]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm/hugetlb: only drop uffd-wp special pte if required
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
9a840895 55#include <linux/ksm.h>
1da177e4 56#include <linux/rmap.h>
b95f1b31 57#include <linux/export.h>
0ff92245 58#include <linux/delayacct.h>
1da177e4 59#include <linux/init.h>
01c8f1c4 60#include <linux/pfn_t.h>
edc79b2a 61#include <linux/writeback.h>
8a9f3ccd 62#include <linux/memcontrol.h>
cddb8a5c 63#include <linux/mmu_notifier.h>
3dc14741
HD
64#include <linux/swapops.h>
65#include <linux/elf.h>
5a0e3ad6 66#include <linux/gfp.h>
4daae3b4 67#include <linux/migrate.h>
2fbc57c5 68#include <linux/string.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
bce617ed
PX
74#include <linux/perf_event.h>
75#include <linux/ptrace.h>
e80d3909 76#include <linux/vmalloc.h>
999dad82 77#include <linux/mm_inline.h>
1da177e4 78
b3d1411b
JFG
79#include <trace/events/kmem.h>
80
6952b61d 81#include <asm/io.h>
33a709b2 82#include <asm/mmu_context.h>
1da177e4 83#include <asm/pgalloc.h>
7c0f6ba6 84#include <linux/uaccess.h>
1da177e4
LT
85#include <asm/tlb.h>
86#include <asm/tlbflush.h>
1da177e4 87
e80d3909 88#include "pgalloc-track.h"
42b77728 89#include "internal.h"
014bb1de 90#include "swap.h"
42b77728 91
af27d940 92#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 93#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
94#endif
95
a9ee6cf5 96#ifndef CONFIG_NUMA
1da177e4 97unsigned long max_mapnr;
1da177e4 98EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
99
100struct page *mem_map;
1da177e4
LT
101EXPORT_SYMBOL(mem_map);
102#endif
103
5c041f5d
PX
104static vm_fault_t do_fault(struct vm_fault *vmf);
105
1da177e4
LT
106/*
107 * A number of key systems in x86 including ioremap() rely on the assumption
108 * that high_memory defines the upper bound on direct map memory, then end
109 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
110 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
111 * and ZONE_HIGHMEM.
112 */
166f61b9 113void *high_memory;
1da177e4 114EXPORT_SYMBOL(high_memory);
1da177e4 115
32a93233
IM
116/*
117 * Randomize the address space (stacks, mmaps, brk, etc.).
118 *
119 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
120 * as ancient (libc5 based) binaries can segfault. )
121 */
122int randomize_va_space __read_mostly =
123#ifdef CONFIG_COMPAT_BRK
124 1;
125#else
126 2;
127#endif
a62eaf15 128
83d116c5
JH
129#ifndef arch_faults_on_old_pte
130static inline bool arch_faults_on_old_pte(void)
131{
132 /*
133 * Those arches which don't have hw access flag feature need to
134 * implement their own helper. By default, "true" means pagefault
135 * will be hit on old pte.
136 */
137 return true;
138}
139#endif
140
46bdb427
WD
141#ifndef arch_wants_old_prefaulted_pte
142static inline bool arch_wants_old_prefaulted_pte(void)
143{
144 /*
145 * Transitioning a PTE from 'old' to 'young' can be expensive on
146 * some architectures, even if it's performed in hardware. By
147 * default, "false" means prefaulted entries will be 'young'.
148 */
149 return false;
150}
151#endif
152
a62eaf15
AK
153static int __init disable_randmaps(char *s)
154{
155 randomize_va_space = 0;
9b41046c 156 return 1;
a62eaf15
AK
157}
158__setup("norandmaps", disable_randmaps);
159
62eede62 160unsigned long zero_pfn __read_mostly;
0b70068e
AB
161EXPORT_SYMBOL(zero_pfn);
162
166f61b9
TH
163unsigned long highest_memmap_pfn __read_mostly;
164
a13ea5b7
HD
165/*
166 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
167 */
168static int __init init_zero_pfn(void)
169{
170 zero_pfn = page_to_pfn(ZERO_PAGE(0));
171 return 0;
172}
e720e7d0 173early_initcall(init_zero_pfn);
a62eaf15 174
e4dcad20 175void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 176{
e4dcad20 177 trace_rss_stat(mm, member, count);
b3d1411b 178}
d559db08 179
34e55232
KH
180#if defined(SPLIT_RSS_COUNTING)
181
ea48cf78 182void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
183{
184 int i;
185
186 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
187 if (current->rss_stat.count[i]) {
188 add_mm_counter(mm, i, current->rss_stat.count[i]);
189 current->rss_stat.count[i] = 0;
34e55232
KH
190 }
191 }
05af2e10 192 current->rss_stat.events = 0;
34e55232
KH
193}
194
195static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
196{
197 struct task_struct *task = current;
198
199 if (likely(task->mm == mm))
200 task->rss_stat.count[member] += val;
201 else
202 add_mm_counter(mm, member, val);
203}
204#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
205#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
206
207/* sync counter once per 64 page faults */
208#define TASK_RSS_EVENTS_THRESH (64)
209static void check_sync_rss_stat(struct task_struct *task)
210{
211 if (unlikely(task != current))
212 return;
213 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 214 sync_mm_rss(task->mm);
34e55232 215}
9547d01b 216#else /* SPLIT_RSS_COUNTING */
34e55232
KH
217
218#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
219#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
220
221static void check_sync_rss_stat(struct task_struct *task)
222{
223}
224
9547d01b
PZ
225#endif /* SPLIT_RSS_COUNTING */
226
1da177e4
LT
227/*
228 * Note: this doesn't free the actual pages themselves. That
229 * has been handled earlier when unmapping all the memory regions.
230 */
9e1b32ca
BH
231static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
232 unsigned long addr)
1da177e4 233{
2f569afd 234 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 235 pmd_clear(pmd);
9e1b32ca 236 pte_free_tlb(tlb, token, addr);
c4812909 237 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
238}
239
e0da382c
HD
240static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
241 unsigned long addr, unsigned long end,
242 unsigned long floor, unsigned long ceiling)
1da177e4
LT
243{
244 pmd_t *pmd;
245 unsigned long next;
e0da382c 246 unsigned long start;
1da177e4 247
e0da382c 248 start = addr;
1da177e4 249 pmd = pmd_offset(pud, addr);
1da177e4
LT
250 do {
251 next = pmd_addr_end(addr, end);
252 if (pmd_none_or_clear_bad(pmd))
253 continue;
9e1b32ca 254 free_pte_range(tlb, pmd, addr);
1da177e4
LT
255 } while (pmd++, addr = next, addr != end);
256
e0da382c
HD
257 start &= PUD_MASK;
258 if (start < floor)
259 return;
260 if (ceiling) {
261 ceiling &= PUD_MASK;
262 if (!ceiling)
263 return;
1da177e4 264 }
e0da382c
HD
265 if (end - 1 > ceiling - 1)
266 return;
267
268 pmd = pmd_offset(pud, start);
269 pud_clear(pud);
9e1b32ca 270 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 271 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
272}
273
c2febafc 274static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
275 unsigned long addr, unsigned long end,
276 unsigned long floor, unsigned long ceiling)
1da177e4
LT
277{
278 pud_t *pud;
279 unsigned long next;
e0da382c 280 unsigned long start;
1da177e4 281
e0da382c 282 start = addr;
c2febafc 283 pud = pud_offset(p4d, addr);
1da177e4
LT
284 do {
285 next = pud_addr_end(addr, end);
286 if (pud_none_or_clear_bad(pud))
287 continue;
e0da382c 288 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
289 } while (pud++, addr = next, addr != end);
290
c2febafc
KS
291 start &= P4D_MASK;
292 if (start < floor)
293 return;
294 if (ceiling) {
295 ceiling &= P4D_MASK;
296 if (!ceiling)
297 return;
298 }
299 if (end - 1 > ceiling - 1)
300 return;
301
302 pud = pud_offset(p4d, start);
303 p4d_clear(p4d);
304 pud_free_tlb(tlb, pud, start);
b4e98d9a 305 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
306}
307
308static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
309 unsigned long addr, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
311{
312 p4d_t *p4d;
313 unsigned long next;
314 unsigned long start;
315
316 start = addr;
317 p4d = p4d_offset(pgd, addr);
318 do {
319 next = p4d_addr_end(addr, end);
320 if (p4d_none_or_clear_bad(p4d))
321 continue;
322 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
323 } while (p4d++, addr = next, addr != end);
324
e0da382c
HD
325 start &= PGDIR_MASK;
326 if (start < floor)
327 return;
328 if (ceiling) {
329 ceiling &= PGDIR_MASK;
330 if (!ceiling)
331 return;
1da177e4 332 }
e0da382c
HD
333 if (end - 1 > ceiling - 1)
334 return;
335
c2febafc 336 p4d = p4d_offset(pgd, start);
e0da382c 337 pgd_clear(pgd);
c2febafc 338 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
339}
340
341/*
e0da382c 342 * This function frees user-level page tables of a process.
1da177e4 343 */
42b77728 344void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
345 unsigned long addr, unsigned long end,
346 unsigned long floor, unsigned long ceiling)
1da177e4
LT
347{
348 pgd_t *pgd;
349 unsigned long next;
e0da382c
HD
350
351 /*
352 * The next few lines have given us lots of grief...
353 *
354 * Why are we testing PMD* at this top level? Because often
355 * there will be no work to do at all, and we'd prefer not to
356 * go all the way down to the bottom just to discover that.
357 *
358 * Why all these "- 1"s? Because 0 represents both the bottom
359 * of the address space and the top of it (using -1 for the
360 * top wouldn't help much: the masks would do the wrong thing).
361 * The rule is that addr 0 and floor 0 refer to the bottom of
362 * the address space, but end 0 and ceiling 0 refer to the top
363 * Comparisons need to use "end - 1" and "ceiling - 1" (though
364 * that end 0 case should be mythical).
365 *
366 * Wherever addr is brought up or ceiling brought down, we must
367 * be careful to reject "the opposite 0" before it confuses the
368 * subsequent tests. But what about where end is brought down
369 * by PMD_SIZE below? no, end can't go down to 0 there.
370 *
371 * Whereas we round start (addr) and ceiling down, by different
372 * masks at different levels, in order to test whether a table
373 * now has no other vmas using it, so can be freed, we don't
374 * bother to round floor or end up - the tests don't need that.
375 */
1da177e4 376
e0da382c
HD
377 addr &= PMD_MASK;
378 if (addr < floor) {
379 addr += PMD_SIZE;
380 if (!addr)
381 return;
382 }
383 if (ceiling) {
384 ceiling &= PMD_MASK;
385 if (!ceiling)
386 return;
387 }
388 if (end - 1 > ceiling - 1)
389 end -= PMD_SIZE;
390 if (addr > end - 1)
391 return;
07e32661
AK
392 /*
393 * We add page table cache pages with PAGE_SIZE,
394 * (see pte_free_tlb()), flush the tlb if we need
395 */
ed6a7935 396 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 397 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
398 do {
399 next = pgd_addr_end(addr, end);
400 if (pgd_none_or_clear_bad(pgd))
401 continue;
c2febafc 402 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 403 } while (pgd++, addr = next, addr != end);
e0da382c
HD
404}
405
42b77728 406void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 407 unsigned long floor, unsigned long ceiling)
e0da382c
HD
408{
409 while (vma) {
410 struct vm_area_struct *next = vma->vm_next;
411 unsigned long addr = vma->vm_start;
412
8f4f8c16 413 /*
25d9e2d1
NP
414 * Hide vma from rmap and truncate_pagecache before freeing
415 * pgtables
8f4f8c16 416 */
5beb4930 417 unlink_anon_vmas(vma);
8f4f8c16
HD
418 unlink_file_vma(vma);
419
9da61aef 420 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 421 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 422 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
423 } else {
424 /*
425 * Optimization: gather nearby vmas into one call down
426 */
427 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 428 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
429 vma = next;
430 next = vma->vm_next;
5beb4930 431 unlink_anon_vmas(vma);
8f4f8c16 432 unlink_file_vma(vma);
3bf5ee95
HD
433 }
434 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 435 floor, next ? next->vm_start : ceiling);
3bf5ee95 436 }
e0da382c
HD
437 vma = next;
438 }
1da177e4
LT
439}
440
03c4f204 441void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 442{
03c4f204 443 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 444
8ac1f832 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 446 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
447 /*
448 * Ensure all pte setup (eg. pte page lock and page clearing) are
449 * visible before the pte is made visible to other CPUs by being
450 * put into page tables.
451 *
452 * The other side of the story is the pointer chasing in the page
453 * table walking code (when walking the page table without locking;
454 * ie. most of the time). Fortunately, these data accesses consist
455 * of a chain of data-dependent loads, meaning most CPUs (alpha
456 * being the notable exception) will already guarantee loads are
457 * seen in-order. See the alpha page table accessors for the
458 * smp_rmb() barriers in page table walking code.
459 */
460 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
461 pmd_populate(mm, pmd, *pte);
462 *pte = NULL;
4b471e88 463 }
c4088ebd 464 spin_unlock(ptl);
03c4f204
QZ
465}
466
4cf58924 467int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 468{
4cf58924 469 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
470 if (!new)
471 return -ENOMEM;
472
03c4f204 473 pmd_install(mm, pmd, &new);
2f569afd
MS
474 if (new)
475 pte_free(mm, new);
1bb3630e 476 return 0;
1da177e4
LT
477}
478
4cf58924 479int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 480{
4cf58924 481 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
482 if (!new)
483 return -ENOMEM;
484
485 spin_lock(&init_mm.page_table_lock);
8ac1f832 486 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 487 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 488 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 489 new = NULL;
4b471e88 490 }
1bb3630e 491 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
492 if (new)
493 pte_free_kernel(&init_mm, new);
1bb3630e 494 return 0;
1da177e4
LT
495}
496
d559db08
KH
497static inline void init_rss_vec(int *rss)
498{
499 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
500}
501
502static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 503{
d559db08
KH
504 int i;
505
34e55232 506 if (current->mm == mm)
05af2e10 507 sync_mm_rss(mm);
d559db08
KH
508 for (i = 0; i < NR_MM_COUNTERS; i++)
509 if (rss[i])
510 add_mm_counter(mm, i, rss[i]);
ae859762
HD
511}
512
b5810039 513/*
6aab341e
LT
514 * This function is called to print an error when a bad pte
515 * is found. For example, we might have a PFN-mapped pte in
516 * a region that doesn't allow it.
b5810039
NP
517 *
518 * The calling function must still handle the error.
519 */
3dc14741
HD
520static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
521 pte_t pte, struct page *page)
b5810039 522{
3dc14741 523 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
524 p4d_t *p4d = p4d_offset(pgd, addr);
525 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
526 pmd_t *pmd = pmd_offset(pud, addr);
527 struct address_space *mapping;
528 pgoff_t index;
d936cf9b
HD
529 static unsigned long resume;
530 static unsigned long nr_shown;
531 static unsigned long nr_unshown;
532
533 /*
534 * Allow a burst of 60 reports, then keep quiet for that minute;
535 * or allow a steady drip of one report per second.
536 */
537 if (nr_shown == 60) {
538 if (time_before(jiffies, resume)) {
539 nr_unshown++;
540 return;
541 }
542 if (nr_unshown) {
1170532b
JP
543 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
544 nr_unshown);
d936cf9b
HD
545 nr_unshown = 0;
546 }
547 nr_shown = 0;
548 }
549 if (nr_shown++ == 0)
550 resume = jiffies + 60 * HZ;
3dc14741
HD
551
552 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
553 index = linear_page_index(vma, addr);
554
1170532b
JP
555 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
556 current->comm,
557 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 558 if (page)
f0b791a3 559 dump_page(page, "bad pte");
6aa9b8b2 560 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 561 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 562 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
563 vma->vm_file,
564 vma->vm_ops ? vma->vm_ops->fault : NULL,
565 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
566 mapping ? mapping->a_ops->readpage : NULL);
b5810039 567 dump_stack();
373d4d09 568 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
569}
570
ee498ed7 571/*
7e675137 572 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 573 *
7e675137
NP
574 * "Special" mappings do not wish to be associated with a "struct page" (either
575 * it doesn't exist, or it exists but they don't want to touch it). In this
576 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 577 *
7e675137
NP
578 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
579 * pte bit, in which case this function is trivial. Secondly, an architecture
580 * may not have a spare pte bit, which requires a more complicated scheme,
581 * described below.
582 *
583 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
584 * special mapping (even if there are underlying and valid "struct pages").
585 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 586 *
b379d790
JH
587 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
588 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
589 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
590 * mapping will always honor the rule
6aab341e
LT
591 *
592 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
593 *
7e675137
NP
594 * And for normal mappings this is false.
595 *
596 * This restricts such mappings to be a linear translation from virtual address
597 * to pfn. To get around this restriction, we allow arbitrary mappings so long
598 * as the vma is not a COW mapping; in that case, we know that all ptes are
599 * special (because none can have been COWed).
b379d790 600 *
b379d790 601 *
7e675137 602 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
603 *
604 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
605 * page" backing, however the difference is that _all_ pages with a struct
606 * page (that is, those where pfn_valid is true) are refcounted and considered
607 * normal pages by the VM. The disadvantage is that pages are refcounted
608 * (which can be slower and simply not an option for some PFNMAP users). The
609 * advantage is that we don't have to follow the strict linearity rule of
610 * PFNMAP mappings in order to support COWable mappings.
611 *
ee498ed7 612 */
25b2995a
CH
613struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
614 pte_t pte)
ee498ed7 615{
22b31eec 616 unsigned long pfn = pte_pfn(pte);
7e675137 617
00b3a331 618 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 619 if (likely(!pte_special(pte)))
22b31eec 620 goto check_pfn;
667a0a06
DV
621 if (vma->vm_ops && vma->vm_ops->find_special_page)
622 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
623 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
624 return NULL;
df6ad698
JG
625 if (is_zero_pfn(pfn))
626 return NULL;
e1fb4a08
DJ
627 if (pte_devmap(pte))
628 return NULL;
629
df6ad698 630 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
631 return NULL;
632 }
633
00b3a331 634 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 635
b379d790
JH
636 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
637 if (vma->vm_flags & VM_MIXEDMAP) {
638 if (!pfn_valid(pfn))
639 return NULL;
640 goto out;
641 } else {
7e675137
NP
642 unsigned long off;
643 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
644 if (pfn == vma->vm_pgoff + off)
645 return NULL;
646 if (!is_cow_mapping(vma->vm_flags))
647 return NULL;
648 }
6aab341e
LT
649 }
650
b38af472
HD
651 if (is_zero_pfn(pfn))
652 return NULL;
00b3a331 653
22b31eec
HD
654check_pfn:
655 if (unlikely(pfn > highest_memmap_pfn)) {
656 print_bad_pte(vma, addr, pte, NULL);
657 return NULL;
658 }
6aab341e
LT
659
660 /*
7e675137 661 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 662 * eg. VDSO mappings can cause them to exist.
6aab341e 663 */
b379d790 664out:
6aab341e 665 return pfn_to_page(pfn);
ee498ed7
HD
666}
667
28093f9f
GS
668#ifdef CONFIG_TRANSPARENT_HUGEPAGE
669struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
670 pmd_t pmd)
671{
672 unsigned long pfn = pmd_pfn(pmd);
673
674 /*
675 * There is no pmd_special() but there may be special pmds, e.g.
676 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 677 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
678 */
679 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
680 if (vma->vm_flags & VM_MIXEDMAP) {
681 if (!pfn_valid(pfn))
682 return NULL;
683 goto out;
684 } else {
685 unsigned long off;
686 off = (addr - vma->vm_start) >> PAGE_SHIFT;
687 if (pfn == vma->vm_pgoff + off)
688 return NULL;
689 if (!is_cow_mapping(vma->vm_flags))
690 return NULL;
691 }
692 }
693
e1fb4a08
DJ
694 if (pmd_devmap(pmd))
695 return NULL;
3cde287b 696 if (is_huge_zero_pmd(pmd))
28093f9f
GS
697 return NULL;
698 if (unlikely(pfn > highest_memmap_pfn))
699 return NULL;
700
701 /*
702 * NOTE! We still have PageReserved() pages in the page tables.
703 * eg. VDSO mappings can cause them to exist.
704 */
705out:
706 return pfn_to_page(pfn);
707}
708#endif
709
b756a3b5
AP
710static void restore_exclusive_pte(struct vm_area_struct *vma,
711 struct page *page, unsigned long address,
712 pte_t *ptep)
713{
714 pte_t pte;
715 swp_entry_t entry;
716
717 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
718 if (pte_swp_soft_dirty(*ptep))
719 pte = pte_mksoft_dirty(pte);
720
721 entry = pte_to_swp_entry(*ptep);
722 if (pte_swp_uffd_wp(*ptep))
723 pte = pte_mkuffd_wp(pte);
724 else if (is_writable_device_exclusive_entry(entry))
725 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
726
6c287605
DH
727 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
728
b756a3b5
AP
729 /*
730 * No need to take a page reference as one was already
731 * created when the swap entry was made.
732 */
733 if (PageAnon(page))
f1e2db12 734 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
735 else
736 /*
737 * Currently device exclusive access only supports anonymous
738 * memory so the entry shouldn't point to a filebacked page.
739 */
740 WARN_ON_ONCE(!PageAnon(page));
741
1eba86c0
PT
742 set_pte_at(vma->vm_mm, address, ptep, pte);
743
b756a3b5
AP
744 /*
745 * No need to invalidate - it was non-present before. However
746 * secondary CPUs may have mappings that need invalidating.
747 */
748 update_mmu_cache(vma, address, ptep);
749}
750
751/*
752 * Tries to restore an exclusive pte if the page lock can be acquired without
753 * sleeping.
754 */
755static int
756try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
757 unsigned long addr)
758{
759 swp_entry_t entry = pte_to_swp_entry(*src_pte);
760 struct page *page = pfn_swap_entry_to_page(entry);
761
762 if (trylock_page(page)) {
763 restore_exclusive_pte(vma, page, addr, src_pte);
764 unlock_page(page);
765 return 0;
766 }
767
768 return -EBUSY;
769}
770
1da177e4
LT
771/*
772 * copy one vm_area from one task to the other. Assumes the page tables
773 * already present in the new task to be cleared in the whole range
774 * covered by this vma.
1da177e4
LT
775 */
776
df3a57d1
LT
777static unsigned long
778copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
779 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
780 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 781{
8f34f1ea 782 unsigned long vm_flags = dst_vma->vm_flags;
1da177e4
LT
783 pte_t pte = *src_pte;
784 struct page *page;
df3a57d1
LT
785 swp_entry_t entry = pte_to_swp_entry(pte);
786
787 if (likely(!non_swap_entry(entry))) {
788 if (swap_duplicate(entry) < 0)
9a5cc85c 789 return -EIO;
df3a57d1
LT
790
791 /* make sure dst_mm is on swapoff's mmlist. */
792 if (unlikely(list_empty(&dst_mm->mmlist))) {
793 spin_lock(&mmlist_lock);
794 if (list_empty(&dst_mm->mmlist))
795 list_add(&dst_mm->mmlist,
796 &src_mm->mmlist);
797 spin_unlock(&mmlist_lock);
798 }
1493a191
DH
799 /* Mark the swap entry as shared. */
800 if (pte_swp_exclusive(*src_pte)) {
801 pte = pte_swp_clear_exclusive(*src_pte);
802 set_pte_at(src_mm, addr, src_pte, pte);
803 }
df3a57d1
LT
804 rss[MM_SWAPENTS]++;
805 } else if (is_migration_entry(entry)) {
af5cdaf8 806 page = pfn_swap_entry_to_page(entry);
1da177e4 807
df3a57d1 808 rss[mm_counter(page)]++;
5042db43 809
6c287605 810 if (!is_readable_migration_entry(entry) &&
df3a57d1 811 is_cow_mapping(vm_flags)) {
5042db43 812 /*
6c287605
DH
813 * COW mappings require pages in both parent and child
814 * to be set to read. A previously exclusive entry is
815 * now shared.
5042db43 816 */
4dd845b5
AP
817 entry = make_readable_migration_entry(
818 swp_offset(entry));
df3a57d1
LT
819 pte = swp_entry_to_pte(entry);
820 if (pte_swp_soft_dirty(*src_pte))
821 pte = pte_swp_mksoft_dirty(pte);
822 if (pte_swp_uffd_wp(*src_pte))
823 pte = pte_swp_mkuffd_wp(pte);
824 set_pte_at(src_mm, addr, src_pte, pte);
825 }
826 } else if (is_device_private_entry(entry)) {
af5cdaf8 827 page = pfn_swap_entry_to_page(entry);
5042db43 828
df3a57d1
LT
829 /*
830 * Update rss count even for unaddressable pages, as
831 * they should treated just like normal pages in this
832 * respect.
833 *
834 * We will likely want to have some new rss counters
835 * for unaddressable pages, at some point. But for now
836 * keep things as they are.
837 */
838 get_page(page);
839 rss[mm_counter(page)]++;
fb3d824d
DH
840 /* Cannot fail as these pages cannot get pinned. */
841 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
842
843 /*
844 * We do not preserve soft-dirty information, because so
845 * far, checkpoint/restore is the only feature that
846 * requires that. And checkpoint/restore does not work
847 * when a device driver is involved (you cannot easily
848 * save and restore device driver state).
849 */
4dd845b5 850 if (is_writable_device_private_entry(entry) &&
df3a57d1 851 is_cow_mapping(vm_flags)) {
4dd845b5
AP
852 entry = make_readable_device_private_entry(
853 swp_offset(entry));
df3a57d1
LT
854 pte = swp_entry_to_pte(entry);
855 if (pte_swp_uffd_wp(*src_pte))
856 pte = pte_swp_mkuffd_wp(pte);
857 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 858 }
b756a3b5
AP
859 } else if (is_device_exclusive_entry(entry)) {
860 /*
861 * Make device exclusive entries present by restoring the
862 * original entry then copying as for a present pte. Device
863 * exclusive entries currently only support private writable
864 * (ie. COW) mappings.
865 */
866 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
867 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
868 return -EBUSY;
869 return -ENOENT;
c56d1b62
PX
870 } else if (is_pte_marker_entry(entry)) {
871 /*
872 * We're copying the pgtable should only because dst_vma has
873 * uffd-wp enabled, do sanity check.
874 */
875 WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
876 set_pte_at(dst_mm, addr, dst_pte, pte);
877 return 0;
1da177e4 878 }
8f34f1ea
PX
879 if (!userfaultfd_wp(dst_vma))
880 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
881 set_pte_at(dst_mm, addr, dst_pte, pte);
882 return 0;
883}
884
70e806e4 885/*
b51ad4f8 886 * Copy a present and normal page.
70e806e4 887 *
b51ad4f8
DH
888 * NOTE! The usual case is that this isn't required;
889 * instead, the caller can just increase the page refcount
890 * and re-use the pte the traditional way.
70e806e4
PX
891 *
892 * And if we need a pre-allocated page but don't yet have
893 * one, return a negative error to let the preallocation
894 * code know so that it can do so outside the page table
895 * lock.
896 */
897static inline int
c78f4636
PX
898copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
899 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
b51ad4f8 900 struct page **prealloc, struct page *page)
70e806e4
PX
901{
902 struct page *new_page;
b51ad4f8 903 pte_t pte;
70e806e4 904
70e806e4
PX
905 new_page = *prealloc;
906 if (!new_page)
907 return -EAGAIN;
908
909 /*
910 * We have a prealloc page, all good! Take it
911 * over and copy the page & arm it.
912 */
913 *prealloc = NULL;
c78f4636 914 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 915 __SetPageUptodate(new_page);
40f2bbf7 916 page_add_new_anon_rmap(new_page, dst_vma, addr);
c78f4636 917 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
918 rss[mm_counter(new_page)]++;
919
920 /* All done, just insert the new page copy in the child */
c78f4636
PX
921 pte = mk_pte(new_page, dst_vma->vm_page_prot);
922 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
8f34f1ea
PX
923 if (userfaultfd_pte_wp(dst_vma, *src_pte))
924 /* Uffd-wp needs to be delivered to dest pte as well */
925 pte = pte_wrprotect(pte_mkuffd_wp(pte));
c78f4636 926 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
927 return 0;
928}
929
930/*
931 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
932 * is required to copy this pte.
933 */
934static inline int
c78f4636
PX
935copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
936 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
937 struct page **prealloc)
df3a57d1 938{
c78f4636
PX
939 struct mm_struct *src_mm = src_vma->vm_mm;
940 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
941 pte_t pte = *src_pte;
942 struct page *page;
943
c78f4636 944 page = vm_normal_page(src_vma, addr, pte);
fb3d824d 945 if (page && PageAnon(page)) {
b51ad4f8
DH
946 /*
947 * If this page may have been pinned by the parent process,
948 * copy the page immediately for the child so that we'll always
949 * guarantee the pinned page won't be randomly replaced in the
950 * future.
951 */
fb3d824d
DH
952 get_page(page);
953 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
954 /* Page maybe pinned, we have to copy. */
955 put_page(page);
956 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
957 addr, rss, prealloc, page);
958 }
959 rss[mm_counter(page)]++;
b51ad4f8 960 } else if (page) {
70e806e4 961 get_page(page);
fb3d824d 962 page_dup_file_rmap(page, false);
70e806e4
PX
963 rss[mm_counter(page)]++;
964 }
965
1da177e4
LT
966 /*
967 * If it's a COW mapping, write protect it both
968 * in the parent and the child
969 */
1b2de5d0 970 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 971 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 972 pte = pte_wrprotect(pte);
1da177e4 973 }
6c287605 974 VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
1da177e4
LT
975
976 /*
977 * If it's a shared mapping, mark it clean in
978 * the child
979 */
980 if (vm_flags & VM_SHARED)
981 pte = pte_mkclean(pte);
982 pte = pte_mkold(pte);
6aab341e 983
8f34f1ea 984 if (!userfaultfd_wp(dst_vma))
b569a176
PX
985 pte = pte_clear_uffd_wp(pte);
986
c78f4636 987 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
988 return 0;
989}
990
991static inline struct page *
992page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
993 unsigned long addr)
994{
995 struct page *new_page;
996
997 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
998 if (!new_page)
999 return NULL;
1000
8f425e4e 1001 if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
70e806e4
PX
1002 put_page(new_page);
1003 return NULL;
6aab341e 1004 }
70e806e4 1005 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 1006
70e806e4 1007 return new_page;
1da177e4
LT
1008}
1009
c78f4636
PX
1010static int
1011copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1012 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1013 unsigned long end)
1da177e4 1014{
c78f4636
PX
1015 struct mm_struct *dst_mm = dst_vma->vm_mm;
1016 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1017 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1018 pte_t *src_pte, *dst_pte;
c74df32c 1019 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1020 int progress, ret = 0;
d559db08 1021 int rss[NR_MM_COUNTERS];
570a335b 1022 swp_entry_t entry = (swp_entry_t){0};
70e806e4 1023 struct page *prealloc = NULL;
1da177e4
LT
1024
1025again:
70e806e4 1026 progress = 0;
d559db08
KH
1027 init_rss_vec(rss);
1028
c74df32c 1029 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1030 if (!dst_pte) {
1031 ret = -ENOMEM;
1032 goto out;
1033 }
ece0e2b6 1034 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1035 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1036 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1037 orig_src_pte = src_pte;
1038 orig_dst_pte = dst_pte;
6606c3e0 1039 arch_enter_lazy_mmu_mode();
1da177e4 1040
1da177e4
LT
1041 do {
1042 /*
1043 * We are holding two locks at this point - either of them
1044 * could generate latencies in another task on another CPU.
1045 */
e040f218
HD
1046 if (progress >= 32) {
1047 progress = 0;
1048 if (need_resched() ||
95c354fe 1049 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1050 break;
1051 }
1da177e4
LT
1052 if (pte_none(*src_pte)) {
1053 progress++;
1054 continue;
1055 }
79a1971c 1056 if (unlikely(!pte_present(*src_pte))) {
9a5cc85c
AP
1057 ret = copy_nonpresent_pte(dst_mm, src_mm,
1058 dst_pte, src_pte,
1059 dst_vma, src_vma,
1060 addr, rss);
1061 if (ret == -EIO) {
1062 entry = pte_to_swp_entry(*src_pte);
79a1971c 1063 break;
b756a3b5
AP
1064 } else if (ret == -EBUSY) {
1065 break;
1066 } else if (!ret) {
1067 progress += 8;
1068 continue;
9a5cc85c 1069 }
b756a3b5
AP
1070
1071 /*
1072 * Device exclusive entry restored, continue by copying
1073 * the now present pte.
1074 */
1075 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1076 }
70e806e4 1077 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1078 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1079 addr, rss, &prealloc);
70e806e4
PX
1080 /*
1081 * If we need a pre-allocated page for this pte, drop the
1082 * locks, allocate, and try again.
1083 */
1084 if (unlikely(ret == -EAGAIN))
1085 break;
1086 if (unlikely(prealloc)) {
1087 /*
1088 * pre-alloc page cannot be reused by next time so as
1089 * to strictly follow mempolicy (e.g., alloc_page_vma()
1090 * will allocate page according to address). This
1091 * could only happen if one pinned pte changed.
1092 */
1093 put_page(prealloc);
1094 prealloc = NULL;
1095 }
1da177e4
LT
1096 progress += 8;
1097 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1098
6606c3e0 1099 arch_leave_lazy_mmu_mode();
c74df32c 1100 spin_unlock(src_ptl);
ece0e2b6 1101 pte_unmap(orig_src_pte);
d559db08 1102 add_mm_rss_vec(dst_mm, rss);
c36987e2 1103 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1104 cond_resched();
570a335b 1105
9a5cc85c
AP
1106 if (ret == -EIO) {
1107 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1108 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1109 ret = -ENOMEM;
1110 goto out;
1111 }
1112 entry.val = 0;
b756a3b5
AP
1113 } else if (ret == -EBUSY) {
1114 goto out;
9a5cc85c 1115 } else if (ret == -EAGAIN) {
c78f4636 1116 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1117 if (!prealloc)
570a335b 1118 return -ENOMEM;
9a5cc85c
AP
1119 } else if (ret) {
1120 VM_WARN_ON_ONCE(1);
570a335b 1121 }
9a5cc85c
AP
1122
1123 /* We've captured and resolved the error. Reset, try again. */
1124 ret = 0;
1125
1da177e4
LT
1126 if (addr != end)
1127 goto again;
70e806e4
PX
1128out:
1129 if (unlikely(prealloc))
1130 put_page(prealloc);
1131 return ret;
1da177e4
LT
1132}
1133
c78f4636
PX
1134static inline int
1135copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1136 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1137 unsigned long end)
1da177e4 1138{
c78f4636
PX
1139 struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1141 pmd_t *src_pmd, *dst_pmd;
1142 unsigned long next;
1143
1144 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1145 if (!dst_pmd)
1146 return -ENOMEM;
1147 src_pmd = pmd_offset(src_pud, addr);
1148 do {
1149 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1150 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1151 || pmd_devmap(*src_pmd)) {
71e3aac0 1152 int err;
c78f4636 1153 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1154 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1155 addr, dst_vma, src_vma);
71e3aac0
AA
1156 if (err == -ENOMEM)
1157 return -ENOMEM;
1158 if (!err)
1159 continue;
1160 /* fall through */
1161 }
1da177e4
LT
1162 if (pmd_none_or_clear_bad(src_pmd))
1163 continue;
c78f4636
PX
1164 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1165 addr, next))
1da177e4
LT
1166 return -ENOMEM;
1167 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1168 return 0;
1169}
1170
c78f4636
PX
1171static inline int
1172copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1173 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1174 unsigned long end)
1da177e4 1175{
c78f4636
PX
1176 struct mm_struct *dst_mm = dst_vma->vm_mm;
1177 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1178 pud_t *src_pud, *dst_pud;
1179 unsigned long next;
1180
c2febafc 1181 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1182 if (!dst_pud)
1183 return -ENOMEM;
c2febafc 1184 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1185 do {
1186 next = pud_addr_end(addr, end);
a00cc7d9
MW
1187 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1188 int err;
1189
c78f4636 1190 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1191 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1192 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1193 if (err == -ENOMEM)
1194 return -ENOMEM;
1195 if (!err)
1196 continue;
1197 /* fall through */
1198 }
1da177e4
LT
1199 if (pud_none_or_clear_bad(src_pud))
1200 continue;
c78f4636
PX
1201 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1202 addr, next))
1da177e4
LT
1203 return -ENOMEM;
1204 } while (dst_pud++, src_pud++, addr = next, addr != end);
1205 return 0;
1206}
1207
c78f4636
PX
1208static inline int
1209copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1210 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1211 unsigned long end)
c2febafc 1212{
c78f4636 1213 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1214 p4d_t *src_p4d, *dst_p4d;
1215 unsigned long next;
1216
1217 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1218 if (!dst_p4d)
1219 return -ENOMEM;
1220 src_p4d = p4d_offset(src_pgd, addr);
1221 do {
1222 next = p4d_addr_end(addr, end);
1223 if (p4d_none_or_clear_bad(src_p4d))
1224 continue;
c78f4636
PX
1225 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1226 addr, next))
c2febafc
KS
1227 return -ENOMEM;
1228 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1229 return 0;
1230}
1231
c56d1b62
PX
1232/*
1233 * Return true if the vma needs to copy the pgtable during this fork(). Return
1234 * false when we can speed up fork() by allowing lazy page faults later until
1235 * when the child accesses the memory range.
1236 */
1237bool
1238vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1239{
1240 /*
1241 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1242 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1243 * contains uffd-wp protection information, that's something we can't
1244 * retrieve from page cache, and skip copying will lose those info.
1245 */
1246 if (userfaultfd_wp(dst_vma))
1247 return true;
1248
1249 if (src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP))
1250 return true;
1251
1252 if (src_vma->anon_vma)
1253 return true;
1254
1255 /*
1256 * Don't copy ptes where a page fault will fill them correctly. Fork
1257 * becomes much lighter when there are big shared or private readonly
1258 * mappings. The tradeoff is that copy_page_range is more efficient
1259 * than faulting.
1260 */
1261 return false;
1262}
1263
c78f4636
PX
1264int
1265copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1266{
1267 pgd_t *src_pgd, *dst_pgd;
1268 unsigned long next;
c78f4636
PX
1269 unsigned long addr = src_vma->vm_start;
1270 unsigned long end = src_vma->vm_end;
1271 struct mm_struct *dst_mm = dst_vma->vm_mm;
1272 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1273 struct mmu_notifier_range range;
2ec74c3e 1274 bool is_cow;
cddb8a5c 1275 int ret;
1da177e4 1276
c56d1b62 1277 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1278 return 0;
d992895b 1279
c78f4636
PX
1280 if (is_vm_hugetlb_page(src_vma))
1281 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1282
c78f4636 1283 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1284 /*
1285 * We do not free on error cases below as remove_vma
1286 * gets called on error from higher level routine
1287 */
c78f4636 1288 ret = track_pfn_copy(src_vma);
2ab64037 1289 if (ret)
1290 return ret;
1291 }
1292
cddb8a5c
AA
1293 /*
1294 * We need to invalidate the secondary MMU mappings only when
1295 * there could be a permission downgrade on the ptes of the
1296 * parent mm. And a permission downgrade will only happen if
1297 * is_cow_mapping() returns true.
1298 */
c78f4636 1299 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1300
1301 if (is_cow) {
7269f999 1302 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1303 0, src_vma, src_mm, addr, end);
ac46d4f3 1304 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1305 /*
1306 * Disabling preemption is not needed for the write side, as
1307 * the read side doesn't spin, but goes to the mmap_lock.
1308 *
1309 * Use the raw variant of the seqcount_t write API to avoid
1310 * lockdep complaining about preemptibility.
1311 */
1312 mmap_assert_write_locked(src_mm);
1313 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1314 }
cddb8a5c
AA
1315
1316 ret = 0;
1da177e4
LT
1317 dst_pgd = pgd_offset(dst_mm, addr);
1318 src_pgd = pgd_offset(src_mm, addr);
1319 do {
1320 next = pgd_addr_end(addr, end);
1321 if (pgd_none_or_clear_bad(src_pgd))
1322 continue;
c78f4636
PX
1323 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1324 addr, next))) {
cddb8a5c
AA
1325 ret = -ENOMEM;
1326 break;
1327 }
1da177e4 1328 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1329
57efa1fe
JG
1330 if (is_cow) {
1331 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1332 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1333 }
cddb8a5c 1334 return ret;
1da177e4
LT
1335}
1336
3506659e
MWO
1337/*
1338 * Parameter block passed down to zap_pte_range in exceptional cases.
1339 */
1340struct zap_details {
3506659e 1341 struct folio *single_folio; /* Locked folio to be unmapped */
2e148f1e 1342 bool even_cows; /* Zap COWed private pages too? */
999dad82 1343 zap_flags_t zap_flags; /* Extra flags for zapping */
3506659e
MWO
1344};
1345
5abfd71d
PX
1346/* Whether we should zap all COWed (private) pages too */
1347static inline bool should_zap_cows(struct zap_details *details)
1348{
1349 /* By default, zap all pages */
1350 if (!details)
1351 return true;
1352
1353 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1354 return details->even_cows;
5abfd71d
PX
1355}
1356
2e148f1e 1357/* Decides whether we should zap this page with the page pointer specified */
254ab940 1358static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1359{
5abfd71d
PX
1360 /* If we can make a decision without *page.. */
1361 if (should_zap_cows(details))
254ab940 1362 return true;
5abfd71d
PX
1363
1364 /* E.g. the caller passes NULL for the case of a zero page */
1365 if (!page)
254ab940 1366 return true;
3506659e 1367
2e148f1e
PX
1368 /* Otherwise we should only zap non-anon pages */
1369 return !PageAnon(page);
3506659e
MWO
1370}
1371
999dad82
PX
1372static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1373{
1374 if (!details)
1375 return false;
1376
1377 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1378}
1379
1380/*
1381 * This function makes sure that we'll replace the none pte with an uffd-wp
1382 * swap special pte marker when necessary. Must be with the pgtable lock held.
1383 */
1384static inline void
1385zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1386 unsigned long addr, pte_t *pte,
1387 struct zap_details *details, pte_t pteval)
1388{
1389 if (zap_drop_file_uffd_wp(details))
1390 return;
1391
1392 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1393}
1394
51c6f666 1395static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1396 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1397 unsigned long addr, unsigned long end,
97a89413 1398 struct zap_details *details)
1da177e4 1399{
b5810039 1400 struct mm_struct *mm = tlb->mm;
d16dfc55 1401 int force_flush = 0;
d559db08 1402 int rss[NR_MM_COUNTERS];
97a89413 1403 spinlock_t *ptl;
5f1a1907 1404 pte_t *start_pte;
97a89413 1405 pte_t *pte;
8a5f14a2 1406 swp_entry_t entry;
d559db08 1407
ed6a7935 1408 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1409again:
e303297e 1410 init_rss_vec(rss);
5f1a1907
SR
1411 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 pte = start_pte;
3ea27719 1413 flush_tlb_batched_pending(mm);
6606c3e0 1414 arch_enter_lazy_mmu_mode();
1da177e4
LT
1415 do {
1416 pte_t ptent = *pte;
8018db85
PX
1417 struct page *page;
1418
166f61b9 1419 if (pte_none(ptent))
1da177e4 1420 continue;
6f5e6b9e 1421
7b167b68
MK
1422 if (need_resched())
1423 break;
1424
1da177e4 1425 if (pte_present(ptent)) {
25b2995a 1426 page = vm_normal_page(vma, addr, ptent);
254ab940 1427 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1428 continue;
b5810039 1429 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1430 tlb->fullmm);
1da177e4 1431 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1432 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1433 ptent);
1da177e4
LT
1434 if (unlikely(!page))
1435 continue;
eca56ff9
JM
1436
1437 if (!PageAnon(page)) {
1cf35d47
LT
1438 if (pte_dirty(ptent)) {
1439 force_flush = 1;
6237bcd9 1440 set_page_dirty(page);
1cf35d47 1441 }
4917e5d0 1442 if (pte_young(ptent) &&
64363aad 1443 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1444 mark_page_accessed(page);
6237bcd9 1445 }
eca56ff9 1446 rss[mm_counter(page)]--;
cea86fe2 1447 page_remove_rmap(page, vma, false);
3dc14741
HD
1448 if (unlikely(page_mapcount(page) < 0))
1449 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1450 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1451 force_flush = 1;
ce9ec37b 1452 addr += PAGE_SIZE;
d16dfc55 1453 break;
1cf35d47 1454 }
1da177e4
LT
1455 continue;
1456 }
5042db43
JG
1457
1458 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1459 if (is_device_private_entry(entry) ||
1460 is_device_exclusive_entry(entry)) {
8018db85 1461 page = pfn_swap_entry_to_page(entry);
254ab940 1462 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1463 continue;
999dad82
PX
1464 /*
1465 * Both device private/exclusive mappings should only
1466 * work with anonymous page so far, so we don't need to
1467 * consider uffd-wp bit when zap. For more information,
1468 * see zap_install_uffd_wp_if_needed().
1469 */
1470 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1471 rss[mm_counter(page)]--;
b756a3b5 1472 if (is_device_private_entry(entry))
cea86fe2 1473 page_remove_rmap(page, vma, false);
5042db43 1474 put_page(page);
8018db85 1475 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1476 /* Genuine swap entry, hence a private anon page */
1477 if (!should_zap_cows(details))
1478 continue;
8a5f14a2 1479 rss[MM_SWAPENTS]--;
8018db85
PX
1480 if (unlikely(!free_swap_and_cache(entry)))
1481 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1482 } else if (is_migration_entry(entry)) {
af5cdaf8 1483 page = pfn_swap_entry_to_page(entry);
254ab940 1484 if (!should_zap_page(details, page))
5abfd71d 1485 continue;
eca56ff9 1486 rss[mm_counter(page)]--;
999dad82
PX
1487 } else if (pte_marker_entry_uffd_wp(entry)) {
1488 /* Only drop the uffd-wp marker if explicitly requested */
1489 if (!zap_drop_file_uffd_wp(details))
1490 continue;
5abfd71d
PX
1491 } else if (is_hwpoison_entry(entry)) {
1492 if (!should_zap_cows(details))
1493 continue;
1494 } else {
1495 /* We should have covered all the swap entry types */
1496 WARN_ON_ONCE(1);
b084d435 1497 }
9888a1ca 1498 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1499 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1500 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1501
d559db08 1502 add_mm_rss_vec(mm, rss);
6606c3e0 1503 arch_leave_lazy_mmu_mode();
51c6f666 1504
1cf35d47 1505 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1506 if (force_flush)
1cf35d47 1507 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1508 pte_unmap_unlock(start_pte, ptl);
1509
1510 /*
1511 * If we forced a TLB flush (either due to running out of
1512 * batch buffers or because we needed to flush dirty TLB
1513 * entries before releasing the ptl), free the batched
1514 * memory too. Restart if we didn't do everything.
1515 */
1516 if (force_flush) {
1517 force_flush = 0;
fa0aafb8 1518 tlb_flush_mmu(tlb);
7b167b68
MK
1519 }
1520
1521 if (addr != end) {
1522 cond_resched();
1523 goto again;
d16dfc55
PZ
1524 }
1525
51c6f666 1526 return addr;
1da177e4
LT
1527}
1528
51c6f666 1529static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1530 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1531 unsigned long addr, unsigned long end,
97a89413 1532 struct zap_details *details)
1da177e4
LT
1533{
1534 pmd_t *pmd;
1535 unsigned long next;
1536
1537 pmd = pmd_offset(pud, addr);
1538 do {
1539 next = pmd_addr_end(addr, end);
84c3fc4e 1540 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1541 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1542 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1543 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1544 goto next;
71e3aac0 1545 /* fall through */
3506659e
MWO
1546 } else if (details && details->single_folio &&
1547 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1548 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1549 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1550 /*
1551 * Take and drop THP pmd lock so that we cannot return
1552 * prematurely, while zap_huge_pmd() has cleared *pmd,
1553 * but not yet decremented compound_mapcount().
1554 */
1555 spin_unlock(ptl);
71e3aac0 1556 }
22061a1f 1557
1a5a9906
AA
1558 /*
1559 * Here there can be other concurrent MADV_DONTNEED or
1560 * trans huge page faults running, and if the pmd is
1561 * none or trans huge it can change under us. This is
c1e8d7c6 1562 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1563 * mode.
1564 */
1565 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1566 goto next;
97a89413 1567 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1568next:
97a89413
PZ
1569 cond_resched();
1570 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1571
1572 return addr;
1da177e4
LT
1573}
1574
51c6f666 1575static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1576 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1577 unsigned long addr, unsigned long end,
97a89413 1578 struct zap_details *details)
1da177e4
LT
1579{
1580 pud_t *pud;
1581 unsigned long next;
1582
c2febafc 1583 pud = pud_offset(p4d, addr);
1da177e4
LT
1584 do {
1585 next = pud_addr_end(addr, end);
a00cc7d9
MW
1586 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1587 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1588 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1589 split_huge_pud(vma, pud, addr);
1590 } else if (zap_huge_pud(tlb, vma, pud, addr))
1591 goto next;
1592 /* fall through */
1593 }
97a89413 1594 if (pud_none_or_clear_bad(pud))
1da177e4 1595 continue;
97a89413 1596 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1597next:
1598 cond_resched();
97a89413 1599 } while (pud++, addr = next, addr != end);
51c6f666
RH
1600
1601 return addr;
1da177e4
LT
1602}
1603
c2febafc
KS
1604static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1605 struct vm_area_struct *vma, pgd_t *pgd,
1606 unsigned long addr, unsigned long end,
1607 struct zap_details *details)
1608{
1609 p4d_t *p4d;
1610 unsigned long next;
1611
1612 p4d = p4d_offset(pgd, addr);
1613 do {
1614 next = p4d_addr_end(addr, end);
1615 if (p4d_none_or_clear_bad(p4d))
1616 continue;
1617 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1618 } while (p4d++, addr = next, addr != end);
1619
1620 return addr;
1621}
1622
aac45363 1623void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1624 struct vm_area_struct *vma,
1625 unsigned long addr, unsigned long end,
1626 struct zap_details *details)
1da177e4
LT
1627{
1628 pgd_t *pgd;
1629 unsigned long next;
1630
1da177e4
LT
1631 BUG_ON(addr >= end);
1632 tlb_start_vma(tlb, vma);
1633 pgd = pgd_offset(vma->vm_mm, addr);
1634 do {
1635 next = pgd_addr_end(addr, end);
97a89413 1636 if (pgd_none_or_clear_bad(pgd))
1da177e4 1637 continue;
c2febafc 1638 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1639 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1640 tlb_end_vma(tlb, vma);
1641}
51c6f666 1642
f5cc4eef
AV
1643
1644static void unmap_single_vma(struct mmu_gather *tlb,
1645 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1646 unsigned long end_addr,
f5cc4eef
AV
1647 struct zap_details *details)
1648{
1649 unsigned long start = max(vma->vm_start, start_addr);
1650 unsigned long end;
1651
1652 if (start >= vma->vm_end)
1653 return;
1654 end = min(vma->vm_end, end_addr);
1655 if (end <= vma->vm_start)
1656 return;
1657
cbc91f71
SD
1658 if (vma->vm_file)
1659 uprobe_munmap(vma, start, end);
1660
b3b9c293 1661 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1662 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1663
1664 if (start != end) {
1665 if (unlikely(is_vm_hugetlb_page(vma))) {
1666 /*
1667 * It is undesirable to test vma->vm_file as it
1668 * should be non-null for valid hugetlb area.
1669 * However, vm_file will be NULL in the error
7aa6b4ad 1670 * cleanup path of mmap_region. When
f5cc4eef 1671 * hugetlbfs ->mmap method fails,
7aa6b4ad 1672 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1673 * before calling this function to clean up.
1674 * Since no pte has actually been setup, it is
1675 * safe to do nothing in this case.
1676 */
24669e58 1677 if (vma->vm_file) {
05e90bd0
PX
1678 zap_flags_t zap_flags = details ?
1679 details->zap_flags : 0;
83cde9e8 1680 i_mmap_lock_write(vma->vm_file->f_mapping);
05e90bd0
PX
1681 __unmap_hugepage_range_final(tlb, vma, start, end,
1682 NULL, zap_flags);
83cde9e8 1683 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1684 }
f5cc4eef
AV
1685 } else
1686 unmap_page_range(tlb, vma, start, end, details);
1687 }
1da177e4
LT
1688}
1689
1da177e4
LT
1690/**
1691 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1692 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1693 * @vma: the starting vma
1694 * @start_addr: virtual address at which to start unmapping
1695 * @end_addr: virtual address at which to end unmapping
1da177e4 1696 *
508034a3 1697 * Unmap all pages in the vma list.
1da177e4 1698 *
1da177e4
LT
1699 * Only addresses between `start' and `end' will be unmapped.
1700 *
1701 * The VMA list must be sorted in ascending virtual address order.
1702 *
1703 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704 * range after unmap_vmas() returns. So the only responsibility here is to
1705 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706 * drops the lock and schedules.
1707 */
6e8bb019 1708void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1709 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1710 unsigned long end_addr)
1da177e4 1711{
ac46d4f3 1712 struct mmu_notifier_range range;
999dad82
PX
1713 struct zap_details details = {
1714 .zap_flags = ZAP_FLAG_DROP_MARKER,
1715 /* Careful - we need to zap private pages too! */
1716 .even_cows = true,
1717 };
1da177e4 1718
6f4f13e8
JG
1719 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1720 start_addr, end_addr);
ac46d4f3 1721 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1722 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
999dad82 1723 unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
ac46d4f3 1724 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1725}
1726
1727/**
1728 * zap_page_range - remove user pages in a given range
1729 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1730 * @start: starting address of pages to zap
1da177e4 1731 * @size: number of bytes to zap
f5cc4eef
AV
1732 *
1733 * Caller must protect the VMA list
1da177e4 1734 */
7e027b14 1735void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1736 unsigned long size)
1da177e4 1737{
ac46d4f3 1738 struct mmu_notifier_range range;
d16dfc55 1739 struct mmu_gather tlb;
1da177e4 1740
1da177e4 1741 lru_add_drain();
7269f999 1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1743 start, start + size);
a72afd87 1744 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1745 update_hiwater_rss(vma->vm_mm);
1746 mmu_notifier_invalidate_range_start(&range);
1747 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1748 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1749 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1750 tlb_finish_mmu(&tlb);
1da177e4
LT
1751}
1752
f5cc4eef
AV
1753/**
1754 * zap_page_range_single - remove user pages in a given range
1755 * @vma: vm_area_struct holding the applicable pages
1756 * @address: starting address of pages to zap
1757 * @size: number of bytes to zap
8a5f14a2 1758 * @details: details of shared cache invalidation
f5cc4eef
AV
1759 *
1760 * The range must fit into one VMA.
1da177e4 1761 */
f5cc4eef 1762static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1763 unsigned long size, struct zap_details *details)
1764{
ac46d4f3 1765 struct mmu_notifier_range range;
d16dfc55 1766 struct mmu_gather tlb;
1da177e4 1767
1da177e4 1768 lru_add_drain();
7269f999 1769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1770 address, address + size);
a72afd87 1771 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1772 update_hiwater_rss(vma->vm_mm);
1773 mmu_notifier_invalidate_range_start(&range);
1774 unmap_single_vma(&tlb, vma, address, range.end, details);
1775 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1776 tlb_finish_mmu(&tlb);
1da177e4
LT
1777}
1778
c627f9cc
JS
1779/**
1780 * zap_vma_ptes - remove ptes mapping the vma
1781 * @vma: vm_area_struct holding ptes to be zapped
1782 * @address: starting address of pages to zap
1783 * @size: number of bytes to zap
1784 *
1785 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1786 *
1787 * The entire address range must be fully contained within the vma.
1788 *
c627f9cc 1789 */
27d036e3 1790void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1791 unsigned long size)
1792{
88a35912 1793 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1794 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1795 return;
1796
f5cc4eef 1797 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1798}
1799EXPORT_SYMBOL_GPL(zap_vma_ptes);
1800
8cd3984d 1801static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1802{
c2febafc
KS
1803 pgd_t *pgd;
1804 p4d_t *p4d;
1805 pud_t *pud;
1806 pmd_t *pmd;
1807
1808 pgd = pgd_offset(mm, addr);
1809 p4d = p4d_alloc(mm, pgd, addr);
1810 if (!p4d)
1811 return NULL;
1812 pud = pud_alloc(mm, p4d, addr);
1813 if (!pud)
1814 return NULL;
1815 pmd = pmd_alloc(mm, pud, addr);
1816 if (!pmd)
1817 return NULL;
1818
1819 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1820 return pmd;
1821}
1822
1823pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1824 spinlock_t **ptl)
1825{
1826 pmd_t *pmd = walk_to_pmd(mm, addr);
1827
1828 if (!pmd)
1829 return NULL;
c2febafc 1830 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1831}
1832
8efd6f5b
AR
1833static int validate_page_before_insert(struct page *page)
1834{
1835 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1836 return -EINVAL;
1837 flush_dcache_page(page);
1838 return 0;
1839}
1840
cea86fe2 1841static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1842 unsigned long addr, struct page *page, pgprot_t prot)
1843{
1844 if (!pte_none(*pte))
1845 return -EBUSY;
1846 /* Ok, finally just insert the thing.. */
1847 get_page(page);
cea86fe2
HD
1848 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1849 page_add_file_rmap(page, vma, false);
1850 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1851 return 0;
1852}
1853
238f58d8
LT
1854/*
1855 * This is the old fallback for page remapping.
1856 *
1857 * For historical reasons, it only allows reserved pages. Only
1858 * old drivers should use this, and they needed to mark their
1859 * pages reserved for the old functions anyway.
1860 */
423bad60
NP
1861static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1862 struct page *page, pgprot_t prot)
238f58d8
LT
1863{
1864 int retval;
c9cfcddf 1865 pte_t *pte;
8a9f3ccd
BS
1866 spinlock_t *ptl;
1867
8efd6f5b
AR
1868 retval = validate_page_before_insert(page);
1869 if (retval)
5b4e655e 1870 goto out;
238f58d8 1871 retval = -ENOMEM;
cea86fe2 1872 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1873 if (!pte)
5b4e655e 1874 goto out;
cea86fe2 1875 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1876 pte_unmap_unlock(pte, ptl);
1877out:
1878 return retval;
1879}
1880
8cd3984d 1881#ifdef pte_index
cea86fe2 1882static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1883 unsigned long addr, struct page *page, pgprot_t prot)
1884{
1885 int err;
1886
1887 if (!page_count(page))
1888 return -EINVAL;
1889 err = validate_page_before_insert(page);
7f70c2a6
AR
1890 if (err)
1891 return err;
cea86fe2 1892 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1893}
1894
1895/* insert_pages() amortizes the cost of spinlock operations
1896 * when inserting pages in a loop. Arch *must* define pte_index.
1897 */
1898static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1899 struct page **pages, unsigned long *num, pgprot_t prot)
1900{
1901 pmd_t *pmd = NULL;
7f70c2a6
AR
1902 pte_t *start_pte, *pte;
1903 spinlock_t *pte_lock;
8cd3984d
AR
1904 struct mm_struct *const mm = vma->vm_mm;
1905 unsigned long curr_page_idx = 0;
1906 unsigned long remaining_pages_total = *num;
1907 unsigned long pages_to_write_in_pmd;
1908 int ret;
1909more:
1910 ret = -EFAULT;
1911 pmd = walk_to_pmd(mm, addr);
1912 if (!pmd)
1913 goto out;
1914
1915 pages_to_write_in_pmd = min_t(unsigned long,
1916 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1917
1918 /* Allocate the PTE if necessary; takes PMD lock once only. */
1919 ret = -ENOMEM;
1920 if (pte_alloc(mm, pmd))
1921 goto out;
8cd3984d
AR
1922
1923 while (pages_to_write_in_pmd) {
1924 int pte_idx = 0;
1925 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1926
7f70c2a6
AR
1927 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1928 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1929 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1930 addr, pages[curr_page_idx], prot);
1931 if (unlikely(err)) {
7f70c2a6 1932 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1933 ret = err;
1934 remaining_pages_total -= pte_idx;
1935 goto out;
1936 }
1937 addr += PAGE_SIZE;
1938 ++curr_page_idx;
1939 }
7f70c2a6 1940 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1941 pages_to_write_in_pmd -= batch_size;
1942 remaining_pages_total -= batch_size;
1943 }
1944 if (remaining_pages_total)
1945 goto more;
1946 ret = 0;
1947out:
1948 *num = remaining_pages_total;
1949 return ret;
1950}
1951#endif /* ifdef pte_index */
1952
1953/**
1954 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1955 * @vma: user vma to map to
1956 * @addr: target start user address of these pages
1957 * @pages: source kernel pages
1958 * @num: in: number of pages to map. out: number of pages that were *not*
1959 * mapped. (0 means all pages were successfully mapped).
1960 *
1961 * Preferred over vm_insert_page() when inserting multiple pages.
1962 *
1963 * In case of error, we may have mapped a subset of the provided
1964 * pages. It is the caller's responsibility to account for this case.
1965 *
1966 * The same restrictions apply as in vm_insert_page().
1967 */
1968int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1969 struct page **pages, unsigned long *num)
1970{
1971#ifdef pte_index
1972 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1973
1974 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1975 return -EFAULT;
1976 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1977 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1978 BUG_ON(vma->vm_flags & VM_PFNMAP);
1979 vma->vm_flags |= VM_MIXEDMAP;
1980 }
1981 /* Defer page refcount checking till we're about to map that page. */
1982 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1983#else
1984 unsigned long idx = 0, pgcount = *num;
45779b03 1985 int err = -EINVAL;
8cd3984d
AR
1986
1987 for (; idx < pgcount; ++idx) {
1988 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1989 if (err)
1990 break;
1991 }
1992 *num = pgcount - idx;
1993 return err;
1994#endif /* ifdef pte_index */
1995}
1996EXPORT_SYMBOL(vm_insert_pages);
1997
bfa5bf6d
REB
1998/**
1999 * vm_insert_page - insert single page into user vma
2000 * @vma: user vma to map to
2001 * @addr: target user address of this page
2002 * @page: source kernel page
2003 *
a145dd41
LT
2004 * This allows drivers to insert individual pages they've allocated
2005 * into a user vma.
2006 *
2007 * The page has to be a nice clean _individual_ kernel allocation.
2008 * If you allocate a compound page, you need to have marked it as
2009 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2010 * (see split_page()).
a145dd41
LT
2011 *
2012 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2013 * took an arbitrary page protection parameter. This doesn't allow
2014 * that. Your vma protection will have to be set up correctly, which
2015 * means that if you want a shared writable mapping, you'd better
2016 * ask for a shared writable mapping!
2017 *
2018 * The page does not need to be reserved.
4b6e1e37
KK
2019 *
2020 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2021 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2022 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2023 * function from other places, for example from page-fault handler.
a862f68a
MR
2024 *
2025 * Return: %0 on success, negative error code otherwise.
a145dd41 2026 */
423bad60
NP
2027int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2028 struct page *page)
a145dd41
LT
2029{
2030 if (addr < vma->vm_start || addr >= vma->vm_end)
2031 return -EFAULT;
2032 if (!page_count(page))
2033 return -EINVAL;
4b6e1e37 2034 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2035 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
2036 BUG_ON(vma->vm_flags & VM_PFNMAP);
2037 vma->vm_flags |= VM_MIXEDMAP;
2038 }
423bad60 2039 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2040}
e3c3374f 2041EXPORT_SYMBOL(vm_insert_page);
a145dd41 2042
a667d745
SJ
2043/*
2044 * __vm_map_pages - maps range of kernel pages into user vma
2045 * @vma: user vma to map to
2046 * @pages: pointer to array of source kernel pages
2047 * @num: number of pages in page array
2048 * @offset: user's requested vm_pgoff
2049 *
2050 * This allows drivers to map range of kernel pages into a user vma.
2051 *
2052 * Return: 0 on success and error code otherwise.
2053 */
2054static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2055 unsigned long num, unsigned long offset)
2056{
2057 unsigned long count = vma_pages(vma);
2058 unsigned long uaddr = vma->vm_start;
2059 int ret, i;
2060
2061 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2062 if (offset >= num)
a667d745
SJ
2063 return -ENXIO;
2064
2065 /* Fail if the user requested size exceeds available object size */
2066 if (count > num - offset)
2067 return -ENXIO;
2068
2069 for (i = 0; i < count; i++) {
2070 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2071 if (ret < 0)
2072 return ret;
2073 uaddr += PAGE_SIZE;
2074 }
2075
2076 return 0;
2077}
2078
2079/**
2080 * vm_map_pages - maps range of kernel pages starts with non zero offset
2081 * @vma: user vma to map to
2082 * @pages: pointer to array of source kernel pages
2083 * @num: number of pages in page array
2084 *
2085 * Maps an object consisting of @num pages, catering for the user's
2086 * requested vm_pgoff
2087 *
2088 * If we fail to insert any page into the vma, the function will return
2089 * immediately leaving any previously inserted pages present. Callers
2090 * from the mmap handler may immediately return the error as their caller
2091 * will destroy the vma, removing any successfully inserted pages. Other
2092 * callers should make their own arrangements for calling unmap_region().
2093 *
2094 * Context: Process context. Called by mmap handlers.
2095 * Return: 0 on success and error code otherwise.
2096 */
2097int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2098 unsigned long num)
2099{
2100 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2101}
2102EXPORT_SYMBOL(vm_map_pages);
2103
2104/**
2105 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2106 * @vma: user vma to map to
2107 * @pages: pointer to array of source kernel pages
2108 * @num: number of pages in page array
2109 *
2110 * Similar to vm_map_pages(), except that it explicitly sets the offset
2111 * to 0. This function is intended for the drivers that did not consider
2112 * vm_pgoff.
2113 *
2114 * Context: Process context. Called by mmap handlers.
2115 * Return: 0 on success and error code otherwise.
2116 */
2117int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2118 unsigned long num)
2119{
2120 return __vm_map_pages(vma, pages, num, 0);
2121}
2122EXPORT_SYMBOL(vm_map_pages_zero);
2123
9b5a8e00 2124static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2125 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2126{
2127 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2128 pte_t *pte, entry;
2129 spinlock_t *ptl;
2130
423bad60
NP
2131 pte = get_locked_pte(mm, addr, &ptl);
2132 if (!pte)
9b5a8e00 2133 return VM_FAULT_OOM;
b2770da6
RZ
2134 if (!pte_none(*pte)) {
2135 if (mkwrite) {
2136 /*
2137 * For read faults on private mappings the PFN passed
2138 * in may not match the PFN we have mapped if the
2139 * mapped PFN is a writeable COW page. In the mkwrite
2140 * case we are creating a writable PTE for a shared
f2c57d91
JK
2141 * mapping and we expect the PFNs to match. If they
2142 * don't match, we are likely racing with block
2143 * allocation and mapping invalidation so just skip the
2144 * update.
b2770da6 2145 */
f2c57d91
JK
2146 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2147 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 2148 goto out_unlock;
f2c57d91 2149 }
cae85cb8
JK
2150 entry = pte_mkyoung(*pte);
2151 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2152 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2153 update_mmu_cache(vma, addr, pte);
2154 }
2155 goto out_unlock;
b2770da6 2156 }
423bad60
NP
2157
2158 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2159 if (pfn_t_devmap(pfn))
2160 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2161 else
2162 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2163
b2770da6
RZ
2164 if (mkwrite) {
2165 entry = pte_mkyoung(entry);
2166 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2167 }
2168
423bad60 2169 set_pte_at(mm, addr, pte, entry);
4b3073e1 2170 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2171
423bad60
NP
2172out_unlock:
2173 pte_unmap_unlock(pte, ptl);
9b5a8e00 2174 return VM_FAULT_NOPAGE;
423bad60
NP
2175}
2176
f5e6d1d5
MW
2177/**
2178 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2179 * @vma: user vma to map to
2180 * @addr: target user address of this page
2181 * @pfn: source kernel pfn
2182 * @pgprot: pgprot flags for the inserted page
2183 *
a1a0aea5 2184 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2185 * to override pgprot on a per-page basis.
2186 *
2187 * This only makes sense for IO mappings, and it makes no sense for
2188 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2189 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2190 * impractical.
2191 *
574c5b3d
TH
2192 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2193 * a value of @pgprot different from that of @vma->vm_page_prot.
2194 *
ae2b01f3 2195 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2196 * Return: vm_fault_t value.
2197 */
2198vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2199 unsigned long pfn, pgprot_t pgprot)
2200{
6d958546
MW
2201 /*
2202 * Technically, architectures with pte_special can avoid all these
2203 * restrictions (same for remap_pfn_range). However we would like
2204 * consistency in testing and feature parity among all, so we should
2205 * try to keep these invariants in place for everybody.
2206 */
2207 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2208 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2209 (VM_PFNMAP|VM_MIXEDMAP));
2210 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2211 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2212
2213 if (addr < vma->vm_start || addr >= vma->vm_end)
2214 return VM_FAULT_SIGBUS;
2215
2216 if (!pfn_modify_allowed(pfn, pgprot))
2217 return VM_FAULT_SIGBUS;
2218
2219 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2220
9b5a8e00 2221 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2222 false);
f5e6d1d5
MW
2223}
2224EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2225
ae2b01f3
MW
2226/**
2227 * vmf_insert_pfn - insert single pfn into user vma
2228 * @vma: user vma to map to
2229 * @addr: target user address of this page
2230 * @pfn: source kernel pfn
2231 *
2232 * Similar to vm_insert_page, this allows drivers to insert individual pages
2233 * they've allocated into a user vma. Same comments apply.
2234 *
2235 * This function should only be called from a vm_ops->fault handler, and
2236 * in that case the handler should return the result of this function.
2237 *
2238 * vma cannot be a COW mapping.
2239 *
2240 * As this is called only for pages that do not currently exist, we
2241 * do not need to flush old virtual caches or the TLB.
2242 *
2243 * Context: Process context. May allocate using %GFP_KERNEL.
2244 * Return: vm_fault_t value.
2245 */
2246vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2247 unsigned long pfn)
2248{
2249 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2250}
2251EXPORT_SYMBOL(vmf_insert_pfn);
2252
785a3fab
DW
2253static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2254{
2255 /* these checks mirror the abort conditions in vm_normal_page */
2256 if (vma->vm_flags & VM_MIXEDMAP)
2257 return true;
2258 if (pfn_t_devmap(pfn))
2259 return true;
2260 if (pfn_t_special(pfn))
2261 return true;
2262 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2263 return true;
2264 return false;
2265}
2266
79f3aa5b 2267static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2268 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2269 bool mkwrite)
423bad60 2270{
79f3aa5b 2271 int err;
87744ab3 2272
785a3fab 2273 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2274
423bad60 2275 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2276 return VM_FAULT_SIGBUS;
308a047c
BP
2277
2278 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2279
42e4089c 2280 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2281 return VM_FAULT_SIGBUS;
42e4089c 2282
423bad60
NP
2283 /*
2284 * If we don't have pte special, then we have to use the pfn_valid()
2285 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2286 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2287 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2288 * without pte special, it would there be refcounted as a normal page.
423bad60 2289 */
00b3a331
LD
2290 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2291 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2292 struct page *page;
2293
03fc2da6
DW
2294 /*
2295 * At this point we are committed to insert_page()
2296 * regardless of whether the caller specified flags that
2297 * result in pfn_t_has_page() == false.
2298 */
2299 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2300 err = insert_page(vma, addr, page, pgprot);
2301 } else {
9b5a8e00 2302 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2303 }
b2770da6 2304
5d747637
MW
2305 if (err == -ENOMEM)
2306 return VM_FAULT_OOM;
2307 if (err < 0 && err != -EBUSY)
2308 return VM_FAULT_SIGBUS;
2309
2310 return VM_FAULT_NOPAGE;
e0dc0d8f 2311}
79f3aa5b 2312
574c5b3d
TH
2313/**
2314 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2315 * @vma: user vma to map to
2316 * @addr: target user address of this page
2317 * @pfn: source kernel pfn
2318 * @pgprot: pgprot flags for the inserted page
2319 *
a1a0aea5 2320 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2321 * to override pgprot on a per-page basis.
2322 *
2323 * Typically this function should be used by drivers to set caching- and
2324 * encryption bits different than those of @vma->vm_page_prot, because
2325 * the caching- or encryption mode may not be known at mmap() time.
2326 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2327 * to set caching and encryption bits for those vmas (except for COW pages).
2328 * This is ensured by core vm only modifying these page table entries using
2329 * functions that don't touch caching- or encryption bits, using pte_modify()
2330 * if needed. (See for example mprotect()).
2331 * Also when new page-table entries are created, this is only done using the
2332 * fault() callback, and never using the value of vma->vm_page_prot,
2333 * except for page-table entries that point to anonymous pages as the result
2334 * of COW.
2335 *
2336 * Context: Process context. May allocate using %GFP_KERNEL.
2337 * Return: vm_fault_t value.
2338 */
2339vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2340 pfn_t pfn, pgprot_t pgprot)
2341{
2342 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2343}
5379e4dd 2344EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2345
79f3aa5b
MW
2346vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2347 pfn_t pfn)
2348{
574c5b3d 2349 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2350}
5d747637 2351EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2352
ab77dab4
SJ
2353/*
2354 * If the insertion of PTE failed because someone else already added a
2355 * different entry in the mean time, we treat that as success as we assume
2356 * the same entry was actually inserted.
2357 */
ab77dab4
SJ
2358vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2359 unsigned long addr, pfn_t pfn)
b2770da6 2360{
574c5b3d 2361 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2362}
ab77dab4 2363EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2364
1da177e4
LT
2365/*
2366 * maps a range of physical memory into the requested pages. the old
2367 * mappings are removed. any references to nonexistent pages results
2368 * in null mappings (currently treated as "copy-on-access")
2369 */
2370static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2373{
90a3e375 2374 pte_t *pte, *mapped_pte;
c74df32c 2375 spinlock_t *ptl;
42e4089c 2376 int err = 0;
1da177e4 2377
90a3e375 2378 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2379 if (!pte)
2380 return -ENOMEM;
6606c3e0 2381 arch_enter_lazy_mmu_mode();
1da177e4
LT
2382 do {
2383 BUG_ON(!pte_none(*pte));
42e4089c
AK
2384 if (!pfn_modify_allowed(pfn, prot)) {
2385 err = -EACCES;
2386 break;
2387 }
7e675137 2388 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2389 pfn++;
2390 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2391 arch_leave_lazy_mmu_mode();
90a3e375 2392 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2393 return err;
1da177e4
LT
2394}
2395
2396static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2397 unsigned long addr, unsigned long end,
2398 unsigned long pfn, pgprot_t prot)
2399{
2400 pmd_t *pmd;
2401 unsigned long next;
42e4089c 2402 int err;
1da177e4
LT
2403
2404 pfn -= addr >> PAGE_SHIFT;
2405 pmd = pmd_alloc(mm, pud, addr);
2406 if (!pmd)
2407 return -ENOMEM;
f66055ab 2408 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2409 do {
2410 next = pmd_addr_end(addr, end);
42e4089c
AK
2411 err = remap_pte_range(mm, pmd, addr, next,
2412 pfn + (addr >> PAGE_SHIFT), prot);
2413 if (err)
2414 return err;
1da177e4
LT
2415 } while (pmd++, addr = next, addr != end);
2416 return 0;
2417}
2418
c2febafc 2419static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2420 unsigned long addr, unsigned long end,
2421 unsigned long pfn, pgprot_t prot)
2422{
2423 pud_t *pud;
2424 unsigned long next;
42e4089c 2425 int err;
1da177e4
LT
2426
2427 pfn -= addr >> PAGE_SHIFT;
c2febafc 2428 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2429 if (!pud)
2430 return -ENOMEM;
2431 do {
2432 next = pud_addr_end(addr, end);
42e4089c
AK
2433 err = remap_pmd_range(mm, pud, addr, next,
2434 pfn + (addr >> PAGE_SHIFT), prot);
2435 if (err)
2436 return err;
1da177e4
LT
2437 } while (pud++, addr = next, addr != end);
2438 return 0;
2439}
2440
c2febafc
KS
2441static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2442 unsigned long addr, unsigned long end,
2443 unsigned long pfn, pgprot_t prot)
2444{
2445 p4d_t *p4d;
2446 unsigned long next;
42e4089c 2447 int err;
c2febafc
KS
2448
2449 pfn -= addr >> PAGE_SHIFT;
2450 p4d = p4d_alloc(mm, pgd, addr);
2451 if (!p4d)
2452 return -ENOMEM;
2453 do {
2454 next = p4d_addr_end(addr, end);
42e4089c
AK
2455 err = remap_pud_range(mm, p4d, addr, next,
2456 pfn + (addr >> PAGE_SHIFT), prot);
2457 if (err)
2458 return err;
c2febafc
KS
2459 } while (p4d++, addr = next, addr != end);
2460 return 0;
2461}
2462
74ffa5a3
CH
2463/*
2464 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2465 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2466 */
74ffa5a3
CH
2467int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2468 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2469{
2470 pgd_t *pgd;
2471 unsigned long next;
2d15cab8 2472 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2473 struct mm_struct *mm = vma->vm_mm;
2474 int err;
2475
0c4123e3
AZ
2476 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2477 return -EINVAL;
2478
1da177e4
LT
2479 /*
2480 * Physically remapped pages are special. Tell the
2481 * rest of the world about it:
2482 * VM_IO tells people not to look at these pages
2483 * (accesses can have side effects).
6aab341e
LT
2484 * VM_PFNMAP tells the core MM that the base pages are just
2485 * raw PFN mappings, and do not have a "struct page" associated
2486 * with them.
314e51b9
KK
2487 * VM_DONTEXPAND
2488 * Disable vma merging and expanding with mremap().
2489 * VM_DONTDUMP
2490 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2491 *
2492 * There's a horrible special case to handle copy-on-write
2493 * behaviour that some programs depend on. We mark the "original"
2494 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2495 * See vm_normal_page() for details.
1da177e4 2496 */
b3b9c293
KK
2497 if (is_cow_mapping(vma->vm_flags)) {
2498 if (addr != vma->vm_start || end != vma->vm_end)
2499 return -EINVAL;
fb155c16 2500 vma->vm_pgoff = pfn;
b3b9c293
KK
2501 }
2502
314e51b9 2503 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2504
2505 BUG_ON(addr >= end);
2506 pfn -= addr >> PAGE_SHIFT;
2507 pgd = pgd_offset(mm, addr);
2508 flush_cache_range(vma, addr, end);
1da177e4
LT
2509 do {
2510 next = pgd_addr_end(addr, end);
c2febafc 2511 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2512 pfn + (addr >> PAGE_SHIFT), prot);
2513 if (err)
74ffa5a3 2514 return err;
1da177e4 2515 } while (pgd++, addr = next, addr != end);
2ab64037 2516
74ffa5a3
CH
2517 return 0;
2518}
2519
2520/**
2521 * remap_pfn_range - remap kernel memory to userspace
2522 * @vma: user vma to map to
2523 * @addr: target page aligned user address to start at
2524 * @pfn: page frame number of kernel physical memory address
2525 * @size: size of mapping area
2526 * @prot: page protection flags for this mapping
2527 *
2528 * Note: this is only safe if the mm semaphore is held when called.
2529 *
2530 * Return: %0 on success, negative error code otherwise.
2531 */
2532int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2533 unsigned long pfn, unsigned long size, pgprot_t prot)
2534{
2535 int err;
2536
2537 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2538 if (err)
74ffa5a3 2539 return -EINVAL;
2ab64037 2540
74ffa5a3
CH
2541 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2542 if (err)
2543 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2544 return err;
2545}
2546EXPORT_SYMBOL(remap_pfn_range);
2547
b4cbb197
LT
2548/**
2549 * vm_iomap_memory - remap memory to userspace
2550 * @vma: user vma to map to
abd69b9e 2551 * @start: start of the physical memory to be mapped
b4cbb197
LT
2552 * @len: size of area
2553 *
2554 * This is a simplified io_remap_pfn_range() for common driver use. The
2555 * driver just needs to give us the physical memory range to be mapped,
2556 * we'll figure out the rest from the vma information.
2557 *
2558 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2559 * whatever write-combining details or similar.
a862f68a
MR
2560 *
2561 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2562 */
2563int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2564{
2565 unsigned long vm_len, pfn, pages;
2566
2567 /* Check that the physical memory area passed in looks valid */
2568 if (start + len < start)
2569 return -EINVAL;
2570 /*
2571 * You *really* shouldn't map things that aren't page-aligned,
2572 * but we've historically allowed it because IO memory might
2573 * just have smaller alignment.
2574 */
2575 len += start & ~PAGE_MASK;
2576 pfn = start >> PAGE_SHIFT;
2577 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2578 if (pfn + pages < pfn)
2579 return -EINVAL;
2580
2581 /* We start the mapping 'vm_pgoff' pages into the area */
2582 if (vma->vm_pgoff > pages)
2583 return -EINVAL;
2584 pfn += vma->vm_pgoff;
2585 pages -= vma->vm_pgoff;
2586
2587 /* Can we fit all of the mapping? */
2588 vm_len = vma->vm_end - vma->vm_start;
2589 if (vm_len >> PAGE_SHIFT > pages)
2590 return -EINVAL;
2591
2592 /* Ok, let it rip */
2593 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2594}
2595EXPORT_SYMBOL(vm_iomap_memory);
2596
aee16b3c
JF
2597static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2598 unsigned long addr, unsigned long end,
e80d3909
JR
2599 pte_fn_t fn, void *data, bool create,
2600 pgtbl_mod_mask *mask)
aee16b3c 2601{
8abb50c7 2602 pte_t *pte, *mapped_pte;
be1db475 2603 int err = 0;
3f649ab7 2604 spinlock_t *ptl;
aee16b3c 2605
be1db475 2606 if (create) {
8abb50c7 2607 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2608 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2609 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2610 if (!pte)
2611 return -ENOMEM;
2612 } else {
8abb50c7 2613 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2614 pte_offset_kernel(pmd, addr) :
2615 pte_offset_map_lock(mm, pmd, addr, &ptl);
2616 }
aee16b3c
JF
2617
2618 BUG_ON(pmd_huge(*pmd));
2619
38e0edb1
JF
2620 arch_enter_lazy_mmu_mode();
2621
eeb4a05f
CH
2622 if (fn) {
2623 do {
2624 if (create || !pte_none(*pte)) {
2625 err = fn(pte++, addr, data);
2626 if (err)
2627 break;
2628 }
2629 } while (addr += PAGE_SIZE, addr != end);
2630 }
e80d3909 2631 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2632
38e0edb1
JF
2633 arch_leave_lazy_mmu_mode();
2634
aee16b3c 2635 if (mm != &init_mm)
8abb50c7 2636 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2637 return err;
2638}
2639
2640static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2641 unsigned long addr, unsigned long end,
e80d3909
JR
2642 pte_fn_t fn, void *data, bool create,
2643 pgtbl_mod_mask *mask)
aee16b3c
JF
2644{
2645 pmd_t *pmd;
2646 unsigned long next;
be1db475 2647 int err = 0;
aee16b3c 2648
ceb86879
AK
2649 BUG_ON(pud_huge(*pud));
2650
be1db475 2651 if (create) {
e80d3909 2652 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2653 if (!pmd)
2654 return -ENOMEM;
2655 } else {
2656 pmd = pmd_offset(pud, addr);
2657 }
aee16b3c
JF
2658 do {
2659 next = pmd_addr_end(addr, end);
0c95cba4
NP
2660 if (pmd_none(*pmd) && !create)
2661 continue;
2662 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2663 return -EINVAL;
2664 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2665 if (!create)
2666 continue;
2667 pmd_clear_bad(pmd);
be1db475 2668 }
0c95cba4
NP
2669 err = apply_to_pte_range(mm, pmd, addr, next,
2670 fn, data, create, mask);
2671 if (err)
2672 break;
aee16b3c 2673 } while (pmd++, addr = next, addr != end);
0c95cba4 2674
aee16b3c
JF
2675 return err;
2676}
2677
c2febafc 2678static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2679 unsigned long addr, unsigned long end,
e80d3909
JR
2680 pte_fn_t fn, void *data, bool create,
2681 pgtbl_mod_mask *mask)
aee16b3c
JF
2682{
2683 pud_t *pud;
2684 unsigned long next;
be1db475 2685 int err = 0;
aee16b3c 2686
be1db475 2687 if (create) {
e80d3909 2688 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2689 if (!pud)
2690 return -ENOMEM;
2691 } else {
2692 pud = pud_offset(p4d, addr);
2693 }
aee16b3c
JF
2694 do {
2695 next = pud_addr_end(addr, end);
0c95cba4
NP
2696 if (pud_none(*pud) && !create)
2697 continue;
2698 if (WARN_ON_ONCE(pud_leaf(*pud)))
2699 return -EINVAL;
2700 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2701 if (!create)
2702 continue;
2703 pud_clear_bad(pud);
be1db475 2704 }
0c95cba4
NP
2705 err = apply_to_pmd_range(mm, pud, addr, next,
2706 fn, data, create, mask);
2707 if (err)
2708 break;
aee16b3c 2709 } while (pud++, addr = next, addr != end);
0c95cba4 2710
aee16b3c
JF
2711 return err;
2712}
2713
c2febafc
KS
2714static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2715 unsigned long addr, unsigned long end,
e80d3909
JR
2716 pte_fn_t fn, void *data, bool create,
2717 pgtbl_mod_mask *mask)
c2febafc
KS
2718{
2719 p4d_t *p4d;
2720 unsigned long next;
be1db475 2721 int err = 0;
c2febafc 2722
be1db475 2723 if (create) {
e80d3909 2724 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2725 if (!p4d)
2726 return -ENOMEM;
2727 } else {
2728 p4d = p4d_offset(pgd, addr);
2729 }
c2febafc
KS
2730 do {
2731 next = p4d_addr_end(addr, end);
0c95cba4
NP
2732 if (p4d_none(*p4d) && !create)
2733 continue;
2734 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2735 return -EINVAL;
2736 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2737 if (!create)
2738 continue;
2739 p4d_clear_bad(p4d);
be1db475 2740 }
0c95cba4
NP
2741 err = apply_to_pud_range(mm, p4d, addr, next,
2742 fn, data, create, mask);
2743 if (err)
2744 break;
c2febafc 2745 } while (p4d++, addr = next, addr != end);
0c95cba4 2746
c2febafc
KS
2747 return err;
2748}
2749
be1db475
DA
2750static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 unsigned long size, pte_fn_t fn,
2752 void *data, bool create)
aee16b3c
JF
2753{
2754 pgd_t *pgd;
e80d3909 2755 unsigned long start = addr, next;
57250a5b 2756 unsigned long end = addr + size;
e80d3909 2757 pgtbl_mod_mask mask = 0;
be1db475 2758 int err = 0;
aee16b3c 2759
9cb65bc3
MP
2760 if (WARN_ON(addr >= end))
2761 return -EINVAL;
2762
aee16b3c
JF
2763 pgd = pgd_offset(mm, addr);
2764 do {
2765 next = pgd_addr_end(addr, end);
0c95cba4 2766 if (pgd_none(*pgd) && !create)
be1db475 2767 continue;
0c95cba4
NP
2768 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2769 return -EINVAL;
2770 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2771 if (!create)
2772 continue;
2773 pgd_clear_bad(pgd);
2774 }
2775 err = apply_to_p4d_range(mm, pgd, addr, next,
2776 fn, data, create, &mask);
aee16b3c
JF
2777 if (err)
2778 break;
2779 } while (pgd++, addr = next, addr != end);
57250a5b 2780
e80d3909
JR
2781 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2782 arch_sync_kernel_mappings(start, start + size);
2783
aee16b3c
JF
2784 return err;
2785}
be1db475
DA
2786
2787/*
2788 * Scan a region of virtual memory, filling in page tables as necessary
2789 * and calling a provided function on each leaf page table.
2790 */
2791int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2792 unsigned long size, pte_fn_t fn, void *data)
2793{
2794 return __apply_to_page_range(mm, addr, size, fn, data, true);
2795}
aee16b3c
JF
2796EXPORT_SYMBOL_GPL(apply_to_page_range);
2797
be1db475
DA
2798/*
2799 * Scan a region of virtual memory, calling a provided function on
2800 * each leaf page table where it exists.
2801 *
2802 * Unlike apply_to_page_range, this does _not_ fill in page tables
2803 * where they are absent.
2804 */
2805int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2806 unsigned long size, pte_fn_t fn, void *data)
2807{
2808 return __apply_to_page_range(mm, addr, size, fn, data, false);
2809}
2810EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2811
8f4e2101 2812/*
9b4bdd2f
KS
2813 * handle_pte_fault chooses page fault handler according to an entry which was
2814 * read non-atomically. Before making any commitment, on those architectures
2815 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2816 * parts, do_swap_page must check under lock before unmapping the pte and
2817 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2818 * and do_anonymous_page can safely check later on).
8f4e2101 2819 */
2ca99358 2820static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2821{
2822 int same = 1;
923717cb 2823#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2824 if (sizeof(pte_t) > sizeof(unsigned long)) {
2ca99358 2825 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4c21e2f2 2826 spin_lock(ptl);
2ca99358 2827 same = pte_same(*vmf->pte, vmf->orig_pte);
4c21e2f2 2828 spin_unlock(ptl);
8f4e2101
HD
2829 }
2830#endif
2ca99358
PX
2831 pte_unmap(vmf->pte);
2832 vmf->pte = NULL;
8f4e2101
HD
2833 return same;
2834}
2835
c89357e2
DH
2836static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2837 struct vm_fault *vmf)
6aab341e 2838{
83d116c5
JH
2839 bool ret;
2840 void *kaddr;
2841 void __user *uaddr;
c3e5ea6e 2842 bool locked = false;
83d116c5
JH
2843 struct vm_area_struct *vma = vmf->vma;
2844 struct mm_struct *mm = vma->vm_mm;
2845 unsigned long addr = vmf->address;
2846
83d116c5
JH
2847 if (likely(src)) {
2848 copy_user_highpage(dst, src, addr, vma);
2849 return true;
2850 }
2851
6aab341e
LT
2852 /*
2853 * If the source page was a PFN mapping, we don't have
2854 * a "struct page" for it. We do a best-effort copy by
2855 * just copying from the original user address. If that
2856 * fails, we just zero-fill it. Live with it.
2857 */
83d116c5
JH
2858 kaddr = kmap_atomic(dst);
2859 uaddr = (void __user *)(addr & PAGE_MASK);
2860
2861 /*
2862 * On architectures with software "accessed" bits, we would
2863 * take a double page fault, so mark it accessed here.
2864 */
c3e5ea6e 2865 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2866 pte_t entry;
5d2a2dbb 2867
83d116c5 2868 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2869 locked = true;
83d116c5
JH
2870 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2871 /*
2872 * Other thread has already handled the fault
7df67697 2873 * and update local tlb only
83d116c5 2874 */
7df67697 2875 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2876 ret = false;
2877 goto pte_unlock;
2878 }
2879
2880 entry = pte_mkyoung(vmf->orig_pte);
2881 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2882 update_mmu_cache(vma, addr, vmf->pte);
2883 }
2884
2885 /*
2886 * This really shouldn't fail, because the page is there
2887 * in the page tables. But it might just be unreadable,
2888 * in which case we just give up and fill the result with
2889 * zeroes.
2890 */
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2892 if (locked)
2893 goto warn;
2894
2895 /* Re-validate under PTL if the page is still mapped */
2896 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2897 locked = true;
2898 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2899 /* The PTE changed under us, update local tlb */
2900 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2901 ret = false;
2902 goto pte_unlock;
2903 }
2904
5d2a2dbb 2905 /*
985ba004 2906 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2907 * Try to copy again under PTL.
5d2a2dbb 2908 */
c3e5ea6e
KS
2909 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2910 /*
2911 * Give a warn in case there can be some obscure
2912 * use-case
2913 */
2914warn:
2915 WARN_ON_ONCE(1);
2916 clear_page(kaddr);
2917 }
83d116c5
JH
2918 }
2919
2920 ret = true;
2921
2922pte_unlock:
c3e5ea6e 2923 if (locked)
83d116c5
JH
2924 pte_unmap_unlock(vmf->pte, vmf->ptl);
2925 kunmap_atomic(kaddr);
2926 flush_dcache_page(dst);
2927
2928 return ret;
6aab341e
LT
2929}
2930
c20cd45e
MH
2931static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2932{
2933 struct file *vm_file = vma->vm_file;
2934
2935 if (vm_file)
2936 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2937
2938 /*
2939 * Special mappings (e.g. VDSO) do not have any file so fake
2940 * a default GFP_KERNEL for them.
2941 */
2942 return GFP_KERNEL;
2943}
2944
fb09a464
KS
2945/*
2946 * Notify the address space that the page is about to become writable so that
2947 * it can prohibit this or wait for the page to get into an appropriate state.
2948 *
2949 * We do this without the lock held, so that it can sleep if it needs to.
2950 */
2b740303 2951static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2952{
2b740303 2953 vm_fault_t ret;
38b8cb7f
JK
2954 struct page *page = vmf->page;
2955 unsigned int old_flags = vmf->flags;
fb09a464 2956
38b8cb7f 2957 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2958
dc617f29
DW
2959 if (vmf->vma->vm_file &&
2960 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2961 return VM_FAULT_SIGBUS;
2962
11bac800 2963 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2964 /* Restore original flags so that caller is not surprised */
2965 vmf->flags = old_flags;
fb09a464
KS
2966 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2967 return ret;
2968 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2969 lock_page(page);
2970 if (!page->mapping) {
2971 unlock_page(page);
2972 return 0; /* retry */
2973 }
2974 ret |= VM_FAULT_LOCKED;
2975 } else
2976 VM_BUG_ON_PAGE(!PageLocked(page), page);
2977 return ret;
2978}
2979
97ba0c2b
JK
2980/*
2981 * Handle dirtying of a page in shared file mapping on a write fault.
2982 *
2983 * The function expects the page to be locked and unlocks it.
2984 */
89b15332 2985static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2986{
89b15332 2987 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2988 struct address_space *mapping;
89b15332 2989 struct page *page = vmf->page;
97ba0c2b
JK
2990 bool dirtied;
2991 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2992
2993 dirtied = set_page_dirty(page);
2994 VM_BUG_ON_PAGE(PageAnon(page), page);
2995 /*
2996 * Take a local copy of the address_space - page.mapping may be zeroed
2997 * by truncate after unlock_page(). The address_space itself remains
2998 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2999 * release semantics to prevent the compiler from undoing this copying.
3000 */
3001 mapping = page_rmapping(page);
3002 unlock_page(page);
3003
89b15332
JW
3004 if (!page_mkwrite)
3005 file_update_time(vma->vm_file);
3006
3007 /*
3008 * Throttle page dirtying rate down to writeback speed.
3009 *
3010 * mapping may be NULL here because some device drivers do not
3011 * set page.mapping but still dirty their pages
3012 *
c1e8d7c6 3013 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
3014 * is pinning the mapping, as per above.
3015 */
97ba0c2b 3016 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3017 struct file *fpin;
3018
3019 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3020 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3021 if (fpin) {
3022 fput(fpin);
3023 return VM_FAULT_RETRY;
3024 }
97ba0c2b
JK
3025 }
3026
89b15332 3027 return 0;
97ba0c2b
JK
3028}
3029
4e047f89
SR
3030/*
3031 * Handle write page faults for pages that can be reused in the current vma
3032 *
3033 * This can happen either due to the mapping being with the VM_SHARED flag,
3034 * or due to us being the last reference standing to the page. In either
3035 * case, all we need to do here is to mark the page as writable and update
3036 * any related book-keeping.
3037 */
997dd98d 3038static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3039 __releases(vmf->ptl)
4e047f89 3040{
82b0f8c3 3041 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3042 struct page *page = vmf->page;
4e047f89 3043 pte_t entry;
6c287605 3044
c89357e2 3045 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
6c287605
DH
3046 VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
3047
4e047f89
SR
3048 /*
3049 * Clear the pages cpupid information as the existing
3050 * information potentially belongs to a now completely
3051 * unrelated process.
3052 */
3053 if (page)
3054 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3055
2994302b
JK
3056 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3057 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3058 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3059 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3060 update_mmu_cache(vma, vmf->address, vmf->pte);
3061 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3062 count_vm_event(PGREUSE);
4e047f89
SR
3063}
3064
2f38ab2c 3065/*
c89357e2
DH
3066 * Handle the case of a page which we actually need to copy to a new page,
3067 * either due to COW or unsharing.
2f38ab2c 3068 *
c1e8d7c6 3069 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3070 * without the ptl held.
3071 *
3072 * High level logic flow:
3073 *
3074 * - Allocate a page, copy the content of the old page to the new one.
3075 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3076 * - Take the PTL. If the pte changed, bail out and release the allocated page
3077 * - If the pte is still the way we remember it, update the page table and all
3078 * relevant references. This includes dropping the reference the page-table
3079 * held to the old page, as well as updating the rmap.
3080 * - In any case, unlock the PTL and drop the reference we took to the old page.
3081 */
2b740303 3082static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3083{
c89357e2 3084 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3085 struct vm_area_struct *vma = vmf->vma;
bae473a4 3086 struct mm_struct *mm = vma->vm_mm;
a41b70d6 3087 struct page *old_page = vmf->page;
2f38ab2c 3088 struct page *new_page = NULL;
2f38ab2c
SR
3089 pte_t entry;
3090 int page_copied = 0;
ac46d4f3 3091 struct mmu_notifier_range range;
2f38ab2c
SR
3092
3093 if (unlikely(anon_vma_prepare(vma)))
3094 goto oom;
3095
2994302b 3096 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
3097 new_page = alloc_zeroed_user_highpage_movable(vma,
3098 vmf->address);
2f38ab2c
SR
3099 if (!new_page)
3100 goto oom;
3101 } else {
bae473a4 3102 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 3103 vmf->address);
2f38ab2c
SR
3104 if (!new_page)
3105 goto oom;
83d116c5 3106
c89357e2 3107 if (!__wp_page_copy_user(new_page, old_page, vmf)) {
83d116c5
JH
3108 /*
3109 * COW failed, if the fault was solved by other,
3110 * it's fine. If not, userspace would re-fault on
3111 * the same address and we will handle the fault
3112 * from the second attempt.
3113 */
3114 put_page(new_page);
3115 if (old_page)
3116 put_page(old_page);
3117 return 0;
3118 }
2f38ab2c 3119 }
2f38ab2c 3120
8f425e4e 3121 if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
2f38ab2c 3122 goto oom_free_new;
9d82c694 3123 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 3124
eb3c24f3
MG
3125 __SetPageUptodate(new_page);
3126
7269f999 3127 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 3128 vmf->address & PAGE_MASK,
ac46d4f3
JG
3129 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3130 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3131
3132 /*
3133 * Re-check the pte - we dropped the lock
3134 */
82b0f8c3 3135 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 3136 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
3137 if (old_page) {
3138 if (!PageAnon(old_page)) {
eca56ff9
JM
3139 dec_mm_counter_fast(mm,
3140 mm_counter_file(old_page));
2f38ab2c
SR
3141 inc_mm_counter_fast(mm, MM_ANONPAGES);
3142 }
3143 } else {
3144 inc_mm_counter_fast(mm, MM_ANONPAGES);
3145 }
2994302b 3146 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 3147 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 3148 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3149 if (unlikely(unshare)) {
3150 if (pte_soft_dirty(vmf->orig_pte))
3151 entry = pte_mksoft_dirty(entry);
3152 if (pte_uffd_wp(vmf->orig_pte))
3153 entry = pte_mkuffd_wp(entry);
3154 } else {
3155 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3156 }
111fe718 3157
2f38ab2c
SR
3158 /*
3159 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3160 * pte with the new entry, to keep TLBs on different CPUs in
3161 * sync. This code used to set the new PTE then flush TLBs, but
3162 * that left a window where the new PTE could be loaded into
3163 * some TLBs while the old PTE remains in others.
2f38ab2c 3164 */
82b0f8c3 3165 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
40f2bbf7 3166 page_add_new_anon_rmap(new_page, vma, vmf->address);
b518154e 3167 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
3168 /*
3169 * We call the notify macro here because, when using secondary
3170 * mmu page tables (such as kvm shadow page tables), we want the
3171 * new page to be mapped directly into the secondary page table.
3172 */
c89357e2 3173 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3174 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3175 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3176 if (old_page) {
3177 /*
3178 * Only after switching the pte to the new page may
3179 * we remove the mapcount here. Otherwise another
3180 * process may come and find the rmap count decremented
3181 * before the pte is switched to the new page, and
3182 * "reuse" the old page writing into it while our pte
3183 * here still points into it and can be read by other
3184 * threads.
3185 *
3186 * The critical issue is to order this
3187 * page_remove_rmap with the ptp_clear_flush above.
3188 * Those stores are ordered by (if nothing else,)
3189 * the barrier present in the atomic_add_negative
3190 * in page_remove_rmap.
3191 *
3192 * Then the TLB flush in ptep_clear_flush ensures that
3193 * no process can access the old page before the
3194 * decremented mapcount is visible. And the old page
3195 * cannot be reused until after the decremented
3196 * mapcount is visible. So transitively, TLBs to
3197 * old page will be flushed before it can be reused.
3198 */
cea86fe2 3199 page_remove_rmap(old_page, vma, false);
2f38ab2c
SR
3200 }
3201
3202 /* Free the old page.. */
3203 new_page = old_page;
3204 page_copied = 1;
3205 } else {
7df67697 3206 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3207 }
3208
3209 if (new_page)
09cbfeaf 3210 put_page(new_page);
2f38ab2c 3211
82b0f8c3 3212 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3213 /*
3214 * No need to double call mmu_notifier->invalidate_range() callback as
3215 * the above ptep_clear_flush_notify() did already call it.
3216 */
ac46d4f3 3217 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c 3218 if (old_page) {
f4c4a3f4
HY
3219 if (page_copied)
3220 free_swap_cache(old_page);
09cbfeaf 3221 put_page(old_page);
2f38ab2c 3222 }
c89357e2 3223 return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
2f38ab2c 3224oom_free_new:
09cbfeaf 3225 put_page(new_page);
2f38ab2c
SR
3226oom:
3227 if (old_page)
09cbfeaf 3228 put_page(old_page);
2f38ab2c
SR
3229 return VM_FAULT_OOM;
3230}
3231
66a6197c
JK
3232/**
3233 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3234 * writeable once the page is prepared
3235 *
3236 * @vmf: structure describing the fault
3237 *
3238 * This function handles all that is needed to finish a write page fault in a
3239 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3240 * It handles locking of PTE and modifying it.
66a6197c
JK
3241 *
3242 * The function expects the page to be locked or other protection against
3243 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3244 *
2797e79f 3245 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3246 * we acquired PTE lock.
66a6197c 3247 */
2b740303 3248vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3249{
3250 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3251 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3252 &vmf->ptl);
3253 /*
3254 * We might have raced with another page fault while we released the
3255 * pte_offset_map_lock.
3256 */
3257 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3258 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3259 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3260 return VM_FAULT_NOPAGE;
66a6197c
JK
3261 }
3262 wp_page_reuse(vmf);
a19e2553 3263 return 0;
66a6197c
JK
3264}
3265
dd906184
BH
3266/*
3267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3268 * mapping
3269 */
2b740303 3270static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3271{
82b0f8c3 3272 struct vm_area_struct *vma = vmf->vma;
bae473a4 3273
dd906184 3274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3275 vm_fault_t ret;
dd906184 3276
82b0f8c3 3277 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3278 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3279 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3280 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3281 return ret;
66a6197c 3282 return finish_mkwrite_fault(vmf);
dd906184 3283 }
997dd98d
JK
3284 wp_page_reuse(vmf);
3285 return VM_FAULT_WRITE;
dd906184
BH
3286}
3287
2b740303 3288static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3289 __releases(vmf->ptl)
93e478d4 3290{
82b0f8c3 3291 struct vm_area_struct *vma = vmf->vma;
89b15332 3292 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3293
a41b70d6 3294 get_page(vmf->page);
93e478d4 3295
93e478d4 3296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3297 vm_fault_t tmp;
93e478d4 3298
82b0f8c3 3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3300 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3301 if (unlikely(!tmp || (tmp &
3302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3303 put_page(vmf->page);
93e478d4
SR
3304 return tmp;
3305 }
66a6197c 3306 tmp = finish_mkwrite_fault(vmf);
a19e2553 3307 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3308 unlock_page(vmf->page);
a41b70d6 3309 put_page(vmf->page);
66a6197c 3310 return tmp;
93e478d4 3311 }
66a6197c
JK
3312 } else {
3313 wp_page_reuse(vmf);
997dd98d 3314 lock_page(vmf->page);
93e478d4 3315 }
89b15332 3316 ret |= fault_dirty_shared_page(vmf);
997dd98d 3317 put_page(vmf->page);
93e478d4 3318
89b15332 3319 return ret;
93e478d4
SR
3320}
3321
1da177e4 3322/*
c89357e2
DH
3323 * This routine handles present pages, when
3324 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3325 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3326 * (FAULT_FLAG_UNSHARE)
3327 *
3328 * It is done by copying the page to a new address and decrementing the
3329 * shared-page counter for the old page.
1da177e4 3330 *
1da177e4
LT
3331 * Note that this routine assumes that the protection checks have been
3332 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3333 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3334 * done any necessary COW.
1da177e4 3335 *
c89357e2
DH
3336 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3337 * though the page will change only once the write actually happens. This
3338 * avoids a few races, and potentially makes it more efficient.
1da177e4 3339 *
c1e8d7c6 3340 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3341 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3342 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3343 */
2b740303 3344static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3345 __releases(vmf->ptl)
1da177e4 3346{
c89357e2 3347 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3348 struct vm_area_struct *vma = vmf->vma;
1da177e4 3349
c89357e2
DH
3350 VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3351 VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
529b930b 3352
c89357e2
DH
3353 if (likely(!unshare)) {
3354 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3355 pte_unmap_unlock(vmf->pte, vmf->ptl);
3356 return handle_userfault(vmf, VM_UFFD_WP);
3357 }
3358
3359 /*
3360 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3361 * is flushed in this case before copying.
3362 */
3363 if (unlikely(userfaultfd_wp(vmf->vma) &&
3364 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3365 flush_tlb_page(vmf->vma, vmf->address);
3366 }
6ce64428 3367
a41b70d6
JK
3368 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3369 if (!vmf->page) {
c89357e2
DH
3370 if (unlikely(unshare)) {
3371 /* No anonymous page -> nothing to do. */
3372 pte_unmap_unlock(vmf->pte, vmf->ptl);
3373 return 0;
3374 }
3375
251b97f5 3376 /*
64e45507
PF
3377 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3378 * VM_PFNMAP VMA.
251b97f5
PZ
3379 *
3380 * We should not cow pages in a shared writeable mapping.
dd906184 3381 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3382 */
3383 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3384 (VM_WRITE|VM_SHARED))
2994302b 3385 return wp_pfn_shared(vmf);
2f38ab2c 3386
82b0f8c3 3387 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3388 return wp_page_copy(vmf);
251b97f5 3389 }
1da177e4 3390
d08b3851 3391 /*
ee6a6457
PZ
3392 * Take out anonymous pages first, anonymous shared vmas are
3393 * not dirty accountable.
d08b3851 3394 */
52d1e606 3395 if (PageAnon(vmf->page)) {
09854ba9
LT
3396 struct page *page = vmf->page;
3397
6c287605
DH
3398 /*
3399 * If the page is exclusive to this process we must reuse the
3400 * page without further checks.
3401 */
3402 if (PageAnonExclusive(page))
3403 goto reuse;
3404
53a05ad9
DH
3405 /*
3406 * We have to verify under page lock: these early checks are
3407 * just an optimization to avoid locking the page and freeing
3408 * the swapcache if there is little hope that we can reuse.
3409 *
3410 * PageKsm() doesn't necessarily raise the page refcount.
3411 */
d4c47097
DH
3412 if (PageKsm(page) || page_count(page) > 3)
3413 goto copy;
3414 if (!PageLRU(page))
3415 /*
3416 * Note: We cannot easily detect+handle references from
3417 * remote LRU pagevecs or references to PageLRU() pages.
3418 */
3419 lru_add_drain();
3420 if (page_count(page) > 1 + PageSwapCache(page))
09854ba9
LT
3421 goto copy;
3422 if (!trylock_page(page))
3423 goto copy;
53a05ad9
DH
3424 if (PageSwapCache(page))
3425 try_to_free_swap(page);
3426 if (PageKsm(page) || page_count(page) != 1) {
09854ba9 3427 unlock_page(page);
52d1e606 3428 goto copy;
b009c024 3429 }
09854ba9 3430 /*
53a05ad9
DH
3431 * Ok, we've got the only page reference from our mapping
3432 * and the page is locked, it's dark out, and we're wearing
3433 * sunglasses. Hit it.
09854ba9 3434 */
6c54dc6c 3435 page_move_anon_rmap(page, vma);
09854ba9 3436 unlock_page(page);
6c287605 3437reuse:
c89357e2
DH
3438 if (unlikely(unshare)) {
3439 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 return 0;
3441 }
be068f29 3442 wp_page_reuse(vmf);
09854ba9 3443 return VM_FAULT_WRITE;
c89357e2
DH
3444 } else if (unshare) {
3445 /* No anonymous page -> nothing to do. */
3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 return 0;
ee6a6457 3448 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3449 (VM_WRITE|VM_SHARED))) {
a41b70d6 3450 return wp_page_shared(vmf);
1da177e4 3451 }
52d1e606 3452copy:
1da177e4
LT
3453 /*
3454 * Ok, we need to copy. Oh, well..
3455 */
a41b70d6 3456 get_page(vmf->page);
28766805 3457
82b0f8c3 3458 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b
YY
3459#ifdef CONFIG_KSM
3460 if (PageKsm(vmf->page))
3461 count_vm_event(COW_KSM);
3462#endif
a41b70d6 3463 return wp_page_copy(vmf);
1da177e4
LT
3464}
3465
97a89413 3466static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3467 unsigned long start_addr, unsigned long end_addr,
3468 struct zap_details *details)
3469{
f5cc4eef 3470 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3471}
3472
f808c13f 3473static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3474 pgoff_t first_index,
3475 pgoff_t last_index,
1da177e4
LT
3476 struct zap_details *details)
3477{
3478 struct vm_area_struct *vma;
1da177e4
LT
3479 pgoff_t vba, vea, zba, zea;
3480
232a6a1c 3481 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3482 vba = vma->vm_pgoff;
d6e93217 3483 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3484 zba = max(first_index, vba);
3485 zea = min(last_index, vea);
1da177e4 3486
97a89413 3487 unmap_mapping_range_vma(vma,
1da177e4
LT
3488 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3489 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3490 details);
1da177e4
LT
3491 }
3492}
3493
22061a1f 3494/**
3506659e
MWO
3495 * unmap_mapping_folio() - Unmap single folio from processes.
3496 * @folio: The locked folio to be unmapped.
22061a1f 3497 *
3506659e 3498 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3499 * Typically, for efficiency, the range of nearby pages has already been
3500 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3501 * truncation or invalidation holds the lock on a folio, it may find that
3502 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3503 * to unmap it finally.
3504 */
3506659e 3505void unmap_mapping_folio(struct folio *folio)
22061a1f 3506{
3506659e 3507 struct address_space *mapping = folio->mapping;
22061a1f 3508 struct zap_details details = { };
232a6a1c
PX
3509 pgoff_t first_index;
3510 pgoff_t last_index;
22061a1f 3511
3506659e 3512 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3513
3506659e
MWO
3514 first_index = folio->index;
3515 last_index = folio->index + folio_nr_pages(folio) - 1;
232a6a1c 3516
2e148f1e 3517 details.even_cows = false;
3506659e 3518 details.single_folio = folio;
999dad82 3519 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3520
2c865995 3521 i_mmap_lock_read(mapping);
22061a1f 3522 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3523 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3524 last_index, &details);
2c865995 3525 i_mmap_unlock_read(mapping);
22061a1f
HD
3526}
3527
977fbdcd
MW
3528/**
3529 * unmap_mapping_pages() - Unmap pages from processes.
3530 * @mapping: The address space containing pages to be unmapped.
3531 * @start: Index of first page to be unmapped.
3532 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3533 * @even_cows: Whether to unmap even private COWed pages.
3534 *
3535 * Unmap the pages in this address space from any userspace process which
3536 * has them mmaped. Generally, you want to remove COWed pages as well when
3537 * a file is being truncated, but not when invalidating pages from the page
3538 * cache.
3539 */
3540void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3541 pgoff_t nr, bool even_cows)
3542{
3543 struct zap_details details = { };
232a6a1c
PX
3544 pgoff_t first_index = start;
3545 pgoff_t last_index = start + nr - 1;
977fbdcd 3546
2e148f1e 3547 details.even_cows = even_cows;
232a6a1c
PX
3548 if (last_index < first_index)
3549 last_index = ULONG_MAX;
977fbdcd 3550
2c865995 3551 i_mmap_lock_read(mapping);
977fbdcd 3552 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3553 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3554 last_index, &details);
2c865995 3555 i_mmap_unlock_read(mapping);
977fbdcd 3556}
6e0e99d5 3557EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3558
1da177e4 3559/**
8a5f14a2 3560 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3561 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3562 * file.
3563 *
3d41088f 3564 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3565 * @holebegin: byte in first page to unmap, relative to the start of
3566 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3567 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3568 * must keep the partial page. In contrast, we must get rid of
3569 * partial pages.
3570 * @holelen: size of prospective hole in bytes. This will be rounded
3571 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3572 * end of the file.
3573 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3574 * but 0 when invalidating pagecache, don't throw away private data.
3575 */
3576void unmap_mapping_range(struct address_space *mapping,
3577 loff_t const holebegin, loff_t const holelen, int even_cows)
3578{
1da177e4
LT
3579 pgoff_t hba = holebegin >> PAGE_SHIFT;
3580 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581
3582 /* Check for overflow. */
3583 if (sizeof(holelen) > sizeof(hlen)) {
3584 long long holeend =
3585 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 if (holeend & ~(long long)ULONG_MAX)
3587 hlen = ULONG_MAX - hba + 1;
3588 }
3589
977fbdcd 3590 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3591}
3592EXPORT_SYMBOL(unmap_mapping_range);
3593
b756a3b5
AP
3594/*
3595 * Restore a potential device exclusive pte to a working pte entry
3596 */
3597static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3598{
3599 struct page *page = vmf->page;
3600 struct vm_area_struct *vma = vmf->vma;
3601 struct mmu_notifier_range range;
3602
3603 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3604 return VM_FAULT_RETRY;
3605 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3606 vma->vm_mm, vmf->address & PAGE_MASK,
3607 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3608 mmu_notifier_invalidate_range_start(&range);
3609
3610 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3611 &vmf->ptl);
3612 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3613 restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3614
3615 pte_unmap_unlock(vmf->pte, vmf->ptl);
3616 unlock_page(page);
3617
3618 mmu_notifier_invalidate_range_end(&range);
3619 return 0;
3620}
3621
c145e0b4
DH
3622static inline bool should_try_to_free_swap(struct page *page,
3623 struct vm_area_struct *vma,
3624 unsigned int fault_flags)
3625{
3626 if (!PageSwapCache(page))
3627 return false;
3628 if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3629 PageMlocked(page))
3630 return true;
3631 /*
3632 * If we want to map a page that's in the swapcache writable, we
3633 * have to detect via the refcount if we're really the exclusive
3634 * user. Try freeing the swapcache to get rid of the swapcache
3635 * reference only in case it's likely that we'll be the exlusive user.
3636 */
3637 return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3638 page_count(page) == 2;
3639}
3640
9c28a205
PX
3641static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3642{
3643 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3644 vmf->address, &vmf->ptl);
3645 /*
3646 * Be careful so that we will only recover a special uffd-wp pte into a
3647 * none pte. Otherwise it means the pte could have changed, so retry.
3648 */
3649 if (is_pte_marker(*vmf->pte))
3650 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3651 pte_unmap_unlock(vmf->pte, vmf->ptl);
3652 return 0;
3653}
3654
3655/*
3656 * This is actually a page-missing access, but with uffd-wp special pte
3657 * installed. It means this pte was wr-protected before being unmapped.
3658 */
3659static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3660{
3661 /*
3662 * Just in case there're leftover special ptes even after the region
3663 * got unregistered - we can simply clear them. We can also do that
3664 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3665 * ranges, but it should be more efficient to be done lazily here.
3666 */
3667 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3668 return pte_marker_clear(vmf);
3669
3670 /* do_fault() can handle pte markers too like none pte */
3671 return do_fault(vmf);
3672}
3673
5c041f5d
PX
3674static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3675{
3676 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3677 unsigned long marker = pte_marker_get(entry);
3678
3679 /*
3680 * PTE markers should always be with file-backed memories, and the
3681 * marker should never be empty. If anything weird happened, the best
3682 * thing to do is to kill the process along with its mm.
3683 */
3684 if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3685 return VM_FAULT_SIGBUS;
3686
9c28a205
PX
3687 if (pte_marker_entry_uffd_wp(entry))
3688 return pte_marker_handle_uffd_wp(vmf);
3689
3690 /* This is an unknown pte marker */
3691 return VM_FAULT_SIGBUS;
5c041f5d
PX
3692}
3693
1da177e4 3694/*
c1e8d7c6 3695 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3696 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3697 * We return with pte unmapped and unlocked.
3698 *
c1e8d7c6 3699 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3700 * as does filemap_fault().
1da177e4 3701 */
2b740303 3702vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3703{
82b0f8c3 3704 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3705 struct page *page = NULL, *swapcache;
2799e775 3706 struct swap_info_struct *si = NULL;
14f9135d 3707 rmap_t rmap_flags = RMAP_NONE;
1493a191 3708 bool exclusive = false;
65500d23 3709 swp_entry_t entry;
1da177e4 3710 pte_t pte;
d065bd81 3711 int locked;
2b740303 3712 vm_fault_t ret = 0;
aae466b0 3713 void *shadow = NULL;
1da177e4 3714
2ca99358 3715 if (!pte_unmap_same(vmf))
8f4e2101 3716 goto out;
65500d23 3717
2994302b 3718 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3719 if (unlikely(non_swap_entry(entry))) {
3720 if (is_migration_entry(entry)) {
82b0f8c3
JK
3721 migration_entry_wait(vma->vm_mm, vmf->pmd,
3722 vmf->address);
b756a3b5
AP
3723 } else if (is_device_exclusive_entry(entry)) {
3724 vmf->page = pfn_swap_entry_to_page(entry);
3725 ret = remove_device_exclusive_entry(vmf);
5042db43 3726 } else if (is_device_private_entry(entry)) {
af5cdaf8 3727 vmf->page = pfn_swap_entry_to_page(entry);
897e6365 3728 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3729 } else if (is_hwpoison_entry(entry)) {
3730 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3731 } else if (is_pte_marker_entry(entry)) {
3732 ret = handle_pte_marker(vmf);
d1737fdb 3733 } else {
2994302b 3734 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3735 ret = VM_FAULT_SIGBUS;
d1737fdb 3736 }
0697212a
CL
3737 goto out;
3738 }
0bcac06f 3739
2799e775
ML
3740 /* Prevent swapoff from happening to us. */
3741 si = get_swap_device(entry);
3742 if (unlikely(!si))
3743 goto out;
0bcac06f 3744
eaf649eb
MK
3745 page = lookup_swap_cache(entry, vma, vmf->address);
3746 swapcache = page;
f8020772 3747
1da177e4 3748 if (!page) {
a449bf58
QC
3749 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3750 __swap_count(entry) == 1) {
0bcac06f 3751 /* skip swapcache */
e9e9b7ec
MK
3752 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3753 vmf->address);
0bcac06f
MK
3754 if (page) {
3755 __SetPageLocked(page);
3756 __SetPageSwapBacked(page);
4c6355b2 3757
0add0c77
SB
3758 if (mem_cgroup_swapin_charge_page(page,
3759 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3760 ret = VM_FAULT_OOM;
4c6355b2 3761 goto out_page;
545b1b07 3762 }
0add0c77 3763 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3764
aae466b0
JK
3765 shadow = get_shadow_from_swap_cache(entry);
3766 if (shadow)
0995d7e5
MWO
3767 workingset_refault(page_folio(page),
3768 shadow);
0076f029 3769
6058eaec 3770 lru_cache_add(page);
0add0c77
SB
3771
3772 /* To provide entry to swap_readpage() */
3773 set_page_private(page, entry.val);
5169b844 3774 swap_readpage(page, true, NULL);
0add0c77 3775 set_page_private(page, 0);
0bcac06f 3776 }
aa8d22a1 3777 } else {
e9e9b7ec
MK
3778 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3779 vmf);
aa8d22a1 3780 swapcache = page;
0bcac06f
MK
3781 }
3782
1da177e4
LT
3783 if (!page) {
3784 /*
8f4e2101
HD
3785 * Back out if somebody else faulted in this pte
3786 * while we released the pte lock.
1da177e4 3787 */
82b0f8c3
JK
3788 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3789 vmf->address, &vmf->ptl);
2994302b 3790 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3791 ret = VM_FAULT_OOM;
65500d23 3792 goto unlock;
1da177e4
LT
3793 }
3794
3795 /* Had to read the page from swap area: Major fault */
3796 ret = VM_FAULT_MAJOR;
f8891e5e 3797 count_vm_event(PGMAJFAULT);
2262185c 3798 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3799 } else if (PageHWPoison(page)) {
71f72525
WF
3800 /*
3801 * hwpoisoned dirty swapcache pages are kept for killing
3802 * owner processes (which may be unknown at hwpoison time)
3803 */
d1737fdb 3804 ret = VM_FAULT_HWPOISON;
4779cb31 3805 goto out_release;
1da177e4
LT
3806 }
3807
82b0f8c3 3808 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3809
d065bd81
ML
3810 if (!locked) {
3811 ret |= VM_FAULT_RETRY;
3812 goto out_release;
3813 }
073e587e 3814
84d60fdd
DH
3815 if (swapcache) {
3816 /*
3817 * Make sure try_to_free_swap or swapoff did not release the
3818 * swapcache from under us. The page pin, and pte_same test
3819 * below, are not enough to exclude that. Even if it is still
3820 * swapcache, we need to check that the page's swap has not
3821 * changed.
3822 */
3823 if (unlikely(!PageSwapCache(page) ||
3824 page_private(page) != entry.val))
3825 goto out_page;
3826
3827 /*
3828 * KSM sometimes has to copy on read faults, for example, if
3829 * page->index of !PageKSM() pages would be nonlinear inside the
3830 * anon VMA -- PageKSM() is lost on actual swapout.
3831 */
3832 page = ksm_might_need_to_copy(page, vma, vmf->address);
3833 if (unlikely(!page)) {
3834 ret = VM_FAULT_OOM;
3835 page = swapcache;
3836 goto out_page;
3837 }
c145e0b4
DH
3838
3839 /*
3840 * If we want to map a page that's in the swapcache writable, we
3841 * have to detect via the refcount if we're really the exclusive
3842 * owner. Try removing the extra reference from the local LRU
3843 * pagevecs if required.
3844 */
3845 if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3846 !PageKsm(page) && !PageLRU(page))
3847 lru_add_drain();
5ad64688
HD
3848 }
3849
9d82c694 3850 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3851
1da177e4 3852 /*
8f4e2101 3853 * Back out if somebody else already faulted in this pte.
1da177e4 3854 */
82b0f8c3
JK
3855 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3856 &vmf->ptl);
2994302b 3857 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3858 goto out_nomap;
b8107480
KK
3859
3860 if (unlikely(!PageUptodate(page))) {
3861 ret = VM_FAULT_SIGBUS;
3862 goto out_nomap;
1da177e4
LT
3863 }
3864
78fbe906
DH
3865 /*
3866 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3867 * must never point at an anonymous page in the swapcache that is
3868 * PG_anon_exclusive. Sanity check that this holds and especially, that
3869 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3870 * check after taking the PT lock and making sure that nobody
3871 * concurrently faulted in this page and set PG_anon_exclusive.
3872 */
3873 BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3874 BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3875
1493a191
DH
3876 /*
3877 * Check under PT lock (to protect against concurrent fork() sharing
3878 * the swap entry concurrently) for certainly exclusive pages.
3879 */
3880 if (!PageKsm(page)) {
3881 /*
3882 * Note that pte_swp_exclusive() == false for architectures
3883 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3884 */
3885 exclusive = pte_swp_exclusive(vmf->orig_pte);
3886 if (page != swapcache) {
3887 /*
3888 * We have a fresh page that is not exposed to the
3889 * swapcache -> certainly exclusive.
3890 */
3891 exclusive = true;
3892 } else if (exclusive && PageWriteback(page) &&
3893 (swp_swap_info(entry)->flags & SWP_STABLE_WRITES)) {
3894 /*
3895 * This is tricky: not all swap backends support
3896 * concurrent page modifications while under writeback.
3897 *
3898 * So if we stumble over such a page in the swapcache
3899 * we must not set the page exclusive, otherwise we can
3900 * map it writable without further checks and modify it
3901 * while still under writeback.
3902 *
3903 * For these problematic swap backends, simply drop the
3904 * exclusive marker: this is perfectly fine as we start
3905 * writeback only if we fully unmapped the page and
3906 * there are no unexpected references on the page after
3907 * unmapping succeeded. After fully unmapped, no
3908 * further GUP references (FOLL_GET and FOLL_PIN) can
3909 * appear, so dropping the exclusive marker and mapping
3910 * it only R/O is fine.
3911 */
3912 exclusive = false;
3913 }
3914 }
3915
8c7c6e34 3916 /*
c145e0b4
DH
3917 * Remove the swap entry and conditionally try to free up the swapcache.
3918 * We're already holding a reference on the page but haven't mapped it
3919 * yet.
8c7c6e34 3920 */
c145e0b4
DH
3921 swap_free(entry);
3922 if (should_try_to_free_swap(page, vma, vmf->flags))
3923 try_to_free_swap(page);
1da177e4 3924
bae473a4
KS
3925 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3926 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3927 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3928
3929 /*
1493a191
DH
3930 * Same logic as in do_wp_page(); however, optimize for pages that are
3931 * certainly not shared either because we just allocated them without
3932 * exposing them to the swapcache or because the swap entry indicates
3933 * exclusivity.
c145e0b4 3934 */
1493a191 3935 if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
6c287605
DH
3936 if (vmf->flags & FAULT_FLAG_WRITE) {
3937 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3938 vmf->flags &= ~FAULT_FLAG_WRITE;
3939 ret |= VM_FAULT_WRITE;
3940 }
14f9135d 3941 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3942 }
1da177e4 3943 flush_icache_page(vma, page);
2994302b 3944 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3945 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3946 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3947 pte = pte_mkuffd_wp(pte);
3948 pte = pte_wrprotect(pte);
3949 }
2994302b 3950 vmf->orig_pte = pte;
0bcac06f
MK
3951
3952 /* ksm created a completely new copy */
3953 if (unlikely(page != swapcache && swapcache)) {
40f2bbf7 3954 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 3955 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f 3956 } else {
f1e2db12 3957 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 3958 }
1da177e4 3959
6c287605 3960 VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
3961 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3962 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3963
c475a8ab 3964 unlock_page(page);
0bcac06f 3965 if (page != swapcache && swapcache) {
4969c119
AA
3966 /*
3967 * Hold the lock to avoid the swap entry to be reused
3968 * until we take the PT lock for the pte_same() check
3969 * (to avoid false positives from pte_same). For
3970 * further safety release the lock after the swap_free
3971 * so that the swap count won't change under a
3972 * parallel locked swapcache.
3973 */
3974 unlock_page(swapcache);
09cbfeaf 3975 put_page(swapcache);
4969c119 3976 }
c475a8ab 3977
82b0f8c3 3978 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3979 ret |= do_wp_page(vmf);
61469f1d
HD
3980 if (ret & VM_FAULT_ERROR)
3981 ret &= VM_FAULT_ERROR;
1da177e4
LT
3982 goto out;
3983 }
3984
3985 /* No need to invalidate - it was non-present before */
82b0f8c3 3986 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3987unlock:
82b0f8c3 3988 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3989out:
2799e775
ML
3990 if (si)
3991 put_swap_device(si);
1da177e4 3992 return ret;
b8107480 3993out_nomap:
82b0f8c3 3994 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3995out_page:
b8107480 3996 unlock_page(page);
4779cb31 3997out_release:
09cbfeaf 3998 put_page(page);
0bcac06f 3999 if (page != swapcache && swapcache) {
4969c119 4000 unlock_page(swapcache);
09cbfeaf 4001 put_page(swapcache);
4969c119 4002 }
2799e775
ML
4003 if (si)
4004 put_swap_device(si);
65500d23 4005 return ret;
1da177e4
LT
4006}
4007
4008/*
c1e8d7c6 4009 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4010 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4011 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4012 */
2b740303 4013static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4014{
82b0f8c3 4015 struct vm_area_struct *vma = vmf->vma;
8f4e2101 4016 struct page *page;
2b740303 4017 vm_fault_t ret = 0;
1da177e4 4018 pte_t entry;
1da177e4 4019
6b7339f4
KS
4020 /* File mapping without ->vm_ops ? */
4021 if (vma->vm_flags & VM_SHARED)
4022 return VM_FAULT_SIGBUS;
4023
7267ec00
KS
4024 /*
4025 * Use pte_alloc() instead of pte_alloc_map(). We can't run
4026 * pte_offset_map() on pmds where a huge pmd might be created
4027 * from a different thread.
4028 *
3e4e28c5 4029 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
4030 * parallel threads are excluded by other means.
4031 *
3e4e28c5 4032 * Here we only have mmap_read_lock(mm).
7267ec00 4033 */
4cf58924 4034 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4035 return VM_FAULT_OOM;
4036
f9ce0be7 4037 /* See comment in handle_pte_fault() */
82b0f8c3 4038 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
4039 return 0;
4040
11ac5524 4041 /* Use the zero-page for reads */
82b0f8c3 4042 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4043 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4044 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4045 vma->vm_page_prot));
82b0f8c3
JK
4046 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047 vmf->address, &vmf->ptl);
7df67697
BM
4048 if (!pte_none(*vmf->pte)) {
4049 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4050 goto unlock;
7df67697 4051 }
6b31d595
MH
4052 ret = check_stable_address_space(vma->vm_mm);
4053 if (ret)
4054 goto unlock;
6b251fc9
AA
4055 /* Deliver the page fault to userland, check inside PT lock */
4056 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4057 pte_unmap_unlock(vmf->pte, vmf->ptl);
4058 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4059 }
a13ea5b7
HD
4060 goto setpte;
4061 }
4062
557ed1fa 4063 /* Allocate our own private page. */
557ed1fa
NP
4064 if (unlikely(anon_vma_prepare(vma)))
4065 goto oom;
82b0f8c3 4066 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
4067 if (!page)
4068 goto oom;
eb3c24f3 4069
8f425e4e 4070 if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
eb3c24f3 4071 goto oom_free_page;
9d82c694 4072 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 4073
52f37629
MK
4074 /*
4075 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 4076 * preceding stores to the page contents become visible before
52f37629
MK
4077 * the set_pte_at() write.
4078 */
0ed361de 4079 __SetPageUptodate(page);
8f4e2101 4080
557ed1fa 4081 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 4082 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4083 if (vma->vm_flags & VM_WRITE)
4084 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4085
82b0f8c3
JK
4086 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4087 &vmf->ptl);
7df67697
BM
4088 if (!pte_none(*vmf->pte)) {
4089 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 4090 goto release;
7df67697 4091 }
9ba69294 4092
6b31d595
MH
4093 ret = check_stable_address_space(vma->vm_mm);
4094 if (ret)
4095 goto release;
4096
6b251fc9
AA
4097 /* Deliver the page fault to userland, check inside PT lock */
4098 if (userfaultfd_missing(vma)) {
82b0f8c3 4099 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 4100 put_page(page);
82b0f8c3 4101 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4102 }
4103
bae473a4 4104 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4105 page_add_new_anon_rmap(page, vma, vmf->address);
b518154e 4106 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 4107setpte:
82b0f8c3 4108 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4109
4110 /* No need to invalidate - it was non-present before */
82b0f8c3 4111 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4112unlock:
82b0f8c3 4113 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4114 return ret;
8f4e2101 4115release:
09cbfeaf 4116 put_page(page);
8f4e2101 4117 goto unlock;
8a9f3ccd 4118oom_free_page:
09cbfeaf 4119 put_page(page);
65500d23 4120oom:
1da177e4
LT
4121 return VM_FAULT_OOM;
4122}
4123
9a95f3cf 4124/*
c1e8d7c6 4125 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4126 * released depending on flags and vma->vm_ops->fault() return value.
4127 * See filemap_fault() and __lock_page_retry().
4128 */
2b740303 4129static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4130{
82b0f8c3 4131 struct vm_area_struct *vma = vmf->vma;
2b740303 4132 vm_fault_t ret;
7eae74af 4133
63f3655f
MH
4134 /*
4135 * Preallocate pte before we take page_lock because this might lead to
4136 * deadlocks for memcg reclaim which waits for pages under writeback:
4137 * lock_page(A)
4138 * SetPageWriteback(A)
4139 * unlock_page(A)
4140 * lock_page(B)
4141 * lock_page(B)
d383807a 4142 * pte_alloc_one
63f3655f
MH
4143 * shrink_page_list
4144 * wait_on_page_writeback(A)
4145 * SetPageWriteback(B)
4146 * unlock_page(B)
4147 * # flush A, B to clear the writeback
4148 */
4149 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4150 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4151 if (!vmf->prealloc_pte)
4152 return VM_FAULT_OOM;
63f3655f
MH
4153 }
4154
11bac800 4155 ret = vma->vm_ops->fault(vmf);
3917048d 4156 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4157 VM_FAULT_DONE_COW)))
bc2466e4 4158 return ret;
7eae74af 4159
667240e0 4160 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4161 struct page *page = vmf->page;
e53ac737
RR
4162 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4163 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4164 if (page_mapped(page))
4165 unmap_mapping_pages(page_mapping(page),
4166 page->index, 1, false);
e53ac737 4167 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4168 if (invalidate_inode_page(page))
4169 poisonret = VM_FAULT_NOPAGE;
4170 unlock_page(page);
e53ac737 4171 }
3149c79f 4172 put_page(page);
936ca80d 4173 vmf->page = NULL;
e53ac737 4174 return poisonret;
7eae74af
KS
4175 }
4176
4177 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4178 lock_page(vmf->page);
7eae74af 4179 else
667240e0 4180 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4181
7eae74af
KS
4182 return ret;
4183}
4184
396bcc52 4185#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4186static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4187{
82b0f8c3 4188 struct vm_area_struct *vma = vmf->vma;
953c66c2 4189
82b0f8c3 4190 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4191 /*
4192 * We are going to consume the prealloc table,
4193 * count that as nr_ptes.
4194 */
c4812909 4195 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4196 vmf->prealloc_pte = NULL;
953c66c2
AK
4197}
4198
f9ce0be7 4199vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4200{
82b0f8c3
JK
4201 struct vm_area_struct *vma = vmf->vma;
4202 bool write = vmf->flags & FAULT_FLAG_WRITE;
4203 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4204 pmd_t entry;
2b740303 4205 int i;
d01ac3c3 4206 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4207
4208 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4209 return ret;
10102459 4210
10102459 4211 page = compound_head(page);
d01ac3c3
MWO
4212 if (compound_order(page) != HPAGE_PMD_ORDER)
4213 return ret;
10102459 4214
eac96c3e
YS
4215 /*
4216 * Just backoff if any subpage of a THP is corrupted otherwise
4217 * the corrupted page may mapped by PMD silently to escape the
4218 * check. This kind of THP just can be PTE mapped. Access to
4219 * the corrupted subpage should trigger SIGBUS as expected.
4220 */
4221 if (unlikely(PageHasHWPoisoned(page)))
4222 return ret;
4223
953c66c2 4224 /*
f0953a1b 4225 * Archs like ppc64 need additional space to store information
953c66c2
AK
4226 * related to pte entry. Use the preallocated table for that.
4227 */
82b0f8c3 4228 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4229 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4230 if (!vmf->prealloc_pte)
953c66c2 4231 return VM_FAULT_OOM;
953c66c2
AK
4232 }
4233
82b0f8c3
JK
4234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4235 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4236 goto out;
4237
4238 for (i = 0; i < HPAGE_PMD_NR; i++)
4239 flush_icache_page(vma, page + i);
4240
4241 entry = mk_huge_pmd(page, vma->vm_page_prot);
4242 if (write)
f55e1014 4243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4244
fadae295 4245 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4246 page_add_file_rmap(page, vma, true);
4247
953c66c2
AK
4248 /*
4249 * deposit and withdraw with pmd lock held
4250 */
4251 if (arch_needs_pgtable_deposit())
82b0f8c3 4252 deposit_prealloc_pte(vmf);
10102459 4253
82b0f8c3 4254 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4255
82b0f8c3 4256 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4257
4258 /* fault is handled */
4259 ret = 0;
95ecedcd 4260 count_vm_event(THP_FILE_MAPPED);
10102459 4261out:
82b0f8c3 4262 spin_unlock(vmf->ptl);
10102459
KS
4263 return ret;
4264}
4265#else
f9ce0be7 4266vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4267{
f9ce0be7 4268 return VM_FAULT_FALLBACK;
10102459
KS
4269}
4270#endif
4271
9d3af4b4 4272void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4273{
82b0f8c3 4274 struct vm_area_struct *vma = vmf->vma;
9c28a205 4275 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
82b0f8c3 4276 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4277 bool prefault = vmf->address != addr;
3bb97794 4278 pte_t entry;
7267ec00 4279
3bb97794
KS
4280 flush_icache_page(vma, page);
4281 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4282
4283 if (prefault && arch_wants_old_prefaulted_pte())
4284 entry = pte_mkold(entry);
50c25ee9
TB
4285 else
4286 entry = pte_sw_mkyoung(entry);
46bdb427 4287
3bb97794
KS
4288 if (write)
4289 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205
PX
4290 if (unlikely(uffd_wp))
4291 entry = pte_mkuffd_wp(pte_wrprotect(entry));
bae473a4
KS
4292 /* copy-on-write page */
4293 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 4294 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4295 page_add_new_anon_rmap(page, vma, addr);
b518154e 4296 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4297 } else {
eca56ff9 4298 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
cea86fe2 4299 page_add_file_rmap(page, vma, false);
3bb97794 4300 }
9d3af4b4 4301 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4302}
4303
f46f2ade
PX
4304static bool vmf_pte_changed(struct vm_fault *vmf)
4305{
4306 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4307 return !pte_same(*vmf->pte, vmf->orig_pte);
4308
4309 return !pte_none(*vmf->pte);
4310}
4311
9118c0cb
JK
4312/**
4313 * finish_fault - finish page fault once we have prepared the page to fault
4314 *
4315 * @vmf: structure describing the fault
4316 *
4317 * This function handles all that is needed to finish a page fault once the
4318 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4319 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4320 * addition.
9118c0cb
JK
4321 *
4322 * The function expects the page to be locked and on success it consumes a
4323 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4324 *
4325 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4326 */
2b740303 4327vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4328{
f9ce0be7 4329 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4330 struct page *page;
f9ce0be7 4331 vm_fault_t ret;
9118c0cb
JK
4332
4333 /* Did we COW the page? */
f9ce0be7 4334 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4335 page = vmf->cow_page;
4336 else
4337 page = vmf->page;
6b31d595
MH
4338
4339 /*
4340 * check even for read faults because we might have lost our CoWed
4341 * page
4342 */
f9ce0be7
KS
4343 if (!(vma->vm_flags & VM_SHARED)) {
4344 ret = check_stable_address_space(vma->vm_mm);
4345 if (ret)
4346 return ret;
4347 }
4348
4349 if (pmd_none(*vmf->pmd)) {
4350 if (PageTransCompound(page)) {
4351 ret = do_set_pmd(vmf, page);
4352 if (ret != VM_FAULT_FALLBACK)
4353 return ret;
4354 }
4355
03c4f204
QZ
4356 if (vmf->prealloc_pte)
4357 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4358 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4359 return VM_FAULT_OOM;
4360 }
4361
4362 /* See comment in handle_pte_fault() */
4363 if (pmd_devmap_trans_unstable(vmf->pmd))
4364 return 0;
4365
4366 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4367 vmf->address, &vmf->ptl);
4368 ret = 0;
4369 /* Re-check under ptl */
f46f2ade 4370 if (likely(!vmf_pte_changed(vmf)))
9d3af4b4 4371 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
4372 else
4373 ret = VM_FAULT_NOPAGE;
4374
4375 update_mmu_tlb(vma, vmf->address, vmf->pte);
4376 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4377 return ret;
4378}
4379
3a91053a
KS
4380static unsigned long fault_around_bytes __read_mostly =
4381 rounddown_pow_of_two(65536);
a9b0f861 4382
a9b0f861
KS
4383#ifdef CONFIG_DEBUG_FS
4384static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4385{
a9b0f861 4386 *val = fault_around_bytes;
1592eef0
KS
4387 return 0;
4388}
4389
b4903d6e 4390/*
da391d64
WK
4391 * fault_around_bytes must be rounded down to the nearest page order as it's
4392 * what do_fault_around() expects to see.
b4903d6e 4393 */
a9b0f861 4394static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4395{
a9b0f861 4396 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4397 return -EINVAL;
b4903d6e
AR
4398 if (val > PAGE_SIZE)
4399 fault_around_bytes = rounddown_pow_of_two(val);
4400 else
4401 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
4402 return 0;
4403}
0a1345f8 4404DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4405 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4406
4407static int __init fault_around_debugfs(void)
4408{
d9f7979c
GKH
4409 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4410 &fault_around_bytes_fops);
1592eef0
KS
4411 return 0;
4412}
4413late_initcall(fault_around_debugfs);
1592eef0 4414#endif
8c6e50b0 4415
1fdb412b
KS
4416/*
4417 * do_fault_around() tries to map few pages around the fault address. The hope
4418 * is that the pages will be needed soon and this will lower the number of
4419 * faults to handle.
4420 *
4421 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4422 * not ready to be mapped: not up-to-date, locked, etc.
4423 *
4424 * This function is called with the page table lock taken. In the split ptlock
4425 * case the page table lock only protects only those entries which belong to
4426 * the page table corresponding to the fault address.
4427 *
4428 * This function doesn't cross the VMA boundaries, in order to call map_pages()
4429 * only once.
4430 *
da391d64
WK
4431 * fault_around_bytes defines how many bytes we'll try to map.
4432 * do_fault_around() expects it to be set to a power of two less than or equal
4433 * to PTRS_PER_PTE.
1fdb412b 4434 *
da391d64
WK
4435 * The virtual address of the area that we map is naturally aligned to
4436 * fault_around_bytes rounded down to the machine page size
4437 * (and therefore to page order). This way it's easier to guarantee
4438 * that we don't cross page table boundaries.
1fdb412b 4439 */
2b740303 4440static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4441{
82b0f8c3 4442 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 4443 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 4444 pgoff_t end_pgoff;
2b740303 4445 int off;
8c6e50b0 4446
4db0c3c2 4447 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
4448 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4449
f9ce0be7
KS
4450 address = max(address & mask, vmf->vma->vm_start);
4451 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 4452 start_pgoff -= off;
8c6e50b0
KS
4453
4454 /*
da391d64
WK
4455 * end_pgoff is either the end of the page table, the end of
4456 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4457 */
bae473a4 4458 end_pgoff = start_pgoff -
f9ce0be7 4459 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4460 PTRS_PER_PTE - 1;
82b0f8c3 4461 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4462 start_pgoff + nr_pages - 1);
8c6e50b0 4463
82b0f8c3 4464 if (pmd_none(*vmf->pmd)) {
4cf58924 4465 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4466 if (!vmf->prealloc_pte)
f9ce0be7 4467 return VM_FAULT_OOM;
8c6e50b0
KS
4468 }
4469
f9ce0be7 4470 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4471}
4472
9c28a205
PX
4473/* Return true if we should do read fault-around, false otherwise */
4474static inline bool should_fault_around(struct vm_fault *vmf)
4475{
4476 /* No ->map_pages? No way to fault around... */
4477 if (!vmf->vma->vm_ops->map_pages)
4478 return false;
4479
4480 if (uffd_disable_fault_around(vmf->vma))
4481 return false;
4482
4483 return fault_around_bytes >> PAGE_SHIFT > 1;
4484}
4485
2b740303 4486static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4487{
2b740303 4488 vm_fault_t ret = 0;
8c6e50b0
KS
4489
4490 /*
4491 * Let's call ->map_pages() first and use ->fault() as fallback
4492 * if page by the offset is not ready to be mapped (cold cache or
4493 * something).
4494 */
9c28a205
PX
4495 if (should_fault_around(vmf)) {
4496 ret = do_fault_around(vmf);
4497 if (ret)
4498 return ret;
8c6e50b0 4499 }
e655fb29 4500
936ca80d 4501 ret = __do_fault(vmf);
e655fb29
KS
4502 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4503 return ret;
4504
9118c0cb 4505 ret |= finish_fault(vmf);
936ca80d 4506 unlock_page(vmf->page);
7267ec00 4507 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4508 put_page(vmf->page);
e655fb29
KS
4509 return ret;
4510}
4511
2b740303 4512static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4513{
82b0f8c3 4514 struct vm_area_struct *vma = vmf->vma;
2b740303 4515 vm_fault_t ret;
ec47c3b9
KS
4516
4517 if (unlikely(anon_vma_prepare(vma)))
4518 return VM_FAULT_OOM;
4519
936ca80d
JK
4520 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4521 if (!vmf->cow_page)
ec47c3b9
KS
4522 return VM_FAULT_OOM;
4523
8f425e4e
MWO
4524 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4525 GFP_KERNEL)) {
936ca80d 4526 put_page(vmf->cow_page);
ec47c3b9
KS
4527 return VM_FAULT_OOM;
4528 }
9d82c694 4529 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4530
936ca80d 4531 ret = __do_fault(vmf);
ec47c3b9
KS
4532 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4533 goto uncharge_out;
3917048d
JK
4534 if (ret & VM_FAULT_DONE_COW)
4535 return ret;
ec47c3b9 4536
b1aa812b 4537 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4538 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4539
9118c0cb 4540 ret |= finish_fault(vmf);
b1aa812b
JK
4541 unlock_page(vmf->page);
4542 put_page(vmf->page);
7267ec00
KS
4543 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4544 goto uncharge_out;
ec47c3b9
KS
4545 return ret;
4546uncharge_out:
936ca80d 4547 put_page(vmf->cow_page);
ec47c3b9
KS
4548 return ret;
4549}
4550
2b740303 4551static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4552{
82b0f8c3 4553 struct vm_area_struct *vma = vmf->vma;
2b740303 4554 vm_fault_t ret, tmp;
1d65f86d 4555
936ca80d 4556 ret = __do_fault(vmf);
7eae74af 4557 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4558 return ret;
1da177e4
LT
4559
4560 /*
f0c6d4d2
KS
4561 * Check if the backing address space wants to know that the page is
4562 * about to become writable
1da177e4 4563 */
fb09a464 4564 if (vma->vm_ops->page_mkwrite) {
936ca80d 4565 unlock_page(vmf->page);
38b8cb7f 4566 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4567 if (unlikely(!tmp ||
4568 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4569 put_page(vmf->page);
fb09a464 4570 return tmp;
4294621f 4571 }
fb09a464
KS
4572 }
4573
9118c0cb 4574 ret |= finish_fault(vmf);
7267ec00
KS
4575 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4576 VM_FAULT_RETRY))) {
936ca80d
JK
4577 unlock_page(vmf->page);
4578 put_page(vmf->page);
f0c6d4d2 4579 return ret;
1da177e4 4580 }
b827e496 4581
89b15332 4582 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4583 return ret;
54cb8821 4584}
d00806b1 4585
9a95f3cf 4586/*
c1e8d7c6 4587 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4588 * but allow concurrent faults).
c1e8d7c6 4589 * The mmap_lock may have been released depending on flags and our
9138e47e 4590 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4591 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4592 * by other thread calling munmap()).
9a95f3cf 4593 */
2b740303 4594static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4595{
82b0f8c3 4596 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4597 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4598 vm_fault_t ret;
54cb8821 4599
ff09d7ec
AK
4600 /*
4601 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4602 */
4603 if (!vma->vm_ops->fault) {
4604 /*
4605 * If we find a migration pmd entry or a none pmd entry, which
4606 * should never happen, return SIGBUS
4607 */
4608 if (unlikely(!pmd_present(*vmf->pmd)))
4609 ret = VM_FAULT_SIGBUS;
4610 else {
4611 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4612 vmf->pmd,
4613 vmf->address,
4614 &vmf->ptl);
4615 /*
4616 * Make sure this is not a temporary clearing of pte
4617 * by holding ptl and checking again. A R/M/W update
4618 * of pte involves: take ptl, clearing the pte so that
4619 * we don't have concurrent modification by hardware
4620 * followed by an update.
4621 */
4622 if (unlikely(pte_none(*vmf->pte)))
4623 ret = VM_FAULT_SIGBUS;
4624 else
4625 ret = VM_FAULT_NOPAGE;
4626
4627 pte_unmap_unlock(vmf->pte, vmf->ptl);
4628 }
4629 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4630 ret = do_read_fault(vmf);
4631 else if (!(vma->vm_flags & VM_SHARED))
4632 ret = do_cow_fault(vmf);
4633 else
4634 ret = do_shared_fault(vmf);
4635
4636 /* preallocated pagetable is unused: free it */
4637 if (vmf->prealloc_pte) {
fc8efd2d 4638 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4639 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4640 }
4641 return ret;
54cb8821
NP
4642}
4643
f4c0d836
YS
4644int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4645 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4646{
4647 get_page(page);
4648
4649 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4650 if (page_nid == numa_node_id()) {
9532fec1 4651 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4652 *flags |= TNF_FAULT_LOCAL;
4653 }
9532fec1
MG
4654
4655 return mpol_misplaced(page, vma, addr);
4656}
4657
2b740303 4658static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4659{
82b0f8c3 4660 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4661 struct page *page = NULL;
98fa15f3 4662 int page_nid = NUMA_NO_NODE;
90572890 4663 int last_cpupid;
cbee9f88 4664 int target_nid;
04a86453 4665 pte_t pte, old_pte;
288bc549 4666 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4667 int flags = 0;
d10e63f2
MG
4668
4669 /*
166f61b9
TH
4670 * The "pte" at this point cannot be used safely without
4671 * validation through pte_unmap_same(). It's of NUMA type but
4672 * the pfn may be screwed if the read is non atomic.
166f61b9 4673 */
82b0f8c3
JK
4674 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4675 spin_lock(vmf->ptl);
cee216a6 4676 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4677 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4678 goto out;
4679 }
4680
b99a342d
HY
4681 /* Get the normal PTE */
4682 old_pte = ptep_get(vmf->pte);
04a86453 4683 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4684
82b0f8c3 4685 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4686 if (!page)
4687 goto out_map;
d10e63f2 4688
e81c4802 4689 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4690 if (PageCompound(page))
4691 goto out_map;
e81c4802 4692
6688cc05 4693 /*
bea66fbd
MG
4694 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4695 * much anyway since they can be in shared cache state. This misses
4696 * the case where a mapping is writable but the process never writes
4697 * to it but pte_write gets cleared during protection updates and
4698 * pte_dirty has unpredictable behaviour between PTE scan updates,
4699 * background writeback, dirty balancing and application behaviour.
6688cc05 4700 */
b99a342d 4701 if (!was_writable)
6688cc05
PZ
4702 flags |= TNF_NO_GROUP;
4703
dabe1d99
RR
4704 /*
4705 * Flag if the page is shared between multiple address spaces. This
4706 * is later used when determining whether to group tasks together
4707 */
4708 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4709 flags |= TNF_SHARED;
4710
90572890 4711 last_cpupid = page_cpupid_last(page);
8191acbd 4712 page_nid = page_to_nid(page);
82b0f8c3 4713 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4714 &flags);
98fa15f3 4715 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4716 put_page(page);
b99a342d 4717 goto out_map;
4daae3b4 4718 }
b99a342d 4719 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4720
4721 /* Migrate to the requested node */
bf90ac19 4722 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4723 page_nid = target_nid;
6688cc05 4724 flags |= TNF_MIGRATED;
b99a342d 4725 } else {
074c2381 4726 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4727 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4728 spin_lock(vmf->ptl);
4729 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4730 pte_unmap_unlock(vmf->pte, vmf->ptl);
4731 goto out;
4732 }
4733 goto out_map;
4734 }
4daae3b4
MG
4735
4736out:
98fa15f3 4737 if (page_nid != NUMA_NO_NODE)
6688cc05 4738 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4739 return 0;
b99a342d
HY
4740out_map:
4741 /*
4742 * Make it present again, depending on how arch implements
4743 * non-accessible ptes, some can allow access by kernel mode.
4744 */
4745 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4746 pte = pte_modify(old_pte, vma->vm_page_prot);
4747 pte = pte_mkyoung(pte);
4748 if (was_writable)
4749 pte = pte_mkwrite(pte);
4750 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4751 update_mmu_cache(vma, vmf->address, vmf->pte);
4752 pte_unmap_unlock(vmf->pte, vmf->ptl);
4753 goto out;
d10e63f2
MG
4754}
4755
2b740303 4756static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4757{
f4200391 4758 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4759 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4760 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4761 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4762 return VM_FAULT_FALLBACK;
4763}
4764
183f24aa 4765/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4766static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4767{
c89357e2
DH
4768 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4769
529b930b 4770 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4771 if (likely(!unshare) &&
4772 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4773 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4774 return do_huge_pmd_wp_page(vmf);
529b930b 4775 }
327e9fd4
THV
4776 if (vmf->vma->vm_ops->huge_fault) {
4777 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4778
4779 if (!(ret & VM_FAULT_FALLBACK))
4780 return ret;
4781 }
af9e4d5f 4782
327e9fd4 4783 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4784 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4785
b96375f7
MW
4786 return VM_FAULT_FALLBACK;
4787}
4788
2b740303 4789static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4790{
327e9fd4
THV
4791#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4792 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4793 /* No support for anonymous transparent PUD pages yet */
4794 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4795 goto split;
4796 if (vmf->vma->vm_ops->huge_fault) {
4797 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4798
4799 if (!(ret & VM_FAULT_FALLBACK))
4800 return ret;
4801 }
4802split:
4803 /* COW or write-notify not handled on PUD level: split pud.*/
4804 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4805#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4806 return VM_FAULT_FALLBACK;
4807}
4808
2b740303 4809static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4810{
4811#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4812 /* No support for anonymous transparent PUD pages yet */
4813 if (vma_is_anonymous(vmf->vma))
4814 return VM_FAULT_FALLBACK;
4815 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4816 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4817#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4818 return VM_FAULT_FALLBACK;
4819}
4820
1da177e4
LT
4821/*
4822 * These routines also need to handle stuff like marking pages dirty
4823 * and/or accessed for architectures that don't do it in hardware (most
4824 * RISC architectures). The early dirtying is also good on the i386.
4825 *
4826 * There is also a hook called "update_mmu_cache()" that architectures
4827 * with external mmu caches can use to update those (ie the Sparc or
4828 * PowerPC hashed page tables that act as extended TLBs).
4829 *
c1e8d7c6 4830 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4831 * concurrent faults).
9a95f3cf 4832 *
c1e8d7c6 4833 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4834 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4835 */
2b740303 4836static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4837{
4838 pte_t entry;
4839
82b0f8c3 4840 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4841 /*
4842 * Leave __pte_alloc() until later: because vm_ops->fault may
4843 * want to allocate huge page, and if we expose page table
4844 * for an instant, it will be difficult to retract from
4845 * concurrent faults and from rmap lookups.
4846 */
82b0f8c3 4847 vmf->pte = NULL;
f46f2ade 4848 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4849 } else {
f9ce0be7
KS
4850 /*
4851 * If a huge pmd materialized under us just retry later. Use
4852 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4853 * of pmd_trans_huge() to ensure the pmd didn't become
4854 * pmd_trans_huge under us and then back to pmd_none, as a
4855 * result of MADV_DONTNEED running immediately after a huge pmd
4856 * fault in a different thread of this mm, in turn leading to a
4857 * misleading pmd_trans_huge() retval. All we have to ensure is
4858 * that it is a regular pmd that we can walk with
4859 * pte_offset_map() and we can do that through an atomic read
4860 * in C, which is what pmd_trans_unstable() provides.
4861 */
d0f0931d 4862 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4863 return 0;
4864 /*
4865 * A regular pmd is established and it can't morph into a huge
4866 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4867 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4868 * So now it's safe to run pte_offset_map().
4869 */
82b0f8c3 4870 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4871 vmf->orig_pte = *vmf->pte;
f46f2ade 4872 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00
KS
4873
4874 /*
4875 * some architectures can have larger ptes than wordsize,
4876 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4877 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4878 * accesses. The code below just needs a consistent view
4879 * for the ifs and we later double check anyway with the
7267ec00
KS
4880 * ptl lock held. So here a barrier will do.
4881 */
4882 barrier();
2994302b 4883 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4884 pte_unmap(vmf->pte);
4885 vmf->pte = NULL;
65500d23 4886 }
1da177e4
LT
4887 }
4888
82b0f8c3
JK
4889 if (!vmf->pte) {
4890 if (vma_is_anonymous(vmf->vma))
4891 return do_anonymous_page(vmf);
7267ec00 4892 else
82b0f8c3 4893 return do_fault(vmf);
7267ec00
KS
4894 }
4895
2994302b
JK
4896 if (!pte_present(vmf->orig_pte))
4897 return do_swap_page(vmf);
7267ec00 4898
2994302b
JK
4899 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4900 return do_numa_page(vmf);
d10e63f2 4901
82b0f8c3
JK
4902 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4903 spin_lock(vmf->ptl);
2994302b 4904 entry = vmf->orig_pte;
7df67697
BM
4905 if (unlikely(!pte_same(*vmf->pte, entry))) {
4906 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4907 goto unlock;
7df67697 4908 }
c89357e2 4909 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4910 if (!pte_write(entry))
2994302b 4911 return do_wp_page(vmf);
c89357e2
DH
4912 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4913 entry = pte_mkdirty(entry);
1da177e4
LT
4914 }
4915 entry = pte_mkyoung(entry);
82b0f8c3
JK
4916 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4917 vmf->flags & FAULT_FLAG_WRITE)) {
4918 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4919 } else {
b7333b58
YS
4920 /* Skip spurious TLB flush for retried page fault */
4921 if (vmf->flags & FAULT_FLAG_TRIED)
4922 goto unlock;
1a44e149
AA
4923 /*
4924 * This is needed only for protection faults but the arch code
4925 * is not yet telling us if this is a protection fault or not.
4926 * This still avoids useless tlb flushes for .text page faults
4927 * with threads.
4928 */
82b0f8c3
JK
4929 if (vmf->flags & FAULT_FLAG_WRITE)
4930 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4931 }
8f4e2101 4932unlock:
82b0f8c3 4933 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4934 return 0;
1da177e4
LT
4935}
4936
4937/*
4938 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4939 *
c1e8d7c6 4940 * The mmap_lock may have been released depending on flags and our
9138e47e 4941 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4942 */
2b740303
SJ
4943static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4944 unsigned long address, unsigned int flags)
1da177e4 4945{
82b0f8c3 4946 struct vm_fault vmf = {
bae473a4 4947 .vma = vma,
1a29d85e 4948 .address = address & PAGE_MASK,
824ddc60 4949 .real_address = address,
bae473a4 4950 .flags = flags,
0721ec8b 4951 .pgoff = linear_page_index(vma, address),
667240e0 4952 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4953 };
dcddffd4 4954 struct mm_struct *mm = vma->vm_mm;
1da177e4 4955 pgd_t *pgd;
c2febafc 4956 p4d_t *p4d;
2b740303 4957 vm_fault_t ret;
1da177e4 4958
1da177e4 4959 pgd = pgd_offset(mm, address);
c2febafc
KS
4960 p4d = p4d_alloc(mm, pgd, address);
4961 if (!p4d)
4962 return VM_FAULT_OOM;
a00cc7d9 4963
c2febafc 4964 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4965 if (!vmf.pud)
c74df32c 4966 return VM_FAULT_OOM;
625110b5 4967retry_pud:
7635d9cb 4968 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4969 ret = create_huge_pud(&vmf);
4970 if (!(ret & VM_FAULT_FALLBACK))
4971 return ret;
4972 } else {
4973 pud_t orig_pud = *vmf.pud;
4974
4975 barrier();
4976 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4977
c89357e2
DH
4978 /*
4979 * TODO once we support anonymous PUDs: NUMA case and
4980 * FAULT_FLAG_UNSHARE handling.
4981 */
4982 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
4983 ret = wp_huge_pud(&vmf, orig_pud);
4984 if (!(ret & VM_FAULT_FALLBACK))
4985 return ret;
4986 } else {
4987 huge_pud_set_accessed(&vmf, orig_pud);
4988 return 0;
4989 }
4990 }
4991 }
4992
4993 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4994 if (!vmf.pmd)
c74df32c 4995 return VM_FAULT_OOM;
625110b5
TH
4996
4997 /* Huge pud page fault raced with pmd_alloc? */
4998 if (pud_trans_unstable(vmf.pud))
4999 goto retry_pud;
5000
7635d9cb 5001 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 5002 ret = create_huge_pmd(&vmf);
c0292554
KS
5003 if (!(ret & VM_FAULT_FALLBACK))
5004 return ret;
71e3aac0 5005 } else {
5db4f15c 5006 vmf.orig_pmd = *vmf.pmd;
1f1d06c3 5007
71e3aac0 5008 barrier();
5db4f15c 5009 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5010 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5011 !is_pmd_migration_entry(vmf.orig_pmd));
5012 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5013 pmd_migration_entry_wait(mm, vmf.pmd);
5014 return 0;
5015 }
5db4f15c
YS
5016 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5017 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5018 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5019
c89357e2
DH
5020 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5021 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5022 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5023 if (!(ret & VM_FAULT_FALLBACK))
5024 return ret;
a1dd450b 5025 } else {
5db4f15c 5026 huge_pmd_set_accessed(&vmf);
9845cbbd 5027 return 0;
1f1d06c3 5028 }
71e3aac0
AA
5029 }
5030 }
5031
82b0f8c3 5032 return handle_pte_fault(&vmf);
1da177e4
LT
5033}
5034
bce617ed 5035/**
f0953a1b 5036 * mm_account_fault - Do page fault accounting
bce617ed
PX
5037 *
5038 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5039 * of perf event counters, but we'll still do the per-task accounting to
5040 * the task who triggered this page fault.
5041 * @address: the faulted address.
5042 * @flags: the fault flags.
5043 * @ret: the fault retcode.
5044 *
f0953a1b 5045 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5046 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5047 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5048 * still be in per-arch page fault handlers at the entry of page fault.
5049 */
5050static inline void mm_account_fault(struct pt_regs *regs,
5051 unsigned long address, unsigned int flags,
5052 vm_fault_t ret)
5053{
5054 bool major;
5055
5056 /*
5057 * We don't do accounting for some specific faults:
5058 *
5059 * - Unsuccessful faults (e.g. when the address wasn't valid). That
5060 * includes arch_vma_access_permitted() failing before reaching here.
5061 * So this is not a "this many hardware page faults" counter. We
5062 * should use the hw profiling for that.
5063 *
5064 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
5065 * once they're completed.
5066 */
5067 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5068 return;
5069
5070 /*
5071 * We define the fault as a major fault when the final successful fault
5072 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5073 * handle it immediately previously).
5074 */
5075 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5076
a2beb5f1
PX
5077 if (major)
5078 current->maj_flt++;
5079 else
5080 current->min_flt++;
5081
bce617ed 5082 /*
a2beb5f1
PX
5083 * If the fault is done for GUP, regs will be NULL. We only do the
5084 * accounting for the per thread fault counters who triggered the
5085 * fault, and we skip the perf event updates.
bce617ed
PX
5086 */
5087 if (!regs)
5088 return;
5089
a2beb5f1 5090 if (major)
bce617ed 5091 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5092 else
bce617ed 5093 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5094}
5095
9a95f3cf
PC
5096/*
5097 * By the time we get here, we already hold the mm semaphore
5098 *
c1e8d7c6 5099 * The mmap_lock may have been released depending on flags and our
9138e47e 5100 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5101 */
2b740303 5102vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5103 unsigned int flags, struct pt_regs *regs)
519e5247 5104{
2b740303 5105 vm_fault_t ret;
519e5247
JW
5106
5107 __set_current_state(TASK_RUNNING);
5108
5109 count_vm_event(PGFAULT);
2262185c 5110 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
5111
5112 /* do counter updates before entering really critical section. */
5113 check_sync_rss_stat(current);
5114
de0c799b
LD
5115 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5116 flags & FAULT_FLAG_INSTRUCTION,
5117 flags & FAULT_FLAG_REMOTE))
5118 return VM_FAULT_SIGSEGV;
5119
519e5247
JW
5120 /*
5121 * Enable the memcg OOM handling for faults triggered in user
5122 * space. Kernel faults are handled more gracefully.
5123 */
5124 if (flags & FAULT_FLAG_USER)
29ef680a 5125 mem_cgroup_enter_user_fault();
519e5247 5126
bae473a4
KS
5127 if (unlikely(is_vm_hugetlb_page(vma)))
5128 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5129 else
5130 ret = __handle_mm_fault(vma, address, flags);
519e5247 5131
49426420 5132 if (flags & FAULT_FLAG_USER) {
29ef680a 5133 mem_cgroup_exit_user_fault();
166f61b9
TH
5134 /*
5135 * The task may have entered a memcg OOM situation but
5136 * if the allocation error was handled gracefully (no
5137 * VM_FAULT_OOM), there is no need to kill anything.
5138 * Just clean up the OOM state peacefully.
5139 */
5140 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5141 mem_cgroup_oom_synchronize(false);
49426420 5142 }
3812c8c8 5143
bce617ed
PX
5144 mm_account_fault(regs, address, flags, ret);
5145
519e5247
JW
5146 return ret;
5147}
e1d6d01a 5148EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5149
90eceff1
KS
5150#ifndef __PAGETABLE_P4D_FOLDED
5151/*
5152 * Allocate p4d page table.
5153 * We've already handled the fast-path in-line.
5154 */
5155int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5156{
5157 p4d_t *new = p4d_alloc_one(mm, address);
5158 if (!new)
5159 return -ENOMEM;
5160
90eceff1 5161 spin_lock(&mm->page_table_lock);
ed33b5a6 5162 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5163 p4d_free(mm, new);
ed33b5a6
QZ
5164 } else {
5165 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5166 pgd_populate(mm, pgd, new);
ed33b5a6 5167 }
90eceff1
KS
5168 spin_unlock(&mm->page_table_lock);
5169 return 0;
5170}
5171#endif /* __PAGETABLE_P4D_FOLDED */
5172
1da177e4
LT
5173#ifndef __PAGETABLE_PUD_FOLDED
5174/*
5175 * Allocate page upper directory.
872fec16 5176 * We've already handled the fast-path in-line.
1da177e4 5177 */
c2febafc 5178int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5179{
c74df32c
HD
5180 pud_t *new = pud_alloc_one(mm, address);
5181 if (!new)
1bb3630e 5182 return -ENOMEM;
1da177e4 5183
872fec16 5184 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5185 if (!p4d_present(*p4d)) {
5186 mm_inc_nr_puds(mm);
ed33b5a6 5187 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5188 p4d_populate(mm, p4d, new);
b4e98d9a 5189 } else /* Another has populated it */
5e541973 5190 pud_free(mm, new);
c74df32c 5191 spin_unlock(&mm->page_table_lock);
1bb3630e 5192 return 0;
1da177e4
LT
5193}
5194#endif /* __PAGETABLE_PUD_FOLDED */
5195
5196#ifndef __PAGETABLE_PMD_FOLDED
5197/*
5198 * Allocate page middle directory.
872fec16 5199 * We've already handled the fast-path in-line.
1da177e4 5200 */
1bb3630e 5201int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5202{
a00cc7d9 5203 spinlock_t *ptl;
c74df32c
HD
5204 pmd_t *new = pmd_alloc_one(mm, address);
5205 if (!new)
1bb3630e 5206 return -ENOMEM;
1da177e4 5207
a00cc7d9 5208 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5209 if (!pud_present(*pud)) {
5210 mm_inc_nr_pmds(mm);
ed33b5a6 5211 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5212 pud_populate(mm, pud, new);
ed33b5a6 5213 } else { /* Another has populated it */
5e541973 5214 pmd_free(mm, new);
ed33b5a6 5215 }
a00cc7d9 5216 spin_unlock(ptl);
1bb3630e 5217 return 0;
e0f39591 5218}
1da177e4
LT
5219#endif /* __PAGETABLE_PMD_FOLDED */
5220
0e5e64c0
MS
5221/**
5222 * follow_pte - look up PTE at a user virtual address
5223 * @mm: the mm_struct of the target address space
5224 * @address: user virtual address
5225 * @ptepp: location to store found PTE
5226 * @ptlp: location to store the lock for the PTE
5227 *
5228 * On a successful return, the pointer to the PTE is stored in @ptepp;
5229 * the corresponding lock is taken and its location is stored in @ptlp.
5230 * The contents of the PTE are only stable until @ptlp is released;
5231 * any further use, if any, must be protected against invalidation
5232 * with MMU notifiers.
5233 *
5234 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5235 * should be taken for read.
5236 *
5237 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5238 * it is not a good general-purpose API.
5239 *
5240 * Return: zero on success, -ve otherwise.
5241 */
5242int follow_pte(struct mm_struct *mm, unsigned long address,
5243 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5244{
5245 pgd_t *pgd;
c2febafc 5246 p4d_t *p4d;
f8ad0f49
JW
5247 pud_t *pud;
5248 pmd_t *pmd;
5249 pte_t *ptep;
5250
5251 pgd = pgd_offset(mm, address);
5252 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5253 goto out;
5254
c2febafc
KS
5255 p4d = p4d_offset(pgd, address);
5256 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5257 goto out;
5258
5259 pud = pud_offset(p4d, address);
f8ad0f49
JW
5260 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5261 goto out;
5262
5263 pmd = pmd_offset(pud, address);
f66055ab 5264 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5265
09796395 5266 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
5267 goto out;
5268
5269 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
5270 if (!pte_present(*ptep))
5271 goto unlock;
5272 *ptepp = ptep;
5273 return 0;
5274unlock:
5275 pte_unmap_unlock(ptep, *ptlp);
5276out:
5277 return -EINVAL;
5278}
9fd6dad1
PB
5279EXPORT_SYMBOL_GPL(follow_pte);
5280
3b6748e2
JW
5281/**
5282 * follow_pfn - look up PFN at a user virtual address
5283 * @vma: memory mapping
5284 * @address: user virtual address
5285 * @pfn: location to store found PFN
5286 *
5287 * Only IO mappings and raw PFN mappings are allowed.
5288 *
9fd6dad1
PB
5289 * This function does not allow the caller to read the permissions
5290 * of the PTE. Do not use it.
5291 *
a862f68a 5292 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5293 */
5294int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5295 unsigned long *pfn)
5296{
5297 int ret = -EINVAL;
5298 spinlock_t *ptl;
5299 pte_t *ptep;
5300
5301 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5302 return ret;
5303
9fd6dad1 5304 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5305 if (ret)
5306 return ret;
5307 *pfn = pte_pfn(*ptep);
5308 pte_unmap_unlock(ptep, ptl);
5309 return 0;
5310}
5311EXPORT_SYMBOL(follow_pfn);
5312
28b2ee20 5313#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5314int follow_phys(struct vm_area_struct *vma,
5315 unsigned long address, unsigned int flags,
5316 unsigned long *prot, resource_size_t *phys)
28b2ee20 5317{
03668a4d 5318 int ret = -EINVAL;
28b2ee20
RR
5319 pte_t *ptep, pte;
5320 spinlock_t *ptl;
28b2ee20 5321
d87fe660 5322 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5323 goto out;
28b2ee20 5324
9fd6dad1 5325 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5326 goto out;
28b2ee20 5327 pte = *ptep;
03668a4d 5328
f6f37321 5329 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5330 goto unlock;
28b2ee20
RR
5331
5332 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5333 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5334
03668a4d 5335 ret = 0;
28b2ee20
RR
5336unlock:
5337 pte_unmap_unlock(ptep, ptl);
5338out:
d87fe660 5339 return ret;
28b2ee20
RR
5340}
5341
96667f8a
SV
5342/**
5343 * generic_access_phys - generic implementation for iomem mmap access
5344 * @vma: the vma to access
f0953a1b 5345 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5346 * @buf: buffer to read/write
5347 * @len: length of transfer
5348 * @write: set to FOLL_WRITE when writing, otherwise reading
5349 *
5350 * This is a generic implementation for &vm_operations_struct.access for an
5351 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5352 * not page based.
5353 */
28b2ee20
RR
5354int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5355 void *buf, int len, int write)
5356{
5357 resource_size_t phys_addr;
5358 unsigned long prot = 0;
2bc7273b 5359 void __iomem *maddr;
96667f8a
SV
5360 pte_t *ptep, pte;
5361 spinlock_t *ptl;
5362 int offset = offset_in_page(addr);
5363 int ret = -EINVAL;
5364
5365 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5366 return -EINVAL;
5367
5368retry:
e913a8cd 5369 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5370 return -EINVAL;
5371 pte = *ptep;
5372 pte_unmap_unlock(ptep, ptl);
28b2ee20 5373
96667f8a
SV
5374 prot = pgprot_val(pte_pgprot(pte));
5375 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5376
5377 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5378 return -EINVAL;
5379
9cb12d7b 5380 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5381 if (!maddr)
5382 return -ENOMEM;
5383
e913a8cd 5384 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5385 goto out_unmap;
5386
5387 if (!pte_same(pte, *ptep)) {
5388 pte_unmap_unlock(ptep, ptl);
5389 iounmap(maddr);
5390
5391 goto retry;
5392 }
5393
28b2ee20
RR
5394 if (write)
5395 memcpy_toio(maddr + offset, buf, len);
5396 else
5397 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5398 ret = len;
5399 pte_unmap_unlock(ptep, ptl);
5400out_unmap:
28b2ee20
RR
5401 iounmap(maddr);
5402
96667f8a 5403 return ret;
28b2ee20 5404}
5a73633e 5405EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5406#endif
5407
0ec76a11 5408/*
d3f5ffca 5409 * Access another process' address space as given in mm.
0ec76a11 5410 */
d3f5ffca
JH
5411int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5412 int len, unsigned int gup_flags)
0ec76a11 5413{
0ec76a11 5414 struct vm_area_struct *vma;
0ec76a11 5415 void *old_buf = buf;
442486ec 5416 int write = gup_flags & FOLL_WRITE;
0ec76a11 5417
d8ed45c5 5418 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5419 return 0;
5420
183ff22b 5421 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
5422 while (len) {
5423 int bytes, ret, offset;
5424 void *maddr;
28b2ee20 5425 struct page *page = NULL;
0ec76a11 5426
64019a2e 5427 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 5428 gup_flags, &page, &vma, NULL);
28b2ee20 5429 if (ret <= 0) {
dbffcd03
RR
5430#ifndef CONFIG_HAVE_IOREMAP_PROT
5431 break;
5432#else
28b2ee20
RR
5433 /*
5434 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5435 * we can access using slightly different code.
5436 */
3e418f98
LH
5437 vma = vma_lookup(mm, addr);
5438 if (!vma)
28b2ee20
RR
5439 break;
5440 if (vma->vm_ops && vma->vm_ops->access)
5441 ret = vma->vm_ops->access(vma, addr, buf,
5442 len, write);
5443 if (ret <= 0)
28b2ee20
RR
5444 break;
5445 bytes = ret;
dbffcd03 5446#endif
0ec76a11 5447 } else {
28b2ee20
RR
5448 bytes = len;
5449 offset = addr & (PAGE_SIZE-1);
5450 if (bytes > PAGE_SIZE-offset)
5451 bytes = PAGE_SIZE-offset;
5452
5453 maddr = kmap(page);
5454 if (write) {
5455 copy_to_user_page(vma, page, addr,
5456 maddr + offset, buf, bytes);
5457 set_page_dirty_lock(page);
5458 } else {
5459 copy_from_user_page(vma, page, addr,
5460 buf, maddr + offset, bytes);
5461 }
5462 kunmap(page);
09cbfeaf 5463 put_page(page);
0ec76a11 5464 }
0ec76a11
DH
5465 len -= bytes;
5466 buf += bytes;
5467 addr += bytes;
5468 }
d8ed45c5 5469 mmap_read_unlock(mm);
0ec76a11
DH
5470
5471 return buf - old_buf;
5472}
03252919 5473
5ddd36b9 5474/**
ae91dbfc 5475 * access_remote_vm - access another process' address space
5ddd36b9
SW
5476 * @mm: the mm_struct of the target address space
5477 * @addr: start address to access
5478 * @buf: source or destination buffer
5479 * @len: number of bytes to transfer
6347e8d5 5480 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5481 *
5482 * The caller must hold a reference on @mm.
a862f68a
MR
5483 *
5484 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5485 */
5486int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5487 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5488{
d3f5ffca 5489 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5490}
5491
206cb636
SW
5492/*
5493 * Access another process' address space.
5494 * Source/target buffer must be kernel space,
5495 * Do not walk the page table directly, use get_user_pages
5496 */
5497int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5498 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5499{
5500 struct mm_struct *mm;
5501 int ret;
5502
5503 mm = get_task_mm(tsk);
5504 if (!mm)
5505 return 0;
5506
d3f5ffca 5507 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5508
206cb636
SW
5509 mmput(mm);
5510
5511 return ret;
5512}
fcd35857 5513EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5514
03252919
AK
5515/*
5516 * Print the name of a VMA.
5517 */
5518void print_vma_addr(char *prefix, unsigned long ip)
5519{
5520 struct mm_struct *mm = current->mm;
5521 struct vm_area_struct *vma;
5522
e8bff74a 5523 /*
0a7f682d 5524 * we might be running from an atomic context so we cannot sleep
e8bff74a 5525 */
d8ed45c5 5526 if (!mmap_read_trylock(mm))
e8bff74a
IM
5527 return;
5528
03252919
AK
5529 vma = find_vma(mm, ip);
5530 if (vma && vma->vm_file) {
5531 struct file *f = vma->vm_file;
0a7f682d 5532 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5533 if (buf) {
2fbc57c5 5534 char *p;
03252919 5535
9bf39ab2 5536 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5537 if (IS_ERR(p))
5538 p = "?";
2fbc57c5 5539 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5540 vma->vm_start,
5541 vma->vm_end - vma->vm_start);
5542 free_page((unsigned long)buf);
5543 }
5544 }
d8ed45c5 5545 mmap_read_unlock(mm);
03252919 5546}
3ee1afa3 5547
662bbcb2 5548#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5549void __might_fault(const char *file, int line)
3ee1afa3 5550{
9ec23531 5551 if (pagefault_disabled())
662bbcb2 5552 return;
42a38756 5553 __might_sleep(file, line);
9ec23531 5554#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5555 if (current->mm)
da1c55f1 5556 might_lock_read(&current->mm->mmap_lock);
9ec23531 5557#endif
3ee1afa3 5558}
9ec23531 5559EXPORT_SYMBOL(__might_fault);
3ee1afa3 5560#endif
47ad8475
AA
5561
5562#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5563/*
5564 * Process all subpages of the specified huge page with the specified
5565 * operation. The target subpage will be processed last to keep its
5566 * cache lines hot.
5567 */
5568static inline void process_huge_page(
5569 unsigned long addr_hint, unsigned int pages_per_huge_page,
5570 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5571 void *arg)
47ad8475 5572{
c79b57e4
HY
5573 int i, n, base, l;
5574 unsigned long addr = addr_hint &
5575 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5576
c6ddfb6c 5577 /* Process target subpage last to keep its cache lines hot */
47ad8475 5578 might_sleep();
c79b57e4
HY
5579 n = (addr_hint - addr) / PAGE_SIZE;
5580 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5581 /* If target subpage in first half of huge page */
c79b57e4
HY
5582 base = 0;
5583 l = n;
c6ddfb6c 5584 /* Process subpages at the end of huge page */
c79b57e4
HY
5585 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5586 cond_resched();
c6ddfb6c 5587 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5588 }
5589 } else {
c6ddfb6c 5590 /* If target subpage in second half of huge page */
c79b57e4
HY
5591 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5592 l = pages_per_huge_page - n;
c6ddfb6c 5593 /* Process subpages at the begin of huge page */
c79b57e4
HY
5594 for (i = 0; i < base; i++) {
5595 cond_resched();
c6ddfb6c 5596 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5597 }
5598 }
5599 /*
c6ddfb6c
HY
5600 * Process remaining subpages in left-right-left-right pattern
5601 * towards the target subpage
c79b57e4
HY
5602 */
5603 for (i = 0; i < l; i++) {
5604 int left_idx = base + i;
5605 int right_idx = base + 2 * l - 1 - i;
5606
5607 cond_resched();
c6ddfb6c 5608 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5609 cond_resched();
c6ddfb6c 5610 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5611 }
5612}
5613
c6ddfb6c
HY
5614static void clear_gigantic_page(struct page *page,
5615 unsigned long addr,
5616 unsigned int pages_per_huge_page)
5617{
5618 int i;
5619 struct page *p = page;
5620
5621 might_sleep();
5622 for (i = 0; i < pages_per_huge_page;
5623 i++, p = mem_map_next(p, page, i)) {
5624 cond_resched();
5625 clear_user_highpage(p, addr + i * PAGE_SIZE);
5626 }
5627}
5628
5629static void clear_subpage(unsigned long addr, int idx, void *arg)
5630{
5631 struct page *page = arg;
5632
5633 clear_user_highpage(page + idx, addr);
5634}
5635
5636void clear_huge_page(struct page *page,
5637 unsigned long addr_hint, unsigned int pages_per_huge_page)
5638{
5639 unsigned long addr = addr_hint &
5640 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5641
5642 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5643 clear_gigantic_page(page, addr, pages_per_huge_page);
5644 return;
5645 }
5646
5647 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5648}
5649
47ad8475
AA
5650static void copy_user_gigantic_page(struct page *dst, struct page *src,
5651 unsigned long addr,
5652 struct vm_area_struct *vma,
5653 unsigned int pages_per_huge_page)
5654{
5655 int i;
5656 struct page *dst_base = dst;
5657 struct page *src_base = src;
5658
5659 for (i = 0; i < pages_per_huge_page; ) {
5660 cond_resched();
5661 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5662
5663 i++;
5664 dst = mem_map_next(dst, dst_base, i);
5665 src = mem_map_next(src, src_base, i);
5666 }
5667}
5668
c9f4cd71
HY
5669struct copy_subpage_arg {
5670 struct page *dst;
5671 struct page *src;
5672 struct vm_area_struct *vma;
5673};
5674
5675static void copy_subpage(unsigned long addr, int idx, void *arg)
5676{
5677 struct copy_subpage_arg *copy_arg = arg;
5678
5679 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5680 addr, copy_arg->vma);
5681}
5682
47ad8475 5683void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5684 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5685 unsigned int pages_per_huge_page)
5686{
c9f4cd71
HY
5687 unsigned long addr = addr_hint &
5688 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5689 struct copy_subpage_arg arg = {
5690 .dst = dst,
5691 .src = src,
5692 .vma = vma,
5693 };
47ad8475
AA
5694
5695 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5696 copy_user_gigantic_page(dst, src, addr, vma,
5697 pages_per_huge_page);
5698 return;
5699 }
5700
c9f4cd71 5701 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5702}
fa4d75c1
MK
5703
5704long copy_huge_page_from_user(struct page *dst_page,
5705 const void __user *usr_src,
810a56b9
MK
5706 unsigned int pages_per_huge_page,
5707 bool allow_pagefault)
fa4d75c1 5708{
fa4d75c1
MK
5709 void *page_kaddr;
5710 unsigned long i, rc = 0;
5711 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5712 struct page *subpage = dst_page;
fa4d75c1 5713
3272cfc2
MK
5714 for (i = 0; i < pages_per_huge_page;
5715 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5716 if (allow_pagefault)
3272cfc2 5717 page_kaddr = kmap(subpage);
810a56b9 5718 else
3272cfc2 5719 page_kaddr = kmap_atomic(subpage);
fa4d75c1 5720 rc = copy_from_user(page_kaddr,
b063e374 5721 usr_src + i * PAGE_SIZE, PAGE_SIZE);
810a56b9 5722 if (allow_pagefault)
3272cfc2 5723 kunmap(subpage);
810a56b9
MK
5724 else
5725 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5726
5727 ret_val -= (PAGE_SIZE - rc);
5728 if (rc)
5729 break;
5730
e763243c
MS
5731 flush_dcache_page(subpage);
5732
fa4d75c1
MK
5733 cond_resched();
5734 }
5735 return ret_val;
5736}
47ad8475 5737#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5738
40b64acd 5739#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5740
5741static struct kmem_cache *page_ptl_cachep;
5742
5743void __init ptlock_cache_init(void)
5744{
5745 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5746 SLAB_PANIC, NULL);
5747}
5748
539edb58 5749bool ptlock_alloc(struct page *page)
49076ec2
KS
5750{
5751 spinlock_t *ptl;
5752
b35f1819 5753 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5754 if (!ptl)
5755 return false;
539edb58 5756 page->ptl = ptl;
49076ec2
KS
5757 return true;
5758}
5759
539edb58 5760void ptlock_free(struct page *page)
49076ec2 5761{
b35f1819 5762 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5763}
5764#endif