]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm: handle swap page faults under per-VMA lock
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d 106static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120}
5c041f5d 121
1da177e4
LT
122/*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
166f61b9 129void *high_memory;
1da177e4 130EXPORT_SYMBOL(high_memory);
1da177e4 131
32a93233
IM
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
a62eaf15 144
46bdb427
WD
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
a62eaf15
AK
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
9b41046c 160 return 1;
a62eaf15
AK
161}
162__setup("norandmaps", disable_randmaps);
163
62eede62 164unsigned long zero_pfn __read_mostly;
0b70068e
AB
165EXPORT_SYMBOL(zero_pfn);
166
166f61b9
TH
167unsigned long highest_memmap_pfn __read_mostly;
168
a13ea5b7
HD
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
e720e7d0 177early_initcall(init_zero_pfn);
a62eaf15 178
f1a79412 179void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 180{
f1a79412 181 trace_rss_stat(mm, member);
b3d1411b 182}
d559db08 183
1da177e4
LT
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
9e1b32ca
BH
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
1da177e4 190{
2f569afd 191 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 192 pmd_clear(pmd);
9e1b32ca 193 pte_free_tlb(tlb, token, addr);
c4812909 194 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
195}
196
e0da382c
HD
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
1da177e4
LT
200{
201 pmd_t *pmd;
202 unsigned long next;
e0da382c 203 unsigned long start;
1da177e4 204
e0da382c 205 start = addr;
1da177e4 206 pmd = pmd_offset(pud, addr);
1da177e4
LT
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
9e1b32ca 211 free_pte_range(tlb, pmd, addr);
1da177e4
LT
212 } while (pmd++, addr = next, addr != end);
213
e0da382c
HD
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
1da177e4 221 }
e0da382c
HD
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
9e1b32ca 227 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 228 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
229}
230
c2febafc 231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pud_t *pud;
236 unsigned long next;
e0da382c 237 unsigned long start;
1da177e4 238
e0da382c 239 start = addr;
c2febafc 240 pud = pud_offset(p4d, addr);
1da177e4
LT
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
e0da382c 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
246 } while (pud++, addr = next, addr != end);
247
c2febafc
KS
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
b4e98d9a 262 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
e0da382c
HD
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
1da177e4 289 }
e0da382c
HD
290 if (end - 1 > ceiling - 1)
291 return;
292
c2febafc 293 p4d = p4d_offset(pgd, start);
e0da382c 294 pgd_clear(pgd);
c2febafc 295 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
296}
297
298/*
e0da382c 299 * This function frees user-level page tables of a process.
1da177e4 300 */
42b77728 301void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
1da177e4
LT
304{
305 pgd_t *pgd;
306 unsigned long next;
e0da382c
HD
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
1da177e4 333
e0da382c
HD
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
07e32661
AK
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
ed6a7935 353 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 354 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
c2febafc 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 360 } while (pgd++, addr = next, addr != end);
e0da382c
HD
361}
362
fd892593 363void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 364 struct vm_area_struct *vma, unsigned long floor,
98e51a22 365 unsigned long ceiling, bool mm_wr_locked)
e0da382c 366{
763ecb03 367 do {
e0da382c 368 unsigned long addr = vma->vm_start;
763ecb03
LH
369 struct vm_area_struct *next;
370
371 /*
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
374 */
fd892593 375 next = mas_find(mas, ceiling - 1);
e0da382c 376
8f4f8c16 377 /*
25d9e2d1
NP
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
98e51a22
SB
381 if (mm_wr_locked)
382 vma_start_write(vma);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16
HD
384 unlink_file_vma(vma);
385
9da61aef 386 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 388 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
389 } else {
390 /*
391 * Optimization: gather nearby vmas into one call down
392 */
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 394 && !is_vm_hugetlb_page(next)) {
3bf5ee95 395 vma = next;
fd892593 396 next = mas_find(mas, ceiling - 1);
98e51a22
SB
397 if (mm_wr_locked)
398 vma_start_write(vma);
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16 400 unlink_file_vma(vma);
3bf5ee95
HD
401 }
402 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 403 floor, next ? next->vm_start : ceiling);
3bf5ee95 404 }
e0da382c 405 vma = next;
763ecb03 406 } while (vma);
1da177e4
LT
407}
408
03c4f204 409void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 410{
03c4f204 411 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 412
8ac1f832 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 414 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
415 /*
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
419 *
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
427 */
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
429 pmd_populate(mm, pmd, *pte);
430 *pte = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
03c4f204
QZ
433}
434
4cf58924 435int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 436{
4cf58924 437 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
438 if (!new)
439 return -ENOMEM;
440
03c4f204 441 pmd_install(mm, pmd, &new);
2f569afd
MS
442 if (new)
443 pte_free(mm, new);
1bb3630e 444 return 0;
1da177e4
LT
445}
446
4cf58924 447int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 448{
4cf58924 449 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
450 if (!new)
451 return -ENOMEM;
452
453 spin_lock(&init_mm.page_table_lock);
8ac1f832 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 455 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 456 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 457 new = NULL;
4b471e88 458 }
1bb3630e 459 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
460 if (new)
461 pte_free_kernel(&init_mm, new);
1bb3630e 462 return 0;
1da177e4
LT
463}
464
d559db08
KH
465static inline void init_rss_vec(int *rss)
466{
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468}
469
470static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 471{
d559db08
KH
472 int i;
473
34e55232 474 if (current->mm == mm)
05af2e10 475 sync_mm_rss(mm);
d559db08
KH
476 for (i = 0; i < NR_MM_COUNTERS; i++)
477 if (rss[i])
478 add_mm_counter(mm, i, rss[i]);
ae859762
HD
479}
480
b5810039 481/*
6aab341e
LT
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
b5810039
NP
485 *
486 * The calling function must still handle the error.
487 */
3dc14741
HD
488static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
b5810039 490{
3dc14741 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
496 pgoff_t index;
d936cf9b
HD
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return;
509 }
510 if (nr_unshown) {
1170532b
JP
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
d936cf9b
HD
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
3dc14741
HD
519
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
522
1170532b
JP
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 current->comm,
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 526 if (page)
f0b791a3 527 dump_page(page, "bad pte");
6aa9b8b2 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
531 vma->vm_file,
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 534 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 535 dump_stack();
373d4d09 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
537}
538
ee498ed7 539/*
7e675137 540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 541 *
7e675137
NP
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 545 *
7e675137
NP
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
549 * described below.
550 *
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 554 *
b379d790
JH
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
6aab341e
LT
559 *
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 *
7e675137
NP
562 * And for normal mappings this is false.
563 *
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
b379d790 568 *
b379d790 569 *
7e675137 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
571 *
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
579 *
ee498ed7 580 */
25b2995a
CH
581struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 pte_t pte)
ee498ed7 583{
22b31eec 584 unsigned long pfn = pte_pfn(pte);
7e675137 585
00b3a331 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 587 if (likely(!pte_special(pte)))
22b31eec 588 goto check_pfn;
667a0a06
DV
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 return NULL;
df6ad698
JG
593 if (is_zero_pfn(pfn))
594 return NULL;
e1fb4a08 595 if (pte_devmap(pte))
3218f871
AS
596 /*
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 */
e1fb4a08
DJ
604 return NULL;
605
df6ad698 606 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
607 return NULL;
608 }
609
00b3a331 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 611
b379d790
JH
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
7e675137
NP
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
6aab341e
LT
625 }
626
b38af472
HD
627 if (is_zero_pfn(pfn))
628 return NULL;
00b3a331 629
22b31eec
HD
630check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
6aab341e
LT
635
636 /*
7e675137 637 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 638 * eg. VDSO mappings can cause them to exist.
6aab341e 639 */
b379d790 640out:
6aab341e 641 return pfn_to_page(pfn);
ee498ed7
HD
642}
643
318e9342
VMO
644struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte)
646{
647 struct page *page = vm_normal_page(vma, addr, pte);
648
649 if (page)
650 return page_folio(page);
651 return NULL;
652}
653
28093f9f
GS
654#ifdef CONFIG_TRANSPARENT_HUGEPAGE
655struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t pmd)
657{
658 unsigned long pfn = pmd_pfn(pmd);
659
660 /*
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
664 */
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
667 if (!pfn_valid(pfn))
668 return NULL;
669 goto out;
670 } else {
671 unsigned long off;
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
674 return NULL;
675 if (!is_cow_mapping(vma->vm_flags))
676 return NULL;
677 }
678 }
679
e1fb4a08
DJ
680 if (pmd_devmap(pmd))
681 return NULL;
3cde287b 682 if (is_huge_zero_pmd(pmd))
28093f9f
GS
683 return NULL;
684 if (unlikely(pfn > highest_memmap_pfn))
685 return NULL;
686
687 /*
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
690 */
691out:
692 return pfn_to_page(pfn);
693}
694#endif
695
b756a3b5
AP
696static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
698 pte_t *ptep)
699{
c33c7948 700 pte_t orig_pte;
b756a3b5
AP
701 pte_t pte;
702 swp_entry_t entry;
703
c33c7948 704 orig_pte = ptep_get(ptep);
b756a3b5 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 706 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
707 pte = pte_mksoft_dirty(pte);
708
c33c7948
RR
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
6c287605
DH
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
b756a3b5
AP
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
f1e2db12 722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
4d8ff640 728 WARN_ON_ONCE(1);
b756a3b5 729
1eba86c0
PT
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
b756a3b5
AP
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737}
738
739/*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743static int
744try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746{
c33c7948 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757}
758
1da177e4
LT
759/*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
1da177e4
LT
763 */
764
df3a57d1
LT
765static unsigned long
766copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 769{
8f34f1ea 770 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
1da177e4 773 struct page *page;
c33c7948 774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
775
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
9a5cc85c 778 return -EIO;
df3a57d1
LT
779
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
785 &src_mm->mmlist);
786 spin_unlock(&mmlist_lock);
787 }
1493a191 788 /* Mark the swap entry as shared. */
c33c7948
RR
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
791 set_pte_at(src_mm, addr, src_pte, pte);
792 }
df3a57d1
LT
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
af5cdaf8 795 page = pfn_swap_entry_to_page(entry);
1da177e4 796
df3a57d1 797 rss[mm_counter(page)]++;
5042db43 798
6c287605 799 if (!is_readable_migration_entry(entry) &&
df3a57d1 800 is_cow_mapping(vm_flags)) {
5042db43 801 /*
6c287605
DH
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
804 * now shared.
5042db43 805 */
4dd845b5
AP
806 entry = make_readable_migration_entry(
807 swp_offset(entry));
df3a57d1 808 pte = swp_entry_to_pte(entry);
c33c7948 809 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 810 pte = pte_swp_mksoft_dirty(pte);
c33c7948 811 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
814 }
815 } else if (is_device_private_entry(entry)) {
af5cdaf8 816 page = pfn_swap_entry_to_page(entry);
5042db43 817
df3a57d1
LT
818 /*
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
821 * respect.
822 *
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
826 */
827 get_page(page);
828 rss[mm_counter(page)]++;
fb3d824d
DH
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
4dd845b5 839 if (is_writable_device_private_entry(entry) &&
df3a57d1 840 is_cow_mapping(vm_flags)) {
4dd845b5
AP
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
df3a57d1 843 pte = swp_entry_to_pte(entry);
c33c7948 844 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 847 }
b756a3b5
AP
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
c56d1b62 859 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862 if (marker)
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
c56d1b62 865 return 0;
1da177e4 866 }
8f34f1ea
PX
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871}
872
70e806e4 873/*
b51ad4f8 874 * Copy a present and normal page.
70e806e4 875 *
b51ad4f8
DH
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
70e806e4
PX
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885static inline int
c78f4636
PX
886copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 888 struct folio **prealloc, struct page *page)
70e806e4 889{
edf50470 890 struct folio *new_folio;
b51ad4f8 891 pte_t pte;
70e806e4 892
edf50470
MWO
893 new_folio = *prealloc;
894 if (!new_folio)
70e806e4
PX
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
edf50470
MWO
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
70e806e4
PX
907
908 /* All done, just insert the new page copy in the child */
edf50470 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 912 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 913 pte = pte_mkuffd_wp(pte);
c78f4636 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
915 return 0;
916}
917
918/*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922static inline int
c78f4636
PX
923copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 925 struct folio **prealloc)
df3a57d1 926{
c78f4636
PX
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 929 pte_t pte = ptep_get(src_pte);
df3a57d1 930 struct page *page;
14ddee41 931 struct folio *folio;
df3a57d1 932
c78f4636 933 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
14ddee41 943 folio_get(folio);
fb3d824d 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
fb3d824d
DH
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
edf50470 950 rss[MM_ANONPAGES]++;
b51ad4f8 951 } else if (page) {
14ddee41 952 folio_get(folio);
fb3d824d 953 page_dup_file_rmap(page, false);
edf50470 954 rss[mm_counter_file(page)]++;
70e806e4
PX
955 }
956
1da177e4
LT
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
1b2de5d0 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 962 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 963 pte = pte_wrprotect(pte);
1da177e4 964 }
14ddee41 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
6aab341e 974
8f34f1ea 975 if (!userfaultfd_wp(dst_vma))
b569a176
PX
976 pte = pte_clear_uffd_wp(pte);
977
c78f4636 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
979 return 0;
980}
981
edf50470
MWO
982static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
70e806e4 984{
edf50470 985 struct folio *new_folio;
70e806e4 986
edf50470
MWO
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
70e806e4
PX
989 return NULL;
990
edf50470
MWO
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
70e806e4 993 return NULL;
6aab341e 994 }
e601ded4 995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 996
edf50470 997 return new_folio;
1da177e4
LT
998}
999
c78f4636
PX
1000static int
1001copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1da177e4 1004{
c78f4636
PX
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1007 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1008 pte_t *src_pte, *dst_pte;
c33c7948 1009 pte_t ptent;
c74df32c 1010 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1011 int progress, ret = 0;
d559db08 1012 int rss[NR_MM_COUNTERS];
570a335b 1013 swp_entry_t entry = (swp_entry_t){0};
edf50470 1014 struct folio *prealloc = NULL;
1da177e4
LT
1015
1016again:
70e806e4 1017 progress = 0;
d559db08
KH
1018 init_rss_vec(rss);
1019
3db82b93
HD
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
c74df32c 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
3db82b93
HD
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
f20dc5f7 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
6606c3e0 1042 arch_enter_lazy_mmu_mode();
1da177e4 1043
1da177e4
LT
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
e040f218
HD
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
95c354fe 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1053 break;
1054 }
c33c7948
RR
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1da177e4
LT
1057 progress++;
1058 continue;
1059 }
c33c7948 1060 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
c33c7948 1066 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1067 break;
b756a3b5
AP
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
9a5cc85c 1073 }
b756a3b5
AP
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1080 }
70e806e4 1081 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
70e806e4
PX
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
edf50470 1097 folio_put(prealloc);
70e806e4
PX
1098 prealloc = NULL;
1099 }
1da177e4
LT
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1102
6606c3e0 1103 arch_leave_lazy_mmu_mode();
3db82b93 1104 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1105 add_mm_rss_vec(dst_mm, rss);
c36987e2 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1107 cond_resched();
570a335b 1108
9a5cc85c
AP
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
b756a3b5
AP
1116 } else if (ret == -EBUSY) {
1117 goto out;
9a5cc85c 1118 } else if (ret == -EAGAIN) {
c78f4636 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1120 if (!prealloc)
570a335b 1121 return -ENOMEM;
9a5cc85c
AP
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
570a335b 1124 }
9a5cc85c
AP
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1da177e4
LT
1129 if (addr != end)
1130 goto again;
70e806e4
PX
1131out:
1132 if (unlikely(prealloc))
edf50470 1133 folio_put(prealloc);
70e806e4 1134 return ret;
1da177e4
LT
1135}
1136
c78f4636
PX
1137static inline int
1138copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1da177e4 1141{
c78f4636
PX
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
71e3aac0 1155 int err;
c78f4636 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
71e3aac0
AA
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1da177e4
LT
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
c78f4636
PX
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1da177e4
LT
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172}
1173
c78f4636
PX
1174static inline int
1175copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1da177e4 1178{
c78f4636
PX
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
c2febafc 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1185 if (!dst_pud)
1186 return -ENOMEM;
c2febafc 1187 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1188 do {
1189 next = pud_addr_end(addr, end);
a00cc7d9
MW
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
c78f4636 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1194 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1195 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1da177e4
LT
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
c78f4636
PX
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1da177e4
LT
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209}
1210
c78f4636
PX
1211static inline int
1212copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
c2febafc 1215{
c78f4636 1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
c78f4636
PX
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
c2febafc
KS
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233}
1234
c56d1b62
PX
1235/*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
bc70fbf2 1240static bool
c56d1b62
PX
1241vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242{
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
bcd51a3c 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265}
1266
c78f4636
PX
1267int
1268copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1269{
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long next;
c78f4636
PX
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1276 struct mmu_notifier_range range;
2ec74c3e 1277 bool is_cow;
cddb8a5c 1278 int ret;
1da177e4 1279
c56d1b62 1280 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1281 return 0;
d992895b 1282
c78f4636 1283 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1285
c78f4636 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1287 /*
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1290 */
c78f4636 1291 ret = track_pfn_copy(src_vma);
2ab64037 1292 if (ret)
1293 return ret;
1294 }
1295
cddb8a5c
AA
1296 /*
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1301 */
c78f4636 1302 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1303
1304 if (is_cow) {
7269f999 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1306 0, src_mm, addr, end);
ac46d4f3 1307 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1308 /*
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1311 *
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1314 */
e727bfd5 1315 vma_assert_write_locked(src_vma);
57efa1fe 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1317 }
cddb8a5c
AA
1318
1319 ret = 0;
1da177e4
LT
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1322 do {
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1325 continue;
c78f4636
PX
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 addr, next))) {
d155df53 1328 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1329 ret = -ENOMEM;
1330 break;
1331 }
1da177e4 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1333
57efa1fe
JG
1334 if (is_cow) {
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1336 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1337 }
cddb8a5c 1338 return ret;
1da177e4
LT
1339}
1340
5abfd71d
PX
1341/* Whether we should zap all COWed (private) pages too */
1342static inline bool should_zap_cows(struct zap_details *details)
1343{
1344 /* By default, zap all pages */
1345 if (!details)
1346 return true;
1347
1348 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1349 return details->even_cows;
5abfd71d
PX
1350}
1351
2e148f1e 1352/* Decides whether we should zap this page with the page pointer specified */
254ab940 1353static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1354{
5abfd71d
PX
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
254ab940 1357 return true;
5abfd71d
PX
1358
1359 /* E.g. the caller passes NULL for the case of a zero page */
1360 if (!page)
254ab940 1361 return true;
3506659e 1362
2e148f1e
PX
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
3506659e
MWO
1365}
1366
999dad82
PX
1367static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368{
1369 if (!details)
1370 return false;
1371
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373}
1374
1375/*
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 */
1379static inline void
1380zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1383{
2bad466c
PX
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1386 return;
1387
999dad82
PX
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
51c6f666 1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1395 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1396 unsigned long addr, unsigned long end,
97a89413 1397 struct zap_details *details)
1da177e4 1398{
b5810039 1399 struct mm_struct *mm = tlb->mm;
d16dfc55 1400 int force_flush = 0;
d559db08 1401 int rss[NR_MM_COUNTERS];
97a89413 1402 spinlock_t *ptl;
5f1a1907 1403 pte_t *start_pte;
97a89413 1404 pte_t *pte;
8a5f14a2 1405 swp_entry_t entry;
d559db08 1406
ed6a7935 1407 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1408 init_rss_vec(rss);
3db82b93
HD
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 if (!pte)
1411 return addr;
1412
3ea27719 1413 flush_tlb_batched_pending(mm);
6606c3e0 1414 arch_enter_lazy_mmu_mode();
1da177e4 1415 do {
c33c7948 1416 pte_t ptent = ptep_get(pte);
8018db85
PX
1417 struct page *page;
1418
166f61b9 1419 if (pte_none(ptent))
1da177e4 1420 continue;
6f5e6b9e 1421
7b167b68
MK
1422 if (need_resched())
1423 break;
1424
1da177e4 1425 if (pte_present(ptent)) {
5df397de
LT
1426 unsigned int delay_rmap;
1427
25b2995a 1428 page = vm_normal_page(vma, addr, ptent);
254ab940 1429 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1430 continue;
b5810039 1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1432 tlb->fullmm);
1da177e4 1433 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 ptent);
e2942062 1436 if (unlikely(!page)) {
6080d19f 1437 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1438 continue;
e2942062 1439 }
eca56ff9 1440
5df397de 1441 delay_rmap = 0;
eca56ff9 1442 if (!PageAnon(page)) {
1cf35d47 1443 if (pte_dirty(ptent)) {
6237bcd9 1444 set_page_dirty(page);
5df397de
LT
1445 if (tlb_delay_rmap(tlb)) {
1446 delay_rmap = 1;
1447 force_flush = 1;
1448 }
1cf35d47 1449 }
8788f678 1450 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1451 mark_page_accessed(page);
6237bcd9 1452 }
eca56ff9 1453 rss[mm_counter(page)]--;
5df397de
LT
1454 if (!delay_rmap) {
1455 page_remove_rmap(page, vma, false);
1456 if (unlikely(page_mapcount(page) < 0))
1457 print_bad_pte(vma, addr, ptent, page);
1458 }
1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1460 force_flush = 1;
ce9ec37b 1461 addr += PAGE_SIZE;
d16dfc55 1462 break;
1cf35d47 1463 }
1da177e4
LT
1464 continue;
1465 }
5042db43
JG
1466
1467 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1468 if (is_device_private_entry(entry) ||
1469 is_device_exclusive_entry(entry)) {
8018db85 1470 page = pfn_swap_entry_to_page(entry);
254ab940 1471 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1472 continue;
999dad82
PX
1473 /*
1474 * Both device private/exclusive mappings should only
1475 * work with anonymous page so far, so we don't need to
1476 * consider uffd-wp bit when zap. For more information,
1477 * see zap_install_uffd_wp_if_needed().
1478 */
1479 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1480 rss[mm_counter(page)]--;
b756a3b5 1481 if (is_device_private_entry(entry))
cea86fe2 1482 page_remove_rmap(page, vma, false);
5042db43 1483 put_page(page);
8018db85 1484 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1485 /* Genuine swap entry, hence a private anon page */
1486 if (!should_zap_cows(details))
1487 continue;
8a5f14a2 1488 rss[MM_SWAPENTS]--;
8018db85
PX
1489 if (unlikely(!free_swap_and_cache(entry)))
1490 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1491 } else if (is_migration_entry(entry)) {
af5cdaf8 1492 page = pfn_swap_entry_to_page(entry);
254ab940 1493 if (!should_zap_page(details, page))
5abfd71d 1494 continue;
eca56ff9 1495 rss[mm_counter(page)]--;
999dad82 1496 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1497 /*
1498 * For anon: always drop the marker; for file: only
1499 * drop the marker if explicitly requested.
1500 */
1501 if (!vma_is_anonymous(vma) &&
1502 !zap_drop_file_uffd_wp(details))
999dad82 1503 continue;
9f186f9e 1504 } else if (is_hwpoison_entry(entry) ||
af19487f 1505 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1506 if (!should_zap_cows(details))
1507 continue;
1508 } else {
1509 /* We should have covered all the swap entry types */
1510 WARN_ON_ONCE(1);
b084d435 1511 }
9888a1ca 1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1514 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1515
d559db08 1516 add_mm_rss_vec(mm, rss);
6606c3e0 1517 arch_leave_lazy_mmu_mode();
51c6f666 1518
1cf35d47 1519 /* Do the actual TLB flush before dropping ptl */
5df397de 1520 if (force_flush) {
1cf35d47 1521 tlb_flush_mmu_tlbonly(tlb);
f036c818 1522 tlb_flush_rmaps(tlb, vma);
5df397de 1523 }
1cf35d47
LT
1524 pte_unmap_unlock(start_pte, ptl);
1525
1526 /*
1527 * If we forced a TLB flush (either due to running out of
1528 * batch buffers or because we needed to flush dirty TLB
1529 * entries before releasing the ptl), free the batched
3db82b93 1530 * memory too. Come back again if we didn't do everything.
1cf35d47 1531 */
3db82b93 1532 if (force_flush)
fa0aafb8 1533 tlb_flush_mmu(tlb);
d16dfc55 1534
51c6f666 1535 return addr;
1da177e4
LT
1536}
1537
51c6f666 1538static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1539 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1540 unsigned long addr, unsigned long end,
97a89413 1541 struct zap_details *details)
1da177e4
LT
1542{
1543 pmd_t *pmd;
1544 unsigned long next;
1545
1546 pmd = pmd_offset(pud, addr);
1547 do {
1548 next = pmd_addr_end(addr, end);
84c3fc4e 1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1550 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1551 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553 addr = next;
1554 continue;
1555 }
71e3aac0 1556 /* fall through */
3506659e
MWO
1557 } else if (details && details->single_folio &&
1558 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561 /*
1562 * Take and drop THP pmd lock so that we cannot return
1563 * prematurely, while zap_huge_pmd() has cleared *pmd,
1564 * but not yet decremented compound_mapcount().
1565 */
1566 spin_unlock(ptl);
71e3aac0 1567 }
3db82b93
HD
1568 if (pmd_none(*pmd)) {
1569 addr = next;
1570 continue;
1571 }
1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573 if (addr != next)
1574 pmd--;
1575 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1576
1577 return addr;
1da177e4
LT
1578}
1579
51c6f666 1580static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1581 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1582 unsigned long addr, unsigned long end,
97a89413 1583 struct zap_details *details)
1da177e4
LT
1584{
1585 pud_t *pud;
1586 unsigned long next;
1587
c2febafc 1588 pud = pud_offset(p4d, addr);
1da177e4
LT
1589 do {
1590 next = pud_addr_end(addr, end);
a00cc7d9
MW
1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1593 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1594 split_huge_pud(vma, pud, addr);
1595 } else if (zap_huge_pud(tlb, vma, pud, addr))
1596 goto next;
1597 /* fall through */
1598 }
97a89413 1599 if (pud_none_or_clear_bad(pud))
1da177e4 1600 continue;
97a89413 1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1602next:
1603 cond_resched();
97a89413 1604 } while (pud++, addr = next, addr != end);
51c6f666
RH
1605
1606 return addr;
1da177e4
LT
1607}
1608
c2febafc
KS
1609static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610 struct vm_area_struct *vma, pgd_t *pgd,
1611 unsigned long addr, unsigned long end,
1612 struct zap_details *details)
1613{
1614 p4d_t *p4d;
1615 unsigned long next;
1616
1617 p4d = p4d_offset(pgd, addr);
1618 do {
1619 next = p4d_addr_end(addr, end);
1620 if (p4d_none_or_clear_bad(p4d))
1621 continue;
1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623 } while (p4d++, addr = next, addr != end);
1624
1625 return addr;
1626}
1627
aac45363 1628void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1629 struct vm_area_struct *vma,
1630 unsigned long addr, unsigned long end,
1631 struct zap_details *details)
1da177e4
LT
1632{
1633 pgd_t *pgd;
1634 unsigned long next;
1635
1da177e4
LT
1636 BUG_ON(addr >= end);
1637 tlb_start_vma(tlb, vma);
1638 pgd = pgd_offset(vma->vm_mm, addr);
1639 do {
1640 next = pgd_addr_end(addr, end);
97a89413 1641 if (pgd_none_or_clear_bad(pgd))
1da177e4 1642 continue;
c2febafc 1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1644 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1645 tlb_end_vma(tlb, vma);
1646}
51c6f666 1647
f5cc4eef
AV
1648
1649static void unmap_single_vma(struct mmu_gather *tlb,
1650 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1651 unsigned long end_addr,
68f48381 1652 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1653{
1654 unsigned long start = max(vma->vm_start, start_addr);
1655 unsigned long end;
1656
1657 if (start >= vma->vm_end)
1658 return;
1659 end = min(vma->vm_end, end_addr);
1660 if (end <= vma->vm_start)
1661 return;
1662
cbc91f71
SD
1663 if (vma->vm_file)
1664 uprobe_munmap(vma, start, end);
1665
b3b9c293 1666 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1667 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1668
1669 if (start != end) {
1670 if (unlikely(is_vm_hugetlb_page(vma))) {
1671 /*
1672 * It is undesirable to test vma->vm_file as it
1673 * should be non-null for valid hugetlb area.
1674 * However, vm_file will be NULL in the error
7aa6b4ad 1675 * cleanup path of mmap_region. When
f5cc4eef 1676 * hugetlbfs ->mmap method fails,
7aa6b4ad 1677 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1678 * before calling this function to clean up.
1679 * Since no pte has actually been setup, it is
1680 * safe to do nothing in this case.
1681 */
24669e58 1682 if (vma->vm_file) {
05e90bd0
PX
1683 zap_flags_t zap_flags = details ?
1684 details->zap_flags : 0;
05e90bd0
PX
1685 __unmap_hugepage_range_final(tlb, vma, start, end,
1686 NULL, zap_flags);
24669e58 1687 }
f5cc4eef
AV
1688 } else
1689 unmap_page_range(tlb, vma, start, end, details);
1690 }
1da177e4
LT
1691}
1692
1da177e4
LT
1693/**
1694 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1695 * @tlb: address of the caller's struct mmu_gather
6e412203 1696 * @mas: the maple state
1da177e4
LT
1697 * @vma: the starting vma
1698 * @start_addr: virtual address at which to start unmapping
1699 * @end_addr: virtual address at which to end unmapping
6e412203 1700 * @tree_end: The maximum index to check
809ef83c 1701 * @mm_wr_locked: lock flag
1da177e4 1702 *
508034a3 1703 * Unmap all pages in the vma list.
1da177e4 1704 *
1da177e4
LT
1705 * Only addresses between `start' and `end' will be unmapped.
1706 *
1707 * The VMA list must be sorted in ascending virtual address order.
1708 *
1709 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1710 * range after unmap_vmas() returns. So the only responsibility here is to
1711 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1712 * drops the lock and schedules.
1713 */
fd892593 1714void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1715 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1716 unsigned long end_addr, unsigned long tree_end,
1717 bool mm_wr_locked)
1da177e4 1718{
ac46d4f3 1719 struct mmu_notifier_range range;
999dad82 1720 struct zap_details details = {
04ada095 1721 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1722 /* Careful - we need to zap private pages too! */
1723 .even_cows = true,
1724 };
1da177e4 1725
7d4a8be0 1726 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1727 start_addr, end_addr);
ac46d4f3 1728 mmu_notifier_invalidate_range_start(&range);
763ecb03 1729 do {
68f48381
SB
1730 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1731 mm_wr_locked);
fd892593 1732 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
ac46d4f3 1733 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1734}
1735
f5cc4eef
AV
1736/**
1737 * zap_page_range_single - remove user pages in a given range
1738 * @vma: vm_area_struct holding the applicable pages
1739 * @address: starting address of pages to zap
1740 * @size: number of bytes to zap
8a5f14a2 1741 * @details: details of shared cache invalidation
f5cc4eef
AV
1742 *
1743 * The range must fit into one VMA.
1da177e4 1744 */
21b85b09 1745void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1746 unsigned long size, struct zap_details *details)
1747{
21b85b09 1748 const unsigned long end = address + size;
ac46d4f3 1749 struct mmu_notifier_range range;
d16dfc55 1750 struct mmu_gather tlb;
1da177e4 1751
1da177e4 1752 lru_add_drain();
7d4a8be0 1753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1754 address, end);
1755 if (is_vm_hugetlb_page(vma))
1756 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1757 &range.end);
a72afd87 1758 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1759 update_hiwater_rss(vma->vm_mm);
1760 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1761 /*
1762 * unmap 'address-end' not 'range.start-range.end' as range
1763 * could have been expanded for hugetlb pmd sharing.
1764 */
68f48381 1765 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1766 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1767 tlb_finish_mmu(&tlb);
1da177e4
LT
1768}
1769
c627f9cc
JS
1770/**
1771 * zap_vma_ptes - remove ptes mapping the vma
1772 * @vma: vm_area_struct holding ptes to be zapped
1773 * @address: starting address of pages to zap
1774 * @size: number of bytes to zap
1775 *
1776 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1777 *
1778 * The entire address range must be fully contained within the vma.
1779 *
c627f9cc 1780 */
27d036e3 1781void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1782 unsigned long size)
1783{
88a35912 1784 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1785 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1786 return;
1787
f5cc4eef 1788 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1789}
1790EXPORT_SYMBOL_GPL(zap_vma_ptes);
1791
8cd3984d 1792static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1793{
c2febafc
KS
1794 pgd_t *pgd;
1795 p4d_t *p4d;
1796 pud_t *pud;
1797 pmd_t *pmd;
1798
1799 pgd = pgd_offset(mm, addr);
1800 p4d = p4d_alloc(mm, pgd, addr);
1801 if (!p4d)
1802 return NULL;
1803 pud = pud_alloc(mm, p4d, addr);
1804 if (!pud)
1805 return NULL;
1806 pmd = pmd_alloc(mm, pud, addr);
1807 if (!pmd)
1808 return NULL;
1809
1810 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1811 return pmd;
1812}
1813
1814pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1815 spinlock_t **ptl)
1816{
1817 pmd_t *pmd = walk_to_pmd(mm, addr);
1818
1819 if (!pmd)
1820 return NULL;
c2febafc 1821 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1822}
1823
8efd6f5b
AR
1824static int validate_page_before_insert(struct page *page)
1825{
1826 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1827 return -EINVAL;
1828 flush_dcache_page(page);
1829 return 0;
1830}
1831
cea86fe2 1832static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1833 unsigned long addr, struct page *page, pgprot_t prot)
1834{
c33c7948 1835 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1836 return -EBUSY;
1837 /* Ok, finally just insert the thing.. */
1838 get_page(page);
f1a79412 1839 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1840 page_add_file_rmap(page, vma, false);
1841 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1842 return 0;
1843}
1844
238f58d8
LT
1845/*
1846 * This is the old fallback for page remapping.
1847 *
1848 * For historical reasons, it only allows reserved pages. Only
1849 * old drivers should use this, and they needed to mark their
1850 * pages reserved for the old functions anyway.
1851 */
423bad60
NP
1852static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1853 struct page *page, pgprot_t prot)
238f58d8
LT
1854{
1855 int retval;
c9cfcddf 1856 pte_t *pte;
8a9f3ccd
BS
1857 spinlock_t *ptl;
1858
8efd6f5b
AR
1859 retval = validate_page_before_insert(page);
1860 if (retval)
5b4e655e 1861 goto out;
238f58d8 1862 retval = -ENOMEM;
cea86fe2 1863 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1864 if (!pte)
5b4e655e 1865 goto out;
cea86fe2 1866 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1867 pte_unmap_unlock(pte, ptl);
1868out:
1869 return retval;
1870}
1871
8cd3984d 1872#ifdef pte_index
cea86fe2 1873static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1874 unsigned long addr, struct page *page, pgprot_t prot)
1875{
1876 int err;
1877
1878 if (!page_count(page))
1879 return -EINVAL;
1880 err = validate_page_before_insert(page);
7f70c2a6
AR
1881 if (err)
1882 return err;
cea86fe2 1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1884}
1885
1886/* insert_pages() amortizes the cost of spinlock operations
1887 * when inserting pages in a loop. Arch *must* define pte_index.
1888 */
1889static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 struct page **pages, unsigned long *num, pgprot_t prot)
1891{
1892 pmd_t *pmd = NULL;
7f70c2a6
AR
1893 pte_t *start_pte, *pte;
1894 spinlock_t *pte_lock;
8cd3984d
AR
1895 struct mm_struct *const mm = vma->vm_mm;
1896 unsigned long curr_page_idx = 0;
1897 unsigned long remaining_pages_total = *num;
1898 unsigned long pages_to_write_in_pmd;
1899 int ret;
1900more:
1901 ret = -EFAULT;
1902 pmd = walk_to_pmd(mm, addr);
1903 if (!pmd)
1904 goto out;
1905
1906 pages_to_write_in_pmd = min_t(unsigned long,
1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908
1909 /* Allocate the PTE if necessary; takes PMD lock once only. */
1910 ret = -ENOMEM;
1911 if (pte_alloc(mm, pmd))
1912 goto out;
8cd3984d
AR
1913
1914 while (pages_to_write_in_pmd) {
1915 int pte_idx = 0;
1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917
7f70c2a6 1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1919 if (!start_pte) {
1920 ret = -EFAULT;
1921 goto out;
1922 }
7f70c2a6 1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1924 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1925 addr, pages[curr_page_idx], prot);
1926 if (unlikely(err)) {
7f70c2a6 1927 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1928 ret = err;
1929 remaining_pages_total -= pte_idx;
1930 goto out;
1931 }
1932 addr += PAGE_SIZE;
1933 ++curr_page_idx;
1934 }
7f70c2a6 1935 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1936 pages_to_write_in_pmd -= batch_size;
1937 remaining_pages_total -= batch_size;
1938 }
1939 if (remaining_pages_total)
1940 goto more;
1941 ret = 0;
1942out:
1943 *num = remaining_pages_total;
1944 return ret;
1945}
1946#endif /* ifdef pte_index */
1947
1948/**
1949 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1950 * @vma: user vma to map to
1951 * @addr: target start user address of these pages
1952 * @pages: source kernel pages
1953 * @num: in: number of pages to map. out: number of pages that were *not*
1954 * mapped. (0 means all pages were successfully mapped).
1955 *
1956 * Preferred over vm_insert_page() when inserting multiple pages.
1957 *
1958 * In case of error, we may have mapped a subset of the provided
1959 * pages. It is the caller's responsibility to account for this case.
1960 *
1961 * The same restrictions apply as in vm_insert_page().
1962 */
1963int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1964 struct page **pages, unsigned long *num)
1965{
1966#ifdef pte_index
1967 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1968
1969 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1970 return -EFAULT;
1971 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1972 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1973 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1974 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1975 }
1976 /* Defer page refcount checking till we're about to map that page. */
1977 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1978#else
1979 unsigned long idx = 0, pgcount = *num;
45779b03 1980 int err = -EINVAL;
8cd3984d
AR
1981
1982 for (; idx < pgcount; ++idx) {
1983 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1984 if (err)
1985 break;
1986 }
1987 *num = pgcount - idx;
1988 return err;
1989#endif /* ifdef pte_index */
1990}
1991EXPORT_SYMBOL(vm_insert_pages);
1992
bfa5bf6d
REB
1993/**
1994 * vm_insert_page - insert single page into user vma
1995 * @vma: user vma to map to
1996 * @addr: target user address of this page
1997 * @page: source kernel page
1998 *
a145dd41
LT
1999 * This allows drivers to insert individual pages they've allocated
2000 * into a user vma.
2001 *
2002 * The page has to be a nice clean _individual_ kernel allocation.
2003 * If you allocate a compound page, you need to have marked it as
2004 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2005 * (see split_page()).
a145dd41
LT
2006 *
2007 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2008 * took an arbitrary page protection parameter. This doesn't allow
2009 * that. Your vma protection will have to be set up correctly, which
2010 * means that if you want a shared writable mapping, you'd better
2011 * ask for a shared writable mapping!
2012 *
2013 * The page does not need to be reserved.
4b6e1e37
KK
2014 *
2015 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2016 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2017 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2018 * function from other places, for example from page-fault handler.
a862f68a
MR
2019 *
2020 * Return: %0 on success, negative error code otherwise.
a145dd41 2021 */
423bad60
NP
2022int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2023 struct page *page)
a145dd41
LT
2024{
2025 if (addr < vma->vm_start || addr >= vma->vm_end)
2026 return -EFAULT;
2027 if (!page_count(page))
2028 return -EINVAL;
4b6e1e37 2029 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2030 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2031 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2032 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2033 }
423bad60 2034 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2035}
e3c3374f 2036EXPORT_SYMBOL(vm_insert_page);
a145dd41 2037
a667d745
SJ
2038/*
2039 * __vm_map_pages - maps range of kernel pages into user vma
2040 * @vma: user vma to map to
2041 * @pages: pointer to array of source kernel pages
2042 * @num: number of pages in page array
2043 * @offset: user's requested vm_pgoff
2044 *
2045 * This allows drivers to map range of kernel pages into a user vma.
2046 *
2047 * Return: 0 on success and error code otherwise.
2048 */
2049static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2050 unsigned long num, unsigned long offset)
2051{
2052 unsigned long count = vma_pages(vma);
2053 unsigned long uaddr = vma->vm_start;
2054 int ret, i;
2055
2056 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2057 if (offset >= num)
a667d745
SJ
2058 return -ENXIO;
2059
2060 /* Fail if the user requested size exceeds available object size */
2061 if (count > num - offset)
2062 return -ENXIO;
2063
2064 for (i = 0; i < count; i++) {
2065 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2066 if (ret < 0)
2067 return ret;
2068 uaddr += PAGE_SIZE;
2069 }
2070
2071 return 0;
2072}
2073
2074/**
2075 * vm_map_pages - maps range of kernel pages starts with non zero offset
2076 * @vma: user vma to map to
2077 * @pages: pointer to array of source kernel pages
2078 * @num: number of pages in page array
2079 *
2080 * Maps an object consisting of @num pages, catering for the user's
2081 * requested vm_pgoff
2082 *
2083 * If we fail to insert any page into the vma, the function will return
2084 * immediately leaving any previously inserted pages present. Callers
2085 * from the mmap handler may immediately return the error as their caller
2086 * will destroy the vma, removing any successfully inserted pages. Other
2087 * callers should make their own arrangements for calling unmap_region().
2088 *
2089 * Context: Process context. Called by mmap handlers.
2090 * Return: 0 on success and error code otherwise.
2091 */
2092int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2093 unsigned long num)
2094{
2095 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2096}
2097EXPORT_SYMBOL(vm_map_pages);
2098
2099/**
2100 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2101 * @vma: user vma to map to
2102 * @pages: pointer to array of source kernel pages
2103 * @num: number of pages in page array
2104 *
2105 * Similar to vm_map_pages(), except that it explicitly sets the offset
2106 * to 0. This function is intended for the drivers that did not consider
2107 * vm_pgoff.
2108 *
2109 * Context: Process context. Called by mmap handlers.
2110 * Return: 0 on success and error code otherwise.
2111 */
2112int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2113 unsigned long num)
2114{
2115 return __vm_map_pages(vma, pages, num, 0);
2116}
2117EXPORT_SYMBOL(vm_map_pages_zero);
2118
9b5a8e00 2119static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2120 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2121{
2122 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2123 pte_t *pte, entry;
2124 spinlock_t *ptl;
2125
423bad60
NP
2126 pte = get_locked_pte(mm, addr, &ptl);
2127 if (!pte)
9b5a8e00 2128 return VM_FAULT_OOM;
c33c7948
RR
2129 entry = ptep_get(pte);
2130 if (!pte_none(entry)) {
b2770da6
RZ
2131 if (mkwrite) {
2132 /*
2133 * For read faults on private mappings the PFN passed
2134 * in may not match the PFN we have mapped if the
2135 * mapped PFN is a writeable COW page. In the mkwrite
2136 * case we are creating a writable PTE for a shared
f2c57d91
JK
2137 * mapping and we expect the PFNs to match. If they
2138 * don't match, we are likely racing with block
2139 * allocation and mapping invalidation so just skip the
2140 * update.
b2770da6 2141 */
c33c7948
RR
2142 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2143 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2144 goto out_unlock;
f2c57d91 2145 }
c33c7948 2146 entry = pte_mkyoung(entry);
cae85cb8
JK
2147 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2148 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2149 update_mmu_cache(vma, addr, pte);
2150 }
2151 goto out_unlock;
b2770da6 2152 }
423bad60
NP
2153
2154 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2155 if (pfn_t_devmap(pfn))
2156 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2157 else
2158 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2159
b2770da6
RZ
2160 if (mkwrite) {
2161 entry = pte_mkyoung(entry);
2162 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2163 }
2164
423bad60 2165 set_pte_at(mm, addr, pte, entry);
4b3073e1 2166 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2167
423bad60
NP
2168out_unlock:
2169 pte_unmap_unlock(pte, ptl);
9b5a8e00 2170 return VM_FAULT_NOPAGE;
423bad60
NP
2171}
2172
f5e6d1d5
MW
2173/**
2174 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2175 * @vma: user vma to map to
2176 * @addr: target user address of this page
2177 * @pfn: source kernel pfn
2178 * @pgprot: pgprot flags for the inserted page
2179 *
a1a0aea5 2180 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2181 * to override pgprot on a per-page basis.
2182 *
2183 * This only makes sense for IO mappings, and it makes no sense for
2184 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2185 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2186 * impractical.
2187 *
28d8b812
LS
2188 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2189 * caching- and encryption bits different than those of @vma->vm_page_prot,
2190 * because the caching- or encryption mode may not be known at mmap() time.
2191 *
2192 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2193 * to set caching and encryption bits for those vmas (except for COW pages).
2194 * This is ensured by core vm only modifying these page table entries using
2195 * functions that don't touch caching- or encryption bits, using pte_modify()
2196 * if needed. (See for example mprotect()).
2197 *
2198 * Also when new page-table entries are created, this is only done using the
2199 * fault() callback, and never using the value of vma->vm_page_prot,
2200 * except for page-table entries that point to anonymous pages as the result
2201 * of COW.
574c5b3d 2202 *
ae2b01f3 2203 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2204 * Return: vm_fault_t value.
2205 */
2206vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207 unsigned long pfn, pgprot_t pgprot)
2208{
6d958546
MW
2209 /*
2210 * Technically, architectures with pte_special can avoid all these
2211 * restrictions (same for remap_pfn_range). However we would like
2212 * consistency in testing and feature parity among all, so we should
2213 * try to keep these invariants in place for everybody.
2214 */
2215 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217 (VM_PFNMAP|VM_MIXEDMAP));
2218 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220
2221 if (addr < vma->vm_start || addr >= vma->vm_end)
2222 return VM_FAULT_SIGBUS;
2223
2224 if (!pfn_modify_allowed(pfn, pgprot))
2225 return VM_FAULT_SIGBUS;
2226
2227 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228
9b5a8e00 2229 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2230 false);
f5e6d1d5
MW
2231}
2232EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2233
ae2b01f3
MW
2234/**
2235 * vmf_insert_pfn - insert single pfn into user vma
2236 * @vma: user vma to map to
2237 * @addr: target user address of this page
2238 * @pfn: source kernel pfn
2239 *
2240 * Similar to vm_insert_page, this allows drivers to insert individual pages
2241 * they've allocated into a user vma. Same comments apply.
2242 *
2243 * This function should only be called from a vm_ops->fault handler, and
2244 * in that case the handler should return the result of this function.
2245 *
2246 * vma cannot be a COW mapping.
2247 *
2248 * As this is called only for pages that do not currently exist, we
2249 * do not need to flush old virtual caches or the TLB.
2250 *
2251 * Context: Process context. May allocate using %GFP_KERNEL.
2252 * Return: vm_fault_t value.
2253 */
2254vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255 unsigned long pfn)
2256{
2257 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258}
2259EXPORT_SYMBOL(vmf_insert_pfn);
2260
785a3fab
DW
2261static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262{
2263 /* these checks mirror the abort conditions in vm_normal_page */
2264 if (vma->vm_flags & VM_MIXEDMAP)
2265 return true;
2266 if (pfn_t_devmap(pfn))
2267 return true;
2268 if (pfn_t_special(pfn))
2269 return true;
2270 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 return true;
2272 return false;
2273}
2274
79f3aa5b 2275static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2276 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2277{
28d8b812 2278 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2279 int err;
87744ab3 2280
785a3fab 2281 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2282
423bad60 2283 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2284 return VM_FAULT_SIGBUS;
308a047c
BP
2285
2286 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2287
42e4089c 2288 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2289 return VM_FAULT_SIGBUS;
42e4089c 2290
423bad60
NP
2291 /*
2292 * If we don't have pte special, then we have to use the pfn_valid()
2293 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2295 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2296 * without pte special, it would there be refcounted as a normal page.
423bad60 2297 */
00b3a331
LD
2298 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2300 struct page *page;
2301
03fc2da6
DW
2302 /*
2303 * At this point we are committed to insert_page()
2304 * regardless of whether the caller specified flags that
2305 * result in pfn_t_has_page() == false.
2306 */
2307 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2308 err = insert_page(vma, addr, page, pgprot);
2309 } else {
9b5a8e00 2310 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2311 }
b2770da6 2312
5d747637
MW
2313 if (err == -ENOMEM)
2314 return VM_FAULT_OOM;
2315 if (err < 0 && err != -EBUSY)
2316 return VM_FAULT_SIGBUS;
2317
2318 return VM_FAULT_NOPAGE;
e0dc0d8f 2319}
79f3aa5b
MW
2320
2321vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322 pfn_t pfn)
2323{
28d8b812 2324 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2325}
5d747637 2326EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2327
ab77dab4
SJ
2328/*
2329 * If the insertion of PTE failed because someone else already added a
2330 * different entry in the mean time, we treat that as success as we assume
2331 * the same entry was actually inserted.
2332 */
ab77dab4
SJ
2333vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334 unsigned long addr, pfn_t pfn)
b2770da6 2335{
28d8b812 2336 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2337}
ab77dab4 2338EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2339
1da177e4
LT
2340/*
2341 * maps a range of physical memory into the requested pages. the old
2342 * mappings are removed. any references to nonexistent pages results
2343 * in null mappings (currently treated as "copy-on-access")
2344 */
2345static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346 unsigned long addr, unsigned long end,
2347 unsigned long pfn, pgprot_t prot)
2348{
90a3e375 2349 pte_t *pte, *mapped_pte;
c74df32c 2350 spinlock_t *ptl;
42e4089c 2351 int err = 0;
1da177e4 2352
90a3e375 2353 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2354 if (!pte)
2355 return -ENOMEM;
6606c3e0 2356 arch_enter_lazy_mmu_mode();
1da177e4 2357 do {
c33c7948 2358 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2359 if (!pfn_modify_allowed(pfn, prot)) {
2360 err = -EACCES;
2361 break;
2362 }
7e675137 2363 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2364 pfn++;
2365 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2366 arch_leave_lazy_mmu_mode();
90a3e375 2367 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2368 return err;
1da177e4
LT
2369}
2370
2371static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372 unsigned long addr, unsigned long end,
2373 unsigned long pfn, pgprot_t prot)
2374{
2375 pmd_t *pmd;
2376 unsigned long next;
42e4089c 2377 int err;
1da177e4
LT
2378
2379 pfn -= addr >> PAGE_SHIFT;
2380 pmd = pmd_alloc(mm, pud, addr);
2381 if (!pmd)
2382 return -ENOMEM;
f66055ab 2383 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2384 do {
2385 next = pmd_addr_end(addr, end);
42e4089c
AK
2386 err = remap_pte_range(mm, pmd, addr, next,
2387 pfn + (addr >> PAGE_SHIFT), prot);
2388 if (err)
2389 return err;
1da177e4
LT
2390 } while (pmd++, addr = next, addr != end);
2391 return 0;
2392}
2393
c2febafc 2394static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2395 unsigned long addr, unsigned long end,
2396 unsigned long pfn, pgprot_t prot)
2397{
2398 pud_t *pud;
2399 unsigned long next;
42e4089c 2400 int err;
1da177e4
LT
2401
2402 pfn -= addr >> PAGE_SHIFT;
c2febafc 2403 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2404 if (!pud)
2405 return -ENOMEM;
2406 do {
2407 next = pud_addr_end(addr, end);
42e4089c
AK
2408 err = remap_pmd_range(mm, pud, addr, next,
2409 pfn + (addr >> PAGE_SHIFT), prot);
2410 if (err)
2411 return err;
1da177e4
LT
2412 } while (pud++, addr = next, addr != end);
2413 return 0;
2414}
2415
c2febafc
KS
2416static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417 unsigned long addr, unsigned long end,
2418 unsigned long pfn, pgprot_t prot)
2419{
2420 p4d_t *p4d;
2421 unsigned long next;
42e4089c 2422 int err;
c2febafc
KS
2423
2424 pfn -= addr >> PAGE_SHIFT;
2425 p4d = p4d_alloc(mm, pgd, addr);
2426 if (!p4d)
2427 return -ENOMEM;
2428 do {
2429 next = p4d_addr_end(addr, end);
42e4089c
AK
2430 err = remap_pud_range(mm, p4d, addr, next,
2431 pfn + (addr >> PAGE_SHIFT), prot);
2432 if (err)
2433 return err;
c2febafc
KS
2434 } while (p4d++, addr = next, addr != end);
2435 return 0;
2436}
2437
74ffa5a3
CH
2438/*
2439 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2440 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2441 */
74ffa5a3
CH
2442int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2444{
2445 pgd_t *pgd;
2446 unsigned long next;
2d15cab8 2447 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2448 struct mm_struct *mm = vma->vm_mm;
2449 int err;
2450
0c4123e3
AZ
2451 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452 return -EINVAL;
2453
1da177e4
LT
2454 /*
2455 * Physically remapped pages are special. Tell the
2456 * rest of the world about it:
2457 * VM_IO tells people not to look at these pages
2458 * (accesses can have side effects).
6aab341e
LT
2459 * VM_PFNMAP tells the core MM that the base pages are just
2460 * raw PFN mappings, and do not have a "struct page" associated
2461 * with them.
314e51b9
KK
2462 * VM_DONTEXPAND
2463 * Disable vma merging and expanding with mremap().
2464 * VM_DONTDUMP
2465 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2466 *
2467 * There's a horrible special case to handle copy-on-write
2468 * behaviour that some programs depend on. We mark the "original"
2469 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2470 * See vm_normal_page() for details.
1da177e4 2471 */
b3b9c293
KK
2472 if (is_cow_mapping(vma->vm_flags)) {
2473 if (addr != vma->vm_start || end != vma->vm_end)
2474 return -EINVAL;
fb155c16 2475 vma->vm_pgoff = pfn;
b3b9c293
KK
2476 }
2477
1c71222e 2478 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2479
2480 BUG_ON(addr >= end);
2481 pfn -= addr >> PAGE_SHIFT;
2482 pgd = pgd_offset(mm, addr);
2483 flush_cache_range(vma, addr, end);
1da177e4
LT
2484 do {
2485 next = pgd_addr_end(addr, end);
c2febafc 2486 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2487 pfn + (addr >> PAGE_SHIFT), prot);
2488 if (err)
74ffa5a3 2489 return err;
1da177e4 2490 } while (pgd++, addr = next, addr != end);
2ab64037 2491
74ffa5a3
CH
2492 return 0;
2493}
2494
2495/**
2496 * remap_pfn_range - remap kernel memory to userspace
2497 * @vma: user vma to map to
2498 * @addr: target page aligned user address to start at
2499 * @pfn: page frame number of kernel physical memory address
2500 * @size: size of mapping area
2501 * @prot: page protection flags for this mapping
2502 *
2503 * Note: this is only safe if the mm semaphore is held when called.
2504 *
2505 * Return: %0 on success, negative error code otherwise.
2506 */
2507int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508 unsigned long pfn, unsigned long size, pgprot_t prot)
2509{
2510 int err;
2511
2512 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2513 if (err)
74ffa5a3 2514 return -EINVAL;
2ab64037 2515
74ffa5a3
CH
2516 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517 if (err)
68f48381 2518 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2519 return err;
2520}
2521EXPORT_SYMBOL(remap_pfn_range);
2522
b4cbb197
LT
2523/**
2524 * vm_iomap_memory - remap memory to userspace
2525 * @vma: user vma to map to
abd69b9e 2526 * @start: start of the physical memory to be mapped
b4cbb197
LT
2527 * @len: size of area
2528 *
2529 * This is a simplified io_remap_pfn_range() for common driver use. The
2530 * driver just needs to give us the physical memory range to be mapped,
2531 * we'll figure out the rest from the vma information.
2532 *
2533 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534 * whatever write-combining details or similar.
a862f68a
MR
2535 *
2536 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2537 */
2538int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539{
2540 unsigned long vm_len, pfn, pages;
2541
2542 /* Check that the physical memory area passed in looks valid */
2543 if (start + len < start)
2544 return -EINVAL;
2545 /*
2546 * You *really* shouldn't map things that aren't page-aligned,
2547 * but we've historically allowed it because IO memory might
2548 * just have smaller alignment.
2549 */
2550 len += start & ~PAGE_MASK;
2551 pfn = start >> PAGE_SHIFT;
2552 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553 if (pfn + pages < pfn)
2554 return -EINVAL;
2555
2556 /* We start the mapping 'vm_pgoff' pages into the area */
2557 if (vma->vm_pgoff > pages)
2558 return -EINVAL;
2559 pfn += vma->vm_pgoff;
2560 pages -= vma->vm_pgoff;
2561
2562 /* Can we fit all of the mapping? */
2563 vm_len = vma->vm_end - vma->vm_start;
2564 if (vm_len >> PAGE_SHIFT > pages)
2565 return -EINVAL;
2566
2567 /* Ok, let it rip */
2568 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569}
2570EXPORT_SYMBOL(vm_iomap_memory);
2571
aee16b3c
JF
2572static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573 unsigned long addr, unsigned long end,
e80d3909
JR
2574 pte_fn_t fn, void *data, bool create,
2575 pgtbl_mod_mask *mask)
aee16b3c 2576{
8abb50c7 2577 pte_t *pte, *mapped_pte;
be1db475 2578 int err = 0;
3f649ab7 2579 spinlock_t *ptl;
aee16b3c 2580
be1db475 2581 if (create) {
8abb50c7 2582 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2583 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2584 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585 if (!pte)
2586 return -ENOMEM;
2587 } else {
8abb50c7 2588 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2589 pte_offset_kernel(pmd, addr) :
2590 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2591 if (!pte)
2592 return -EINVAL;
be1db475 2593 }
aee16b3c 2594
38e0edb1
JF
2595 arch_enter_lazy_mmu_mode();
2596
eeb4a05f
CH
2597 if (fn) {
2598 do {
c33c7948 2599 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2600 err = fn(pte++, addr, data);
2601 if (err)
2602 break;
2603 }
2604 } while (addr += PAGE_SIZE, addr != end);
2605 }
e80d3909 2606 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2607
38e0edb1
JF
2608 arch_leave_lazy_mmu_mode();
2609
aee16b3c 2610 if (mm != &init_mm)
8abb50c7 2611 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2612 return err;
2613}
2614
2615static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616 unsigned long addr, unsigned long end,
e80d3909
JR
2617 pte_fn_t fn, void *data, bool create,
2618 pgtbl_mod_mask *mask)
aee16b3c
JF
2619{
2620 pmd_t *pmd;
2621 unsigned long next;
be1db475 2622 int err = 0;
aee16b3c 2623
ceb86879
AK
2624 BUG_ON(pud_huge(*pud));
2625
be1db475 2626 if (create) {
e80d3909 2627 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2628 if (!pmd)
2629 return -ENOMEM;
2630 } else {
2631 pmd = pmd_offset(pud, addr);
2632 }
aee16b3c
JF
2633 do {
2634 next = pmd_addr_end(addr, end);
0c95cba4
NP
2635 if (pmd_none(*pmd) && !create)
2636 continue;
2637 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638 return -EINVAL;
2639 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 if (!create)
2641 continue;
2642 pmd_clear_bad(pmd);
be1db475 2643 }
0c95cba4
NP
2644 err = apply_to_pte_range(mm, pmd, addr, next,
2645 fn, data, create, mask);
2646 if (err)
2647 break;
aee16b3c 2648 } while (pmd++, addr = next, addr != end);
0c95cba4 2649
aee16b3c
JF
2650 return err;
2651}
2652
c2febafc 2653static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2654 unsigned long addr, unsigned long end,
e80d3909
JR
2655 pte_fn_t fn, void *data, bool create,
2656 pgtbl_mod_mask *mask)
aee16b3c
JF
2657{
2658 pud_t *pud;
2659 unsigned long next;
be1db475 2660 int err = 0;
aee16b3c 2661
be1db475 2662 if (create) {
e80d3909 2663 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2664 if (!pud)
2665 return -ENOMEM;
2666 } else {
2667 pud = pud_offset(p4d, addr);
2668 }
aee16b3c
JF
2669 do {
2670 next = pud_addr_end(addr, end);
0c95cba4
NP
2671 if (pud_none(*pud) && !create)
2672 continue;
2673 if (WARN_ON_ONCE(pud_leaf(*pud)))
2674 return -EINVAL;
2675 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 if (!create)
2677 continue;
2678 pud_clear_bad(pud);
be1db475 2679 }
0c95cba4
NP
2680 err = apply_to_pmd_range(mm, pud, addr, next,
2681 fn, data, create, mask);
2682 if (err)
2683 break;
aee16b3c 2684 } while (pud++, addr = next, addr != end);
0c95cba4 2685
aee16b3c
JF
2686 return err;
2687}
2688
c2febafc
KS
2689static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690 unsigned long addr, unsigned long end,
e80d3909
JR
2691 pte_fn_t fn, void *data, bool create,
2692 pgtbl_mod_mask *mask)
c2febafc
KS
2693{
2694 p4d_t *p4d;
2695 unsigned long next;
be1db475 2696 int err = 0;
c2febafc 2697
be1db475 2698 if (create) {
e80d3909 2699 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2700 if (!p4d)
2701 return -ENOMEM;
2702 } else {
2703 p4d = p4d_offset(pgd, addr);
2704 }
c2febafc
KS
2705 do {
2706 next = p4d_addr_end(addr, end);
0c95cba4
NP
2707 if (p4d_none(*p4d) && !create)
2708 continue;
2709 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710 return -EINVAL;
2711 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 if (!create)
2713 continue;
2714 p4d_clear_bad(p4d);
be1db475 2715 }
0c95cba4
NP
2716 err = apply_to_pud_range(mm, p4d, addr, next,
2717 fn, data, create, mask);
2718 if (err)
2719 break;
c2febafc 2720 } while (p4d++, addr = next, addr != end);
0c95cba4 2721
c2febafc
KS
2722 return err;
2723}
2724
be1db475
DA
2725static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726 unsigned long size, pte_fn_t fn,
2727 void *data, bool create)
aee16b3c
JF
2728{
2729 pgd_t *pgd;
e80d3909 2730 unsigned long start = addr, next;
57250a5b 2731 unsigned long end = addr + size;
e80d3909 2732 pgtbl_mod_mask mask = 0;
be1db475 2733 int err = 0;
aee16b3c 2734
9cb65bc3
MP
2735 if (WARN_ON(addr >= end))
2736 return -EINVAL;
2737
aee16b3c
JF
2738 pgd = pgd_offset(mm, addr);
2739 do {
2740 next = pgd_addr_end(addr, end);
0c95cba4 2741 if (pgd_none(*pgd) && !create)
be1db475 2742 continue;
0c95cba4
NP
2743 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744 return -EINVAL;
2745 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 if (!create)
2747 continue;
2748 pgd_clear_bad(pgd);
2749 }
2750 err = apply_to_p4d_range(mm, pgd, addr, next,
2751 fn, data, create, &mask);
aee16b3c
JF
2752 if (err)
2753 break;
2754 } while (pgd++, addr = next, addr != end);
57250a5b 2755
e80d3909
JR
2756 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757 arch_sync_kernel_mappings(start, start + size);
2758
aee16b3c
JF
2759 return err;
2760}
be1db475
DA
2761
2762/*
2763 * Scan a region of virtual memory, filling in page tables as necessary
2764 * and calling a provided function on each leaf page table.
2765 */
2766int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767 unsigned long size, pte_fn_t fn, void *data)
2768{
2769 return __apply_to_page_range(mm, addr, size, fn, data, true);
2770}
aee16b3c
JF
2771EXPORT_SYMBOL_GPL(apply_to_page_range);
2772
be1db475
DA
2773/*
2774 * Scan a region of virtual memory, calling a provided function on
2775 * each leaf page table where it exists.
2776 *
2777 * Unlike apply_to_page_range, this does _not_ fill in page tables
2778 * where they are absent.
2779 */
2780int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781 unsigned long size, pte_fn_t fn, void *data)
2782{
2783 return __apply_to_page_range(mm, addr, size, fn, data, false);
2784}
2785EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786
8f4e2101 2787/*
9b4bdd2f
KS
2788 * handle_pte_fault chooses page fault handler according to an entry which was
2789 * read non-atomically. Before making any commitment, on those architectures
2790 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791 * parts, do_swap_page must check under lock before unmapping the pte and
2792 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2793 * and do_anonymous_page can safely check later on).
8f4e2101 2794 */
2ca99358 2795static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2796{
2797 int same = 1;
923717cb 2798#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2799 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2800 spin_lock(vmf->ptl);
c33c7948 2801 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2802 spin_unlock(vmf->ptl);
8f4e2101
HD
2803 }
2804#endif
2ca99358
PX
2805 pte_unmap(vmf->pte);
2806 vmf->pte = NULL;
8f4e2101
HD
2807 return same;
2808}
2809
a873dfe1
TL
2810/*
2811 * Return:
2812 * 0: copied succeeded
2813 * -EHWPOISON: copy failed due to hwpoison in source page
2814 * -EAGAIN: copied failed (some other reason)
2815 */
2816static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2817 struct vm_fault *vmf)
6aab341e 2818{
a873dfe1 2819 int ret;
83d116c5
JH
2820 void *kaddr;
2821 void __user *uaddr;
83d116c5
JH
2822 struct vm_area_struct *vma = vmf->vma;
2823 struct mm_struct *mm = vma->vm_mm;
2824 unsigned long addr = vmf->address;
2825
83d116c5 2826 if (likely(src)) {
d302c239
TL
2827 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2828 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2829 return -EHWPOISON;
d302c239 2830 }
a873dfe1 2831 return 0;
83d116c5
JH
2832 }
2833
6aab341e
LT
2834 /*
2835 * If the source page was a PFN mapping, we don't have
2836 * a "struct page" for it. We do a best-effort copy by
2837 * just copying from the original user address. If that
2838 * fails, we just zero-fill it. Live with it.
2839 */
83d116c5
JH
2840 kaddr = kmap_atomic(dst);
2841 uaddr = (void __user *)(addr & PAGE_MASK);
2842
2843 /*
2844 * On architectures with software "accessed" bits, we would
2845 * take a double page fault, so mark it accessed here.
2846 */
3db82b93 2847 vmf->pte = NULL;
e1fd09e3 2848 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2849 pte_t entry;
5d2a2dbb 2850
83d116c5 2851 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2852 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2853 /*
2854 * Other thread has already handled the fault
7df67697 2855 * and update local tlb only
83d116c5 2856 */
a92cbb82
HD
2857 if (vmf->pte)
2858 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2859 ret = -EAGAIN;
83d116c5
JH
2860 goto pte_unlock;
2861 }
2862
2863 entry = pte_mkyoung(vmf->orig_pte);
2864 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2865 update_mmu_cache(vma, addr, vmf->pte);
2866 }
2867
2868 /*
2869 * This really shouldn't fail, because the page is there
2870 * in the page tables. But it might just be unreadable,
2871 * in which case we just give up and fill the result with
2872 * zeroes.
2873 */
2874 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2875 if (vmf->pte)
c3e5ea6e
KS
2876 goto warn;
2877
2878 /* Re-validate under PTL if the page is still mapped */
2879 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2880 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2881 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2882 if (vmf->pte)
2883 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2884 ret = -EAGAIN;
c3e5ea6e
KS
2885 goto pte_unlock;
2886 }
2887
5d2a2dbb 2888 /*
985ba004 2889 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2890 * Try to copy again under PTL.
5d2a2dbb 2891 */
c3e5ea6e
KS
2892 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2893 /*
2894 * Give a warn in case there can be some obscure
2895 * use-case
2896 */
2897warn:
2898 WARN_ON_ONCE(1);
2899 clear_page(kaddr);
2900 }
83d116c5
JH
2901 }
2902
a873dfe1 2903 ret = 0;
83d116c5
JH
2904
2905pte_unlock:
3db82b93 2906 if (vmf->pte)
83d116c5
JH
2907 pte_unmap_unlock(vmf->pte, vmf->ptl);
2908 kunmap_atomic(kaddr);
2909 flush_dcache_page(dst);
2910
2911 return ret;
6aab341e
LT
2912}
2913
c20cd45e
MH
2914static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2915{
2916 struct file *vm_file = vma->vm_file;
2917
2918 if (vm_file)
2919 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2920
2921 /*
2922 * Special mappings (e.g. VDSO) do not have any file so fake
2923 * a default GFP_KERNEL for them.
2924 */
2925 return GFP_KERNEL;
2926}
2927
fb09a464
KS
2928/*
2929 * Notify the address space that the page is about to become writable so that
2930 * it can prohibit this or wait for the page to get into an appropriate state.
2931 *
2932 * We do this without the lock held, so that it can sleep if it needs to.
2933 */
86aa6998 2934static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2935{
2b740303 2936 vm_fault_t ret;
38b8cb7f 2937 unsigned int old_flags = vmf->flags;
fb09a464 2938
38b8cb7f 2939 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2940
dc617f29
DW
2941 if (vmf->vma->vm_file &&
2942 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2943 return VM_FAULT_SIGBUS;
2944
11bac800 2945 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2946 /* Restore original flags so that caller is not surprised */
2947 vmf->flags = old_flags;
fb09a464
KS
2948 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2949 return ret;
2950 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2951 folio_lock(folio);
2952 if (!folio->mapping) {
2953 folio_unlock(folio);
fb09a464
KS
2954 return 0; /* retry */
2955 }
2956 ret |= VM_FAULT_LOCKED;
2957 } else
3d243659 2958 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2959 return ret;
2960}
2961
97ba0c2b
JK
2962/*
2963 * Handle dirtying of a page in shared file mapping on a write fault.
2964 *
2965 * The function expects the page to be locked and unlocks it.
2966 */
89b15332 2967static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2968{
89b15332 2969 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2970 struct address_space *mapping;
15b4919a 2971 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2972 bool dirtied;
2973 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2974
15b4919a
Z
2975 dirtied = folio_mark_dirty(folio);
2976 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2977 /*
15b4919a
Z
2978 * Take a local copy of the address_space - folio.mapping may be zeroed
2979 * by truncate after folio_unlock(). The address_space itself remains
2980 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2981 * release semantics to prevent the compiler from undoing this copying.
2982 */
15b4919a
Z
2983 mapping = folio_raw_mapping(folio);
2984 folio_unlock(folio);
97ba0c2b 2985
89b15332
JW
2986 if (!page_mkwrite)
2987 file_update_time(vma->vm_file);
2988
2989 /*
2990 * Throttle page dirtying rate down to writeback speed.
2991 *
2992 * mapping may be NULL here because some device drivers do not
2993 * set page.mapping but still dirty their pages
2994 *
c1e8d7c6 2995 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2996 * is pinning the mapping, as per above.
2997 */
97ba0c2b 2998 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2999 struct file *fpin;
3000
3001 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3002 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3003 if (fpin) {
3004 fput(fpin);
d9272525 3005 return VM_FAULT_COMPLETED;
89b15332 3006 }
97ba0c2b
JK
3007 }
3008
89b15332 3009 return 0;
97ba0c2b
JK
3010}
3011
4e047f89
SR
3012/*
3013 * Handle write page faults for pages that can be reused in the current vma
3014 *
3015 * This can happen either due to the mapping being with the VM_SHARED flag,
3016 * or due to us being the last reference standing to the page. In either
3017 * case, all we need to do here is to mark the page as writable and update
3018 * any related book-keeping.
3019 */
997dd98d 3020static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3021 __releases(vmf->ptl)
4e047f89 3022{
82b0f8c3 3023 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3024 struct page *page = vmf->page;
4e047f89 3025 pte_t entry;
6c287605 3026
c89357e2 3027 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3028 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3029
4e047f89
SR
3030 /*
3031 * Clear the pages cpupid information as the existing
3032 * information potentially belongs to a now completely
3033 * unrelated process.
3034 */
3035 if (page)
3036 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3037
2994302b
JK
3038 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3040 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3041 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3042 update_mmu_cache(vma, vmf->address, vmf->pte);
3043 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3044 count_vm_event(PGREUSE);
4e047f89
SR
3045}
3046
2f38ab2c 3047/*
c89357e2
DH
3048 * Handle the case of a page which we actually need to copy to a new page,
3049 * either due to COW or unsharing.
2f38ab2c 3050 *
c1e8d7c6 3051 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3052 * without the ptl held.
3053 *
3054 * High level logic flow:
3055 *
3056 * - Allocate a page, copy the content of the old page to the new one.
3057 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3058 * - Take the PTL. If the pte changed, bail out and release the allocated page
3059 * - If the pte is still the way we remember it, update the page table and all
3060 * relevant references. This includes dropping the reference the page-table
3061 * held to the old page, as well as updating the rmap.
3062 * - In any case, unlock the PTL and drop the reference we took to the old page.
3063 */
2b740303 3064static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3065{
c89357e2 3066 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3067 struct vm_area_struct *vma = vmf->vma;
bae473a4 3068 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3069 struct folio *old_folio = NULL;
3070 struct folio *new_folio = NULL;
2f38ab2c
SR
3071 pte_t entry;
3072 int page_copied = 0;
ac46d4f3 3073 struct mmu_notifier_range range;
a873dfe1 3074 int ret;
2f38ab2c 3075
662ce1dc
YY
3076 delayacct_wpcopy_start();
3077
28d41a48
MWO
3078 if (vmf->page)
3079 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3080 if (unlikely(anon_vma_prepare(vma)))
3081 goto oom;
3082
2994302b 3083 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3084 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3085 if (!new_folio)
2f38ab2c
SR
3086 goto oom;
3087 } else {
28d41a48
MWO
3088 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3089 vmf->address, false);
3090 if (!new_folio)
2f38ab2c 3091 goto oom;
83d116c5 3092
28d41a48 3093 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3094 if (ret) {
83d116c5
JH
3095 /*
3096 * COW failed, if the fault was solved by other,
3097 * it's fine. If not, userspace would re-fault on
3098 * the same address and we will handle the fault
3099 * from the second attempt.
a873dfe1 3100 * The -EHWPOISON case will not be retried.
83d116c5 3101 */
28d41a48
MWO
3102 folio_put(new_folio);
3103 if (old_folio)
3104 folio_put(old_folio);
662ce1dc
YY
3105
3106 delayacct_wpcopy_end();
a873dfe1 3107 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3108 }
28d41a48 3109 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3110 }
2f38ab2c 3111
28d41a48 3112 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3113 goto oom_free_new;
4d4f75bf 3114 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3115
28d41a48 3116 __folio_mark_uptodate(new_folio);
eb3c24f3 3117
7d4a8be0 3118 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3119 vmf->address & PAGE_MASK,
ac46d4f3
JG
3120 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3121 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3122
3123 /*
3124 * Re-check the pte - we dropped the lock
3125 */
82b0f8c3 3126 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3127 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3128 if (old_folio) {
3129 if (!folio_test_anon(old_folio)) {
3130 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3131 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3132 }
3133 } else {
6080d19f 3134 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3135 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3136 }
2994302b 3137 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3138 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3139 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3140 if (unlikely(unshare)) {
3141 if (pte_soft_dirty(vmf->orig_pte))
3142 entry = pte_mksoft_dirty(entry);
3143 if (pte_uffd_wp(vmf->orig_pte))
3144 entry = pte_mkuffd_wp(entry);
3145 } else {
3146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147 }
111fe718 3148
2f38ab2c
SR
3149 /*
3150 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3151 * pte with the new entry, to keep TLBs on different CPUs in
3152 * sync. This code used to set the new PTE then flush TLBs, but
3153 * that left a window where the new PTE could be loaded into
3154 * some TLBs while the old PTE remains in others.
2f38ab2c 3155 */
ec8832d0 3156 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3157 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3158 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3159 /*
3160 * We call the notify macro here because, when using secondary
3161 * mmu page tables (such as kvm shadow page tables), we want the
3162 * new page to be mapped directly into the secondary page table.
3163 */
c89357e2 3164 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3165 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3167 if (old_folio) {
2f38ab2c
SR
3168 /*
3169 * Only after switching the pte to the new page may
3170 * we remove the mapcount here. Otherwise another
3171 * process may come and find the rmap count decremented
3172 * before the pte is switched to the new page, and
3173 * "reuse" the old page writing into it while our pte
3174 * here still points into it and can be read by other
3175 * threads.
3176 *
3177 * The critical issue is to order this
3178 * page_remove_rmap with the ptp_clear_flush above.
3179 * Those stores are ordered by (if nothing else,)
3180 * the barrier present in the atomic_add_negative
3181 * in page_remove_rmap.
3182 *
3183 * Then the TLB flush in ptep_clear_flush ensures that
3184 * no process can access the old page before the
3185 * decremented mapcount is visible. And the old page
3186 * cannot be reused until after the decremented
3187 * mapcount is visible. So transitively, TLBs to
3188 * old page will be flushed before it can be reused.
3189 */
28d41a48 3190 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3191 }
3192
3193 /* Free the old page.. */
28d41a48 3194 new_folio = old_folio;
2f38ab2c 3195 page_copied = 1;
3db82b93
HD
3196 pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 } else if (vmf->pte) {
7df67697 3198 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3199 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3200 }
3201
ec8832d0 3202 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3203
3204 if (new_folio)
3205 folio_put(new_folio);
28d41a48 3206 if (old_folio) {
f4c4a3f4 3207 if (page_copied)
28d41a48
MWO
3208 free_swap_cache(&old_folio->page);
3209 folio_put(old_folio);
2f38ab2c 3210 }
662ce1dc
YY
3211
3212 delayacct_wpcopy_end();
cb8d8633 3213 return 0;
2f38ab2c 3214oom_free_new:
28d41a48 3215 folio_put(new_folio);
2f38ab2c 3216oom:
28d41a48
MWO
3217 if (old_folio)
3218 folio_put(old_folio);
662ce1dc
YY
3219
3220 delayacct_wpcopy_end();
2f38ab2c
SR
3221 return VM_FAULT_OOM;
3222}
3223
66a6197c
JK
3224/**
3225 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226 * writeable once the page is prepared
3227 *
3228 * @vmf: structure describing the fault
3229 *
3230 * This function handles all that is needed to finish a write page fault in a
3231 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3232 * It handles locking of PTE and modifying it.
66a6197c
JK
3233 *
3234 * The function expects the page to be locked or other protection against
3235 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3236 *
2797e79f 3237 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3238 * we acquired PTE lock.
66a6197c 3239 */
2b740303 3240vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3241{
3242 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244 &vmf->ptl);
3db82b93
HD
3245 if (!vmf->pte)
3246 return VM_FAULT_NOPAGE;
66a6197c
JK
3247 /*
3248 * We might have raced with another page fault while we released the
3249 * pte_offset_map_lock.
3250 */
c33c7948 3251 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3252 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3253 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3254 return VM_FAULT_NOPAGE;
66a6197c
JK
3255 }
3256 wp_page_reuse(vmf);
a19e2553 3257 return 0;
66a6197c
JK
3258}
3259
dd906184
BH
3260/*
3261 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262 * mapping
3263 */
2b740303 3264static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3265{
82b0f8c3 3266 struct vm_area_struct *vma = vmf->vma;
bae473a4 3267
dd906184 3268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3269 vm_fault_t ret;
dd906184 3270
82b0f8c3 3271 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3272 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3273 vma_end_read(vmf->vma);
3274 return VM_FAULT_RETRY;
3275 }
3276
fe82221f 3277 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3278 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3279 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3280 return ret;
66a6197c 3281 return finish_mkwrite_fault(vmf);
dd906184 3282 }
997dd98d 3283 wp_page_reuse(vmf);
cb8d8633 3284 return 0;
dd906184
BH
3285}
3286
5a97858b 3287static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3288 __releases(vmf->ptl)
93e478d4 3289{
82b0f8c3 3290 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3291 vm_fault_t ret = 0;
93e478d4 3292
5a97858b 3293 folio_get(folio);
93e478d4 3294
93e478d4 3295 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3296 vm_fault_t tmp;
93e478d4 3297
82b0f8c3 3298 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3299 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3300 folio_put(folio);
3301 vma_end_read(vmf->vma);
3302 return VM_FAULT_RETRY;
3303 }
3304
86aa6998 3305 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3306 if (unlikely(!tmp || (tmp &
3307 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3308 folio_put(folio);
93e478d4
SR
3309 return tmp;
3310 }
66a6197c 3311 tmp = finish_mkwrite_fault(vmf);
a19e2553 3312 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3313 folio_unlock(folio);
3314 folio_put(folio);
66a6197c 3315 return tmp;
93e478d4 3316 }
66a6197c
JK
3317 } else {
3318 wp_page_reuse(vmf);
5a97858b 3319 folio_lock(folio);
93e478d4 3320 }
89b15332 3321 ret |= fault_dirty_shared_page(vmf);
5a97858b 3322 folio_put(folio);
93e478d4 3323
89b15332 3324 return ret;
93e478d4
SR
3325}
3326
1da177e4 3327/*
c89357e2
DH
3328 * This routine handles present pages, when
3329 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3330 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3331 * (FAULT_FLAG_UNSHARE)
3332 *
3333 * It is done by copying the page to a new address and decrementing the
3334 * shared-page counter for the old page.
1da177e4 3335 *
1da177e4
LT
3336 * Note that this routine assumes that the protection checks have been
3337 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3338 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3339 * done any necessary COW.
1da177e4 3340 *
c89357e2
DH
3341 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3342 * though the page will change only once the write actually happens. This
3343 * avoids a few races, and potentially makes it more efficient.
1da177e4 3344 *
c1e8d7c6 3345 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3346 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3347 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3348 */
2b740303 3349static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3350 __releases(vmf->ptl)
1da177e4 3351{
c89357e2 3352 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3353 struct vm_area_struct *vma = vmf->vma;
b9086fde 3354 struct folio *folio = NULL;
1da177e4 3355
c89357e2 3356 if (likely(!unshare)) {
c33c7948 3357 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
c89357e2
DH
3358 pte_unmap_unlock(vmf->pte, vmf->ptl);
3359 return handle_userfault(vmf, VM_UFFD_WP);
3360 }
3361
3362 /*
3363 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3364 * is flushed in this case before copying.
3365 */
3366 if (unlikely(userfaultfd_wp(vmf->vma) &&
3367 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3368 flush_tlb_page(vmf->vma, vmf->address);
3369 }
6ce64428 3370
a41b70d6 3371 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3372
5a97858b
SK
3373 if (vmf->page)
3374 folio = page_folio(vmf->page);
3375
b9086fde
DH
3376 /*
3377 * Shared mapping: we are guaranteed to have VM_WRITE and
3378 * FAULT_FLAG_WRITE set at this point.
3379 */
3380 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3381 /*
64e45507
PF
3382 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3383 * VM_PFNMAP VMA.
251b97f5
PZ
3384 *
3385 * We should not cow pages in a shared writeable mapping.
dd906184 3386 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3387 */
b9086fde 3388 if (!vmf->page)
2994302b 3389 return wp_pfn_shared(vmf);
5a97858b 3390 return wp_page_shared(vmf, folio);
251b97f5 3391 }
1da177e4 3392
d08b3851 3393 /*
b9086fde
DH
3394 * Private mapping: create an exclusive anonymous page copy if reuse
3395 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3396 */
b9086fde 3397 if (folio && folio_test_anon(folio)) {
6c287605
DH
3398 /*
3399 * If the page is exclusive to this process we must reuse the
3400 * page without further checks.
3401 */
e4a2ed94 3402 if (PageAnonExclusive(vmf->page))
6c287605
DH
3403 goto reuse;
3404
53a05ad9 3405 /*
e4a2ed94
MWO
3406 * We have to verify under folio lock: these early checks are
3407 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3408 * the swapcache if there is little hope that we can reuse.
3409 *
e4a2ed94 3410 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3411 */
e4a2ed94 3412 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3413 goto copy;
e4a2ed94 3414 if (!folio_test_lru(folio))
d4c47097 3415 /*
1fec6890
MWO
3416 * We cannot easily detect+handle references from
3417 * remote LRU caches or references to LRU folios.
d4c47097
DH
3418 */
3419 lru_add_drain();
e4a2ed94 3420 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3421 goto copy;
e4a2ed94 3422 if (!folio_trylock(folio))
09854ba9 3423 goto copy;
e4a2ed94
MWO
3424 if (folio_test_swapcache(folio))
3425 folio_free_swap(folio);
3426 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3427 folio_unlock(folio);
52d1e606 3428 goto copy;
b009c024 3429 }
09854ba9 3430 /*
e4a2ed94
MWO
3431 * Ok, we've got the only folio reference from our mapping
3432 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3433 * sunglasses. Hit it.
09854ba9 3434 */
e4a2ed94
MWO
3435 page_move_anon_rmap(vmf->page, vma);
3436 folio_unlock(folio);
6c287605 3437reuse:
c89357e2
DH
3438 if (unlikely(unshare)) {
3439 pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 return 0;
3441 }
be068f29 3442 wp_page_reuse(vmf);
cb8d8633 3443 return 0;
1da177e4 3444 }
52d1e606 3445copy:
063e60d8
MWO
3446 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3447 pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 vma_end_read(vmf->vma);
3449 return VM_FAULT_RETRY;
3450 }
3451
1da177e4
LT
3452 /*
3453 * Ok, we need to copy. Oh, well..
3454 */
b9086fde
DH
3455 if (folio)
3456 folio_get(folio);
28766805 3457
82b0f8c3 3458 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3459#ifdef CONFIG_KSM
b9086fde 3460 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3461 count_vm_event(COW_KSM);
3462#endif
a41b70d6 3463 return wp_page_copy(vmf);
1da177e4
LT
3464}
3465
97a89413 3466static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3467 unsigned long start_addr, unsigned long end_addr,
3468 struct zap_details *details)
3469{
f5cc4eef 3470 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3471}
3472
f808c13f 3473static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3474 pgoff_t first_index,
3475 pgoff_t last_index,
1da177e4
LT
3476 struct zap_details *details)
3477{
3478 struct vm_area_struct *vma;
1da177e4
LT
3479 pgoff_t vba, vea, zba, zea;
3480
232a6a1c 3481 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3482 vba = vma->vm_pgoff;
d6e93217 3483 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3484 zba = max(first_index, vba);
3485 zea = min(last_index, vea);
1da177e4 3486
97a89413 3487 unmap_mapping_range_vma(vma,
1da177e4
LT
3488 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3489 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3490 details);
1da177e4
LT
3491 }
3492}
3493
22061a1f 3494/**
3506659e
MWO
3495 * unmap_mapping_folio() - Unmap single folio from processes.
3496 * @folio: The locked folio to be unmapped.
22061a1f 3497 *
3506659e 3498 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3499 * Typically, for efficiency, the range of nearby pages has already been
3500 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3501 * truncation or invalidation holds the lock on a folio, it may find that
3502 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3503 * to unmap it finally.
3504 */
3506659e 3505void unmap_mapping_folio(struct folio *folio)
22061a1f 3506{
3506659e 3507 struct address_space *mapping = folio->mapping;
22061a1f 3508 struct zap_details details = { };
232a6a1c
PX
3509 pgoff_t first_index;
3510 pgoff_t last_index;
22061a1f 3511
3506659e 3512 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3513
3506659e 3514 first_index = folio->index;
87b11f86 3515 last_index = folio_next_index(folio) - 1;
232a6a1c 3516
2e148f1e 3517 details.even_cows = false;
3506659e 3518 details.single_folio = folio;
999dad82 3519 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3520
2c865995 3521 i_mmap_lock_read(mapping);
22061a1f 3522 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3523 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3524 last_index, &details);
2c865995 3525 i_mmap_unlock_read(mapping);
22061a1f
HD
3526}
3527
977fbdcd
MW
3528/**
3529 * unmap_mapping_pages() - Unmap pages from processes.
3530 * @mapping: The address space containing pages to be unmapped.
3531 * @start: Index of first page to be unmapped.
3532 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3533 * @even_cows: Whether to unmap even private COWed pages.
3534 *
3535 * Unmap the pages in this address space from any userspace process which
3536 * has them mmaped. Generally, you want to remove COWed pages as well when
3537 * a file is being truncated, but not when invalidating pages from the page
3538 * cache.
3539 */
3540void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3541 pgoff_t nr, bool even_cows)
3542{
3543 struct zap_details details = { };
232a6a1c
PX
3544 pgoff_t first_index = start;
3545 pgoff_t last_index = start + nr - 1;
977fbdcd 3546
2e148f1e 3547 details.even_cows = even_cows;
232a6a1c
PX
3548 if (last_index < first_index)
3549 last_index = ULONG_MAX;
977fbdcd 3550
2c865995 3551 i_mmap_lock_read(mapping);
977fbdcd 3552 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3553 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3554 last_index, &details);
2c865995 3555 i_mmap_unlock_read(mapping);
977fbdcd 3556}
6e0e99d5 3557EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3558
1da177e4 3559/**
8a5f14a2 3560 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3561 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3562 * file.
3563 *
3d41088f 3564 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3565 * @holebegin: byte in first page to unmap, relative to the start of
3566 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3567 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3568 * must keep the partial page. In contrast, we must get rid of
3569 * partial pages.
3570 * @holelen: size of prospective hole in bytes. This will be rounded
3571 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3572 * end of the file.
3573 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3574 * but 0 when invalidating pagecache, don't throw away private data.
3575 */
3576void unmap_mapping_range(struct address_space *mapping,
3577 loff_t const holebegin, loff_t const holelen, int even_cows)
3578{
1da177e4
LT
3579 pgoff_t hba = holebegin >> PAGE_SHIFT;
3580 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581
3582 /* Check for overflow. */
3583 if (sizeof(holelen) > sizeof(hlen)) {
3584 long long holeend =
3585 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 if (holeend & ~(long long)ULONG_MAX)
3587 hlen = ULONG_MAX - hba + 1;
3588 }
3589
977fbdcd 3590 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3591}
3592EXPORT_SYMBOL(unmap_mapping_range);
3593
b756a3b5
AP
3594/*
3595 * Restore a potential device exclusive pte to a working pte entry
3596 */
3597static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3598{
19672a9e 3599 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3600 struct vm_area_struct *vma = vmf->vma;
3601 struct mmu_notifier_range range;
fdc724d6 3602 vm_fault_t ret;
b756a3b5 3603
7c7b9629
AP
3604 /*
3605 * We need a reference to lock the folio because we don't hold
3606 * the PTL so a racing thread can remove the device-exclusive
3607 * entry and unmap it. If the folio is free the entry must
3608 * have been removed already. If it happens to have already
3609 * been re-allocated after being freed all we do is lock and
3610 * unlock it.
3611 */
3612 if (!folio_try_get(folio))
3613 return 0;
3614
fdc724d6
SB
3615 ret = folio_lock_or_retry(folio, vmf);
3616 if (ret) {
7c7b9629 3617 folio_put(folio);
fdc724d6 3618 return ret;
7c7b9629 3619 }
7d4a8be0 3620 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3621 vma->vm_mm, vmf->address & PAGE_MASK,
3622 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3623 mmu_notifier_invalidate_range_start(&range);
3624
3625 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3626 &vmf->ptl);
c33c7948 3627 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3628 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3629
3db82b93
HD
3630 if (vmf->pte)
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3632 folio_unlock(folio);
7c7b9629 3633 folio_put(folio);
b756a3b5
AP
3634
3635 mmu_notifier_invalidate_range_end(&range);
3636 return 0;
3637}
3638
a160e537 3639static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3640 struct vm_area_struct *vma,
3641 unsigned int fault_flags)
3642{
a160e537 3643 if (!folio_test_swapcache(folio))
c145e0b4 3644 return false;
9202d527 3645 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3646 folio_test_mlocked(folio))
c145e0b4
DH
3647 return true;
3648 /*
3649 * If we want to map a page that's in the swapcache writable, we
3650 * have to detect via the refcount if we're really the exclusive
3651 * user. Try freeing the swapcache to get rid of the swapcache
3652 * reference only in case it's likely that we'll be the exlusive user.
3653 */
a160e537
MWO
3654 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3655 folio_ref_count(folio) == 2;
c145e0b4
DH
3656}
3657
9c28a205
PX
3658static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3659{
3660 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3661 vmf->address, &vmf->ptl);
3db82b93
HD
3662 if (!vmf->pte)
3663 return 0;
9c28a205
PX
3664 /*
3665 * Be careful so that we will only recover a special uffd-wp pte into a
3666 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3667 *
3668 * This should also cover the case where e.g. the pte changed
af19487f 3669 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3670 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3671 */
c33c7948 3672 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3673 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3674 pte_unmap_unlock(vmf->pte, vmf->ptl);
3675 return 0;
3676}
3677
2bad466c
PX
3678static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3679{
3680 if (vma_is_anonymous(vmf->vma))
3681 return do_anonymous_page(vmf);
3682 else
3683 return do_fault(vmf);
3684}
3685
9c28a205
PX
3686/*
3687 * This is actually a page-missing access, but with uffd-wp special pte
3688 * installed. It means this pte was wr-protected before being unmapped.
3689 */
3690static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3691{
3692 /*
3693 * Just in case there're leftover special ptes even after the region
7a079ba2 3694 * got unregistered - we can simply clear them.
9c28a205 3695 */
2bad466c 3696 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3697 return pte_marker_clear(vmf);
3698
2bad466c 3699 return do_pte_missing(vmf);
9c28a205
PX
3700}
3701
5c041f5d
PX
3702static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3703{
3704 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3705 unsigned long marker = pte_marker_get(entry);
3706
3707 /*
ca92ea3d
PX
3708 * PTE markers should never be empty. If anything weird happened,
3709 * the best thing to do is to kill the process along with its mm.
5c041f5d 3710 */
ca92ea3d 3711 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3712 return VM_FAULT_SIGBUS;
3713
15520a3f 3714 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3715 if (marker & PTE_MARKER_POISONED)
3716 return VM_FAULT_HWPOISON;
15520a3f 3717
9c28a205
PX
3718 if (pte_marker_entry_uffd_wp(entry))
3719 return pte_marker_handle_uffd_wp(vmf);
3720
3721 /* This is an unknown pte marker */
3722 return VM_FAULT_SIGBUS;
5c041f5d
PX
3723}
3724
1da177e4 3725/*
c1e8d7c6 3726 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3727 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3728 * We return with pte unmapped and unlocked.
3729 *
c1e8d7c6 3730 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3731 * as does filemap_fault().
1da177e4 3732 */
2b740303 3733vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3734{
82b0f8c3 3735 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3736 struct folio *swapcache, *folio = NULL;
3737 struct page *page;
2799e775 3738 struct swap_info_struct *si = NULL;
14f9135d 3739 rmap_t rmap_flags = RMAP_NONE;
1493a191 3740 bool exclusive = false;
65500d23 3741 swp_entry_t entry;
1da177e4 3742 pte_t pte;
2b740303 3743 vm_fault_t ret = 0;
aae466b0 3744 void *shadow = NULL;
1da177e4 3745
2ca99358 3746 if (!pte_unmap_same(vmf))
8f4e2101 3747 goto out;
65500d23 3748
2994302b 3749 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3750 if (unlikely(non_swap_entry(entry))) {
3751 if (is_migration_entry(entry)) {
82b0f8c3
JK
3752 migration_entry_wait(vma->vm_mm, vmf->pmd,
3753 vmf->address);
b756a3b5
AP
3754 } else if (is_device_exclusive_entry(entry)) {
3755 vmf->page = pfn_swap_entry_to_page(entry);
3756 ret = remove_device_exclusive_entry(vmf);
5042db43 3757 } else if (is_device_private_entry(entry)) {
1235ccd0
SB
3758 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3759 /*
3760 * migrate_to_ram is not yet ready to operate
3761 * under VMA lock.
3762 */
3763 vma_end_read(vma);
3764 ret = VM_FAULT_RETRY;
3765 goto out;
3766 }
3767
af5cdaf8 3768 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3769 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3770 vmf->address, &vmf->ptl);
3db82b93 3771 if (unlikely(!vmf->pte ||
c33c7948
RR
3772 !pte_same(ptep_get(vmf->pte),
3773 vmf->orig_pte)))
3b65f437 3774 goto unlock;
16ce101d
AP
3775
3776 /*
3777 * Get a page reference while we know the page can't be
3778 * freed.
3779 */
3780 get_page(vmf->page);
3781 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3782 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3783 put_page(vmf->page);
d1737fdb
AK
3784 } else if (is_hwpoison_entry(entry)) {
3785 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3786 } else if (is_pte_marker_entry(entry)) {
3787 ret = handle_pte_marker(vmf);
d1737fdb 3788 } else {
2994302b 3789 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3790 ret = VM_FAULT_SIGBUS;
d1737fdb 3791 }
0697212a
CL
3792 goto out;
3793 }
0bcac06f 3794
2799e775
ML
3795 /* Prevent swapoff from happening to us. */
3796 si = get_swap_device(entry);
3797 if (unlikely(!si))
3798 goto out;
0bcac06f 3799
5a423081
MWO
3800 folio = swap_cache_get_folio(entry, vma, vmf->address);
3801 if (folio)
3802 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3803 swapcache = folio;
f8020772 3804
d4f9565a 3805 if (!folio) {
a449bf58
QC
3806 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3807 __swap_count(entry) == 1) {
0bcac06f 3808 /* skip swapcache */
63ad4add
MWO
3809 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3810 vma, vmf->address, false);
3811 page = &folio->page;
3812 if (folio) {
3813 __folio_set_locked(folio);
3814 __folio_set_swapbacked(folio);
4c6355b2 3815
65995918 3816 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3817 vma->vm_mm, GFP_KERNEL,
3818 entry)) {
545b1b07 3819 ret = VM_FAULT_OOM;
4c6355b2 3820 goto out_page;
545b1b07 3821 }
0add0c77 3822 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3823
aae466b0
JK
3824 shadow = get_shadow_from_swap_cache(entry);
3825 if (shadow)
63ad4add 3826 workingset_refault(folio, shadow);
0076f029 3827
63ad4add 3828 folio_add_lru(folio);
0add0c77
SB
3829
3830 /* To provide entry to swap_readpage() */
63ad4add 3831 folio_set_swap_entry(folio, entry);
5169b844 3832 swap_readpage(page, true, NULL);
63ad4add 3833 folio->private = NULL;
0bcac06f 3834 }
aa8d22a1 3835 } else {
e9e9b7ec
MK
3836 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3837 vmf);
63ad4add
MWO
3838 if (page)
3839 folio = page_folio(page);
d4f9565a 3840 swapcache = folio;
0bcac06f
MK
3841 }
3842
d4f9565a 3843 if (!folio) {
1da177e4 3844 /*
8f4e2101
HD
3845 * Back out if somebody else faulted in this pte
3846 * while we released the pte lock.
1da177e4 3847 */
82b0f8c3
JK
3848 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3849 vmf->address, &vmf->ptl);
c33c7948
RR
3850 if (likely(vmf->pte &&
3851 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3852 ret = VM_FAULT_OOM;
65500d23 3853 goto unlock;
1da177e4
LT
3854 }
3855
3856 /* Had to read the page from swap area: Major fault */
3857 ret = VM_FAULT_MAJOR;
f8891e5e 3858 count_vm_event(PGMAJFAULT);
2262185c 3859 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3860 } else if (PageHWPoison(page)) {
71f72525
WF
3861 /*
3862 * hwpoisoned dirty swapcache pages are kept for killing
3863 * owner processes (which may be unknown at hwpoison time)
3864 */
d1737fdb 3865 ret = VM_FAULT_HWPOISON;
4779cb31 3866 goto out_release;
1da177e4
LT
3867 }
3868
fdc724d6
SB
3869 ret |= folio_lock_or_retry(folio, vmf);
3870 if (ret & VM_FAULT_RETRY)
d065bd81 3871 goto out_release;
073e587e 3872
84d60fdd
DH
3873 if (swapcache) {
3874 /*
3b344157 3875 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3876 * swapcache from under us. The page pin, and pte_same test
3877 * below, are not enough to exclude that. Even if it is still
3878 * swapcache, we need to check that the page's swap has not
3879 * changed.
3880 */
63ad4add 3881 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3882 page_private(page) != entry.val))
3883 goto out_page;
3884
3885 /*
3886 * KSM sometimes has to copy on read faults, for example, if
3887 * page->index of !PageKSM() pages would be nonlinear inside the
3888 * anon VMA -- PageKSM() is lost on actual swapout.
3889 */
3890 page = ksm_might_need_to_copy(page, vma, vmf->address);
3891 if (unlikely(!page)) {
3892 ret = VM_FAULT_OOM;
84d60fdd 3893 goto out_page;
6b970599
KW
3894 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3895 ret = VM_FAULT_HWPOISON;
3896 goto out_page;
84d60fdd 3897 }
63ad4add 3898 folio = page_folio(page);
c145e0b4
DH
3899
3900 /*
3901 * If we want to map a page that's in the swapcache writable, we
3902 * have to detect via the refcount if we're really the exclusive
3903 * owner. Try removing the extra reference from the local LRU
1fec6890 3904 * caches if required.
c145e0b4 3905 */
d4f9565a 3906 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3907 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3908 lru_add_drain();
5ad64688
HD
3909 }
3910
4231f842 3911 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3912
1da177e4 3913 /*
8f4e2101 3914 * Back out if somebody else already faulted in this pte.
1da177e4 3915 */
82b0f8c3
JK
3916 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3917 &vmf->ptl);
c33c7948 3918 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3919 goto out_nomap;
b8107480 3920
63ad4add 3921 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3922 ret = VM_FAULT_SIGBUS;
3923 goto out_nomap;
1da177e4
LT
3924 }
3925
78fbe906
DH
3926 /*
3927 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3928 * must never point at an anonymous page in the swapcache that is
3929 * PG_anon_exclusive. Sanity check that this holds and especially, that
3930 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3931 * check after taking the PT lock and making sure that nobody
3932 * concurrently faulted in this page and set PG_anon_exclusive.
3933 */
63ad4add
MWO
3934 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3935 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3936
1493a191
DH
3937 /*
3938 * Check under PT lock (to protect against concurrent fork() sharing
3939 * the swap entry concurrently) for certainly exclusive pages.
3940 */
63ad4add 3941 if (!folio_test_ksm(folio)) {
1493a191 3942 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3943 if (folio != swapcache) {
1493a191
DH
3944 /*
3945 * We have a fresh page that is not exposed to the
3946 * swapcache -> certainly exclusive.
3947 */
3948 exclusive = true;
63ad4add 3949 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3950 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3951 /*
3952 * This is tricky: not all swap backends support
3953 * concurrent page modifications while under writeback.
3954 *
3955 * So if we stumble over such a page in the swapcache
3956 * we must not set the page exclusive, otherwise we can
3957 * map it writable without further checks and modify it
3958 * while still under writeback.
3959 *
3960 * For these problematic swap backends, simply drop the
3961 * exclusive marker: this is perfectly fine as we start
3962 * writeback only if we fully unmapped the page and
3963 * there are no unexpected references on the page after
3964 * unmapping succeeded. After fully unmapped, no
3965 * further GUP references (FOLL_GET and FOLL_PIN) can
3966 * appear, so dropping the exclusive marker and mapping
3967 * it only R/O is fine.
3968 */
3969 exclusive = false;
3970 }
3971 }
3972
6dca4ac6
PC
3973 /*
3974 * Some architectures may have to restore extra metadata to the page
3975 * when reading from swap. This metadata may be indexed by swap entry
3976 * so this must be called before swap_free().
3977 */
3978 arch_swap_restore(entry, folio);
3979
8c7c6e34 3980 /*
c145e0b4
DH
3981 * Remove the swap entry and conditionally try to free up the swapcache.
3982 * We're already holding a reference on the page but haven't mapped it
3983 * yet.
8c7c6e34 3984 */
c145e0b4 3985 swap_free(entry);
a160e537
MWO
3986 if (should_try_to_free_swap(folio, vma, vmf->flags))
3987 folio_free_swap(folio);
1da177e4 3988
f1a79412
SB
3989 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3990 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3991 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3992
3993 /*
1493a191
DH
3994 * Same logic as in do_wp_page(); however, optimize for pages that are
3995 * certainly not shared either because we just allocated them without
3996 * exposing them to the swapcache or because the swap entry indicates
3997 * exclusivity.
c145e0b4 3998 */
63ad4add
MWO
3999 if (!folio_test_ksm(folio) &&
4000 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
4001 if (vmf->flags & FAULT_FLAG_WRITE) {
4002 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4003 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4004 }
14f9135d 4005 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4006 }
1da177e4 4007 flush_icache_page(vma, page);
2994302b 4008 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4009 pte = pte_mksoft_dirty(pte);
f1eb1bac 4010 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4011 pte = pte_mkuffd_wp(pte);
2994302b 4012 vmf->orig_pte = pte;
0bcac06f
MK
4013
4014 /* ksm created a completely new copy */
d4f9565a 4015 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4016 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4017 folio_add_lru_vma(folio, vma);
0bcac06f 4018 } else {
f1e2db12 4019 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4020 }
1da177e4 4021
63ad4add
MWO
4022 VM_BUG_ON(!folio_test_anon(folio) ||
4023 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4024 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4025 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4026
63ad4add 4027 folio_unlock(folio);
d4f9565a 4028 if (folio != swapcache && swapcache) {
4969c119
AA
4029 /*
4030 * Hold the lock to avoid the swap entry to be reused
4031 * until we take the PT lock for the pte_same() check
4032 * (to avoid false positives from pte_same). For
4033 * further safety release the lock after the swap_free
4034 * so that the swap count won't change under a
4035 * parallel locked swapcache.
4036 */
d4f9565a
MWO
4037 folio_unlock(swapcache);
4038 folio_put(swapcache);
4969c119 4039 }
c475a8ab 4040
82b0f8c3 4041 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4042 ret |= do_wp_page(vmf);
61469f1d
HD
4043 if (ret & VM_FAULT_ERROR)
4044 ret &= VM_FAULT_ERROR;
1da177e4
LT
4045 goto out;
4046 }
4047
4048 /* No need to invalidate - it was non-present before */
82b0f8c3 4049 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4050unlock:
3db82b93
HD
4051 if (vmf->pte)
4052 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4053out:
2799e775
ML
4054 if (si)
4055 put_swap_device(si);
1da177e4 4056 return ret;
b8107480 4057out_nomap:
3db82b93
HD
4058 if (vmf->pte)
4059 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4060out_page:
63ad4add 4061 folio_unlock(folio);
4779cb31 4062out_release:
63ad4add 4063 folio_put(folio);
d4f9565a
MWO
4064 if (folio != swapcache && swapcache) {
4065 folio_unlock(swapcache);
4066 folio_put(swapcache);
4969c119 4067 }
2799e775
ML
4068 if (si)
4069 put_swap_device(si);
65500d23 4070 return ret;
1da177e4
LT
4071}
4072
4073/*
c1e8d7c6 4074 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4075 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4076 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4077 */
2b740303 4078static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4079{
2bad466c 4080 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4081 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4082 struct folio *folio;
2b740303 4083 vm_fault_t ret = 0;
1da177e4 4084 pte_t entry;
1da177e4 4085
6b7339f4
KS
4086 /* File mapping without ->vm_ops ? */
4087 if (vma->vm_flags & VM_SHARED)
4088 return VM_FAULT_SIGBUS;
4089
7267ec00 4090 /*
3db82b93
HD
4091 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4092 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4093 */
4cf58924 4094 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4095 return VM_FAULT_OOM;
4096
11ac5524 4097 /* Use the zero-page for reads */
82b0f8c3 4098 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4099 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4100 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4101 vma->vm_page_prot));
82b0f8c3
JK
4102 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4103 vmf->address, &vmf->ptl);
3db82b93
HD
4104 if (!vmf->pte)
4105 goto unlock;
2bad466c 4106 if (vmf_pte_changed(vmf)) {
7df67697 4107 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4108 goto unlock;
7df67697 4109 }
6b31d595
MH
4110 ret = check_stable_address_space(vma->vm_mm);
4111 if (ret)
4112 goto unlock;
6b251fc9
AA
4113 /* Deliver the page fault to userland, check inside PT lock */
4114 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4115 pte_unmap_unlock(vmf->pte, vmf->ptl);
4116 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4117 }
a13ea5b7
HD
4118 goto setpte;
4119 }
4120
557ed1fa 4121 /* Allocate our own private page. */
557ed1fa
NP
4122 if (unlikely(anon_vma_prepare(vma)))
4123 goto oom;
6bc56a4d
MWO
4124 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4125 if (!folio)
557ed1fa 4126 goto oom;
eb3c24f3 4127
6bc56a4d 4128 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4129 goto oom_free_page;
e2bf3e2c 4130 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4131
52f37629 4132 /*
cb3184de 4133 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4134 * preceding stores to the page contents become visible before
52f37629
MK
4135 * the set_pte_at() write.
4136 */
cb3184de 4137 __folio_mark_uptodate(folio);
8f4e2101 4138
cb3184de 4139 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4140 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4141 if (vma->vm_flags & VM_WRITE)
4142 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4143
82b0f8c3
JK
4144 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4145 &vmf->ptl);
3db82b93
HD
4146 if (!vmf->pte)
4147 goto release;
2bad466c 4148 if (vmf_pte_changed(vmf)) {
bce8cb3c 4149 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4150 goto release;
7df67697 4151 }
9ba69294 4152
6b31d595
MH
4153 ret = check_stable_address_space(vma->vm_mm);
4154 if (ret)
4155 goto release;
4156
6b251fc9
AA
4157 /* Deliver the page fault to userland, check inside PT lock */
4158 if (userfaultfd_missing(vma)) {
82b0f8c3 4159 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4160 folio_put(folio);
82b0f8c3 4161 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4162 }
4163
f1a79412 4164 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4165 folio_add_new_anon_rmap(folio, vma, vmf->address);
4166 folio_add_lru_vma(folio, vma);
a13ea5b7 4167setpte:
2bad466c
PX
4168 if (uffd_wp)
4169 entry = pte_mkuffd_wp(entry);
82b0f8c3 4170 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4171
4172 /* No need to invalidate - it was non-present before */
82b0f8c3 4173 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4174unlock:
3db82b93
HD
4175 if (vmf->pte)
4176 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4177 return ret;
8f4e2101 4178release:
cb3184de 4179 folio_put(folio);
8f4e2101 4180 goto unlock;
8a9f3ccd 4181oom_free_page:
cb3184de 4182 folio_put(folio);
65500d23 4183oom:
1da177e4
LT
4184 return VM_FAULT_OOM;
4185}
4186
9a95f3cf 4187/*
c1e8d7c6 4188 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4189 * released depending on flags and vma->vm_ops->fault() return value.
4190 * See filemap_fault() and __lock_page_retry().
4191 */
2b740303 4192static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4193{
82b0f8c3 4194 struct vm_area_struct *vma = vmf->vma;
2b740303 4195 vm_fault_t ret;
7eae74af 4196
63f3655f
MH
4197 /*
4198 * Preallocate pte before we take page_lock because this might lead to
4199 * deadlocks for memcg reclaim which waits for pages under writeback:
4200 * lock_page(A)
4201 * SetPageWriteback(A)
4202 * unlock_page(A)
4203 * lock_page(B)
4204 * lock_page(B)
d383807a 4205 * pte_alloc_one
63f3655f
MH
4206 * shrink_page_list
4207 * wait_on_page_writeback(A)
4208 * SetPageWriteback(B)
4209 * unlock_page(B)
4210 * # flush A, B to clear the writeback
4211 */
4212 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4213 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4214 if (!vmf->prealloc_pte)
4215 return VM_FAULT_OOM;
63f3655f
MH
4216 }
4217
11bac800 4218 ret = vma->vm_ops->fault(vmf);
3917048d 4219 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4220 VM_FAULT_DONE_COW)))
bc2466e4 4221 return ret;
7eae74af 4222
667240e0 4223 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4224 struct page *page = vmf->page;
e53ac737
RR
4225 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4226 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4227 if (page_mapped(page))
4228 unmap_mapping_pages(page_mapping(page),
4229 page->index, 1, false);
e53ac737 4230 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4231 if (invalidate_inode_page(page))
4232 poisonret = VM_FAULT_NOPAGE;
4233 unlock_page(page);
e53ac737 4234 }
3149c79f 4235 put_page(page);
936ca80d 4236 vmf->page = NULL;
e53ac737 4237 return poisonret;
7eae74af
KS
4238 }
4239
4240 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4241 lock_page(vmf->page);
7eae74af 4242 else
667240e0 4243 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4244
7eae74af
KS
4245 return ret;
4246}
4247
396bcc52 4248#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4249static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4250{
82b0f8c3 4251 struct vm_area_struct *vma = vmf->vma;
953c66c2 4252
82b0f8c3 4253 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4254 /*
4255 * We are going to consume the prealloc table,
4256 * count that as nr_ptes.
4257 */
c4812909 4258 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4259 vmf->prealloc_pte = NULL;
953c66c2
AK
4260}
4261
f9ce0be7 4262vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4263{
82b0f8c3
JK
4264 struct vm_area_struct *vma = vmf->vma;
4265 bool write = vmf->flags & FAULT_FLAG_WRITE;
4266 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4267 pmd_t entry;
2b740303 4268 int i;
d01ac3c3 4269 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4270
4271 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4272 return ret;
10102459 4273
10102459 4274 page = compound_head(page);
d01ac3c3
MWO
4275 if (compound_order(page) != HPAGE_PMD_ORDER)
4276 return ret;
10102459 4277
eac96c3e
YS
4278 /*
4279 * Just backoff if any subpage of a THP is corrupted otherwise
4280 * the corrupted page may mapped by PMD silently to escape the
4281 * check. This kind of THP just can be PTE mapped. Access to
4282 * the corrupted subpage should trigger SIGBUS as expected.
4283 */
4284 if (unlikely(PageHasHWPoisoned(page)))
4285 return ret;
4286
953c66c2 4287 /*
f0953a1b 4288 * Archs like ppc64 need additional space to store information
953c66c2
AK
4289 * related to pte entry. Use the preallocated table for that.
4290 */
82b0f8c3 4291 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4292 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4293 if (!vmf->prealloc_pte)
953c66c2 4294 return VM_FAULT_OOM;
953c66c2
AK
4295 }
4296
82b0f8c3
JK
4297 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4298 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4299 goto out;
4300
4301 for (i = 0; i < HPAGE_PMD_NR; i++)
4302 flush_icache_page(vma, page + i);
4303
4304 entry = mk_huge_pmd(page, vma->vm_page_prot);
4305 if (write)
f55e1014 4306 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4307
fadae295 4308 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4309 page_add_file_rmap(page, vma, true);
4310
953c66c2
AK
4311 /*
4312 * deposit and withdraw with pmd lock held
4313 */
4314 if (arch_needs_pgtable_deposit())
82b0f8c3 4315 deposit_prealloc_pte(vmf);
10102459 4316
82b0f8c3 4317 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4318
82b0f8c3 4319 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4320
4321 /* fault is handled */
4322 ret = 0;
95ecedcd 4323 count_vm_event(THP_FILE_MAPPED);
10102459 4324out:
82b0f8c3 4325 spin_unlock(vmf->ptl);
10102459
KS
4326 return ret;
4327}
4328#else
f9ce0be7 4329vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4330{
f9ce0be7 4331 return VM_FAULT_FALLBACK;
10102459
KS
4332}
4333#endif
4334
9d3af4b4 4335void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4336{
82b0f8c3 4337 struct vm_area_struct *vma = vmf->vma;
2bad466c 4338 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4339 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4340 bool prefault = vmf->address != addr;
3bb97794 4341 pte_t entry;
7267ec00 4342
3bb97794
KS
4343 flush_icache_page(vma, page);
4344 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4345
4346 if (prefault && arch_wants_old_prefaulted_pte())
4347 entry = pte_mkold(entry);
50c25ee9
TB
4348 else
4349 entry = pte_sw_mkyoung(entry);
46bdb427 4350
3bb97794
KS
4351 if (write)
4352 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4353 if (unlikely(uffd_wp))
f1eb1bac 4354 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4355 /* copy-on-write page */
4356 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4357 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4358 page_add_new_anon_rmap(page, vma, addr);
b518154e 4359 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4360 } else {
f1a79412 4361 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4362 page_add_file_rmap(page, vma, false);
3bb97794 4363 }
9d3af4b4 4364 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4365}
4366
f46f2ade
PX
4367static bool vmf_pte_changed(struct vm_fault *vmf)
4368{
4369 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4370 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4371
c33c7948 4372 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4373}
4374
9118c0cb
JK
4375/**
4376 * finish_fault - finish page fault once we have prepared the page to fault
4377 *
4378 * @vmf: structure describing the fault
4379 *
4380 * This function handles all that is needed to finish a page fault once the
4381 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4382 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4383 * addition.
9118c0cb
JK
4384 *
4385 * The function expects the page to be locked and on success it consumes a
4386 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4387 *
4388 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4389 */
2b740303 4390vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4391{
f9ce0be7 4392 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4393 struct page *page;
f9ce0be7 4394 vm_fault_t ret;
9118c0cb
JK
4395
4396 /* Did we COW the page? */
f9ce0be7 4397 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4398 page = vmf->cow_page;
4399 else
4400 page = vmf->page;
6b31d595
MH
4401
4402 /*
4403 * check even for read faults because we might have lost our CoWed
4404 * page
4405 */
f9ce0be7
KS
4406 if (!(vma->vm_flags & VM_SHARED)) {
4407 ret = check_stable_address_space(vma->vm_mm);
4408 if (ret)
4409 return ret;
4410 }
4411
4412 if (pmd_none(*vmf->pmd)) {
4413 if (PageTransCompound(page)) {
4414 ret = do_set_pmd(vmf, page);
4415 if (ret != VM_FAULT_FALLBACK)
4416 return ret;
4417 }
4418
03c4f204
QZ
4419 if (vmf->prealloc_pte)
4420 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4421 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4422 return VM_FAULT_OOM;
4423 }
4424
f9ce0be7
KS
4425 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4426 vmf->address, &vmf->ptl);
3db82b93
HD
4427 if (!vmf->pte)
4428 return VM_FAULT_NOPAGE;
70427f6e 4429
f9ce0be7 4430 /* Re-check under ptl */
70427f6e 4431 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4432 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4433
4434 /* no need to invalidate: a not-present page won't be cached */
4435 update_mmu_cache(vma, vmf->address, vmf->pte);
4436
4437 ret = 0;
4438 } else {
4439 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4440 ret = VM_FAULT_NOPAGE;
70427f6e 4441 }
f9ce0be7 4442
f9ce0be7 4443 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4444 return ret;
4445}
4446
53d36a56
LS
4447static unsigned long fault_around_pages __read_mostly =
4448 65536 >> PAGE_SHIFT;
a9b0f861 4449
a9b0f861
KS
4450#ifdef CONFIG_DEBUG_FS
4451static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4452{
53d36a56 4453 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4454 return 0;
4455}
4456
b4903d6e 4457/*
da391d64
WK
4458 * fault_around_bytes must be rounded down to the nearest page order as it's
4459 * what do_fault_around() expects to see.
b4903d6e 4460 */
a9b0f861 4461static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4462{
a9b0f861 4463 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4464 return -EINVAL;
53d36a56
LS
4465
4466 /*
4467 * The minimum value is 1 page, however this results in no fault-around
4468 * at all. See should_fault_around().
4469 */
4470 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4471
1592eef0
KS
4472 return 0;
4473}
0a1345f8 4474DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4475 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4476
4477static int __init fault_around_debugfs(void)
4478{
d9f7979c
GKH
4479 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4480 &fault_around_bytes_fops);
1592eef0
KS
4481 return 0;
4482}
4483late_initcall(fault_around_debugfs);
1592eef0 4484#endif
8c6e50b0 4485
1fdb412b
KS
4486/*
4487 * do_fault_around() tries to map few pages around the fault address. The hope
4488 * is that the pages will be needed soon and this will lower the number of
4489 * faults to handle.
4490 *
4491 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4492 * not ready to be mapped: not up-to-date, locked, etc.
4493 *
9042599e
LS
4494 * This function doesn't cross VMA or page table boundaries, in order to call
4495 * map_pages() and acquire a PTE lock only once.
1fdb412b 4496 *
53d36a56 4497 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4498 * do_fault_around() expects it to be set to a power of two less than or equal
4499 * to PTRS_PER_PTE.
1fdb412b 4500 *
da391d64 4501 * The virtual address of the area that we map is naturally aligned to
53d36a56 4502 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4503 * (and therefore to page order). This way it's easier to guarantee
4504 * that we don't cross page table boundaries.
1fdb412b 4505 */
2b740303 4506static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4507{
53d36a56 4508 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4509 pgoff_t pte_off = pte_index(vmf->address);
4510 /* The page offset of vmf->address within the VMA. */
4511 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4512 pgoff_t from_pte, to_pte;
58ef47ef 4513 vm_fault_t ret;
8c6e50b0 4514
9042599e
LS
4515 /* The PTE offset of the start address, clamped to the VMA. */
4516 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4517 pte_off - min(pte_off, vma_off));
aecd6f44 4518
9042599e
LS
4519 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4520 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4521 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4522
82b0f8c3 4523 if (pmd_none(*vmf->pmd)) {
4cf58924 4524 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4525 if (!vmf->prealloc_pte)
f9ce0be7 4526 return VM_FAULT_OOM;
8c6e50b0
KS
4527 }
4528
58ef47ef
MWO
4529 rcu_read_lock();
4530 ret = vmf->vma->vm_ops->map_pages(vmf,
4531 vmf->pgoff + from_pte - pte_off,
4532 vmf->pgoff + to_pte - pte_off);
4533 rcu_read_unlock();
4534
4535 return ret;
8c6e50b0
KS
4536}
4537
9c28a205
PX
4538/* Return true if we should do read fault-around, false otherwise */
4539static inline bool should_fault_around(struct vm_fault *vmf)
4540{
4541 /* No ->map_pages? No way to fault around... */
4542 if (!vmf->vma->vm_ops->map_pages)
4543 return false;
4544
4545 if (uffd_disable_fault_around(vmf->vma))
4546 return false;
4547
53d36a56
LS
4548 /* A single page implies no faulting 'around' at all. */
4549 return fault_around_pages > 1;
9c28a205
PX
4550}
4551
2b740303 4552static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4553{
2b740303 4554 vm_fault_t ret = 0;
22d1e68f 4555 struct folio *folio;
8c6e50b0
KS
4556
4557 /*
4558 * Let's call ->map_pages() first and use ->fault() as fallback
4559 * if page by the offset is not ready to be mapped (cold cache or
4560 * something).
4561 */
9c28a205
PX
4562 if (should_fault_around(vmf)) {
4563 ret = do_fault_around(vmf);
4564 if (ret)
4565 return ret;
8c6e50b0 4566 }
e655fb29 4567
f5617ffe
MWO
4568 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4569 vma_end_read(vmf->vma);
4570 return VM_FAULT_RETRY;
4571 }
4572
936ca80d 4573 ret = __do_fault(vmf);
e655fb29
KS
4574 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4575 return ret;
4576
9118c0cb 4577 ret |= finish_fault(vmf);
22d1e68f
SK
4578 folio = page_folio(vmf->page);
4579 folio_unlock(folio);
7267ec00 4580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4581 folio_put(folio);
e655fb29
KS
4582 return ret;
4583}
4584
2b740303 4585static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4586{
82b0f8c3 4587 struct vm_area_struct *vma = vmf->vma;
2b740303 4588 vm_fault_t ret;
ec47c3b9 4589
61a4b8d3
MWO
4590 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4591 vma_end_read(vma);
4592 return VM_FAULT_RETRY;
4593 }
4594
ec47c3b9
KS
4595 if (unlikely(anon_vma_prepare(vma)))
4596 return VM_FAULT_OOM;
4597
936ca80d
JK
4598 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4599 if (!vmf->cow_page)
ec47c3b9
KS
4600 return VM_FAULT_OOM;
4601
8f425e4e
MWO
4602 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4603 GFP_KERNEL)) {
936ca80d 4604 put_page(vmf->cow_page);
ec47c3b9
KS
4605 return VM_FAULT_OOM;
4606 }
68fa572b 4607 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4608
936ca80d 4609 ret = __do_fault(vmf);
ec47c3b9
KS
4610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4611 goto uncharge_out;
3917048d
JK
4612 if (ret & VM_FAULT_DONE_COW)
4613 return ret;
ec47c3b9 4614
b1aa812b 4615 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4616 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4617
9118c0cb 4618 ret |= finish_fault(vmf);
b1aa812b
JK
4619 unlock_page(vmf->page);
4620 put_page(vmf->page);
7267ec00
KS
4621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4622 goto uncharge_out;
ec47c3b9
KS
4623 return ret;
4624uncharge_out:
936ca80d 4625 put_page(vmf->cow_page);
ec47c3b9
KS
4626 return ret;
4627}
4628
2b740303 4629static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4630{
82b0f8c3 4631 struct vm_area_struct *vma = vmf->vma;
2b740303 4632 vm_fault_t ret, tmp;
6f609b7e 4633 struct folio *folio;
1d65f86d 4634
61a4b8d3
MWO
4635 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4636 vma_end_read(vma);
4637 return VM_FAULT_RETRY;
4638 }
4639
936ca80d 4640 ret = __do_fault(vmf);
7eae74af 4641 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4642 return ret;
1da177e4 4643
6f609b7e
SK
4644 folio = page_folio(vmf->page);
4645
1da177e4 4646 /*
f0c6d4d2
KS
4647 * Check if the backing address space wants to know that the page is
4648 * about to become writable
1da177e4 4649 */
fb09a464 4650 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4651 folio_unlock(folio);
86aa6998 4652 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4653 if (unlikely(!tmp ||
4654 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4655 folio_put(folio);
fb09a464 4656 return tmp;
4294621f 4657 }
fb09a464
KS
4658 }
4659
9118c0cb 4660 ret |= finish_fault(vmf);
7267ec00
KS
4661 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4662 VM_FAULT_RETRY))) {
6f609b7e
SK
4663 folio_unlock(folio);
4664 folio_put(folio);
f0c6d4d2 4665 return ret;
1da177e4 4666 }
b827e496 4667
89b15332 4668 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4669 return ret;
54cb8821 4670}
d00806b1 4671
9a95f3cf 4672/*
c1e8d7c6 4673 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4674 * but allow concurrent faults).
c1e8d7c6 4675 * The mmap_lock may have been released depending on flags and our
9138e47e 4676 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4677 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4678 * by other thread calling munmap()).
9a95f3cf 4679 */
2b740303 4680static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4681{
82b0f8c3 4682 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4683 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4684 vm_fault_t ret;
54cb8821 4685
ff09d7ec
AK
4686 /*
4687 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4688 */
4689 if (!vma->vm_ops->fault) {
3db82b93
HD
4690 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4691 vmf->address, &vmf->ptl);
4692 if (unlikely(!vmf->pte))
ff09d7ec
AK
4693 ret = VM_FAULT_SIGBUS;
4694 else {
ff09d7ec
AK
4695 /*
4696 * Make sure this is not a temporary clearing of pte
4697 * by holding ptl and checking again. A R/M/W update
4698 * of pte involves: take ptl, clearing the pte so that
4699 * we don't have concurrent modification by hardware
4700 * followed by an update.
4701 */
c33c7948 4702 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4703 ret = VM_FAULT_SIGBUS;
4704 else
4705 ret = VM_FAULT_NOPAGE;
4706
4707 pte_unmap_unlock(vmf->pte, vmf->ptl);
4708 }
4709 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4710 ret = do_read_fault(vmf);
4711 else if (!(vma->vm_flags & VM_SHARED))
4712 ret = do_cow_fault(vmf);
4713 else
4714 ret = do_shared_fault(vmf);
4715
4716 /* preallocated pagetable is unused: free it */
4717 if (vmf->prealloc_pte) {
fc8efd2d 4718 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4719 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4720 }
4721 return ret;
54cb8821
NP
4722}
4723
f4c0d836
YS
4724int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4725 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4726{
4727 get_page(page);
4728
fc137c0d
R
4729 /* Record the current PID acceesing VMA */
4730 vma_set_access_pid_bit(vma);
4731
9532fec1 4732 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4733 if (page_nid == numa_node_id()) {
9532fec1 4734 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4735 *flags |= TNF_FAULT_LOCAL;
4736 }
9532fec1
MG
4737
4738 return mpol_misplaced(page, vma, addr);
4739}
4740
2b740303 4741static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4742{
82b0f8c3 4743 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4744 struct page *page = NULL;
98fa15f3 4745 int page_nid = NUMA_NO_NODE;
6a56ccbc 4746 bool writable = false;
90572890 4747 int last_cpupid;
cbee9f88 4748 int target_nid;
04a86453 4749 pte_t pte, old_pte;
6688cc05 4750 int flags = 0;
d10e63f2
MG
4751
4752 /*
166f61b9
TH
4753 * The "pte" at this point cannot be used safely without
4754 * validation through pte_unmap_same(). It's of NUMA type but
4755 * the pfn may be screwed if the read is non atomic.
166f61b9 4756 */
82b0f8c3 4757 spin_lock(vmf->ptl);
c33c7948 4758 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4759 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4760 goto out;
4761 }
4762
b99a342d
HY
4763 /* Get the normal PTE */
4764 old_pte = ptep_get(vmf->pte);
04a86453 4765 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4766
6a56ccbc
DH
4767 /*
4768 * Detect now whether the PTE could be writable; this information
4769 * is only valid while holding the PT lock.
4770 */
4771 writable = pte_write(pte);
4772 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4773 can_change_pte_writable(vma, vmf->address, pte))
4774 writable = true;
4775
82b0f8c3 4776 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4777 if (!page || is_zone_device_page(page))
b99a342d 4778 goto out_map;
d10e63f2 4779
e81c4802 4780 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4781 if (PageCompound(page))
4782 goto out_map;
e81c4802 4783
6688cc05 4784 /*
bea66fbd
MG
4785 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4786 * much anyway since they can be in shared cache state. This misses
4787 * the case where a mapping is writable but the process never writes
4788 * to it but pte_write gets cleared during protection updates and
4789 * pte_dirty has unpredictable behaviour between PTE scan updates,
4790 * background writeback, dirty balancing and application behaviour.
6688cc05 4791 */
6a56ccbc 4792 if (!writable)
6688cc05
PZ
4793 flags |= TNF_NO_GROUP;
4794
dabe1d99
RR
4795 /*
4796 * Flag if the page is shared between multiple address spaces. This
4797 * is later used when determining whether to group tasks together
4798 */
4799 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4800 flags |= TNF_SHARED;
4801
8191acbd 4802 page_nid = page_to_nid(page);
33024536
HY
4803 /*
4804 * For memory tiering mode, cpupid of slow memory page is used
4805 * to record page access time. So use default value.
4806 */
4807 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4808 !node_is_toptier(page_nid))
4809 last_cpupid = (-1 & LAST_CPUPID_MASK);
4810 else
4811 last_cpupid = page_cpupid_last(page);
82b0f8c3 4812 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4813 &flags);
98fa15f3 4814 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4815 put_page(page);
b99a342d 4816 goto out_map;
4daae3b4 4817 }
b99a342d 4818 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4819 writable = false;
4daae3b4
MG
4820
4821 /* Migrate to the requested node */
bf90ac19 4822 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4823 page_nid = target_nid;
6688cc05 4824 flags |= TNF_MIGRATED;
b99a342d 4825 } else {
074c2381 4826 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4827 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4828 vmf->address, &vmf->ptl);
4829 if (unlikely(!vmf->pte))
4830 goto out;
c33c7948 4831 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4832 pte_unmap_unlock(vmf->pte, vmf->ptl);
4833 goto out;
4834 }
4835 goto out_map;
4836 }
4daae3b4
MG
4837
4838out:
98fa15f3 4839 if (page_nid != NUMA_NO_NODE)
6688cc05 4840 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4841 return 0;
b99a342d
HY
4842out_map:
4843 /*
4844 * Make it present again, depending on how arch implements
4845 * non-accessible ptes, some can allow access by kernel mode.
4846 */
4847 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4848 pte = pte_modify(old_pte, vma->vm_page_prot);
4849 pte = pte_mkyoung(pte);
6a56ccbc 4850 if (writable)
b99a342d
HY
4851 pte = pte_mkwrite(pte);
4852 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4853 update_mmu_cache(vma, vmf->address, vmf->pte);
4854 pte_unmap_unlock(vmf->pte, vmf->ptl);
4855 goto out;
d10e63f2
MG
4856}
4857
2b740303 4858static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4859{
8f5fd0e1
MWO
4860 struct vm_area_struct *vma = vmf->vma;
4861 if (vma_is_anonymous(vma))
82b0f8c3 4862 return do_huge_pmd_anonymous_page(vmf);
8f5fd0e1
MWO
4863 if (vma->vm_ops->huge_fault) {
4864 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4865 vma_end_read(vma);
4866 return VM_FAULT_RETRY;
4867 }
4868 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4869 }
b96375f7
MW
4870 return VM_FAULT_FALLBACK;
4871}
4872
183f24aa 4873/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4874static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4875{
8f5fd0e1 4876 struct vm_area_struct *vma = vmf->vma;
c89357e2 4877 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4878 vm_fault_t ret;
c89357e2 4879
8f5fd0e1 4880 if (vma_is_anonymous(vma)) {
c89357e2 4881 if (likely(!unshare) &&
8f5fd0e1 4882 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
529b930b 4883 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4884 return do_huge_pmd_wp_page(vmf);
529b930b 4885 }
327e9fd4 4886
8f5fd0e1
MWO
4887 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4888 if (vma->vm_ops->huge_fault) {
4889 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4890 vma_end_read(vma);
4891 return VM_FAULT_RETRY;
4892 }
4893 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
aea06577
DH
4894 if (!(ret & VM_FAULT_FALLBACK))
4895 return ret;
4896 }
327e9fd4 4897 }
af9e4d5f 4898
327e9fd4 4899 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 4900 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4901
b96375f7
MW
4902 return VM_FAULT_FALLBACK;
4903}
4904
2b740303 4905static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4906{
14c99d65
GJ
4907#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4908 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4909 struct vm_area_struct *vma = vmf->vma;
14c99d65 4910 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4911 if (vma_is_anonymous(vma))
14c99d65 4912 return VM_FAULT_FALLBACK;
c4fd825e
MWO
4913 if (vma->vm_ops->huge_fault) {
4914 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4915 vma_end_read(vma);
4916 return VM_FAULT_RETRY;
4917 }
4918 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4919 }
14c99d65
GJ
4920#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4921 return VM_FAULT_FALLBACK;
4922}
4923
4924static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4925{
327e9fd4
THV
4926#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4927 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4928 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
4929 vm_fault_t ret;
4930
a00cc7d9 4931 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4932 if (vma_is_anonymous(vma))
327e9fd4 4933 goto split;
c4fd825e
MWO
4934 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4935 if (vma->vm_ops->huge_fault) {
4936 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4937 vma_end_read(vma);
4938 return VM_FAULT_RETRY;
4939 }
4940 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
aea06577
DH
4941 if (!(ret & VM_FAULT_FALLBACK))
4942 return ret;
4943 }
327e9fd4
THV
4944 }
4945split:
4946 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 4947 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 4948#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4949 return VM_FAULT_FALLBACK;
4950}
4951
1da177e4
LT
4952/*
4953 * These routines also need to handle stuff like marking pages dirty
4954 * and/or accessed for architectures that don't do it in hardware (most
4955 * RISC architectures). The early dirtying is also good on the i386.
4956 *
4957 * There is also a hook called "update_mmu_cache()" that architectures
4958 * with external mmu caches can use to update those (ie the Sparc or
4959 * PowerPC hashed page tables that act as extended TLBs).
4960 *
c1e8d7c6 4961 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4962 * concurrent faults).
9a95f3cf 4963 *
c1e8d7c6 4964 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4965 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4966 */
2b740303 4967static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4968{
4969 pte_t entry;
4970
82b0f8c3 4971 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4972 /*
4973 * Leave __pte_alloc() until later: because vm_ops->fault may
4974 * want to allocate huge page, and if we expose page table
4975 * for an instant, it will be difficult to retract from
4976 * concurrent faults and from rmap lookups.
4977 */
82b0f8c3 4978 vmf->pte = NULL;
f46f2ade 4979 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4980 } else {
7267ec00
KS
4981 /*
4982 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
4983 * pmd by anon khugepaged, since that takes mmap_lock in write
4984 * mode; but shmem or file collapse to THP could still morph
4985 * it into a huge pmd: just retry later if so.
7267ec00 4986 */
c7ad0880
HD
4987 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4988 vmf->address, &vmf->ptl);
4989 if (unlikely(!vmf->pte))
4990 return 0;
26e1a0c3 4991 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 4992 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4993
2994302b 4994 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4995 pte_unmap(vmf->pte);
4996 vmf->pte = NULL;
65500d23 4997 }
1da177e4
LT
4998 }
4999
2bad466c
PX
5000 if (!vmf->pte)
5001 return do_pte_missing(vmf);
7267ec00 5002
2994302b
JK
5003 if (!pte_present(vmf->orig_pte))
5004 return do_swap_page(vmf);
7267ec00 5005
2994302b
JK
5006 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5007 return do_numa_page(vmf);
d10e63f2 5008
82b0f8c3 5009 spin_lock(vmf->ptl);
2994302b 5010 entry = vmf->orig_pte;
c33c7948 5011 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5012 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5013 goto unlock;
7df67697 5014 }
c89357e2 5015 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5016 if (!pte_write(entry))
2994302b 5017 return do_wp_page(vmf);
c89357e2
DH
5018 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5019 entry = pte_mkdirty(entry);
1da177e4
LT
5020 }
5021 entry = pte_mkyoung(entry);
82b0f8c3
JK
5022 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5023 vmf->flags & FAULT_FLAG_WRITE)) {
5024 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 5025 } else {
b7333b58
YS
5026 /* Skip spurious TLB flush for retried page fault */
5027 if (vmf->flags & FAULT_FLAG_TRIED)
5028 goto unlock;
1a44e149
AA
5029 /*
5030 * This is needed only for protection faults but the arch code
5031 * is not yet telling us if this is a protection fault or not.
5032 * This still avoids useless tlb flushes for .text page faults
5033 * with threads.
5034 */
82b0f8c3 5035 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5036 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5037 vmf->pte);
1a44e149 5038 }
8f4e2101 5039unlock:
82b0f8c3 5040 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5041 return 0;
1da177e4
LT
5042}
5043
5044/*
4ec31152
MWO
5045 * On entry, we hold either the VMA lock or the mmap_lock
5046 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5047 * the result, the mmap_lock is not held on exit. See filemap_fault()
5048 * and __folio_lock_or_retry().
1da177e4 5049 */
2b740303
SJ
5050static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5051 unsigned long address, unsigned int flags)
1da177e4 5052{
82b0f8c3 5053 struct vm_fault vmf = {
bae473a4 5054 .vma = vma,
1a29d85e 5055 .address = address & PAGE_MASK,
824ddc60 5056 .real_address = address,
bae473a4 5057 .flags = flags,
0721ec8b 5058 .pgoff = linear_page_index(vma, address),
667240e0 5059 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5060 };
dcddffd4 5061 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5062 unsigned long vm_flags = vma->vm_flags;
1da177e4 5063 pgd_t *pgd;
c2febafc 5064 p4d_t *p4d;
2b740303 5065 vm_fault_t ret;
1da177e4 5066
1da177e4 5067 pgd = pgd_offset(mm, address);
c2febafc
KS
5068 p4d = p4d_alloc(mm, pgd, address);
5069 if (!p4d)
5070 return VM_FAULT_OOM;
a00cc7d9 5071
c2febafc 5072 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5073 if (!vmf.pud)
c74df32c 5074 return VM_FAULT_OOM;
625110b5 5075retry_pud:
7da4e2cb 5076 if (pud_none(*vmf.pud) &&
a7f4e6e4 5077 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5078 ret = create_huge_pud(&vmf);
5079 if (!(ret & VM_FAULT_FALLBACK))
5080 return ret;
5081 } else {
5082 pud_t orig_pud = *vmf.pud;
5083
5084 barrier();
5085 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5086
c89357e2
DH
5087 /*
5088 * TODO once we support anonymous PUDs: NUMA case and
5089 * FAULT_FLAG_UNSHARE handling.
5090 */
5091 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5092 ret = wp_huge_pud(&vmf, orig_pud);
5093 if (!(ret & VM_FAULT_FALLBACK))
5094 return ret;
5095 } else {
5096 huge_pud_set_accessed(&vmf, orig_pud);
5097 return 0;
5098 }
5099 }
5100 }
5101
5102 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5103 if (!vmf.pmd)
c74df32c 5104 return VM_FAULT_OOM;
625110b5
TH
5105
5106 /* Huge pud page fault raced with pmd_alloc? */
5107 if (pud_trans_unstable(vmf.pud))
5108 goto retry_pud;
5109
7da4e2cb 5110 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5111 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5112 ret = create_huge_pmd(&vmf);
c0292554
KS
5113 if (!(ret & VM_FAULT_FALLBACK))
5114 return ret;
71e3aac0 5115 } else {
26e1a0c3 5116 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5117
5db4f15c 5118 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5119 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5120 !is_pmd_migration_entry(vmf.orig_pmd));
5121 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5122 pmd_migration_entry_wait(mm, vmf.pmd);
5123 return 0;
5124 }
5db4f15c
YS
5125 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5126 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5127 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5128
c89357e2
DH
5129 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5130 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5131 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5132 if (!(ret & VM_FAULT_FALLBACK))
5133 return ret;
a1dd450b 5134 } else {
5db4f15c 5135 huge_pmd_set_accessed(&vmf);
9845cbbd 5136 return 0;
1f1d06c3 5137 }
71e3aac0
AA
5138 }
5139 }
5140
82b0f8c3 5141 return handle_pte_fault(&vmf);
1da177e4
LT
5142}
5143
bce617ed 5144/**
f0953a1b 5145 * mm_account_fault - Do page fault accounting
809ef83c 5146 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5147 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5148 * of perf event counters, but we'll still do the per-task accounting to
5149 * the task who triggered this page fault.
5150 * @address: the faulted address.
5151 * @flags: the fault flags.
5152 * @ret: the fault retcode.
5153 *
f0953a1b 5154 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5155 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5156 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5157 * still be in per-arch page fault handlers at the entry of page fault.
5158 */
53156443 5159static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5160 unsigned long address, unsigned int flags,
5161 vm_fault_t ret)
5162{
5163 bool major;
5164
53156443
SB
5165 /* Incomplete faults will be accounted upon completion. */
5166 if (ret & VM_FAULT_RETRY)
5167 return;
5168
bce617ed 5169 /*
53156443
SB
5170 * To preserve the behavior of older kernels, PGFAULT counters record
5171 * both successful and failed faults, as opposed to perf counters,
5172 * which ignore failed cases.
bce617ed 5173 */
53156443
SB
5174 count_vm_event(PGFAULT);
5175 count_memcg_event_mm(mm, PGFAULT);
5176
5177 /*
5178 * Do not account for unsuccessful faults (e.g. when the address wasn't
5179 * valid). That includes arch_vma_access_permitted() failing before
5180 * reaching here. So this is not a "this many hardware page faults"
5181 * counter. We should use the hw profiling for that.
5182 */
5183 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5184 return;
5185
5186 /*
5187 * We define the fault as a major fault when the final successful fault
5188 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5189 * handle it immediately previously).
5190 */
5191 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5192
a2beb5f1
PX
5193 if (major)
5194 current->maj_flt++;
5195 else
5196 current->min_flt++;
5197
bce617ed 5198 /*
a2beb5f1
PX
5199 * If the fault is done for GUP, regs will be NULL. We only do the
5200 * accounting for the per thread fault counters who triggered the
5201 * fault, and we skip the perf event updates.
bce617ed
PX
5202 */
5203 if (!regs)
5204 return;
5205
a2beb5f1 5206 if (major)
bce617ed 5207 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5208 else
bce617ed 5209 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5210}
5211
ec1c86b2
YZ
5212#ifdef CONFIG_LRU_GEN
5213static void lru_gen_enter_fault(struct vm_area_struct *vma)
5214{
8788f678
YZ
5215 /* the LRU algorithm only applies to accesses with recency */
5216 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5217}
5218
5219static void lru_gen_exit_fault(void)
5220{
5221 current->in_lru_fault = false;
5222}
5223#else
5224static void lru_gen_enter_fault(struct vm_area_struct *vma)
5225{
5226}
5227
5228static void lru_gen_exit_fault(void)
5229{
5230}
5231#endif /* CONFIG_LRU_GEN */
5232
cdc5021c
DH
5233static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5234 unsigned int *flags)
5235{
5236 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5237 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5238 return VM_FAULT_SIGSEGV;
5239 /*
5240 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5241 * just treat it like an ordinary read-fault otherwise.
5242 */
5243 if (!is_cow_mapping(vma->vm_flags))
5244 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5245 } else if (*flags & FAULT_FLAG_WRITE) {
5246 /* Write faults on read-only mappings are impossible ... */
5247 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5248 return VM_FAULT_SIGSEGV;
5249 /* ... and FOLL_FORCE only applies to COW mappings. */
5250 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5251 !is_cow_mapping(vma->vm_flags)))
5252 return VM_FAULT_SIGSEGV;
cdc5021c 5253 }
4089eef0
SB
5254#ifdef CONFIG_PER_VMA_LOCK
5255 /*
5256 * Per-VMA locks can't be used with FAULT_FLAG_RETRY_NOWAIT because of
5257 * the assumption that lock is dropped on VM_FAULT_RETRY.
5258 */
5259 if (WARN_ON_ONCE((*flags &
5260 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)) ==
5261 (FAULT_FLAG_VMA_LOCK | FAULT_FLAG_RETRY_NOWAIT)))
5262 return VM_FAULT_SIGSEGV;
5263#endif
5264
cdc5021c
DH
5265 return 0;
5266}
5267
9a95f3cf
PC
5268/*
5269 * By the time we get here, we already hold the mm semaphore
5270 *
c1e8d7c6 5271 * The mmap_lock may have been released depending on flags and our
9138e47e 5272 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5273 */
2b740303 5274vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5275 unsigned int flags, struct pt_regs *regs)
519e5247 5276{
53156443
SB
5277 /* If the fault handler drops the mmap_lock, vma may be freed */
5278 struct mm_struct *mm = vma->vm_mm;
2b740303 5279 vm_fault_t ret;
519e5247
JW
5280
5281 __set_current_state(TASK_RUNNING);
5282
cdc5021c
DH
5283 ret = sanitize_fault_flags(vma, &flags);
5284 if (ret)
53156443 5285 goto out;
cdc5021c 5286
de0c799b
LD
5287 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5288 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5289 flags & FAULT_FLAG_REMOTE)) {
5290 ret = VM_FAULT_SIGSEGV;
5291 goto out;
5292 }
de0c799b 5293
519e5247
JW
5294 /*
5295 * Enable the memcg OOM handling for faults triggered in user
5296 * space. Kernel faults are handled more gracefully.
5297 */
5298 if (flags & FAULT_FLAG_USER)
29ef680a 5299 mem_cgroup_enter_user_fault();
519e5247 5300
ec1c86b2
YZ
5301 lru_gen_enter_fault(vma);
5302
bae473a4
KS
5303 if (unlikely(is_vm_hugetlb_page(vma)))
5304 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5305 else
5306 ret = __handle_mm_fault(vma, address, flags);
519e5247 5307
ec1c86b2
YZ
5308 lru_gen_exit_fault();
5309
49426420 5310 if (flags & FAULT_FLAG_USER) {
29ef680a 5311 mem_cgroup_exit_user_fault();
166f61b9
TH
5312 /*
5313 * The task may have entered a memcg OOM situation but
5314 * if the allocation error was handled gracefully (no
5315 * VM_FAULT_OOM), there is no need to kill anything.
5316 * Just clean up the OOM state peacefully.
5317 */
5318 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5319 mem_cgroup_oom_synchronize(false);
49426420 5320 }
53156443
SB
5321out:
5322 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5323
519e5247
JW
5324 return ret;
5325}
e1d6d01a 5326EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5327
c2508ec5
LT
5328#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5329#include <linux/extable.h>
5330
5331static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5332{
5333 /* Even if this succeeds, make it clear we *might* have slept */
5334 if (likely(mmap_read_trylock(mm))) {
5335 might_sleep();
5336 return true;
5337 }
5338
5339 if (regs && !user_mode(regs)) {
5340 unsigned long ip = instruction_pointer(regs);
5341 if (!search_exception_tables(ip))
5342 return false;
5343 }
5344
eda00472 5345 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5346}
5347
5348static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5349{
5350 /*
5351 * We don't have this operation yet.
5352 *
5353 * It should be easy enough to do: it's basically a
5354 * atomic_long_try_cmpxchg_acquire()
5355 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5356 * it also needs the proper lockdep magic etc.
5357 */
5358 return false;
5359}
5360
5361static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5362{
5363 mmap_read_unlock(mm);
5364 if (regs && !user_mode(regs)) {
5365 unsigned long ip = instruction_pointer(regs);
5366 if (!search_exception_tables(ip))
5367 return false;
5368 }
eda00472 5369 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5370}
5371
5372/*
5373 * Helper for page fault handling.
5374 *
5375 * This is kind of equivalend to "mmap_read_lock()" followed
5376 * by "find_extend_vma()", except it's a lot more careful about
5377 * the locking (and will drop the lock on failure).
5378 *
5379 * For example, if we have a kernel bug that causes a page
5380 * fault, we don't want to just use mmap_read_lock() to get
5381 * the mm lock, because that would deadlock if the bug were
5382 * to happen while we're holding the mm lock for writing.
5383 *
5384 * So this checks the exception tables on kernel faults in
5385 * order to only do this all for instructions that are actually
5386 * expected to fault.
5387 *
5388 * We can also actually take the mm lock for writing if we
5389 * need to extend the vma, which helps the VM layer a lot.
5390 */
5391struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5392 unsigned long addr, struct pt_regs *regs)
5393{
5394 struct vm_area_struct *vma;
5395
5396 if (!get_mmap_lock_carefully(mm, regs))
5397 return NULL;
5398
5399 vma = find_vma(mm, addr);
5400 if (likely(vma && (vma->vm_start <= addr)))
5401 return vma;
5402
5403 /*
5404 * Well, dang. We might still be successful, but only
5405 * if we can extend a vma to do so.
5406 */
5407 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5408 mmap_read_unlock(mm);
5409 return NULL;
5410 }
5411
5412 /*
5413 * We can try to upgrade the mmap lock atomically,
5414 * in which case we can continue to use the vma
5415 * we already looked up.
5416 *
5417 * Otherwise we'll have to drop the mmap lock and
5418 * re-take it, and also look up the vma again,
5419 * re-checking it.
5420 */
5421 if (!mmap_upgrade_trylock(mm)) {
5422 if (!upgrade_mmap_lock_carefully(mm, regs))
5423 return NULL;
5424
5425 vma = find_vma(mm, addr);
5426 if (!vma)
5427 goto fail;
5428 if (vma->vm_start <= addr)
5429 goto success;
5430 if (!(vma->vm_flags & VM_GROWSDOWN))
5431 goto fail;
5432 }
5433
8d7071af 5434 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5435 goto fail;
5436
5437success:
5438 mmap_write_downgrade(mm);
5439 return vma;
5440
5441fail:
5442 mmap_write_unlock(mm);
5443 return NULL;
5444}
5445#endif
5446
50ee3253
SB
5447#ifdef CONFIG_PER_VMA_LOCK
5448/*
5449 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5450 * stable and not isolated. If the VMA is not found or is being modified the
5451 * function returns NULL.
5452 */
5453struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5454 unsigned long address)
5455{
5456 MA_STATE(mas, &mm->mm_mt, address, address);
5457 struct vm_area_struct *vma;
5458
5459 rcu_read_lock();
5460retry:
5461 vma = mas_walk(&mas);
5462 if (!vma)
5463 goto inval;
5464
50ee3253
SB
5465 if (!vma_start_read(vma))
5466 goto inval;
5467
657b5146
JH
5468 /*
5469 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5470 * This check must happen after vma_start_read(); otherwise, a
5471 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5472 * from its anon_vma.
5473 */
08dff281 5474 if (vma_is_anonymous(vma) && !vma->anon_vma)
657b5146
JH
5475 goto inval_end_read;
5476
444eeb17
SB
5477 /*
5478 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5479 * it for now and fall back to page fault handling under mmap_lock.
5480 */
657b5146
JH
5481 if (userfaultfd_armed(vma))
5482 goto inval_end_read;
444eeb17 5483
50ee3253 5484 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5485 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5486 goto inval_end_read;
50ee3253
SB
5487
5488 /* Check if the VMA got isolated after we found it */
5489 if (vma->detached) {
5490 vma_end_read(vma);
52f23865 5491 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5492 /* The area was replaced with another one */
5493 goto retry;
5494 }
5495
5496 rcu_read_unlock();
5497 return vma;
657b5146
JH
5498
5499inval_end_read:
5500 vma_end_read(vma);
50ee3253
SB
5501inval:
5502 rcu_read_unlock();
52f23865 5503 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5504 return NULL;
5505}
5506#endif /* CONFIG_PER_VMA_LOCK */
5507
90eceff1
KS
5508#ifndef __PAGETABLE_P4D_FOLDED
5509/*
5510 * Allocate p4d page table.
5511 * We've already handled the fast-path in-line.
5512 */
5513int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5514{
5515 p4d_t *new = p4d_alloc_one(mm, address);
5516 if (!new)
5517 return -ENOMEM;
5518
90eceff1 5519 spin_lock(&mm->page_table_lock);
ed33b5a6 5520 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5521 p4d_free(mm, new);
ed33b5a6
QZ
5522 } else {
5523 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5524 pgd_populate(mm, pgd, new);
ed33b5a6 5525 }
90eceff1
KS
5526 spin_unlock(&mm->page_table_lock);
5527 return 0;
5528}
5529#endif /* __PAGETABLE_P4D_FOLDED */
5530
1da177e4
LT
5531#ifndef __PAGETABLE_PUD_FOLDED
5532/*
5533 * Allocate page upper directory.
872fec16 5534 * We've already handled the fast-path in-line.
1da177e4 5535 */
c2febafc 5536int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5537{
c74df32c
HD
5538 pud_t *new = pud_alloc_one(mm, address);
5539 if (!new)
1bb3630e 5540 return -ENOMEM;
1da177e4 5541
872fec16 5542 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5543 if (!p4d_present(*p4d)) {
5544 mm_inc_nr_puds(mm);
ed33b5a6 5545 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5546 p4d_populate(mm, p4d, new);
b4e98d9a 5547 } else /* Another has populated it */
5e541973 5548 pud_free(mm, new);
c74df32c 5549 spin_unlock(&mm->page_table_lock);
1bb3630e 5550 return 0;
1da177e4
LT
5551}
5552#endif /* __PAGETABLE_PUD_FOLDED */
5553
5554#ifndef __PAGETABLE_PMD_FOLDED
5555/*
5556 * Allocate page middle directory.
872fec16 5557 * We've already handled the fast-path in-line.
1da177e4 5558 */
1bb3630e 5559int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5560{
a00cc7d9 5561 spinlock_t *ptl;
c74df32c
HD
5562 pmd_t *new = pmd_alloc_one(mm, address);
5563 if (!new)
1bb3630e 5564 return -ENOMEM;
1da177e4 5565
a00cc7d9 5566 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5567 if (!pud_present(*pud)) {
5568 mm_inc_nr_pmds(mm);
ed33b5a6 5569 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5570 pud_populate(mm, pud, new);
ed33b5a6 5571 } else { /* Another has populated it */
5e541973 5572 pmd_free(mm, new);
ed33b5a6 5573 }
a00cc7d9 5574 spin_unlock(ptl);
1bb3630e 5575 return 0;
e0f39591 5576}
1da177e4
LT
5577#endif /* __PAGETABLE_PMD_FOLDED */
5578
0e5e64c0
MS
5579/**
5580 * follow_pte - look up PTE at a user virtual address
5581 * @mm: the mm_struct of the target address space
5582 * @address: user virtual address
5583 * @ptepp: location to store found PTE
5584 * @ptlp: location to store the lock for the PTE
5585 *
5586 * On a successful return, the pointer to the PTE is stored in @ptepp;
5587 * the corresponding lock is taken and its location is stored in @ptlp.
5588 * The contents of the PTE are only stable until @ptlp is released;
5589 * any further use, if any, must be protected against invalidation
5590 * with MMU notifiers.
5591 *
5592 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5593 * should be taken for read.
5594 *
5595 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5596 * it is not a good general-purpose API.
5597 *
5598 * Return: zero on success, -ve otherwise.
5599 */
5600int follow_pte(struct mm_struct *mm, unsigned long address,
5601 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5602{
5603 pgd_t *pgd;
c2febafc 5604 p4d_t *p4d;
f8ad0f49
JW
5605 pud_t *pud;
5606 pmd_t *pmd;
5607 pte_t *ptep;
5608
5609 pgd = pgd_offset(mm, address);
5610 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5611 goto out;
5612
c2febafc
KS
5613 p4d = p4d_offset(pgd, address);
5614 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5615 goto out;
5616
5617 pud = pud_offset(p4d, address);
f8ad0f49
JW
5618 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5619 goto out;
5620
5621 pmd = pmd_offset(pud, address);
f66055ab 5622 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5623
f8ad0f49 5624 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5625 if (!ptep)
5626 goto out;
c33c7948 5627 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5628 goto unlock;
5629 *ptepp = ptep;
5630 return 0;
5631unlock:
5632 pte_unmap_unlock(ptep, *ptlp);
5633out:
5634 return -EINVAL;
5635}
9fd6dad1
PB
5636EXPORT_SYMBOL_GPL(follow_pte);
5637
3b6748e2
JW
5638/**
5639 * follow_pfn - look up PFN at a user virtual address
5640 * @vma: memory mapping
5641 * @address: user virtual address
5642 * @pfn: location to store found PFN
5643 *
5644 * Only IO mappings and raw PFN mappings are allowed.
5645 *
9fd6dad1
PB
5646 * This function does not allow the caller to read the permissions
5647 * of the PTE. Do not use it.
5648 *
a862f68a 5649 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5650 */
5651int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5652 unsigned long *pfn)
5653{
5654 int ret = -EINVAL;
5655 spinlock_t *ptl;
5656 pte_t *ptep;
5657
5658 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5659 return ret;
5660
9fd6dad1 5661 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5662 if (ret)
5663 return ret;
c33c7948 5664 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5665 pte_unmap_unlock(ptep, ptl);
5666 return 0;
5667}
5668EXPORT_SYMBOL(follow_pfn);
5669
28b2ee20 5670#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5671int follow_phys(struct vm_area_struct *vma,
5672 unsigned long address, unsigned int flags,
5673 unsigned long *prot, resource_size_t *phys)
28b2ee20 5674{
03668a4d 5675 int ret = -EINVAL;
28b2ee20
RR
5676 pte_t *ptep, pte;
5677 spinlock_t *ptl;
28b2ee20 5678
d87fe660 5679 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5680 goto out;
28b2ee20 5681
9fd6dad1 5682 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5683 goto out;
c33c7948 5684 pte = ptep_get(ptep);
03668a4d 5685
f6f37321 5686 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5687 goto unlock;
28b2ee20
RR
5688
5689 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5690 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5691
03668a4d 5692 ret = 0;
28b2ee20
RR
5693unlock:
5694 pte_unmap_unlock(ptep, ptl);
5695out:
d87fe660 5696 return ret;
28b2ee20
RR
5697}
5698
96667f8a
SV
5699/**
5700 * generic_access_phys - generic implementation for iomem mmap access
5701 * @vma: the vma to access
f0953a1b 5702 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5703 * @buf: buffer to read/write
5704 * @len: length of transfer
5705 * @write: set to FOLL_WRITE when writing, otherwise reading
5706 *
5707 * This is a generic implementation for &vm_operations_struct.access for an
5708 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5709 * not page based.
5710 */
28b2ee20
RR
5711int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5712 void *buf, int len, int write)
5713{
5714 resource_size_t phys_addr;
5715 unsigned long prot = 0;
2bc7273b 5716 void __iomem *maddr;
96667f8a
SV
5717 pte_t *ptep, pte;
5718 spinlock_t *ptl;
5719 int offset = offset_in_page(addr);
5720 int ret = -EINVAL;
5721
5722 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5723 return -EINVAL;
5724
5725retry:
e913a8cd 5726 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5727 return -EINVAL;
c33c7948 5728 pte = ptep_get(ptep);
96667f8a 5729 pte_unmap_unlock(ptep, ptl);
28b2ee20 5730
96667f8a
SV
5731 prot = pgprot_val(pte_pgprot(pte));
5732 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5733
5734 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5735 return -EINVAL;
5736
9cb12d7b 5737 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5738 if (!maddr)
5739 return -ENOMEM;
5740
e913a8cd 5741 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5742 goto out_unmap;
5743
c33c7948 5744 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
SV
5745 pte_unmap_unlock(ptep, ptl);
5746 iounmap(maddr);
5747
5748 goto retry;
5749 }
5750
28b2ee20
RR
5751 if (write)
5752 memcpy_toio(maddr + offset, buf, len);
5753 else
5754 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5755 ret = len;
5756 pte_unmap_unlock(ptep, ptl);
5757out_unmap:
28b2ee20
RR
5758 iounmap(maddr);
5759
96667f8a 5760 return ret;
28b2ee20 5761}
5a73633e 5762EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5763#endif
5764
0ec76a11 5765/*
d3f5ffca 5766 * Access another process' address space as given in mm.
0ec76a11 5767 */
d3f5ffca
JH
5768int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5769 int len, unsigned int gup_flags)
0ec76a11 5770{
0ec76a11 5771 void *old_buf = buf;
442486ec 5772 int write = gup_flags & FOLL_WRITE;
0ec76a11 5773
d8ed45c5 5774 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5775 return 0;
5776
eee9c708
LT
5777 /* Avoid triggering the temporary warning in __get_user_pages */
5778 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5779 return 0;
5780
183ff22b 5781 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5782 while (len) {
ca5e8632 5783 int bytes, offset;
0ec76a11 5784 void *maddr;
ca5e8632
LS
5785 struct vm_area_struct *vma = NULL;
5786 struct page *page = get_user_page_vma_remote(mm, addr,
5787 gup_flags, &vma);
0ec76a11 5788
ca5e8632 5789 if (IS_ERR_OR_NULL(page)) {
9471f1f2
LT
5790 /* We might need to expand the stack to access it */
5791 vma = vma_lookup(mm, addr);
5792 if (!vma) {
5793 vma = expand_stack(mm, addr);
5794
5795 /* mmap_lock was dropped on failure */
5796 if (!vma)
5797 return buf - old_buf;
5798
5799 /* Try again if stack expansion worked */
5800 continue;
5801 }
5802
ca5e8632 5803
28b2ee20
RR
5804 /*
5805 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5806 * we can access using slightly different code.
5807 */
9471f1f2
LT
5808 bytes = 0;
5809#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5810 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5811 bytes = vma->vm_ops->access(vma, addr, buf,
5812 len, write);
dbffcd03 5813#endif
9471f1f2
LT
5814 if (bytes <= 0)
5815 break;
0ec76a11 5816 } else {
28b2ee20
RR
5817 bytes = len;
5818 offset = addr & (PAGE_SIZE-1);
5819 if (bytes > PAGE_SIZE-offset)
5820 bytes = PAGE_SIZE-offset;
5821
5822 maddr = kmap(page);
5823 if (write) {
5824 copy_to_user_page(vma, page, addr,
5825 maddr + offset, buf, bytes);
5826 set_page_dirty_lock(page);
5827 } else {
5828 copy_from_user_page(vma, page, addr,
5829 buf, maddr + offset, bytes);
5830 }
5831 kunmap(page);
09cbfeaf 5832 put_page(page);
0ec76a11 5833 }
0ec76a11
DH
5834 len -= bytes;
5835 buf += bytes;
5836 addr += bytes;
5837 }
d8ed45c5 5838 mmap_read_unlock(mm);
0ec76a11
DH
5839
5840 return buf - old_buf;
5841}
03252919 5842
5ddd36b9 5843/**
ae91dbfc 5844 * access_remote_vm - access another process' address space
5ddd36b9
SW
5845 * @mm: the mm_struct of the target address space
5846 * @addr: start address to access
5847 * @buf: source or destination buffer
5848 * @len: number of bytes to transfer
6347e8d5 5849 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5850 *
5851 * The caller must hold a reference on @mm.
a862f68a
MR
5852 *
5853 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5854 */
5855int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5856 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5857{
d3f5ffca 5858 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5859}
5860
206cb636
SW
5861/*
5862 * Access another process' address space.
5863 * Source/target buffer must be kernel space,
5864 * Do not walk the page table directly, use get_user_pages
5865 */
5866int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5867 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5868{
5869 struct mm_struct *mm;
5870 int ret;
5871
5872 mm = get_task_mm(tsk);
5873 if (!mm)
5874 return 0;
5875
d3f5ffca 5876 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5877
206cb636
SW
5878 mmput(mm);
5879
5880 return ret;
5881}
fcd35857 5882EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5883
03252919
AK
5884/*
5885 * Print the name of a VMA.
5886 */
5887void print_vma_addr(char *prefix, unsigned long ip)
5888{
5889 struct mm_struct *mm = current->mm;
5890 struct vm_area_struct *vma;
5891
e8bff74a 5892 /*
0a7f682d 5893 * we might be running from an atomic context so we cannot sleep
e8bff74a 5894 */
d8ed45c5 5895 if (!mmap_read_trylock(mm))
e8bff74a
IM
5896 return;
5897
03252919
AK
5898 vma = find_vma(mm, ip);
5899 if (vma && vma->vm_file) {
5900 struct file *f = vma->vm_file;
0a7f682d 5901 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5902 if (buf) {
2fbc57c5 5903 char *p;
03252919 5904
9bf39ab2 5905 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5906 if (IS_ERR(p))
5907 p = "?";
2fbc57c5 5908 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5909 vma->vm_start,
5910 vma->vm_end - vma->vm_start);
5911 free_page((unsigned long)buf);
5912 }
5913 }
d8ed45c5 5914 mmap_read_unlock(mm);
03252919 5915}
3ee1afa3 5916
662bbcb2 5917#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5918void __might_fault(const char *file, int line)
3ee1afa3 5919{
9ec23531 5920 if (pagefault_disabled())
662bbcb2 5921 return;
42a38756 5922 __might_sleep(file, line);
9ec23531 5923#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5924 if (current->mm)
da1c55f1 5925 might_lock_read(&current->mm->mmap_lock);
9ec23531 5926#endif
3ee1afa3 5927}
9ec23531 5928EXPORT_SYMBOL(__might_fault);
3ee1afa3 5929#endif
47ad8475
AA
5930
5931#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5932/*
5933 * Process all subpages of the specified huge page with the specified
5934 * operation. The target subpage will be processed last to keep its
5935 * cache lines hot.
5936 */
1cb9dc4b 5937static inline int process_huge_page(
c6ddfb6c 5938 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5939 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5940 void *arg)
47ad8475 5941{
1cb9dc4b 5942 int i, n, base, l, ret;
c79b57e4
HY
5943 unsigned long addr = addr_hint &
5944 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5945
c6ddfb6c 5946 /* Process target subpage last to keep its cache lines hot */
47ad8475 5947 might_sleep();
c79b57e4
HY
5948 n = (addr_hint - addr) / PAGE_SIZE;
5949 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5950 /* If target subpage in first half of huge page */
c79b57e4
HY
5951 base = 0;
5952 l = n;
c6ddfb6c 5953 /* Process subpages at the end of huge page */
c79b57e4
HY
5954 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5955 cond_resched();
1cb9dc4b
LS
5956 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5957 if (ret)
5958 return ret;
c79b57e4
HY
5959 }
5960 } else {
c6ddfb6c 5961 /* If target subpage in second half of huge page */
c79b57e4
HY
5962 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5963 l = pages_per_huge_page - n;
c6ddfb6c 5964 /* Process subpages at the begin of huge page */
c79b57e4
HY
5965 for (i = 0; i < base; i++) {
5966 cond_resched();
1cb9dc4b
LS
5967 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5968 if (ret)
5969 return ret;
c79b57e4
HY
5970 }
5971 }
5972 /*
c6ddfb6c
HY
5973 * Process remaining subpages in left-right-left-right pattern
5974 * towards the target subpage
c79b57e4
HY
5975 */
5976 for (i = 0; i < l; i++) {
5977 int left_idx = base + i;
5978 int right_idx = base + 2 * l - 1 - i;
5979
5980 cond_resched();
1cb9dc4b
LS
5981 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5982 if (ret)
5983 return ret;
47ad8475 5984 cond_resched();
1cb9dc4b
LS
5985 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5986 if (ret)
5987 return ret;
47ad8475 5988 }
1cb9dc4b 5989 return 0;
47ad8475
AA
5990}
5991
c6ddfb6c
HY
5992static void clear_gigantic_page(struct page *page,
5993 unsigned long addr,
5994 unsigned int pages_per_huge_page)
5995{
5996 int i;
14455eab 5997 struct page *p;
c6ddfb6c
HY
5998
5999 might_sleep();
14455eab
CL
6000 for (i = 0; i < pages_per_huge_page; i++) {
6001 p = nth_page(page, i);
c6ddfb6c
HY
6002 cond_resched();
6003 clear_user_highpage(p, addr + i * PAGE_SIZE);
6004 }
6005}
6006
1cb9dc4b 6007static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
6008{
6009 struct page *page = arg;
6010
6011 clear_user_highpage(page + idx, addr);
1cb9dc4b 6012 return 0;
c6ddfb6c
HY
6013}
6014
6015void clear_huge_page(struct page *page,
6016 unsigned long addr_hint, unsigned int pages_per_huge_page)
6017{
6018 unsigned long addr = addr_hint &
6019 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6020
6021 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6022 clear_gigantic_page(page, addr, pages_per_huge_page);
6023 return;
6024 }
6025
6026 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6027}
6028
1cb9dc4b 6029static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6030 unsigned long addr,
6031 struct vm_area_struct *vma,
6032 unsigned int pages_per_huge_page)
47ad8475
AA
6033{
6034 int i;
c0e8150e
Z
6035 struct page *dst_page;
6036 struct page *src_page;
47ad8475 6037
14455eab 6038 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6039 dst_page = folio_page(dst, i);
6040 src_page = folio_page(src, i);
14455eab 6041
47ad8475 6042 cond_resched();
1cb9dc4b
LS
6043 if (copy_mc_user_highpage(dst_page, src_page,
6044 addr + i*PAGE_SIZE, vma)) {
6045 memory_failure_queue(page_to_pfn(src_page), 0);
6046 return -EHWPOISON;
6047 }
47ad8475 6048 }
1cb9dc4b 6049 return 0;
47ad8475
AA
6050}
6051
c9f4cd71
HY
6052struct copy_subpage_arg {
6053 struct page *dst;
6054 struct page *src;
6055 struct vm_area_struct *vma;
6056};
6057
1cb9dc4b 6058static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6059{
6060 struct copy_subpage_arg *copy_arg = arg;
6061
1cb9dc4b
LS
6062 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6063 addr, copy_arg->vma)) {
6064 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6065 return -EHWPOISON;
6066 }
6067 return 0;
c9f4cd71
HY
6068}
6069
1cb9dc4b
LS
6070int copy_user_large_folio(struct folio *dst, struct folio *src,
6071 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6072{
c0e8150e 6073 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6074 unsigned long addr = addr_hint &
6075 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6076 struct copy_subpage_arg arg = {
c0e8150e
Z
6077 .dst = &dst->page,
6078 .src = &src->page,
c9f4cd71
HY
6079 .vma = vma,
6080 };
47ad8475 6081
1cb9dc4b
LS
6082 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6083 return copy_user_gigantic_page(dst, src, addr, vma,
6084 pages_per_huge_page);
47ad8475 6085
1cb9dc4b 6086 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6087}
fa4d75c1 6088
e87340ca
Z
6089long copy_folio_from_user(struct folio *dst_folio,
6090 const void __user *usr_src,
6091 bool allow_pagefault)
fa4d75c1 6092{
e87340ca 6093 void *kaddr;
fa4d75c1 6094 unsigned long i, rc = 0;
e87340ca
Z
6095 unsigned int nr_pages = folio_nr_pages(dst_folio);
6096 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6097 struct page *subpage;
fa4d75c1 6098
e87340ca
Z
6099 for (i = 0; i < nr_pages; i++) {
6100 subpage = folio_page(dst_folio, i);
6101 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6102 if (!allow_pagefault)
6103 pagefault_disable();
e87340ca 6104 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6105 if (!allow_pagefault)
6106 pagefault_enable();
e87340ca 6107 kunmap_local(kaddr);
fa4d75c1
MK
6108
6109 ret_val -= (PAGE_SIZE - rc);
6110 if (rc)
6111 break;
6112
e763243c
MS
6113 flush_dcache_page(subpage);
6114
fa4d75c1
MK
6115 cond_resched();
6116 }
6117 return ret_val;
6118}
47ad8475 6119#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6120
40b64acd 6121#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6122
6123static struct kmem_cache *page_ptl_cachep;
6124
6125void __init ptlock_cache_init(void)
6126{
6127 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6128 SLAB_PANIC, NULL);
6129}
6130
f5ecca06 6131bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2
KS
6132{
6133 spinlock_t *ptl;
6134
b35f1819 6135 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6136 if (!ptl)
6137 return false;
f5ecca06 6138 ptdesc->ptl = ptl;
49076ec2
KS
6139 return true;
6140}
6141
6ed1b8a0 6142void ptlock_free(struct ptdesc *ptdesc)
49076ec2 6143{
6ed1b8a0 6144 kmem_cache_free(page_ptl_cachep, ptdesc->ptl);
49076ec2
KS
6145}
6146#endif