]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/memory.c
shmem: pin the file in shmem_fault() if mmap_sem is dropped
[thirdparty/linux.git] / mm / memory.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
6e84f315 44#include <linux/sched/mm.h>
f7ccbae4 45#include <linux/sched/coredump.h>
6a3827d7 46#include <linux/sched/numa_balancing.h>
29930025 47#include <linux/sched/task.h>
1da177e4
LT
48#include <linux/hugetlb.h>
49#include <linux/mman.h>
50#include <linux/swap.h>
51#include <linux/highmem.h>
52#include <linux/pagemap.h>
5042db43 53#include <linux/memremap.h>
9a840895 54#include <linux/ksm.h>
1da177e4 55#include <linux/rmap.h>
b95f1b31 56#include <linux/export.h>
0ff92245 57#include <linux/delayacct.h>
1da177e4 58#include <linux/init.h>
01c8f1c4 59#include <linux/pfn_t.h>
edc79b2a 60#include <linux/writeback.h>
8a9f3ccd 61#include <linux/memcontrol.h>
cddb8a5c 62#include <linux/mmu_notifier.h>
3dc14741
HD
63#include <linux/swapops.h>
64#include <linux/elf.h>
5a0e3ad6 65#include <linux/gfp.h>
4daae3b4 66#include <linux/migrate.h>
2fbc57c5 67#include <linux/string.h>
0abdd7a8 68#include <linux/dma-debug.h>
1592eef0 69#include <linux/debugfs.h>
6b251fc9 70#include <linux/userfaultfd_k.h>
bc2466e4 71#include <linux/dax.h>
6b31d595 72#include <linux/oom.h>
98fa15f3 73#include <linux/numa.h>
1da177e4 74
6952b61d 75#include <asm/io.h>
33a709b2 76#include <asm/mmu_context.h>
1da177e4 77#include <asm/pgalloc.h>
7c0f6ba6 78#include <linux/uaccess.h>
1da177e4
LT
79#include <asm/tlb.h>
80#include <asm/tlbflush.h>
81#include <asm/pgtable.h>
82
42b77728
JB
83#include "internal.h"
84
af27d940 85#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90572890 86#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
87#endif
88
d41dee36 89#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
90/* use the per-pgdat data instead for discontigmem - mbligh */
91unsigned long max_mapnr;
1da177e4 92EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
93
94struct page *mem_map;
1da177e4
LT
95EXPORT_SYMBOL(mem_map);
96#endif
97
1da177e4
LT
98/*
99 * A number of key systems in x86 including ioremap() rely on the assumption
100 * that high_memory defines the upper bound on direct map memory, then end
101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103 * and ZONE_HIGHMEM.
104 */
166f61b9 105void *high_memory;
1da177e4 106EXPORT_SYMBOL(high_memory);
1da177e4 107
32a93233
IM
108/*
109 * Randomize the address space (stacks, mmaps, brk, etc.).
110 *
111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112 * as ancient (libc5 based) binaries can segfault. )
113 */
114int randomize_va_space __read_mostly =
115#ifdef CONFIG_COMPAT_BRK
116 1;
117#else
118 2;
119#endif
a62eaf15 120
83d116c5
JH
121#ifndef arch_faults_on_old_pte
122static inline bool arch_faults_on_old_pte(void)
123{
124 /*
125 * Those arches which don't have hw access flag feature need to
126 * implement their own helper. By default, "true" means pagefault
127 * will be hit on old pte.
128 */
129 return true;
130}
131#endif
132
a62eaf15
AK
133static int __init disable_randmaps(char *s)
134{
135 randomize_va_space = 0;
9b41046c 136 return 1;
a62eaf15
AK
137}
138__setup("norandmaps", disable_randmaps);
139
62eede62 140unsigned long zero_pfn __read_mostly;
0b70068e
AB
141EXPORT_SYMBOL(zero_pfn);
142
166f61b9
TH
143unsigned long highest_memmap_pfn __read_mostly;
144
a13ea5b7
HD
145/*
146 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
147 */
148static int __init init_zero_pfn(void)
149{
150 zero_pfn = page_to_pfn(ZERO_PAGE(0));
151 return 0;
152}
153core_initcall(init_zero_pfn);
a62eaf15 154
d559db08 155
34e55232
KH
156#if defined(SPLIT_RSS_COUNTING)
157
ea48cf78 158void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
159{
160 int i;
161
162 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
163 if (current->rss_stat.count[i]) {
164 add_mm_counter(mm, i, current->rss_stat.count[i]);
165 current->rss_stat.count[i] = 0;
34e55232
KH
166 }
167 }
05af2e10 168 current->rss_stat.events = 0;
34e55232
KH
169}
170
171static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
172{
173 struct task_struct *task = current;
174
175 if (likely(task->mm == mm))
176 task->rss_stat.count[member] += val;
177 else
178 add_mm_counter(mm, member, val);
179}
180#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
181#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
182
183/* sync counter once per 64 page faults */
184#define TASK_RSS_EVENTS_THRESH (64)
185static void check_sync_rss_stat(struct task_struct *task)
186{
187 if (unlikely(task != current))
188 return;
189 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 190 sync_mm_rss(task->mm);
34e55232 191}
9547d01b 192#else /* SPLIT_RSS_COUNTING */
34e55232
KH
193
194#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
195#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
196
197static void check_sync_rss_stat(struct task_struct *task)
198{
199}
200
9547d01b
PZ
201#endif /* SPLIT_RSS_COUNTING */
202
1da177e4
LT
203/*
204 * Note: this doesn't free the actual pages themselves. That
205 * has been handled earlier when unmapping all the memory regions.
206 */
9e1b32ca
BH
207static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
208 unsigned long addr)
1da177e4 209{
2f569afd 210 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 211 pmd_clear(pmd);
9e1b32ca 212 pte_free_tlb(tlb, token, addr);
c4812909 213 mm_dec_nr_ptes(tlb->mm);
1da177e4
LT
214}
215
e0da382c
HD
216static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
1da177e4
LT
219{
220 pmd_t *pmd;
221 unsigned long next;
e0da382c 222 unsigned long start;
1da177e4 223
e0da382c 224 start = addr;
1da177e4 225 pmd = pmd_offset(pud, addr);
1da177e4
LT
226 do {
227 next = pmd_addr_end(addr, end);
228 if (pmd_none_or_clear_bad(pmd))
229 continue;
9e1b32ca 230 free_pte_range(tlb, pmd, addr);
1da177e4
LT
231 } while (pmd++, addr = next, addr != end);
232
e0da382c
HD
233 start &= PUD_MASK;
234 if (start < floor)
235 return;
236 if (ceiling) {
237 ceiling &= PUD_MASK;
238 if (!ceiling)
239 return;
1da177e4 240 }
e0da382c
HD
241 if (end - 1 > ceiling - 1)
242 return;
243
244 pmd = pmd_offset(pud, start);
245 pud_clear(pud);
9e1b32ca 246 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 247 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
248}
249
c2febafc 250static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
251 unsigned long addr, unsigned long end,
252 unsigned long floor, unsigned long ceiling)
1da177e4
LT
253{
254 pud_t *pud;
255 unsigned long next;
e0da382c 256 unsigned long start;
1da177e4 257
e0da382c 258 start = addr;
c2febafc 259 pud = pud_offset(p4d, addr);
1da177e4
LT
260 do {
261 next = pud_addr_end(addr, end);
262 if (pud_none_or_clear_bad(pud))
263 continue;
e0da382c 264 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
265 } while (pud++, addr = next, addr != end);
266
c2febafc
KS
267 start &= P4D_MASK;
268 if (start < floor)
269 return;
270 if (ceiling) {
271 ceiling &= P4D_MASK;
272 if (!ceiling)
273 return;
274 }
275 if (end - 1 > ceiling - 1)
276 return;
277
278 pud = pud_offset(p4d, start);
279 p4d_clear(p4d);
280 pud_free_tlb(tlb, pud, start);
b4e98d9a 281 mm_dec_nr_puds(tlb->mm);
c2febafc
KS
282}
283
284static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
285 unsigned long addr, unsigned long end,
286 unsigned long floor, unsigned long ceiling)
287{
288 p4d_t *p4d;
289 unsigned long next;
290 unsigned long start;
291
292 start = addr;
293 p4d = p4d_offset(pgd, addr);
294 do {
295 next = p4d_addr_end(addr, end);
296 if (p4d_none_or_clear_bad(p4d))
297 continue;
298 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
299 } while (p4d++, addr = next, addr != end);
300
e0da382c
HD
301 start &= PGDIR_MASK;
302 if (start < floor)
303 return;
304 if (ceiling) {
305 ceiling &= PGDIR_MASK;
306 if (!ceiling)
307 return;
1da177e4 308 }
e0da382c
HD
309 if (end - 1 > ceiling - 1)
310 return;
311
c2febafc 312 p4d = p4d_offset(pgd, start);
e0da382c 313 pgd_clear(pgd);
c2febafc 314 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
315}
316
317/*
e0da382c 318 * This function frees user-level page tables of a process.
1da177e4 319 */
42b77728 320void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
321 unsigned long addr, unsigned long end,
322 unsigned long floor, unsigned long ceiling)
1da177e4
LT
323{
324 pgd_t *pgd;
325 unsigned long next;
e0da382c
HD
326
327 /*
328 * The next few lines have given us lots of grief...
329 *
330 * Why are we testing PMD* at this top level? Because often
331 * there will be no work to do at all, and we'd prefer not to
332 * go all the way down to the bottom just to discover that.
333 *
334 * Why all these "- 1"s? Because 0 represents both the bottom
335 * of the address space and the top of it (using -1 for the
336 * top wouldn't help much: the masks would do the wrong thing).
337 * The rule is that addr 0 and floor 0 refer to the bottom of
338 * the address space, but end 0 and ceiling 0 refer to the top
339 * Comparisons need to use "end - 1" and "ceiling - 1" (though
340 * that end 0 case should be mythical).
341 *
342 * Wherever addr is brought up or ceiling brought down, we must
343 * be careful to reject "the opposite 0" before it confuses the
344 * subsequent tests. But what about where end is brought down
345 * by PMD_SIZE below? no, end can't go down to 0 there.
346 *
347 * Whereas we round start (addr) and ceiling down, by different
348 * masks at different levels, in order to test whether a table
349 * now has no other vmas using it, so can be freed, we don't
350 * bother to round floor or end up - the tests don't need that.
351 */
1da177e4 352
e0da382c
HD
353 addr &= PMD_MASK;
354 if (addr < floor) {
355 addr += PMD_SIZE;
356 if (!addr)
357 return;
358 }
359 if (ceiling) {
360 ceiling &= PMD_MASK;
361 if (!ceiling)
362 return;
363 }
364 if (end - 1 > ceiling - 1)
365 end -= PMD_SIZE;
366 if (addr > end - 1)
367 return;
07e32661
AK
368 /*
369 * We add page table cache pages with PAGE_SIZE,
370 * (see pte_free_tlb()), flush the tlb if we need
371 */
ed6a7935 372 tlb_change_page_size(tlb, PAGE_SIZE);
42b77728 373 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
374 do {
375 next = pgd_addr_end(addr, end);
376 if (pgd_none_or_clear_bad(pgd))
377 continue;
c2febafc 378 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 379 } while (pgd++, addr = next, addr != end);
e0da382c
HD
380}
381
42b77728 382void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 383 unsigned long floor, unsigned long ceiling)
e0da382c
HD
384{
385 while (vma) {
386 struct vm_area_struct *next = vma->vm_next;
387 unsigned long addr = vma->vm_start;
388
8f4f8c16 389 /*
25d9e2d1
NP
390 * Hide vma from rmap and truncate_pagecache before freeing
391 * pgtables
8f4f8c16 392 */
5beb4930 393 unlink_anon_vmas(vma);
8f4f8c16
HD
394 unlink_file_vma(vma);
395
9da61aef 396 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 397 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 398 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
399 } else {
400 /*
401 * Optimization: gather nearby vmas into one call down
402 */
403 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 404 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
405 vma = next;
406 next = vma->vm_next;
5beb4930 407 unlink_anon_vmas(vma);
8f4f8c16 408 unlink_file_vma(vma);
3bf5ee95
HD
409 }
410 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 411 floor, next ? next->vm_start : ceiling);
3bf5ee95 412 }
e0da382c
HD
413 vma = next;
414 }
1da177e4
LT
415}
416
4cf58924 417int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
1da177e4 418{
c4088ebd 419 spinlock_t *ptl;
4cf58924 420 pgtable_t new = pte_alloc_one(mm);
1bb3630e
HD
421 if (!new)
422 return -ENOMEM;
423
362a61ad
NP
424 /*
425 * Ensure all pte setup (eg. pte page lock and page clearing) are
426 * visible before the pte is made visible to other CPUs by being
427 * put into page tables.
428 *
429 * The other side of the story is the pointer chasing in the page
430 * table walking code (when walking the page table without locking;
431 * ie. most of the time). Fortunately, these data accesses consist
432 * of a chain of data-dependent loads, meaning most CPUs (alpha
433 * being the notable exception) will already guarantee loads are
434 * seen in-order. See the alpha page table accessors for the
435 * smp_read_barrier_depends() barriers in page table walking code.
436 */
437 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
438
c4088ebd 439 ptl = pmd_lock(mm, pmd);
8ac1f832 440 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
c4812909 441 mm_inc_nr_ptes(mm);
1da177e4 442 pmd_populate(mm, pmd, new);
2f569afd 443 new = NULL;
4b471e88 444 }
c4088ebd 445 spin_unlock(ptl);
2f569afd
MS
446 if (new)
447 pte_free(mm, new);
1bb3630e 448 return 0;
1da177e4
LT
449}
450
4cf58924 451int __pte_alloc_kernel(pmd_t *pmd)
1da177e4 452{
4cf58924 453 pte_t *new = pte_alloc_one_kernel(&init_mm);
1bb3630e
HD
454 if (!new)
455 return -ENOMEM;
456
362a61ad
NP
457 smp_wmb(); /* See comment in __pte_alloc */
458
1bb3630e 459 spin_lock(&init_mm.page_table_lock);
8ac1f832 460 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 461 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 462 new = NULL;
4b471e88 463 }
1bb3630e 464 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
465 if (new)
466 pte_free_kernel(&init_mm, new);
1bb3630e 467 return 0;
1da177e4
LT
468}
469
d559db08
KH
470static inline void init_rss_vec(int *rss)
471{
472 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
473}
474
475static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 476{
d559db08
KH
477 int i;
478
34e55232 479 if (current->mm == mm)
05af2e10 480 sync_mm_rss(mm);
d559db08
KH
481 for (i = 0; i < NR_MM_COUNTERS; i++)
482 if (rss[i])
483 add_mm_counter(mm, i, rss[i]);
ae859762
HD
484}
485
b5810039 486/*
6aab341e
LT
487 * This function is called to print an error when a bad pte
488 * is found. For example, we might have a PFN-mapped pte in
489 * a region that doesn't allow it.
b5810039
NP
490 *
491 * The calling function must still handle the error.
492 */
3dc14741
HD
493static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
494 pte_t pte, struct page *page)
b5810039 495{
3dc14741 496 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
497 p4d_t *p4d = p4d_offset(pgd, addr);
498 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
499 pmd_t *pmd = pmd_offset(pud, addr);
500 struct address_space *mapping;
501 pgoff_t index;
d936cf9b
HD
502 static unsigned long resume;
503 static unsigned long nr_shown;
504 static unsigned long nr_unshown;
505
506 /*
507 * Allow a burst of 60 reports, then keep quiet for that minute;
508 * or allow a steady drip of one report per second.
509 */
510 if (nr_shown == 60) {
511 if (time_before(jiffies, resume)) {
512 nr_unshown++;
513 return;
514 }
515 if (nr_unshown) {
1170532b
JP
516 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
517 nr_unshown);
d936cf9b
HD
518 nr_unshown = 0;
519 }
520 nr_shown = 0;
521 }
522 if (nr_shown++ == 0)
523 resume = jiffies + 60 * HZ;
3dc14741
HD
524
525 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
526 index = linear_page_index(vma, addr);
527
1170532b
JP
528 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
529 current->comm,
530 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 531 if (page)
f0b791a3 532 dump_page(page, "bad pte");
6aa9b8b2 533 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
1170532b 534 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
d75f773c 535 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
2682582a
KK
536 vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->fault : NULL,
538 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
539 mapping ? mapping->a_ops->readpage : NULL);
b5810039 540 dump_stack();
373d4d09 541 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
542}
543
ee498ed7 544/*
7e675137 545 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 546 *
7e675137
NP
547 * "Special" mappings do not wish to be associated with a "struct page" (either
548 * it doesn't exist, or it exists but they don't want to touch it). In this
549 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 550 *
7e675137
NP
551 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
552 * pte bit, in which case this function is trivial. Secondly, an architecture
553 * may not have a spare pte bit, which requires a more complicated scheme,
554 * described below.
555 *
556 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
557 * special mapping (even if there are underlying and valid "struct pages").
558 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 559 *
b379d790
JH
560 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
561 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
562 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
563 * mapping will always honor the rule
6aab341e
LT
564 *
565 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
566 *
7e675137
NP
567 * And for normal mappings this is false.
568 *
569 * This restricts such mappings to be a linear translation from virtual address
570 * to pfn. To get around this restriction, we allow arbitrary mappings so long
571 * as the vma is not a COW mapping; in that case, we know that all ptes are
572 * special (because none can have been COWed).
b379d790 573 *
b379d790 574 *
7e675137 575 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
576 *
577 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
578 * page" backing, however the difference is that _all_ pages with a struct
579 * page (that is, those where pfn_valid is true) are refcounted and considered
580 * normal pages by the VM. The disadvantage is that pages are refcounted
581 * (which can be slower and simply not an option for some PFNMAP users). The
582 * advantage is that we don't have to follow the strict linearity rule of
583 * PFNMAP mappings in order to support COWable mappings.
584 *
ee498ed7 585 */
25b2995a
CH
586struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
587 pte_t pte)
ee498ed7 588{
22b31eec 589 unsigned long pfn = pte_pfn(pte);
7e675137 590
00b3a331 591 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
b38af472 592 if (likely(!pte_special(pte)))
22b31eec 593 goto check_pfn;
667a0a06
DV
594 if (vma->vm_ops && vma->vm_ops->find_special_page)
595 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
596 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
597 return NULL;
df6ad698
JG
598 if (is_zero_pfn(pfn))
599 return NULL;
e1fb4a08
DJ
600 if (pte_devmap(pte))
601 return NULL;
602
df6ad698 603 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
604 return NULL;
605 }
606
00b3a331 607 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
7e675137 608
b379d790
JH
609 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
610 if (vma->vm_flags & VM_MIXEDMAP) {
611 if (!pfn_valid(pfn))
612 return NULL;
613 goto out;
614 } else {
7e675137
NP
615 unsigned long off;
616 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
617 if (pfn == vma->vm_pgoff + off)
618 return NULL;
619 if (!is_cow_mapping(vma->vm_flags))
620 return NULL;
621 }
6aab341e
LT
622 }
623
b38af472
HD
624 if (is_zero_pfn(pfn))
625 return NULL;
00b3a331 626
22b31eec
HD
627check_pfn:
628 if (unlikely(pfn > highest_memmap_pfn)) {
629 print_bad_pte(vma, addr, pte, NULL);
630 return NULL;
631 }
6aab341e
LT
632
633 /*
7e675137 634 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 635 * eg. VDSO mappings can cause them to exist.
6aab341e 636 */
b379d790 637out:
6aab341e 638 return pfn_to_page(pfn);
ee498ed7
HD
639}
640
28093f9f
GS
641#ifdef CONFIG_TRANSPARENT_HUGEPAGE
642struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
643 pmd_t pmd)
644{
645 unsigned long pfn = pmd_pfn(pmd);
646
647 /*
648 * There is no pmd_special() but there may be special pmds, e.g.
649 * in a direct-access (dax) mapping, so let's just replicate the
00b3a331 650 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
28093f9f
GS
651 */
652 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
653 if (vma->vm_flags & VM_MIXEDMAP) {
654 if (!pfn_valid(pfn))
655 return NULL;
656 goto out;
657 } else {
658 unsigned long off;
659 off = (addr - vma->vm_start) >> PAGE_SHIFT;
660 if (pfn == vma->vm_pgoff + off)
661 return NULL;
662 if (!is_cow_mapping(vma->vm_flags))
663 return NULL;
664 }
665 }
666
e1fb4a08
DJ
667 if (pmd_devmap(pmd))
668 return NULL;
28093f9f
GS
669 if (is_zero_pfn(pfn))
670 return NULL;
671 if (unlikely(pfn > highest_memmap_pfn))
672 return NULL;
673
674 /*
675 * NOTE! We still have PageReserved() pages in the page tables.
676 * eg. VDSO mappings can cause them to exist.
677 */
678out:
679 return pfn_to_page(pfn);
680}
681#endif
682
1da177e4
LT
683/*
684 * copy one vm_area from one task to the other. Assumes the page tables
685 * already present in the new task to be cleared in the whole range
686 * covered by this vma.
1da177e4
LT
687 */
688
570a335b 689static inline unsigned long
1da177e4 690copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 691 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 692 unsigned long addr, int *rss)
1da177e4 693{
b5810039 694 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
695 pte_t pte = *src_pte;
696 struct page *page;
1da177e4
LT
697
698 /* pte contains position in swap or file, so copy. */
699 if (unlikely(!pte_present(pte))) {
0661a336
KS
700 swp_entry_t entry = pte_to_swp_entry(pte);
701
702 if (likely(!non_swap_entry(entry))) {
703 if (swap_duplicate(entry) < 0)
704 return entry.val;
705
706 /* make sure dst_mm is on swapoff's mmlist. */
707 if (unlikely(list_empty(&dst_mm->mmlist))) {
708 spin_lock(&mmlist_lock);
709 if (list_empty(&dst_mm->mmlist))
710 list_add(&dst_mm->mmlist,
711 &src_mm->mmlist);
712 spin_unlock(&mmlist_lock);
713 }
714 rss[MM_SWAPENTS]++;
715 } else if (is_migration_entry(entry)) {
716 page = migration_entry_to_page(entry);
717
eca56ff9 718 rss[mm_counter(page)]++;
0661a336
KS
719
720 if (is_write_migration_entry(entry) &&
721 is_cow_mapping(vm_flags)) {
722 /*
723 * COW mappings require pages in both
724 * parent and child to be set to read.
725 */
726 make_migration_entry_read(&entry);
727 pte = swp_entry_to_pte(entry);
728 if (pte_swp_soft_dirty(*src_pte))
729 pte = pte_swp_mksoft_dirty(pte);
730 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 731 }
5042db43
JG
732 } else if (is_device_private_entry(entry)) {
733 page = device_private_entry_to_page(entry);
734
735 /*
736 * Update rss count even for unaddressable pages, as
737 * they should treated just like normal pages in this
738 * respect.
739 *
740 * We will likely want to have some new rss counters
741 * for unaddressable pages, at some point. But for now
742 * keep things as they are.
743 */
744 get_page(page);
745 rss[mm_counter(page)]++;
746 page_dup_rmap(page, false);
747
748 /*
749 * We do not preserve soft-dirty information, because so
750 * far, checkpoint/restore is the only feature that
751 * requires that. And checkpoint/restore does not work
752 * when a device driver is involved (you cannot easily
753 * save and restore device driver state).
754 */
755 if (is_write_device_private_entry(entry) &&
756 is_cow_mapping(vm_flags)) {
757 make_device_private_entry_read(&entry);
758 pte = swp_entry_to_pte(entry);
759 set_pte_at(src_mm, addr, src_pte, pte);
760 }
1da177e4 761 }
ae859762 762 goto out_set_pte;
1da177e4
LT
763 }
764
1da177e4
LT
765 /*
766 * If it's a COW mapping, write protect it both
767 * in the parent and the child
768 */
1b2de5d0 769 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1da177e4 770 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 771 pte = pte_wrprotect(pte);
1da177e4
LT
772 }
773
774 /*
775 * If it's a shared mapping, mark it clean in
776 * the child
777 */
778 if (vm_flags & VM_SHARED)
779 pte = pte_mkclean(pte);
780 pte = pte_mkold(pte);
6aab341e
LT
781
782 page = vm_normal_page(vma, addr, pte);
783 if (page) {
784 get_page(page);
53f9263b 785 page_dup_rmap(page, false);
eca56ff9 786 rss[mm_counter(page)]++;
df6ad698
JG
787 } else if (pte_devmap(pte)) {
788 page = pte_page(pte);
6aab341e 789 }
ae859762
HD
790
791out_set_pte:
792 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 793 return 0;
1da177e4
LT
794}
795
21bda264 796static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
797 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
798 unsigned long addr, unsigned long end)
1da177e4 799{
c36987e2 800 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 801 pte_t *src_pte, *dst_pte;
c74df32c 802 spinlock_t *src_ptl, *dst_ptl;
e040f218 803 int progress = 0;
d559db08 804 int rss[NR_MM_COUNTERS];
570a335b 805 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
806
807again:
d559db08
KH
808 init_rss_vec(rss);
809
c74df32c 810 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
811 if (!dst_pte)
812 return -ENOMEM;
ece0e2b6 813 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 814 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 815 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
816 orig_src_pte = src_pte;
817 orig_dst_pte = dst_pte;
6606c3e0 818 arch_enter_lazy_mmu_mode();
1da177e4 819
1da177e4
LT
820 do {
821 /*
822 * We are holding two locks at this point - either of them
823 * could generate latencies in another task on another CPU.
824 */
e040f218
HD
825 if (progress >= 32) {
826 progress = 0;
827 if (need_resched() ||
95c354fe 828 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
829 break;
830 }
1da177e4
LT
831 if (pte_none(*src_pte)) {
832 progress++;
833 continue;
834 }
570a335b
HD
835 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
836 vma, addr, rss);
837 if (entry.val)
838 break;
1da177e4
LT
839 progress += 8;
840 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 841
6606c3e0 842 arch_leave_lazy_mmu_mode();
c74df32c 843 spin_unlock(src_ptl);
ece0e2b6 844 pte_unmap(orig_src_pte);
d559db08 845 add_mm_rss_vec(dst_mm, rss);
c36987e2 846 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 847 cond_resched();
570a335b
HD
848
849 if (entry.val) {
850 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
851 return -ENOMEM;
852 progress = 0;
853 }
1da177e4
LT
854 if (addr != end)
855 goto again;
856 return 0;
857}
858
859static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
860 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
861 unsigned long addr, unsigned long end)
862{
863 pmd_t *src_pmd, *dst_pmd;
864 unsigned long next;
865
866 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
867 if (!dst_pmd)
868 return -ENOMEM;
869 src_pmd = pmd_offset(src_pud, addr);
870 do {
871 next = pmd_addr_end(addr, end);
84c3fc4e
ZY
872 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
873 || pmd_devmap(*src_pmd)) {
71e3aac0 874 int err;
a00cc7d9 875 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
876 err = copy_huge_pmd(dst_mm, src_mm,
877 dst_pmd, src_pmd, addr, vma);
878 if (err == -ENOMEM)
879 return -ENOMEM;
880 if (!err)
881 continue;
882 /* fall through */
883 }
1da177e4
LT
884 if (pmd_none_or_clear_bad(src_pmd))
885 continue;
886 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
887 vma, addr, next))
888 return -ENOMEM;
889 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
890 return 0;
891}
892
893static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 894 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
895 unsigned long addr, unsigned long end)
896{
897 pud_t *src_pud, *dst_pud;
898 unsigned long next;
899
c2febafc 900 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
901 if (!dst_pud)
902 return -ENOMEM;
c2febafc 903 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
904 do {
905 next = pud_addr_end(addr, end);
a00cc7d9
MW
906 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
907 int err;
908
909 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
910 err = copy_huge_pud(dst_mm, src_mm,
911 dst_pud, src_pud, addr, vma);
912 if (err == -ENOMEM)
913 return -ENOMEM;
914 if (!err)
915 continue;
916 /* fall through */
917 }
1da177e4
LT
918 if (pud_none_or_clear_bad(src_pud))
919 continue;
920 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
921 vma, addr, next))
922 return -ENOMEM;
923 } while (dst_pud++, src_pud++, addr = next, addr != end);
924 return 0;
925}
926
c2febafc
KS
927static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
928 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
929 unsigned long addr, unsigned long end)
930{
931 p4d_t *src_p4d, *dst_p4d;
932 unsigned long next;
933
934 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
935 if (!dst_p4d)
936 return -ENOMEM;
937 src_p4d = p4d_offset(src_pgd, addr);
938 do {
939 next = p4d_addr_end(addr, end);
940 if (p4d_none_or_clear_bad(src_p4d))
941 continue;
942 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
943 vma, addr, next))
944 return -ENOMEM;
945 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
946 return 0;
947}
948
1da177e4
LT
949int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 struct vm_area_struct *vma)
951{
952 pgd_t *src_pgd, *dst_pgd;
953 unsigned long next;
954 unsigned long addr = vma->vm_start;
955 unsigned long end = vma->vm_end;
ac46d4f3 956 struct mmu_notifier_range range;
2ec74c3e 957 bool is_cow;
cddb8a5c 958 int ret;
1da177e4 959
d992895b
NP
960 /*
961 * Don't copy ptes where a page fault will fill them correctly.
962 * Fork becomes much lighter when there are big shared or private
963 * readonly mappings. The tradeoff is that copy_page_range is more
964 * efficient than faulting.
965 */
0661a336
KS
966 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
967 !vma->anon_vma)
968 return 0;
d992895b 969
1da177e4
LT
970 if (is_vm_hugetlb_page(vma))
971 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
972
b3b9c293 973 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 974 /*
975 * We do not free on error cases below as remove_vma
976 * gets called on error from higher level routine
977 */
5180da41 978 ret = track_pfn_copy(vma);
2ab64037 979 if (ret)
980 return ret;
981 }
982
cddb8a5c
AA
983 /*
984 * We need to invalidate the secondary MMU mappings only when
985 * there could be a permission downgrade on the ptes of the
986 * parent mm. And a permission downgrade will only happen if
987 * is_cow_mapping() returns true.
988 */
2ec74c3e 989 is_cow = is_cow_mapping(vma->vm_flags);
ac46d4f3
JG
990
991 if (is_cow) {
7269f999
JG
992 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
993 0, vma, src_mm, addr, end);
ac46d4f3
JG
994 mmu_notifier_invalidate_range_start(&range);
995 }
cddb8a5c
AA
996
997 ret = 0;
1da177e4
LT
998 dst_pgd = pgd_offset(dst_mm, addr);
999 src_pgd = pgd_offset(src_mm, addr);
1000 do {
1001 next = pgd_addr_end(addr, end);
1002 if (pgd_none_or_clear_bad(src_pgd))
1003 continue;
c2febafc 1004 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1005 vma, addr, next))) {
1006 ret = -ENOMEM;
1007 break;
1008 }
1da177e4 1009 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1010
2ec74c3e 1011 if (is_cow)
ac46d4f3 1012 mmu_notifier_invalidate_range_end(&range);
cddb8a5c 1013 return ret;
1da177e4
LT
1014}
1015
51c6f666 1016static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1017 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1018 unsigned long addr, unsigned long end,
97a89413 1019 struct zap_details *details)
1da177e4 1020{
b5810039 1021 struct mm_struct *mm = tlb->mm;
d16dfc55 1022 int force_flush = 0;
d559db08 1023 int rss[NR_MM_COUNTERS];
97a89413 1024 spinlock_t *ptl;
5f1a1907 1025 pte_t *start_pte;
97a89413 1026 pte_t *pte;
8a5f14a2 1027 swp_entry_t entry;
d559db08 1028
ed6a7935 1029 tlb_change_page_size(tlb, PAGE_SIZE);
d16dfc55 1030again:
e303297e 1031 init_rss_vec(rss);
5f1a1907
SR
1032 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1033 pte = start_pte;
3ea27719 1034 flush_tlb_batched_pending(mm);
6606c3e0 1035 arch_enter_lazy_mmu_mode();
1da177e4
LT
1036 do {
1037 pte_t ptent = *pte;
166f61b9 1038 if (pte_none(ptent))
1da177e4 1039 continue;
6f5e6b9e 1040
7b167b68
MK
1041 if (need_resched())
1042 break;
1043
1da177e4 1044 if (pte_present(ptent)) {
ee498ed7 1045 struct page *page;
51c6f666 1046
25b2995a 1047 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1048 if (unlikely(details) && page) {
1049 /*
1050 * unmap_shared_mapping_pages() wants to
1051 * invalidate cache without truncating:
1052 * unmap shared but keep private pages.
1053 */
1054 if (details->check_mapping &&
800d8c63 1055 details->check_mapping != page_rmapping(page))
1da177e4 1056 continue;
1da177e4 1057 }
b5810039 1058 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1059 tlb->fullmm);
1da177e4
LT
1060 tlb_remove_tlb_entry(tlb, pte, addr);
1061 if (unlikely(!page))
1062 continue;
eca56ff9
JM
1063
1064 if (!PageAnon(page)) {
1cf35d47
LT
1065 if (pte_dirty(ptent)) {
1066 force_flush = 1;
6237bcd9 1067 set_page_dirty(page);
1cf35d47 1068 }
4917e5d0 1069 if (pte_young(ptent) &&
64363aad 1070 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1071 mark_page_accessed(page);
6237bcd9 1072 }
eca56ff9 1073 rss[mm_counter(page)]--;
d281ee61 1074 page_remove_rmap(page, false);
3dc14741
HD
1075 if (unlikely(page_mapcount(page) < 0))
1076 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1077 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1078 force_flush = 1;
ce9ec37b 1079 addr += PAGE_SIZE;
d16dfc55 1080 break;
1cf35d47 1081 }
1da177e4
LT
1082 continue;
1083 }
5042db43
JG
1084
1085 entry = pte_to_swp_entry(ptent);
1086 if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1087 struct page *page = device_private_entry_to_page(entry);
1088
1089 if (unlikely(details && details->check_mapping)) {
1090 /*
1091 * unmap_shared_mapping_pages() wants to
1092 * invalidate cache without truncating:
1093 * unmap shared but keep private pages.
1094 */
1095 if (details->check_mapping !=
1096 page_rmapping(page))
1097 continue;
1098 }
1099
1100 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1101 rss[mm_counter(page)]--;
1102 page_remove_rmap(page, false);
1103 put_page(page);
1104 continue;
1105 }
1106
3e8715fd
KS
1107 /* If details->check_mapping, we leave swap entries. */
1108 if (unlikely(details))
1da177e4 1109 continue;
b084d435 1110
8a5f14a2
KS
1111 if (!non_swap_entry(entry))
1112 rss[MM_SWAPENTS]--;
1113 else if (is_migration_entry(entry)) {
1114 struct page *page;
9f9f1acd 1115
8a5f14a2 1116 page = migration_entry_to_page(entry);
eca56ff9 1117 rss[mm_counter(page)]--;
b084d435 1118 }
8a5f14a2
KS
1119 if (unlikely(!free_swap_and_cache(entry)))
1120 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1121 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1122 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1123
d559db08 1124 add_mm_rss_vec(mm, rss);
6606c3e0 1125 arch_leave_lazy_mmu_mode();
51c6f666 1126
1cf35d47 1127 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1128 if (force_flush)
1cf35d47 1129 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1130 pte_unmap_unlock(start_pte, ptl);
1131
1132 /*
1133 * If we forced a TLB flush (either due to running out of
1134 * batch buffers or because we needed to flush dirty TLB
1135 * entries before releasing the ptl), free the batched
1136 * memory too. Restart if we didn't do everything.
1137 */
1138 if (force_flush) {
1139 force_flush = 0;
fa0aafb8 1140 tlb_flush_mmu(tlb);
7b167b68
MK
1141 }
1142
1143 if (addr != end) {
1144 cond_resched();
1145 goto again;
d16dfc55
PZ
1146 }
1147
51c6f666 1148 return addr;
1da177e4
LT
1149}
1150
51c6f666 1151static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1152 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1153 unsigned long addr, unsigned long end,
97a89413 1154 struct zap_details *details)
1da177e4
LT
1155{
1156 pmd_t *pmd;
1157 unsigned long next;
1158
1159 pmd = pmd_offset(pud, addr);
1160 do {
1161 next = pmd_addr_end(addr, end);
84c3fc4e 1162 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
53406ed1 1163 if (next - addr != HPAGE_PMD_SIZE)
fd60775a 1164 __split_huge_pmd(vma, pmd, addr, false, NULL);
53406ed1 1165 else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1166 goto next;
71e3aac0
AA
1167 /* fall through */
1168 }
1a5a9906
AA
1169 /*
1170 * Here there can be other concurrent MADV_DONTNEED or
1171 * trans huge page faults running, and if the pmd is
1172 * none or trans huge it can change under us. This is
1173 * because MADV_DONTNEED holds the mmap_sem in read
1174 * mode.
1175 */
1176 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1177 goto next;
97a89413 1178 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1179next:
97a89413
PZ
1180 cond_resched();
1181 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1182
1183 return addr;
1da177e4
LT
1184}
1185
51c6f666 1186static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1187 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1188 unsigned long addr, unsigned long end,
97a89413 1189 struct zap_details *details)
1da177e4
LT
1190{
1191 pud_t *pud;
1192 unsigned long next;
1193
c2febafc 1194 pud = pud_offset(p4d, addr);
1da177e4
LT
1195 do {
1196 next = pud_addr_end(addr, end);
a00cc7d9
MW
1197 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1198 if (next - addr != HPAGE_PUD_SIZE) {
1199 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1200 split_huge_pud(vma, pud, addr);
1201 } else if (zap_huge_pud(tlb, vma, pud, addr))
1202 goto next;
1203 /* fall through */
1204 }
97a89413 1205 if (pud_none_or_clear_bad(pud))
1da177e4 1206 continue;
97a89413 1207 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1208next:
1209 cond_resched();
97a89413 1210 } while (pud++, addr = next, addr != end);
51c6f666
RH
1211
1212 return addr;
1da177e4
LT
1213}
1214
c2febafc
KS
1215static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1216 struct vm_area_struct *vma, pgd_t *pgd,
1217 unsigned long addr, unsigned long end,
1218 struct zap_details *details)
1219{
1220 p4d_t *p4d;
1221 unsigned long next;
1222
1223 p4d = p4d_offset(pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(p4d))
1227 continue;
1228 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1229 } while (p4d++, addr = next, addr != end);
1230
1231 return addr;
1232}
1233
aac45363 1234void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1235 struct vm_area_struct *vma,
1236 unsigned long addr, unsigned long end,
1237 struct zap_details *details)
1da177e4
LT
1238{
1239 pgd_t *pgd;
1240 unsigned long next;
1241
1da177e4
LT
1242 BUG_ON(addr >= end);
1243 tlb_start_vma(tlb, vma);
1244 pgd = pgd_offset(vma->vm_mm, addr);
1245 do {
1246 next = pgd_addr_end(addr, end);
97a89413 1247 if (pgd_none_or_clear_bad(pgd))
1da177e4 1248 continue;
c2febafc 1249 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1250 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1251 tlb_end_vma(tlb, vma);
1252}
51c6f666 1253
f5cc4eef
AV
1254
1255static void unmap_single_vma(struct mmu_gather *tlb,
1256 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1257 unsigned long end_addr,
f5cc4eef
AV
1258 struct zap_details *details)
1259{
1260 unsigned long start = max(vma->vm_start, start_addr);
1261 unsigned long end;
1262
1263 if (start >= vma->vm_end)
1264 return;
1265 end = min(vma->vm_end, end_addr);
1266 if (end <= vma->vm_start)
1267 return;
1268
cbc91f71
SD
1269 if (vma->vm_file)
1270 uprobe_munmap(vma, start, end);
1271
b3b9c293 1272 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1273 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1274
1275 if (start != end) {
1276 if (unlikely(is_vm_hugetlb_page(vma))) {
1277 /*
1278 * It is undesirable to test vma->vm_file as it
1279 * should be non-null for valid hugetlb area.
1280 * However, vm_file will be NULL in the error
7aa6b4ad 1281 * cleanup path of mmap_region. When
f5cc4eef 1282 * hugetlbfs ->mmap method fails,
7aa6b4ad 1283 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1284 * before calling this function to clean up.
1285 * Since no pte has actually been setup, it is
1286 * safe to do nothing in this case.
1287 */
24669e58 1288 if (vma->vm_file) {
83cde9e8 1289 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1290 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1291 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1292 }
f5cc4eef
AV
1293 } else
1294 unmap_page_range(tlb, vma, start, end, details);
1295 }
1da177e4
LT
1296}
1297
1da177e4
LT
1298/**
1299 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1300 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1301 * @vma: the starting vma
1302 * @start_addr: virtual address at which to start unmapping
1303 * @end_addr: virtual address at which to end unmapping
1da177e4 1304 *
508034a3 1305 * Unmap all pages in the vma list.
1da177e4 1306 *
1da177e4
LT
1307 * Only addresses between `start' and `end' will be unmapped.
1308 *
1309 * The VMA list must be sorted in ascending virtual address order.
1310 *
1311 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1312 * range after unmap_vmas() returns. So the only responsibility here is to
1313 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1314 * drops the lock and schedules.
1315 */
6e8bb019 1316void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1317 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1318 unsigned long end_addr)
1da177e4 1319{
ac46d4f3 1320 struct mmu_notifier_range range;
1da177e4 1321
6f4f13e8
JG
1322 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1323 start_addr, end_addr);
ac46d4f3 1324 mmu_notifier_invalidate_range_start(&range);
f5cc4eef 1325 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1326 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
ac46d4f3 1327 mmu_notifier_invalidate_range_end(&range);
1da177e4
LT
1328}
1329
1330/**
1331 * zap_page_range - remove user pages in a given range
1332 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1333 * @start: starting address of pages to zap
1da177e4 1334 * @size: number of bytes to zap
f5cc4eef
AV
1335 *
1336 * Caller must protect the VMA list
1da177e4 1337 */
7e027b14 1338void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1339 unsigned long size)
1da177e4 1340{
ac46d4f3 1341 struct mmu_notifier_range range;
d16dfc55 1342 struct mmu_gather tlb;
1da177e4 1343
1da177e4 1344 lru_add_drain();
7269f999 1345 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1346 start, start + size);
ac46d4f3
JG
1347 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1348 update_hiwater_rss(vma->vm_mm);
1349 mmu_notifier_invalidate_range_start(&range);
1350 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1351 unmap_single_vma(&tlb, vma, start, range.end, NULL);
1352 mmu_notifier_invalidate_range_end(&range);
1353 tlb_finish_mmu(&tlb, start, range.end);
1da177e4
LT
1354}
1355
f5cc4eef
AV
1356/**
1357 * zap_page_range_single - remove user pages in a given range
1358 * @vma: vm_area_struct holding the applicable pages
1359 * @address: starting address of pages to zap
1360 * @size: number of bytes to zap
8a5f14a2 1361 * @details: details of shared cache invalidation
f5cc4eef
AV
1362 *
1363 * The range must fit into one VMA.
1da177e4 1364 */
f5cc4eef 1365static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1366 unsigned long size, struct zap_details *details)
1367{
ac46d4f3 1368 struct mmu_notifier_range range;
d16dfc55 1369 struct mmu_gather tlb;
1da177e4 1370
1da177e4 1371 lru_add_drain();
7269f999 1372 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1373 address, address + size);
ac46d4f3
JG
1374 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1375 update_hiwater_rss(vma->vm_mm);
1376 mmu_notifier_invalidate_range_start(&range);
1377 unmap_single_vma(&tlb, vma, address, range.end, details);
1378 mmu_notifier_invalidate_range_end(&range);
1379 tlb_finish_mmu(&tlb, address, range.end);
1da177e4
LT
1380}
1381
c627f9cc
JS
1382/**
1383 * zap_vma_ptes - remove ptes mapping the vma
1384 * @vma: vm_area_struct holding ptes to be zapped
1385 * @address: starting address of pages to zap
1386 * @size: number of bytes to zap
1387 *
1388 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1389 *
1390 * The entire address range must be fully contained within the vma.
1391 *
c627f9cc 1392 */
27d036e3 1393void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
c627f9cc
JS
1394 unsigned long size)
1395{
1396 if (address < vma->vm_start || address + size > vma->vm_end ||
1397 !(vma->vm_flags & VM_PFNMAP))
27d036e3
LR
1398 return;
1399
f5cc4eef 1400 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1401}
1402EXPORT_SYMBOL_GPL(zap_vma_ptes);
1403
25ca1d6c 1404pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1405 spinlock_t **ptl)
c9cfcddf 1406{
c2febafc
KS
1407 pgd_t *pgd;
1408 p4d_t *p4d;
1409 pud_t *pud;
1410 pmd_t *pmd;
1411
1412 pgd = pgd_offset(mm, addr);
1413 p4d = p4d_alloc(mm, pgd, addr);
1414 if (!p4d)
1415 return NULL;
1416 pud = pud_alloc(mm, p4d, addr);
1417 if (!pud)
1418 return NULL;
1419 pmd = pmd_alloc(mm, pud, addr);
1420 if (!pmd)
1421 return NULL;
1422
1423 VM_BUG_ON(pmd_trans_huge(*pmd));
1424 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1425}
1426
238f58d8
LT
1427/*
1428 * This is the old fallback for page remapping.
1429 *
1430 * For historical reasons, it only allows reserved pages. Only
1431 * old drivers should use this, and they needed to mark their
1432 * pages reserved for the old functions anyway.
1433 */
423bad60
NP
1434static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1435 struct page *page, pgprot_t prot)
238f58d8 1436{
423bad60 1437 struct mm_struct *mm = vma->vm_mm;
238f58d8 1438 int retval;
c9cfcddf 1439 pte_t *pte;
8a9f3ccd
BS
1440 spinlock_t *ptl;
1441
238f58d8 1442 retval = -EINVAL;
0ee930e6 1443 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
5b4e655e 1444 goto out;
238f58d8
LT
1445 retval = -ENOMEM;
1446 flush_dcache_page(page);
c9cfcddf 1447 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1448 if (!pte)
5b4e655e 1449 goto out;
238f58d8
LT
1450 retval = -EBUSY;
1451 if (!pte_none(*pte))
1452 goto out_unlock;
1453
1454 /* Ok, finally just insert the thing.. */
1455 get_page(page);
eca56ff9 1456 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1457 page_add_file_rmap(page, false);
238f58d8
LT
1458 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1459
1460 retval = 0;
1461out_unlock:
1462 pte_unmap_unlock(pte, ptl);
1463out:
1464 return retval;
1465}
1466
bfa5bf6d
REB
1467/**
1468 * vm_insert_page - insert single page into user vma
1469 * @vma: user vma to map to
1470 * @addr: target user address of this page
1471 * @page: source kernel page
1472 *
a145dd41
LT
1473 * This allows drivers to insert individual pages they've allocated
1474 * into a user vma.
1475 *
1476 * The page has to be a nice clean _individual_ kernel allocation.
1477 * If you allocate a compound page, you need to have marked it as
1478 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1479 * (see split_page()).
a145dd41
LT
1480 *
1481 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1482 * took an arbitrary page protection parameter. This doesn't allow
1483 * that. Your vma protection will have to be set up correctly, which
1484 * means that if you want a shared writable mapping, you'd better
1485 * ask for a shared writable mapping!
1486 *
1487 * The page does not need to be reserved.
4b6e1e37
KK
1488 *
1489 * Usually this function is called from f_op->mmap() handler
1490 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1491 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1492 * function from other places, for example from page-fault handler.
a862f68a
MR
1493 *
1494 * Return: %0 on success, negative error code otherwise.
a145dd41 1495 */
423bad60
NP
1496int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1497 struct page *page)
a145dd41
LT
1498{
1499 if (addr < vma->vm_start || addr >= vma->vm_end)
1500 return -EFAULT;
1501 if (!page_count(page))
1502 return -EINVAL;
4b6e1e37
KK
1503 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1504 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1505 BUG_ON(vma->vm_flags & VM_PFNMAP);
1506 vma->vm_flags |= VM_MIXEDMAP;
1507 }
423bad60 1508 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1509}
e3c3374f 1510EXPORT_SYMBOL(vm_insert_page);
a145dd41 1511
a667d745
SJ
1512/*
1513 * __vm_map_pages - maps range of kernel pages into user vma
1514 * @vma: user vma to map to
1515 * @pages: pointer to array of source kernel pages
1516 * @num: number of pages in page array
1517 * @offset: user's requested vm_pgoff
1518 *
1519 * This allows drivers to map range of kernel pages into a user vma.
1520 *
1521 * Return: 0 on success and error code otherwise.
1522 */
1523static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1524 unsigned long num, unsigned long offset)
1525{
1526 unsigned long count = vma_pages(vma);
1527 unsigned long uaddr = vma->vm_start;
1528 int ret, i;
1529
1530 /* Fail if the user requested offset is beyond the end of the object */
96756fcb 1531 if (offset >= num)
a667d745
SJ
1532 return -ENXIO;
1533
1534 /* Fail if the user requested size exceeds available object size */
1535 if (count > num - offset)
1536 return -ENXIO;
1537
1538 for (i = 0; i < count; i++) {
1539 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1540 if (ret < 0)
1541 return ret;
1542 uaddr += PAGE_SIZE;
1543 }
1544
1545 return 0;
1546}
1547
1548/**
1549 * vm_map_pages - maps range of kernel pages starts with non zero offset
1550 * @vma: user vma to map to
1551 * @pages: pointer to array of source kernel pages
1552 * @num: number of pages in page array
1553 *
1554 * Maps an object consisting of @num pages, catering for the user's
1555 * requested vm_pgoff
1556 *
1557 * If we fail to insert any page into the vma, the function will return
1558 * immediately leaving any previously inserted pages present. Callers
1559 * from the mmap handler may immediately return the error as their caller
1560 * will destroy the vma, removing any successfully inserted pages. Other
1561 * callers should make their own arrangements for calling unmap_region().
1562 *
1563 * Context: Process context. Called by mmap handlers.
1564 * Return: 0 on success and error code otherwise.
1565 */
1566int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1567 unsigned long num)
1568{
1569 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1570}
1571EXPORT_SYMBOL(vm_map_pages);
1572
1573/**
1574 * vm_map_pages_zero - map range of kernel pages starts with zero offset
1575 * @vma: user vma to map to
1576 * @pages: pointer to array of source kernel pages
1577 * @num: number of pages in page array
1578 *
1579 * Similar to vm_map_pages(), except that it explicitly sets the offset
1580 * to 0. This function is intended for the drivers that did not consider
1581 * vm_pgoff.
1582 *
1583 * Context: Process context. Called by mmap handlers.
1584 * Return: 0 on success and error code otherwise.
1585 */
1586int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1587 unsigned long num)
1588{
1589 return __vm_map_pages(vma, pages, num, 0);
1590}
1591EXPORT_SYMBOL(vm_map_pages_zero);
1592
9b5a8e00 1593static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
b2770da6 1594 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1595{
1596 struct mm_struct *mm = vma->vm_mm;
423bad60
NP
1597 pte_t *pte, entry;
1598 spinlock_t *ptl;
1599
423bad60
NP
1600 pte = get_locked_pte(mm, addr, &ptl);
1601 if (!pte)
9b5a8e00 1602 return VM_FAULT_OOM;
b2770da6
RZ
1603 if (!pte_none(*pte)) {
1604 if (mkwrite) {
1605 /*
1606 * For read faults on private mappings the PFN passed
1607 * in may not match the PFN we have mapped if the
1608 * mapped PFN is a writeable COW page. In the mkwrite
1609 * case we are creating a writable PTE for a shared
f2c57d91
JK
1610 * mapping and we expect the PFNs to match. If they
1611 * don't match, we are likely racing with block
1612 * allocation and mapping invalidation so just skip the
1613 * update.
b2770da6 1614 */
f2c57d91
JK
1615 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1616 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
b2770da6 1617 goto out_unlock;
f2c57d91 1618 }
cae85cb8
JK
1619 entry = pte_mkyoung(*pte);
1620 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1621 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1622 update_mmu_cache(vma, addr, pte);
1623 }
1624 goto out_unlock;
b2770da6 1625 }
423bad60
NP
1626
1627 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1628 if (pfn_t_devmap(pfn))
1629 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1630 else
1631 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
b2770da6 1632
b2770da6
RZ
1633 if (mkwrite) {
1634 entry = pte_mkyoung(entry);
1635 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1636 }
1637
423bad60 1638 set_pte_at(mm, addr, pte, entry);
4b3073e1 1639 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60 1640
423bad60
NP
1641out_unlock:
1642 pte_unmap_unlock(pte, ptl);
9b5a8e00 1643 return VM_FAULT_NOPAGE;
423bad60
NP
1644}
1645
f5e6d1d5
MW
1646/**
1647 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1648 * @vma: user vma to map to
1649 * @addr: target user address of this page
1650 * @pfn: source kernel pfn
1651 * @pgprot: pgprot flags for the inserted page
1652 *
1653 * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1654 * to override pgprot on a per-page basis.
1655 *
1656 * This only makes sense for IO mappings, and it makes no sense for
1657 * COW mappings. In general, using multiple vmas is preferable;
ae2b01f3 1658 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
f5e6d1d5
MW
1659 * impractical.
1660 *
ae2b01f3 1661 * Context: Process context. May allocate using %GFP_KERNEL.
f5e6d1d5
MW
1662 * Return: vm_fault_t value.
1663 */
1664vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1665 unsigned long pfn, pgprot_t pgprot)
1666{
6d958546
MW
1667 /*
1668 * Technically, architectures with pte_special can avoid all these
1669 * restrictions (same for remap_pfn_range). However we would like
1670 * consistency in testing and feature parity among all, so we should
1671 * try to keep these invariants in place for everybody.
1672 */
1673 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1674 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1675 (VM_PFNMAP|VM_MIXEDMAP));
1676 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1677 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1678
1679 if (addr < vma->vm_start || addr >= vma->vm_end)
1680 return VM_FAULT_SIGBUS;
1681
1682 if (!pfn_modify_allowed(pfn, pgprot))
1683 return VM_FAULT_SIGBUS;
1684
1685 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1686
9b5a8e00 1687 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
6d958546 1688 false);
f5e6d1d5
MW
1689}
1690EXPORT_SYMBOL(vmf_insert_pfn_prot);
e0dc0d8f 1691
ae2b01f3
MW
1692/**
1693 * vmf_insert_pfn - insert single pfn into user vma
1694 * @vma: user vma to map to
1695 * @addr: target user address of this page
1696 * @pfn: source kernel pfn
1697 *
1698 * Similar to vm_insert_page, this allows drivers to insert individual pages
1699 * they've allocated into a user vma. Same comments apply.
1700 *
1701 * This function should only be called from a vm_ops->fault handler, and
1702 * in that case the handler should return the result of this function.
1703 *
1704 * vma cannot be a COW mapping.
1705 *
1706 * As this is called only for pages that do not currently exist, we
1707 * do not need to flush old virtual caches or the TLB.
1708 *
1709 * Context: Process context. May allocate using %GFP_KERNEL.
1710 * Return: vm_fault_t value.
1711 */
1712vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1713 unsigned long pfn)
1714{
1715 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1716}
1717EXPORT_SYMBOL(vmf_insert_pfn);
1718
785a3fab
DW
1719static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1720{
1721 /* these checks mirror the abort conditions in vm_normal_page */
1722 if (vma->vm_flags & VM_MIXEDMAP)
1723 return true;
1724 if (pfn_t_devmap(pfn))
1725 return true;
1726 if (pfn_t_special(pfn))
1727 return true;
1728 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1729 return true;
1730 return false;
1731}
1732
79f3aa5b
MW
1733static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1734 unsigned long addr, pfn_t pfn, bool mkwrite)
423bad60 1735{
87744ab3 1736 pgprot_t pgprot = vma->vm_page_prot;
79f3aa5b 1737 int err;
87744ab3 1738
785a3fab 1739 BUG_ON(!vm_mixed_ok(vma, pfn));
e0dc0d8f 1740
423bad60 1741 if (addr < vma->vm_start || addr >= vma->vm_end)
79f3aa5b 1742 return VM_FAULT_SIGBUS;
308a047c
BP
1743
1744 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1745
42e4089c 1746 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
79f3aa5b 1747 return VM_FAULT_SIGBUS;
42e4089c 1748
423bad60
NP
1749 /*
1750 * If we don't have pte special, then we have to use the pfn_valid()
1751 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1752 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1753 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1754 * without pte special, it would there be refcounted as a normal page.
423bad60 1755 */
00b3a331
LD
1756 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1757 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1758 struct page *page;
1759
03fc2da6
DW
1760 /*
1761 * At this point we are committed to insert_page()
1762 * regardless of whether the caller specified flags that
1763 * result in pfn_t_has_page() == false.
1764 */
1765 page = pfn_to_page(pfn_t_to_pfn(pfn));
79f3aa5b
MW
1766 err = insert_page(vma, addr, page, pgprot);
1767 } else {
9b5a8e00 1768 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
423bad60 1769 }
b2770da6 1770
5d747637
MW
1771 if (err == -ENOMEM)
1772 return VM_FAULT_OOM;
1773 if (err < 0 && err != -EBUSY)
1774 return VM_FAULT_SIGBUS;
1775
1776 return VM_FAULT_NOPAGE;
e0dc0d8f 1777}
79f3aa5b
MW
1778
1779vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1780 pfn_t pfn)
1781{
1782 return __vm_insert_mixed(vma, addr, pfn, false);
1783}
5d747637 1784EXPORT_SYMBOL(vmf_insert_mixed);
e0dc0d8f 1785
ab77dab4
SJ
1786/*
1787 * If the insertion of PTE failed because someone else already added a
1788 * different entry in the mean time, we treat that as success as we assume
1789 * the same entry was actually inserted.
1790 */
ab77dab4
SJ
1791vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1792 unsigned long addr, pfn_t pfn)
b2770da6 1793{
79f3aa5b 1794 return __vm_insert_mixed(vma, addr, pfn, true);
b2770da6 1795}
ab77dab4 1796EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
b2770da6 1797
1da177e4
LT
1798/*
1799 * maps a range of physical memory into the requested pages. the old
1800 * mappings are removed. any references to nonexistent pages results
1801 * in null mappings (currently treated as "copy-on-access")
1802 */
1803static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1804 unsigned long addr, unsigned long end,
1805 unsigned long pfn, pgprot_t prot)
1806{
1807 pte_t *pte;
c74df32c 1808 spinlock_t *ptl;
42e4089c 1809 int err = 0;
1da177e4 1810
c74df32c 1811 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1812 if (!pte)
1813 return -ENOMEM;
6606c3e0 1814 arch_enter_lazy_mmu_mode();
1da177e4
LT
1815 do {
1816 BUG_ON(!pte_none(*pte));
42e4089c
AK
1817 if (!pfn_modify_allowed(pfn, prot)) {
1818 err = -EACCES;
1819 break;
1820 }
7e675137 1821 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1822 pfn++;
1823 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1824 arch_leave_lazy_mmu_mode();
c74df32c 1825 pte_unmap_unlock(pte - 1, ptl);
42e4089c 1826 return err;
1da177e4
LT
1827}
1828
1829static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1830 unsigned long addr, unsigned long end,
1831 unsigned long pfn, pgprot_t prot)
1832{
1833 pmd_t *pmd;
1834 unsigned long next;
42e4089c 1835 int err;
1da177e4
LT
1836
1837 pfn -= addr >> PAGE_SHIFT;
1838 pmd = pmd_alloc(mm, pud, addr);
1839 if (!pmd)
1840 return -ENOMEM;
f66055ab 1841 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1842 do {
1843 next = pmd_addr_end(addr, end);
42e4089c
AK
1844 err = remap_pte_range(mm, pmd, addr, next,
1845 pfn + (addr >> PAGE_SHIFT), prot);
1846 if (err)
1847 return err;
1da177e4
LT
1848 } while (pmd++, addr = next, addr != end);
1849 return 0;
1850}
1851
c2febafc 1852static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1853 unsigned long addr, unsigned long end,
1854 unsigned long pfn, pgprot_t prot)
1855{
1856 pud_t *pud;
1857 unsigned long next;
42e4089c 1858 int err;
1da177e4
LT
1859
1860 pfn -= addr >> PAGE_SHIFT;
c2febafc 1861 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1862 if (!pud)
1863 return -ENOMEM;
1864 do {
1865 next = pud_addr_end(addr, end);
42e4089c
AK
1866 err = remap_pmd_range(mm, pud, addr, next,
1867 pfn + (addr >> PAGE_SHIFT), prot);
1868 if (err)
1869 return err;
1da177e4
LT
1870 } while (pud++, addr = next, addr != end);
1871 return 0;
1872}
1873
c2febafc
KS
1874static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1875 unsigned long addr, unsigned long end,
1876 unsigned long pfn, pgprot_t prot)
1877{
1878 p4d_t *p4d;
1879 unsigned long next;
42e4089c 1880 int err;
c2febafc
KS
1881
1882 pfn -= addr >> PAGE_SHIFT;
1883 p4d = p4d_alloc(mm, pgd, addr);
1884 if (!p4d)
1885 return -ENOMEM;
1886 do {
1887 next = p4d_addr_end(addr, end);
42e4089c
AK
1888 err = remap_pud_range(mm, p4d, addr, next,
1889 pfn + (addr >> PAGE_SHIFT), prot);
1890 if (err)
1891 return err;
c2febafc
KS
1892 } while (p4d++, addr = next, addr != end);
1893 return 0;
1894}
1895
bfa5bf6d
REB
1896/**
1897 * remap_pfn_range - remap kernel memory to userspace
1898 * @vma: user vma to map to
1899 * @addr: target user address to start at
1900 * @pfn: physical address of kernel memory
1901 * @size: size of map area
1902 * @prot: page protection flags for this mapping
1903 *
a862f68a
MR
1904 * Note: this is only safe if the mm semaphore is held when called.
1905 *
1906 * Return: %0 on success, negative error code otherwise.
bfa5bf6d 1907 */
1da177e4
LT
1908int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1909 unsigned long pfn, unsigned long size, pgprot_t prot)
1910{
1911 pgd_t *pgd;
1912 unsigned long next;
2d15cab8 1913 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1914 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1915 unsigned long remap_pfn = pfn;
1da177e4
LT
1916 int err;
1917
1918 /*
1919 * Physically remapped pages are special. Tell the
1920 * rest of the world about it:
1921 * VM_IO tells people not to look at these pages
1922 * (accesses can have side effects).
6aab341e
LT
1923 * VM_PFNMAP tells the core MM that the base pages are just
1924 * raw PFN mappings, and do not have a "struct page" associated
1925 * with them.
314e51b9
KK
1926 * VM_DONTEXPAND
1927 * Disable vma merging and expanding with mremap().
1928 * VM_DONTDUMP
1929 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1930 *
1931 * There's a horrible special case to handle copy-on-write
1932 * behaviour that some programs depend on. We mark the "original"
1933 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1934 * See vm_normal_page() for details.
1da177e4 1935 */
b3b9c293
KK
1936 if (is_cow_mapping(vma->vm_flags)) {
1937 if (addr != vma->vm_start || end != vma->vm_end)
1938 return -EINVAL;
fb155c16 1939 vma->vm_pgoff = pfn;
b3b9c293
KK
1940 }
1941
d5957d2f 1942 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1943 if (err)
3c8bb73a 1944 return -EINVAL;
fb155c16 1945
314e51b9 1946 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1947
1948 BUG_ON(addr >= end);
1949 pfn -= addr >> PAGE_SHIFT;
1950 pgd = pgd_offset(mm, addr);
1951 flush_cache_range(vma, addr, end);
1da177e4
LT
1952 do {
1953 next = pgd_addr_end(addr, end);
c2febafc 1954 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1955 pfn + (addr >> PAGE_SHIFT), prot);
1956 if (err)
1957 break;
1958 } while (pgd++, addr = next, addr != end);
2ab64037 1959
1960 if (err)
d5957d2f 1961 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1962
1da177e4
LT
1963 return err;
1964}
1965EXPORT_SYMBOL(remap_pfn_range);
1966
b4cbb197
LT
1967/**
1968 * vm_iomap_memory - remap memory to userspace
1969 * @vma: user vma to map to
1970 * @start: start of area
1971 * @len: size of area
1972 *
1973 * This is a simplified io_remap_pfn_range() for common driver use. The
1974 * driver just needs to give us the physical memory range to be mapped,
1975 * we'll figure out the rest from the vma information.
1976 *
1977 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1978 * whatever write-combining details or similar.
a862f68a
MR
1979 *
1980 * Return: %0 on success, negative error code otherwise.
b4cbb197
LT
1981 */
1982int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1983{
1984 unsigned long vm_len, pfn, pages;
1985
1986 /* Check that the physical memory area passed in looks valid */
1987 if (start + len < start)
1988 return -EINVAL;
1989 /*
1990 * You *really* shouldn't map things that aren't page-aligned,
1991 * but we've historically allowed it because IO memory might
1992 * just have smaller alignment.
1993 */
1994 len += start & ~PAGE_MASK;
1995 pfn = start >> PAGE_SHIFT;
1996 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1997 if (pfn + pages < pfn)
1998 return -EINVAL;
1999
2000 /* We start the mapping 'vm_pgoff' pages into the area */
2001 if (vma->vm_pgoff > pages)
2002 return -EINVAL;
2003 pfn += vma->vm_pgoff;
2004 pages -= vma->vm_pgoff;
2005
2006 /* Can we fit all of the mapping? */
2007 vm_len = vma->vm_end - vma->vm_start;
2008 if (vm_len >> PAGE_SHIFT > pages)
2009 return -EINVAL;
2010
2011 /* Ok, let it rip */
2012 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2013}
2014EXPORT_SYMBOL(vm_iomap_memory);
2015
aee16b3c
JF
2016static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2017 unsigned long addr, unsigned long end,
2018 pte_fn_t fn, void *data)
2019{
2020 pte_t *pte;
2021 int err;
94909914 2022 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2023
2024 pte = (mm == &init_mm) ?
2025 pte_alloc_kernel(pmd, addr) :
2026 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2027 if (!pte)
2028 return -ENOMEM;
2029
2030 BUG_ON(pmd_huge(*pmd));
2031
38e0edb1
JF
2032 arch_enter_lazy_mmu_mode();
2033
aee16b3c 2034 do {
8b1e0f81 2035 err = fn(pte++, addr, data);
aee16b3c
JF
2036 if (err)
2037 break;
c36987e2 2038 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2039
38e0edb1
JF
2040 arch_leave_lazy_mmu_mode();
2041
aee16b3c
JF
2042 if (mm != &init_mm)
2043 pte_unmap_unlock(pte-1, ptl);
2044 return err;
2045}
2046
2047static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2048 unsigned long addr, unsigned long end,
2049 pte_fn_t fn, void *data)
2050{
2051 pmd_t *pmd;
2052 unsigned long next;
2053 int err;
2054
ceb86879
AK
2055 BUG_ON(pud_huge(*pud));
2056
aee16b3c
JF
2057 pmd = pmd_alloc(mm, pud, addr);
2058 if (!pmd)
2059 return -ENOMEM;
2060 do {
2061 next = pmd_addr_end(addr, end);
2062 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2063 if (err)
2064 break;
2065 } while (pmd++, addr = next, addr != end);
2066 return err;
2067}
2068
c2febafc 2069static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2070 unsigned long addr, unsigned long end,
2071 pte_fn_t fn, void *data)
2072{
2073 pud_t *pud;
2074 unsigned long next;
2075 int err;
2076
c2febafc 2077 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2078 if (!pud)
2079 return -ENOMEM;
2080 do {
2081 next = pud_addr_end(addr, end);
2082 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2083 if (err)
2084 break;
2085 } while (pud++, addr = next, addr != end);
2086 return err;
2087}
2088
c2febafc
KS
2089static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2090 unsigned long addr, unsigned long end,
2091 pte_fn_t fn, void *data)
2092{
2093 p4d_t *p4d;
2094 unsigned long next;
2095 int err;
2096
2097 p4d = p4d_alloc(mm, pgd, addr);
2098 if (!p4d)
2099 return -ENOMEM;
2100 do {
2101 next = p4d_addr_end(addr, end);
2102 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2103 if (err)
2104 break;
2105 } while (p4d++, addr = next, addr != end);
2106 return err;
2107}
2108
aee16b3c
JF
2109/*
2110 * Scan a region of virtual memory, filling in page tables as necessary
2111 * and calling a provided function on each leaf page table.
2112 */
2113int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2114 unsigned long size, pte_fn_t fn, void *data)
2115{
2116 pgd_t *pgd;
2117 unsigned long next;
57250a5b 2118 unsigned long end = addr + size;
aee16b3c
JF
2119 int err;
2120
9cb65bc3
MP
2121 if (WARN_ON(addr >= end))
2122 return -EINVAL;
2123
aee16b3c
JF
2124 pgd = pgd_offset(mm, addr);
2125 do {
2126 next = pgd_addr_end(addr, end);
c2febafc 2127 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2128 if (err)
2129 break;
2130 } while (pgd++, addr = next, addr != end);
57250a5b 2131
aee16b3c
JF
2132 return err;
2133}
2134EXPORT_SYMBOL_GPL(apply_to_page_range);
2135
8f4e2101 2136/*
9b4bdd2f
KS
2137 * handle_pte_fault chooses page fault handler according to an entry which was
2138 * read non-atomically. Before making any commitment, on those architectures
2139 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2140 * parts, do_swap_page must check under lock before unmapping the pte and
2141 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2142 * and do_anonymous_page can safely check later on).
8f4e2101 2143 */
4c21e2f2 2144static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2145 pte_t *page_table, pte_t orig_pte)
2146{
2147 int same = 1;
2148#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2149 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2150 spinlock_t *ptl = pte_lockptr(mm, pmd);
2151 spin_lock(ptl);
8f4e2101 2152 same = pte_same(*page_table, orig_pte);
4c21e2f2 2153 spin_unlock(ptl);
8f4e2101
HD
2154 }
2155#endif
2156 pte_unmap(page_table);
2157 return same;
2158}
2159
83d116c5
JH
2160static inline bool cow_user_page(struct page *dst, struct page *src,
2161 struct vm_fault *vmf)
6aab341e 2162{
83d116c5
JH
2163 bool ret;
2164 void *kaddr;
2165 void __user *uaddr;
2166 bool force_mkyoung;
2167 struct vm_area_struct *vma = vmf->vma;
2168 struct mm_struct *mm = vma->vm_mm;
2169 unsigned long addr = vmf->address;
2170
0abdd7a8
DW
2171 debug_dma_assert_idle(src);
2172
83d116c5
JH
2173 if (likely(src)) {
2174 copy_user_highpage(dst, src, addr, vma);
2175 return true;
2176 }
2177
6aab341e
LT
2178 /*
2179 * If the source page was a PFN mapping, we don't have
2180 * a "struct page" for it. We do a best-effort copy by
2181 * just copying from the original user address. If that
2182 * fails, we just zero-fill it. Live with it.
2183 */
83d116c5
JH
2184 kaddr = kmap_atomic(dst);
2185 uaddr = (void __user *)(addr & PAGE_MASK);
2186
2187 /*
2188 * On architectures with software "accessed" bits, we would
2189 * take a double page fault, so mark it accessed here.
2190 */
2191 force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte);
2192 if (force_mkyoung) {
2193 pte_t entry;
5d2a2dbb 2194
83d116c5
JH
2195 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2196 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2197 /*
2198 * Other thread has already handled the fault
2199 * and we don't need to do anything. If it's
2200 * not the case, the fault will be triggered
2201 * again on the same address.
2202 */
2203 ret = false;
2204 goto pte_unlock;
2205 }
2206
2207 entry = pte_mkyoung(vmf->orig_pte);
2208 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2209 update_mmu_cache(vma, addr, vmf->pte);
2210 }
2211
2212 /*
2213 * This really shouldn't fail, because the page is there
2214 * in the page tables. But it might just be unreadable,
2215 * in which case we just give up and fill the result with
2216 * zeroes.
2217 */
2218 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
5d2a2dbb 2219 /*
83d116c5
JH
2220 * Give a warn in case there can be some obscure
2221 * use-case
5d2a2dbb 2222 */
83d116c5
JH
2223 WARN_ON_ONCE(1);
2224 clear_page(kaddr);
2225 }
2226
2227 ret = true;
2228
2229pte_unlock:
2230 if (force_mkyoung)
2231 pte_unmap_unlock(vmf->pte, vmf->ptl);
2232 kunmap_atomic(kaddr);
2233 flush_dcache_page(dst);
2234
2235 return ret;
6aab341e
LT
2236}
2237
c20cd45e
MH
2238static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2239{
2240 struct file *vm_file = vma->vm_file;
2241
2242 if (vm_file)
2243 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2244
2245 /*
2246 * Special mappings (e.g. VDSO) do not have any file so fake
2247 * a default GFP_KERNEL for them.
2248 */
2249 return GFP_KERNEL;
2250}
2251
fb09a464
KS
2252/*
2253 * Notify the address space that the page is about to become writable so that
2254 * it can prohibit this or wait for the page to get into an appropriate state.
2255 *
2256 * We do this without the lock held, so that it can sleep if it needs to.
2257 */
2b740303 2258static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2259{
2b740303 2260 vm_fault_t ret;
38b8cb7f
JK
2261 struct page *page = vmf->page;
2262 unsigned int old_flags = vmf->flags;
fb09a464 2263
38b8cb7f 2264 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2265
dc617f29
DW
2266 if (vmf->vma->vm_file &&
2267 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2268 return VM_FAULT_SIGBUS;
2269
11bac800 2270 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2271 /* Restore original flags so that caller is not surprised */
2272 vmf->flags = old_flags;
fb09a464
KS
2273 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2274 return ret;
2275 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2276 lock_page(page);
2277 if (!page->mapping) {
2278 unlock_page(page);
2279 return 0; /* retry */
2280 }
2281 ret |= VM_FAULT_LOCKED;
2282 } else
2283 VM_BUG_ON_PAGE(!PageLocked(page), page);
2284 return ret;
2285}
2286
97ba0c2b
JK
2287/*
2288 * Handle dirtying of a page in shared file mapping on a write fault.
2289 *
2290 * The function expects the page to be locked and unlocks it.
2291 */
89b15332 2292static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
97ba0c2b 2293{
89b15332 2294 struct vm_area_struct *vma = vmf->vma;
97ba0c2b 2295 struct address_space *mapping;
89b15332 2296 struct page *page = vmf->page;
97ba0c2b
JK
2297 bool dirtied;
2298 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2299
2300 dirtied = set_page_dirty(page);
2301 VM_BUG_ON_PAGE(PageAnon(page), page);
2302 /*
2303 * Take a local copy of the address_space - page.mapping may be zeroed
2304 * by truncate after unlock_page(). The address_space itself remains
2305 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2306 * release semantics to prevent the compiler from undoing this copying.
2307 */
2308 mapping = page_rmapping(page);
2309 unlock_page(page);
2310
89b15332
JW
2311 if (!page_mkwrite)
2312 file_update_time(vma->vm_file);
2313
2314 /*
2315 * Throttle page dirtying rate down to writeback speed.
2316 *
2317 * mapping may be NULL here because some device drivers do not
2318 * set page.mapping but still dirty their pages
2319 *
2320 * Drop the mmap_sem before waiting on IO, if we can. The file
2321 * is pinning the mapping, as per above.
2322 */
97ba0c2b 2323 if ((dirtied || page_mkwrite) && mapping) {
89b15332
JW
2324 struct file *fpin;
2325
2326 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
97ba0c2b 2327 balance_dirty_pages_ratelimited(mapping);
89b15332
JW
2328 if (fpin) {
2329 fput(fpin);
2330 return VM_FAULT_RETRY;
2331 }
97ba0c2b
JK
2332 }
2333
89b15332 2334 return 0;
97ba0c2b
JK
2335}
2336
4e047f89
SR
2337/*
2338 * Handle write page faults for pages that can be reused in the current vma
2339 *
2340 * This can happen either due to the mapping being with the VM_SHARED flag,
2341 * or due to us being the last reference standing to the page. In either
2342 * case, all we need to do here is to mark the page as writable and update
2343 * any related book-keeping.
2344 */
997dd98d 2345static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2346 __releases(vmf->ptl)
4e047f89 2347{
82b0f8c3 2348 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2349 struct page *page = vmf->page;
4e047f89
SR
2350 pte_t entry;
2351 /*
2352 * Clear the pages cpupid information as the existing
2353 * information potentially belongs to a now completely
2354 * unrelated process.
2355 */
2356 if (page)
2357 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2358
2994302b
JK
2359 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2360 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2361 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2362 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2363 update_mmu_cache(vma, vmf->address, vmf->pte);
2364 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2365}
2366
2f38ab2c
SR
2367/*
2368 * Handle the case of a page which we actually need to copy to a new page.
2369 *
2370 * Called with mmap_sem locked and the old page referenced, but
2371 * without the ptl held.
2372 *
2373 * High level logic flow:
2374 *
2375 * - Allocate a page, copy the content of the old page to the new one.
2376 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2377 * - Take the PTL. If the pte changed, bail out and release the allocated page
2378 * - If the pte is still the way we remember it, update the page table and all
2379 * relevant references. This includes dropping the reference the page-table
2380 * held to the old page, as well as updating the rmap.
2381 * - In any case, unlock the PTL and drop the reference we took to the old page.
2382 */
2b740303 2383static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2384{
82b0f8c3 2385 struct vm_area_struct *vma = vmf->vma;
bae473a4 2386 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2387 struct page *old_page = vmf->page;
2f38ab2c 2388 struct page *new_page = NULL;
2f38ab2c
SR
2389 pte_t entry;
2390 int page_copied = 0;
2f38ab2c 2391 struct mem_cgroup *memcg;
ac46d4f3 2392 struct mmu_notifier_range range;
2f38ab2c
SR
2393
2394 if (unlikely(anon_vma_prepare(vma)))
2395 goto oom;
2396
2994302b 2397 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2398 new_page = alloc_zeroed_user_highpage_movable(vma,
2399 vmf->address);
2f38ab2c
SR
2400 if (!new_page)
2401 goto oom;
2402 } else {
bae473a4 2403 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2404 vmf->address);
2f38ab2c
SR
2405 if (!new_page)
2406 goto oom;
83d116c5
JH
2407
2408 if (!cow_user_page(new_page, old_page, vmf)) {
2409 /*
2410 * COW failed, if the fault was solved by other,
2411 * it's fine. If not, userspace would re-fault on
2412 * the same address and we will handle the fault
2413 * from the second attempt.
2414 */
2415 put_page(new_page);
2416 if (old_page)
2417 put_page(old_page);
2418 return 0;
2419 }
2f38ab2c 2420 }
2f38ab2c 2421
2cf85583 2422 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2423 goto oom_free_new;
2424
eb3c24f3
MG
2425 __SetPageUptodate(new_page);
2426
7269f999 2427 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6f4f13e8 2428 vmf->address & PAGE_MASK,
ac46d4f3
JG
2429 (vmf->address & PAGE_MASK) + PAGE_SIZE);
2430 mmu_notifier_invalidate_range_start(&range);
2f38ab2c
SR
2431
2432 /*
2433 * Re-check the pte - we dropped the lock
2434 */
82b0f8c3 2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2436 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2437 if (old_page) {
2438 if (!PageAnon(old_page)) {
eca56ff9
JM
2439 dec_mm_counter_fast(mm,
2440 mm_counter_file(old_page));
2f38ab2c
SR
2441 inc_mm_counter_fast(mm, MM_ANONPAGES);
2442 }
2443 } else {
2444 inc_mm_counter_fast(mm, MM_ANONPAGES);
2445 }
2994302b 2446 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2447 entry = mk_pte(new_page, vma->vm_page_prot);
2448 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2449 /*
2450 * Clear the pte entry and flush it first, before updating the
2451 * pte with the new entry. This will avoid a race condition
2452 * seen in the presence of one thread doing SMC and another
2453 * thread doing COW.
2454 */
82b0f8c3
JK
2455 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2456 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2457 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2458 lru_cache_add_active_or_unevictable(new_page, vma);
2459 /*
2460 * We call the notify macro here because, when using secondary
2461 * mmu page tables (such as kvm shadow page tables), we want the
2462 * new page to be mapped directly into the secondary page table.
2463 */
82b0f8c3
JK
2464 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2465 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2466 if (old_page) {
2467 /*
2468 * Only after switching the pte to the new page may
2469 * we remove the mapcount here. Otherwise another
2470 * process may come and find the rmap count decremented
2471 * before the pte is switched to the new page, and
2472 * "reuse" the old page writing into it while our pte
2473 * here still points into it and can be read by other
2474 * threads.
2475 *
2476 * The critical issue is to order this
2477 * page_remove_rmap with the ptp_clear_flush above.
2478 * Those stores are ordered by (if nothing else,)
2479 * the barrier present in the atomic_add_negative
2480 * in page_remove_rmap.
2481 *
2482 * Then the TLB flush in ptep_clear_flush ensures that
2483 * no process can access the old page before the
2484 * decremented mapcount is visible. And the old page
2485 * cannot be reused until after the decremented
2486 * mapcount is visible. So transitively, TLBs to
2487 * old page will be flushed before it can be reused.
2488 */
d281ee61 2489 page_remove_rmap(old_page, false);
2f38ab2c
SR
2490 }
2491
2492 /* Free the old page.. */
2493 new_page = old_page;
2494 page_copied = 1;
2495 } else {
f627c2f5 2496 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2497 }
2498
2499 if (new_page)
09cbfeaf 2500 put_page(new_page);
2f38ab2c 2501
82b0f8c3 2502 pte_unmap_unlock(vmf->pte, vmf->ptl);
4645b9fe
JG
2503 /*
2504 * No need to double call mmu_notifier->invalidate_range() callback as
2505 * the above ptep_clear_flush_notify() did already call it.
2506 */
ac46d4f3 2507 mmu_notifier_invalidate_range_only_end(&range);
2f38ab2c
SR
2508 if (old_page) {
2509 /*
2510 * Don't let another task, with possibly unlocked vma,
2511 * keep the mlocked page.
2512 */
2513 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2514 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2515 if (PageMlocked(old_page))
2516 munlock_vma_page(old_page);
2f38ab2c
SR
2517 unlock_page(old_page);
2518 }
09cbfeaf 2519 put_page(old_page);
2f38ab2c
SR
2520 }
2521 return page_copied ? VM_FAULT_WRITE : 0;
2522oom_free_new:
09cbfeaf 2523 put_page(new_page);
2f38ab2c
SR
2524oom:
2525 if (old_page)
09cbfeaf 2526 put_page(old_page);
2f38ab2c
SR
2527 return VM_FAULT_OOM;
2528}
2529
66a6197c
JK
2530/**
2531 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2532 * writeable once the page is prepared
2533 *
2534 * @vmf: structure describing the fault
2535 *
2536 * This function handles all that is needed to finish a write page fault in a
2537 * shared mapping due to PTE being read-only once the mapped page is prepared.
a862f68a 2538 * It handles locking of PTE and modifying it.
66a6197c
JK
2539 *
2540 * The function expects the page to be locked or other protection against
2541 * concurrent faults / writeback (such as DAX radix tree locks).
a862f68a
MR
2542 *
2543 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2544 * we acquired PTE lock.
66a6197c 2545 */
2b740303 2546vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
66a6197c
JK
2547{
2548 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2549 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2550 &vmf->ptl);
2551 /*
2552 * We might have raced with another page fault while we released the
2553 * pte_offset_map_lock.
2554 */
2555 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2556 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2557 return VM_FAULT_NOPAGE;
66a6197c
JK
2558 }
2559 wp_page_reuse(vmf);
a19e2553 2560 return 0;
66a6197c
JK
2561}
2562
dd906184
BH
2563/*
2564 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2565 * mapping
2566 */
2b740303 2567static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
dd906184 2568{
82b0f8c3 2569 struct vm_area_struct *vma = vmf->vma;
bae473a4 2570
dd906184 2571 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2b740303 2572 vm_fault_t ret;
dd906184 2573
82b0f8c3 2574 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2575 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2576 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2577 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2578 return ret;
66a6197c 2579 return finish_mkwrite_fault(vmf);
dd906184 2580 }
997dd98d
JK
2581 wp_page_reuse(vmf);
2582 return VM_FAULT_WRITE;
dd906184
BH
2583}
2584
2b740303 2585static vm_fault_t wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2586 __releases(vmf->ptl)
93e478d4 2587{
82b0f8c3 2588 struct vm_area_struct *vma = vmf->vma;
89b15332 2589 vm_fault_t ret = VM_FAULT_WRITE;
93e478d4 2590
a41b70d6 2591 get_page(vmf->page);
93e478d4 2592
93e478d4 2593 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2b740303 2594 vm_fault_t tmp;
93e478d4 2595
82b0f8c3 2596 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2597 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2598 if (unlikely(!tmp || (tmp &
2599 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2600 put_page(vmf->page);
93e478d4
SR
2601 return tmp;
2602 }
66a6197c 2603 tmp = finish_mkwrite_fault(vmf);
a19e2553 2604 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2605 unlock_page(vmf->page);
a41b70d6 2606 put_page(vmf->page);
66a6197c 2607 return tmp;
93e478d4 2608 }
66a6197c
JK
2609 } else {
2610 wp_page_reuse(vmf);
997dd98d 2611 lock_page(vmf->page);
93e478d4 2612 }
89b15332 2613 ret |= fault_dirty_shared_page(vmf);
997dd98d 2614 put_page(vmf->page);
93e478d4 2615
89b15332 2616 return ret;
93e478d4
SR
2617}
2618
1da177e4
LT
2619/*
2620 * This routine handles present pages, when users try to write
2621 * to a shared page. It is done by copying the page to a new address
2622 * and decrementing the shared-page counter for the old page.
2623 *
1da177e4
LT
2624 * Note that this routine assumes that the protection checks have been
2625 * done by the caller (the low-level page fault routine in most cases).
2626 * Thus we can safely just mark it writable once we've done any necessary
2627 * COW.
2628 *
2629 * We also mark the page dirty at this point even though the page will
2630 * change only once the write actually happens. This avoids a few races,
2631 * and potentially makes it more efficient.
2632 *
8f4e2101
HD
2633 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2634 * but allow concurrent faults), with pte both mapped and locked.
2635 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2636 */
2b740303 2637static vm_fault_t do_wp_page(struct vm_fault *vmf)
82b0f8c3 2638 __releases(vmf->ptl)
1da177e4 2639{
82b0f8c3 2640 struct vm_area_struct *vma = vmf->vma;
1da177e4 2641
a41b70d6
JK
2642 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2643 if (!vmf->page) {
251b97f5 2644 /*
64e45507
PF
2645 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2646 * VM_PFNMAP VMA.
251b97f5
PZ
2647 *
2648 * We should not cow pages in a shared writeable mapping.
dd906184 2649 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2650 */
2651 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2652 (VM_WRITE|VM_SHARED))
2994302b 2653 return wp_pfn_shared(vmf);
2f38ab2c 2654
82b0f8c3 2655 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2656 return wp_page_copy(vmf);
251b97f5 2657 }
1da177e4 2658
d08b3851 2659 /*
ee6a6457
PZ
2660 * Take out anonymous pages first, anonymous shared vmas are
2661 * not dirty accountable.
d08b3851 2662 */
52d1e606 2663 if (PageAnon(vmf->page)) {
ba3c4ce6 2664 int total_map_swapcount;
52d1e606
KT
2665 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2666 page_count(vmf->page) != 1))
2667 goto copy;
a41b70d6
JK
2668 if (!trylock_page(vmf->page)) {
2669 get_page(vmf->page);
82b0f8c3 2670 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2671 lock_page(vmf->page);
82b0f8c3
JK
2672 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2673 vmf->address, &vmf->ptl);
2994302b 2674 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2675 unlock_page(vmf->page);
82b0f8c3 2676 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2677 put_page(vmf->page);
28766805 2678 return 0;
ab967d86 2679 }
a41b70d6 2680 put_page(vmf->page);
ee6a6457 2681 }
52d1e606
KT
2682 if (PageKsm(vmf->page)) {
2683 bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2684 vmf->address);
2685 unlock_page(vmf->page);
2686 if (!reused)
2687 goto copy;
2688 wp_page_reuse(vmf);
2689 return VM_FAULT_WRITE;
2690 }
ba3c4ce6
HY
2691 if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2692 if (total_map_swapcount == 1) {
6d0a07ed
AA
2693 /*
2694 * The page is all ours. Move it to
2695 * our anon_vma so the rmap code will
2696 * not search our parent or siblings.
2697 * Protected against the rmap code by
2698 * the page lock.
2699 */
a41b70d6 2700 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2701 }
a41b70d6 2702 unlock_page(vmf->page);
997dd98d
JK
2703 wp_page_reuse(vmf);
2704 return VM_FAULT_WRITE;
b009c024 2705 }
a41b70d6 2706 unlock_page(vmf->page);
ee6a6457 2707 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2708 (VM_WRITE|VM_SHARED))) {
a41b70d6 2709 return wp_page_shared(vmf);
1da177e4 2710 }
52d1e606 2711copy:
1da177e4
LT
2712 /*
2713 * Ok, we need to copy. Oh, well..
2714 */
a41b70d6 2715 get_page(vmf->page);
28766805 2716
82b0f8c3 2717 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2718 return wp_page_copy(vmf);
1da177e4
LT
2719}
2720
97a89413 2721static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2722 unsigned long start_addr, unsigned long end_addr,
2723 struct zap_details *details)
2724{
f5cc4eef 2725 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2726}
2727
f808c13f 2728static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
1da177e4
LT
2729 struct zap_details *details)
2730{
2731 struct vm_area_struct *vma;
1da177e4
LT
2732 pgoff_t vba, vea, zba, zea;
2733
6b2dbba8 2734 vma_interval_tree_foreach(vma, root,
1da177e4 2735 details->first_index, details->last_index) {
1da177e4
LT
2736
2737 vba = vma->vm_pgoff;
d6e93217 2738 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2739 zba = details->first_index;
2740 if (zba < vba)
2741 zba = vba;
2742 zea = details->last_index;
2743 if (zea > vea)
2744 zea = vea;
2745
97a89413 2746 unmap_mapping_range_vma(vma,
1da177e4
LT
2747 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2748 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2749 details);
1da177e4
LT
2750 }
2751}
2752
977fbdcd
MW
2753/**
2754 * unmap_mapping_pages() - Unmap pages from processes.
2755 * @mapping: The address space containing pages to be unmapped.
2756 * @start: Index of first page to be unmapped.
2757 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
2758 * @even_cows: Whether to unmap even private COWed pages.
2759 *
2760 * Unmap the pages in this address space from any userspace process which
2761 * has them mmaped. Generally, you want to remove COWed pages as well when
2762 * a file is being truncated, but not when invalidating pages from the page
2763 * cache.
2764 */
2765void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2766 pgoff_t nr, bool even_cows)
2767{
2768 struct zap_details details = { };
2769
2770 details.check_mapping = even_cows ? NULL : mapping;
2771 details.first_index = start;
2772 details.last_index = start + nr - 1;
2773 if (details.last_index < details.first_index)
2774 details.last_index = ULONG_MAX;
2775
2776 i_mmap_lock_write(mapping);
2777 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2778 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2779 i_mmap_unlock_write(mapping);
2780}
2781
1da177e4 2782/**
8a5f14a2 2783 * unmap_mapping_range - unmap the portion of all mmaps in the specified
977fbdcd 2784 * address_space corresponding to the specified byte range in the underlying
8a5f14a2
KS
2785 * file.
2786 *
3d41088f 2787 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2788 * @holebegin: byte in first page to unmap, relative to the start of
2789 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2790 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2791 * must keep the partial page. In contrast, we must get rid of
2792 * partial pages.
2793 * @holelen: size of prospective hole in bytes. This will be rounded
2794 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2795 * end of the file.
2796 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2797 * but 0 when invalidating pagecache, don't throw away private data.
2798 */
2799void unmap_mapping_range(struct address_space *mapping,
2800 loff_t const holebegin, loff_t const holelen, int even_cows)
2801{
1da177e4
LT
2802 pgoff_t hba = holebegin >> PAGE_SHIFT;
2803 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2804
2805 /* Check for overflow. */
2806 if (sizeof(holelen) > sizeof(hlen)) {
2807 long long holeend =
2808 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2809 if (holeend & ~(long long)ULONG_MAX)
2810 hlen = ULONG_MAX - hba + 1;
2811 }
2812
977fbdcd 2813 unmap_mapping_pages(mapping, hba, hlen, even_cows);
1da177e4
LT
2814}
2815EXPORT_SYMBOL(unmap_mapping_range);
2816
1da177e4 2817/*
8f4e2101
HD
2818 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2819 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2820 * We return with pte unmapped and unlocked.
2821 *
2822 * We return with the mmap_sem locked or unlocked in the same cases
2823 * as does filemap_fault().
1da177e4 2824 */
2b740303 2825vm_fault_t do_swap_page(struct vm_fault *vmf)
1da177e4 2826{
82b0f8c3 2827 struct vm_area_struct *vma = vmf->vma;
eaf649eb 2828 struct page *page = NULL, *swapcache;
00501b53 2829 struct mem_cgroup *memcg;
65500d23 2830 swp_entry_t entry;
1da177e4 2831 pte_t pte;
d065bd81 2832 int locked;
ad8c2ee8 2833 int exclusive = 0;
2b740303 2834 vm_fault_t ret = 0;
1da177e4 2835
eaf649eb 2836 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2837 goto out;
65500d23 2838
2994302b 2839 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2840 if (unlikely(non_swap_entry(entry))) {
2841 if (is_migration_entry(entry)) {
82b0f8c3
JK
2842 migration_entry_wait(vma->vm_mm, vmf->pmd,
2843 vmf->address);
5042db43 2844 } else if (is_device_private_entry(entry)) {
897e6365
CH
2845 vmf->page = device_private_entry_to_page(entry);
2846 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
d1737fdb
AK
2847 } else if (is_hwpoison_entry(entry)) {
2848 ret = VM_FAULT_HWPOISON;
2849 } else {
2994302b 2850 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2851 ret = VM_FAULT_SIGBUS;
d1737fdb 2852 }
0697212a
CL
2853 goto out;
2854 }
0bcac06f
MK
2855
2856
0ff92245 2857 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
eaf649eb
MK
2858 page = lookup_swap_cache(entry, vma, vmf->address);
2859 swapcache = page;
f8020772 2860
1da177e4 2861 if (!page) {
0bcac06f
MK
2862 struct swap_info_struct *si = swp_swap_info(entry);
2863
aa8d22a1 2864 if (si->flags & SWP_SYNCHRONOUS_IO &&
eb085574 2865 __swap_count(entry) == 1) {
0bcac06f 2866 /* skip swapcache */
e9e9b7ec
MK
2867 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2868 vmf->address);
0bcac06f
MK
2869 if (page) {
2870 __SetPageLocked(page);
2871 __SetPageSwapBacked(page);
2872 set_page_private(page, entry.val);
2873 lru_cache_add_anon(page);
2874 swap_readpage(page, true);
2875 }
aa8d22a1 2876 } else {
e9e9b7ec
MK
2877 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2878 vmf);
aa8d22a1 2879 swapcache = page;
0bcac06f
MK
2880 }
2881
1da177e4
LT
2882 if (!page) {
2883 /*
8f4e2101
HD
2884 * Back out if somebody else faulted in this pte
2885 * while we released the pte lock.
1da177e4 2886 */
82b0f8c3
JK
2887 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2888 vmf->address, &vmf->ptl);
2994302b 2889 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2890 ret = VM_FAULT_OOM;
0ff92245 2891 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2892 goto unlock;
1da177e4
LT
2893 }
2894
2895 /* Had to read the page from swap area: Major fault */
2896 ret = VM_FAULT_MAJOR;
f8891e5e 2897 count_vm_event(PGMAJFAULT);
2262185c 2898 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2899 } else if (PageHWPoison(page)) {
71f72525
WF
2900 /*
2901 * hwpoisoned dirty swapcache pages are kept for killing
2902 * owner processes (which may be unknown at hwpoison time)
2903 */
d1737fdb
AK
2904 ret = VM_FAULT_HWPOISON;
2905 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
4779cb31 2906 goto out_release;
1da177e4
LT
2907 }
2908
82b0f8c3 2909 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2910
073e587e 2911 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2912 if (!locked) {
2913 ret |= VM_FAULT_RETRY;
2914 goto out_release;
2915 }
073e587e 2916
4969c119 2917 /*
31c4a3d3
HD
2918 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2919 * release the swapcache from under us. The page pin, and pte_same
2920 * test below, are not enough to exclude that. Even if it is still
2921 * swapcache, we need to check that the page's swap has not changed.
4969c119 2922 */
0bcac06f
MK
2923 if (unlikely((!PageSwapCache(page) ||
2924 page_private(page) != entry.val)) && swapcache)
4969c119
AA
2925 goto out_page;
2926
82b0f8c3 2927 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2928 if (unlikely(!page)) {
2929 ret = VM_FAULT_OOM;
2930 page = swapcache;
cbf86cfe 2931 goto out_page;
5ad64688
HD
2932 }
2933
2cf85583
TH
2934 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2935 &memcg, false)) {
8a9f3ccd 2936 ret = VM_FAULT_OOM;
bc43f75c 2937 goto out_page;
8a9f3ccd
BS
2938 }
2939
1da177e4 2940 /*
8f4e2101 2941 * Back out if somebody else already faulted in this pte.
1da177e4 2942 */
82b0f8c3
JK
2943 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2944 &vmf->ptl);
2994302b 2945 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2946 goto out_nomap;
b8107480
KK
2947
2948 if (unlikely(!PageUptodate(page))) {
2949 ret = VM_FAULT_SIGBUS;
2950 goto out_nomap;
1da177e4
LT
2951 }
2952
8c7c6e34
KH
2953 /*
2954 * The page isn't present yet, go ahead with the fault.
2955 *
2956 * Be careful about the sequence of operations here.
2957 * To get its accounting right, reuse_swap_page() must be called
2958 * while the page is counted on swap but not yet in mapcount i.e.
2959 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2960 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2961 */
1da177e4 2962
bae473a4
KS
2963 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2964 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2965 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2966 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2967 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2968 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2969 ret |= VM_FAULT_WRITE;
d281ee61 2970 exclusive = RMAP_EXCLUSIVE;
1da177e4 2971 }
1da177e4 2972 flush_icache_page(vma, page);
2994302b 2973 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2974 pte = pte_mksoft_dirty(pte);
82b0f8c3 2975 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
ca827d55 2976 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994302b 2977 vmf->orig_pte = pte;
0bcac06f
MK
2978
2979 /* ksm created a completely new copy */
2980 if (unlikely(page != swapcache && swapcache)) {
82b0f8c3 2981 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2982 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 2983 lru_cache_add_active_or_unevictable(page, vma);
0bcac06f
MK
2984 } else {
2985 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2986 mem_cgroup_commit_charge(page, memcg, true, false);
2987 activate_page(page);
00501b53 2988 }
1da177e4 2989
c475a8ab 2990 swap_free(entry);
5ccc5aba
VD
2991 if (mem_cgroup_swap_full(page) ||
2992 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2993 try_to_free_swap(page);
c475a8ab 2994 unlock_page(page);
0bcac06f 2995 if (page != swapcache && swapcache) {
4969c119
AA
2996 /*
2997 * Hold the lock to avoid the swap entry to be reused
2998 * until we take the PT lock for the pte_same() check
2999 * (to avoid false positives from pte_same). For
3000 * further safety release the lock after the swap_free
3001 * so that the swap count won't change under a
3002 * parallel locked swapcache.
3003 */
3004 unlock_page(swapcache);
09cbfeaf 3005 put_page(swapcache);
4969c119 3006 }
c475a8ab 3007
82b0f8c3 3008 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 3009 ret |= do_wp_page(vmf);
61469f1d
HD
3010 if (ret & VM_FAULT_ERROR)
3011 ret &= VM_FAULT_ERROR;
1da177e4
LT
3012 goto out;
3013 }
3014
3015 /* No need to invalidate - it was non-present before */
82b0f8c3 3016 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3017unlock:
82b0f8c3 3018 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
3019out:
3020 return ret;
b8107480 3021out_nomap:
f627c2f5 3022 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 3023 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 3024out_page:
b8107480 3025 unlock_page(page);
4779cb31 3026out_release:
09cbfeaf 3027 put_page(page);
0bcac06f 3028 if (page != swapcache && swapcache) {
4969c119 3029 unlock_page(swapcache);
09cbfeaf 3030 put_page(swapcache);
4969c119 3031 }
65500d23 3032 return ret;
1da177e4
LT
3033}
3034
3035/*
8f4e2101
HD
3036 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3037 * but allow concurrent faults), and pte mapped but not yet locked.
3038 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 3039 */
2b740303 3040static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
1da177e4 3041{
82b0f8c3 3042 struct vm_area_struct *vma = vmf->vma;
00501b53 3043 struct mem_cgroup *memcg;
8f4e2101 3044 struct page *page;
2b740303 3045 vm_fault_t ret = 0;
1da177e4 3046 pte_t entry;
1da177e4 3047
6b7339f4
KS
3048 /* File mapping without ->vm_ops ? */
3049 if (vma->vm_flags & VM_SHARED)
3050 return VM_FAULT_SIGBUS;
3051
7267ec00
KS
3052 /*
3053 * Use pte_alloc() instead of pte_alloc_map(). We can't run
3054 * pte_offset_map() on pmds where a huge pmd might be created
3055 * from a different thread.
3056 *
3057 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3058 * parallel threads are excluded by other means.
3059 *
3060 * Here we only have down_read(mmap_sem).
3061 */
4cf58924 3062 if (pte_alloc(vma->vm_mm, vmf->pmd))
7267ec00
KS
3063 return VM_FAULT_OOM;
3064
3065 /* See the comment in pte_alloc_one_map() */
82b0f8c3 3066 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
3067 return 0;
3068
11ac5524 3069 /* Use the zero-page for reads */
82b0f8c3 3070 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 3071 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 3072 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 3073 vma->vm_page_prot));
82b0f8c3
JK
3074 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3075 vmf->address, &vmf->ptl);
3076 if (!pte_none(*vmf->pte))
a13ea5b7 3077 goto unlock;
6b31d595
MH
3078 ret = check_stable_address_space(vma->vm_mm);
3079 if (ret)
3080 goto unlock;
6b251fc9
AA
3081 /* Deliver the page fault to userland, check inside PT lock */
3082 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
3083 pte_unmap_unlock(vmf->pte, vmf->ptl);
3084 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 3085 }
a13ea5b7
HD
3086 goto setpte;
3087 }
3088
557ed1fa 3089 /* Allocate our own private page. */
557ed1fa
NP
3090 if (unlikely(anon_vma_prepare(vma)))
3091 goto oom;
82b0f8c3 3092 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
3093 if (!page)
3094 goto oom;
eb3c24f3 3095
2cf85583
TH
3096 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3097 false))
eb3c24f3
MG
3098 goto oom_free_page;
3099
52f37629
MK
3100 /*
3101 * The memory barrier inside __SetPageUptodate makes sure that
3102 * preceeding stores to the page contents become visible before
3103 * the set_pte_at() write.
3104 */
0ed361de 3105 __SetPageUptodate(page);
8f4e2101 3106
557ed1fa 3107 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
3108 if (vma->vm_flags & VM_WRITE)
3109 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 3110
82b0f8c3
JK
3111 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3112 &vmf->ptl);
3113 if (!pte_none(*vmf->pte))
557ed1fa 3114 goto release;
9ba69294 3115
6b31d595
MH
3116 ret = check_stable_address_space(vma->vm_mm);
3117 if (ret)
3118 goto release;
3119
6b251fc9
AA
3120 /* Deliver the page fault to userland, check inside PT lock */
3121 if (userfaultfd_missing(vma)) {
82b0f8c3 3122 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3123 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3124 put_page(page);
82b0f8c3 3125 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3126 }
3127
bae473a4 3128 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3129 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3130 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3131 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3132setpte:
82b0f8c3 3133 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3134
3135 /* No need to invalidate - it was non-present before */
82b0f8c3 3136 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3137unlock:
82b0f8c3 3138 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3139 return ret;
8f4e2101 3140release:
f627c2f5 3141 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3142 put_page(page);
8f4e2101 3143 goto unlock;
8a9f3ccd 3144oom_free_page:
09cbfeaf 3145 put_page(page);
65500d23 3146oom:
1da177e4
LT
3147 return VM_FAULT_OOM;
3148}
3149
9a95f3cf
PC
3150/*
3151 * The mmap_sem must have been held on entry, and may have been
3152 * released depending on flags and vma->vm_ops->fault() return value.
3153 * See filemap_fault() and __lock_page_retry().
3154 */
2b740303 3155static vm_fault_t __do_fault(struct vm_fault *vmf)
7eae74af 3156{
82b0f8c3 3157 struct vm_area_struct *vma = vmf->vma;
2b740303 3158 vm_fault_t ret;
7eae74af 3159
63f3655f
MH
3160 /*
3161 * Preallocate pte before we take page_lock because this might lead to
3162 * deadlocks for memcg reclaim which waits for pages under writeback:
3163 * lock_page(A)
3164 * SetPageWriteback(A)
3165 * unlock_page(A)
3166 * lock_page(B)
3167 * lock_page(B)
3168 * pte_alloc_pne
3169 * shrink_page_list
3170 * wait_on_page_writeback(A)
3171 * SetPageWriteback(B)
3172 * unlock_page(B)
3173 * # flush A, B to clear the writeback
3174 */
3175 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3176 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3177 if (!vmf->prealloc_pte)
3178 return VM_FAULT_OOM;
3179 smp_wmb(); /* See comment in __pte_alloc() */
3180 }
3181
11bac800 3182 ret = vma->vm_ops->fault(vmf);
3917048d 3183 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3184 VM_FAULT_DONE_COW)))
bc2466e4 3185 return ret;
7eae74af 3186
667240e0 3187 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3188 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3189 unlock_page(vmf->page);
3190 put_page(vmf->page);
936ca80d 3191 vmf->page = NULL;
7eae74af
KS
3192 return VM_FAULT_HWPOISON;
3193 }
3194
3195 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3196 lock_page(vmf->page);
7eae74af 3197 else
667240e0 3198 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3199
7eae74af
KS
3200 return ret;
3201}
3202
d0f0931d
RZ
3203/*
3204 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3205 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3206 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3207 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3208 */
3209static int pmd_devmap_trans_unstable(pmd_t *pmd)
3210{
3211 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3212}
3213
2b740303 3214static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3215{
82b0f8c3 3216 struct vm_area_struct *vma = vmf->vma;
7267ec00 3217
82b0f8c3 3218 if (!pmd_none(*vmf->pmd))
7267ec00 3219 goto map_pte;
82b0f8c3
JK
3220 if (vmf->prealloc_pte) {
3221 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3222 if (unlikely(!pmd_none(*vmf->pmd))) {
3223 spin_unlock(vmf->ptl);
7267ec00
KS
3224 goto map_pte;
3225 }
3226
c4812909 3227 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3
JK
3228 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3229 spin_unlock(vmf->ptl);
7f2b6ce8 3230 vmf->prealloc_pte = NULL;
4cf58924 3231 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
7267ec00
KS
3232 return VM_FAULT_OOM;
3233 }
3234map_pte:
3235 /*
3236 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3237 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3238 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3239 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3240 * running immediately after a huge pmd fault in a different thread of
3241 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3242 * All we have to ensure is that it is a regular pmd that we can walk
3243 * with pte_offset_map() and we can do that through an atomic read in
3244 * C, which is what pmd_trans_unstable() provides.
7267ec00 3245 */
d0f0931d 3246 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3247 return VM_FAULT_NOPAGE;
3248
d0f0931d
RZ
3249 /*
3250 * At this point we know that our vmf->pmd points to a page of ptes
3251 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3252 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3253 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3254 * be valid and we will re-check to make sure the vmf->pte isn't
3255 * pte_none() under vmf->ptl protection when we return to
3256 * alloc_set_pte().
3257 */
82b0f8c3
JK
3258 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3259 &vmf->ptl);
7267ec00
KS
3260 return 0;
3261}
3262
e496cf3d 3263#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
82b0f8c3 3264static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3265{
82b0f8c3 3266 struct vm_area_struct *vma = vmf->vma;
953c66c2 3267
82b0f8c3 3268 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3269 /*
3270 * We are going to consume the prealloc table,
3271 * count that as nr_ptes.
3272 */
c4812909 3273 mm_inc_nr_ptes(vma->vm_mm);
7f2b6ce8 3274 vmf->prealloc_pte = NULL;
953c66c2
AK
3275}
3276
2b740303 3277static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3278{
82b0f8c3
JK
3279 struct vm_area_struct *vma = vmf->vma;
3280 bool write = vmf->flags & FAULT_FLAG_WRITE;
3281 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459 3282 pmd_t entry;
2b740303
SJ
3283 int i;
3284 vm_fault_t ret;
10102459
KS
3285
3286 if (!transhuge_vma_suitable(vma, haddr))
3287 return VM_FAULT_FALLBACK;
3288
3289 ret = VM_FAULT_FALLBACK;
3290 page = compound_head(page);
3291
953c66c2
AK
3292 /*
3293 * Archs like ppc64 need additonal space to store information
3294 * related to pte entry. Use the preallocated table for that.
3295 */
82b0f8c3 3296 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4cf58924 3297 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
82b0f8c3 3298 if (!vmf->prealloc_pte)
953c66c2
AK
3299 return VM_FAULT_OOM;
3300 smp_wmb(); /* See comment in __pte_alloc() */
3301 }
3302
82b0f8c3
JK
3303 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3304 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3305 goto out;
3306
3307 for (i = 0; i < HPAGE_PMD_NR; i++)
3308 flush_icache_page(vma, page + i);
3309
3310 entry = mk_huge_pmd(page, vma->vm_page_prot);
3311 if (write)
f55e1014 3312 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
10102459 3313
fadae295 3314 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
10102459 3315 page_add_file_rmap(page, true);
953c66c2
AK
3316 /*
3317 * deposit and withdraw with pmd lock held
3318 */
3319 if (arch_needs_pgtable_deposit())
82b0f8c3 3320 deposit_prealloc_pte(vmf);
10102459 3321
82b0f8c3 3322 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3323
82b0f8c3 3324 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3325
3326 /* fault is handled */
3327 ret = 0;
95ecedcd 3328 count_vm_event(THP_FILE_MAPPED);
10102459 3329out:
82b0f8c3 3330 spin_unlock(vmf->ptl);
10102459
KS
3331 return ret;
3332}
3333#else
2b740303 3334static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3335{
3336 BUILD_BUG();
3337 return 0;
3338}
3339#endif
3340
8c6e50b0 3341/**
7267ec00
KS
3342 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3343 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3344 *
82b0f8c3 3345 * @vmf: fault environment
7267ec00 3346 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3347 * @page: page to map
8c6e50b0 3348 *
82b0f8c3
JK
3349 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3350 * return.
8c6e50b0
KS
3351 *
3352 * Target users are page handler itself and implementations of
3353 * vm_ops->map_pages.
a862f68a
MR
3354 *
3355 * Return: %0 on success, %VM_FAULT_ code in case of error.
8c6e50b0 3356 */
2b740303 3357vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3358 struct page *page)
3bb97794 3359{
82b0f8c3
JK
3360 struct vm_area_struct *vma = vmf->vma;
3361 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3362 pte_t entry;
2b740303 3363 vm_fault_t ret;
10102459 3364
82b0f8c3 3365 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3366 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3367 /* THP on COW? */
3368 VM_BUG_ON_PAGE(memcg, page);
3369
82b0f8c3 3370 ret = do_set_pmd(vmf, page);
10102459 3371 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3372 return ret;
10102459 3373 }
3bb97794 3374
82b0f8c3
JK
3375 if (!vmf->pte) {
3376 ret = pte_alloc_one_map(vmf);
7267ec00 3377 if (ret)
b0b9b3df 3378 return ret;
7267ec00
KS
3379 }
3380
3381 /* Re-check under ptl */
b0b9b3df
HD
3382 if (unlikely(!pte_none(*vmf->pte)))
3383 return VM_FAULT_NOPAGE;
7267ec00 3384
3bb97794
KS
3385 flush_icache_page(vma, page);
3386 entry = mk_pte(page, vma->vm_page_prot);
3387 if (write)
3388 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3389 /* copy-on-write page */
3390 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3391 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3392 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3393 mem_cgroup_commit_charge(page, memcg, false, false);
3394 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3395 } else {
eca56ff9 3396 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3397 page_add_file_rmap(page, false);
3bb97794 3398 }
82b0f8c3 3399 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3400
3401 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3402 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3403
b0b9b3df 3404 return 0;
3bb97794
KS
3405}
3406
9118c0cb
JK
3407
3408/**
3409 * finish_fault - finish page fault once we have prepared the page to fault
3410 *
3411 * @vmf: structure describing the fault
3412 *
3413 * This function handles all that is needed to finish a page fault once the
3414 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3415 * given page, adds reverse page mapping, handles memcg charges and LRU
a862f68a 3416 * addition.
9118c0cb
JK
3417 *
3418 * The function expects the page to be locked and on success it consumes a
3419 * reference of a page being mapped (for the PTE which maps it).
a862f68a
MR
3420 *
3421 * Return: %0 on success, %VM_FAULT_ code in case of error.
9118c0cb 3422 */
2b740303 3423vm_fault_t finish_fault(struct vm_fault *vmf)
9118c0cb
JK
3424{
3425 struct page *page;
2b740303 3426 vm_fault_t ret = 0;
9118c0cb
JK
3427
3428 /* Did we COW the page? */
3429 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3430 !(vmf->vma->vm_flags & VM_SHARED))
3431 page = vmf->cow_page;
3432 else
3433 page = vmf->page;
6b31d595
MH
3434
3435 /*
3436 * check even for read faults because we might have lost our CoWed
3437 * page
3438 */
3439 if (!(vmf->vma->vm_flags & VM_SHARED))
3440 ret = check_stable_address_space(vmf->vma->vm_mm);
3441 if (!ret)
3442 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3443 if (vmf->pte)
3444 pte_unmap_unlock(vmf->pte, vmf->ptl);
3445 return ret;
3446}
3447
3a91053a
KS
3448static unsigned long fault_around_bytes __read_mostly =
3449 rounddown_pow_of_two(65536);
a9b0f861 3450
a9b0f861
KS
3451#ifdef CONFIG_DEBUG_FS
3452static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3453{
a9b0f861 3454 *val = fault_around_bytes;
1592eef0
KS
3455 return 0;
3456}
3457
b4903d6e 3458/*
da391d64
WK
3459 * fault_around_bytes must be rounded down to the nearest page order as it's
3460 * what do_fault_around() expects to see.
b4903d6e 3461 */
a9b0f861 3462static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3463{
a9b0f861 3464 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3465 return -EINVAL;
b4903d6e
AR
3466 if (val > PAGE_SIZE)
3467 fault_around_bytes = rounddown_pow_of_two(val);
3468 else
3469 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3470 return 0;
3471}
0a1345f8 3472DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3473 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3474
3475static int __init fault_around_debugfs(void)
3476{
d9f7979c
GKH
3477 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3478 &fault_around_bytes_fops);
1592eef0
KS
3479 return 0;
3480}
3481late_initcall(fault_around_debugfs);
1592eef0 3482#endif
8c6e50b0 3483
1fdb412b
KS
3484/*
3485 * do_fault_around() tries to map few pages around the fault address. The hope
3486 * is that the pages will be needed soon and this will lower the number of
3487 * faults to handle.
3488 *
3489 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3490 * not ready to be mapped: not up-to-date, locked, etc.
3491 *
3492 * This function is called with the page table lock taken. In the split ptlock
3493 * case the page table lock only protects only those entries which belong to
3494 * the page table corresponding to the fault address.
3495 *
3496 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3497 * only once.
3498 *
da391d64
WK
3499 * fault_around_bytes defines how many bytes we'll try to map.
3500 * do_fault_around() expects it to be set to a power of two less than or equal
3501 * to PTRS_PER_PTE.
1fdb412b 3502 *
da391d64
WK
3503 * The virtual address of the area that we map is naturally aligned to
3504 * fault_around_bytes rounded down to the machine page size
3505 * (and therefore to page order). This way it's easier to guarantee
3506 * that we don't cross page table boundaries.
1fdb412b 3507 */
2b740303 3508static vm_fault_t do_fault_around(struct vm_fault *vmf)
8c6e50b0 3509{
82b0f8c3 3510 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3511 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3512 pgoff_t end_pgoff;
2b740303
SJ
3513 int off;
3514 vm_fault_t ret = 0;
8c6e50b0 3515
4db0c3c2 3516 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3517 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3518
82b0f8c3
JK
3519 vmf->address = max(address & mask, vmf->vma->vm_start);
3520 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3521 start_pgoff -= off;
8c6e50b0
KS
3522
3523 /*
da391d64
WK
3524 * end_pgoff is either the end of the page table, the end of
3525 * the vma or nr_pages from start_pgoff, depending what is nearest.
8c6e50b0 3526 */
bae473a4 3527 end_pgoff = start_pgoff -
82b0f8c3 3528 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3529 PTRS_PER_PTE - 1;
82b0f8c3 3530 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3531 start_pgoff + nr_pages - 1);
8c6e50b0 3532
82b0f8c3 3533 if (pmd_none(*vmf->pmd)) {
4cf58924 3534 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
82b0f8c3 3535 if (!vmf->prealloc_pte)
c5f88bd2 3536 goto out;
7267ec00 3537 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3538 }
3539
82b0f8c3 3540 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3541
7267ec00 3542 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3543 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3544 ret = VM_FAULT_NOPAGE;
3545 goto out;
3546 }
3547
3548 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3549 if (!vmf->pte)
7267ec00
KS
3550 goto out;
3551
3552 /* check if the page fault is solved */
82b0f8c3
JK
3553 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3554 if (!pte_none(*vmf->pte))
7267ec00 3555 ret = VM_FAULT_NOPAGE;
82b0f8c3 3556 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3557out:
82b0f8c3
JK
3558 vmf->address = address;
3559 vmf->pte = NULL;
7267ec00 3560 return ret;
8c6e50b0
KS
3561}
3562
2b740303 3563static vm_fault_t do_read_fault(struct vm_fault *vmf)
e655fb29 3564{
82b0f8c3 3565 struct vm_area_struct *vma = vmf->vma;
2b740303 3566 vm_fault_t ret = 0;
8c6e50b0
KS
3567
3568 /*
3569 * Let's call ->map_pages() first and use ->fault() as fallback
3570 * if page by the offset is not ready to be mapped (cold cache or
3571 * something).
3572 */
9b4bdd2f 3573 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3574 ret = do_fault_around(vmf);
7267ec00
KS
3575 if (ret)
3576 return ret;
8c6e50b0 3577 }
e655fb29 3578
936ca80d 3579 ret = __do_fault(vmf);
e655fb29
KS
3580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3581 return ret;
3582
9118c0cb 3583 ret |= finish_fault(vmf);
936ca80d 3584 unlock_page(vmf->page);
7267ec00 3585 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3586 put_page(vmf->page);
e655fb29
KS
3587 return ret;
3588}
3589
2b740303 3590static vm_fault_t do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3591{
82b0f8c3 3592 struct vm_area_struct *vma = vmf->vma;
2b740303 3593 vm_fault_t ret;
ec47c3b9
KS
3594
3595 if (unlikely(anon_vma_prepare(vma)))
3596 return VM_FAULT_OOM;
3597
936ca80d
JK
3598 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3599 if (!vmf->cow_page)
ec47c3b9
KS
3600 return VM_FAULT_OOM;
3601
2cf85583 3602 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3603 &vmf->memcg, false)) {
936ca80d 3604 put_page(vmf->cow_page);
ec47c3b9
KS
3605 return VM_FAULT_OOM;
3606 }
3607
936ca80d 3608 ret = __do_fault(vmf);
ec47c3b9
KS
3609 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3610 goto uncharge_out;
3917048d
JK
3611 if (ret & VM_FAULT_DONE_COW)
3612 return ret;
ec47c3b9 3613
b1aa812b 3614 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3615 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3616
9118c0cb 3617 ret |= finish_fault(vmf);
b1aa812b
JK
3618 unlock_page(vmf->page);
3619 put_page(vmf->page);
7267ec00
KS
3620 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3621 goto uncharge_out;
ec47c3b9
KS
3622 return ret;
3623uncharge_out:
3917048d 3624 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3625 put_page(vmf->cow_page);
ec47c3b9
KS
3626 return ret;
3627}
3628
2b740303 3629static vm_fault_t do_shared_fault(struct vm_fault *vmf)
1da177e4 3630{
82b0f8c3 3631 struct vm_area_struct *vma = vmf->vma;
2b740303 3632 vm_fault_t ret, tmp;
1d65f86d 3633
936ca80d 3634 ret = __do_fault(vmf);
7eae74af 3635 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3636 return ret;
1da177e4
LT
3637
3638 /*
f0c6d4d2
KS
3639 * Check if the backing address space wants to know that the page is
3640 * about to become writable
1da177e4 3641 */
fb09a464 3642 if (vma->vm_ops->page_mkwrite) {
936ca80d 3643 unlock_page(vmf->page);
38b8cb7f 3644 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3645 if (unlikely(!tmp ||
3646 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3647 put_page(vmf->page);
fb09a464 3648 return tmp;
4294621f 3649 }
fb09a464
KS
3650 }
3651
9118c0cb 3652 ret |= finish_fault(vmf);
7267ec00
KS
3653 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3654 VM_FAULT_RETRY))) {
936ca80d
JK
3655 unlock_page(vmf->page);
3656 put_page(vmf->page);
f0c6d4d2 3657 return ret;
1da177e4 3658 }
b827e496 3659
89b15332 3660 ret |= fault_dirty_shared_page(vmf);
1d65f86d 3661 return ret;
54cb8821 3662}
d00806b1 3663
9a95f3cf
PC
3664/*
3665 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3666 * but allow concurrent faults).
3667 * The mmap_sem may have been released depending on flags and our
3668 * return value. See filemap_fault() and __lock_page_or_retry().
fc8efd2d
JS
3669 * If mmap_sem is released, vma may become invalid (for example
3670 * by other thread calling munmap()).
9a95f3cf 3671 */
2b740303 3672static vm_fault_t do_fault(struct vm_fault *vmf)
54cb8821 3673{
82b0f8c3 3674 struct vm_area_struct *vma = vmf->vma;
fc8efd2d 3675 struct mm_struct *vm_mm = vma->vm_mm;
2b740303 3676 vm_fault_t ret;
54cb8821 3677
ff09d7ec
AK
3678 /*
3679 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3680 */
3681 if (!vma->vm_ops->fault) {
3682 /*
3683 * If we find a migration pmd entry or a none pmd entry, which
3684 * should never happen, return SIGBUS
3685 */
3686 if (unlikely(!pmd_present(*vmf->pmd)))
3687 ret = VM_FAULT_SIGBUS;
3688 else {
3689 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3690 vmf->pmd,
3691 vmf->address,
3692 &vmf->ptl);
3693 /*
3694 * Make sure this is not a temporary clearing of pte
3695 * by holding ptl and checking again. A R/M/W update
3696 * of pte involves: take ptl, clearing the pte so that
3697 * we don't have concurrent modification by hardware
3698 * followed by an update.
3699 */
3700 if (unlikely(pte_none(*vmf->pte)))
3701 ret = VM_FAULT_SIGBUS;
3702 else
3703 ret = VM_FAULT_NOPAGE;
3704
3705 pte_unmap_unlock(vmf->pte, vmf->ptl);
3706 }
3707 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
b0b9b3df
HD
3708 ret = do_read_fault(vmf);
3709 else if (!(vma->vm_flags & VM_SHARED))
3710 ret = do_cow_fault(vmf);
3711 else
3712 ret = do_shared_fault(vmf);
3713
3714 /* preallocated pagetable is unused: free it */
3715 if (vmf->prealloc_pte) {
fc8efd2d 3716 pte_free(vm_mm, vmf->prealloc_pte);
7f2b6ce8 3717 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3718 }
3719 return ret;
54cb8821
NP
3720}
3721
b19a9939 3722static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3723 unsigned long addr, int page_nid,
3724 int *flags)
9532fec1
MG
3725{
3726 get_page(page);
3727
3728 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3729 if (page_nid == numa_node_id()) {
9532fec1 3730 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3731 *flags |= TNF_FAULT_LOCAL;
3732 }
9532fec1
MG
3733
3734 return mpol_misplaced(page, vma, addr);
3735}
3736
2b740303 3737static vm_fault_t do_numa_page(struct vm_fault *vmf)
d10e63f2 3738{
82b0f8c3 3739 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3740 struct page *page = NULL;
98fa15f3 3741 int page_nid = NUMA_NO_NODE;
90572890 3742 int last_cpupid;
cbee9f88 3743 int target_nid;
b8593bfd 3744 bool migrated = false;
04a86453 3745 pte_t pte, old_pte;
288bc549 3746 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3747 int flags = 0;
d10e63f2
MG
3748
3749 /*
166f61b9
TH
3750 * The "pte" at this point cannot be used safely without
3751 * validation through pte_unmap_same(). It's of NUMA type but
3752 * the pfn may be screwed if the read is non atomic.
166f61b9 3753 */
82b0f8c3
JK
3754 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3755 spin_lock(vmf->ptl);
cee216a6 3756 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3757 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3758 goto out;
3759 }
3760
cee216a6
AK
3761 /*
3762 * Make it present again, Depending on how arch implementes non
3763 * accessible ptes, some can allow access by kernel mode.
3764 */
04a86453
AK
3765 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3766 pte = pte_modify(old_pte, vma->vm_page_prot);
4d942466 3767 pte = pte_mkyoung(pte);
b191f9b1
MG
3768 if (was_writable)
3769 pte = pte_mkwrite(pte);
04a86453 3770 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
82b0f8c3 3771 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3772
82b0f8c3 3773 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3774 if (!page) {
82b0f8c3 3775 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3776 return 0;
3777 }
3778
e81c4802
KS
3779 /* TODO: handle PTE-mapped THP */
3780 if (PageCompound(page)) {
82b0f8c3 3781 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3782 return 0;
3783 }
3784
6688cc05 3785 /*
bea66fbd
MG
3786 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3787 * much anyway since they can be in shared cache state. This misses
3788 * the case where a mapping is writable but the process never writes
3789 * to it but pte_write gets cleared during protection updates and
3790 * pte_dirty has unpredictable behaviour between PTE scan updates,
3791 * background writeback, dirty balancing and application behaviour.
6688cc05 3792 */
d59dc7bc 3793 if (!pte_write(pte))
6688cc05
PZ
3794 flags |= TNF_NO_GROUP;
3795
dabe1d99
RR
3796 /*
3797 * Flag if the page is shared between multiple address spaces. This
3798 * is later used when determining whether to group tasks together
3799 */
3800 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3801 flags |= TNF_SHARED;
3802
90572890 3803 last_cpupid = page_cpupid_last(page);
8191acbd 3804 page_nid = page_to_nid(page);
82b0f8c3 3805 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3806 &flags);
82b0f8c3 3807 pte_unmap_unlock(vmf->pte, vmf->ptl);
98fa15f3 3808 if (target_nid == NUMA_NO_NODE) {
4daae3b4
MG
3809 put_page(page);
3810 goto out;
3811 }
3812
3813 /* Migrate to the requested node */
1bc115d8 3814 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3815 if (migrated) {
8191acbd 3816 page_nid = target_nid;
6688cc05 3817 flags |= TNF_MIGRATED;
074c2381
MG
3818 } else
3819 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3820
3821out:
98fa15f3 3822 if (page_nid != NUMA_NO_NODE)
6688cc05 3823 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3824 return 0;
3825}
3826
2b740303 3827static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
b96375f7 3828{
f4200391 3829 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3830 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3831 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3832 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3833 return VM_FAULT_FALLBACK;
3834}
3835
183f24aa 3836/* `inline' is required to avoid gcc 4.1.2 build error */
2b740303 3837static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3838{
82b0f8c3
JK
3839 if (vma_is_anonymous(vmf->vma))
3840 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3841 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3842 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3843
3844 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3845 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3846 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3847
b96375f7
MW
3848 return VM_FAULT_FALLBACK;
3849}
3850
38e08854
LS
3851static inline bool vma_is_accessible(struct vm_area_struct *vma)
3852{
3853 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3854}
3855
2b740303 3856static vm_fault_t create_huge_pud(struct vm_fault *vmf)
a00cc7d9
MW
3857{
3858#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3859 /* No support for anonymous transparent PUD pages yet */
3860 if (vma_is_anonymous(vmf->vma))
3861 return VM_FAULT_FALLBACK;
3862 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3863 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3864#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3865 return VM_FAULT_FALLBACK;
3866}
3867
2b740303 3868static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
a00cc7d9
MW
3869{
3870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3871 /* No support for anonymous transparent PUD pages yet */
3872 if (vma_is_anonymous(vmf->vma))
3873 return VM_FAULT_FALLBACK;
3874 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3875 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3876#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3877 return VM_FAULT_FALLBACK;
3878}
3879
1da177e4
LT
3880/*
3881 * These routines also need to handle stuff like marking pages dirty
3882 * and/or accessed for architectures that don't do it in hardware (most
3883 * RISC architectures). The early dirtying is also good on the i386.
3884 *
3885 * There is also a hook called "update_mmu_cache()" that architectures
3886 * with external mmu caches can use to update those (ie the Sparc or
3887 * PowerPC hashed page tables that act as extended TLBs).
3888 *
7267ec00
KS
3889 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3890 * concurrent faults).
9a95f3cf 3891 *
7267ec00
KS
3892 * The mmap_sem may have been released depending on flags and our return value.
3893 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3894 */
2b740303 3895static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3896{
3897 pte_t entry;
3898
82b0f8c3 3899 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3900 /*
3901 * Leave __pte_alloc() until later: because vm_ops->fault may
3902 * want to allocate huge page, and if we expose page table
3903 * for an instant, it will be difficult to retract from
3904 * concurrent faults and from rmap lookups.
3905 */
82b0f8c3 3906 vmf->pte = NULL;
7267ec00
KS
3907 } else {
3908 /* See comment in pte_alloc_one_map() */
d0f0931d 3909 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3910 return 0;
3911 /*
3912 * A regular pmd is established and it can't morph into a huge
3913 * pmd from under us anymore at this point because we hold the
3914 * mmap_sem read mode and khugepaged takes it in write mode.
3915 * So now it's safe to run pte_offset_map().
3916 */
82b0f8c3 3917 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3918 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3919
3920 /*
3921 * some architectures can have larger ptes than wordsize,
3922 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
b03a0fe0
PM
3923 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3924 * accesses. The code below just needs a consistent view
3925 * for the ifs and we later double check anyway with the
7267ec00
KS
3926 * ptl lock held. So here a barrier will do.
3927 */
3928 barrier();
2994302b 3929 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3930 pte_unmap(vmf->pte);
3931 vmf->pte = NULL;
65500d23 3932 }
1da177e4
LT
3933 }
3934
82b0f8c3
JK
3935 if (!vmf->pte) {
3936 if (vma_is_anonymous(vmf->vma))
3937 return do_anonymous_page(vmf);
7267ec00 3938 else
82b0f8c3 3939 return do_fault(vmf);
7267ec00
KS
3940 }
3941
2994302b
JK
3942 if (!pte_present(vmf->orig_pte))
3943 return do_swap_page(vmf);
7267ec00 3944
2994302b
JK
3945 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3946 return do_numa_page(vmf);
d10e63f2 3947
82b0f8c3
JK
3948 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3949 spin_lock(vmf->ptl);
2994302b 3950 entry = vmf->orig_pte;
82b0f8c3 3951 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3952 goto unlock;
82b0f8c3 3953 if (vmf->flags & FAULT_FLAG_WRITE) {
f6f37321 3954 if (!pte_write(entry))
2994302b 3955 return do_wp_page(vmf);
1da177e4
LT
3956 entry = pte_mkdirty(entry);
3957 }
3958 entry = pte_mkyoung(entry);
82b0f8c3
JK
3959 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3960 vmf->flags & FAULT_FLAG_WRITE)) {
3961 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3962 } else {
3963 /*
3964 * This is needed only for protection faults but the arch code
3965 * is not yet telling us if this is a protection fault or not.
3966 * This still avoids useless tlb flushes for .text page faults
3967 * with threads.
3968 */
82b0f8c3
JK
3969 if (vmf->flags & FAULT_FLAG_WRITE)
3970 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3971 }
8f4e2101 3972unlock:
82b0f8c3 3973 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3974 return 0;
1da177e4
LT
3975}
3976
3977/*
3978 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3979 *
3980 * The mmap_sem may have been released depending on flags and our
3981 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3982 */
2b740303
SJ
3983static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
3984 unsigned long address, unsigned int flags)
1da177e4 3985{
82b0f8c3 3986 struct vm_fault vmf = {
bae473a4 3987 .vma = vma,
1a29d85e 3988 .address = address & PAGE_MASK,
bae473a4 3989 .flags = flags,
0721ec8b 3990 .pgoff = linear_page_index(vma, address),
667240e0 3991 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3992 };
fde26bed 3993 unsigned int dirty = flags & FAULT_FLAG_WRITE;
dcddffd4 3994 struct mm_struct *mm = vma->vm_mm;
1da177e4 3995 pgd_t *pgd;
c2febafc 3996 p4d_t *p4d;
2b740303 3997 vm_fault_t ret;
1da177e4 3998
1da177e4 3999 pgd = pgd_offset(mm, address);
c2febafc
KS
4000 p4d = p4d_alloc(mm, pgd, address);
4001 if (!p4d)
4002 return VM_FAULT_OOM;
a00cc7d9 4003
c2febafc 4004 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 4005 if (!vmf.pud)
c74df32c 4006 return VM_FAULT_OOM;
7635d9cb 4007 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
4008 ret = create_huge_pud(&vmf);
4009 if (!(ret & VM_FAULT_FALLBACK))
4010 return ret;
4011 } else {
4012 pud_t orig_pud = *vmf.pud;
4013
4014 barrier();
4015 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
a00cc7d9 4016
a00cc7d9
MW
4017 /* NUMA case for anonymous PUDs would go here */
4018
f6f37321 4019 if (dirty && !pud_write(orig_pud)) {
a00cc7d9
MW
4020 ret = wp_huge_pud(&vmf, orig_pud);
4021 if (!(ret & VM_FAULT_FALLBACK))
4022 return ret;
4023 } else {
4024 huge_pud_set_accessed(&vmf, orig_pud);
4025 return 0;
4026 }
4027 }
4028 }
4029
4030 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 4031 if (!vmf.pmd)
c74df32c 4032 return VM_FAULT_OOM;
7635d9cb 4033 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
a2d58167 4034 ret = create_huge_pmd(&vmf);
c0292554
KS
4035 if (!(ret & VM_FAULT_FALLBACK))
4036 return ret;
71e3aac0 4037 } else {
82b0f8c3 4038 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 4039
71e3aac0 4040 barrier();
84c3fc4e
ZY
4041 if (unlikely(is_swap_pmd(orig_pmd))) {
4042 VM_BUG_ON(thp_migration_supported() &&
4043 !is_pmd_migration_entry(orig_pmd));
4044 if (is_pmd_migration_entry(orig_pmd))
4045 pmd_migration_entry_wait(mm, vmf.pmd);
4046 return 0;
4047 }
5c7fb56e 4048 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 4049 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 4050 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 4051
f6f37321 4052 if (dirty && !pmd_write(orig_pmd)) {
82b0f8c3 4053 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
4054 if (!(ret & VM_FAULT_FALLBACK))
4055 return ret;
a1dd450b 4056 } else {
82b0f8c3 4057 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 4058 return 0;
1f1d06c3 4059 }
71e3aac0
AA
4060 }
4061 }
4062
82b0f8c3 4063 return handle_pte_fault(&vmf);
1da177e4
LT
4064}
4065
9a95f3cf
PC
4066/*
4067 * By the time we get here, we already hold the mm semaphore
4068 *
4069 * The mmap_sem may have been released depending on flags and our
4070 * return value. See filemap_fault() and __lock_page_or_retry().
4071 */
2b740303 4072vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
dcddffd4 4073 unsigned int flags)
519e5247 4074{
2b740303 4075 vm_fault_t ret;
519e5247
JW
4076
4077 __set_current_state(TASK_RUNNING);
4078
4079 count_vm_event(PGFAULT);
2262185c 4080 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
4081
4082 /* do counter updates before entering really critical section. */
4083 check_sync_rss_stat(current);
4084
de0c799b
LD
4085 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4086 flags & FAULT_FLAG_INSTRUCTION,
4087 flags & FAULT_FLAG_REMOTE))
4088 return VM_FAULT_SIGSEGV;
4089
519e5247
JW
4090 /*
4091 * Enable the memcg OOM handling for faults triggered in user
4092 * space. Kernel faults are handled more gracefully.
4093 */
4094 if (flags & FAULT_FLAG_USER)
29ef680a 4095 mem_cgroup_enter_user_fault();
519e5247 4096
bae473a4
KS
4097 if (unlikely(is_vm_hugetlb_page(vma)))
4098 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4099 else
4100 ret = __handle_mm_fault(vma, address, flags);
519e5247 4101
49426420 4102 if (flags & FAULT_FLAG_USER) {
29ef680a 4103 mem_cgroup_exit_user_fault();
166f61b9
TH
4104 /*
4105 * The task may have entered a memcg OOM situation but
4106 * if the allocation error was handled gracefully (no
4107 * VM_FAULT_OOM), there is no need to kill anything.
4108 * Just clean up the OOM state peacefully.
4109 */
4110 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4111 mem_cgroup_oom_synchronize(false);
49426420 4112 }
3812c8c8 4113
519e5247
JW
4114 return ret;
4115}
e1d6d01a 4116EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 4117
90eceff1
KS
4118#ifndef __PAGETABLE_P4D_FOLDED
4119/*
4120 * Allocate p4d page table.
4121 * We've already handled the fast-path in-line.
4122 */
4123int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4124{
4125 p4d_t *new = p4d_alloc_one(mm, address);
4126 if (!new)
4127 return -ENOMEM;
4128
4129 smp_wmb(); /* See comment in __pte_alloc */
4130
4131 spin_lock(&mm->page_table_lock);
4132 if (pgd_present(*pgd)) /* Another has populated it */
4133 p4d_free(mm, new);
4134 else
4135 pgd_populate(mm, pgd, new);
4136 spin_unlock(&mm->page_table_lock);
4137 return 0;
4138}
4139#endif /* __PAGETABLE_P4D_FOLDED */
4140
1da177e4
LT
4141#ifndef __PAGETABLE_PUD_FOLDED
4142/*
4143 * Allocate page upper directory.
872fec16 4144 * We've already handled the fast-path in-line.
1da177e4 4145 */
c2febafc 4146int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 4147{
c74df32c
HD
4148 pud_t *new = pud_alloc_one(mm, address);
4149 if (!new)
1bb3630e 4150 return -ENOMEM;
1da177e4 4151
362a61ad
NP
4152 smp_wmb(); /* See comment in __pte_alloc */
4153
872fec16 4154 spin_lock(&mm->page_table_lock);
c2febafc 4155#ifndef __ARCH_HAS_5LEVEL_HACK
b4e98d9a
KS
4156 if (!p4d_present(*p4d)) {
4157 mm_inc_nr_puds(mm);
c2febafc 4158 p4d_populate(mm, p4d, new);
b4e98d9a 4159 } else /* Another has populated it */
5e541973 4160 pud_free(mm, new);
b4e98d9a
KS
4161#else
4162 if (!pgd_present(*p4d)) {
4163 mm_inc_nr_puds(mm);
c2febafc 4164 pgd_populate(mm, p4d, new);
b4e98d9a
KS
4165 } else /* Another has populated it */
4166 pud_free(mm, new);
c2febafc 4167#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4168 spin_unlock(&mm->page_table_lock);
1bb3630e 4169 return 0;
1da177e4
LT
4170}
4171#endif /* __PAGETABLE_PUD_FOLDED */
4172
4173#ifndef __PAGETABLE_PMD_FOLDED
4174/*
4175 * Allocate page middle directory.
872fec16 4176 * We've already handled the fast-path in-line.
1da177e4 4177 */
1bb3630e 4178int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4179{
a00cc7d9 4180 spinlock_t *ptl;
c74df32c
HD
4181 pmd_t *new = pmd_alloc_one(mm, address);
4182 if (!new)
1bb3630e 4183 return -ENOMEM;
1da177e4 4184
362a61ad
NP
4185 smp_wmb(); /* See comment in __pte_alloc */
4186
a00cc7d9 4187 ptl = pud_lock(mm, pud);
1da177e4 4188#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4189 if (!pud_present(*pud)) {
4190 mm_inc_nr_pmds(mm);
1bb3630e 4191 pud_populate(mm, pud, new);
dc6c9a35 4192 } else /* Another has populated it */
5e541973 4193 pmd_free(mm, new);
dc6c9a35
KS
4194#else
4195 if (!pgd_present(*pud)) {
4196 mm_inc_nr_pmds(mm);
1bb3630e 4197 pgd_populate(mm, pud, new);
dc6c9a35
KS
4198 } else /* Another has populated it */
4199 pmd_free(mm, new);
1da177e4 4200#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4201 spin_unlock(ptl);
1bb3630e 4202 return 0;
e0f39591 4203}
1da177e4
LT
4204#endif /* __PAGETABLE_PMD_FOLDED */
4205
09796395 4206static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3 4207 struct mmu_notifier_range *range,
a4d1a885 4208 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4209{
4210 pgd_t *pgd;
c2febafc 4211 p4d_t *p4d;
f8ad0f49
JW
4212 pud_t *pud;
4213 pmd_t *pmd;
4214 pte_t *ptep;
4215
4216 pgd = pgd_offset(mm, address);
4217 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4218 goto out;
4219
c2febafc
KS
4220 p4d = p4d_offset(pgd, address);
4221 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4222 goto out;
4223
4224 pud = pud_offset(p4d, address);
f8ad0f49
JW
4225 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4226 goto out;
4227
4228 pmd = pmd_offset(pud, address);
f66055ab 4229 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4230
09796395
RZ
4231 if (pmd_huge(*pmd)) {
4232 if (!pmdpp)
4233 goto out;
4234
ac46d4f3 4235 if (range) {
7269f999 4236 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
6f4f13e8
JG
4237 NULL, mm, address & PMD_MASK,
4238 (address & PMD_MASK) + PMD_SIZE);
ac46d4f3 4239 mmu_notifier_invalidate_range_start(range);
a4d1a885 4240 }
09796395
RZ
4241 *ptlp = pmd_lock(mm, pmd);
4242 if (pmd_huge(*pmd)) {
4243 *pmdpp = pmd;
4244 return 0;
4245 }
4246 spin_unlock(*ptlp);
ac46d4f3
JG
4247 if (range)
4248 mmu_notifier_invalidate_range_end(range);
09796395
RZ
4249 }
4250
4251 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4252 goto out;
4253
ac46d4f3 4254 if (range) {
7269f999 4255 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
6f4f13e8
JG
4256 address & PAGE_MASK,
4257 (address & PAGE_MASK) + PAGE_SIZE);
ac46d4f3 4258 mmu_notifier_invalidate_range_start(range);
a4d1a885 4259 }
f8ad0f49 4260 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4261 if (!pte_present(*ptep))
4262 goto unlock;
4263 *ptepp = ptep;
4264 return 0;
4265unlock:
4266 pte_unmap_unlock(ptep, *ptlp);
ac46d4f3
JG
4267 if (range)
4268 mmu_notifier_invalidate_range_end(range);
f8ad0f49
JW
4269out:
4270 return -EINVAL;
4271}
4272
f729c8c9
RZ
4273static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4274 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4275{
4276 int res;
4277
4278 /* (void) is needed to make gcc happy */
4279 (void) __cond_lock(*ptlp,
ac46d4f3 4280 !(res = __follow_pte_pmd(mm, address, NULL,
a4d1a885 4281 ptepp, NULL, ptlp)));
09796395
RZ
4282 return res;
4283}
4284
4285int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
ac46d4f3
JG
4286 struct mmu_notifier_range *range,
4287 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
09796395
RZ
4288{
4289 int res;
4290
4291 /* (void) is needed to make gcc happy */
4292 (void) __cond_lock(*ptlp,
ac46d4f3 4293 !(res = __follow_pte_pmd(mm, address, range,
a4d1a885 4294 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4295 return res;
4296}
09796395 4297EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4298
3b6748e2
JW
4299/**
4300 * follow_pfn - look up PFN at a user virtual address
4301 * @vma: memory mapping
4302 * @address: user virtual address
4303 * @pfn: location to store found PFN
4304 *
4305 * Only IO mappings and raw PFN mappings are allowed.
4306 *
a862f68a 4307 * Return: zero and the pfn at @pfn on success, -ve otherwise.
3b6748e2
JW
4308 */
4309int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4310 unsigned long *pfn)
4311{
4312 int ret = -EINVAL;
4313 spinlock_t *ptl;
4314 pte_t *ptep;
4315
4316 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4317 return ret;
4318
4319 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4320 if (ret)
4321 return ret;
4322 *pfn = pte_pfn(*ptep);
4323 pte_unmap_unlock(ptep, ptl);
4324 return 0;
4325}
4326EXPORT_SYMBOL(follow_pfn);
4327
28b2ee20 4328#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4329int follow_phys(struct vm_area_struct *vma,
4330 unsigned long address, unsigned int flags,
4331 unsigned long *prot, resource_size_t *phys)
28b2ee20 4332{
03668a4d 4333 int ret = -EINVAL;
28b2ee20
RR
4334 pte_t *ptep, pte;
4335 spinlock_t *ptl;
28b2ee20 4336
d87fe660 4337 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4338 goto out;
28b2ee20 4339
03668a4d 4340 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4341 goto out;
28b2ee20 4342 pte = *ptep;
03668a4d 4343
f6f37321 4344 if ((flags & FOLL_WRITE) && !pte_write(pte))
28b2ee20 4345 goto unlock;
28b2ee20
RR
4346
4347 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4348 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4349
03668a4d 4350 ret = 0;
28b2ee20
RR
4351unlock:
4352 pte_unmap_unlock(ptep, ptl);
4353out:
d87fe660 4354 return ret;
28b2ee20
RR
4355}
4356
4357int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4358 void *buf, int len, int write)
4359{
4360 resource_size_t phys_addr;
4361 unsigned long prot = 0;
2bc7273b 4362 void __iomem *maddr;
28b2ee20
RR
4363 int offset = addr & (PAGE_SIZE-1);
4364
d87fe660 4365 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4366 return -EINVAL;
4367
9cb12d7b 4368 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
24eee1e4 4369 if (!maddr)
4370 return -ENOMEM;
4371
28b2ee20
RR
4372 if (write)
4373 memcpy_toio(maddr + offset, buf, len);
4374 else
4375 memcpy_fromio(buf, maddr + offset, len);
4376 iounmap(maddr);
4377
4378 return len;
4379}
5a73633e 4380EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4381#endif
4382
0ec76a11 4383/*
206cb636
SW
4384 * Access another process' address space as given in mm. If non-NULL, use the
4385 * given task for page fault accounting.
0ec76a11 4386 */
84d77d3f 4387int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4388 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4389{
0ec76a11 4390 struct vm_area_struct *vma;
0ec76a11 4391 void *old_buf = buf;
442486ec 4392 int write = gup_flags & FOLL_WRITE;
0ec76a11 4393
1e426fe2
KK
4394 if (down_read_killable(&mm->mmap_sem))
4395 return 0;
4396
183ff22b 4397 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4398 while (len) {
4399 int bytes, ret, offset;
4400 void *maddr;
28b2ee20 4401 struct page *page = NULL;
0ec76a11 4402
1e987790 4403 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4404 gup_flags, &page, &vma, NULL);
28b2ee20 4405 if (ret <= 0) {
dbffcd03
RR
4406#ifndef CONFIG_HAVE_IOREMAP_PROT
4407 break;
4408#else
28b2ee20
RR
4409 /*
4410 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4411 * we can access using slightly different code.
4412 */
28b2ee20 4413 vma = find_vma(mm, addr);
fe936dfc 4414 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4415 break;
4416 if (vma->vm_ops && vma->vm_ops->access)
4417 ret = vma->vm_ops->access(vma, addr, buf,
4418 len, write);
4419 if (ret <= 0)
28b2ee20
RR
4420 break;
4421 bytes = ret;
dbffcd03 4422#endif
0ec76a11 4423 } else {
28b2ee20
RR
4424 bytes = len;
4425 offset = addr & (PAGE_SIZE-1);
4426 if (bytes > PAGE_SIZE-offset)
4427 bytes = PAGE_SIZE-offset;
4428
4429 maddr = kmap(page);
4430 if (write) {
4431 copy_to_user_page(vma, page, addr,
4432 maddr + offset, buf, bytes);
4433 set_page_dirty_lock(page);
4434 } else {
4435 copy_from_user_page(vma, page, addr,
4436 buf, maddr + offset, bytes);
4437 }
4438 kunmap(page);
09cbfeaf 4439 put_page(page);
0ec76a11 4440 }
0ec76a11
DH
4441 len -= bytes;
4442 buf += bytes;
4443 addr += bytes;
4444 }
4445 up_read(&mm->mmap_sem);
0ec76a11
DH
4446
4447 return buf - old_buf;
4448}
03252919 4449
5ddd36b9 4450/**
ae91dbfc 4451 * access_remote_vm - access another process' address space
5ddd36b9
SW
4452 * @mm: the mm_struct of the target address space
4453 * @addr: start address to access
4454 * @buf: source or destination buffer
4455 * @len: number of bytes to transfer
6347e8d5 4456 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4457 *
4458 * The caller must hold a reference on @mm.
a862f68a
MR
4459 *
4460 * Return: number of bytes copied from source to destination.
5ddd36b9
SW
4461 */
4462int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4463 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4464{
6347e8d5 4465 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4466}
4467
206cb636
SW
4468/*
4469 * Access another process' address space.
4470 * Source/target buffer must be kernel space,
4471 * Do not walk the page table directly, use get_user_pages
4472 */
4473int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4474 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4475{
4476 struct mm_struct *mm;
4477 int ret;
4478
4479 mm = get_task_mm(tsk);
4480 if (!mm)
4481 return 0;
4482
f307ab6d 4483 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4484
206cb636
SW
4485 mmput(mm);
4486
4487 return ret;
4488}
fcd35857 4489EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4490
03252919
AK
4491/*
4492 * Print the name of a VMA.
4493 */
4494void print_vma_addr(char *prefix, unsigned long ip)
4495{
4496 struct mm_struct *mm = current->mm;
4497 struct vm_area_struct *vma;
4498
e8bff74a 4499 /*
0a7f682d 4500 * we might be running from an atomic context so we cannot sleep
e8bff74a 4501 */
0a7f682d 4502 if (!down_read_trylock(&mm->mmap_sem))
e8bff74a
IM
4503 return;
4504
03252919
AK
4505 vma = find_vma(mm, ip);
4506 if (vma && vma->vm_file) {
4507 struct file *f = vma->vm_file;
0a7f682d 4508 char *buf = (char *)__get_free_page(GFP_NOWAIT);
03252919 4509 if (buf) {
2fbc57c5 4510 char *p;
03252919 4511
9bf39ab2 4512 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4513 if (IS_ERR(p))
4514 p = "?";
2fbc57c5 4515 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4516 vma->vm_start,
4517 vma->vm_end - vma->vm_start);
4518 free_page((unsigned long)buf);
4519 }
4520 }
51a07e50 4521 up_read(&mm->mmap_sem);
03252919 4522}
3ee1afa3 4523
662bbcb2 4524#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4525void __might_fault(const char *file, int line)
3ee1afa3 4526{
95156f00
PZ
4527 /*
4528 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4529 * holding the mmap_sem, this is safe because kernel memory doesn't
4530 * get paged out, therefore we'll never actually fault, and the
4531 * below annotations will generate false positives.
4532 */
db68ce10 4533 if (uaccess_kernel())
95156f00 4534 return;
9ec23531 4535 if (pagefault_disabled())
662bbcb2 4536 return;
9ec23531
DH
4537 __might_sleep(file, line, 0);
4538#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4539 if (current->mm)
3ee1afa3 4540 might_lock_read(&current->mm->mmap_sem);
9ec23531 4541#endif
3ee1afa3 4542}
9ec23531 4543EXPORT_SYMBOL(__might_fault);
3ee1afa3 4544#endif
47ad8475
AA
4545
4546#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
c6ddfb6c
HY
4547/*
4548 * Process all subpages of the specified huge page with the specified
4549 * operation. The target subpage will be processed last to keep its
4550 * cache lines hot.
4551 */
4552static inline void process_huge_page(
4553 unsigned long addr_hint, unsigned int pages_per_huge_page,
4554 void (*process_subpage)(unsigned long addr, int idx, void *arg),
4555 void *arg)
47ad8475 4556{
c79b57e4
HY
4557 int i, n, base, l;
4558 unsigned long addr = addr_hint &
4559 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
47ad8475 4560
c6ddfb6c 4561 /* Process target subpage last to keep its cache lines hot */
47ad8475 4562 might_sleep();
c79b57e4
HY
4563 n = (addr_hint - addr) / PAGE_SIZE;
4564 if (2 * n <= pages_per_huge_page) {
c6ddfb6c 4565 /* If target subpage in first half of huge page */
c79b57e4
HY
4566 base = 0;
4567 l = n;
c6ddfb6c 4568 /* Process subpages at the end of huge page */
c79b57e4
HY
4569 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4570 cond_resched();
c6ddfb6c 4571 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4572 }
4573 } else {
c6ddfb6c 4574 /* If target subpage in second half of huge page */
c79b57e4
HY
4575 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4576 l = pages_per_huge_page - n;
c6ddfb6c 4577 /* Process subpages at the begin of huge page */
c79b57e4
HY
4578 for (i = 0; i < base; i++) {
4579 cond_resched();
c6ddfb6c 4580 process_subpage(addr + i * PAGE_SIZE, i, arg);
c79b57e4
HY
4581 }
4582 }
4583 /*
c6ddfb6c
HY
4584 * Process remaining subpages in left-right-left-right pattern
4585 * towards the target subpage
c79b57e4
HY
4586 */
4587 for (i = 0; i < l; i++) {
4588 int left_idx = base + i;
4589 int right_idx = base + 2 * l - 1 - i;
4590
4591 cond_resched();
c6ddfb6c 4592 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
47ad8475 4593 cond_resched();
c6ddfb6c 4594 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
47ad8475
AA
4595 }
4596}
4597
c6ddfb6c
HY
4598static void clear_gigantic_page(struct page *page,
4599 unsigned long addr,
4600 unsigned int pages_per_huge_page)
4601{
4602 int i;
4603 struct page *p = page;
4604
4605 might_sleep();
4606 for (i = 0; i < pages_per_huge_page;
4607 i++, p = mem_map_next(p, page, i)) {
4608 cond_resched();
4609 clear_user_highpage(p, addr + i * PAGE_SIZE);
4610 }
4611}
4612
4613static void clear_subpage(unsigned long addr, int idx, void *arg)
4614{
4615 struct page *page = arg;
4616
4617 clear_user_highpage(page + idx, addr);
4618}
4619
4620void clear_huge_page(struct page *page,
4621 unsigned long addr_hint, unsigned int pages_per_huge_page)
4622{
4623 unsigned long addr = addr_hint &
4624 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4625
4626 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4627 clear_gigantic_page(page, addr, pages_per_huge_page);
4628 return;
4629 }
4630
4631 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4632}
4633
47ad8475
AA
4634static void copy_user_gigantic_page(struct page *dst, struct page *src,
4635 unsigned long addr,
4636 struct vm_area_struct *vma,
4637 unsigned int pages_per_huge_page)
4638{
4639 int i;
4640 struct page *dst_base = dst;
4641 struct page *src_base = src;
4642
4643 for (i = 0; i < pages_per_huge_page; ) {
4644 cond_resched();
4645 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4646
4647 i++;
4648 dst = mem_map_next(dst, dst_base, i);
4649 src = mem_map_next(src, src_base, i);
4650 }
4651}
4652
c9f4cd71
HY
4653struct copy_subpage_arg {
4654 struct page *dst;
4655 struct page *src;
4656 struct vm_area_struct *vma;
4657};
4658
4659static void copy_subpage(unsigned long addr, int idx, void *arg)
4660{
4661 struct copy_subpage_arg *copy_arg = arg;
4662
4663 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4664 addr, copy_arg->vma);
4665}
4666
47ad8475 4667void copy_user_huge_page(struct page *dst, struct page *src,
c9f4cd71 4668 unsigned long addr_hint, struct vm_area_struct *vma,
47ad8475
AA
4669 unsigned int pages_per_huge_page)
4670{
c9f4cd71
HY
4671 unsigned long addr = addr_hint &
4672 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4673 struct copy_subpage_arg arg = {
4674 .dst = dst,
4675 .src = src,
4676 .vma = vma,
4677 };
47ad8475
AA
4678
4679 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4680 copy_user_gigantic_page(dst, src, addr, vma,
4681 pages_per_huge_page);
4682 return;
4683 }
4684
c9f4cd71 4685 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
47ad8475 4686}
fa4d75c1
MK
4687
4688long copy_huge_page_from_user(struct page *dst_page,
4689 const void __user *usr_src,
810a56b9
MK
4690 unsigned int pages_per_huge_page,
4691 bool allow_pagefault)
fa4d75c1
MK
4692{
4693 void *src = (void *)usr_src;
4694 void *page_kaddr;
4695 unsigned long i, rc = 0;
4696 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4697
4698 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4699 if (allow_pagefault)
4700 page_kaddr = kmap(dst_page + i);
4701 else
4702 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4703 rc = copy_from_user(page_kaddr,
4704 (const void __user *)(src + i * PAGE_SIZE),
4705 PAGE_SIZE);
810a56b9
MK
4706 if (allow_pagefault)
4707 kunmap(dst_page + i);
4708 else
4709 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4710
4711 ret_val -= (PAGE_SIZE - rc);
4712 if (rc)
4713 break;
4714
4715 cond_resched();
4716 }
4717 return ret_val;
4718}
47ad8475 4719#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4720
40b64acd 4721#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4722
4723static struct kmem_cache *page_ptl_cachep;
4724
4725void __init ptlock_cache_init(void)
4726{
4727 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4728 SLAB_PANIC, NULL);
4729}
4730
539edb58 4731bool ptlock_alloc(struct page *page)
49076ec2
KS
4732{
4733 spinlock_t *ptl;
4734
b35f1819 4735 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4736 if (!ptl)
4737 return false;
539edb58 4738 page->ptl = ptl;
49076ec2
KS
4739 return true;
4740}
4741
539edb58 4742void ptlock_free(struct page *page)
49076ec2 4743{
b35f1819 4744 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4745}
4746#endif