]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
mm/filemap: fix page cache removal for arbitrary sized THPs
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
98fa15f3 72#include <linux/numa.h>
bce617ed
PX
73#include <linux/perf_event.h>
74#include <linux/ptrace.h>
e80d3909 75#include <linux/vmalloc.h>
1da177e4 76
b3d1411b
JFG
77#include <trace/events/kmem.h>
78
6952b61d 79#include <asm/io.h>
33a709b2 80#include <asm/mmu_context.h>
1da177e4 81#include <asm/pgalloc.h>
7c0f6ba6 82#include <linux/uaccess.h>
1da177e4
LT
83#include <asm/tlb.h>
84#include <asm/tlbflush.h>
1da177e4 85
e80d3909 86#include "pgalloc-track.h"
42b77728
JB
87#include "internal.h"
88
af27d940 89#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 90#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
91#endif
92
d41dee36 93#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
94/* use the per-pgdat data instead for discontigmem - mbligh */
95unsigned long max_mapnr;
1da177e4 96EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
97
98struct page *mem_map;
1da177e4
LT
99EXPORT_SYMBOL(mem_map);
100#endif
101
1da177e4
LT
102/*
103 * A number of key systems in x86 including ioremap() rely on the assumption
104 * that high_memory defines the upper bound on direct map memory, then end
105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107 * and ZONE_HIGHMEM.
108 */
166f61b9 109void *high_memory;
1da177e4 110EXPORT_SYMBOL(high_memory);
1da177e4 111
32a93233
IM
112/*
113 * Randomize the address space (stacks, mmaps, brk, etc.).
114 *
115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116 * as ancient (libc5 based) binaries can segfault. )
117 */
118int randomize_va_space __read_mostly =
119#ifdef CONFIG_COMPAT_BRK
120 1;
121#else
122 2;
123#endif
a62eaf15 124
83d116c5
JH
125#ifndef arch_faults_on_old_pte
126static inline bool arch_faults_on_old_pte(void)
127{
128 /*
129 * Those arches which don't have hw access flag feature need to
130 * implement their own helper. By default, "true" means pagefault
131 * will be hit on old pte.
132 */
133 return true;
134}
135#endif
136
a62eaf15
AK
137static int __init disable_randmaps(char *s)
138{
139 randomize_va_space = 0;
9b41046c 140 return 1;
a62eaf15
AK
141}
142__setup("norandmaps", disable_randmaps);
143
62eede62 144unsigned long zero_pfn __read_mostly;
0b70068e
AB
145EXPORT_SYMBOL(zero_pfn);
146
166f61b9
TH
147unsigned long highest_memmap_pfn __read_mostly;
148
a13ea5b7
HD
149/*
150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151 */
152static int __init init_zero_pfn(void)
153{
154 zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 return 0;
156}
157core_initcall(init_zero_pfn);
a62eaf15 158
e4dcad20 159void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
b3d1411b 160{
e4dcad20 161 trace_rss_stat(mm, member, count);
b3d1411b 162}
d559db08 163
34e55232
KH
164#if defined(SPLIT_RSS_COUNTING)
165
ea48cf78 166void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
167{
168 int i;
169
170 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
171 if (current->rss_stat.count[i]) {
172 add_mm_counter(mm, i, current->rss_stat.count[i]);
173 current->rss_stat.count[i] = 0;
34e55232
KH
174 }
175 }
05af2e10 176 current->rss_stat.events = 0;
34e55232
KH
177}
178
179static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180{
181 struct task_struct *task = current;
182
183 if (likely(task->mm == mm))
184 task->rss_stat.count[member] += val;
185 else
186 add_mm_counter(mm, member, val);
187}
188#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190
191/* sync counter once per 64 page faults */
192#define TASK_RSS_EVENTS_THRESH (64)
193static void check_sync_rss_stat(struct task_struct *task)
194{
195 if (unlikely(task != current))
196 return;
197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 198 sync_mm_rss(task->mm);
34e55232 199}
9547d01b 200#else /* SPLIT_RSS_COUNTING */
34e55232
KH
201
202#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204
205static void check_sync_rss_stat(struct task_struct *task)
206{
207}
208
9547d01b
PZ
209#endif /* SPLIT_RSS_COUNTING */
210
1da177e4
LT
211/*
212 * Note: this doesn't free the actual pages themselves. That
213 * has been handled earlier when unmapping all the memory regions.
214 */
9e1b32ca
BH
215static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 unsigned long addr)
1da177e4 217{
2f569afd 218 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 219 pmd_clear(pmd);
9e1b32ca 220 pte_free_tlb(tlb, token, addr);
c4812909 221 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
222}
223
e0da382c
HD
224static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 unsigned long addr, unsigned long end,
226 unsigned long floor, unsigned long ceiling)
1da177e4
LT
227{
228 pmd_t *pmd;
229 unsigned long next;
e0da382c 230 unsigned long start;
1da177e4 231
e0da382c 232 start = addr;
1da177e4 233 pmd = pmd_offset(pud, addr);
1da177e4
LT
234 do {
235 next = pmd_addr_end(addr, end);
236 if (pmd_none_or_clear_bad(pmd))
237 continue;
9e1b32ca 238 free_pte_range(tlb, pmd, addr);
1da177e4
LT
239 } while (pmd++, addr = next, addr != end);
240
e0da382c
HD
241 start &= PUD_MASK;
242 if (start < floor)
243 return;
244 if (ceiling) {
245 ceiling &= PUD_MASK;
246 if (!ceiling)
247 return;
1da177e4 248 }
e0da382c
HD
249 if (end - 1 > ceiling - 1)
250 return;
251
252 pmd = pmd_offset(pud, start);
253 pud_clear(pud);
9e1b32ca 254 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 255 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
256}
257
c2febafc 258static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
259 unsigned long addr, unsigned long end,
260 unsigned long floor, unsigned long ceiling)
1da177e4
LT
261{
262 pud_t *pud;
263 unsigned long next;
e0da382c 264 unsigned long start;
1da177e4 265
e0da382c 266 start = addr;
c2febafc 267 pud = pud_offset(p4d, addr);
1da177e4
LT
268 do {
269 next = pud_addr_end(addr, end);
270 if (pud_none_or_clear_bad(pud))
271 continue;
e0da382c 272 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
273 } while (pud++, addr = next, addr != end);
274
c2febafc
KS
275 start &= P4D_MASK;
276 if (start < floor)
277 return;
278 if (ceiling) {
279 ceiling &= P4D_MASK;
280 if (!ceiling)
281 return;
282 }
283 if (end - 1 > ceiling - 1)
284 return;
285
286 pud = pud_offset(p4d, start);
287 p4d_clear(p4d);
288 pud_free_tlb(tlb, pud, start);
b4e98d9a 289 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
290}
291
292static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 unsigned long addr, unsigned long end,
294 unsigned long floor, unsigned long ceiling)
295{
296 p4d_t *p4d;
297 unsigned long next;
298 unsigned long start;
299
300 start = addr;
301 p4d = p4d_offset(pgd, addr);
302 do {
303 next = p4d_addr_end(addr, end);
304 if (p4d_none_or_clear_bad(p4d))
305 continue;
306 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 } while (p4d++, addr = next, addr != end);
308
e0da382c
HD
309 start &= PGDIR_MASK;
310 if (start < floor)
311 return;
312 if (ceiling) {
313 ceiling &= PGDIR_MASK;
314 if (!ceiling)
315 return;
1da177e4 316 }
e0da382c
HD
317 if (end - 1 > ceiling - 1)
318 return;
319
c2febafc 320 p4d = p4d_offset(pgd, start);
e0da382c 321 pgd_clear(pgd);
c2febafc 322 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
323}
324
325/*
e0da382c 326 * This function frees user-level page tables of a process.
1da177e4 327 */
42b77728 328void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
329 unsigned long addr, unsigned long end,
330 unsigned long floor, unsigned long ceiling)
1da177e4
LT
331{
332 pgd_t *pgd;
333 unsigned long next;
e0da382c
HD
334
335 /*
336 * The next few lines have given us lots of grief...
337 *
338 * Why are we testing PMD* at this top level? Because often
339 * there will be no work to do at all, and we'd prefer not to
340 * go all the way down to the bottom just to discover that.
341 *
342 * Why all these "- 1"s? Because 0 represents both the bottom
343 * of the address space and the top of it (using -1 for the
344 * top wouldn't help much: the masks would do the wrong thing).
345 * The rule is that addr 0 and floor 0 refer to the bottom of
346 * the address space, but end 0 and ceiling 0 refer to the top
347 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 * that end 0 case should be mythical).
349 *
350 * Wherever addr is brought up or ceiling brought down, we must
351 * be careful to reject "the opposite 0" before it confuses the
352 * subsequent tests. But what about where end is brought down
353 * by PMD_SIZE below? no, end can't go down to 0 there.
354 *
355 * Whereas we round start (addr) and ceiling down, by different
356 * masks at different levels, in order to test whether a table
357 * now has no other vmas using it, so can be freed, we don't
358 * bother to round floor or end up - the tests don't need that.
359 */
1da177e4 360
e0da382c
HD
361 addr &= PMD_MASK;
362 if (addr < floor) {
363 addr += PMD_SIZE;
364 if (!addr)
365 return;
366 }
367 if (ceiling) {
368 ceiling &= PMD_MASK;
369 if (!ceiling)
370 return;
371 }
372 if (end - 1 > ceiling - 1)
373 end -= PMD_SIZE;
374 if (addr > end - 1)
375 return;
07e32661
AK
376 /*
377 * We add page table cache pages with PAGE_SIZE,
378 * (see pte_free_tlb()), flush the tlb if we need
379 */
ed6a7935 380 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 381 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
382 do {
383 next = pgd_addr_end(addr, end);
384 if (pgd_none_or_clear_bad(pgd))
385 continue;
c2febafc 386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 387 } while (pgd++, addr = next, addr != end);
e0da382c
HD
388}
389
42b77728 390void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 391 unsigned long floor, unsigned long ceiling)
e0da382c
HD
392{
393 while (vma) {
394 struct vm_area_struct *next = vma->vm_next;
395 unsigned long addr = vma->vm_start;
396
8f4f8c16 397 /*
25d9e2d1
NP
398 * Hide vma from rmap and truncate_pagecache before freeing
399 * pgtables
8f4f8c16 400 */
5beb4930 401 unlink_anon_vmas(vma);
8f4f8c16
HD
402 unlink_file_vma(vma);
403
9da61aef 404 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 406 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
407 } else {
408 /*
409 * Optimization: gather nearby vmas into one call down
410 */
411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 412 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
413 vma = next;
414 next = vma->vm_next;
5beb4930 415 unlink_anon_vmas(vma);
8f4f8c16 416 unlink_file_vma(vma);
3bf5ee95
HD
417 }
418 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 419 floor, next ? next->vm_start : ceiling);
3bf5ee95 420 }
e0da382c
HD
421 vma = next;
422 }
1da177e4
LT
423}
424
4cf58924 425int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 426{
c4088ebd 427 spinlock_t *ptl;
4cf58924 428 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
429 if (!new)
430 return -ENOMEM;
431
362a61ad
NP
432 /*
433 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 * visible before the pte is made visible to other CPUs by being
435 * put into page tables.
436 *
437 * The other side of the story is the pointer chasing in the page
438 * table walking code (when walking the page table without locking;
439 * ie. most of the time). Fortunately, these data accesses consist
440 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 * being the notable exception) will already guarantee loads are
442 * seen in-order. See the alpha page table accessors for the
bb7cdd38 443 * smp_rmb() barriers in page table walking code.
362a61ad
NP
444 */
445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446
c4088ebd 447 ptl = pmd_lock(mm, pmd);
8ac1f832 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 449 mm_inc_nr_ptes(mm);
1da177e4 450 pmd_populate(mm, pmd, new);
2f569afd 451 new = NULL;
4b471e88 452 }
c4088ebd 453 spin_unlock(ptl);
2f569afd
MS
454 if (new)
455 pte_free(mm, new);
1bb3630e 456 return 0;
1da177e4
LT
457}
458
4cf58924 459int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 460{
4cf58924 461 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
462 if (!new)
463 return -ENOMEM;
464
362a61ad
NP
465 smp_wmb(); /* See comment in __pte_alloc */
466
1bb3630e 467 spin_lock(&init_mm.page_table_lock);
8ac1f832 468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 469 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 470 new = NULL;
4b471e88 471 }
1bb3630e 472 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
473 if (new)
474 pte_free_kernel(&init_mm, new);
1bb3630e 475 return 0;
1da177e4
LT
476}
477
d559db08
KH
478static inline void init_rss_vec(int *rss)
479{
480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481}
482
483static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 484{
d559db08
KH
485 int i;
486
34e55232 487 if (current->mm == mm)
05af2e10 488 sync_mm_rss(mm);
d559db08
KH
489 for (i = 0; i < NR_MM_COUNTERS; i++)
490 if (rss[i])
491 add_mm_counter(mm, i, rss[i]);
ae859762
HD
492}
493
b5810039 494/*
6aab341e
LT
495 * This function is called to print an error when a bad pte
496 * is found. For example, we might have a PFN-mapped pte in
497 * a region that doesn't allow it.
b5810039
NP
498 *
499 * The calling function must still handle the error.
500 */
3dc14741
HD
501static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 pte_t pte, struct page *page)
b5810039 503{
3dc14741 504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
505 p4d_t *p4d = p4d_offset(pgd, addr);
506 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
507 pmd_t *pmd = pmd_offset(pud, addr);
508 struct address_space *mapping;
509 pgoff_t index;
d936cf9b
HD
510 static unsigned long resume;
511 static unsigned long nr_shown;
512 static unsigned long nr_unshown;
513
514 /*
515 * Allow a burst of 60 reports, then keep quiet for that minute;
516 * or allow a steady drip of one report per second.
517 */
518 if (nr_shown == 60) {
519 if (time_before(jiffies, resume)) {
520 nr_unshown++;
521 return;
522 }
523 if (nr_unshown) {
1170532b
JP
524 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 nr_unshown);
d936cf9b
HD
526 nr_unshown = 0;
527 }
528 nr_shown = 0;
529 }
530 if (nr_shown++ == 0)
531 resume = jiffies + 60 * HZ;
3dc14741
HD
532
533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 index = linear_page_index(vma, addr);
535
1170532b
JP
536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
537 current->comm,
538 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 539 if (page)
f0b791a3 540 dump_page(page, "bad pte");
6aa9b8b2 541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
544 vma->vm_file,
545 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 mapping ? mapping->a_ops->readpage : NULL);
b5810039 548 dump_stack();
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
550}
551
ee498ed7 552/*
7e675137 553 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 554 *
7e675137
NP
555 * "Special" mappings do not wish to be associated with a "struct page" (either
556 * it doesn't exist, or it exists but they don't want to touch it). In this
557 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 558 *
7e675137
NP
559 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560 * pte bit, in which case this function is trivial. Secondly, an architecture
561 * may not have a spare pte bit, which requires a more complicated scheme,
562 * described below.
563 *
564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565 * special mapping (even if there are underlying and valid "struct pages").
566 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 567 *
b379d790
JH
568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571 * mapping will always honor the rule
6aab341e
LT
572 *
573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574 *
7e675137
NP
575 * And for normal mappings this is false.
576 *
577 * This restricts such mappings to be a linear translation from virtual address
578 * to pfn. To get around this restriction, we allow arbitrary mappings so long
579 * as the vma is not a COW mapping; in that case, we know that all ptes are
580 * special (because none can have been COWed).
b379d790 581 *
b379d790 582 *
7e675137 583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
584 *
585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586 * page" backing, however the difference is that _all_ pages with a struct
587 * page (that is, those where pfn_valid is true) are refcounted and considered
588 * normal pages by the VM. The disadvantage is that pages are refcounted
589 * (which can be slower and simply not an option for some PFNMAP users). The
590 * advantage is that we don't have to follow the strict linearity rule of
591 * PFNMAP mappings in order to support COWable mappings.
592 *
ee498ed7 593 */
25b2995a
CH
594struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 pte_t pte)
ee498ed7 596{
22b31eec 597 unsigned long pfn = pte_pfn(pte);
7e675137 598
00b3a331 599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 600 if (likely(!pte_special(pte)))
22b31eec 601 goto check_pfn;
667a0a06
DV
602 if (vma->vm_ops && vma->vm_ops->find_special_page)
603 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 return NULL;
df6ad698
JG
606 if (is_zero_pfn(pfn))
607 return NULL;
e1fb4a08
DJ
608 if (pte_devmap(pte))
609 return NULL;
610
df6ad698 611 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
612 return NULL;
613 }
614
00b3a331 615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 616
b379d790
JH
617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 if (vma->vm_flags & VM_MIXEDMAP) {
619 if (!pfn_valid(pfn))
620 return NULL;
621 goto out;
622 } else {
7e675137
NP
623 unsigned long off;
624 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
625 if (pfn == vma->vm_pgoff + off)
626 return NULL;
627 if (!is_cow_mapping(vma->vm_flags))
628 return NULL;
629 }
6aab341e
LT
630 }
631
b38af472
HD
632 if (is_zero_pfn(pfn))
633 return NULL;
00b3a331 634
22b31eec
HD
635check_pfn:
636 if (unlikely(pfn > highest_memmap_pfn)) {
637 print_bad_pte(vma, addr, pte, NULL);
638 return NULL;
639 }
6aab341e
LT
640
641 /*
7e675137 642 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 643 * eg. VDSO mappings can cause them to exist.
6aab341e 644 */
b379d790 645out:
6aab341e 646 return pfn_to_page(pfn);
ee498ed7
HD
647}
648
28093f9f
GS
649#ifdef CONFIG_TRANSPARENT_HUGEPAGE
650struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 pmd_t pmd)
652{
653 unsigned long pfn = pmd_pfn(pmd);
654
655 /*
656 * There is no pmd_special() but there may be special pmds, e.g.
657 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
659 */
660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 if (vma->vm_flags & VM_MIXEDMAP) {
662 if (!pfn_valid(pfn))
663 return NULL;
664 goto out;
665 } else {
666 unsigned long off;
667 off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 if (pfn == vma->vm_pgoff + off)
669 return NULL;
670 if (!is_cow_mapping(vma->vm_flags))
671 return NULL;
672 }
673 }
674
e1fb4a08
DJ
675 if (pmd_devmap(pmd))
676 return NULL;
3cde287b 677 if (is_huge_zero_pmd(pmd))
28093f9f
GS
678 return NULL;
679 if (unlikely(pfn > highest_memmap_pfn))
680 return NULL;
681
682 /*
683 * NOTE! We still have PageReserved() pages in the page tables.
684 * eg. VDSO mappings can cause them to exist.
685 */
686out:
687 return pfn_to_page(pfn);
688}
689#endif
690
1da177e4
LT
691/*
692 * copy one vm_area from one task to the other. Assumes the page tables
693 * already present in the new task to be cleared in the whole range
694 * covered by this vma.
1da177e4
LT
695 */
696
df3a57d1
LT
697static unsigned long
698copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 700 unsigned long addr, int *rss)
1da177e4 701{
b5810039 702 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
703 pte_t pte = *src_pte;
704 struct page *page;
df3a57d1
LT
705 swp_entry_t entry = pte_to_swp_entry(pte);
706
707 if (likely(!non_swap_entry(entry))) {
708 if (swap_duplicate(entry) < 0)
709 return entry.val;
710
711 /* make sure dst_mm is on swapoff's mmlist. */
712 if (unlikely(list_empty(&dst_mm->mmlist))) {
713 spin_lock(&mmlist_lock);
714 if (list_empty(&dst_mm->mmlist))
715 list_add(&dst_mm->mmlist,
716 &src_mm->mmlist);
717 spin_unlock(&mmlist_lock);
718 }
719 rss[MM_SWAPENTS]++;
720 } else if (is_migration_entry(entry)) {
721 page = migration_entry_to_page(entry);
1da177e4 722
df3a57d1 723 rss[mm_counter(page)]++;
5042db43 724
df3a57d1
LT
725 if (is_write_migration_entry(entry) &&
726 is_cow_mapping(vm_flags)) {
5042db43 727 /*
df3a57d1
LT
728 * COW mappings require pages in both
729 * parent and child to be set to read.
5042db43 730 */
df3a57d1
LT
731 make_migration_entry_read(&entry);
732 pte = swp_entry_to_pte(entry);
733 if (pte_swp_soft_dirty(*src_pte))
734 pte = pte_swp_mksoft_dirty(pte);
735 if (pte_swp_uffd_wp(*src_pte))
736 pte = pte_swp_mkuffd_wp(pte);
737 set_pte_at(src_mm, addr, src_pte, pte);
738 }
739 } else if (is_device_private_entry(entry)) {
740 page = device_private_entry_to_page(entry);
5042db43 741
df3a57d1
LT
742 /*
743 * Update rss count even for unaddressable pages, as
744 * they should treated just like normal pages in this
745 * respect.
746 *
747 * We will likely want to have some new rss counters
748 * for unaddressable pages, at some point. But for now
749 * keep things as they are.
750 */
751 get_page(page);
752 rss[mm_counter(page)]++;
753 page_dup_rmap(page, false);
754
755 /*
756 * We do not preserve soft-dirty information, because so
757 * far, checkpoint/restore is the only feature that
758 * requires that. And checkpoint/restore does not work
759 * when a device driver is involved (you cannot easily
760 * save and restore device driver state).
761 */
762 if (is_write_device_private_entry(entry) &&
763 is_cow_mapping(vm_flags)) {
764 make_device_private_entry_read(&entry);
765 pte = swp_entry_to_pte(entry);
766 if (pte_swp_uffd_wp(*src_pte))
767 pte = pte_swp_mkuffd_wp(pte);
768 set_pte_at(src_mm, addr, src_pte, pte);
1da177e4 769 }
1da177e4 770 }
df3a57d1
LT
771 set_pte_at(dst_mm, addr, dst_pte, pte);
772 return 0;
773}
774
70e806e4
PX
775/*
776 * Copy a present and normal page if necessary.
777 *
778 * NOTE! The usual case is that this doesn't need to do
779 * anything, and can just return a positive value. That
780 * will let the caller know that it can just increase
781 * the page refcount and re-use the pte the traditional
782 * way.
783 *
784 * But _if_ we need to copy it because it needs to be
785 * pinned in the parent (and the child should get its own
786 * copy rather than just a reference to the same page),
787 * we'll do that here and return zero to let the caller
788 * know we're done.
789 *
790 * And if we need a pre-allocated page but don't yet have
791 * one, return a negative error to let the preallocation
792 * code know so that it can do so outside the page table
793 * lock.
794 */
795static inline int
c78f4636
PX
796copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 struct page **prealloc, pte_t pte, struct page *page)
70e806e4 799{
c78f4636 800 struct mm_struct *src_mm = src_vma->vm_mm;
70e806e4
PX
801 struct page *new_page;
802
c78f4636 803 if (!is_cow_mapping(src_vma->vm_flags))
70e806e4
PX
804 return 1;
805
806 /*
70e806e4
PX
807 * What we want to do is to check whether this page may
808 * have been pinned by the parent process. If so,
809 * instead of wrprotect the pte on both sides, we copy
810 * the page immediately so that we'll always guarantee
811 * the pinned page won't be randomly replaced in the
812 * future.
813 *
f3c64eda
LT
814 * The page pinning checks are just "has this mm ever
815 * seen pinning", along with the (inexact) check of
816 * the page count. That might give false positives for
817 * for pinning, but it will work correctly.
70e806e4
PX
818 */
819 if (likely(!atomic_read(&src_mm->has_pinned)))
820 return 1;
821 if (likely(!page_maybe_dma_pinned(page)))
822 return 1;
823
70e806e4
PX
824 new_page = *prealloc;
825 if (!new_page)
826 return -EAGAIN;
827
828 /*
829 * We have a prealloc page, all good! Take it
830 * over and copy the page & arm it.
831 */
832 *prealloc = NULL;
c78f4636 833 copy_user_highpage(new_page, page, addr, src_vma);
70e806e4 834 __SetPageUptodate(new_page);
c78f4636
PX
835 page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
70e806e4
PX
837 rss[mm_counter(new_page)]++;
838
839 /* All done, just insert the new page copy in the child */
c78f4636
PX
840 pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
843 return 0;
844}
845
846/*
847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
848 * is required to copy this pte.
849 */
850static inline int
c78f4636
PX
851copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 struct page **prealloc)
df3a57d1 854{
c78f4636
PX
855 struct mm_struct *src_mm = src_vma->vm_mm;
856 unsigned long vm_flags = src_vma->vm_flags;
df3a57d1
LT
857 pte_t pte = *src_pte;
858 struct page *page;
859
c78f4636 860 page = vm_normal_page(src_vma, addr, pte);
70e806e4
PX
861 if (page) {
862 int retval;
863
c78f4636
PX
864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 addr, rss, prealloc, pte, page);
70e806e4
PX
866 if (retval <= 0)
867 return retval;
868
869 get_page(page);
870 page_dup_rmap(page, false);
871 rss[mm_counter(page)]++;
872 }
873
1da177e4
LT
874 /*
875 * If it's a COW mapping, write protect it both
876 * in the parent and the child
877 */
1b2de5d0 878 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 879 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 880 pte = pte_wrprotect(pte);
1da177e4
LT
881 }
882
883 /*
884 * If it's a shared mapping, mark it clean in
885 * the child
886 */
887 if (vm_flags & VM_SHARED)
888 pte = pte_mkclean(pte);
889 pte = pte_mkold(pte);
6aab341e 890
b569a176
PX
891 /*
892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 * does not have the VM_UFFD_WP, which means that the uffd
894 * fork event is not enabled.
895 */
896 if (!(vm_flags & VM_UFFD_WP))
897 pte = pte_clear_uffd_wp(pte);
898
c78f4636 899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
70e806e4
PX
900 return 0;
901}
902
903static inline struct page *
904page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 unsigned long addr)
906{
907 struct page *new_page;
908
909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 if (!new_page)
911 return NULL;
912
913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 put_page(new_page);
915 return NULL;
6aab341e 916 }
70e806e4 917 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
ae859762 918
70e806e4 919 return new_page;
1da177e4
LT
920}
921
c78f4636
PX
922static int
923copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 unsigned long end)
1da177e4 926{
c78f4636
PX
927 struct mm_struct *dst_mm = dst_vma->vm_mm;
928 struct mm_struct *src_mm = src_vma->vm_mm;
c36987e2 929 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 930 pte_t *src_pte, *dst_pte;
c74df32c 931 spinlock_t *src_ptl, *dst_ptl;
70e806e4 932 int progress, ret = 0;
d559db08 933 int rss[NR_MM_COUNTERS];
570a335b 934 swp_entry_t entry = (swp_entry_t){0};
70e806e4 935 struct page *prealloc = NULL;
1da177e4
LT
936
937again:
70e806e4 938 progress = 0;
d559db08
KH
939 init_rss_vec(rss);
940
c74df32c 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
70e806e4
PX
942 if (!dst_pte) {
943 ret = -ENOMEM;
944 goto out;
945 }
ece0e2b6 946 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 947 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
949 orig_src_pte = src_pte;
950 orig_dst_pte = dst_pte;
6606c3e0 951 arch_enter_lazy_mmu_mode();
1da177e4 952
1da177e4
LT
953 do {
954 /*
955 * We are holding two locks at this point - either of them
956 * could generate latencies in another task on another CPU.
957 */
e040f218
HD
958 if (progress >= 32) {
959 progress = 0;
960 if (need_resched() ||
95c354fe 961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
962 break;
963 }
1da177e4
LT
964 if (pte_none(*src_pte)) {
965 progress++;
966 continue;
967 }
79a1971c
LT
968 if (unlikely(!pte_present(*src_pte))) {
969 entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 dst_pte, src_pte,
c78f4636 971 src_vma, addr, rss);
79a1971c
LT
972 if (entry.val)
973 break;
974 progress += 8;
975 continue;
976 }
70e806e4 977 /* copy_present_pte() will clear `*prealloc' if consumed */
c78f4636
PX
978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 addr, rss, &prealloc);
70e806e4
PX
980 /*
981 * If we need a pre-allocated page for this pte, drop the
982 * locks, allocate, and try again.
983 */
984 if (unlikely(ret == -EAGAIN))
985 break;
986 if (unlikely(prealloc)) {
987 /*
988 * pre-alloc page cannot be reused by next time so as
989 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 * will allocate page according to address). This
991 * could only happen if one pinned pte changed.
992 */
993 put_page(prealloc);
994 prealloc = NULL;
995 }
1da177e4
LT
996 progress += 8;
997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 998
6606c3e0 999 arch_leave_lazy_mmu_mode();
c74df32c 1000 spin_unlock(src_ptl);
ece0e2b6 1001 pte_unmap(orig_src_pte);
d559db08 1002 add_mm_rss_vec(dst_mm, rss);
c36987e2 1003 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1004 cond_resched();
570a335b
HD
1005
1006 if (entry.val) {
70e806e4
PX
1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 ret = -ENOMEM;
1009 goto out;
1010 }
1011 entry.val = 0;
1012 } else if (ret) {
1013 WARN_ON_ONCE(ret != -EAGAIN);
c78f4636 1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
70e806e4 1015 if (!prealloc)
570a335b 1016 return -ENOMEM;
70e806e4
PX
1017 /* We've captured and resolved the error. Reset, try again. */
1018 ret = 0;
570a335b 1019 }
1da177e4
LT
1020 if (addr != end)
1021 goto again;
70e806e4
PX
1022out:
1023 if (unlikely(prealloc))
1024 put_page(prealloc);
1025 return ret;
1da177e4
LT
1026}
1027
c78f4636
PX
1028static inline int
1029copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 unsigned long end)
1da177e4 1032{
c78f4636
PX
1033 struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1035 pmd_t *src_pmd, *dst_pmd;
1036 unsigned long next;
1037
1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 if (!dst_pmd)
1040 return -ENOMEM;
1041 src_pmd = pmd_offset(src_pud, addr);
1042 do {
1043 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 || pmd_devmap(*src_pmd)) {
71e3aac0 1046 int err;
c78f4636 1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
71e3aac0 1048 err = copy_huge_pmd(dst_mm, src_mm,
c78f4636 1049 dst_pmd, src_pmd, addr, src_vma);
71e3aac0
AA
1050 if (err == -ENOMEM)
1051 return -ENOMEM;
1052 if (!err)
1053 continue;
1054 /* fall through */
1055 }
1da177e4
LT
1056 if (pmd_none_or_clear_bad(src_pmd))
1057 continue;
c78f4636
PX
1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 addr, next))
1da177e4
LT
1060 return -ENOMEM;
1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 return 0;
1063}
1064
c78f4636
PX
1065static inline int
1066copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 unsigned long end)
1da177e4 1069{
c78f4636
PX
1070 struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 struct mm_struct *src_mm = src_vma->vm_mm;
1da177e4
LT
1072 pud_t *src_pud, *dst_pud;
1073 unsigned long next;
1074
c2febafc 1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1076 if (!dst_pud)
1077 return -ENOMEM;
c2febafc 1078 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1079 do {
1080 next = pud_addr_end(addr, end);
a00cc7d9
MW
1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 int err;
1083
c78f4636 1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
a00cc7d9 1085 err = copy_huge_pud(dst_mm, src_mm,
c78f4636 1086 dst_pud, src_pud, addr, src_vma);
a00cc7d9
MW
1087 if (err == -ENOMEM)
1088 return -ENOMEM;
1089 if (!err)
1090 continue;
1091 /* fall through */
1092 }
1da177e4
LT
1093 if (pud_none_or_clear_bad(src_pud))
1094 continue;
c78f4636
PX
1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 addr, next))
1da177e4
LT
1097 return -ENOMEM;
1098 } while (dst_pud++, src_pud++, addr = next, addr != end);
1099 return 0;
1100}
1101
c78f4636
PX
1102static inline int
1103copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 unsigned long end)
c2febafc 1106{
c78f4636 1107 struct mm_struct *dst_mm = dst_vma->vm_mm;
c2febafc
KS
1108 p4d_t *src_p4d, *dst_p4d;
1109 unsigned long next;
1110
1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 if (!dst_p4d)
1113 return -ENOMEM;
1114 src_p4d = p4d_offset(src_pgd, addr);
1115 do {
1116 next = p4d_addr_end(addr, end);
1117 if (p4d_none_or_clear_bad(src_p4d))
1118 continue;
c78f4636
PX
1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 addr, next))
c2febafc
KS
1121 return -ENOMEM;
1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 return 0;
1124}
1125
c78f4636
PX
1126int
1127copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1da177e4
LT
1128{
1129 pgd_t *src_pgd, *dst_pgd;
1130 unsigned long next;
c78f4636
PX
1131 unsigned long addr = src_vma->vm_start;
1132 unsigned long end = src_vma->vm_end;
1133 struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 struct mm_struct *src_mm = src_vma->vm_mm;
ac46d4f3 1135 struct mmu_notifier_range range;
2ec74c3e 1136 bool is_cow;
cddb8a5c 1137 int ret;
1da177e4 1138
d992895b
NP
1139 /*
1140 * Don't copy ptes where a page fault will fill them correctly.
1141 * Fork becomes much lighter when there are big shared or private
1142 * readonly mappings. The tradeoff is that copy_page_range is more
1143 * efficient than faulting.
1144 */
c78f4636
PX
1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 !src_vma->anon_vma)
0661a336 1147 return 0;
d992895b 1148
c78f4636
PX
1149 if (is_vm_hugetlb_page(src_vma))
1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1da177e4 1151
c78f4636 1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
2ab64037 1153 /*
1154 * We do not free on error cases below as remove_vma
1155 * gets called on error from higher level routine
1156 */
c78f4636 1157 ret = track_pfn_copy(src_vma);
2ab64037 1158 if (ret)
1159 return ret;
1160 }
1161
cddb8a5c
AA
1162 /*
1163 * We need to invalidate the secondary MMU mappings only when
1164 * there could be a permission downgrade on the ptes of the
1165 * parent mm. And a permission downgrade will only happen if
1166 * is_cow_mapping() returns true.
1167 */
c78f4636 1168 is_cow = is_cow_mapping(src_vma->vm_flags);
ac46d4f3
JG
1169
1170 if (is_cow) {
7269f999 1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
c78f4636 1172 0, src_vma, src_mm, addr, end);
ac46d4f3
JG
1173 mmu_notifier_invalidate_range_start(&range);
1174 }
cddb8a5c
AA
1175
1176 ret = 0;
1da177e4
LT
1177 dst_pgd = pgd_offset(dst_mm, addr);
1178 src_pgd = pgd_offset(src_mm, addr);
1179 do {
1180 next = pgd_addr_end(addr, end);
1181 if (pgd_none_or_clear_bad(src_pgd))
1182 continue;
c78f4636
PX
1183 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184 addr, next))) {
cddb8a5c
AA
1185 ret = -ENOMEM;
1186 break;
1187 }
1da177e4 1188 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1189
2ec74c3e 1190 if (is_cow)
ac46d4f3 1191 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1192 return ret;
1da177e4
LT
1193}
1194
51c6f666 1195static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1196 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1197 unsigned long addr, unsigned long end,
97a89413 1198 struct zap_details *details)
1da177e4 1199{
b5810039 1200 struct mm_struct *mm = tlb->mm;
d16dfc55 1201 int force_flush = 0;
d559db08 1202 int rss[NR_MM_COUNTERS];
97a89413 1203 spinlock_t *ptl;
5f1a1907 1204 pte_t *start_pte;
97a89413 1205 pte_t *pte;
8a5f14a2 1206 swp_entry_t entry;
d559db08 1207
ed6a7935 1208 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1209again:
e303297e 1210 init_rss_vec(rss);
5f1a1907
SR
1211 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212 pte = start_pte;
3ea27719 1213 flush_tlb_batched_pending(mm);
6606c3e0 1214 arch_enter_lazy_mmu_mode();
1da177e4
LT
1215 do {
1216 pte_t ptent = *pte;
166f61b9 1217 if (pte_none(ptent))
1da177e4 1218 continue;
6f5e6b9e 1219
7b167b68
MK
1220 if (need_resched())
1221 break;
1222
1da177e4 1223 if (pte_present(ptent)) {
ee498ed7 1224 struct page *page;
51c6f666 1225
25b2995a 1226 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1227 if (unlikely(details) && page) {
1228 /*
1229 * unmap_shared_mapping_pages() wants to
1230 * invalidate cache without truncating:
1231 * unmap shared but keep private pages.
1232 */
1233 if (details->check_mapping &&
800d8c63 1234 details->check_mapping != page_rmapping(page))
1da177e4 1235 continue;
1da177e4 1236 }
b5810039 1237 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1238 tlb->fullmm);
1da177e4
LT
1239 tlb_remove_tlb_entry(tlb, pte, addr);
1240 if (unlikely(!page))
1241 continue;
eca56ff9
JM
1242
1243 if (!PageAnon(page)) {
1cf35d47
LT
1244 if (pte_dirty(ptent)) {
1245 force_flush = 1;
6237bcd9 1246 set_page_dirty(page);
1cf35d47 1247 }
4917e5d0 1248 if (pte_young(ptent) &&
64363aad 1249 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1250 mark_page_accessed(page);
6237bcd9 1251 }
eca56ff9 1252 rss[mm_counter(page)]--;
d281ee61 1253 page_remove_rmap(page, false);
3dc14741
HD
1254 if (unlikely(page_mapcount(page) < 0))
1255 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1256 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1257 force_flush = 1;
ce9ec37b 1258 addr += PAGE_SIZE;
d16dfc55 1259 break;
1cf35d47 1260 }
1da177e4
LT
1261 continue;
1262 }
5042db43
JG
1263
1264 entry = pte_to_swp_entry(ptent);
463b7a17 1265 if (is_device_private_entry(entry)) {
5042db43
JG
1266 struct page *page = device_private_entry_to_page(entry);
1267
1268 if (unlikely(details && details->check_mapping)) {
1269 /*
1270 * unmap_shared_mapping_pages() wants to
1271 * invalidate cache without truncating:
1272 * unmap shared but keep private pages.
1273 */
1274 if (details->check_mapping !=
1275 page_rmapping(page))
1276 continue;
1277 }
1278
1279 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280 rss[mm_counter(page)]--;
1281 page_remove_rmap(page, false);
1282 put_page(page);
1283 continue;
1284 }
1285
3e8715fd
KS
1286 /* If details->check_mapping, we leave swap entries. */
1287 if (unlikely(details))
1da177e4 1288 continue;
b084d435 1289
8a5f14a2
KS
1290 if (!non_swap_entry(entry))
1291 rss[MM_SWAPENTS]--;
1292 else if (is_migration_entry(entry)) {
1293 struct page *page;
9f9f1acd 1294
8a5f14a2 1295 page = migration_entry_to_page(entry);
eca56ff9 1296 rss[mm_counter(page)]--;
b084d435 1297 }
8a5f14a2
KS
1298 if (unlikely(!free_swap_and_cache(entry)))
1299 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1300 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1301 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1302
d559db08 1303 add_mm_rss_vec(mm, rss);
6606c3e0 1304 arch_leave_lazy_mmu_mode();
51c6f666 1305
1cf35d47 1306 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1307 if (force_flush)
1cf35d47 1308 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1309 pte_unmap_unlock(start_pte, ptl);
1310
1311 /*
1312 * If we forced a TLB flush (either due to running out of
1313 * batch buffers or because we needed to flush dirty TLB
1314 * entries before releasing the ptl), free the batched
1315 * memory too. Restart if we didn't do everything.
1316 */
1317 if (force_flush) {
1318 force_flush = 0;
fa0aafb8 1319 tlb_flush_mmu(tlb);
7b167b68
MK
1320 }
1321
1322 if (addr != end) {
1323 cond_resched();
1324 goto again;
d16dfc55
PZ
1325 }
1326
51c6f666 1327 return addr;
1da177e4
LT
1328}
1329
51c6f666 1330static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1331 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1332 unsigned long addr, unsigned long end,
97a89413 1333 struct zap_details *details)
1da177e4
LT
1334{
1335 pmd_t *pmd;
1336 unsigned long next;
1337
1338 pmd = pmd_offset(pud, addr);
1339 do {
1340 next = pmd_addr_end(addr, end);
84c3fc4e 1341 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1342 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1343 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1344 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1345 goto next;
71e3aac0
AA
1346 /* fall through */
1347 }
1a5a9906
AA
1348 /*
1349 * Here there can be other concurrent MADV_DONTNEED or
1350 * trans huge page faults running, and if the pmd is
1351 * none or trans huge it can change under us. This is
c1e8d7c6 1352 * because MADV_DONTNEED holds the mmap_lock in read
1a5a9906
AA
1353 * mode.
1354 */
1355 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356 goto next;
97a89413 1357 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1358next:
97a89413
PZ
1359 cond_resched();
1360 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1361
1362 return addr;
1da177e4
LT
1363}
1364
51c6f666 1365static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1366 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1367 unsigned long addr, unsigned long end,
97a89413 1368 struct zap_details *details)
1da177e4
LT
1369{
1370 pud_t *pud;
1371 unsigned long next;
1372
c2febafc 1373 pud = pud_offset(p4d, addr);
1da177e4
LT
1374 do {
1375 next = pud_addr_end(addr, end);
a00cc7d9
MW
1376 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377 if (next - addr != HPAGE_PUD_SIZE) {
42fc5414 1378 mmap_assert_locked(tlb->mm);
a00cc7d9
MW
1379 split_huge_pud(vma, pud, addr);
1380 } else if (zap_huge_pud(tlb, vma, pud, addr))
1381 goto next;
1382 /* fall through */
1383 }
97a89413 1384 if (pud_none_or_clear_bad(pud))
1da177e4 1385 continue;
97a89413 1386 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1387next:
1388 cond_resched();
97a89413 1389 } while (pud++, addr = next, addr != end);
51c6f666
RH
1390
1391 return addr;
1da177e4
LT
1392}
1393
c2febafc
KS
1394static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pgd_t *pgd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1398{
1399 p4d_t *p4d;
1400 unsigned long next;
1401
1402 p4d = p4d_offset(pgd, addr);
1403 do {
1404 next = p4d_addr_end(addr, end);
1405 if (p4d_none_or_clear_bad(p4d))
1406 continue;
1407 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408 } while (p4d++, addr = next, addr != end);
1409
1410 return addr;
1411}
1412
aac45363 1413void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1414 struct vm_area_struct *vma,
1415 unsigned long addr, unsigned long end,
1416 struct zap_details *details)
1da177e4
LT
1417{
1418 pgd_t *pgd;
1419 unsigned long next;
1420
1da177e4
LT
1421 BUG_ON(addr >= end);
1422 tlb_start_vma(tlb, vma);
1423 pgd = pgd_offset(vma->vm_mm, addr);
1424 do {
1425 next = pgd_addr_end(addr, end);
97a89413 1426 if (pgd_none_or_clear_bad(pgd))
1da177e4 1427 continue;
c2febafc 1428 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1429 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1430 tlb_end_vma(tlb, vma);
1431}
51c6f666 1432
f5cc4eef
AV
1433
1434static void unmap_single_vma(struct mmu_gather *tlb,
1435 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1436 unsigned long end_addr,
f5cc4eef
AV
1437 struct zap_details *details)
1438{
1439 unsigned long start = max(vma->vm_start, start_addr);
1440 unsigned long end;
1441
1442 if (start >= vma->vm_end)
1443 return;
1444 end = min(vma->vm_end, end_addr);
1445 if (end <= vma->vm_start)
1446 return;
1447
cbc91f71
SD
1448 if (vma->vm_file)
1449 uprobe_munmap(vma, start, end);
1450
b3b9c293 1451 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1452 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1453
1454 if (start != end) {
1455 if (unlikely(is_vm_hugetlb_page(vma))) {
1456 /*
1457 * It is undesirable to test vma->vm_file as it
1458 * should be non-null for valid hugetlb area.
1459 * However, vm_file will be NULL in the error
7aa6b4ad 1460 * cleanup path of mmap_region. When
f5cc4eef 1461 * hugetlbfs ->mmap method fails,
7aa6b4ad 1462 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1463 * before calling this function to clean up.
1464 * Since no pte has actually been setup, it is
1465 * safe to do nothing in this case.
1466 */
24669e58 1467 if (vma->vm_file) {
83cde9e8 1468 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1469 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1470 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1471 }
f5cc4eef
AV
1472 } else
1473 unmap_page_range(tlb, vma, start, end, details);
1474 }
1da177e4
LT
1475}
1476
1da177e4
LT
1477/**
1478 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1479 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1480 * @vma: the starting vma
1481 * @start_addr: virtual address at which to start unmapping
1482 * @end_addr: virtual address at which to end unmapping
1da177e4 1483 *
508034a3 1484 * Unmap all pages in the vma list.
1da177e4 1485 *
1da177e4
LT
1486 * Only addresses between `start' and `end' will be unmapped.
1487 *
1488 * The VMA list must be sorted in ascending virtual address order.
1489 *
1490 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491 * range after unmap_vmas() returns. So the only responsibility here is to
1492 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493 * drops the lock and schedules.
1494 */
6e8bb019 1495void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1496 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1497 unsigned long end_addr)
1da177e4 1498{
ac46d4f3 1499 struct mmu_notifier_range range;
1da177e4 1500
6f4f13e8
JG
1501 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502 start_addr, end_addr);
ac46d4f3 1503 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1504 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1505 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1506 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1507}
1508
1509/**
1510 * zap_page_range - remove user pages in a given range
1511 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1512 * @start: starting address of pages to zap
1da177e4 1513 * @size: number of bytes to zap
f5cc4eef
AV
1514 *
1515 * Caller must protect the VMA list
1da177e4 1516 */
7e027b14 1517void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1518 unsigned long size)
1da177e4 1519{
ac46d4f3 1520 struct mmu_notifier_range range;
d16dfc55 1521 struct mmu_gather tlb;
1da177e4 1522
1da177e4 1523 lru_add_drain();
7269f999 1524 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1525 start, start + size);
ac46d4f3
JG
1526 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527 update_hiwater_rss(vma->vm_mm);
1528 mmu_notifier_invalidate_range_start(&range);
1529 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531 mmu_notifier_invalidate_range_end(&range);
1532 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1533}
1534
f5cc4eef
AV
1535/**
1536 * zap_page_range_single - remove user pages in a given range
1537 * @vma: vm_area_struct holding the applicable pages
1538 * @address: starting address of pages to zap
1539 * @size: number of bytes to zap
8a5f14a2 1540 * @details: details of shared cache invalidation
f5cc4eef
AV
1541 *
1542 * The range must fit into one VMA.
1da177e4 1543 */
f5cc4eef 1544static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1545 unsigned long size, struct zap_details *details)
1546{
ac46d4f3 1547 struct mmu_notifier_range range;
d16dfc55 1548 struct mmu_gather tlb;
1da177e4 1549
1da177e4 1550 lru_add_drain();
7269f999 1551 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1552 address, address + size);
ac46d4f3
JG
1553 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554 update_hiwater_rss(vma->vm_mm);
1555 mmu_notifier_invalidate_range_start(&range);
1556 unmap_single_vma(&tlb, vma, address, range.end, details);
1557 mmu_notifier_invalidate_range_end(&range);
1558 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1559}
1560
c627f9cc
JS
1561/**
1562 * zap_vma_ptes - remove ptes mapping the vma
1563 * @vma: vm_area_struct holding ptes to be zapped
1564 * @address: starting address of pages to zap
1565 * @size: number of bytes to zap
1566 *
1567 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568 *
1569 * The entire address range must be fully contained within the vma.
1570 *
c627f9cc 1571 */
27d036e3 1572void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1573 unsigned long size)
1574{
1575 if (address < vma->vm_start || address + size > vma->vm_end ||
1576 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1577 return;
1578
f5cc4eef 1579 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1580}
1581EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582
8cd3984d 1583static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
c9cfcddf 1584{
c2febafc
KS
1585 pgd_t *pgd;
1586 p4d_t *p4d;
1587 pud_t *pud;
1588 pmd_t *pmd;
1589
1590 pgd = pgd_offset(mm, addr);
1591 p4d = p4d_alloc(mm, pgd, addr);
1592 if (!p4d)
1593 return NULL;
1594 pud = pud_alloc(mm, p4d, addr);
1595 if (!pud)
1596 return NULL;
1597 pmd = pmd_alloc(mm, pud, addr);
1598 if (!pmd)
1599 return NULL;
1600
1601 VM_BUG_ON(pmd_trans_huge(*pmd));
8cd3984d
AR
1602 return pmd;
1603}
1604
1605pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606 spinlock_t **ptl)
1607{
1608 pmd_t *pmd = walk_to_pmd(mm, addr);
1609
1610 if (!pmd)
1611 return NULL;
c2febafc 1612 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1613}
1614
8efd6f5b
AR
1615static int validate_page_before_insert(struct page *page)
1616{
1617 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618 return -EINVAL;
1619 flush_dcache_page(page);
1620 return 0;
1621}
1622
1623static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624 unsigned long addr, struct page *page, pgprot_t prot)
1625{
1626 if (!pte_none(*pte))
1627 return -EBUSY;
1628 /* Ok, finally just insert the thing.. */
1629 get_page(page);
1630 inc_mm_counter_fast(mm, mm_counter_file(page));
1631 page_add_file_rmap(page, false);
1632 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633 return 0;
1634}
1635
238f58d8
LT
1636/*
1637 * This is the old fallback for page remapping.
1638 *
1639 * For historical reasons, it only allows reserved pages. Only
1640 * old drivers should use this, and they needed to mark their
1641 * pages reserved for the old functions anyway.
1642 */
423bad60
NP
1643static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644 struct page *page, pgprot_t prot)
238f58d8 1645{
423bad60 1646 struct mm_struct *mm = vma->vm_mm;
238f58d8 1647 int retval;
c9cfcddf 1648 pte_t *pte;
8a9f3ccd
BS
1649 spinlock_t *ptl;
1650
8efd6f5b
AR
1651 retval = validate_page_before_insert(page);
1652 if (retval)
5b4e655e 1653 goto out;
238f58d8 1654 retval = -ENOMEM;
c9cfcddf 1655 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1656 if (!pte)
5b4e655e 1657 goto out;
8efd6f5b 1658 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
238f58d8
LT
1659 pte_unmap_unlock(pte, ptl);
1660out:
1661 return retval;
1662}
1663
8cd3984d 1664#ifdef pte_index
7f70c2a6 1665static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
8cd3984d
AR
1666 unsigned long addr, struct page *page, pgprot_t prot)
1667{
1668 int err;
1669
1670 if (!page_count(page))
1671 return -EINVAL;
1672 err = validate_page_before_insert(page);
7f70c2a6
AR
1673 if (err)
1674 return err;
1675 return insert_page_into_pte_locked(mm, pte, addr, page, prot);
8cd3984d
AR
1676}
1677
1678/* insert_pages() amortizes the cost of spinlock operations
1679 * when inserting pages in a loop. Arch *must* define pte_index.
1680 */
1681static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682 struct page **pages, unsigned long *num, pgprot_t prot)
1683{
1684 pmd_t *pmd = NULL;
7f70c2a6
AR
1685 pte_t *start_pte, *pte;
1686 spinlock_t *pte_lock;
8cd3984d
AR
1687 struct mm_struct *const mm = vma->vm_mm;
1688 unsigned long curr_page_idx = 0;
1689 unsigned long remaining_pages_total = *num;
1690 unsigned long pages_to_write_in_pmd;
1691 int ret;
1692more:
1693 ret = -EFAULT;
1694 pmd = walk_to_pmd(mm, addr);
1695 if (!pmd)
1696 goto out;
1697
1698 pages_to_write_in_pmd = min_t(unsigned long,
1699 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700
1701 /* Allocate the PTE if necessary; takes PMD lock once only. */
1702 ret = -ENOMEM;
1703 if (pte_alloc(mm, pmd))
1704 goto out;
8cd3984d
AR
1705
1706 while (pages_to_write_in_pmd) {
1707 int pte_idx = 0;
1708 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709
7f70c2a6
AR
1710 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712 int err = insert_page_in_batch_locked(mm, pte,
8cd3984d
AR
1713 addr, pages[curr_page_idx], prot);
1714 if (unlikely(err)) {
7f70c2a6 1715 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1716 ret = err;
1717 remaining_pages_total -= pte_idx;
1718 goto out;
1719 }
1720 addr += PAGE_SIZE;
1721 ++curr_page_idx;
1722 }
7f70c2a6 1723 pte_unmap_unlock(start_pte, pte_lock);
8cd3984d
AR
1724 pages_to_write_in_pmd -= batch_size;
1725 remaining_pages_total -= batch_size;
1726 }
1727 if (remaining_pages_total)
1728 goto more;
1729 ret = 0;
1730out:
1731 *num = remaining_pages_total;
1732 return ret;
1733}
1734#endif /* ifdef pte_index */
1735
1736/**
1737 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738 * @vma: user vma to map to
1739 * @addr: target start user address of these pages
1740 * @pages: source kernel pages
1741 * @num: in: number of pages to map. out: number of pages that were *not*
1742 * mapped. (0 means all pages were successfully mapped).
1743 *
1744 * Preferred over vm_insert_page() when inserting multiple pages.
1745 *
1746 * In case of error, we may have mapped a subset of the provided
1747 * pages. It is the caller's responsibility to account for this case.
1748 *
1749 * The same restrictions apply as in vm_insert_page().
1750 */
1751int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752 struct page **pages, unsigned long *num)
1753{
1754#ifdef pte_index
1755 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756
1757 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758 return -EFAULT;
1759 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1760 BUG_ON(mmap_read_trylock(vma->vm_mm));
8cd3984d
AR
1761 BUG_ON(vma->vm_flags & VM_PFNMAP);
1762 vma->vm_flags |= VM_MIXEDMAP;
1763 }
1764 /* Defer page refcount checking till we're about to map that page. */
1765 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766#else
1767 unsigned long idx = 0, pgcount = *num;
45779b03 1768 int err = -EINVAL;
8cd3984d
AR
1769
1770 for (; idx < pgcount; ++idx) {
1771 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772 if (err)
1773 break;
1774 }
1775 *num = pgcount - idx;
1776 return err;
1777#endif /* ifdef pte_index */
1778}
1779EXPORT_SYMBOL(vm_insert_pages);
1780
bfa5bf6d
REB
1781/**
1782 * vm_insert_page - insert single page into user vma
1783 * @vma: user vma to map to
1784 * @addr: target user address of this page
1785 * @page: source kernel page
1786 *
a145dd41
LT
1787 * This allows drivers to insert individual pages they've allocated
1788 * into a user vma.
1789 *
1790 * The page has to be a nice clean _individual_ kernel allocation.
1791 * If you allocate a compound page, you need to have marked it as
1792 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1793 * (see split_page()).
a145dd41
LT
1794 *
1795 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796 * took an arbitrary page protection parameter. This doesn't allow
1797 * that. Your vma protection will have to be set up correctly, which
1798 * means that if you want a shared writable mapping, you'd better
1799 * ask for a shared writable mapping!
1800 *
1801 * The page does not need to be reserved.
4b6e1e37
KK
1802 *
1803 * Usually this function is called from f_op->mmap() handler
c1e8d7c6 1804 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
4b6e1e37
KK
1805 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806 * function from other places, for example from page-fault handler.
a862f68a
MR
1807 *
1808 * Return: %0 on success, negative error code otherwise.
a145dd41 1809 */
423bad60
NP
1810int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811 struct page *page)
a145dd41
LT
1812{
1813 if (addr < vma->vm_start || addr >= vma->vm_end)
1814 return -EFAULT;
1815 if (!page_count(page))
1816 return -EINVAL;
4b6e1e37 1817 if (!(vma->vm_flags & VM_MIXEDMAP)) {
d8ed45c5 1818 BUG_ON(mmap_read_trylock(vma->vm_mm));
4b6e1e37
KK
1819 BUG_ON(vma->vm_flags & VM_PFNMAP);
1820 vma->vm_flags |= VM_MIXEDMAP;
1821 }
423bad60 1822 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1823}
e3c3374f 1824EXPORT_SYMBOL(vm_insert_page);
a145dd41 1825
a667d745
SJ
1826/*
1827 * __vm_map_pages - maps range of kernel pages into user vma
1828 * @vma: user vma to map to
1829 * @pages: pointer to array of source kernel pages
1830 * @num: number of pages in page array
1831 * @offset: user's requested vm_pgoff
1832 *
1833 * This allows drivers to map range of kernel pages into a user vma.
1834 *
1835 * Return: 0 on success and error code otherwise.
1836 */
1837static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838 unsigned long num, unsigned long offset)
1839{
1840 unsigned long count = vma_pages(vma);
1841 unsigned long uaddr = vma->vm_start;
1842 int ret, i;
1843
1844 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1845 if (offset >= num)
a667d745
SJ
1846 return -ENXIO;
1847
1848 /* Fail if the user requested size exceeds available object size */
1849 if (count > num - offset)
1850 return -ENXIO;
1851
1852 for (i = 0; i < count; i++) {
1853 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854 if (ret < 0)
1855 return ret;
1856 uaddr += PAGE_SIZE;
1857 }
1858
1859 return 0;
1860}
1861
1862/**
1863 * vm_map_pages - maps range of kernel pages starts with non zero offset
1864 * @vma: user vma to map to
1865 * @pages: pointer to array of source kernel pages
1866 * @num: number of pages in page array
1867 *
1868 * Maps an object consisting of @num pages, catering for the user's
1869 * requested vm_pgoff
1870 *
1871 * If we fail to insert any page into the vma, the function will return
1872 * immediately leaving any previously inserted pages present. Callers
1873 * from the mmap handler may immediately return the error as their caller
1874 * will destroy the vma, removing any successfully inserted pages. Other
1875 * callers should make their own arrangements for calling unmap_region().
1876 *
1877 * Context: Process context. Called by mmap handlers.
1878 * Return: 0 on success and error code otherwise.
1879 */
1880int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881 unsigned long num)
1882{
1883 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884}
1885EXPORT_SYMBOL(vm_map_pages);
1886
1887/**
1888 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889 * @vma: user vma to map to
1890 * @pages: pointer to array of source kernel pages
1891 * @num: number of pages in page array
1892 *
1893 * Similar to vm_map_pages(), except that it explicitly sets the offset
1894 * to 0. This function is intended for the drivers that did not consider
1895 * vm_pgoff.
1896 *
1897 * Context: Process context. Called by mmap handlers.
1898 * Return: 0 on success and error code otherwise.
1899 */
1900int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901 unsigned long num)
1902{
1903 return __vm_map_pages(vma, pages, num, 0);
1904}
1905EXPORT_SYMBOL(vm_map_pages_zero);
1906
9b5a8e00 1907static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1908 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1909{
1910 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1911 pte_t *pte, entry;
1912 spinlock_t *ptl;
1913
423bad60
NP
1914 pte = get_locked_pte(mm, addr, &ptl);
1915 if (!pte)
9b5a8e00 1916 return VM_FAULT_OOM;
b2770da6
RZ
1917 if (!pte_none(*pte)) {
1918 if (mkwrite) {
1919 /*
1920 * For read faults on private mappings the PFN passed
1921 * in may not match the PFN we have mapped if the
1922 * mapped PFN is a writeable COW page. In the mkwrite
1923 * case we are creating a writable PTE for a shared
f2c57d91
JK
1924 * mapping and we expect the PFNs to match. If they
1925 * don't match, we are likely racing with block
1926 * allocation and mapping invalidation so just skip the
1927 * update.
b2770da6 1928 */
f2c57d91
JK
1929 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1931 goto out_unlock;
f2c57d91 1932 }
cae85cb8
JK
1933 entry = pte_mkyoung(*pte);
1934 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936 update_mmu_cache(vma, addr, pte);
1937 }
1938 goto out_unlock;
b2770da6 1939 }
423bad60
NP
1940
1941 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1942 if (pfn_t_devmap(pfn))
1943 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944 else
1945 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1946
b2770da6
RZ
1947 if (mkwrite) {
1948 entry = pte_mkyoung(entry);
1949 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950 }
1951
423bad60 1952 set_pte_at(mm, addr, pte, entry);
4b3073e1 1953 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1954
423bad60
NP
1955out_unlock:
1956 pte_unmap_unlock(pte, ptl);
9b5a8e00 1957 return VM_FAULT_NOPAGE;
423bad60
NP
1958}
1959
f5e6d1d5
MW
1960/**
1961 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962 * @vma: user vma to map to
1963 * @addr: target user address of this page
1964 * @pfn: source kernel pfn
1965 * @pgprot: pgprot flags for the inserted page
1966 *
a1a0aea5 1967 * This is exactly like vmf_insert_pfn(), except that it allows drivers
f5e6d1d5
MW
1968 * to override pgprot on a per-page basis.
1969 *
1970 * This only makes sense for IO mappings, and it makes no sense for
1971 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1972 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1973 * impractical.
1974 *
574c5b3d
TH
1975 * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976 * a value of @pgprot different from that of @vma->vm_page_prot.
1977 *
ae2b01f3 1978 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1979 * Return: vm_fault_t value.
1980 */
1981vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982 unsigned long pfn, pgprot_t pgprot)
1983{
6d958546
MW
1984 /*
1985 * Technically, architectures with pte_special can avoid all these
1986 * restrictions (same for remap_pfn_range). However we would like
1987 * consistency in testing and feature parity among all, so we should
1988 * try to keep these invariants in place for everybody.
1989 */
1990 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992 (VM_PFNMAP|VM_MIXEDMAP));
1993 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995
1996 if (addr < vma->vm_start || addr >= vma->vm_end)
1997 return VM_FAULT_SIGBUS;
1998
1999 if (!pfn_modify_allowed(pfn, pgprot))
2000 return VM_FAULT_SIGBUS;
2001
2002 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003
9b5a8e00 2004 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 2005 false);
f5e6d1d5
MW
2006}
2007EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 2008
ae2b01f3
MW
2009/**
2010 * vmf_insert_pfn - insert single pfn into user vma
2011 * @vma: user vma to map to
2012 * @addr: target user address of this page
2013 * @pfn: source kernel pfn
2014 *
2015 * Similar to vm_insert_page, this allows drivers to insert individual pages
2016 * they've allocated into a user vma. Same comments apply.
2017 *
2018 * This function should only be called from a vm_ops->fault handler, and
2019 * in that case the handler should return the result of this function.
2020 *
2021 * vma cannot be a COW mapping.
2022 *
2023 * As this is called only for pages that do not currently exist, we
2024 * do not need to flush old virtual caches or the TLB.
2025 *
2026 * Context: Process context. May allocate using %GFP_KERNEL.
2027 * Return: vm_fault_t value.
2028 */
2029vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030 unsigned long pfn)
2031{
2032 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033}
2034EXPORT_SYMBOL(vmf_insert_pfn);
2035
785a3fab
DW
2036static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037{
2038 /* these checks mirror the abort conditions in vm_normal_page */
2039 if (vma->vm_flags & VM_MIXEDMAP)
2040 return true;
2041 if (pfn_t_devmap(pfn))
2042 return true;
2043 if (pfn_t_special(pfn))
2044 return true;
2045 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046 return true;
2047 return false;
2048}
2049
79f3aa5b 2050static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
574c5b3d
TH
2051 unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052 bool mkwrite)
423bad60 2053{
79f3aa5b 2054 int err;
87744ab3 2055
785a3fab 2056 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 2057
423bad60 2058 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 2059 return VM_FAULT_SIGBUS;
308a047c
BP
2060
2061 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 2062
42e4089c 2063 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 2064 return VM_FAULT_SIGBUS;
42e4089c 2065
423bad60
NP
2066 /*
2067 * If we don't have pte special, then we have to use the pfn_valid()
2068 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
2070 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2071 * without pte special, it would there be refcounted as a normal page.
423bad60 2072 */
00b3a331
LD
2073 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
2075 struct page *page;
2076
03fc2da6
DW
2077 /*
2078 * At this point we are committed to insert_page()
2079 * regardless of whether the caller specified flags that
2080 * result in pfn_t_has_page() == false.
2081 */
2082 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
2083 err = insert_page(vma, addr, page, pgprot);
2084 } else {
9b5a8e00 2085 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 2086 }
b2770da6 2087
5d747637
MW
2088 if (err == -ENOMEM)
2089 return VM_FAULT_OOM;
2090 if (err < 0 && err != -EBUSY)
2091 return VM_FAULT_SIGBUS;
2092
2093 return VM_FAULT_NOPAGE;
e0dc0d8f 2094}
79f3aa5b 2095
574c5b3d
TH
2096/**
2097 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098 * @vma: user vma to map to
2099 * @addr: target user address of this page
2100 * @pfn: source kernel pfn
2101 * @pgprot: pgprot flags for the inserted page
2102 *
a1a0aea5 2103 * This is exactly like vmf_insert_mixed(), except that it allows drivers
574c5b3d
TH
2104 * to override pgprot on a per-page basis.
2105 *
2106 * Typically this function should be used by drivers to set caching- and
2107 * encryption bits different than those of @vma->vm_page_prot, because
2108 * the caching- or encryption mode may not be known at mmap() time.
2109 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110 * to set caching and encryption bits for those vmas (except for COW pages).
2111 * This is ensured by core vm only modifying these page table entries using
2112 * functions that don't touch caching- or encryption bits, using pte_modify()
2113 * if needed. (See for example mprotect()).
2114 * Also when new page-table entries are created, this is only done using the
2115 * fault() callback, and never using the value of vma->vm_page_prot,
2116 * except for page-table entries that point to anonymous pages as the result
2117 * of COW.
2118 *
2119 * Context: Process context. May allocate using %GFP_KERNEL.
2120 * Return: vm_fault_t value.
2121 */
2122vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123 pfn_t pfn, pgprot_t pgprot)
2124{
2125 return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126}
5379e4dd 2127EXPORT_SYMBOL(vmf_insert_mixed_prot);
574c5b3d 2128
79f3aa5b
MW
2129vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 pfn_t pfn)
2131{
574c5b3d 2132 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
79f3aa5b 2133}
5d747637 2134EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 2135
ab77dab4
SJ
2136/*
2137 * If the insertion of PTE failed because someone else already added a
2138 * different entry in the mean time, we treat that as success as we assume
2139 * the same entry was actually inserted.
2140 */
ab77dab4
SJ
2141vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142 unsigned long addr, pfn_t pfn)
b2770da6 2143{
574c5b3d 2144 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
b2770da6 2145}
ab77dab4 2146EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 2147
1da177e4
LT
2148/*
2149 * maps a range of physical memory into the requested pages. the old
2150 * mappings are removed. any references to nonexistent pages results
2151 * in null mappings (currently treated as "copy-on-access")
2152 */
2153static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154 unsigned long addr, unsigned long end,
2155 unsigned long pfn, pgprot_t prot)
2156{
2157 pte_t *pte;
c74df32c 2158 spinlock_t *ptl;
42e4089c 2159 int err = 0;
1da177e4 2160
c74df32c 2161 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
2162 if (!pte)
2163 return -ENOMEM;
6606c3e0 2164 arch_enter_lazy_mmu_mode();
1da177e4
LT
2165 do {
2166 BUG_ON(!pte_none(*pte));
42e4089c
AK
2167 if (!pfn_modify_allowed(pfn, prot)) {
2168 err = -EACCES;
2169 break;
2170 }
7e675137 2171 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
2172 pfn++;
2173 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 2174 arch_leave_lazy_mmu_mode();
c74df32c 2175 pte_unmap_unlock(pte - 1, ptl);
42e4089c 2176 return err;
1da177e4
LT
2177}
2178
2179static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180 unsigned long addr, unsigned long end,
2181 unsigned long pfn, pgprot_t prot)
2182{
2183 pmd_t *pmd;
2184 unsigned long next;
42e4089c 2185 int err;
1da177e4
LT
2186
2187 pfn -= addr >> PAGE_SHIFT;
2188 pmd = pmd_alloc(mm, pud, addr);
2189 if (!pmd)
2190 return -ENOMEM;
f66055ab 2191 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
2192 do {
2193 next = pmd_addr_end(addr, end);
42e4089c
AK
2194 err = remap_pte_range(mm, pmd, addr, next,
2195 pfn + (addr >> PAGE_SHIFT), prot);
2196 if (err)
2197 return err;
1da177e4
LT
2198 } while (pmd++, addr = next, addr != end);
2199 return 0;
2200}
2201
c2febafc 2202static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
2203 unsigned long addr, unsigned long end,
2204 unsigned long pfn, pgprot_t prot)
2205{
2206 pud_t *pud;
2207 unsigned long next;
42e4089c 2208 int err;
1da177e4
LT
2209
2210 pfn -= addr >> PAGE_SHIFT;
c2febafc 2211 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
2212 if (!pud)
2213 return -ENOMEM;
2214 do {
2215 next = pud_addr_end(addr, end);
42e4089c
AK
2216 err = remap_pmd_range(mm, pud, addr, next,
2217 pfn + (addr >> PAGE_SHIFT), prot);
2218 if (err)
2219 return err;
1da177e4
LT
2220 } while (pud++, addr = next, addr != end);
2221 return 0;
2222}
2223
c2febafc
KS
2224static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225 unsigned long addr, unsigned long end,
2226 unsigned long pfn, pgprot_t prot)
2227{
2228 p4d_t *p4d;
2229 unsigned long next;
42e4089c 2230 int err;
c2febafc
KS
2231
2232 pfn -= addr >> PAGE_SHIFT;
2233 p4d = p4d_alloc(mm, pgd, addr);
2234 if (!p4d)
2235 return -ENOMEM;
2236 do {
2237 next = p4d_addr_end(addr, end);
42e4089c
AK
2238 err = remap_pud_range(mm, p4d, addr, next,
2239 pfn + (addr >> PAGE_SHIFT), prot);
2240 if (err)
2241 return err;
c2febafc
KS
2242 } while (p4d++, addr = next, addr != end);
2243 return 0;
2244}
2245
bfa5bf6d
REB
2246/**
2247 * remap_pfn_range - remap kernel memory to userspace
2248 * @vma: user vma to map to
0c4123e3 2249 * @addr: target page aligned user address to start at
86a76331 2250 * @pfn: page frame number of kernel physical memory address
552657b7 2251 * @size: size of mapping area
bfa5bf6d
REB
2252 * @prot: page protection flags for this mapping
2253 *
a862f68a
MR
2254 * Note: this is only safe if the mm semaphore is held when called.
2255 *
2256 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 2257 */
1da177e4
LT
2258int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259 unsigned long pfn, unsigned long size, pgprot_t prot)
2260{
2261 pgd_t *pgd;
2262 unsigned long next;
2d15cab8 2263 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 2264 struct mm_struct *mm = vma->vm_mm;
d5957d2f 2265 unsigned long remap_pfn = pfn;
1da177e4
LT
2266 int err;
2267
0c4123e3
AZ
2268 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269 return -EINVAL;
2270
1da177e4
LT
2271 /*
2272 * Physically remapped pages are special. Tell the
2273 * rest of the world about it:
2274 * VM_IO tells people not to look at these pages
2275 * (accesses can have side effects).
6aab341e
LT
2276 * VM_PFNMAP tells the core MM that the base pages are just
2277 * raw PFN mappings, and do not have a "struct page" associated
2278 * with them.
314e51b9
KK
2279 * VM_DONTEXPAND
2280 * Disable vma merging and expanding with mremap().
2281 * VM_DONTDUMP
2282 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
2283 *
2284 * There's a horrible special case to handle copy-on-write
2285 * behaviour that some programs depend on. We mark the "original"
2286 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 2287 * See vm_normal_page() for details.
1da177e4 2288 */
b3b9c293
KK
2289 if (is_cow_mapping(vma->vm_flags)) {
2290 if (addr != vma->vm_start || end != vma->vm_end)
2291 return -EINVAL;
fb155c16 2292 vma->vm_pgoff = pfn;
b3b9c293
KK
2293 }
2294
d5957d2f 2295 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 2296 if (err)
3c8bb73a 2297 return -EINVAL;
fb155c16 2298
314e51b9 2299 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
2300
2301 BUG_ON(addr >= end);
2302 pfn -= addr >> PAGE_SHIFT;
2303 pgd = pgd_offset(mm, addr);
2304 flush_cache_range(vma, addr, end);
1da177e4
LT
2305 do {
2306 next = pgd_addr_end(addr, end);
c2febafc 2307 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
2308 pfn + (addr >> PAGE_SHIFT), prot);
2309 if (err)
2310 break;
2311 } while (pgd++, addr = next, addr != end);
2ab64037 2312
2313 if (err)
d5957d2f 2314 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 2315
1da177e4
LT
2316 return err;
2317}
2318EXPORT_SYMBOL(remap_pfn_range);
2319
b4cbb197
LT
2320/**
2321 * vm_iomap_memory - remap memory to userspace
2322 * @vma: user vma to map to
abd69b9e 2323 * @start: start of the physical memory to be mapped
b4cbb197
LT
2324 * @len: size of area
2325 *
2326 * This is a simplified io_remap_pfn_range() for common driver use. The
2327 * driver just needs to give us the physical memory range to be mapped,
2328 * we'll figure out the rest from the vma information.
2329 *
2330 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331 * whatever write-combining details or similar.
a862f68a
MR
2332 *
2333 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
2334 */
2335int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336{
2337 unsigned long vm_len, pfn, pages;
2338
2339 /* Check that the physical memory area passed in looks valid */
2340 if (start + len < start)
2341 return -EINVAL;
2342 /*
2343 * You *really* shouldn't map things that aren't page-aligned,
2344 * but we've historically allowed it because IO memory might
2345 * just have smaller alignment.
2346 */
2347 len += start & ~PAGE_MASK;
2348 pfn = start >> PAGE_SHIFT;
2349 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350 if (pfn + pages < pfn)
2351 return -EINVAL;
2352
2353 /* We start the mapping 'vm_pgoff' pages into the area */
2354 if (vma->vm_pgoff > pages)
2355 return -EINVAL;
2356 pfn += vma->vm_pgoff;
2357 pages -= vma->vm_pgoff;
2358
2359 /* Can we fit all of the mapping? */
2360 vm_len = vma->vm_end - vma->vm_start;
2361 if (vm_len >> PAGE_SHIFT > pages)
2362 return -EINVAL;
2363
2364 /* Ok, let it rip */
2365 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366}
2367EXPORT_SYMBOL(vm_iomap_memory);
2368
aee16b3c
JF
2369static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370 unsigned long addr, unsigned long end,
e80d3909
JR
2371 pte_fn_t fn, void *data, bool create,
2372 pgtbl_mod_mask *mask)
aee16b3c
JF
2373{
2374 pte_t *pte;
be1db475 2375 int err = 0;
3f649ab7 2376 spinlock_t *ptl;
aee16b3c 2377
be1db475
DA
2378 if (create) {
2379 pte = (mm == &init_mm) ?
e80d3909 2380 pte_alloc_kernel_track(pmd, addr, mask) :
be1db475
DA
2381 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382 if (!pte)
2383 return -ENOMEM;
2384 } else {
2385 pte = (mm == &init_mm) ?
2386 pte_offset_kernel(pmd, addr) :
2387 pte_offset_map_lock(mm, pmd, addr, &ptl);
2388 }
aee16b3c
JF
2389
2390 BUG_ON(pmd_huge(*pmd));
2391
38e0edb1
JF
2392 arch_enter_lazy_mmu_mode();
2393
aee16b3c 2394 do {
be1db475
DA
2395 if (create || !pte_none(*pte)) {
2396 err = fn(pte++, addr, data);
2397 if (err)
2398 break;
2399 }
c36987e2 2400 } while (addr += PAGE_SIZE, addr != end);
e80d3909 2401 *mask |= PGTBL_PTE_MODIFIED;
aee16b3c 2402
38e0edb1
JF
2403 arch_leave_lazy_mmu_mode();
2404
aee16b3c
JF
2405 if (mm != &init_mm)
2406 pte_unmap_unlock(pte-1, ptl);
2407 return err;
2408}
2409
2410static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2411 unsigned long addr, unsigned long end,
e80d3909
JR
2412 pte_fn_t fn, void *data, bool create,
2413 pgtbl_mod_mask *mask)
aee16b3c
JF
2414{
2415 pmd_t *pmd;
2416 unsigned long next;
be1db475 2417 int err = 0;
aee16b3c 2418
ceb86879
AK
2419 BUG_ON(pud_huge(*pud));
2420
be1db475 2421 if (create) {
e80d3909 2422 pmd = pmd_alloc_track(mm, pud, addr, mask);
be1db475
DA
2423 if (!pmd)
2424 return -ENOMEM;
2425 } else {
2426 pmd = pmd_offset(pud, addr);
2427 }
aee16b3c
JF
2428 do {
2429 next = pmd_addr_end(addr, end);
be1db475
DA
2430 if (create || !pmd_none_or_clear_bad(pmd)) {
2431 err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
e80d3909 2432 create, mask);
be1db475
DA
2433 if (err)
2434 break;
2435 }
aee16b3c
JF
2436 } while (pmd++, addr = next, addr != end);
2437 return err;
2438}
2439
c2febafc 2440static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c 2441 unsigned long addr, unsigned long end,
e80d3909
JR
2442 pte_fn_t fn, void *data, bool create,
2443 pgtbl_mod_mask *mask)
aee16b3c
JF
2444{
2445 pud_t *pud;
2446 unsigned long next;
be1db475 2447 int err = 0;
aee16b3c 2448
be1db475 2449 if (create) {
e80d3909 2450 pud = pud_alloc_track(mm, p4d, addr, mask);
be1db475
DA
2451 if (!pud)
2452 return -ENOMEM;
2453 } else {
2454 pud = pud_offset(p4d, addr);
2455 }
aee16b3c
JF
2456 do {
2457 next = pud_addr_end(addr, end);
be1db475
DA
2458 if (create || !pud_none_or_clear_bad(pud)) {
2459 err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
e80d3909 2460 create, mask);
be1db475
DA
2461 if (err)
2462 break;
2463 }
aee16b3c
JF
2464 } while (pud++, addr = next, addr != end);
2465 return err;
2466}
2467
c2febafc
KS
2468static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2469 unsigned long addr, unsigned long end,
e80d3909
JR
2470 pte_fn_t fn, void *data, bool create,
2471 pgtbl_mod_mask *mask)
c2febafc
KS
2472{
2473 p4d_t *p4d;
2474 unsigned long next;
be1db475 2475 int err = 0;
c2febafc 2476
be1db475 2477 if (create) {
e80d3909 2478 p4d = p4d_alloc_track(mm, pgd, addr, mask);
be1db475
DA
2479 if (!p4d)
2480 return -ENOMEM;
2481 } else {
2482 p4d = p4d_offset(pgd, addr);
2483 }
c2febafc
KS
2484 do {
2485 next = p4d_addr_end(addr, end);
be1db475
DA
2486 if (create || !p4d_none_or_clear_bad(p4d)) {
2487 err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
e80d3909 2488 create, mask);
be1db475
DA
2489 if (err)
2490 break;
2491 }
c2febafc
KS
2492 } while (p4d++, addr = next, addr != end);
2493 return err;
2494}
2495
be1db475
DA
2496static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2497 unsigned long size, pte_fn_t fn,
2498 void *data, bool create)
aee16b3c
JF
2499{
2500 pgd_t *pgd;
e80d3909 2501 unsigned long start = addr, next;
57250a5b 2502 unsigned long end = addr + size;
e80d3909 2503 pgtbl_mod_mask mask = 0;
be1db475 2504 int err = 0;
aee16b3c 2505
9cb65bc3
MP
2506 if (WARN_ON(addr >= end))
2507 return -EINVAL;
2508
aee16b3c
JF
2509 pgd = pgd_offset(mm, addr);
2510 do {
2511 next = pgd_addr_end(addr, end);
be1db475
DA
2512 if (!create && pgd_none_or_clear_bad(pgd))
2513 continue;
e80d3909 2514 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
aee16b3c
JF
2515 if (err)
2516 break;
2517 } while (pgd++, addr = next, addr != end);
57250a5b 2518
e80d3909
JR
2519 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2520 arch_sync_kernel_mappings(start, start + size);
2521
aee16b3c
JF
2522 return err;
2523}
be1db475
DA
2524
2525/*
2526 * Scan a region of virtual memory, filling in page tables as necessary
2527 * and calling a provided function on each leaf page table.
2528 */
2529int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2530 unsigned long size, pte_fn_t fn, void *data)
2531{
2532 return __apply_to_page_range(mm, addr, size, fn, data, true);
2533}
aee16b3c
JF
2534EXPORT_SYMBOL_GPL(apply_to_page_range);
2535
be1db475
DA
2536/*
2537 * Scan a region of virtual memory, calling a provided function on
2538 * each leaf page table where it exists.
2539 *
2540 * Unlike apply_to_page_range, this does _not_ fill in page tables
2541 * where they are absent.
2542 */
2543int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2544 unsigned long size, pte_fn_t fn, void *data)
2545{
2546 return __apply_to_page_range(mm, addr, size, fn, data, false);
2547}
2548EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2549
8f4e2101 2550/*
9b4bdd2f
KS
2551 * handle_pte_fault chooses page fault handler according to an entry which was
2552 * read non-atomically. Before making any commitment, on those architectures
2553 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2554 * parts, do_swap_page must check under lock before unmapping the pte and
2555 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2556 * and do_anonymous_page can safely check later on).
8f4e2101 2557 */
4c21e2f2 2558static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2559 pte_t *page_table, pte_t orig_pte)
2560{
2561 int same = 1;
923717cb 2562#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
8f4e2101 2563 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2564 spinlock_t *ptl = pte_lockptr(mm, pmd);
2565 spin_lock(ptl);
8f4e2101 2566 same = pte_same(*page_table, orig_pte);
4c21e2f2 2567 spin_unlock(ptl);
8f4e2101
HD
2568 }
2569#endif
2570 pte_unmap(page_table);
2571 return same;
2572}
2573
83d116c5
JH
2574static inline bool cow_user_page(struct page *dst, struct page *src,
2575 struct vm_fault *vmf)
6aab341e 2576{
83d116c5
JH
2577 bool ret;
2578 void *kaddr;
2579 void __user *uaddr;
c3e5ea6e 2580 bool locked = false;
83d116c5
JH
2581 struct vm_area_struct *vma = vmf->vma;
2582 struct mm_struct *mm = vma->vm_mm;
2583 unsigned long addr = vmf->address;
2584
83d116c5
JH
2585 if (likely(src)) {
2586 copy_user_highpage(dst, src, addr, vma);
2587 return true;
2588 }
2589
6aab341e
LT
2590 /*
2591 * If the source page was a PFN mapping, we don't have
2592 * a "struct page" for it. We do a best-effort copy by
2593 * just copying from the original user address. If that
2594 * fails, we just zero-fill it. Live with it.
2595 */
83d116c5
JH
2596 kaddr = kmap_atomic(dst);
2597 uaddr = (void __user *)(addr & PAGE_MASK);
2598
2599 /*
2600 * On architectures with software "accessed" bits, we would
2601 * take a double page fault, so mark it accessed here.
2602 */
c3e5ea6e 2603 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
83d116c5 2604 pte_t entry;
5d2a2dbb 2605
83d116c5 2606 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
c3e5ea6e 2607 locked = true;
83d116c5
JH
2608 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2609 /*
2610 * Other thread has already handled the fault
7df67697 2611 * and update local tlb only
83d116c5 2612 */
7df67697 2613 update_mmu_tlb(vma, addr, vmf->pte);
83d116c5
JH
2614 ret = false;
2615 goto pte_unlock;
2616 }
2617
2618 entry = pte_mkyoung(vmf->orig_pte);
2619 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2620 update_mmu_cache(vma, addr, vmf->pte);
2621 }
2622
2623 /*
2624 * This really shouldn't fail, because the page is there
2625 * in the page tables. But it might just be unreadable,
2626 * in which case we just give up and fill the result with
2627 * zeroes.
2628 */
2629 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
c3e5ea6e
KS
2630 if (locked)
2631 goto warn;
2632
2633 /* Re-validate under PTL if the page is still mapped */
2634 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2635 locked = true;
2636 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
7df67697
BM
2637 /* The PTE changed under us, update local tlb */
2638 update_mmu_tlb(vma, addr, vmf->pte);
c3e5ea6e
KS
2639 ret = false;
2640 goto pte_unlock;
2641 }
2642
5d2a2dbb 2643 /*
985ba004 2644 * The same page can be mapped back since last copy attempt.
c3e5ea6e 2645 * Try to copy again under PTL.
5d2a2dbb 2646 */
c3e5ea6e
KS
2647 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2648 /*
2649 * Give a warn in case there can be some obscure
2650 * use-case
2651 */
2652warn:
2653 WARN_ON_ONCE(1);
2654 clear_page(kaddr);
2655 }
83d116c5
JH
2656 }
2657
2658 ret = true;
2659
2660pte_unlock:
c3e5ea6e 2661 if (locked)
83d116c5
JH
2662 pte_unmap_unlock(vmf->pte, vmf->ptl);
2663 kunmap_atomic(kaddr);
2664 flush_dcache_page(dst);
2665
2666 return ret;
6aab341e
LT
2667}
2668
c20cd45e
MH
2669static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2670{
2671 struct file *vm_file = vma->vm_file;
2672
2673 if (vm_file)
2674 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2675
2676 /*
2677 * Special mappings (e.g. VDSO) do not have any file so fake
2678 * a default GFP_KERNEL for them.
2679 */
2680 return GFP_KERNEL;
2681}
2682
fb09a464
KS
2683/*
2684 * Notify the address space that the page is about to become writable so that
2685 * it can prohibit this or wait for the page to get into an appropriate state.
2686 *
2687 * We do this without the lock held, so that it can sleep if it needs to.
2688 */
2b740303 2689static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2690{
2b740303 2691 vm_fault_t ret;
38b8cb7f
JK
2692 struct page *page = vmf->page;
2693 unsigned int old_flags = vmf->flags;
fb09a464 2694
38b8cb7f 2695 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2696
dc617f29
DW
2697 if (vmf->vma->vm_file &&
2698 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2699 return VM_FAULT_SIGBUS;
2700
11bac800 2701 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2702 /* Restore original flags so that caller is not surprised */
2703 vmf->flags = old_flags;
fb09a464
KS
2704 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2705 return ret;
2706 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2707 lock_page(page);
2708 if (!page->mapping) {
2709 unlock_page(page);
2710 return 0; /* retry */
2711 }
2712 ret |= VM_FAULT_LOCKED;
2713 } else
2714 VM_BUG_ON_PAGE(!PageLocked(page), page);
2715 return ret;
2716}
2717
97ba0c2b
JK
2718/*
2719 * Handle dirtying of a page in shared file mapping on a write fault.
2720 *
2721 * The function expects the page to be locked and unlocks it.
2722 */
89b15332 2723static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2724{
89b15332 2725 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2726 struct address_space *mapping;
89b15332 2727 struct page *page = vmf->page;
97ba0c2b
JK
2728 bool dirtied;
2729 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2730
2731 dirtied = set_page_dirty(page);
2732 VM_BUG_ON_PAGE(PageAnon(page), page);
2733 /*
2734 * Take a local copy of the address_space - page.mapping may be zeroed
2735 * by truncate after unlock_page(). The address_space itself remains
2736 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2737 * release semantics to prevent the compiler from undoing this copying.
2738 */
2739 mapping = page_rmapping(page);
2740 unlock_page(page);
2741
89b15332
JW
2742 if (!page_mkwrite)
2743 file_update_time(vma->vm_file);
2744
2745 /*
2746 * Throttle page dirtying rate down to writeback speed.
2747 *
2748 * mapping may be NULL here because some device drivers do not
2749 * set page.mapping but still dirty their pages
2750 *
c1e8d7c6 2751 * Drop the mmap_lock before waiting on IO, if we can. The file
89b15332
JW
2752 * is pinning the mapping, as per above.
2753 */
97ba0c2b 2754 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2755 struct file *fpin;
2756
2757 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2758 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2759 if (fpin) {
2760 fput(fpin);
2761 return VM_FAULT_RETRY;
2762 }
97ba0c2b
JK
2763 }
2764
89b15332 2765 return 0;
97ba0c2b
JK
2766}
2767
4e047f89
SR
2768/*
2769 * Handle write page faults for pages that can be reused in the current vma
2770 *
2771 * This can happen either due to the mapping being with the VM_SHARED flag,
2772 * or due to us being the last reference standing to the page. In either
2773 * case, all we need to do here is to mark the page as writable and update
2774 * any related book-keeping.
2775 */
997dd98d 2776static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2777 __releases(vmf->ptl)
4e047f89 2778{
82b0f8c3 2779 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2780 struct page *page = vmf->page;
4e047f89
SR
2781 pte_t entry;
2782 /*
2783 * Clear the pages cpupid information as the existing
2784 * information potentially belongs to a now completely
2785 * unrelated process.
2786 */
2787 if (page)
2788 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2789
2994302b
JK
2790 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2791 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2792 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2793 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2794 update_mmu_cache(vma, vmf->address, vmf->pte);
2795 pte_unmap_unlock(vmf->pte, vmf->ptl);
798a6b87 2796 count_vm_event(PGREUSE);
4e047f89
SR
2797}
2798
2f38ab2c
SR
2799/*
2800 * Handle the case of a page which we actually need to copy to a new page.
2801 *
c1e8d7c6 2802 * Called with mmap_lock locked and the old page referenced, but
2f38ab2c
SR
2803 * without the ptl held.
2804 *
2805 * High level logic flow:
2806 *
2807 * - Allocate a page, copy the content of the old page to the new one.
2808 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2809 * - Take the PTL. If the pte changed, bail out and release the allocated page
2810 * - If the pte is still the way we remember it, update the page table and all
2811 * relevant references. This includes dropping the reference the page-table
2812 * held to the old page, as well as updating the rmap.
2813 * - In any case, unlock the PTL and drop the reference we took to the old page.
2814 */
2b740303 2815static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2816{
82b0f8c3 2817 struct vm_area_struct *vma = vmf->vma;
bae473a4 2818 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2819 struct page *old_page = vmf->page;
2f38ab2c 2820 struct page *new_page = NULL;
2f38ab2c
SR
2821 pte_t entry;
2822 int page_copied = 0;
ac46d4f3 2823 struct mmu_notifier_range range;
2f38ab2c
SR
2824
2825 if (unlikely(anon_vma_prepare(vma)))
2826 goto oom;
2827
2994302b 2828 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2829 new_page = alloc_zeroed_user_highpage_movable(vma,
2830 vmf->address);
2f38ab2c
SR
2831 if (!new_page)
2832 goto oom;
2833 } else {
bae473a4 2834 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2835 vmf->address);
2f38ab2c
SR
2836 if (!new_page)
2837 goto oom;
83d116c5
JH
2838
2839 if (!cow_user_page(new_page, old_page, vmf)) {
2840 /*
2841 * COW failed, if the fault was solved by other,
2842 * it's fine. If not, userspace would re-fault on
2843 * the same address and we will handle the fault
2844 * from the second attempt.
2845 */
2846 put_page(new_page);
2847 if (old_page)
2848 put_page(old_page);
2849 return 0;
2850 }
2f38ab2c 2851 }
2f38ab2c 2852
d9eb1ea2 2853 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2f38ab2c 2854 goto oom_free_new;
9d82c694 2855 cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2f38ab2c 2856
eb3c24f3
MG
2857 __SetPageUptodate(new_page);
2858
7269f999 2859 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2860 vmf->address & PAGE_MASK,
ac46d4f3
JG
2861 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2862 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2863
2864 /*
2865 * Re-check the pte - we dropped the lock
2866 */
82b0f8c3 2867 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2868 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2869 if (old_page) {
2870 if (!PageAnon(old_page)) {
eca56ff9
JM
2871 dec_mm_counter_fast(mm,
2872 mm_counter_file(old_page));
2f38ab2c
SR
2873 inc_mm_counter_fast(mm, MM_ANONPAGES);
2874 }
2875 } else {
2876 inc_mm_counter_fast(mm, MM_ANONPAGES);
2877 }
2994302b 2878 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c 2879 entry = mk_pte(new_page, vma->vm_page_prot);
44bf431b 2880 entry = pte_sw_mkyoung(entry);
2f38ab2c
SR
2881 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2882 /*
2883 * Clear the pte entry and flush it first, before updating the
2884 * pte with the new entry. This will avoid a race condition
2885 * seen in the presence of one thread doing SMC and another
2886 * thread doing COW.
2887 */
82b0f8c3
JK
2888 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2889 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
b518154e 2890 lru_cache_add_inactive_or_unevictable(new_page, vma);
2f38ab2c
SR
2891 /*
2892 * We call the notify macro here because, when using secondary
2893 * mmu page tables (such as kvm shadow page tables), we want the
2894 * new page to be mapped directly into the secondary page table.
2895 */
82b0f8c3
JK
2896 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2897 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2898 if (old_page) {
2899 /*
2900 * Only after switching the pte to the new page may
2901 * we remove the mapcount here. Otherwise another
2902 * process may come and find the rmap count decremented
2903 * before the pte is switched to the new page, and
2904 * "reuse" the old page writing into it while our pte
2905 * here still points into it and can be read by other
2906 * threads.
2907 *
2908 * The critical issue is to order this
2909 * page_remove_rmap with the ptp_clear_flush above.
2910 * Those stores are ordered by (if nothing else,)
2911 * the barrier present in the atomic_add_negative
2912 * in page_remove_rmap.
2913 *
2914 * Then the TLB flush in ptep_clear_flush ensures that
2915 * no process can access the old page before the
2916 * decremented mapcount is visible. And the old page
2917 * cannot be reused until after the decremented
2918 * mapcount is visible. So transitively, TLBs to
2919 * old page will be flushed before it can be reused.
2920 */
d281ee61 2921 page_remove_rmap(old_page, false);
2f38ab2c
SR
2922 }
2923
2924 /* Free the old page.. */
2925 new_page = old_page;
2926 page_copied = 1;
2927 } else {
7df67697 2928 update_mmu_tlb(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2929 }
2930
2931 if (new_page)
09cbfeaf 2932 put_page(new_page);
2f38ab2c 2933
82b0f8c3 2934 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2935 /*
2936 * No need to double call mmu_notifier->invalidate_range() callback as
2937 * the above ptep_clear_flush_notify() did already call it.
2938 */
ac46d4f3 2939 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2940 if (old_page) {
2941 /*
2942 * Don't let another task, with possibly unlocked vma,
2943 * keep the mlocked page.
2944 */
2945 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2946 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2947 if (PageMlocked(old_page))
2948 munlock_vma_page(old_page);
2f38ab2c
SR
2949 unlock_page(old_page);
2950 }
09cbfeaf 2951 put_page(old_page);
2f38ab2c
SR
2952 }
2953 return page_copied ? VM_FAULT_WRITE : 0;
2954oom_free_new:
09cbfeaf 2955 put_page(new_page);
2f38ab2c
SR
2956oom:
2957 if (old_page)
09cbfeaf 2958 put_page(old_page);
2f38ab2c
SR
2959 return VM_FAULT_OOM;
2960}
2961
66a6197c
JK
2962/**
2963 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2964 * writeable once the page is prepared
2965 *
2966 * @vmf: structure describing the fault
2967 *
2968 * This function handles all that is needed to finish a write page fault in a
2969 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2970 * It handles locking of PTE and modifying it.
66a6197c
JK
2971 *
2972 * The function expects the page to be locked or other protection against
2973 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2974 *
2975 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2976 * we acquired PTE lock.
66a6197c 2977 */
2b740303 2978vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2979{
2980 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2981 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2982 &vmf->ptl);
2983 /*
2984 * We might have raced with another page fault while we released the
2985 * pte_offset_map_lock.
2986 */
2987 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
7df67697 2988 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
66a6197c 2989 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2990 return VM_FAULT_NOPAGE;
66a6197c
JK
2991 }
2992 wp_page_reuse(vmf);
a19e2553 2993 return 0;
66a6197c
JK
2994}
2995
dd906184
BH
2996/*
2997 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2998 * mapping
2999 */
2b740303 3000static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 3001{
82b0f8c3 3002 struct vm_area_struct *vma = vmf->vma;
bae473a4 3003
dd906184 3004 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 3005 vm_fault_t ret;
dd906184 3006
82b0f8c3 3007 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 3008 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 3009 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 3010 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 3011 return ret;
66a6197c 3012 return finish_mkwrite_fault(vmf);
dd906184 3013 }
997dd98d
JK
3014 wp_page_reuse(vmf);
3015 return VM_FAULT_WRITE;
dd906184
BH
3016}
3017
2b740303 3018static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 3019 __releases(vmf->ptl)
93e478d4 3020{
82b0f8c3 3021 struct vm_area_struct *vma = vmf->vma;
89b15332 3022 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 3023
a41b70d6 3024 get_page(vmf->page);
93e478d4 3025
93e478d4 3026 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 3027 vm_fault_t tmp;
93e478d4 3028
82b0f8c3 3029 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 3030 tmp = do_page_mkwrite(vmf);
93e478d4
SR
3031 if (unlikely(!tmp || (tmp &
3032 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 3033 put_page(vmf->page);
93e478d4
SR
3034 return tmp;
3035 }
66a6197c 3036 tmp = finish_mkwrite_fault(vmf);
a19e2553 3037 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 3038 unlock_page(vmf->page);
a41b70d6 3039 put_page(vmf->page);
66a6197c 3040 return tmp;
93e478d4 3041 }
66a6197c
JK
3042 } else {
3043 wp_page_reuse(vmf);
997dd98d 3044 lock_page(vmf->page);
93e478d4 3045 }
89b15332 3046 ret |= fault_dirty_shared_page(vmf);
997dd98d 3047 put_page(vmf->page);
93e478d4 3048
89b15332 3049 return ret;
93e478d4
SR
3050}
3051
1da177e4
LT
3052/*
3053 * This routine handles present pages, when users try to write
3054 * to a shared page. It is done by copying the page to a new address
3055 * and decrementing the shared-page counter for the old page.
3056 *
1da177e4
LT
3057 * Note that this routine assumes that the protection checks have been
3058 * done by the caller (the low-level page fault routine in most cases).
3059 * Thus we can safely just mark it writable once we've done any necessary
3060 * COW.
3061 *
3062 * We also mark the page dirty at this point even though the page will
3063 * change only once the write actually happens. This avoids a few races,
3064 * and potentially makes it more efficient.
3065 *
c1e8d7c6 3066 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3067 * but allow concurrent faults), with pte both mapped and locked.
c1e8d7c6 3068 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3069 */
2b740303 3070static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 3071 __releases(vmf->ptl)
1da177e4 3072{
82b0f8c3 3073 struct vm_area_struct *vma = vmf->vma;
1da177e4 3074
292924b2 3075 if (userfaultfd_pte_wp(vma, *vmf->pte)) {
529b930b
AA
3076 pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 return handle_userfault(vmf, VM_UFFD_WP);
3078 }
3079
a41b70d6
JK
3080 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3081 if (!vmf->page) {
251b97f5 3082 /*
64e45507
PF
3083 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3084 * VM_PFNMAP VMA.
251b97f5
PZ
3085 *
3086 * We should not cow pages in a shared writeable mapping.
dd906184 3087 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
3088 */
3089 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3090 (VM_WRITE|VM_SHARED))
2994302b 3091 return wp_pfn_shared(vmf);
2f38ab2c 3092
82b0f8c3 3093 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3094 return wp_page_copy(vmf);
251b97f5 3095 }
1da177e4 3096
d08b3851 3097 /*
ee6a6457
PZ
3098 * Take out anonymous pages first, anonymous shared vmas are
3099 * not dirty accountable.
d08b3851 3100 */
52d1e606 3101 if (PageAnon(vmf->page)) {
09854ba9
LT
3102 struct page *page = vmf->page;
3103
3104 /* PageKsm() doesn't necessarily raise the page refcount */
3105 if (PageKsm(page) || page_count(page) != 1)
3106 goto copy;
3107 if (!trylock_page(page))
3108 goto copy;
3109 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3110 unlock_page(page);
52d1e606 3111 goto copy;
b009c024 3112 }
09854ba9
LT
3113 /*
3114 * Ok, we've got the only map reference, and the only
3115 * page count reference, and the page is locked,
3116 * it's dark out, and we're wearing sunglasses. Hit it.
3117 */
09854ba9 3118 unlock_page(page);
be068f29 3119 wp_page_reuse(vmf);
09854ba9 3120 return VM_FAULT_WRITE;
ee6a6457 3121 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 3122 (VM_WRITE|VM_SHARED))) {
a41b70d6 3123 return wp_page_shared(vmf);
1da177e4 3124 }
52d1e606 3125copy:
1da177e4
LT
3126 /*
3127 * Ok, we need to copy. Oh, well..
3128 */
a41b70d6 3129 get_page(vmf->page);
28766805 3130
82b0f8c3 3131 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 3132 return wp_page_copy(vmf);
1da177e4
LT
3133}
3134
97a89413 3135static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
3136 unsigned long start_addr, unsigned long end_addr,
3137 struct zap_details *details)
3138{
f5cc4eef 3139 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
3140}
3141
f808c13f 3142static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
3143 struct zap_details *details)
3144{
3145 struct vm_area_struct *vma;
1da177e4
LT
3146 pgoff_t vba, vea, zba, zea;
3147
6b2dbba8 3148 vma_interval_tree_foreach(vma, root,
1da177e4 3149 details->first_index, details->last_index) {
1da177e4
LT
3150
3151 vba = vma->vm_pgoff;
d6e93217 3152 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
3153 zba = details->first_index;
3154 if (zba < vba)
3155 zba = vba;
3156 zea = details->last_index;
3157 if (zea > vea)
3158 zea = vea;
3159
97a89413 3160 unmap_mapping_range_vma(vma,
1da177e4
LT
3161 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3162 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 3163 details);
1da177e4
LT
3164 }
3165}
3166
977fbdcd
MW
3167/**
3168 * unmap_mapping_pages() - Unmap pages from processes.
3169 * @mapping: The address space containing pages to be unmapped.
3170 * @start: Index of first page to be unmapped.
3171 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3172 * @even_cows: Whether to unmap even private COWed pages.
3173 *
3174 * Unmap the pages in this address space from any userspace process which
3175 * has them mmaped. Generally, you want to remove COWed pages as well when
3176 * a file is being truncated, but not when invalidating pages from the page
3177 * cache.
3178 */
3179void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3180 pgoff_t nr, bool even_cows)
3181{
3182 struct zap_details details = { };
3183
3184 details.check_mapping = even_cows ? NULL : mapping;
3185 details.first_index = start;
3186 details.last_index = start + nr - 1;
3187 if (details.last_index < details.first_index)
3188 details.last_index = ULONG_MAX;
3189
3190 i_mmap_lock_write(mapping);
3191 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3192 unmap_mapping_range_tree(&mapping->i_mmap, &details);
3193 i_mmap_unlock_write(mapping);
3194}
3195
1da177e4 3196/**
8a5f14a2 3197 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 3198 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
3199 * file.
3200 *
3d41088f 3201 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
3202 * @holebegin: byte in first page to unmap, relative to the start of
3203 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 3204 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
3205 * must keep the partial page. In contrast, we must get rid of
3206 * partial pages.
3207 * @holelen: size of prospective hole in bytes. This will be rounded
3208 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3209 * end of the file.
3210 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3211 * but 0 when invalidating pagecache, don't throw away private data.
3212 */
3213void unmap_mapping_range(struct address_space *mapping,
3214 loff_t const holebegin, loff_t const holelen, int even_cows)
3215{
1da177e4
LT
3216 pgoff_t hba = holebegin >> PAGE_SHIFT;
3217 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3218
3219 /* Check for overflow. */
3220 if (sizeof(holelen) > sizeof(hlen)) {
3221 long long holeend =
3222 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3223 if (holeend & ~(long long)ULONG_MAX)
3224 hlen = ULONG_MAX - hba + 1;
3225 }
3226
977fbdcd 3227 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
3228}
3229EXPORT_SYMBOL(unmap_mapping_range);
3230
1da177e4 3231/*
c1e8d7c6 3232 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3233 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3234 * We return with pte unmapped and unlocked.
3235 *
c1e8d7c6 3236 * We return with the mmap_lock locked or unlocked in the same cases
9a95f3cf 3237 * as does filemap_fault().
1da177e4 3238 */
2b740303 3239vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 3240{
82b0f8c3 3241 struct vm_area_struct *vma = vmf->vma;
eaf649eb 3242 struct page *page = NULL, *swapcache;
65500d23 3243 swp_entry_t entry;
1da177e4 3244 pte_t pte;
d065bd81 3245 int locked;
ad8c2ee8 3246 int exclusive = 0;
2b740303 3247 vm_fault_t ret = 0;
aae466b0 3248 void *shadow = NULL;
1da177e4 3249
eaf649eb 3250 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 3251 goto out;
65500d23 3252
2994302b 3253 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
3254 if (unlikely(non_swap_entry(entry))) {
3255 if (is_migration_entry(entry)) {
82b0f8c3
JK
3256 migration_entry_wait(vma->vm_mm, vmf->pmd,
3257 vmf->address);
5042db43 3258 } else if (is_device_private_entry(entry)) {
897e6365
CH
3259 vmf->page = device_private_entry_to_page(entry);
3260 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
3261 } else if (is_hwpoison_entry(entry)) {
3262 ret = VM_FAULT_HWPOISON;
3263 } else {
2994302b 3264 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 3265 ret = VM_FAULT_SIGBUS;
d1737fdb 3266 }
0697212a
CL
3267 goto out;
3268 }
0bcac06f
MK
3269
3270
0ff92245 3271 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
3272 page = lookup_swap_cache(entry, vma, vmf->address);
3273 swapcache = page;
f8020772 3274
1da177e4 3275 if (!page) {
0bcac06f
MK
3276 struct swap_info_struct *si = swp_swap_info(entry);
3277
a449bf58
QC
3278 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3279 __swap_count(entry) == 1) {
0bcac06f 3280 /* skip swapcache */
e9e9b7ec
MK
3281 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3282 vmf->address);
0bcac06f 3283 if (page) {
4c6355b2
JW
3284 int err;
3285
0bcac06f
MK
3286 __SetPageLocked(page);
3287 __SetPageSwapBacked(page);
3288 set_page_private(page, entry.val);
4c6355b2
JW
3289
3290 /* Tell memcg to use swap ownership records */
3291 SetPageSwapCache(page);
3292 err = mem_cgroup_charge(page, vma->vm_mm,
d9eb1ea2 3293 GFP_KERNEL);
4c6355b2 3294 ClearPageSwapCache(page);
545b1b07
MH
3295 if (err) {
3296 ret = VM_FAULT_OOM;
4c6355b2 3297 goto out_page;
545b1b07 3298 }
4c6355b2 3299
aae466b0
JK
3300 shadow = get_shadow_from_swap_cache(entry);
3301 if (shadow)
3302 workingset_refault(page, shadow);
0076f029 3303
6058eaec 3304 lru_cache_add(page);
0bcac06f
MK
3305 swap_readpage(page, true);
3306 }
aa8d22a1 3307 } else {
e9e9b7ec
MK
3308 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3309 vmf);
aa8d22a1 3310 swapcache = page;
0bcac06f
MK
3311 }
3312
1da177e4
LT
3313 if (!page) {
3314 /*
8f4e2101
HD
3315 * Back out if somebody else faulted in this pte
3316 * while we released the pte lock.
1da177e4 3317 */
82b0f8c3
JK
3318 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3319 vmf->address, &vmf->ptl);
2994302b 3320 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 3321 ret = VM_FAULT_OOM;
0ff92245 3322 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 3323 goto unlock;
1da177e4
LT
3324 }
3325
3326 /* Had to read the page from swap area: Major fault */
3327 ret = VM_FAULT_MAJOR;
f8891e5e 3328 count_vm_event(PGMAJFAULT);
2262185c 3329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 3330 } else if (PageHWPoison(page)) {
71f72525
WF
3331 /*
3332 * hwpoisoned dirty swapcache pages are kept for killing
3333 * owner processes (which may be unknown at hwpoison time)
3334 */
d1737fdb
AK
3335 ret = VM_FAULT_HWPOISON;
3336 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 3337 goto out_release;
1da177e4
LT
3338 }
3339
82b0f8c3 3340 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 3341
073e587e 3342 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
3343 if (!locked) {
3344 ret |= VM_FAULT_RETRY;
3345 goto out_release;
3346 }
073e587e 3347
4969c119 3348 /*
31c4a3d3
HD
3349 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3350 * release the swapcache from under us. The page pin, and pte_same
3351 * test below, are not enough to exclude that. Even if it is still
3352 * swapcache, we need to check that the page's swap has not changed.
4969c119 3353 */
0bcac06f
MK
3354 if (unlikely((!PageSwapCache(page) ||
3355 page_private(page) != entry.val)) && swapcache)
4969c119
AA
3356 goto out_page;
3357
82b0f8c3 3358 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
3359 if (unlikely(!page)) {
3360 ret = VM_FAULT_OOM;
3361 page = swapcache;
cbf86cfe 3362 goto out_page;
5ad64688
HD
3363 }
3364
9d82c694 3365 cgroup_throttle_swaprate(page, GFP_KERNEL);
8a9f3ccd 3366
1da177e4 3367 /*
8f4e2101 3368 * Back out if somebody else already faulted in this pte.
1da177e4 3369 */
82b0f8c3
JK
3370 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3371 &vmf->ptl);
2994302b 3372 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 3373 goto out_nomap;
b8107480
KK
3374
3375 if (unlikely(!PageUptodate(page))) {
3376 ret = VM_FAULT_SIGBUS;
3377 goto out_nomap;
1da177e4
LT
3378 }
3379
8c7c6e34
KH
3380 /*
3381 * The page isn't present yet, go ahead with the fault.
3382 *
3383 * Be careful about the sequence of operations here.
3384 * To get its accounting right, reuse_swap_page() must be called
3385 * while the page is counted on swap but not yet in mapcount i.e.
3386 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3387 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 3388 */
1da177e4 3389
bae473a4
KS
3390 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3391 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 3392 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 3393 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 3394 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 3395 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 3396 ret |= VM_FAULT_WRITE;
d281ee61 3397 exclusive = RMAP_EXCLUSIVE;
1da177e4 3398 }
1da177e4 3399 flush_icache_page(vma, page);
2994302b 3400 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 3401 pte = pte_mksoft_dirty(pte);
f45ec5ff
PX
3402 if (pte_swp_uffd_wp(vmf->orig_pte)) {
3403 pte = pte_mkuffd_wp(pte);
3404 pte = pte_wrprotect(pte);
3405 }
82b0f8c3 3406 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 3407 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 3408 vmf->orig_pte = pte;
0bcac06f
MK
3409
3410 /* ksm created a completely new copy */
3411 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 3412 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3413 lru_cache_add_inactive_or_unevictable(page, vma);
0bcac06f
MK
3414 } else {
3415 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
00501b53 3416 }
1da177e4 3417
c475a8ab 3418 swap_free(entry);
5ccc5aba
VD
3419 if (mem_cgroup_swap_full(page) ||
3420 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 3421 try_to_free_swap(page);
c475a8ab 3422 unlock_page(page);
0bcac06f 3423 if (page != swapcache && swapcache) {
4969c119
AA
3424 /*
3425 * Hold the lock to avoid the swap entry to be reused
3426 * until we take the PT lock for the pte_same() check
3427 * (to avoid false positives from pte_same). For
3428 * further safety release the lock after the swap_free
3429 * so that the swap count won't change under a
3430 * parallel locked swapcache.
3431 */
3432 unlock_page(swapcache);
09cbfeaf 3433 put_page(swapcache);
4969c119 3434 }
c475a8ab 3435
82b0f8c3 3436 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3437 ret |= do_wp_page(vmf);
61469f1d
HD
3438 if (ret & VM_FAULT_ERROR)
3439 ret &= VM_FAULT_ERROR;
1da177e4
LT
3440 goto out;
3441 }
3442
3443 /* No need to invalidate - it was non-present before */
82b0f8c3 3444 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3445unlock:
82b0f8c3 3446 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3447out:
3448 return ret;
b8107480 3449out_nomap:
82b0f8c3 3450 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3451out_page:
b8107480 3452 unlock_page(page);
4779cb31 3453out_release:
09cbfeaf 3454 put_page(page);
0bcac06f 3455 if (page != swapcache && swapcache) {
4969c119 3456 unlock_page(swapcache);
09cbfeaf 3457 put_page(swapcache);
4969c119 3458 }
65500d23 3459 return ret;
1da177e4
LT
3460}
3461
3462/*
c1e8d7c6 3463 * We enter with non-exclusive mmap_lock (to exclude vma changes,
8f4e2101 3464 * but allow concurrent faults), and pte mapped but not yet locked.
c1e8d7c6 3465 * We return with mmap_lock still held, but pte unmapped and unlocked.
1da177e4 3466 */
2b740303 3467static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3468{
82b0f8c3 3469 struct vm_area_struct *vma = vmf->vma;
8f4e2101 3470 struct page *page;
2b740303 3471 vm_fault_t ret = 0;
1da177e4 3472 pte_t entry;
1da177e4 3473
6b7339f4
KS
3474 /* File mapping without ->vm_ops ? */
3475 if (vma->vm_flags & VM_SHARED)
3476 return VM_FAULT_SIGBUS;
3477
7267ec00
KS
3478 /*
3479 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3480 * pte_offset_map() on pmds where a huge pmd might be created
3481 * from a different thread.
3482 *
3e4e28c5 3483 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
7267ec00
KS
3484 * parallel threads are excluded by other means.
3485 *
3e4e28c5 3486 * Here we only have mmap_read_lock(mm).
7267ec00 3487 */
4cf58924 3488 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3489 return VM_FAULT_OOM;
3490
3491 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3492 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3493 return 0;
3494
11ac5524 3495 /* Use the zero-page for reads */
82b0f8c3 3496 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3497 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3498 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3499 vma->vm_page_prot));
82b0f8c3
JK
3500 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3501 vmf->address, &vmf->ptl);
7df67697
BM
3502 if (!pte_none(*vmf->pte)) {
3503 update_mmu_tlb(vma, vmf->address, vmf->pte);
a13ea5b7 3504 goto unlock;
7df67697 3505 }
6b31d595
MH
3506 ret = check_stable_address_space(vma->vm_mm);
3507 if (ret)
3508 goto unlock;
6b251fc9
AA
3509 /* Deliver the page fault to userland, check inside PT lock */
3510 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3511 pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3513 }
a13ea5b7
HD
3514 goto setpte;
3515 }
3516
557ed1fa 3517 /* Allocate our own private page. */
557ed1fa
NP
3518 if (unlikely(anon_vma_prepare(vma)))
3519 goto oom;
82b0f8c3 3520 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3521 if (!page)
3522 goto oom;
eb3c24f3 3523
d9eb1ea2 3524 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
eb3c24f3 3525 goto oom_free_page;
9d82c694 3526 cgroup_throttle_swaprate(page, GFP_KERNEL);
eb3c24f3 3527
52f37629
MK
3528 /*
3529 * The memory barrier inside __SetPageUptodate makes sure that
f4f5329d 3530 * preceding stores to the page contents become visible before
52f37629
MK
3531 * the set_pte_at() write.
3532 */
0ed361de 3533 __SetPageUptodate(page);
8f4e2101 3534
557ed1fa 3535 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3536 entry = pte_sw_mkyoung(entry);
1ac0cb5d
HD
3537 if (vma->vm_flags & VM_WRITE)
3538 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3539
82b0f8c3
JK
3540 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3541 &vmf->ptl);
7df67697
BM
3542 if (!pte_none(*vmf->pte)) {
3543 update_mmu_cache(vma, vmf->address, vmf->pte);
557ed1fa 3544 goto release;
7df67697 3545 }
9ba69294 3546
6b31d595
MH
3547 ret = check_stable_address_space(vma->vm_mm);
3548 if (ret)
3549 goto release;
3550
6b251fc9
AA
3551 /* Deliver the page fault to userland, check inside PT lock */
3552 if (userfaultfd_missing(vma)) {
82b0f8c3 3553 pte_unmap_unlock(vmf->pte, vmf->ptl);
09cbfeaf 3554 put_page(page);
82b0f8c3 3555 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3556 }
3557
bae473a4 3558 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3559 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3560 lru_cache_add_inactive_or_unevictable(page, vma);
a13ea5b7 3561setpte:
82b0f8c3 3562 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3563
3564 /* No need to invalidate - it was non-present before */
82b0f8c3 3565 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3566unlock:
82b0f8c3 3567 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3568 return ret;
8f4e2101 3569release:
09cbfeaf 3570 put_page(page);
8f4e2101 3571 goto unlock;
8a9f3ccd 3572oom_free_page:
09cbfeaf 3573 put_page(page);
65500d23 3574oom:
1da177e4
LT
3575 return VM_FAULT_OOM;
3576}
3577
9a95f3cf 3578/*
c1e8d7c6 3579 * The mmap_lock must have been held on entry, and may have been
9a95f3cf
PC
3580 * released depending on flags and vma->vm_ops->fault() return value.
3581 * See filemap_fault() and __lock_page_retry().
3582 */
2b740303 3583static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3584{
82b0f8c3 3585 struct vm_area_struct *vma = vmf->vma;
2b740303 3586 vm_fault_t ret;
7eae74af 3587
63f3655f
MH
3588 /*
3589 * Preallocate pte before we take page_lock because this might lead to
3590 * deadlocks for memcg reclaim which waits for pages under writeback:
3591 * lock_page(A)
3592 * SetPageWriteback(A)
3593 * unlock_page(A)
3594 * lock_page(B)
3595 * lock_page(B)
d383807a 3596 * pte_alloc_one
63f3655f
MH
3597 * shrink_page_list
3598 * wait_on_page_writeback(A)
3599 * SetPageWriteback(B)
3600 * unlock_page(B)
3601 * # flush A, B to clear the writeback
3602 */
3603 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
a7069ee3 3604 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
63f3655f
MH
3605 if (!vmf->prealloc_pte)
3606 return VM_FAULT_OOM;
3607 smp_wmb(); /* See comment in __pte_alloc() */
3608 }
3609
11bac800 3610 ret = vma->vm_ops->fault(vmf);
3917048d 3611 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3612 VM_FAULT_DONE_COW)))
bc2466e4 3613 return ret;
7eae74af 3614
667240e0 3615 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3616 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3617 unlock_page(vmf->page);
3618 put_page(vmf->page);
936ca80d 3619 vmf->page = NULL;
7eae74af
KS
3620 return VM_FAULT_HWPOISON;
3621 }
3622
3623 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3624 lock_page(vmf->page);
7eae74af 3625 else
667240e0 3626 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3627
7eae74af
KS
3628 return ret;
3629}
3630
d0f0931d
RZ
3631/*
3632 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3633 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3634 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3635 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3636 */
3637static int pmd_devmap_trans_unstable(pmd_t *pmd)
3638{
3639 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3640}
3641
2b740303 3642static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3643{
82b0f8c3 3644 struct vm_area_struct *vma = vmf->vma;
7267ec00 3645
82b0f8c3 3646 if (!pmd_none(*vmf->pmd))
7267ec00 3647 goto map_pte;
82b0f8c3
JK
3648 if (vmf->prealloc_pte) {
3649 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3650 if (unlikely(!pmd_none(*vmf->pmd))) {
3651 spin_unlock(vmf->ptl);
7267ec00
KS
3652 goto map_pte;
3653 }
3654
c4812909 3655 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3656 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3657 spin_unlock(vmf->ptl);
7f2b6ce8 3658 vmf->prealloc_pte = NULL;
4cf58924 3659 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3660 return VM_FAULT_OOM;
3661 }
3662map_pte:
3663 /*
3664 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3665 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3666 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3667 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3668 * running immediately after a huge pmd fault in a different thread of
3669 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3670 * All we have to ensure is that it is a regular pmd that we can walk
3671 * with pte_offset_map() and we can do that through an atomic read in
3672 * C, which is what pmd_trans_unstable() provides.
7267ec00 3673 */
d0f0931d 3674 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3675 return VM_FAULT_NOPAGE;
3676
d0f0931d
RZ
3677 /*
3678 * At this point we know that our vmf->pmd points to a page of ptes
3679 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3680 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3681 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3682 * be valid and we will re-check to make sure the vmf->pte isn't
3683 * pte_none() under vmf->ptl protection when we return to
3684 * alloc_set_pte().
3685 */
82b0f8c3
JK
3686 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3687 &vmf->ptl);
7267ec00
KS
3688 return 0;
3689}
3690
396bcc52 3691#ifdef CONFIG_TRANSPARENT_HUGEPAGE
82b0f8c3 3692static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3693{
82b0f8c3 3694 struct vm_area_struct *vma = vmf->vma;
953c66c2 3695
82b0f8c3 3696 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3697 /*
3698 * We are going to consume the prealloc table,
3699 * count that as nr_ptes.
3700 */
c4812909 3701 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3702 vmf->prealloc_pte = NULL;
953c66c2
AK
3703}
3704
2b740303 3705static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3706{
82b0f8c3
JK
3707 struct vm_area_struct *vma = vmf->vma;
3708 bool write = vmf->flags & FAULT_FLAG_WRITE;
3709 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3710 pmd_t entry;
2b740303
SJ
3711 int i;
3712 vm_fault_t ret;
10102459
KS
3713
3714 if (!transhuge_vma_suitable(vma, haddr))
3715 return VM_FAULT_FALLBACK;
3716
3717 ret = VM_FAULT_FALLBACK;
3718 page = compound_head(page);
3719
953c66c2
AK
3720 /*
3721 * Archs like ppc64 need additonal space to store information
3722 * related to pte entry. Use the preallocated table for that.
3723 */
82b0f8c3 3724 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3725 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3726 if (!vmf->prealloc_pte)
953c66c2
AK
3727 return VM_FAULT_OOM;
3728 smp_wmb(); /* See comment in __pte_alloc() */
3729 }
3730
82b0f8c3
JK
3731 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3732 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3733 goto out;
3734
3735 for (i = 0; i < HPAGE_PMD_NR; i++)
3736 flush_icache_page(vma, page + i);
3737
3738 entry = mk_huge_pmd(page, vma->vm_page_prot);
3739 if (write)
f55e1014 3740 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3741
fadae295 3742 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3743 page_add_file_rmap(page, true);
953c66c2
AK
3744 /*
3745 * deposit and withdraw with pmd lock held
3746 */
3747 if (arch_needs_pgtable_deposit())
82b0f8c3 3748 deposit_prealloc_pte(vmf);
10102459 3749
82b0f8c3 3750 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3751
82b0f8c3 3752 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3753
3754 /* fault is handled */
3755 ret = 0;
95ecedcd 3756 count_vm_event(THP_FILE_MAPPED);
10102459 3757out:
82b0f8c3 3758 spin_unlock(vmf->ptl);
10102459
KS
3759 return ret;
3760}
3761#else
2b740303 3762static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3763{
3764 BUILD_BUG();
3765 return 0;
3766}
3767#endif
3768
8c6e50b0 3769/**
7267ec00 3770 * alloc_set_pte - setup new PTE entry for given page and add reverse page
f1dc1685 3771 * mapping. If needed, the function allocates page table or use pre-allocated.
8c6e50b0 3772 *
82b0f8c3 3773 * @vmf: fault environment
8c6e50b0 3774 * @page: page to map
8c6e50b0 3775 *
82b0f8c3
JK
3776 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3777 * return.
8c6e50b0
KS
3778 *
3779 * Target users are page handler itself and implementations of
3780 * vm_ops->map_pages.
a862f68a
MR
3781 *
3782 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3783 */
9d82c694 3784vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3bb97794 3785{
82b0f8c3
JK
3786 struct vm_area_struct *vma = vmf->vma;
3787 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3788 pte_t entry;
2b740303 3789 vm_fault_t ret;
10102459 3790
396bcc52 3791 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
82b0f8c3 3792 ret = do_set_pmd(vmf, page);
10102459 3793 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3794 return ret;
10102459 3795 }
3bb97794 3796
82b0f8c3
JK
3797 if (!vmf->pte) {
3798 ret = pte_alloc_one_map(vmf);
7267ec00 3799 if (ret)
b0b9b3df 3800 return ret;
7267ec00
KS
3801 }
3802
3803 /* Re-check under ptl */
7df67697
BM
3804 if (unlikely(!pte_none(*vmf->pte))) {
3805 update_mmu_tlb(vma, vmf->address, vmf->pte);
b0b9b3df 3806 return VM_FAULT_NOPAGE;
7df67697 3807 }
7267ec00 3808
3bb97794
KS
3809 flush_icache_page(vma, page);
3810 entry = mk_pte(page, vma->vm_page_prot);
44bf431b 3811 entry = pte_sw_mkyoung(entry);
3bb97794
KS
3812 if (write)
3813 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3814 /* copy-on-write page */
3815 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3816 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3817 page_add_new_anon_rmap(page, vma, vmf->address, false);
b518154e 3818 lru_cache_add_inactive_or_unevictable(page, vma);
3bb97794 3819 } else {
eca56ff9 3820 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3821 page_add_file_rmap(page, false);
3bb97794 3822 }
82b0f8c3 3823 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3824
3825 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3826 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3827
b0b9b3df 3828 return 0;
3bb97794
KS
3829}
3830
9118c0cb
JK
3831
3832/**
3833 * finish_fault - finish page fault once we have prepared the page to fault
3834 *
3835 * @vmf: structure describing the fault
3836 *
3837 * This function handles all that is needed to finish a page fault once the
3838 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3839 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3840 * addition.
9118c0cb
JK
3841 *
3842 * The function expects the page to be locked and on success it consumes a
3843 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3844 *
3845 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3846 */
2b740303 3847vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3848{
3849 struct page *page;
2b740303 3850 vm_fault_t ret = 0;
9118c0cb
JK
3851
3852 /* Did we COW the page? */
3853 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3854 !(vmf->vma->vm_flags & VM_SHARED))
3855 page = vmf->cow_page;
3856 else
3857 page = vmf->page;
6b31d595
MH
3858
3859 /*
3860 * check even for read faults because we might have lost our CoWed
3861 * page
3862 */
3863 if (!(vmf->vma->vm_flags & VM_SHARED))
3864 ret = check_stable_address_space(vmf->vma->vm_mm);
3865 if (!ret)
9d82c694 3866 ret = alloc_set_pte(vmf, page);
9118c0cb
JK
3867 if (vmf->pte)
3868 pte_unmap_unlock(vmf->pte, vmf->ptl);
3869 return ret;
3870}
3871
3a91053a
KS
3872static unsigned long fault_around_bytes __read_mostly =
3873 rounddown_pow_of_two(65536);
a9b0f861 3874
a9b0f861
KS
3875#ifdef CONFIG_DEBUG_FS
3876static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3877{
a9b0f861 3878 *val = fault_around_bytes;
1592eef0
KS
3879 return 0;
3880}
3881
b4903d6e 3882/*
da391d64
WK
3883 * fault_around_bytes must be rounded down to the nearest page order as it's
3884 * what do_fault_around() expects to see.
b4903d6e 3885 */
a9b0f861 3886static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3887{
a9b0f861 3888 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3889 return -EINVAL;
b4903d6e
AR
3890 if (val > PAGE_SIZE)
3891 fault_around_bytes = rounddown_pow_of_two(val);
3892 else
3893 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3894 return 0;
3895}
0a1345f8 3896DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3897 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3898
3899static int __init fault_around_debugfs(void)
3900{
d9f7979c
GKH
3901 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3902 &fault_around_bytes_fops);
1592eef0
KS
3903 return 0;
3904}
3905late_initcall(fault_around_debugfs);
1592eef0 3906#endif
8c6e50b0 3907
1fdb412b
KS
3908/*
3909 * do_fault_around() tries to map few pages around the fault address. The hope
3910 * is that the pages will be needed soon and this will lower the number of
3911 * faults to handle.
3912 *
3913 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3914 * not ready to be mapped: not up-to-date, locked, etc.
3915 *
3916 * This function is called with the page table lock taken. In the split ptlock
3917 * case the page table lock only protects only those entries which belong to
3918 * the page table corresponding to the fault address.
3919 *
3920 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3921 * only once.
3922 *
da391d64
WK
3923 * fault_around_bytes defines how many bytes we'll try to map.
3924 * do_fault_around() expects it to be set to a power of two less than or equal
3925 * to PTRS_PER_PTE.
1fdb412b 3926 *
da391d64
WK
3927 * The virtual address of the area that we map is naturally aligned to
3928 * fault_around_bytes rounded down to the machine page size
3929 * (and therefore to page order). This way it's easier to guarantee
3930 * that we don't cross page table boundaries.
1fdb412b 3931 */
2b740303 3932static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3933{
82b0f8c3 3934 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3935 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3936 pgoff_t end_pgoff;
2b740303
SJ
3937 int off;
3938 vm_fault_t ret = 0;
8c6e50b0 3939
4db0c3c2 3940 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3941 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3942
82b0f8c3
JK
3943 vmf->address = max(address & mask, vmf->vma->vm_start);
3944 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3945 start_pgoff -= off;
8c6e50b0
KS
3946
3947 /*
da391d64
WK
3948 * end_pgoff is either the end of the page table, the end of
3949 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3950 */
bae473a4 3951 end_pgoff = start_pgoff -
82b0f8c3 3952 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3953 PTRS_PER_PTE - 1;
82b0f8c3 3954 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3955 start_pgoff + nr_pages - 1);
8c6e50b0 3956
82b0f8c3 3957 if (pmd_none(*vmf->pmd)) {
4cf58924 3958 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3959 if (!vmf->prealloc_pte)
c5f88bd2 3960 goto out;
7267ec00 3961 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3962 }
3963
82b0f8c3 3964 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3965
7267ec00 3966 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3967 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3968 ret = VM_FAULT_NOPAGE;
3969 goto out;
3970 }
3971
3972 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3973 if (!vmf->pte)
7267ec00
KS
3974 goto out;
3975
3976 /* check if the page fault is solved */
82b0f8c3
JK
3977 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3978 if (!pte_none(*vmf->pte))
7267ec00 3979 ret = VM_FAULT_NOPAGE;
82b0f8c3 3980 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3981out:
82b0f8c3
JK
3982 vmf->address = address;
3983 vmf->pte = NULL;
7267ec00 3984 return ret;
8c6e50b0
KS
3985}
3986
2b740303 3987static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3988{
82b0f8c3 3989 struct vm_area_struct *vma = vmf->vma;
2b740303 3990 vm_fault_t ret = 0;
8c6e50b0
KS
3991
3992 /*
3993 * Let's call ->map_pages() first and use ->fault() as fallback
3994 * if page by the offset is not ready to be mapped (cold cache or
3995 * something).
3996 */
9b4bdd2f 3997 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3998 ret = do_fault_around(vmf);
7267ec00
KS
3999 if (ret)
4000 return ret;
8c6e50b0 4001 }
e655fb29 4002
936ca80d 4003 ret = __do_fault(vmf);
e655fb29
KS
4004 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4005 return ret;
4006
9118c0cb 4007 ret |= finish_fault(vmf);
936ca80d 4008 unlock_page(vmf->page);
7267ec00 4009 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 4010 put_page(vmf->page);
e655fb29
KS
4011 return ret;
4012}
4013
2b740303 4014static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 4015{
82b0f8c3 4016 struct vm_area_struct *vma = vmf->vma;
2b740303 4017 vm_fault_t ret;
ec47c3b9
KS
4018
4019 if (unlikely(anon_vma_prepare(vma)))
4020 return VM_FAULT_OOM;
4021
936ca80d
JK
4022 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4023 if (!vmf->cow_page)
ec47c3b9
KS
4024 return VM_FAULT_OOM;
4025
d9eb1ea2 4026 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
936ca80d 4027 put_page(vmf->cow_page);
ec47c3b9
KS
4028 return VM_FAULT_OOM;
4029 }
9d82c694 4030 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
ec47c3b9 4031
936ca80d 4032 ret = __do_fault(vmf);
ec47c3b9
KS
4033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4034 goto uncharge_out;
3917048d
JK
4035 if (ret & VM_FAULT_DONE_COW)
4036 return ret;
ec47c3b9 4037
b1aa812b 4038 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 4039 __SetPageUptodate(vmf->cow_page);
ec47c3b9 4040
9118c0cb 4041 ret |= finish_fault(vmf);
b1aa812b
JK
4042 unlock_page(vmf->page);
4043 put_page(vmf->page);
7267ec00
KS
4044 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4045 goto uncharge_out;
ec47c3b9
KS
4046 return ret;
4047uncharge_out:
936ca80d 4048 put_page(vmf->cow_page);
ec47c3b9
KS
4049 return ret;
4050}
4051
2b740303 4052static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 4053{
82b0f8c3 4054 struct vm_area_struct *vma = vmf->vma;
2b740303 4055 vm_fault_t ret, tmp;
1d65f86d 4056
936ca80d 4057 ret = __do_fault(vmf);
7eae74af 4058 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 4059 return ret;
1da177e4
LT
4060
4061 /*
f0c6d4d2
KS
4062 * Check if the backing address space wants to know that the page is
4063 * about to become writable
1da177e4 4064 */
fb09a464 4065 if (vma->vm_ops->page_mkwrite) {
936ca80d 4066 unlock_page(vmf->page);
38b8cb7f 4067 tmp = do_page_mkwrite(vmf);
fb09a464
KS
4068 if (unlikely(!tmp ||
4069 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 4070 put_page(vmf->page);
fb09a464 4071 return tmp;
4294621f 4072 }
fb09a464
KS
4073 }
4074
9118c0cb 4075 ret |= finish_fault(vmf);
7267ec00
KS
4076 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4077 VM_FAULT_RETRY))) {
936ca80d
JK
4078 unlock_page(vmf->page);
4079 put_page(vmf->page);
f0c6d4d2 4080 return ret;
1da177e4 4081 }
b827e496 4082
89b15332 4083 ret |= fault_dirty_shared_page(vmf);
1d65f86d 4084 return ret;
54cb8821 4085}
d00806b1 4086
9a95f3cf 4087/*
c1e8d7c6 4088 * We enter with non-exclusive mmap_lock (to exclude vma changes,
9a95f3cf 4089 * but allow concurrent faults).
c1e8d7c6 4090 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4091 * return value. See filemap_fault() and __lock_page_or_retry().
c1e8d7c6 4092 * If mmap_lock is released, vma may become invalid (for example
fc8efd2d 4093 * by other thread calling munmap()).
9a95f3cf 4094 */
2b740303 4095static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 4096{
82b0f8c3 4097 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 4098 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 4099 vm_fault_t ret;
54cb8821 4100
ff09d7ec
AK
4101 /*
4102 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4103 */
4104 if (!vma->vm_ops->fault) {
4105 /*
4106 * If we find a migration pmd entry or a none pmd entry, which
4107 * should never happen, return SIGBUS
4108 */
4109 if (unlikely(!pmd_present(*vmf->pmd)))
4110 ret = VM_FAULT_SIGBUS;
4111 else {
4112 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4113 vmf->pmd,
4114 vmf->address,
4115 &vmf->ptl);
4116 /*
4117 * Make sure this is not a temporary clearing of pte
4118 * by holding ptl and checking again. A R/M/W update
4119 * of pte involves: take ptl, clearing the pte so that
4120 * we don't have concurrent modification by hardware
4121 * followed by an update.
4122 */
4123 if (unlikely(pte_none(*vmf->pte)))
4124 ret = VM_FAULT_SIGBUS;
4125 else
4126 ret = VM_FAULT_NOPAGE;
4127
4128 pte_unmap_unlock(vmf->pte, vmf->ptl);
4129 }
4130 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
4131 ret = do_read_fault(vmf);
4132 else if (!(vma->vm_flags & VM_SHARED))
4133 ret = do_cow_fault(vmf);
4134 else
4135 ret = do_shared_fault(vmf);
4136
4137 /* preallocated pagetable is unused: free it */
4138 if (vmf->prealloc_pte) {
fc8efd2d 4139 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 4140 vmf->prealloc_pte = NULL;
b0b9b3df
HD
4141 }
4142 return ret;
54cb8821
NP
4143}
4144
b19a9939 4145static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
4146 unsigned long addr, int page_nid,
4147 int *flags)
9532fec1
MG
4148{
4149 get_page(page);
4150
4151 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 4152 if (page_nid == numa_node_id()) {
9532fec1 4153 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
4154 *flags |= TNF_FAULT_LOCAL;
4155 }
9532fec1
MG
4156
4157 return mpol_misplaced(page, vma, addr);
4158}
4159
2b740303 4160static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 4161{
82b0f8c3 4162 struct vm_area_struct *vma = vmf->vma;
4daae3b4 4163 struct page *page = NULL;
98fa15f3 4164 int page_nid = NUMA_NO_NODE;
90572890 4165 int last_cpupid;
cbee9f88 4166 int target_nid;
b8593bfd 4167 bool migrated = false;
04a86453 4168 pte_t pte, old_pte;
288bc549 4169 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 4170 int flags = 0;
d10e63f2
MG
4171
4172 /*
166f61b9
TH
4173 * The "pte" at this point cannot be used safely without
4174 * validation through pte_unmap_same(). It's of NUMA type but
4175 * the pfn may be screwed if the read is non atomic.
166f61b9 4176 */
82b0f8c3
JK
4177 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4178 spin_lock(vmf->ptl);
cee216a6 4179 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 4180 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
4181 goto out;
4182 }
4183
cee216a6
AK
4184 /*
4185 * Make it present again, Depending on how arch implementes non
4186 * accessible ptes, some can allow access by kernel mode.
4187 */
04a86453
AK
4188 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4189 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 4190 pte = pte_mkyoung(pte);
b191f9b1
MG
4191 if (was_writable)
4192 pte = pte_mkwrite(pte);
04a86453 4193 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 4194 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 4195
82b0f8c3 4196 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 4197 if (!page) {
82b0f8c3 4198 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
4199 return 0;
4200 }
4201
e81c4802
KS
4202 /* TODO: handle PTE-mapped THP */
4203 if (PageCompound(page)) {
82b0f8c3 4204 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
4205 return 0;
4206 }
4207
6688cc05 4208 /*
bea66fbd
MG
4209 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4210 * much anyway since they can be in shared cache state. This misses
4211 * the case where a mapping is writable but the process never writes
4212 * to it but pte_write gets cleared during protection updates and
4213 * pte_dirty has unpredictable behaviour between PTE scan updates,
4214 * background writeback, dirty balancing and application behaviour.
6688cc05 4215 */
d59dc7bc 4216 if (!pte_write(pte))
6688cc05
PZ
4217 flags |= TNF_NO_GROUP;
4218
dabe1d99
RR
4219 /*
4220 * Flag if the page is shared between multiple address spaces. This
4221 * is later used when determining whether to group tasks together
4222 */
4223 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4224 flags |= TNF_SHARED;
4225
90572890 4226 last_cpupid = page_cpupid_last(page);
8191acbd 4227 page_nid = page_to_nid(page);
82b0f8c3 4228 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 4229 &flags);
82b0f8c3 4230 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 4231 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
4232 put_page(page);
4233 goto out;
4234 }
4235
4236 /* Migrate to the requested node */
1bc115d8 4237 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 4238 if (migrated) {
8191acbd 4239 page_nid = target_nid;
6688cc05 4240 flags |= TNF_MIGRATED;
074c2381
MG
4241 } else
4242 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
4243
4244out:
98fa15f3 4245 if (page_nid != NUMA_NO_NODE)
6688cc05 4246 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
4247 return 0;
4248}
4249
2b740303 4250static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 4251{
f4200391 4252 if (vma_is_anonymous(vmf->vma))
82b0f8c3 4253 return do_huge_pmd_anonymous_page(vmf);
a2d58167 4254 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4255 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
4256 return VM_FAULT_FALLBACK;
4257}
4258
183f24aa 4259/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 4260static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 4261{
529b930b 4262 if (vma_is_anonymous(vmf->vma)) {
292924b2 4263 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
529b930b 4264 return handle_userfault(vmf, VM_UFFD_WP);
82b0f8c3 4265 return do_huge_pmd_wp_page(vmf, orig_pmd);
529b930b 4266 }
327e9fd4
THV
4267 if (vmf->vma->vm_ops->huge_fault) {
4268 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4269
4270 if (!(ret & VM_FAULT_FALLBACK))
4271 return ret;
4272 }
af9e4d5f 4273
327e9fd4 4274 /* COW or write-notify handled on pte level: split pmd. */
82b0f8c3 4275 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 4276
b96375f7
MW
4277 return VM_FAULT_FALLBACK;
4278}
4279
2b740303 4280static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9 4281{
327e9fd4
THV
4282#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4283 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
a00cc7d9
MW
4284 /* No support for anonymous transparent PUD pages yet */
4285 if (vma_is_anonymous(vmf->vma))
327e9fd4
THV
4286 goto split;
4287 if (vmf->vma->vm_ops->huge_fault) {
4288 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4289
4290 if (!(ret & VM_FAULT_FALLBACK))
4291 return ret;
4292 }
4293split:
4294 /* COW or write-notify not handled on PUD level: split pud.*/
4295 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
a00cc7d9
MW
4296#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4297 return VM_FAULT_FALLBACK;
4298}
4299
2b740303 4300static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
4301{
4302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4303 /* No support for anonymous transparent PUD pages yet */
4304 if (vma_is_anonymous(vmf->vma))
4305 return VM_FAULT_FALLBACK;
4306 if (vmf->vma->vm_ops->huge_fault)
c791ace1 4307 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
4308#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4309 return VM_FAULT_FALLBACK;
4310}
4311
1da177e4
LT
4312/*
4313 * These routines also need to handle stuff like marking pages dirty
4314 * and/or accessed for architectures that don't do it in hardware (most
4315 * RISC architectures). The early dirtying is also good on the i386.
4316 *
4317 * There is also a hook called "update_mmu_cache()" that architectures
4318 * with external mmu caches can use to update those (ie the Sparc or
4319 * PowerPC hashed page tables that act as extended TLBs).
4320 *
c1e8d7c6 4321 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
7267ec00 4322 * concurrent faults).
9a95f3cf 4323 *
c1e8d7c6 4324 * The mmap_lock may have been released depending on flags and our return value.
7267ec00 4325 * See filemap_fault() and __lock_page_or_retry().
1da177e4 4326 */
2b740303 4327static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
4328{
4329 pte_t entry;
4330
82b0f8c3 4331 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
4332 /*
4333 * Leave __pte_alloc() until later: because vm_ops->fault may
4334 * want to allocate huge page, and if we expose page table
4335 * for an instant, it will be difficult to retract from
4336 * concurrent faults and from rmap lookups.
4337 */
82b0f8c3 4338 vmf->pte = NULL;
7267ec00
KS
4339 } else {
4340 /* See comment in pte_alloc_one_map() */
d0f0931d 4341 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
4342 return 0;
4343 /*
4344 * A regular pmd is established and it can't morph into a huge
4345 * pmd from under us anymore at this point because we hold the
c1e8d7c6 4346 * mmap_lock read mode and khugepaged takes it in write mode.
7267ec00
KS
4347 * So now it's safe to run pte_offset_map().
4348 */
82b0f8c3 4349 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 4350 vmf->orig_pte = *vmf->pte;
7267ec00
KS
4351
4352 /*
4353 * some architectures can have larger ptes than wordsize,
4354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
4355 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4356 * accesses. The code below just needs a consistent view
4357 * for the ifs and we later double check anyway with the
7267ec00
KS
4358 * ptl lock held. So here a barrier will do.
4359 */
4360 barrier();
2994302b 4361 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
4362 pte_unmap(vmf->pte);
4363 vmf->pte = NULL;
65500d23 4364 }
1da177e4
LT
4365 }
4366
82b0f8c3
JK
4367 if (!vmf->pte) {
4368 if (vma_is_anonymous(vmf->vma))
4369 return do_anonymous_page(vmf);
7267ec00 4370 else
82b0f8c3 4371 return do_fault(vmf);
7267ec00
KS
4372 }
4373
2994302b
JK
4374 if (!pte_present(vmf->orig_pte))
4375 return do_swap_page(vmf);
7267ec00 4376
2994302b
JK
4377 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4378 return do_numa_page(vmf);
d10e63f2 4379
82b0f8c3
JK
4380 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4381 spin_lock(vmf->ptl);
2994302b 4382 entry = vmf->orig_pte;
7df67697
BM
4383 if (unlikely(!pte_same(*vmf->pte, entry))) {
4384 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
8f4e2101 4385 goto unlock;
7df67697 4386 }
82b0f8c3 4387 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 4388 if (!pte_write(entry))
2994302b 4389 return do_wp_page(vmf);
1da177e4
LT
4390 entry = pte_mkdirty(entry);
4391 }
4392 entry = pte_mkyoung(entry);
82b0f8c3
JK
4393 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4394 vmf->flags & FAULT_FLAG_WRITE)) {
4395 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149 4396 } else {
b7333b58
YS
4397 /* Skip spurious TLB flush for retried page fault */
4398 if (vmf->flags & FAULT_FLAG_TRIED)
4399 goto unlock;
1a44e149
AA
4400 /*
4401 * This is needed only for protection faults but the arch code
4402 * is not yet telling us if this is a protection fault or not.
4403 * This still avoids useless tlb flushes for .text page faults
4404 * with threads.
4405 */
82b0f8c3
JK
4406 if (vmf->flags & FAULT_FLAG_WRITE)
4407 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 4408 }
8f4e2101 4409unlock:
82b0f8c3 4410 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 4411 return 0;
1da177e4
LT
4412}
4413
4414/*
4415 * By the time we get here, we already hold the mm semaphore
9a95f3cf 4416 *
c1e8d7c6 4417 * The mmap_lock may have been released depending on flags and our
9a95f3cf 4418 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 4419 */
2b740303
SJ
4420static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4421 unsigned long address, unsigned int flags)
1da177e4 4422{
82b0f8c3 4423 struct vm_fault vmf = {
bae473a4 4424 .vma = vma,
1a29d85e 4425 .address = address & PAGE_MASK,
bae473a4 4426 .flags = flags,
0721ec8b 4427 .pgoff = linear_page_index(vma, address),
667240e0 4428 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 4429 };
fde26bed 4430 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 4431 struct mm_struct *mm = vma->vm_mm;
1da177e4 4432 pgd_t *pgd;
c2febafc 4433 p4d_t *p4d;
2b740303 4434 vm_fault_t ret;
1da177e4 4435
1da177e4 4436 pgd = pgd_offset(mm, address);
c2febafc
KS
4437 p4d = p4d_alloc(mm, pgd, address);
4438 if (!p4d)
4439 return VM_FAULT_OOM;
a00cc7d9 4440
c2febafc 4441 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4442 if (!vmf.pud)
c74df32c 4443 return VM_FAULT_OOM;
625110b5 4444retry_pud:
7635d9cb 4445 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4446 ret = create_huge_pud(&vmf);
4447 if (!(ret & VM_FAULT_FALLBACK))
4448 return ret;
4449 } else {
4450 pud_t orig_pud = *vmf.pud;
4451
4452 barrier();
4453 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4454
a00cc7d9
MW
4455 /* NUMA case for anonymous PUDs would go here */
4456
f6f37321 4457 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4458 ret = wp_huge_pud(&vmf, orig_pud);
4459 if (!(ret & VM_FAULT_FALLBACK))
4460 return ret;
4461 } else {
4462 huge_pud_set_accessed(&vmf, orig_pud);
4463 return 0;
4464 }
4465 }
4466 }
4467
4468 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4469 if (!vmf.pmd)
c74df32c 4470 return VM_FAULT_OOM;
625110b5
TH
4471
4472 /* Huge pud page fault raced with pmd_alloc? */
4473 if (pud_trans_unstable(vmf.pud))
4474 goto retry_pud;
4475
7635d9cb 4476 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4477 ret = create_huge_pmd(&vmf);
c0292554
KS
4478 if (!(ret & VM_FAULT_FALLBACK))
4479 return ret;
71e3aac0 4480 } else {
82b0f8c3 4481 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4482
71e3aac0 4483 barrier();
84c3fc4e
ZY
4484 if (unlikely(is_swap_pmd(orig_pmd))) {
4485 VM_BUG_ON(thp_migration_supported() &&
4486 !is_pmd_migration_entry(orig_pmd));
4487 if (is_pmd_migration_entry(orig_pmd))
4488 pmd_migration_entry_wait(mm, vmf.pmd);
4489 return 0;
4490 }
5c7fb56e 4491 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4492 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4493 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4494
f6f37321 4495 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4496 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4497 if (!(ret & VM_FAULT_FALLBACK))
4498 return ret;
a1dd450b 4499 } else {
82b0f8c3 4500 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4501 return 0;
1f1d06c3 4502 }
71e3aac0
AA
4503 }
4504 }
4505
82b0f8c3 4506 return handle_pte_fault(&vmf);
1da177e4
LT
4507}
4508
bce617ed
PX
4509/**
4510 * mm_account_fault - Do page fault accountings
4511 *
4512 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
4513 * of perf event counters, but we'll still do the per-task accounting to
4514 * the task who triggered this page fault.
4515 * @address: the faulted address.
4516 * @flags: the fault flags.
4517 * @ret: the fault retcode.
4518 *
4519 * This will take care of most of the page fault accountings. Meanwhile, it
4520 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4521 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4522 * still be in per-arch page fault handlers at the entry of page fault.
4523 */
4524static inline void mm_account_fault(struct pt_regs *regs,
4525 unsigned long address, unsigned int flags,
4526 vm_fault_t ret)
4527{
4528 bool major;
4529
4530 /*
4531 * We don't do accounting for some specific faults:
4532 *
4533 * - Unsuccessful faults (e.g. when the address wasn't valid). That
4534 * includes arch_vma_access_permitted() failing before reaching here.
4535 * So this is not a "this many hardware page faults" counter. We
4536 * should use the hw profiling for that.
4537 *
4538 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted
4539 * once they're completed.
4540 */
4541 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4542 return;
4543
4544 /*
4545 * We define the fault as a major fault when the final successful fault
4546 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4547 * handle it immediately previously).
4548 */
4549 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4550
a2beb5f1
PX
4551 if (major)
4552 current->maj_flt++;
4553 else
4554 current->min_flt++;
4555
bce617ed 4556 /*
a2beb5f1
PX
4557 * If the fault is done for GUP, regs will be NULL. We only do the
4558 * accounting for the per thread fault counters who triggered the
4559 * fault, and we skip the perf event updates.
bce617ed
PX
4560 */
4561 if (!regs)
4562 return;
4563
a2beb5f1 4564 if (major)
bce617ed 4565 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
a2beb5f1 4566 else
bce617ed 4567 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
bce617ed
PX
4568}
4569
9a95f3cf
PC
4570/*
4571 * By the time we get here, we already hold the mm semaphore
4572 *
c1e8d7c6 4573 * The mmap_lock may have been released depending on flags and our
9a95f3cf
PC
4574 * return value. See filemap_fault() and __lock_page_or_retry().
4575 */
2b740303 4576vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
bce617ed 4577 unsigned int flags, struct pt_regs *regs)
519e5247 4578{
2b740303 4579 vm_fault_t ret;
519e5247
JW
4580
4581 __set_current_state(TASK_RUNNING);
4582
4583 count_vm_event(PGFAULT);
2262185c 4584 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4585
4586 /* do counter updates before entering really critical section. */
4587 check_sync_rss_stat(current);
4588
de0c799b
LD
4589 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4590 flags & FAULT_FLAG_INSTRUCTION,
4591 flags & FAULT_FLAG_REMOTE))
4592 return VM_FAULT_SIGSEGV;
4593
519e5247
JW
4594 /*
4595 * Enable the memcg OOM handling for faults triggered in user
4596 * space. Kernel faults are handled more gracefully.
4597 */
4598 if (flags & FAULT_FLAG_USER)
29ef680a 4599 mem_cgroup_enter_user_fault();
519e5247 4600
bae473a4
KS
4601 if (unlikely(is_vm_hugetlb_page(vma)))
4602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4603 else
4604 ret = __handle_mm_fault(vma, address, flags);
519e5247 4605
49426420 4606 if (flags & FAULT_FLAG_USER) {
29ef680a 4607 mem_cgroup_exit_user_fault();
166f61b9
TH
4608 /*
4609 * The task may have entered a memcg OOM situation but
4610 * if the allocation error was handled gracefully (no
4611 * VM_FAULT_OOM), there is no need to kill anything.
4612 * Just clean up the OOM state peacefully.
4613 */
4614 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4615 mem_cgroup_oom_synchronize(false);
49426420 4616 }
3812c8c8 4617
bce617ed
PX
4618 mm_account_fault(regs, address, flags, ret);
4619
519e5247
JW
4620 return ret;
4621}
e1d6d01a 4622EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4623
90eceff1
KS
4624#ifndef __PAGETABLE_P4D_FOLDED
4625/*
4626 * Allocate p4d page table.
4627 * We've already handled the fast-path in-line.
4628 */
4629int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4630{
4631 p4d_t *new = p4d_alloc_one(mm, address);
4632 if (!new)
4633 return -ENOMEM;
4634
4635 smp_wmb(); /* See comment in __pte_alloc */
4636
4637 spin_lock(&mm->page_table_lock);
4638 if (pgd_present(*pgd)) /* Another has populated it */
4639 p4d_free(mm, new);
4640 else
4641 pgd_populate(mm, pgd, new);
4642 spin_unlock(&mm->page_table_lock);
4643 return 0;
4644}
4645#endif /* __PAGETABLE_P4D_FOLDED */
4646
1da177e4
LT
4647#ifndef __PAGETABLE_PUD_FOLDED
4648/*
4649 * Allocate page upper directory.
872fec16 4650 * We've already handled the fast-path in-line.
1da177e4 4651 */
c2febafc 4652int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4653{
c74df32c
HD
4654 pud_t *new = pud_alloc_one(mm, address);
4655 if (!new)
1bb3630e 4656 return -ENOMEM;
1da177e4 4657
362a61ad
NP
4658 smp_wmb(); /* See comment in __pte_alloc */
4659
872fec16 4660 spin_lock(&mm->page_table_lock);
b4e98d9a
KS
4661 if (!p4d_present(*p4d)) {
4662 mm_inc_nr_puds(mm);
c2febafc 4663 p4d_populate(mm, p4d, new);
b4e98d9a 4664 } else /* Another has populated it */
5e541973 4665 pud_free(mm, new);
c74df32c 4666 spin_unlock(&mm->page_table_lock);
1bb3630e 4667 return 0;
1da177e4
LT
4668}
4669#endif /* __PAGETABLE_PUD_FOLDED */
4670
4671#ifndef __PAGETABLE_PMD_FOLDED
4672/*
4673 * Allocate page middle directory.
872fec16 4674 * We've already handled the fast-path in-line.
1da177e4 4675 */
1bb3630e 4676int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4677{
a00cc7d9 4678 spinlock_t *ptl;
c74df32c
HD
4679 pmd_t *new = pmd_alloc_one(mm, address);
4680 if (!new)
1bb3630e 4681 return -ENOMEM;
1da177e4 4682
362a61ad
NP
4683 smp_wmb(); /* See comment in __pte_alloc */
4684
a00cc7d9 4685 ptl = pud_lock(mm, pud);
dc6c9a35
KS
4686 if (!pud_present(*pud)) {
4687 mm_inc_nr_pmds(mm);
1bb3630e 4688 pud_populate(mm, pud, new);
dc6c9a35 4689 } else /* Another has populated it */
5e541973 4690 pmd_free(mm, new);
a00cc7d9 4691 spin_unlock(ptl);
1bb3630e 4692 return 0;
e0f39591 4693}
1da177e4
LT
4694#endif /* __PAGETABLE_PMD_FOLDED */
4695
09796395 4696static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4697 struct mmu_notifier_range *range,
a4d1a885 4698 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4699{
4700 pgd_t *pgd;
c2febafc 4701 p4d_t *p4d;
f8ad0f49
JW
4702 pud_t *pud;
4703 pmd_t *pmd;
4704 pte_t *ptep;
4705
4706 pgd = pgd_offset(mm, address);
4707 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4708 goto out;
4709
c2febafc
KS
4710 p4d = p4d_offset(pgd, address);
4711 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4712 goto out;
4713
4714 pud = pud_offset(p4d, address);
f8ad0f49
JW
4715 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4716 goto out;
4717
4718 pmd = pmd_offset(pud, address);
f66055ab 4719 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4720
09796395
RZ
4721 if (pmd_huge(*pmd)) {
4722 if (!pmdpp)
4723 goto out;
4724
ac46d4f3 4725 if (range) {
7269f999 4726 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4727 NULL, mm, address & PMD_MASK,
4728 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4729 mmu_notifier_invalidate_range_start(range);
a4d1a885 4730 }
09796395
RZ
4731 *ptlp = pmd_lock(mm, pmd);
4732 if (pmd_huge(*pmd)) {
4733 *pmdpp = pmd;
4734 return 0;
4735 }
4736 spin_unlock(*ptlp);
ac46d4f3
JG
4737 if (range)
4738 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4739 }
4740
4741 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4742 goto out;
4743
ac46d4f3 4744 if (range) {
7269f999 4745 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4746 address & PAGE_MASK,
4747 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4748 mmu_notifier_invalidate_range_start(range);
a4d1a885 4749 }
f8ad0f49 4750 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4751 if (!pte_present(*ptep))
4752 goto unlock;
4753 *ptepp = ptep;
4754 return 0;
4755unlock:
4756 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4757 if (range)
4758 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4759out:
4760 return -EINVAL;
4761}
4762
f729c8c9
RZ
4763static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4764 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4765{
4766 int res;
4767
4768 /* (void) is needed to make gcc happy */
4769 (void) __cond_lock(*ptlp,
ac46d4f3 4770 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4771 ptepp, NULL, ptlp)));
09796395
RZ
4772 return res;
4773}
4774
4775int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4776 struct mmu_notifier_range *range,
4777 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4778{
4779 int res;
4780
4781 /* (void) is needed to make gcc happy */
4782 (void) __cond_lock(*ptlp,
ac46d4f3 4783 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4784 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4785 return res;
4786}
09796395 4787EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4788
3b6748e2
JW
4789/**
4790 * follow_pfn - look up PFN at a user virtual address
4791 * @vma: memory mapping
4792 * @address: user virtual address
4793 * @pfn: location to store found PFN
4794 *
4795 * Only IO mappings and raw PFN mappings are allowed.
4796 *
a862f68a 4797 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4798 */
4799int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4800 unsigned long *pfn)
4801{
4802 int ret = -EINVAL;
4803 spinlock_t *ptl;
4804 pte_t *ptep;
4805
4806 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4807 return ret;
4808
4809 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4810 if (ret)
4811 return ret;
4812 *pfn = pte_pfn(*ptep);
4813 pte_unmap_unlock(ptep, ptl);
4814 return 0;
4815}
4816EXPORT_SYMBOL(follow_pfn);
4817
28b2ee20 4818#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4819int follow_phys(struct vm_area_struct *vma,
4820 unsigned long address, unsigned int flags,
4821 unsigned long *prot, resource_size_t *phys)
28b2ee20 4822{
03668a4d 4823 int ret = -EINVAL;
28b2ee20
RR
4824 pte_t *ptep, pte;
4825 spinlock_t *ptl;
28b2ee20 4826
d87fe660 4827 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4828 goto out;
28b2ee20 4829
03668a4d 4830 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4831 goto out;
28b2ee20 4832 pte = *ptep;
03668a4d 4833
f6f37321 4834 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4835 goto unlock;
28b2ee20
RR
4836
4837 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4838 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4839
03668a4d 4840 ret = 0;
28b2ee20
RR
4841unlock:
4842 pte_unmap_unlock(ptep, ptl);
4843out:
d87fe660 4844 return ret;
28b2ee20
RR
4845}
4846
4847int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4848 void *buf, int len, int write)
4849{
4850 resource_size_t phys_addr;
4851 unsigned long prot = 0;
2bc7273b 4852 void __iomem *maddr;
28b2ee20
RR
4853 int offset = addr & (PAGE_SIZE-1);
4854
d87fe660 4855 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4856 return -EINVAL;
4857
9cb12d7b 4858 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4859 if (!maddr)
4860 return -ENOMEM;
4861
28b2ee20
RR
4862 if (write)
4863 memcpy_toio(maddr + offset, buf, len);
4864 else
4865 memcpy_fromio(buf, maddr + offset, len);
4866 iounmap(maddr);
4867
4868 return len;
4869}
5a73633e 4870EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4871#endif
4872
0ec76a11 4873/*
206cb636
SW
4874 * Access another process' address space as given in mm. If non-NULL, use the
4875 * given task for page fault accounting.
0ec76a11 4876 */
84d77d3f 4877int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4878 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4879{
0ec76a11 4880 struct vm_area_struct *vma;
0ec76a11 4881 void *old_buf = buf;
442486ec 4882 int write = gup_flags & FOLL_WRITE;
0ec76a11 4883
d8ed45c5 4884 if (mmap_read_lock_killable(mm))
1e426fe2
KK
4885 return 0;
4886
183ff22b 4887 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4888 while (len) {
4889 int bytes, ret, offset;
4890 void *maddr;
28b2ee20 4891 struct page *page = NULL;
0ec76a11 4892
64019a2e 4893 ret = get_user_pages_remote(mm, addr, 1,
5b56d49f 4894 gup_flags, &page, &vma, NULL);
28b2ee20 4895 if (ret <= 0) {
dbffcd03
RR
4896#ifndef CONFIG_HAVE_IOREMAP_PROT
4897 break;
4898#else
28b2ee20
RR
4899 /*
4900 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4901 * we can access using slightly different code.
4902 */
28b2ee20 4903 vma = find_vma(mm, addr);
fe936dfc 4904 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4905 break;
4906 if (vma->vm_ops && vma->vm_ops->access)
4907 ret = vma->vm_ops->access(vma, addr, buf,
4908 len, write);
4909 if (ret <= 0)
28b2ee20
RR
4910 break;
4911 bytes = ret;
dbffcd03 4912#endif
0ec76a11 4913 } else {
28b2ee20
RR
4914 bytes = len;
4915 offset = addr & (PAGE_SIZE-1);
4916 if (bytes > PAGE_SIZE-offset)
4917 bytes = PAGE_SIZE-offset;
4918
4919 maddr = kmap(page);
4920 if (write) {
4921 copy_to_user_page(vma, page, addr,
4922 maddr + offset, buf, bytes);
4923 set_page_dirty_lock(page);
4924 } else {
4925 copy_from_user_page(vma, page, addr,
4926 buf, maddr + offset, bytes);
4927 }
4928 kunmap(page);
09cbfeaf 4929 put_page(page);
0ec76a11 4930 }
0ec76a11
DH
4931 len -= bytes;
4932 buf += bytes;
4933 addr += bytes;
4934 }
d8ed45c5 4935 mmap_read_unlock(mm);
0ec76a11
DH
4936
4937 return buf - old_buf;
4938}
03252919 4939
5ddd36b9 4940/**
ae91dbfc 4941 * access_remote_vm - access another process' address space
5ddd36b9
SW
4942 * @mm: the mm_struct of the target address space
4943 * @addr: start address to access
4944 * @buf: source or destination buffer
4945 * @len: number of bytes to transfer
6347e8d5 4946 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4947 *
4948 * The caller must hold a reference on @mm.
a862f68a
MR
4949 *
4950 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4951 */
4952int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4953 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4954{
6347e8d5 4955 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4956}
4957
206cb636
SW
4958/*
4959 * Access another process' address space.
4960 * Source/target buffer must be kernel space,
4961 * Do not walk the page table directly, use get_user_pages
4962 */
4963int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4964 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4965{
4966 struct mm_struct *mm;
4967 int ret;
4968
4969 mm = get_task_mm(tsk);
4970 if (!mm)
4971 return 0;
4972
f307ab6d 4973 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4974
206cb636
SW
4975 mmput(mm);
4976
4977 return ret;
4978}
fcd35857 4979EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4980
03252919
AK
4981/*
4982 * Print the name of a VMA.
4983 */
4984void print_vma_addr(char *prefix, unsigned long ip)
4985{
4986 struct mm_struct *mm = current->mm;
4987 struct vm_area_struct *vma;
4988
e8bff74a 4989 /*
0a7f682d 4990 * we might be running from an atomic context so we cannot sleep
e8bff74a 4991 */
d8ed45c5 4992 if (!mmap_read_trylock(mm))
e8bff74a
IM
4993 return;
4994
03252919
AK
4995 vma = find_vma(mm, ip);
4996 if (vma && vma->vm_file) {
4997 struct file *f = vma->vm_file;
0a7f682d 4998 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4999 if (buf) {
2fbc57c5 5000 char *p;
03252919 5001
9bf39ab2 5002 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
5003 if (IS_ERR(p))
5004 p = "?";
2fbc57c5 5005 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
5006 vma->vm_start,
5007 vma->vm_end - vma->vm_start);
5008 free_page((unsigned long)buf);
5009 }
5010 }
d8ed45c5 5011 mmap_read_unlock(mm);
03252919 5012}
3ee1afa3 5013
662bbcb2 5014#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 5015void __might_fault(const char *file, int line)
3ee1afa3 5016{
95156f00
PZ
5017 /*
5018 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
c1e8d7c6 5019 * holding the mmap_lock, this is safe because kernel memory doesn't
95156f00
PZ
5020 * get paged out, therefore we'll never actually fault, and the
5021 * below annotations will generate false positives.
5022 */
db68ce10 5023 if (uaccess_kernel())
95156f00 5024 return;
9ec23531 5025 if (pagefault_disabled())
662bbcb2 5026 return;
9ec23531
DH
5027 __might_sleep(file, line, 0);
5028#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 5029 if (current->mm)
da1c55f1 5030 might_lock_read(&current->mm->mmap_lock);
9ec23531 5031#endif
3ee1afa3 5032}
9ec23531 5033EXPORT_SYMBOL(__might_fault);
3ee1afa3 5034#endif
47ad8475
AA
5035
5036#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
5037/*
5038 * Process all subpages of the specified huge page with the specified
5039 * operation. The target subpage will be processed last to keep its
5040 * cache lines hot.
5041 */
5042static inline void process_huge_page(
5043 unsigned long addr_hint, unsigned int pages_per_huge_page,
5044 void (*process_subpage)(unsigned long addr, int idx, void *arg),
5045 void *arg)
47ad8475 5046{
c79b57e4
HY
5047 int i, n, base, l;
5048 unsigned long addr = addr_hint &
5049 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 5050
c6ddfb6c 5051 /* Process target subpage last to keep its cache lines hot */
47ad8475 5052 might_sleep();
c79b57e4
HY
5053 n = (addr_hint - addr) / PAGE_SIZE;
5054 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 5055 /* If target subpage in first half of huge page */
c79b57e4
HY
5056 base = 0;
5057 l = n;
c6ddfb6c 5058 /* Process subpages at the end of huge page */
c79b57e4
HY
5059 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5060 cond_resched();
c6ddfb6c 5061 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5062 }
5063 } else {
c6ddfb6c 5064 /* If target subpage in second half of huge page */
c79b57e4
HY
5065 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5066 l = pages_per_huge_page - n;
c6ddfb6c 5067 /* Process subpages at the begin of huge page */
c79b57e4
HY
5068 for (i = 0; i < base; i++) {
5069 cond_resched();
c6ddfb6c 5070 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
5071 }
5072 }
5073 /*
c6ddfb6c
HY
5074 * Process remaining subpages in left-right-left-right pattern
5075 * towards the target subpage
c79b57e4
HY
5076 */
5077 for (i = 0; i < l; i++) {
5078 int left_idx = base + i;
5079 int right_idx = base + 2 * l - 1 - i;
5080
5081 cond_resched();
c6ddfb6c 5082 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 5083 cond_resched();
c6ddfb6c 5084 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
5085 }
5086}
5087
c6ddfb6c
HY
5088static void clear_gigantic_page(struct page *page,
5089 unsigned long addr,
5090 unsigned int pages_per_huge_page)
5091{
5092 int i;
5093 struct page *p = page;
5094
5095 might_sleep();
5096 for (i = 0; i < pages_per_huge_page;
5097 i++, p = mem_map_next(p, page, i)) {
5098 cond_resched();
5099 clear_user_highpage(p, addr + i * PAGE_SIZE);
5100 }
5101}
5102
5103static void clear_subpage(unsigned long addr, int idx, void *arg)
5104{
5105 struct page *page = arg;
5106
5107 clear_user_highpage(page + idx, addr);
5108}
5109
5110void clear_huge_page(struct page *page,
5111 unsigned long addr_hint, unsigned int pages_per_huge_page)
5112{
5113 unsigned long addr = addr_hint &
5114 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5115
5116 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5117 clear_gigantic_page(page, addr, pages_per_huge_page);
5118 return;
5119 }
5120
5121 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5122}
5123
47ad8475
AA
5124static void copy_user_gigantic_page(struct page *dst, struct page *src,
5125 unsigned long addr,
5126 struct vm_area_struct *vma,
5127 unsigned int pages_per_huge_page)
5128{
5129 int i;
5130 struct page *dst_base = dst;
5131 struct page *src_base = src;
5132
5133 for (i = 0; i < pages_per_huge_page; ) {
5134 cond_resched();
5135 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5136
5137 i++;
5138 dst = mem_map_next(dst, dst_base, i);
5139 src = mem_map_next(src, src_base, i);
5140 }
5141}
5142
c9f4cd71
HY
5143struct copy_subpage_arg {
5144 struct page *dst;
5145 struct page *src;
5146 struct vm_area_struct *vma;
5147};
5148
5149static void copy_subpage(unsigned long addr, int idx, void *arg)
5150{
5151 struct copy_subpage_arg *copy_arg = arg;
5152
5153 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5154 addr, copy_arg->vma);
5155}
5156
47ad8475 5157void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 5158 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
5159 unsigned int pages_per_huge_page)
5160{
c9f4cd71
HY
5161 unsigned long addr = addr_hint &
5162 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5163 struct copy_subpage_arg arg = {
5164 .dst = dst,
5165 .src = src,
5166 .vma = vma,
5167 };
47ad8475
AA
5168
5169 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5170 copy_user_gigantic_page(dst, src, addr, vma,
5171 pages_per_huge_page);
5172 return;
5173 }
5174
c9f4cd71 5175 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 5176}
fa4d75c1
MK
5177
5178long copy_huge_page_from_user(struct page *dst_page,
5179 const void __user *usr_src,
810a56b9
MK
5180 unsigned int pages_per_huge_page,
5181 bool allow_pagefault)
fa4d75c1
MK
5182{
5183 void *src = (void *)usr_src;
5184 void *page_kaddr;
5185 unsigned long i, rc = 0;
5186 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5187
5188 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
5189 if (allow_pagefault)
5190 page_kaddr = kmap(dst_page + i);
5191 else
5192 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
5193 rc = copy_from_user(page_kaddr,
5194 (const void __user *)(src + i * PAGE_SIZE),
5195 PAGE_SIZE);
810a56b9
MK
5196 if (allow_pagefault)
5197 kunmap(dst_page + i);
5198 else
5199 kunmap_atomic(page_kaddr);
fa4d75c1
MK
5200
5201 ret_val -= (PAGE_SIZE - rc);
5202 if (rc)
5203 break;
5204
5205 cond_resched();
5206 }
5207 return ret_val;
5208}
47ad8475 5209#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 5210
40b64acd 5211#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
5212
5213static struct kmem_cache *page_ptl_cachep;
5214
5215void __init ptlock_cache_init(void)
5216{
5217 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5218 SLAB_PANIC, NULL);
5219}
5220
539edb58 5221bool ptlock_alloc(struct page *page)
49076ec2
KS
5222{
5223 spinlock_t *ptl;
5224
b35f1819 5225 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
5226 if (!ptl)
5227 return false;
539edb58 5228 page->ptl = ptl;
49076ec2
KS
5229 return true;
5230}
5231
539edb58 5232void ptlock_free(struct page *page)
49076ec2 5233{
b35f1819 5234 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
5235}
5236#endif