]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mmu_notifiers: call invalidate_range() when invalidating TLBs
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
36090def 44#include <linux/mm_inline.h>
6e84f315 45#include <linux/sched/mm.h>
f7ccbae4 46#include <linux/sched/coredump.h>
6a3827d7 47#include <linux/sched/numa_balancing.h>
29930025 48#include <linux/sched/task.h>
1da177e4
LT
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
5042db43 54#include <linux/memremap.h>
b073d7f8 55#include <linux/kmsan.h>
9a840895 56#include <linux/ksm.h>
1da177e4 57#include <linux/rmap.h>
b95f1b31 58#include <linux/export.h>
0ff92245 59#include <linux/delayacct.h>
1da177e4 60#include <linux/init.h>
01c8f1c4 61#include <linux/pfn_t.h>
edc79b2a 62#include <linux/writeback.h>
8a9f3ccd 63#include <linux/memcontrol.h>
cddb8a5c 64#include <linux/mmu_notifier.h>
3dc14741
HD
65#include <linux/swapops.h>
66#include <linux/elf.h>
5a0e3ad6 67#include <linux/gfp.h>
4daae3b4 68#include <linux/migrate.h>
2fbc57c5 69#include <linux/string.h>
467b171a 70#include <linux/memory-tiers.h>
1592eef0 71#include <linux/debugfs.h>
6b251fc9 72#include <linux/userfaultfd_k.h>
bc2466e4 73#include <linux/dax.h>
6b31d595 74#include <linux/oom.h>
98fa15f3 75#include <linux/numa.h>
bce617ed
PX
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
e80d3909 78#include <linux/vmalloc.h>
33024536 79#include <linux/sched/sysctl.h>
7a7f0946 80#include <linux/net_mm.h>
1da177e4 81
b3d1411b
JFG
82#include <trace/events/kmem.h>
83
6952b61d 84#include <asm/io.h>
33a709b2 85#include <asm/mmu_context.h>
1da177e4 86#include <asm/pgalloc.h>
7c0f6ba6 87#include <linux/uaccess.h>
1da177e4
LT
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
1da177e4 90
e80d3909 91#include "pgalloc-track.h"
42b77728 92#include "internal.h"
014bb1de 93#include "swap.h"
42b77728 94
af27d940 95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
97#endif
98
a9ee6cf5 99#ifndef CONFIG_NUMA
1da177e4 100unsigned long max_mapnr;
1da177e4 101EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
102
103struct page *mem_map;
1da177e4
LT
104EXPORT_SYMBOL(mem_map);
105#endif
106
5c041f5d 107static vm_fault_t do_fault(struct vm_fault *vmf);
2bad466c
PX
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
5c041f5d 122
1da177e4
LT
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128 * and ZONE_HIGHMEM.
129 */
166f61b9 130void *high_memory;
1da177e4 131EXPORT_SYMBOL(high_memory);
1da177e4 132
32a93233
IM
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
a62eaf15 145
46bdb427
WD
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
a62eaf15
AK
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
9b41046c 161 return 1;
a62eaf15
AK
162}
163__setup("norandmaps", disable_randmaps);
164
62eede62 165unsigned long zero_pfn __read_mostly;
0b70068e
AB
166EXPORT_SYMBOL(zero_pfn);
167
166f61b9
TH
168unsigned long highest_memmap_pfn __read_mostly;
169
a13ea5b7
HD
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
e720e7d0 178early_initcall(init_zero_pfn);
a62eaf15 179
f1a79412 180void mm_trace_rss_stat(struct mm_struct *mm, int member)
b3d1411b 181{
f1a79412 182 trace_rss_stat(mm, member);
b3d1411b 183}
d559db08 184
1da177e4
LT
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
9e1b32ca
BH
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
1da177e4 191{
2f569afd 192 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 193 pmd_clear(pmd);
9e1b32ca 194 pte_free_tlb(tlb, token, addr);
c4812909 195 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
196}
197
e0da382c
HD
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
1da177e4
LT
201{
202 pmd_t *pmd;
203 unsigned long next;
e0da382c 204 unsigned long start;
1da177e4 205
e0da382c 206 start = addr;
1da177e4 207 pmd = pmd_offset(pud, addr);
1da177e4
LT
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
9e1b32ca 212 free_pte_range(tlb, pmd, addr);
1da177e4
LT
213 } while (pmd++, addr = next, addr != end);
214
e0da382c
HD
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
1da177e4 222 }
e0da382c
HD
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
9e1b32ca 228 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 229 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
230}
231
c2febafc 232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
1da177e4
LT
235{
236 pud_t *pud;
237 unsigned long next;
e0da382c 238 unsigned long start;
1da177e4 239
e0da382c 240 start = addr;
c2febafc 241 pud = pud_offset(p4d, addr);
1da177e4
LT
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
e0da382c 246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
247 } while (pud++, addr = next, addr != end);
248
c2febafc
KS
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
b4e98d9a 263 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
e0da382c
HD
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
1da177e4 290 }
e0da382c
HD
291 if (end - 1 > ceiling - 1)
292 return;
293
c2febafc 294 p4d = p4d_offset(pgd, start);
e0da382c 295 pgd_clear(pgd);
c2febafc 296 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
297}
298
299/*
e0da382c 300 * This function frees user-level page tables of a process.
1da177e4 301 */
42b77728 302void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
1da177e4
LT
305{
306 pgd_t *pgd;
307 unsigned long next;
e0da382c
HD
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
1da177e4 334
e0da382c
HD
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
07e32661
AK
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
ed6a7935 354 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 355 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
c2febafc 360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 361 } while (pgd++, addr = next, addr != end);
e0da382c
HD
362}
363
763ecb03
LH
364void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 struct vm_area_struct *vma, unsigned long floor,
98e51a22 366 unsigned long ceiling, bool mm_wr_locked)
e0da382c 367{
763ecb03
LH
368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369
370 do {
e0da382c 371 unsigned long addr = vma->vm_start;
763ecb03
LH
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(&mas, ceiling - 1);
e0da382c 379
8f4f8c16 380 /*
25d9e2d1
NP
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
8f4f8c16 383 */
98e51a22
SB
384 if (mm_wr_locked)
385 vma_start_write(vma);
5beb4930 386 unlink_anon_vmas(vma);
8f4f8c16
HD
387 unlink_file_vma(vma);
388
9da61aef 389 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 391 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
392 } else {
393 /*
394 * Optimization: gather nearby vmas into one call down
395 */
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 397 && !is_vm_hugetlb_page(next)) {
3bf5ee95 398 vma = next;
763ecb03 399 next = mas_find(&mas, ceiling - 1);
98e51a22
SB
400 if (mm_wr_locked)
401 vma_start_write(vma);
5beb4930 402 unlink_anon_vmas(vma);
8f4f8c16 403 unlink_file_vma(vma);
3bf5ee95
HD
404 }
405 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 406 floor, next ? next->vm_start : ceiling);
3bf5ee95 407 }
e0da382c 408 vma = next;
763ecb03 409 } while (vma);
1da177e4
LT
410}
411
03c4f204 412void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
1da177e4 413{
03c4f204 414 spinlock_t *ptl = pmd_lock(mm, pmd);
1bb3630e 415
8ac1f832 416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 417 mm_inc_nr_ptes(mm);
ed33b5a6
QZ
418 /*
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
422 *
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
430 */
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
03c4f204
QZ
432 pmd_populate(mm, pmd, *pte);
433 *pte = NULL;
4b471e88 434 }
c4088ebd 435 spin_unlock(ptl);
03c4f204
QZ
436}
437
4cf58924 438int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 439{
4cf58924 440 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
441 if (!new)
442 return -ENOMEM;
443
03c4f204 444 pmd_install(mm, pmd, &new);
2f569afd
MS
445 if (new)
446 pte_free(mm, new);
1bb3630e 447 return 0;
1da177e4
LT
448}
449
4cf58924 450int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 451{
4cf58924 452 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
453 if (!new)
454 return -ENOMEM;
455
456 spin_lock(&init_mm.page_table_lock);
8ac1f832 457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
ed33b5a6 458 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 459 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 460 new = NULL;
4b471e88 461 }
1bb3630e 462 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
463 if (new)
464 pte_free_kernel(&init_mm, new);
1bb3630e 465 return 0;
1da177e4
LT
466}
467
d559db08
KH
468static inline void init_rss_vec(int *rss)
469{
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471}
472
473static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 474{
d559db08
KH
475 int i;
476
34e55232 477 if (current->mm == mm)
05af2e10 478 sync_mm_rss(mm);
d559db08
KH
479 for (i = 0; i < NR_MM_COUNTERS; i++)
480 if (rss[i])
481 add_mm_counter(mm, i, rss[i]);
ae859762
HD
482}
483
b5810039 484/*
6aab341e
LT
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
b5810039
NP
488 *
489 * The calling function must still handle the error.
490 */
3dc14741
HD
491static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
b5810039 493{
3dc14741 494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
499 pgoff_t index;
d936cf9b
HD
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
503
504 /*
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
507 */
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
510 nr_unshown++;
511 return;
512 }
513 if (nr_unshown) {
1170532b
JP
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 nr_unshown);
d936cf9b
HD
516 nr_unshown = 0;
517 }
518 nr_shown = 0;
519 }
520 if (nr_shown++ == 0)
521 resume = jiffies + 60 * HZ;
3dc14741
HD
522
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
525
1170532b
JP
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 current->comm,
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 529 if (page)
f0b791a3 530 dump_page(page, "bad pte");
6aa9b8b2 531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
7e0a1265 533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
2682582a
KK
534 vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
7e0a1265 537 mapping ? mapping->a_ops->read_folio : NULL);
b5810039 538 dump_stack();
373d4d09 539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
540}
541
ee498ed7 542/*
7e675137 543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 544 *
7e675137
NP
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 548 *
7e675137
NP
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
552 * described below.
553 *
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 557 *
b379d790
JH
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
6aab341e
LT
562 *
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 *
7e675137
NP
565 * And for normal mappings this is false.
566 *
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
b379d790 571 *
b379d790 572 *
7e675137 573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
574 *
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
582 *
ee498ed7 583 */
25b2995a
CH
584struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 pte_t pte)
ee498ed7 586{
22b31eec 587 unsigned long pfn = pte_pfn(pte);
7e675137 588
00b3a331 589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 590 if (likely(!pte_special(pte)))
22b31eec 591 goto check_pfn;
667a0a06
DV
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 return NULL;
df6ad698
JG
596 if (is_zero_pfn(pfn))
597 return NULL;
e1fb4a08 598 if (pte_devmap(pte))
3218f871
AS
599 /*
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 */
e1fb4a08
DJ
607 return NULL;
608
df6ad698 609 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
610 return NULL;
611 }
612
00b3a331 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 614
b379d790
JH
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
7e675137
NP
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
6aab341e
LT
628 }
629
b38af472
HD
630 if (is_zero_pfn(pfn))
631 return NULL;
00b3a331 632
22b31eec
HD
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
6aab341e
LT
638
639 /*
7e675137 640 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 641 * eg. VDSO mappings can cause them to exist.
6aab341e 642 */
b379d790 643out:
6aab341e 644 return pfn_to_page(pfn);
ee498ed7
HD
645}
646
318e9342
VMO
647struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte)
649{
650 struct page *page = vm_normal_page(vma, addr, pte);
651
652 if (page)
653 return page_folio(page);
654 return NULL;
655}
656
28093f9f
GS
657#ifdef CONFIG_TRANSPARENT_HUGEPAGE
658struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 pmd_t pmd)
660{
661 unsigned long pfn = pmd_pfn(pmd);
662
663 /*
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
667 */
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
670 if (!pfn_valid(pfn))
671 return NULL;
672 goto out;
673 } else {
674 unsigned long off;
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
677 return NULL;
678 if (!is_cow_mapping(vma->vm_flags))
679 return NULL;
680 }
681 }
682
e1fb4a08
DJ
683 if (pmd_devmap(pmd))
684 return NULL;
3cde287b 685 if (is_huge_zero_pmd(pmd))
28093f9f
GS
686 return NULL;
687 if (unlikely(pfn > highest_memmap_pfn))
688 return NULL;
689
690 /*
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
693 */
694out:
695 return pfn_to_page(pfn);
696}
697#endif
698
b756a3b5
AP
699static void restore_exclusive_pte(struct vm_area_struct *vma,
700 struct page *page, unsigned long address,
701 pte_t *ptep)
702{
c33c7948 703 pte_t orig_pte;
b756a3b5
AP
704 pte_t pte;
705 swp_entry_t entry;
706
c33c7948 707 orig_pte = ptep_get(ptep);
b756a3b5 708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
c33c7948 709 if (pte_swp_soft_dirty(orig_pte))
b756a3b5
AP
710 pte = pte_mksoft_dirty(pte);
711
c33c7948
RR
712 entry = pte_to_swp_entry(orig_pte);
713 if (pte_swp_uffd_wp(orig_pte))
b756a3b5
AP
714 pte = pte_mkuffd_wp(pte);
715 else if (is_writable_device_exclusive_entry(entry))
716 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717
6c287605
DH
718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719
b756a3b5
AP
720 /*
721 * No need to take a page reference as one was already
722 * created when the swap entry was made.
723 */
724 if (PageAnon(page))
f1e2db12 725 page_add_anon_rmap(page, vma, address, RMAP_NONE);
b756a3b5
AP
726 else
727 /*
728 * Currently device exclusive access only supports anonymous
729 * memory so the entry shouldn't point to a filebacked page.
730 */
4d8ff640 731 WARN_ON_ONCE(1);
b756a3b5 732
1eba86c0
PT
733 set_pte_at(vma->vm_mm, address, ptep, pte);
734
b756a3b5
AP
735 /*
736 * No need to invalidate - it was non-present before. However
737 * secondary CPUs may have mappings that need invalidating.
738 */
739 update_mmu_cache(vma, address, ptep);
740}
741
742/*
743 * Tries to restore an exclusive pte if the page lock can be acquired without
744 * sleeping.
745 */
746static int
747try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 unsigned long addr)
749{
c33c7948 750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
b756a3b5
AP
751 struct page *page = pfn_swap_entry_to_page(entry);
752
753 if (trylock_page(page)) {
754 restore_exclusive_pte(vma, page, addr, src_pte);
755 unlock_page(page);
756 return 0;
757 }
758
759 return -EBUSY;
760}
761
1da177e4
LT
762/*
763 * copy one vm_area from one task to the other. Assumes the page tables
764 * already present in the new task to be cleared in the whole range
765 * covered by this vma.
1da177e4
LT
766 */
767
df3a57d1
LT
768static unsigned long
769copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
8f34f1ea
PX
770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
1da177e4 772{
8f34f1ea 773 unsigned long vm_flags = dst_vma->vm_flags;
c33c7948
RR
774 pte_t orig_pte = ptep_get(src_pte);
775 pte_t pte = orig_pte;
1da177e4 776 struct page *page;
c33c7948 777 swp_entry_t entry = pte_to_swp_entry(orig_pte);
df3a57d1
LT
778
779 if (likely(!non_swap_entry(entry))) {
780 if (swap_duplicate(entry) < 0)
9a5cc85c 781 return -EIO;
df3a57d1
LT
782
783 /* make sure dst_mm is on swapoff's mmlist. */
784 if (unlikely(list_empty(&dst_mm->mmlist))) {
785 spin_lock(&mmlist_lock);
786 if (list_empty(&dst_mm->mmlist))
787 list_add(&dst_mm->mmlist,
788 &src_mm->mmlist);
789 spin_unlock(&mmlist_lock);
790 }
1493a191 791 /* Mark the swap entry as shared. */
c33c7948
RR
792 if (pte_swp_exclusive(orig_pte)) {
793 pte = pte_swp_clear_exclusive(orig_pte);
1493a191
DH
794 set_pte_at(src_mm, addr, src_pte, pte);
795 }
df3a57d1
LT
796 rss[MM_SWAPENTS]++;
797 } else if (is_migration_entry(entry)) {
af5cdaf8 798 page = pfn_swap_entry_to_page(entry);
1da177e4 799
df3a57d1 800 rss[mm_counter(page)]++;
5042db43 801
6c287605 802 if (!is_readable_migration_entry(entry) &&
df3a57d1 803 is_cow_mapping(vm_flags)) {
5042db43 804 /*
6c287605
DH
805 * COW mappings require pages in both parent and child
806 * to be set to read. A previously exclusive entry is
807 * now shared.
5042db43 808 */
4dd845b5
AP
809 entry = make_readable_migration_entry(
810 swp_offset(entry));
df3a57d1 811 pte = swp_entry_to_pte(entry);
c33c7948 812 if (pte_swp_soft_dirty(orig_pte))
df3a57d1 813 pte = pte_swp_mksoft_dirty(pte);
c33c7948 814 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
815 pte = pte_swp_mkuffd_wp(pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
817 }
818 } else if (is_device_private_entry(entry)) {
af5cdaf8 819 page = pfn_swap_entry_to_page(entry);
5042db43 820
df3a57d1
LT
821 /*
822 * Update rss count even for unaddressable pages, as
823 * they should treated just like normal pages in this
824 * respect.
825 *
826 * We will likely want to have some new rss counters
827 * for unaddressable pages, at some point. But for now
828 * keep things as they are.
829 */
830 get_page(page);
831 rss[mm_counter(page)]++;
fb3d824d
DH
832 /* Cannot fail as these pages cannot get pinned. */
833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
df3a57d1
LT
834
835 /*
836 * We do not preserve soft-dirty information, because so
837 * far, checkpoint/restore is the only feature that
838 * requires that. And checkpoint/restore does not work
839 * when a device driver is involved (you cannot easily
840 * save and restore device driver state).
841 */
4dd845b5 842 if (is_writable_device_private_entry(entry) &&
df3a57d1 843 is_cow_mapping(vm_flags)) {
4dd845b5
AP
844 entry = make_readable_device_private_entry(
845 swp_offset(entry));
df3a57d1 846 pte = swp_entry_to_pte(entry);
c33c7948 847 if (pte_swp_uffd_wp(orig_pte))
df3a57d1
LT
848 pte = pte_swp_mkuffd_wp(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 850 }
b756a3b5
AP
851 } else if (is_device_exclusive_entry(entry)) {
852 /*
853 * Make device exclusive entries present by restoring the
854 * original entry then copying as for a present pte. Device
855 * exclusive entries currently only support private writable
856 * (ie. COW) mappings.
857 */
858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 return -EBUSY;
861 return -ENOENT;
c56d1b62 862 } else if (is_pte_marker_entry(entry)) {
af19487f
AR
863 pte_marker marker = copy_pte_marker(entry, dst_vma);
864
865 if (marker)
866 set_pte_at(dst_mm, addr, dst_pte,
867 make_pte_marker(marker));
c56d1b62 868 return 0;
1da177e4 869 }
8f34f1ea
PX
870 if (!userfaultfd_wp(dst_vma))
871 pte = pte_swp_clear_uffd_wp(pte);
df3a57d1
LT
872 set_pte_at(dst_mm, addr, dst_pte, pte);
873 return 0;
874}
875
70e806e4 876/*
b51ad4f8 877 * Copy a present and normal page.
70e806e4 878 *
b51ad4f8
DH
879 * NOTE! The usual case is that this isn't required;
880 * instead, the caller can just increase the page refcount
881 * and re-use the pte the traditional way.
70e806e4
PX
882 *
883 * And if we need a pre-allocated page but don't yet have
884 * one, return a negative error to let the preallocation
885 * code know so that it can do so outside the page table
886 * lock.
887 */
888static inline int
c78f4636
PX
889copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
890 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 891 struct folio **prealloc, struct page *page)
70e806e4 892{
edf50470 893 struct folio *new_folio;
b51ad4f8 894 pte_t pte;
70e806e4 895
edf50470
MWO
896 new_folio = *prealloc;
897 if (!new_folio)
70e806e4
PX
898 return -EAGAIN;
899
900 /*
901 * We have a prealloc page, all good! Take it
902 * over and copy the page & arm it.
903 */
904 *prealloc = NULL;
edf50470
MWO
905 copy_user_highpage(&new_folio->page, page, addr, src_vma);
906 __folio_mark_uptodate(new_folio);
907 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
908 folio_add_lru_vma(new_folio, dst_vma);
909 rss[MM_ANONPAGES]++;
70e806e4
PX
910
911 /* All done, just insert the new page copy in the child */
edf50470 912 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
c78f4636 913 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
c33c7948 914 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
8f34f1ea 915 /* Uffd-wp needs to be delivered to dest pte as well */
f1eb1bac 916 pte = pte_mkuffd_wp(pte);
c78f4636 917 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
918 return 0;
919}
920
921/*
922 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
923 * is required to copy this pte.
924 */
925static inline int
c78f4636
PX
926copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
927 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
edf50470 928 struct folio **prealloc)
df3a57d1 929{
c78f4636
PX
930 struct mm_struct *src_mm = src_vma->vm_mm;
931 unsigned long vm_flags = src_vma->vm_flags;
c33c7948 932 pte_t pte = ptep_get(src_pte);
df3a57d1 933 struct page *page;
14ddee41 934 struct folio *folio;
df3a57d1 935
c78f4636 936 page = vm_normal_page(src_vma, addr, pte);
14ddee41
MWO
937 if (page)
938 folio = page_folio(page);
939 if (page && folio_test_anon(folio)) {
b51ad4f8
DH
940 /*
941 * If this page may have been pinned by the parent process,
942 * copy the page immediately for the child so that we'll always
943 * guarantee the pinned page won't be randomly replaced in the
944 * future.
945 */
14ddee41 946 folio_get(folio);
fb3d824d 947 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
14ddee41
MWO
948 /* Page may be pinned, we have to copy. */
949 folio_put(folio);
fb3d824d
DH
950 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
951 addr, rss, prealloc, page);
952 }
edf50470 953 rss[MM_ANONPAGES]++;
b51ad4f8 954 } else if (page) {
14ddee41 955 folio_get(folio);
fb3d824d 956 page_dup_file_rmap(page, false);
edf50470 957 rss[mm_counter_file(page)]++;
70e806e4
PX
958 }
959
1da177e4
LT
960 /*
961 * If it's a COW mapping, write protect it both
962 * in the parent and the child
963 */
1b2de5d0 964 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 965 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 966 pte = pte_wrprotect(pte);
1da177e4 967 }
14ddee41 968 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
1da177e4
LT
969
970 /*
971 * If it's a shared mapping, mark it clean in
972 * the child
973 */
974 if (vm_flags & VM_SHARED)
975 pte = pte_mkclean(pte);
976 pte = pte_mkold(pte);
6aab341e 977
8f34f1ea 978 if (!userfaultfd_wp(dst_vma))
b569a176
PX
979 pte = pte_clear_uffd_wp(pte);
980
c78f4636 981 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
982 return 0;
983}
984
edf50470
MWO
985static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
986 struct vm_area_struct *vma, unsigned long addr)
70e806e4 987{
edf50470 988 struct folio *new_folio;
70e806e4 989
edf50470
MWO
990 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
991 if (!new_folio)
70e806e4
PX
992 return NULL;
993
edf50470
MWO
994 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
995 folio_put(new_folio);
70e806e4 996 return NULL;
6aab341e 997 }
e601ded4 998 folio_throttle_swaprate(new_folio, GFP_KERNEL);
ae859762 999
edf50470 1000 return new_folio;
1da177e4
LT
1001}
1002
c78f4636
PX
1003static int
1004copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1005 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1006 unsigned long end)
1da177e4 1007{
c78f4636
PX
1008 struct mm_struct *dst_mm = dst_vma->vm_mm;
1009 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 1010 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 1011 pte_t *src_pte, *dst_pte;
c33c7948 1012 pte_t ptent;
c74df32c 1013 spinlock_t *src_ptl, *dst_ptl;
70e806e4 1014 int progress, ret = 0;
d559db08 1015 int rss[NR_MM_COUNTERS];
570a335b 1016 swp_entry_t entry = (swp_entry_t){0};
edf50470 1017 struct folio *prealloc = NULL;
1da177e4
LT
1018
1019again:
70e806e4 1020 progress = 0;
d559db08
KH
1021 init_rss_vec(rss);
1022
3db82b93
HD
1023 /*
1024 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1025 * error handling here, assume that exclusive mmap_lock on dst and src
1026 * protects anon from unexpected THP transitions; with shmem and file
1027 * protected by mmap_lock-less collapse skipping areas with anon_vma
1028 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1029 * can remove such assumptions later, but this is good enough for now.
1030 */
c74df32c 1031 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
1032 if (!dst_pte) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
3db82b93
HD
1036 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1037 if (!src_pte) {
1038 pte_unmap_unlock(dst_pte, dst_ptl);
1039 /* ret == 0 */
1040 goto out;
1041 }
f20dc5f7 1042 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1043 orig_src_pte = src_pte;
1044 orig_dst_pte = dst_pte;
6606c3e0 1045 arch_enter_lazy_mmu_mode();
1da177e4 1046
1da177e4
LT
1047 do {
1048 /*
1049 * We are holding two locks at this point - either of them
1050 * could generate latencies in another task on another CPU.
1051 */
e040f218
HD
1052 if (progress >= 32) {
1053 progress = 0;
1054 if (need_resched() ||
95c354fe 1055 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1056 break;
1057 }
c33c7948
RR
1058 ptent = ptep_get(src_pte);
1059 if (pte_none(ptent)) {
1da177e4
LT
1060 progress++;
1061 continue;
1062 }
c33c7948 1063 if (unlikely(!pte_present(ptent))) {
9a5cc85c
AP
1064 ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 dst_pte, src_pte,
1066 dst_vma, src_vma,
1067 addr, rss);
1068 if (ret == -EIO) {
c33c7948 1069 entry = pte_to_swp_entry(ptep_get(src_pte));
79a1971c 1070 break;
b756a3b5
AP
1071 } else if (ret == -EBUSY) {
1072 break;
1073 } else if (!ret) {
1074 progress += 8;
1075 continue;
9a5cc85c 1076 }
b756a3b5
AP
1077
1078 /*
1079 * Device exclusive entry restored, continue by copying
1080 * the now present pte.
1081 */
1082 WARN_ON_ONCE(ret != -ENOENT);
79a1971c 1083 }
70e806e4 1084 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
1085 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 addr, rss, &prealloc);
70e806e4
PX
1087 /*
1088 * If we need a pre-allocated page for this pte, drop the
1089 * locks, allocate, and try again.
1090 */
1091 if (unlikely(ret == -EAGAIN))
1092 break;
1093 if (unlikely(prealloc)) {
1094 /*
1095 * pre-alloc page cannot be reused by next time so as
1096 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 * will allocate page according to address). This
1098 * could only happen if one pinned pte changed.
1099 */
edf50470 1100 folio_put(prealloc);
70e806e4
PX
1101 prealloc = NULL;
1102 }
1da177e4
LT
1103 progress += 8;
1104 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1105
6606c3e0 1106 arch_leave_lazy_mmu_mode();
3db82b93 1107 pte_unmap_unlock(orig_src_pte, src_ptl);
d559db08 1108 add_mm_rss_vec(dst_mm, rss);
c36987e2 1109 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1110 cond_resched();
570a335b 1111
9a5cc85c
AP
1112 if (ret == -EIO) {
1113 VM_WARN_ON_ONCE(!entry.val);
70e806e4
PX
1114 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1115 ret = -ENOMEM;
1116 goto out;
1117 }
1118 entry.val = 0;
b756a3b5
AP
1119 } else if (ret == -EBUSY) {
1120 goto out;
9a5cc85c 1121 } else if (ret == -EAGAIN) {
c78f4636 1122 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1123 if (!prealloc)
570a335b 1124 return -ENOMEM;
9a5cc85c
AP
1125 } else if (ret) {
1126 VM_WARN_ON_ONCE(1);
570a335b 1127 }
9a5cc85c
AP
1128
1129 /* We've captured and resolved the error. Reset, try again. */
1130 ret = 0;
1131
1da177e4
LT
1132 if (addr != end)
1133 goto again;
70e806e4
PX
1134out:
1135 if (unlikely(prealloc))
edf50470 1136 folio_put(prealloc);
70e806e4 1137 return ret;
1da177e4
LT
1138}
1139
c78f4636
PX
1140static inline int
1141copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1142 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1143 unsigned long end)
1da177e4 1144{
c78f4636
PX
1145 struct mm_struct *dst_mm = dst_vma->vm_mm;
1146 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1147 pmd_t *src_pmd, *dst_pmd;
1148 unsigned long next;
1149
1150 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1151 if (!dst_pmd)
1152 return -ENOMEM;
1153 src_pmd = pmd_offset(src_pud, addr);
1154 do {
1155 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1156 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1157 || pmd_devmap(*src_pmd)) {
71e3aac0 1158 int err;
c78f4636 1159 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
8f34f1ea
PX
1160 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1161 addr, dst_vma, src_vma);
71e3aac0
AA
1162 if (err == -ENOMEM)
1163 return -ENOMEM;
1164 if (!err)
1165 continue;
1166 /* fall through */
1167 }
1da177e4
LT
1168 if (pmd_none_or_clear_bad(src_pmd))
1169 continue;
c78f4636
PX
1170 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1171 addr, next))
1da177e4
LT
1172 return -ENOMEM;
1173 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1174 return 0;
1175}
1176
c78f4636
PX
1177static inline int
1178copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1179 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1180 unsigned long end)
1da177e4 1181{
c78f4636
PX
1182 struct mm_struct *dst_mm = dst_vma->vm_mm;
1183 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1184 pud_t *src_pud, *dst_pud;
1185 unsigned long next;
1186
c2febafc 1187 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1188 if (!dst_pud)
1189 return -ENOMEM;
c2febafc 1190 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1191 do {
1192 next = pud_addr_end(addr, end);
a00cc7d9
MW
1193 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1194 int err;
1195
c78f4636 1196 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1197 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1198 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1199 if (err == -ENOMEM)
1200 return -ENOMEM;
1201 if (!err)
1202 continue;
1203 /* fall through */
1204 }
1da177e4
LT
1205 if (pud_none_or_clear_bad(src_pud))
1206 continue;
c78f4636
PX
1207 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1208 addr, next))
1da177e4
LT
1209 return -ENOMEM;
1210 } while (dst_pud++, src_pud++, addr = next, addr != end);
1211 return 0;
1212}
1213
c78f4636
PX
1214static inline int
1215copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1216 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1217 unsigned long end)
c2febafc 1218{
c78f4636 1219 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1220 p4d_t *src_p4d, *dst_p4d;
1221 unsigned long next;
1222
1223 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1224 if (!dst_p4d)
1225 return -ENOMEM;
1226 src_p4d = p4d_offset(src_pgd, addr);
1227 do {
1228 next = p4d_addr_end(addr, end);
1229 if (p4d_none_or_clear_bad(src_p4d))
1230 continue;
c78f4636
PX
1231 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1232 addr, next))
c2febafc
KS
1233 return -ENOMEM;
1234 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1235 return 0;
1236}
1237
c56d1b62
PX
1238/*
1239 * Return true if the vma needs to copy the pgtable during this fork(). Return
1240 * false when we can speed up fork() by allowing lazy page faults later until
1241 * when the child accesses the memory range.
1242 */
bc70fbf2 1243static bool
c56d1b62
PX
1244vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1245{
1246 /*
1247 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1248 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1249 * contains uffd-wp protection information, that's something we can't
1250 * retrieve from page cache, and skip copying will lose those info.
1251 */
1252 if (userfaultfd_wp(dst_vma))
1253 return true;
1254
bcd51a3c 1255 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
c56d1b62
PX
1256 return true;
1257
1258 if (src_vma->anon_vma)
1259 return true;
1260
1261 /*
1262 * Don't copy ptes where a page fault will fill them correctly. Fork
1263 * becomes much lighter when there are big shared or private readonly
1264 * mappings. The tradeoff is that copy_page_range is more efficient
1265 * than faulting.
1266 */
1267 return false;
1268}
1269
c78f4636
PX
1270int
1271copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1272{
1273 pgd_t *src_pgd, *dst_pgd;
1274 unsigned long next;
c78f4636
PX
1275 unsigned long addr = src_vma->vm_start;
1276 unsigned long end = src_vma->vm_end;
1277 struct mm_struct *dst_mm = dst_vma->vm_mm;
1278 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1279 struct mmu_notifier_range range;
2ec74c3e 1280 bool is_cow;
cddb8a5c 1281 int ret;
1da177e4 1282
c56d1b62 1283 if (!vma_needs_copy(dst_vma, src_vma))
0661a336 1284 return 0;
d992895b 1285
c78f4636 1286 if (is_vm_hugetlb_page(src_vma))
bc70fbf2 1287 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1da177e4 1288
c78f4636 1289 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1290 /*
1291 * We do not free on error cases below as remove_vma
1292 * gets called on error from higher level routine
1293 */
c78f4636 1294 ret = track_pfn_copy(src_vma);
2ab64037 1295 if (ret)
1296 return ret;
1297 }
1298
cddb8a5c
AA
1299 /*
1300 * We need to invalidate the secondary MMU mappings only when
1301 * there could be a permission downgrade on the ptes of the
1302 * parent mm. And a permission downgrade will only happen if
1303 * is_cow_mapping() returns true.
1304 */
c78f4636 1305 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1306
1307 if (is_cow) {
7269f999 1308 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
7d4a8be0 1309 0, src_mm, addr, end);
ac46d4f3 1310 mmu_notifier_invalidate_range_start(&range);
57efa1fe
JG
1311 /*
1312 * Disabling preemption is not needed for the write side, as
1313 * the read side doesn't spin, but goes to the mmap_lock.
1314 *
1315 * Use the raw variant of the seqcount_t write API to avoid
1316 * lockdep complaining about preemptibility.
1317 */
1318 mmap_assert_write_locked(src_mm);
1319 raw_write_seqcount_begin(&src_mm->write_protect_seq);
ac46d4f3 1320 }
cddb8a5c
AA
1321
1322 ret = 0;
1da177e4
LT
1323 dst_pgd = pgd_offset(dst_mm, addr);
1324 src_pgd = pgd_offset(src_mm, addr);
1325 do {
1326 next = pgd_addr_end(addr, end);
1327 if (pgd_none_or_clear_bad(src_pgd))
1328 continue;
c78f4636
PX
1329 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1330 addr, next))) {
d155df53 1331 untrack_pfn_clear(dst_vma);
cddb8a5c
AA
1332 ret = -ENOMEM;
1333 break;
1334 }
1da177e4 1335 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1336
57efa1fe
JG
1337 if (is_cow) {
1338 raw_write_seqcount_end(&src_mm->write_protect_seq);
ac46d4f3 1339 mmu_notifier_invalidate_range_end(&range);
57efa1fe 1340 }
cddb8a5c 1341 return ret;
1da177e4
LT
1342}
1343
5abfd71d
PX
1344/* Whether we should zap all COWed (private) pages too */
1345static inline bool should_zap_cows(struct zap_details *details)
1346{
1347 /* By default, zap all pages */
1348 if (!details)
1349 return true;
1350
1351 /* Or, we zap COWed pages only if the caller wants to */
2e148f1e 1352 return details->even_cows;
5abfd71d
PX
1353}
1354
2e148f1e 1355/* Decides whether we should zap this page with the page pointer specified */
254ab940 1356static inline bool should_zap_page(struct zap_details *details, struct page *page)
3506659e 1357{
5abfd71d
PX
1358 /* If we can make a decision without *page.. */
1359 if (should_zap_cows(details))
254ab940 1360 return true;
5abfd71d
PX
1361
1362 /* E.g. the caller passes NULL for the case of a zero page */
1363 if (!page)
254ab940 1364 return true;
3506659e 1365
2e148f1e
PX
1366 /* Otherwise we should only zap non-anon pages */
1367 return !PageAnon(page);
3506659e
MWO
1368}
1369
999dad82
PX
1370static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371{
1372 if (!details)
1373 return false;
1374
1375 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376}
1377
1378/*
1379 * This function makes sure that we'll replace the none pte with an uffd-wp
1380 * swap special pte marker when necessary. Must be with the pgtable lock held.
1381 */
1382static inline void
1383zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1384 unsigned long addr, pte_t *pte,
1385 struct zap_details *details, pte_t pteval)
1386{
2bad466c
PX
1387 /* Zap on anonymous always means dropping everything */
1388 if (vma_is_anonymous(vma))
1389 return;
1390
999dad82
PX
1391 if (zap_drop_file_uffd_wp(details))
1392 return;
1393
1394 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1395}
1396
51c6f666 1397static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1398 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1399 unsigned long addr, unsigned long end,
97a89413 1400 struct zap_details *details)
1da177e4 1401{
b5810039 1402 struct mm_struct *mm = tlb->mm;
d16dfc55 1403 int force_flush = 0;
d559db08 1404 int rss[NR_MM_COUNTERS];
97a89413 1405 spinlock_t *ptl;
5f1a1907 1406 pte_t *start_pte;
97a89413 1407 pte_t *pte;
8a5f14a2 1408 swp_entry_t entry;
d559db08 1409
ed6a7935 1410 tlb_change_page_size(tlb, PAGE_SIZE);
e303297e 1411 init_rss_vec(rss);
3db82b93
HD
1412 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1413 if (!pte)
1414 return addr;
1415
3ea27719 1416 flush_tlb_batched_pending(mm);
6606c3e0 1417 arch_enter_lazy_mmu_mode();
1da177e4 1418 do {
c33c7948 1419 pte_t ptent = ptep_get(pte);
8018db85
PX
1420 struct page *page;
1421
166f61b9 1422 if (pte_none(ptent))
1da177e4 1423 continue;
6f5e6b9e 1424
7b167b68
MK
1425 if (need_resched())
1426 break;
1427
1da177e4 1428 if (pte_present(ptent)) {
5df397de
LT
1429 unsigned int delay_rmap;
1430
25b2995a 1431 page = vm_normal_page(vma, addr, ptent);
254ab940 1432 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1433 continue;
b5810039 1434 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1435 tlb->fullmm);
1da177e4 1436 tlb_remove_tlb_entry(tlb, pte, addr);
999dad82
PX
1437 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1438 ptent);
e2942062 1439 if (unlikely(!page)) {
6080d19f 1440 ksm_might_unmap_zero_page(mm, ptent);
1da177e4 1441 continue;
e2942062 1442 }
eca56ff9 1443
5df397de 1444 delay_rmap = 0;
eca56ff9 1445 if (!PageAnon(page)) {
1cf35d47 1446 if (pte_dirty(ptent)) {
6237bcd9 1447 set_page_dirty(page);
5df397de
LT
1448 if (tlb_delay_rmap(tlb)) {
1449 delay_rmap = 1;
1450 force_flush = 1;
1451 }
1cf35d47 1452 }
8788f678 1453 if (pte_young(ptent) && likely(vma_has_recency(vma)))
bf3f3bc5 1454 mark_page_accessed(page);
6237bcd9 1455 }
eca56ff9 1456 rss[mm_counter(page)]--;
5df397de
LT
1457 if (!delay_rmap) {
1458 page_remove_rmap(page, vma, false);
1459 if (unlikely(page_mapcount(page) < 0))
1460 print_bad_pte(vma, addr, ptent, page);
1461 }
1462 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1cf35d47 1463 force_flush = 1;
ce9ec37b 1464 addr += PAGE_SIZE;
d16dfc55 1465 break;
1cf35d47 1466 }
1da177e4
LT
1467 continue;
1468 }
5042db43
JG
1469
1470 entry = pte_to_swp_entry(ptent);
b756a3b5
AP
1471 if (is_device_private_entry(entry) ||
1472 is_device_exclusive_entry(entry)) {
8018db85 1473 page = pfn_swap_entry_to_page(entry);
254ab940 1474 if (unlikely(!should_zap_page(details, page)))
91b61ef3 1475 continue;
999dad82
PX
1476 /*
1477 * Both device private/exclusive mappings should only
1478 * work with anonymous page so far, so we don't need to
1479 * consider uffd-wp bit when zap. For more information,
1480 * see zap_install_uffd_wp_if_needed().
1481 */
1482 WARN_ON_ONCE(!vma_is_anonymous(vma));
5042db43 1483 rss[mm_counter(page)]--;
b756a3b5 1484 if (is_device_private_entry(entry))
cea86fe2 1485 page_remove_rmap(page, vma, false);
5042db43 1486 put_page(page);
8018db85 1487 } else if (!non_swap_entry(entry)) {
5abfd71d
PX
1488 /* Genuine swap entry, hence a private anon page */
1489 if (!should_zap_cows(details))
1490 continue;
8a5f14a2 1491 rss[MM_SWAPENTS]--;
8018db85
PX
1492 if (unlikely(!free_swap_and_cache(entry)))
1493 print_bad_pte(vma, addr, ptent, NULL);
5abfd71d 1494 } else if (is_migration_entry(entry)) {
af5cdaf8 1495 page = pfn_swap_entry_to_page(entry);
254ab940 1496 if (!should_zap_page(details, page))
5abfd71d 1497 continue;
eca56ff9 1498 rss[mm_counter(page)]--;
999dad82 1499 } else if (pte_marker_entry_uffd_wp(entry)) {
2bad466c
PX
1500 /*
1501 * For anon: always drop the marker; for file: only
1502 * drop the marker if explicitly requested.
1503 */
1504 if (!vma_is_anonymous(vma) &&
1505 !zap_drop_file_uffd_wp(details))
999dad82 1506 continue;
9f186f9e 1507 } else if (is_hwpoison_entry(entry) ||
af19487f 1508 is_poisoned_swp_entry(entry)) {
5abfd71d
PX
1509 if (!should_zap_cows(details))
1510 continue;
1511 } else {
1512 /* We should have covered all the swap entry types */
1513 WARN_ON_ONCE(1);
b084d435 1514 }
9888a1ca 1515 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
999dad82 1516 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
97a89413 1517 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1518
d559db08 1519 add_mm_rss_vec(mm, rss);
6606c3e0 1520 arch_leave_lazy_mmu_mode();
51c6f666 1521
1cf35d47 1522 /* Do the actual TLB flush before dropping ptl */
5df397de 1523 if (force_flush) {
1cf35d47 1524 tlb_flush_mmu_tlbonly(tlb);
f036c818 1525 tlb_flush_rmaps(tlb, vma);
5df397de 1526 }
1cf35d47
LT
1527 pte_unmap_unlock(start_pte, ptl);
1528
1529 /*
1530 * If we forced a TLB flush (either due to running out of
1531 * batch buffers or because we needed to flush dirty TLB
1532 * entries before releasing the ptl), free the batched
3db82b93 1533 * memory too. Come back again if we didn't do everything.
1cf35d47 1534 */
3db82b93 1535 if (force_flush)
fa0aafb8 1536 tlb_flush_mmu(tlb);
d16dfc55 1537
51c6f666 1538 return addr;
1da177e4
LT
1539}
1540
51c6f666 1541static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1542 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1543 unsigned long addr, unsigned long end,
97a89413 1544 struct zap_details *details)
1da177e4
LT
1545{
1546 pmd_t *pmd;
1547 unsigned long next;
1548
1549 pmd = pmd_offset(pud, addr);
1550 do {
1551 next = pmd_addr_end(addr, end);
84c3fc4e 1552 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1553 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1554 __split_huge_pmd(vma, pmd, addr, false, NULL);
3db82b93
HD
1555 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1556 addr = next;
1557 continue;
1558 }
71e3aac0 1559 /* fall through */
3506659e
MWO
1560 } else if (details && details->single_folio &&
1561 folio_test_pmd_mappable(details->single_folio) &&
22061a1f
HD
1562 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1563 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1564 /*
1565 * Take and drop THP pmd lock so that we cannot return
1566 * prematurely, while zap_huge_pmd() has cleared *pmd,
1567 * but not yet decremented compound_mapcount().
1568 */
1569 spin_unlock(ptl);
71e3aac0 1570 }
3db82b93
HD
1571 if (pmd_none(*pmd)) {
1572 addr = next;
1573 continue;
1574 }
1575 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1576 if (addr != next)
1577 pmd--;
1578 } while (pmd++, cond_resched(), addr != end);
51c6f666
RH
1579
1580 return addr;
1da177e4
LT
1581}
1582
51c6f666 1583static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1584 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1585 unsigned long addr, unsigned long end,
97a89413 1586 struct zap_details *details)
1da177e4
LT
1587{
1588 pud_t *pud;
1589 unsigned long next;
1590
c2febafc 1591 pud = pud_offset(p4d, addr);
1da177e4
LT
1592 do {
1593 next = pud_addr_end(addr, end);
a00cc7d9
MW
1594 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1595 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1596 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1597 split_huge_pud(vma, pud, addr);
1598 } else if (zap_huge_pud(tlb, vma, pud, addr))
1599 goto next;
1600 /* fall through */
1601 }
97a89413 1602 if (pud_none_or_clear_bad(pud))
1da177e4 1603 continue;
97a89413 1604 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1605next:
1606 cond_resched();
97a89413 1607 } while (pud++, addr = next, addr != end);
51c6f666
RH
1608
1609 return addr;
1da177e4
LT
1610}
1611
c2febafc
KS
1612static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1613 struct vm_area_struct *vma, pgd_t *pgd,
1614 unsigned long addr, unsigned long end,
1615 struct zap_details *details)
1616{
1617 p4d_t *p4d;
1618 unsigned long next;
1619
1620 p4d = p4d_offset(pgd, addr);
1621 do {
1622 next = p4d_addr_end(addr, end);
1623 if (p4d_none_or_clear_bad(p4d))
1624 continue;
1625 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1626 } while (p4d++, addr = next, addr != end);
1627
1628 return addr;
1629}
1630
aac45363 1631void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1632 struct vm_area_struct *vma,
1633 unsigned long addr, unsigned long end,
1634 struct zap_details *details)
1da177e4
LT
1635{
1636 pgd_t *pgd;
1637 unsigned long next;
1638
1da177e4
LT
1639 BUG_ON(addr >= end);
1640 tlb_start_vma(tlb, vma);
1641 pgd = pgd_offset(vma->vm_mm, addr);
1642 do {
1643 next = pgd_addr_end(addr, end);
97a89413 1644 if (pgd_none_or_clear_bad(pgd))
1da177e4 1645 continue;
c2febafc 1646 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1647 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1648 tlb_end_vma(tlb, vma);
1649}
51c6f666 1650
f5cc4eef
AV
1651
1652static void unmap_single_vma(struct mmu_gather *tlb,
1653 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1654 unsigned long end_addr,
68f48381 1655 struct zap_details *details, bool mm_wr_locked)
f5cc4eef
AV
1656{
1657 unsigned long start = max(vma->vm_start, start_addr);
1658 unsigned long end;
1659
1660 if (start >= vma->vm_end)
1661 return;
1662 end = min(vma->vm_end, end_addr);
1663 if (end <= vma->vm_start)
1664 return;
1665
cbc91f71
SD
1666 if (vma->vm_file)
1667 uprobe_munmap(vma, start, end);
1668
b3b9c293 1669 if (unlikely(vma->vm_flags & VM_PFNMAP))
68f48381 1670 untrack_pfn(vma, 0, 0, mm_wr_locked);
f5cc4eef
AV
1671
1672 if (start != end) {
1673 if (unlikely(is_vm_hugetlb_page(vma))) {
1674 /*
1675 * It is undesirable to test vma->vm_file as it
1676 * should be non-null for valid hugetlb area.
1677 * However, vm_file will be NULL in the error
7aa6b4ad 1678 * cleanup path of mmap_region. When
f5cc4eef 1679 * hugetlbfs ->mmap method fails,
7aa6b4ad 1680 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1681 * before calling this function to clean up.
1682 * Since no pte has actually been setup, it is
1683 * safe to do nothing in this case.
1684 */
24669e58 1685 if (vma->vm_file) {
05e90bd0
PX
1686 zap_flags_t zap_flags = details ?
1687 details->zap_flags : 0;
05e90bd0
PX
1688 __unmap_hugepage_range_final(tlb, vma, start, end,
1689 NULL, zap_flags);
24669e58 1690 }
f5cc4eef
AV
1691 } else
1692 unmap_page_range(tlb, vma, start, end, details);
1693 }
1da177e4
LT
1694}
1695
1da177e4
LT
1696/**
1697 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1698 * @tlb: address of the caller's struct mmu_gather
763ecb03 1699 * @mt: the maple tree
1da177e4
LT
1700 * @vma: the starting vma
1701 * @start_addr: virtual address at which to start unmapping
1702 * @end_addr: virtual address at which to end unmapping
809ef83c 1703 * @mm_wr_locked: lock flag
1da177e4 1704 *
508034a3 1705 * Unmap all pages in the vma list.
1da177e4 1706 *
1da177e4
LT
1707 * Only addresses between `start' and `end' will be unmapped.
1708 *
1709 * The VMA list must be sorted in ascending virtual address order.
1710 *
1711 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1712 * range after unmap_vmas() returns. So the only responsibility here is to
1713 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1714 * drops the lock and schedules.
1715 */
763ecb03 1716void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1da177e4 1717 struct vm_area_struct *vma, unsigned long start_addr,
68f48381 1718 unsigned long end_addr, bool mm_wr_locked)
1da177e4 1719{
ac46d4f3 1720 struct mmu_notifier_range range;
999dad82 1721 struct zap_details details = {
04ada095 1722 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
999dad82
PX
1723 /* Careful - we need to zap private pages too! */
1724 .even_cows = true,
1725 };
763ecb03 1726 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1da177e4 1727
7d4a8be0 1728 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
6f4f13e8 1729 start_addr, end_addr);
ac46d4f3 1730 mmu_notifier_invalidate_range_start(&range);
763ecb03 1731 do {
68f48381
SB
1732 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1733 mm_wr_locked);
763ecb03 1734 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
ac46d4f3 1735 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1736}
1737
f5cc4eef
AV
1738/**
1739 * zap_page_range_single - remove user pages in a given range
1740 * @vma: vm_area_struct holding the applicable pages
1741 * @address: starting address of pages to zap
1742 * @size: number of bytes to zap
8a5f14a2 1743 * @details: details of shared cache invalidation
f5cc4eef
AV
1744 *
1745 * The range must fit into one VMA.
1da177e4 1746 */
21b85b09 1747void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1748 unsigned long size, struct zap_details *details)
1749{
21b85b09 1750 const unsigned long end = address + size;
ac46d4f3 1751 struct mmu_notifier_range range;
d16dfc55 1752 struct mmu_gather tlb;
1da177e4 1753
1da177e4 1754 lru_add_drain();
7d4a8be0 1755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
21b85b09
MK
1756 address, end);
1757 if (is_vm_hugetlb_page(vma))
1758 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1759 &range.end);
a72afd87 1760 tlb_gather_mmu(&tlb, vma->vm_mm);
ac46d4f3
JG
1761 update_hiwater_rss(vma->vm_mm);
1762 mmu_notifier_invalidate_range_start(&range);
21b85b09
MK
1763 /*
1764 * unmap 'address-end' not 'range.start-range.end' as range
1765 * could have been expanded for hugetlb pmd sharing.
1766 */
68f48381 1767 unmap_single_vma(&tlb, vma, address, end, details, false);
ac46d4f3 1768 mmu_notifier_invalidate_range_end(&range);
ae8eba8b 1769 tlb_finish_mmu(&tlb);
1da177e4
LT
1770}
1771
c627f9cc
JS
1772/**
1773 * zap_vma_ptes - remove ptes mapping the vma
1774 * @vma: vm_area_struct holding ptes to be zapped
1775 * @address: starting address of pages to zap
1776 * @size: number of bytes to zap
1777 *
1778 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1779 *
1780 * The entire address range must be fully contained within the vma.
1781 *
c627f9cc 1782 */
27d036e3 1783void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1784 unsigned long size)
1785{
88a35912 1786 if (!range_in_vma(vma, address, address + size) ||
c627f9cc 1787 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1788 return;
1789
f5cc4eef 1790 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1791}
1792EXPORT_SYMBOL_GPL(zap_vma_ptes);
1793
8cd3984d 1794static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1795{
c2febafc
KS
1796 pgd_t *pgd;
1797 p4d_t *p4d;
1798 pud_t *pud;
1799 pmd_t *pmd;
1800
1801 pgd = pgd_offset(mm, addr);
1802 p4d = p4d_alloc(mm, pgd, addr);
1803 if (!p4d)
1804 return NULL;
1805 pud = pud_alloc(mm, p4d, addr);
1806 if (!pud)
1807 return NULL;
1808 pmd = pmd_alloc(mm, pud, addr);
1809 if (!pmd)
1810 return NULL;
1811
1812 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1813 return pmd;
1814}
1815
1816pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1817 spinlock_t **ptl)
1818{
1819 pmd_t *pmd = walk_to_pmd(mm, addr);
1820
1821 if (!pmd)
1822 return NULL;
c2febafc 1823 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1824}
1825
8efd6f5b
AR
1826static int validate_page_before_insert(struct page *page)
1827{
1828 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1829 return -EINVAL;
1830 flush_dcache_page(page);
1831 return 0;
1832}
1833
cea86fe2 1834static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
8efd6f5b
AR
1835 unsigned long addr, struct page *page, pgprot_t prot)
1836{
c33c7948 1837 if (!pte_none(ptep_get(pte)))
8efd6f5b
AR
1838 return -EBUSY;
1839 /* Ok, finally just insert the thing.. */
1840 get_page(page);
f1a79412 1841 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2
HD
1842 page_add_file_rmap(page, vma, false);
1843 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
8efd6f5b
AR
1844 return 0;
1845}
1846
238f58d8
LT
1847/*
1848 * This is the old fallback for page remapping.
1849 *
1850 * For historical reasons, it only allows reserved pages. Only
1851 * old drivers should use this, and they needed to mark their
1852 * pages reserved for the old functions anyway.
1853 */
423bad60
NP
1854static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1855 struct page *page, pgprot_t prot)
238f58d8
LT
1856{
1857 int retval;
c9cfcddf 1858 pte_t *pte;
8a9f3ccd
BS
1859 spinlock_t *ptl;
1860
8efd6f5b
AR
1861 retval = validate_page_before_insert(page);
1862 if (retval)
5b4e655e 1863 goto out;
238f58d8 1864 retval = -ENOMEM;
cea86fe2 1865 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
238f58d8 1866 if (!pte)
5b4e655e 1867 goto out;
cea86fe2 1868 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
238f58d8
LT
1869 pte_unmap_unlock(pte, ptl);
1870out:
1871 return retval;
1872}
1873
8cd3984d 1874#ifdef pte_index
cea86fe2 1875static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
8cd3984d
AR
1876 unsigned long addr, struct page *page, pgprot_t prot)
1877{
1878 int err;
1879
1880 if (!page_count(page))
1881 return -EINVAL;
1882 err = validate_page_before_insert(page);
7f70c2a6
AR
1883 if (err)
1884 return err;
cea86fe2 1885 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
8cd3984d
AR
1886}
1887
1888/* insert_pages() amortizes the cost of spinlock operations
1889 * when inserting pages in a loop. Arch *must* define pte_index.
1890 */
1891static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1892 struct page **pages, unsigned long *num, pgprot_t prot)
1893{
1894 pmd_t *pmd = NULL;
7f70c2a6
AR
1895 pte_t *start_pte, *pte;
1896 spinlock_t *pte_lock;
8cd3984d
AR
1897 struct mm_struct *const mm = vma->vm_mm;
1898 unsigned long curr_page_idx = 0;
1899 unsigned long remaining_pages_total = *num;
1900 unsigned long pages_to_write_in_pmd;
1901 int ret;
1902more:
1903 ret = -EFAULT;
1904 pmd = walk_to_pmd(mm, addr);
1905 if (!pmd)
1906 goto out;
1907
1908 pages_to_write_in_pmd = min_t(unsigned long,
1909 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1910
1911 /* Allocate the PTE if necessary; takes PMD lock once only. */
1912 ret = -ENOMEM;
1913 if (pte_alloc(mm, pmd))
1914 goto out;
8cd3984d
AR
1915
1916 while (pages_to_write_in_pmd) {
1917 int pte_idx = 0;
1918 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1919
7f70c2a6 1920 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
3db82b93
HD
1921 if (!start_pte) {
1922 ret = -EFAULT;
1923 goto out;
1924 }
7f70c2a6 1925 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
cea86fe2 1926 int err = insert_page_in_batch_locked(vma, pte,
8cd3984d
AR
1927 addr, pages[curr_page_idx], prot);
1928 if (unlikely(err)) {
7f70c2a6 1929 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1930 ret = err;
1931 remaining_pages_total -= pte_idx;
1932 goto out;
1933 }
1934 addr += PAGE_SIZE;
1935 ++curr_page_idx;
1936 }
7f70c2a6 1937 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1938 pages_to_write_in_pmd -= batch_size;
1939 remaining_pages_total -= batch_size;
1940 }
1941 if (remaining_pages_total)
1942 goto more;
1943 ret = 0;
1944out:
1945 *num = remaining_pages_total;
1946 return ret;
1947}
1948#endif /* ifdef pte_index */
1949
1950/**
1951 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1952 * @vma: user vma to map to
1953 * @addr: target start user address of these pages
1954 * @pages: source kernel pages
1955 * @num: in: number of pages to map. out: number of pages that were *not*
1956 * mapped. (0 means all pages were successfully mapped).
1957 *
1958 * Preferred over vm_insert_page() when inserting multiple pages.
1959 *
1960 * In case of error, we may have mapped a subset of the provided
1961 * pages. It is the caller's responsibility to account for this case.
1962 *
1963 * The same restrictions apply as in vm_insert_page().
1964 */
1965int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1966 struct page **pages, unsigned long *num)
1967{
1968#ifdef pte_index
1969 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1970
1971 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1972 return -EFAULT;
1973 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1974 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d 1975 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 1976 vm_flags_set(vma, VM_MIXEDMAP);
8cd3984d
AR
1977 }
1978 /* Defer page refcount checking till we're about to map that page. */
1979 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1980#else
1981 unsigned long idx = 0, pgcount = *num;
45779b03 1982 int err = -EINVAL;
8cd3984d
AR
1983
1984 for (; idx < pgcount; ++idx) {
1985 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1986 if (err)
1987 break;
1988 }
1989 *num = pgcount - idx;
1990 return err;
1991#endif /* ifdef pte_index */
1992}
1993EXPORT_SYMBOL(vm_insert_pages);
1994
bfa5bf6d
REB
1995/**
1996 * vm_insert_page - insert single page into user vma
1997 * @vma: user vma to map to
1998 * @addr: target user address of this page
1999 * @page: source kernel page
2000 *
a145dd41
LT
2001 * This allows drivers to insert individual pages they've allocated
2002 * into a user vma.
2003 *
2004 * The page has to be a nice clean _individual_ kernel allocation.
2005 * If you allocate a compound page, you need to have marked it as
2006 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 2007 * (see split_page()).
a145dd41
LT
2008 *
2009 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2010 * took an arbitrary page protection parameter. This doesn't allow
2011 * that. Your vma protection will have to be set up correctly, which
2012 * means that if you want a shared writable mapping, you'd better
2013 * ask for a shared writable mapping!
2014 *
2015 * The page does not need to be reserved.
4b6e1e37
KK
2016 *
2017 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 2018 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
2019 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2020 * function from other places, for example from page-fault handler.
a862f68a
MR
2021 *
2022 * Return: %0 on success, negative error code otherwise.
a145dd41 2023 */
423bad60
NP
2024int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2025 struct page *page)
a145dd41
LT
2026{
2027 if (addr < vma->vm_start || addr >= vma->vm_end)
2028 return -EFAULT;
2029 if (!page_count(page))
2030 return -EINVAL;
4b6e1e37 2031 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 2032 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37 2033 BUG_ON(vma->vm_flags & VM_PFNMAP);
1c71222e 2034 vm_flags_set(vma, VM_MIXEDMAP);
4b6e1e37 2035 }
423bad60 2036 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 2037}
e3c3374f 2038EXPORT_SYMBOL(vm_insert_page);
a145dd41 2039
a667d745
SJ
2040/*
2041 * __vm_map_pages - maps range of kernel pages into user vma
2042 * @vma: user vma to map to
2043 * @pages: pointer to array of source kernel pages
2044 * @num: number of pages in page array
2045 * @offset: user's requested vm_pgoff
2046 *
2047 * This allows drivers to map range of kernel pages into a user vma.
2048 *
2049 * Return: 0 on success and error code otherwise.
2050 */
2051static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2052 unsigned long num, unsigned long offset)
2053{
2054 unsigned long count = vma_pages(vma);
2055 unsigned long uaddr = vma->vm_start;
2056 int ret, i;
2057
2058 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 2059 if (offset >= num)
a667d745
SJ
2060 return -ENXIO;
2061
2062 /* Fail if the user requested size exceeds available object size */
2063 if (count > num - offset)
2064 return -ENXIO;
2065
2066 for (i = 0; i < count; i++) {
2067 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2068 if (ret < 0)
2069 return ret;
2070 uaddr += PAGE_SIZE;
2071 }
2072
2073 return 0;
2074}
2075
2076/**
2077 * vm_map_pages - maps range of kernel pages starts with non zero offset
2078 * @vma: user vma to map to
2079 * @pages: pointer to array of source kernel pages
2080 * @num: number of pages in page array
2081 *
2082 * Maps an object consisting of @num pages, catering for the user's
2083 * requested vm_pgoff
2084 *
2085 * If we fail to insert any page into the vma, the function will return
2086 * immediately leaving any previously inserted pages present. Callers
2087 * from the mmap handler may immediately return the error as their caller
2088 * will destroy the vma, removing any successfully inserted pages. Other
2089 * callers should make their own arrangements for calling unmap_region().
2090 *
2091 * Context: Process context. Called by mmap handlers.
2092 * Return: 0 on success and error code otherwise.
2093 */
2094int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2095 unsigned long num)
2096{
2097 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2098}
2099EXPORT_SYMBOL(vm_map_pages);
2100
2101/**
2102 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2103 * @vma: user vma to map to
2104 * @pages: pointer to array of source kernel pages
2105 * @num: number of pages in page array
2106 *
2107 * Similar to vm_map_pages(), except that it explicitly sets the offset
2108 * to 0. This function is intended for the drivers that did not consider
2109 * vm_pgoff.
2110 *
2111 * Context: Process context. Called by mmap handlers.
2112 * Return: 0 on success and error code otherwise.
2113 */
2114int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2115 unsigned long num)
2116{
2117 return __vm_map_pages(vma, pages, num, 0);
2118}
2119EXPORT_SYMBOL(vm_map_pages_zero);
2120
9b5a8e00 2121static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 2122 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
2123{
2124 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
2125 pte_t *pte, entry;
2126 spinlock_t *ptl;
2127
423bad60
NP
2128 pte = get_locked_pte(mm, addr, &ptl);
2129 if (!pte)
9b5a8e00 2130 return VM_FAULT_OOM;
c33c7948
RR
2131 entry = ptep_get(pte);
2132 if (!pte_none(entry)) {
b2770da6
RZ
2133 if (mkwrite) {
2134 /*
2135 * For read faults on private mappings the PFN passed
2136 * in may not match the PFN we have mapped if the
2137 * mapped PFN is a writeable COW page. In the mkwrite
2138 * case we are creating a writable PTE for a shared
f2c57d91
JK
2139 * mapping and we expect the PFNs to match. If they
2140 * don't match, we are likely racing with block
2141 * allocation and mapping invalidation so just skip the
2142 * update.
b2770da6 2143 */
c33c7948
RR
2144 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2145 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
b2770da6 2146 goto out_unlock;
f2c57d91 2147 }
c33c7948 2148 entry = pte_mkyoung(entry);
cae85cb8
JK
2149 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151 update_mmu_cache(vma, addr, pte);
2152 }
2153 goto out_unlock;
b2770da6 2154 }
423bad60
NP
2155
2156 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
2157 if (pfn_t_devmap(pfn))
2158 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159 else
2160 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 2161
b2770da6
RZ
2162 if (mkwrite) {
2163 entry = pte_mkyoung(entry);
2164 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 }
2166
423bad60 2167 set_pte_at(mm, addr, pte, entry);
4b3073e1 2168 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 2169
423bad60
NP
2170out_unlock:
2171 pte_unmap_unlock(pte, ptl);
9b5a8e00 2172 return VM_FAULT_NOPAGE;
423bad60
NP
2173}
2174
f5e6d1d5
MW
2175/**
2176 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177 * @vma: user vma to map to
2178 * @addr: target user address of this page
2179 * @pfn: source kernel pfn
2180 * @pgprot: pgprot flags for the inserted page
2181 *
a1a0aea5 2182 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
2183 * to override pgprot on a per-page basis.
2184 *
2185 * This only makes sense for IO mappings, and it makes no sense for
2186 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 2187 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
2188 * impractical.
2189 *
28d8b812
LS
2190 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2191 * caching- and encryption bits different than those of @vma->vm_page_prot,
2192 * because the caching- or encryption mode may not be known at mmap() time.
2193 *
2194 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2195 * to set caching and encryption bits for those vmas (except for COW pages).
2196 * This is ensured by core vm only modifying these page table entries using
2197 * functions that don't touch caching- or encryption bits, using pte_modify()
2198 * if needed. (See for example mprotect()).
2199 *
2200 * Also when new page-table entries are created, this is only done using the
2201 * fault() callback, and never using the value of vma->vm_page_prot,
2202 * except for page-table entries that point to anonymous pages as the result
2203 * of COW.
574c5b3d 2204 *
ae2b01f3 2205 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
2206 * Return: vm_fault_t value.
2207 */
2208vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2209 unsigned long pfn, pgprot_t pgprot)
2210{
6d958546
MW
2211 /*
2212 * Technically, architectures with pte_special can avoid all these
2213 * restrictions (same for remap_pfn_range). However we would like
2214 * consistency in testing and feature parity among all, so we should
2215 * try to keep these invariants in place for everybody.
2216 */
2217 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2218 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2219 (VM_PFNMAP|VM_MIXEDMAP));
2220 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2221 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2222
2223 if (addr < vma->vm_start || addr >= vma->vm_end)
2224 return VM_FAULT_SIGBUS;
2225
2226 if (!pfn_modify_allowed(pfn, pgprot))
2227 return VM_FAULT_SIGBUS;
2228
2229 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2230
9b5a8e00 2231 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2232 false);
f5e6d1d5
MW
2233}
2234EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2235
ae2b01f3
MW
2236/**
2237 * vmf_insert_pfn - insert single pfn into user vma
2238 * @vma: user vma to map to
2239 * @addr: target user address of this page
2240 * @pfn: source kernel pfn
2241 *
2242 * Similar to vm_insert_page, this allows drivers to insert individual pages
2243 * they've allocated into a user vma. Same comments apply.
2244 *
2245 * This function should only be called from a vm_ops->fault handler, and
2246 * in that case the handler should return the result of this function.
2247 *
2248 * vma cannot be a COW mapping.
2249 *
2250 * As this is called only for pages that do not currently exist, we
2251 * do not need to flush old virtual caches or the TLB.
2252 *
2253 * Context: Process context. May allocate using %GFP_KERNEL.
2254 * Return: vm_fault_t value.
2255 */
2256vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2257 unsigned long pfn)
2258{
2259 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2260}
2261EXPORT_SYMBOL(vmf_insert_pfn);
2262
785a3fab
DW
2263static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2264{
2265 /* these checks mirror the abort conditions in vm_normal_page */
2266 if (vma->vm_flags & VM_MIXEDMAP)
2267 return true;
2268 if (pfn_t_devmap(pfn))
2269 return true;
2270 if (pfn_t_special(pfn))
2271 return true;
2272 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2273 return true;
2274 return false;
2275}
2276
79f3aa5b 2277static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
28d8b812 2278 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 2279{
28d8b812 2280 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 2281 int err;
87744ab3 2282
785a3fab 2283 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2284
423bad60 2285 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2286 return VM_FAULT_SIGBUS;
308a047c
BP
2287
2288 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2289
42e4089c 2290 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2291 return VM_FAULT_SIGBUS;
42e4089c 2292
423bad60
NP
2293 /*
2294 * If we don't have pte special, then we have to use the pfn_valid()
2295 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2296 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2297 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2298 * without pte special, it would there be refcounted as a normal page.
423bad60 2299 */
00b3a331
LD
2300 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2301 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2302 struct page *page;
2303
03fc2da6
DW
2304 /*
2305 * At this point we are committed to insert_page()
2306 * regardless of whether the caller specified flags that
2307 * result in pfn_t_has_page() == false.
2308 */
2309 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2310 err = insert_page(vma, addr, page, pgprot);
2311 } else {
9b5a8e00 2312 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2313 }
b2770da6 2314
5d747637
MW
2315 if (err == -ENOMEM)
2316 return VM_FAULT_OOM;
2317 if (err < 0 && err != -EBUSY)
2318 return VM_FAULT_SIGBUS;
2319
2320 return VM_FAULT_NOPAGE;
e0dc0d8f 2321}
79f3aa5b
MW
2322
2323vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2324 pfn_t pfn)
2325{
28d8b812 2326 return __vm_insert_mixed(vma, addr, pfn, false);
79f3aa5b 2327}
5d747637 2328EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2329
ab77dab4
SJ
2330/*
2331 * If the insertion of PTE failed because someone else already added a
2332 * different entry in the mean time, we treat that as success as we assume
2333 * the same entry was actually inserted.
2334 */
ab77dab4
SJ
2335vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2336 unsigned long addr, pfn_t pfn)
b2770da6 2337{
28d8b812 2338 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 2339}
ab77dab4 2340EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2341
1da177e4
LT
2342/*
2343 * maps a range of physical memory into the requested pages. the old
2344 * mappings are removed. any references to nonexistent pages results
2345 * in null mappings (currently treated as "copy-on-access")
2346 */
2347static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2348 unsigned long addr, unsigned long end,
2349 unsigned long pfn, pgprot_t prot)
2350{
90a3e375 2351 pte_t *pte, *mapped_pte;
c74df32c 2352 spinlock_t *ptl;
42e4089c 2353 int err = 0;
1da177e4 2354
90a3e375 2355 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2356 if (!pte)
2357 return -ENOMEM;
6606c3e0 2358 arch_enter_lazy_mmu_mode();
1da177e4 2359 do {
c33c7948 2360 BUG_ON(!pte_none(ptep_get(pte)));
42e4089c
AK
2361 if (!pfn_modify_allowed(pfn, prot)) {
2362 err = -EACCES;
2363 break;
2364 }
7e675137 2365 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2366 pfn++;
2367 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2368 arch_leave_lazy_mmu_mode();
90a3e375 2369 pte_unmap_unlock(mapped_pte, ptl);
42e4089c 2370 return err;
1da177e4
LT
2371}
2372
2373static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2374 unsigned long addr, unsigned long end,
2375 unsigned long pfn, pgprot_t prot)
2376{
2377 pmd_t *pmd;
2378 unsigned long next;
42e4089c 2379 int err;
1da177e4
LT
2380
2381 pfn -= addr >> PAGE_SHIFT;
2382 pmd = pmd_alloc(mm, pud, addr);
2383 if (!pmd)
2384 return -ENOMEM;
f66055ab 2385 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2386 do {
2387 next = pmd_addr_end(addr, end);
42e4089c
AK
2388 err = remap_pte_range(mm, pmd, addr, next,
2389 pfn + (addr >> PAGE_SHIFT), prot);
2390 if (err)
2391 return err;
1da177e4
LT
2392 } while (pmd++, addr = next, addr != end);
2393 return 0;
2394}
2395
c2febafc 2396static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2397 unsigned long addr, unsigned long end,
2398 unsigned long pfn, pgprot_t prot)
2399{
2400 pud_t *pud;
2401 unsigned long next;
42e4089c 2402 int err;
1da177e4
LT
2403
2404 pfn -= addr >> PAGE_SHIFT;
c2febafc 2405 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2406 if (!pud)
2407 return -ENOMEM;
2408 do {
2409 next = pud_addr_end(addr, end);
42e4089c
AK
2410 err = remap_pmd_range(mm, pud, addr, next,
2411 pfn + (addr >> PAGE_SHIFT), prot);
2412 if (err)
2413 return err;
1da177e4
LT
2414 } while (pud++, addr = next, addr != end);
2415 return 0;
2416}
2417
c2febafc
KS
2418static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2419 unsigned long addr, unsigned long end,
2420 unsigned long pfn, pgprot_t prot)
2421{
2422 p4d_t *p4d;
2423 unsigned long next;
42e4089c 2424 int err;
c2febafc
KS
2425
2426 pfn -= addr >> PAGE_SHIFT;
2427 p4d = p4d_alloc(mm, pgd, addr);
2428 if (!p4d)
2429 return -ENOMEM;
2430 do {
2431 next = p4d_addr_end(addr, end);
42e4089c
AK
2432 err = remap_pud_range(mm, p4d, addr, next,
2433 pfn + (addr >> PAGE_SHIFT), prot);
2434 if (err)
2435 return err;
c2febafc
KS
2436 } while (p4d++, addr = next, addr != end);
2437 return 0;
2438}
2439
74ffa5a3
CH
2440/*
2441 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2442 * must have pre-validated the caching bits of the pgprot_t.
bfa5bf6d 2443 */
74ffa5a3
CH
2444int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2445 unsigned long pfn, unsigned long size, pgprot_t prot)
1da177e4
LT
2446{
2447 pgd_t *pgd;
2448 unsigned long next;
2d15cab8 2449 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
2450 struct mm_struct *mm = vma->vm_mm;
2451 int err;
2452
0c4123e3
AZ
2453 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2454 return -EINVAL;
2455
1da177e4
LT
2456 /*
2457 * Physically remapped pages are special. Tell the
2458 * rest of the world about it:
2459 * VM_IO tells people not to look at these pages
2460 * (accesses can have side effects).
6aab341e
LT
2461 * VM_PFNMAP tells the core MM that the base pages are just
2462 * raw PFN mappings, and do not have a "struct page" associated
2463 * with them.
314e51b9
KK
2464 * VM_DONTEXPAND
2465 * Disable vma merging and expanding with mremap().
2466 * VM_DONTDUMP
2467 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2468 *
2469 * There's a horrible special case to handle copy-on-write
2470 * behaviour that some programs depend on. We mark the "original"
2471 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2472 * See vm_normal_page() for details.
1da177e4 2473 */
b3b9c293
KK
2474 if (is_cow_mapping(vma->vm_flags)) {
2475 if (addr != vma->vm_start || end != vma->vm_end)
2476 return -EINVAL;
fb155c16 2477 vma->vm_pgoff = pfn;
b3b9c293
KK
2478 }
2479
1c71222e 2480 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
1da177e4
LT
2481
2482 BUG_ON(addr >= end);
2483 pfn -= addr >> PAGE_SHIFT;
2484 pgd = pgd_offset(mm, addr);
2485 flush_cache_range(vma, addr, end);
1da177e4
LT
2486 do {
2487 next = pgd_addr_end(addr, end);
c2febafc 2488 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2489 pfn + (addr >> PAGE_SHIFT), prot);
2490 if (err)
74ffa5a3 2491 return err;
1da177e4 2492 } while (pgd++, addr = next, addr != end);
2ab64037 2493
74ffa5a3
CH
2494 return 0;
2495}
2496
2497/**
2498 * remap_pfn_range - remap kernel memory to userspace
2499 * @vma: user vma to map to
2500 * @addr: target page aligned user address to start at
2501 * @pfn: page frame number of kernel physical memory address
2502 * @size: size of mapping area
2503 * @prot: page protection flags for this mapping
2504 *
2505 * Note: this is only safe if the mm semaphore is held when called.
2506 *
2507 * Return: %0 on success, negative error code otherwise.
2508 */
2509int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2510 unsigned long pfn, unsigned long size, pgprot_t prot)
2511{
2512 int err;
2513
2514 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2ab64037 2515 if (err)
74ffa5a3 2516 return -EINVAL;
2ab64037 2517
74ffa5a3
CH
2518 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2519 if (err)
68f48381 2520 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
1da177e4
LT
2521 return err;
2522}
2523EXPORT_SYMBOL(remap_pfn_range);
2524
b4cbb197
LT
2525/**
2526 * vm_iomap_memory - remap memory to userspace
2527 * @vma: user vma to map to
abd69b9e 2528 * @start: start of the physical memory to be mapped
b4cbb197
LT
2529 * @len: size of area
2530 *
2531 * This is a simplified io_remap_pfn_range() for common driver use. The
2532 * driver just needs to give us the physical memory range to be mapped,
2533 * we'll figure out the rest from the vma information.
2534 *
2535 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2536 * whatever write-combining details or similar.
a862f68a
MR
2537 *
2538 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2539 */
2540int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2541{
2542 unsigned long vm_len, pfn, pages;
2543
2544 /* Check that the physical memory area passed in looks valid */
2545 if (start + len < start)
2546 return -EINVAL;
2547 /*
2548 * You *really* shouldn't map things that aren't page-aligned,
2549 * but we've historically allowed it because IO memory might
2550 * just have smaller alignment.
2551 */
2552 len += start & ~PAGE_MASK;
2553 pfn = start >> PAGE_SHIFT;
2554 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2555 if (pfn + pages < pfn)
2556 return -EINVAL;
2557
2558 /* We start the mapping 'vm_pgoff' pages into the area */
2559 if (vma->vm_pgoff > pages)
2560 return -EINVAL;
2561 pfn += vma->vm_pgoff;
2562 pages -= vma->vm_pgoff;
2563
2564 /* Can we fit all of the mapping? */
2565 vm_len = vma->vm_end - vma->vm_start;
2566 if (vm_len >> PAGE_SHIFT > pages)
2567 return -EINVAL;
2568
2569 /* Ok, let it rip */
2570 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2571}
2572EXPORT_SYMBOL(vm_iomap_memory);
2573
aee16b3c
JF
2574static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2575 unsigned long addr, unsigned long end,
e80d3909
JR
2576 pte_fn_t fn, void *data, bool create,
2577 pgtbl_mod_mask *mask)
aee16b3c 2578{
8abb50c7 2579 pte_t *pte, *mapped_pte;
be1db475 2580 int err = 0;
3f649ab7 2581 spinlock_t *ptl;
aee16b3c 2582
be1db475 2583 if (create) {
8abb50c7 2584 mapped_pte = pte = (mm == &init_mm) ?
e80d3909 2585 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2586 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2587 if (!pte)
2588 return -ENOMEM;
2589 } else {
8abb50c7 2590 mapped_pte = pte = (mm == &init_mm) ?
be1db475
DA
2591 pte_offset_kernel(pmd, addr) :
2592 pte_offset_map_lock(mm, pmd, addr, &ptl);
3db82b93
HD
2593 if (!pte)
2594 return -EINVAL;
be1db475 2595 }
aee16b3c 2596
38e0edb1
JF
2597 arch_enter_lazy_mmu_mode();
2598
eeb4a05f
CH
2599 if (fn) {
2600 do {
c33c7948 2601 if (create || !pte_none(ptep_get(pte))) {
eeb4a05f
CH
2602 err = fn(pte++, addr, data);
2603 if (err)
2604 break;
2605 }
2606 } while (addr += PAGE_SIZE, addr != end);
2607 }
e80d3909 2608 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2609
38e0edb1
JF
2610 arch_leave_lazy_mmu_mode();
2611
aee16b3c 2612 if (mm != &init_mm)
8abb50c7 2613 pte_unmap_unlock(mapped_pte, ptl);
aee16b3c
JF
2614 return err;
2615}
2616
2617static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2618 unsigned long addr, unsigned long end,
e80d3909
JR
2619 pte_fn_t fn, void *data, bool create,
2620 pgtbl_mod_mask *mask)
aee16b3c
JF
2621{
2622 pmd_t *pmd;
2623 unsigned long next;
be1db475 2624 int err = 0;
aee16b3c 2625
ceb86879
AK
2626 BUG_ON(pud_huge(*pud));
2627
be1db475 2628 if (create) {
e80d3909 2629 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2630 if (!pmd)
2631 return -ENOMEM;
2632 } else {
2633 pmd = pmd_offset(pud, addr);
2634 }
aee16b3c
JF
2635 do {
2636 next = pmd_addr_end(addr, end);
0c95cba4
NP
2637 if (pmd_none(*pmd) && !create)
2638 continue;
2639 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2640 return -EINVAL;
2641 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2642 if (!create)
2643 continue;
2644 pmd_clear_bad(pmd);
be1db475 2645 }
0c95cba4
NP
2646 err = apply_to_pte_range(mm, pmd, addr, next,
2647 fn, data, create, mask);
2648 if (err)
2649 break;
aee16b3c 2650 } while (pmd++, addr = next, addr != end);
0c95cba4 2651
aee16b3c
JF
2652 return err;
2653}
2654
c2febafc 2655static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2656 unsigned long addr, unsigned long end,
e80d3909
JR
2657 pte_fn_t fn, void *data, bool create,
2658 pgtbl_mod_mask *mask)
aee16b3c
JF
2659{
2660 pud_t *pud;
2661 unsigned long next;
be1db475 2662 int err = 0;
aee16b3c 2663
be1db475 2664 if (create) {
e80d3909 2665 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2666 if (!pud)
2667 return -ENOMEM;
2668 } else {
2669 pud = pud_offset(p4d, addr);
2670 }
aee16b3c
JF
2671 do {
2672 next = pud_addr_end(addr, end);
0c95cba4
NP
2673 if (pud_none(*pud) && !create)
2674 continue;
2675 if (WARN_ON_ONCE(pud_leaf(*pud)))
2676 return -EINVAL;
2677 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2678 if (!create)
2679 continue;
2680 pud_clear_bad(pud);
be1db475 2681 }
0c95cba4
NP
2682 err = apply_to_pmd_range(mm, pud, addr, next,
2683 fn, data, create, mask);
2684 if (err)
2685 break;
aee16b3c 2686 } while (pud++, addr = next, addr != end);
0c95cba4 2687
aee16b3c
JF
2688 return err;
2689}
2690
c2febafc
KS
2691static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2692 unsigned long addr, unsigned long end,
e80d3909
JR
2693 pte_fn_t fn, void *data, bool create,
2694 pgtbl_mod_mask *mask)
c2febafc
KS
2695{
2696 p4d_t *p4d;
2697 unsigned long next;
be1db475 2698 int err = 0;
c2febafc 2699
be1db475 2700 if (create) {
e80d3909 2701 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2702 if (!p4d)
2703 return -ENOMEM;
2704 } else {
2705 p4d = p4d_offset(pgd, addr);
2706 }
c2febafc
KS
2707 do {
2708 next = p4d_addr_end(addr, end);
0c95cba4
NP
2709 if (p4d_none(*p4d) && !create)
2710 continue;
2711 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2712 return -EINVAL;
2713 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2714 if (!create)
2715 continue;
2716 p4d_clear_bad(p4d);
be1db475 2717 }
0c95cba4
NP
2718 err = apply_to_pud_range(mm, p4d, addr, next,
2719 fn, data, create, mask);
2720 if (err)
2721 break;
c2febafc 2722 } while (p4d++, addr = next, addr != end);
0c95cba4 2723
c2febafc
KS
2724 return err;
2725}
2726
be1db475
DA
2727static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2728 unsigned long size, pte_fn_t fn,
2729 void *data, bool create)
aee16b3c
JF
2730{
2731 pgd_t *pgd;
e80d3909 2732 unsigned long start = addr, next;
57250a5b 2733 unsigned long end = addr + size;
e80d3909 2734 pgtbl_mod_mask mask = 0;
be1db475 2735 int err = 0;
aee16b3c 2736
9cb65bc3
MP
2737 if (WARN_ON(addr >= end))
2738 return -EINVAL;
2739
aee16b3c
JF
2740 pgd = pgd_offset(mm, addr);
2741 do {
2742 next = pgd_addr_end(addr, end);
0c95cba4 2743 if (pgd_none(*pgd) && !create)
be1db475 2744 continue;
0c95cba4
NP
2745 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2746 return -EINVAL;
2747 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2748 if (!create)
2749 continue;
2750 pgd_clear_bad(pgd);
2751 }
2752 err = apply_to_p4d_range(mm, pgd, addr, next,
2753 fn, data, create, &mask);
aee16b3c
JF
2754 if (err)
2755 break;
2756 } while (pgd++, addr = next, addr != end);
57250a5b 2757
e80d3909
JR
2758 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2759 arch_sync_kernel_mappings(start, start + size);
2760
aee16b3c
JF
2761 return err;
2762}
be1db475
DA
2763
2764/*
2765 * Scan a region of virtual memory, filling in page tables as necessary
2766 * and calling a provided function on each leaf page table.
2767 */
2768int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2769 unsigned long size, pte_fn_t fn, void *data)
2770{
2771 return __apply_to_page_range(mm, addr, size, fn, data, true);
2772}
aee16b3c
JF
2773EXPORT_SYMBOL_GPL(apply_to_page_range);
2774
be1db475
DA
2775/*
2776 * Scan a region of virtual memory, calling a provided function on
2777 * each leaf page table where it exists.
2778 *
2779 * Unlike apply_to_page_range, this does _not_ fill in page tables
2780 * where they are absent.
2781 */
2782int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2783 unsigned long size, pte_fn_t fn, void *data)
2784{
2785 return __apply_to_page_range(mm, addr, size, fn, data, false);
2786}
2787EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2788
8f4e2101 2789/*
9b4bdd2f
KS
2790 * handle_pte_fault chooses page fault handler according to an entry which was
2791 * read non-atomically. Before making any commitment, on those architectures
2792 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2793 * parts, do_swap_page must check under lock before unmapping the pte and
2794 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2795 * and do_anonymous_page can safely check later on).
8f4e2101 2796 */
2ca99358 2797static inline int pte_unmap_same(struct vm_fault *vmf)
8f4e2101
HD
2798{
2799 int same = 1;
923717cb 2800#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2801 if (sizeof(pte_t) > sizeof(unsigned long)) {
c7ad0880 2802 spin_lock(vmf->ptl);
c33c7948 2803 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
c7ad0880 2804 spin_unlock(vmf->ptl);
8f4e2101
HD
2805 }
2806#endif
2ca99358
PX
2807 pte_unmap(vmf->pte);
2808 vmf->pte = NULL;
8f4e2101
HD
2809 return same;
2810}
2811
a873dfe1
TL
2812/*
2813 * Return:
2814 * 0: copied succeeded
2815 * -EHWPOISON: copy failed due to hwpoison in source page
2816 * -EAGAIN: copied failed (some other reason)
2817 */
2818static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2819 struct vm_fault *vmf)
6aab341e 2820{
a873dfe1 2821 int ret;
83d116c5
JH
2822 void *kaddr;
2823 void __user *uaddr;
83d116c5
JH
2824 struct vm_area_struct *vma = vmf->vma;
2825 struct mm_struct *mm = vma->vm_mm;
2826 unsigned long addr = vmf->address;
2827
83d116c5 2828 if (likely(src)) {
d302c239
TL
2829 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2830 memory_failure_queue(page_to_pfn(src), 0);
a873dfe1 2831 return -EHWPOISON;
d302c239 2832 }
a873dfe1 2833 return 0;
83d116c5
JH
2834 }
2835
6aab341e
LT
2836 /*
2837 * If the source page was a PFN mapping, we don't have
2838 * a "struct page" for it. We do a best-effort copy by
2839 * just copying from the original user address. If that
2840 * fails, we just zero-fill it. Live with it.
2841 */
83d116c5
JH
2842 kaddr = kmap_atomic(dst);
2843 uaddr = (void __user *)(addr & PAGE_MASK);
2844
2845 /*
2846 * On architectures with software "accessed" bits, we would
2847 * take a double page fault, so mark it accessed here.
2848 */
3db82b93 2849 vmf->pte = NULL;
e1fd09e3 2850 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
83d116c5 2851 pte_t entry;
5d2a2dbb 2852
83d116c5 2853 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2854 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
83d116c5
JH
2855 /*
2856 * Other thread has already handled the fault
7df67697 2857 * and update local tlb only
83d116c5 2858 */
a92cbb82
HD
2859 if (vmf->pte)
2860 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2861 ret = -EAGAIN;
83d116c5
JH
2862 goto pte_unlock;
2863 }
2864
2865 entry = pte_mkyoung(vmf->orig_pte);
2866 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2867 update_mmu_cache(vma, addr, vmf->pte);
2868 }
2869
2870 /*
2871 * This really shouldn't fail, because the page is there
2872 * in the page tables. But it might just be unreadable,
2873 * in which case we just give up and fill the result with
2874 * zeroes.
2875 */
2876 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
3db82b93 2877 if (vmf->pte)
c3e5ea6e
KS
2878 goto warn;
2879
2880 /* Re-validate under PTL if the page is still mapped */
2881 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c33c7948 2882 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
7df67697 2883 /* The PTE changed under us, update local tlb */
a92cbb82
HD
2884 if (vmf->pte)
2885 update_mmu_tlb(vma, addr, vmf->pte);
a873dfe1 2886 ret = -EAGAIN;
c3e5ea6e
KS
2887 goto pte_unlock;
2888 }
2889
5d2a2dbb 2890 /*
985ba004 2891 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2892 * Try to copy again under PTL.
5d2a2dbb 2893 */
c3e5ea6e
KS
2894 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2895 /*
2896 * Give a warn in case there can be some obscure
2897 * use-case
2898 */
2899warn:
2900 WARN_ON_ONCE(1);
2901 clear_page(kaddr);
2902 }
83d116c5
JH
2903 }
2904
a873dfe1 2905 ret = 0;
83d116c5
JH
2906
2907pte_unlock:
3db82b93 2908 if (vmf->pte)
83d116c5
JH
2909 pte_unmap_unlock(vmf->pte, vmf->ptl);
2910 kunmap_atomic(kaddr);
2911 flush_dcache_page(dst);
2912
2913 return ret;
6aab341e
LT
2914}
2915
c20cd45e
MH
2916static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2917{
2918 struct file *vm_file = vma->vm_file;
2919
2920 if (vm_file)
2921 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2922
2923 /*
2924 * Special mappings (e.g. VDSO) do not have any file so fake
2925 * a default GFP_KERNEL for them.
2926 */
2927 return GFP_KERNEL;
2928}
2929
fb09a464
KS
2930/*
2931 * Notify the address space that the page is about to become writable so that
2932 * it can prohibit this or wait for the page to get into an appropriate state.
2933 *
2934 * We do this without the lock held, so that it can sleep if it needs to.
2935 */
86aa6998 2936static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
fb09a464 2937{
2b740303 2938 vm_fault_t ret;
38b8cb7f 2939 unsigned int old_flags = vmf->flags;
fb09a464 2940
38b8cb7f 2941 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2942
dc617f29
DW
2943 if (vmf->vma->vm_file &&
2944 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2945 return VM_FAULT_SIGBUS;
2946
11bac800 2947 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2948 /* Restore original flags so that caller is not surprised */
2949 vmf->flags = old_flags;
fb09a464
KS
2950 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2951 return ret;
2952 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
3d243659
SK
2953 folio_lock(folio);
2954 if (!folio->mapping) {
2955 folio_unlock(folio);
fb09a464
KS
2956 return 0; /* retry */
2957 }
2958 ret |= VM_FAULT_LOCKED;
2959 } else
3d243659 2960 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
fb09a464
KS
2961 return ret;
2962}
2963
97ba0c2b
JK
2964/*
2965 * Handle dirtying of a page in shared file mapping on a write fault.
2966 *
2967 * The function expects the page to be locked and unlocks it.
2968 */
89b15332 2969static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2970{
89b15332 2971 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2972 struct address_space *mapping;
15b4919a 2973 struct folio *folio = page_folio(vmf->page);
97ba0c2b
JK
2974 bool dirtied;
2975 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2976
15b4919a
Z
2977 dirtied = folio_mark_dirty(folio);
2978 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
97ba0c2b 2979 /*
15b4919a
Z
2980 * Take a local copy of the address_space - folio.mapping may be zeroed
2981 * by truncate after folio_unlock(). The address_space itself remains
2982 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s
97ba0c2b
JK
2983 * release semantics to prevent the compiler from undoing this copying.
2984 */
15b4919a
Z
2985 mapping = folio_raw_mapping(folio);
2986 folio_unlock(folio);
97ba0c2b 2987
89b15332
JW
2988 if (!page_mkwrite)
2989 file_update_time(vma->vm_file);
2990
2991 /*
2992 * Throttle page dirtying rate down to writeback speed.
2993 *
2994 * mapping may be NULL here because some device drivers do not
2995 * set page.mapping but still dirty their pages
2996 *
c1e8d7c6 2997 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2998 * is pinning the mapping, as per above.
2999 */
97ba0c2b 3000 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
3001 struct file *fpin;
3002
3003 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 3004 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
3005 if (fpin) {
3006 fput(fpin);
d9272525 3007 return VM_FAULT_COMPLETED;
89b15332 3008 }
97ba0c2b
JK
3009 }
3010
89b15332 3011 return 0;
97ba0c2b
JK
3012}
3013
4e047f89
SR
3014/*
3015 * Handle write page faults for pages that can be reused in the current vma
3016 *
3017 * This can happen either due to the mapping being with the VM_SHARED flag,
3018 * or due to us being the last reference standing to the page. In either
3019 * case, all we need to do here is to mark the page as writable and update
3020 * any related book-keeping.
3021 */
997dd98d 3022static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 3023 __releases(vmf->ptl)
4e047f89 3024{
82b0f8c3 3025 struct vm_area_struct *vma = vmf->vma;
a41b70d6 3026 struct page *page = vmf->page;
4e047f89 3027 pte_t entry;
6c287605 3028
c89357e2 3029 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
cdb281e6 3030 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
6c287605 3031
4e047f89
SR
3032 /*
3033 * Clear the pages cpupid information as the existing
3034 * information potentially belongs to a now completely
3035 * unrelated process.
3036 */
3037 if (page)
3038 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3039
2994302b
JK
3040 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3041 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 3042 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
3043 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3044 update_mmu_cache(vma, vmf->address, vmf->pte);
3045 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 3046 count_vm_event(PGREUSE);
4e047f89
SR
3047}
3048
2f38ab2c 3049/*
c89357e2
DH
3050 * Handle the case of a page which we actually need to copy to a new page,
3051 * either due to COW or unsharing.
2f38ab2c 3052 *
c1e8d7c6 3053 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
3054 * without the ptl held.
3055 *
3056 * High level logic flow:
3057 *
3058 * - Allocate a page, copy the content of the old page to the new one.
3059 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3060 * - Take the PTL. If the pte changed, bail out and release the allocated page
3061 * - If the pte is still the way we remember it, update the page table and all
3062 * relevant references. This includes dropping the reference the page-table
3063 * held to the old page, as well as updating the rmap.
3064 * - In any case, unlock the PTL and drop the reference we took to the old page.
3065 */
2b740303 3066static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 3067{
c89357e2 3068 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3069 struct vm_area_struct *vma = vmf->vma;
bae473a4 3070 struct mm_struct *mm = vma->vm_mm;
28d41a48
MWO
3071 struct folio *old_folio = NULL;
3072 struct folio *new_folio = NULL;
2f38ab2c
SR
3073 pte_t entry;
3074 int page_copied = 0;
ac46d4f3 3075 struct mmu_notifier_range range;
a873dfe1 3076 int ret;
2f38ab2c 3077
662ce1dc
YY
3078 delayacct_wpcopy_start();
3079
28d41a48
MWO
3080 if (vmf->page)
3081 old_folio = page_folio(vmf->page);
2f38ab2c
SR
3082 if (unlikely(anon_vma_prepare(vma)))
3083 goto oom;
3084
2994302b 3085 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
6bc56a4d
MWO
3086 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3087 if (!new_folio)
2f38ab2c
SR
3088 goto oom;
3089 } else {
28d41a48
MWO
3090 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3091 vmf->address, false);
3092 if (!new_folio)
2f38ab2c 3093 goto oom;
83d116c5 3094
28d41a48 3095 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
a873dfe1 3096 if (ret) {
83d116c5
JH
3097 /*
3098 * COW failed, if the fault was solved by other,
3099 * it's fine. If not, userspace would re-fault on
3100 * the same address and we will handle the fault
3101 * from the second attempt.
a873dfe1 3102 * The -EHWPOISON case will not be retried.
83d116c5 3103 */
28d41a48
MWO
3104 folio_put(new_folio);
3105 if (old_folio)
3106 folio_put(old_folio);
662ce1dc
YY
3107
3108 delayacct_wpcopy_end();
a873dfe1 3109 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
83d116c5 3110 }
28d41a48 3111 kmsan_copy_page_meta(&new_folio->page, vmf->page);
2f38ab2c 3112 }
2f38ab2c 3113
28d41a48 3114 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
2f38ab2c 3115 goto oom_free_new;
4d4f75bf 3116 folio_throttle_swaprate(new_folio, GFP_KERNEL);
2f38ab2c 3117
28d41a48 3118 __folio_mark_uptodate(new_folio);
eb3c24f3 3119
7d4a8be0 3120 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
6f4f13e8 3121 vmf->address & PAGE_MASK,
ac46d4f3
JG
3122 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3123 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
3124
3125 /*
3126 * Re-check the pte - we dropped the lock
3127 */
82b0f8c3 3128 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
c33c7948 3129 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
28d41a48
MWO
3130 if (old_folio) {
3131 if (!folio_test_anon(old_folio)) {
3132 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
f1a79412 3133 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c
SR
3134 }
3135 } else {
6080d19f 3136 ksm_might_unmap_zero_page(mm, vmf->orig_pte);
f1a79412 3137 inc_mm_counter(mm, MM_ANONPAGES);
2f38ab2c 3138 }
2994302b 3139 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
28d41a48 3140 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
50c25ee9 3141 entry = pte_sw_mkyoung(entry);
c89357e2
DH
3142 if (unlikely(unshare)) {
3143 if (pte_soft_dirty(vmf->orig_pte))
3144 entry = pte_mksoft_dirty(entry);
3145 if (pte_uffd_wp(vmf->orig_pte))
3146 entry = pte_mkuffd_wp(entry);
3147 } else {
3148 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3149 }
111fe718 3150
2f38ab2c
SR
3151 /*
3152 * Clear the pte entry and flush it first, before updating the
111fe718
NP
3153 * pte with the new entry, to keep TLBs on different CPUs in
3154 * sync. This code used to set the new PTE then flush TLBs, but
3155 * that left a window where the new PTE could be loaded into
3156 * some TLBs while the old PTE remains in others.
2f38ab2c 3157 */
82b0f8c3 3158 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
28d41a48
MWO
3159 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3160 folio_add_lru_vma(new_folio, vma);
2f38ab2c
SR
3161 /*
3162 * We call the notify macro here because, when using secondary
3163 * mmu page tables (such as kvm shadow page tables), we want the
3164 * new page to be mapped directly into the secondary page table.
3165 */
c89357e2 3166 BUG_ON(unshare && pte_write(entry));
82b0f8c3
JK
3167 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3168 update_mmu_cache(vma, vmf->address, vmf->pte);
28d41a48 3169 if (old_folio) {
2f38ab2c
SR
3170 /*
3171 * Only after switching the pte to the new page may
3172 * we remove the mapcount here. Otherwise another
3173 * process may come and find the rmap count decremented
3174 * before the pte is switched to the new page, and
3175 * "reuse" the old page writing into it while our pte
3176 * here still points into it and can be read by other
3177 * threads.
3178 *
3179 * The critical issue is to order this
3180 * page_remove_rmap with the ptp_clear_flush above.
3181 * Those stores are ordered by (if nothing else,)
3182 * the barrier present in the atomic_add_negative
3183 * in page_remove_rmap.
3184 *
3185 * Then the TLB flush in ptep_clear_flush ensures that
3186 * no process can access the old page before the
3187 * decremented mapcount is visible. And the old page
3188 * cannot be reused until after the decremented
3189 * mapcount is visible. So transitively, TLBs to
3190 * old page will be flushed before it can be reused.
3191 */
28d41a48 3192 page_remove_rmap(vmf->page, vma, false);
2f38ab2c
SR
3193 }
3194
3195 /* Free the old page.. */
28d41a48 3196 new_folio = old_folio;
2f38ab2c 3197 page_copied = 1;
3db82b93
HD
3198 pte_unmap_unlock(vmf->pte, vmf->ptl);
3199 } else if (vmf->pte) {
7df67697 3200 update_mmu_tlb(vma, vmf->address, vmf->pte);
3db82b93 3201 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
3202 }
3203
4645b9fe
JG
3204 /*
3205 * No need to double call mmu_notifier->invalidate_range() callback as
3206 * the above ptep_clear_flush_notify() did already call it.
3207 */
ac46d4f3 3208 mmu_notifier_invalidate_range_only_end(&range);
3db82b93
HD
3209
3210 if (new_folio)
3211 folio_put(new_folio);
28d41a48 3212 if (old_folio) {
f4c4a3f4 3213 if (page_copied)
28d41a48
MWO
3214 free_swap_cache(&old_folio->page);
3215 folio_put(old_folio);
2f38ab2c 3216 }
662ce1dc
YY
3217
3218 delayacct_wpcopy_end();
cb8d8633 3219 return 0;
2f38ab2c 3220oom_free_new:
28d41a48 3221 folio_put(new_folio);
2f38ab2c 3222oom:
28d41a48
MWO
3223 if (old_folio)
3224 folio_put(old_folio);
662ce1dc
YY
3225
3226 delayacct_wpcopy_end();
2f38ab2c
SR
3227 return VM_FAULT_OOM;
3228}
3229
66a6197c
JK
3230/**
3231 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3232 * writeable once the page is prepared
3233 *
3234 * @vmf: structure describing the fault
3235 *
3236 * This function handles all that is needed to finish a write page fault in a
3237 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 3238 * It handles locking of PTE and modifying it.
66a6197c
JK
3239 *
3240 * The function expects the page to be locked or other protection against
3241 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a 3242 *
2797e79f 3243 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
a862f68a 3244 * we acquired PTE lock.
66a6197c 3245 */
2b740303 3246vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
3247{
3248 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3249 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3250 &vmf->ptl);
3db82b93
HD
3251 if (!vmf->pte)
3252 return VM_FAULT_NOPAGE;
66a6197c
JK
3253 /*
3254 * We might have raced with another page fault while we released the
3255 * pte_offset_map_lock.
3256 */
c33c7948 3257 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
7df67697 3258 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 3259 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 3260 return VM_FAULT_NOPAGE;
66a6197c
JK
3261 }
3262 wp_page_reuse(vmf);
a19e2553 3263 return 0;
66a6197c
JK
3264}
3265
dd906184
BH
3266/*
3267 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3268 * mapping
3269 */
2b740303 3270static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3271{
82b0f8c3 3272 struct vm_area_struct *vma = vmf->vma;
bae473a4 3273
dd906184 3274 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3275 vm_fault_t ret;
dd906184 3276
82b0f8c3 3277 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3278 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3279 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3280 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3281 return ret;
66a6197c 3282 return finish_mkwrite_fault(vmf);
dd906184 3283 }
997dd98d 3284 wp_page_reuse(vmf);
cb8d8633 3285 return 0;
dd906184
BH
3286}
3287
5a97858b 3288static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
82b0f8c3 3289 __releases(vmf->ptl)
93e478d4 3290{
82b0f8c3 3291 struct vm_area_struct *vma = vmf->vma;
cb8d8633 3292 vm_fault_t ret = 0;
93e478d4 3293
5a97858b 3294 folio_get(folio);
93e478d4 3295
93e478d4 3296 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3297 vm_fault_t tmp;
93e478d4 3298
82b0f8c3 3299 pte_unmap_unlock(vmf->pte, vmf->ptl);
86aa6998 3300 tmp = do_page_mkwrite(vmf, folio);
93e478d4
SR
3301 if (unlikely(!tmp || (tmp &
3302 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
5a97858b 3303 folio_put(folio);
93e478d4
SR
3304 return tmp;
3305 }
66a6197c 3306 tmp = finish_mkwrite_fault(vmf);
a19e2553 3307 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
5a97858b
SK
3308 folio_unlock(folio);
3309 folio_put(folio);
66a6197c 3310 return tmp;
93e478d4 3311 }
66a6197c
JK
3312 } else {
3313 wp_page_reuse(vmf);
5a97858b 3314 folio_lock(folio);
93e478d4 3315 }
89b15332 3316 ret |= fault_dirty_shared_page(vmf);
5a97858b 3317 folio_put(folio);
93e478d4 3318
89b15332 3319 return ret;
93e478d4
SR
3320}
3321
1da177e4 3322/*
c89357e2
DH
3323 * This routine handles present pages, when
3324 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3325 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3326 * (FAULT_FLAG_UNSHARE)
3327 *
3328 * It is done by copying the page to a new address and decrementing the
3329 * shared-page counter for the old page.
1da177e4 3330 *
1da177e4
LT
3331 * Note that this routine assumes that the protection checks have been
3332 * done by the caller (the low-level page fault routine in most cases).
c89357e2
DH
3333 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3334 * done any necessary COW.
1da177e4 3335 *
c89357e2
DH
3336 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3337 * though the page will change only once the write actually happens. This
3338 * avoids a few races, and potentially makes it more efficient.
1da177e4 3339 *
c1e8d7c6 3340 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3341 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3342 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3343 */
2b740303 3344static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3345 __releases(vmf->ptl)
1da177e4 3346{
c89357e2 3347 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
82b0f8c3 3348 struct vm_area_struct *vma = vmf->vma;
b9086fde 3349 struct folio *folio = NULL;
1da177e4 3350
c89357e2 3351 if (likely(!unshare)) {
c33c7948 3352 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
c89357e2
DH
3353 pte_unmap_unlock(vmf->pte, vmf->ptl);
3354 return handle_userfault(vmf, VM_UFFD_WP);
3355 }
3356
3357 /*
3358 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3359 * is flushed in this case before copying.
3360 */
3361 if (unlikely(userfaultfd_wp(vmf->vma) &&
3362 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3363 flush_tlb_page(vmf->vma, vmf->address);
3364 }
6ce64428 3365
a41b70d6 3366 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
c89357e2 3367
5a97858b
SK
3368 if (vmf->page)
3369 folio = page_folio(vmf->page);
3370
b9086fde
DH
3371 /*
3372 * Shared mapping: we are guaranteed to have VM_WRITE and
3373 * FAULT_FLAG_WRITE set at this point.
3374 */
3375 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
251b97f5 3376 /*
64e45507
PF
3377 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3378 * VM_PFNMAP VMA.
251b97f5
PZ
3379 *
3380 * We should not cow pages in a shared writeable mapping.
dd906184 3381 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5 3382 */
b9086fde 3383 if (!vmf->page)
2994302b 3384 return wp_pfn_shared(vmf);
5a97858b 3385 return wp_page_shared(vmf, folio);
251b97f5 3386 }
1da177e4 3387
d08b3851 3388 /*
b9086fde
DH
3389 * Private mapping: create an exclusive anonymous page copy if reuse
3390 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
d08b3851 3391 */
b9086fde 3392 if (folio && folio_test_anon(folio)) {
6c287605
DH
3393 /*
3394 * If the page is exclusive to this process we must reuse the
3395 * page without further checks.
3396 */
e4a2ed94 3397 if (PageAnonExclusive(vmf->page))
6c287605
DH
3398 goto reuse;
3399
53a05ad9 3400 /*
e4a2ed94
MWO
3401 * We have to verify under folio lock: these early checks are
3402 * just an optimization to avoid locking the folio and freeing
53a05ad9
DH
3403 * the swapcache if there is little hope that we can reuse.
3404 *
e4a2ed94 3405 * KSM doesn't necessarily raise the folio refcount.
53a05ad9 3406 */
e4a2ed94 3407 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
d4c47097 3408 goto copy;
e4a2ed94 3409 if (!folio_test_lru(folio))
d4c47097 3410 /*
1fec6890
MWO
3411 * We cannot easily detect+handle references from
3412 * remote LRU caches or references to LRU folios.
d4c47097
DH
3413 */
3414 lru_add_drain();
e4a2ed94 3415 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
09854ba9 3416 goto copy;
e4a2ed94 3417 if (!folio_trylock(folio))
09854ba9 3418 goto copy;
e4a2ed94
MWO
3419 if (folio_test_swapcache(folio))
3420 folio_free_swap(folio);
3421 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3422 folio_unlock(folio);
52d1e606 3423 goto copy;
b009c024 3424 }
09854ba9 3425 /*
e4a2ed94
MWO
3426 * Ok, we've got the only folio reference from our mapping
3427 * and the folio is locked, it's dark out, and we're wearing
53a05ad9 3428 * sunglasses. Hit it.
09854ba9 3429 */
e4a2ed94
MWO
3430 page_move_anon_rmap(vmf->page, vma);
3431 folio_unlock(folio);
6c287605 3432reuse:
c89357e2
DH
3433 if (unlikely(unshare)) {
3434 pte_unmap_unlock(vmf->pte, vmf->ptl);
3435 return 0;
3436 }
be068f29 3437 wp_page_reuse(vmf);
cb8d8633 3438 return 0;
1da177e4 3439 }
52d1e606 3440copy:
1da177e4
LT
3441 /*
3442 * Ok, we need to copy. Oh, well..
3443 */
b9086fde
DH
3444 if (folio)
3445 folio_get(folio);
28766805 3446
82b0f8c3 3447 pte_unmap_unlock(vmf->pte, vmf->ptl);
94bfe85b 3448#ifdef CONFIG_KSM
b9086fde 3449 if (folio && folio_test_ksm(folio))
94bfe85b
YY
3450 count_vm_event(COW_KSM);
3451#endif
a41b70d6 3452 return wp_page_copy(vmf);
1da177e4
LT
3453}
3454
97a89413 3455static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3456 unsigned long start_addr, unsigned long end_addr,
3457 struct zap_details *details)
3458{
f5cc4eef 3459 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3460}
3461
f808c13f 3462static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
232a6a1c
PX
3463 pgoff_t first_index,
3464 pgoff_t last_index,
1da177e4
LT
3465 struct zap_details *details)
3466{
3467 struct vm_area_struct *vma;
1da177e4
LT
3468 pgoff_t vba, vea, zba, zea;
3469
232a6a1c 3470 vma_interval_tree_foreach(vma, root, first_index, last_index) {
1da177e4 3471 vba = vma->vm_pgoff;
d6e93217 3472 vea = vba + vma_pages(vma) - 1;
f9871da9
ML
3473 zba = max(first_index, vba);
3474 zea = min(last_index, vea);
1da177e4 3475
97a89413 3476 unmap_mapping_range_vma(vma,
1da177e4
LT
3477 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3478 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3479 details);
1da177e4
LT
3480 }
3481}
3482
22061a1f 3483/**
3506659e
MWO
3484 * unmap_mapping_folio() - Unmap single folio from processes.
3485 * @folio: The locked folio to be unmapped.
22061a1f 3486 *
3506659e 3487 * Unmap this folio from any userspace process which still has it mmaped.
22061a1f
HD
3488 * Typically, for efficiency, the range of nearby pages has already been
3489 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3506659e
MWO
3490 * truncation or invalidation holds the lock on a folio, it may find that
3491 * the page has been remapped again: and then uses unmap_mapping_folio()
22061a1f
HD
3492 * to unmap it finally.
3493 */
3506659e 3494void unmap_mapping_folio(struct folio *folio)
22061a1f 3495{
3506659e 3496 struct address_space *mapping = folio->mapping;
22061a1f 3497 struct zap_details details = { };
232a6a1c
PX
3498 pgoff_t first_index;
3499 pgoff_t last_index;
22061a1f 3500
3506659e 3501 VM_BUG_ON(!folio_test_locked(folio));
22061a1f 3502
3506659e 3503 first_index = folio->index;
87b11f86 3504 last_index = folio_next_index(folio) - 1;
232a6a1c 3505
2e148f1e 3506 details.even_cows = false;
3506659e 3507 details.single_folio = folio;
999dad82 3508 details.zap_flags = ZAP_FLAG_DROP_MARKER;
22061a1f 3509
2c865995 3510 i_mmap_lock_read(mapping);
22061a1f 3511 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3512 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3513 last_index, &details);
2c865995 3514 i_mmap_unlock_read(mapping);
22061a1f
HD
3515}
3516
977fbdcd
MW
3517/**
3518 * unmap_mapping_pages() - Unmap pages from processes.
3519 * @mapping: The address space containing pages to be unmapped.
3520 * @start: Index of first page to be unmapped.
3521 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3522 * @even_cows: Whether to unmap even private COWed pages.
3523 *
3524 * Unmap the pages in this address space from any userspace process which
3525 * has them mmaped. Generally, you want to remove COWed pages as well when
3526 * a file is being truncated, but not when invalidating pages from the page
3527 * cache.
3528 */
3529void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3530 pgoff_t nr, bool even_cows)
3531{
3532 struct zap_details details = { };
232a6a1c
PX
3533 pgoff_t first_index = start;
3534 pgoff_t last_index = start + nr - 1;
977fbdcd 3535
2e148f1e 3536 details.even_cows = even_cows;
232a6a1c
PX
3537 if (last_index < first_index)
3538 last_index = ULONG_MAX;
977fbdcd 3539
2c865995 3540 i_mmap_lock_read(mapping);
977fbdcd 3541 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
232a6a1c
PX
3542 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3543 last_index, &details);
2c865995 3544 i_mmap_unlock_read(mapping);
977fbdcd 3545}
6e0e99d5 3546EXPORT_SYMBOL_GPL(unmap_mapping_pages);
977fbdcd 3547
1da177e4 3548/**
8a5f14a2 3549 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3550 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3551 * file.
3552 *
3d41088f 3553 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3554 * @holebegin: byte in first page to unmap, relative to the start of
3555 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3556 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3557 * must keep the partial page. In contrast, we must get rid of
3558 * partial pages.
3559 * @holelen: size of prospective hole in bytes. This will be rounded
3560 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3561 * end of the file.
3562 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3563 * but 0 when invalidating pagecache, don't throw away private data.
3564 */
3565void unmap_mapping_range(struct address_space *mapping,
3566 loff_t const holebegin, loff_t const holelen, int even_cows)
3567{
1da177e4
LT
3568 pgoff_t hba = holebegin >> PAGE_SHIFT;
3569 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3570
3571 /* Check for overflow. */
3572 if (sizeof(holelen) > sizeof(hlen)) {
3573 long long holeend =
3574 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3575 if (holeend & ~(long long)ULONG_MAX)
3576 hlen = ULONG_MAX - hba + 1;
3577 }
3578
977fbdcd 3579 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3580}
3581EXPORT_SYMBOL(unmap_mapping_range);
3582
b756a3b5
AP
3583/*
3584 * Restore a potential device exclusive pte to a working pte entry
3585 */
3586static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3587{
19672a9e 3588 struct folio *folio = page_folio(vmf->page);
b756a3b5
AP
3589 struct vm_area_struct *vma = vmf->vma;
3590 struct mmu_notifier_range range;
3591
7c7b9629
AP
3592 /*
3593 * We need a reference to lock the folio because we don't hold
3594 * the PTL so a racing thread can remove the device-exclusive
3595 * entry and unmap it. If the folio is free the entry must
3596 * have been removed already. If it happens to have already
3597 * been re-allocated after being freed all we do is lock and
3598 * unlock it.
3599 */
3600 if (!folio_try_get(folio))
3601 return 0;
3602
3603 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3604 folio_put(folio);
b756a3b5 3605 return VM_FAULT_RETRY;
7c7b9629 3606 }
7d4a8be0 3607 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
b756a3b5
AP
3608 vma->vm_mm, vmf->address & PAGE_MASK,
3609 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3610 mmu_notifier_invalidate_range_start(&range);
3611
3612 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3613 &vmf->ptl);
c33c7948 3614 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
19672a9e 3615 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
b756a3b5 3616
3db82b93
HD
3617 if (vmf->pte)
3618 pte_unmap_unlock(vmf->pte, vmf->ptl);
19672a9e 3619 folio_unlock(folio);
7c7b9629 3620 folio_put(folio);
b756a3b5
AP
3621
3622 mmu_notifier_invalidate_range_end(&range);
3623 return 0;
3624}
3625
a160e537 3626static inline bool should_try_to_free_swap(struct folio *folio,
c145e0b4
DH
3627 struct vm_area_struct *vma,
3628 unsigned int fault_flags)
3629{
a160e537 3630 if (!folio_test_swapcache(folio))
c145e0b4 3631 return false;
9202d527 3632 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
a160e537 3633 folio_test_mlocked(folio))
c145e0b4
DH
3634 return true;
3635 /*
3636 * If we want to map a page that's in the swapcache writable, we
3637 * have to detect via the refcount if we're really the exclusive
3638 * user. Try freeing the swapcache to get rid of the swapcache
3639 * reference only in case it's likely that we'll be the exlusive user.
3640 */
a160e537
MWO
3641 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3642 folio_ref_count(folio) == 2;
c145e0b4
DH
3643}
3644
9c28a205
PX
3645static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3646{
3647 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3648 vmf->address, &vmf->ptl);
3db82b93
HD
3649 if (!vmf->pte)
3650 return 0;
9c28a205
PX
3651 /*
3652 * Be careful so that we will only recover a special uffd-wp pte into a
3653 * none pte. Otherwise it means the pte could have changed, so retry.
7e3ce3f8
PX
3654 *
3655 * This should also cover the case where e.g. the pte changed
af19487f 3656 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
7e3ce3f8 3657 * So is_pte_marker() check is not enough to safely drop the pte.
9c28a205 3658 */
c33c7948 3659 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
9c28a205
PX
3660 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3661 pte_unmap_unlock(vmf->pte, vmf->ptl);
3662 return 0;
3663}
3664
2bad466c
PX
3665static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3666{
3667 if (vma_is_anonymous(vmf->vma))
3668 return do_anonymous_page(vmf);
3669 else
3670 return do_fault(vmf);
3671}
3672
9c28a205
PX
3673/*
3674 * This is actually a page-missing access, but with uffd-wp special pte
3675 * installed. It means this pte was wr-protected before being unmapped.
3676 */
3677static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3678{
3679 /*
3680 * Just in case there're leftover special ptes even after the region
7a079ba2 3681 * got unregistered - we can simply clear them.
9c28a205 3682 */
2bad466c 3683 if (unlikely(!userfaultfd_wp(vmf->vma)))
9c28a205
PX
3684 return pte_marker_clear(vmf);
3685
2bad466c 3686 return do_pte_missing(vmf);
9c28a205
PX
3687}
3688
5c041f5d
PX
3689static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3690{
3691 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3692 unsigned long marker = pte_marker_get(entry);
3693
3694 /*
ca92ea3d
PX
3695 * PTE markers should never be empty. If anything weird happened,
3696 * the best thing to do is to kill the process along with its mm.
5c041f5d 3697 */
ca92ea3d 3698 if (WARN_ON_ONCE(!marker))
5c041f5d
PX
3699 return VM_FAULT_SIGBUS;
3700
15520a3f 3701 /* Higher priority than uffd-wp when data corrupted */
af19487f
AR
3702 if (marker & PTE_MARKER_POISONED)
3703 return VM_FAULT_HWPOISON;
15520a3f 3704
9c28a205
PX
3705 if (pte_marker_entry_uffd_wp(entry))
3706 return pte_marker_handle_uffd_wp(vmf);
3707
3708 /* This is an unknown pte marker */
3709 return VM_FAULT_SIGBUS;
5c041f5d
PX
3710}
3711
1da177e4 3712/*
c1e8d7c6 3713 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3714 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3715 * We return with pte unmapped and unlocked.
3716 *
c1e8d7c6 3717 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3718 * as does filemap_fault().
1da177e4 3719 */
2b740303 3720vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3721{
82b0f8c3 3722 struct vm_area_struct *vma = vmf->vma;
d4f9565a
MWO
3723 struct folio *swapcache, *folio = NULL;
3724 struct page *page;
2799e775 3725 struct swap_info_struct *si = NULL;
14f9135d 3726 rmap_t rmap_flags = RMAP_NONE;
1493a191 3727 bool exclusive = false;
65500d23 3728 swp_entry_t entry;
1da177e4 3729 pte_t pte;
d065bd81 3730 int locked;
2b740303 3731 vm_fault_t ret = 0;
aae466b0 3732 void *shadow = NULL;
1da177e4 3733
2ca99358 3734 if (!pte_unmap_same(vmf))
8f4e2101 3735 goto out;
65500d23 3736
17c05f18
SB
3737 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3738 ret = VM_FAULT_RETRY;
3739 goto out;
3740 }
3741
2994302b 3742 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3743 if (unlikely(non_swap_entry(entry))) {
3744 if (is_migration_entry(entry)) {
82b0f8c3
JK
3745 migration_entry_wait(vma->vm_mm, vmf->pmd,
3746 vmf->address);
b756a3b5
AP
3747 } else if (is_device_exclusive_entry(entry)) {
3748 vmf->page = pfn_swap_entry_to_page(entry);
3749 ret = remove_device_exclusive_entry(vmf);
5042db43 3750 } else if (is_device_private_entry(entry)) {
af5cdaf8 3751 vmf->page = pfn_swap_entry_to_page(entry);
16ce101d
AP
3752 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3753 vmf->address, &vmf->ptl);
3db82b93 3754 if (unlikely(!vmf->pte ||
c33c7948
RR
3755 !pte_same(ptep_get(vmf->pte),
3756 vmf->orig_pte)))
3b65f437 3757 goto unlock;
16ce101d
AP
3758
3759 /*
3760 * Get a page reference while we know the page can't be
3761 * freed.
3762 */
3763 get_page(vmf->page);
3764 pte_unmap_unlock(vmf->pte, vmf->ptl);
4a955bed 3765 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
16ce101d 3766 put_page(vmf->page);
d1737fdb
AK
3767 } else if (is_hwpoison_entry(entry)) {
3768 ret = VM_FAULT_HWPOISON;
5c041f5d
PX
3769 } else if (is_pte_marker_entry(entry)) {
3770 ret = handle_pte_marker(vmf);
d1737fdb 3771 } else {
2994302b 3772 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3773 ret = VM_FAULT_SIGBUS;
d1737fdb 3774 }
0697212a
CL
3775 goto out;
3776 }
0bcac06f 3777
2799e775
ML
3778 /* Prevent swapoff from happening to us. */
3779 si = get_swap_device(entry);
3780 if (unlikely(!si))
3781 goto out;
0bcac06f 3782
5a423081
MWO
3783 folio = swap_cache_get_folio(entry, vma, vmf->address);
3784 if (folio)
3785 page = folio_file_page(folio, swp_offset(entry));
d4f9565a 3786 swapcache = folio;
f8020772 3787
d4f9565a 3788 if (!folio) {
a449bf58
QC
3789 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3790 __swap_count(entry) == 1) {
0bcac06f 3791 /* skip swapcache */
63ad4add
MWO
3792 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3793 vma, vmf->address, false);
3794 page = &folio->page;
3795 if (folio) {
3796 __folio_set_locked(folio);
3797 __folio_set_swapbacked(folio);
4c6355b2 3798
65995918 3799 if (mem_cgroup_swapin_charge_folio(folio,
63ad4add
MWO
3800 vma->vm_mm, GFP_KERNEL,
3801 entry)) {
545b1b07 3802 ret = VM_FAULT_OOM;
4c6355b2 3803 goto out_page;
545b1b07 3804 }
0add0c77 3805 mem_cgroup_swapin_uncharge_swap(entry);
4c6355b2 3806
aae466b0
JK
3807 shadow = get_shadow_from_swap_cache(entry);
3808 if (shadow)
63ad4add 3809 workingset_refault(folio, shadow);
0076f029 3810
63ad4add 3811 folio_add_lru(folio);
0add0c77
SB
3812
3813 /* To provide entry to swap_readpage() */
63ad4add 3814 folio_set_swap_entry(folio, entry);
5169b844 3815 swap_readpage(page, true, NULL);
63ad4add 3816 folio->private = NULL;
0bcac06f 3817 }
aa8d22a1 3818 } else {
e9e9b7ec
MK
3819 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3820 vmf);
63ad4add
MWO
3821 if (page)
3822 folio = page_folio(page);
d4f9565a 3823 swapcache = folio;
0bcac06f
MK
3824 }
3825
d4f9565a 3826 if (!folio) {
1da177e4 3827 /*
8f4e2101
HD
3828 * Back out if somebody else faulted in this pte
3829 * while we released the pte lock.
1da177e4 3830 */
82b0f8c3
JK
3831 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3832 vmf->address, &vmf->ptl);
c33c7948
RR
3833 if (likely(vmf->pte &&
3834 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
1da177e4 3835 ret = VM_FAULT_OOM;
65500d23 3836 goto unlock;
1da177e4
LT
3837 }
3838
3839 /* Had to read the page from swap area: Major fault */
3840 ret = VM_FAULT_MAJOR;
f8891e5e 3841 count_vm_event(PGMAJFAULT);
2262185c 3842 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3843 } else if (PageHWPoison(page)) {
71f72525
WF
3844 /*
3845 * hwpoisoned dirty swapcache pages are kept for killing
3846 * owner processes (which may be unknown at hwpoison time)
3847 */
d1737fdb 3848 ret = VM_FAULT_HWPOISON;
4779cb31 3849 goto out_release;
1da177e4
LT
3850 }
3851
19672a9e 3852 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
e709ffd6 3853
d065bd81
ML
3854 if (!locked) {
3855 ret |= VM_FAULT_RETRY;
3856 goto out_release;
3857 }
073e587e 3858
84d60fdd
DH
3859 if (swapcache) {
3860 /*
3b344157 3861 * Make sure folio_free_swap() or swapoff did not release the
84d60fdd
DH
3862 * swapcache from under us. The page pin, and pte_same test
3863 * below, are not enough to exclude that. Even if it is still
3864 * swapcache, we need to check that the page's swap has not
3865 * changed.
3866 */
63ad4add 3867 if (unlikely(!folio_test_swapcache(folio) ||
84d60fdd
DH
3868 page_private(page) != entry.val))
3869 goto out_page;
3870
3871 /*
3872 * KSM sometimes has to copy on read faults, for example, if
3873 * page->index of !PageKSM() pages would be nonlinear inside the
3874 * anon VMA -- PageKSM() is lost on actual swapout.
3875 */
3876 page = ksm_might_need_to_copy(page, vma, vmf->address);
3877 if (unlikely(!page)) {
3878 ret = VM_FAULT_OOM;
84d60fdd 3879 goto out_page;
6b970599
KW
3880 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3881 ret = VM_FAULT_HWPOISON;
3882 goto out_page;
84d60fdd 3883 }
63ad4add 3884 folio = page_folio(page);
c145e0b4
DH
3885
3886 /*
3887 * If we want to map a page that's in the swapcache writable, we
3888 * have to detect via the refcount if we're really the exclusive
3889 * owner. Try removing the extra reference from the local LRU
1fec6890 3890 * caches if required.
c145e0b4 3891 */
d4f9565a 3892 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
63ad4add 3893 !folio_test_ksm(folio) && !folio_test_lru(folio))
c145e0b4 3894 lru_add_drain();
5ad64688
HD
3895 }
3896
4231f842 3897 folio_throttle_swaprate(folio, GFP_KERNEL);
8a9f3ccd 3898
1da177e4 3899 /*
8f4e2101 3900 * Back out if somebody else already faulted in this pte.
1da177e4 3901 */
82b0f8c3
JK
3902 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3903 &vmf->ptl);
c33c7948 3904 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
b8107480 3905 goto out_nomap;
b8107480 3906
63ad4add 3907 if (unlikely(!folio_test_uptodate(folio))) {
b8107480
KK
3908 ret = VM_FAULT_SIGBUS;
3909 goto out_nomap;
1da177e4
LT
3910 }
3911
78fbe906
DH
3912 /*
3913 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3914 * must never point at an anonymous page in the swapcache that is
3915 * PG_anon_exclusive. Sanity check that this holds and especially, that
3916 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3917 * check after taking the PT lock and making sure that nobody
3918 * concurrently faulted in this page and set PG_anon_exclusive.
3919 */
63ad4add
MWO
3920 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3921 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
78fbe906 3922
1493a191
DH
3923 /*
3924 * Check under PT lock (to protect against concurrent fork() sharing
3925 * the swap entry concurrently) for certainly exclusive pages.
3926 */
63ad4add 3927 if (!folio_test_ksm(folio)) {
1493a191 3928 exclusive = pte_swp_exclusive(vmf->orig_pte);
d4f9565a 3929 if (folio != swapcache) {
1493a191
DH
3930 /*
3931 * We have a fresh page that is not exposed to the
3932 * swapcache -> certainly exclusive.
3933 */
3934 exclusive = true;
63ad4add 3935 } else if (exclusive && folio_test_writeback(folio) &&
eacde327 3936 data_race(si->flags & SWP_STABLE_WRITES)) {
1493a191
DH
3937 /*
3938 * This is tricky: not all swap backends support
3939 * concurrent page modifications while under writeback.
3940 *
3941 * So if we stumble over such a page in the swapcache
3942 * we must not set the page exclusive, otherwise we can
3943 * map it writable without further checks and modify it
3944 * while still under writeback.
3945 *
3946 * For these problematic swap backends, simply drop the
3947 * exclusive marker: this is perfectly fine as we start
3948 * writeback only if we fully unmapped the page and
3949 * there are no unexpected references on the page after
3950 * unmapping succeeded. After fully unmapped, no
3951 * further GUP references (FOLL_GET and FOLL_PIN) can
3952 * appear, so dropping the exclusive marker and mapping
3953 * it only R/O is fine.
3954 */
3955 exclusive = false;
3956 }
3957 }
3958
6dca4ac6
PC
3959 /*
3960 * Some architectures may have to restore extra metadata to the page
3961 * when reading from swap. This metadata may be indexed by swap entry
3962 * so this must be called before swap_free().
3963 */
3964 arch_swap_restore(entry, folio);
3965
8c7c6e34 3966 /*
c145e0b4
DH
3967 * Remove the swap entry and conditionally try to free up the swapcache.
3968 * We're already holding a reference on the page but haven't mapped it
3969 * yet.
8c7c6e34 3970 */
c145e0b4 3971 swap_free(entry);
a160e537
MWO
3972 if (should_try_to_free_swap(folio, vma, vmf->flags))
3973 folio_free_swap(folio);
1da177e4 3974
f1a79412
SB
3975 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3976 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1da177e4 3977 pte = mk_pte(page, vma->vm_page_prot);
c145e0b4
DH
3978
3979 /*
1493a191
DH
3980 * Same logic as in do_wp_page(); however, optimize for pages that are
3981 * certainly not shared either because we just allocated them without
3982 * exposing them to the swapcache or because the swap entry indicates
3983 * exclusivity.
c145e0b4 3984 */
63ad4add
MWO
3985 if (!folio_test_ksm(folio) &&
3986 (exclusive || folio_ref_count(folio) == 1)) {
6c287605
DH
3987 if (vmf->flags & FAULT_FLAG_WRITE) {
3988 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3989 vmf->flags &= ~FAULT_FLAG_WRITE;
6c287605 3990 }
14f9135d 3991 rmap_flags |= RMAP_EXCLUSIVE;
1da177e4 3992 }
1da177e4 3993 flush_icache_page(vma, page);
2994302b 3994 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3995 pte = pte_mksoft_dirty(pte);
f1eb1bac 3996 if (pte_swp_uffd_wp(vmf->orig_pte))
f45ec5ff 3997 pte = pte_mkuffd_wp(pte);
2994302b 3998 vmf->orig_pte = pte;
0bcac06f
MK
3999
4000 /* ksm created a completely new copy */
d4f9565a 4001 if (unlikely(folio != swapcache && swapcache)) {
40f2bbf7 4002 page_add_new_anon_rmap(page, vma, vmf->address);
63ad4add 4003 folio_add_lru_vma(folio, vma);
0bcac06f 4004 } else {
f1e2db12 4005 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
00501b53 4006 }
1da177e4 4007
63ad4add
MWO
4008 VM_BUG_ON(!folio_test_anon(folio) ||
4009 (pte_write(pte) && !PageAnonExclusive(page)));
1eba86c0
PT
4010 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4011 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4012
63ad4add 4013 folio_unlock(folio);
d4f9565a 4014 if (folio != swapcache && swapcache) {
4969c119
AA
4015 /*
4016 * Hold the lock to avoid the swap entry to be reused
4017 * until we take the PT lock for the pte_same() check
4018 * (to avoid false positives from pte_same). For
4019 * further safety release the lock after the swap_free
4020 * so that the swap count won't change under a
4021 * parallel locked swapcache.
4022 */
d4f9565a
MWO
4023 folio_unlock(swapcache);
4024 folio_put(swapcache);
4969c119 4025 }
c475a8ab 4026
82b0f8c3 4027 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 4028 ret |= do_wp_page(vmf);
61469f1d
HD
4029 if (ret & VM_FAULT_ERROR)
4030 ret &= VM_FAULT_ERROR;
1da177e4
LT
4031 goto out;
4032 }
4033
4034 /* No need to invalidate - it was non-present before */
82b0f8c3 4035 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4036unlock:
3db82b93
HD
4037 if (vmf->pte)
4038 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4 4039out:
2799e775
ML
4040 if (si)
4041 put_swap_device(si);
1da177e4 4042 return ret;
b8107480 4043out_nomap:
3db82b93
HD
4044 if (vmf->pte)
4045 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 4046out_page:
63ad4add 4047 folio_unlock(folio);
4779cb31 4048out_release:
63ad4add 4049 folio_put(folio);
d4f9565a
MWO
4050 if (folio != swapcache && swapcache) {
4051 folio_unlock(swapcache);
4052 folio_put(swapcache);
4969c119 4053 }
2799e775
ML
4054 if (si)
4055 put_swap_device(si);
65500d23 4056 return ret;
1da177e4
LT
4057}
4058
4059/*
c1e8d7c6 4060 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 4061 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 4062 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 4063 */
2b740303 4064static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 4065{
2bad466c 4066 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4067 struct vm_area_struct *vma = vmf->vma;
6bc56a4d 4068 struct folio *folio;
2b740303 4069 vm_fault_t ret = 0;
1da177e4 4070 pte_t entry;
1da177e4 4071
6b7339f4
KS
4072 /* File mapping without ->vm_ops ? */
4073 if (vma->vm_flags & VM_SHARED)
4074 return VM_FAULT_SIGBUS;
4075
7267ec00 4076 /*
3db82b93
HD
4077 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4078 * be distinguished from a transient failure of pte_offset_map().
7267ec00 4079 */
4cf58924 4080 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
4081 return VM_FAULT_OOM;
4082
11ac5524 4083 /* Use the zero-page for reads */
82b0f8c3 4084 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 4085 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 4086 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 4087 vma->vm_page_prot));
82b0f8c3
JK
4088 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4089 vmf->address, &vmf->ptl);
3db82b93
HD
4090 if (!vmf->pte)
4091 goto unlock;
2bad466c 4092 if (vmf_pte_changed(vmf)) {
7df67697 4093 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 4094 goto unlock;
7df67697 4095 }
6b31d595
MH
4096 ret = check_stable_address_space(vma->vm_mm);
4097 if (ret)
4098 goto unlock;
6b251fc9
AA
4099 /* Deliver the page fault to userland, check inside PT lock */
4100 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
4101 pte_unmap_unlock(vmf->pte, vmf->ptl);
4102 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 4103 }
a13ea5b7
HD
4104 goto setpte;
4105 }
4106
557ed1fa 4107 /* Allocate our own private page. */
557ed1fa
NP
4108 if (unlikely(anon_vma_prepare(vma)))
4109 goto oom;
6bc56a4d
MWO
4110 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4111 if (!folio)
557ed1fa 4112 goto oom;
eb3c24f3 4113
6bc56a4d 4114 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
eb3c24f3 4115 goto oom_free_page;
e2bf3e2c 4116 folio_throttle_swaprate(folio, GFP_KERNEL);
eb3c24f3 4117
52f37629 4118 /*
cb3184de 4119 * The memory barrier inside __folio_mark_uptodate makes sure that
f4f5329d 4120 * preceding stores to the page contents become visible before
52f37629
MK
4121 * the set_pte_at() write.
4122 */
cb3184de 4123 __folio_mark_uptodate(folio);
8f4e2101 4124
cb3184de 4125 entry = mk_pte(&folio->page, vma->vm_page_prot);
50c25ee9 4126 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
4127 if (vma->vm_flags & VM_WRITE)
4128 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 4129
82b0f8c3
JK
4130 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4131 &vmf->ptl);
3db82b93
HD
4132 if (!vmf->pte)
4133 goto release;
2bad466c 4134 if (vmf_pte_changed(vmf)) {
bce8cb3c 4135 update_mmu_tlb(vma, vmf->address, vmf->pte);
557ed1fa 4136 goto release;
7df67697 4137 }
9ba69294 4138
6b31d595
MH
4139 ret = check_stable_address_space(vma->vm_mm);
4140 if (ret)
4141 goto release;
4142
6b251fc9
AA
4143 /* Deliver the page fault to userland, check inside PT lock */
4144 if (userfaultfd_missing(vma)) {
82b0f8c3 4145 pte_unmap_unlock(vmf->pte, vmf->ptl);
cb3184de 4146 folio_put(folio);
82b0f8c3 4147 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
4148 }
4149
f1a79412 4150 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
cb3184de
MWO
4151 folio_add_new_anon_rmap(folio, vma, vmf->address);
4152 folio_add_lru_vma(folio, vma);
a13ea5b7 4153setpte:
2bad466c
PX
4154 if (uffd_wp)
4155 entry = pte_mkuffd_wp(entry);
82b0f8c3 4156 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
4157
4158 /* No need to invalidate - it was non-present before */
82b0f8c3 4159 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 4160unlock:
3db82b93
HD
4161 if (vmf->pte)
4162 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 4163 return ret;
8f4e2101 4164release:
cb3184de 4165 folio_put(folio);
8f4e2101 4166 goto unlock;
8a9f3ccd 4167oom_free_page:
cb3184de 4168 folio_put(folio);
65500d23 4169oom:
1da177e4
LT
4170 return VM_FAULT_OOM;
4171}
4172
9a95f3cf 4173/*
c1e8d7c6 4174 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
4175 * released depending on flags and vma->vm_ops->fault() return value.
4176 * See filemap_fault() and __lock_page_retry().
4177 */
2b740303 4178static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 4179{
82b0f8c3 4180 struct vm_area_struct *vma = vmf->vma;
2b740303 4181 vm_fault_t ret;
7eae74af 4182
63f3655f
MH
4183 /*
4184 * Preallocate pte before we take page_lock because this might lead to
4185 * deadlocks for memcg reclaim which waits for pages under writeback:
4186 * lock_page(A)
4187 * SetPageWriteback(A)
4188 * unlock_page(A)
4189 * lock_page(B)
4190 * lock_page(B)
d383807a 4191 * pte_alloc_one
63f3655f
MH
4192 * shrink_page_list
4193 * wait_on_page_writeback(A)
4194 * SetPageWriteback(B)
4195 * unlock_page(B)
4196 * # flush A, B to clear the writeback
4197 */
4198 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 4199 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
4200 if (!vmf->prealloc_pte)
4201 return VM_FAULT_OOM;
63f3655f
MH
4202 }
4203
11bac800 4204 ret = vma->vm_ops->fault(vmf);
3917048d 4205 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 4206 VM_FAULT_DONE_COW)))
bc2466e4 4207 return ret;
7eae74af 4208
667240e0 4209 if (unlikely(PageHWPoison(vmf->page))) {
3149c79f 4210 struct page *page = vmf->page;
e53ac737
RR
4211 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4212 if (ret & VM_FAULT_LOCKED) {
3149c79f
RR
4213 if (page_mapped(page))
4214 unmap_mapping_pages(page_mapping(page),
4215 page->index, 1, false);
e53ac737 4216 /* Retry if a clean page was removed from the cache. */
3149c79f
RR
4217 if (invalidate_inode_page(page))
4218 poisonret = VM_FAULT_NOPAGE;
4219 unlock_page(page);
e53ac737 4220 }
3149c79f 4221 put_page(page);
936ca80d 4222 vmf->page = NULL;
e53ac737 4223 return poisonret;
7eae74af
KS
4224 }
4225
4226 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 4227 lock_page(vmf->page);
7eae74af 4228 else
667240e0 4229 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 4230
7eae74af
KS
4231 return ret;
4232}
4233
396bcc52 4234#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 4235static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 4236{
82b0f8c3 4237 struct vm_area_struct *vma = vmf->vma;
953c66c2 4238
82b0f8c3 4239 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
4240 /*
4241 * We are going to consume the prealloc table,
4242 * count that as nr_ptes.
4243 */
c4812909 4244 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 4245 vmf->prealloc_pte = NULL;
953c66c2
AK
4246}
4247
f9ce0be7 4248vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4249{
82b0f8c3
JK
4250 struct vm_area_struct *vma = vmf->vma;
4251 bool write = vmf->flags & FAULT_FLAG_WRITE;
4252 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 4253 pmd_t entry;
2b740303 4254 int i;
d01ac3c3 4255 vm_fault_t ret = VM_FAULT_FALLBACK;
10102459
KS
4256
4257 if (!transhuge_vma_suitable(vma, haddr))
d01ac3c3 4258 return ret;
10102459 4259
10102459 4260 page = compound_head(page);
d01ac3c3
MWO
4261 if (compound_order(page) != HPAGE_PMD_ORDER)
4262 return ret;
10102459 4263
eac96c3e
YS
4264 /*
4265 * Just backoff if any subpage of a THP is corrupted otherwise
4266 * the corrupted page may mapped by PMD silently to escape the
4267 * check. This kind of THP just can be PTE mapped. Access to
4268 * the corrupted subpage should trigger SIGBUS as expected.
4269 */
4270 if (unlikely(PageHasHWPoisoned(page)))
4271 return ret;
4272
953c66c2 4273 /*
f0953a1b 4274 * Archs like ppc64 need additional space to store information
953c66c2
AK
4275 * related to pte entry. Use the preallocated table for that.
4276 */
82b0f8c3 4277 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 4278 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 4279 if (!vmf->prealloc_pte)
953c66c2 4280 return VM_FAULT_OOM;
953c66c2
AK
4281 }
4282
82b0f8c3
JK
4283 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4284 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
4285 goto out;
4286
4287 for (i = 0; i < HPAGE_PMD_NR; i++)
4288 flush_icache_page(vma, page + i);
4289
4290 entry = mk_huge_pmd(page, vma->vm_page_prot);
4291 if (write)
f55e1014 4292 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 4293
fadae295 4294 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
cea86fe2
HD
4295 page_add_file_rmap(page, vma, true);
4296
953c66c2
AK
4297 /*
4298 * deposit and withdraw with pmd lock held
4299 */
4300 if (arch_needs_pgtable_deposit())
82b0f8c3 4301 deposit_prealloc_pte(vmf);
10102459 4302
82b0f8c3 4303 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 4304
82b0f8c3 4305 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
4306
4307 /* fault is handled */
4308 ret = 0;
95ecedcd 4309 count_vm_event(THP_FILE_MAPPED);
10102459 4310out:
82b0f8c3 4311 spin_unlock(vmf->ptl);
10102459
KS
4312 return ret;
4313}
4314#else
f9ce0be7 4315vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 4316{
f9ce0be7 4317 return VM_FAULT_FALLBACK;
10102459
KS
4318}
4319#endif
4320
9d3af4b4 4321void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3bb97794 4322{
82b0f8c3 4323 struct vm_area_struct *vma = vmf->vma;
2bad466c 4324 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
82b0f8c3 4325 bool write = vmf->flags & FAULT_FLAG_WRITE;
9d3af4b4 4326 bool prefault = vmf->address != addr;
3bb97794 4327 pte_t entry;
7267ec00 4328
3bb97794
KS
4329 flush_icache_page(vma, page);
4330 entry = mk_pte(page, vma->vm_page_prot);
46bdb427
WD
4331
4332 if (prefault && arch_wants_old_prefaulted_pte())
4333 entry = pte_mkold(entry);
50c25ee9
TB
4334 else
4335 entry = pte_sw_mkyoung(entry);
46bdb427 4336
3bb97794
KS
4337 if (write)
4338 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
9c28a205 4339 if (unlikely(uffd_wp))
f1eb1bac 4340 entry = pte_mkuffd_wp(entry);
bae473a4
KS
4341 /* copy-on-write page */
4342 if (write && !(vma->vm_flags & VM_SHARED)) {
f1a79412 4343 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
40f2bbf7 4344 page_add_new_anon_rmap(page, vma, addr);
b518154e 4345 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 4346 } else {
f1a79412 4347 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
cea86fe2 4348 page_add_file_rmap(page, vma, false);
3bb97794 4349 }
9d3af4b4 4350 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3bb97794
KS
4351}
4352
f46f2ade
PX
4353static bool vmf_pte_changed(struct vm_fault *vmf)
4354{
4355 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
c33c7948 4356 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
f46f2ade 4357
c33c7948 4358 return !pte_none(ptep_get(vmf->pte));
f46f2ade
PX
4359}
4360
9118c0cb
JK
4361/**
4362 * finish_fault - finish page fault once we have prepared the page to fault
4363 *
4364 * @vmf: structure describing the fault
4365 *
4366 * This function handles all that is needed to finish a page fault once the
4367 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4368 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 4369 * addition.
9118c0cb
JK
4370 *
4371 * The function expects the page to be locked and on success it consumes a
4372 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
4373 *
4374 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 4375 */
2b740303 4376vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb 4377{
f9ce0be7 4378 struct vm_area_struct *vma = vmf->vma;
9118c0cb 4379 struct page *page;
f9ce0be7 4380 vm_fault_t ret;
9118c0cb
JK
4381
4382 /* Did we COW the page? */
f9ce0be7 4383 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
9118c0cb
JK
4384 page = vmf->cow_page;
4385 else
4386 page = vmf->page;
6b31d595
MH
4387
4388 /*
4389 * check even for read faults because we might have lost our CoWed
4390 * page
4391 */
f9ce0be7
KS
4392 if (!(vma->vm_flags & VM_SHARED)) {
4393 ret = check_stable_address_space(vma->vm_mm);
4394 if (ret)
4395 return ret;
4396 }
4397
4398 if (pmd_none(*vmf->pmd)) {
4399 if (PageTransCompound(page)) {
4400 ret = do_set_pmd(vmf, page);
4401 if (ret != VM_FAULT_FALLBACK)
4402 return ret;
4403 }
4404
03c4f204
QZ
4405 if (vmf->prealloc_pte)
4406 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4407 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
f9ce0be7
KS
4408 return VM_FAULT_OOM;
4409 }
4410
f9ce0be7
KS
4411 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4412 vmf->address, &vmf->ptl);
3db82b93
HD
4413 if (!vmf->pte)
4414 return VM_FAULT_NOPAGE;
70427f6e 4415
f9ce0be7 4416 /* Re-check under ptl */
70427f6e 4417 if (likely(!vmf_pte_changed(vmf))) {
9d3af4b4 4418 do_set_pte(vmf, page, vmf->address);
70427f6e
SA
4419
4420 /* no need to invalidate: a not-present page won't be cached */
4421 update_mmu_cache(vma, vmf->address, vmf->pte);
4422
4423 ret = 0;
4424 } else {
4425 update_mmu_tlb(vma, vmf->address, vmf->pte);
f9ce0be7 4426 ret = VM_FAULT_NOPAGE;
70427f6e 4427 }
f9ce0be7 4428
f9ce0be7 4429 pte_unmap_unlock(vmf->pte, vmf->ptl);
9118c0cb
JK
4430 return ret;
4431}
4432
53d36a56
LS
4433static unsigned long fault_around_pages __read_mostly =
4434 65536 >> PAGE_SHIFT;
a9b0f861 4435
a9b0f861
KS
4436#ifdef CONFIG_DEBUG_FS
4437static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 4438{
53d36a56 4439 *val = fault_around_pages << PAGE_SHIFT;
1592eef0
KS
4440 return 0;
4441}
4442
b4903d6e 4443/*
da391d64
WK
4444 * fault_around_bytes must be rounded down to the nearest page order as it's
4445 * what do_fault_around() expects to see.
b4903d6e 4446 */
a9b0f861 4447static int fault_around_bytes_set(void *data, u64 val)
1592eef0 4448{
a9b0f861 4449 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 4450 return -EINVAL;
53d36a56
LS
4451
4452 /*
4453 * The minimum value is 1 page, however this results in no fault-around
4454 * at all. See should_fault_around().
4455 */
4456 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4457
1592eef0
KS
4458 return 0;
4459}
0a1345f8 4460DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 4461 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
4462
4463static int __init fault_around_debugfs(void)
4464{
d9f7979c
GKH
4465 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4466 &fault_around_bytes_fops);
1592eef0
KS
4467 return 0;
4468}
4469late_initcall(fault_around_debugfs);
1592eef0 4470#endif
8c6e50b0 4471
1fdb412b
KS
4472/*
4473 * do_fault_around() tries to map few pages around the fault address. The hope
4474 * is that the pages will be needed soon and this will lower the number of
4475 * faults to handle.
4476 *
4477 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4478 * not ready to be mapped: not up-to-date, locked, etc.
4479 *
9042599e
LS
4480 * This function doesn't cross VMA or page table boundaries, in order to call
4481 * map_pages() and acquire a PTE lock only once.
1fdb412b 4482 *
53d36a56 4483 * fault_around_pages defines how many pages we'll try to map.
da391d64
WK
4484 * do_fault_around() expects it to be set to a power of two less than or equal
4485 * to PTRS_PER_PTE.
1fdb412b 4486 *
da391d64 4487 * The virtual address of the area that we map is naturally aligned to
53d36a56 4488 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
da391d64
WK
4489 * (and therefore to page order). This way it's easier to guarantee
4490 * that we don't cross page table boundaries.
1fdb412b 4491 */
2b740303 4492static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 4493{
53d36a56 4494 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
9042599e
LS
4495 pgoff_t pte_off = pte_index(vmf->address);
4496 /* The page offset of vmf->address within the VMA. */
4497 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4498 pgoff_t from_pte, to_pte;
58ef47ef 4499 vm_fault_t ret;
8c6e50b0 4500
9042599e
LS
4501 /* The PTE offset of the start address, clamped to the VMA. */
4502 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4503 pte_off - min(pte_off, vma_off));
aecd6f44 4504
9042599e
LS
4505 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4506 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4507 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
8c6e50b0 4508
82b0f8c3 4509 if (pmd_none(*vmf->pmd)) {
4cf58924 4510 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 4511 if (!vmf->prealloc_pte)
f9ce0be7 4512 return VM_FAULT_OOM;
8c6e50b0
KS
4513 }
4514
58ef47ef
MWO
4515 rcu_read_lock();
4516 ret = vmf->vma->vm_ops->map_pages(vmf,
4517 vmf->pgoff + from_pte - pte_off,
4518 vmf->pgoff + to_pte - pte_off);
4519 rcu_read_unlock();
4520
4521 return ret;
8c6e50b0
KS
4522}
4523
9c28a205
PX
4524/* Return true if we should do read fault-around, false otherwise */
4525static inline bool should_fault_around(struct vm_fault *vmf)
4526{
4527 /* No ->map_pages? No way to fault around... */
4528 if (!vmf->vma->vm_ops->map_pages)
4529 return false;
4530
4531 if (uffd_disable_fault_around(vmf->vma))
4532 return false;
4533
53d36a56
LS
4534 /* A single page implies no faulting 'around' at all. */
4535 return fault_around_pages > 1;
9c28a205
PX
4536}
4537
2b740303 4538static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 4539{
2b740303 4540 vm_fault_t ret = 0;
22d1e68f 4541 struct folio *folio;
8c6e50b0
KS
4542
4543 /*
4544 * Let's call ->map_pages() first and use ->fault() as fallback
4545 * if page by the offset is not ready to be mapped (cold cache or
4546 * something).
4547 */
9c28a205
PX
4548 if (should_fault_around(vmf)) {
4549 ret = do_fault_around(vmf);
4550 if (ret)
4551 return ret;
8c6e50b0 4552 }
e655fb29 4553
936ca80d 4554 ret = __do_fault(vmf);
e655fb29
KS
4555 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4556 return ret;
4557
9118c0cb 4558 ret |= finish_fault(vmf);
22d1e68f
SK
4559 folio = page_folio(vmf->page);
4560 folio_unlock(folio);
7267ec00 4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
22d1e68f 4562 folio_put(folio);
e655fb29
KS
4563 return ret;
4564}
4565
2b740303 4566static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4567{
82b0f8c3 4568 struct vm_area_struct *vma = vmf->vma;
2b740303 4569 vm_fault_t ret;
ec47c3b9
KS
4570
4571 if (unlikely(anon_vma_prepare(vma)))
4572 return VM_FAULT_OOM;
4573
936ca80d
JK
4574 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4575 if (!vmf->cow_page)
ec47c3b9
KS
4576 return VM_FAULT_OOM;
4577
8f425e4e
MWO
4578 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4579 GFP_KERNEL)) {
936ca80d 4580 put_page(vmf->cow_page);
ec47c3b9
KS
4581 return VM_FAULT_OOM;
4582 }
68fa572b 4583 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
ec47c3b9 4584
936ca80d 4585 ret = __do_fault(vmf);
ec47c3b9
KS
4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587 goto uncharge_out;
3917048d
JK
4588 if (ret & VM_FAULT_DONE_COW)
4589 return ret;
ec47c3b9 4590
b1aa812b 4591 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4592 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4593
9118c0cb 4594 ret |= finish_fault(vmf);
b1aa812b
JK
4595 unlock_page(vmf->page);
4596 put_page(vmf->page);
7267ec00
KS
4597 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4598 goto uncharge_out;
ec47c3b9
KS
4599 return ret;
4600uncharge_out:
936ca80d 4601 put_page(vmf->cow_page);
ec47c3b9
KS
4602 return ret;
4603}
4604
2b740303 4605static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4606{
82b0f8c3 4607 struct vm_area_struct *vma = vmf->vma;
2b740303 4608 vm_fault_t ret, tmp;
6f609b7e 4609 struct folio *folio;
1d65f86d 4610
936ca80d 4611 ret = __do_fault(vmf);
7eae74af 4612 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4613 return ret;
1da177e4 4614
6f609b7e
SK
4615 folio = page_folio(vmf->page);
4616
1da177e4 4617 /*
f0c6d4d2
KS
4618 * Check if the backing address space wants to know that the page is
4619 * about to become writable
1da177e4 4620 */
fb09a464 4621 if (vma->vm_ops->page_mkwrite) {
6f609b7e 4622 folio_unlock(folio);
86aa6998 4623 tmp = do_page_mkwrite(vmf, folio);
fb09a464
KS
4624 if (unlikely(!tmp ||
4625 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
6f609b7e 4626 folio_put(folio);
fb09a464 4627 return tmp;
4294621f 4628 }
fb09a464
KS
4629 }
4630
9118c0cb 4631 ret |= finish_fault(vmf);
7267ec00
KS
4632 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4633 VM_FAULT_RETRY))) {
6f609b7e
SK
4634 folio_unlock(folio);
4635 folio_put(folio);
f0c6d4d2 4636 return ret;
1da177e4 4637 }
b827e496 4638
89b15332 4639 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4640 return ret;
54cb8821 4641}
d00806b1 4642
9a95f3cf 4643/*
c1e8d7c6 4644 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4645 * but allow concurrent faults).
c1e8d7c6 4646 * The mmap_lock may have been released depending on flags and our
9138e47e 4647 * return value. See filemap_fault() and __folio_lock_or_retry().
c1e8d7c6 4648 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4649 * by other thread calling munmap()).
9a95f3cf 4650 */
2b740303 4651static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4652{
82b0f8c3 4653 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4654 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4655 vm_fault_t ret;
54cb8821 4656
ff09d7ec
AK
4657 /*
4658 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4659 */
4660 if (!vma->vm_ops->fault) {
3db82b93
HD
4661 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4662 vmf->address, &vmf->ptl);
4663 if (unlikely(!vmf->pte))
ff09d7ec
AK
4664 ret = VM_FAULT_SIGBUS;
4665 else {
ff09d7ec
AK
4666 /*
4667 * Make sure this is not a temporary clearing of pte
4668 * by holding ptl and checking again. A R/M/W update
4669 * of pte involves: take ptl, clearing the pte so that
4670 * we don't have concurrent modification by hardware
4671 * followed by an update.
4672 */
c33c7948 4673 if (unlikely(pte_none(ptep_get(vmf->pte))))
ff09d7ec
AK
4674 ret = VM_FAULT_SIGBUS;
4675 else
4676 ret = VM_FAULT_NOPAGE;
4677
4678 pte_unmap_unlock(vmf->pte, vmf->ptl);
4679 }
4680 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4681 ret = do_read_fault(vmf);
4682 else if (!(vma->vm_flags & VM_SHARED))
4683 ret = do_cow_fault(vmf);
4684 else
4685 ret = do_shared_fault(vmf);
4686
4687 /* preallocated pagetable is unused: free it */
4688 if (vmf->prealloc_pte) {
fc8efd2d 4689 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4690 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4691 }
4692 return ret;
54cb8821
NP
4693}
4694
f4c0d836
YS
4695int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4696 unsigned long addr, int page_nid, int *flags)
9532fec1
MG
4697{
4698 get_page(page);
4699
fc137c0d
R
4700 /* Record the current PID acceesing VMA */
4701 vma_set_access_pid_bit(vma);
4702
9532fec1 4703 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4704 if (page_nid == numa_node_id()) {
9532fec1 4705 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4706 *flags |= TNF_FAULT_LOCAL;
4707 }
9532fec1
MG
4708
4709 return mpol_misplaced(page, vma, addr);
4710}
4711
2b740303 4712static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4713{
82b0f8c3 4714 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4715 struct page *page = NULL;
98fa15f3 4716 int page_nid = NUMA_NO_NODE;
6a56ccbc 4717 bool writable = false;
90572890 4718 int last_cpupid;
cbee9f88 4719 int target_nid;
04a86453 4720 pte_t pte, old_pte;
6688cc05 4721 int flags = 0;
d10e63f2
MG
4722
4723 /*
166f61b9
TH
4724 * The "pte" at this point cannot be used safely without
4725 * validation through pte_unmap_same(). It's of NUMA type but
4726 * the pfn may be screwed if the read is non atomic.
166f61b9 4727 */
82b0f8c3 4728 spin_lock(vmf->ptl);
c33c7948 4729 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
82b0f8c3 4730 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4731 goto out;
4732 }
4733
b99a342d
HY
4734 /* Get the normal PTE */
4735 old_pte = ptep_get(vmf->pte);
04a86453 4736 pte = pte_modify(old_pte, vma->vm_page_prot);
d10e63f2 4737
6a56ccbc
DH
4738 /*
4739 * Detect now whether the PTE could be writable; this information
4740 * is only valid while holding the PT lock.
4741 */
4742 writable = pte_write(pte);
4743 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4744 can_change_pte_writable(vma, vmf->address, pte))
4745 writable = true;
4746
82b0f8c3 4747 page = vm_normal_page(vma, vmf->address, pte);
3218f871 4748 if (!page || is_zone_device_page(page))
b99a342d 4749 goto out_map;
d10e63f2 4750
e81c4802 4751 /* TODO: handle PTE-mapped THP */
b99a342d
HY
4752 if (PageCompound(page))
4753 goto out_map;
e81c4802 4754
6688cc05 4755 /*
bea66fbd
MG
4756 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4757 * much anyway since they can be in shared cache state. This misses
4758 * the case where a mapping is writable but the process never writes
4759 * to it but pte_write gets cleared during protection updates and
4760 * pte_dirty has unpredictable behaviour between PTE scan updates,
4761 * background writeback, dirty balancing and application behaviour.
6688cc05 4762 */
6a56ccbc 4763 if (!writable)
6688cc05
PZ
4764 flags |= TNF_NO_GROUP;
4765
dabe1d99
RR
4766 /*
4767 * Flag if the page is shared between multiple address spaces. This
4768 * is later used when determining whether to group tasks together
4769 */
4770 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4771 flags |= TNF_SHARED;
4772
8191acbd 4773 page_nid = page_to_nid(page);
33024536
HY
4774 /*
4775 * For memory tiering mode, cpupid of slow memory page is used
4776 * to record page access time. So use default value.
4777 */
4778 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4779 !node_is_toptier(page_nid))
4780 last_cpupid = (-1 & LAST_CPUPID_MASK);
4781 else
4782 last_cpupid = page_cpupid_last(page);
82b0f8c3 4783 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4784 &flags);
98fa15f3 4785 if (target_nid == NUMA_NO_NODE) {
4daae3b4 4786 put_page(page);
b99a342d 4787 goto out_map;
4daae3b4 4788 }
b99a342d 4789 pte_unmap_unlock(vmf->pte, vmf->ptl);
6a56ccbc 4790 writable = false;
4daae3b4
MG
4791
4792 /* Migrate to the requested node */
bf90ac19 4793 if (migrate_misplaced_page(page, vma, target_nid)) {
8191acbd 4794 page_nid = target_nid;
6688cc05 4795 flags |= TNF_MIGRATED;
b99a342d 4796 } else {
074c2381 4797 flags |= TNF_MIGRATE_FAIL;
c7ad0880
HD
4798 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4799 vmf->address, &vmf->ptl);
4800 if (unlikely(!vmf->pte))
4801 goto out;
c33c7948 4802 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
b99a342d
HY
4803 pte_unmap_unlock(vmf->pte, vmf->ptl);
4804 goto out;
4805 }
4806 goto out_map;
4807 }
4daae3b4
MG
4808
4809out:
98fa15f3 4810 if (page_nid != NUMA_NO_NODE)
6688cc05 4811 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2 4812 return 0;
b99a342d
HY
4813out_map:
4814 /*
4815 * Make it present again, depending on how arch implements
4816 * non-accessible ptes, some can allow access by kernel mode.
4817 */
4818 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4819 pte = pte_modify(old_pte, vma->vm_page_prot);
4820 pte = pte_mkyoung(pte);
6a56ccbc 4821 if (writable)
b99a342d
HY
4822 pte = pte_mkwrite(pte);
4823 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4824 update_mmu_cache(vma, vmf->address, vmf->pte);
4825 pte_unmap_unlock(vmf->pte, vmf->ptl);
4826 goto out;
d10e63f2
MG
4827}
4828
2b740303 4829static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4830{
f4200391 4831 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4832 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4833 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4834 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4835 return VM_FAULT_FALLBACK;
4836}
4837
183f24aa 4838/* `inline' is required to avoid gcc 4.1.2 build error */
5db4f15c 4839static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
b96375f7 4840{
c89357e2 4841 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
aea06577 4842 vm_fault_t ret;
c89357e2 4843
529b930b 4844 if (vma_is_anonymous(vmf->vma)) {
c89357e2
DH
4845 if (likely(!unshare) &&
4846 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
529b930b 4847 return handle_userfault(vmf, VM_UFFD_WP);
5db4f15c 4848 return do_huge_pmd_wp_page(vmf);
529b930b 4849 }
327e9fd4 4850
aea06577
DH
4851 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4852 if (vmf->vma->vm_ops->huge_fault) {
4853 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4854 if (!(ret & VM_FAULT_FALLBACK))
4855 return ret;
4856 }
327e9fd4 4857 }
af9e4d5f 4858
327e9fd4 4859 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4860 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4861
b96375f7
MW
4862 return VM_FAULT_FALLBACK;
4863}
4864
2b740303 4865static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4866{
14c99d65
GJ
4867#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4868 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4869 /* No support for anonymous transparent PUD pages yet */
4870 if (vma_is_anonymous(vmf->vma))
4871 return VM_FAULT_FALLBACK;
4872 if (vmf->vma->vm_ops->huge_fault)
4873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4874#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4875 return VM_FAULT_FALLBACK;
4876}
4877
4878static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4879{
327e9fd4
THV
4880#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4881 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
aea06577
DH
4882 vm_fault_t ret;
4883
a00cc7d9
MW
4884 /* No support for anonymous transparent PUD pages yet */
4885 if (vma_is_anonymous(vmf->vma))
327e9fd4 4886 goto split;
aea06577
DH
4887 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4888 if (vmf->vma->vm_ops->huge_fault) {
4889 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4890 if (!(ret & VM_FAULT_FALLBACK))
4891 return ret;
4892 }
327e9fd4
THV
4893 }
4894split:
4895 /* COW or write-notify not handled on PUD level: split pud.*/
4896 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
14c99d65 4897#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
a00cc7d9
MW
4898 return VM_FAULT_FALLBACK;
4899}
4900
1da177e4
LT
4901/*
4902 * These routines also need to handle stuff like marking pages dirty
4903 * and/or accessed for architectures that don't do it in hardware (most
4904 * RISC architectures). The early dirtying is also good on the i386.
4905 *
4906 * There is also a hook called "update_mmu_cache()" that architectures
4907 * with external mmu caches can use to update those (ie the Sparc or
4908 * PowerPC hashed page tables that act as extended TLBs).
4909 *
c1e8d7c6 4910 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4911 * concurrent faults).
9a95f3cf 4912 *
c1e8d7c6 4913 * The mmap_lock may have been released depending on flags and our return value.
9138e47e 4914 * See filemap_fault() and __folio_lock_or_retry().
1da177e4 4915 */
2b740303 4916static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4917{
4918 pte_t entry;
4919
82b0f8c3 4920 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4921 /*
4922 * Leave __pte_alloc() until later: because vm_ops->fault may
4923 * want to allocate huge page, and if we expose page table
4924 * for an instant, it will be difficult to retract from
4925 * concurrent faults and from rmap lookups.
4926 */
82b0f8c3 4927 vmf->pte = NULL;
f46f2ade 4928 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4929 } else {
7267ec00
KS
4930 /*
4931 * A regular pmd is established and it can't morph into a huge
c7ad0880
HD
4932 * pmd by anon khugepaged, since that takes mmap_lock in write
4933 * mode; but shmem or file collapse to THP could still morph
4934 * it into a huge pmd: just retry later if so.
7267ec00 4935 */
c7ad0880
HD
4936 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4937 vmf->address, &vmf->ptl);
4938 if (unlikely(!vmf->pte))
4939 return 0;
26e1a0c3 4940 vmf->orig_pte = ptep_get_lockless(vmf->pte);
f46f2ade 4941 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
7267ec00 4942
2994302b 4943 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4944 pte_unmap(vmf->pte);
4945 vmf->pte = NULL;
65500d23 4946 }
1da177e4
LT
4947 }
4948
2bad466c
PX
4949 if (!vmf->pte)
4950 return do_pte_missing(vmf);
7267ec00 4951
2994302b
JK
4952 if (!pte_present(vmf->orig_pte))
4953 return do_swap_page(vmf);
7267ec00 4954
2994302b
JK
4955 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4956 return do_numa_page(vmf);
d10e63f2 4957
82b0f8c3 4958 spin_lock(vmf->ptl);
2994302b 4959 entry = vmf->orig_pte;
c33c7948 4960 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
7df67697 4961 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4962 goto unlock;
7df67697 4963 }
c89357e2 4964 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
f6f37321 4965 if (!pte_write(entry))
2994302b 4966 return do_wp_page(vmf);
c89357e2
DH
4967 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4968 entry = pte_mkdirty(entry);
1da177e4
LT
4969 }
4970 entry = pte_mkyoung(entry);
82b0f8c3
JK
4971 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4972 vmf->flags & FAULT_FLAG_WRITE)) {
4973 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4974 } else {
b7333b58
YS
4975 /* Skip spurious TLB flush for retried page fault */
4976 if (vmf->flags & FAULT_FLAG_TRIED)
4977 goto unlock;
1a44e149
AA
4978 /*
4979 * This is needed only for protection faults but the arch code
4980 * is not yet telling us if this is a protection fault or not.
4981 * This still avoids useless tlb flushes for .text page faults
4982 * with threads.
4983 */
82b0f8c3 4984 if (vmf->flags & FAULT_FLAG_WRITE)
99c29133
GS
4985 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4986 vmf->pte);
1a44e149 4987 }
8f4e2101 4988unlock:
82b0f8c3 4989 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4990 return 0;
1da177e4
LT
4991}
4992
4993/*
4994 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4995 *
c1e8d7c6 4996 * The mmap_lock may have been released depending on flags and our
9138e47e 4997 * return value. See filemap_fault() and __folio_lock_or_retry().
1da177e4 4998 */
2b740303
SJ
4999static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5000 unsigned long address, unsigned int flags)
1da177e4 5001{
82b0f8c3 5002 struct vm_fault vmf = {
bae473a4 5003 .vma = vma,
1a29d85e 5004 .address = address & PAGE_MASK,
824ddc60 5005 .real_address = address,
bae473a4 5006 .flags = flags,
0721ec8b 5007 .pgoff = linear_page_index(vma, address),
667240e0 5008 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 5009 };
dcddffd4 5010 struct mm_struct *mm = vma->vm_mm;
7da4e2cb 5011 unsigned long vm_flags = vma->vm_flags;
1da177e4 5012 pgd_t *pgd;
c2febafc 5013 p4d_t *p4d;
2b740303 5014 vm_fault_t ret;
1da177e4 5015
1da177e4 5016 pgd = pgd_offset(mm, address);
c2febafc
KS
5017 p4d = p4d_alloc(mm, pgd, address);
5018 if (!p4d)
5019 return VM_FAULT_OOM;
a00cc7d9 5020
c2febafc 5021 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 5022 if (!vmf.pud)
c74df32c 5023 return VM_FAULT_OOM;
625110b5 5024retry_pud:
7da4e2cb 5025 if (pud_none(*vmf.pud) &&
a7f4e6e4 5026 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a00cc7d9
MW
5027 ret = create_huge_pud(&vmf);
5028 if (!(ret & VM_FAULT_FALLBACK))
5029 return ret;
5030 } else {
5031 pud_t orig_pud = *vmf.pud;
5032
5033 barrier();
5034 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 5035
c89357e2
DH
5036 /*
5037 * TODO once we support anonymous PUDs: NUMA case and
5038 * FAULT_FLAG_UNSHARE handling.
5039 */
5040 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
a00cc7d9
MW
5041 ret = wp_huge_pud(&vmf, orig_pud);
5042 if (!(ret & VM_FAULT_FALLBACK))
5043 return ret;
5044 } else {
5045 huge_pud_set_accessed(&vmf, orig_pud);
5046 return 0;
5047 }
5048 }
5049 }
5050
5051 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 5052 if (!vmf.pmd)
c74df32c 5053 return VM_FAULT_OOM;
625110b5
TH
5054
5055 /* Huge pud page fault raced with pmd_alloc? */
5056 if (pud_trans_unstable(vmf.pud))
5057 goto retry_pud;
5058
7da4e2cb 5059 if (pmd_none(*vmf.pmd) &&
a7f4e6e4 5060 hugepage_vma_check(vma, vm_flags, false, true, true)) {
a2d58167 5061 ret = create_huge_pmd(&vmf);
c0292554
KS
5062 if (!(ret & VM_FAULT_FALLBACK))
5063 return ret;
71e3aac0 5064 } else {
26e1a0c3 5065 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
1f1d06c3 5066
5db4f15c 5067 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
84c3fc4e 5068 VM_BUG_ON(thp_migration_supported() &&
5db4f15c
YS
5069 !is_pmd_migration_entry(vmf.orig_pmd));
5070 if (is_pmd_migration_entry(vmf.orig_pmd))
84c3fc4e
ZY
5071 pmd_migration_entry_wait(mm, vmf.pmd);
5072 return 0;
5073 }
5db4f15c
YS
5074 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5075 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5076 return do_huge_pmd_numa_page(&vmf);
d10e63f2 5077
c89357e2
DH
5078 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5079 !pmd_write(vmf.orig_pmd)) {
5db4f15c 5080 ret = wp_huge_pmd(&vmf);
9845cbbd
KS
5081 if (!(ret & VM_FAULT_FALLBACK))
5082 return ret;
a1dd450b 5083 } else {
5db4f15c 5084 huge_pmd_set_accessed(&vmf);
9845cbbd 5085 return 0;
1f1d06c3 5086 }
71e3aac0
AA
5087 }
5088 }
5089
82b0f8c3 5090 return handle_pte_fault(&vmf);
1da177e4
LT
5091}
5092
bce617ed 5093/**
f0953a1b 5094 * mm_account_fault - Do page fault accounting
809ef83c 5095 * @mm: mm from which memcg should be extracted. It can be NULL.
bce617ed
PX
5096 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5097 * of perf event counters, but we'll still do the per-task accounting to
5098 * the task who triggered this page fault.
5099 * @address: the faulted address.
5100 * @flags: the fault flags.
5101 * @ret: the fault retcode.
5102 *
f0953a1b 5103 * This will take care of most of the page fault accounting. Meanwhile, it
bce617ed 5104 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
f0953a1b 5105 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
bce617ed
PX
5106 * still be in per-arch page fault handlers at the entry of page fault.
5107 */
53156443 5108static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
bce617ed
PX
5109 unsigned long address, unsigned int flags,
5110 vm_fault_t ret)
5111{
5112 bool major;
5113
53156443
SB
5114 /* Incomplete faults will be accounted upon completion. */
5115 if (ret & VM_FAULT_RETRY)
5116 return;
5117
bce617ed 5118 /*
53156443
SB
5119 * To preserve the behavior of older kernels, PGFAULT counters record
5120 * both successful and failed faults, as opposed to perf counters,
5121 * which ignore failed cases.
bce617ed 5122 */
53156443
SB
5123 count_vm_event(PGFAULT);
5124 count_memcg_event_mm(mm, PGFAULT);
5125
5126 /*
5127 * Do not account for unsuccessful faults (e.g. when the address wasn't
5128 * valid). That includes arch_vma_access_permitted() failing before
5129 * reaching here. So this is not a "this many hardware page faults"
5130 * counter. We should use the hw profiling for that.
5131 */
5132 if (ret & VM_FAULT_ERROR)
bce617ed
PX
5133 return;
5134
5135 /*
5136 * We define the fault as a major fault when the final successful fault
5137 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5138 * handle it immediately previously).
5139 */
5140 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5141
a2beb5f1
PX
5142 if (major)
5143 current->maj_flt++;
5144 else
5145 current->min_flt++;
5146
bce617ed 5147 /*
a2beb5f1
PX
5148 * If the fault is done for GUP, regs will be NULL. We only do the
5149 * accounting for the per thread fault counters who triggered the
5150 * fault, and we skip the perf event updates.
bce617ed
PX
5151 */
5152 if (!regs)
5153 return;
5154
a2beb5f1 5155 if (major)
bce617ed 5156 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 5157 else
bce617ed 5158 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
5159}
5160
ec1c86b2
YZ
5161#ifdef CONFIG_LRU_GEN
5162static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163{
8788f678
YZ
5164 /* the LRU algorithm only applies to accesses with recency */
5165 current->in_lru_fault = vma_has_recency(vma);
ec1c86b2
YZ
5166}
5167
5168static void lru_gen_exit_fault(void)
5169{
5170 current->in_lru_fault = false;
5171}
5172#else
5173static void lru_gen_enter_fault(struct vm_area_struct *vma)
5174{
5175}
5176
5177static void lru_gen_exit_fault(void)
5178{
5179}
5180#endif /* CONFIG_LRU_GEN */
5181
cdc5021c
DH
5182static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5183 unsigned int *flags)
5184{
5185 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5186 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5187 return VM_FAULT_SIGSEGV;
5188 /*
5189 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5190 * just treat it like an ordinary read-fault otherwise.
5191 */
5192 if (!is_cow_mapping(vma->vm_flags))
5193 *flags &= ~FAULT_FLAG_UNSHARE;
79881fed
DH
5194 } else if (*flags & FAULT_FLAG_WRITE) {
5195 /* Write faults on read-only mappings are impossible ... */
5196 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5197 return VM_FAULT_SIGSEGV;
5198 /* ... and FOLL_FORCE only applies to COW mappings. */
5199 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5200 !is_cow_mapping(vma->vm_flags)))
5201 return VM_FAULT_SIGSEGV;
cdc5021c
DH
5202 }
5203 return 0;
5204}
5205
9a95f3cf
PC
5206/*
5207 * By the time we get here, we already hold the mm semaphore
5208 *
c1e8d7c6 5209 * The mmap_lock may have been released depending on flags and our
9138e47e 5210 * return value. See filemap_fault() and __folio_lock_or_retry().
9a95f3cf 5211 */
2b740303 5212vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 5213 unsigned int flags, struct pt_regs *regs)
519e5247 5214{
53156443
SB
5215 /* If the fault handler drops the mmap_lock, vma may be freed */
5216 struct mm_struct *mm = vma->vm_mm;
2b740303 5217 vm_fault_t ret;
519e5247
JW
5218
5219 __set_current_state(TASK_RUNNING);
5220
cdc5021c
DH
5221 ret = sanitize_fault_flags(vma, &flags);
5222 if (ret)
53156443 5223 goto out;
cdc5021c 5224
de0c799b
LD
5225 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5226 flags & FAULT_FLAG_INSTRUCTION,
53156443
SB
5227 flags & FAULT_FLAG_REMOTE)) {
5228 ret = VM_FAULT_SIGSEGV;
5229 goto out;
5230 }
de0c799b 5231
519e5247
JW
5232 /*
5233 * Enable the memcg OOM handling for faults triggered in user
5234 * space. Kernel faults are handled more gracefully.
5235 */
5236 if (flags & FAULT_FLAG_USER)
29ef680a 5237 mem_cgroup_enter_user_fault();
519e5247 5238
ec1c86b2
YZ
5239 lru_gen_enter_fault(vma);
5240
bae473a4
KS
5241 if (unlikely(is_vm_hugetlb_page(vma)))
5242 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5243 else
5244 ret = __handle_mm_fault(vma, address, flags);
519e5247 5245
ec1c86b2
YZ
5246 lru_gen_exit_fault();
5247
49426420 5248 if (flags & FAULT_FLAG_USER) {
29ef680a 5249 mem_cgroup_exit_user_fault();
166f61b9
TH
5250 /*
5251 * The task may have entered a memcg OOM situation but
5252 * if the allocation error was handled gracefully (no
5253 * VM_FAULT_OOM), there is no need to kill anything.
5254 * Just clean up the OOM state peacefully.
5255 */
5256 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5257 mem_cgroup_oom_synchronize(false);
49426420 5258 }
53156443
SB
5259out:
5260 mm_account_fault(mm, regs, address, flags, ret);
bce617ed 5261
519e5247
JW
5262 return ret;
5263}
e1d6d01a 5264EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 5265
c2508ec5
LT
5266#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5267#include <linux/extable.h>
5268
5269static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5270{
5271 /* Even if this succeeds, make it clear we *might* have slept */
5272 if (likely(mmap_read_trylock(mm))) {
5273 might_sleep();
5274 return true;
5275 }
5276
5277 if (regs && !user_mode(regs)) {
5278 unsigned long ip = instruction_pointer(regs);
5279 if (!search_exception_tables(ip))
5280 return false;
5281 }
5282
eda00472 5283 return !mmap_read_lock_killable(mm);
c2508ec5
LT
5284}
5285
5286static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5287{
5288 /*
5289 * We don't have this operation yet.
5290 *
5291 * It should be easy enough to do: it's basically a
5292 * atomic_long_try_cmpxchg_acquire()
5293 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5294 * it also needs the proper lockdep magic etc.
5295 */
5296 return false;
5297}
5298
5299static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5300{
5301 mmap_read_unlock(mm);
5302 if (regs && !user_mode(regs)) {
5303 unsigned long ip = instruction_pointer(regs);
5304 if (!search_exception_tables(ip))
5305 return false;
5306 }
eda00472 5307 return !mmap_write_lock_killable(mm);
c2508ec5
LT
5308}
5309
5310/*
5311 * Helper for page fault handling.
5312 *
5313 * This is kind of equivalend to "mmap_read_lock()" followed
5314 * by "find_extend_vma()", except it's a lot more careful about
5315 * the locking (and will drop the lock on failure).
5316 *
5317 * For example, if we have a kernel bug that causes a page
5318 * fault, we don't want to just use mmap_read_lock() to get
5319 * the mm lock, because that would deadlock if the bug were
5320 * to happen while we're holding the mm lock for writing.
5321 *
5322 * So this checks the exception tables on kernel faults in
5323 * order to only do this all for instructions that are actually
5324 * expected to fault.
5325 *
5326 * We can also actually take the mm lock for writing if we
5327 * need to extend the vma, which helps the VM layer a lot.
5328 */
5329struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5330 unsigned long addr, struct pt_regs *regs)
5331{
5332 struct vm_area_struct *vma;
5333
5334 if (!get_mmap_lock_carefully(mm, regs))
5335 return NULL;
5336
5337 vma = find_vma(mm, addr);
5338 if (likely(vma && (vma->vm_start <= addr)))
5339 return vma;
5340
5341 /*
5342 * Well, dang. We might still be successful, but only
5343 * if we can extend a vma to do so.
5344 */
5345 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5346 mmap_read_unlock(mm);
5347 return NULL;
5348 }
5349
5350 /*
5351 * We can try to upgrade the mmap lock atomically,
5352 * in which case we can continue to use the vma
5353 * we already looked up.
5354 *
5355 * Otherwise we'll have to drop the mmap lock and
5356 * re-take it, and also look up the vma again,
5357 * re-checking it.
5358 */
5359 if (!mmap_upgrade_trylock(mm)) {
5360 if (!upgrade_mmap_lock_carefully(mm, regs))
5361 return NULL;
5362
5363 vma = find_vma(mm, addr);
5364 if (!vma)
5365 goto fail;
5366 if (vma->vm_start <= addr)
5367 goto success;
5368 if (!(vma->vm_flags & VM_GROWSDOWN))
5369 goto fail;
5370 }
5371
8d7071af 5372 if (expand_stack_locked(vma, addr))
c2508ec5
LT
5373 goto fail;
5374
5375success:
5376 mmap_write_downgrade(mm);
5377 return vma;
5378
5379fail:
5380 mmap_write_unlock(mm);
5381 return NULL;
5382}
5383#endif
5384
50ee3253
SB
5385#ifdef CONFIG_PER_VMA_LOCK
5386/*
5387 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5388 * stable and not isolated. If the VMA is not found or is being modified the
5389 * function returns NULL.
5390 */
5391struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5392 unsigned long address)
5393{
5394 MA_STATE(mas, &mm->mm_mt, address, address);
5395 struct vm_area_struct *vma;
5396
5397 rcu_read_lock();
5398retry:
5399 vma = mas_walk(&mas);
5400 if (!vma)
5401 goto inval;
5402
7a7f0946
AR
5403 /* Only anonymous and tcp vmas are supported for now */
5404 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
50ee3253
SB
5405 goto inval;
5406
5407 if (!vma_start_read(vma))
5408 goto inval;
5409
657b5146
JH
5410 /*
5411 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5412 * This check must happen after vma_start_read(); otherwise, a
5413 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5414 * from its anon_vma.
5415 */
5416 if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5417 goto inval_end_read;
5418
444eeb17
SB
5419 /*
5420 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5421 * it for now and fall back to page fault handling under mmap_lock.
5422 */
657b5146
JH
5423 if (userfaultfd_armed(vma))
5424 goto inval_end_read;
444eeb17 5425
50ee3253 5426 /* Check since vm_start/vm_end might change before we lock the VMA */
657b5146
JH
5427 if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5428 goto inval_end_read;
50ee3253
SB
5429
5430 /* Check if the VMA got isolated after we found it */
5431 if (vma->detached) {
5432 vma_end_read(vma);
52f23865 5433 count_vm_vma_lock_event(VMA_LOCK_MISS);
50ee3253
SB
5434 /* The area was replaced with another one */
5435 goto retry;
5436 }
5437
5438 rcu_read_unlock();
5439 return vma;
657b5146
JH
5440
5441inval_end_read:
5442 vma_end_read(vma);
50ee3253
SB
5443inval:
5444 rcu_read_unlock();
52f23865 5445 count_vm_vma_lock_event(VMA_LOCK_ABORT);
50ee3253
SB
5446 return NULL;
5447}
5448#endif /* CONFIG_PER_VMA_LOCK */
5449
90eceff1
KS
5450#ifndef __PAGETABLE_P4D_FOLDED
5451/*
5452 * Allocate p4d page table.
5453 * We've already handled the fast-path in-line.
5454 */
5455int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5456{
5457 p4d_t *new = p4d_alloc_one(mm, address);
5458 if (!new)
5459 return -ENOMEM;
5460
90eceff1 5461 spin_lock(&mm->page_table_lock);
ed33b5a6 5462 if (pgd_present(*pgd)) { /* Another has populated it */
90eceff1 5463 p4d_free(mm, new);
ed33b5a6
QZ
5464 } else {
5465 smp_wmb(); /* See comment in pmd_install() */
90eceff1 5466 pgd_populate(mm, pgd, new);
ed33b5a6 5467 }
90eceff1
KS
5468 spin_unlock(&mm->page_table_lock);
5469 return 0;
5470}
5471#endif /* __PAGETABLE_P4D_FOLDED */
5472
1da177e4
LT
5473#ifndef __PAGETABLE_PUD_FOLDED
5474/*
5475 * Allocate page upper directory.
872fec16 5476 * We've already handled the fast-path in-line.
1da177e4 5477 */
c2febafc 5478int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 5479{
c74df32c
HD
5480 pud_t *new = pud_alloc_one(mm, address);
5481 if (!new)
1bb3630e 5482 return -ENOMEM;
1da177e4 5483
872fec16 5484 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
5485 if (!p4d_present(*p4d)) {
5486 mm_inc_nr_puds(mm);
ed33b5a6 5487 smp_wmb(); /* See comment in pmd_install() */
c2febafc 5488 p4d_populate(mm, p4d, new);
b4e98d9a 5489 } else /* Another has populated it */
5e541973 5490 pud_free(mm, new);
c74df32c 5491 spin_unlock(&mm->page_table_lock);
1bb3630e 5492 return 0;
1da177e4
LT
5493}
5494#endif /* __PAGETABLE_PUD_FOLDED */
5495
5496#ifndef __PAGETABLE_PMD_FOLDED
5497/*
5498 * Allocate page middle directory.
872fec16 5499 * We've already handled the fast-path in-line.
1da177e4 5500 */
1bb3630e 5501int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 5502{
a00cc7d9 5503 spinlock_t *ptl;
c74df32c
HD
5504 pmd_t *new = pmd_alloc_one(mm, address);
5505 if (!new)
1bb3630e 5506 return -ENOMEM;
1da177e4 5507
a00cc7d9 5508 ptl = pud_lock(mm, pud);
dc6c9a35
KS
5509 if (!pud_present(*pud)) {
5510 mm_inc_nr_pmds(mm);
ed33b5a6 5511 smp_wmb(); /* See comment in pmd_install() */
1bb3630e 5512 pud_populate(mm, pud, new);
ed33b5a6 5513 } else { /* Another has populated it */
5e541973 5514 pmd_free(mm, new);
ed33b5a6 5515 }
a00cc7d9 5516 spin_unlock(ptl);
1bb3630e 5517 return 0;
e0f39591 5518}
1da177e4
LT
5519#endif /* __PAGETABLE_PMD_FOLDED */
5520
0e5e64c0
MS
5521/**
5522 * follow_pte - look up PTE at a user virtual address
5523 * @mm: the mm_struct of the target address space
5524 * @address: user virtual address
5525 * @ptepp: location to store found PTE
5526 * @ptlp: location to store the lock for the PTE
5527 *
5528 * On a successful return, the pointer to the PTE is stored in @ptepp;
5529 * the corresponding lock is taken and its location is stored in @ptlp.
5530 * The contents of the PTE are only stable until @ptlp is released;
5531 * any further use, if any, must be protected against invalidation
5532 * with MMU notifiers.
5533 *
5534 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5535 * should be taken for read.
5536 *
5537 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5538 * it is not a good general-purpose API.
5539 *
5540 * Return: zero on success, -ve otherwise.
5541 */
5542int follow_pte(struct mm_struct *mm, unsigned long address,
5543 pte_t **ptepp, spinlock_t **ptlp)
f8ad0f49
JW
5544{
5545 pgd_t *pgd;
c2febafc 5546 p4d_t *p4d;
f8ad0f49
JW
5547 pud_t *pud;
5548 pmd_t *pmd;
5549 pte_t *ptep;
5550
5551 pgd = pgd_offset(mm, address);
5552 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5553 goto out;
5554
c2febafc
KS
5555 p4d = p4d_offset(pgd, address);
5556 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5557 goto out;
5558
5559 pud = pud_offset(p4d, address);
f8ad0f49
JW
5560 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5561 goto out;
5562
5563 pmd = pmd_offset(pud, address);
f66055ab 5564 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 5565
f8ad0f49 5566 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3db82b93
HD
5567 if (!ptep)
5568 goto out;
c33c7948 5569 if (!pte_present(ptep_get(ptep)))
f8ad0f49
JW
5570 goto unlock;
5571 *ptepp = ptep;
5572 return 0;
5573unlock:
5574 pte_unmap_unlock(ptep, *ptlp);
5575out:
5576 return -EINVAL;
5577}
9fd6dad1
PB
5578EXPORT_SYMBOL_GPL(follow_pte);
5579
3b6748e2
JW
5580/**
5581 * follow_pfn - look up PFN at a user virtual address
5582 * @vma: memory mapping
5583 * @address: user virtual address
5584 * @pfn: location to store found PFN
5585 *
5586 * Only IO mappings and raw PFN mappings are allowed.
5587 *
9fd6dad1
PB
5588 * This function does not allow the caller to read the permissions
5589 * of the PTE. Do not use it.
5590 *
a862f68a 5591 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
5592 */
5593int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5594 unsigned long *pfn)
5595{
5596 int ret = -EINVAL;
5597 spinlock_t *ptl;
5598 pte_t *ptep;
5599
5600 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5601 return ret;
5602
9fd6dad1 5603 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3b6748e2
JW
5604 if (ret)
5605 return ret;
c33c7948 5606 *pfn = pte_pfn(ptep_get(ptep));
3b6748e2
JW
5607 pte_unmap_unlock(ptep, ptl);
5608 return 0;
5609}
5610EXPORT_SYMBOL(follow_pfn);
5611
28b2ee20 5612#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 5613int follow_phys(struct vm_area_struct *vma,
5614 unsigned long address, unsigned int flags,
5615 unsigned long *prot, resource_size_t *phys)
28b2ee20 5616{
03668a4d 5617 int ret = -EINVAL;
28b2ee20
RR
5618 pte_t *ptep, pte;
5619 spinlock_t *ptl;
28b2ee20 5620
d87fe660 5621 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5622 goto out;
28b2ee20 5623
9fd6dad1 5624 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 5625 goto out;
c33c7948 5626 pte = ptep_get(ptep);
03668a4d 5627
f6f37321 5628 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 5629 goto unlock;
28b2ee20
RR
5630
5631 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 5632 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 5633
03668a4d 5634 ret = 0;
28b2ee20
RR
5635unlock:
5636 pte_unmap_unlock(ptep, ptl);
5637out:
d87fe660 5638 return ret;
28b2ee20
RR
5639}
5640
96667f8a
SV
5641/**
5642 * generic_access_phys - generic implementation for iomem mmap access
5643 * @vma: the vma to access
f0953a1b 5644 * @addr: userspace address, not relative offset within @vma
96667f8a
SV
5645 * @buf: buffer to read/write
5646 * @len: length of transfer
5647 * @write: set to FOLL_WRITE when writing, otherwise reading
5648 *
5649 * This is a generic implementation for &vm_operations_struct.access for an
5650 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5651 * not page based.
5652 */
28b2ee20
RR
5653int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5654 void *buf, int len, int write)
5655{
5656 resource_size_t phys_addr;
5657 unsigned long prot = 0;
2bc7273b 5658 void __iomem *maddr;
96667f8a
SV
5659 pte_t *ptep, pte;
5660 spinlock_t *ptl;
5661 int offset = offset_in_page(addr);
5662 int ret = -EINVAL;
5663
5664 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5665 return -EINVAL;
5666
5667retry:
e913a8cd 5668 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a 5669 return -EINVAL;
c33c7948 5670 pte = ptep_get(ptep);
96667f8a 5671 pte_unmap_unlock(ptep, ptl);
28b2ee20 5672
96667f8a
SV
5673 prot = pgprot_val(pte_pgprot(pte));
5674 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5675
5676 if ((write & FOLL_WRITE) && !pte_write(pte))
28b2ee20
RR
5677 return -EINVAL;
5678
9cb12d7b 5679 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 5680 if (!maddr)
5681 return -ENOMEM;
5682
e913a8cd 5683 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
96667f8a
SV
5684 goto out_unmap;
5685
c33c7948 5686 if (!pte_same(pte, ptep_get(ptep))) {
96667f8a
SV
5687 pte_unmap_unlock(ptep, ptl);
5688 iounmap(maddr);
5689
5690 goto retry;
5691 }
5692
28b2ee20
RR
5693 if (write)
5694 memcpy_toio(maddr + offset, buf, len);
5695 else
5696 memcpy_fromio(buf, maddr + offset, len);
96667f8a
SV
5697 ret = len;
5698 pte_unmap_unlock(ptep, ptl);
5699out_unmap:
28b2ee20
RR
5700 iounmap(maddr);
5701
96667f8a 5702 return ret;
28b2ee20 5703}
5a73633e 5704EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
5705#endif
5706
0ec76a11 5707/*
d3f5ffca 5708 * Access another process' address space as given in mm.
0ec76a11 5709 */
d3f5ffca
JH
5710int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5711 int len, unsigned int gup_flags)
0ec76a11 5712{
0ec76a11 5713 void *old_buf = buf;
442486ec 5714 int write = gup_flags & FOLL_WRITE;
0ec76a11 5715
d8ed45c5 5716 if (mmap_read_lock_killable(mm))
1e426fe2
KK
5717 return 0;
5718
eee9c708
LT
5719 /* Avoid triggering the temporary warning in __get_user_pages */
5720 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5721 return 0;
5722
183ff22b 5723 /* ignore errors, just check how much was successfully transferred */
0ec76a11 5724 while (len) {
ca5e8632 5725 int bytes, offset;
0ec76a11 5726 void *maddr;
ca5e8632
LS
5727 struct vm_area_struct *vma = NULL;
5728 struct page *page = get_user_page_vma_remote(mm, addr,
5729 gup_flags, &vma);
0ec76a11 5730
ca5e8632 5731 if (IS_ERR_OR_NULL(page)) {
9471f1f2
LT
5732 /* We might need to expand the stack to access it */
5733 vma = vma_lookup(mm, addr);
5734 if (!vma) {
5735 vma = expand_stack(mm, addr);
5736
5737 /* mmap_lock was dropped on failure */
5738 if (!vma)
5739 return buf - old_buf;
5740
5741 /* Try again if stack expansion worked */
5742 continue;
5743 }
5744
ca5e8632 5745
28b2ee20
RR
5746 /*
5747 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5748 * we can access using slightly different code.
5749 */
9471f1f2
LT
5750 bytes = 0;
5751#ifdef CONFIG_HAVE_IOREMAP_PROT
28b2ee20 5752 if (vma->vm_ops && vma->vm_ops->access)
9471f1f2
LT
5753 bytes = vma->vm_ops->access(vma, addr, buf,
5754 len, write);
dbffcd03 5755#endif
9471f1f2
LT
5756 if (bytes <= 0)
5757 break;
0ec76a11 5758 } else {
28b2ee20
RR
5759 bytes = len;
5760 offset = addr & (PAGE_SIZE-1);
5761 if (bytes > PAGE_SIZE-offset)
5762 bytes = PAGE_SIZE-offset;
5763
5764 maddr = kmap(page);
5765 if (write) {
5766 copy_to_user_page(vma, page, addr,
5767 maddr + offset, buf, bytes);
5768 set_page_dirty_lock(page);
5769 } else {
5770 copy_from_user_page(vma, page, addr,
5771 buf, maddr + offset, bytes);
5772 }
5773 kunmap(page);
09cbfeaf 5774 put_page(page);
0ec76a11 5775 }
0ec76a11
DH
5776 len -= bytes;
5777 buf += bytes;
5778 addr += bytes;
5779 }
d8ed45c5 5780 mmap_read_unlock(mm);
0ec76a11
DH
5781
5782 return buf - old_buf;
5783}
03252919 5784
5ddd36b9 5785/**
ae91dbfc 5786 * access_remote_vm - access another process' address space
5ddd36b9
SW
5787 * @mm: the mm_struct of the target address space
5788 * @addr: start address to access
5789 * @buf: source or destination buffer
5790 * @len: number of bytes to transfer
6347e8d5 5791 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
5792 *
5793 * The caller must hold a reference on @mm.
a862f68a
MR
5794 *
5795 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
5796 */
5797int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 5798 void *buf, int len, unsigned int gup_flags)
5ddd36b9 5799{
d3f5ffca 5800 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5ddd36b9
SW
5801}
5802
206cb636
SW
5803/*
5804 * Access another process' address space.
5805 * Source/target buffer must be kernel space,
5806 * Do not walk the page table directly, use get_user_pages
5807 */
5808int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 5809 void *buf, int len, unsigned int gup_flags)
206cb636
SW
5810{
5811 struct mm_struct *mm;
5812 int ret;
5813
5814 mm = get_task_mm(tsk);
5815 if (!mm)
5816 return 0;
5817
d3f5ffca 5818 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
442486ec 5819
206cb636
SW
5820 mmput(mm);
5821
5822 return ret;
5823}
fcd35857 5824EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 5825
03252919
AK
5826/*
5827 * Print the name of a VMA.
5828 */
5829void print_vma_addr(char *prefix, unsigned long ip)
5830{
5831 struct mm_struct *mm = current->mm;
5832 struct vm_area_struct *vma;
5833
e8bff74a 5834 /*
0a7f682d 5835 * we might be running from an atomic context so we cannot sleep
e8bff74a 5836 */
d8ed45c5 5837 if (!mmap_read_trylock(mm))
e8bff74a
IM
5838 return;
5839
03252919
AK
5840 vma = find_vma(mm, ip);
5841 if (vma && vma->vm_file) {
5842 struct file *f = vma->vm_file;
0a7f682d 5843 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 5844 if (buf) {
2fbc57c5 5845 char *p;
03252919 5846
9bf39ab2 5847 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5848 if (IS_ERR(p))
5849 p = "?";
2fbc57c5 5850 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5851 vma->vm_start,
5852 vma->vm_end - vma->vm_start);
5853 free_page((unsigned long)buf);
5854 }
5855 }
d8ed45c5 5856 mmap_read_unlock(mm);
03252919 5857}
3ee1afa3 5858
662bbcb2 5859#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5860void __might_fault(const char *file, int line)
3ee1afa3 5861{
9ec23531 5862 if (pagefault_disabled())
662bbcb2 5863 return;
42a38756 5864 __might_sleep(file, line);
9ec23531 5865#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5866 if (current->mm)
da1c55f1 5867 might_lock_read(&current->mm->mmap_lock);
9ec23531 5868#endif
3ee1afa3 5869}
9ec23531 5870EXPORT_SYMBOL(__might_fault);
3ee1afa3 5871#endif
47ad8475
AA
5872
5873#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5874/*
5875 * Process all subpages of the specified huge page with the specified
5876 * operation. The target subpage will be processed last to keep its
5877 * cache lines hot.
5878 */
1cb9dc4b 5879static inline int process_huge_page(
c6ddfb6c 5880 unsigned long addr_hint, unsigned int pages_per_huge_page,
1cb9dc4b 5881 int (*process_subpage)(unsigned long addr, int idx, void *arg),
c6ddfb6c 5882 void *arg)
47ad8475 5883{
1cb9dc4b 5884 int i, n, base, l, ret;
c79b57e4
HY
5885 unsigned long addr = addr_hint &
5886 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5887
c6ddfb6c 5888 /* Process target subpage last to keep its cache lines hot */
47ad8475 5889 might_sleep();
c79b57e4
HY
5890 n = (addr_hint - addr) / PAGE_SIZE;
5891 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5892 /* If target subpage in first half of huge page */
c79b57e4
HY
5893 base = 0;
5894 l = n;
c6ddfb6c 5895 /* Process subpages at the end of huge page */
c79b57e4
HY
5896 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5897 cond_resched();
1cb9dc4b
LS
5898 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5899 if (ret)
5900 return ret;
c79b57e4
HY
5901 }
5902 } else {
c6ddfb6c 5903 /* If target subpage in second half of huge page */
c79b57e4
HY
5904 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5905 l = pages_per_huge_page - n;
c6ddfb6c 5906 /* Process subpages at the begin of huge page */
c79b57e4
HY
5907 for (i = 0; i < base; i++) {
5908 cond_resched();
1cb9dc4b
LS
5909 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5910 if (ret)
5911 return ret;
c79b57e4
HY
5912 }
5913 }
5914 /*
c6ddfb6c
HY
5915 * Process remaining subpages in left-right-left-right pattern
5916 * towards the target subpage
c79b57e4
HY
5917 */
5918 for (i = 0; i < l; i++) {
5919 int left_idx = base + i;
5920 int right_idx = base + 2 * l - 1 - i;
5921
5922 cond_resched();
1cb9dc4b
LS
5923 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5924 if (ret)
5925 return ret;
47ad8475 5926 cond_resched();
1cb9dc4b
LS
5927 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5928 if (ret)
5929 return ret;
47ad8475 5930 }
1cb9dc4b 5931 return 0;
47ad8475
AA
5932}
5933
c6ddfb6c
HY
5934static void clear_gigantic_page(struct page *page,
5935 unsigned long addr,
5936 unsigned int pages_per_huge_page)
5937{
5938 int i;
14455eab 5939 struct page *p;
c6ddfb6c
HY
5940
5941 might_sleep();
14455eab
CL
5942 for (i = 0; i < pages_per_huge_page; i++) {
5943 p = nth_page(page, i);
c6ddfb6c
HY
5944 cond_resched();
5945 clear_user_highpage(p, addr + i * PAGE_SIZE);
5946 }
5947}
5948
1cb9dc4b 5949static int clear_subpage(unsigned long addr, int idx, void *arg)
c6ddfb6c
HY
5950{
5951 struct page *page = arg;
5952
5953 clear_user_highpage(page + idx, addr);
1cb9dc4b 5954 return 0;
c6ddfb6c
HY
5955}
5956
5957void clear_huge_page(struct page *page,
5958 unsigned long addr_hint, unsigned int pages_per_huge_page)
5959{
5960 unsigned long addr = addr_hint &
5961 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5962
5963 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5964 clear_gigantic_page(page, addr, pages_per_huge_page);
5965 return;
5966 }
5967
5968 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5969}
5970
1cb9dc4b 5971static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
c0e8150e
Z
5972 unsigned long addr,
5973 struct vm_area_struct *vma,
5974 unsigned int pages_per_huge_page)
47ad8475
AA
5975{
5976 int i;
c0e8150e
Z
5977 struct page *dst_page;
5978 struct page *src_page;
47ad8475 5979
14455eab 5980 for (i = 0; i < pages_per_huge_page; i++) {
c0e8150e
Z
5981 dst_page = folio_page(dst, i);
5982 src_page = folio_page(src, i);
14455eab 5983
47ad8475 5984 cond_resched();
1cb9dc4b
LS
5985 if (copy_mc_user_highpage(dst_page, src_page,
5986 addr + i*PAGE_SIZE, vma)) {
5987 memory_failure_queue(page_to_pfn(src_page), 0);
5988 return -EHWPOISON;
5989 }
47ad8475 5990 }
1cb9dc4b 5991 return 0;
47ad8475
AA
5992}
5993
c9f4cd71
HY
5994struct copy_subpage_arg {
5995 struct page *dst;
5996 struct page *src;
5997 struct vm_area_struct *vma;
5998};
5999
1cb9dc4b 6000static int copy_subpage(unsigned long addr, int idx, void *arg)
c9f4cd71
HY
6001{
6002 struct copy_subpage_arg *copy_arg = arg;
6003
1cb9dc4b
LS
6004 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6005 addr, copy_arg->vma)) {
6006 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6007 return -EHWPOISON;
6008 }
6009 return 0;
c9f4cd71
HY
6010}
6011
1cb9dc4b
LS
6012int copy_user_large_folio(struct folio *dst, struct folio *src,
6013 unsigned long addr_hint, struct vm_area_struct *vma)
47ad8475 6014{
c0e8150e 6015 unsigned int pages_per_huge_page = folio_nr_pages(dst);
c9f4cd71
HY
6016 unsigned long addr = addr_hint &
6017 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6018 struct copy_subpage_arg arg = {
c0e8150e
Z
6019 .dst = &dst->page,
6020 .src = &src->page,
c9f4cd71
HY
6021 .vma = vma,
6022 };
47ad8475 6023
1cb9dc4b
LS
6024 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6025 return copy_user_gigantic_page(dst, src, addr, vma,
6026 pages_per_huge_page);
47ad8475 6027
1cb9dc4b 6028 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 6029}
fa4d75c1 6030
e87340ca
Z
6031long copy_folio_from_user(struct folio *dst_folio,
6032 const void __user *usr_src,
6033 bool allow_pagefault)
fa4d75c1 6034{
e87340ca 6035 void *kaddr;
fa4d75c1 6036 unsigned long i, rc = 0;
e87340ca
Z
6037 unsigned int nr_pages = folio_nr_pages(dst_folio);
6038 unsigned long ret_val = nr_pages * PAGE_SIZE;
14455eab 6039 struct page *subpage;
fa4d75c1 6040
e87340ca
Z
6041 for (i = 0; i < nr_pages; i++) {
6042 subpage = folio_page(dst_folio, i);
6043 kaddr = kmap_local_page(subpage);
0d508c1f
Z
6044 if (!allow_pagefault)
6045 pagefault_disable();
e87340ca 6046 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
0d508c1f
Z
6047 if (!allow_pagefault)
6048 pagefault_enable();
e87340ca 6049 kunmap_local(kaddr);
fa4d75c1
MK
6050
6051 ret_val -= (PAGE_SIZE - rc);
6052 if (rc)
6053 break;
6054
e763243c
MS
6055 flush_dcache_page(subpage);
6056
fa4d75c1
MK
6057 cond_resched();
6058 }
6059 return ret_val;
6060}
47ad8475 6061#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 6062
40b64acd 6063#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
6064
6065static struct kmem_cache *page_ptl_cachep;
6066
6067void __init ptlock_cache_init(void)
6068{
6069 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6070 SLAB_PANIC, NULL);
6071}
6072
539edb58 6073bool ptlock_alloc(struct page *page)
49076ec2
KS
6074{
6075 spinlock_t *ptl;
6076
b35f1819 6077 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
6078 if (!ptl)
6079 return false;
539edb58 6080 page->ptl = ptl;
49076ec2
KS
6081 return true;
6082}
6083
539edb58 6084void ptlock_free(struct page *page)
49076ec2 6085{
b35f1819 6086 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
6087}
6088#endif