]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm/memcg: fix obsolete function name in mem_cgroup_protection()
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
1da177e4 80
b3d1411b
JFG
81#include <trace/events/kmem.h>
82
6952b61d 83#include <asm/io.h>
33a709b2 84#include <asm/mmu_context.h>
1da177e4 85#include <asm/pgalloc.h>
7c0f6ba6 86#include <linux/uaccess.h>
1da177e4
LT
87#include <asm/tlb.h>
88#include <asm/tlbflush.h>
1da177e4 89
e80d3909 90#include "pgalloc-track.h"
42b77728 91#include "internal.h"
014bb1de 92#include "swap.h"
42b77728 93
af27d940 94#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 95#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
96#endif
97
a9ee6cf5 98#ifndef CONFIG_NUMA
1da177e4 99unsigned long max_mapnr;
1da177e4 100EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
101
102struct page *mem_map;
1da177e4
LT
103EXPORT_SYMBOL(mem_map);
104#endif
105
5c041f5d 106static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
107static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108static bool vmf_pte_changed(struct vm_fault *vmf);
109
110/*
111 * Return true if the original pte was a uffd-wp pte marker (so the pte was
112 * wr-protected).
113 */
114static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115{
116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 return false;
118
119 return pte_marker_uffd_wp(vmf->orig_pte);
120}
5c041f5d 121
1da177e4
LT
122/*
123 * A number of key systems in x86 including ioremap() rely on the assumption
124 * that high_memory defines the upper bound on direct map memory, then end
125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127 * and ZONE_HIGHMEM.
128 */
166f61b9 129void *high_memory;
1da177e4 130EXPORT_SYMBOL(high_memory);
1da177e4 131
32a93233
IM
132/*
133 * Randomize the address space (stacks, mmaps, brk, etc.).
134 *
135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136 * as ancient (libc5 based) binaries can segfault. )
137 */
138int randomize_va_space __read_mostly =
139#ifdef CONFIG_COMPAT_BRK
140 1;
141#else
142 2;
143#endif
a62eaf15 144
46bdb427
WD
145#ifndef arch_wants_old_prefaulted_pte
146static inline bool arch_wants_old_prefaulted_pte(void)
147{
148 /*
149 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 * some architectures, even if it's performed in hardware. By
151 * default, "false" means prefaulted entries will be 'young'.
152 */
153 return false;
154}
155#endif
156
a62eaf15
AK
157static int __init disable_randmaps(char *s)
158{
159 randomize_va_space = 0;
9b41046c 160 return 1;
a62eaf15
AK
161}
162__setup("norandmaps", disable_randmaps);
163
62eede62 164unsigned long zero_pfn __read_mostly;
0b70068e
AB
165EXPORT_SYMBOL(zero_pfn);
166
166f61b9
TH
167unsigned long highest_memmap_pfn __read_mostly;
168
a13ea5b7
HD
169/*
170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171 */
172static int __init init_zero_pfn(void)
173{
174 zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 return 0;
176}
e720e7d0 177early_initcall(init_zero_pfn);
a62eaf15 178
f1a79412 179void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 180{
f1a79412 181 trace_rss_stat(mm, member);
b3d1411b 182}
d559db08 183
1da177e4
LT
184/*
185 * Note: this doesn't free the actual pages themselves. That
186 * has been handled earlier when unmapping all the memory regions.
187 */
9e1b32ca
BH
188static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 unsigned long addr)
1da177e4 190{
2f569afd 191 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 192 pmd_clear(pmd);
9e1b32ca 193 pte_free_tlb(tlb, token, addr);
c4812909 194 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
195}
196
e0da382c
HD
197static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 unsigned long addr, unsigned long end,
199 unsigned long floor, unsigned long ceiling)
1da177e4
LT
200{
201 pmd_t *pmd;
202 unsigned long next;
e0da382c 203 unsigned long start;
1da177e4 204
e0da382c 205 start = addr;
1da177e4 206 pmd = pmd_offset(pud, addr);
1da177e4
LT
207 do {
208 next = pmd_addr_end(addr, end);
209 if (pmd_none_or_clear_bad(pmd))
210 continue;
9e1b32ca 211 free_pte_range(tlb, pmd, addr);
1da177e4
LT
212 } while (pmd++, addr = next, addr != end);
213
e0da382c
HD
214 start &= PUD_MASK;
215 if (start < floor)
216 return;
217 if (ceiling) {
218 ceiling &= PUD_MASK;
219 if (!ceiling)
220 return;
1da177e4 221 }
e0da382c
HD
222 if (end - 1 > ceiling - 1)
223 return;
224
225 pmd = pmd_offset(pud, start);
226 pud_clear(pud);
9e1b32ca 227 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 228 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
229}
230
c2febafc 231static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
232 unsigned long addr, unsigned long end,
233 unsigned long floor, unsigned long ceiling)
1da177e4
LT
234{
235 pud_t *pud;
236 unsigned long next;
e0da382c 237 unsigned long start;
1da177e4 238
e0da382c 239 start = addr;
c2febafc 240 pud = pud_offset(p4d, addr);
1da177e4
LT
241 do {
242 next = pud_addr_end(addr, end);
243 if (pud_none_or_clear_bad(pud))
244 continue;
e0da382c 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
246 } while (pud++, addr = next, addr != end);
247
c2febafc
KS
248 start &= P4D_MASK;
249 if (start < floor)
250 return;
251 if (ceiling) {
252 ceiling &= P4D_MASK;
253 if (!ceiling)
254 return;
255 }
256 if (end - 1 > ceiling - 1)
257 return;
258
259 pud = pud_offset(p4d, start);
260 p4d_clear(p4d);
261 pud_free_tlb(tlb, pud, start);
b4e98d9a 262 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
263}
264
265static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 unsigned long floor, unsigned long ceiling)
268{
269 p4d_t *p4d;
270 unsigned long next;
271 unsigned long start;
272
273 start = addr;
274 p4d = p4d_offset(pgd, addr);
275 do {
276 next = p4d_addr_end(addr, end);
277 if (p4d_none_or_clear_bad(p4d))
278 continue;
279 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 } while (p4d++, addr = next, addr != end);
281
e0da382c
HD
282 start &= PGDIR_MASK;
283 if (start < floor)
284 return;
285 if (ceiling) {
286 ceiling &= PGDIR_MASK;
287 if (!ceiling)
288 return;
1da177e4 289 }
e0da382c
HD
290 if (end - 1 > ceiling - 1)
291 return;
292
c2febafc 293 p4d = p4d_offset(pgd, start);
e0da382c 294 pgd_clear(pgd);
c2febafc 295 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
296}
297
298/*
e0da382c 299 * This function frees user-level page tables of a process.
1da177e4 300 */
42b77728 301void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
302 unsigned long addr, unsigned long end,
303 unsigned long floor, unsigned long ceiling)
1da177e4
LT
304{
305 pgd_t *pgd;
306 unsigned long next;
e0da382c
HD
307
308 /*
309 * The next few lines have given us lots of grief...
310 *
311 * Why are we testing PMD* at this top level? Because often
312 * there will be no work to do at all, and we'd prefer not to
313 * go all the way down to the bottom just to discover that.
314 *
315 * Why all these "- 1"s? Because 0 represents both the bottom
316 * of the address space and the top of it (using -1 for the
317 * top wouldn't help much: the masks would do the wrong thing).
318 * The rule is that addr 0 and floor 0 refer to the bottom of
319 * the address space, but end 0 and ceiling 0 refer to the top
320 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 * that end 0 case should be mythical).
322 *
323 * Wherever addr is brought up or ceiling brought down, we must
324 * be careful to reject "the opposite 0" before it confuses the
325 * subsequent tests. But what about where end is brought down
326 * by PMD_SIZE below? no, end can't go down to 0 there.
327 *
328 * Whereas we round start (addr) and ceiling down, by different
329 * masks at different levels, in order to test whether a table
330 * now has no other vmas using it, so can be freed, we don't
331 * bother to round floor or end up - the tests don't need that.
332 */
1da177e4 333
e0da382c
HD
334 addr &= PMD_MASK;
335 if (addr < floor) {
336 addr += PMD_SIZE;
337 if (!addr)
338 return;
339 }
340 if (ceiling) {
341 ceiling &= PMD_MASK;
342 if (!ceiling)
343 return;
344 }
345 if (end - 1 > ceiling - 1)
346 end -= PMD_SIZE;
347 if (addr > end - 1)
348 return;
07e32661
AK
349 /*
350 * We add page table cache pages with PAGE_SIZE,
351 * (see pte_free_tlb()), flush the tlb if we need
352 */
ed6a7935 353 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 354 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
355 do {
356 next = pgd_addr_end(addr, end);
357 if (pgd_none_or_clear_bad(pgd))
358 continue;
c2febafc 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 360 } while (pgd++, addr = next, addr != end);
e0da382c
HD
361}
362
fd892593 363void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 364 struct vm_area_struct *vma, unsigned long floor,
98e51a22 365 unsigned long ceiling, bool mm_wr_locked)
e0da382c 366{
763ecb03 367 do {
e0da382c 368 unsigned long addr = vma->vm_start;
763ecb03
LH
369 struct vm_area_struct *next;
370
371 /*
372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 * be 0. This will underflow and is okay.
374 */
fd892593 375 next = mas_find(mas, ceiling - 1);
e0da382c 376
8f4f8c16 377 /*
25d9e2d1
NP
378 * Hide vma from rmap and truncate_pagecache before freeing
379 * pgtables
8f4f8c16 380 */
98e51a22
SB
381 if (mm_wr_locked)
382 vma_start_write(vma);
5beb4930 383 unlink_anon_vmas(vma);
8f4f8c16
HD
384 unlink_file_vma(vma);
385
9da61aef 386 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 388 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
389 } else {
390 /*
391 * Optimization: gather nearby vmas into one call down
392 */
393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 394 && !is_vm_hugetlb_page(next)) {
3bf5ee95 395 vma = next;
fd892593 396 next = mas_find(mas, ceiling - 1);
98e51a22
SB
397 if (mm_wr_locked)
398 vma_start_write(vma);
5beb4930 399 unlink_anon_vmas(vma);
8f4f8c16 400 unlink_file_vma(vma);
3bf5ee95
HD
401 }
402 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 403 floor, next ? next->vm_start : ceiling);
3bf5ee95 404 }
e0da382c 405 vma = next;
763ecb03 406 } while (vma);
1da177e4
LT
407}
408
03c4f204 409void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 410{
03c4f204 411 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 412
8ac1f832 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 414 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
415 /*
416 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 * visible before the pte is made visible to other CPUs by being
418 * put into page tables.
419 *
420 * The other side of the story is the pointer chasing in the page
421 * table walking code (when walking the page table without locking;
422 * ie. most of the time). Fortunately, these data accesses consist
423 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 * being the notable exception) will already guarantee loads are
425 * seen in-order. See the alpha page table accessors for the
426 * smp_rmb() barriers in page table walking code.
427 */
428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
429 pmd_populate(mm, pmd, *pte);
430 *pte = NULL;
4b471e88 431 }
c4088ebd 432 spin_unlock(ptl);
03c4f204
QZ
433}
434
4cf58924 435int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 436{
4cf58924 437 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
438 if (!new)
439 return -ENOMEM;
440
03c4f204 441 pmd_install(mm, pmd, &new);
2f569afd
MS
442 if (new)
443 pte_free(mm, new);
1bb3630e 444 return 0;
1da177e4
LT
445}
446
4cf58924 447int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 448{
4cf58924 449 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
450 if (!new)
451 return -ENOMEM;
452
453 spin_lock(&init_mm.page_table_lock);
8ac1f832 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 455 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 456 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 457 new = NULL;
4b471e88 458 }
1bb3630e 459 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
460 if (new)
461 pte_free_kernel(&init_mm, new);
1bb3630e 462 return 0;
1da177e4
LT
463}
464
d559db08
KH
465static inline void init_rss_vec(int *rss)
466{
467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468}
469
470static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 471{
d559db08
KH
472 int i;
473
34e55232 474 if (current->mm == mm)
05af2e10 475 sync_mm_rss(mm);
d559db08
KH
476 for (i = 0; i < NR_MM_COUNTERS; i++)
477 if (rss[i])
478 add_mm_counter(mm, i, rss[i]);
ae859762
HD
479}
480
b5810039 481/*
6aab341e
LT
482 * This function is called to print an error when a bad pte
483 * is found. For example, we might have a PFN-mapped pte in
484 * a region that doesn't allow it.
b5810039
NP
485 *
486 * The calling function must still handle the error.
487 */
3dc14741
HD
488static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 pte_t pte, struct page *page)
b5810039 490{
3dc14741 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
492 p4d_t *p4d = p4d_offset(pgd, addr);
493 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
494 pmd_t *pmd = pmd_offset(pud, addr);
495 struct address_space *mapping;
496 pgoff_t index;
d936cf9b
HD
497 static unsigned long resume;
498 static unsigned long nr_shown;
499 static unsigned long nr_unshown;
500
501 /*
502 * Allow a burst of 60 reports, then keep quiet for that minute;
503 * or allow a steady drip of one report per second.
504 */
505 if (nr_shown == 60) {
506 if (time_before(jiffies, resume)) {
507 nr_unshown++;
508 return;
509 }
510 if (nr_unshown) {
1170532b
JP
511 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 nr_unshown);
d936cf9b
HD
513 nr_unshown = 0;
514 }
515 nr_shown = 0;
516 }
517 if (nr_shown++ == 0)
518 resume = jiffies + 60 * HZ;
3dc14741
HD
519
520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 index = linear_page_index(vma, addr);
522
1170532b
JP
523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
524 current->comm,
525 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 526 if (page)
f0b791a3 527 dump_page(page, "bad pte");
6aa9b8b2 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
531 vma->vm_file,
532 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 534 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 535 dump_stack();
373d4d09 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
537}
538
ee498ed7 539/*
7e675137 540 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 541 *
7e675137
NP
542 * "Special" mappings do not wish to be associated with a "struct page" (either
543 * it doesn't exist, or it exists but they don't want to touch it). In this
544 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 545 *
7e675137
NP
546 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547 * pte bit, in which case this function is trivial. Secondly, an architecture
548 * may not have a spare pte bit, which requires a more complicated scheme,
549 * described below.
550 *
551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552 * special mapping (even if there are underlying and valid "struct pages").
553 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 554 *
b379d790
JH
555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558 * mapping will always honor the rule
6aab341e
LT
559 *
560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561 *
7e675137
NP
562 * And for normal mappings this is false.
563 *
564 * This restricts such mappings to be a linear translation from virtual address
565 * to pfn. To get around this restriction, we allow arbitrary mappings so long
566 * as the vma is not a COW mapping; in that case, we know that all ptes are
567 * special (because none can have been COWed).
b379d790 568 *
b379d790 569 *
7e675137 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
571 *
572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573 * page" backing, however the difference is that _all_ pages with a struct
574 * page (that is, those where pfn_valid is true) are refcounted and considered
575 * normal pages by the VM. The disadvantage is that pages are refcounted
576 * (which can be slower and simply not an option for some PFNMAP users). The
577 * advantage is that we don't have to follow the strict linearity rule of
578 * PFNMAP mappings in order to support COWable mappings.
579 *
ee498ed7 580 */
25b2995a
CH
581struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 pte_t pte)
ee498ed7 583{
22b31eec 584 unsigned long pfn = pte_pfn(pte);
7e675137 585
00b3a331 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 587 if (likely(!pte_special(pte)))
22b31eec 588 goto check_pfn;
667a0a06
DV
589 if (vma->vm_ops && vma->vm_ops->find_special_page)
590 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 return NULL;
df6ad698
JG
593 if (is_zero_pfn(pfn))
594 return NULL;
e1fb4a08 595 if (pte_devmap(pte))
3218f871
AS
596 /*
597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 * and will have refcounts incremented on their struct pages
599 * when they are inserted into PTEs, thus they are safe to
600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 */
e1fb4a08
DJ
604 return NULL;
605
df6ad698 606 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
607 return NULL;
608 }
609
00b3a331 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 611
b379d790
JH
612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 if (vma->vm_flags & VM_MIXEDMAP) {
614 if (!pfn_valid(pfn))
615 return NULL;
616 goto out;
617 } else {
7e675137
NP
618 unsigned long off;
619 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
620 if (pfn == vma->vm_pgoff + off)
621 return NULL;
622 if (!is_cow_mapping(vma->vm_flags))
623 return NULL;
624 }
6aab341e
LT
625 }
626
b38af472
HD
627 if (is_zero_pfn(pfn))
628 return NULL;
00b3a331 629
22b31eec
HD
630check_pfn:
631 if (unlikely(pfn > highest_memmap_pfn)) {
632 print_bad_pte(vma, addr, pte, NULL);
633 return NULL;
634 }
6aab341e
LT
635
636 /*
7e675137 637 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 638 * eg. VDSO mappings can cause them to exist.
6aab341e 639 */
b379d790 640out:
6aab341e 641 return pfn_to_page(pfn);
ee498ed7
HD
642}
643
318e9342
VMO
644struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte)
646{
647 struct page *page = vm_normal_page(vma, addr, pte);
648
649 if (page)
650 return page_folio(page);
651 return NULL;
652}
653
28093f9f
GS
654#ifdef CONFIG_TRANSPARENT_HUGEPAGE
655struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 pmd_t pmd)
657{
658 unsigned long pfn = pmd_pfn(pmd);
659
660 /*
661 * There is no pmd_special() but there may be special pmds, e.g.
662 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
664 */
665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 if (vma->vm_flags & VM_MIXEDMAP) {
667 if (!pfn_valid(pfn))
668 return NULL;
669 goto out;
670 } else {
671 unsigned long off;
672 off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 if (pfn == vma->vm_pgoff + off)
674 return NULL;
675 if (!is_cow_mapping(vma->vm_flags))
676 return NULL;
677 }
678 }
679
e1fb4a08
DJ
680 if (pmd_devmap(pmd))
681 return NULL;
3cde287b 682 if (is_huge_zero_pmd(pmd))
28093f9f
GS
683 return NULL;
684 if (unlikely(pfn > highest_memmap_pfn))
685 return NULL;
686
687 /*
688 * NOTE! We still have PageReserved() pages in the page tables.
689 * eg. VDSO mappings can cause them to exist.
690 */
691out:
692 return pfn_to_page(pfn);
693}
694#endif
695
b756a3b5
AP
696static void restore_exclusive_pte(struct vm_area_struct *vma,
697 struct page *page, unsigned long address,
698 pte_t *ptep)
699{
c33c7948 700 pte_t orig_pte;
b756a3b5
AP
701 pte_t pte;
702 swp_entry_t entry;
703
c33c7948 704 orig_pte = ptep_get(ptep);
b756a3b5 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 706 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
707 pte = pte_mksoft_dirty(pte);
708
c33c7948
RR
709 entry = pte_to_swp_entry(orig_pte);
710 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
711 pte = pte_mkuffd_wp(pte);
712 else if (is_writable_device_exclusive_entry(entry))
713 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714
6c287605
DH
715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716
b756a3b5
AP
717 /*
718 * No need to take a page reference as one was already
719 * created when the swap entry was made.
720 */
721 if (PageAnon(page))
f1e2db12 722 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
723 else
724 /*
725 * Currently device exclusive access only supports anonymous
726 * memory so the entry shouldn't point to a filebacked page.
727 */
4d8ff640 728 WARN_ON_ONCE(1);
b756a3b5 729
1eba86c0
PT
730 set_pte_at(vma->vm_mm, address, ptep, pte);
731
b756a3b5
AP
732 /*
733 * No need to invalidate - it was non-present before. However
734 * secondary CPUs may have mappings that need invalidating.
735 */
736 update_mmu_cache(vma, address, ptep);
737}
738
739/*
740 * Tries to restore an exclusive pte if the page lock can be acquired without
741 * sleeping.
742 */
743static int
744try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 unsigned long addr)
746{
c33c7948 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
748 struct page *page = pfn_swap_entry_to_page(entry);
749
750 if (trylock_page(page)) {
751 restore_exclusive_pte(vma, page, addr, src_pte);
752 unlock_page(page);
753 return 0;
754 }
755
756 return -EBUSY;
757}
758
1da177e4
LT
759/*
760 * copy one vm_area from one task to the other. Assumes the page tables
761 * already present in the new task to be cleared in the whole range
762 * covered by this vma.
1da177e4
LT
763 */
764
df3a57d1
LT
765static unsigned long
766copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 769{
8f34f1ea 770 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
771 pte_t orig_pte = ptep_get(src_pte);
772 pte_t pte = orig_pte;
1da177e4 773 struct page *page;
c33c7948 774 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
775
776 if (likely(!non_swap_entry(entry))) {
777 if (swap_duplicate(entry) < 0)
9a5cc85c 778 return -EIO;
df3a57d1
LT
779
780 /* make sure dst_mm is on swapoff's mmlist. */
781 if (unlikely(list_empty(&dst_mm->mmlist))) {
782 spin_lock(&mmlist_lock);
783 if (list_empty(&dst_mm->mmlist))
784 list_add(&dst_mm->mmlist,
785 &src_mm->mmlist);
786 spin_unlock(&mmlist_lock);
787 }
1493a191 788 /* Mark the swap entry as shared. */
c33c7948
RR
789 if (pte_swp_exclusive(orig_pte)) {
790 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
791 set_pte_at(src_mm, addr, src_pte, pte);
792 }
df3a57d1
LT
793 rss[MM_SWAPENTS]++;
794 } else if (is_migration_entry(entry)) {
af5cdaf8 795 page = pfn_swap_entry_to_page(entry);
1da177e4 796
df3a57d1 797 rss[mm_counter(page)]++;
5042db43 798
6c287605 799 if (!is_readable_migration_entry(entry) &&
df3a57d1 800 is_cow_mapping(vm_flags)) {
5042db43 801 /*
6c287605
DH
802 * COW mappings require pages in both parent and child
803 * to be set to read. A previously exclusive entry is
804 * now shared.
5042db43 805 */
4dd845b5
AP
806 entry = make_readable_migration_entry(
807 swp_offset(entry));
df3a57d1 808 pte = swp_entry_to_pte(entry);
c33c7948 809 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 810 pte = pte_swp_mksoft_dirty(pte);
c33c7948 811 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
812 pte = pte_swp_mkuffd_wp(pte);
813 set_pte_at(src_mm, addr, src_pte, pte);
814 }
815 } else if (is_device_private_entry(entry)) {
af5cdaf8 816 page = pfn_swap_entry_to_page(entry);
5042db43 817
df3a57d1
LT
818 /*
819 * Update rss count even for unaddressable pages, as
820 * they should treated just like normal pages in this
821 * respect.
822 *
823 * We will likely want to have some new rss counters
824 * for unaddressable pages, at some point. But for now
825 * keep things as they are.
826 */
827 get_page(page);
828 rss[mm_counter(page)]++;
fb3d824d
DH
829 /* Cannot fail as these pages cannot get pinned. */
830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
831
832 /*
833 * We do not preserve soft-dirty information, because so
834 * far, checkpoint/restore is the only feature that
835 * requires that. And checkpoint/restore does not work
836 * when a device driver is involved (you cannot easily
837 * save and restore device driver state).
838 */
4dd845b5 839 if (is_writable_device_private_entry(entry) &&
df3a57d1 840 is_cow_mapping(vm_flags)) {
4dd845b5
AP
841 entry = make_readable_device_private_entry(
842 swp_offset(entry));
df3a57d1 843 pte = swp_entry_to_pte(entry);
c33c7948 844 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
845 pte = pte_swp_mkuffd_wp(pte);
846 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 847 }
b756a3b5
AP
848 } else if (is_device_exclusive_entry(entry)) {
849 /*
850 * Make device exclusive entries present by restoring the
851 * original entry then copying as for a present pte. Device
852 * exclusive entries currently only support private writable
853 * (ie. COW) mappings.
854 */
855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 return -EBUSY;
858 return -ENOENT;
c56d1b62 859 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
860 pte_marker marker = copy_pte_marker(entry, dst_vma);
861
862 if (marker)
863 set_pte_at(dst_mm, addr, dst_pte,
864 make_pte_marker(marker));
c56d1b62 865 return 0;
1da177e4 866 }
8f34f1ea
PX
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871}
872
70e806e4 873/*
b51ad4f8 874 * Copy a present and normal page.
70e806e4 875 *
b51ad4f8
DH
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
70e806e4
PX
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885static inline int
c78f4636
PX
886copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 888 struct folio **prealloc, struct page *page)
70e806e4 889{
edf50470 890 struct folio *new_folio;
b51ad4f8 891 pte_t pte;
70e806e4 892
edf50470
MWO
893 new_folio = *prealloc;
894 if (!new_folio)
70e806e4
PX
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
edf50470
MWO
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
70e806e4
PX
907
908 /* All done, just insert the new page copy in the child */
edf50470 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 912 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 913 pte = pte_mkuffd_wp(pte);
c78f4636 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
915 return 0;
916}
917
918/*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922static inline int
c78f4636
PX
923copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 925 struct folio **prealloc)
df3a57d1 926{
c78f4636
PX
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 929 pte_t pte = ptep_get(src_pte);
df3a57d1 930 struct page *page;
14ddee41 931 struct folio *folio;
df3a57d1 932
c78f4636 933 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
14ddee41 943 folio_get(folio);
fb3d824d 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
fb3d824d
DH
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
edf50470 950 rss[MM_ANONPAGES]++;
b51ad4f8 951 } else if (page) {
14ddee41 952 folio_get(folio);
fb3d824d 953 page_dup_file_rmap(page, false);
edf50470 954 rss[mm_counter_file(page)]++;
70e806e4
PX
955 }
956
1da177e4
LT
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
1b2de5d0 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 962 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 963 pte = pte_wrprotect(pte);
1da177e4 964 }
14ddee41 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
6aab341e 974
8f34f1ea 975 if (!userfaultfd_wp(dst_vma))
b569a176
PX
976 pte = pte_clear_uffd_wp(pte);
977
c78f4636 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
979 return 0;
980}
981
edf50470
MWO
982static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
70e806e4 984{
edf50470 985 struct folio *new_folio;
70e806e4 986
edf50470
MWO
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
70e806e4
PX
989 return NULL;
990
edf50470
MWO
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
70e806e4 993 return NULL;
6aab341e 994 }
e601ded4 995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 996
edf50470 997 return new_folio;
1da177e4
LT
998}
999
c78f4636
PX
1000static int
1001copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1da177e4 1004{
c78f4636
PX
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1007 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1008 pte_t *src_pte, *dst_pte;
c33c7948 1009 pte_t ptent;
c74df32c 1010 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1011 int progress, ret = 0;
d559db08 1012 int rss[NR_MM_COUNTERS];
570a335b 1013 swp_entry_t entry = (swp_entry_t){0};
edf50470 1014 struct folio *prealloc = NULL;
1da177e4
LT
1015
1016again:
70e806e4 1017 progress = 0;
d559db08
KH
1018 init_rss_vec(rss);
1019
3db82b93
HD
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
c74df32c 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
3db82b93
HD
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
f20dc5f7 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
6606c3e0 1042 arch_enter_lazy_mmu_mode();
1da177e4 1043
1da177e4
LT
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
e040f218
HD
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
95c354fe 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1053 break;
1054 }
c33c7948
RR
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1da177e4
LT
1057 progress++;
1058 continue;
1059 }
c33c7948 1060 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
c33c7948 1066 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1067 break;
b756a3b5
AP
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
9a5cc85c 1073 }
b756a3b5
AP
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1080 }
70e806e4 1081 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
70e806e4
PX
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
edf50470 1097 folio_put(prealloc);
70e806e4
PX
1098 prealloc = NULL;
1099 }
1da177e4
LT
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1102
6606c3e0 1103 arch_leave_lazy_mmu_mode();
3db82b93 1104 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1105 add_mm_rss_vec(dst_mm, rss);
c36987e2 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1107 cond_resched();
570a335b 1108
9a5cc85c
AP
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
b756a3b5
AP
1116 } else if (ret == -EBUSY) {
1117 goto out;
9a5cc85c 1118 } else if (ret == -EAGAIN) {
c78f4636 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1120 if (!prealloc)
570a335b 1121 return -ENOMEM;
9a5cc85c
AP
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
570a335b 1124 }
9a5cc85c
AP
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1da177e4
LT
1129 if (addr != end)
1130 goto again;
70e806e4
PX
1131out:
1132 if (unlikely(prealloc))
edf50470 1133 folio_put(prealloc);
70e806e4 1134 return ret;
1da177e4
LT
1135}
1136
c78f4636
PX
1137static inline int
1138copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1da177e4 1141{
c78f4636
PX
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
71e3aac0 1155 int err;
c78f4636 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
71e3aac0
AA
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1da177e4
LT
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
c78f4636
PX
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1da177e4
LT
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172}
1173
c78f4636
PX
1174static inline int
1175copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1da177e4 1178{
c78f4636
PX
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
c2febafc 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1185 if (!dst_pud)
1186 return -ENOMEM;
c2febafc 1187 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1188 do {
1189 next = pud_addr_end(addr, end);
a00cc7d9
MW
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
c78f4636 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1194 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1195 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1da177e4
LT
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
c78f4636
PX
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1da177e4
LT
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209}
1210
c78f4636
PX
1211static inline int
1212copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
c2febafc 1215{
c78f4636 1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
c78f4636
PX
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
c2febafc
KS
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233}
1234
c56d1b62
PX
1235/*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
bc70fbf2 1240static bool
c56d1b62
PX
1241vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242{
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
bcd51a3c 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265}
1266
c78f4636
PX
1267int
1268copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1269{
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long next;
c78f4636
PX
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1276 struct mmu_notifier_range range;
2ec74c3e 1277 bool is_cow;
cddb8a5c 1278 int ret;
1da177e4 1279
c56d1b62 1280 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1281 return 0;
d992895b 1282
c78f4636 1283 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1285
c78f4636 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1287 /*
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1290 */
c78f4636 1291 ret = track_pfn_copy(src_vma);
2ab64037 1292 if (ret)
1293 return ret;
1294 }
1295
cddb8a5c
AA
1296 /*
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1301 */
c78f4636 1302 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1303
1304 if (is_cow) {
7269f999 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1306 0, src_mm, addr, end);
ac46d4f3 1307 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1308 /*
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1311 *
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1314 */
1315 mmap_assert_write_locked(src_mm);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1317 }
cddb8a5c
AA
1318
1319 ret = 0;
1da177e4
LT
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1322 do {
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1325 continue;
c78f4636
PX
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 addr, next))) {
d155df53 1328 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1329 ret = -ENOMEM;
1330 break;
1331 }
1da177e4 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1333
57efa1fe
JG
1334 if (is_cow) {
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1336 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1337 }
cddb8a5c 1338 return ret;
1da177e4
LT
1339}
1340
5abfd71d
PX
1341/* Whether we should zap all COWed (private) pages too */
1342static inline bool should_zap_cows(struct zap_details *details)
1343{
1344 /* By default, zap all pages */
1345 if (!details)
1346 return true;
1347
1348 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1349 return details->even_cows;
5abfd71d
PX
1350}
1351
2e148f1e 1352/* Decides whether we should zap this page with the page pointer specified */
254ab940 1353static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1354{
5abfd71d
PX
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
254ab940 1357 return true;
5abfd71d
PX
1358
1359 /* E.g. the caller passes NULL for the case of a zero page */
1360 if (!page)
254ab940 1361 return true;
3506659e 1362
2e148f1e
PX
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
3506659e
MWO
1365}
1366
999dad82
PX
1367static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368{
1369 if (!details)
1370 return false;
1371
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373}
1374
1375/*
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 */
1379static inline void
1380zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1383{
2bad466c
PX
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1386 return;
1387
999dad82
PX
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
51c6f666 1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1395 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1396 unsigned long addr, unsigned long end,
97a89413 1397 struct zap_details *details)
1da177e4 1398{
b5810039 1399 struct mm_struct *mm = tlb->mm;
d16dfc55 1400 int force_flush = 0;
d559db08 1401 int rss[NR_MM_COUNTERS];
97a89413 1402 spinlock_t *ptl;
5f1a1907 1403 pte_t *start_pte;
97a89413 1404 pte_t *pte;
8a5f14a2 1405 swp_entry_t entry;
d559db08 1406
ed6a7935 1407 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1408 init_rss_vec(rss);
3db82b93
HD
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 if (!pte)
1411 return addr;
1412
3ea27719 1413 flush_tlb_batched_pending(mm);
6606c3e0 1414 arch_enter_lazy_mmu_mode();
1da177e4 1415 do {
c33c7948 1416 pte_t ptent = ptep_get(pte);
8018db85
PX
1417 struct page *page;
1418
166f61b9 1419 if (pte_none(ptent))
1da177e4 1420 continue;
6f5e6b9e 1421
7b167b68
MK
1422 if (need_resched())
1423 break;
1424
1da177e4 1425 if (pte_present(ptent)) {
5df397de
LT
1426 unsigned int delay_rmap;
1427
25b2995a 1428 page = vm_normal_page(vma, addr, ptent);
254ab940 1429 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1430 continue;
b5810039 1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1432 tlb->fullmm);
1da177e4 1433 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 ptent);
e2942062 1436 if (unlikely(!page)) {
6080d19f 1437 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1438 continue;
e2942062 1439 }
eca56ff9 1440
5df397de 1441 delay_rmap = 0;
eca56ff9 1442 if (!PageAnon(page)) {
1cf35d47 1443 if (pte_dirty(ptent)) {
6237bcd9 1444 set_page_dirty(page);
5df397de
LT
1445 if (tlb_delay_rmap(tlb)) {
1446 delay_rmap = 1;
1447 force_flush = 1;
1448 }
1cf35d47 1449 }
8788f678 1450 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1451 mark_page_accessed(page);
6237bcd9 1452 }
eca56ff9 1453 rss[mm_counter(page)]--;
5df397de
LT
1454 if (!delay_rmap) {
1455 page_remove_rmap(page, vma, false);
1456 if (unlikely(page_mapcount(page) < 0))
1457 print_bad_pte(vma, addr, ptent, page);
1458 }
1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1460 force_flush = 1;
ce9ec37b 1461 addr += PAGE_SIZE;
d16dfc55 1462 break;
1cf35d47 1463 }
1da177e4
LT
1464 continue;
1465 }
5042db43
JG
1466
1467 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1468 if (is_device_private_entry(entry) ||
1469 is_device_exclusive_entry(entry)) {
8018db85 1470 page = pfn_swap_entry_to_page(entry);
254ab940 1471 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1472 continue;
999dad82
PX
1473 /*
1474 * Both device private/exclusive mappings should only
1475 * work with anonymous page so far, so we don't need to
1476 * consider uffd-wp bit when zap. For more information,
1477 * see zap_install_uffd_wp_if_needed().
1478 */
1479 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1480 rss[mm_counter(page)]--;
b756a3b5 1481 if (is_device_private_entry(entry))
cea86fe2 1482 page_remove_rmap(page, vma, false);
5042db43 1483 put_page(page);
8018db85 1484 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1485 /* Genuine swap entry, hence a private anon page */
1486 if (!should_zap_cows(details))
1487 continue;
8a5f14a2 1488 rss[MM_SWAPENTS]--;
8018db85
PX
1489 if (unlikely(!free_swap_and_cache(entry)))
1490 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1491 } else if (is_migration_entry(entry)) {
af5cdaf8 1492 page = pfn_swap_entry_to_page(entry);
254ab940 1493 if (!should_zap_page(details, page))
5abfd71d 1494 continue;
eca56ff9 1495 rss[mm_counter(page)]--;
999dad82 1496 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1497 /*
1498 * For anon: always drop the marker; for file: only
1499 * drop the marker if explicitly requested.
1500 */
1501 if (!vma_is_anonymous(vma) &&
1502 !zap_drop_file_uffd_wp(details))
999dad82 1503 continue;
9f186f9e 1504 } else if (is_hwpoison_entry(entry) ||
af19487f 1505 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1506 if (!should_zap_cows(details))
1507 continue;
1508 } else {
1509 /* We should have covered all the swap entry types */
1510 WARN_ON_ONCE(1);
b084d435 1511 }
9888a1ca 1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1514 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1515
d559db08 1516 add_mm_rss_vec(mm, rss);
6606c3e0 1517 arch_leave_lazy_mmu_mode();
51c6f666 1518
1cf35d47 1519 /* Do the actual TLB flush before dropping ptl */
5df397de 1520 if (force_flush) {
1cf35d47 1521 tlb_flush_mmu_tlbonly(tlb);
f036c818 1522 tlb_flush_rmaps(tlb, vma);
5df397de 1523 }
1cf35d47
LT
1524 pte_unmap_unlock(start_pte, ptl);
1525
1526 /*
1527 * If we forced a TLB flush (either due to running out of
1528 * batch buffers or because we needed to flush dirty TLB
1529 * entries before releasing the ptl), free the batched
3db82b93 1530 * memory too. Come back again if we didn't do everything.
1cf35d47 1531 */
3db82b93 1532 if (force_flush)
fa0aafb8 1533 tlb_flush_mmu(tlb);
d16dfc55 1534
51c6f666 1535 return addr;
1da177e4
LT
1536}
1537
51c6f666 1538static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1539 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1540 unsigned long addr, unsigned long end,
97a89413 1541 struct zap_details *details)
1da177e4
LT
1542{
1543 pmd_t *pmd;
1544 unsigned long next;
1545
1546 pmd = pmd_offset(pud, addr);
1547 do {
1548 next = pmd_addr_end(addr, end);
84c3fc4e 1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1550 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1551 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553 addr = next;
1554 continue;
1555 }
71e3aac0 1556 /* fall through */
3506659e
MWO
1557 } else if (details && details->single_folio &&
1558 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561 /*
1562 * Take and drop THP pmd lock so that we cannot return
1563 * prematurely, while zap_huge_pmd() has cleared *pmd,
1564 * but not yet decremented compound_mapcount().
1565 */
1566 spin_unlock(ptl);
71e3aac0 1567 }
3db82b93
HD
1568 if (pmd_none(*pmd)) {
1569 addr = next;
1570 continue;
1571 }
1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573 if (addr != next)
1574 pmd--;
1575 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1576
1577 return addr;
1da177e4
LT
1578}
1579
51c6f666 1580static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1581 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1582 unsigned long addr, unsigned long end,
97a89413 1583 struct zap_details *details)
1da177e4
LT
1584{
1585 pud_t *pud;
1586 unsigned long next;
1587
c2febafc 1588 pud = pud_offset(p4d, addr);
1da177e4
LT
1589 do {
1590 next = pud_addr_end(addr, end);
a00cc7d9
MW
1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1593 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1594 split_huge_pud(vma, pud, addr);
1595 } else if (zap_huge_pud(tlb, vma, pud, addr))
1596 goto next;
1597 /* fall through */
1598 }
97a89413 1599 if (pud_none_or_clear_bad(pud))
1da177e4 1600 continue;
97a89413 1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1602next:
1603 cond_resched();
97a89413 1604 } while (pud++, addr = next, addr != end);
51c6f666
RH
1605
1606 return addr;
1da177e4
LT
1607}
1608
c2febafc
KS
1609static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610 struct vm_area_struct *vma, pgd_t *pgd,
1611 unsigned long addr, unsigned long end,
1612 struct zap_details *details)
1613{
1614 p4d_t *p4d;
1615 unsigned long next;
1616
1617 p4d = p4d_offset(pgd, addr);
1618 do {
1619 next = p4d_addr_end(addr, end);
1620 if (p4d_none_or_clear_bad(p4d))
1621 continue;
1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623 } while (p4d++, addr = next, addr != end);
1624
1625 return addr;
1626}
1627
aac45363 1628void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1629 struct vm_area_struct *vma,
1630 unsigned long addr, unsigned long end,
1631 struct zap_details *details)
1da177e4
LT
1632{
1633 pgd_t *pgd;
1634 unsigned long next;
1635
1da177e4
LT
1636 BUG_ON(addr >= end);
1637 tlb_start_vma(tlb, vma);
1638 pgd = pgd_offset(vma->vm_mm, addr);
1639 do {
1640 next = pgd_addr_end(addr, end);
97a89413 1641 if (pgd_none_or_clear_bad(pgd))
1da177e4 1642 continue;
c2febafc 1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1644 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1645 tlb_end_vma(tlb, vma);
1646}
51c6f666 1647
f5cc4eef
AV
1648
1649static void unmap_single_vma(struct mmu_gather *tlb,
1650 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1651 unsigned long end_addr,
68f48381 1652 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1653{
1654 unsigned long start = max(vma->vm_start, start_addr);
1655 unsigned long end;
1656
1657 if (start >= vma->vm_end)
1658 return;
1659 end = min(vma->vm_end, end_addr);
1660 if (end <= vma->vm_start)
1661 return;
1662
cbc91f71
SD
1663 if (vma->vm_file)
1664 uprobe_munmap(vma, start, end);
1665
b3b9c293 1666 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1667 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1668
1669 if (start != end) {
1670 if (unlikely(is_vm_hugetlb_page(vma))) {
1671 /*
1672 * It is undesirable to test vma->vm_file as it
1673 * should be non-null for valid hugetlb area.
1674 * However, vm_file will be NULL in the error
7aa6b4ad 1675 * cleanup path of mmap_region. When
f5cc4eef 1676 * hugetlbfs ->mmap method fails,
7aa6b4ad 1677 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1678 * before calling this function to clean up.
1679 * Since no pte has actually been setup, it is
1680 * safe to do nothing in this case.
1681 */
24669e58 1682 if (vma->vm_file) {
05e90bd0
PX
1683 zap_flags_t zap_flags = details ?
1684 details->zap_flags : 0;
05e90bd0
PX
1685 __unmap_hugepage_range_final(tlb, vma, start, end,
1686 NULL, zap_flags);
24669e58 1687 }
f5cc4eef
AV
1688 } else
1689 unmap_page_range(tlb, vma, start, end, details);
1690 }
1da177e4
LT
1691}
1692
1da177e4
LT
1693/**
1694 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1695 * @tlb: address of the caller's struct mmu_gather
763ecb03 1696 * @mt: the maple tree
1da177e4
LT
1697 * @vma: the starting vma
1698 * @start_addr: virtual address at which to start unmapping
1699 * @end_addr: virtual address at which to end unmapping
809ef83c 1700 * @mm_wr_locked: lock flag
1da177e4 1701 *
508034a3 1702 * Unmap all pages in the vma list.
1da177e4 1703 *
1da177e4
LT
1704 * Only addresses between `start' and `end' will be unmapped.
1705 *
1706 * The VMA list must be sorted in ascending virtual address order.
1707 *
1708 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1709 * range after unmap_vmas() returns. So the only responsibility here is to
1710 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1711 * drops the lock and schedules.
1712 */
fd892593 1713void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1da177e4 1714 struct vm_area_struct *vma, unsigned long start_addr,
fd892593
LH
1715 unsigned long end_addr, unsigned long tree_end,
1716 bool mm_wr_locked)
1da177e4 1717{
ac46d4f3 1718 struct mmu_notifier_range range;
999dad82 1719 struct zap_details details = {
04ada095 1720 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1721 /* Careful - we need to zap private pages too! */
1722 .even_cows = true,
1723 };
1da177e4 1724
7d4a8be0 1725 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1726 start_addr, end_addr);
ac46d4f3 1727 mmu_notifier_invalidate_range_start(&range);
763ecb03 1728 do {
68f48381
SB
1729 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1730 mm_wr_locked);
fd892593 1731 } while ((vma = mas_find(mas, tree_end - 1)) != NULL);
ac46d4f3 1732 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1733}
1734
f5cc4eef
AV
1735/**
1736 * zap_page_range_single - remove user pages in a given range
1737 * @vma: vm_area_struct holding the applicable pages
1738 * @address: starting address of pages to zap
1739 * @size: number of bytes to zap
8a5f14a2 1740 * @details: details of shared cache invalidation
f5cc4eef
AV
1741 *
1742 * The range must fit into one VMA.
1da177e4 1743 */
21b85b09 1744void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1745 unsigned long size, struct zap_details *details)
1746{
21b85b09 1747 const unsigned long end = address + size;
ac46d4f3 1748 struct mmu_notifier_range range;
d16dfc55 1749 struct mmu_gather tlb;
1da177e4 1750
1da177e4 1751 lru_add_drain();
7d4a8be0 1752 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1753 address, end);
1754 if (is_vm_hugetlb_page(vma))
1755 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1756 &range.end);
a72afd87 1757 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1758 update_hiwater_rss(vma->vm_mm);
1759 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1760 /*
1761 * unmap 'address-end' not 'range.start-range.end' as range
1762 * could have been expanded for hugetlb pmd sharing.
1763 */
68f48381 1764 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1765 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1766 tlb_finish_mmu(&tlb);
1da177e4
LT
1767}
1768
c627f9cc
JS
1769/**
1770 * zap_vma_ptes - remove ptes mapping the vma
1771 * @vma: vm_area_struct holding ptes to be zapped
1772 * @address: starting address of pages to zap
1773 * @size: number of bytes to zap
1774 *
1775 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1776 *
1777 * The entire address range must be fully contained within the vma.
1778 *
c627f9cc 1779 */
27d036e3 1780void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1781 unsigned long size)
1782{
88a35912 1783 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1784 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1785 return;
1786
f5cc4eef 1787 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1788}
1789EXPORT_SYMBOL_GPL(zap_vma_ptes);
1790
8cd3984d 1791static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1792{
c2febafc
KS
1793 pgd_t *pgd;
1794 p4d_t *p4d;
1795 pud_t *pud;
1796 pmd_t *pmd;
1797
1798 pgd = pgd_offset(mm, addr);
1799 p4d = p4d_alloc(mm, pgd, addr);
1800 if (!p4d)
1801 return NULL;
1802 pud = pud_alloc(mm, p4d, addr);
1803 if (!pud)
1804 return NULL;
1805 pmd = pmd_alloc(mm, pud, addr);
1806 if (!pmd)
1807 return NULL;
1808
1809 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1810 return pmd;
1811}
1812
1813pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1814 spinlock_t **ptl)
1815{
1816 pmd_t *pmd = walk_to_pmd(mm, addr);
1817
1818 if (!pmd)
1819 return NULL;
c2febafc 1820 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1821}
1822
8efd6f5b
AR
1823static int validate_page_before_insert(struct page *page)
1824{
1825 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1826 return -EINVAL;
1827 flush_dcache_page(page);
1828 return 0;
1829}
1830
cea86fe2 1831static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1832 unsigned long addr, struct page *page, pgprot_t prot)
1833{
c33c7948 1834 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1835 return -EBUSY;
1836 /* Ok, finally just insert the thing.. */
1837 get_page(page);
f1a79412 1838 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1839 page_add_file_rmap(page, vma, false);
1840 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1841 return 0;
1842}
1843
238f58d8
LT
1844/*
1845 * This is the old fallback for page remapping.
1846 *
1847 * For historical reasons, it only allows reserved pages. Only
1848 * old drivers should use this, and they needed to mark their
1849 * pages reserved for the old functions anyway.
1850 */
423bad60
NP
1851static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1852 struct page *page, pgprot_t prot)
238f58d8
LT
1853{
1854 int retval;
c9cfcddf 1855 pte_t *pte;
8a9f3ccd
BS
1856 spinlock_t *ptl;
1857
8efd6f5b
AR
1858 retval = validate_page_before_insert(page);
1859 if (retval)
5b4e655e 1860 goto out;
238f58d8 1861 retval = -ENOMEM;
cea86fe2 1862 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1863 if (!pte)
5b4e655e 1864 goto out;
cea86fe2 1865 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1866 pte_unmap_unlock(pte, ptl);
1867out:
1868 return retval;
1869}
1870
8cd3984d 1871#ifdef pte_index
cea86fe2 1872static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1873 unsigned long addr, struct page *page, pgprot_t prot)
1874{
1875 int err;
1876
1877 if (!page_count(page))
1878 return -EINVAL;
1879 err = validate_page_before_insert(page);
7f70c2a6
AR
1880 if (err)
1881 return err;
cea86fe2 1882 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1883}
1884
1885/* insert_pages() amortizes the cost of spinlock operations
1886 * when inserting pages in a loop. Arch *must* define pte_index.
1887 */
1888static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1889 struct page **pages, unsigned long *num, pgprot_t prot)
1890{
1891 pmd_t *pmd = NULL;
7f70c2a6
AR
1892 pte_t *start_pte, *pte;
1893 spinlock_t *pte_lock;
8cd3984d
AR
1894 struct mm_struct *const mm = vma->vm_mm;
1895 unsigned long curr_page_idx = 0;
1896 unsigned long remaining_pages_total = *num;
1897 unsigned long pages_to_write_in_pmd;
1898 int ret;
1899more:
1900 ret = -EFAULT;
1901 pmd = walk_to_pmd(mm, addr);
1902 if (!pmd)
1903 goto out;
1904
1905 pages_to_write_in_pmd = min_t(unsigned long,
1906 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1907
1908 /* Allocate the PTE if necessary; takes PMD lock once only. */
1909 ret = -ENOMEM;
1910 if (pte_alloc(mm, pmd))
1911 goto out;
8cd3984d
AR
1912
1913 while (pages_to_write_in_pmd) {
1914 int pte_idx = 0;
1915 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1916
7f70c2a6 1917 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1918 if (!start_pte) {
1919 ret = -EFAULT;
1920 goto out;
1921 }
7f70c2a6 1922 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1923 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1924 addr, pages[curr_page_idx], prot);
1925 if (unlikely(err)) {
7f70c2a6 1926 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1927 ret = err;
1928 remaining_pages_total -= pte_idx;
1929 goto out;
1930 }
1931 addr += PAGE_SIZE;
1932 ++curr_page_idx;
1933 }
7f70c2a6 1934 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1935 pages_to_write_in_pmd -= batch_size;
1936 remaining_pages_total -= batch_size;
1937 }
1938 if (remaining_pages_total)
1939 goto more;
1940 ret = 0;
1941out:
1942 *num = remaining_pages_total;
1943 return ret;
1944}
1945#endif /* ifdef pte_index */
1946
1947/**
1948 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1949 * @vma: user vma to map to
1950 * @addr: target start user address of these pages
1951 * @pages: source kernel pages
1952 * @num: in: number of pages to map. out: number of pages that were *not*
1953 * mapped. (0 means all pages were successfully mapped).
1954 *
1955 * Preferred over vm_insert_page() when inserting multiple pages.
1956 *
1957 * In case of error, we may have mapped a subset of the provided
1958 * pages. It is the caller's responsibility to account for this case.
1959 *
1960 * The same restrictions apply as in vm_insert_page().
1961 */
1962int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1963 struct page **pages, unsigned long *num)
1964{
1965#ifdef pte_index
1966 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1967
1968 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1969 return -EFAULT;
1970 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1971 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1972 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1973 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1974 }
1975 /* Defer page refcount checking till we're about to map that page. */
1976 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1977#else
1978 unsigned long idx = 0, pgcount = *num;
45779b03 1979 int err = -EINVAL;
8cd3984d
AR
1980
1981 for (; idx < pgcount; ++idx) {
1982 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1983 if (err)
1984 break;
1985 }
1986 *num = pgcount - idx;
1987 return err;
1988#endif /* ifdef pte_index */
1989}
1990EXPORT_SYMBOL(vm_insert_pages);
1991
bfa5bf6d
REB
1992/**
1993 * vm_insert_page - insert single page into user vma
1994 * @vma: user vma to map to
1995 * @addr: target user address of this page
1996 * @page: source kernel page
1997 *
a145dd41
LT
1998 * This allows drivers to insert individual pages they've allocated
1999 * into a user vma.
2000 *
2001 * The page has to be a nice clean _individual_ kernel allocation.
2002 * If you allocate a compound page, you need to have marked it as
2003 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2004 * (see split_page()).
a145dd41
LT
2005 *
2006 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2007 * took an arbitrary page protection parameter. This doesn't allow
2008 * that. Your vma protection will have to be set up correctly, which
2009 * means that if you want a shared writable mapping, you'd better
2010 * ask for a shared writable mapping!
2011 *
2012 * The page does not need to be reserved.
4b6e1e37
KK
2013 *
2014 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2015 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2016 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2017 * function from other places, for example from page-fault handler.
a862f68a
MR
2018 *
2019 * Return: %0 on success, negative error code otherwise.
a145dd41 2020 */
423bad60
NP
2021int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2022 struct page *page)
a145dd41
LT
2023{
2024 if (addr < vma->vm_start || addr >= vma->vm_end)
2025 return -EFAULT;
2026 if (!page_count(page))
2027 return -EINVAL;
4b6e1e37 2028 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2029 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2030 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2031 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2032 }
423bad60 2033 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2034}
e3c3374f 2035EXPORT_SYMBOL(vm_insert_page);
a145dd41 2036
a667d745
SJ
2037/*
2038 * __vm_map_pages - maps range of kernel pages into user vma
2039 * @vma: user vma to map to
2040 * @pages: pointer to array of source kernel pages
2041 * @num: number of pages in page array
2042 * @offset: user's requested vm_pgoff
2043 *
2044 * This allows drivers to map range of kernel pages into a user vma.
2045 *
2046 * Return: 0 on success and error code otherwise.
2047 */
2048static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2049 unsigned long num, unsigned long offset)
2050{
2051 unsigned long count = vma_pages(vma);
2052 unsigned long uaddr = vma->vm_start;
2053 int ret, i;
2054
2055 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2056 if (offset >= num)
a667d745
SJ
2057 return -ENXIO;
2058
2059 /* Fail if the user requested size exceeds available object size */
2060 if (count > num - offset)
2061 return -ENXIO;
2062
2063 for (i = 0; i < count; i++) {
2064 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2065 if (ret < 0)
2066 return ret;
2067 uaddr += PAGE_SIZE;
2068 }
2069
2070 return 0;
2071}
2072
2073/**
2074 * vm_map_pages - maps range of kernel pages starts with non zero offset
2075 * @vma: user vma to map to
2076 * @pages: pointer to array of source kernel pages
2077 * @num: number of pages in page array
2078 *
2079 * Maps an object consisting of @num pages, catering for the user's
2080 * requested vm_pgoff
2081 *
2082 * If we fail to insert any page into the vma, the function will return
2083 * immediately leaving any previously inserted pages present. Callers
2084 * from the mmap handler may immediately return the error as their caller
2085 * will destroy the vma, removing any successfully inserted pages. Other
2086 * callers should make their own arrangements for calling unmap_region().
2087 *
2088 * Context: Process context. Called by mmap handlers.
2089 * Return: 0 on success and error code otherwise.
2090 */
2091int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2092 unsigned long num)
2093{
2094 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2095}
2096EXPORT_SYMBOL(vm_map_pages);
2097
2098/**
2099 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2100 * @vma: user vma to map to
2101 * @pages: pointer to array of source kernel pages
2102 * @num: number of pages in page array
2103 *
2104 * Similar to vm_map_pages(), except that it explicitly sets the offset
2105 * to 0. This function is intended for the drivers that did not consider
2106 * vm_pgoff.
2107 *
2108 * Context: Process context. Called by mmap handlers.
2109 * Return: 0 on success and error code otherwise.
2110 */
2111int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2112 unsigned long num)
2113{
2114 return __vm_map_pages(vma, pages, num, 0);
2115}
2116EXPORT_SYMBOL(vm_map_pages_zero);
2117
9b5a8e00 2118static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2119 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2120{
2121 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2122 pte_t *pte, entry;
2123 spinlock_t *ptl;
2124
423bad60
NP
2125 pte = get_locked_pte(mm, addr, &ptl);
2126 if (!pte)
9b5a8e00 2127 return VM_FAULT_OOM;
c33c7948
RR
2128 entry = ptep_get(pte);
2129 if (!pte_none(entry)) {
b2770da6
RZ
2130 if (mkwrite) {
2131 /*
2132 * For read faults on private mappings the PFN passed
2133 * in may not match the PFN we have mapped if the
2134 * mapped PFN is a writeable COW page. In the mkwrite
2135 * case we are creating a writable PTE for a shared
f2c57d91
JK
2136 * mapping and we expect the PFNs to match. If they
2137 * don't match, we are likely racing with block
2138 * allocation and mapping invalidation so just skip the
2139 * update.
b2770da6 2140 */
c33c7948
RR
2141 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2142 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2143 goto out_unlock;
f2c57d91 2144 }
c33c7948 2145 entry = pte_mkyoung(entry);
cae85cb8
JK
2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2148 update_mmu_cache(vma, addr, pte);
2149 }
2150 goto out_unlock;
b2770da6 2151 }
423bad60
NP
2152
2153 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2154 if (pfn_t_devmap(pfn))
2155 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2156 else
2157 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2158
b2770da6
RZ
2159 if (mkwrite) {
2160 entry = pte_mkyoung(entry);
2161 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2162 }
2163
423bad60 2164 set_pte_at(mm, addr, pte, entry);
4b3073e1 2165 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2166
423bad60
NP
2167out_unlock:
2168 pte_unmap_unlock(pte, ptl);
9b5a8e00 2169 return VM_FAULT_NOPAGE;
423bad60
NP
2170}
2171
f5e6d1d5
MW
2172/**
2173 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2174 * @vma: user vma to map to
2175 * @addr: target user address of this page
2176 * @pfn: source kernel pfn
2177 * @pgprot: pgprot flags for the inserted page
2178 *
a1a0aea5 2179 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2180 * to override pgprot on a per-page basis.
2181 *
2182 * This only makes sense for IO mappings, and it makes no sense for
2183 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2184 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2185 * impractical.
2186 *
28d8b812
LS
2187 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2188 * caching- and encryption bits different than those of @vma->vm_page_prot,
2189 * because the caching- or encryption mode may not be known at mmap() time.
2190 *
2191 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2192 * to set caching and encryption bits for those vmas (except for COW pages).
2193 * This is ensured by core vm only modifying these page table entries using
2194 * functions that don't touch caching- or encryption bits, using pte_modify()
2195 * if needed. (See for example mprotect()).
2196 *
2197 * Also when new page-table entries are created, this is only done using the
2198 * fault() callback, and never using the value of vma->vm_page_prot,
2199 * except for page-table entries that point to anonymous pages as the result
2200 * of COW.
574c5b3d 2201 *
ae2b01f3 2202 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2203 * Return: vm_fault_t value.
2204 */
2205vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2206 unsigned long pfn, pgprot_t pgprot)
2207{
6d958546
MW
2208 /*
2209 * Technically, architectures with pte_special can avoid all these
2210 * restrictions (same for remap_pfn_range). However we would like
2211 * consistency in testing and feature parity among all, so we should
2212 * try to keep these invariants in place for everybody.
2213 */
2214 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2215 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2216 (VM_PFNMAP|VM_MIXEDMAP));
2217 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2218 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2219
2220 if (addr < vma->vm_start || addr >= vma->vm_end)
2221 return VM_FAULT_SIGBUS;
2222
2223 if (!pfn_modify_allowed(pfn, pgprot))
2224 return VM_FAULT_SIGBUS;
2225
2226 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2227
9b5a8e00 2228 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2229 false);
f5e6d1d5
MW
2230}
2231EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2232
ae2b01f3
MW
2233/**
2234 * vmf_insert_pfn - insert single pfn into user vma
2235 * @vma: user vma to map to
2236 * @addr: target user address of this page
2237 * @pfn: source kernel pfn
2238 *
2239 * Similar to vm_insert_page, this allows drivers to insert individual pages
2240 * they've allocated into a user vma. Same comments apply.
2241 *
2242 * This function should only be called from a vm_ops->fault handler, and
2243 * in that case the handler should return the result of this function.
2244 *
2245 * vma cannot be a COW mapping.
2246 *
2247 * As this is called only for pages that do not currently exist, we
2248 * do not need to flush old virtual caches or the TLB.
2249 *
2250 * Context: Process context. May allocate using %GFP_KERNEL.
2251 * Return: vm_fault_t value.
2252 */
2253vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2254 unsigned long pfn)
2255{
2256 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2257}
2258EXPORT_SYMBOL(vmf_insert_pfn);
2259
785a3fab
DW
2260static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2261{
2262 /* these checks mirror the abort conditions in vm_normal_page */
2263 if (vma->vm_flags & VM_MIXEDMAP)
2264 return true;
2265 if (pfn_t_devmap(pfn))
2266 return true;
2267 if (pfn_t_special(pfn))
2268 return true;
2269 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2270 return true;
2271 return false;
2272}
2273
79f3aa5b 2274static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2275 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2276{
28d8b812 2277 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2278 int err;
87744ab3 2279
785a3fab 2280 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2281
423bad60 2282 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2283 return VM_FAULT_SIGBUS;
308a047c
BP
2284
2285 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2286
42e4089c 2287 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2288 return VM_FAULT_SIGBUS;
42e4089c 2289
423bad60
NP
2290 /*
2291 * If we don't have pte special, then we have to use the pfn_valid()
2292 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2293 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2294 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2295 * without pte special, it would there be refcounted as a normal page.
423bad60 2296 */
00b3a331
LD
2297 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2298 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2299 struct page *page;
2300
03fc2da6
DW
2301 /*
2302 * At this point we are committed to insert_page()
2303 * regardless of whether the caller specified flags that
2304 * result in pfn_t_has_page() == false.
2305 */
2306 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2307 err = insert_page(vma, addr, page, pgprot);
2308 } else {
9b5a8e00 2309 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2310 }
b2770da6 2311
5d747637
MW
2312 if (err == -ENOMEM)
2313 return VM_FAULT_OOM;
2314 if (err < 0 && err != -EBUSY)
2315 return VM_FAULT_SIGBUS;
2316
2317 return VM_FAULT_NOPAGE;
e0dc0d8f 2318}
79f3aa5b
MW
2319
2320vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2321 pfn_t pfn)
2322{
28d8b812 2323 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2324}
5d747637 2325EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2326
ab77dab4
SJ
2327/*
2328 * If the insertion of PTE failed because someone else already added a
2329 * different entry in the mean time, we treat that as success as we assume
2330 * the same entry was actually inserted.
2331 */
ab77dab4
SJ
2332vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2333 unsigned long addr, pfn_t pfn)
b2770da6 2334{
28d8b812 2335 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2336}
ab77dab4 2337EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2338
1da177e4
LT
2339/*
2340 * maps a range of physical memory into the requested pages. the old
2341 * mappings are removed. any references to nonexistent pages results
2342 * in null mappings (currently treated as "copy-on-access")
2343 */
2344static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2345 unsigned long addr, unsigned long end,
2346 unsigned long pfn, pgprot_t prot)
2347{
90a3e375 2348 pte_t *pte, *mapped_pte;
c74df32c 2349 spinlock_t *ptl;
42e4089c 2350 int err = 0;
1da177e4 2351
90a3e375 2352 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2353 if (!pte)
2354 return -ENOMEM;
6606c3e0 2355 arch_enter_lazy_mmu_mode();
1da177e4 2356 do {
c33c7948 2357 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2358 if (!pfn_modify_allowed(pfn, prot)) {
2359 err = -EACCES;
2360 break;
2361 }
7e675137 2362 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2363 pfn++;
2364 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2365 arch_leave_lazy_mmu_mode();
90a3e375 2366 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2367 return err;
1da177e4
LT
2368}
2369
2370static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2371 unsigned long addr, unsigned long end,
2372 unsigned long pfn, pgprot_t prot)
2373{
2374 pmd_t *pmd;
2375 unsigned long next;
42e4089c 2376 int err;
1da177e4
LT
2377
2378 pfn -= addr >> PAGE_SHIFT;
2379 pmd = pmd_alloc(mm, pud, addr);
2380 if (!pmd)
2381 return -ENOMEM;
f66055ab 2382 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2383 do {
2384 next = pmd_addr_end(addr, end);
42e4089c
AK
2385 err = remap_pte_range(mm, pmd, addr, next,
2386 pfn + (addr >> PAGE_SHIFT), prot);
2387 if (err)
2388 return err;
1da177e4
LT
2389 } while (pmd++, addr = next, addr != end);
2390 return 0;
2391}
2392
c2febafc 2393static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2394 unsigned long addr, unsigned long end,
2395 unsigned long pfn, pgprot_t prot)
2396{
2397 pud_t *pud;
2398 unsigned long next;
42e4089c 2399 int err;
1da177e4
LT
2400
2401 pfn -= addr >> PAGE_SHIFT;
c2febafc 2402 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2403 if (!pud)
2404 return -ENOMEM;
2405 do {
2406 next = pud_addr_end(addr, end);
42e4089c
AK
2407 err = remap_pmd_range(mm, pud, addr, next,
2408 pfn + (addr >> PAGE_SHIFT), prot);
2409 if (err)
2410 return err;
1da177e4
LT
2411 } while (pud++, addr = next, addr != end);
2412 return 0;
2413}
2414
c2febafc
KS
2415static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2416 unsigned long addr, unsigned long end,
2417 unsigned long pfn, pgprot_t prot)
2418{
2419 p4d_t *p4d;
2420 unsigned long next;
42e4089c 2421 int err;
c2febafc
KS
2422
2423 pfn -= addr >> PAGE_SHIFT;
2424 p4d = p4d_alloc(mm, pgd, addr);
2425 if (!p4d)
2426 return -ENOMEM;
2427 do {
2428 next = p4d_addr_end(addr, end);
42e4089c
AK
2429 err = remap_pud_range(mm, p4d, addr, next,
2430 pfn + (addr >> PAGE_SHIFT), prot);
2431 if (err)
2432 return err;
c2febafc
KS
2433 } while (p4d++, addr = next, addr != end);
2434 return 0;
2435}
2436
74ffa5a3
CH
2437/*
2438 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2439 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2440 */
74ffa5a3
CH
2441int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2442 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2443{
2444 pgd_t *pgd;
2445 unsigned long next;
2d15cab8 2446 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2447 struct mm_struct *mm = vma->vm_mm;
2448 int err;
2449
0c4123e3
AZ
2450 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2451 return -EINVAL;
2452
1da177e4
LT
2453 /*
2454 * Physically remapped pages are special. Tell the
2455 * rest of the world about it:
2456 * VM_IO tells people not to look at these pages
2457 * (accesses can have side effects).
6aab341e
LT
2458 * VM_PFNMAP tells the core MM that the base pages are just
2459 * raw PFN mappings, and do not have a "struct page" associated
2460 * with them.
314e51b9
KK
2461 * VM_DONTEXPAND
2462 * Disable vma merging and expanding with mremap().
2463 * VM_DONTDUMP
2464 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2465 *
2466 * There's a horrible special case to handle copy-on-write
2467 * behaviour that some programs depend on. We mark the "original"
2468 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2469 * See vm_normal_page() for details.
1da177e4 2470 */
b3b9c293
KK
2471 if (is_cow_mapping(vma->vm_flags)) {
2472 if (addr != vma->vm_start || end != vma->vm_end)
2473 return -EINVAL;
fb155c16 2474 vma->vm_pgoff = pfn;
b3b9c293
KK
2475 }
2476
1c71222e 2477 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2478
2479 BUG_ON(addr >= end);
2480 pfn -= addr >> PAGE_SHIFT;
2481 pgd = pgd_offset(mm, addr);
2482 flush_cache_range(vma, addr, end);
1da177e4
LT
2483 do {
2484 next = pgd_addr_end(addr, end);
c2febafc 2485 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2486 pfn + (addr >> PAGE_SHIFT), prot);
2487 if (err)
74ffa5a3 2488 return err;
1da177e4 2489 } while (pgd++, addr = next, addr != end);
2ab64037 2490
74ffa5a3
CH
2491 return 0;
2492}
2493
2494/**
2495 * remap_pfn_range - remap kernel memory to userspace
2496 * @vma: user vma to map to
2497 * @addr: target page aligned user address to start at
2498 * @pfn: page frame number of kernel physical memory address
2499 * @size: size of mapping area
2500 * @prot: page protection flags for this mapping
2501 *
2502 * Note: this is only safe if the mm semaphore is held when called.
2503 *
2504 * Return: %0 on success, negative error code otherwise.
2505 */
2506int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2507 unsigned long pfn, unsigned long size, pgprot_t prot)
2508{
2509 int err;
2510
2511 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2512 if (err)
74ffa5a3 2513 return -EINVAL;
2ab64037 2514
74ffa5a3
CH
2515 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2516 if (err)
68f48381 2517 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2518 return err;
2519}
2520EXPORT_SYMBOL(remap_pfn_range);
2521
b4cbb197
LT
2522/**
2523 * vm_iomap_memory - remap memory to userspace
2524 * @vma: user vma to map to
abd69b9e 2525 * @start: start of the physical memory to be mapped
b4cbb197
LT
2526 * @len: size of area
2527 *
2528 * This is a simplified io_remap_pfn_range() for common driver use. The
2529 * driver just needs to give us the physical memory range to be mapped,
2530 * we'll figure out the rest from the vma information.
2531 *
2532 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2533 * whatever write-combining details or similar.
a862f68a
MR
2534 *
2535 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2536 */
2537int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2538{
2539 unsigned long vm_len, pfn, pages;
2540
2541 /* Check that the physical memory area passed in looks valid */
2542 if (start + len < start)
2543 return -EINVAL;
2544 /*
2545 * You *really* shouldn't map things that aren't page-aligned,
2546 * but we've historically allowed it because IO memory might
2547 * just have smaller alignment.
2548 */
2549 len += start & ~PAGE_MASK;
2550 pfn = start >> PAGE_SHIFT;
2551 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2552 if (pfn + pages < pfn)
2553 return -EINVAL;
2554
2555 /* We start the mapping 'vm_pgoff' pages into the area */
2556 if (vma->vm_pgoff > pages)
2557 return -EINVAL;
2558 pfn += vma->vm_pgoff;
2559 pages -= vma->vm_pgoff;
2560
2561 /* Can we fit all of the mapping? */
2562 vm_len = vma->vm_end - vma->vm_start;
2563 if (vm_len >> PAGE_SHIFT > pages)
2564 return -EINVAL;
2565
2566 /* Ok, let it rip */
2567 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2568}
2569EXPORT_SYMBOL(vm_iomap_memory);
2570
aee16b3c
JF
2571static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2572 unsigned long addr, unsigned long end,
e80d3909
JR
2573 pte_fn_t fn, void *data, bool create,
2574 pgtbl_mod_mask *mask)
aee16b3c 2575{
8abb50c7 2576 pte_t *pte, *mapped_pte;
be1db475 2577 int err = 0;
3f649ab7 2578 spinlock_t *ptl;
aee16b3c 2579
be1db475 2580 if (create) {
8abb50c7 2581 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2582 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2583 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2584 if (!pte)
2585 return -ENOMEM;
2586 } else {
8abb50c7 2587 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2588 pte_offset_kernel(pmd, addr) :
2589 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2590 if (!pte)
2591 return -EINVAL;
be1db475 2592 }
aee16b3c 2593
38e0edb1
JF
2594 arch_enter_lazy_mmu_mode();
2595
eeb4a05f
CH
2596 if (fn) {
2597 do {
c33c7948 2598 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2599 err = fn(pte++, addr, data);
2600 if (err)
2601 break;
2602 }
2603 } while (addr += PAGE_SIZE, addr != end);
2604 }
e80d3909 2605 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2606
38e0edb1
JF
2607 arch_leave_lazy_mmu_mode();
2608
aee16b3c 2609 if (mm != &init_mm)
8abb50c7 2610 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2611 return err;
2612}
2613
2614static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2615 unsigned long addr, unsigned long end,
e80d3909
JR
2616 pte_fn_t fn, void *data, bool create,
2617 pgtbl_mod_mask *mask)
aee16b3c
JF
2618{
2619 pmd_t *pmd;
2620 unsigned long next;
be1db475 2621 int err = 0;
aee16b3c 2622
ceb86879
AK
2623 BUG_ON(pud_huge(*pud));
2624
be1db475 2625 if (create) {
e80d3909 2626 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2627 if (!pmd)
2628 return -ENOMEM;
2629 } else {
2630 pmd = pmd_offset(pud, addr);
2631 }
aee16b3c
JF
2632 do {
2633 next = pmd_addr_end(addr, end);
0c95cba4
NP
2634 if (pmd_none(*pmd) && !create)
2635 continue;
2636 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2637 return -EINVAL;
2638 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2639 if (!create)
2640 continue;
2641 pmd_clear_bad(pmd);
be1db475 2642 }
0c95cba4
NP
2643 err = apply_to_pte_range(mm, pmd, addr, next,
2644 fn, data, create, mask);
2645 if (err)
2646 break;
aee16b3c 2647 } while (pmd++, addr = next, addr != end);
0c95cba4 2648
aee16b3c
JF
2649 return err;
2650}
2651
c2febafc 2652static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2653 unsigned long addr, unsigned long end,
e80d3909
JR
2654 pte_fn_t fn, void *data, bool create,
2655 pgtbl_mod_mask *mask)
aee16b3c
JF
2656{
2657 pud_t *pud;
2658 unsigned long next;
be1db475 2659 int err = 0;
aee16b3c 2660
be1db475 2661 if (create) {
e80d3909 2662 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2663 if (!pud)
2664 return -ENOMEM;
2665 } else {
2666 pud = pud_offset(p4d, addr);
2667 }
aee16b3c
JF
2668 do {
2669 next = pud_addr_end(addr, end);
0c95cba4
NP
2670 if (pud_none(*pud) && !create)
2671 continue;
2672 if (WARN_ON_ONCE(pud_leaf(*pud)))
2673 return -EINVAL;
2674 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2675 if (!create)
2676 continue;
2677 pud_clear_bad(pud);
be1db475 2678 }
0c95cba4
NP
2679 err = apply_to_pmd_range(mm, pud, addr, next,
2680 fn, data, create, mask);
2681 if (err)
2682 break;
aee16b3c 2683 } while (pud++, addr = next, addr != end);
0c95cba4 2684
aee16b3c
JF
2685 return err;
2686}
2687
c2febafc
KS
2688static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2689 unsigned long addr, unsigned long end,
e80d3909
JR
2690 pte_fn_t fn, void *data, bool create,
2691 pgtbl_mod_mask *mask)
c2febafc
KS
2692{
2693 p4d_t *p4d;
2694 unsigned long next;
be1db475 2695 int err = 0;
c2febafc 2696
be1db475 2697 if (create) {
e80d3909 2698 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2699 if (!p4d)
2700 return -ENOMEM;
2701 } else {
2702 p4d = p4d_offset(pgd, addr);
2703 }
c2febafc
KS
2704 do {
2705 next = p4d_addr_end(addr, end);
0c95cba4
NP
2706 if (p4d_none(*p4d) && !create)
2707 continue;
2708 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2709 return -EINVAL;
2710 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2711 if (!create)
2712 continue;
2713 p4d_clear_bad(p4d);
be1db475 2714 }
0c95cba4
NP
2715 err = apply_to_pud_range(mm, p4d, addr, next,
2716 fn, data, create, mask);
2717 if (err)
2718 break;
c2febafc 2719 } while (p4d++, addr = next, addr != end);
0c95cba4 2720
c2febafc
KS
2721 return err;
2722}
2723
be1db475
DA
2724static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2725 unsigned long size, pte_fn_t fn,
2726 void *data, bool create)
aee16b3c
JF
2727{
2728 pgd_t *pgd;
e80d3909 2729 unsigned long start = addr, next;
57250a5b 2730 unsigned long end = addr + size;
e80d3909 2731 pgtbl_mod_mask mask = 0;
be1db475 2732 int err = 0;
aee16b3c 2733
9cb65bc3
MP
2734 if (WARN_ON(addr >= end))
2735 return -EINVAL;
2736
aee16b3c
JF
2737 pgd = pgd_offset(mm, addr);
2738 do {
2739 next = pgd_addr_end(addr, end);
0c95cba4 2740 if (pgd_none(*pgd) && !create)
be1db475 2741 continue;
0c95cba4
NP
2742 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2743 return -EINVAL;
2744 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2745 if (!create)
2746 continue;
2747 pgd_clear_bad(pgd);
2748 }
2749 err = apply_to_p4d_range(mm, pgd, addr, next,
2750 fn, data, create, &mask);
aee16b3c
JF
2751 if (err)
2752 break;
2753 } while (pgd++, addr = next, addr != end);
57250a5b 2754
e80d3909
JR
2755 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2756 arch_sync_kernel_mappings(start, start + size);
2757
aee16b3c
JF
2758 return err;
2759}
be1db475
DA
2760
2761/*
2762 * Scan a region of virtual memory, filling in page tables as necessary
2763 * and calling a provided function on each leaf page table.
2764 */
2765int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2766 unsigned long size, pte_fn_t fn, void *data)
2767{
2768 return __apply_to_page_range(mm, addr, size, fn, data, true);
2769}
aee16b3c
JF
2770EXPORT_SYMBOL_GPL(apply_to_page_range);
2771
be1db475
DA
2772/*
2773 * Scan a region of virtual memory, calling a provided function on
2774 * each leaf page table where it exists.
2775 *
2776 * Unlike apply_to_page_range, this does _not_ fill in page tables
2777 * where they are absent.
2778 */
2779int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2780 unsigned long size, pte_fn_t fn, void *data)
2781{
2782 return __apply_to_page_range(mm, addr, size, fn, data, false);
2783}
2784EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2785
8f4e2101 2786/*
9b4bdd2f
KS
2787 * handle_pte_fault chooses page fault handler according to an entry which was
2788 * read non-atomically. Before making any commitment, on those architectures
2789 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2790 * parts, do_swap_page must check under lock before unmapping the pte and
2791 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2792 * and do_anonymous_page can safely check later on).
8f4e2101 2793 */
2ca99358 2794static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2795{
2796 int same = 1;
923717cb 2797#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2798 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2799 spin_lock(vmf->ptl);
c33c7948 2800 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2801 spin_unlock(vmf->ptl);
8f4e2101
HD
2802 }
2803#endif
2ca99358
PX
2804 pte_unmap(vmf->pte);
2805 vmf->pte = NULL;
8f4e2101
HD
2806 return same;
2807}
2808
a873dfe1
TL
2809/*
2810 * Return:
2811 * 0: copied succeeded
2812 * -EHWPOISON: copy failed due to hwpoison in source page
2813 * -EAGAIN: copied failed (some other reason)
2814 */
2815static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2816 struct vm_fault *vmf)
6aab341e 2817{
a873dfe1 2818 int ret;
83d116c5
JH
2819 void *kaddr;
2820 void __user *uaddr;
83d116c5
JH
2821 struct vm_area_struct *vma = vmf->vma;
2822 struct mm_struct *mm = vma->vm_mm;
2823 unsigned long addr = vmf->address;
2824
83d116c5 2825 if (likely(src)) {
d302c239
TL
2826 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2827 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2828 return -EHWPOISON;
d302c239 2829 }
a873dfe1 2830 return 0;
83d116c5
JH
2831 }
2832
6aab341e
LT
2833 /*
2834 * If the source page was a PFN mapping, we don't have
2835 * a "struct page" for it. We do a best-effort copy by
2836 * just copying from the original user address. If that
2837 * fails, we just zero-fill it. Live with it.
2838 */
83d116c5
JH
2839 kaddr = kmap_atomic(dst);
2840 uaddr = (void __user *)(addr & PAGE_MASK);
2841
2842 /*
2843 * On architectures with software "accessed" bits, we would
2844 * take a double page fault, so mark it accessed here.
2845 */
3db82b93 2846 vmf->pte = NULL;
e1fd09e3 2847 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2848 pte_t entry;
5d2a2dbb 2849
83d116c5 2850 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2851 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2852 /*
2853 * Other thread has already handled the fault
7df67697 2854 * and update local tlb only
83d116c5 2855 */
a92cbb82
HD
2856 if (vmf->pte)
2857 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2858 ret = -EAGAIN;
83d116c5
JH
2859 goto pte_unlock;
2860 }
2861
2862 entry = pte_mkyoung(vmf->orig_pte);
2863 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2864 update_mmu_cache(vma, addr, vmf->pte);
2865 }
2866
2867 /*
2868 * This really shouldn't fail, because the page is there
2869 * in the page tables. But it might just be unreadable,
2870 * in which case we just give up and fill the result with
2871 * zeroes.
2872 */
2873 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2874 if (vmf->pte)
c3e5ea6e
KS
2875 goto warn;
2876
2877 /* Re-validate under PTL if the page is still mapped */
2878 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2879 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2880 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2881 if (vmf->pte)
2882 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2883 ret = -EAGAIN;
c3e5ea6e
KS
2884 goto pte_unlock;
2885 }
2886
5d2a2dbb 2887 /*
985ba004 2888 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2889 * Try to copy again under PTL.
5d2a2dbb 2890 */
c3e5ea6e
KS
2891 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2892 /*
2893 * Give a warn in case there can be some obscure
2894 * use-case
2895 */
2896warn:
2897 WARN_ON_ONCE(1);
2898 clear_page(kaddr);
2899 }
83d116c5
JH
2900 }
2901
a873dfe1 2902 ret = 0;
83d116c5
JH
2903
2904pte_unlock:
3db82b93 2905 if (vmf->pte)
83d116c5
JH
2906 pte_unmap_unlock(vmf->pte, vmf->ptl);
2907 kunmap_atomic(kaddr);
2908 flush_dcache_page(dst);
2909
2910 return ret;
6aab341e
LT
2911}
2912
c20cd45e
MH
2913static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2914{
2915 struct file *vm_file = vma->vm_file;
2916
2917 if (vm_file)
2918 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2919
2920 /*
2921 * Special mappings (e.g. VDSO) do not have any file so fake
2922 * a default GFP_KERNEL for them.
2923 */
2924 return GFP_KERNEL;
2925}
2926
fb09a464
KS
2927/*
2928 * Notify the address space that the page is about to become writable so that
2929 * it can prohibit this or wait for the page to get into an appropriate state.
2930 *
2931 * We do this without the lock held, so that it can sleep if it needs to.
2932 */
86aa6998 2933static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2934{
2b740303 2935 vm_fault_t ret;
38b8cb7f 2936 unsigned int old_flags = vmf->flags;
fb09a464 2937
38b8cb7f 2938 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2939
dc617f29
DW
2940 if (vmf->vma->vm_file &&
2941 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2942 return VM_FAULT_SIGBUS;
2943
11bac800 2944 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2945 /* Restore original flags so that caller is not surprised */
2946 vmf->flags = old_flags;
fb09a464
KS
2947 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2948 return ret;
2949 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2950 folio_lock(folio);
2951 if (!folio->mapping) {
2952 folio_unlock(folio);
fb09a464
KS
2953 return 0; /* retry */
2954 }
2955 ret |= VM_FAULT_LOCKED;
2956 } else
3d243659 2957 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2958 return ret;
2959}
2960
97ba0c2b
JK
2961/*
2962 * Handle dirtying of a page in shared file mapping on a write fault.
2963 *
2964 * The function expects the page to be locked and unlocks it.
2965 */
89b15332 2966static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2967{
89b15332 2968 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2969 struct address_space *mapping;
15b4919a 2970 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2971 bool dirtied;
2972 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2973
15b4919a
Z
2974 dirtied = folio_mark_dirty(folio);
2975 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2976 /*
15b4919a
Z
2977 * Take a local copy of the address_space - folio.mapping may be zeroed
2978 * by truncate after folio_unlock(). The address_space itself remains
2979 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2980 * release semantics to prevent the compiler from undoing this copying.
2981 */
15b4919a
Z
2982 mapping = folio_raw_mapping(folio);
2983 folio_unlock(folio);
97ba0c2b 2984
89b15332
JW
2985 if (!page_mkwrite)
2986 file_update_time(vma->vm_file);
2987
2988 /*
2989 * Throttle page dirtying rate down to writeback speed.
2990 *
2991 * mapping may be NULL here because some device drivers do not
2992 * set page.mapping but still dirty their pages
2993 *
c1e8d7c6 2994 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2995 * is pinning the mapping, as per above.
2996 */
97ba0c2b 2997 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2998 struct file *fpin;
2999
3000 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3001 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3002 if (fpin) {
3003 fput(fpin);
d9272525 3004 return VM_FAULT_COMPLETED;
89b15332 3005 }
97ba0c2b
JK
3006 }
3007
89b15332 3008 return 0;
97ba0c2b
JK
3009}
3010
4e047f89
SR
3011/*
3012 * Handle write page faults for pages that can be reused in the current vma
3013 *
3014 * This can happen either due to the mapping being with the VM_SHARED flag,
3015 * or due to us being the last reference standing to the page. In either
3016 * case, all we need to do here is to mark the page as writable and update
3017 * any related book-keeping.
3018 */
997dd98d 3019static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3020 __releases(vmf->ptl)
4e047f89 3021{
82b0f8c3 3022 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3023 struct page *page = vmf->page;
4e047f89 3024 pte_t entry;
6c287605 3025
c89357e2 3026 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3027 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3028
4e047f89
SR
3029 /*
3030 * Clear the pages cpupid information as the existing
3031 * information potentially belongs to a now completely
3032 * unrelated process.
3033 */
3034 if (page)
3035 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3036
2994302b
JK
3037 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3038 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3039 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3040 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3041 update_mmu_cache(vma, vmf->address, vmf->pte);
3042 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3043 count_vm_event(PGREUSE);
4e047f89
SR
3044}
3045
2f38ab2c 3046/*
c89357e2
DH
3047 * Handle the case of a page which we actually need to copy to a new page,
3048 * either due to COW or unsharing.
2f38ab2c 3049 *
c1e8d7c6 3050 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3051 * without the ptl held.
3052 *
3053 * High level logic flow:
3054 *
3055 * - Allocate a page, copy the content of the old page to the new one.
3056 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3057 * - Take the PTL. If the pte changed, bail out and release the allocated page
3058 * - If the pte is still the way we remember it, update the page table and all
3059 * relevant references. This includes dropping the reference the page-table
3060 * held to the old page, as well as updating the rmap.
3061 * - In any case, unlock the PTL and drop the reference we took to the old page.
3062 */
2b740303 3063static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3064{
c89357e2 3065 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3066 struct vm_area_struct *vma = vmf->vma;
bae473a4 3067 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3068 struct folio *old_folio = NULL;
3069 struct folio *new_folio = NULL;
2f38ab2c
SR
3070 pte_t entry;
3071 int page_copied = 0;
ac46d4f3 3072 struct mmu_notifier_range range;
a873dfe1 3073 int ret;
2f38ab2c 3074
662ce1dc
YY
3075 delayacct_wpcopy_start();
3076
28d41a48
MWO
3077 if (vmf->page)
3078 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3079 if (unlikely(anon_vma_prepare(vma)))
3080 goto oom;
3081
2994302b 3082 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3083 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3084 if (!new_folio)
2f38ab2c
SR
3085 goto oom;
3086 } else {
28d41a48
MWO
3087 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3088 vmf->address, false);
3089 if (!new_folio)
2f38ab2c 3090 goto oom;
83d116c5 3091
28d41a48 3092 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3093 if (ret) {
83d116c5
JH
3094 /*
3095 * COW failed, if the fault was solved by other,
3096 * it's fine. If not, userspace would re-fault on
3097 * the same address and we will handle the fault
3098 * from the second attempt.
a873dfe1 3099 * The -EHWPOISON case will not be retried.
83d116c5 3100 */
28d41a48
MWO
3101 folio_put(new_folio);
3102 if (old_folio)
3103 folio_put(old_folio);
662ce1dc
YY
3104
3105 delayacct_wpcopy_end();
a873dfe1 3106 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3107 }
28d41a48 3108 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3109 }
2f38ab2c 3110
28d41a48 3111 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3112 goto oom_free_new;
4d4f75bf 3113 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3114
28d41a48 3115 __folio_mark_uptodate(new_folio);
eb3c24f3 3116
7d4a8be0 3117 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3118 vmf->address & PAGE_MASK,
ac46d4f3
JG
3119 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3120 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3121
3122 /*
3123 * Re-check the pte - we dropped the lock
3124 */
82b0f8c3 3125 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3126 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3127 if (old_folio) {
3128 if (!folio_test_anon(old_folio)) {
3129 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3130 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3131 }
3132 } else {
6080d19f 3133 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3134 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3135 }
2994302b 3136 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3137 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3138 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3139 if (unlikely(unshare)) {
3140 if (pte_soft_dirty(vmf->orig_pte))
3141 entry = pte_mksoft_dirty(entry);
3142 if (pte_uffd_wp(vmf->orig_pte))
3143 entry = pte_mkuffd_wp(entry);
3144 } else {
3145 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3146 }
111fe718 3147
2f38ab2c
SR
3148 /*
3149 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3150 * pte with the new entry, to keep TLBs on different CPUs in
3151 * sync. This code used to set the new PTE then flush TLBs, but
3152 * that left a window where the new PTE could be loaded into
3153 * some TLBs while the old PTE remains in others.
2f38ab2c 3154 */
ec8832d0 3155 ptep_clear_flush(vma, vmf->address, vmf->pte);
28d41a48
MWO
3156 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3157 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3158 /*
3159 * We call the notify macro here because, when using secondary
3160 * mmu page tables (such as kvm shadow page tables), we want the
3161 * new page to be mapped directly into the secondary page table.
3162 */
c89357e2 3163 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3164 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3165 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3166 if (old_folio) {
2f38ab2c
SR
3167 /*
3168 * Only after switching the pte to the new page may
3169 * we remove the mapcount here. Otherwise another
3170 * process may come and find the rmap count decremented
3171 * before the pte is switched to the new page, and
3172 * "reuse" the old page writing into it while our pte
3173 * here still points into it and can be read by other
3174 * threads.
3175 *
3176 * The critical issue is to order this
3177 * page_remove_rmap with the ptp_clear_flush above.
3178 * Those stores are ordered by (if nothing else,)
3179 * the barrier present in the atomic_add_negative
3180 * in page_remove_rmap.
3181 *
3182 * Then the TLB flush in ptep_clear_flush ensures that
3183 * no process can access the old page before the
3184 * decremented mapcount is visible. And the old page
3185 * cannot be reused until after the decremented
3186 * mapcount is visible. So transitively, TLBs to
3187 * old page will be flushed before it can be reused.
3188 */
28d41a48 3189 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3190 }
3191
3192 /* Free the old page.. */
28d41a48 3193 new_folio = old_folio;
2f38ab2c 3194 page_copied = 1;
3db82b93
HD
3195 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 } else if (vmf->pte) {
7df67697 3197 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3198 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3199 }
3200
ec8832d0 3201 mmu_notifier_invalidate_range_end(&range);
3db82b93
HD
3202
3203 if (new_folio)
3204 folio_put(new_folio);
28d41a48 3205 if (old_folio) {
f4c4a3f4 3206 if (page_copied)
28d41a48
MWO
3207 free_swap_cache(&old_folio->page);
3208 folio_put(old_folio);
2f38ab2c 3209 }
662ce1dc
YY
3210
3211 delayacct_wpcopy_end();
cb8d8633 3212 return 0;
2f38ab2c 3213oom_free_new:
28d41a48 3214 folio_put(new_folio);
2f38ab2c 3215oom:
28d41a48
MWO
3216 if (old_folio)
3217 folio_put(old_folio);
662ce1dc
YY
3218
3219 delayacct_wpcopy_end();
2f38ab2c
SR
3220 return VM_FAULT_OOM;
3221}
3222
66a6197c
JK
3223/**
3224 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3225 * writeable once the page is prepared
3226 *
3227 * @vmf: structure describing the fault
3228 *
3229 * This function handles all that is needed to finish a write page fault in a
3230 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3231 * It handles locking of PTE and modifying it.
66a6197c
JK
3232 *
3233 * The function expects the page to be locked or other protection against
3234 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3235 *
2797e79f 3236 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3237 * we acquired PTE lock.
66a6197c 3238 */
2b740303 3239vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3240{
3241 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3242 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3243 &vmf->ptl);
3db82b93
HD
3244 if (!vmf->pte)
3245 return VM_FAULT_NOPAGE;
66a6197c
JK
3246 /*
3247 * We might have raced with another page fault while we released the
3248 * pte_offset_map_lock.
3249 */
c33c7948 3250 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3251 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3252 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3253 return VM_FAULT_NOPAGE;
66a6197c
JK
3254 }
3255 wp_page_reuse(vmf);
a19e2553 3256 return 0;
66a6197c
JK
3257}
3258
dd906184
BH
3259/*
3260 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3261 * mapping
3262 */
2b740303 3263static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3264{
82b0f8c3 3265 struct vm_area_struct *vma = vmf->vma;
bae473a4 3266
dd906184 3267 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3268 vm_fault_t ret;
dd906184 3269
82b0f8c3 3270 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3271 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3272 vma_end_read(vmf->vma);
3273 return VM_FAULT_RETRY;
3274 }
3275
fe82221f 3276 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3277 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3278 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3279 return ret;
66a6197c 3280 return finish_mkwrite_fault(vmf);
dd906184 3281 }
997dd98d 3282 wp_page_reuse(vmf);
cb8d8633 3283 return 0;
dd906184
BH
3284}
3285
5a97858b 3286static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3287 __releases(vmf->ptl)
93e478d4 3288{
82b0f8c3 3289 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3290 vm_fault_t ret = 0;
93e478d4 3291
5a97858b 3292 folio_get(folio);
93e478d4 3293
93e478d4 3294 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3295 vm_fault_t tmp;
93e478d4 3296
82b0f8c3 3297 pte_unmap_unlock(vmf->pte, vmf->ptl);
063e60d8
MWO
3298 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3299 folio_put(folio);
3300 vma_end_read(vmf->vma);
3301 return VM_FAULT_RETRY;
3302 }
3303
86aa6998 3304 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3305 if (unlikely(!tmp || (tmp &
3306 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3307 folio_put(folio);
93e478d4
SR
3308 return tmp;
3309 }
66a6197c 3310 tmp = finish_mkwrite_fault(vmf);
a19e2553 3311 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3312 folio_unlock(folio);
3313 folio_put(folio);
66a6197c 3314 return tmp;
93e478d4 3315 }
66a6197c
JK
3316 } else {
3317 wp_page_reuse(vmf);
5a97858b 3318 folio_lock(folio);
93e478d4 3319 }
89b15332 3320 ret |= fault_dirty_shared_page(vmf);
5a97858b 3321 folio_put(folio);
93e478d4 3322
89b15332 3323 return ret;
93e478d4
SR
3324}
3325
1da177e4 3326/*
c89357e2
DH
3327 * This routine handles present pages, when
3328 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3329 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3330 * (FAULT_FLAG_UNSHARE)
3331 *
3332 * It is done by copying the page to a new address and decrementing the
3333 * shared-page counter for the old page.
1da177e4 3334 *
1da177e4
LT
3335 * Note that this routine assumes that the protection checks have been
3336 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3337 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3338 * done any necessary COW.
1da177e4 3339 *
c89357e2
DH
3340 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3341 * though the page will change only once the write actually happens. This
3342 * avoids a few races, and potentially makes it more efficient.
1da177e4 3343 *
c1e8d7c6 3344 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3345 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3346 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3347 */
2b740303 3348static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3349 __releases(vmf->ptl)
1da177e4 3350{
c89357e2 3351 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3352 struct vm_area_struct *vma = vmf->vma;
b9086fde 3353 struct folio *folio = NULL;
1da177e4 3354
c89357e2 3355 if (likely(!unshare)) {
c33c7948 3356 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
c89357e2
DH
3357 pte_unmap_unlock(vmf->pte, vmf->ptl);
3358 return handle_userfault(vmf, VM_UFFD_WP);
3359 }
3360
3361 /*
3362 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3363 * is flushed in this case before copying.
3364 */
3365 if (unlikely(userfaultfd_wp(vmf->vma) &&
3366 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3367 flush_tlb_page(vmf->vma, vmf->address);
3368 }
6ce64428 3369
a41b70d6 3370 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3371
5a97858b
SK
3372 if (vmf->page)
3373 folio = page_folio(vmf->page);
3374
b9086fde
DH
3375 /*
3376 * Shared mapping: we are guaranteed to have VM_WRITE and
3377 * FAULT_FLAG_WRITE set at this point.
3378 */
3379 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3380 /*
64e45507
PF
3381 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3382 * VM_PFNMAP VMA.
251b97f5
PZ
3383 *
3384 * We should not cow pages in a shared writeable mapping.
dd906184 3385 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3386 */
b9086fde 3387 if (!vmf->page)
2994302b 3388 return wp_pfn_shared(vmf);
5a97858b 3389 return wp_page_shared(vmf, folio);
251b97f5 3390 }
1da177e4 3391
d08b3851 3392 /*
b9086fde
DH
3393 * Private mapping: create an exclusive anonymous page copy if reuse
3394 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3395 */
b9086fde 3396 if (folio && folio_test_anon(folio)) {
6c287605
DH
3397 /*
3398 * If the page is exclusive to this process we must reuse the
3399 * page without further checks.
3400 */
e4a2ed94 3401 if (PageAnonExclusive(vmf->page))
6c287605
DH
3402 goto reuse;
3403
53a05ad9 3404 /*
e4a2ed94
MWO
3405 * We have to verify under folio lock: these early checks are
3406 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3407 * the swapcache if there is little hope that we can reuse.
3408 *
e4a2ed94 3409 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3410 */
e4a2ed94 3411 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3412 goto copy;
e4a2ed94 3413 if (!folio_test_lru(folio))
d4c47097 3414 /*
1fec6890
MWO
3415 * We cannot easily detect+handle references from
3416 * remote LRU caches or references to LRU folios.
d4c47097
DH
3417 */
3418 lru_add_drain();
e4a2ed94 3419 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3420 goto copy;
e4a2ed94 3421 if (!folio_trylock(folio))
09854ba9 3422 goto copy;
e4a2ed94
MWO
3423 if (folio_test_swapcache(folio))
3424 folio_free_swap(folio);
3425 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3426 folio_unlock(folio);
52d1e606 3427 goto copy;
b009c024 3428 }
09854ba9 3429 /*
e4a2ed94
MWO
3430 * Ok, we've got the only folio reference from our mapping
3431 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3432 * sunglasses. Hit it.
09854ba9 3433 */
e4a2ed94
MWO
3434 page_move_anon_rmap(vmf->page, vma);
3435 folio_unlock(folio);
6c287605 3436reuse:
c89357e2
DH
3437 if (unlikely(unshare)) {
3438 pte_unmap_unlock(vmf->pte, vmf->ptl);
3439 return 0;
3440 }
be068f29 3441 wp_page_reuse(vmf);
cb8d8633 3442 return 0;
1da177e4 3443 }
52d1e606 3444copy:
063e60d8
MWO
3445 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 vma_end_read(vmf->vma);
3448 return VM_FAULT_RETRY;
3449 }
3450
1da177e4
LT
3451 /*
3452 * Ok, we need to copy. Oh, well..
3453 */
b9086fde
DH
3454 if (folio)
3455 folio_get(folio);
28766805 3456
82b0f8c3 3457 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3458#ifdef CONFIG_KSM
b9086fde 3459 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3460 count_vm_event(COW_KSM);
3461#endif
a41b70d6 3462 return wp_page_copy(vmf);
1da177e4
LT
3463}
3464
97a89413 3465static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3466 unsigned long start_addr, unsigned long end_addr,
3467 struct zap_details *details)
3468{
f5cc4eef 3469 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3470}
3471
f808c13f 3472static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3473 pgoff_t first_index,
3474 pgoff_t last_index,
1da177e4
LT
3475 struct zap_details *details)
3476{
3477 struct vm_area_struct *vma;
1da177e4
LT
3478 pgoff_t vba, vea, zba, zea;
3479
232a6a1c 3480 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3481 vba = vma->vm_pgoff;
d6e93217 3482 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3483 zba = max(first_index, vba);
3484 zea = min(last_index, vea);
1da177e4 3485
97a89413 3486 unmap_mapping_range_vma(vma,
1da177e4
LT
3487 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3488 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3489 details);
1da177e4
LT
3490 }
3491}
3492
22061a1f 3493/**
3506659e
MWO
3494 * unmap_mapping_folio() - Unmap single folio from processes.
3495 * @folio: The locked folio to be unmapped.
22061a1f 3496 *
3506659e 3497 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3498 * Typically, for efficiency, the range of nearby pages has already been
3499 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3500 * truncation or invalidation holds the lock on a folio, it may find that
3501 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3502 * to unmap it finally.
3503 */
3506659e 3504void unmap_mapping_folio(struct folio *folio)
22061a1f 3505{
3506659e 3506 struct address_space *mapping = folio->mapping;
22061a1f 3507 struct zap_details details = { };
232a6a1c
PX
3508 pgoff_t first_index;
3509 pgoff_t last_index;
22061a1f 3510
3506659e 3511 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3512
3506659e 3513 first_index = folio->index;
87b11f86 3514 last_index = folio_next_index(folio) - 1;
232a6a1c 3515
2e148f1e 3516 details.even_cows = false;
3506659e 3517 details.single_folio = folio;
999dad82 3518 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3519
2c865995 3520 i_mmap_lock_read(mapping);
22061a1f 3521 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3522 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523 last_index, &details);
2c865995 3524 i_mmap_unlock_read(mapping);
22061a1f
HD
3525}
3526
977fbdcd
MW
3527/**
3528 * unmap_mapping_pages() - Unmap pages from processes.
3529 * @mapping: The address space containing pages to be unmapped.
3530 * @start: Index of first page to be unmapped.
3531 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3532 * @even_cows: Whether to unmap even private COWed pages.
3533 *
3534 * Unmap the pages in this address space from any userspace process which
3535 * has them mmaped. Generally, you want to remove COWed pages as well when
3536 * a file is being truncated, but not when invalidating pages from the page
3537 * cache.
3538 */
3539void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3540 pgoff_t nr, bool even_cows)
3541{
3542 struct zap_details details = { };
232a6a1c
PX
3543 pgoff_t first_index = start;
3544 pgoff_t last_index = start + nr - 1;
977fbdcd 3545
2e148f1e 3546 details.even_cows = even_cows;
232a6a1c
PX
3547 if (last_index < first_index)
3548 last_index = ULONG_MAX;
977fbdcd 3549
2c865995 3550 i_mmap_lock_read(mapping);
977fbdcd 3551 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3552 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3553 last_index, &details);
2c865995 3554 i_mmap_unlock_read(mapping);
977fbdcd 3555}
6e0e99d5 3556EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3557
1da177e4 3558/**
8a5f14a2 3559 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3560 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3561 * file.
3562 *
3d41088f 3563 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3564 * @holebegin: byte in first page to unmap, relative to the start of
3565 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3566 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3567 * must keep the partial page. In contrast, we must get rid of
3568 * partial pages.
3569 * @holelen: size of prospective hole in bytes. This will be rounded
3570 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3571 * end of the file.
3572 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3573 * but 0 when invalidating pagecache, don't throw away private data.
3574 */
3575void unmap_mapping_range(struct address_space *mapping,
3576 loff_t const holebegin, loff_t const holelen, int even_cows)
3577{
1da177e4
LT
3578 pgoff_t hba = holebegin >> PAGE_SHIFT;
3579 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3580
3581 /* Check for overflow. */
3582 if (sizeof(holelen) > sizeof(hlen)) {
3583 long long holeend =
3584 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3585 if (holeend & ~(long long)ULONG_MAX)
3586 hlen = ULONG_MAX - hba + 1;
3587 }
3588
977fbdcd 3589 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3590}
3591EXPORT_SYMBOL(unmap_mapping_range);
3592
b756a3b5
AP
3593/*
3594 * Restore a potential device exclusive pte to a working pte entry
3595 */
3596static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3597{
19672a9e 3598 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3599 struct vm_area_struct *vma = vmf->vma;
3600 struct mmu_notifier_range range;
3601
7c7b9629
AP
3602 /*
3603 * We need a reference to lock the folio because we don't hold
3604 * the PTL so a racing thread can remove the device-exclusive
3605 * entry and unmap it. If the folio is free the entry must
3606 * have been removed already. If it happens to have already
3607 * been re-allocated after being freed all we do is lock and
3608 * unlock it.
3609 */
3610 if (!folio_try_get(folio))
3611 return 0;
3612
3613 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3614 folio_put(folio);
b756a3b5 3615 return VM_FAULT_RETRY;
7c7b9629 3616 }
7d4a8be0 3617 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3618 vma->vm_mm, vmf->address & PAGE_MASK,
3619 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3620 mmu_notifier_invalidate_range_start(&range);
3621
3622 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3623 &vmf->ptl);
c33c7948 3624 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3625 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3626
3db82b93
HD
3627 if (vmf->pte)
3628 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3629 folio_unlock(folio);
7c7b9629 3630 folio_put(folio);
b756a3b5
AP
3631
3632 mmu_notifier_invalidate_range_end(&range);
3633 return 0;
3634}
3635
a160e537 3636static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3637 struct vm_area_struct *vma,
3638 unsigned int fault_flags)
3639{
a160e537 3640 if (!folio_test_swapcache(folio))
c145e0b4 3641 return false;
9202d527 3642 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3643 folio_test_mlocked(folio))
c145e0b4
DH
3644 return true;
3645 /*
3646 * If we want to map a page that's in the swapcache writable, we
3647 * have to detect via the refcount if we're really the exclusive
3648 * user. Try freeing the swapcache to get rid of the swapcache
3649 * reference only in case it's likely that we'll be the exlusive user.
3650 */
a160e537
MWO
3651 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3652 folio_ref_count(folio) == 2;
c145e0b4
DH
3653}
3654
9c28a205
PX
3655static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3656{
3657 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3658 vmf->address, &vmf->ptl);
3db82b93
HD
3659 if (!vmf->pte)
3660 return 0;
9c28a205
PX
3661 /*
3662 * Be careful so that we will only recover a special uffd-wp pte into a
3663 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3664 *
3665 * This should also cover the case where e.g. the pte changed
af19487f 3666 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3667 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3668 */
c33c7948 3669 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3670 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3671 pte_unmap_unlock(vmf->pte, vmf->ptl);
3672 return 0;
3673}
3674
2bad466c
PX
3675static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3676{
3677 if (vma_is_anonymous(vmf->vma))
3678 return do_anonymous_page(vmf);
3679 else
3680 return do_fault(vmf);
3681}
3682
9c28a205
PX
3683/*
3684 * This is actually a page-missing access, but with uffd-wp special pte
3685 * installed. It means this pte was wr-protected before being unmapped.
3686 */
3687static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3688{
3689 /*
3690 * Just in case there're leftover special ptes even after the region
7a079ba2 3691 * got unregistered - we can simply clear them.
9c28a205 3692 */
2bad466c 3693 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3694 return pte_marker_clear(vmf);
3695
2bad466c 3696 return do_pte_missing(vmf);
9c28a205
PX
3697}
3698
5c041f5d
PX
3699static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3700{
3701 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3702 unsigned long marker = pte_marker_get(entry);
3703
3704 /*
ca92ea3d
PX
3705 * PTE markers should never be empty. If anything weird happened,
3706 * the best thing to do is to kill the process along with its mm.
5c041f5d 3707 */
ca92ea3d 3708 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3709 return VM_FAULT_SIGBUS;
3710
15520a3f 3711 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3712 if (marker & PTE_MARKER_POISONED)
3713 return VM_FAULT_HWPOISON;
15520a3f 3714
9c28a205
PX
3715 if (pte_marker_entry_uffd_wp(entry))
3716 return pte_marker_handle_uffd_wp(vmf);
3717
3718 /* This is an unknown pte marker */
3719 return VM_FAULT_SIGBUS;
5c041f5d
PX
3720}
3721
1da177e4 3722/*
c1e8d7c6 3723 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3724 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3725 * We return with pte unmapped and unlocked.
3726 *
c1e8d7c6 3727 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3728 * as does filemap_fault().
1da177e4 3729 */
2b740303 3730vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3731{
82b0f8c3 3732 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3733 struct folio *swapcache, *folio = NULL;
3734 struct page *page;
2799e775 3735 struct swap_info_struct *si = NULL;
14f9135d 3736 rmap_t rmap_flags = RMAP_NONE;
1493a191 3737 bool exclusive = false;
65500d23 3738 swp_entry_t entry;
1da177e4 3739 pte_t pte;
d065bd81 3740 int locked;
2b740303 3741 vm_fault_t ret = 0;
aae466b0 3742 void *shadow = NULL;
1da177e4 3743
2ca99358 3744 if (!pte_unmap_same(vmf))
8f4e2101 3745 goto out;
65500d23 3746
17c05f18
SB
3747 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3748 ret = VM_FAULT_RETRY;
3749 goto out;
3750 }
3751
2994302b 3752 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3753 if (unlikely(non_swap_entry(entry))) {
3754 if (is_migration_entry(entry)) {
82b0f8c3
JK
3755 migration_entry_wait(vma->vm_mm, vmf->pmd,
3756 vmf->address);
b756a3b5
AP
3757 } else if (is_device_exclusive_entry(entry)) {
3758 vmf->page = pfn_swap_entry_to_page(entry);
3759 ret = remove_device_exclusive_entry(vmf);
5042db43 3760 } else if (is_device_private_entry(entry)) {
af5cdaf8 3761 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3762 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3763 vmf->address, &vmf->ptl);
3db82b93 3764 if (unlikely(!vmf->pte ||
c33c7948
RR
3765 !pte_same(ptep_get(vmf->pte),
3766 vmf->orig_pte)))
3b65f437 3767 goto unlock;
16ce101d
AP
3768
3769 /*
3770 * Get a page reference while we know the page can't be
3771 * freed.
3772 */
3773 get_page(vmf->page);
3774 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3775 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3776 put_page(vmf->page);
d1737fdb
AK
3777 } else if (is_hwpoison_entry(entry)) {
3778 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3779 } else if (is_pte_marker_entry(entry)) {
3780 ret = handle_pte_marker(vmf);
d1737fdb 3781 } else {
2994302b 3782 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3783 ret = VM_FAULT_SIGBUS;
d1737fdb 3784 }
0697212a
CL
3785 goto out;
3786 }
0bcac06f 3787
2799e775
ML
3788 /* Prevent swapoff from happening to us. */
3789 si = get_swap_device(entry);
3790 if (unlikely(!si))
3791 goto out;
0bcac06f 3792
5a423081
MWO
3793 folio = swap_cache_get_folio(entry, vma, vmf->address);
3794 if (folio)
3795 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3796 swapcache = folio;
f8020772 3797
d4f9565a 3798 if (!folio) {
a449bf58
QC
3799 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3800 __swap_count(entry) == 1) {
0bcac06f 3801 /* skip swapcache */
63ad4add
MWO
3802 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3803 vma, vmf->address, false);
3804 page = &folio->page;
3805 if (folio) {
3806 __folio_set_locked(folio);
3807 __folio_set_swapbacked(folio);
4c6355b2 3808
65995918 3809 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3810 vma->vm_mm, GFP_KERNEL,
3811 entry)) {
545b1b07 3812 ret = VM_FAULT_OOM;
4c6355b2 3813 goto out_page;
545b1b07 3814 }
0add0c77 3815 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3816
aae466b0
JK
3817 shadow = get_shadow_from_swap_cache(entry);
3818 if (shadow)
63ad4add 3819 workingset_refault(folio, shadow);
0076f029 3820
63ad4add 3821 folio_add_lru(folio);
0add0c77
SB
3822
3823 /* To provide entry to swap_readpage() */
63ad4add 3824 folio_set_swap_entry(folio, entry);
5169b844 3825 swap_readpage(page, true, NULL);
63ad4add 3826 folio->private = NULL;
0bcac06f 3827 }
aa8d22a1 3828 } else {
e9e9b7ec
MK
3829 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3830 vmf);
63ad4add
MWO
3831 if (page)
3832 folio = page_folio(page);
d4f9565a 3833 swapcache = folio;
0bcac06f
MK
3834 }
3835
d4f9565a 3836 if (!folio) {
1da177e4 3837 /*
8f4e2101
HD
3838 * Back out if somebody else faulted in this pte
3839 * while we released the pte lock.
1da177e4 3840 */
82b0f8c3
JK
3841 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3842 vmf->address, &vmf->ptl);
c33c7948
RR
3843 if (likely(vmf->pte &&
3844 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3845 ret = VM_FAULT_OOM;
65500d23 3846 goto unlock;
1da177e4
LT
3847 }
3848
3849 /* Had to read the page from swap area: Major fault */
3850 ret = VM_FAULT_MAJOR;
f8891e5e 3851 count_vm_event(PGMAJFAULT);
2262185c 3852 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3853 } else if (PageHWPoison(page)) {
71f72525
WF
3854 /*
3855 * hwpoisoned dirty swapcache pages are kept for killing
3856 * owner processes (which may be unknown at hwpoison time)
3857 */
d1737fdb 3858 ret = VM_FAULT_HWPOISON;
4779cb31 3859 goto out_release;
1da177e4
LT
3860 }
3861
19672a9e 3862 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3863
d065bd81
ML
3864 if (!locked) {
3865 ret |= VM_FAULT_RETRY;
3866 goto out_release;
3867 }
073e587e 3868
84d60fdd
DH
3869 if (swapcache) {
3870 /*
3b344157 3871 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3872 * swapcache from under us. The page pin, and pte_same test
3873 * below, are not enough to exclude that. Even if it is still
3874 * swapcache, we need to check that the page's swap has not
3875 * changed.
3876 */
63ad4add 3877 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3878 page_private(page) != entry.val))
3879 goto out_page;
3880
3881 /*
3882 * KSM sometimes has to copy on read faults, for example, if
3883 * page->index of !PageKSM() pages would be nonlinear inside the
3884 * anon VMA -- PageKSM() is lost on actual swapout.
3885 */
3886 page = ksm_might_need_to_copy(page, vma, vmf->address);
3887 if (unlikely(!page)) {
3888 ret = VM_FAULT_OOM;
84d60fdd 3889 goto out_page;
6b970599
KW
3890 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3891 ret = VM_FAULT_HWPOISON;
3892 goto out_page;
84d60fdd 3893 }
63ad4add 3894 folio = page_folio(page);
c145e0b4
DH
3895
3896 /*
3897 * If we want to map a page that's in the swapcache writable, we
3898 * have to detect via the refcount if we're really the exclusive
3899 * owner. Try removing the extra reference from the local LRU
1fec6890 3900 * caches if required.
c145e0b4 3901 */
d4f9565a 3902 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3903 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3904 lru_add_drain();
5ad64688
HD
3905 }
3906
4231f842 3907 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3908
1da177e4 3909 /*
8f4e2101 3910 * Back out if somebody else already faulted in this pte.
1da177e4 3911 */
82b0f8c3
JK
3912 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3913 &vmf->ptl);
c33c7948 3914 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3915 goto out_nomap;
b8107480 3916
63ad4add 3917 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3918 ret = VM_FAULT_SIGBUS;
3919 goto out_nomap;
1da177e4
LT
3920 }
3921
78fbe906
DH
3922 /*
3923 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3924 * must never point at an anonymous page in the swapcache that is
3925 * PG_anon_exclusive. Sanity check that this holds and especially, that
3926 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3927 * check after taking the PT lock and making sure that nobody
3928 * concurrently faulted in this page and set PG_anon_exclusive.
3929 */
63ad4add
MWO
3930 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3931 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3932
1493a191
DH
3933 /*
3934 * Check under PT lock (to protect against concurrent fork() sharing
3935 * the swap entry concurrently) for certainly exclusive pages.
3936 */
63ad4add 3937 if (!folio_test_ksm(folio)) {
1493a191 3938 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3939 if (folio != swapcache) {
1493a191
DH
3940 /*
3941 * We have a fresh page that is not exposed to the
3942 * swapcache -> certainly exclusive.
3943 */
3944 exclusive = true;
63ad4add 3945 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3946 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3947 /*
3948 * This is tricky: not all swap backends support
3949 * concurrent page modifications while under writeback.
3950 *
3951 * So if we stumble over such a page in the swapcache
3952 * we must not set the page exclusive, otherwise we can
3953 * map it writable without further checks and modify it
3954 * while still under writeback.
3955 *
3956 * For these problematic swap backends, simply drop the
3957 * exclusive marker: this is perfectly fine as we start
3958 * writeback only if we fully unmapped the page and
3959 * there are no unexpected references on the page after
3960 * unmapping succeeded. After fully unmapped, no
3961 * further GUP references (FOLL_GET and FOLL_PIN) can
3962 * appear, so dropping the exclusive marker and mapping
3963 * it only R/O is fine.
3964 */
3965 exclusive = false;
3966 }
3967 }
3968
6dca4ac6
PC
3969 /*
3970 * Some architectures may have to restore extra metadata to the page
3971 * when reading from swap. This metadata may be indexed by swap entry
3972 * so this must be called before swap_free().
3973 */
3974 arch_swap_restore(entry, folio);
3975
8c7c6e34 3976 /*
c145e0b4
DH
3977 * Remove the swap entry and conditionally try to free up the swapcache.
3978 * We're already holding a reference on the page but haven't mapped it
3979 * yet.
8c7c6e34 3980 */
c145e0b4 3981 swap_free(entry);
a160e537
MWO
3982 if (should_try_to_free_swap(folio, vma, vmf->flags))
3983 folio_free_swap(folio);
1da177e4 3984
f1a79412
SB
3985 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3986 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3987 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3988
3989 /*
1493a191
DH
3990 * Same logic as in do_wp_page(); however, optimize for pages that are
3991 * certainly not shared either because we just allocated them without
3992 * exposing them to the swapcache or because the swap entry indicates
3993 * exclusivity.
c145e0b4 3994 */
63ad4add
MWO
3995 if (!folio_test_ksm(folio) &&
3996 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3997 if (vmf->flags & FAULT_FLAG_WRITE) {
3998 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3999 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 4000 }
14f9135d 4001 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 4002 }
1da177e4 4003 flush_icache_page(vma, page);
2994302b 4004 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 4005 pte = pte_mksoft_dirty(pte);
f1eb1bac 4006 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 4007 pte = pte_mkuffd_wp(pte);
2994302b 4008 vmf->orig_pte = pte;
0bcac06f
MK
4009
4010 /* ksm created a completely new copy */
d4f9565a 4011 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4012 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4013 folio_add_lru_vma(folio, vma);
0bcac06f 4014 } else {
f1e2db12 4015 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4016 }
1da177e4 4017
63ad4add
MWO
4018 VM_BUG_ON(!folio_test_anon(folio) ||
4019 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4020 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4021 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4022
63ad4add 4023 folio_unlock(folio);
d4f9565a 4024 if (folio != swapcache && swapcache) {
4969c119
AA
4025 /*
4026 * Hold the lock to avoid the swap entry to be reused
4027 * until we take the PT lock for the pte_same() check
4028 * (to avoid false positives from pte_same). For
4029 * further safety release the lock after the swap_free
4030 * so that the swap count won't change under a
4031 * parallel locked swapcache.
4032 */
d4f9565a
MWO
4033 folio_unlock(swapcache);
4034 folio_put(swapcache);
4969c119 4035 }
c475a8ab 4036
82b0f8c3 4037 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4038 ret |= do_wp_page(vmf);
61469f1d
HD
4039 if (ret & VM_FAULT_ERROR)
4040 ret &= VM_FAULT_ERROR;
1da177e4
LT
4041 goto out;
4042 }
4043
4044 /* No need to invalidate - it was non-present before */
82b0f8c3 4045 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4046unlock:
3db82b93
HD
4047 if (vmf->pte)
4048 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4049out:
2799e775
ML
4050 if (si)
4051 put_swap_device(si);
1da177e4 4052 return ret;
b8107480 4053out_nomap:
3db82b93
HD
4054 if (vmf->pte)
4055 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4056out_page:
63ad4add 4057 folio_unlock(folio);
4779cb31 4058out_release:
63ad4add 4059 folio_put(folio);
d4f9565a
MWO
4060 if (folio != swapcache && swapcache) {
4061 folio_unlock(swapcache);
4062 folio_put(swapcache);
4969c119 4063 }
2799e775
ML
4064 if (si)
4065 put_swap_device(si);
65500d23 4066 return ret;
1da177e4
LT
4067}
4068
4069/*
c1e8d7c6 4070 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4071 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4072 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4073 */
2b740303 4074static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4075{
2bad466c 4076 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4077 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4078 struct folio *folio;
2b740303 4079 vm_fault_t ret = 0;
1da177e4 4080 pte_t entry;
1da177e4 4081
6b7339f4
KS
4082 /* File mapping without ->vm_ops ? */
4083 if (vma->vm_flags & VM_SHARED)
4084 return VM_FAULT_SIGBUS;
4085
7267ec00 4086 /*
3db82b93
HD
4087 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4088 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4089 */
4cf58924 4090 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4091 return VM_FAULT_OOM;
4092
11ac5524 4093 /* Use the zero-page for reads */
82b0f8c3 4094 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4095 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4096 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4097 vma->vm_page_prot));
82b0f8c3
JK
4098 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4099 vmf->address, &vmf->ptl);
3db82b93
HD
4100 if (!vmf->pte)
4101 goto unlock;
2bad466c 4102 if (vmf_pte_changed(vmf)) {
7df67697 4103 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4104 goto unlock;
7df67697 4105 }
6b31d595
MH
4106 ret = check_stable_address_space(vma->vm_mm);
4107 if (ret)
4108 goto unlock;
6b251fc9
AA
4109 /* Deliver the page fault to userland, check inside PT lock */
4110 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4111 pte_unmap_unlock(vmf->pte, vmf->ptl);
4112 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4113 }
a13ea5b7
HD
4114 goto setpte;
4115 }
4116
557ed1fa 4117 /* Allocate our own private page. */
557ed1fa
NP
4118 if (unlikely(anon_vma_prepare(vma)))
4119 goto oom;
6bc56a4d
MWO
4120 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4121 if (!folio)
557ed1fa 4122 goto oom;
eb3c24f3 4123
6bc56a4d 4124 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4125 goto oom_free_page;
e2bf3e2c 4126 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4127
52f37629 4128 /*
cb3184de 4129 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4130 * preceding stores to the page contents become visible before
52f37629
MK
4131 * the set_pte_at() write.
4132 */
cb3184de 4133 __folio_mark_uptodate(folio);
8f4e2101 4134
cb3184de 4135 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4136 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4137 if (vma->vm_flags & VM_WRITE)
4138 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4139
82b0f8c3
JK
4140 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4141 &vmf->ptl);
3db82b93
HD
4142 if (!vmf->pte)
4143 goto release;
2bad466c 4144 if (vmf_pte_changed(vmf)) {
bce8cb3c 4145 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4146 goto release;
7df67697 4147 }
9ba69294 4148
6b31d595
MH
4149 ret = check_stable_address_space(vma->vm_mm);
4150 if (ret)
4151 goto release;
4152
6b251fc9
AA
4153 /* Deliver the page fault to userland, check inside PT lock */
4154 if (userfaultfd_missing(vma)) {
82b0f8c3 4155 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4156 folio_put(folio);
82b0f8c3 4157 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4158 }
4159
f1a79412 4160 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4161 folio_add_new_anon_rmap(folio, vma, vmf->address);
4162 folio_add_lru_vma(folio, vma);
a13ea5b7 4163setpte:
2bad466c
PX
4164 if (uffd_wp)
4165 entry = pte_mkuffd_wp(entry);
82b0f8c3 4166 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4167
4168 /* No need to invalidate - it was non-present before */
82b0f8c3 4169 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4170unlock:
3db82b93
HD
4171 if (vmf->pte)
4172 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4173 return ret;
8f4e2101 4174release:
cb3184de 4175 folio_put(folio);
8f4e2101 4176 goto unlock;
8a9f3ccd 4177oom_free_page:
cb3184de 4178 folio_put(folio);
65500d23 4179oom:
1da177e4
LT
4180 return VM_FAULT_OOM;
4181}
4182
9a95f3cf 4183/*
c1e8d7c6 4184 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4185 * released depending on flags and vma->vm_ops->fault() return value.
4186 * See filemap_fault() and __lock_page_retry().
4187 */
2b740303 4188static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4189{
82b0f8c3 4190 struct vm_area_struct *vma = vmf->vma;
2b740303 4191 vm_fault_t ret;
7eae74af 4192
63f3655f
MH
4193 /*
4194 * Preallocate pte before we take page_lock because this might lead to
4195 * deadlocks for memcg reclaim which waits for pages under writeback:
4196 * lock_page(A)
4197 * SetPageWriteback(A)
4198 * unlock_page(A)
4199 * lock_page(B)
4200 * lock_page(B)
d383807a 4201 * pte_alloc_one
63f3655f
MH
4202 * shrink_page_list
4203 * wait_on_page_writeback(A)
4204 * SetPageWriteback(B)
4205 * unlock_page(B)
4206 * # flush A, B to clear the writeback
4207 */
4208 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4209 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4210 if (!vmf->prealloc_pte)
4211 return VM_FAULT_OOM;
63f3655f
MH
4212 }
4213
11bac800 4214 ret = vma->vm_ops->fault(vmf);
3917048d 4215 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4216 VM_FAULT_DONE_COW)))
bc2466e4 4217 return ret;
7eae74af 4218
667240e0 4219 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4220 struct page *page = vmf->page;
e53ac737
RR
4221 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4222 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4223 if (page_mapped(page))
4224 unmap_mapping_pages(page_mapping(page),
4225 page->index, 1, false);
e53ac737 4226 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4227 if (invalidate_inode_page(page))
4228 poisonret = VM_FAULT_NOPAGE;
4229 unlock_page(page);
e53ac737 4230 }
3149c79f 4231 put_page(page);
936ca80d 4232 vmf->page = NULL;
e53ac737 4233 return poisonret;
7eae74af
KS
4234 }
4235
4236 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4237 lock_page(vmf->page);
7eae74af 4238 else
667240e0 4239 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4240
7eae74af
KS
4241 return ret;
4242}
4243
396bcc52 4244#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4245static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4246{
82b0f8c3 4247 struct vm_area_struct *vma = vmf->vma;
953c66c2 4248
82b0f8c3 4249 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4250 /*
4251 * We are going to consume the prealloc table,
4252 * count that as nr_ptes.
4253 */
c4812909 4254 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4255 vmf->prealloc_pte = NULL;
953c66c2
AK
4256}
4257
f9ce0be7 4258vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4259{
82b0f8c3
JK
4260 struct vm_area_struct *vma = vmf->vma;
4261 bool write = vmf->flags & FAULT_FLAG_WRITE;
4262 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4263 pmd_t entry;
2b740303 4264 int i;
d01ac3c3 4265 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4266
4267 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4268 return ret;
10102459 4269
10102459 4270 page = compound_head(page);
d01ac3c3
MWO
4271 if (compound_order(page) != HPAGE_PMD_ORDER)
4272 return ret;
10102459 4273
eac96c3e
YS
4274 /*
4275 * Just backoff if any subpage of a THP is corrupted otherwise
4276 * the corrupted page may mapped by PMD silently to escape the
4277 * check. This kind of THP just can be PTE mapped. Access to
4278 * the corrupted subpage should trigger SIGBUS as expected.
4279 */
4280 if (unlikely(PageHasHWPoisoned(page)))
4281 return ret;
4282
953c66c2 4283 /*
f0953a1b 4284 * Archs like ppc64 need additional space to store information
953c66c2
AK
4285 * related to pte entry. Use the preallocated table for that.
4286 */
82b0f8c3 4287 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4288 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4289 if (!vmf->prealloc_pte)
953c66c2 4290 return VM_FAULT_OOM;
953c66c2
AK
4291 }
4292
82b0f8c3
JK
4293 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4294 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4295 goto out;
4296
4297 for (i = 0; i < HPAGE_PMD_NR; i++)
4298 flush_icache_page(vma, page + i);
4299
4300 entry = mk_huge_pmd(page, vma->vm_page_prot);
4301 if (write)
f55e1014 4302 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4303
fadae295 4304 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4305 page_add_file_rmap(page, vma, true);
4306
953c66c2
AK
4307 /*
4308 * deposit and withdraw with pmd lock held
4309 */
4310 if (arch_needs_pgtable_deposit())
82b0f8c3 4311 deposit_prealloc_pte(vmf);
10102459 4312
82b0f8c3 4313 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4314
82b0f8c3 4315 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4316
4317 /* fault is handled */
4318 ret = 0;
95ecedcd 4319 count_vm_event(THP_FILE_MAPPED);
10102459 4320out:
82b0f8c3 4321 spin_unlock(vmf->ptl);
10102459
KS
4322 return ret;
4323}
4324#else
f9ce0be7 4325vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4326{
f9ce0be7 4327 return VM_FAULT_FALLBACK;
10102459
KS
4328}
4329#endif
4330
9d3af4b4 4331void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4332{
82b0f8c3 4333 struct vm_area_struct *vma = vmf->vma;
2bad466c 4334 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4335 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4336 bool prefault = vmf->address != addr;
3bb97794 4337 pte_t entry;
7267ec00 4338
3bb97794
KS
4339 flush_icache_page(vma, page);
4340 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4341
4342 if (prefault && arch_wants_old_prefaulted_pte())
4343 entry = pte_mkold(entry);
50c25ee9
TB
4344 else
4345 entry = pte_sw_mkyoung(entry);
46bdb427 4346
3bb97794
KS
4347 if (write)
4348 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4349 if (unlikely(uffd_wp))
f1eb1bac 4350 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4351 /* copy-on-write page */
4352 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4353 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4354 page_add_new_anon_rmap(page, vma, addr);
b518154e 4355 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4356 } else {
f1a79412 4357 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4358 page_add_file_rmap(page, vma, false);
3bb97794 4359 }
9d3af4b4 4360 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4361}
4362
f46f2ade
PX
4363static bool vmf_pte_changed(struct vm_fault *vmf)
4364{
4365 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4366 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4367
c33c7948 4368 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4369}
4370
9118c0cb
JK
4371/**
4372 * finish_fault - finish page fault once we have prepared the page to fault
4373 *
4374 * @vmf: structure describing the fault
4375 *
4376 * This function handles all that is needed to finish a page fault once the
4377 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4378 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4379 * addition.
9118c0cb
JK
4380 *
4381 * The function expects the page to be locked and on success it consumes a
4382 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4383 *
4384 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4385 */
2b740303 4386vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4387{
f9ce0be7 4388 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4389 struct page *page;
f9ce0be7 4390 vm_fault_t ret;
9118c0cb
JK
4391
4392 /* Did we COW the page? */
f9ce0be7 4393 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4394 page = vmf->cow_page;
4395 else
4396 page = vmf->page;
6b31d595
MH
4397
4398 /*
4399 * check even for read faults because we might have lost our CoWed
4400 * page
4401 */
f9ce0be7
KS
4402 if (!(vma->vm_flags & VM_SHARED)) {
4403 ret = check_stable_address_space(vma->vm_mm);
4404 if (ret)
4405 return ret;
4406 }
4407
4408 if (pmd_none(*vmf->pmd)) {
4409 if (PageTransCompound(page)) {
4410 ret = do_set_pmd(vmf, page);
4411 if (ret != VM_FAULT_FALLBACK)
4412 return ret;
4413 }
4414
03c4f204
QZ
4415 if (vmf->prealloc_pte)
4416 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4417 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4418 return VM_FAULT_OOM;
4419 }
4420
f9ce0be7
KS
4421 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4422 vmf->address, &vmf->ptl);
3db82b93
HD
4423 if (!vmf->pte)
4424 return VM_FAULT_NOPAGE;
70427f6e 4425
f9ce0be7 4426 /* Re-check under ptl */
70427f6e 4427 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4428 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4429
4430 /* no need to invalidate: a not-present page won't be cached */
4431 update_mmu_cache(vma, vmf->address, vmf->pte);
4432
4433 ret = 0;
4434 } else {
4435 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4436 ret = VM_FAULT_NOPAGE;
70427f6e 4437 }
f9ce0be7 4438
f9ce0be7 4439 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4440 return ret;
4441}
4442
53d36a56
LS
4443static unsigned long fault_around_pages __read_mostly =
4444 65536 >> PAGE_SHIFT;
a9b0f861 4445
a9b0f861
KS
4446#ifdef CONFIG_DEBUG_FS
4447static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4448{
53d36a56 4449 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4450 return 0;
4451}
4452
b4903d6e 4453/*
da391d64
WK
4454 * fault_around_bytes must be rounded down to the nearest page order as it's
4455 * what do_fault_around() expects to see.
b4903d6e 4456 */
a9b0f861 4457static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4458{
a9b0f861 4459 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4460 return -EINVAL;
53d36a56
LS
4461
4462 /*
4463 * The minimum value is 1 page, however this results in no fault-around
4464 * at all. See should_fault_around().
4465 */
4466 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4467
1592eef0
KS
4468 return 0;
4469}
0a1345f8 4470DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4471 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4472
4473static int __init fault_around_debugfs(void)
4474{
d9f7979c
GKH
4475 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4476 &fault_around_bytes_fops);
1592eef0
KS
4477 return 0;
4478}
4479late_initcall(fault_around_debugfs);
1592eef0 4480#endif
8c6e50b0 4481
1fdb412b
KS
4482/*
4483 * do_fault_around() tries to map few pages around the fault address. The hope
4484 * is that the pages will be needed soon and this will lower the number of
4485 * faults to handle.
4486 *
4487 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4488 * not ready to be mapped: not up-to-date, locked, etc.
4489 *
9042599e
LS
4490 * This function doesn't cross VMA or page table boundaries, in order to call
4491 * map_pages() and acquire a PTE lock only once.
1fdb412b 4492 *
53d36a56 4493 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4494 * do_fault_around() expects it to be set to a power of two less than or equal
4495 * to PTRS_PER_PTE.
1fdb412b 4496 *
da391d64 4497 * The virtual address of the area that we map is naturally aligned to
53d36a56 4498 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4499 * (and therefore to page order). This way it's easier to guarantee
4500 * that we don't cross page table boundaries.
1fdb412b 4501 */
2b740303 4502static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4503{
53d36a56 4504 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4505 pgoff_t pte_off = pte_index(vmf->address);
4506 /* The page offset of vmf->address within the VMA. */
4507 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4508 pgoff_t from_pte, to_pte;
58ef47ef 4509 vm_fault_t ret;
8c6e50b0 4510
9042599e
LS
4511 /* The PTE offset of the start address, clamped to the VMA. */
4512 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4513 pte_off - min(pte_off, vma_off));
aecd6f44 4514
9042599e
LS
4515 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4516 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4517 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4518
82b0f8c3 4519 if (pmd_none(*vmf->pmd)) {
4cf58924 4520 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4521 if (!vmf->prealloc_pte)
f9ce0be7 4522 return VM_FAULT_OOM;
8c6e50b0
KS
4523 }
4524
58ef47ef
MWO
4525 rcu_read_lock();
4526 ret = vmf->vma->vm_ops->map_pages(vmf,
4527 vmf->pgoff + from_pte - pte_off,
4528 vmf->pgoff + to_pte - pte_off);
4529 rcu_read_unlock();
4530
4531 return ret;
8c6e50b0
KS
4532}
4533
9c28a205
PX
4534/* Return true if we should do read fault-around, false otherwise */
4535static inline bool should_fault_around(struct vm_fault *vmf)
4536{
4537 /* No ->map_pages? No way to fault around... */
4538 if (!vmf->vma->vm_ops->map_pages)
4539 return false;
4540
4541 if (uffd_disable_fault_around(vmf->vma))
4542 return false;
4543
53d36a56
LS
4544 /* A single page implies no faulting 'around' at all. */
4545 return fault_around_pages > 1;
9c28a205
PX
4546}
4547
2b740303 4548static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4549{
2b740303 4550 vm_fault_t ret = 0;
22d1e68f 4551 struct folio *folio;
8c6e50b0
KS
4552
4553 /*
4554 * Let's call ->map_pages() first and use ->fault() as fallback
4555 * if page by the offset is not ready to be mapped (cold cache or
4556 * something).
4557 */
9c28a205
PX
4558 if (should_fault_around(vmf)) {
4559 ret = do_fault_around(vmf);
4560 if (ret)
4561 return ret;
8c6e50b0 4562 }
e655fb29 4563
f5617ffe
MWO
4564 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4565 vma_end_read(vmf->vma);
4566 return VM_FAULT_RETRY;
4567 }
4568
936ca80d 4569 ret = __do_fault(vmf);
e655fb29
KS
4570 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 return ret;
4572
9118c0cb 4573 ret |= finish_fault(vmf);
22d1e68f
SK
4574 folio = page_folio(vmf->page);
4575 folio_unlock(folio);
7267ec00 4576 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4577 folio_put(folio);
e655fb29
KS
4578 return ret;
4579}
4580
2b740303 4581static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4582{
82b0f8c3 4583 struct vm_area_struct *vma = vmf->vma;
2b740303 4584 vm_fault_t ret;
ec47c3b9 4585
61a4b8d3
MWO
4586 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4587 vma_end_read(vma);
4588 return VM_FAULT_RETRY;
4589 }
4590
ec47c3b9
KS
4591 if (unlikely(anon_vma_prepare(vma)))
4592 return VM_FAULT_OOM;
4593
936ca80d
JK
4594 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4595 if (!vmf->cow_page)
ec47c3b9
KS
4596 return VM_FAULT_OOM;
4597
8f425e4e
MWO
4598 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4599 GFP_KERNEL)) {
936ca80d 4600 put_page(vmf->cow_page);
ec47c3b9
KS
4601 return VM_FAULT_OOM;
4602 }
68fa572b 4603 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4604
936ca80d 4605 ret = __do_fault(vmf);
ec47c3b9
KS
4606 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4607 goto uncharge_out;
3917048d
JK
4608 if (ret & VM_FAULT_DONE_COW)
4609 return ret;
ec47c3b9 4610
b1aa812b 4611 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4612 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4613
9118c0cb 4614 ret |= finish_fault(vmf);
b1aa812b
JK
4615 unlock_page(vmf->page);
4616 put_page(vmf->page);
7267ec00
KS
4617 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4618 goto uncharge_out;
ec47c3b9
KS
4619 return ret;
4620uncharge_out:
936ca80d 4621 put_page(vmf->cow_page);
ec47c3b9
KS
4622 return ret;
4623}
4624
2b740303 4625static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4626{
82b0f8c3 4627 struct vm_area_struct *vma = vmf->vma;
2b740303 4628 vm_fault_t ret, tmp;
6f609b7e 4629 struct folio *folio;
1d65f86d 4630
61a4b8d3
MWO
4631 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4632 vma_end_read(vma);
4633 return VM_FAULT_RETRY;
4634 }
4635
936ca80d 4636 ret = __do_fault(vmf);
7eae74af 4637 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4638 return ret;
1da177e4 4639
6f609b7e
SK
4640 folio = page_folio(vmf->page);
4641
1da177e4 4642 /*
f0c6d4d2
KS
4643 * Check if the backing address space wants to know that the page is
4644 * about to become writable
1da177e4 4645 */
fb09a464 4646 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4647 folio_unlock(folio);
86aa6998 4648 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4649 if (unlikely(!tmp ||
4650 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4651 folio_put(folio);
fb09a464 4652 return tmp;
4294621f 4653 }
fb09a464
KS
4654 }
4655
9118c0cb 4656 ret |= finish_fault(vmf);
7267ec00
KS
4657 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4658 VM_FAULT_RETRY))) {
6f609b7e
SK
4659 folio_unlock(folio);
4660 folio_put(folio);
f0c6d4d2 4661 return ret;
1da177e4 4662 }
b827e496 4663
89b15332 4664 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4665 return ret;
54cb8821 4666}
d00806b1 4667
9a95f3cf 4668/*
c1e8d7c6 4669 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4670 * but allow concurrent faults).
c1e8d7c6 4671 * The mmap_lock may have been released depending on flags and our
9138e47e 4672 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4673 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4674 * by other thread calling munmap()).
9a95f3cf 4675 */
2b740303 4676static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4677{
82b0f8c3 4678 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4679 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4680 vm_fault_t ret;
54cb8821 4681
ff09d7ec
AK
4682 /*
4683 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4684 */
4685 if (!vma->vm_ops->fault) {
3db82b93
HD
4686 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4687 vmf->address, &vmf->ptl);
4688 if (unlikely(!vmf->pte))
ff09d7ec
AK
4689 ret = VM_FAULT_SIGBUS;
4690 else {
ff09d7ec
AK
4691 /*
4692 * Make sure this is not a temporary clearing of pte
4693 * by holding ptl and checking again. A R/M/W update
4694 * of pte involves: take ptl, clearing the pte so that
4695 * we don't have concurrent modification by hardware
4696 * followed by an update.
4697 */
c33c7948 4698 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4699 ret = VM_FAULT_SIGBUS;
4700 else
4701 ret = VM_FAULT_NOPAGE;
4702
4703 pte_unmap_unlock(vmf->pte, vmf->ptl);
4704 }
4705 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4706 ret = do_read_fault(vmf);
4707 else if (!(vma->vm_flags & VM_SHARED))
4708 ret = do_cow_fault(vmf);
4709 else
4710 ret = do_shared_fault(vmf);
4711
4712 /* preallocated pagetable is unused: free it */
4713 if (vmf->prealloc_pte) {
fc8efd2d 4714 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4715 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4716 }
4717 return ret;
54cb8821
NP
4718}
4719
f4c0d836
YS
4720int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4721 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4722{
4723 get_page(page);
4724
fc137c0d
R
4725 /* Record the current PID acceesing VMA */
4726 vma_set_access_pid_bit(vma);
4727
9532fec1 4728 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4729 if (page_nid == numa_node_id()) {
9532fec1 4730 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4731 *flags |= TNF_FAULT_LOCAL;
4732 }
9532fec1
MG
4733
4734 return mpol_misplaced(page, vma, addr);
4735}
4736
2b740303 4737static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4738{
82b0f8c3 4739 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4740 struct page *page = NULL;
98fa15f3 4741 int page_nid = NUMA_NO_NODE;
6a56ccbc 4742 bool writable = false;
90572890 4743 int last_cpupid;
cbee9f88 4744 int target_nid;
04a86453 4745 pte_t pte, old_pte;
6688cc05 4746 int flags = 0;
d10e63f2
MG
4747
4748 /*
166f61b9
TH
4749 * The "pte" at this point cannot be used safely without
4750 * validation through pte_unmap_same(). It's of NUMA type but
4751 * the pfn may be screwed if the read is non atomic.
166f61b9 4752 */
82b0f8c3 4753 spin_lock(vmf->ptl);
c33c7948 4754 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4755 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4756 goto out;
4757 }
4758
b99a342d
HY
4759 /* Get the normal PTE */
4760 old_pte = ptep_get(vmf->pte);
04a86453 4761 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4762
6a56ccbc
DH
4763 /*
4764 * Detect now whether the PTE could be writable; this information
4765 * is only valid while holding the PT lock.
4766 */
4767 writable = pte_write(pte);
4768 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4769 can_change_pte_writable(vma, vmf->address, pte))
4770 writable = true;
4771
82b0f8c3 4772 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4773 if (!page || is_zone_device_page(page))
b99a342d 4774 goto out_map;
d10e63f2 4775
e81c4802 4776 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4777 if (PageCompound(page))
4778 goto out_map;
e81c4802 4779
6688cc05 4780 /*
bea66fbd
MG
4781 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4782 * much anyway since they can be in shared cache state. This misses
4783 * the case where a mapping is writable but the process never writes
4784 * to it but pte_write gets cleared during protection updates and
4785 * pte_dirty has unpredictable behaviour between PTE scan updates,
4786 * background writeback, dirty balancing and application behaviour.
6688cc05 4787 */
6a56ccbc 4788 if (!writable)
6688cc05
PZ
4789 flags |= TNF_NO_GROUP;
4790
dabe1d99
RR
4791 /*
4792 * Flag if the page is shared between multiple address spaces. This
4793 * is later used when determining whether to group tasks together
4794 */
4795 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4796 flags |= TNF_SHARED;
4797
8191acbd 4798 page_nid = page_to_nid(page);
33024536
HY
4799 /*
4800 * For memory tiering mode, cpupid of slow memory page is used
4801 * to record page access time. So use default value.
4802 */
4803 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4804 !node_is_toptier(page_nid))
4805 last_cpupid = (-1 & LAST_CPUPID_MASK);
4806 else
4807 last_cpupid = page_cpupid_last(page);
82b0f8c3 4808 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4809 &flags);
98fa15f3 4810 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4811 put_page(page);
b99a342d 4812 goto out_map;
4daae3b4 4813 }
b99a342d 4814 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4815 writable = false;
4daae3b4
MG
4816
4817 /* Migrate to the requested node */
bf90ac19 4818 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4819 page_nid = target_nid;
6688cc05 4820 flags |= TNF_MIGRATED;
b99a342d 4821 } else {
074c2381 4822 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4823 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4824 vmf->address, &vmf->ptl);
4825 if (unlikely(!vmf->pte))
4826 goto out;
c33c7948 4827 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4828 pte_unmap_unlock(vmf->pte, vmf->ptl);
4829 goto out;
4830 }
4831 goto out_map;
4832 }
4daae3b4
MG
4833
4834out:
98fa15f3 4835 if (page_nid != NUMA_NO_NODE)
6688cc05 4836 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4837 return 0;
b99a342d
HY
4838out_map:
4839 /*
4840 * Make it present again, depending on how arch implements
4841 * non-accessible ptes, some can allow access by kernel mode.
4842 */
4843 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4844 pte = pte_modify(old_pte, vma->vm_page_prot);
4845 pte = pte_mkyoung(pte);
6a56ccbc 4846 if (writable)
b99a342d
HY
4847 pte = pte_mkwrite(pte);
4848 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4849 update_mmu_cache(vma, vmf->address, vmf->pte);
4850 pte_unmap_unlock(vmf->pte, vmf->ptl);
4851 goto out;
d10e63f2
MG
4852}
4853
2b740303 4854static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4855{
8f5fd0e1
MWO
4856 struct vm_area_struct *vma = vmf->vma;
4857 if (vma_is_anonymous(vma))
82b0f8c3 4858 return do_huge_pmd_anonymous_page(vmf);
8f5fd0e1
MWO
4859 if (vma->vm_ops->huge_fault) {
4860 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4861 vma_end_read(vma);
4862 return VM_FAULT_RETRY;
4863 }
4864 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4865 }
b96375f7
MW
4866 return VM_FAULT_FALLBACK;
4867}
4868
183f24aa 4869/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4870static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4871{
8f5fd0e1 4872 struct vm_area_struct *vma = vmf->vma;
c89357e2 4873 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4874 vm_fault_t ret;
c89357e2 4875
8f5fd0e1 4876 if (vma_is_anonymous(vma)) {
c89357e2 4877 if (likely(!unshare) &&
8f5fd0e1 4878 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
529b930b 4879 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4880 return do_huge_pmd_wp_page(vmf);
529b930b 4881 }
327e9fd4 4882
8f5fd0e1
MWO
4883 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4884 if (vma->vm_ops->huge_fault) {
4885 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4886 vma_end_read(vma);
4887 return VM_FAULT_RETRY;
4888 }
4889 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
aea06577
DH
4890 if (!(ret & VM_FAULT_FALLBACK))
4891 return ret;
4892 }
327e9fd4 4893 }
af9e4d5f 4894
327e9fd4 4895 /* COW or write-notify handled on pte level: split pmd. */
8f5fd0e1 4896 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4897
b96375f7
MW
4898 return VM_FAULT_FALLBACK;
4899}
4900
2b740303 4901static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4902{
14c99d65
GJ
4903#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4904 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4905 struct vm_area_struct *vma = vmf->vma;
14c99d65 4906 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4907 if (vma_is_anonymous(vma))
14c99d65 4908 return VM_FAULT_FALLBACK;
c4fd825e
MWO
4909 if (vma->vm_ops->huge_fault) {
4910 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4911 vma_end_read(vma);
4912 return VM_FAULT_RETRY;
4913 }
4914 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4915 }
14c99d65
GJ
4916#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4917 return VM_FAULT_FALLBACK;
4918}
4919
4920static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4921{
327e9fd4
THV
4922#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4923 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
c4fd825e 4924 struct vm_area_struct *vma = vmf->vma;
aea06577
DH
4925 vm_fault_t ret;
4926
a00cc7d9 4927 /* No support for anonymous transparent PUD pages yet */
c4fd825e 4928 if (vma_is_anonymous(vma))
327e9fd4 4929 goto split;
c4fd825e
MWO
4930 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4931 if (vma->vm_ops->huge_fault) {
4932 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4933 vma_end_read(vma);
4934 return VM_FAULT_RETRY;
4935 }
4936 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
aea06577
DH
4937 if (!(ret & VM_FAULT_FALLBACK))
4938 return ret;
4939 }
327e9fd4
THV
4940 }
4941split:
4942 /* COW or write-notify not handled on PUD level: split pud.*/
c4fd825e 4943 __split_huge_pud(vma, vmf->pud, vmf->address);
14c99d65 4944#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4945 return VM_FAULT_FALLBACK;
4946}
4947
1da177e4
LT
4948/*
4949 * These routines also need to handle stuff like marking pages dirty
4950 * and/or accessed for architectures that don't do it in hardware (most
4951 * RISC architectures). The early dirtying is also good on the i386.
4952 *
4953 * There is also a hook called "update_mmu_cache()" that architectures
4954 * with external mmu caches can use to update those (ie the Sparc or
4955 * PowerPC hashed page tables that act as extended TLBs).
4956 *
c1e8d7c6 4957 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4958 * concurrent faults).
9a95f3cf 4959 *
c1e8d7c6 4960 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4961 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4962 */
2b740303 4963static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4964{
4965 pte_t entry;
4966
82b0f8c3 4967 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4968 /*
4969 * Leave __pte_alloc() until later: because vm_ops->fault may
4970 * want to allocate huge page, and if we expose page table
4971 * for an instant, it will be difficult to retract from
4972 * concurrent faults and from rmap lookups.
4973 */
82b0f8c3 4974 vmf->pte = NULL;
f46f2ade 4975 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4976 } else {
7267ec00
KS
4977 /*
4978 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
4979 * pmd by anon khugepaged, since that takes mmap_lock in write
4980 * mode; but shmem or file collapse to THP could still morph
4981 * it into a huge pmd: just retry later if so.
7267ec00 4982 */
c7ad0880
HD
4983 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4984 vmf->address, &vmf->ptl);
4985 if (unlikely(!vmf->pte))
4986 return 0;
26e1a0c3 4987 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 4988 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4989
2994302b 4990 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4991 pte_unmap(vmf->pte);
4992 vmf->pte = NULL;
65500d23 4993 }
1da177e4
LT
4994 }
4995
2bad466c
PX
4996 if (!vmf->pte)
4997 return do_pte_missing(vmf);
7267ec00 4998
2994302b
JK
4999 if (!pte_present(vmf->orig_pte))
5000 return do_swap_page(vmf);
7267ec00 5001
2994302b
JK
5002 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5003 return do_numa_page(vmf);
d10e63f2 5004
82b0f8c3 5005 spin_lock(vmf->ptl);
2994302b 5006 entry = vmf->orig_pte;
c33c7948 5007 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 5008 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 5009 goto unlock;
7df67697 5010 }
c89357e2 5011 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 5012 if (!pte_write(entry))
2994302b 5013 return do_wp_page(vmf);
c89357e2
DH
5014 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5015 entry = pte_mkdirty(entry);
1da177e4
LT
5016 }
5017 entry = pte_mkyoung(entry);
82b0f8c3
JK
5018 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5019 vmf->flags & FAULT_FLAG_WRITE)) {
5020 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 5021 } else {
b7333b58
YS
5022 /* Skip spurious TLB flush for retried page fault */
5023 if (vmf->flags & FAULT_FLAG_TRIED)
5024 goto unlock;
1a44e149
AA
5025 /*
5026 * This is needed only for protection faults but the arch code
5027 * is not yet telling us if this is a protection fault or not.
5028 * This still avoids useless tlb flushes for .text page faults
5029 * with threads.
5030 */
82b0f8c3 5031 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
5032 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5033 vmf->pte);
1a44e149 5034 }
8f4e2101 5035unlock:
82b0f8c3 5036 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 5037 return 0;
1da177e4
LT
5038}
5039
5040/*
4ec31152
MWO
5041 * On entry, we hold either the VMA lock or the mmap_lock
5042 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in
5043 * the result, the mmap_lock is not held on exit. See filemap_fault()
5044 * and __folio_lock_or_retry().
1da177e4 5045 */
2b740303
SJ
5046static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5047 unsigned long address, unsigned int flags)
1da177e4 5048{
82b0f8c3 5049 struct vm_fault vmf = {
bae473a4 5050 .vma = vma,
1a29d85e 5051 .address = address & PAGE_MASK,
824ddc60 5052 .real_address = address,
bae473a4 5053 .flags = flags,
0721ec8b 5054 .pgoff = linear_page_index(vma, address),
667240e0 5055 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5056 };
dcddffd4 5057 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5058 unsigned long vm_flags = vma->vm_flags;
1da177e4 5059 pgd_t *pgd;
c2febafc 5060 p4d_t *p4d;
2b740303 5061 vm_fault_t ret;
1da177e4 5062
1da177e4 5063 pgd = pgd_offset(mm, address);
c2febafc
KS
5064 p4d = p4d_alloc(mm, pgd, address);
5065 if (!p4d)
5066 return VM_FAULT_OOM;
a00cc7d9 5067
c2febafc 5068 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5069 if (!vmf.pud)
c74df32c 5070 return VM_FAULT_OOM;
625110b5 5071retry_pud:
7da4e2cb 5072 if (pud_none(*vmf.pud) &&
a7f4e6e4 5073 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5074 ret = create_huge_pud(&vmf);
5075 if (!(ret & VM_FAULT_FALLBACK))
5076 return ret;
5077 } else {
5078 pud_t orig_pud = *vmf.pud;
5079
5080 barrier();
5081 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5082
c89357e2
DH
5083 /*
5084 * TODO once we support anonymous PUDs: NUMA case and
5085 * FAULT_FLAG_UNSHARE handling.
5086 */
5087 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5088 ret = wp_huge_pud(&vmf, orig_pud);
5089 if (!(ret & VM_FAULT_FALLBACK))
5090 return ret;
5091 } else {
5092 huge_pud_set_accessed(&vmf, orig_pud);
5093 return 0;
5094 }
5095 }
5096 }
5097
5098 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5099 if (!vmf.pmd)
c74df32c 5100 return VM_FAULT_OOM;
625110b5
TH
5101
5102 /* Huge pud page fault raced with pmd_alloc? */
5103 if (pud_trans_unstable(vmf.pud))
5104 goto retry_pud;
5105
7da4e2cb 5106 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5107 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5108 ret = create_huge_pmd(&vmf);
c0292554
KS
5109 if (!(ret & VM_FAULT_FALLBACK))
5110 return ret;
71e3aac0 5111 } else {
26e1a0c3 5112 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5113
5db4f15c 5114 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5115 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5116 !is_pmd_migration_entry(vmf.orig_pmd));
5117 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5118 pmd_migration_entry_wait(mm, vmf.pmd);
5119 return 0;
5120 }
5db4f15c
YS
5121 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5122 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5123 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5124
c89357e2
DH
5125 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5126 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5127 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5128 if (!(ret & VM_FAULT_FALLBACK))
5129 return ret;
a1dd450b 5130 } else {
5db4f15c 5131 huge_pmd_set_accessed(&vmf);
9845cbbd 5132 return 0;
1f1d06c3 5133 }
71e3aac0
AA
5134 }
5135 }
5136
82b0f8c3 5137 return handle_pte_fault(&vmf);
1da177e4
LT
5138}
5139
bce617ed 5140/**
f0953a1b 5141 * mm_account_fault - Do page fault accounting
809ef83c 5142 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5143 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5144 * of perf event counters, but we'll still do the per-task accounting to
5145 * the task who triggered this page fault.
5146 * @address: the faulted address.
5147 * @flags: the fault flags.
5148 * @ret: the fault retcode.
5149 *
f0953a1b 5150 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5151 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5152 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5153 * still be in per-arch page fault handlers at the entry of page fault.
5154 */
53156443 5155static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5156 unsigned long address, unsigned int flags,
5157 vm_fault_t ret)
5158{
5159 bool major;
5160
53156443
SB
5161 /* Incomplete faults will be accounted upon completion. */
5162 if (ret & VM_FAULT_RETRY)
5163 return;
5164
bce617ed 5165 /*
53156443
SB
5166 * To preserve the behavior of older kernels, PGFAULT counters record
5167 * both successful and failed faults, as opposed to perf counters,
5168 * which ignore failed cases.
bce617ed 5169 */
53156443
SB
5170 count_vm_event(PGFAULT);
5171 count_memcg_event_mm(mm, PGFAULT);
5172
5173 /*
5174 * Do not account for unsuccessful faults (e.g. when the address wasn't
5175 * valid). That includes arch_vma_access_permitted() failing before
5176 * reaching here. So this is not a "this many hardware page faults"
5177 * counter. We should use the hw profiling for that.
5178 */
5179 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5180 return;
5181
5182 /*
5183 * We define the fault as a major fault when the final successful fault
5184 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5185 * handle it immediately previously).
5186 */
5187 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5188
a2beb5f1
PX
5189 if (major)
5190 current->maj_flt++;
5191 else
5192 current->min_flt++;
5193
bce617ed 5194 /*
a2beb5f1
PX
5195 * If the fault is done for GUP, regs will be NULL. We only do the
5196 * accounting for the per thread fault counters who triggered the
5197 * fault, and we skip the perf event updates.
bce617ed
PX
5198 */
5199 if (!regs)
5200 return;
5201
a2beb5f1 5202 if (major)
bce617ed 5203 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5204 else
bce617ed 5205 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5206}
5207
ec1c86b2
YZ
5208#ifdef CONFIG_LRU_GEN
5209static void lru_gen_enter_fault(struct vm_area_struct *vma)
5210{
8788f678
YZ
5211 /* the LRU algorithm only applies to accesses with recency */
5212 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5213}
5214
5215static void lru_gen_exit_fault(void)
5216{
5217 current->in_lru_fault = false;
5218}
5219#else
5220static void lru_gen_enter_fault(struct vm_area_struct *vma)
5221{
5222}
5223
5224static void lru_gen_exit_fault(void)
5225{
5226}
5227#endif /* CONFIG_LRU_GEN */
5228
cdc5021c
DH
5229static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5230 unsigned int *flags)
5231{
5232 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5233 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5234 return VM_FAULT_SIGSEGV;
5235 /*
5236 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5237 * just treat it like an ordinary read-fault otherwise.
5238 */
5239 if (!is_cow_mapping(vma->vm_flags))
5240 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5241 } else if (*flags & FAULT_FLAG_WRITE) {
5242 /* Write faults on read-only mappings are impossible ... */
5243 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5244 return VM_FAULT_SIGSEGV;
5245 /* ... and FOLL_FORCE only applies to COW mappings. */
5246 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5247 !is_cow_mapping(vma->vm_flags)))
5248 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5249 }
5250 return 0;
5251}
5252
9a95f3cf
PC
5253/*
5254 * By the time we get here, we already hold the mm semaphore
5255 *
c1e8d7c6 5256 * The mmap_lock may have been released depending on flags and our
9138e47e 5257 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5258 */
2b740303 5259vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5260 unsigned int flags, struct pt_regs *regs)
519e5247 5261{
53156443
SB
5262 /* If the fault handler drops the mmap_lock, vma may be freed */
5263 struct mm_struct *mm = vma->vm_mm;
2b740303 5264 vm_fault_t ret;
519e5247
JW
5265
5266 __set_current_state(TASK_RUNNING);
5267
cdc5021c
DH
5268 ret = sanitize_fault_flags(vma, &flags);
5269 if (ret)
53156443 5270 goto out;
cdc5021c 5271
de0c799b
LD
5272 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5273 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5274 flags & FAULT_FLAG_REMOTE)) {
5275 ret = VM_FAULT_SIGSEGV;
5276 goto out;
5277 }
de0c799b 5278
519e5247
JW
5279 /*
5280 * Enable the memcg OOM handling for faults triggered in user
5281 * space. Kernel faults are handled more gracefully.
5282 */
5283 if (flags & FAULT_FLAG_USER)
29ef680a 5284 mem_cgroup_enter_user_fault();
519e5247 5285
ec1c86b2
YZ
5286 lru_gen_enter_fault(vma);
5287
bae473a4
KS
5288 if (unlikely(is_vm_hugetlb_page(vma)))
5289 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5290 else
5291 ret = __handle_mm_fault(vma, address, flags);
519e5247 5292
ec1c86b2
YZ
5293 lru_gen_exit_fault();
5294
49426420 5295 if (flags & FAULT_FLAG_USER) {
29ef680a 5296 mem_cgroup_exit_user_fault();
166f61b9
TH
5297 /*
5298 * The task may have entered a memcg OOM situation but
5299 * if the allocation error was handled gracefully (no
5300 * VM_FAULT_OOM), there is no need to kill anything.
5301 * Just clean up the OOM state peacefully.
5302 */
5303 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5304 mem_cgroup_oom_synchronize(false);
49426420 5305 }
53156443
SB
5306out:
5307 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5308
519e5247
JW
5309 return ret;
5310}
e1d6d01a 5311EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5312
c2508ec5
LT
5313#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5314#include <linux/extable.h>
5315
5316static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5317{
5318 /* Even if this succeeds, make it clear we *might* have slept */
5319 if (likely(mmap_read_trylock(mm))) {
5320 might_sleep();
5321 return true;
5322 }
5323
5324 if (regs && !user_mode(regs)) {
5325 unsigned long ip = instruction_pointer(regs);
5326 if (!search_exception_tables(ip))
5327 return false;
5328 }
5329
eda00472 5330 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5331}
5332
5333static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5334{
5335 /*
5336 * We don't have this operation yet.
5337 *
5338 * It should be easy enough to do: it's basically a
5339 * atomic_long_try_cmpxchg_acquire()
5340 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5341 * it also needs the proper lockdep magic etc.
5342 */
5343 return false;
5344}
5345
5346static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5347{
5348 mmap_read_unlock(mm);
5349 if (regs && !user_mode(regs)) {
5350 unsigned long ip = instruction_pointer(regs);
5351 if (!search_exception_tables(ip))
5352 return false;
5353 }
eda00472 5354 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5355}
5356
5357/*
5358 * Helper for page fault handling.
5359 *
5360 * This is kind of equivalend to "mmap_read_lock()" followed
5361 * by "find_extend_vma()", except it's a lot more careful about
5362 * the locking (and will drop the lock on failure).
5363 *
5364 * For example, if we have a kernel bug that causes a page
5365 * fault, we don't want to just use mmap_read_lock() to get
5366 * the mm lock, because that would deadlock if the bug were
5367 * to happen while we're holding the mm lock for writing.
5368 *
5369 * So this checks the exception tables on kernel faults in
5370 * order to only do this all for instructions that are actually
5371 * expected to fault.
5372 *
5373 * We can also actually take the mm lock for writing if we
5374 * need to extend the vma, which helps the VM layer a lot.
5375 */
5376struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5377 unsigned long addr, struct pt_regs *regs)
5378{
5379 struct vm_area_struct *vma;
5380
5381 if (!get_mmap_lock_carefully(mm, regs))
5382 return NULL;
5383
5384 vma = find_vma(mm, addr);
5385 if (likely(vma && (vma->vm_start <= addr)))
5386 return vma;
5387
5388 /*
5389 * Well, dang. We might still be successful, but only
5390 * if we can extend a vma to do so.
5391 */
5392 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5393 mmap_read_unlock(mm);
5394 return NULL;
5395 }
5396
5397 /*
5398 * We can try to upgrade the mmap lock atomically,
5399 * in which case we can continue to use the vma
5400 * we already looked up.
5401 *
5402 * Otherwise we'll have to drop the mmap lock and
5403 * re-take it, and also look up the vma again,
5404 * re-checking it.
5405 */
5406 if (!mmap_upgrade_trylock(mm)) {
5407 if (!upgrade_mmap_lock_carefully(mm, regs))
5408 return NULL;
5409
5410 vma = find_vma(mm, addr);
5411 if (!vma)
5412 goto fail;
5413 if (vma->vm_start <= addr)
5414 goto success;
5415 if (!(vma->vm_flags & VM_GROWSDOWN))
5416 goto fail;
5417 }
5418
8d7071af 5419 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5420 goto fail;
5421
5422success:
5423 mmap_write_downgrade(mm);
5424 return vma;
5425
5426fail:
5427 mmap_write_unlock(mm);
5428 return NULL;
5429}
5430#endif
5431
50ee3253
SB
5432#ifdef CONFIG_PER_VMA_LOCK
5433/*
5434 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5435 * stable and not isolated. If the VMA is not found or is being modified the
5436 * function returns NULL.
5437 */
5438struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5439 unsigned long address)
5440{
5441 MA_STATE(mas, &mm->mm_mt, address, address);
5442 struct vm_area_struct *vma;
5443
5444 rcu_read_lock();
5445retry:
5446 vma = mas_walk(&mas);
5447 if (!vma)
5448 goto inval;
5449
50ee3253
SB
5450 if (!vma_start_read(vma))
5451 goto inval;
5452
657b5146
JH
5453 /*
5454 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5455 * This check must happen after vma_start_read(); otherwise, a
5456 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5457 * from its anon_vma.
5458 */
5459 if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5460 goto inval_end_read;
5461
444eeb17
SB
5462 /*
5463 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5464 * it for now and fall back to page fault handling under mmap_lock.
5465 */
657b5146
JH
5466 if (userfaultfd_armed(vma))
5467 goto inval_end_read;
444eeb17 5468
50ee3253 5469 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5470 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5471 goto inval_end_read;
50ee3253
SB
5472
5473 /* Check if the VMA got isolated after we found it */
5474 if (vma->detached) {
5475 vma_end_read(vma);
52f23865 5476 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5477 /* The area was replaced with another one */
5478 goto retry;
5479 }
5480
5481 rcu_read_unlock();
5482 return vma;
657b5146
JH
5483
5484inval_end_read:
5485 vma_end_read(vma);
50ee3253
SB
5486inval:
5487 rcu_read_unlock();
52f23865 5488 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5489 return NULL;
5490}
5491#endif /* CONFIG_PER_VMA_LOCK */
5492
90eceff1
KS
5493#ifndef __PAGETABLE_P4D_FOLDED
5494/*
5495 * Allocate p4d page table.
5496 * We've already handled the fast-path in-line.
5497 */
5498int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5499{
5500 p4d_t *new = p4d_alloc_one(mm, address);
5501 if (!new)
5502 return -ENOMEM;
5503
90eceff1 5504 spin_lock(&mm->page_table_lock);
ed33b5a6 5505 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5506 p4d_free(mm, new);
ed33b5a6
QZ
5507 } else {
5508 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5509 pgd_populate(mm, pgd, new);
ed33b5a6 5510 }
90eceff1
KS
5511 spin_unlock(&mm->page_table_lock);
5512 return 0;
5513}
5514#endif /* __PAGETABLE_P4D_FOLDED */
5515
1da177e4
LT
5516#ifndef __PAGETABLE_PUD_FOLDED
5517/*
5518 * Allocate page upper directory.
872fec16 5519 * We've already handled the fast-path in-line.
1da177e4 5520 */
c2febafc 5521int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5522{
c74df32c
HD
5523 pud_t *new = pud_alloc_one(mm, address);
5524 if (!new)
1bb3630e 5525 return -ENOMEM;
1da177e4 5526
872fec16 5527 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5528 if (!p4d_present(*p4d)) {
5529 mm_inc_nr_puds(mm);
ed33b5a6 5530 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5531 p4d_populate(mm, p4d, new);
b4e98d9a 5532 } else /* Another has populated it */
5e541973 5533 pud_free(mm, new);
c74df32c 5534 spin_unlock(&mm->page_table_lock);
1bb3630e 5535 return 0;
1da177e4
LT
5536}
5537#endif /* __PAGETABLE_PUD_FOLDED */
5538
5539#ifndef __PAGETABLE_PMD_FOLDED
5540/*
5541 * Allocate page middle directory.
872fec16 5542 * We've already handled the fast-path in-line.
1da177e4 5543 */
1bb3630e 5544int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5545{
a00cc7d9 5546 spinlock_t *ptl;
c74df32c
HD
5547 pmd_t *new = pmd_alloc_one(mm, address);
5548 if (!new)
1bb3630e 5549 return -ENOMEM;
1da177e4 5550
a00cc7d9 5551 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5552 if (!pud_present(*pud)) {
5553 mm_inc_nr_pmds(mm);
ed33b5a6 5554 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5555 pud_populate(mm, pud, new);
ed33b5a6 5556 } else { /* Another has populated it */
5e541973 5557 pmd_free(mm, new);
ed33b5a6 5558 }
a00cc7d9 5559 spin_unlock(ptl);
1bb3630e 5560 return 0;
e0f39591 5561}
1da177e4
LT
5562#endif /* __PAGETABLE_PMD_FOLDED */
5563
0e5e64c0
MS
5564/**
5565 * follow_pte - look up PTE at a user virtual address
5566 * @mm: the mm_struct of the target address space
5567 * @address: user virtual address
5568 * @ptepp: location to store found PTE
5569 * @ptlp: location to store the lock for the PTE
5570 *
5571 * On a successful return, the pointer to the PTE is stored in @ptepp;
5572 * the corresponding lock is taken and its location is stored in @ptlp.
5573 * The contents of the PTE are only stable until @ptlp is released;
5574 * any further use, if any, must be protected against invalidation
5575 * with MMU notifiers.
5576 *
5577 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5578 * should be taken for read.
5579 *
5580 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5581 * it is not a good general-purpose API.
5582 *
5583 * Return: zero on success, -ve otherwise.
5584 */
5585int follow_pte(struct mm_struct *mm, unsigned long address,
5586 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5587{
5588 pgd_t *pgd;
c2febafc 5589 p4d_t *p4d;
f8ad0f49
JW
5590 pud_t *pud;
5591 pmd_t *pmd;
5592 pte_t *ptep;
5593
5594 pgd = pgd_offset(mm, address);
5595 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5596 goto out;
5597
c2febafc
KS
5598 p4d = p4d_offset(pgd, address);
5599 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5600 goto out;
5601
5602 pud = pud_offset(p4d, address);
f8ad0f49
JW
5603 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5604 goto out;
5605
5606 pmd = pmd_offset(pud, address);
f66055ab 5607 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5608
f8ad0f49 5609 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5610 if (!ptep)
5611 goto out;
c33c7948 5612 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5613 goto unlock;
5614 *ptepp = ptep;
5615 return 0;
5616unlock:
5617 pte_unmap_unlock(ptep, *ptlp);
5618out:
5619 return -EINVAL;
5620}
9fd6dad1
PB
5621EXPORT_SYMBOL_GPL(follow_pte);
5622
3b6748e2
JW
5623/**
5624 * follow_pfn - look up PFN at a user virtual address
5625 * @vma: memory mapping
5626 * @address: user virtual address
5627 * @pfn: location to store found PFN
5628 *
5629 * Only IO mappings and raw PFN mappings are allowed.
5630 *
9fd6dad1
PB
5631 * This function does not allow the caller to read the permissions
5632 * of the PTE. Do not use it.
5633 *
a862f68a 5634 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5635 */
5636int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5637 unsigned long *pfn)
5638{
5639 int ret = -EINVAL;
5640 spinlock_t *ptl;
5641 pte_t *ptep;
5642
5643 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5644 return ret;
5645
9fd6dad1 5646 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5647 if (ret)
5648 return ret;
c33c7948 5649 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5650 pte_unmap_unlock(ptep, ptl);
5651 return 0;
5652}
5653EXPORT_SYMBOL(follow_pfn);
5654
28b2ee20 5655#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5656int follow_phys(struct vm_area_struct *vma,
5657 unsigned long address, unsigned int flags,
5658 unsigned long *prot, resource_size_t *phys)
28b2ee20 5659{
03668a4d 5660 int ret = -EINVAL;
28b2ee20
RR
5661 pte_t *ptep, pte;
5662 spinlock_t *ptl;
28b2ee20 5663
d87fe660 5664 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5665 goto out;
28b2ee20 5666
9fd6dad1 5667 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5668 goto out;
c33c7948 5669 pte = ptep_get(ptep);
03668a4d 5670
f6f37321 5671 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5672 goto unlock;
28b2ee20
RR
5673
5674 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5675 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5676
03668a4d 5677 ret = 0;
28b2ee20
RR
5678unlock:
5679 pte_unmap_unlock(ptep, ptl);
5680out:
d87fe660 5681 return ret;
28b2ee20
RR
5682}
5683
96667f8a
SV
5684/**
5685 * generic_access_phys - generic implementation for iomem mmap access
5686 * @vma: the vma to access
f0953a1b 5687 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5688 * @buf: buffer to read/write
5689 * @len: length of transfer
5690 * @write: set to FOLL_WRITE when writing, otherwise reading
5691 *
5692 * This is a generic implementation for &vm_operations_struct.access for an
5693 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5694 * not page based.
5695 */
28b2ee20
RR
5696int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5697 void *buf, int len, int write)
5698{
5699 resource_size_t phys_addr;
5700 unsigned long prot = 0;
2bc7273b 5701 void __iomem *maddr;
96667f8a
SV
5702 pte_t *ptep, pte;
5703 spinlock_t *ptl;
5704 int offset = offset_in_page(addr);
5705 int ret = -EINVAL;
5706
5707 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5708 return -EINVAL;
5709
5710retry:
e913a8cd 5711 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5712 return -EINVAL;
c33c7948 5713 pte = ptep_get(ptep);
96667f8a 5714 pte_unmap_unlock(ptep, ptl);
28b2ee20 5715
96667f8a
SV
5716 prot = pgprot_val(pte_pgprot(pte));
5717 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5718
5719 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5720 return -EINVAL;
5721
9cb12d7b 5722 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5723 if (!maddr)
5724 return -ENOMEM;
5725
e913a8cd 5726 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5727 goto out_unmap;
5728
c33c7948 5729 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
SV
5730 pte_unmap_unlock(ptep, ptl);
5731 iounmap(maddr);
5732
5733 goto retry;
5734 }
5735
28b2ee20
RR
5736 if (write)
5737 memcpy_toio(maddr + offset, buf, len);
5738 else
5739 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5740 ret = len;
5741 pte_unmap_unlock(ptep, ptl);
5742out_unmap:
28b2ee20
RR
5743 iounmap(maddr);
5744
96667f8a 5745 return ret;
28b2ee20 5746}
5a73633e 5747EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5748#endif
5749
0ec76a11 5750/*
d3f5ffca 5751 * Access another process' address space as given in mm.
0ec76a11 5752 */
d3f5ffca
JH
5753int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5754 int len, unsigned int gup_flags)
0ec76a11 5755{
0ec76a11 5756 void *old_buf = buf;
442486ec 5757 int write = gup_flags & FOLL_WRITE;
0ec76a11 5758
d8ed45c5 5759 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5760 return 0;
5761
eee9c708
LT
5762 /* Avoid triggering the temporary warning in __get_user_pages */
5763 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5764 return 0;
5765
183ff22b 5766 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5767 while (len) {
ca5e8632 5768 int bytes, offset;
0ec76a11 5769 void *maddr;
ca5e8632
LS
5770 struct vm_area_struct *vma = NULL;
5771 struct page *page = get_user_page_vma_remote(mm, addr,
5772 gup_flags, &vma);
0ec76a11 5773
ca5e8632 5774 if (IS_ERR_OR_NULL(page)) {
9471f1f2
LT
5775 /* We might need to expand the stack to access it */
5776 vma = vma_lookup(mm, addr);
5777 if (!vma) {
5778 vma = expand_stack(mm, addr);
5779
5780 /* mmap_lock was dropped on failure */
5781 if (!vma)
5782 return buf - old_buf;
5783
5784 /* Try again if stack expansion worked */
5785 continue;
5786 }
5787
ca5e8632 5788
28b2ee20
RR
5789 /*
5790 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5791 * we can access using slightly different code.
5792 */
9471f1f2
LT
5793 bytes = 0;
5794#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5795 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5796 bytes = vma->vm_ops->access(vma, addr, buf,
5797 len, write);
dbffcd03 5798#endif
9471f1f2
LT
5799 if (bytes <= 0)
5800 break;
0ec76a11 5801 } else {
28b2ee20
RR
5802 bytes = len;
5803 offset = addr & (PAGE_SIZE-1);
5804 if (bytes > PAGE_SIZE-offset)
5805 bytes = PAGE_SIZE-offset;
5806
5807 maddr = kmap(page);
5808 if (write) {
5809 copy_to_user_page(vma, page, addr,
5810 maddr + offset, buf, bytes);
5811 set_page_dirty_lock(page);
5812 } else {
5813 copy_from_user_page(vma, page, addr,
5814 buf, maddr + offset, bytes);
5815 }
5816 kunmap(page);
09cbfeaf 5817 put_page(page);
0ec76a11 5818 }
0ec76a11
DH
5819 len -= bytes;
5820 buf += bytes;
5821 addr += bytes;
5822 }
d8ed45c5 5823 mmap_read_unlock(mm);
0ec76a11
DH
5824
5825 return buf - old_buf;
5826}
03252919 5827
5ddd36b9 5828/**
ae91dbfc 5829 * access_remote_vm - access another process' address space
5ddd36b9
SW
5830 * @mm: the mm_struct of the target address space
5831 * @addr: start address to access
5832 * @buf: source or destination buffer
5833 * @len: number of bytes to transfer
6347e8d5 5834 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5835 *
5836 * The caller must hold a reference on @mm.
a862f68a
MR
5837 *
5838 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5839 */
5840int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5841 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5842{
d3f5ffca 5843 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5844}
5845
206cb636
SW
5846/*
5847 * Access another process' address space.
5848 * Source/target buffer must be kernel space,
5849 * Do not walk the page table directly, use get_user_pages
5850 */
5851int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5852 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5853{
5854 struct mm_struct *mm;
5855 int ret;
5856
5857 mm = get_task_mm(tsk);
5858 if (!mm)
5859 return 0;
5860
d3f5ffca 5861 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5862
206cb636
SW
5863 mmput(mm);
5864
5865 return ret;
5866}
fcd35857 5867EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5868
03252919
AK
5869/*
5870 * Print the name of a VMA.
5871 */
5872void print_vma_addr(char *prefix, unsigned long ip)
5873{
5874 struct mm_struct *mm = current->mm;
5875 struct vm_area_struct *vma;
5876
e8bff74a 5877 /*
0a7f682d 5878 * we might be running from an atomic context so we cannot sleep
e8bff74a 5879 */
d8ed45c5 5880 if (!mmap_read_trylock(mm))
e8bff74a
IM
5881 return;
5882
03252919
AK
5883 vma = find_vma(mm, ip);
5884 if (vma && vma->vm_file) {
5885 struct file *f = vma->vm_file;
0a7f682d 5886 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5887 if (buf) {
2fbc57c5 5888 char *p;
03252919 5889
9bf39ab2 5890 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5891 if (IS_ERR(p))
5892 p = "?";
2fbc57c5 5893 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5894 vma->vm_start,
5895 vma->vm_end - vma->vm_start);
5896 free_page((unsigned long)buf);
5897 }
5898 }
d8ed45c5 5899 mmap_read_unlock(mm);
03252919 5900}
3ee1afa3 5901
662bbcb2 5902#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5903void __might_fault(const char *file, int line)
3ee1afa3 5904{
9ec23531 5905 if (pagefault_disabled())
662bbcb2 5906 return;
42a38756 5907 __might_sleep(file, line);
9ec23531 5908#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5909 if (current->mm)
da1c55f1 5910 might_lock_read(&current->mm->mmap_lock);
9ec23531 5911#endif
3ee1afa3 5912}
9ec23531 5913EXPORT_SYMBOL(__might_fault);
3ee1afa3 5914#endif
47ad8475
AA
5915
5916#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5917/*
5918 * Process all subpages of the specified huge page with the specified
5919 * operation. The target subpage will be processed last to keep its
5920 * cache lines hot.
5921 */
1cb9dc4b 5922static inline int process_huge_page(
c6ddfb6c 5923 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5924 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5925 void *arg)
47ad8475 5926{
1cb9dc4b 5927 int i, n, base, l, ret;
c79b57e4
HY
5928 unsigned long addr = addr_hint &
5929 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5930
c6ddfb6c 5931 /* Process target subpage last to keep its cache lines hot */
47ad8475 5932 might_sleep();
c79b57e4
HY
5933 n = (addr_hint - addr) / PAGE_SIZE;
5934 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5935 /* If target subpage in first half of huge page */
c79b57e4
HY
5936 base = 0;
5937 l = n;
c6ddfb6c 5938 /* Process subpages at the end of huge page */
c79b57e4
HY
5939 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5940 cond_resched();
1cb9dc4b
LS
5941 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5942 if (ret)
5943 return ret;
c79b57e4
HY
5944 }
5945 } else {
c6ddfb6c 5946 /* If target subpage in second half of huge page */
c79b57e4
HY
5947 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5948 l = pages_per_huge_page - n;
c6ddfb6c 5949 /* Process subpages at the begin of huge page */
c79b57e4
HY
5950 for (i = 0; i < base; i++) {
5951 cond_resched();
1cb9dc4b
LS
5952 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5953 if (ret)
5954 return ret;
c79b57e4
HY
5955 }
5956 }
5957 /*
c6ddfb6c
HY
5958 * Process remaining subpages in left-right-left-right pattern
5959 * towards the target subpage
c79b57e4
HY
5960 */
5961 for (i = 0; i < l; i++) {
5962 int left_idx = base + i;
5963 int right_idx = base + 2 * l - 1 - i;
5964
5965 cond_resched();
1cb9dc4b
LS
5966 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5967 if (ret)
5968 return ret;
47ad8475 5969 cond_resched();
1cb9dc4b
LS
5970 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5971 if (ret)
5972 return ret;
47ad8475 5973 }
1cb9dc4b 5974 return 0;
47ad8475
AA
5975}
5976
c6ddfb6c
HY
5977static void clear_gigantic_page(struct page *page,
5978 unsigned long addr,
5979 unsigned int pages_per_huge_page)
5980{
5981 int i;
14455eab 5982 struct page *p;
c6ddfb6c
HY
5983
5984 might_sleep();
14455eab
CL
5985 for (i = 0; i < pages_per_huge_page; i++) {
5986 p = nth_page(page, i);
c6ddfb6c
HY
5987 cond_resched();
5988 clear_user_highpage(p, addr + i * PAGE_SIZE);
5989 }
5990}
5991
1cb9dc4b 5992static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
5993{
5994 struct page *page = arg;
5995
5996 clear_user_highpage(page + idx, addr);
1cb9dc4b 5997 return 0;
c6ddfb6c
HY
5998}
5999
6000void clear_huge_page(struct page *page,
6001 unsigned long addr_hint, unsigned int pages_per_huge_page)
6002{
6003 unsigned long addr = addr_hint &
6004 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6005
6006 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6007 clear_gigantic_page(page, addr, pages_per_huge_page);
6008 return;
6009 }
6010
6011 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6012}
6013
1cb9dc4b 6014static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
6015 unsigned long addr,
6016 struct vm_area_struct *vma,
6017 unsigned int pages_per_huge_page)
47ad8475
AA
6018{
6019 int i;
c0e8150e
Z
6020 struct page *dst_page;
6021 struct page *src_page;
47ad8475 6022
14455eab 6023 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
6024 dst_page = folio_page(dst, i);
6025 src_page = folio_page(src, i);
14455eab 6026
47ad8475 6027 cond_resched();
1cb9dc4b
LS
6028 if (copy_mc_user_highpage(dst_page, src_page,
6029 addr + i*PAGE_SIZE, vma)) {
6030 memory_failure_queue(page_to_pfn(src_page), 0);
6031 return -EHWPOISON;
6032 }
47ad8475 6033 }
1cb9dc4b 6034 return 0;
47ad8475
AA
6035}
6036
c9f4cd71
HY
6037struct copy_subpage_arg {
6038 struct page *dst;
6039 struct page *src;
6040 struct vm_area_struct *vma;
6041};
6042
1cb9dc4b 6043static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6044{
6045 struct copy_subpage_arg *copy_arg = arg;
6046
1cb9dc4b
LS
6047 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6048 addr, copy_arg->vma)) {
6049 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6050 return -EHWPOISON;
6051 }
6052 return 0;
c9f4cd71
HY
6053}
6054
1cb9dc4b
LS
6055int copy_user_large_folio(struct folio *dst, struct folio *src,
6056 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6057{
c0e8150e 6058 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6059 unsigned long addr = addr_hint &
6060 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6061 struct copy_subpage_arg arg = {
c0e8150e
Z
6062 .dst = &dst->page,
6063 .src = &src->page,
c9f4cd71
HY
6064 .vma = vma,
6065 };
47ad8475 6066
1cb9dc4b
LS
6067 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6068 return copy_user_gigantic_page(dst, src, addr, vma,
6069 pages_per_huge_page);
47ad8475 6070
1cb9dc4b 6071 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6072}
fa4d75c1 6073
e87340ca
Z
6074long copy_folio_from_user(struct folio *dst_folio,
6075 const void __user *usr_src,
6076 bool allow_pagefault)
fa4d75c1 6077{
e87340ca 6078 void *kaddr;
fa4d75c1 6079 unsigned long i, rc = 0;
e87340ca
Z
6080 unsigned int nr_pages = folio_nr_pages(dst_folio);
6081 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6082 struct page *subpage;
fa4d75c1 6083
e87340ca
Z
6084 for (i = 0; i < nr_pages; i++) {
6085 subpage = folio_page(dst_folio, i);
6086 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6087 if (!allow_pagefault)
6088 pagefault_disable();
e87340ca 6089 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6090 if (!allow_pagefault)
6091 pagefault_enable();
e87340ca 6092 kunmap_local(kaddr);
fa4d75c1
MK
6093
6094 ret_val -= (PAGE_SIZE - rc);
6095 if (rc)
6096 break;
6097
e763243c
MS
6098 flush_dcache_page(subpage);
6099
fa4d75c1
MK
6100 cond_resched();
6101 }
6102 return ret_val;
6103}
47ad8475 6104#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6105
40b64acd 6106#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6107
6108static struct kmem_cache *page_ptl_cachep;
6109
6110void __init ptlock_cache_init(void)
6111{
6112 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6113 SLAB_PANIC, NULL);
6114}
6115
539edb58 6116bool ptlock_alloc(struct page *page)
49076ec2
KS
6117{
6118 spinlock_t *ptl;
6119
b35f1819 6120 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6121 if (!ptl)
6122 return false;
539edb58 6123 page->ptl = ptl;
49076ec2
KS
6124 return true;
6125}
6126
539edb58 6127void ptlock_free(struct page *page)
49076ec2 6128{
b35f1819 6129 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
6130}
6131#endif