]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm/mmap: use find_vma_intersection() in do_mmap() for overlap
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
46bdb427
WD
137#ifndef arch_wants_old_prefaulted_pte
138static inline bool arch_wants_old_prefaulted_pte(void)
139{
140 /*
141 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 * some architectures, even if it's performed in hardware. By
143 * default, "false" means prefaulted entries will be 'young'.
144 */
145 return false;
146}
147#endif
148
a62eaf15
AK
149static int __init disable_randmaps(char *s)
150{
151 randomize_va_space = 0;
9b41046c 152 return 1;
a62eaf15
AK
153}
154__setup("norandmaps", disable_randmaps);
155
62eede62 156unsigned long zero_pfn __read_mostly;
0b70068e
AB
157EXPORT_SYMBOL(zero_pfn);
158
166f61b9
TH
159unsigned long highest_memmap_pfn __read_mostly;
160
a13ea5b7
HD
161/*
162 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163 */
164static int __init init_zero_pfn(void)
165{
166 zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 return 0;
168}
e720e7d0 169early_initcall(init_zero_pfn);
a62eaf15 170
e4dcad20 171void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 172{
e4dcad20 173 trace_rss_stat(mm, member, count);
b3d1411b 174}
d559db08 175
34e55232
KH
176#if defined(SPLIT_RSS_COUNTING)
177
ea48cf78 178void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
179{
180 int i;
181
182 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
183 if (current->rss_stat.count[i]) {
184 add_mm_counter(mm, i, current->rss_stat.count[i]);
185 current->rss_stat.count[i] = 0;
34e55232
KH
186 }
187 }
05af2e10 188 current->rss_stat.events = 0;
34e55232
KH
189}
190
191static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192{
193 struct task_struct *task = current;
194
195 if (likely(task->mm == mm))
196 task->rss_stat.count[member] += val;
197 else
198 add_mm_counter(mm, member, val);
199}
200#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202
203/* sync counter once per 64 page faults */
204#define TASK_RSS_EVENTS_THRESH (64)
205static void check_sync_rss_stat(struct task_struct *task)
206{
207 if (unlikely(task != current))
208 return;
209 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 210 sync_mm_rss(task->mm);
34e55232 211}
9547d01b 212#else /* SPLIT_RSS_COUNTING */
34e55232
KH
213
214#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216
217static void check_sync_rss_stat(struct task_struct *task)
218{
219}
220
9547d01b
PZ
221#endif /* SPLIT_RSS_COUNTING */
222
1da177e4
LT
223/*
224 * Note: this doesn't free the actual pages themselves. That
225 * has been handled earlier when unmapping all the memory regions.
226 */
9e1b32ca
BH
227static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 unsigned long addr)
1da177e4 229{
2f569afd 230 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 231 pmd_clear(pmd);
9e1b32ca 232 pte_free_tlb(tlb, token, addr);
c4812909 233 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
234}
235
e0da382c
HD
236static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 unsigned long addr, unsigned long end,
238 unsigned long floor, unsigned long ceiling)
1da177e4
LT
239{
240 pmd_t *pmd;
241 unsigned long next;
e0da382c 242 unsigned long start;
1da177e4 243
e0da382c 244 start = addr;
1da177e4 245 pmd = pmd_offset(pud, addr);
1da177e4
LT
246 do {
247 next = pmd_addr_end(addr, end);
248 if (pmd_none_or_clear_bad(pmd))
249 continue;
9e1b32ca 250 free_pte_range(tlb, pmd, addr);
1da177e4
LT
251 } while (pmd++, addr = next, addr != end);
252
e0da382c
HD
253 start &= PUD_MASK;
254 if (start < floor)
255 return;
256 if (ceiling) {
257 ceiling &= PUD_MASK;
258 if (!ceiling)
259 return;
1da177e4 260 }
e0da382c
HD
261 if (end - 1 > ceiling - 1)
262 return;
263
264 pmd = pmd_offset(pud, start);
265 pud_clear(pud);
9e1b32ca 266 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 267 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
268}
269
c2febafc 270static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
271 unsigned long addr, unsigned long end,
272 unsigned long floor, unsigned long ceiling)
1da177e4
LT
273{
274 pud_t *pud;
275 unsigned long next;
e0da382c 276 unsigned long start;
1da177e4 277
e0da382c 278 start = addr;
c2febafc 279 pud = pud_offset(p4d, addr);
1da177e4
LT
280 do {
281 next = pud_addr_end(addr, end);
282 if (pud_none_or_clear_bad(pud))
283 continue;
e0da382c 284 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
285 } while (pud++, addr = next, addr != end);
286
c2febafc
KS
287 start &= P4D_MASK;
288 if (start < floor)
289 return;
290 if (ceiling) {
291 ceiling &= P4D_MASK;
292 if (!ceiling)
293 return;
294 }
295 if (end - 1 > ceiling - 1)
296 return;
297
298 pud = pud_offset(p4d, start);
299 p4d_clear(p4d);
300 pud_free_tlb(tlb, pud, start);
b4e98d9a 301 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
302}
303
304static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 unsigned long addr, unsigned long end,
306 unsigned long floor, unsigned long ceiling)
307{
308 p4d_t *p4d;
309 unsigned long next;
310 unsigned long start;
311
312 start = addr;
313 p4d = p4d_offset(pgd, addr);
314 do {
315 next = p4d_addr_end(addr, end);
316 if (p4d_none_or_clear_bad(p4d))
317 continue;
318 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 } while (p4d++, addr = next, addr != end);
320
e0da382c
HD
321 start &= PGDIR_MASK;
322 if (start < floor)
323 return;
324 if (ceiling) {
325 ceiling &= PGDIR_MASK;
326 if (!ceiling)
327 return;
1da177e4 328 }
e0da382c
HD
329 if (end - 1 > ceiling - 1)
330 return;
331
c2febafc 332 p4d = p4d_offset(pgd, start);
e0da382c 333 pgd_clear(pgd);
c2febafc 334 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
335}
336
337/*
e0da382c 338 * This function frees user-level page tables of a process.
1da177e4 339 */
42b77728 340void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
341 unsigned long addr, unsigned long end,
342 unsigned long floor, unsigned long ceiling)
1da177e4
LT
343{
344 pgd_t *pgd;
345 unsigned long next;
e0da382c
HD
346
347 /*
348 * The next few lines have given us lots of grief...
349 *
350 * Why are we testing PMD* at this top level? Because often
351 * there will be no work to do at all, and we'd prefer not to
352 * go all the way down to the bottom just to discover that.
353 *
354 * Why all these "- 1"s? Because 0 represents both the bottom
355 * of the address space and the top of it (using -1 for the
356 * top wouldn't help much: the masks would do the wrong thing).
357 * The rule is that addr 0 and floor 0 refer to the bottom of
358 * the address space, but end 0 and ceiling 0 refer to the top
359 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 * that end 0 case should be mythical).
361 *
362 * Wherever addr is brought up or ceiling brought down, we must
363 * be careful to reject "the opposite 0" before it confuses the
364 * subsequent tests. But what about where end is brought down
365 * by PMD_SIZE below? no, end can't go down to 0 there.
366 *
367 * Whereas we round start (addr) and ceiling down, by different
368 * masks at different levels, in order to test whether a table
369 * now has no other vmas using it, so can be freed, we don't
370 * bother to round floor or end up - the tests don't need that.
371 */
1da177e4 372
e0da382c
HD
373 addr &= PMD_MASK;
374 if (addr < floor) {
375 addr += PMD_SIZE;
376 if (!addr)
377 return;
378 }
379 if (ceiling) {
380 ceiling &= PMD_MASK;
381 if (!ceiling)
382 return;
383 }
384 if (end - 1 > ceiling - 1)
385 end -= PMD_SIZE;
386 if (addr > end - 1)
387 return;
07e32661
AK
388 /*
389 * We add page table cache pages with PAGE_SIZE,
390 * (see pte_free_tlb()), flush the tlb if we need
391 */
ed6a7935 392 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 393 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
394 do {
395 next = pgd_addr_end(addr, end);
396 if (pgd_none_or_clear_bad(pgd))
397 continue;
c2febafc 398 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 399 } while (pgd++, addr = next, addr != end);
e0da382c
HD
400}
401
42b77728 402void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 403 unsigned long floor, unsigned long ceiling)
e0da382c
HD
404{
405 while (vma) {
406 struct vm_area_struct *next = vma->vm_next;
407 unsigned long addr = vma->vm_start;
408
8f4f8c16 409 /*
25d9e2d1
NP
410 * Hide vma from rmap and truncate_pagecache before freeing
411 * pgtables
8f4f8c16 412 */
5beb4930 413 unlink_anon_vmas(vma);
8f4f8c16
HD
414 unlink_file_vma(vma);
415
9da61aef 416 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 417 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 418 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
419 } else {
420 /*
421 * Optimization: gather nearby vmas into one call down
422 */
423 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 424 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
425 vma = next;
426 next = vma->vm_next;
5beb4930 427 unlink_anon_vmas(vma);
8f4f8c16 428 unlink_file_vma(vma);
3bf5ee95
HD
429 }
430 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 431 floor, next ? next->vm_start : ceiling);
3bf5ee95 432 }
e0da382c
HD
433 vma = next;
434 }
1da177e4
LT
435}
436
4cf58924 437int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 438{
c4088ebd 439 spinlock_t *ptl;
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
362a61ad
NP
444 /*
445 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 * visible before the pte is made visible to other CPUs by being
447 * put into page tables.
448 *
449 * The other side of the story is the pointer chasing in the page
450 * table walking code (when walking the page table without locking;
451 * ie. most of the time). Fortunately, these data accesses consist
452 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 * being the notable exception) will already guarantee loads are
454 * seen in-order. See the alpha page table accessors for the
bb7cdd38 455 * smp_rmb() barriers in page table walking code.
362a61ad
NP
456 */
457 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458
c4088ebd 459 ptl = pmd_lock(mm, pmd);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 461 mm_inc_nr_ptes(mm);
1da177e4 462 pmd_populate(mm, pmd, new);
2f569afd 463 new = NULL;
4b471e88 464 }
c4088ebd 465 spin_unlock(ptl);
2f569afd
MS
466 if (new)
467 pte_free(mm, new);
1bb3630e 468 return 0;
1da177e4
LT
469}
470
4cf58924 471int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 472{
4cf58924 473 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
474 if (!new)
475 return -ENOMEM;
476
362a61ad
NP
477 smp_wmb(); /* See comment in __pte_alloc */
478
1bb3630e 479 spin_lock(&init_mm.page_table_lock);
8ac1f832 480 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 481 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 482 new = NULL;
4b471e88 483 }
1bb3630e 484 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
485 if (new)
486 pte_free_kernel(&init_mm, new);
1bb3630e 487 return 0;
1da177e4
LT
488}
489
d559db08
KH
490static inline void init_rss_vec(int *rss)
491{
492 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493}
494
495static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 496{
d559db08
KH
497 int i;
498
34e55232 499 if (current->mm == mm)
05af2e10 500 sync_mm_rss(mm);
d559db08
KH
501 for (i = 0; i < NR_MM_COUNTERS; i++)
502 if (rss[i])
503 add_mm_counter(mm, i, rss[i]);
ae859762
HD
504}
505
b5810039 506/*
6aab341e
LT
507 * This function is called to print an error when a bad pte
508 * is found. For example, we might have a PFN-mapped pte in
509 * a region that doesn't allow it.
b5810039
NP
510 *
511 * The calling function must still handle the error.
512 */
3dc14741
HD
513static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 pte_t pte, struct page *page)
b5810039 515{
3dc14741 516 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
517 p4d_t *p4d = p4d_offset(pgd, addr);
518 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
519 pmd_t *pmd = pmd_offset(pud, addr);
520 struct address_space *mapping;
521 pgoff_t index;
d936cf9b
HD
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 return;
534 }
535 if (nr_unshown) {
1170532b
JP
536 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 nr_unshown);
d936cf9b
HD
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
3dc14741
HD
544
545 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 index = linear_page_index(vma, addr);
547
1170532b
JP
548 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
549 current->comm,
550 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 551 if (page)
f0b791a3 552 dump_page(page, "bad pte");
6aa9b8b2 553 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 554 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 555 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
556 vma->vm_file,
557 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 mapping ? mapping->a_ops->readpage : NULL);
b5810039 560 dump_stack();
373d4d09 561 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
562}
563
ee498ed7 564/*
7e675137 565 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 566 *
7e675137
NP
567 * "Special" mappings do not wish to be associated with a "struct page" (either
568 * it doesn't exist, or it exists but they don't want to touch it). In this
569 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 570 *
7e675137
NP
571 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572 * pte bit, in which case this function is trivial. Secondly, an architecture
573 * may not have a spare pte bit, which requires a more complicated scheme,
574 * described below.
575 *
576 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577 * special mapping (even if there are underlying and valid "struct pages").
578 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 579 *
b379d790
JH
580 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
582 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583 * mapping will always honor the rule
6aab341e
LT
584 *
585 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586 *
7e675137
NP
587 * And for normal mappings this is false.
588 *
589 * This restricts such mappings to be a linear translation from virtual address
590 * to pfn. To get around this restriction, we allow arbitrary mappings so long
591 * as the vma is not a COW mapping; in that case, we know that all ptes are
592 * special (because none can have been COWed).
b379d790 593 *
b379d790 594 *
7e675137 595 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
596 *
597 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598 * page" backing, however the difference is that _all_ pages with a struct
599 * page (that is, those where pfn_valid is true) are refcounted and considered
600 * normal pages by the VM. The disadvantage is that pages are refcounted
601 * (which can be slower and simply not an option for some PFNMAP users). The
602 * advantage is that we don't have to follow the strict linearity rule of
603 * PFNMAP mappings in order to support COWable mappings.
604 *
ee498ed7 605 */
25b2995a
CH
606struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 pte_t pte)
ee498ed7 608{
22b31eec 609 unsigned long pfn = pte_pfn(pte);
7e675137 610
00b3a331 611 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 612 if (likely(!pte_special(pte)))
22b31eec 613 goto check_pfn;
667a0a06
DV
614 if (vma->vm_ops && vma->vm_ops->find_special_page)
615 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
616 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 return NULL;
df6ad698
JG
618 if (is_zero_pfn(pfn))
619 return NULL;
e1fb4a08
DJ
620 if (pte_devmap(pte))
621 return NULL;
622
df6ad698 623 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
624 return NULL;
625 }
626
00b3a331 627 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 628
b379d790
JH
629 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 if (vma->vm_flags & VM_MIXEDMAP) {
631 if (!pfn_valid(pfn))
632 return NULL;
633 goto out;
634 } else {
7e675137
NP
635 unsigned long off;
636 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
637 if (pfn == vma->vm_pgoff + off)
638 return NULL;
639 if (!is_cow_mapping(vma->vm_flags))
640 return NULL;
641 }
6aab341e
LT
642 }
643
b38af472
HD
644 if (is_zero_pfn(pfn))
645 return NULL;
00b3a331 646
22b31eec
HD
647check_pfn:
648 if (unlikely(pfn > highest_memmap_pfn)) {
649 print_bad_pte(vma, addr, pte, NULL);
650 return NULL;
651 }
6aab341e
LT
652
653 /*
7e675137 654 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 655 * eg. VDSO mappings can cause them to exist.
6aab341e 656 */
b379d790 657out:
6aab341e 658 return pfn_to_page(pfn);
ee498ed7
HD
659}
660
28093f9f
GS
661#ifdef CONFIG_TRANSPARENT_HUGEPAGE
662struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 pmd_t pmd)
664{
665 unsigned long pfn = pmd_pfn(pmd);
666
667 /*
668 * There is no pmd_special() but there may be special pmds, e.g.
669 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 670 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
671 */
672 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 if (vma->vm_flags & VM_MIXEDMAP) {
674 if (!pfn_valid(pfn))
675 return NULL;
676 goto out;
677 } else {
678 unsigned long off;
679 off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 if (pfn == vma->vm_pgoff + off)
681 return NULL;
682 if (!is_cow_mapping(vma->vm_flags))
683 return NULL;
684 }
685 }
686
e1fb4a08
DJ
687 if (pmd_devmap(pmd))
688 return NULL;
3cde287b 689 if (is_huge_zero_pmd(pmd))
28093f9f
GS
690 return NULL;
691 if (unlikely(pfn > highest_memmap_pfn))
692 return NULL;
693
694 /*
695 * NOTE! We still have PageReserved() pages in the page tables.
696 * eg. VDSO mappings can cause them to exist.
697 */
698out:
699 return pfn_to_page(pfn);
700}
701#endif
702
1da177e4
LT
703/*
704 * copy one vm_area from one task to the other. Assumes the page tables
705 * already present in the new task to be cleared in the whole range
706 * covered by this vma.
1da177e4
LT
707 */
708
df3a57d1
LT
709static unsigned long
710copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 711 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 712 unsigned long addr, int *rss)
1da177e4 713{
b5810039 714 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
715 pte_t pte = *src_pte;
716 struct page *page;
df3a57d1
LT
717 swp_entry_t entry = pte_to_swp_entry(pte);
718
719 if (likely(!non_swap_entry(entry))) {
720 if (swap_duplicate(entry) < 0)
721 return entry.val;
722
723 /* make sure dst_mm is on swapoff's mmlist. */
724 if (unlikely(list_empty(&dst_mm->mmlist))) {
725 spin_lock(&mmlist_lock);
726 if (list_empty(&dst_mm->mmlist))
727 list_add(&dst_mm->mmlist,
728 &src_mm->mmlist);
729 spin_unlock(&mmlist_lock);
730 }
731 rss[MM_SWAPENTS]++;
732 } else if (is_migration_entry(entry)) {
733 page = migration_entry_to_page(entry);
1da177e4 734
df3a57d1 735 rss[mm_counter(page)]++;
5042db43 736
df3a57d1
LT
737 if (is_write_migration_entry(entry) &&
738 is_cow_mapping(vm_flags)) {
5042db43 739 /*
df3a57d1
LT
740 * COW mappings require pages in both
741 * parent and child to be set to read.
5042db43 742 */
df3a57d1
LT
743 make_migration_entry_read(&entry);
744 pte = swp_entry_to_pte(entry);
745 if (pte_swp_soft_dirty(*src_pte))
746 pte = pte_swp_mksoft_dirty(pte);
747 if (pte_swp_uffd_wp(*src_pte))
748 pte = pte_swp_mkuffd_wp(pte);
749 set_pte_at(src_mm, addr, src_pte, pte);
750 }
751 } else if (is_device_private_entry(entry)) {
752 page = device_private_entry_to_page(entry);
5042db43 753
df3a57d1
LT
754 /*
755 * Update rss count even for unaddressable pages, as
756 * they should treated just like normal pages in this
757 * respect.
758 *
759 * We will likely want to have some new rss counters
760 * for unaddressable pages, at some point. But for now
761 * keep things as they are.
762 */
763 get_page(page);
764 rss[mm_counter(page)]++;
765 page_dup_rmap(page, false);
766
767 /*
768 * We do not preserve soft-dirty information, because so
769 * far, checkpoint/restore is the only feature that
770 * requires that. And checkpoint/restore does not work
771 * when a device driver is involved (you cannot easily
772 * save and restore device driver state).
773 */
774 if (is_write_device_private_entry(entry) &&
775 is_cow_mapping(vm_flags)) {
776 make_device_private_entry_read(&entry);
777 pte = swp_entry_to_pte(entry);
778 if (pte_swp_uffd_wp(*src_pte))
779 pte = pte_swp_mkuffd_wp(pte);
780 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 781 }
1da177e4 782 }
df3a57d1
LT
783 set_pte_at(dst_mm, addr, dst_pte, pte);
784 return 0;
785}
786
70e806e4
PX
787/*
788 * Copy a present and normal page if necessary.
789 *
790 * NOTE! The usual case is that this doesn't need to do
791 * anything, and can just return a positive value. That
792 * will let the caller know that it can just increase
793 * the page refcount and re-use the pte the traditional
794 * way.
795 *
796 * But _if_ we need to copy it because it needs to be
797 * pinned in the parent (and the child should get its own
798 * copy rather than just a reference to the same page),
799 * we'll do that here and return zero to let the caller
800 * know we're done.
801 *
802 * And if we need a pre-allocated page but don't yet have
803 * one, return a negative error to let the preallocation
804 * code know so that it can do so outside the page table
805 * lock.
806 */
807static inline int
c78f4636
PX
808copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 struct page **prealloc, pte_t pte, struct page *page)
70e806e4
PX
811{
812 struct page *new_page;
813
70e806e4 814 /*
70e806e4
PX
815 * What we want to do is to check whether this page may
816 * have been pinned by the parent process. If so,
817 * instead of wrprotect the pte on both sides, we copy
818 * the page immediately so that we'll always guarantee
819 * the pinned page won't be randomly replaced in the
820 * future.
821 *
f3c64eda
LT
822 * The page pinning checks are just "has this mm ever
823 * seen pinning", along with the (inexact) check of
824 * the page count. That might give false positives for
825 * for pinning, but it will work correctly.
70e806e4 826 */
97a7e473 827 if (likely(!page_needs_cow_for_dma(src_vma, page)))
70e806e4
PX
828 return 1;
829
70e806e4
PX
830 new_page = *prealloc;
831 if (!new_page)
832 return -EAGAIN;
833
834 /*
835 * We have a prealloc page, all good! Take it
836 * over and copy the page & arm it.
837 */
838 *prealloc = NULL;
c78f4636 839 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 840 __SetPageUptodate(new_page);
c78f4636
PX
841 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
843 rss[mm_counter(new_page)]++;
844
845 /* All done, just insert the new page copy in the child */
c78f4636
PX
846 pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
849 return 0;
850}
851
852/*
853 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
854 * is required to copy this pte.
855 */
856static inline int
c78f4636
PX
857copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 struct page **prealloc)
df3a57d1 860{
c78f4636
PX
861 struct mm_struct *src_mm = src_vma->vm_mm;
862 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
863 pte_t pte = *src_pte;
864 struct page *page;
865
c78f4636 866 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
867 if (page) {
868 int retval;
869
c78f4636
PX
870 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 addr, rss, prealloc, pte, page);
70e806e4
PX
872 if (retval <= 0)
873 return retval;
874
875 get_page(page);
876 page_dup_rmap(page, false);
877 rss[mm_counter(page)]++;
878 }
879
1da177e4
LT
880 /*
881 * If it's a COW mapping, write protect it both
882 * in the parent and the child
883 */
1b2de5d0 884 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 885 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 886 pte = pte_wrprotect(pte);
1da177e4
LT
887 }
888
889 /*
890 * If it's a shared mapping, mark it clean in
891 * the child
892 */
893 if (vm_flags & VM_SHARED)
894 pte = pte_mkclean(pte);
895 pte = pte_mkold(pte);
6aab341e 896
b569a176
PX
897 /*
898 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 * does not have the VM_UFFD_WP, which means that the uffd
900 * fork event is not enabled.
901 */
902 if (!(vm_flags & VM_UFFD_WP))
903 pte = pte_clear_uffd_wp(pte);
904
c78f4636 905 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
906 return 0;
907}
908
909static inline struct page *
910page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 unsigned long addr)
912{
913 struct page *new_page;
914
915 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 if (!new_page)
917 return NULL;
918
919 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 put_page(new_page);
921 return NULL;
6aab341e 922 }
70e806e4 923 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 924
70e806e4 925 return new_page;
1da177e4
LT
926}
927
c78f4636
PX
928static int
929copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 unsigned long end)
1da177e4 932{
c78f4636
PX
933 struct mm_struct *dst_mm = dst_vma->vm_mm;
934 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 935 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 936 pte_t *src_pte, *dst_pte;
c74df32c 937 spinlock_t *src_ptl, *dst_ptl;
70e806e4 938 int progress, ret = 0;
d559db08 939 int rss[NR_MM_COUNTERS];
570a335b 940 swp_entry_t entry = (swp_entry_t){0};
70e806e4 941 struct page *prealloc = NULL;
1da177e4
LT
942
943again:
70e806e4 944 progress = 0;
d559db08
KH
945 init_rss_vec(rss);
946
c74df32c 947 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
948 if (!dst_pte) {
949 ret = -ENOMEM;
950 goto out;
951 }
ece0e2b6 952 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 953 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 954 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
955 orig_src_pte = src_pte;
956 orig_dst_pte = dst_pte;
6606c3e0 957 arch_enter_lazy_mmu_mode();
1da177e4 958
1da177e4
LT
959 do {
960 /*
961 * We are holding two locks at this point - either of them
962 * could generate latencies in another task on another CPU.
963 */
e040f218
HD
964 if (progress >= 32) {
965 progress = 0;
966 if (need_resched() ||
95c354fe 967 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
968 break;
969 }
1da177e4
LT
970 if (pte_none(*src_pte)) {
971 progress++;
972 continue;
973 }
79a1971c
LT
974 if (unlikely(!pte_present(*src_pte))) {
975 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 dst_pte, src_pte,
c78f4636 977 src_vma, addr, rss);
79a1971c
LT
978 if (entry.val)
979 break;
980 progress += 8;
981 continue;
982 }
70e806e4 983 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
984 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 addr, rss, &prealloc);
70e806e4
PX
986 /*
987 * If we need a pre-allocated page for this pte, drop the
988 * locks, allocate, and try again.
989 */
990 if (unlikely(ret == -EAGAIN))
991 break;
992 if (unlikely(prealloc)) {
993 /*
994 * pre-alloc page cannot be reused by next time so as
995 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 * will allocate page according to address). This
997 * could only happen if one pinned pte changed.
998 */
999 put_page(prealloc);
1000 prealloc = NULL;
1001 }
1da177e4
LT
1002 progress += 8;
1003 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1004
6606c3e0 1005 arch_leave_lazy_mmu_mode();
c74df32c 1006 spin_unlock(src_ptl);
ece0e2b6 1007 pte_unmap(orig_src_pte);
d559db08 1008 add_mm_rss_vec(dst_mm, rss);
c36987e2 1009 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1010 cond_resched();
570a335b
HD
1011
1012 if (entry.val) {
70e806e4
PX
1013 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 ret = -ENOMEM;
1015 goto out;
1016 }
1017 entry.val = 0;
1018 } else if (ret) {
1019 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1020 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1021 if (!prealloc)
570a335b 1022 return -ENOMEM;
70e806e4
PX
1023 /* We've captured and resolved the error. Reset, try again. */
1024 ret = 0;
570a335b 1025 }
1da177e4
LT
1026 if (addr != end)
1027 goto again;
70e806e4
PX
1028out:
1029 if (unlikely(prealloc))
1030 put_page(prealloc);
1031 return ret;
1da177e4
LT
1032}
1033
c78f4636
PX
1034static inline int
1035copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 unsigned long end)
1da177e4 1038{
c78f4636
PX
1039 struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1041 pmd_t *src_pmd, *dst_pmd;
1042 unsigned long next;
1043
1044 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 if (!dst_pmd)
1046 return -ENOMEM;
1047 src_pmd = pmd_offset(src_pud, addr);
1048 do {
1049 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1050 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 || pmd_devmap(*src_pmd)) {
71e3aac0 1052 int err;
c78f4636 1053 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1054 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1055 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1056 if (err == -ENOMEM)
1057 return -ENOMEM;
1058 if (!err)
1059 continue;
1060 /* fall through */
1061 }
1da177e4
LT
1062 if (pmd_none_or_clear_bad(src_pmd))
1063 continue;
c78f4636
PX
1064 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 addr, next))
1da177e4
LT
1066 return -ENOMEM;
1067 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 return 0;
1069}
1070
c78f4636
PX
1071static inline int
1072copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 unsigned long end)
1da177e4 1075{
c78f4636
PX
1076 struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1078 pud_t *src_pud, *dst_pud;
1079 unsigned long next;
1080
c2febafc 1081 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1082 if (!dst_pud)
1083 return -ENOMEM;
c2febafc 1084 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1085 do {
1086 next = pud_addr_end(addr, end);
a00cc7d9
MW
1087 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 int err;
1089
c78f4636 1090 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1091 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1092 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1093 if (err == -ENOMEM)
1094 return -ENOMEM;
1095 if (!err)
1096 continue;
1097 /* fall through */
1098 }
1da177e4
LT
1099 if (pud_none_or_clear_bad(src_pud))
1100 continue;
c78f4636
PX
1101 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 addr, next))
1da177e4
LT
1103 return -ENOMEM;
1104 } while (dst_pud++, src_pud++, addr = next, addr != end);
1105 return 0;
1106}
1107
c78f4636
PX
1108static inline int
1109copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 unsigned long end)
c2febafc 1112{
c78f4636 1113 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1114 p4d_t *src_p4d, *dst_p4d;
1115 unsigned long next;
1116
1117 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 if (!dst_p4d)
1119 return -ENOMEM;
1120 src_p4d = p4d_offset(src_pgd, addr);
1121 do {
1122 next = p4d_addr_end(addr, end);
1123 if (p4d_none_or_clear_bad(src_p4d))
1124 continue;
c78f4636
PX
1125 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 addr, next))
c2febafc
KS
1127 return -ENOMEM;
1128 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 return 0;
1130}
1131
c78f4636
PX
1132int
1133copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1134{
1135 pgd_t *src_pgd, *dst_pgd;
1136 unsigned long next;
c78f4636
PX
1137 unsigned long addr = src_vma->vm_start;
1138 unsigned long end = src_vma->vm_end;
1139 struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1141 struct mmu_notifier_range range;
2ec74c3e 1142 bool is_cow;
cddb8a5c 1143 int ret;
1da177e4 1144
d992895b
NP
1145 /*
1146 * Don't copy ptes where a page fault will fill them correctly.
1147 * Fork becomes much lighter when there are big shared or private
1148 * readonly mappings. The tradeoff is that copy_page_range is more
1149 * efficient than faulting.
1150 */
c78f4636
PX
1151 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 !src_vma->anon_vma)
0661a336 1153 return 0;
d992895b 1154
c78f4636
PX
1155 if (is_vm_hugetlb_page(src_vma))
1156 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1157
c78f4636 1158 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1159 /*
1160 * We do not free on error cases below as remove_vma
1161 * gets called on error from higher level routine
1162 */
c78f4636 1163 ret = track_pfn_copy(src_vma);
2ab64037 1164 if (ret)
1165 return ret;
1166 }
1167
cddb8a5c
AA
1168 /*
1169 * We need to invalidate the secondary MMU mappings only when
1170 * there could be a permission downgrade on the ptes of the
1171 * parent mm. And a permission downgrade will only happen if
1172 * is_cow_mapping() returns true.
1173 */
c78f4636 1174 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1175
1176 if (is_cow) {
7269f999 1177 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1178 0, src_vma, src_mm, addr, end);
ac46d4f3 1179 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1180 /*
1181 * Disabling preemption is not needed for the write side, as
1182 * the read side doesn't spin, but goes to the mmap_lock.
1183 *
1184 * Use the raw variant of the seqcount_t write API to avoid
1185 * lockdep complaining about preemptibility.
1186 */
1187 mmap_assert_write_locked(src_mm);
1188 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1189 }
cddb8a5c
AA
1190
1191 ret = 0;
1da177e4
LT
1192 dst_pgd = pgd_offset(dst_mm, addr);
1193 src_pgd = pgd_offset(src_mm, addr);
1194 do {
1195 next = pgd_addr_end(addr, end);
1196 if (pgd_none_or_clear_bad(src_pgd))
1197 continue;
c78f4636
PX
1198 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 addr, next))) {
cddb8a5c
AA
1200 ret = -ENOMEM;
1201 break;
1202 }
1da177e4 1203 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1204
57efa1fe
JG
1205 if (is_cow) {
1206 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1207 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1208 }
cddb8a5c 1209 return ret;
1da177e4
LT
1210}
1211
51c6f666 1212static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1213 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1214 unsigned long addr, unsigned long end,
97a89413 1215 struct zap_details *details)
1da177e4 1216{
b5810039 1217 struct mm_struct *mm = tlb->mm;
d16dfc55 1218 int force_flush = 0;
d559db08 1219 int rss[NR_MM_COUNTERS];
97a89413 1220 spinlock_t *ptl;
5f1a1907 1221 pte_t *start_pte;
97a89413 1222 pte_t *pte;
8a5f14a2 1223 swp_entry_t entry;
d559db08 1224
ed6a7935 1225 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1226again:
e303297e 1227 init_rss_vec(rss);
5f1a1907
SR
1228 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 pte = start_pte;
3ea27719 1230 flush_tlb_batched_pending(mm);
6606c3e0 1231 arch_enter_lazy_mmu_mode();
1da177e4
LT
1232 do {
1233 pte_t ptent = *pte;
166f61b9 1234 if (pte_none(ptent))
1da177e4 1235 continue;
6f5e6b9e 1236
7b167b68
MK
1237 if (need_resched())
1238 break;
1239
1da177e4 1240 if (pte_present(ptent)) {
ee498ed7 1241 struct page *page;
51c6f666 1242
25b2995a 1243 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1244 if (unlikely(details) && page) {
1245 /*
1246 * unmap_shared_mapping_pages() wants to
1247 * invalidate cache without truncating:
1248 * unmap shared but keep private pages.
1249 */
1250 if (details->check_mapping &&
800d8c63 1251 details->check_mapping != page_rmapping(page))
1da177e4 1252 continue;
1da177e4 1253 }
b5810039 1254 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1255 tlb->fullmm);
1da177e4
LT
1256 tlb_remove_tlb_entry(tlb, pte, addr);
1257 if (unlikely(!page))
1258 continue;
eca56ff9
JM
1259
1260 if (!PageAnon(page)) {
1cf35d47
LT
1261 if (pte_dirty(ptent)) {
1262 force_flush = 1;
6237bcd9 1263 set_page_dirty(page);
1cf35d47 1264 }
4917e5d0 1265 if (pte_young(ptent) &&
64363aad 1266 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1267 mark_page_accessed(page);
6237bcd9 1268 }
eca56ff9 1269 rss[mm_counter(page)]--;
d281ee61 1270 page_remove_rmap(page, false);
3dc14741
HD
1271 if (unlikely(page_mapcount(page) < 0))
1272 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1273 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1274 force_flush = 1;
ce9ec37b 1275 addr += PAGE_SIZE;
d16dfc55 1276 break;
1cf35d47 1277 }
1da177e4
LT
1278 continue;
1279 }
5042db43
JG
1280
1281 entry = pte_to_swp_entry(ptent);
463b7a17 1282 if (is_device_private_entry(entry)) {
5042db43
JG
1283 struct page *page = device_private_entry_to_page(entry);
1284
1285 if (unlikely(details && details->check_mapping)) {
1286 /*
1287 * unmap_shared_mapping_pages() wants to
1288 * invalidate cache without truncating:
1289 * unmap shared but keep private pages.
1290 */
1291 if (details->check_mapping !=
1292 page_rmapping(page))
1293 continue;
1294 }
1295
1296 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 rss[mm_counter(page)]--;
1298 page_remove_rmap(page, false);
1299 put_page(page);
1300 continue;
1301 }
1302
3e8715fd
KS
1303 /* If details->check_mapping, we leave swap entries. */
1304 if (unlikely(details))
1da177e4 1305 continue;
b084d435 1306
8a5f14a2
KS
1307 if (!non_swap_entry(entry))
1308 rss[MM_SWAPENTS]--;
1309 else if (is_migration_entry(entry)) {
1310 struct page *page;
9f9f1acd 1311
8a5f14a2 1312 page = migration_entry_to_page(entry);
eca56ff9 1313 rss[mm_counter(page)]--;
b084d435 1314 }
8a5f14a2
KS
1315 if (unlikely(!free_swap_and_cache(entry)))
1316 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1317 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1318 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1319
d559db08 1320 add_mm_rss_vec(mm, rss);
6606c3e0 1321 arch_leave_lazy_mmu_mode();
51c6f666 1322
1cf35d47 1323 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1324 if (force_flush)
1cf35d47 1325 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1326 pte_unmap_unlock(start_pte, ptl);
1327
1328 /*
1329 * If we forced a TLB flush (either due to running out of
1330 * batch buffers or because we needed to flush dirty TLB
1331 * entries before releasing the ptl), free the batched
1332 * memory too. Restart if we didn't do everything.
1333 */
1334 if (force_flush) {
1335 force_flush = 0;
fa0aafb8 1336 tlb_flush_mmu(tlb);
7b167b68
MK
1337 }
1338
1339 if (addr != end) {
1340 cond_resched();
1341 goto again;
d16dfc55
PZ
1342 }
1343
51c6f666 1344 return addr;
1da177e4
LT
1345}
1346
51c6f666 1347static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1348 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1349 unsigned long addr, unsigned long end,
97a89413 1350 struct zap_details *details)
1da177e4
LT
1351{
1352 pmd_t *pmd;
1353 unsigned long next;
1354
1355 pmd = pmd_offset(pud, addr);
1356 do {
1357 next = pmd_addr_end(addr, end);
84c3fc4e 1358 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1359 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1360 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1361 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1362 goto next;
71e3aac0 1363 /* fall through */
22061a1f
HD
1364 } else if (details && details->single_page &&
1365 PageTransCompound(details->single_page) &&
1366 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1367 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1368 /*
1369 * Take and drop THP pmd lock so that we cannot return
1370 * prematurely, while zap_huge_pmd() has cleared *pmd,
1371 * but not yet decremented compound_mapcount().
1372 */
1373 spin_unlock(ptl);
71e3aac0 1374 }
22061a1f 1375
1a5a9906
AA
1376 /*
1377 * Here there can be other concurrent MADV_DONTNEED or
1378 * trans huge page faults running, and if the pmd is
1379 * none or trans huge it can change under us. This is
c1e8d7c6 1380 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1381 * mode.
1382 */
1383 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1384 goto next;
97a89413 1385 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1386next:
97a89413
PZ
1387 cond_resched();
1388 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1389
1390 return addr;
1da177e4
LT
1391}
1392
51c6f666 1393static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1394 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1395 unsigned long addr, unsigned long end,
97a89413 1396 struct zap_details *details)
1da177e4
LT
1397{
1398 pud_t *pud;
1399 unsigned long next;
1400
c2febafc 1401 pud = pud_offset(p4d, addr);
1da177e4
LT
1402 do {
1403 next = pud_addr_end(addr, end);
a00cc7d9
MW
1404 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1405 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1406 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1407 split_huge_pud(vma, pud, addr);
1408 } else if (zap_huge_pud(tlb, vma, pud, addr))
1409 goto next;
1410 /* fall through */
1411 }
97a89413 1412 if (pud_none_or_clear_bad(pud))
1da177e4 1413 continue;
97a89413 1414 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1415next:
1416 cond_resched();
97a89413 1417 } while (pud++, addr = next, addr != end);
51c6f666
RH
1418
1419 return addr;
1da177e4
LT
1420}
1421
c2febafc
KS
1422static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1423 struct vm_area_struct *vma, pgd_t *pgd,
1424 unsigned long addr, unsigned long end,
1425 struct zap_details *details)
1426{
1427 p4d_t *p4d;
1428 unsigned long next;
1429
1430 p4d = p4d_offset(pgd, addr);
1431 do {
1432 next = p4d_addr_end(addr, end);
1433 if (p4d_none_or_clear_bad(p4d))
1434 continue;
1435 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1436 } while (p4d++, addr = next, addr != end);
1437
1438 return addr;
1439}
1440
aac45363 1441void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1442 struct vm_area_struct *vma,
1443 unsigned long addr, unsigned long end,
1444 struct zap_details *details)
1da177e4
LT
1445{
1446 pgd_t *pgd;
1447 unsigned long next;
1448
1da177e4
LT
1449 BUG_ON(addr >= end);
1450 tlb_start_vma(tlb, vma);
1451 pgd = pgd_offset(vma->vm_mm, addr);
1452 do {
1453 next = pgd_addr_end(addr, end);
97a89413 1454 if (pgd_none_or_clear_bad(pgd))
1da177e4 1455 continue;
c2febafc 1456 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1457 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1458 tlb_end_vma(tlb, vma);
1459}
51c6f666 1460
f5cc4eef
AV
1461
1462static void unmap_single_vma(struct mmu_gather *tlb,
1463 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1464 unsigned long end_addr,
f5cc4eef
AV
1465 struct zap_details *details)
1466{
1467 unsigned long start = max(vma->vm_start, start_addr);
1468 unsigned long end;
1469
1470 if (start >= vma->vm_end)
1471 return;
1472 end = min(vma->vm_end, end_addr);
1473 if (end <= vma->vm_start)
1474 return;
1475
cbc91f71
SD
1476 if (vma->vm_file)
1477 uprobe_munmap(vma, start, end);
1478
b3b9c293 1479 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1480 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1481
1482 if (start != end) {
1483 if (unlikely(is_vm_hugetlb_page(vma))) {
1484 /*
1485 * It is undesirable to test vma->vm_file as it
1486 * should be non-null for valid hugetlb area.
1487 * However, vm_file will be NULL in the error
7aa6b4ad 1488 * cleanup path of mmap_region. When
f5cc4eef 1489 * hugetlbfs ->mmap method fails,
7aa6b4ad 1490 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1491 * before calling this function to clean up.
1492 * Since no pte has actually been setup, it is
1493 * safe to do nothing in this case.
1494 */
24669e58 1495 if (vma->vm_file) {
83cde9e8 1496 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1497 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1498 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1499 }
f5cc4eef
AV
1500 } else
1501 unmap_page_range(tlb, vma, start, end, details);
1502 }
1da177e4
LT
1503}
1504
1da177e4
LT
1505/**
1506 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1507 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1508 * @vma: the starting vma
1509 * @start_addr: virtual address at which to start unmapping
1510 * @end_addr: virtual address at which to end unmapping
1da177e4 1511 *
508034a3 1512 * Unmap all pages in the vma list.
1da177e4 1513 *
1da177e4
LT
1514 * Only addresses between `start' and `end' will be unmapped.
1515 *
1516 * The VMA list must be sorted in ascending virtual address order.
1517 *
1518 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1519 * range after unmap_vmas() returns. So the only responsibility here is to
1520 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1521 * drops the lock and schedules.
1522 */
6e8bb019 1523void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1524 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1525 unsigned long end_addr)
1da177e4 1526{
ac46d4f3 1527 struct mmu_notifier_range range;
1da177e4 1528
6f4f13e8
JG
1529 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1530 start_addr, end_addr);
ac46d4f3 1531 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1532 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1533 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1534 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1535}
1536
1537/**
1538 * zap_page_range - remove user pages in a given range
1539 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1540 * @start: starting address of pages to zap
1da177e4 1541 * @size: number of bytes to zap
f5cc4eef
AV
1542 *
1543 * Caller must protect the VMA list
1da177e4 1544 */
7e027b14 1545void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1546 unsigned long size)
1da177e4 1547{
ac46d4f3 1548 struct mmu_notifier_range range;
d16dfc55 1549 struct mmu_gather tlb;
1da177e4 1550
1da177e4 1551 lru_add_drain();
7269f999 1552 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1553 start, start + size);
a72afd87 1554 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1555 update_hiwater_rss(vma->vm_mm);
1556 mmu_notifier_invalidate_range_start(&range);
1557 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1558 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1559 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1560 tlb_finish_mmu(&tlb);
1da177e4
LT
1561}
1562
f5cc4eef
AV
1563/**
1564 * zap_page_range_single - remove user pages in a given range
1565 * @vma: vm_area_struct holding the applicable pages
1566 * @address: starting address of pages to zap
1567 * @size: number of bytes to zap
8a5f14a2 1568 * @details: details of shared cache invalidation
f5cc4eef
AV
1569 *
1570 * The range must fit into one VMA.
1da177e4 1571 */
f5cc4eef 1572static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1573 unsigned long size, struct zap_details *details)
1574{
ac46d4f3 1575 struct mmu_notifier_range range;
d16dfc55 1576 struct mmu_gather tlb;
1da177e4 1577
1da177e4 1578 lru_add_drain();
7269f999 1579 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1580 address, address + size);
a72afd87 1581 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1582 update_hiwater_rss(vma->vm_mm);
1583 mmu_notifier_invalidate_range_start(&range);
1584 unmap_single_vma(&tlb, vma, address, range.end, details);
1585 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1586 tlb_finish_mmu(&tlb);
1da177e4
LT
1587}
1588
c627f9cc
JS
1589/**
1590 * zap_vma_ptes - remove ptes mapping the vma
1591 * @vma: vm_area_struct holding ptes to be zapped
1592 * @address: starting address of pages to zap
1593 * @size: number of bytes to zap
1594 *
1595 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1596 *
1597 * The entire address range must be fully contained within the vma.
1598 *
c627f9cc 1599 */
27d036e3 1600void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1601 unsigned long size)
1602{
1603 if (address < vma->vm_start || address + size > vma->vm_end ||
1604 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1605 return;
1606
f5cc4eef 1607 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1608}
1609EXPORT_SYMBOL_GPL(zap_vma_ptes);
1610
8cd3984d 1611static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1612{
c2febafc
KS
1613 pgd_t *pgd;
1614 p4d_t *p4d;
1615 pud_t *pud;
1616 pmd_t *pmd;
1617
1618 pgd = pgd_offset(mm, addr);
1619 p4d = p4d_alloc(mm, pgd, addr);
1620 if (!p4d)
1621 return NULL;
1622 pud = pud_alloc(mm, p4d, addr);
1623 if (!pud)
1624 return NULL;
1625 pmd = pmd_alloc(mm, pud, addr);
1626 if (!pmd)
1627 return NULL;
1628
1629 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1630 return pmd;
1631}
1632
1633pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1634 spinlock_t **ptl)
1635{
1636 pmd_t *pmd = walk_to_pmd(mm, addr);
1637
1638 if (!pmd)
1639 return NULL;
c2febafc 1640 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1641}
1642
8efd6f5b
AR
1643static int validate_page_before_insert(struct page *page)
1644{
1645 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1646 return -EINVAL;
1647 flush_dcache_page(page);
1648 return 0;
1649}
1650
1651static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1652 unsigned long addr, struct page *page, pgprot_t prot)
1653{
1654 if (!pte_none(*pte))
1655 return -EBUSY;
1656 /* Ok, finally just insert the thing.. */
1657 get_page(page);
1658 inc_mm_counter_fast(mm, mm_counter_file(page));
1659 page_add_file_rmap(page, false);
1660 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1661 return 0;
1662}
1663
238f58d8
LT
1664/*
1665 * This is the old fallback for page remapping.
1666 *
1667 * For historical reasons, it only allows reserved pages. Only
1668 * old drivers should use this, and they needed to mark their
1669 * pages reserved for the old functions anyway.
1670 */
423bad60
NP
1671static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1672 struct page *page, pgprot_t prot)
238f58d8 1673{
423bad60 1674 struct mm_struct *mm = vma->vm_mm;
238f58d8 1675 int retval;
c9cfcddf 1676 pte_t *pte;
8a9f3ccd
BS
1677 spinlock_t *ptl;
1678
8efd6f5b
AR
1679 retval = validate_page_before_insert(page);
1680 if (retval)
5b4e655e 1681 goto out;
238f58d8 1682 retval = -ENOMEM;
c9cfcddf 1683 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1684 if (!pte)
5b4e655e 1685 goto out;
8efd6f5b 1686 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1687 pte_unmap_unlock(pte, ptl);
1688out:
1689 return retval;
1690}
1691
8cd3984d 1692#ifdef pte_index
7f70c2a6 1693static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1694 unsigned long addr, struct page *page, pgprot_t prot)
1695{
1696 int err;
1697
1698 if (!page_count(page))
1699 return -EINVAL;
1700 err = validate_page_before_insert(page);
7f70c2a6
AR
1701 if (err)
1702 return err;
1703 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1704}
1705
1706/* insert_pages() amortizes the cost of spinlock operations
1707 * when inserting pages in a loop. Arch *must* define pte_index.
1708 */
1709static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1710 struct page **pages, unsigned long *num, pgprot_t prot)
1711{
1712 pmd_t *pmd = NULL;
7f70c2a6
AR
1713 pte_t *start_pte, *pte;
1714 spinlock_t *pte_lock;
8cd3984d
AR
1715 struct mm_struct *const mm = vma->vm_mm;
1716 unsigned long curr_page_idx = 0;
1717 unsigned long remaining_pages_total = *num;
1718 unsigned long pages_to_write_in_pmd;
1719 int ret;
1720more:
1721 ret = -EFAULT;
1722 pmd = walk_to_pmd(mm, addr);
1723 if (!pmd)
1724 goto out;
1725
1726 pages_to_write_in_pmd = min_t(unsigned long,
1727 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1728
1729 /* Allocate the PTE if necessary; takes PMD lock once only. */
1730 ret = -ENOMEM;
1731 if (pte_alloc(mm, pmd))
1732 goto out;
8cd3984d
AR
1733
1734 while (pages_to_write_in_pmd) {
1735 int pte_idx = 0;
1736 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1737
7f70c2a6
AR
1738 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1739 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1740 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1741 addr, pages[curr_page_idx], prot);
1742 if (unlikely(err)) {
7f70c2a6 1743 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1744 ret = err;
1745 remaining_pages_total -= pte_idx;
1746 goto out;
1747 }
1748 addr += PAGE_SIZE;
1749 ++curr_page_idx;
1750 }
7f70c2a6 1751 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1752 pages_to_write_in_pmd -= batch_size;
1753 remaining_pages_total -= batch_size;
1754 }
1755 if (remaining_pages_total)
1756 goto more;
1757 ret = 0;
1758out:
1759 *num = remaining_pages_total;
1760 return ret;
1761}
1762#endif /* ifdef pte_index */
1763
1764/**
1765 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1766 * @vma: user vma to map to
1767 * @addr: target start user address of these pages
1768 * @pages: source kernel pages
1769 * @num: in: number of pages to map. out: number of pages that were *not*
1770 * mapped. (0 means all pages were successfully mapped).
1771 *
1772 * Preferred over vm_insert_page() when inserting multiple pages.
1773 *
1774 * In case of error, we may have mapped a subset of the provided
1775 * pages. It is the caller's responsibility to account for this case.
1776 *
1777 * The same restrictions apply as in vm_insert_page().
1778 */
1779int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1780 struct page **pages, unsigned long *num)
1781{
1782#ifdef pte_index
1783 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1784
1785 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1786 return -EFAULT;
1787 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1788 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1789 BUG_ON(vma->vm_flags & VM_PFNMAP);
1790 vma->vm_flags |= VM_MIXEDMAP;
1791 }
1792 /* Defer page refcount checking till we're about to map that page. */
1793 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1794#else
1795 unsigned long idx = 0, pgcount = *num;
45779b03 1796 int err = -EINVAL;
8cd3984d
AR
1797
1798 for (; idx < pgcount; ++idx) {
1799 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1800 if (err)
1801 break;
1802 }
1803 *num = pgcount - idx;
1804 return err;
1805#endif /* ifdef pte_index */
1806}
1807EXPORT_SYMBOL(vm_insert_pages);
1808
bfa5bf6d
REB
1809/**
1810 * vm_insert_page - insert single page into user vma
1811 * @vma: user vma to map to
1812 * @addr: target user address of this page
1813 * @page: source kernel page
1814 *
a145dd41
LT
1815 * This allows drivers to insert individual pages they've allocated
1816 * into a user vma.
1817 *
1818 * The page has to be a nice clean _individual_ kernel allocation.
1819 * If you allocate a compound page, you need to have marked it as
1820 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1821 * (see split_page()).
a145dd41
LT
1822 *
1823 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1824 * took an arbitrary page protection parameter. This doesn't allow
1825 * that. Your vma protection will have to be set up correctly, which
1826 * means that if you want a shared writable mapping, you'd better
1827 * ask for a shared writable mapping!
1828 *
1829 * The page does not need to be reserved.
4b6e1e37
KK
1830 *
1831 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1832 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1833 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1834 * function from other places, for example from page-fault handler.
a862f68a
MR
1835 *
1836 * Return: %0 on success, negative error code otherwise.
a145dd41 1837 */
423bad60
NP
1838int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1839 struct page *page)
a145dd41
LT
1840{
1841 if (addr < vma->vm_start || addr >= vma->vm_end)
1842 return -EFAULT;
1843 if (!page_count(page))
1844 return -EINVAL;
4b6e1e37 1845 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1846 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1847 BUG_ON(vma->vm_flags & VM_PFNMAP);
1848 vma->vm_flags |= VM_MIXEDMAP;
1849 }
423bad60 1850 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1851}
e3c3374f 1852EXPORT_SYMBOL(vm_insert_page);
a145dd41 1853
a667d745
SJ
1854/*
1855 * __vm_map_pages - maps range of kernel pages into user vma
1856 * @vma: user vma to map to
1857 * @pages: pointer to array of source kernel pages
1858 * @num: number of pages in page array
1859 * @offset: user's requested vm_pgoff
1860 *
1861 * This allows drivers to map range of kernel pages into a user vma.
1862 *
1863 * Return: 0 on success and error code otherwise.
1864 */
1865static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1866 unsigned long num, unsigned long offset)
1867{
1868 unsigned long count = vma_pages(vma);
1869 unsigned long uaddr = vma->vm_start;
1870 int ret, i;
1871
1872 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1873 if (offset >= num)
a667d745
SJ
1874 return -ENXIO;
1875
1876 /* Fail if the user requested size exceeds available object size */
1877 if (count > num - offset)
1878 return -ENXIO;
1879
1880 for (i = 0; i < count; i++) {
1881 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1882 if (ret < 0)
1883 return ret;
1884 uaddr += PAGE_SIZE;
1885 }
1886
1887 return 0;
1888}
1889
1890/**
1891 * vm_map_pages - maps range of kernel pages starts with non zero offset
1892 * @vma: user vma to map to
1893 * @pages: pointer to array of source kernel pages
1894 * @num: number of pages in page array
1895 *
1896 * Maps an object consisting of @num pages, catering for the user's
1897 * requested vm_pgoff
1898 *
1899 * If we fail to insert any page into the vma, the function will return
1900 * immediately leaving any previously inserted pages present. Callers
1901 * from the mmap handler may immediately return the error as their caller
1902 * will destroy the vma, removing any successfully inserted pages. Other
1903 * callers should make their own arrangements for calling unmap_region().
1904 *
1905 * Context: Process context. Called by mmap handlers.
1906 * Return: 0 on success and error code otherwise.
1907 */
1908int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1909 unsigned long num)
1910{
1911 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1912}
1913EXPORT_SYMBOL(vm_map_pages);
1914
1915/**
1916 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1917 * @vma: user vma to map to
1918 * @pages: pointer to array of source kernel pages
1919 * @num: number of pages in page array
1920 *
1921 * Similar to vm_map_pages(), except that it explicitly sets the offset
1922 * to 0. This function is intended for the drivers that did not consider
1923 * vm_pgoff.
1924 *
1925 * Context: Process context. Called by mmap handlers.
1926 * Return: 0 on success and error code otherwise.
1927 */
1928int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1929 unsigned long num)
1930{
1931 return __vm_map_pages(vma, pages, num, 0);
1932}
1933EXPORT_SYMBOL(vm_map_pages_zero);
1934
9b5a8e00 1935static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1936 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1937{
1938 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1939 pte_t *pte, entry;
1940 spinlock_t *ptl;
1941
423bad60
NP
1942 pte = get_locked_pte(mm, addr, &ptl);
1943 if (!pte)
9b5a8e00 1944 return VM_FAULT_OOM;
b2770da6
RZ
1945 if (!pte_none(*pte)) {
1946 if (mkwrite) {
1947 /*
1948 * For read faults on private mappings the PFN passed
1949 * in may not match the PFN we have mapped if the
1950 * mapped PFN is a writeable COW page. In the mkwrite
1951 * case we are creating a writable PTE for a shared
f2c57d91
JK
1952 * mapping and we expect the PFNs to match. If they
1953 * don't match, we are likely racing with block
1954 * allocation and mapping invalidation so just skip the
1955 * update.
b2770da6 1956 */
f2c57d91
JK
1957 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1958 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1959 goto out_unlock;
f2c57d91 1960 }
cae85cb8
JK
1961 entry = pte_mkyoung(*pte);
1962 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1963 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1964 update_mmu_cache(vma, addr, pte);
1965 }
1966 goto out_unlock;
b2770da6 1967 }
423bad60
NP
1968
1969 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1970 if (pfn_t_devmap(pfn))
1971 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1972 else
1973 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1974
b2770da6
RZ
1975 if (mkwrite) {
1976 entry = pte_mkyoung(entry);
1977 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1978 }
1979
423bad60 1980 set_pte_at(mm, addr, pte, entry);
4b3073e1 1981 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1982
423bad60
NP
1983out_unlock:
1984 pte_unmap_unlock(pte, ptl);
9b5a8e00 1985 return VM_FAULT_NOPAGE;
423bad60
NP
1986}
1987
f5e6d1d5
MW
1988/**
1989 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1990 * @vma: user vma to map to
1991 * @addr: target user address of this page
1992 * @pfn: source kernel pfn
1993 * @pgprot: pgprot flags for the inserted page
1994 *
a1a0aea5 1995 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1996 * to override pgprot on a per-page basis.
1997 *
1998 * This only makes sense for IO mappings, and it makes no sense for
1999 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2000 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2001 * impractical.
2002 *
574c5b3d
TH
2003 * See vmf_insert_mixed_prot() for a discussion of the implication of using
2004 * a value of @pgprot different from that of @vma->vm_page_prot.
2005 *
ae2b01f3 2006 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2007 * Return: vm_fault_t value.
2008 */
2009vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2010 unsigned long pfn, pgprot_t pgprot)
2011{
6d958546
MW
2012 /*
2013 * Technically, architectures with pte_special can avoid all these
2014 * restrictions (same for remap_pfn_range). However we would like
2015 * consistency in testing and feature parity among all, so we should
2016 * try to keep these invariants in place for everybody.
2017 */
2018 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2019 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2020 (VM_PFNMAP|VM_MIXEDMAP));
2021 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2022 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2023
2024 if (addr < vma->vm_start || addr >= vma->vm_end)
2025 return VM_FAULT_SIGBUS;
2026
2027 if (!pfn_modify_allowed(pfn, pgprot))
2028 return VM_FAULT_SIGBUS;
2029
2030 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2031
9b5a8e00 2032 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2033 false);
f5e6d1d5
MW
2034}
2035EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2036
ae2b01f3
MW
2037/**
2038 * vmf_insert_pfn - insert single pfn into user vma
2039 * @vma: user vma to map to
2040 * @addr: target user address of this page
2041 * @pfn: source kernel pfn
2042 *
2043 * Similar to vm_insert_page, this allows drivers to insert individual pages
2044 * they've allocated into a user vma. Same comments apply.
2045 *
2046 * This function should only be called from a vm_ops->fault handler, and
2047 * in that case the handler should return the result of this function.
2048 *
2049 * vma cannot be a COW mapping.
2050 *
2051 * As this is called only for pages that do not currently exist, we
2052 * do not need to flush old virtual caches or the TLB.
2053 *
2054 * Context: Process context. May allocate using %GFP_KERNEL.
2055 * Return: vm_fault_t value.
2056 */
2057vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2058 unsigned long pfn)
2059{
2060 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2061}
2062EXPORT_SYMBOL(vmf_insert_pfn);
2063
785a3fab
DW
2064static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2065{
2066 /* these checks mirror the abort conditions in vm_normal_page */
2067 if (vma->vm_flags & VM_MIXEDMAP)
2068 return true;
2069 if (pfn_t_devmap(pfn))
2070 return true;
2071 if (pfn_t_special(pfn))
2072 return true;
2073 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2074 return true;
2075 return false;
2076}
2077
79f3aa5b 2078static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2079 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2080 bool mkwrite)
423bad60 2081{
79f3aa5b 2082 int err;
87744ab3 2083
785a3fab 2084 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2085
423bad60 2086 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2087 return VM_FAULT_SIGBUS;
308a047c
BP
2088
2089 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2090
42e4089c 2091 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2092 return VM_FAULT_SIGBUS;
42e4089c 2093
423bad60
NP
2094 /*
2095 * If we don't have pte special, then we have to use the pfn_valid()
2096 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2097 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2098 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2099 * without pte special, it would there be refcounted as a normal page.
423bad60 2100 */
00b3a331
LD
2101 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2102 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2103 struct page *page;
2104
03fc2da6
DW
2105 /*
2106 * At this point we are committed to insert_page()
2107 * regardless of whether the caller specified flags that
2108 * result in pfn_t_has_page() == false.
2109 */
2110 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2111 err = insert_page(vma, addr, page, pgprot);
2112 } else {
9b5a8e00 2113 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2114 }
b2770da6 2115
5d747637
MW
2116 if (err == -ENOMEM)
2117 return VM_FAULT_OOM;
2118 if (err < 0 && err != -EBUSY)
2119 return VM_FAULT_SIGBUS;
2120
2121 return VM_FAULT_NOPAGE;
e0dc0d8f 2122}
79f3aa5b 2123
574c5b3d
TH
2124/**
2125 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2126 * @vma: user vma to map to
2127 * @addr: target user address of this page
2128 * @pfn: source kernel pfn
2129 * @pgprot: pgprot flags for the inserted page
2130 *
a1a0aea5 2131 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2132 * to override pgprot on a per-page basis.
2133 *
2134 * Typically this function should be used by drivers to set caching- and
2135 * encryption bits different than those of @vma->vm_page_prot, because
2136 * the caching- or encryption mode may not be known at mmap() time.
2137 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2138 * to set caching and encryption bits for those vmas (except for COW pages).
2139 * This is ensured by core vm only modifying these page table entries using
2140 * functions that don't touch caching- or encryption bits, using pte_modify()
2141 * if needed. (See for example mprotect()).
2142 * Also when new page-table entries are created, this is only done using the
2143 * fault() callback, and never using the value of vma->vm_page_prot,
2144 * except for page-table entries that point to anonymous pages as the result
2145 * of COW.
2146 *
2147 * Context: Process context. May allocate using %GFP_KERNEL.
2148 * Return: vm_fault_t value.
2149 */
2150vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2151 pfn_t pfn, pgprot_t pgprot)
2152{
2153 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2154}
5379e4dd 2155EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2156
79f3aa5b
MW
2157vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2158 pfn_t pfn)
2159{
574c5b3d 2160 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2161}
5d747637 2162EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2163
ab77dab4
SJ
2164/*
2165 * If the insertion of PTE failed because someone else already added a
2166 * different entry in the mean time, we treat that as success as we assume
2167 * the same entry was actually inserted.
2168 */
ab77dab4
SJ
2169vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2170 unsigned long addr, pfn_t pfn)
b2770da6 2171{
574c5b3d 2172 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2173}
ab77dab4 2174EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2175
1da177e4
LT
2176/*
2177 * maps a range of physical memory into the requested pages. the old
2178 * mappings are removed. any references to nonexistent pages results
2179 * in null mappings (currently treated as "copy-on-access")
2180 */
2181static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2182 unsigned long addr, unsigned long end,
2183 unsigned long pfn, pgprot_t prot)
2184{
90a3e375 2185 pte_t *pte, *mapped_pte;
c74df32c 2186 spinlock_t *ptl;
42e4089c 2187 int err = 0;
1da177e4 2188
90a3e375 2189 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2190 if (!pte)
2191 return -ENOMEM;
6606c3e0 2192 arch_enter_lazy_mmu_mode();
1da177e4
LT
2193 do {
2194 BUG_ON(!pte_none(*pte));
42e4089c
AK
2195 if (!pfn_modify_allowed(pfn, prot)) {
2196 err = -EACCES;
2197 break;
2198 }
7e675137 2199 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2200 pfn++;
2201 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2202 arch_leave_lazy_mmu_mode();
90a3e375 2203 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2204 return err;
1da177e4
LT
2205}
2206
2207static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2208 unsigned long addr, unsigned long end,
2209 unsigned long pfn, pgprot_t prot)
2210{
2211 pmd_t *pmd;
2212 unsigned long next;
42e4089c 2213 int err;
1da177e4
LT
2214
2215 pfn -= addr >> PAGE_SHIFT;
2216 pmd = pmd_alloc(mm, pud, addr);
2217 if (!pmd)
2218 return -ENOMEM;
f66055ab 2219 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2220 do {
2221 next = pmd_addr_end(addr, end);
42e4089c
AK
2222 err = remap_pte_range(mm, pmd, addr, next,
2223 pfn + (addr >> PAGE_SHIFT), prot);
2224 if (err)
2225 return err;
1da177e4
LT
2226 } while (pmd++, addr = next, addr != end);
2227 return 0;
2228}
2229
c2febafc 2230static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2231 unsigned long addr, unsigned long end,
2232 unsigned long pfn, pgprot_t prot)
2233{
2234 pud_t *pud;
2235 unsigned long next;
42e4089c 2236 int err;
1da177e4
LT
2237
2238 pfn -= addr >> PAGE_SHIFT;
c2febafc 2239 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2240 if (!pud)
2241 return -ENOMEM;
2242 do {
2243 next = pud_addr_end(addr, end);
42e4089c
AK
2244 err = remap_pmd_range(mm, pud, addr, next,
2245 pfn + (addr >> PAGE_SHIFT), prot);
2246 if (err)
2247 return err;
1da177e4
LT
2248 } while (pud++, addr = next, addr != end);
2249 return 0;
2250}
2251
c2febafc
KS
2252static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2253 unsigned long addr, unsigned long end,
2254 unsigned long pfn, pgprot_t prot)
2255{
2256 p4d_t *p4d;
2257 unsigned long next;
42e4089c 2258 int err;
c2febafc
KS
2259
2260 pfn -= addr >> PAGE_SHIFT;
2261 p4d = p4d_alloc(mm, pgd, addr);
2262 if (!p4d)
2263 return -ENOMEM;
2264 do {
2265 next = p4d_addr_end(addr, end);
42e4089c
AK
2266 err = remap_pud_range(mm, p4d, addr, next,
2267 pfn + (addr >> PAGE_SHIFT), prot);
2268 if (err)
2269 return err;
c2febafc
KS
2270 } while (p4d++, addr = next, addr != end);
2271 return 0;
2272}
2273
74ffa5a3
CH
2274/*
2275 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2276 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2277 */
74ffa5a3
CH
2278int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2279 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2280{
2281 pgd_t *pgd;
2282 unsigned long next;
2d15cab8 2283 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2284 struct mm_struct *mm = vma->vm_mm;
2285 int err;
2286
0c4123e3
AZ
2287 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2288 return -EINVAL;
2289
1da177e4
LT
2290 /*
2291 * Physically remapped pages are special. Tell the
2292 * rest of the world about it:
2293 * VM_IO tells people not to look at these pages
2294 * (accesses can have side effects).
6aab341e
LT
2295 * VM_PFNMAP tells the core MM that the base pages are just
2296 * raw PFN mappings, and do not have a "struct page" associated
2297 * with them.
314e51b9
KK
2298 * VM_DONTEXPAND
2299 * Disable vma merging and expanding with mremap().
2300 * VM_DONTDUMP
2301 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2302 *
2303 * There's a horrible special case to handle copy-on-write
2304 * behaviour that some programs depend on. We mark the "original"
2305 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2306 * See vm_normal_page() for details.
1da177e4 2307 */
b3b9c293
KK
2308 if (is_cow_mapping(vma->vm_flags)) {
2309 if (addr != vma->vm_start || end != vma->vm_end)
2310 return -EINVAL;
fb155c16 2311 vma->vm_pgoff = pfn;
b3b9c293
KK
2312 }
2313
314e51b9 2314 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2315
2316 BUG_ON(addr >= end);
2317 pfn -= addr >> PAGE_SHIFT;
2318 pgd = pgd_offset(mm, addr);
2319 flush_cache_range(vma, addr, end);
1da177e4
LT
2320 do {
2321 next = pgd_addr_end(addr, end);
c2febafc 2322 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2323 pfn + (addr >> PAGE_SHIFT), prot);
2324 if (err)
74ffa5a3 2325 return err;
1da177e4 2326 } while (pgd++, addr = next, addr != end);
2ab64037 2327
74ffa5a3
CH
2328 return 0;
2329}
2330
2331/**
2332 * remap_pfn_range - remap kernel memory to userspace
2333 * @vma: user vma to map to
2334 * @addr: target page aligned user address to start at
2335 * @pfn: page frame number of kernel physical memory address
2336 * @size: size of mapping area
2337 * @prot: page protection flags for this mapping
2338 *
2339 * Note: this is only safe if the mm semaphore is held when called.
2340 *
2341 * Return: %0 on success, negative error code otherwise.
2342 */
2343int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2344 unsigned long pfn, unsigned long size, pgprot_t prot)
2345{
2346 int err;
2347
2348 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2349 if (err)
74ffa5a3 2350 return -EINVAL;
2ab64037 2351
74ffa5a3
CH
2352 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2353 if (err)
2354 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1da177e4
LT
2355 return err;
2356}
2357EXPORT_SYMBOL(remap_pfn_range);
2358
b4cbb197
LT
2359/**
2360 * vm_iomap_memory - remap memory to userspace
2361 * @vma: user vma to map to
abd69b9e 2362 * @start: start of the physical memory to be mapped
b4cbb197
LT
2363 * @len: size of area
2364 *
2365 * This is a simplified io_remap_pfn_range() for common driver use. The
2366 * driver just needs to give us the physical memory range to be mapped,
2367 * we'll figure out the rest from the vma information.
2368 *
2369 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2370 * whatever write-combining details or similar.
a862f68a
MR
2371 *
2372 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2373 */
2374int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2375{
2376 unsigned long vm_len, pfn, pages;
2377
2378 /* Check that the physical memory area passed in looks valid */
2379 if (start + len < start)
2380 return -EINVAL;
2381 /*
2382 * You *really* shouldn't map things that aren't page-aligned,
2383 * but we've historically allowed it because IO memory might
2384 * just have smaller alignment.
2385 */
2386 len += start & ~PAGE_MASK;
2387 pfn = start >> PAGE_SHIFT;
2388 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2389 if (pfn + pages < pfn)
2390 return -EINVAL;
2391
2392 /* We start the mapping 'vm_pgoff' pages into the area */
2393 if (vma->vm_pgoff > pages)
2394 return -EINVAL;
2395 pfn += vma->vm_pgoff;
2396 pages -= vma->vm_pgoff;
2397
2398 /* Can we fit all of the mapping? */
2399 vm_len = vma->vm_end - vma->vm_start;
2400 if (vm_len >> PAGE_SHIFT > pages)
2401 return -EINVAL;
2402
2403 /* Ok, let it rip */
2404 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2405}
2406EXPORT_SYMBOL(vm_iomap_memory);
2407
aee16b3c
JF
2408static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2409 unsigned long addr, unsigned long end,
e80d3909
JR
2410 pte_fn_t fn, void *data, bool create,
2411 pgtbl_mod_mask *mask)
aee16b3c 2412{
8abb50c7 2413 pte_t *pte, *mapped_pte;
be1db475 2414 int err = 0;
3f649ab7 2415 spinlock_t *ptl;
aee16b3c 2416
be1db475 2417 if (create) {
8abb50c7 2418 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2419 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2420 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2421 if (!pte)
2422 return -ENOMEM;
2423 } else {
8abb50c7 2424 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2425 pte_offset_kernel(pmd, addr) :
2426 pte_offset_map_lock(mm, pmd, addr, &ptl);
2427 }
aee16b3c
JF
2428
2429 BUG_ON(pmd_huge(*pmd));
2430
38e0edb1
JF
2431 arch_enter_lazy_mmu_mode();
2432
eeb4a05f
CH
2433 if (fn) {
2434 do {
2435 if (create || !pte_none(*pte)) {
2436 err = fn(pte++, addr, data);
2437 if (err)
2438 break;
2439 }
2440 } while (addr += PAGE_SIZE, addr != end);
2441 }
e80d3909 2442 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2443
38e0edb1
JF
2444 arch_leave_lazy_mmu_mode();
2445
aee16b3c 2446 if (mm != &init_mm)
8abb50c7 2447 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2448 return err;
2449}
2450
2451static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2452 unsigned long addr, unsigned long end,
e80d3909
JR
2453 pte_fn_t fn, void *data, bool create,
2454 pgtbl_mod_mask *mask)
aee16b3c
JF
2455{
2456 pmd_t *pmd;
2457 unsigned long next;
be1db475 2458 int err = 0;
aee16b3c 2459
ceb86879
AK
2460 BUG_ON(pud_huge(*pud));
2461
be1db475 2462 if (create) {
e80d3909 2463 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2464 if (!pmd)
2465 return -ENOMEM;
2466 } else {
2467 pmd = pmd_offset(pud, addr);
2468 }
aee16b3c
JF
2469 do {
2470 next = pmd_addr_end(addr, end);
0c95cba4
NP
2471 if (pmd_none(*pmd) && !create)
2472 continue;
2473 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2474 return -EINVAL;
2475 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2476 if (!create)
2477 continue;
2478 pmd_clear_bad(pmd);
be1db475 2479 }
0c95cba4
NP
2480 err = apply_to_pte_range(mm, pmd, addr, next,
2481 fn, data, create, mask);
2482 if (err)
2483 break;
aee16b3c 2484 } while (pmd++, addr = next, addr != end);
0c95cba4 2485
aee16b3c
JF
2486 return err;
2487}
2488
c2febafc 2489static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2490 unsigned long addr, unsigned long end,
e80d3909
JR
2491 pte_fn_t fn, void *data, bool create,
2492 pgtbl_mod_mask *mask)
aee16b3c
JF
2493{
2494 pud_t *pud;
2495 unsigned long next;
be1db475 2496 int err = 0;
aee16b3c 2497
be1db475 2498 if (create) {
e80d3909 2499 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2500 if (!pud)
2501 return -ENOMEM;
2502 } else {
2503 pud = pud_offset(p4d, addr);
2504 }
aee16b3c
JF
2505 do {
2506 next = pud_addr_end(addr, end);
0c95cba4
NP
2507 if (pud_none(*pud) && !create)
2508 continue;
2509 if (WARN_ON_ONCE(pud_leaf(*pud)))
2510 return -EINVAL;
2511 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2512 if (!create)
2513 continue;
2514 pud_clear_bad(pud);
be1db475 2515 }
0c95cba4
NP
2516 err = apply_to_pmd_range(mm, pud, addr, next,
2517 fn, data, create, mask);
2518 if (err)
2519 break;
aee16b3c 2520 } while (pud++, addr = next, addr != end);
0c95cba4 2521
aee16b3c
JF
2522 return err;
2523}
2524
c2febafc
KS
2525static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2526 unsigned long addr, unsigned long end,
e80d3909
JR
2527 pte_fn_t fn, void *data, bool create,
2528 pgtbl_mod_mask *mask)
c2febafc
KS
2529{
2530 p4d_t *p4d;
2531 unsigned long next;
be1db475 2532 int err = 0;
c2febafc 2533
be1db475 2534 if (create) {
e80d3909 2535 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2536 if (!p4d)
2537 return -ENOMEM;
2538 } else {
2539 p4d = p4d_offset(pgd, addr);
2540 }
c2febafc
KS
2541 do {
2542 next = p4d_addr_end(addr, end);
0c95cba4
NP
2543 if (p4d_none(*p4d) && !create)
2544 continue;
2545 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2546 return -EINVAL;
2547 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2548 if (!create)
2549 continue;
2550 p4d_clear_bad(p4d);
be1db475 2551 }
0c95cba4
NP
2552 err = apply_to_pud_range(mm, p4d, addr, next,
2553 fn, data, create, mask);
2554 if (err)
2555 break;
c2febafc 2556 } while (p4d++, addr = next, addr != end);
0c95cba4 2557
c2febafc
KS
2558 return err;
2559}
2560
be1db475
DA
2561static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2562 unsigned long size, pte_fn_t fn,
2563 void *data, bool create)
aee16b3c
JF
2564{
2565 pgd_t *pgd;
e80d3909 2566 unsigned long start = addr, next;
57250a5b 2567 unsigned long end = addr + size;
e80d3909 2568 pgtbl_mod_mask mask = 0;
be1db475 2569 int err = 0;
aee16b3c 2570
9cb65bc3
MP
2571 if (WARN_ON(addr >= end))
2572 return -EINVAL;
2573
aee16b3c
JF
2574 pgd = pgd_offset(mm, addr);
2575 do {
2576 next = pgd_addr_end(addr, end);
0c95cba4 2577 if (pgd_none(*pgd) && !create)
be1db475 2578 continue;
0c95cba4
NP
2579 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2580 return -EINVAL;
2581 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2582 if (!create)
2583 continue;
2584 pgd_clear_bad(pgd);
2585 }
2586 err = apply_to_p4d_range(mm, pgd, addr, next,
2587 fn, data, create, &mask);
aee16b3c
JF
2588 if (err)
2589 break;
2590 } while (pgd++, addr = next, addr != end);
57250a5b 2591
e80d3909
JR
2592 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2593 arch_sync_kernel_mappings(start, start + size);
2594
aee16b3c
JF
2595 return err;
2596}
be1db475
DA
2597
2598/*
2599 * Scan a region of virtual memory, filling in page tables as necessary
2600 * and calling a provided function on each leaf page table.
2601 */
2602int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2603 unsigned long size, pte_fn_t fn, void *data)
2604{
2605 return __apply_to_page_range(mm, addr, size, fn, data, true);
2606}
aee16b3c
JF
2607EXPORT_SYMBOL_GPL(apply_to_page_range);
2608
be1db475
DA
2609/*
2610 * Scan a region of virtual memory, calling a provided function on
2611 * each leaf page table where it exists.
2612 *
2613 * Unlike apply_to_page_range, this does _not_ fill in page tables
2614 * where they are absent.
2615 */
2616int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2617 unsigned long size, pte_fn_t fn, void *data)
2618{
2619 return __apply_to_page_range(mm, addr, size, fn, data, false);
2620}
2621EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2622
8f4e2101 2623/*
9b4bdd2f
KS
2624 * handle_pte_fault chooses page fault handler according to an entry which was
2625 * read non-atomically. Before making any commitment, on those architectures
2626 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2627 * parts, do_swap_page must check under lock before unmapping the pte and
2628 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2629 * and do_anonymous_page can safely check later on).
8f4e2101 2630 */
4c21e2f2 2631static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2632 pte_t *page_table, pte_t orig_pte)
2633{
2634 int same = 1;
923717cb 2635#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2636 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2637 spinlock_t *ptl = pte_lockptr(mm, pmd);
2638 spin_lock(ptl);
8f4e2101 2639 same = pte_same(*page_table, orig_pte);
4c21e2f2 2640 spin_unlock(ptl);
8f4e2101
HD
2641 }
2642#endif
2643 pte_unmap(page_table);
2644 return same;
2645}
2646
83d116c5
JH
2647static inline bool cow_user_page(struct page *dst, struct page *src,
2648 struct vm_fault *vmf)
6aab341e 2649{
83d116c5
JH
2650 bool ret;
2651 void *kaddr;
2652 void __user *uaddr;
c3e5ea6e 2653 bool locked = false;
83d116c5
JH
2654 struct vm_area_struct *vma = vmf->vma;
2655 struct mm_struct *mm = vma->vm_mm;
2656 unsigned long addr = vmf->address;
2657
83d116c5
JH
2658 if (likely(src)) {
2659 copy_user_highpage(dst, src, addr, vma);
2660 return true;
2661 }
2662
6aab341e
LT
2663 /*
2664 * If the source page was a PFN mapping, we don't have
2665 * a "struct page" for it. We do a best-effort copy by
2666 * just copying from the original user address. If that
2667 * fails, we just zero-fill it. Live with it.
2668 */
83d116c5
JH
2669 kaddr = kmap_atomic(dst);
2670 uaddr = (void __user *)(addr & PAGE_MASK);
2671
2672 /*
2673 * On architectures with software "accessed" bits, we would
2674 * take a double page fault, so mark it accessed here.
2675 */
c3e5ea6e 2676 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2677 pte_t entry;
5d2a2dbb 2678
83d116c5 2679 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2680 locked = true;
83d116c5
JH
2681 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2682 /*
2683 * Other thread has already handled the fault
7df67697 2684 * and update local tlb only
83d116c5 2685 */
7df67697 2686 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2687 ret = false;
2688 goto pte_unlock;
2689 }
2690
2691 entry = pte_mkyoung(vmf->orig_pte);
2692 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2693 update_mmu_cache(vma, addr, vmf->pte);
2694 }
2695
2696 /*
2697 * This really shouldn't fail, because the page is there
2698 * in the page tables. But it might just be unreadable,
2699 * in which case we just give up and fill the result with
2700 * zeroes.
2701 */
2702 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2703 if (locked)
2704 goto warn;
2705
2706 /* Re-validate under PTL if the page is still mapped */
2707 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2708 locked = true;
2709 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2710 /* The PTE changed under us, update local tlb */
2711 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2712 ret = false;
2713 goto pte_unlock;
2714 }
2715
5d2a2dbb 2716 /*
985ba004 2717 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2718 * Try to copy again under PTL.
5d2a2dbb 2719 */
c3e5ea6e
KS
2720 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2721 /*
2722 * Give a warn in case there can be some obscure
2723 * use-case
2724 */
2725warn:
2726 WARN_ON_ONCE(1);
2727 clear_page(kaddr);
2728 }
83d116c5
JH
2729 }
2730
2731 ret = true;
2732
2733pte_unlock:
c3e5ea6e 2734 if (locked)
83d116c5
JH
2735 pte_unmap_unlock(vmf->pte, vmf->ptl);
2736 kunmap_atomic(kaddr);
2737 flush_dcache_page(dst);
2738
2739 return ret;
6aab341e
LT
2740}
2741
c20cd45e
MH
2742static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2743{
2744 struct file *vm_file = vma->vm_file;
2745
2746 if (vm_file)
2747 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2748
2749 /*
2750 * Special mappings (e.g. VDSO) do not have any file so fake
2751 * a default GFP_KERNEL for them.
2752 */
2753 return GFP_KERNEL;
2754}
2755
fb09a464
KS
2756/*
2757 * Notify the address space that the page is about to become writable so that
2758 * it can prohibit this or wait for the page to get into an appropriate state.
2759 *
2760 * We do this without the lock held, so that it can sleep if it needs to.
2761 */
2b740303 2762static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2763{
2b740303 2764 vm_fault_t ret;
38b8cb7f
JK
2765 struct page *page = vmf->page;
2766 unsigned int old_flags = vmf->flags;
fb09a464 2767
38b8cb7f 2768 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2769
dc617f29
DW
2770 if (vmf->vma->vm_file &&
2771 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2772 return VM_FAULT_SIGBUS;
2773
11bac800 2774 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2775 /* Restore original flags so that caller is not surprised */
2776 vmf->flags = old_flags;
fb09a464
KS
2777 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2778 return ret;
2779 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2780 lock_page(page);
2781 if (!page->mapping) {
2782 unlock_page(page);
2783 return 0; /* retry */
2784 }
2785 ret |= VM_FAULT_LOCKED;
2786 } else
2787 VM_BUG_ON_PAGE(!PageLocked(page), page);
2788 return ret;
2789}
2790
97ba0c2b
JK
2791/*
2792 * Handle dirtying of a page in shared file mapping on a write fault.
2793 *
2794 * The function expects the page to be locked and unlocks it.
2795 */
89b15332 2796static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2797{
89b15332 2798 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2799 struct address_space *mapping;
89b15332 2800 struct page *page = vmf->page;
97ba0c2b
JK
2801 bool dirtied;
2802 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2803
2804 dirtied = set_page_dirty(page);
2805 VM_BUG_ON_PAGE(PageAnon(page), page);
2806 /*
2807 * Take a local copy of the address_space - page.mapping may be zeroed
2808 * by truncate after unlock_page(). The address_space itself remains
2809 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2810 * release semantics to prevent the compiler from undoing this copying.
2811 */
2812 mapping = page_rmapping(page);
2813 unlock_page(page);
2814
89b15332
JW
2815 if (!page_mkwrite)
2816 file_update_time(vma->vm_file);
2817
2818 /*
2819 * Throttle page dirtying rate down to writeback speed.
2820 *
2821 * mapping may be NULL here because some device drivers do not
2822 * set page.mapping but still dirty their pages
2823 *
c1e8d7c6 2824 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2825 * is pinning the mapping, as per above.
2826 */
97ba0c2b 2827 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2828 struct file *fpin;
2829
2830 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2831 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2832 if (fpin) {
2833 fput(fpin);
2834 return VM_FAULT_RETRY;
2835 }
97ba0c2b
JK
2836 }
2837
89b15332 2838 return 0;
97ba0c2b
JK
2839}
2840
4e047f89
SR
2841/*
2842 * Handle write page faults for pages that can be reused in the current vma
2843 *
2844 * This can happen either due to the mapping being with the VM_SHARED flag,
2845 * or due to us being the last reference standing to the page. In either
2846 * case, all we need to do here is to mark the page as writable and update
2847 * any related book-keeping.
2848 */
997dd98d 2849static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2850 __releases(vmf->ptl)
4e047f89 2851{
82b0f8c3 2852 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2853 struct page *page = vmf->page;
4e047f89
SR
2854 pte_t entry;
2855 /*
2856 * Clear the pages cpupid information as the existing
2857 * information potentially belongs to a now completely
2858 * unrelated process.
2859 */
2860 if (page)
2861 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2862
2994302b
JK
2863 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2864 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2865 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2866 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2867 update_mmu_cache(vma, vmf->address, vmf->pte);
2868 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2869 count_vm_event(PGREUSE);
4e047f89
SR
2870}
2871
2f38ab2c
SR
2872/*
2873 * Handle the case of a page which we actually need to copy to a new page.
2874 *
c1e8d7c6 2875 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2876 * without the ptl held.
2877 *
2878 * High level logic flow:
2879 *
2880 * - Allocate a page, copy the content of the old page to the new one.
2881 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2882 * - Take the PTL. If the pte changed, bail out and release the allocated page
2883 * - If the pte is still the way we remember it, update the page table and all
2884 * relevant references. This includes dropping the reference the page-table
2885 * held to the old page, as well as updating the rmap.
2886 * - In any case, unlock the PTL and drop the reference we took to the old page.
2887 */
2b740303 2888static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2889{
82b0f8c3 2890 struct vm_area_struct *vma = vmf->vma;
bae473a4 2891 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2892 struct page *old_page = vmf->page;
2f38ab2c 2893 struct page *new_page = NULL;
2f38ab2c
SR
2894 pte_t entry;
2895 int page_copied = 0;
ac46d4f3 2896 struct mmu_notifier_range range;
2f38ab2c
SR
2897
2898 if (unlikely(anon_vma_prepare(vma)))
2899 goto oom;
2900
2994302b 2901 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2902 new_page = alloc_zeroed_user_highpage_movable(vma,
2903 vmf->address);
2f38ab2c
SR
2904 if (!new_page)
2905 goto oom;
2906 } else {
bae473a4 2907 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2908 vmf->address);
2f38ab2c
SR
2909 if (!new_page)
2910 goto oom;
83d116c5
JH
2911
2912 if (!cow_user_page(new_page, old_page, vmf)) {
2913 /*
2914 * COW failed, if the fault was solved by other,
2915 * it's fine. If not, userspace would re-fault on
2916 * the same address and we will handle the fault
2917 * from the second attempt.
2918 */
2919 put_page(new_page);
2920 if (old_page)
2921 put_page(old_page);
2922 return 0;
2923 }
2f38ab2c 2924 }
2f38ab2c 2925
d9eb1ea2 2926 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2927 goto oom_free_new;
9d82c694 2928 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2929
eb3c24f3
MG
2930 __SetPageUptodate(new_page);
2931
7269f999 2932 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2933 vmf->address & PAGE_MASK,
ac46d4f3
JG
2934 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2935 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2936
2937 /*
2938 * Re-check the pte - we dropped the lock
2939 */
82b0f8c3 2940 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2941 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2942 if (old_page) {
2943 if (!PageAnon(old_page)) {
eca56ff9
JM
2944 dec_mm_counter_fast(mm,
2945 mm_counter_file(old_page));
2f38ab2c
SR
2946 inc_mm_counter_fast(mm, MM_ANONPAGES);
2947 }
2948 } else {
2949 inc_mm_counter_fast(mm, MM_ANONPAGES);
2950 }
2994302b 2951 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2952 entry = mk_pte(new_page, vma->vm_page_prot);
50c25ee9 2953 entry = pte_sw_mkyoung(entry);
2f38ab2c 2954 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
111fe718 2955
2f38ab2c
SR
2956 /*
2957 * Clear the pte entry and flush it first, before updating the
111fe718
NP
2958 * pte with the new entry, to keep TLBs on different CPUs in
2959 * sync. This code used to set the new PTE then flush TLBs, but
2960 * that left a window where the new PTE could be loaded into
2961 * some TLBs while the old PTE remains in others.
2f38ab2c 2962 */
82b0f8c3
JK
2963 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2964 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2965 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2966 /*
2967 * We call the notify macro here because, when using secondary
2968 * mmu page tables (such as kvm shadow page tables), we want the
2969 * new page to be mapped directly into the secondary page table.
2970 */
82b0f8c3
JK
2971 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2972 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2973 if (old_page) {
2974 /*
2975 * Only after switching the pte to the new page may
2976 * we remove the mapcount here. Otherwise another
2977 * process may come and find the rmap count decremented
2978 * before the pte is switched to the new page, and
2979 * "reuse" the old page writing into it while our pte
2980 * here still points into it and can be read by other
2981 * threads.
2982 *
2983 * The critical issue is to order this
2984 * page_remove_rmap with the ptp_clear_flush above.
2985 * Those stores are ordered by (if nothing else,)
2986 * the barrier present in the atomic_add_negative
2987 * in page_remove_rmap.
2988 *
2989 * Then the TLB flush in ptep_clear_flush ensures that
2990 * no process can access the old page before the
2991 * decremented mapcount is visible. And the old page
2992 * cannot be reused until after the decremented
2993 * mapcount is visible. So transitively, TLBs to
2994 * old page will be flushed before it can be reused.
2995 */
d281ee61 2996 page_remove_rmap(old_page, false);
2f38ab2c
SR
2997 }
2998
2999 /* Free the old page.. */
3000 new_page = old_page;
3001 page_copied = 1;
3002 } else {
7df67697 3003 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
3004 }
3005
3006 if (new_page)
09cbfeaf 3007 put_page(new_page);
2f38ab2c 3008
82b0f8c3 3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
3010 /*
3011 * No need to double call mmu_notifier->invalidate_range() callback as
3012 * the above ptep_clear_flush_notify() did already call it.
3013 */
ac46d4f3 3014 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
3015 if (old_page) {
3016 /*
3017 * Don't let another task, with possibly unlocked vma,
3018 * keep the mlocked page.
3019 */
3020 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
3021 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
3022 if (PageMlocked(old_page))
3023 munlock_vma_page(old_page);
2f38ab2c
SR
3024 unlock_page(old_page);
3025 }
f4c4a3f4
HY
3026 if (page_copied)
3027 free_swap_cache(old_page);
09cbfeaf 3028 put_page(old_page);
2f38ab2c
SR
3029 }
3030 return page_copied ? VM_FAULT_WRITE : 0;
3031oom_free_new:
09cbfeaf 3032 put_page(new_page);
2f38ab2c
SR
3033oom:
3034 if (old_page)
09cbfeaf 3035 put_page(old_page);
2f38ab2c
SR
3036 return VM_FAULT_OOM;
3037}
3038
66a6197c
JK
3039/**
3040 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3041 * writeable once the page is prepared
3042 *
3043 * @vmf: structure describing the fault
3044 *
3045 * This function handles all that is needed to finish a write page fault in a
3046 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3047 * It handles locking of PTE and modifying it.
66a6197c
JK
3048 *
3049 * The function expects the page to be locked or other protection against
3050 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
3051 *
3052 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
3053 * we acquired PTE lock.
66a6197c 3054 */
2b740303 3055vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3056{
3057 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3058 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3059 &vmf->ptl);
3060 /*
3061 * We might have raced with another page fault while we released the
3062 * pte_offset_map_lock.
3063 */
3064 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 3065 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3066 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3067 return VM_FAULT_NOPAGE;
66a6197c
JK
3068 }
3069 wp_page_reuse(vmf);
a19e2553 3070 return 0;
66a6197c
JK
3071}
3072
dd906184
BH
3073/*
3074 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3075 * mapping
3076 */
2b740303 3077static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3078{
82b0f8c3 3079 struct vm_area_struct *vma = vmf->vma;
bae473a4 3080
dd906184 3081 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3082 vm_fault_t ret;
dd906184 3083
82b0f8c3 3084 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3085 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3086 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3087 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3088 return ret;
66a6197c 3089 return finish_mkwrite_fault(vmf);
dd906184 3090 }
997dd98d
JK
3091 wp_page_reuse(vmf);
3092 return VM_FAULT_WRITE;
dd906184
BH
3093}
3094
2b740303 3095static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3096 __releases(vmf->ptl)
93e478d4 3097{
82b0f8c3 3098 struct vm_area_struct *vma = vmf->vma;
89b15332 3099 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3100
a41b70d6 3101 get_page(vmf->page);
93e478d4 3102
93e478d4 3103 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3104 vm_fault_t tmp;
93e478d4 3105
82b0f8c3 3106 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3107 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3108 if (unlikely(!tmp || (tmp &
3109 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3110 put_page(vmf->page);
93e478d4
SR
3111 return tmp;
3112 }
66a6197c 3113 tmp = finish_mkwrite_fault(vmf);
a19e2553 3114 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3115 unlock_page(vmf->page);
a41b70d6 3116 put_page(vmf->page);
66a6197c 3117 return tmp;
93e478d4 3118 }
66a6197c
JK
3119 } else {
3120 wp_page_reuse(vmf);
997dd98d 3121 lock_page(vmf->page);
93e478d4 3122 }
89b15332 3123 ret |= fault_dirty_shared_page(vmf);
997dd98d 3124 put_page(vmf->page);
93e478d4 3125
89b15332 3126 return ret;
93e478d4
SR
3127}
3128
1da177e4
LT
3129/*
3130 * This routine handles present pages, when users try to write
3131 * to a shared page. It is done by copying the page to a new address
3132 * and decrementing the shared-page counter for the old page.
3133 *
1da177e4
LT
3134 * Note that this routine assumes that the protection checks have been
3135 * done by the caller (the low-level page fault routine in most cases).
3136 * Thus we can safely just mark it writable once we've done any necessary
3137 * COW.
3138 *
3139 * We also mark the page dirty at this point even though the page will
3140 * change only once the write actually happens. This avoids a few races,
3141 * and potentially makes it more efficient.
3142 *
c1e8d7c6 3143 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3144 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3145 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3146 */
2b740303 3147static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3148 __releases(vmf->ptl)
1da177e4 3149{
82b0f8c3 3150 struct vm_area_struct *vma = vmf->vma;
1da177e4 3151
292924b2 3152 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3153 pte_unmap_unlock(vmf->pte, vmf->ptl);
3154 return handle_userfault(vmf, VM_UFFD_WP);
3155 }
3156
6ce64428
NA
3157 /*
3158 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3159 * is flushed in this case before copying.
3160 */
3161 if (unlikely(userfaultfd_wp(vmf->vma) &&
3162 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3163 flush_tlb_page(vmf->vma, vmf->address);
3164
a41b70d6
JK
3165 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3166 if (!vmf->page) {
251b97f5 3167 /*
64e45507
PF
3168 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3169 * VM_PFNMAP VMA.
251b97f5
PZ
3170 *
3171 * We should not cow pages in a shared writeable mapping.
dd906184 3172 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3173 */
3174 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3175 (VM_WRITE|VM_SHARED))
2994302b 3176 return wp_pfn_shared(vmf);
2f38ab2c 3177
82b0f8c3 3178 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3179 return wp_page_copy(vmf);
251b97f5 3180 }
1da177e4 3181
d08b3851 3182 /*
ee6a6457
PZ
3183 * Take out anonymous pages first, anonymous shared vmas are
3184 * not dirty accountable.
d08b3851 3185 */
52d1e606 3186 if (PageAnon(vmf->page)) {
09854ba9
LT
3187 struct page *page = vmf->page;
3188
3189 /* PageKsm() doesn't necessarily raise the page refcount */
3190 if (PageKsm(page) || page_count(page) != 1)
3191 goto copy;
3192 if (!trylock_page(page))
3193 goto copy;
3194 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3195 unlock_page(page);
52d1e606 3196 goto copy;
b009c024 3197 }
09854ba9
LT
3198 /*
3199 * Ok, we've got the only map reference, and the only
3200 * page count reference, and the page is locked,
3201 * it's dark out, and we're wearing sunglasses. Hit it.
3202 */
09854ba9 3203 unlock_page(page);
be068f29 3204 wp_page_reuse(vmf);
09854ba9 3205 return VM_FAULT_WRITE;
ee6a6457 3206 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3207 (VM_WRITE|VM_SHARED))) {
a41b70d6 3208 return wp_page_shared(vmf);
1da177e4 3209 }
52d1e606 3210copy:
1da177e4
LT
3211 /*
3212 * Ok, we need to copy. Oh, well..
3213 */
a41b70d6 3214 get_page(vmf->page);
28766805 3215
82b0f8c3 3216 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3217 return wp_page_copy(vmf);
1da177e4
LT
3218}
3219
97a89413 3220static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3221 unsigned long start_addr, unsigned long end_addr,
3222 struct zap_details *details)
3223{
f5cc4eef 3224 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3225}
3226
f808c13f 3227static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3228 struct zap_details *details)
3229{
3230 struct vm_area_struct *vma;
1da177e4
LT
3231 pgoff_t vba, vea, zba, zea;
3232
6b2dbba8 3233 vma_interval_tree_foreach(vma, root,
1da177e4 3234 details->first_index, details->last_index) {
1da177e4
LT
3235
3236 vba = vma->vm_pgoff;
d6e93217 3237 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3238 zba = details->first_index;
3239 if (zba < vba)
3240 zba = vba;
3241 zea = details->last_index;
3242 if (zea > vea)
3243 zea = vea;
3244
97a89413 3245 unmap_mapping_range_vma(vma,
1da177e4
LT
3246 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3247 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3248 details);
1da177e4
LT
3249 }
3250}
3251
22061a1f
HD
3252/**
3253 * unmap_mapping_page() - Unmap single page from processes.
3254 * @page: The locked page to be unmapped.
3255 *
3256 * Unmap this page from any userspace process which still has it mmaped.
3257 * Typically, for efficiency, the range of nearby pages has already been
3258 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3259 * truncation or invalidation holds the lock on a page, it may find that
3260 * the page has been remapped again: and then uses unmap_mapping_page()
3261 * to unmap it finally.
3262 */
3263void unmap_mapping_page(struct page *page)
3264{
3265 struct address_space *mapping = page->mapping;
3266 struct zap_details details = { };
3267
3268 VM_BUG_ON(!PageLocked(page));
3269 VM_BUG_ON(PageTail(page));
3270
3271 details.check_mapping = mapping;
3272 details.first_index = page->index;
3273 details.last_index = page->index + thp_nr_pages(page) - 1;
3274 details.single_page = page;
3275
3276 i_mmap_lock_write(mapping);
3277 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3278 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3279 i_mmap_unlock_write(mapping);
3280}
3281
977fbdcd
MW
3282/**
3283 * unmap_mapping_pages() - Unmap pages from processes.
3284 * @mapping: The address space containing pages to be unmapped.
3285 * @start: Index of first page to be unmapped.
3286 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3287 * @even_cows: Whether to unmap even private COWed pages.
3288 *
3289 * Unmap the pages in this address space from any userspace process which
3290 * has them mmaped. Generally, you want to remove COWed pages as well when
3291 * a file is being truncated, but not when invalidating pages from the page
3292 * cache.
3293 */
3294void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3295 pgoff_t nr, bool even_cows)
3296{
3297 struct zap_details details = { };
3298
3299 details.check_mapping = even_cows ? NULL : mapping;
3300 details.first_index = start;
3301 details.last_index = start + nr - 1;
3302 if (details.last_index < details.first_index)
3303 details.last_index = ULONG_MAX;
3304
3305 i_mmap_lock_write(mapping);
3306 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3307 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3308 i_mmap_unlock_write(mapping);
3309}
3310
1da177e4 3311/**
8a5f14a2 3312 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3313 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3314 * file.
3315 *
3d41088f 3316 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3317 * @holebegin: byte in first page to unmap, relative to the start of
3318 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3319 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3320 * must keep the partial page. In contrast, we must get rid of
3321 * partial pages.
3322 * @holelen: size of prospective hole in bytes. This will be rounded
3323 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3324 * end of the file.
3325 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3326 * but 0 when invalidating pagecache, don't throw away private data.
3327 */
3328void unmap_mapping_range(struct address_space *mapping,
3329 loff_t const holebegin, loff_t const holelen, int even_cows)
3330{
1da177e4
LT
3331 pgoff_t hba = holebegin >> PAGE_SHIFT;
3332 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3333
3334 /* Check for overflow. */
3335 if (sizeof(holelen) > sizeof(hlen)) {
3336 long long holeend =
3337 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3338 if (holeend & ~(long long)ULONG_MAX)
3339 hlen = ULONG_MAX - hba + 1;
3340 }
3341
977fbdcd 3342 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3343}
3344EXPORT_SYMBOL(unmap_mapping_range);
3345
1da177e4 3346/*
c1e8d7c6 3347 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3348 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3349 * We return with pte unmapped and unlocked.
3350 *
c1e8d7c6 3351 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3352 * as does filemap_fault().
1da177e4 3353 */
2b740303 3354vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3355{
82b0f8c3 3356 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3357 struct page *page = NULL, *swapcache;
2799e775 3358 struct swap_info_struct *si = NULL;
65500d23 3359 swp_entry_t entry;
1da177e4 3360 pte_t pte;
d065bd81 3361 int locked;
ad8c2ee8 3362 int exclusive = 0;
2b740303 3363 vm_fault_t ret = 0;
aae466b0 3364 void *shadow = NULL;
1da177e4 3365
eaf649eb 3366 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3367 goto out;
65500d23 3368
2994302b 3369 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3370 if (unlikely(non_swap_entry(entry))) {
3371 if (is_migration_entry(entry)) {
82b0f8c3
JK
3372 migration_entry_wait(vma->vm_mm, vmf->pmd,
3373 vmf->address);
5042db43 3374 } else if (is_device_private_entry(entry)) {
897e6365
CH
3375 vmf->page = device_private_entry_to_page(entry);
3376 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3377 } else if (is_hwpoison_entry(entry)) {
3378 ret = VM_FAULT_HWPOISON;
3379 } else {
2994302b 3380 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3381 ret = VM_FAULT_SIGBUS;
d1737fdb 3382 }
0697212a
CL
3383 goto out;
3384 }
0bcac06f 3385
2799e775
ML
3386 /* Prevent swapoff from happening to us. */
3387 si = get_swap_device(entry);
3388 if (unlikely(!si))
3389 goto out;
0bcac06f 3390
3d1c7fd9 3391 delayacct_set_flag(current, DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3392 page = lookup_swap_cache(entry, vma, vmf->address);
3393 swapcache = page;
f8020772 3394
1da177e4 3395 if (!page) {
a449bf58
QC
3396 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3397 __swap_count(entry) == 1) {
0bcac06f 3398 /* skip swapcache */
e9e9b7ec
MK
3399 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3400 vmf->address);
0bcac06f
MK
3401 if (page) {
3402 __SetPageLocked(page);
3403 __SetPageSwapBacked(page);
4c6355b2 3404
0add0c77
SB
3405 if (mem_cgroup_swapin_charge_page(page,
3406 vma->vm_mm, GFP_KERNEL, entry)) {
545b1b07 3407 ret = VM_FAULT_OOM;
4c6355b2 3408 goto out_page;
545b1b07 3409 }
0add0c77 3410 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3411
aae466b0
JK
3412 shadow = get_shadow_from_swap_cache(entry);
3413 if (shadow)
3414 workingset_refault(page, shadow);
0076f029 3415
6058eaec 3416 lru_cache_add(page);
0add0c77
SB
3417
3418 /* To provide entry to swap_readpage() */
3419 set_page_private(page, entry.val);
0bcac06f 3420 swap_readpage(page, true);
0add0c77 3421 set_page_private(page, 0);
0bcac06f 3422 }
aa8d22a1 3423 } else {
e9e9b7ec
MK
3424 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3425 vmf);
aa8d22a1 3426 swapcache = page;
0bcac06f
MK
3427 }
3428
1da177e4
LT
3429 if (!page) {
3430 /*
8f4e2101
HD
3431 * Back out if somebody else faulted in this pte
3432 * while we released the pte lock.
1da177e4 3433 */
82b0f8c3
JK
3434 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3435 vmf->address, &vmf->ptl);
2994302b 3436 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3437 ret = VM_FAULT_OOM;
3d1c7fd9 3438 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
65500d23 3439 goto unlock;
1da177e4
LT
3440 }
3441
3442 /* Had to read the page from swap area: Major fault */
3443 ret = VM_FAULT_MAJOR;
f8891e5e 3444 count_vm_event(PGMAJFAULT);
2262185c 3445 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3446 } else if (PageHWPoison(page)) {
71f72525
WF
3447 /*
3448 * hwpoisoned dirty swapcache pages are kept for killing
3449 * owner processes (which may be unknown at hwpoison time)
3450 */
d1737fdb 3451 ret = VM_FAULT_HWPOISON;
3d1c7fd9 3452 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
4779cb31 3453 goto out_release;
1da177e4
LT
3454 }
3455
82b0f8c3 3456 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3457
3d1c7fd9 3458 delayacct_clear_flag(current, DELAYACCT_PF_SWAPIN);
d065bd81
ML
3459 if (!locked) {
3460 ret |= VM_FAULT_RETRY;
3461 goto out_release;
3462 }
073e587e 3463
4969c119 3464 /*
31c4a3d3
HD
3465 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3466 * release the swapcache from under us. The page pin, and pte_same
3467 * test below, are not enough to exclude that. Even if it is still
3468 * swapcache, we need to check that the page's swap has not changed.
4969c119 3469 */
0bcac06f
MK
3470 if (unlikely((!PageSwapCache(page) ||
3471 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3472 goto out_page;
3473
82b0f8c3 3474 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3475 if (unlikely(!page)) {
3476 ret = VM_FAULT_OOM;
3477 page = swapcache;
cbf86cfe 3478 goto out_page;
5ad64688
HD
3479 }
3480
9d82c694 3481 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3482
1da177e4 3483 /*
8f4e2101 3484 * Back out if somebody else already faulted in this pte.
1da177e4 3485 */
82b0f8c3
JK
3486 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3487 &vmf->ptl);
2994302b 3488 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3489 goto out_nomap;
b8107480
KK
3490
3491 if (unlikely(!PageUptodate(page))) {
3492 ret = VM_FAULT_SIGBUS;
3493 goto out_nomap;
1da177e4
LT
3494 }
3495
8c7c6e34
KH
3496 /*
3497 * The page isn't present yet, go ahead with the fault.
3498 *
3499 * Be careful about the sequence of operations here.
3500 * To get its accounting right, reuse_swap_page() must be called
3501 * while the page is counted on swap but not yet in mapcount i.e.
3502 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3503 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3504 */
1da177e4 3505
bae473a4
KS
3506 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3507 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3508 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3509 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3510 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3511 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3512 ret |= VM_FAULT_WRITE;
d281ee61 3513 exclusive = RMAP_EXCLUSIVE;
1da177e4 3514 }
1da177e4 3515 flush_icache_page(vma, page);
2994302b 3516 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3517 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3518 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3519 pte = pte_mkuffd_wp(pte);
3520 pte = pte_wrprotect(pte);
3521 }
82b0f8c3 3522 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3523 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3524 vmf->orig_pte = pte;
0bcac06f
MK
3525
3526 /* ksm created a completely new copy */
3527 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3528 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3529 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3530 } else {
3531 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3532 }
1da177e4 3533
c475a8ab 3534 swap_free(entry);
5ccc5aba
VD
3535 if (mem_cgroup_swap_full(page) ||
3536 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3537 try_to_free_swap(page);
c475a8ab 3538 unlock_page(page);
0bcac06f 3539 if (page != swapcache && swapcache) {
4969c119
AA
3540 /*
3541 * Hold the lock to avoid the swap entry to be reused
3542 * until we take the PT lock for the pte_same() check
3543 * (to avoid false positives from pte_same). For
3544 * further safety release the lock after the swap_free
3545 * so that the swap count won't change under a
3546 * parallel locked swapcache.
3547 */
3548 unlock_page(swapcache);
09cbfeaf 3549 put_page(swapcache);
4969c119 3550 }
c475a8ab 3551
82b0f8c3 3552 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3553 ret |= do_wp_page(vmf);
61469f1d
HD
3554 if (ret & VM_FAULT_ERROR)
3555 ret &= VM_FAULT_ERROR;
1da177e4
LT
3556 goto out;
3557 }
3558
3559 /* No need to invalidate - it was non-present before */
82b0f8c3 3560 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3561unlock:
82b0f8c3 3562 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 3563out:
2799e775
ML
3564 if (si)
3565 put_swap_device(si);
1da177e4 3566 return ret;
b8107480 3567out_nomap:
82b0f8c3 3568 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3569out_page:
b8107480 3570 unlock_page(page);
4779cb31 3571out_release:
09cbfeaf 3572 put_page(page);
0bcac06f 3573 if (page != swapcache && swapcache) {
4969c119 3574 unlock_page(swapcache);
09cbfeaf 3575 put_page(swapcache);
4969c119 3576 }
2799e775
ML
3577 if (si)
3578 put_swap_device(si);
65500d23 3579 return ret;
1da177e4
LT
3580}
3581
3582/*
c1e8d7c6 3583 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3584 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3585 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3586 */
2b740303 3587static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3588{
82b0f8c3 3589 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3590 struct page *page;
2b740303 3591 vm_fault_t ret = 0;
1da177e4 3592 pte_t entry;
1da177e4 3593
6b7339f4
KS
3594 /* File mapping without ->vm_ops ? */
3595 if (vma->vm_flags & VM_SHARED)
3596 return VM_FAULT_SIGBUS;
3597
7267ec00
KS
3598 /*
3599 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3600 * pte_offset_map() on pmds where a huge pmd might be created
3601 * from a different thread.
3602 *
3e4e28c5 3603 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3604 * parallel threads are excluded by other means.
3605 *
3e4e28c5 3606 * Here we only have mmap_read_lock(mm).
7267ec00 3607 */
4cf58924 3608 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3609 return VM_FAULT_OOM;
3610
f9ce0be7 3611 /* See comment in handle_pte_fault() */
82b0f8c3 3612 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3613 return 0;
3614
11ac5524 3615 /* Use the zero-page for reads */
82b0f8c3 3616 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3617 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3618 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3619 vma->vm_page_prot));
82b0f8c3
JK
3620 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3621 vmf->address, &vmf->ptl);
7df67697
BM
3622 if (!pte_none(*vmf->pte)) {
3623 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3624 goto unlock;
7df67697 3625 }
6b31d595
MH
3626 ret = check_stable_address_space(vma->vm_mm);
3627 if (ret)
3628 goto unlock;
6b251fc9
AA
3629 /* Deliver the page fault to userland, check inside PT lock */
3630 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3631 pte_unmap_unlock(vmf->pte, vmf->ptl);
3632 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3633 }
a13ea5b7
HD
3634 goto setpte;
3635 }
3636
557ed1fa 3637 /* Allocate our own private page. */
557ed1fa
NP
3638 if (unlikely(anon_vma_prepare(vma)))
3639 goto oom;
82b0f8c3 3640 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3641 if (!page)
3642 goto oom;
eb3c24f3 3643
d9eb1ea2 3644 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3645 goto oom_free_page;
9d82c694 3646 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3647
52f37629
MK
3648 /*
3649 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3650 * preceding stores to the page contents become visible before
52f37629
MK
3651 * the set_pte_at() write.
3652 */
0ed361de 3653 __SetPageUptodate(page);
8f4e2101 3654
557ed1fa 3655 entry = mk_pte(page, vma->vm_page_prot);
50c25ee9 3656 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3657 if (vma->vm_flags & VM_WRITE)
3658 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3659
82b0f8c3
JK
3660 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3661 &vmf->ptl);
7df67697
BM
3662 if (!pte_none(*vmf->pte)) {
3663 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3664 goto release;
7df67697 3665 }
9ba69294 3666
6b31d595
MH
3667 ret = check_stable_address_space(vma->vm_mm);
3668 if (ret)
3669 goto release;
3670
6b251fc9
AA
3671 /* Deliver the page fault to userland, check inside PT lock */
3672 if (userfaultfd_missing(vma)) {
82b0f8c3 3673 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3674 put_page(page);
82b0f8c3 3675 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3676 }
3677
bae473a4 3678 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3679 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3680 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3681setpte:
82b0f8c3 3682 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3683
3684 /* No need to invalidate - it was non-present before */
82b0f8c3 3685 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3686unlock:
82b0f8c3 3687 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3688 return ret;
8f4e2101 3689release:
09cbfeaf 3690 put_page(page);
8f4e2101 3691 goto unlock;
8a9f3ccd 3692oom_free_page:
09cbfeaf 3693 put_page(page);
65500d23 3694oom:
1da177e4
LT
3695 return VM_FAULT_OOM;
3696}
3697
9a95f3cf 3698/*
c1e8d7c6 3699 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3700 * released depending on flags and vma->vm_ops->fault() return value.
3701 * See filemap_fault() and __lock_page_retry().
3702 */
2b740303 3703static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3704{
82b0f8c3 3705 struct vm_area_struct *vma = vmf->vma;
2b740303 3706 vm_fault_t ret;
7eae74af 3707
63f3655f
MH
3708 /*
3709 * Preallocate pte before we take page_lock because this might lead to
3710 * deadlocks for memcg reclaim which waits for pages under writeback:
3711 * lock_page(A)
3712 * SetPageWriteback(A)
3713 * unlock_page(A)
3714 * lock_page(B)
3715 * lock_page(B)
d383807a 3716 * pte_alloc_one
63f3655f
MH
3717 * shrink_page_list
3718 * wait_on_page_writeback(A)
3719 * SetPageWriteback(B)
3720 * unlock_page(B)
3721 * # flush A, B to clear the writeback
3722 */
3723 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3724 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3725 if (!vmf->prealloc_pte)
3726 return VM_FAULT_OOM;
3727 smp_wmb(); /* See comment in __pte_alloc() */
3728 }
3729
11bac800 3730 ret = vma->vm_ops->fault(vmf);
3917048d 3731 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3732 VM_FAULT_DONE_COW)))
bc2466e4 3733 return ret;
7eae74af 3734
667240e0 3735 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3736 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3737 unlock_page(vmf->page);
3738 put_page(vmf->page);
936ca80d 3739 vmf->page = NULL;
7eae74af
KS
3740 return VM_FAULT_HWPOISON;
3741 }
3742
3743 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3744 lock_page(vmf->page);
7eae74af 3745 else
667240e0 3746 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3747
7eae74af
KS
3748 return ret;
3749}
3750
396bcc52 3751#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3752static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3753{
82b0f8c3 3754 struct vm_area_struct *vma = vmf->vma;
953c66c2 3755
82b0f8c3 3756 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3757 /*
3758 * We are going to consume the prealloc table,
3759 * count that as nr_ptes.
3760 */
c4812909 3761 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3762 vmf->prealloc_pte = NULL;
953c66c2
AK
3763}
3764
f9ce0be7 3765vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3766{
82b0f8c3
JK
3767 struct vm_area_struct *vma = vmf->vma;
3768 bool write = vmf->flags & FAULT_FLAG_WRITE;
3769 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3770 pmd_t entry;
2b740303 3771 int i;
d01ac3c3 3772 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
3773
3774 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 3775 return ret;
10102459 3776
10102459 3777 page = compound_head(page);
d01ac3c3
MWO
3778 if (compound_order(page) != HPAGE_PMD_ORDER)
3779 return ret;
10102459 3780
953c66c2 3781 /*
f0953a1b 3782 * Archs like ppc64 need additional space to store information
953c66c2
AK
3783 * related to pte entry. Use the preallocated table for that.
3784 */
82b0f8c3 3785 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3786 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3787 if (!vmf->prealloc_pte)
953c66c2
AK
3788 return VM_FAULT_OOM;
3789 smp_wmb(); /* See comment in __pte_alloc() */
3790 }
3791
82b0f8c3
JK
3792 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3793 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3794 goto out;
3795
3796 for (i = 0; i < HPAGE_PMD_NR; i++)
3797 flush_icache_page(vma, page + i);
3798
3799 entry = mk_huge_pmd(page, vma->vm_page_prot);
3800 if (write)
f55e1014 3801 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3802
fadae295 3803 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3804 page_add_file_rmap(page, true);
953c66c2
AK
3805 /*
3806 * deposit and withdraw with pmd lock held
3807 */
3808 if (arch_needs_pgtable_deposit())
82b0f8c3 3809 deposit_prealloc_pte(vmf);
10102459 3810
82b0f8c3 3811 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3812
82b0f8c3 3813 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3814
3815 /* fault is handled */
3816 ret = 0;
95ecedcd 3817 count_vm_event(THP_FILE_MAPPED);
10102459 3818out:
82b0f8c3 3819 spin_unlock(vmf->ptl);
10102459
KS
3820 return ret;
3821}
3822#else
f9ce0be7 3823vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3824{
f9ce0be7 3825 return VM_FAULT_FALLBACK;
10102459
KS
3826}
3827#endif
3828
9d3af4b4 3829void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 3830{
82b0f8c3
JK
3831 struct vm_area_struct *vma = vmf->vma;
3832 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 3833 bool prefault = vmf->address != addr;
3bb97794 3834 pte_t entry;
7267ec00 3835
3bb97794
KS
3836 flush_icache_page(vma, page);
3837 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
3838
3839 if (prefault && arch_wants_old_prefaulted_pte())
3840 entry = pte_mkold(entry);
50c25ee9
TB
3841 else
3842 entry = pte_sw_mkyoung(entry);
46bdb427 3843
3bb97794
KS
3844 if (write)
3845 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3846 /* copy-on-write page */
3847 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3848 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
9d3af4b4 3849 page_add_new_anon_rmap(page, vma, addr, false);
b518154e 3850 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3851 } else {
eca56ff9 3852 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3853 page_add_file_rmap(page, false);
3bb97794 3854 }
9d3af4b4 3855 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
3856}
3857
9118c0cb
JK
3858/**
3859 * finish_fault - finish page fault once we have prepared the page to fault
3860 *
3861 * @vmf: structure describing the fault
3862 *
3863 * This function handles all that is needed to finish a page fault once the
3864 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3865 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3866 * addition.
9118c0cb
JK
3867 *
3868 * The function expects the page to be locked and on success it consumes a
3869 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3870 *
3871 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3872 */
2b740303 3873vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 3874{
f9ce0be7 3875 struct vm_area_struct *vma = vmf->vma;
9118c0cb 3876 struct page *page;
f9ce0be7 3877 vm_fault_t ret;
9118c0cb
JK
3878
3879 /* Did we COW the page? */
f9ce0be7 3880 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
3881 page = vmf->cow_page;
3882 else
3883 page = vmf->page;
6b31d595
MH
3884
3885 /*
3886 * check even for read faults because we might have lost our CoWed
3887 * page
3888 */
f9ce0be7
KS
3889 if (!(vma->vm_flags & VM_SHARED)) {
3890 ret = check_stable_address_space(vma->vm_mm);
3891 if (ret)
3892 return ret;
3893 }
3894
3895 if (pmd_none(*vmf->pmd)) {
3896 if (PageTransCompound(page)) {
3897 ret = do_set_pmd(vmf, page);
3898 if (ret != VM_FAULT_FALLBACK)
3899 return ret;
3900 }
3901
3902 if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3903 return VM_FAULT_OOM;
3904 }
3905
3906 /* See comment in handle_pte_fault() */
3907 if (pmd_devmap_trans_unstable(vmf->pmd))
3908 return 0;
3909
3910 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3911 vmf->address, &vmf->ptl);
3912 ret = 0;
3913 /* Re-check under ptl */
3914 if (likely(pte_none(*vmf->pte)))
9d3af4b4 3915 do_set_pte(vmf, page, vmf->address);
f9ce0be7
KS
3916 else
3917 ret = VM_FAULT_NOPAGE;
3918
3919 update_mmu_tlb(vma, vmf->address, vmf->pte);
3920 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
3921 return ret;
3922}
3923
3a91053a
KS
3924static unsigned long fault_around_bytes __read_mostly =
3925 rounddown_pow_of_two(65536);
a9b0f861 3926
a9b0f861
KS
3927#ifdef CONFIG_DEBUG_FS
3928static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3929{
a9b0f861 3930 *val = fault_around_bytes;
1592eef0
KS
3931 return 0;
3932}
3933
b4903d6e 3934/*
da391d64
WK
3935 * fault_around_bytes must be rounded down to the nearest page order as it's
3936 * what do_fault_around() expects to see.
b4903d6e 3937 */
a9b0f861 3938static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3939{
a9b0f861 3940 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3941 return -EINVAL;
b4903d6e
AR
3942 if (val > PAGE_SIZE)
3943 fault_around_bytes = rounddown_pow_of_two(val);
3944 else
3945 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3946 return 0;
3947}
0a1345f8 3948DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3949 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3950
3951static int __init fault_around_debugfs(void)
3952{
d9f7979c
GKH
3953 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3954 &fault_around_bytes_fops);
1592eef0
KS
3955 return 0;
3956}
3957late_initcall(fault_around_debugfs);
1592eef0 3958#endif
8c6e50b0 3959
1fdb412b
KS
3960/*
3961 * do_fault_around() tries to map few pages around the fault address. The hope
3962 * is that the pages will be needed soon and this will lower the number of
3963 * faults to handle.
3964 *
3965 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3966 * not ready to be mapped: not up-to-date, locked, etc.
3967 *
3968 * This function is called with the page table lock taken. In the split ptlock
3969 * case the page table lock only protects only those entries which belong to
3970 * the page table corresponding to the fault address.
3971 *
3972 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3973 * only once.
3974 *
da391d64
WK
3975 * fault_around_bytes defines how many bytes we'll try to map.
3976 * do_fault_around() expects it to be set to a power of two less than or equal
3977 * to PTRS_PER_PTE.
1fdb412b 3978 *
da391d64
WK
3979 * The virtual address of the area that we map is naturally aligned to
3980 * fault_around_bytes rounded down to the machine page size
3981 * (and therefore to page order). This way it's easier to guarantee
3982 * that we don't cross page table boundaries.
1fdb412b 3983 */
2b740303 3984static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3985{
82b0f8c3 3986 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3987 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3988 pgoff_t end_pgoff;
2b740303 3989 int off;
8c6e50b0 3990
4db0c3c2 3991 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3992 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3993
f9ce0be7
KS
3994 address = max(address & mask, vmf->vma->vm_start);
3995 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3996 start_pgoff -= off;
8c6e50b0
KS
3997
3998 /*
da391d64
WK
3999 * end_pgoff is either the end of the page table, the end of
4000 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 4001 */
bae473a4 4002 end_pgoff = start_pgoff -
f9ce0be7 4003 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 4004 PTRS_PER_PTE - 1;
82b0f8c3 4005 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 4006 start_pgoff + nr_pages - 1);
8c6e50b0 4007
82b0f8c3 4008 if (pmd_none(*vmf->pmd)) {
4cf58924 4009 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4010 if (!vmf->prealloc_pte)
f9ce0be7 4011 return VM_FAULT_OOM;
7267ec00 4012 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
4013 }
4014
f9ce0be7 4015 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
8c6e50b0
KS
4016}
4017
2b740303 4018static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4019{
82b0f8c3 4020 struct vm_area_struct *vma = vmf->vma;
2b740303 4021 vm_fault_t ret = 0;
8c6e50b0
KS
4022
4023 /*
4024 * Let's call ->map_pages() first and use ->fault() as fallback
4025 * if page by the offset is not ready to be mapped (cold cache or
4026 * something).
4027 */
9b4bdd2f 4028 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 4029 ret = do_fault_around(vmf);
7267ec00
KS
4030 if (ret)
4031 return ret;
8c6e50b0 4032 }
e655fb29 4033
936ca80d 4034 ret = __do_fault(vmf);
e655fb29
KS
4035 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4036 return ret;
4037
9118c0cb 4038 ret |= finish_fault(vmf);
936ca80d 4039 unlock_page(vmf->page);
7267ec00 4040 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4041 put_page(vmf->page);
e655fb29
KS
4042 return ret;
4043}
4044
2b740303 4045static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4046{
82b0f8c3 4047 struct vm_area_struct *vma = vmf->vma;
2b740303 4048 vm_fault_t ret;
ec47c3b9
KS
4049
4050 if (unlikely(anon_vma_prepare(vma)))
4051 return VM_FAULT_OOM;
4052
936ca80d
JK
4053 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4054 if (!vmf->cow_page)
ec47c3b9
KS
4055 return VM_FAULT_OOM;
4056
d9eb1ea2 4057 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4058 put_page(vmf->cow_page);
ec47c3b9
KS
4059 return VM_FAULT_OOM;
4060 }
9d82c694 4061 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4062
936ca80d 4063 ret = __do_fault(vmf);
ec47c3b9
KS
4064 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4065 goto uncharge_out;
3917048d
JK
4066 if (ret & VM_FAULT_DONE_COW)
4067 return ret;
ec47c3b9 4068
b1aa812b 4069 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4070 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4071
9118c0cb 4072 ret |= finish_fault(vmf);
b1aa812b
JK
4073 unlock_page(vmf->page);
4074 put_page(vmf->page);
7267ec00
KS
4075 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4076 goto uncharge_out;
ec47c3b9
KS
4077 return ret;
4078uncharge_out:
936ca80d 4079 put_page(vmf->cow_page);
ec47c3b9
KS
4080 return ret;
4081}
4082
2b740303 4083static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4084{
82b0f8c3 4085 struct vm_area_struct *vma = vmf->vma;
2b740303 4086 vm_fault_t ret, tmp;
1d65f86d 4087
936ca80d 4088 ret = __do_fault(vmf);
7eae74af 4089 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4090 return ret;
1da177e4
LT
4091
4092 /*
f0c6d4d2
KS
4093 * Check if the backing address space wants to know that the page is
4094 * about to become writable
1da177e4 4095 */
fb09a464 4096 if (vma->vm_ops->page_mkwrite) {
936ca80d 4097 unlock_page(vmf->page);
38b8cb7f 4098 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4099 if (unlikely(!tmp ||
4100 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4101 put_page(vmf->page);
fb09a464 4102 return tmp;
4294621f 4103 }
fb09a464
KS
4104 }
4105
9118c0cb 4106 ret |= finish_fault(vmf);
7267ec00
KS
4107 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4108 VM_FAULT_RETRY))) {
936ca80d
JK
4109 unlock_page(vmf->page);
4110 put_page(vmf->page);
f0c6d4d2 4111 return ret;
1da177e4 4112 }
b827e496 4113
89b15332 4114 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4115 return ret;
54cb8821 4116}
d00806b1 4117
9a95f3cf 4118/*
c1e8d7c6 4119 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4120 * but allow concurrent faults).
c1e8d7c6 4121 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4122 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4123 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4124 * by other thread calling munmap()).
9a95f3cf 4125 */
2b740303 4126static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4127{
82b0f8c3 4128 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4129 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4130 vm_fault_t ret;
54cb8821 4131
ff09d7ec
AK
4132 /*
4133 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4134 */
4135 if (!vma->vm_ops->fault) {
4136 /*
4137 * If we find a migration pmd entry or a none pmd entry, which
4138 * should never happen, return SIGBUS
4139 */
4140 if (unlikely(!pmd_present(*vmf->pmd)))
4141 ret = VM_FAULT_SIGBUS;
4142 else {
4143 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4144 vmf->pmd,
4145 vmf->address,
4146 &vmf->ptl);
4147 /*
4148 * Make sure this is not a temporary clearing of pte
4149 * by holding ptl and checking again. A R/M/W update
4150 * of pte involves: take ptl, clearing the pte so that
4151 * we don't have concurrent modification by hardware
4152 * followed by an update.
4153 */
4154 if (unlikely(pte_none(*vmf->pte)))
4155 ret = VM_FAULT_SIGBUS;
4156 else
4157 ret = VM_FAULT_NOPAGE;
4158
4159 pte_unmap_unlock(vmf->pte, vmf->ptl);
4160 }
4161 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4162 ret = do_read_fault(vmf);
4163 else if (!(vma->vm_flags & VM_SHARED))
4164 ret = do_cow_fault(vmf);
4165 else
4166 ret = do_shared_fault(vmf);
4167
4168 /* preallocated pagetable is unused: free it */
4169 if (vmf->prealloc_pte) {
fc8efd2d 4170 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4171 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4172 }
4173 return ret;
54cb8821
NP
4174}
4175
b19a9939 4176static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4177 unsigned long addr, int page_nid,
4178 int *flags)
9532fec1
MG
4179{
4180 get_page(page);
4181
4182 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4183 if (page_nid == numa_node_id()) {
9532fec1 4184 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4185 *flags |= TNF_FAULT_LOCAL;
4186 }
9532fec1
MG
4187
4188 return mpol_misplaced(page, vma, addr);
4189}
4190
2b740303 4191static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4192{
82b0f8c3 4193 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4194 struct page *page = NULL;
98fa15f3 4195 int page_nid = NUMA_NO_NODE;
90572890 4196 int last_cpupid;
cbee9f88 4197 int target_nid;
04a86453 4198 pte_t pte, old_pte;
288bc549 4199 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4200 int flags = 0;
d10e63f2
MG
4201
4202 /*
166f61b9
TH
4203 * The "pte" at this point cannot be used safely without
4204 * validation through pte_unmap_same(). It's of NUMA type but
4205 * the pfn may be screwed if the read is non atomic.
166f61b9 4206 */
82b0f8c3
JK
4207 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4208 spin_lock(vmf->ptl);
cee216a6 4209 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4210 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4211 goto out;
4212 }
4213
b99a342d
HY
4214 /* Get the normal PTE */
4215 old_pte = ptep_get(vmf->pte);
04a86453 4216 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4217
82b0f8c3 4218 page = vm_normal_page(vma, vmf->address, pte);
b99a342d
HY
4219 if (!page)
4220 goto out_map;
d10e63f2 4221
e81c4802 4222 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4223 if (PageCompound(page))
4224 goto out_map;
e81c4802 4225
6688cc05 4226 /*
bea66fbd
MG
4227 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4228 * much anyway since they can be in shared cache state. This misses
4229 * the case where a mapping is writable but the process never writes
4230 * to it but pte_write gets cleared during protection updates and
4231 * pte_dirty has unpredictable behaviour between PTE scan updates,
4232 * background writeback, dirty balancing and application behaviour.
6688cc05 4233 */
b99a342d 4234 if (!was_writable)
6688cc05
PZ
4235 flags |= TNF_NO_GROUP;
4236
dabe1d99
RR
4237 /*
4238 * Flag if the page is shared between multiple address spaces. This
4239 * is later used when determining whether to group tasks together
4240 */
4241 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4242 flags |= TNF_SHARED;
4243
90572890 4244 last_cpupid = page_cpupid_last(page);
8191acbd 4245 page_nid = page_to_nid(page);
82b0f8c3 4246 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4247 &flags);
98fa15f3 4248 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4249 put_page(page);
b99a342d 4250 goto out_map;
4daae3b4 4251 }
b99a342d 4252 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4253
4254 /* Migrate to the requested node */
bf90ac19 4255 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4256 page_nid = target_nid;
6688cc05 4257 flags |= TNF_MIGRATED;
b99a342d 4258 } else {
074c2381 4259 flags |= TNF_MIGRATE_FAIL;
b99a342d
HY
4260 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4261 spin_lock(vmf->ptl);
4262 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4263 pte_unmap_unlock(vmf->pte, vmf->ptl);
4264 goto out;
4265 }
4266 goto out_map;
4267 }
4daae3b4
MG
4268
4269out:
98fa15f3 4270 if (page_nid != NUMA_NO_NODE)
6688cc05 4271 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4272 return 0;
b99a342d
HY
4273out_map:
4274 /*
4275 * Make it present again, depending on how arch implements
4276 * non-accessible ptes, some can allow access by kernel mode.
4277 */
4278 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4279 pte = pte_modify(old_pte, vma->vm_page_prot);
4280 pte = pte_mkyoung(pte);
4281 if (was_writable)
4282 pte = pte_mkwrite(pte);
4283 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4284 update_mmu_cache(vma, vmf->address, vmf->pte);
4285 pte_unmap_unlock(vmf->pte, vmf->ptl);
4286 goto out;
d10e63f2
MG
4287}
4288
2b740303 4289static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4290{
f4200391 4291 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4292 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4293 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4294 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4295 return VM_FAULT_FALLBACK;
4296}
4297
183f24aa 4298/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4299static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4300{
529b930b 4301 if (vma_is_anonymous(vmf->vma)) {
292924b2 4302 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4303 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4304 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4305 }
327e9fd4
THV
4306 if (vmf->vma->vm_ops->huge_fault) {
4307 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4308
4309 if (!(ret & VM_FAULT_FALLBACK))
4310 return ret;
4311 }
af9e4d5f 4312
327e9fd4 4313 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4314 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4315
b96375f7
MW
4316 return VM_FAULT_FALLBACK;
4317}
4318
2b740303 4319static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4320{
327e9fd4
THV
4321#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4322 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4323 /* No support for anonymous transparent PUD pages yet */
4324 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4325 goto split;
4326 if (vmf->vma->vm_ops->huge_fault) {
4327 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4328
4329 if (!(ret & VM_FAULT_FALLBACK))
4330 return ret;
4331 }
4332split:
4333 /* COW or write-notify not handled on PUD level: split pud.*/
4334 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4335#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4336 return VM_FAULT_FALLBACK;
4337}
4338
2b740303 4339static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4340{
4341#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4342 /* No support for anonymous transparent PUD pages yet */
4343 if (vma_is_anonymous(vmf->vma))
4344 return VM_FAULT_FALLBACK;
4345 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4346 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4347#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4348 return VM_FAULT_FALLBACK;
4349}
4350
1da177e4
LT
4351/*
4352 * These routines also need to handle stuff like marking pages dirty
4353 * and/or accessed for architectures that don't do it in hardware (most
4354 * RISC architectures). The early dirtying is also good on the i386.
4355 *
4356 * There is also a hook called "update_mmu_cache()" that architectures
4357 * with external mmu caches can use to update those (ie the Sparc or
4358 * PowerPC hashed page tables that act as extended TLBs).
4359 *
c1e8d7c6 4360 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4361 * concurrent faults).
9a95f3cf 4362 *
c1e8d7c6 4363 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4364 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4365 */
2b740303 4366static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4367{
4368 pte_t entry;
4369
82b0f8c3 4370 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4371 /*
4372 * Leave __pte_alloc() until later: because vm_ops->fault may
4373 * want to allocate huge page, and if we expose page table
4374 * for an instant, it will be difficult to retract from
4375 * concurrent faults and from rmap lookups.
4376 */
82b0f8c3 4377 vmf->pte = NULL;
7267ec00 4378 } else {
f9ce0be7
KS
4379 /*
4380 * If a huge pmd materialized under us just retry later. Use
4381 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4382 * of pmd_trans_huge() to ensure the pmd didn't become
4383 * pmd_trans_huge under us and then back to pmd_none, as a
4384 * result of MADV_DONTNEED running immediately after a huge pmd
4385 * fault in a different thread of this mm, in turn leading to a
4386 * misleading pmd_trans_huge() retval. All we have to ensure is
4387 * that it is a regular pmd that we can walk with
4388 * pte_offset_map() and we can do that through an atomic read
4389 * in C, which is what pmd_trans_unstable() provides.
4390 */
d0f0931d 4391 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4392 return 0;
4393 /*
4394 * A regular pmd is established and it can't morph into a huge
4395 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4396 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4397 * So now it's safe to run pte_offset_map().
4398 */
82b0f8c3 4399 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4400 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4401
4402 /*
4403 * some architectures can have larger ptes than wordsize,
4404 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4405 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4406 * accesses. The code below just needs a consistent view
4407 * for the ifs and we later double check anyway with the
7267ec00
KS
4408 * ptl lock held. So here a barrier will do.
4409 */
4410 barrier();
2994302b 4411 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4412 pte_unmap(vmf->pte);
4413 vmf->pte = NULL;
65500d23 4414 }
1da177e4
LT
4415 }
4416
82b0f8c3
JK
4417 if (!vmf->pte) {
4418 if (vma_is_anonymous(vmf->vma))
4419 return do_anonymous_page(vmf);
7267ec00 4420 else
82b0f8c3 4421 return do_fault(vmf);
7267ec00
KS
4422 }
4423
2994302b
JK
4424 if (!pte_present(vmf->orig_pte))
4425 return do_swap_page(vmf);
7267ec00 4426
2994302b
JK
4427 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4428 return do_numa_page(vmf);
d10e63f2 4429
82b0f8c3
JK
4430 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4431 spin_lock(vmf->ptl);
2994302b 4432 entry = vmf->orig_pte;
7df67697
BM
4433 if (unlikely(!pte_same(*vmf->pte, entry))) {
4434 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4435 goto unlock;
7df67697 4436 }
82b0f8c3 4437 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4438 if (!pte_write(entry))
2994302b 4439 return do_wp_page(vmf);
1da177e4
LT
4440 entry = pte_mkdirty(entry);
4441 }
4442 entry = pte_mkyoung(entry);
82b0f8c3
JK
4443 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4444 vmf->flags & FAULT_FLAG_WRITE)) {
4445 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4446 } else {
b7333b58
YS
4447 /* Skip spurious TLB flush for retried page fault */
4448 if (vmf->flags & FAULT_FLAG_TRIED)
4449 goto unlock;
1a44e149
AA
4450 /*
4451 * This is needed only for protection faults but the arch code
4452 * is not yet telling us if this is a protection fault or not.
4453 * This still avoids useless tlb flushes for .text page faults
4454 * with threads.
4455 */
82b0f8c3
JK
4456 if (vmf->flags & FAULT_FLAG_WRITE)
4457 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4458 }
8f4e2101 4459unlock:
82b0f8c3 4460 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4461 return 0;
1da177e4
LT
4462}
4463
4464/*
4465 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4466 *
c1e8d7c6 4467 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4468 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4469 */
2b740303
SJ
4470static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4471 unsigned long address, unsigned int flags)
1da177e4 4472{
82b0f8c3 4473 struct vm_fault vmf = {
bae473a4 4474 .vma = vma,
1a29d85e 4475 .address = address & PAGE_MASK,
bae473a4 4476 .flags = flags,
0721ec8b 4477 .pgoff = linear_page_index(vma, address),
667240e0 4478 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4479 };
fde26bed 4480 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4481 struct mm_struct *mm = vma->vm_mm;
1da177e4 4482 pgd_t *pgd;
c2febafc 4483 p4d_t *p4d;
2b740303 4484 vm_fault_t ret;
1da177e4 4485
1da177e4 4486 pgd = pgd_offset(mm, address);
c2febafc
KS
4487 p4d = p4d_alloc(mm, pgd, address);
4488 if (!p4d)
4489 return VM_FAULT_OOM;
a00cc7d9 4490
c2febafc 4491 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4492 if (!vmf.pud)
c74df32c 4493 return VM_FAULT_OOM;
625110b5 4494retry_pud:
7635d9cb 4495 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4496 ret = create_huge_pud(&vmf);
4497 if (!(ret & VM_FAULT_FALLBACK))
4498 return ret;
4499 } else {
4500 pud_t orig_pud = *vmf.pud;
4501
4502 barrier();
4503 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4504
a00cc7d9
MW
4505 /* NUMA case for anonymous PUDs would go here */
4506
f6f37321 4507 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4508 ret = wp_huge_pud(&vmf, orig_pud);
4509 if (!(ret & VM_FAULT_FALLBACK))
4510 return ret;
4511 } else {
4512 huge_pud_set_accessed(&vmf, orig_pud);
4513 return 0;
4514 }
4515 }
4516 }
4517
4518 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4519 if (!vmf.pmd)
c74df32c 4520 return VM_FAULT_OOM;
625110b5
TH
4521
4522 /* Huge pud page fault raced with pmd_alloc? */
4523 if (pud_trans_unstable(vmf.pud))
4524 goto retry_pud;
4525
7635d9cb 4526 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4527 ret = create_huge_pmd(&vmf);
c0292554
KS
4528 if (!(ret & VM_FAULT_FALLBACK))
4529 return ret;
71e3aac0 4530 } else {
82b0f8c3 4531 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4532
71e3aac0 4533 barrier();
84c3fc4e
ZY
4534 if (unlikely(is_swap_pmd(orig_pmd))) {
4535 VM_BUG_ON(thp_migration_supported() &&
4536 !is_pmd_migration_entry(orig_pmd));
4537 if (is_pmd_migration_entry(orig_pmd))
4538 pmd_migration_entry_wait(mm, vmf.pmd);
4539 return 0;
4540 }
5c7fb56e 4541 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4542 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4543 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4544
f6f37321 4545 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4546 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4547 if (!(ret & VM_FAULT_FALLBACK))
4548 return ret;
a1dd450b 4549 } else {
82b0f8c3 4550 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4551 return 0;
1f1d06c3 4552 }
71e3aac0
AA
4553 }
4554 }
4555
82b0f8c3 4556 return handle_pte_fault(&vmf);
1da177e4
LT
4557}
4558
bce617ed 4559/**
f0953a1b 4560 * mm_account_fault - Do page fault accounting
bce617ed
PX
4561 *
4562 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4563 * of perf event counters, but we'll still do the per-task accounting to
4564 * the task who triggered this page fault.
4565 * @address: the faulted address.
4566 * @flags: the fault flags.
4567 * @ret: the fault retcode.
4568 *
f0953a1b 4569 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 4570 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 4571 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
4572 * still be in per-arch page fault handlers at the entry of page fault.
4573 */
4574static inline void mm_account_fault(struct pt_regs *regs,
4575 unsigned long address, unsigned int flags,
4576 vm_fault_t ret)
4577{
4578 bool major;
4579
4580 /*
4581 * We don't do accounting for some specific faults:
4582 *
4583 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4584 * includes arch_vma_access_permitted() failing before reaching here.
4585 * So this is not a "this many hardware page faults" counter. We
4586 * should use the hw profiling for that.
4587 *
4588 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4589 * once they're completed.
4590 */
4591 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4592 return;
4593
4594 /*
4595 * We define the fault as a major fault when the final successful fault
4596 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4597 * handle it immediately previously).
4598 */
4599 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4600
a2beb5f1
PX
4601 if (major)
4602 current->maj_flt++;
4603 else
4604 current->min_flt++;
4605
bce617ed 4606 /*
a2beb5f1
PX
4607 * If the fault is done for GUP, regs will be NULL. We only do the
4608 * accounting for the per thread fault counters who triggered the
4609 * fault, and we skip the perf event updates.
bce617ed
PX
4610 */
4611 if (!regs)
4612 return;
4613
a2beb5f1 4614 if (major)
bce617ed 4615 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4616 else
bce617ed 4617 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4618}
4619
9a95f3cf
PC
4620/*
4621 * By the time we get here, we already hold the mm semaphore
4622 *
c1e8d7c6 4623 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4624 * return value. See filemap_fault() and __lock_page_or_retry().
4625 */
2b740303 4626vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4627 unsigned int flags, struct pt_regs *regs)
519e5247 4628{
2b740303 4629 vm_fault_t ret;
519e5247
JW
4630
4631 __set_current_state(TASK_RUNNING);
4632
4633 count_vm_event(PGFAULT);
2262185c 4634 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4635
4636 /* do counter updates before entering really critical section. */
4637 check_sync_rss_stat(current);
4638
de0c799b
LD
4639 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4640 flags & FAULT_FLAG_INSTRUCTION,
4641 flags & FAULT_FLAG_REMOTE))
4642 return VM_FAULT_SIGSEGV;
4643
519e5247
JW
4644 /*
4645 * Enable the memcg OOM handling for faults triggered in user
4646 * space. Kernel faults are handled more gracefully.
4647 */
4648 if (flags & FAULT_FLAG_USER)
29ef680a 4649 mem_cgroup_enter_user_fault();
519e5247 4650
bae473a4
KS
4651 if (unlikely(is_vm_hugetlb_page(vma)))
4652 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4653 else
4654 ret = __handle_mm_fault(vma, address, flags);
519e5247 4655
49426420 4656 if (flags & FAULT_FLAG_USER) {
29ef680a 4657 mem_cgroup_exit_user_fault();
166f61b9
TH
4658 /*
4659 * The task may have entered a memcg OOM situation but
4660 * if the allocation error was handled gracefully (no
4661 * VM_FAULT_OOM), there is no need to kill anything.
4662 * Just clean up the OOM state peacefully.
4663 */
4664 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4665 mem_cgroup_oom_synchronize(false);
49426420 4666 }
3812c8c8 4667
bce617ed
PX
4668 mm_account_fault(regs, address, flags, ret);
4669
519e5247
JW
4670 return ret;
4671}
e1d6d01a 4672EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4673
90eceff1
KS
4674#ifndef __PAGETABLE_P4D_FOLDED
4675/*
4676 * Allocate p4d page table.
4677 * We've already handled the fast-path in-line.
4678 */
4679int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4680{
4681 p4d_t *new = p4d_alloc_one(mm, address);
4682 if (!new)
4683 return -ENOMEM;
4684
4685 smp_wmb(); /* See comment in __pte_alloc */
4686
4687 spin_lock(&mm->page_table_lock);
4688 if (pgd_present(*pgd)) /* Another has populated it */
4689 p4d_free(mm, new);
4690 else
4691 pgd_populate(mm, pgd, new);
4692 spin_unlock(&mm->page_table_lock);
4693 return 0;
4694}
4695#endif /* __PAGETABLE_P4D_FOLDED */
4696
1da177e4
LT
4697#ifndef __PAGETABLE_PUD_FOLDED
4698/*
4699 * Allocate page upper directory.
872fec16 4700 * We've already handled the fast-path in-line.
1da177e4 4701 */
c2febafc 4702int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4703{
c74df32c
HD
4704 pud_t *new = pud_alloc_one(mm, address);
4705 if (!new)
1bb3630e 4706 return -ENOMEM;
1da177e4 4707
362a61ad
NP
4708 smp_wmb(); /* See comment in __pte_alloc */
4709
872fec16 4710 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4711 if (!p4d_present(*p4d)) {
4712 mm_inc_nr_puds(mm);
c2febafc 4713 p4d_populate(mm, p4d, new);
b4e98d9a 4714 } else /* Another has populated it */
5e541973 4715 pud_free(mm, new);
c74df32c 4716 spin_unlock(&mm->page_table_lock);
1bb3630e 4717 return 0;
1da177e4
LT
4718}
4719#endif /* __PAGETABLE_PUD_FOLDED */
4720
4721#ifndef __PAGETABLE_PMD_FOLDED
4722/*
4723 * Allocate page middle directory.
872fec16 4724 * We've already handled the fast-path in-line.
1da177e4 4725 */
1bb3630e 4726int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4727{
a00cc7d9 4728 spinlock_t *ptl;
c74df32c
HD
4729 pmd_t *new = pmd_alloc_one(mm, address);
4730 if (!new)
1bb3630e 4731 return -ENOMEM;
1da177e4 4732
362a61ad
NP
4733 smp_wmb(); /* See comment in __pte_alloc */
4734
a00cc7d9 4735 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4736 if (!pud_present(*pud)) {
4737 mm_inc_nr_pmds(mm);
1bb3630e 4738 pud_populate(mm, pud, new);
dc6c9a35 4739 } else /* Another has populated it */
5e541973 4740 pmd_free(mm, new);
a00cc7d9 4741 spin_unlock(ptl);
1bb3630e 4742 return 0;
e0f39591 4743}
1da177e4
LT
4744#endif /* __PAGETABLE_PMD_FOLDED */
4745
9fd6dad1
PB
4746int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4747 struct mmu_notifier_range *range, pte_t **ptepp,
4748 pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4749{
4750 pgd_t *pgd;
c2febafc 4751 p4d_t *p4d;
f8ad0f49
JW
4752 pud_t *pud;
4753 pmd_t *pmd;
4754 pte_t *ptep;
4755
4756 pgd = pgd_offset(mm, address);
4757 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4758 goto out;
4759
c2febafc
KS
4760 p4d = p4d_offset(pgd, address);
4761 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4762 goto out;
4763
4764 pud = pud_offset(p4d, address);
f8ad0f49
JW
4765 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4766 goto out;
4767
4768 pmd = pmd_offset(pud, address);
f66055ab 4769 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4770
09796395
RZ
4771 if (pmd_huge(*pmd)) {
4772 if (!pmdpp)
4773 goto out;
4774
ac46d4f3 4775 if (range) {
7269f999 4776 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4777 NULL, mm, address & PMD_MASK,
4778 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4779 mmu_notifier_invalidate_range_start(range);
a4d1a885 4780 }
09796395
RZ
4781 *ptlp = pmd_lock(mm, pmd);
4782 if (pmd_huge(*pmd)) {
4783 *pmdpp = pmd;
4784 return 0;
4785 }
4786 spin_unlock(*ptlp);
ac46d4f3
JG
4787 if (range)
4788 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4789 }
4790
4791 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4792 goto out;
4793
ac46d4f3 4794 if (range) {
7269f999 4795 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4796 address & PAGE_MASK,
4797 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4798 mmu_notifier_invalidate_range_start(range);
a4d1a885 4799 }
f8ad0f49 4800 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4801 if (!pte_present(*ptep))
4802 goto unlock;
4803 *ptepp = ptep;
4804 return 0;
4805unlock:
4806 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4807 if (range)
4808 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4809out:
4810 return -EINVAL;
4811}
4812
9fd6dad1
PB
4813/**
4814 * follow_pte - look up PTE at a user virtual address
4815 * @mm: the mm_struct of the target address space
4816 * @address: user virtual address
4817 * @ptepp: location to store found PTE
4818 * @ptlp: location to store the lock for the PTE
4819 *
4820 * On a successful return, the pointer to the PTE is stored in @ptepp;
4821 * the corresponding lock is taken and its location is stored in @ptlp.
4822 * The contents of the PTE are only stable until @ptlp is released;
4823 * any further use, if any, must be protected against invalidation
4824 * with MMU notifiers.
4825 *
4826 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
4827 * should be taken for read.
4828 *
4829 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
4830 * it is not a good general-purpose API.
4831 *
4832 * Return: zero on success, -ve otherwise.
4833 */
4834int follow_pte(struct mm_struct *mm, unsigned long address,
4835 pte_t **ptepp, spinlock_t **ptlp)
4836{
4837 return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4838}
4839EXPORT_SYMBOL_GPL(follow_pte);
4840
3b6748e2
JW
4841/**
4842 * follow_pfn - look up PFN at a user virtual address
4843 * @vma: memory mapping
4844 * @address: user virtual address
4845 * @pfn: location to store found PFN
4846 *
4847 * Only IO mappings and raw PFN mappings are allowed.
4848 *
9fd6dad1
PB
4849 * This function does not allow the caller to read the permissions
4850 * of the PTE. Do not use it.
4851 *
a862f68a 4852 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4853 */
4854int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4855 unsigned long *pfn)
4856{
4857 int ret = -EINVAL;
4858 spinlock_t *ptl;
4859 pte_t *ptep;
4860
4861 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4862 return ret;
4863
9fd6dad1 4864 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
4865 if (ret)
4866 return ret;
4867 *pfn = pte_pfn(*ptep);
4868 pte_unmap_unlock(ptep, ptl);
4869 return 0;
4870}
4871EXPORT_SYMBOL(follow_pfn);
4872
28b2ee20 4873#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4874int follow_phys(struct vm_area_struct *vma,
4875 unsigned long address, unsigned int flags,
4876 unsigned long *prot, resource_size_t *phys)
28b2ee20 4877{
03668a4d 4878 int ret = -EINVAL;
28b2ee20
RR
4879 pte_t *ptep, pte;
4880 spinlock_t *ptl;
28b2ee20 4881
d87fe660 4882 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4883 goto out;
28b2ee20 4884
9fd6dad1 4885 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4886 goto out;
28b2ee20 4887 pte = *ptep;
03668a4d 4888
f6f37321 4889 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4890 goto unlock;
28b2ee20
RR
4891
4892 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4893 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4894
03668a4d 4895 ret = 0;
28b2ee20
RR
4896unlock:
4897 pte_unmap_unlock(ptep, ptl);
4898out:
d87fe660 4899 return ret;
28b2ee20
RR
4900}
4901
96667f8a
SV
4902/**
4903 * generic_access_phys - generic implementation for iomem mmap access
4904 * @vma: the vma to access
f0953a1b 4905 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
4906 * @buf: buffer to read/write
4907 * @len: length of transfer
4908 * @write: set to FOLL_WRITE when writing, otherwise reading
4909 *
4910 * This is a generic implementation for &vm_operations_struct.access for an
4911 * iomem mapping. This callback is used by access_process_vm() when the @vma is
4912 * not page based.
4913 */
28b2ee20
RR
4914int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4915 void *buf, int len, int write)
4916{
4917 resource_size_t phys_addr;
4918 unsigned long prot = 0;
2bc7273b 4919 void __iomem *maddr;
96667f8a
SV
4920 pte_t *ptep, pte;
4921 spinlock_t *ptl;
4922 int offset = offset_in_page(addr);
4923 int ret = -EINVAL;
4924
4925 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4926 return -EINVAL;
4927
4928retry:
e913a8cd 4929 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
4930 return -EINVAL;
4931 pte = *ptep;
4932 pte_unmap_unlock(ptep, ptl);
28b2ee20 4933
96667f8a
SV
4934 prot = pgprot_val(pte_pgprot(pte));
4935 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4936
4937 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
4938 return -EINVAL;
4939
9cb12d7b 4940 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4941 if (!maddr)
4942 return -ENOMEM;
4943
e913a8cd 4944 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
4945 goto out_unmap;
4946
4947 if (!pte_same(pte, *ptep)) {
4948 pte_unmap_unlock(ptep, ptl);
4949 iounmap(maddr);
4950
4951 goto retry;
4952 }
4953
28b2ee20
RR
4954 if (write)
4955 memcpy_toio(maddr + offset, buf, len);
4956 else
4957 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
4958 ret = len;
4959 pte_unmap_unlock(ptep, ptl);
4960out_unmap:
28b2ee20
RR
4961 iounmap(maddr);
4962
96667f8a 4963 return ret;
28b2ee20 4964}
5a73633e 4965EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4966#endif
4967
0ec76a11 4968/*
d3f5ffca 4969 * Access another process' address space as given in mm.
0ec76a11 4970 */
d3f5ffca
JH
4971int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4972 int len, unsigned int gup_flags)
0ec76a11 4973{
0ec76a11 4974 struct vm_area_struct *vma;
0ec76a11 4975 void *old_buf = buf;
442486ec 4976 int write = gup_flags & FOLL_WRITE;
0ec76a11 4977
d8ed45c5 4978 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4979 return 0;
4980
183ff22b 4981 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4982 while (len) {
4983 int bytes, ret, offset;
4984 void *maddr;
28b2ee20 4985 struct page *page = NULL;
0ec76a11 4986
64019a2e 4987 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4988 gup_flags, &page, &vma, NULL);
28b2ee20 4989 if (ret <= 0) {
dbffcd03
RR
4990#ifndef CONFIG_HAVE_IOREMAP_PROT
4991 break;
4992#else
28b2ee20
RR
4993 /*
4994 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4995 * we can access using slightly different code.
4996 */
28b2ee20 4997 vma = find_vma(mm, addr);
fe936dfc 4998 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4999 break;
5000 if (vma->vm_ops && vma->vm_ops->access)
5001 ret = vma->vm_ops->access(vma, addr, buf,
5002 len, write);
5003 if (ret <= 0)
28b2ee20
RR
5004 break;
5005 bytes = ret;
dbffcd03 5006#endif
0ec76a11 5007 } else {
28b2ee20
RR
5008 bytes = len;
5009 offset = addr & (PAGE_SIZE-1);
5010 if (bytes > PAGE_SIZE-offset)
5011 bytes = PAGE_SIZE-offset;
5012
5013 maddr = kmap(page);
5014 if (write) {
5015 copy_to_user_page(vma, page, addr,
5016 maddr + offset, buf, bytes);
5017 set_page_dirty_lock(page);
5018 } else {
5019 copy_from_user_page(vma, page, addr,
5020 buf, maddr + offset, bytes);
5021 }
5022 kunmap(page);
09cbfeaf 5023 put_page(page);
0ec76a11 5024 }
0ec76a11
DH
5025 len -= bytes;
5026 buf += bytes;
5027 addr += bytes;
5028 }
d8ed45c5 5029 mmap_read_unlock(mm);
0ec76a11
DH
5030
5031 return buf - old_buf;
5032}
03252919 5033
5ddd36b9 5034/**
ae91dbfc 5035 * access_remote_vm - access another process' address space
5ddd36b9
SW
5036 * @mm: the mm_struct of the target address space
5037 * @addr: start address to access
5038 * @buf: source or destination buffer
5039 * @len: number of bytes to transfer
6347e8d5 5040 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5041 *
5042 * The caller must hold a reference on @mm.
a862f68a
MR
5043 *
5044 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5045 */
5046int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5047 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5048{
d3f5ffca 5049 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5050}
5051
206cb636
SW
5052/*
5053 * Access another process' address space.
5054 * Source/target buffer must be kernel space,
5055 * Do not walk the page table directly, use get_user_pages
5056 */
5057int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5058 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5059{
5060 struct mm_struct *mm;
5061 int ret;
5062
5063 mm = get_task_mm(tsk);
5064 if (!mm)
5065 return 0;
5066
d3f5ffca 5067 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5068
206cb636
SW
5069 mmput(mm);
5070
5071 return ret;
5072}
fcd35857 5073EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5074
03252919
AK
5075/*
5076 * Print the name of a VMA.
5077 */
5078void print_vma_addr(char *prefix, unsigned long ip)
5079{
5080 struct mm_struct *mm = current->mm;
5081 struct vm_area_struct *vma;
5082
e8bff74a 5083 /*
0a7f682d 5084 * we might be running from an atomic context so we cannot sleep
e8bff74a 5085 */
d8ed45c5 5086 if (!mmap_read_trylock(mm))
e8bff74a
IM
5087 return;
5088
03252919
AK
5089 vma = find_vma(mm, ip);
5090 if (vma && vma->vm_file) {
5091 struct file *f = vma->vm_file;
0a7f682d 5092 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5093 if (buf) {
2fbc57c5 5094 char *p;
03252919 5095
9bf39ab2 5096 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5097 if (IS_ERR(p))
5098 p = "?";
2fbc57c5 5099 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5100 vma->vm_start,
5101 vma->vm_end - vma->vm_start);
5102 free_page((unsigned long)buf);
5103 }
5104 }
d8ed45c5 5105 mmap_read_unlock(mm);
03252919 5106}
3ee1afa3 5107
662bbcb2 5108#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5109void __might_fault(const char *file, int line)
3ee1afa3 5110{
95156f00
PZ
5111 /*
5112 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5113 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5114 * get paged out, therefore we'll never actually fault, and the
5115 * below annotations will generate false positives.
5116 */
db68ce10 5117 if (uaccess_kernel())
95156f00 5118 return;
9ec23531 5119 if (pagefault_disabled())
662bbcb2 5120 return;
9ec23531
DH
5121 __might_sleep(file, line, 0);
5122#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5123 if (current->mm)
da1c55f1 5124 might_lock_read(&current->mm->mmap_lock);
9ec23531 5125#endif
3ee1afa3 5126}
9ec23531 5127EXPORT_SYMBOL(__might_fault);
3ee1afa3 5128#endif
47ad8475
AA
5129
5130#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5131/*
5132 * Process all subpages of the specified huge page with the specified
5133 * operation. The target subpage will be processed last to keep its
5134 * cache lines hot.
5135 */
5136static inline void process_huge_page(
5137 unsigned long addr_hint, unsigned int pages_per_huge_page,
5138 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5139 void *arg)
47ad8475 5140{
c79b57e4
HY
5141 int i, n, base, l;
5142 unsigned long addr = addr_hint &
5143 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5144
c6ddfb6c 5145 /* Process target subpage last to keep its cache lines hot */
47ad8475 5146 might_sleep();
c79b57e4
HY
5147 n = (addr_hint - addr) / PAGE_SIZE;
5148 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5149 /* If target subpage in first half of huge page */
c79b57e4
HY
5150 base = 0;
5151 l = n;
c6ddfb6c 5152 /* Process subpages at the end of huge page */
c79b57e4
HY
5153 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5154 cond_resched();
c6ddfb6c 5155 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5156 }
5157 } else {
c6ddfb6c 5158 /* If target subpage in second half of huge page */
c79b57e4
HY
5159 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5160 l = pages_per_huge_page - n;
c6ddfb6c 5161 /* Process subpages at the begin of huge page */
c79b57e4
HY
5162 for (i = 0; i < base; i++) {
5163 cond_resched();
c6ddfb6c 5164 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5165 }
5166 }
5167 /*
c6ddfb6c
HY
5168 * Process remaining subpages in left-right-left-right pattern
5169 * towards the target subpage
c79b57e4
HY
5170 */
5171 for (i = 0; i < l; i++) {
5172 int left_idx = base + i;
5173 int right_idx = base + 2 * l - 1 - i;
5174
5175 cond_resched();
c6ddfb6c 5176 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5177 cond_resched();
c6ddfb6c 5178 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5179 }
5180}
5181
c6ddfb6c
HY
5182static void clear_gigantic_page(struct page *page,
5183 unsigned long addr,
5184 unsigned int pages_per_huge_page)
5185{
5186 int i;
5187 struct page *p = page;
5188
5189 might_sleep();
5190 for (i = 0; i < pages_per_huge_page;
5191 i++, p = mem_map_next(p, page, i)) {
5192 cond_resched();
5193 clear_user_highpage(p, addr + i * PAGE_SIZE);
5194 }
5195}
5196
5197static void clear_subpage(unsigned long addr, int idx, void *arg)
5198{
5199 struct page *page = arg;
5200
5201 clear_user_highpage(page + idx, addr);
5202}
5203
5204void clear_huge_page(struct page *page,
5205 unsigned long addr_hint, unsigned int pages_per_huge_page)
5206{
5207 unsigned long addr = addr_hint &
5208 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5209
5210 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5211 clear_gigantic_page(page, addr, pages_per_huge_page);
5212 return;
5213 }
5214
5215 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5216}
5217
47ad8475
AA
5218static void copy_user_gigantic_page(struct page *dst, struct page *src,
5219 unsigned long addr,
5220 struct vm_area_struct *vma,
5221 unsigned int pages_per_huge_page)
5222{
5223 int i;
5224 struct page *dst_base = dst;
5225 struct page *src_base = src;
5226
5227 for (i = 0; i < pages_per_huge_page; ) {
5228 cond_resched();
5229 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5230
5231 i++;
5232 dst = mem_map_next(dst, dst_base, i);
5233 src = mem_map_next(src, src_base, i);
5234 }
5235}
5236
c9f4cd71
HY
5237struct copy_subpage_arg {
5238 struct page *dst;
5239 struct page *src;
5240 struct vm_area_struct *vma;
5241};
5242
5243static void copy_subpage(unsigned long addr, int idx, void *arg)
5244{
5245 struct copy_subpage_arg *copy_arg = arg;
5246
5247 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5248 addr, copy_arg->vma);
5249}
5250
47ad8475 5251void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5252 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5253 unsigned int pages_per_huge_page)
5254{
c9f4cd71
HY
5255 unsigned long addr = addr_hint &
5256 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5257 struct copy_subpage_arg arg = {
5258 .dst = dst,
5259 .src = src,
5260 .vma = vma,
5261 };
47ad8475
AA
5262
5263 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5264 copy_user_gigantic_page(dst, src, addr, vma,
5265 pages_per_huge_page);
5266 return;
5267 }
5268
c9f4cd71 5269 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5270}
fa4d75c1
MK
5271
5272long copy_huge_page_from_user(struct page *dst_page,
5273 const void __user *usr_src,
810a56b9
MK
5274 unsigned int pages_per_huge_page,
5275 bool allow_pagefault)
fa4d75c1
MK
5276{
5277 void *src = (void *)usr_src;
5278 void *page_kaddr;
5279 unsigned long i, rc = 0;
5280 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
3272cfc2 5281 struct page *subpage = dst_page;
fa4d75c1 5282
3272cfc2
MK
5283 for (i = 0; i < pages_per_huge_page;
5284 i++, subpage = mem_map_next(subpage, dst_page, i)) {
810a56b9 5285 if (allow_pagefault)
3272cfc2 5286 page_kaddr = kmap(subpage);
810a56b9 5287 else
3272cfc2 5288 page_kaddr = kmap_atomic(subpage);
fa4d75c1
MK
5289 rc = copy_from_user(page_kaddr,
5290 (const void __user *)(src + i * PAGE_SIZE),
5291 PAGE_SIZE);
810a56b9 5292 if (allow_pagefault)
3272cfc2 5293 kunmap(subpage);
810a56b9
MK
5294 else
5295 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5296
5297 ret_val -= (PAGE_SIZE - rc);
5298 if (rc)
5299 break;
5300
5301 cond_resched();
5302 }
5303 return ret_val;
5304}
47ad8475 5305#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5306
40b64acd 5307#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5308
5309static struct kmem_cache *page_ptl_cachep;
5310
5311void __init ptlock_cache_init(void)
5312{
5313 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5314 SLAB_PANIC, NULL);
5315}
5316
539edb58 5317bool ptlock_alloc(struct page *page)
49076ec2
KS
5318{
5319 spinlock_t *ptl;
5320
b35f1819 5321 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5322 if (!ptl)
5323 return false;
539edb58 5324 page->ptl = ptl;
49076ec2
KS
5325 return true;
5326}
5327
539edb58 5328void ptlock_free(struct page *page)
49076ec2 5329{
b35f1819 5330 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5331}
5332#endif