce0be7
KS
4907 /*
4908 * If a huge pmd materialized under us just retry later. Use
4909 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910 * of pmd_trans_huge() to ensure the pmd didn't become
4911 * pmd_trans_huge under us and then back to pmd_none, as a
4912 * result of MADV_DONTNEED running immediately after a huge pmd
4913 * fault in a different thread of this mm, in turn leading to a
4914 * misleading pmd_trans_huge() retval. All we have to ensure is
4915 * that it is a regular pmd that we can walk with
4916 * pte_offset_map() and we can do that through an atomic read
4917 * in C, which is what pmd_trans_unstable() provides.
4918 */
d0f0931d 4919 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4920 return 0;
4921 /*
4922 * A regular pmd is established and it can't morph into a huge
4923 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4924 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4925 * So now it's safe to run pte_offset_map().
4926 */
82b0f8c3 4927 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4928 vmf->orig_pte = *vmf->pte;
f46f2ade 4929 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4930
4931 /*
4932 * some architectures can have larger ptes than wordsize,
4933 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4934 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935 * accesses. The code below just needs a consistent view
4936 * for the ifs and we later double check anyway with the
7267ec00
KS
4937 * ptl lock held. So here a barrier will do.
4938 */
4939 barrier();
2994302b 4940 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4941 pte_unmap(vmf->pte);
4942 vmf->pte = NULL;
65500d23 4943 }
1da177e4
LT
4944 }
4945
2bad466c
PX
4946 if (!vmf->pte)
4947 return do_pte_missing(vmf);
7267ec00 4948
2994302b
JK
4949 if (!pte_present(vmf->orig_pte))
4950 return do_swap_page(vmf);
7267ec00 4951
2994302b
JK
4952 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4953 return do_numa_page(vmf);
d10e63f2 4954
82b0f8c3
JK
4955 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4956 spin_lock(vmf->ptl);
2994302b 4957 entry = vmf->orig_pte;
7df67697
BM
4958 if (unlikely(!pte_same(*vmf->pte, entry))) {
4959 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4960 goto unlock;
7df67697 4961 }
c89357e2 4962 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4963 if (!pte_write(entry))
2994302b 4964 return do_wp_page(vmf);
c89357e2
DH
4965 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4966 entry = pte_mkdirty(entry);
1da177e4
LT
4967 }
4968 entry = pte_mkyoung(entry);
82b0f8c3
JK
4969 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4970 vmf->flags & FAULT_FLAG_WRITE)) {
4971 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4972 } else {
b7333b58
YS
4973 /* Skip spurious TLB flush for retried page fault */
4974 if (vmf->flags & FAULT_FLAG_TRIED)
4975 goto unlock;
1a44e149
AA
4976 /*
4977 * This is needed only for protection faults but the arch code
4978 * is not yet telling us if this is a protection fault or not.
4979 * This still avoids useless tlb flushes for .text page faults
4980 * with threads.
4981 */
82b0f8c3 4982 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
4983 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4984 vmf->pte);
1a44e149 4985 }
8f4e2101 4986unlock:
82b0f8c3 4987 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4988 return 0;
1da177e4
LT
4989}
4990
4991/*
4992 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4993 *
c1e8d7c6 4994 * The mmap_lock may have been released depending on flags and our
9138e47e 4995 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4996 */
2b740303
SJ
4997static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4998 unsigned long address, unsigned int flags)
1da177e4 4999{
82b0f8c3 5000 struct vm_fault vmf = {
bae473a4 5001 .vma = vma,
1a29d85e 5002 .address = address & PAGE_MASK,
824ddc60 5003 .real_address = address,
bae473a4 5004 .flags = flags,
0721ec8b 5005 .pgoff = linear_page_index(vma, address),
667240e0 5006 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5007 };
dcddffd4 5008 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5009 unsigned long vm_flags = vma->vm_flags;
1da177e4 5010 pgd_t *pgd;
c2febafc 5011 p4d_t *p4d;
2b740303 5012 vm_fault_t ret;
1da177e4 5013
1da177e4 5014 pgd = pgd_offset(mm, address);
c2febafc
KS
5015 p4d = p4d_alloc(mm, pgd, address);
5016 if (!p4d)
5017 return VM_FAULT_OOM;
a00cc7d9 5018
c2febafc 5019 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5020 if (!vmf.pud)
c74df32c 5021 return VM_FAULT_OOM;
625110b5 5022retry_pud:
7da4e2cb 5023 if (pud_none(*vmf.pud) &&
a7f4e6e4 5024 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5025 ret = create_huge_pud(&vmf);
5026 if (!(ret & VM_FAULT_FALLBACK))
5027 return ret;
5028 } else {
5029 pud_t orig_pud = *vmf.pud;
5030
5031 barrier();
5032 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5033
c89357e2
DH
5034 /*
5035 * TODO once we support anonymous PUDs: NUMA case and
5036 * FAULT_FLAG_UNSHARE handling.
5037 */
5038 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5039 ret = wp_huge_pud(&vmf, orig_pud);
5040 if (!(ret & VM_FAULT_FALLBACK))
5041 return ret;
5042 } else {
5043 huge_pud_set_accessed(&vmf, orig_pud);
5044 return 0;
5045 }
5046 }
5047 }
5048
5049 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5050 if (!vmf.pmd)
c74df32c 5051 return VM_FAULT_OOM;
625110b5
TH
5052
5053 /* Huge pud page fault raced with pmd_alloc? */
5054 if (pud_trans_unstable(vmf.pud))
5055 goto retry_pud;
5056
7da4e2cb 5057 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5058 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5059 ret = create_huge_pmd(&vmf);
c0292554
KS
5060 if (!(ret & VM_FAULT_FALLBACK))
5061 return ret;
71e3aac0 5062 } else {
5db4f15c 5063 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5064
71e3aac0 5065 barrier();
5db4f15c 5066 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5067 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5068 !is_pmd_migration_entry(vmf.orig_pmd));
5069 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5070 pmd_migration_entry_wait(mm, vmf.pmd);
5071 return 0;
5072 }
5db4f15c
YS
5073 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5074 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5075 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5076
c89357e2
DH
5077 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5078 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5079 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5080 if (!(ret & VM_FAULT_FALLBACK))
5081 return ret;
a1dd450b 5082 } else {
5db4f15c 5083 huge_pmd_set_accessed(&vmf);
9845cbbd 5084 return 0;
1f1d06c3 5085 }
71e3aac0
AA
5086 }
5087 }
5088
82b0f8c3 5089 return handle_pte_fault(&vmf);
1da177e4
LT
5090}
5091
bce617ed 5092/**
f0953a1b 5093 * mm_account_fault - Do page fault accounting
bce617ed
PX
5094 *
5095 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5096 * of perf event counters, but we'll still do the per-task accounting to
5097 * the task who triggered this page fault.
5098 * @address: the faulted address.
5099 * @flags: the fault flags.
5100 * @ret: the fault retcode.
5101 *
f0953a1b 5102 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5103 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5104 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5105 * still be in per-arch page fault handlers at the entry of page fault.
5106 */
5107static inline void mm_account_fault(struct pt_regs *regs,
5108 unsigned long address, unsigned int flags,
5109 vm_fault_t ret)
5110{
5111 bool major;
5112
5113 /*
5114 * We don't do accounting for some specific faults:
5115 *
5116 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5117 * includes arch_vma_access_permitted() failing before reaching here.
5118 * So this is not a "this many hardware page faults" counter. We
5119 * should use the hw profiling for that.
5120 *
5121 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5122 * once they're completed.
5123 */
5124 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5125 return;
5126
5127 /*
5128 * We define the fault as a major fault when the final successful fault
5129 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5130 * handle it immediately previously).
5131 */
5132 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5133
a2beb5f1
PX
5134 if (major)
5135 current->maj_flt++;
5136 else
5137 current->min_flt++;
5138
bce617ed 5139 /*
a2beb5f1
PX
5140 * If the fault is done for GUP, regs will be NULL. We only do the
5141 * accounting for the per thread fault counters who triggered the
5142 * fault, and we skip the perf event updates.
bce617ed
PX
5143 */
5144 if (!regs)
5145 return;
5146
a2beb5f1 5147 if (major)
bce617ed 5148 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5149 else
bce617ed 5150 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5151}
5152
ec1c86b2
YZ
5153#ifdef CONFIG_LRU_GEN
5154static void lru_gen_enter_fault(struct vm_area_struct *vma)
5155{
8788f678
YZ
5156 /* the LRU algorithm only applies to accesses with recency */
5157 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5158}
5159
5160static void lru_gen_exit_fault(void)
5161{
5162 current->in_lru_fault = false;
5163}
5164#else
5165static void lru_gen_enter_fault(struct vm_area_struct *vma)
5166{
5167}
5168
5169static void lru_gen_exit_fault(void)
5170{
5171}
5172#endif /* CONFIG_LRU_GEN */
5173
cdc5021c
DH
5174static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5175 unsigned int *flags)
5176{
5177 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5178 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5179 return VM_FAULT_SIGSEGV;
5180 /*
5181 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5182 * just treat it like an ordinary read-fault otherwise.
5183 */
5184 if (!is_cow_mapping(vma->vm_flags))
5185 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5186 } else if (*flags & FAULT_FLAG_WRITE) {
5187 /* Write faults on read-only mappings are impossible ... */
5188 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5189 return VM_FAULT_SIGSEGV;
5190 /* ... and FOLL_FORCE only applies to COW mappings. */
5191 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5192 !is_cow_mapping(vma->vm_flags)))
5193 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5194 }
5195 return 0;
5196}
5197
9a95f3cf
PC
5198/*
5199 * By the time we get here, we already hold the mm semaphore
5200 *
c1e8d7c6 5201 * The mmap_lock may have been released depending on flags and our
9138e47e 5202 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5203 */
2b740303 5204vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5205 unsigned int flags, struct pt_regs *regs)
519e5247 5206{
2b740303 5207 vm_fault_t ret;
519e5247
JW
5208
5209 __set_current_state(TASK_RUNNING);
5210
5211 count_vm_event(PGFAULT);
2262185c 5212 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247 5213
cdc5021c
DH
5214 ret = sanitize_fault_flags(vma, &flags);
5215 if (ret)
5216 return ret;
5217
de0c799b
LD
5218 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5219 flags & FAULT_FLAG_INSTRUCTION,
5220 flags & FAULT_FLAG_REMOTE))
5221 return VM_FAULT_SIGSEGV;
5222
519e5247
JW
5223 /*
5224 * Enable the memcg OOM handling for faults triggered in user
5225 * space. Kernel faults are handled more gracefully.
5226 */
5227 if (flags & FAULT_FLAG_USER)
29ef680a 5228 mem_cgroup_enter_user_fault();
519e5247 5229
ec1c86b2
YZ
5230 lru_gen_enter_fault(vma);
5231
bae473a4
KS
5232 if (unlikely(is_vm_hugetlb_page(vma)))
5233 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5234 else
5235 ret = __handle_mm_fault(vma, address, flags);
519e5247 5236
ec1c86b2
YZ
5237 lru_gen_exit_fault();
5238
49426420 5239 if (flags & FAULT_FLAG_USER) {
29ef680a 5240 mem_cgroup_exit_user_fault();
166f61b9
TH
5241 /*
5242 * The task may have entered a memcg OOM situation but
5243 * if the allocation error was handled gracefully (no
5244 * VM_FAULT_OOM), there is no need to kill anything.
5245 * Just clean up the OOM state peacefully.
5246 */
5247 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5248 mem_cgroup_oom_synchronize(false);
49426420 5249 }
3812c8c8 5250
bce617ed
PX
5251 mm_account_fault(regs, address, flags, ret);
5252
519e5247
JW
5253 return ret;
5254}
e1d6d01a 5255EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5256
50ee3253
SB
5257#ifdef CONFIG_PER_VMA_LOCK
5258/*
5259 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5260 * stable and not isolated. If the VMA is not found or is being modified the
5261 * function returns NULL.
5262 */
5263struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5264 unsigned long address)
5265{
5266 MA_STATE(mas, &mm->mm_mt, address, address);
5267 struct vm_area_struct *vma;
5268
5269 rcu_read_lock();
5270retry:
5271 vma = mas_walk(&mas);
5272 if (!vma)
5273 goto inval;
5274
5275 /* Only anonymous vmas are supported for now */
5276 if (!vma_is_anonymous(vma))
5277 goto inval;
5278
2ac0af1b
SB
5279 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5280 if (!vma->anon_vma)
5281 goto inval;
5282
50ee3253
SB
5283 if (!vma_start_read(vma))
5284 goto inval;
5285
444eeb17
SB
5286 /*
5287 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5288 * it for now and fall back to page fault handling under mmap_lock.
5289 */
5290 if (userfaultfd_armed(vma)) {
5291 vma_end_read(vma);
5292 goto inval;
5293 }
5294
50ee3253
SB
5295 /* Check since vm_start/vm_end might change before we lock the VMA */
5296 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5297 vma_end_read(vma);
5298 goto inval;
5299 }
5300
5301 /* Check if the VMA got isolated after we found it */
5302 if (vma->detached) {
5303 vma_end_read(vma);
52f23865 5304 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5305 /* The area was replaced with another one */
5306 goto retry;
5307 }
5308
5309 rcu_read_unlock();
5310 return vma;
5311inval:
5312 rcu_read_unlock();
52f23865 5313 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5314 return NULL;
5315}
5316#endif /* CONFIG_PER_VMA_LOCK */
5317
90eceff1
KS
5318#ifndef __PAGETABLE_P4D_FOLDED
5319/*
5320 * Allocate p4d page table.
5321 * We've already handled the fast-path in-line.
5322 */
5323int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5324{
5325 p4d_t *new = p4d_alloc_one(mm, address);
5326 if (!new)
5327 return -ENOMEM;
5328
90eceff1 5329 spin_lock(&mm->page_table_lock);
ed33b5a6 5330 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5331 p4d_free(mm, new);
ed33b5a6
QZ
5332 } else {
5333 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5334 pgd_populate(mm, pgd, new);
ed33b5a6 5335 }
90eceff1
KS
5336 spin_unlock(&mm->page_table_lock);
5337 return 0;
5338}
5339#endif /* __PAGETABLE_P4D_FOLDED */
5340
1da177e4
LT
5341#ifndef __PAGETABLE_PUD_FOLDED
5342/*
5343 * Allocate page upper directory.
872fec16 5344 * We've already handled the fast-path in-line.
1da177e4 5345 */
c2febafc 5346int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5347{
c74df32c
HD
5348 pud_t *new = pud_alloc_one(mm, address);
5349 if (!new)
1bb3630e 5350 return -ENOMEM;
1da177e4 5351
872fec16 5352 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5353 if (!p4d_present(*p4d)) {
5354 mm_inc_nr_puds(mm);
ed33b5a6 5355 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5356 p4d_populate(mm, p4d, new);
b4e98d9a 5357 } else /* Another has populated it */
5e541973 5358 pud_free(mm, new);
c74df32c 5359 spin_unlock(&mm->page_table_lock);
1bb3630e 5360 return 0;
1da177e4
LT
5361}
5362#endif /* __PAGETABLE_PUD_FOLDED */
5363
5364#ifndef __PAGETABLE_PMD_FOLDED
5365/*
5366 * Allocate page middle directory.
872fec16 5367 * We've already handled the fast-path in-line.
1da177e4 5368 */
1bb3630e 5369int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5370{
a00cc7d9 5371 spinlock_t *ptl;
c74df32c
HD
5372 pmd_t *new = pmd_alloc_one(mm, address);
5373 if (!new)
1bb3630e 5374 return -ENOMEM;
1da177e4 5375
a00cc7d9 5376 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5377 if (!pud_present(*pud)) {
5378 mm_inc_nr_pmds(mm);
ed33b5a6 5379 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5380 pud_populate(mm, pud, new);
ed33b5a6 5381 } else { /* Another has populated it */
5e541973 5382 pmd_free(mm, new);
ed33b5a6 5383 }
a00cc7d9 5384 spin_unlock(ptl);
1bb3630e 5385 return 0;
e0f39591 5386}
1da177e4
LT
5387#endif /* __PAGETABLE_PMD_FOLDED */
5388
0e5e64c0
MS
5389/**
5390 * follow_pte - look up PTE at a user virtual address
5391 * @mm: the mm_struct of the target address space
5392 * @address: user virtual address
5393 * @ptepp: location to store found PTE
5394 * @ptlp: location to store the lock for the PTE
5395 *
5396 * On a successful return, the pointer to the PTE is stored in @ptepp;
5397 * the corresponding lock is taken and its location is stored in @ptlp.
5398 * The contents of the PTE are only stable until @ptlp is released;
5399 * any further use, if any, must be protected against invalidation
5400 * with MMU notifiers.
5401 *
5402 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5403 * should be taken for read.
5404 *
5405 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5406 * it is not a good general-purpose API.
5407 *
5408 * Return: zero on success, -ve otherwise.
5409 */
5410int follow_pte(struct mm_struct *mm, unsigned long address,
5411 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5412{
5413 pgd_t *pgd;
c2febafc 5414 p4d_t *p4d;
f8ad0f49
JW
5415 pud_t *pud;
5416 pmd_t *pmd;
5417 pte_t *ptep;
5418
5419 pgd = pgd_offset(mm, address);
5420 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5421 goto out;
5422
c2febafc
KS
5423 p4d = p4d_offset(pgd, address);
5424 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5425 goto out;
5426
5427 pud = pud_offset(p4d, address);
f8ad0f49
JW
5428 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5429 goto out;
5430
5431 pmd = pmd_offset(pud, address);
f66055ab 5432 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5433
09796395 5434 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5435 goto out;
5436
5437 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5438 if (!pte_present(*ptep))
5439 goto unlock;
5440 *ptepp = ptep;
5441 return 0;
5442unlock:
5443 pte_unmap_unlock(ptep, *ptlp);
5444out:
5445 return -EINVAL;
5446}
9fd6dad1
PB
5447EXPORT_SYMBOL_GPL(follow_pte);
5448
3b6748e2
JW
5449/**
5450 * follow_pfn - look up PFN at a user virtual address
5451 * @vma: memory mapping
5452 * @address: user virtual address
5453 * @pfn: location to store found PFN
5454 *
5455 * Only IO mappings and raw PFN mappings are allowed.
5456 *
9fd6dad1
PB
5457 * This function does not allow the caller to read the permissions
5458 * of the PTE. Do not use it.
5459 *
a862f68a 5460 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5461 */
5462int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5463 unsigned long *pfn)
5464{
5465 int ret = -EINVAL;
5466 spinlock_t *ptl;
5467 pte_t *ptep;
5468
5469 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5470 return ret;
5471
9fd6dad1 5472 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5473 if (ret)
5474 return ret;
5475 *pfn = pte_pfn(*ptep);
5476 pte_unmap_unlock(ptep, ptl);
5477 return 0;
5478}
5479EXPORT_SYMBOL(follow_pfn);
5480
28b2ee20 5481#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5482int follow_phys(struct vm_area_struct *vma,
5483 unsigned long address, unsigned int flags,
5484 unsigned long *prot, resource_size_t *phys)
28b2ee20 5485{
03668a4d 5486 int ret = -EINVAL;
28b2ee20
RR
5487 pte_t *ptep, pte;
5488 spinlock_t *ptl;
28b2ee20 5489
d87fe660 5490 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5491 goto out;
28b2ee20 5492
9fd6dad1 5493 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5494 goto out;
28b2ee20 5495 pte = *ptep;
03668a4d 5496
f6f37321 5497 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5498 goto unlock;
28b2ee20
RR
5499
5500 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5501 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5502
03668a4d 5503 ret = 0;
28b2ee20
RR
5504unlock:
5505 pte_unmap_unlock(ptep, ptl);
5506out:
d87fe660 5507 return ret;
28b2ee20
RR
5508}
5509
96667f8a
SV
5510/**
5511 * generic_access_phys - generic implementation for iomem mmap access
5512 * @vma: the vma to access
f0953a1b 5513 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5514 * @buf: buffer to read/write
5515 * @len: length of transfer
5516 * @write: set to FOLL_WRITE when writing, otherwise reading
5517 *
5518 * This is a generic implementation for &vm_operations_struct.access for an
5519 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5520 * not page based.
5521 */
28b2ee20
RR
5522int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5523 void *buf, int len, int write)
5524{
5525 resource_size_t phys_addr;
5526 unsigned long prot = 0;
2bc7273b 5527 void __iomem *maddr;
96667f8a
SV
5528 pte_t *ptep, pte;
5529 spinlock_t *ptl;
5530 int offset = offset_in_page(addr);
5531 int ret = -EINVAL;
5532
5533 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5534 return -EINVAL;
5535
5536retry:
e913a8cd 5537 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5538 return -EINVAL;
5539 pte = *ptep;
5540 pte_unmap_unlock(ptep, ptl);
28b2ee20 5541
96667f8a
SV
5542 prot = pgprot_val(pte_pgprot(pte));
5543 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5544
5545 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5546 return -EINVAL;
5547
9cb12d7b 5548 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5549 if (!maddr)
5550 return -ENOMEM;
5551
e913a8cd 5552 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5553 goto out_unmap;
5554
5555 if (!pte_same(pte, *ptep)) {
5556 pte_unmap_unlock(ptep, ptl);
5557 iounmap(maddr);
5558
5559 goto retry;
5560 }
5561
28b2ee20
RR
5562 if (write)
5563 memcpy_toio(maddr + offset, buf, len);
5564 else
5565 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5566 ret = len;
5567 pte_unmap_unlock(ptep, ptl);
5568out_unmap:
28b2ee20
RR
5569 iounmap(maddr);
5570
96667f8a 5571 return ret;
28b2ee20 5572}
5a73633e 5573EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5574#endif
5575
0ec76a11 5576/*
d3f5ffca 5577 * Access another process' address space as given in mm.
0ec76a11 5578 */
d3f5ffca
JH
5579int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5580 int len, unsigned int gup_flags)
0ec76a11 5581{
0ec76a11 5582 struct vm_area_struct *vma;
0ec76a11 5583 void *old_buf = buf;
442486ec 5584 int write = gup_flags & FOLL_WRITE;
0ec76a11 5585
d8ed45c5 5586 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5587 return 0;
5588
183ff22b 5589 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5590 while (len) {
5591 int bytes, ret, offset;
5592 void *maddr;
28b2ee20 5593 struct page *page = NULL;
0ec76a11 5594
64019a2e 5595 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5596 gup_flags, &page, &vma, NULL);
28b2ee20 5597 if (ret <= 0) {
dbffcd03
RR
5598#ifndef CONFIG_HAVE_IOREMAP_PROT
5599 break;
5600#else
28b2ee20
RR
5601 /*
5602 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5603 * we can access using slightly different code.
5604 */
3e418f98
LH
5605 vma = vma_lookup(mm, addr);
5606 if (!vma)
28b2ee20
RR
5607 break;
5608 if (vma->vm_ops && vma->vm_ops->access)
5609 ret = vma->vm_ops->access(vma, addr, buf,
5610 len, write);
5611 if (ret <= 0)
28b2ee20
RR
5612 break;
5613 bytes = ret;
dbffcd03 5614#endif
0ec76a11 5615 } else {
28b2ee20
RR
5616 bytes = len;
5617 offset = addr & (PAGE_SIZE-1);
5618 if (bytes > PAGE_SIZE-offset)
5619 bytes = PAGE_SIZE-offset;
5620
5621 maddr = kmap(page);
5622 if (write) {
5623 copy_to_user_page(vma, page, addr,
5624 maddr + offset, buf, bytes);
5625 set_page_dirty_lock(page);
5626 } else {
5627 copy_from_user_page(vma, page, addr,
5628 buf, maddr + offset, bytes);
5629 }
5630 kunmap(page);
09cbfeaf 5631 put_page(page);
0ec76a11 5632 }
0ec76a11
DH
5633 len -= bytes;
5634 buf += bytes;
5635 addr += bytes;
5636 }
d8ed45c5 5637 mmap_read_unlock(mm);
0ec76a11
DH
5638
5639 return buf - old_buf;
5640}
03252919 5641
5ddd36b9 5642/**
ae91dbfc 5643 * access_remote_vm - access another process' address space
5ddd36b9
SW
5644 * @mm: the mm_struct of the target address space
5645 * @addr: start address to access
5646 * @buf: source or destination buffer
5647 * @len: number of bytes to transfer
6347e8d5 5648 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5649 *
5650 * The caller must hold a reference on @mm.
a862f68a
MR
5651 *
5652 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5653 */
5654int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5655 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5656{
d3f5ffca 5657 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5658}
5659
206cb636
SW
5660/*
5661 * Access another process' address space.
5662 * Source/target buffer must be kernel space,
5663 * Do not walk the page table directly, use get_user_pages
5664 */
5665int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5666 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5667{
5668 struct mm_struct *mm;
5669 int ret;
5670
5671 mm = get_task_mm(tsk);
5672 if (!mm)
5673 return 0;
5674
d3f5ffca 5675 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5676
206cb636
SW
5677 mmput(mm);
5678
5679 return ret;
5680}
fcd35857 5681EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5682
03252919
AK
5683/*
5684 * Print the name of a VMA.
5685 */
5686void print_vma_addr(char *prefix, unsigned long ip)
5687{
5688 struct mm_struct *mm = current->mm;
5689 struct vm_area_struct *vma;
5690
e8bff74a 5691 /*
0a7f682d 5692 * we might be running from an atomic context so we cannot sleep
e8bff74a 5693 */
d8ed45c5 5694 if (!mmap_read_trylock(mm))
e8bff74a
IM
5695 return;
5696
03252919
AK
5697 vma = find_vma(mm, ip);
5698 if (vma && vma->vm_file) {
5699 struct file *f = vma->vm_file;
0a7f682d 5700 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5701 if (buf) {
2fbc57c5 5702 char *p;
03252919 5703
9bf39ab2 5704 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5705 if (IS_ERR(p))
5706 p = "?";
2fbc57c5 5707 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5708 vma->vm_start,
5709 vma->vm_end - vma->vm_start);
5710 free_page((unsigned long)buf);
5711 }
5712 }
d8ed45c5 5713 mmap_read_unlock(mm);
03252919 5714}
3ee1afa3 5715
662bbcb2 5716#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5717void __might_fault(const char *file, int line)
3ee1afa3 5718{
9ec23531 5719 if (pagefault_disabled())
662bbcb2 5720 return;
42a38756 5721 __might_sleep(file, line);
9ec23531 5722#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5723 if (current->mm)
da1c55f1 5724 might_lock_read(&current->mm->mmap_lock);
9ec23531 5725#endif
3ee1afa3 5726}
9ec23531 5727EXPORT_SYMBOL(__might_fault);
3ee1afa3 5728#endif
47ad8475
AA
5729
5730#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5731/*
5732 * Process all subpages of the specified huge page with the specified
5733 * operation. The target subpage will be processed last to keep its
5734 * cache lines hot.
5735 */
5736static inline void process_huge_page(
5737 unsigned long addr_hint, unsigned int pages_per_huge_page,
5738 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5739 void *arg)
47ad8475 5740{
c79b57e4
HY
5741 int i, n, base, l;
5742 unsigned long addr = addr_hint &
5743 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5744
c6ddfb6c 5745 /* Process target subpage last to keep its cache lines hot */
47ad8475 5746 might_sleep();
c79b57e4
HY
5747 n = (addr_hint - addr) / PAGE_SIZE;
5748 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5749 /* If target subpage in first half of huge page */
c79b57e4
HY
5750 base = 0;
5751 l = n;
c6ddfb6c 5752 /* Process subpages at the end of huge page */
c79b57e4
HY
5753 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5754 cond_resched();
c6ddfb6c 5755 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5756 }
5757 } else {
c6ddfb6c 5758 /* If target subpage in second half of huge page */
c79b57e4
HY
5759 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5760 l = pages_per_huge_page - n;
c6ddfb6c 5761 /* Process subpages at the begin of huge page */
c79b57e4
HY
5762 for (i = 0; i < base; i++) {
5763 cond_resched();
c6ddfb6c 5764 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5765 }
5766 }
5767 /*
c6ddfb6c
HY
5768 * Process remaining subpages in left-right-left-right pattern
5769 * towards the target subpage
c79b57e4
HY
5770 */
5771 for (i = 0; i < l; i++) {
5772 int left_idx = base + i;
5773 int right_idx = base + 2 * l - 1 - i;
5774
5775 cond_resched();
c6ddfb6c 5776 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5777 cond_resched();
c6ddfb6c 5778 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5779 }
5780}
5781
c6ddfb6c
HY
5782static void clear_gigantic_page(struct page *page,
5783 unsigned long addr,
5784 unsigned int pages_per_huge_page)
5785{
5786 int i;
14455eab 5787 struct page *p;
c6ddfb6c
HY
5788
5789 might_sleep();
14455eab
CL
5790 for (i = 0; i < pages_per_huge_page; i++) {
5791 p = nth_page(page, i);
c6ddfb6c
HY
5792 cond_resched();
5793 clear_user_highpage(p, addr + i * PAGE_SIZE);
5794 }
5795}
5796
5797static void clear_subpage(unsigned long addr, int idx, void *arg)
5798{
5799 struct page *page = arg;
5800
5801 clear_user_highpage(page + idx, addr);
5802}
5803
5804void clear_huge_page(struct page *page,
5805 unsigned long addr_hint, unsigned int pages_per_huge_page)
5806{
5807 unsigned long addr = addr_hint &
5808 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5809
5810 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5811 clear_gigantic_page(page, addr, pages_per_huge_page);
5812 return;
5813 }
5814
5815 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5816}
5817
47ad8475
AA
5818static void copy_user_gigantic_page(struct page *dst, struct page *src,
5819 unsigned long addr,
5820 struct vm_area_struct *vma,
5821 unsigned int pages_per_huge_page)
5822{
5823 int i;
5824 struct page *dst_base = dst;
5825 struct page *src_base = src;
5826
14455eab
CL
5827 for (i = 0; i < pages_per_huge_page; i++) {
5828 dst = nth_page(dst_base, i);
5829 src = nth_page(src_base, i);
5830
47ad8475
AA
5831 cond_resched();
5832 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
47ad8475
AA
5833 }
5834}
5835
c9f4cd71
HY
5836struct copy_subpage_arg {
5837 struct page *dst;
5838 struct page *src;
5839 struct vm_area_struct *vma;
5840};
5841
5842static void copy_subpage(unsigned long addr, int idx, void *arg)
5843{
5844 struct copy_subpage_arg *copy_arg = arg;
5845
5846 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5847 addr, copy_arg->vma);
5848}
5849
47ad8475 5850void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5851 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5852 unsigned int pages_per_huge_page)
5853{
c9f4cd71
HY
5854 unsigned long addr = addr_hint &
5855 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5856 struct copy_subpage_arg arg = {
5857 .dst = dst,
5858 .src = src,
5859 .vma = vma,
5860 };
47ad8475
AA
5861
5862 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5863 copy_user_gigantic_page(dst, src, addr, vma,
5864 pages_per_huge_page);
5865 return;
5866 }
5867
c9f4cd71 5868 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5869}
fa4d75c1 5870
e87340ca
Z
5871long copy_folio_from_user(struct folio *dst_folio,
5872 const void __user *usr_src,
5873 bool allow_pagefault)
fa4d75c1 5874{
e87340ca 5875 void *kaddr;
fa4d75c1 5876 unsigned long i, rc = 0;
e87340ca
Z
5877 unsigned int nr_pages = folio_nr_pages(dst_folio);
5878 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 5879 struct page *subpage;
fa4d75c1 5880
e87340ca
Z
5881 for (i = 0; i < nr_pages; i++) {
5882 subpage = folio_page(dst_folio, i);
5883 kaddr = kmap_local_page(subpage);
0d508c1f
Z
5884 if (!allow_pagefault)
5885 pagefault_disable();
e87340ca 5886 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
5887 if (!allow_pagefault)
5888 pagefault_enable();
e87340ca 5889 kunmap_local(kaddr);
fa4d75c1
MK
5890
5891 ret_val -= (PAGE_SIZE - rc);
5892 if (rc)
5893 break;
5894
e763243c
MS
5895 flush_dcache_page(subpage);
5896
fa4d75c1
MK
5897 cond_resched();
5898 }
5899 return ret_val;
5900}
47ad8475 5901#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5902
40b64acd 5903#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5904
5905static struct kmem_cache *page_ptl_cachep;
5906
5907void __init ptlock_cache_init(void)
5908{
5909 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5910 SLAB_PANIC, NULL);
5911}
5912
539edb58 5913bool ptlock_alloc(struct page *page)
49076ec2
KS
5914{
5915 spinlock_t *ptl;
5916
b35f1819 5917 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5918 if (!ptl)
5919 return false;
539edb58 5920 page->ptl = ptl;
49076ec2
KS
5921 return true;
5922}
5923
539edb58 5924void ptlock_free(struct page *page)
49076ec2 5925{
b35f1819 5926 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5927}
5928#endif